CHEMMEDCHEM

Supporting Information

© Copyright Wiley-VCH Verlag GmbH \& Co. KGaA, 69451 Weinheim, 2019

Cell-Based Optimization of Covalent Reversible Ketoamide Inhibitors Bridging the Unprimed to the Primed Site of the Proteasome $\boldsymbol{\beta} 5$ Subunit

Daniel Stubba, Dennis Bensinger, Janika Steinbacher, Lilia Proskurjakov,
Álvaro Salcedo Gómez, Uwe Schmidt, Stefan Roth, Katja Schmitz, and Boris Schmidt*© 2019
The Authors. Published by Wiley-VCH Verlag GmbH \& Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Supporting Information

Content of Supporting Information

Content of Supporting Information S1

1. Organic Chemistry
a. General procedures S2
b. Synthesis of phenoxy-substituted aromatic isocyanides (47-49) S5
c. Synthesis of methyl-substituted phenoxy-isocyanides (74-78) S10
d. Synthesis of intermediates for N-protected peptide aldehydes (22-25) S22
e. Synthesis of intermediates for BODIPY labeled α-ketoamides ($\mathbf{3 0}-\mathbf{3 2}$) S26
f. Compound purity as determined by HPLC S31
2. Biochemistry
a. Summary of proteasome and cytotoxicity assays S32
b. Dose-response curves S33
c. Danio rerio toxicity assay S42
d. Escape response assay S43
e. BODIPY characterization S54
3. Molecular Modelling
a. Structural analysis of BSc4999 (7) and covalent redocking using Docktite S55
b. Energy-minimized binding poses of phenoxy and P4-substituted ketoamides S57
c. Covalent docking of BSc5376 (27) using Docktite S60
4. Appendix
Spectra S63
References S92

1. Organic chemistry

a. General procedures

Synthesis of diphenyl ethers via aromatic nucleophilic substitution (GP1). Fluorobenzene (1.0 equiv) and phenol (1.0 equiv) were dissolved in DMSO and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.0 equiv) was added. The mixture was heated in a sealed tube for 24 h at $100^{\circ} \mathrm{C}$. Completion of the reaction was monitored by HPLC and TLC. Then water was added and the mixture was extracted with MTBE (3x). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated under reduced pressure.

Reduction of aromatic nitro-compounds to amines or Cbz-deprotection (GP2). A solution of the corresponding nitro-compound in MeOH was added to $10 \mathrm{wt} \% 10 \% \mathrm{Pd} / \mathrm{C}$. The mixture was stirred overnight under an atmosphere of hydrogen. After completion of the reaction, the mixture was filtered through a pad of celite and the solvent was removed under reduced pressure.

Synthesis of aromatic formamides (GP3). The corresponding aromatic amine (1.0 equiv) was dissolved in PhMe and HCOOH (2.0 equiv) was added. The mixture was heated in a sealed tube for 24 h at $110^{\circ} \mathrm{C}$. Completion of the reaction was monitored by TLC and HPLC. After completion AcOEt was added and the organic layer was washed with 0.1 N aq HCl , sat. aq. NaHCO_{3} and sat. aq. NaCl . The organic extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated under reduced pressure.

Synthesis of aromatic isocyanides (GP4). The corresponding aromatic formamide (1.0 equiv) and NEt_{3} (10 equiv) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and cooled to $0^{\circ} \mathrm{C}$. At this temperature POCl_{3} (2.1 equiv) was added and the mixtures was stirred for 24 h at rt . Completion of the reaction was monitored by TLC and HPLC. Due to the instability of the product, the workup was done fast and with cooled solvents. After completion $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added and the organic layer was washed with sat. aq. $\mathrm{NaHCO}_{3}(2 \mathrm{x})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated under reduced pressure. Purification was done by column chromatography of the residue on silica gel (cyclohexane / AcOEt 1:1) and the obtained isocyanides were directly used in the next step due to fast hydrolysis on air. It should be mentioned that all actions should be performed in a well-ventilated hood due to obnoxious odor and high toxicity of the compounds.

Synthesis of $\boldsymbol{\alpha}$-Ketophenylamides (GP5). The corresponding peptidic aldehyde (1.0 equiv) and aromatic isocyanide (1.5 equiv) were dissolved in a minimal amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and cooled to $0^{\circ} \mathrm{C}$ under an atmosphere of argon. A mixture of trifluoroacetic acid (2.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise and the mixture was stirred for

2 h at $0^{\circ} \mathrm{C}$ and 24 h at room temperature. Completion of the reaction was monitored by HPLC and TLC. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added and the organic layer was washed with 0.1 N aq. $\mathrm{HCl}(3 \mathrm{x})$, sat. aq. $\mathrm{NaHCO}_{3}(3 \mathrm{x})$ and sat. aq. NaCl . The organic extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated under reduced pressure. The resulting solid was dissolved in DMSO and IBX (2.0 equiv) was added. The reaction mixture was stirred 24 h at rt . After completion $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added and the mixture was washed with water (3 x), sat. aq. $\mathrm{NaHCO}_{3}(3 \mathrm{x})$ and sat. aq. NaCl . The organic extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated under reduced pressure. Purification was done by column chromatography of the residue on silica gel (cyclohexane / AcOEt 2:1).

Nitration of anilines (GP6). The corresponding aromatic amine (1.0 equiv) was dissolved in conc. sulphuric acid and fuming nitric acid (1.3 equiv) was added dropwise at $0^{\circ} \mathrm{C}$. The mixture was warmed to rt , stirred for 12 h , poured onto crushed ice and filtered. The filter cake was washed with sat. aq. NaHCO_{3} solution and extracted with $\operatorname{AcOEt}(3 \mathrm{x})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated under reduced pressure.

Arylation of phenols with $\mathbf{P h}_{2} \mathbf{I C l}$ (GP7). Potassium t-butoxide was suspended in dry THF at $0^{\circ} \mathrm{C}$ and the corresponding phenol (1.0 equiv) was added. The mixture was stirred 15 min . and $\mathrm{Ph}_{2} \mathrm{ICl}$ (1.2 equiv) was added and stirred overnight at rt . Completion of the reaction was monitored by HPLC and TLC. The mixture was cooled to $0^{\circ} \mathrm{C}$ and quenched with water. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$, the combined organic extracts were washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated under reduced pressure. The crude product was purified by column chromatography of the residue on silica gel (cyclohexane / AcOEt 100:1).

Synthesis of phenols from anilines (GP8). The corresponding aniline (1.0 equiv) was suspended in water, cooled to $0^{\circ} \mathrm{C}$ and conc. sulphuric acid (13 mL) was added. NaNO_{3} (1.3 equiv) was dissolved in water and added to the reaction mixture. In a separate flask 10 mL of water and 1.1 mL of conc. sulphuric acid were mixed and heated to reflux. The aniline solution was added dropwise to the refluxing mixture and stirred for 15 min . The reaction mixture was cooled to rt and extracted with MTBE ($3 \times 35 \mathrm{~mL}$). The combined organic extracts were extracted with 10% aq. $\mathrm{NaOH}(3 \times 35 \mathrm{~mL})$ and the combined aqueous extracts were acidified with aq. HCl and extracted with MTBE ($3 \times 35 \mathrm{~mL}$). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated under reduced pressure. If necessary, purification was done by column chromatography of the residue on silica gel (cyclohexane / AcOEt).

Peptide synthesis via HATU (GP9). The carboxylic acid (1.0 equiv) was dissolved in DMF and HATU (1.1 equiv) was added. The mixture was stirred for 20 min . at rt before the amine (1.0 equiv) and DIPEA (2.9 equiv) were added. The reaction mixture was stirred overnight at rt . Completion of the reaction was monitored by HPLC and TLC. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added and the organic layer was washed with 0.1 N aq. $\mathrm{HCl}(5 \mathrm{x}), 0.1 \mathrm{~N} \mathrm{aq} . \mathrm{NaOH}$ (3x) and sat. aq. NaCl . The organic extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated under reduced pressure. If necessary, purification was done by column chromatography of the residue on silica gel.

Peptide synthesis via EDC and HOBt (GP10). The carboxylic acid (1.0 equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{EDC} \cdot \mathrm{HCl}$ (1.0 equiv) and $\mathrm{HOBt} \cdot \mathrm{H}_{2} \mathrm{O}$ (1.2 equiv) were added. The mixture was stirred for 20 min . at rt before the amine (1.0 equiv) and NEt_{3} (1.5 equiv) were added. The reaction mixture was stirred overnight at rt . Completion of the reaction was monitored by HPLC and TLC. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added and the organic layer was washed with 0.1 N aq. $\mathrm{HCl}(5 \mathrm{x}), 0.1 \mathrm{~N}$ aq. $\mathrm{NaOH}(3 \mathrm{x})$ and sat. aq. NaCl . The organic extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated under reduced pressure. If necessary, purification was done by column chromatography of the residue on silica gel.

Oxidation of alcohols via IBX (GP11). The corresponding peptidic alcohol (1.0 equiv) was dissolved in DMSO and IBX (1.5 equiv) was added. The mixture was stirred overnight at rt . Completion of the reaction was monitored by HPLC and TLC. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added and the organic layer was washed with water (3x), sat. aq. $\mathrm{NaHCO}_{3}(3 \mathrm{x})$ and sat. aq. NaCl . The organic extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated under reduced pressure.
b. Synthesis of phenoxy-substituted aromatic isocyanides (47-49)

Scheme S1: Synthesis of phenoxy-substituted isocyanides.

1-Nitro-2-phenoxybenzene (38)

1-Fluoro-2-nitrobenzene ($748 \mu \mathrm{~L}, 1.00 \mathrm{~g}, 7.08 \mathrm{mmol}, 1.0$ equiv), phenol ($666 \mathrm{mg}, 7.08 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.96 \mathrm{~g}, 14.2 \mathrm{mmol}, 2.0$ equiv) were reacted according to GP1 to afford 1-nitro-2-phenoxybenzene 38 $(1.50 \mathrm{~g}, 6.97 \mathrm{mmol}, 98 \%)$ as a pale-yellow oil.
$\mathbf{R}_{f}=0.69$ (cyclohexane / $\mathrm{AcOEt}=5: 1$).

HPLC (254 nm, VWD): $\mathrm{t}_{\mathrm{R}}=6.91 \mathrm{~min}$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.95(\mathrm{dd}, J=8.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.23-$ $7.15(\mathrm{~m}, 2 \mathrm{H}), 7.10-6.99(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=155.9,150.9,134.2,130.2,125.9,124.7,123.2,120.6,119.4$.

1-Nitro-3-phenoxybenzene (39)

1-Fluoro-3-nitrobenzene ($1.51 \mathrm{~mL}, 2.00 \mathrm{~g}, 14.1 \mathrm{mmol}, 1.0$ equiv), phenol ($1.33 \mathrm{~g}, 14.1 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}\left(3.92 \mathrm{~g}, 28.3 \mathrm{mmol}, 2.0\right.$ equiv) were reacted according to GP 1 , at $150^{\circ} \mathrm{C}$, to afford 1-nitro-3phenoxybenzene $39(2.96 \mathrm{~g}, 13.7 \mathrm{mmol}, 97 \%)$ as a brown oil.
$\mathbf{R}_{\boldsymbol{f}}=0.47$ (cyclohexane $/ \mathrm{AcOEt}=5: 1$).

HPLC ($254 \mathrm{~nm}, ~ V W D): \mathrm{t}_{\mathrm{R}}=7.47 \mathrm{~min}$.
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.93(\mathrm{ddd}, J=8.2,2.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.45-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{ddd}, J=8.3,2.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.04(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C - N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=158.7,155.7,149.5,130.4,130.4,125.0,124.3,119.9,117.8,113.0$.

1-Nitro-4-phenoxybenzene (40)

1-Fluoro-4-nitrobenzene ($0.75 \mathrm{~mL}, 1.00 \mathrm{~g}, 7.09 \mathrm{mmol}, 1.0$ equiv), phenol ($0.67 \mathrm{~g}, 7.09 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($0.98 \mathrm{~g}, 14.2 \mathrm{mmol}, 2.0$ equiv) were reacted according to GP1 to afford 1-nitro-4-phenoxybenzene 40 $(1.45 \mathrm{~g}, 6.72 \mathrm{mmol}, 95 \%)$ as a pale yellow oil.
$\mathbf{R}_{f}=0.52$ (cyclohexane $/ \mathrm{AcOEt}=5: 1$).

HPLC ($254 \mathrm{~nm}, ~ V W D): \mathrm{t}_{\mathrm{R}}=7.34 \mathrm{~min}$.
${ }^{\mathbf{1}} \mathbf{H}$-NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.24-8.18(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.08(\mathrm{~m}$, 2H), $7.04-7.00(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 163.5, 154.9, 142.8, 130.5, 126.1, 125.5, 120.7, 117.3.

2-Phenoxyaniline (41)

1-Nitro-2-phenoxybenzene ($2.90 \mathrm{~g}, 13.5 \mathrm{mmol}, 1.0$ equiv) in 40 mL of MeOH and $10 \% \mathrm{Pd} / \mathrm{C}(290 \mathrm{mg}, 10 \mathrm{wt} \%$) were reacted according to GP2 to afford 2-Phenoxyaniline $41(2.35 \mathrm{~g}, 12.7 \mathrm{mmol}, 94 \%)$ as a pale brown oil.
$\mathbf{R}_{f}=0.46$ (cyclohexane $/ \mathrm{AcOEt}=5: 1$).

HPLC ($254 \mathrm{~nm}, \mathrm{VWD}): \mathrm{t}_{\mathrm{R}}=2.30 \mathrm{~min}$.
${ }^{1} \mathbf{H}-$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.34-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{~m}, 1 \mathrm{H}), 7.02-6.97(\mathrm{~m}, 3 \mathrm{H}), 6.89(\mathrm{dd}, J=8.0$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.76-6.71(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=157.6,143.3,138.7,129.8,125.0,122.8,120.4,119.0,117.3,116.7$.

