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Abstract

We present an algorithm for computing sparse, least squares-based polynomial

chaos expansions, incorporating both adaptive polynomial bases and sequen-

tial experimental designs. The algorithm is employed to approximate stochastic

high-frequency electromagnetic models in a black-box way, in particular, given

only a dataset of random parameter realizations and the corresponding obser-

vations regarding a quantity of interest, typically a scattering parameter. The

construction of the polynomial basis is based on a greedy, adaptive, sensitivity-

related method. The sequential expansion of the experimental design employs

different optimality criteria, with respect to the algebraic form of the least

squares problem. We investigate how different conditions affect the robustness

of the derived surrogate models, that is, how much the approximation accu-

racy varies given different experimental designs. It is found that relatively opti-

mistic criteria perform on average better than stricter ones, yielding superior

approximation accuracies for equal dataset sizes. However, the results of strict

criteria are significantly more robust, as reduced variations regarding the

approximation accuracy are obtained, over a range of experimental designs.

Two criteria are proposed for a good accuracy-robustness trade-off.
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1 | INTRODUCTION

For most, if not all, electromagnetic (EM) devices, quantities of interest (QoIs) feature a parametric dependency
upon the design characteristics of the device, eg, its geometry or material properties. During the design of an EM
device, this dependency—denoted here with g(y), where y ∈ RN is the parameter vector—is typically resolved
with a computationally expensive parametric simulation, eg, using a finite element (FE) model. In this work, our
goal is to infer (learn, approximate) the relation between the design parameters of a high-frequency EM device
and its QoIs, eg, one or more scattering parameters, and compute a black box approximation ~g≈g , given only a
dataset D= yl,g ylð Þf gLl=1 . This approximation is often called a surrogate model, a meta-model, or a response surface.
We call the set of parameter realizations ylf gLl=1 the experimental design (ED) and the corresponding QoI values

Received: 29 October 2019 Accepted: 31 December 2019

DOI: 10.1002/jnm.2725

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2020 The Authors. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields published by John Wiley & Sons Ltd.

Int J Numer Model El. 2020;e2725. wileyonlinelibrary.com/journal/jnm 1 of 15

https://doi.org/10.1002/jnm.2725

https://orcid.org/0000-0003-1264-1182
mailto:loukrezis@temf.tu-darmstadt.de
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/jnm
https://doi.org/10.1002/jnm.2725


g ylð Þf gLl=1 the observations. The latter shall here be simulation outputs, however, they could also refer to—possibly
noisy—measurement data as well.

The aforementioned inference problem is here considered in an uncertainty quantification (UQ) setting.1,2 In
particular, the model parameters are assumed to be independent random variables (RVs) Y n, n = 1,…,N, forming the
N-variate RV Y = (Y1,…,YN). The latter is defined on the probability space (Θ, Σ, R) and follows the probability density
function (PDF) ϱ : Ξ! R≥0, where Ξ denotes the image space. Because of the RV independence, it holds that

ϱ yð Þ= QN
n=1

ϱn ynð Þ, where y = Y(θ)∈Ξ, θ∈Θ, is now an RV realization. We note that RV independence is not a crucial

assumption and that dependencies can also be handled via suitable RV transformations.3-5 The RVs represent here ran-
dom deviations from the specifications of a high-frequency device, which may arise because of manufacturing toler-
ances, material contamination, or other uncertainty sources.

Assuming that g corresponds to a smooth functional relation, a computationally efficient approach for constructing
a surrogate model is to compute a polynomial chaos expansion (PCE),6,7

~g yð Þ=
XM
m=1

smΨm yð Þ, ð1Þ

where sm are scalar coefficients and Ψm are polynomials orthogonal with respect to the input PDF. Once available, the
PCE can replace the original model in computationally demanding tasks, eg, UQ or optimization studies. For the pur-
poses of UQ, certain statistical measures regarding the QoI can be computed by simply post-processing the PCE's
terms.8,9 Moreover, the corresponding computational cost is typically orders of magnitude smaller than the one of a
Monte Carlo (MC) method.10,11 In this work, given a dataset D of size L, the PCE is constructed by solving the discrete
least squares (LS) minimization problem