3-Phenoxyaniline (42)

1-Nitro-3-phenoxybenzene ($2.82 \mathrm{~g}, 13.1 \mathrm{mmol}, 1.0$ equiv) in 100 mL of MeOH and $10 \% \mathrm{Pd} / \mathrm{C}(282 \mathrm{mg}, 10 \mathrm{wt} \%$) were reacted according to GP2 to afford 3-phenoxyaniline $42(2.44 \mathrm{~g}, 13.1 \mathrm{mmol}$, quant.) as a pale brown oil.
$\mathbf{R}_{f}=0.20$ (cyclohexane / AcOEt $=5: 1$).

HPLC ($254 \mathrm{~nm}, ~ V W D): \mathrm{t}_{\mathrm{R}}=1.80 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.38-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.17-6.97(\mathrm{~m}, 4 \mathrm{H}), 6.45-6.39(\mathrm{~m}, 2 \mathrm{H}), 6.34(\mathrm{t}, J=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.63 (s, 2H).
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=158.6,157.3,148.1,130.5,129.8,123.3,119.2,110.2,109.0,105.7$.

4-Phenoxyaniline (43)

1-Nitro-4-phenoxybenzene ($1.32 \mathrm{~g}, 6.15 \mathrm{mmol}, 1.0$ equiv) in 50 mL of MeOH and $10 \% \mathrm{Pd} / \mathrm{C}(132 \mathrm{mg}, 10 \mathrm{wt} \%)$ were reacted according to GP2 to afford 4-phenoxyaniline 43 ($976 \mathrm{mg}, 5.27 \mathrm{mmol}, 86 \%$) as a pale brown solid.
$\mathbf{R}_{f}=0.14$ (cyclohexane $/ \mathrm{AcOEt}=5: 1$).

HPLC ($254 \mathrm{~nm}, ~ V W D): \mathrm{t}_{\mathrm{R}}=1.92 \mathrm{~min}$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):=\delta 7.28(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.88$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.52(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta 159.0,148.8,142.8,129.7,122.2,121.2,117.4,116.4$.

N-(2-phenoxyphenyl)formamide (44)

2-Phenoxyaniline ($598 \mathrm{mg}, 3.23 \mathrm{mmol}, 1.0$ equiv) in 5 mL of PhMe and formic acid ($243 \mu \mathrm{~L}, 297 \mathrm{mg}, 6.46 \mathrm{mmol}$, 2.0 equiv) were reacted according to GP3 to afford N-(2-phenoxyphenyl)formamide 44 ($629 \mathrm{mg}, 2.95 \mathrm{mmol}, 91 \%$) as a pale brown oil that crystallizes upon standing.
$\mathbf{R}_{f}=0.20$ (cyclohexane / $\mathrm{AcOEt}=5: 1$).

HPLC ($254 \mathrm{~nm}, ~ V W D): \mathrm{t}_{\mathrm{R}}=5.44 \mathrm{~min}$.
${ }^{1} \mathbf{H}-$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.76-8.80\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{\text {trans }}, J=11.5 \mathrm{~Hz}\right), 8.48\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{\text {cis }}, J=1.5 \mathrm{~Hz}\right), 8.44(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 7.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.29-7.39(\mathrm{~m}, 2 \mathrm{H}), 6.85-7.17(\mathrm{~m}, 6 \mathrm{H})(1: 1.5$ mixture of rotamers $)$.
${ }^{13} \mathbf{C}$-NMR (75 MHz, CDCl_{3}): $\delta=161.5,159.0,156.4,145.5,130.1,124.7,124.3,124.1,121.5,118.6,118.0$ (1:1.5 mixture of rotamers).

N-(3-phenoxyphenyl)formamide (45)

3-Phenoxyaniline ($765 \mathrm{mg}, 4.13 \mathrm{mmol}, 1.0$ equiv) in 5 mL of PhMe and formic acid ($309 \mu \mathrm{~L}, 377 \mathrm{mg}, 8.26 \mathrm{mmol}$, 2.0 equiv) were reacted according to GP3 to afford N-(3-phenoxyphenyl)formamide $\mathbf{4 5}$ ($843 \mathrm{mg}, 3.95 \mathrm{mmol}, 97 \%$) as a pale brown oil that crystallizes upon standing.
$\mathbf{R}_{\boldsymbol{f}}=0.12$ (cyclohexane $/ \mathrm{AcOEt}=3: 1$).

HPLC ($254 \mathrm{~nm}, ~ V W D): \mathrm{t}_{\mathrm{R}}=5.34 \mathrm{~min}$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.62-8.66\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{\text {trans }}, J=11.2 \mathrm{~Hz}\right), 8.37(\mathrm{~m}, 1 \mathrm{H}), 8.30\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{cis}}, J=\right.$ $1.6 \mathrm{~Hz}, 7.56(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.71-7.37 \mathrm{ppm}(\mathrm{m}, 9 \mathrm{H})$ ($1: 1$ mixture of rotamers).
${ }^{13} \mathbf{C}$-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=162.6,159.2,158.9,158.1,156.8,156.4,138.3,131.0,130.3,130.1,129.9$, $124.1,123.7,119.5,119.3,115.0,114.8,113.1,110.6,108.9$ (1:1 mixture of rotamers).

N-(4-phenoxyphenyl)formamide (46)

4-Phenoxyaniline ($942 \mathrm{mg}, 5.08 \mathrm{mmol}, 1.0$ equiv) in 5 mL of PhMe and formic acid ($384 \mu \mathrm{~L}, 468 \mathrm{mg}, 10.2 \mathrm{mmol}$, 2.0 equiv) were reacted according to GP3 to afford N-(4-phenoxyphenyl)formamide 46 ($998 \mathrm{mg}, 4.68 \mathrm{mmol}, 92 \%$) as a pale brown oil.
$\mathbf{R}_{\boldsymbol{f}}=0.14$ (cyclohexane $/ \mathrm{AcOEt}=3: 1$).

HPLC ($254 \mathrm{~nm}, ~ V W D): \mathrm{t}_{\mathrm{R}}=5.25 \mathrm{~min}$.
${ }^{1} \mathbf{H}$-NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.58-8.62\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{\text {trans }}, J=11.5 \mathrm{~Hz}\right), 8.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.35 \mathrm{ppm}\left(\mathrm{d}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{cis}}, J\right.$ $=1.7 \mathrm{~Hz}), 7.57(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.49-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.37(\mathrm{~m}, 2 \mathrm{H}), 6.97-7.02(\mathrm{~m}, 4 \mathrm{H})(1: 1$ mixture of rotamers $)$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=163.0,159.1,157.5,157.2,155.1,154.1,132.4,132.1,130.0,129.9,123.6$, 123.3, 121.9, 121.2, 120.2, 119.7, 118.8, 118.7 ($1: 1$ mixture of rotamers).

1-isocyano-2-phenoxybenzene (47)

N-(2-phenoxyphenyl)formamide ($500 \mathrm{mg}, 2.34 \mathrm{mmol}, 1.0$ equiv) in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{NEt}_{3}(3.24 \mathrm{~mL}, 2.38 \mathrm{~g}$, $23.4 \mathrm{mmol}, 10$ equiv) and $\mathrm{POCl}_{3}(454 \mu \mathrm{~L}, 753 \mathrm{mg}, 4.91 \mathrm{mmol}, 2.1$ equiv) were reacted according to GP4 to afford 1-isocyano-2-phenoxybenzene $47(388 \mathrm{mg}, 1.98 \mathrm{mmol}, 85 \%)$ as a pale yellow oil with a very intense smell. The product was directly used in the next step without further characterization.
$\mathbf{R}_{f}=0.73$ (cyclohexane / $\mathrm{AcOEt}=1: 1$).

HPLC ($254 \mathrm{~nm}, ~ V W D): \mathrm{t}_{\mathrm{R}}=6.93 \mathrm{~min}$.

1-isocyano-3-phenoxybenzene (48)

N-(3-phenoxyphenyl)formamide ($819 \mathrm{mg}, 3.84 \mathrm{mmol}, 1.0$ equiv) in 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{NEt}_{3}(5.32 \mathrm{~mL}, 3.89 \mathrm{~g}$, $38.4 \mathrm{mmol}, 10$ equiv) and $\mathrm{POCl}_{3}(746 \mu \mathrm{~L}, 1.25 \mathrm{~g}, 8.06 \mathrm{mmol}$, 2.1 equiv) were reacted according to GP4 to afford 1-isocyano-3-phenoxybenzene $48(672 \mathrm{mg}, 3.44 \mathrm{mmol}, 90 \%)$ as a pale yellow oil with a very intense smell. The product was directly used in the next step without further characterization.
$\mathbf{R}_{f}=0.70$ (cyclohexane / AcOEt $=1: 1$).

HPLC ($254 \mathrm{~nm}, V W D): \mathrm{t}_{\mathrm{R}}=7.08 \mathrm{~min}$.

1-isocyano-4-phenoxybenzene (49)

N -(4-phenoxyphenyl)formamide ($1.00 \mathrm{~g}, 4.69 \mathrm{mmol}, 1.0$ equiv) in 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{NEt}_{3}(6.50 \mathrm{~mL}, 4.75 \mathrm{~g}$, $46.9 \mathrm{mmol}, 10$ equiv) and $\mathrm{POCl}_{3}(921 \mu \mathrm{~L}, 1.53 \mathrm{~g}, 9.85 \mathrm{mmol}, 2.1$ equiv) were reacted according to GP4 to afford 1-isocyano-2-phenoxybenze 49 ($782 \mathrm{mg}, 4.01 \mathrm{mmol}, 85 \%$) as a pale yellow oil with a very intense smell. The product was directly used in the next step without further characterization.
$\mathbf{R}_{f}=0.78$ (cyclohexane / $\mathrm{AcOEt}=1: 1$).

HPLC (254 nm, VWD): $\mathrm{t}_{\mathrm{R}}=7.07 \mathrm{~min}$.

c. Synthesis of methyl-substituted phenoxy-isocyanides (74-78)

Scheme S2: Synthesis of N-(4-Methyl-3-phenoxyphenyl)formamide.

N-(3-Hydroxy-4-methylphenyl)formamide (51)

5-Amino-2-methylphenol ($2.00 \mathrm{~g}, 16.2 \mathrm{mmol}, 1.0$ equiv) and formic acid ($920 \mu \mathrm{~L} 1.12 \mathrm{~g}, 24.3 \mathrm{mmol}, 1.5$ equiv) were stirred in a capped microwave vial at $80^{\circ} \mathrm{C}$ overnight. After completion of the reaction $\mathrm{AcOEt}(40 \mathrm{~mL})$ was added and the organic layer was washed with sat. aq. $\mathrm{NaHCO}_{3}(2 \times 20 \mathrm{~mL})$ and sat. aq. $\mathrm{NaCl}(2 \times 20 \mathrm{~mL})$. The organic extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated under reduced pressure to afford N -(3-hydroxy-4-methylphenyl)formamide $\mathbf{5 1}(1.85 \mathrm{~g}, 12.3 \mathrm{mmol}, 76 \%)$ as a brown solid.
$\mathbf{R}_{f}=0.29$ (cyclohexane / AcOEt $=1: 2$).

HPLC (254 nm, VWD): $\mathrm{t}_{\mathrm{R}}=1.45 \mathrm{~min}$.
${ }^{1}$ H-NMR (500 MHz, DMSO- d_{6}): $\delta=9.92(\mathrm{~s}, 1 \mathrm{H}), 9.41-9.25(\mathrm{~m}, 1 \mathrm{H}), 8.19-8.17(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 1 \mathrm{H})$, $6.98-6.93(\mathrm{~m}, 1 \mathrm{H}), 6.84-6.81(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H})(1: 1$ mixture of rotamers $)$.
${ }^{13}$ C-NMR (126 MHz, DMSO- d_{6}): $\delta=162.2,159.1,155.9,155.3,136.8,131.0,130.3,119.5,119.1,109.7,108.0$, 106.0, 104.8, 15.4 (1:1 mixture of rotamers).

N-(4-Methyl-3-phenoxyphenyl)formamide (52)

N-(3-Hydroxy-4-methylphenyl)formamide ($500 \mathrm{mg}, 3.31 \mathrm{mmol}, 1.0$ equiv), potassium tert-butoxide (409 mg , 3.64 mmol , 1.1 equiv) and $\mathrm{Ph}_{2} \mathrm{ICl}(1.26 \mathrm{~g}, 3.97 \mathrm{mmol}, 1.2$ equiv) in 13 mL of THF were reacted according to GP7.

Instead mentioned in GP7 a mixture of cyclohexane / AcOEt (2:1) was used for purification by column chromatography to afford N-(4-methyl-3-phenoxyphenyl)formamide 52 ($499 \mathrm{mg}, 2.20 \mathrm{mmol}, 66 \%$) as a brown oil.
$\mathbf{R}_{f}=0.21$ (cyclohexane $/ \mathrm{AcOEt}=2: 1$).

HPLC ($254 \mathrm{~nm}, ~ V W D): \mathrm{t}_{\mathrm{R}}=5.65 \mathrm{~min}$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.55(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 8.29(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.72-7.65(\mathrm{~m}, 0.5 \mathrm{H})$, $7.36-7.27(\mathrm{~m}, 2.5 \mathrm{H}), 7.20(\mathrm{dd}, J=10.0,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 0.5 \mathrm{H}), 7.12-7.08(\mathrm{~m}, 0.5 \mathrm{H}), 7.08-7.03(\mathrm{~m}, 1 \mathrm{H})$, $6.95-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.77(\mathrm{dd}, J=8.1,2.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.59(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.23(\mathrm{~s}, 1.5 \mathrm{H}), 2.21(\mathrm{~s}, 1.5 \mathrm{H})(1: 1$ mixture of rotamers).
${ }^{13} \mathbf{C - N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=162.3,158.8,157.6,157.2,155.8,154.9,135.9,135.7,132.5,131.8,130.0$, $129.9,126.9,126.6,123.3,122.9,118.0,117.7,115.7,114.4,111.6,110.2,15.8$ ($1: 1$ mixture of rotamers).