~g=arg minπ∈PM

XL
l=1

g ylð Þ−π ylð Þð Þ2, ð2Þ

where PM = span{Ψm, m = 1, …, M} denotes the corresponding polynomial space.12-14 Note that the surrogate model
is constructed in a nonintrusive way, ie, the model is used as a black box to compute the observations g(yl), l = 1,
…, L. The construction of the PCE can alternatively be based on compressive sensing15-19 or low-rank tensor decompo-
sition methods.20-22 Nevertheless, many recent works on both the theoretical properties of LS methods12-14,23-26 and
on LS-PCE algorithms8,27-32 indicate that the interest in this approach remains active. In the context of this work, a
further reason for investigating and improving the LS-PCE method is its popularity in the setting of EM
simulations.33-37

The approximation accuracy of the PCE is crucially affected by the choice of the polynomial space PM. This is
especially relevant in high-dimensional approximations because of the fact that the dimension of PM grows very fast
with the number of RVs, which constitutes a manifestation of the so-called curse of dimensionality.38 To mitigate
this problem, a sparse albeit expressive polynomial basis must be constructed.16,18,19,24,27,28,32 The first contribution
of this work is exactly in this direction. Specifically, we propose a greedy-adaptive algorithm for the construction of
the PCE basis, which takes into consideration the sensitivity of the QoI to the input RVs and the corresponding PCE
terms.

Another crucial aspect regarding the stability of the LS problem (2) and the accuracy of its solution is the relation
between the size of the polynomial basis and the size of the ED, equivalently, of the dataset.12,14,23 At minimum, the LS
system must not be underdetermined, ie, it must hold that L ≥ M. Consequently, considering an adaptively constructed
PCE basis, the ED must be sequentially expanded in order to meet the stability requirements. Theoretical LS stability
criteria have been established in the literature12,14,23,25 and have been used to form sequential ED strategies.24,32 How-
ever, it has been observed that relaxed criteria typically result in more accurate approximations for equal costs.12-14,26,32

Therefore, most works resort to heuristic criteria regarding the dynamic relation between the polynomial basis and the
dataset.27,28 In the same vein, optimal ED criteria have been considered recently.15,29-31 In this case, optimality refers to
selecting the best available realizations over a pool of candidate realizations to enhance the ED.
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The aforementioned works mostly focus on the accuracy of the PCEs derived with the proposed heuristic conditions
regarding sequential EDs. However, studies on the robustness of the approximation, ie, to what extent different EDs
affect the accuracy of a surrogate model constructed with a specific method or adaptivity criterion, have not been suffi-
ciently addressed in the literature so far. There lies the second contribution of this work, which aims to address the
issue of robustness. Specifically, we examine different optimality conditions during the sequential expansion of the ED
and their impact on both the accuracy and the robustness of the resulting PCEs. In combination with the proposed
greedy-adaptive polynomial basis, a fully adaptive PCE algorithm is developed, where both the polynomial basis and
the ED are sequentially/adaptively expanded.

Our method is tested on two simulation models from the field of high-frequency electromagnetics. First, an aca-
demic test case is considered, employing a simple rectangular waveguide with dielectric filling39,40 and featuring up to
15 parameters. Second, we apply the method to an optical grating coupler model41 with up to five parameters. By
including the frequency in the parameter vector, we are able to approximate not only the parametric dependence, but
also the frequency response of the model within a given frequency range. Naturally, the frequency response must also
correspond to a smooth functional, eg, sharp resonances shall increase the computational cost of the method, or might
even render it inapplicable altogether. For both considered numerical examples, the suggested approach results in accu-
rate surrogate models for comparably low dataset sizes. We observe the influence of the different optimality criteria
upon the accuracy and the robustness of the PCEs. On the one hand, relaxed criteria result in—on average—more accu-
rate surrogate models, which however vary significantly from one another for different EDs. On the other hand, stricter
criteria yield approximations of inferior accuracy; however, the variance of the approximation accuracy for different
EDs is significantly reduced. Two sequential ED criteria are identified, for which the trade-off between accuracy and
robustness can be considered as acceptable.

The rest of this paper is organized as follows. In Section 2, we introduce the PCE as well as the computation of the
corresponding coefficients via discrete LS. This is followed by Section 3 where we present a scheme that exploits
the sensitivity of the QoI on the RVs for adaptively selecting the PCE basis terms. In the same section, we extend the
scheme by robust sequential ED, relying on different optimality criteria. Numerical experiments on two high-frequency
electromagnetic devices verify the reliability and accuracy of the presented method in Section 4. Concluding remarks
and possible continuations of this work are available in Section 5.

2 | LEAST SQUARES POLYNOMIAL CHAOS EXPANSIONS

2.1 | Univariate polynomial chaos expansions

We first consider a univariate model g(y), where y = Y(θ), θ ∈ Θ, and the RV Y is characterized by the PDF ϱ(y).
We denote a univariate polynomial of degree p ∈ Z≥0 with ψp and demand that the polynomial basis ψp

n opmax

p=0
is

orthogonal with respect to the univariate PDF, such that

 ψpψq

h i
=
ð
Ξ
ψp yð Þψq yð Þϱ yð Þdy= γpδpq, ð3Þ

where p, q ∈ {0, 1, …, pmax}, δpq is the Kronecker delta, and γp a normalization factor. In the rest of this paper, we will
always assume that γp = 1, 8 p ∈ {0, 1, …, pmax}, ie, ψp

n opmax

p=0
is an orthonormal basis. For commonly used PDFs, the

generalized polynomial chaos (gPC) or Wiener-Askey Scheme7 provides correspondences to families of orthogonal poly-
nomials. Extensions to arbitrary PDFs have been introduced by using numerically constructed orthogonal polyno-
mials.42-44 The univariate PCE reads

g yð Þ≈~g yð Þ=
Xpmax

p=0

spψp yð Þ, ð4Þ

where sp ∈ R are scalar coefficients. In essence, ~g is a polynomial living in the space

Ppmax
= span ψp : p≤ pmax

n o
: ð5Þ
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2.2 | Multivariate polynomial chaos expansions

We proceed to the case of a multivariate model g(y), where y = Y(θ) and the RVs Y are characterized by the PDF
ϱ(y) = ϱ1(y1)� � �ϱN(yN). We introduce the multi-index p= p1,…,pNð Þ∈ZN

≥0 , which contains the polynomial order per
parameter and defines the corresponding multivariate polynomial Ψp as

Ψp yð Þ=
YN
n=1

ψpn
ynð Þ: ð6Þ

In this case, the orthonormality condition reads

 ΨpΨq
� �

=
ð
Ξ
Ψp yð ÞΨq yð Þϱ yð Þdy= δpq, ð7Þ

where δpq = δp1q1 � � �δpNqN . Assuming a polynomial basis {Ψp}p∈Λ, where Λ is a multi-index set, the multivariate PCE
reads

g yð Þ≈~g yð Þ=
X
p:p∈Λ

spΨp yð Þ, ð8Þ

and the corresponding multivariate polynomial space PΛ is given by

PΛ = span Ψp :p∈Λ
� �

: ð9Þ

Common choices for Λ in the literature are tensor product (TP), total degree (TD), hyperbolic cross (HC), and down-
wardclosed (DC) multi-index sets.12,14,45 The respective definitions are given in Table 1, where en denotes the nth unit
vector. We note that multi-index sets of arbitrary shapes may also be used, see, eg, Blatman and Sudret.8,27

2.3 | Computing expansion coefficients via discrete least squares

We now assume that a polynomial basis {Ψp}p ∈ Λ with cardinality #Λ = M, as well as an ED ylf gLl=1 and the
corresponding observations g ylð Þf gLl=1, are available. Then, the PCE can be obtained by solving the minimization prob-
lem (2), where the polynomial space is defined as in (9). For the solution of (2), we introduce the design matrix
D∈RL×M with elements dlm = Ψm(yl), and the observation vector b = (g(y1),…, g(yL))>. Collecting the unknown PCE
coefficients into a vector s = (s1,…, sM)>, we form the discrete minimization problem

s=arg minŝ∈RM Dŝk −bk2: ð10Þ

Applying the necessary conditions for a minimum, we obtain the normal equation46, 20.4, section

D>D
� �

s=D>b, ð11Þ

TABLE 1 Definitions of

commonly employed multi-index sets,

respectively, polynomial bases

TP ΛTP ≔ {p : maxn(pn) ≤ pmax, pmax ∈ Z≥0}

TD ΛTD≔ p :
PN

n=1pn ≤ pmax,pmax∈Z≥0

n o

HC
ΛHC≔ p :

QN
n=1

pn +1ð Þ≤ pmax + 1,pmax∈Z≥0

� 	

DC ΛDC ≔ {p : (p − en) ∈ ΛDC, 8n = 1, …, N with pn > 0}

Abbreviations: DC, downward-closed; HC, hyperbolic cross; TD, total degree; TP, tensor product.
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where the system matrix A = D>D is called the information matrix. The solution to (11) is unique if the design matrix
is nonsingular. Moreover, it must obviously hold that L ≥ M, ie, the system of equations cannot be underdetermined.