$53 \mathrm{R}^{2}=\mathrm{H} ; \mathrm{R}^{1}, \mathrm{R}^{3}=\mathrm{Me}$
$55 \mathrm{R}^{2}=\mathrm{H} ; \mathrm{R}^{1}, \mathrm{R}^{3}=\mathrm{Me}$
$59 \mathrm{R}^{2}=\mathrm{H} ; \mathrm{R}^{1}, \mathrm{R}^{3}=\mathrm{Me}$
$63 \mathrm{R}^{2}=\mathrm{H} ; \mathrm{R}^{1}, \mathrm{R}^{3}=\mathrm{Me}$
$54 \mathrm{R}^{1}=\mathrm{H} ; \mathrm{R}^{2}, \mathrm{R}^{3}=\mathrm{Me}$
$56 R^{1}=H ; R^{2}, R^{3}=M e$
$57 R^{1}, R^{3}=H ; R^{2}=M e$
$58 R^{2}, R^{3}=H ; R^{1}=M e$
$60 R^{1}=H ; R^{2}, R^{3}=M e$
$64 \mathrm{R}^{1}=\mathrm{H} ; \mathrm{R}^{2}, \mathrm{R}^{3}=\mathrm{Me}$
$65 R^{1}, R^{3}=H ; R^{2}=M e$
$66 R^{2}, R^{3}=H ; R^{1}=M e$

Scheme S3: Synthesis of methyl-phenoxy-substituted isocyanides.

2,4-Dimethyl-5-nitroaniline (55)

2,4-Dimethylaniline ($4.85 \mathrm{~g}, 40.0 \mathrm{mmol}, 1.0$ equiv) in 20 mL of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and fuming nitric acid (2.40 mL , $3.20 \mathrm{~g}, 50.6 \mathrm{mmol}, 1.3$ equiv) were reacted according to GP6 to afford 2,4-dimethyl-5-nitroaniline 55 (5.73 g , $34.5 \mathrm{mmol}, 86 \%)$ as an orange solid.
$\mathbf{R}_{f}=0.11$ (cyclohexane / $\mathrm{AcOEt}=5: 1$).

HPLC (254 nm, VWD): $\mathrm{t}_{\mathrm{R}}=2.34 \mathrm{~min}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.33(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C - N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=143.4,134.5,128.7,123.4,116.5,110.4,19.9$, 17.4.

2,6-Dimethyl-3-nitroaniline (56)

2,6-Dimethylaniline ($4.85 \mathrm{~g}, 40.0 \mathrm{mmol}, 1.0$ equiv) in 20 mL of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and fuming nitric acid (2.40 mL , $3.20 \mathrm{~g}, 50.6 \mathrm{mmol}, 1.3$ equiv) were reacted according to GP6 to afford 2,6-dimethyl-3-nitroaniline 56 (5.37 g , $32.3 \mathrm{mmol}, 81 \%$) as a yellow solid.
$\mathbf{R}_{f}=0.17$ (cyclohexane / $\mathrm{AcOEt}=5: 1$).

HPLC (254 nm, VWD): $\mathrm{t}_{\mathrm{R}}=4.12 \mathrm{~min}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.16(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H})$, 2.23 (s, 3H).

2,4-Dimethyl-5-nitrophenol (59)

2,4-Dimethyl-5-nitroaniline ($2.85 \mathrm{~g}, 17.2 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{NaNO}_{3}(1.54 \mathrm{~g}, 22.3 \mathrm{mmol}$, 1.3 equiv) were reacted according to GP8 to afford 2,4-dimethyl-5-nitrophenol $59(1.34 \mathrm{~g}, 8.03 \mathrm{mmol}, 47 \%)$ as a yellow solid.
$\mathbf{R}_{f}=0.26$ (cyclohexane / AcOEt = 5:1).

HPLC ($254 \mathrm{~nm}, ~ V W D): \mathrm{t}_{\mathrm{R}}=4.58 \mathrm{~min}$.
${ }^{1} \mathbf{H}-$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right): \delta=10.04(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, DMSO- d_{6}): $\delta=153.8$, 146.3, 134.4, 131.5, 123.2, 109.7, 19.2, 15.7.

2,6-Dimethyl-3-nitrophenol (60)

2,6-Dimethyl-3-nitroaniline ($2.85 \mathrm{~g}, 17.2 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{NaNO}_{3}(1.54 \mathrm{~g}, 22.4 \mathrm{mmol}, 1.3$ equiv) were reacted according to GP8 to afford 2,6-dimethyl-3-nitrophenol $\mathbf{6 0}(1.53 \mathrm{~g}, 9.15 \mathrm{mmol}, 53 \%)$ as a yellow solid.
$\mathbf{R}_{\boldsymbol{f}}=0.18$ (cyclohexane $/ \mathrm{AcOEt}=5: 1$).

HPLC ($254 \mathrm{~nm}, ~ V W D): \mathrm{t}_{\mathrm{R}}=4.49 \mathrm{~min}$.
${ }^{1}$ H-NMR (500 MHz, DMSO- d_{6}): $\delta=9.13(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}$, $3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz , DMSO- d_{6}): $\delta=154.0,148.8,130.6,127.9,119.4,114.9,17.0,12.1$.

2-Methyl-3-nitrophenol (61)

2-Methyl-3-nitroaniline ($3.62 \mathrm{~g}, 23.8 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{NaNO}_{3}(2.13 \mathrm{~g}, 31.0 \mathrm{mmol}, 1.3$ equiv) were reacted according to GP8 to afford 2-methyl-3-nitrophenol $61(2.46 \mathrm{~g}, 16.1 \mathrm{mmol}, 67 \%)$ as a brown solid.
$\mathbf{R}_{f}=0.35$ (cyclohexane $/ \mathrm{AcOEt}=2: 1$).

HPLC ($254 \mathrm{~nm}, ~ V W D): \mathrm{t}_{\mathrm{R}}=3.79 \mathrm{~min}$.
${ }^{1} \mathbf{H}-$ NMR (500 MHz, DMSO- d_{6}): $\delta=10.29(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.12$ (dd, $J=8.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H})$.

4-Methyl-3-nitrophenol (62)

4-Methyl-3-nitroaniline ($3.62 \mathrm{~g}, 23.8 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{NaNO}_{3}(2.13 \mathrm{~g}, 31.0 \mathrm{mmol}, 1.3$ equiv) were reacted according to GP8 to afford 4-methyl-3-nitrophenol $\mathbf{6 2}(1.51 \mathrm{~g}, 9.88 \mathrm{mmol}, 42 \%)$ as a brown solid.
$\mathbf{R}_{f}=0.36$ (cyclohexane / AcOEt = 2:1).

HPLC ($254 \mathrm{~nm}, \mathrm{VWD}): \mathrm{t}_{\mathrm{R}}=3.58 \mathrm{~min}$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.48(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=8.3,2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.55(\mathrm{~s}, 1 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=154.3,149.4,133.9,125.9,120.9,111.6,19.8$.

1,5-Dimethyl-2-nitro-4-phenoxybenzene (63)

2,4-Dimethyl-5-nitrophenol ($500 \mathrm{mg}, 2.99 \mathrm{mmol}, 1.0$ equiv) in 13 mL of THF, potassium tert-butoxide (369 mg , $3.29 \mathrm{mmol}, 1.1$ equiv) and $\mathrm{Ph}_{2} \mathrm{ICl}(1.14 \mathrm{~g}, 3.59 \mathrm{mmol}, 1.2$ equiv) were reacted according to GP7 to afford 1,5-dimethyl-2-nitro-4-phenoxybenzene 63 ($665 \mathrm{mg}, 2.73 \mathrm{mmol}, 91 \%$) as a yellow oil.
$\mathbf{R}_{f}=0.33$ (cyclohexane / $\mathrm{AcOEt}=50: 1$).
HPLC ($254 \mathrm{~nm}, ~ V W D): \mathrm{t}_{\mathrm{R}}=7.87 \mathrm{~min}$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.52(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 1 \mathrm{H}), 6.97-6.94$ $(\mathrm{m}, 2 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C - N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=156.8,153.5,147.4,136.1,135.4,130.2,128.9,123.9,118.3,114.9,20.2,16.4$.

1,3-Dimethyl-4-nitro-2-phenoxybenzene (64)

2,6-Dimethyl-3-nitrophenol ($500 \mathrm{mg}, 2.99 \mathrm{mmol}, 1.0$ equiv) in 13 mL of THF, potassium tert-butoxide (369 mg , $3.29 \mathrm{mmol}, 1.1$ equiv) and $\mathrm{Ph}_{2} \mathrm{ICl}(1.14 \mathrm{~g}, 3.59 \mathrm{mmol}, 1.2$ equiv) were reacted according to GP7 to afford 1,3-dimethyl-4-nitro-2-phenoxybenzene $64(605 \mathrm{mg}, 2.50 \mathrm{mmol}, 83 \%)$ as a colorless solid.
$\mathbf{R}_{f}=0.19$ (cyclohexane $/ \mathrm{AcOEt}=50: 1$).

HPLC ($254 \mathrm{~nm}, \mathrm{VWD}): \mathrm{t}_{\mathrm{R}}=7.77 \mathrm{~min}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.76(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-$ $7.01(\mathrm{~m}, 1 \mathrm{H}), 6.76-6.72(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=157.2,151.9,149.3,138.2,130.1,128.9,128.1,122.4,121.4,114.7,17.2,12.9$.

2-Methyl-1-nitro-3-phenoxybenzene (65)

2-Methyl-3-nitrophenol ($500 \mathrm{mg}, 3.26 \mathrm{mmol}, 1.0$ equiv) in 13 mL of THF, potassium tert-butoxide (403 mg , $3.59 \mathrm{mmol}, 1.1$ equiv) and $\mathrm{Ph}_{2} \mathrm{ICl}(1.24 \mathrm{~g}, 3.92 \mathrm{mmol}, 1.2$ equiv) were reacted according to GP7 to afford 2-methyl-1-nitro-3-phenoxybenzene $\mathbf{6 5}(575 \mathrm{mg}, 2.51 \mathrm{mmol}, 77 \%)$ as a yellow oil.
$\mathbf{R}_{f}=0.22$ (cyclohexane $/ \mathrm{AcOEt}=50: 1$).

HPLC ($254 \mathrm{~nm}, ~ V W D): \mathrm{t}_{\mathrm{R}}=7.55 \mathrm{~min}$.
${ }^{1}$ H-NMR (500 MHz, DMSO- d_{6}): $\delta=7.63(\mathrm{dd}, J=8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H})$, $7.16-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.93(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=157.0,156.3,151.5,130.2,127.0,125.4,123.9,123.1,119.4,118.3,12.2$.

1-Methyl-2-nitro-4-phenoxybenzene (66)

4-Methyl-3-nitrophenol ($500 \mathrm{mg}, 3.26 \mathrm{mmol}, 1.0$ equiv), potassium tert-butoxide ($403 \mathrm{mg}, 3.59 \mathrm{mmol}, 1.1$ equiv) and $\mathrm{Ph}_{2} \mathrm{ICl}(1.24 \mathrm{~g}, 3.92 \mathrm{mmol}, 1.2$ equiv) in 13 mL of THF were reacted according to GP7 to afford 1-methyl-2-nitro-4-phenoxybenzene $66(614 \mathrm{mg}, 2.68 \mathrm{mmol}, 82 \%)$ as a yellow oil.
$\mathbf{R}_{f}=0.20$ (cyclohexane $/ \mathrm{AcOEt}=50: 1$).

HPLC ($254 \mathrm{~nm}, \mathrm{VWD}): \mathrm{t}_{\mathrm{R}}=7.52 \mathrm{~min}$.
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.58(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.14$ $(\mathrm{m}, 2 \mathrm{H}), 7.05-7.02(\mathrm{~m}, 2 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR (126 MHz, CDCl_{3}): $\delta=156.3,156.2,149.8,133.9,130.3,127.9,124.6,123.2,119.5,114.3,19.9$.

2,4-Dimethyl-5-phenoxyaniline (67)

1,5-Dimethyl-2-nitro-4-phenoxybenzene ($420 \mathrm{mg}, 1.73 \mathrm{mmol}, 1.0$ equiv) in 40 mL of MeOH and $10 \% \mathrm{Pd} / \mathrm{C}$ ($42 \mathrm{mg}, 10 \mathrm{wt} \%$) were reacted according to GP2 to afford 2,4-dimethyl-5-phenoxyaniline 67 ($343 \mathrm{mg}, 1.61 \mathrm{mmol}$, 93%) as a colorless oil.
$\mathbf{R}_{f}=0.10$ (cyclohexane $/ \mathrm{AcOEt}=10: 1$).

HPLC ($254 \mathrm{~nm}, ~ V W D): \mathrm{t}_{\mathrm{R}}=3.24 \mathrm{~min}$.
${ }^{1} \mathbf{H}-$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.03-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.88(\mathrm{~m}, 3 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H})$, $3.65-3.30(\mathrm{~m}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.7,153.2,143.7,133.4,129.9,122.3,120.0,118.9,117.3,107.6,17.1,15.6$.

2,4-Dimethyl-3-phenoxyaniline (68)

1,3-Dimethyl-4-nitro-2-phenoxybenzene ($593 \mathrm{mg}, 2.44 \mathrm{mmol}, 1.0$ equiv) in 50 mL of MeOH and $10 \% \mathrm{Pd} / \mathrm{C}$ ($59 \mathrm{mg}, 10 \mathrm{wt} \%$) were reacted according to GP2 to afford 2,4-dimethyl-3-phenoxyaniline $\mathbf{6 8}$ ($472 \mathrm{mg}, 2.21 \mathrm{mmol}$, 91%) as a pale yellow oil.
$\mathbf{R}_{f}=0.14$ (cyclohexane $/ \mathrm{AcOEt}=10: 1$).