Because of the well-known estimates regarding the sensitivity of the LS solution and its dependence on the condi-
tion number κ(�) of the corresponding system matrix,46,47 it is generally not recommended to use the normal equation
(11), as it can easily be shown that

κ Að Þ= κ Dð Þð Þ2: ð12Þ

A QR decomposition of the design matrix D can be used instead,46, 20.2, section in which case, the conditioning of the
LS system is given by κ(D) = κ(QR) = κ(R).

3 | ADAPTIVE LEAST SQUARES POLYNOMIAL APPROXIMATIONS

3.1 | Adaptive polynomial basis

We first address the case of a fixed dataset D= yl,blf gLl=1, which is considered to be sufficient for computing a PCE with
M terms. The question that arises is, which M polynomials, equivalently, which multi-index set Λ with #Λ = M will
result in an accurate approximation. Several algorithms have been developed to address this problem.8,16,18,19,27,28,31,32,48

Any of these approaches can be combined with the sequential ED strategies discussed in Section 3.2.
Additional to the aforementioned methods, we present here yet another algorithm for the adaptive construction of

the PCE basis. Our approach is conceptually similar to a well-known dimension-adaptive quadrature method,49 there-
fore, we enforce the use of DC multi-index sets, as defined in Table 1. We note that DC sets are not strictly necessary.
For example, the simple two-dimensional function

g y1,y2ð Þ= ay21 + by2, ð13Þ

can be represented exactly by a PCE based on Λ = {(2, 0), (0, 1)}. However, the DC property would require that
Λ = {(0, 0), (1, 0), (2, 0), (0, 1)}, thus unnecessarily augmenting the LS system matrix. Nevertheless, while not optimal,
DC sets are employed in several theoretical works12-14,24,32,50 because of the fact that the corresponding polynomial
spaces satisfy a number of desirable properties, eg, closure under differentiation for any variable, and invariance under
a change of basis. Moreover, as also verified by the results in Section 4, PCEs based on DC sets perform very well in
practice. This can be attributed to the fact that pathological cases such as (13) are rarely encountered in practical
applications.

The adaptive construction of the PCE basis proceeds as follows. Let us assume that a multivariate approximation
(8) based on a DC multi-index set Λ is readily available. If not, we can initialize the procedure with Λ = {(0, 0, …, 0)}.
We call “admissible neighbors” the indices which do not belong to Λ and would satisfy the DC property if added to Λ.
The corresponding admissible set is defined as

Λadm≔ p �∈Λ : p−enð Þ�Λ,8n=1,…,N with pn >0f g: ð14Þ

Next, we construct the basis corresponding to the multi-index set ΛLS = Λ [ Λadm and solve the discrete LS minimi-
zation problem (10) for the coefficients sp, p ∈ ΛLS. Assuming that orthonormal polynomials are used, the value s2p is
the equivalent of the partial variance because of the multi-index p, thus, directly linked to the contribution of that
multi-index to the total variance of the QoI.8,9 Since Sobol sensitivity indices are nothing more than fractions of partial
variances over the total variance of the QoI, the value s2p can be interpreted as a sensitivity indicator regarding the
multi-index p. Therefore, we add to Λ the admissible multi-index which corresponds to the maximum sensitivity indica-
tor, such that

Λ Λ[ p*� �
,wherep* =arg maxp∈Λadms2p: ð15Þ
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This procedure continues iteratively until #Λ = M basis terms are reached, as shown in Algorithm 1.

Algorithm 1 Adaptive PCE basis construction.

Data: dataset D, maximum PCE terms M, initial DC multi-index set Λinit.
Result: DC multi-index set Λ with #Λ = M, PCE basis {Ψp}p ∈ Λ and coefficients {sp}p ∈ Λ.
while #Λ < M do.

Create the extended multi-index set ΛLS = Λ [ Λadm.
Solve the LS problem (10) using ΛLS.
Find the admissible multi-index corresponding to the largest sensitivity indicator, that is, p* =arg maxp∈Λadms2p.
Expand Λ with p*, i.e., Λ = Λ [ p*.

end while.

3.2 | Sequential experimental design

We now consider the case where the PCE is expanded adaptively until it reaches a desired accuracy e. This accuracy is
typically estimated using a cross-validation (CV) error metric, eg, the leave-one-out (LOO)8,28,30 or the ℓ∞13,14,32 CV
error. In that case, the dataset D, accordingly, the ED and the observations, should also be expanded, such that the LS
problem remains stable and the accuracy of the PCE increases. Moreover, this expansion should be sequential, such
that previously available observations can be reused, thus restricting the computational cost to the simulations because
of the new parameter realizations. Such an approach falls in the category of sequential EDs.8,27,28,30,51

We will focus here on three such criteria. Denoting with G = L−1A the normalized information matrix, those
criteria are, (a) the K-optimality criterion, which aims to minimize the condition number κ(G); (b) the A-optimality cri-
terion, which aims to minimize the trace tr(G−1); and (c) the E-optimality criterion, which aims to minimize the maxi-
mum eigenvalue λmax(G

−1). We note that κ(G) = κ(A) = κ(D)2, therefore, the K-optimality criterion can be modified
such that the design matrix D is used instead. Moreover, it can be easily shown that λmax(G

−1) = (λmin(G))
−1, thus, we

can avoid the possibly costly inversions. The inversion can also be avoided when the trace-based criterion is used, by
exploiting the property tr G−1

� �
=
PM

m=1 λm Gð Þð Þ−1, where λm(G) denotes the mth eigenvalue of matrix G.
Contrary to the setting of optimal EDs, in this work, we do not seek to minimize those measures. Instead,

we investigate conditions which, if violated, trigger the expansion of the dataset, equivalently, of the ED and the
observations. In essence, we enforce the values of κ(D), tr(G−1), λmax(G

−1) to be below some limit value. If this
condition is satisfied, the PCE is adaptively expanded using the available ED, as in Section 3.1. Otherwise, the poly-
nomial basis remains fixed and the dataset is expanded until the condition is again satisfied. This sequential ED
strategy is depicted in Algorithm 2. Several works claim that relaxed conditions may lead to more accurate PCEs
for equal costs, equivalently, for EDs of equal sizesE.12-14,32 However, as we will show in Section 4, this accuracy
improvement comes at the cost of robustness, in the sense that the accuracy of the PCE depends significantly on
the available ED. This aspect has not received much attention in the literature so far.

Algorithm 2 Sequential ED strategy.

Data: initial dataset Dinit, initial multi-index set Λinit, desired accuracy e.
Result: final multi-index set Λ, PCE basis {Ψp}p ∈ Λ, and coefficients {sp}p ∈ Λ.
Λ=Λinit, D=Dinit:

while desired accuracy is not reached do.
while κ(D) ≤ κlimit or tr(G−1) ≤ trlimit or λmax G−1

� �
≤ ðλlimit

max Þ do.
Expand the PCE using Algorithm 1.

end while.
Expand the dataset D, equivalently, expand the ED and the QoI evaluations.

end while.
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4 | APPLICATION EXAMPLES

4.1 | Verification methodology

In the following, we employ Algorithms 1 and 2 to approximate the input-output relation of two stochastic high-
frequency models via PCEs. The two models feature up to 15 and five uniform input RVs, respectively. Both algorithms
are part of the in-house–developed software ALSACE (Approximations via Least Squares Adaptive Chaos Expansions,
https://github.com/dlouk/ALSACE), which is partially based on the OpenTURNS C++/Python library.52

We compute PCEs using different criteria for the sequential expansion of the ED shown in Algorithm 2. For each
criterion, we use multiple EDs for the construction of the PCE and measure both the average approximation accuracy,
as well as the variations around that mean accuracy value. For a PCE computed with a specific ED, the approximation
accuracy is measured using the root mean square (RMS) CV error

ecv,RMS =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Q

XQ
q=1

~g yq
� �

−g yq
� �� �2

vuut , ð16Þ

where a CV sample yq
n oQ

q=1
, which is randomly drawn from the joint input PDF, is used. We note that the CV sample

does not coincide with the ED.

4.2 | Rectangular waveguide with dielectric inset

As a first test case, we consider a rectangular waveguide with dielectric filling, as shown in Figure 1. The waveguide
has width w and height h, and is infinitely extended in the positive z direction. An incoming plane wave excites the
waveguide at the input port boundary Γin. For simplicity, the excitation coincides with the fundamental transverse elec-
tric (TE) mode only, while all other propagation modes attenuate quickly in the structure. The output port Γout, which
is not shown in Figure 1, is placed at a distance d + ℓ + d from Γin, where ℓ is the length of the dielectric material,
placed at a distance d from Γin. The remaining waveguide walls are assumed to be perfect electric conductors (PECs),
and the corresponding boundary is denoted with ΓPEC.