HPLC ($254 \mathrm{~nm}, \mathrm{VWD}): \mathrm{t}_{\mathrm{R}}=3.05 \mathrm{~min}$.
${ }^{1} \mathbf{H}-$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.26-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.97-6.93(\mathrm{~m}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.75$ (m, 2H), $6.54(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR (126 MHz, CDCl_{3}): $\delta=158.3,151.4,144.2,129.7,128.7,121.3,116.5,114.9,112.2,16.0,10.3$.

2-Methyl-3-phenoxyaniline (69)

2-Methyl-1-nitro-3-phenoxybenzen ($563 \mathrm{mg}, 2.46 \mathrm{mmol}, 1.0$ equiv) in 50 mL of MeOH and $10 \% \mathrm{Pd} / \mathrm{C}(56 \mathrm{mg}$, $10 \mathrm{wt} \%$) were reacted according to GP2 to afford 2-methyl-3-phenoxyaniline 69 ($462 \mathrm{mg}, 2.32 \mathrm{mmol}, 94 \%$) as a pale yellow oil
$\mathbf{R}_{f}=0.14$ (cyclohexane $/ \mathrm{AcOEt}=10: 1$).

HPLC (254 nm, VWD): $\mathrm{t}_{\mathrm{R}}=2.74 \mathrm{~min}$.
${ }^{1}$ H-NMR (500 MHz, DMSO- d_{6}): $\delta=7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.04-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.98(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-$ $6.89(\mathrm{~m}, 2 \mathrm{H}), 6.52(\mathrm{dd}, J=8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{dd}, J=8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 2 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=158.4,155.0,146.5,129.7,127.1,122.2,117.4,114.7,111.1,110.5,9.8$.

2-Methyl-5-phenoxyaniline (70)

1-Methyl-2-nitro-4-phenoxybenzene ($822 \mathrm{mg}, 3.58 \mathrm{mmol}, 1.0$ equiv) in 50 mL of MeOH and $10 \% \mathrm{Pd} / \mathrm{C}(82 \mathrm{mg}$, $10 \mathrm{wt} \%$) were reacted according to GP2 to afford 2-methyl-5-phenoxyaniline $70(699 \mathrm{mg}, 3.51 \mathrm{mmol}, 98 \%)$ as a colorless solid.
$\mathbf{R}_{f}=0.20$ (cyclohexane $/ \mathrm{AcOEt}=10: 1$).

HPLC ($254 \mathrm{~nm}, ~ V W D): \mathrm{t}_{\mathrm{R}}=2.85 \mathrm{~min}$.
${ }^{1}$ H-NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.04(\mathrm{~m}, 1 \mathrm{H}), 7.02-6.97(\mathrm{~m}, 3 \mathrm{H}), 6.39-6.35(\mathrm{~m}$, 2 H), $3.62(\mathrm{~s}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=157.9,156.4,145.9,131.4,129.7,122.9,118.7,117.5,109.3,105.8,16.8$.

N-(2,4-Dimethyl-5-phenoxyphenyl)formamide (71)

2,4-Dimethyl-5-phenoxyaniline ($522 \mathrm{mg}, 2.45 \mathrm{mmol}, 1.0$ equiv) in 5 mL of PhMe and formic acid ($185 \mu \mathrm{~L}$, $225 \mathrm{mg}, 2.90 \mathrm{mmol}$, 2.0 equiv) were reacted according to GP3 to afford N-(2,4-dimethyl-5-phenoxyphenyl)formamide 71 ($557 \mathrm{mg}, 2.31 \mathrm{mmol}, 94 \%$) as a brown oil.
$\mathbf{R}_{\boldsymbol{f}}=0.18$ (cyclohexane $/ \mathrm{AcOEt}=2: 1$).

HPLC ($254 \mathrm{~nm}, ~ V W D): \mathrm{t}_{\mathrm{R}}=5.29 \mathrm{~min}$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.38(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 8.36(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.33-$ $7.27(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~s}, 0.5 \mathrm{H}), 7.09-7.05(\mathrm{~m}, 1 \mathrm{H}), 7.04-6.99(\mathrm{~m}, 0.5 \mathrm{H}), 6.97(\mathrm{~s}, 0.5 \mathrm{H}), 6.92-6.88(\mathrm{~m}, 2 \mathrm{H})$, $6.71(\mathrm{~s}, 0.5 \mathrm{H}), 2.25-2.23(\mathrm{~m}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 1.5 \mathrm{H}), 2.17(\mathrm{~s}, 1.5 \mathrm{H}) .(1: 1$ mixture of rotamers).
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=163.0,158.9,158.0,157.7,153.3,152.6,133.9,133.6,133.1,129.8,127.8$, $127.5,125.0,124.4,122.9,122.4,117.4,117.1,115.2,112.4,17.3,17.1,15.9,15.7$. (1:1 mixture of rotamers).

N-(2,4-Dimethyl-3-phenoxyphenyl)formamide (72)

2,4-Dimethyl-3-phenoxyaniline ($475 \mathrm{mg}, 2.23 \mathrm{mmol}, 1.0$ equiv) in 5 mL of PhMe and formic acid ($168 \mu \mathrm{~L}$, $205 \mathrm{mg}, 4.45 \mathrm{mmol}$, 2 equiv) were reacted according to GP3 to afford N-(2,4-dimethyl-3-phenoxyphenyl)formamide 72 ($530 \mathrm{mg}, 2.20 \mathrm{mmol}, 99 \%$) as a brown solid.
$\mathbf{R}_{f}=0.21$ (cyclohexane $/ \mathrm{AcOEt}=2: 1$).

HPLC ($254 \mathrm{~nm}, ~ V W D): \mathrm{t}_{\mathrm{R}}=5.30 \mathrm{~min}$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.51(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 8.44(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.70(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $0.5 \mathrm{H}), 7.53(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.77-6.72$ $(\mathrm{m}, 2 \mathrm{H}), 2.13-2.09(\mathrm{~m}, 3 \mathrm{H}), 2.08-2.05(\mathrm{~m}, 3 \mathrm{H})(1: 1$ mixture of rotamers $)$.
${ }^{13} \mathbf{C}$-NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=163.2,159.1,157.9,157.7,151.9,151.2,134.4,133.8,129.9,129.9,129.2$, $129.0,124.4,123.3,121.9,121.7,120.4,118.2,114.8,114.7,16.4,11.1,11.0$ ($1: 1$ mixture of rotamers).

N -(4-Methyl-3-phenoxyphenyl)formamide (73)

2-Methyl-3-phenoxyaniline ($456 \mathrm{mg}, 2.29 \mathrm{mmol}, 1.0$ equiv) in 5 mL of PhMe and formic acid ($173 \mu \mathrm{~L}, 211 \mathrm{mg}$, 4.58 mmol , 2.0 equiv) were reacted according to GP3 to afford N-(4-methyl-3-phenoxyphenyl)formamide 73 ($486 \mathrm{mg}, 2.14 \mathrm{mmol}, 93 \%$) as a brown solid.
$\mathbf{R}_{f}=0.20$ (cyclohexane / $\mathrm{AcOEt}=2: 1$).

HPLC ($254 \mathrm{~nm}, ~ V W D): \mathrm{t}_{\mathrm{R}}=5.38 \mathrm{~min}$.
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.59(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 8.48(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.77-7.72(\mathrm{~m}, 1 \mathrm{H})$, $7.36-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.04(\mathrm{~m}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.81$ $-6.75(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.17(\mathrm{~m}, 3 \mathrm{H})(1: 1$ mixture of rotamers $)$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=163.2,159.1,157.5,155.9,155.0,136.7,136.2,130.0,129.9,127.4,127.2$, 123.2, 122.9, 121.8, 121.2, 118.9, 118.0, 117.7, 117.0, 116.1, 10.6 ($1: 1$ mixture of rotamers).

N -(2-Methyl-5-phenoxyphenyl)formamide (74)

2-Methyl-5-phenoxyaniline ($685 \mathrm{mg}, 3.44 \mathrm{mmol}, 1$ equiv) in 7 mL of PhMe and formic acid ($259 \mu \mathrm{~L}, 316 \mathrm{mg}$, $6.88 \mathrm{mmol}, 2$ equiv) were reacted according to GP3 to afford N-(2-methyl-5-phenoxyphenyl)formamide 74 ($724 \mathrm{mg}, 3.19 \mathrm{mmol}, 93 \%$) as a brown solid.
$\mathbf{R}_{f}=0.22$ (cyclohexane $/ \mathrm{AcOEt}=2: 1$).

HPLC ($254 \mathrm{~nm}, ~ V W D): \mathrm{t}_{\mathrm{R}}=5.10 \mathrm{~min}$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.51(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 8.42(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.72(\mathrm{~d}, J=2.6 \mathrm{~Hz}$, $0.5 \mathrm{H}), 7.69-7.62(\mathrm{~m}, 0.5 \mathrm{H}), 7.38-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.19-6.97(\mathrm{~m}, 4 \mathrm{H}), 6.85-6.73(\mathrm{~m}, 2 \mathrm{H})), 2.27-2.24(\mathrm{~m}, 3 \mathrm{H})$ (1:1 mixture of rotamers).
${ }^{13}$ C-NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=162.9,158.9,157.4,157.0,156.5,155.9,136.1,135.8,132.3,131.4,130.0$, $129.8,123.6,123.3,122.8,119.1,118.8,116.0,116.0,113.8,110.7,17.1$ (1:1 mixture of rotamers).

1-Isocyano-2,4-Dimethyl-5-phenoxybenzene (75)

N -(2,4-Methyl-5-phenoxyphenyl)formamide ($330 \mathrm{mg}, 1.37 \mathrm{mmol}, 1.0$ equiv) in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{NEt}_{3}(1.90 \mathrm{~mL}$, $1.37 \mathrm{~g}, 13.7 \mathrm{mmol}$, 10 equiv) and $\mathrm{POCl}_{3}(316 \mu \mathrm{~L}, 531 \mathrm{mg}, 3.30 \mathrm{mmol}, 2.1$ equiv) were reacted according to GP4 to afford 1-isocyano-2,4-dimethyl-5-phenoxybenzene $75(260 \mathrm{mg}, 1.16 \mathrm{mmol}, 85 \%)$ as a pale yellow oil with a very intense smell. The product was directly used in the next step without further characterization.
$\mathbf{R}_{\boldsymbol{f}}=0.72$ (cyclohexane / AcOEt = 1:1).

HPLC (254 nm, VWD): $\mathrm{t}_{\mathrm{R}}=7.83 \mathrm{~min}$.

1-Isocyano-2,4-Dimethyl-3-phenoxybenzene (76)

N -(2,4-Dimethyl-3-phenoxyphenyl)formamide ($330 \mathrm{mg}, 1.37 \mathrm{mmol}, 1.0$ equiv) in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{NEt}_{3}$ $\left(1.90 \mathrm{~mL}, 1.37 \mathrm{~g}, 13.7 \mathrm{mmol}, 10\right.$ equiv) and $\mathrm{POCl}_{3}(316 \mu \mathrm{~L}, 531 \mathrm{mg}, 3.42 \mathrm{mmol}, 2.1$ equiv) were reacted according to GP4 to afford 1-isocyano-2,4-dimethyl-3-phenoxybenzene 76 ($282 \mathrm{mg}, 1.26 \mathrm{mmol}, 92 \%$) as a pale green oil with a very intense smell. The product was directly used in the next step without further characterization.
$\mathbf{R}_{f}=0.68$ (cyclohexane / $\mathrm{AcOEt}=1: 1$).

HPLC ($254 \mathrm{~nm}, ~ V W D): \mathrm{t}_{\mathrm{R}}=7.74 \mathrm{~min}$.

4-Isocyano-1-methyl-2-phenoxybenzene (77)

N -(4-methyl-3-phenoxyphenyl)formamide ($300 \mathrm{mg}, 1.32 \mathrm{mmol}, 1.0$ equiv) in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{NEt}_{3}$ (1.83 mL , $1.36 \mathrm{~g}, 13.2 \mathrm{mmol}, 10$ equiv) and $\mathrm{POCl}_{3}(305 \mu \mathrm{~L}, 513 \mathrm{mg}, 3.30 \mathrm{mmol}, 2.1$ equiv) were reacted according to GP4 to afford 4-isocyano-1-methyl-2-phenoxybenzene $77(238 \mathrm{mg}, 1.14 \mathrm{mmol}, 86 \%)$ as a pale green oil with a very strong smell. The product was directly used in the next step without further characterization.

$$
\mathbf{R}_{f}=0.68 \text { (cyclohexane } / \mathrm{AcOEt}=1: 1 \text {). }
$$

HPLC ($254 \mathrm{~nm}, ~ V W D): \mathrm{t}_{\mathrm{R}}=7.39 \mathrm{~min}$.

1-Isocyano-2-methyl-3-phenoxybenzene (78)

N -(4-Methyl-3-phenoxyphenyl)formamide ($227 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv) in 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{NEt}_{3}(1.38 \mathrm{~mL}$, $1.01 \mathrm{~g}, 10.0 \mathrm{mmol}, 10$ equiv) and $\mathrm{POCl}_{3}(194 \mu \mathrm{~L}, 326 \mathrm{mg}, 2.10 \mathrm{mmol}, 2.1$ equiv) were reacted according to GP4 to afford 1-isocyano-2-methyl-3-phenoxybenzene $78(165 \mathrm{mg}, 0.789 \mathrm{mmol}, 79 \%)$ as a pale yellow oil with a very intense smell. The product was directly used in the next step without further characterization.
$\mathbf{R}_{\boldsymbol{f}}=0.67$ (cyclohexane $/ \mathrm{AcOEt}=1: 1$).

HPLC (254 nm, VWD): $\mathrm{t}_{\mathrm{R}}=7.48 \mathrm{~min}$.