FIGURE 1 Rectangular waveguide with dielectric inset
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The dielectric material has a permittivity ϵ = ϵ0ϵr and permeability μ = μ0μr, where “0” denotes the property value
in the free space and “r” its relative value in the material. The relative material values are given by the Debye relaxation
models of second order,53 such that

ϵr = ϵ∞ +
ϵs,1−ε∞

1+ ıωτϵ,1ð Þ +
ϵs,2−ε∞

1+ ıωτϵ,2ð Þ ð17Þ

μr = μ∞ +
μs,1−μ∞

1+ ıωτμ,1
� � + μs,2−μ∞

1+ ıωτμ,2
� � , ð18Þ

where τϵ/μ, 1/2 are relaxation time constants, the subscript “∞” refers to a very high frequency value of the relative mate-
rial property, the subscript “s” to a static value of the relative material property, and ı denotes the imaginary unit.

Let D be the computational domain, ω = 2πf the angular frequency, f the frequency, E the electric field, Ui the
incoming plane wave, n the outwards-pointing normal vector, and k = (0, 0, kz) the wave vector. Then, the underlying
mathematical model reads

r× μ−1r×E
� �

−ω2ϵE=0, in D, ð19aÞ

nΓPEC ×E=0, on ΓPEC, ð19bÞ

nΓin × r×Eð Þ+ ıkznΓin × nΓin ×Eð Þ=Ui, on Γin, ð19cÞ

nΓout × r×Eð Þ+ ıkznΓout × nΓout ×Eð Þ=0, on Γout: ð19dÞ

The QoI is chosen to be the reflection coefficient at the input port Γin, r=
EΓ−

in
EΓ+

in


∈ 0,1½ � . Usually, problem (19) is

solved numerically, eg, using the finite element method (FEM). For this simple model, an analytical solution exists for
the reflection coefficient r. Therefore, errors due to spatial discretization can be neglected and we can focus on the error
because of the truncation of the PCE alone.

We introduce uncertainties with respect to all geometrical and Debye material model parameters, and collect
them in a 14-dimensional random vector Y. In the nominal configuration, the parameter values are �w =30 mm,
�h=3mm, �ℓ=7mm, �d=1mm, �ϵs,1 = 2, �ϵs,2 = 2:2, �ϵ∞ =1, �μs,1 = 2, �μs,2 = 3, �μ∞ =1, �τϵ,1 = 1, �τϵ,2 = 1:1, �τμ,1 = 1and �τμ,2 = 2.
The frequency response of the waveguide for its nominal parameter values is shown in Figure 2. Each parameter is
now assumed to follow a uniform distribution with bounds given by �yn�0:05�yn, ie, a uniform random variation around
the nominal value up to a maximum of 5% is introduced. Denoting with y = Y(θ), a realization of the random vector Y,
the parametric counterpart of problem (19) features parameter-dependent material properties ϵ(y), μ(y), computational
domain D(y), and boundaries ΓPEC(y), Γin(y), Γout(y). Accordingly, the field solution E(y) and the reflection coefficient
r(y) are parameter-dependent as well (Figure 2).

4.2.1 | Single-frequency surrogate modeling

In most UQ studies for frequency-response models, such as the waveguide examined here, one PCE per frequency point
is developed in order to approximate the model's response over a frequency range. Therefore, in this first numerical
experiment, we will approximate the functional r(y), given in decibels, for a fixed frequency f = 5 GHz. In particular,
we employ Algorithm using three different condition number limits, three different maximum eigenvalue limits, and
three different maximum trace limits, with respect to the sequential expansion of the ED. We construct PCEs using
100 different random EDs, ie, using different random sampling seeds. The RMS CV error (16) is computed using a ran-
dom sample with Q = 105 points. The approximation results are shown in Figure 3, where we omit the trace-related
results, since they follow closely the eigenvalue-related ones. Each subplot corresponds to a different sequential ED cri-
terion and shows the RMS CV error of the PCEs for EDs of increasing size. In all cases, the surrogate models reach
accuracies well beyond the ones typically needed in engineering applications.
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Looking at the first two columns of Figure 3, it can be indeed observed that more relaxed criteria improved the accu-
racy of the PCE on average. Relaxing the condition-number criterion from κ Dð Þ≤ ffiffiffi

3
p

to κ(D)≤ 10 does not seem to
introduce larger variations with respect to the PCEs' accuracy. A more pronounced difference is observed between the
eigenvalue-based criteria λmax≤ 1 and λmax≤ 10, however, the PCEs can in both cases be regarded as robust. The right-
most columns of Figure 3 show that further relaxation of the criteria results in either marginal gains (bottom row) or in
accuracy deterioration (top row). Comparing the top and bottom-row subfigures, the eigenvalue-based criteria seem to
result in more robust results for a similar accuracy-cost relation. In terms of a compromise between costs and accuracy,
the best choices regarding the sequential expansion of the ED are found to be κ(D)≤ 10 and λmax≤ 10, for this particular
model. However, we should note that PCEs based on the strictest and most robust criteria, ie, κ Dð Þ≤ ffiffiffi

3
p

and λmax≤ 1,
also yield errors below the engineering standards, on top of being more robust in their results.