2-Isocyano-1-methyl-4-phenoxybenzene (79)

N-(2-Methyl-5-phenoxyphenyl)formamide ($226 \mathrm{mg}, 0.994 \mathrm{mmol}, 1.0$ equiv) in 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{NEt}_{3}(1.38 \mathrm{~mL}$, $1.01 \mathrm{~g}, 9.94 \mathrm{mmol}, 10$ equiv) and $\mathrm{POCl}_{3}(193 \mu \mathrm{~L}, 324 \mathrm{mg}, 2.09 \mathrm{mmol}, 2.1$ equiv) were reacted according to GP4 to afford 2-isocyano-1-methyl-4-phenoxybenzene $79(167 \mathrm{mg}, 0.798 \mathrm{mmol}, 80 \%)$ as a pale yellow oil with a very intense smell. The product was directly used in the next step without further characterization.
$\mathbf{R}_{f}=0.62$ (cyclohexane $/ \mathrm{AcOEt}=1: 1$).

HPLC ($254 \mathrm{~nm}, ~ V W D): \mathrm{t}_{\mathrm{R}}=7.44 \mathrm{~min}$.
d. Synthesis of intermediates for N-substituted tripeptide aldehydes (22-25)
$\mathrm{R}^{1}, \mathrm{R}^{2}$ or R^{3}
HATU, DIPEA
or

Scheme S4: Synthesis of N -substituted tripeptide aldehydes.

Cbz-Leu-Leu-Leu-ol 80, Cbz-Leu-Asp(OtBu)-Leu-ol 81 and 2-(4-oxoquinazolin-3(4H)-yl)acetic acid were synthesized as described before. ${ }^{1-2}$

$\mathrm{H}_{2} \mathrm{~N}$-Leu-Leu-Leu-ol (82)

Cbz-Leu-Leu-Leu-ol ($1.01 \mathrm{~g}, 2.30 \mathrm{mmol}, 1.0$ equiv) in 50 mL of MeOH and $10 \% \mathrm{Pd} / \mathrm{C}(101 \mathrm{mg}, 10 \mathrm{wt} \%$) were reacted according to GP2 to afford $\mathrm{H}_{2} \mathrm{~N}$-Leu-Leu-Leu-ol $\mathbf{8 2}(750 \mathrm{mg}, 2.18 \mathrm{mmol}, 95 \%)$ as a colorless solid.
$\mathbf{R}_{\boldsymbol{f}}=0.32\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=10: 1\right)$.

HPLC ($205 \mathrm{~nm}, ~ V W D): \mathrm{t}_{\mathrm{R}}=1.48 \mathrm{~min}$.
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.68(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-4.33(\mathrm{~m}, 1 \mathrm{H}), 4.00-$ $3.93(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=11.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=11.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{dd}, J=9.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.76$ $-1.53(\mathrm{~m}, 6 \mathrm{H}), 1.42-1.29(\mathrm{~m}, 4 \mathrm{H}), 0.97-0.86(\mathrm{~m}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=176.4,172.7,66.0,53.6,51.8,50.4,44.1,40.5,40.1,25.0,23.5,23.1,22.4$, 22.3, 21.5.

$\mathrm{H}_{2} \mathrm{~N}$-Leu-Asp(O-tBu)-Leu-ol (83)

Cbz-Leu-Asp(OtBu)-Leu-ol ($1.00 \mathrm{~g}, 1.87 \mathrm{mmol}, 1.0$ equiv) in 50 mL of MeOH and $10 \% \mathrm{Pd} / \mathrm{C}(100 \mathrm{mg}, 10 \mathrm{wt} \%)$ were reacted according to GP2 to afford $\mathrm{H}_{2} \mathrm{~N}$-Leu- $\mathrm{Asp}(\mathrm{OtBu})$-Leu-ol $\mathbf{8 3}(716 \mathrm{mg}, 1.78 \mathrm{mmol}, 95 \%)$ as a colorless solid.
$\mathbf{R}_{f}=0.07\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=20: 1\right)$.

HPLC (205 nm, VWD): $\mathrm{t}_{\mathrm{R}}=1.87 \mathrm{~min}$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.17(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.71-4.65(\mathrm{~m}, 1 \mathrm{H}), 4.00-$ 3.92 (m, 1H), 3.64 (dd, $J=11.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.50-3.45$ (m, 1H), 3.39 (dd, $J=9.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.76$ (dd, $J=$ $16.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dd}, J=16.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.77-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.39-1.30(\mathrm{~m}, 2 \mathrm{H}), 0.97-$ 0.87 (m, 12H).
${ }^{13} \mathbf{C}$-NMR (126 MHz, CDCl_{3}): $\delta=176.3,171.2,81.9,65.8,53.6,50.6,49.6,44.2,40.1,37.3,28.2,25.0,23.5$, 23.2, 22.3, 21.5.

(S)-N-((S)-1-Hydroxy-4-methylpentan-2-yl)-4-methyl-2-((S)-4-methyl-2-(2-(4-oxoquinazolin-3(4H)-

 yl)acetamido)pentanamido)pentanamide (84)

2-(4-Oxoquinazolin-3(4H)-yl)acetic acid ($94 \mathrm{mg}, 0.460 \mathrm{mmol}, 1.0$ equiv), $\mathrm{H}_{2} \mathrm{~N}$-Leu-Leu-Leu-ol (158 mg , $0.460 \mathrm{mmol}, 1.0$ equiv), HATU ($192 \mathrm{mg}, 0.506 \mathrm{mmol}, 1.1$ equiv), and DIPEA ($227 \mu \mathrm{~L}, 172 \mathrm{mg}, 1.33 \mathrm{mmol}$, 2.9 equiv) in 6 mL of DMF were reacted according to GP9. The crude product was purified by column chromatography of the residue on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=20: 1\right)$ to afford the title compound $84(161 \mathrm{mg}$, $0.304 \mathrm{mmol}, 66 \%$) as a colorless solid.
$\mathbf{R}_{\boldsymbol{f}}=0.16\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=20: 1\right)$.

HPLC (254 nm, VWD): $\mathrm{t}_{\mathrm{R}}=4.87 \mathrm{~min}$.
${ }^{1}$ H-NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=8.58(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.93$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{ddd}, J=8.5,7.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{dd}, J=8.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56$ (ddd, $J=8.2,7.1$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 2 \mathrm{H}), 4.50(\mathrm{~s}, 1 \mathrm{H}), 4.34-4.28(\mathrm{~m}, 1 \mathrm{H}), 4.25-4.19(\mathrm{~m}, 1 \mathrm{H}), 3.77-$ $3.68(\mathrm{~m}, 1 \mathrm{H}), 3.28-3.24(\mathrm{~m}, 1 \mathrm{H}), 3.17-3.10(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.42$ $(\mathrm{m}, 5 \mathrm{H}), 1.28-1.21(\mathrm{~m}, 1 \mathrm{H}), 1.18-1.11(\mathrm{~m}, 1 \mathrm{H}), 0.91-0.87(\mathrm{~m}, 6 \mathrm{H}), 0.86-0.83(\mathrm{~m}, 6 \mathrm{H}), 0.76-0.74(\mathrm{~m}$, $3 \mathrm{H}), 0.73-0.71(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, DMSO- d_{6}): $\delta=171.3,171.1,166.7,160.3,148.5,148.1,134.4,127.2,127.0,126.0$, $121.4,63.8,51.4,48.5,48.2,40.9,40.5,24.2,24.1,24.0,23.3,23.0,22.9,21.8,21.6$.

$N-((S)-1-(((S)-1-(((S)-1-H y d r o x y-4-m e t h y l p e n t a n-2-y l) a m i n o)-4-m e t h y l-1-o x o p e n t a n-2-y l) a m i n o)-4-~$ methyl-1-oxopentan-2-yl)pyrazine-2-carboxamide (85)

Pyrazine-2-carboxylic acid ($57 \mathrm{mg}, 0.460 \mathrm{mmol}, 1.0$ equiv), $\mathrm{H}_{2} \mathrm{~N}$-Leu-Leu-Leu-ol ($158 \mathrm{mg}, 0.460 \mathrm{mmol}$, 1.0 equiv), HATU ($192 \mathrm{mg}, 0.506 \mathrm{mmol}, 1.1$ equiv), and DIPEA ($227 \mu \mathrm{~L}, 172 \mathrm{mg}, 1.33 \mathrm{mmol}, 2.9$ equiv) in 6 mL of DMF were reacted according to GP9. The crude product was purified by column chromatography of the residue on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=50: 1\right)$ to afford the title compound $\mathbf{8 5}(147 \mathrm{mg}, 0.324 \mathrm{mmol}, 71 \%)$ as a colorless solid.
$\mathbf{R}_{f}=0.24\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=20: 1\right)$.

HPLC ($254 \mathrm{~nm}, ~ V W D): \mathrm{t}_{\mathrm{R}}=4.46 \mathrm{~min}$.
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.38(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.78(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.56-8.53(\mathrm{~m}, 1 \mathrm{H}), 8.18(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.69-4.62(\mathrm{~m}, 1 \mathrm{H}), 4.43-4.37(\mathrm{~m}, 1 \mathrm{H}), 4.05$ $-3.99(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=11.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=11.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.68(\mathrm{~m}, 4 \mathrm{H}), 1.64-1.50$ $(\mathrm{m}, 3 \mathrm{H}), 1.45-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.24(\mathrm{~m}, 1 \mathrm{H}), 0.98-0.93(\mathrm{~m}, 6 \mathrm{H}), 0.92-0.89(\mathrm{~m}, 6 \mathrm{H}), 0.88-0.86(\mathrm{~m}, 3 \mathrm{H})$, $0.85(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.13,171.91,163.58,147.87,144.61,143.93,142.90,65.87,52.56,52.41$, $50.38,41.21,40.75,40.14,25.08,25.02,23.22,23.05,22.94,22.29,22.19$.

2,5-Dichloro- N -((S)-1-(((S)-1-(((S)-1-hydroxy-4-methylpentan-2-yl)amino)-4-methyl-1-oxopentan-2-

 yl)amino)-4-methyl-1-oxopentan-2-yl)benzamide (86)

2,5-Dichlorobenzoic acid ($414 \mathrm{mg}, 2.17 \mathrm{mmol}, 1.0$ equiv), $\mathrm{H}_{2} \mathrm{~N}$-Leu-Leu-Leu-ol ($744 \mathrm{mg}, 2.17 \mathrm{mmol}, 1.0$ equiv), EDC $\times \mathrm{HCl}(416 \mathrm{mg}, 2.17 \mathrm{mmol}, 1.0$ equiv $), \mathrm{HOBt} \times \mathrm{H}_{2} \mathrm{O}\left(399 \mathrm{mg}, 2.60 \mathrm{mmol}, 1.2\right.$ equiv) and $\mathrm{NEt}_{3}(451 \mu \mathrm{~L}$, $329 \mathrm{mg}, 3.26 \mathrm{mmol}, 1.5$ equiv) in 30 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were reacted according to GP10 to afford the title compound $\mathbf{8 6}(888 \mathrm{mg}, 1.72 \mathrm{mmol}, 79 \%)$ as a colorless solid.
$\mathbf{R}_{f}=0.24$ (cyclohexane / $\mathrm{AcOEt}=1: 2$).

HPLC ($254 \mathrm{~nm}, \mathrm{VWD}): \mathrm{t}_{\mathrm{R}}=6.35 \mathrm{~min}$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.49(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $6.59(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.76-4.69(\mathrm{~m}, 1 \mathrm{H}), 4.54-4.45(\mathrm{~m}, 1 \mathrm{H}), 4.01-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.66-3.59(\mathrm{~m}, 1 \mathrm{H})$, $3.55-3.49(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{~s}, 1 \mathrm{H}), 1.78-1.54(\mathrm{~m}, 6 \mathrm{H}), 1.42-1.24(\mathrm{~m}, 3 \mathrm{H}), 0.99-0.85(\mathrm{~m}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C - N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=172.1,171.7,165.6,135.9,133.4,131.6,131.5,130.0,129.2,66.0,52.9,52.5$, $50.3,41.2,41.0,40.0,25.1,25.0,23.2,23.0,22.4,22.3$.
tert-Butyl (S)-3-((S)-2-(2,5-dichlorobenzamido)-4-methylpentanamido)-4-(((S)-1-hydroxy-4-methylpentan-2-yl)amino)-4-oxobutanoate (87)

2,5-Dichlorobenzoic acid ($327 \mathrm{mg}, 1.71 \mathrm{mmol}, 1.0$ equiv), $\mathrm{H}_{2} \mathrm{~N}$-Leu-Asp($\mathrm{O} t \mathrm{Bu}$)-Leu-ol ($685 \mathrm{mg}, 1.71 \mathrm{mmol}$, 1.0 equiv), $\mathrm{EDC} \times \mathrm{HCl}\left(328 \mathrm{mg}, 1.71 \mathrm{mmol}, 1.0\right.$ equiv), $\mathrm{HOBt} \times \mathrm{H}_{2} \mathrm{O}\left(314 \mathrm{mg}, 2.05 \mathrm{mmol}, 1.2\right.$ equiv) and NEt_{3} ($356 \mu \mathrm{~L}, 260 \mathrm{mg}, 2.57 \mathrm{mmol}, 1.5$ equiv) in 30 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were reacted according to GP10 to afford the title compound 87 ($721 \mathrm{mg}, 1.25 \mathrm{mmol}, 73 \%$) as a colorless solid.
$\mathbf{R}_{f}=0.17$ (cyclohexane $/ \mathrm{AcOEt}=1: 2$).