FIGURE 3 Root mean square cross validation (RMS CV) errors of polynomial chaos expansions (PCEs) approximating the single-

frequency dielectric-inset rectangular waveguide model for EDs of increasing size and different sequential experimental design (ED) criteria.

The gray lines show the results of 100 different EDs. The average errors are shown in black

FIGURE 2 Frequency-response of the dielectric-inset

waveguide for the nominal geometry and material parameters
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4.2.2 | Broadband surrogate modeling

As mentioned in Section 4.2.1, the frequency response is typically approximated using one PCE per frequency point,
equivalently, per time step in time-domain approaches.37,53 This can be computationally expensive in cases where a
large number of frequency points must be examined. For high-frequency models where the frequency dependence is
also a relatively smooth functional, eg, no sharp resonances exist in the examined frequency range, one can extend the
presented surrogate modeling approach, such that it includes the frequency dependence as well.54 Specifically, while
not random, the frequency can be modeled as a parameter which is uniformly distributed in the specified frequency
range. The resulting PCE approximates the functional r(f, y), including the frequency dependence next to the geometri-
cal and material parameters.

Using this idea, we repeat the numerical experiments of Section 4.2.1, where the frequency is now an additional uni-
formly distributed parameter in the range [10, 20] GHz. The results are shown in Figure 4. The surrogate models reach
satisfactory accuracies for the whole frequency range. Similar to the single-frequency case, the eigenvalue-based criteria
seem to be more robust compared with the condition-number-based ones, for a similar accuracy-cost relation. Once
more, the conditions κ(D) ≤ 10 and λmax(G

−1) ≤ 10 yield the best compromises between approximation accuracy and
robustness. In both cases, further relaxation of the sequential ED criteria not only adds significant variation in the
results, but also worsens the average accuracy.

4.3 | Optical grating coupler

For the next, more challenging numerical example, we use a 1D grating coupler model.41 Such nanometer-scaled
devices are employed in the field of nano-photonics and plasmonics.55-57 Their multilayer structure consists of a high
index dielectric on top of a metallic grating, which is placed on a substrate. A simplified, schematic model is depicted in
Figure 5. We assume the structure to be infinitely extended in the lateral direction. Furthermore, only normal incident
light beams from the top are considered. For certain incident wavelengths, matching the geometry dimensions, surface

FIGURE 4 Root mean square cross validation (RMS CV) errors of polynomial chaos expansions (PCEs) approximating the broadband

dielectric-inset rectangular waveguide model, for experimental designs (EDs) of increasing size and different sequential ED criteria. The gray

lines show the results of 100 different EDs. The average errors are shown in black

10 of 15 LOUKREZIS ET AL.



plasmons are excited in the metallic grating. Those wavelengths can be detected by observing the reflection coefficient
r, which shows a dip in the frequency response each time the condition is satisfied, ie, when a surface plasmon is
excited, see Figure 6. Note that, because of the resonances, a polynomial approximation of the grating coupler model
including the frequency-response becomes significantly more challenging.

The surface plasmon coupling is highly sensitive to the coupler's geometrical parameters, in particular, the grating
pitch length dG, the groove aG, the thickness of the metallic hm and dielectric hD layers, and the grating thickness hG
(see Figure 5). A full parameter study can be found in Pitelet et al.41 Following the same work, we model those four
parameters as uniformly distributed and independent RVs, such that Yn

~U �yn−δyn ,�yn + δyn
� �

, where �yn denotes the nomi-
nal value and δyn the maximum allowed deviation from the nominal value. The parameters, their nominal values, and
the allowed deviations are shown in Table 2.