HPLC ($254 \mathrm{~nm}, ~ V W D): \mathrm{t}_{\mathrm{R}}=6.76 \mathrm{~min}$.
${ }^{1} \mathbf{H}-$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.74-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.35(\mathrm{~m}, 2 \mathrm{H}), 6.78-6.72$ $(\mathrm{m}, 2 \mathrm{H}), 4.70-4.63(\mathrm{~m}, 1 \mathrm{H}), 4.57-4.50(\mathrm{~m}, 1 \mathrm{H}), 4.05-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.67-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.47(\mathrm{~m}, 1 \mathrm{H})$, $2.99(\mathrm{dd}, J=17.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~s}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=17.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.77(\mathrm{~m}, 4 \mathrm{H}), 1.70-1.65(\mathrm{~m}$, $1 \mathrm{H}), 1.61-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.02-0.97(\mathrm{~m}, 6 \mathrm{H}), 0.89-0.83(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.9,171.5,170.4,166.4,135.6,133.6,131.9,131.5,130.4,129.1,82.4,65.9$, $53.9,50.7,50.2,40.8,39.9,36.4,28.1,25.2,24.8,23.2,22.1,21.7$.
e. Synthesis of intermediates for BODIPY labeled α-ketoamides (30-32)

Scheme S5: Synthesis of BODIPY labeled α-ketoamides.

2-(4-(2,8-diethyl-5,5-difluoro-1,3,7,9-tetramethyl-5H-4 $\lambda^{4}, 5 \lambda^{4}$-dipyrrolo[1,2-c:2', 1 '-f][1,3,2]diazaborinin-10yl)phenoxy)acetic acid $\mathbf{8 8}$ was synthesized as described before. ${ }^{3}$

Benzyl(2-(4-(2,8-diethyl-5,5-difluoro-1,3,7,9-tetramethyl-5H-4 $\lambda^{4}, 5 \lambda^{4}$-dipyrrolo[1,2-c:2',1'-f][1,3,2]diaza-borinin-10-yl)phenoxy)acetyl)glycinate

Compound 88 ($300 \mathrm{mg}, 0.660 \mathrm{mmol}, 1.0$ equiv), glycine benzyl ester p-toluenesulfonate ($445 \mathrm{mg}, 1.32 \mathrm{mmol}$, 2.0 equiv), HATU ($277 \mathrm{mg}, 0.729 \mathrm{mmol}, 1.1$ equiv), and DIPEA ($324 \mu \mathrm{~L}, 247 \mathrm{mg}, 1.91 \mathrm{mmol}, 2.9$ equiv) in 50 mL of DMF were reacted according to GP9 to afford the title compound ($368 \mathrm{mg}, 0.655 \mathrm{mmol}, 97 \%$) as a purple solid.
$\mathbf{R}_{\boldsymbol{f}}=0.88$ (cyclohexane / $\mathrm{AcOEt}=1: 2$).

HPLC (254 nm, VWD): $\mathrm{t}_{\mathrm{R}}=9.00 \mathrm{~min}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.33-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.15(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.14(\mathrm{~s}$, $2 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 4.13(\mathrm{~s}, 2 \mathrm{H}), 2.65(\mathrm{~s}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 6 \mathrm{H}), 2.23(\mathrm{q}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.24(\mathrm{~s}, 6 \mathrm{H}), 0.91(\mathrm{t}, J=7.5 \mathrm{~Hz}$, 6 H).
${ }^{13}$ C-NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.4,168.1,157.6,153.9,139.6,138.3,135.1,132.9,131.1,130.1,129.7$, $128.8,128.8,128.5,115.4,67.5,67.3,41.0,38.7,17.2,14.7,12.6,11.9$.

(2-(4-(2,8-Diethyl-5,5-difluoro-1,3,7,9-tetramethyl-5H-4 $\lambda^{4}, 5 \lambda^{4}$-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinin-

 10-yl)phenoxy)acetyl)glycine (89)

Benzyl(2-(4-(2,8-diethyl-5,5-difluoro-1,3,7,9-tetramethyl-5H-4 $\lambda^{4}, 5 \lambda^{4}$-dipyrrolo[1,2-c:2', 1'-f][1,3,2]diazaborinin-$10-\mathrm{yl}$)phenoxy)acetyl)glycinate ($386 \mathrm{mg}, 0.655 \mathrm{mmol}, 1.0$ equiv) in 25 mL of MeOH and $10 \% \mathrm{Pd} / \mathrm{C}(39 \mathrm{mg}$, $10 \mathrm{wt} \%$) were reacted according to GP2 to afford the title compound $\mathbf{8 9}(290 \mathrm{mg}, 0.567 \mathrm{mmol}, 85 \%)$ as a purple solid.
$\mathbf{R}_{f}=0.53\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=10: 1\right)$.

HPLC ($254 \mathrm{~nm}, \mathrm{VWD}): \mathrm{t}_{\mathrm{R}}=7.32 \mathrm{~min}$.
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.34(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.61$ $(\mathrm{s}, 2 \mathrm{H}), 3.81(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 6 \mathrm{H}), 2.29(\mathrm{q}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.31(\mathrm{~s}, 6 \mathrm{H}), 0.94(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.0,167.5,158.1,153.0,140.5,138.1,132.5,130.3,129.3,127.4,115.5$, $66.9,40.8,16.4,14.5,12.2,11.5$.
${ }^{19}$ F NMR (471 MHz, DMSO- d_{6}): $\delta=-143.00(\mathrm{dd}, J=66.3,29.4 \mathrm{~Hz})$.
${ }^{11} \mathbf{B}$ NMR $\left(160 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right): \delta=(160 \mathrm{MHz}$, DMSO-d6) $\delta 3.69(\mathrm{t}, J=33.5 \mathrm{~Hz})$.

Benzyl-3-(2-(4-(2,8-diethyl-5,5-difluoro-1,3,7,9-tetramethyl-5H-4 $\lambda^{4}, 5 \lambda^{4}$-dipyrrolo[1,2-c:2', $\left.1^{\prime}-f\right][1,3,2]$ diaza-borinin-10-yl)phenoxy)acetamido)propanoate

Compound $\mathbf{8 8}$ ($300 \mathrm{mg}, 0.660 \mathrm{mmol}, 1.0$ equiv), β-alanine benzyl ester p-toluenesulfonate ($464 \mathrm{mg}, 1.32 \mathrm{mmol}$, 2.0 equiv), HATU ($277 \mathrm{mg}, 0.729 \mathrm{mmol}, 1.1$ equiv), and DIPEA ($324 \mu \mathrm{~L}, 247 \mathrm{mg}, 1.91 \mathrm{mmol}, 2.9$ equiv) in 50 mL of DMF were reacted according to GP9 to afford the title compound ($284 \mathrm{mg}, 0.461 \mathrm{mmol}, 70 \%$) as a purple solid.
$\mathbf{R}_{f}=0.62$ (cyclohexane $/ \mathrm{AcOEt}=1: 2$).

HPLC ($254 \mathrm{~nm}, \mathrm{VWD}): \mathrm{t}_{\mathrm{R}}=8.98 \mathrm{~min}$.
${ }^{1} \mathbf{H}-$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.31-7.37(\mathrm{~m}, 5 \mathrm{H}), 7.21(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.29(\mathrm{~s}$, $1 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 3.67(\mathrm{q}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{~s}, 6 \mathrm{H}), 2.29(\mathrm{q}, J=7.6 \mathrm{~Hz}$, $4 \mathrm{H}), 1.30(\mathrm{~s}, 6 \mathrm{H}), 0.98(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.0,167.6,157.4,153.8,139.4,138.1,135.5,132.7,131.0,129.9,129.4$, 128.6, 128.4, 128.2, 115.2, 67.2, 66.6, 38.6, 34.4, 34.0, 17.0, 14.6, 12.3, 11.8.

3-(2-(4-(2,8-Diethyl-5,5-difluoro-1,3,7,9-tetramethyl-5H-4 $\lambda^{4}, 5 \lambda^{4}$-dipyrrolo[1,2-c:2', $\left.\mathbf{1}^{\prime}-f\right][1,3,2]$ diaza-

 borinin10-yl)phenoxy)acetamido)propanoic acid (90)

Benzyl 3-(2-(4-(2,8-diethyl-5,5-difluoro-1,3,7,9-tetramethyl-5H-4 $\lambda^{4}, 5 \lambda^{4}$-dipyrrolo[1,2-c:2', $\left.1^{\prime}-f\right][1,3,2]$ diazabori-nin-10-yl)phenoxy)acetamido)propanoate ($284 \mathrm{mg}, 0.461 \mathrm{mmol}, 1.0$ equiv) in 50 mL of MeOH and $10 \% \mathrm{Pd} / \mathrm{C}$ ($29 \mathrm{mg}, 10 \mathrm{wt} \%$) were reacted according to GP2 to afford the title compound $90(164 \mathrm{mg}, 0.312 \mathrm{mmol}, 47 \%$) as a purple solid.
$\mathbf{R}_{f}=0.86\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=40: 1\right)$.

HPLC ($254 \mathrm{~nm}, ~ V W D): \mathrm{t}_{\mathrm{R}}=7.15 \mathrm{~min}$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.17(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $4.54(\mathrm{~s}, 2 \mathrm{H}), 3.39-3.33(\mathrm{~m}, 4 \mathrm{H}), 2.43(\mathrm{~s}, 6 \mathrm{H}), 2.29(\mathrm{q}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.30(\mathrm{~s}, 6 \mathrm{H}), 0.94(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=172.8,167.2,158.1,152.9,140.5,138.1,132.5,130.3,129.3,127.4,115.4$, $67.0,34.5,33.7,16.4,14.5,12.2,11.5$.
${ }^{19}$ F NMR (471 MHz, DMSO- d_{6}): $\delta=-143.00(\mathrm{dd}, J=66.1,30.0 \mathrm{~Hz})$.
${ }^{11}$ B NMR (160 MHz, DMSO- d_{6}): $\delta=3.68(\mathrm{t}, J=33.6 \mathrm{~Hz})$.
(3S)-3-((S)-2-((S)-2-Amino-4-methylpentanamido)-4-methylpentanamido)-2-hydroxy-5-methyl- N -(3phenoxyphenyl)hexanamide (91)

Cbz-Leu-Leu-Leu-al ($957 \mathrm{mg}, 2.01 \mathrm{mmol}, 1.0$ equiv) and 1-isocyano-3-phenoxybenzene ($586 \mathrm{mg}, 3.02 \mathrm{mmol}$, 1.5 equiv) were dissolved in 25 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and cooled to $0^{\circ} \mathrm{C}$ under an atmosphere of argon. A mixture of trifluoroacetic acid ($310 \mu \mathrm{~L}, 458 \mathrm{mg}, 4.02 \mathrm{mmol}$, 2.0 equiv) in 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise and the mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$ and 24 h at room temperature. Completion of the reaction was monitored by HPLC and TLC. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ were added and the organic layer was washed with 0.1 N aq. $\mathrm{HCl}(3 \mathrm{x} 80 \mathrm{~mL})$, sat. aq. $\mathrm{NaHCO}_{3}(3 \mathrm{x} 80 \mathrm{~mL})$ and sat. aq. $\mathrm{NaCl}(1 \mathrm{x} 80 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated under reduced pressure to afford the crude hydroxyamide. 200 mg of the obtained solid were dissolved in 25 mL of MeOH and added to $10 \% \mathrm{Pd} / \mathrm{C}(20 \mathrm{mg}, 10 \mathrm{wt} \%)$. The mixture was stirred 15 min . under an atmosphere of hydrogen. After completion of the reaction, the mixture was filtered through a pad of celite and the solvent was removed under reduced pressure. The crude amine was purified by column chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=20: 1\right)$ to afford the free amine $(87 \mathrm{mg}, 0.159 \mathrm{mmol})$ as a colorless solid and as a mixture of two diastereomers.
$\mathbf{R}_{\boldsymbol{f}}=0.26\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=20: 1\right)$.

HPLC (254 nm, VWD): $\mathrm{t}_{\mathrm{R}}=5.47 \mathrm{~min}$ (diastereomer 1), 5.91 min (diastereomer 2).

ESI-MS: $m / z=555.37[\mathrm{M}+\mathrm{H}]^{+}$.
f. Compound purity as determined by HPLC

Compound	BSc	$\mathrm{tr}_{\mathrm{r}} / \mathrm{min}$	purity / \%	λ / nm
8	5321	9.062	98.0256	254
9	5322	9.906	97.8340	205
10	5323	9.225	97.8486	205
18	5324	9.266	99.1150	254
19	5325	9.118	99.0789	254
20	5326	9.052	97.5287	254
16	5327	8.267	98.5202	254
17	5328	9.472	97.3843	254
15	5356	9.006	98.4421	254
14	5357	8.977	97.8081	254
13	5358	9.090	98.0169	254
11	5359	9.127	97.8065	254
12	5360	9.093	96.1759	254
22	5372	4.967	97.8043	254
24	5373	7.198	97.8479	205
23	5374	4.619	98.9923	254
26	5375	8.430	97.5408	254
27	5376	9.273	99.0460	254
29	5377	9.492	99.2761	254
28	5378	8.636	97.4556	254
21	5379	9.337	97.8595	254
25	5380	7.529	96.6261	205
30	5390	10.589	99.2857	360
31	5391	10.204	99.4795	360
32	5392	10.159	98.5419	360

2. Biochemistry

a. Summary of proteasome and cytotoxicity assays

Table S1: Inhibition of catalytic subunits $\beta 5 \mathrm{c}, \beta 2 \mathrm{c}, \beta 1 \mathrm{c}$ and $\beta 5 \mathrm{i}$ in isolated human 20 S proteasome by compounds used in this study. n.a. $=$ not available.

ID	Inhibition cCP / \%				Inhibition iCP / \% 35	
	P5		$\beta 2$	$\boldsymbol{\beta 1}$		
	$\mathrm{c}=100 \mathrm{nM}$	$\mathrm{c}=1 \mu \mathrm{M}$			$\mathrm{c}=100 \mathrm{nM}$	$\mathbf{c}=1 \mu \mathrm{M}$
1	89	98	5	80	85	98
3	86	96	37	-18	43	91
4	43	82	21	27	6	72
5	54	90	4	16	11	72
7	64	92	9	-26	33	74
8	12	32	-4	-7	8	7
9	56	81	9	0	23	31
10	25	63	2	-3	5	23
18	28	59	2	-12	18	7
19	53	84	9	-15	43	31
20	41	38	-7	-24	40	22
16	57	91	-8	12	48	76
17	43	88	-10	11	36	69
15	26	75	9	-2	19	48
14	41	78	5	-10	29	30
13	49	69	4	-4	28	15
11	46	59	10	-10	12	10
12	20	53	4	-33	9	16
21	33	52	11	-4	4	17
23	30	75	49	19	4	64
24	76	94	26	13	60	89
22	6	43	-10	28	11	28
25	64	90	10	9	38	75
26	25	51	17	-38	4	24
27	83	91	6	-48	58	68
29	26	53	-4	-19	8	-1
28	26	81	6	-10	35	52

b. Dose-Response Curves
a. $\mathrm{IC}_{\mathbf{5 0}}$ determination of purified proteasomes $\boldsymbol{\beta 5}$ subunit

Figure S1: Dose-response curves for the inhibition of $\beta 5 \mathrm{c}$ and $\beta 5$ i by key compounds used in this study.
$\mathbf{I C}_{50}$ determination of cytotoxicity in MV4-11 cells

Replicate 1

(Table continues on next page)

Replicate 2

Figure S2: Dose-response curves for the determination of cytotoxic activity in MV4-11 cells by compounds used in this study.

IC $_{50}$ determination of cytotoxicity in THP1 cells

Replicate 1

Replicate 2

Figure S3: Dose-response curves for the determination of cytotoxic activity in THP-1 cells by key compounds used in this study.

IC $_{50}$ determination of cytotoxicity in Jurkat cells

Replicate 1

Replicate 2

Figure S4: Dose-response curves for the determination of cytotoxic activity in Jurkat cells by key compounds used in this study.

Assay validation: Cellular conversion of substrate 33

THP-1

M V 4-1 1

Figure S5: Cellular conversion of Z-LD(OtBu)A-AMC using $25 \mu \mathrm{M}$ tp $100 \mu \mathrm{M}$ substrate, 60 min pre-incubation of substrate and cells and 100 min fluorescence detection.

Inhibition of cellular Z-LD(OtBu)A-AMC Substrate conversion

MV4-11

THP1

Figure S6: Dose-response curves for the inhibition of Z-L-D (OtBu)A-AMC proteolysis by key compounds used in this study (0 h pre-incubation).

MV4-11

THP1

Jurkat

Figure S7: Dose-response curves for the inhibition of Z-L-D(OtBu)A-AMC proteolysis by key compounds used in this study (1 h pre-incubation).

MV4-11

THP1

Jurkat

Figure S8: Dose-response curves for the inhibition of Z-L-D(OtBu)A-AMC proteolysis by key compounds used in this study (13 h pre-incubation).

Cytotoxicity of $\mathbf{2 7}$ in MV4-11 Cells at different time points

Figure S9: Dose-response curves for the continuous determination of cytotoxic activity in MV4-11 cells by Compound 27 over 17.5 h .

Cytotoxicity of $\mathbf{3}$ in MV4-11 Cells at different time points

Figure S10: Dose-response curves for the continuous determination of cytotoxic activity in MV4-11 cells by compound $\mathbf{3}$ over 17.5 h .

Comparison of cytotoxicity in MV4-11 Cells at different time points

Figure S11: Comparison of time-dependent cytotoxic activity in MV4-11 cells by compounds $\mathbf{2 7}$ and $\mathbf{3}$ over 17.5 h .

Cytotoxicity of 27 in THP-1 Cells at different time points

Figure S12: Dose-response curves for the continuous determination of cytotoxic activity in THP-1 cells by Compound $\mathbf{2 7}$ over 17.5 h .

Cytotoxicity of 3 in THP-1 Cells at different time points

Figure S13: Dose-response curves for the continuous determination of cytotoxic activity in THP-1 cells by Compound $\mathbf{3}$ over 17.5 h .

Comparison of cytotoxicity in THP-1 Cells at different time points

$\log \mathrm{IC}_{50}$ comparison

$$
\begin{aligned}
& \rightarrow 27 \\
& -3
\end{aligned}
$$

Figure S14: Comparison of time-dependent cytotoxic activity in THP-1 cells by compounds 27 and $\mathbf{3}$ over 17.5 h .

Cytotoxicity of 27 in Jurkat Cells at different time points

Figure S15: Dose-response curves for the continuous determination of cytotoxic activity in Jurkat cells by Compound 27 over 17.5 h .

Cytotoxicity of 3 in Jurkat Cells at different time points

Figure S16: Dose-response curves for the continuous determination of cytotoxic activity in Jurkat cells by Compound $\mathbf{3}$ over 17.5 h .

Figure S17: Comparison of time-dependent cytotoxic activity in Jurkat cells by compounds 27 and $\mathbf{3}$ over 17.5 h .

Summary of time-dependent cytotoxicity

Table S2: Comparison of time-dependent cytotoxic activity (IC50) and relative IC_{50} values in MV4-11, THP-1 and Jurkat cells by compounds 27 and $\mathbf{3}$ over 17.5 h .

Time / h	$$			$\mathbf{I C}_{50} / \mathbf{n M}$			$\mathrm{IC}_{50} / \mathrm{nM}$		
	27	3	Fold-IC ${ }_{50}$	2	3	Fold-IC ${ }_{50}$	27	3	Fold-IC ${ }_{50}$
3,5					1,61E-02				
5,5		5,89E-06			1,06E-05				
7		9,44E-07			3,46E-06			1,16E-02	
8	2,85E-06	4,37E-07	6,5		1,61E-06		1,99E-03	8,41E-03	0,2
9	1,25E-06	2,63E-07	4,8		1,28E-06		2,43E-06	3,56E-06	0,7
10,5	7,15E-07	1,54E-07	4,7		9,54E-07		4,96E-06	1,34E-07	37,0
11,5	4,78E-07	9,25E-08	5,2	7,67E-07	7,51E-07	1,0	1,07E-06	1,82E-07	5,8
12,5	3,08E-07	6,21E-08	5,0	8,05E-07	6,15E-07	1,3	5,70E-07	8,19E-08	7,0
13,5	1,99E-07	4,67E-08	4,3	7,80E-07	4,73E-07	1,6	5,09E-07	5,91E-08	8,6
14,5	1,21E-07	3,15E-08	3,9	5,80E-07	4,01E-07	1,4	3,35E-07	6,34E-08	5,3
15,5	7,63E-08	2,34E-08	3,3	5,40E-07	3,33E-07	1,6	2,26E-07	4,61E-08	4,9
16,5	3,84E-08	1,33E-08	2,9	5,53E-07	3,28E-07	1,7	1,94E-07	4,01E-08	4,8
17,5	2,00E-08	8,67E-09	2,3	2,94E-07	1,93E-07	1,5	1,51E-07	4,24E-08	3,6

c. Danio rerio toxicity assay

Table S3: Toxicity in Danio rerio embryos (not decorionated) by key compounds used in this study.

Compound	Concentration [$\mu \mathrm{M}$]	Oh		24 h		48 h		72 h		96 h	
		n	\%								
1	1	5	100\%	5	100\%	5	100\%	5	100\%	5	100\%
	5	5	100\%	5	100\%	5	100\%	5	100\%	4	80\%
	10	5	100\%	5	100\%	5	100\%	5	100\%	5	100\%
	25	5	100\%	5	100\%	5	100\%	5	100\%	4	80\%
3	1	5	100\%	5	100\%	5	100\%	5	100\%	5	100\%
	5	5	100\%	5	100\%	5	100\%	5	100\%	5	100\%
	10	5	100\%	5	100\%	5	100\%	5	100\%	5	100\%
	25	5	100\%	5	100\%	5	100\%	5	100\%	5	100\%
7	1	5	100\%	5	100\%	5	100\%	5	100\%	5	100\%
	5	5	100\%	5	100\%	5	100\%	5	100\%	5	100\%
	10	5	100\%	5	100\%	5	100\%	5	100\%	5	100\%
	25	5	100\%	4	80\%	4	80\%	4	80\%	4	80\%
9	1	5	100\%	5	100\%	5	100\%	5	100\%	5	100\%
	5	5	100\%	5	100\%	5	100\%	5	100\%	5	100\%
	10	5	100\%	5	100\%	5	100\%	5	100\%	5	100\%
	25	5	100\%	5	100\%	5	100\%	5	100\%	5	100\%
27	1	5	100\%	5	100\%	5	100\%	5	100\%	5	100\%
	5	5	100\%	5	100\%	5	100\%	5	100\%	5	100\%
	10	5	100\%	5	100\%	5	100\%	5	100\%	5	100\%
	25	5	100\%	5	100\%	5	100\%	5	100\%	5	100\%
Control	-	5	100\%	5	100\%	5	100\%	5	100\%	5	100\%

d. Escape response assay

a. Setup and Image processing

Figure S18: Imaging setup for motion tracking of Danio rerio embryos. High-Speed Digital Camera MotionBlitz EoSens mini1; KIPON Nikon C adapter; 20 mm extension ring; Sigma 50 mm F2.8 EX DG macro objective (55 mm); SL-300 LED Soft Light.

b. Summary -detailed statistics of kinematic parameters

Table S4: Overview of assayed compounds and concentrations, sample size, number of reflexes, stimuli and relative number of reflexes per stimuli.

Groups tested in Neurotoxicity Assay									
	c	time	$\underset{\mathbf{n}}{\substack{\text { Origi } \\ \hline}}$	Survived	Assayed	\# stimuli	\# reflexes	Relative reflexes / Stimuli	Mean
Control	-	-	4	4	3	19	9	0,474	0,47
	$25 \mu \mathrm{M}$	24 h	4	4	3	100	8	0,080	
1	$25 \mu \mathrm{M}$	48 h	4	3	3	150	3	0,020	0,03
	$50 \mu \mathrm{M}$	24 h	4	4	3	150	0	0,000	
	$25 \mu \mathrm{M}$	24 h	4	2	2	6	6	1,000	
27	$50 \mu \mathrm{M}$	24 h	4	3	3	9	9	1,000	0,81
	$25 \mu \mathrm{M}$	48 h	4	2	2	11	6	0,545	
								Fold-response	29

Table S5: Detailed statistics for analysis of kinematic parameters in the touch-evoked escape response assay.

		c	time	Mean	Difference between means	95\% CI	p	Interpretation	R^{2}
C-Bend Amplitude	Control			$129 \pm 13,26, \mathrm{n}=9$	n.a.	n.a.	n.a.	n.a.	n.a.
	1	$25 \mu \mathrm{M}$	24 h	$131,6 \pm 21,3, n=9$	2,556 $\pm 25,09$	-50,64 to 55,75	0,9201	n.s.	0,0006479
		$25 \mu \mathrm{M}$	48 h	6,889 $\pm 5,549, n=9$	-122,1 $\pm 14,37$	-152,6 to -91,64	<0,0001	****	0,8185
		$50 \mu \mathrm{M}$	24 h	$0 \pm 0, \mathrm{n}=9$	$-129 \pm 13,26$	$-157,1$ to -100,9	<0,0001	****	0,8554
	27	$25 \mu \mathrm{M}$	24 h	126,2 $\pm 14,05, n=6$	$-2,833 \pm 19,93$	-45,88 to 40,21	0,8891	n.s.	0,001553
		$50 \mu \mathrm{M}$	24 h	$121,7 \pm 7,399, n=9$	$-7,333 \pm 15,18$	-39,52 to 24,86	0,6357	n.s.	0,01437
		$25 \mu \mathrm{M}$	48 h	119,8 $\pm 6,848, n=6$	$-9,167 \pm 17,34$	-46,62 to 28,29	0,6059	n.s.	0,02105
C-Bend duration	Control			19,67 $\pm 1,374, n=9$	n.a.	n.a.	n.a.	n.a.	n.a.
	1	$25 \mu \mathrm{M}$	24 h	$32,67 \pm 6,489, n=9$	$13 \pm 6,633$	-1,062 to 27,06	0,0677	n.s.	0,1936
		$25 \mu \mathrm{M}$	48 h	$8,222 \pm 6,654, n=9$	$-11,44 \pm 6,794$	-25,85 to 2,959	0,1115	n.s.	0,1506
		$50 \mu \mathrm{M}$	24 h	$0 \pm 0, n=9$	$-19,67 \pm 1,374$	-22,58 to -16,75	<0,0001	****	0,9275
	27	$25 \mu \mathrm{M}$	24 h	$14 \pm 0,8165, n=6$	$-5,667 \pm 1,826$	-9,611 to -1,722	0,0084	**	0,4256
		50 $\mu \mathrm{M}$	24 h	19,17 $\pm 2,212, n=6$	$-0,5 \pm 2,458$	-5,811 to 4,811	0,842	n.s.	0,003172
		$25 \mu \mathrm{M}$	48 h	15,56 $\pm 0,5031, \mathrm{n}=9$	-4,111 $\pm 1,464$	-7,214 to -1,009	0,0126	*	0,3303
Reflex Duration	Control			$390,7 \pm 50,72, n=9$	n.a.	n.a.	n.a.	n.a.	n.a.
	1	$25 \mu \mathrm{M}$	24 h	$540,2 \pm 136,6, n=9$	149,6 $\pm 145,7$	-159,3 to 458,4	0,32	n.s.	0,06178
		$25 \mu \mathrm{M}$	48 h	$289,3 \pm 198,9, n=9$	$-101,3 \pm 205,3$	-536,6 to 333,9	0,6283	n.s.	0,015
		$50 \mu \mathrm{M}$	24 h	$0 \pm 0, n=9$	$-390,7 \pm 50,72$	-498,2 to -283,1	<0,0001	****	0,7876
	27	$25 \mu \mathrm{M}$	24 h	$295,3 \pm 28,53, n=6$	$-95,33 \pm 66,93$	-239,9 to 49,27	0,1779	n.s.	0,135
		$50 \mu \mathrm{M}$	24 h	$799 \pm 91,81, \mathrm{n}=6$	408,3 $\pm 96,75$	199,3 to 617,4	0,001	**	0,5781
		$25 \mu \mathrm{M}$	48 h	$403,6 \pm 30,92, n=9$	12,89 $\pm 59,4$	-113 to 138,8	0,831	n.s.	0,002934
Number of total movements	Control				n.a.	n.a.	n.a.	n.a.	n.a.
	1	$25 \mu \mathrm{M}$	24 h	11,56 $\pm 3,33, n=9$	$-2,556 \pm 4,37$	-11,82 to 6,709	0,5669	n.s.	0,02092
		$25 \mu \mathrm{M}$	48 h	3,222 $\pm 2,259, n=9$	$-10,89 \pm 3,622$	-18,57 to -3,211	0,0084	**	0,361
		$50 \mu \mathrm{M}$	24 h	$0 \pm 0, n=9$	$-14,11 \pm 2,831$	-20,11 to -8,11	0,0001	***	0,6083
	27	$25 \mu \mathrm{M}$	24 h	$11,5 \pm 0,9916, n=6$	$-2,611 \pm 3,6$	-10,39 to 5,165	0,4811	n.s.	0,0389
		$50 \mu \mathrm{M}$	24 h	30,67 $\pm 3,252, \mathrm{n}=6$	16,56 $\pm 4,371$	7,112 to 26	0,0023	**	0,5246
		$25 \mu \mathrm{M}$	48 h	$16 \pm 1,384, \mathrm{n}=9$	1,889 $\pm 3,151$	-4,791 to 8,569	0,5573	n.s.	0,02197
Number of movements per 100 ms	Control			3,475 $\pm 0,3192, n=9$	n.a.	n.a.	n.a.	n.a.	n.a.
	1	$25 \mu \mathrm{M}$	24 h	1,916 $\pm 0,3504, n=9$	$-1,559 \pm 0,4739$	-2,563 to $-0,554$	0,0046	**	0,4034
		$25 \mu \mathrm{M}$	48 h	$0,2435 \pm 0,1615, n=9$	$-3,231 \pm 0,3577$	-3,989 to -2,473	<0,0001	****	0,8361
		$50 \mu \mathrm{M}$	24 h	$0 \pm 0, \mathrm{n}=9$	$-3,475 \pm 0,3192$	-4,151 to -2,798	<0,0001	****	0,8811
	27	$25 \mu \mathrm{M}$	24 h	$3,951 \pm 0,246, n=6$	$0,4767 \pm 0,4422$	-0,4786 to 1,432	0,3006	n.s.	0,08205
		$50 \mu \mathrm{M}$	24 h	$3,877 \pm 0,2249, n=6$	0,4019 $\pm 0,4349$	-0,5376 to 1,341	0,3722	n.s.	0,06165
		$25 \mu \mathrm{M}$	48 h	$4,02 \pm 0,2617, n=9$	0,545 $\pm 0,4127$	-0,3299 to 1,42	0,2052	n.s.	0,09828