4.3.1 | Broadband surrogate modeling

In this example, we only consider the broadband approximation of the grating coupler model, similar to Section 4.2.2.
Thus, we model the wavelength as uniformly distributed in [550 nm, 800 nm]. For a given realization of the parameter
vector y = Y(θ) and a wavelength value λ, the reflection coefficient is a deterministic QoI denoted by r(λ, y) and given
in decibels. For the computation of the reflection coefficient, we employ a rigorous coupled wave analysis (RCWA)
code.58,59

Numerical results for different sequential ED conditions are depicted in Figure 7. Once more, we omit the trace-
based criterion, as the corresponding results are similar to the eigenvalue-based ones. Despite the nonsmooth frequency

FIGURE 6 Frequency-response of the optical grating coupler

for the nominal geometry parameters

FIGURE 5 Schematic view of the optical grating coupler
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response, our method is able to provide accurate approximations, albeit at an elevated cost, ie, EDs with up to 104

parameter realizations are employed. It is worth stating that the resonances do not render PCEs altogether inapplicable,
as is often the case for nonsmooth responses. Additionally, considering the higher computational cost of the RCWA
solver, we employ only 10 different EDs. The size of the CV sample used for computing error (16) remains equal
to Q = 105.

Similar to the results of Section 4.2, relaxed sequential ED criteria improve the average approximation accuracy,
and at the same time introduce a larger variation among PCEs constructed for different EDs, as can be observed from
the first two columns of Figure 6. The last column of Figure 6 shows once more that, after a certain point, further relax-
ation of the sequential ED criteria only enlarges the variation without accuracy improvement. Once again, the
eigenvalue-based criteria yield more robust results compared with the condition-number-based ones, however, the dif-
ference is not as pronounced as in Section 4.2. Moreover, using the criterion λmax(G

−1) ≤ 1, almost no accuracy
improvement is obtained for larger datasets. Similar to Section 4.2, the conditions κ(D) ≤ 10 and λmax(G

−1) ≤ 10 provide
the best trade-off between accuracy and robustness.

5 | SUMMARY AND CONCLUSIONS

In this work, we proposed an algorithm to construct sparse LS-based PCEs. The algorithm features a sensitivity-based,
adaptive selection of the polynomial basis terms, as well as a sequential ED strategy, such that the available dataset of

TABLE 2 Uncertain geometric

parameters of the grating structure
Parameter Mean, �y[nm] Variation, δy[nm]s

hD 84.8 0.3

hG 68.1 0.1

dG 499.2 1.0

aG 165.4 1.5

FIGURE 7 Root mean square cross validation (RMS CV) errors of polynomial chaos expansions (PCE)s approximating the broadband

grating coupler model, for experimental designs (EDs) of increasing size and different sequential ED criteria. The gray lines show the results

of 10 different EDs. The average errors are shown in black
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parameter realizations and QoI observations is expanded at wish, given different optimality criteria. We focused on
three such criteria, namely, K, E, and A optimality, to construct nested datasets of EDs and observations, and investi-
gated the influence of different optimality conditions on the accuracy and robustness of the PCE-based surrogate
models.

The method's accuracy and efficiency has been verified on two high-frequency electromagnetic models. Although
comparisons between our approach and competitive methods, either nonadaptive or adaptive, have not been presented
here, our method typically outperforms fixed-degree PCE approaches by orders and has been found to be superior to
the popular least angle regression (LAR)-PCE approach.40 Instead, this work focused on the largely unexplored topic of
PCE robustness, which is closely related to the stability of the discrete LS regression problem. In turn, LS stability can
be quantified by certain algebraic measures of the corresponding information matrix, with each of these measures being
related to a so-called optimal ED criterion. It was repeatedly shown that strict criteria result in robust PCEs, the accu-
racy of which remains relatively unaffected by the given dataset. Relaxing those criteria can improve the on-average
accuracy at the cost of robustness, ie, resulting in larger variations among PCEs constructed with different datasets.
Relaxation of the sequential ED criteria beyond a certain point only introduces more variation, while at the same time
not improving or even worsening the average PCE accuracy. In all numerical experiments, a good accuracy-robustness
trade-off has been acquired with the criteria κ(D) ≤ 10 and λmax(G

−1) ≤ 10, the latter being typically more robust for
approximations of similar accuracy. Compared with the theoretically optimal condition κ(G) ≤ 3,12,14,23,25 equivalently
κ Dð Þ≤ ffiffiffi

3
p

, our results show that those relaxed criteria yield significant accuracy gains, while keeping result variations
at a modest level.

A continuation of the present work shall focus on developing surrogate models for high frequency EM applications
featuring sharp resonances. In such cases, most polynomial approximations will fail to accurately capture the frequency
response. A possible remedy could be found in multi-element PCE methods,60-62 which are able to yield accurate
approximations of nonsmooth, discontinuous, or even singular parametric functions. This approach is currently under
investigation and will be presented in a later study.
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