c. Measurement of movement amplitude after touch-evoked escape response

Controlembryo\#2

Controlembryo\#3

— Replicate 1
——Replicate 2
_ Replicate 3

Bortezomib-25 M M - 24 h-embryo \#1

Bortezomib-25 $\boldsymbol{\mu}$ M-24h-embryo\#2

Bortezomib-25 $\boldsymbol{\mu}$ M-24h-embryo\#3

Bortezomib-25 $\boldsymbol{\mu}$ M-48h-embryo\#1

Bortezomib-25 M M - $48 \mathrm{~h}-\mathrm{em}$ bryo \#2

Bortezomib-25 $\mathbf{~ M ~ M ~ - ~} 48 \mathrm{~h}-\mathrm{em}$ bryo\#3

Cmpd.27-50~M-24h-embryo\#1

Cmpd.27-50 m M-24h-embryo\#2

Cmpd.27-25 M M-24h-embryo\#1

Cmpd.27-25 M M-24h-embryo \#2

Cmpd.27-25 M M-48h-embryo \#1

Cmpd. 27-25 M M-48h-embryo \#2

Cmpd.27-25 M M-48h-embryo \#3

C-Bend Amplitude

Figure S19: Comparison of the c-bend amplitude in degrees.

C-Bend Duration

Figure S20: Comparison of the c-bend duration in milliseconds.

Reflex Duration

Figure S21 Comparison of the absolute reflex duration in milliseconds.

No of movements

Figure S22: Comparison of the total number of movements per reflex.

No of movements per 100 ms

Ctrl. vs BTZ 25 $\boldsymbol{\mu M}$ 24h

$$
\begin{array}{ll}
p=0.0047 & 3,475 \pm 0,3192, n=9 \\
& 1,916 \pm 0,3504, n=9
\end{array}
$$

n.s. $\begin{array}{r}3,475 \pm 0,3192, n=9 \\ 3,951 \pm 0,246, n=6\end{array}$

Ctrl. vs BTZ $\mathbf{2 5} \boldsymbol{\mu M} \mathbf{M 8 h}$

$\mathrm{p}<0.0001 \quad 3,475 \pm 0,3192, \mathrm{n}=9$

Ctrl. vs $5376 \mathbf{2 5} \mu \mathrm{M} 48 \mathrm{~h}$

Ctrl. vs BTZ $50 \mu \mathrm{M}$ 24h

$p<0.0001 \begin{array}{r}3,475 \pm 0,3192, n=9 \\ 0 \pm 0, n=9\end{array}$

Ctrl. vs 5376 50 $\mu \mathrm{M}$ 24h

Figure S23: Comparison of the number of movements per 100 ms .

e. BODIPY Characterization

Figure S24: Absorption and fluorescence emission spectra of compounds 32-34.

Figure S25: Imaging of Danio rerio embryos treated with BODIPY-conjugated fluorophores $\mathbf{3 2}$ (top), $\mathbf{3 3}$ (2 $2^{\text {nd }}$ row) and $\mathbf{3 4}$ (3 $3^{\text {rd }}$ row) as well as control embryo (bottom row). Images are recorded using the Nuance Fx Imaging system (3225.5 ms exposure time, Filter AF488, 5x magnification). Left column: Mixed RGB image; $2^{\text {nd }}$ row: unmixed image; $3^{\text {rd }}$ row: Signal $1 ; 4^{\text {th }}$ row: Signal 2; right row: background.

3. Molecular Modelling

a. Structural analysis of BSc4999 (7) and covalent redocking using Docktite

Figure S26: (a) Overview of proteasome architecture and location of the $\beta 5$ subunit (blue). (b) Pharmacophore features defined using the pose obtained from cocrystallized structure (PDB: $4 \mathrm{r} 02, \mathrm{R}=2.0 \AA$ for donor, acceptor and aromatic features; $\mathrm{R}=0.4$ \AA for atom pharmacophores of Thr1 (yellow)).

Figure S27: (a) Overview of binding of 7 highlighting the molecular surface of the receptor or (b) highlighting important interactions in the yCP $\beta 5$ subunit (obtained from PDB: 4r02). (c) Distribution of number of output poses per input conformation for redocking of 7. (d) Redocked poses of 7 in $\beta 5 \mathrm{c}$ (RMSD $<2.0 \AA, 7$ poses in Top 1% scored poses).
a
C

b

e

Figure S28: Conformations of input structures of 7: (a) native and (b) random conformation. (c) Lowest energy pose obtained from redocking of native pose (London dG, RMSD $=1.3 \AA$). (d) Lowest energy pose obtained from redocking of random pose (London dG, RMSD $=5.2 \AA$). (e) Superposition of cocrystallized structure (blue) of 7 as well as top-scored pose obtained from redocking using native input conformation (green) and a random input conformation (red).

b. Energy-minimized binding poses of phenoxy and P4-substituted ketoamides

Figure S29: Energy-minimized poses and ligand interaction of aldehydes (a) 24, (b) 22, (c) $\mathbf{2 3}$ binding in the $\beta 5 \mathrm{c}$ subunit.

Figure S30: Superposition of energy-minimized poses of 2-, 3- and 4-phenoxy substituted Ketoamides 8, 9 and $\mathbf{1 0}$.

Figure S31: Energy-minimized pose of $\mathbf{8}$ highlighting key hydrogen bond interactions, molecular surface of the receptor and ligand interactions.

Figure S32: Energy-minimized pose of $\mathbf{9}$ highlighting key hydrogen bond interactions, molecular surface of the receptor and ligand interactions.

Figure S33: Energy-minimized pose of $\mathbf{1 0}$ highlighting key hydrogen bond interactions, molecular surface of the receptor and ligand interactions.

Figure S34: Energy-minimized pose of 11.

c. Covalent docking of BSc5376 (27) using Docktite

a
;

Figure S35: Overview of ligand interactions of top-scored poses of (a) ensemble 1, (b) ensemble 2a, (c) ensemble 2b.

Figure S36: (a) Overview of top-scored docked pose of 27. (b) Dihedral energy profile of C-N bond between phenyl ring and the amide group. (c) $\mathbf{1}$ (d) 2 (e) $\mathbf{3}$ and (f) 4.

Figure S37: (a) Compound 7 superposed with top-ranked and fourth-ranked pose of 27 (2 possible amide orientations). (b) Similar conformations of 27 (pose 1, pose 4) targeting the primed site. (c) Altered orientation of P3 group (d) close-up of 3 displaced water molecules in P3 pocket

Figure S38: Superposition of top-scored docking pose of 27 (green) and homobelactosin C cocrystal structure (grey, PDB: 4J70) highlighting the non-conserved residues in the S1' site (Ser117, Asp118 in yCP).

4. Appendix

NMR-Spectra

${ }^{1} \mathrm{H}$-NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 8.

${ }^{13} \mathrm{C}$-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 8.

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 9.

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 9.

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 10 .

${ }^{1} \mathrm{H}$-NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 18.

10	190	180	170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \mathrm{fl}(\mathrm{ppm}) \end{gathered}$	80	70	60	50	40	30	20	10	0	-10	-2

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 18.

${ }^{1} \mathrm{H}$-NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 19.

$\begin{array}{lll}240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20 & -30 & -40\end{array}$
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 19.

${ }^{1} \mathrm{H}$-NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 20.

)0	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	-2

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 20.

${ }^{1} \mathrm{H}$-NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 16.

)0	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	-2

${ }^{13} \mathrm{C}$-NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 16.

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}\right)$ of compound 17.

${ }^{13}$ C-NMR (126 MHz, DMSO-d d $_{6}$ of compound 17.

${ }^{1} \mathrm{H}$-NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 15.

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 15 .

${ }^{1} \mathrm{H}$-NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 14.

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 14.

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 13.

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 13.

${ }^{1} \mathrm{H}$-NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 11.

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 11.

${ }^{1} \mathrm{H}$-NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 12.

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 12.

${ }^{1} \mathrm{H}$-NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 21.

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 21.

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$, DMSO-d d_{6}) of compound 22.

20	210	200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0	-10	-2

${ }^{13}$ C-NMR (126 MHz , DMSO-d d_{6}) of compound 22.

${ }^{1} \mathrm{H}$-NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 23.

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 23.

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 24.

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 24.

${ }^{1} \mathrm{H}$-NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 25.

$\left.\begin{array}{llllllllllllllllllllllllllllllllllllll}\hline 20 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 1 \\ \mathrm{f1}(\mathrm{ppm})\end{array}\right)$
${ }^{13} \mathrm{C}$-NMR ($\mathbf{1 2 6} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 25.

${ }^{1} \mathrm{H}$-NMR (500 MHz , DMSO-d d_{6}) of compound 26.

10	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	-2

${ }^{13}$ C-NMR ($\mathbf{1 2 6} \mathrm{MHz}$, DMSO-d d_{6}) of compound 26.

${ }^{1} \mathrm{H}$-NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 27.

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 27.

${ }^{1} \mathrm{H}$-NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 28.

)0	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	-2

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 28.

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 29 .

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 29.

${ }^{1} \mathrm{H}$-NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 30.

)0	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	-2

${ }^{13} \mathrm{C}$-NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 30 .

${ }^{19} \mathrm{~F}$-NMR (471 MHz, CDCl $\mathbf{N O}_{3}$) of compound 30 .

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$, DMSO- d_{6}) of compound 31 .

${ }^{13}$ C-NMR ($\mathbf{1 2 6} \mathrm{MHz}$, DMSO- d_{6}) of compound 31 .

${ }^{19}$ F-NMR (471 MHz, DMSO- d_{6}) of compound 31 .

${ }^{11}$ B-NMR ($\mathbf{1 6 0} \mathbf{~ M H z , ~ D M S O - d ~} \mathrm{d}_{6}$) of compound 31.

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$, DMSO-d d_{6}) of compound 32.

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	-2
										f1 (ppm)											

${ }^{13} \mathrm{C}$-NMR ($\mathbf{1 2 6 ~ M H z , ~ D M S O - d ~} \mathrm{d}_{6}$) of compound 32 .

${ }^{19}$ F-NMR (471 MHz, DMSO- d_{6}) of compound 32.

${ }^{11}$ B-NMR (160 MHz, DMSO- d_{6}) of compound 32.

References

1. Braun, H. A.; Umbreen, S.; Groll, M.; Kuckelkorn, U.; Mlynarczuk, I.; Wigand, M. E.; Drung, I.; Kloetzel, P.-M.; Schmidt, B., Journal of Biological Chemistry 2005, 280 (31), 28394-28401.
2. Stein, M. L.; Cui, H.; Beck, P.; Dubiella, C.; Voss, C.; Krüger, A.; Schmidt, B.; Groll, M., Angewandte Chemie International Edition 2014, 53 (6), 1679-1683.
3. Dost, Z.; Atilgan, S.; Akkaya, E. U., Tetrahedron 2006, 62 (36), 8484-8488.
