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Summary

We present a higher-order cut cell immersed boundary method (IBM) for the
simulation of high Mach number flows. As a novelty on a cut cell grid, we evalu-
ate an adaptive local time stepping (LTS) scheme in combination with an artifi-
cial viscosity–based shock-capturing approach. The cut cell grid is optimized by
a nonintrusive cell agglomeration strategy in order to avoid problems with small
or ill-shaped cut cells. Our approach is based on a discontinuous Galerkin dis-
cretization of the compressible Euler equations, where the immersed boundary
is implicitly defined by the zero isocontour of a level set function. In flow config-
urations with high Mach numbers, a numerical shock-capturing mechanism is
crucial in order to prevent unphysical oscillations of the polynomial approxima-
tion in the vicinity of shocks. We achieve this by means of a viscous smoothing
where the artificial viscosity follows from a modal decay sensor that has been
adapted to the IBM. The problem of the severe time step restriction caused by
the additional second-order diffusive term and small nonagglomerated cut cells
is addressed by using an adaptive LTS algorithm. The robustness, stability, and
accuracy of our approach are verified for several common test cases. Moreover,
the results show that our approach lowers the computational costs drastically,
especially for unsteady IBM problems with complex geometries.
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1 INTRODUCTION

Within the past decades, higher-order discontinuous Galerkin (DG) methods1-3 have gained a lot of popularity in the fluid
dynamics research community due to their favorable properties such as cell locality, applicability to arbitrary geometries
on unstructured grids, and an efficient parallelization. This also makes them a suitable candidate for high performance
computing (HPC) applications.4

When handling complex realistic flow situations, eg, high Mach number flows that involve different discontinuous
flow phenomena, DG methods are still susceptible to stability issues caused by under-resolution or oscillating polynomial
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solutions in the vicinity of shocks.5-7 To overcome this problem, several approaches have been developed, eg, limiting
procedures such as weighted essentially nonoscillatory schemes8,9 or a posteriori limiting approaches.10,11

While these approaches have their advantages, the ultimate simplicity of the artificial viscosity approach originally
introduced by Von Neumann and Richtmyer12 remains appealing to this day. The basic idea is the addition of a
second-order diffusive term in order to smooth the shocks over a layer that can be adequately resolved by the numerical
scheme and, thus, preventing undesired oscillations. Bassi and Rebay13,14 along with Bey and Oden15,16 already demon-
strated its potential for higher-order simulations in the early days of DG methods. However, determining the “correct”
amount of artificial viscosity across a large range of parameters and flow configurations has remained a delicate issue.
Persson and Peraire5 proposed an extremely appealing solution for this issue that uses the modal decay of the DG
coefficients17 as a robust indicator for the smoothness of the solution.

Overcoming the problems of a piecewise-constant artificial viscosity, which introduces additional oscillations in the
vicinity of the discontinuities, Barter and Darmofal6,18 introduced a new higher-order state-based artificial viscosity for-
mulation by means of a partial differential equation (PDE). Moreover, Persson19 extended his work5 with the introduction
of an at least C0-continuous artificial viscosity field formulation in order to deal with the aforementioned stability issues.
In addition, other authors analyzed the performance of the modal-decay sensor and enhanced the basic version by intro-
ducing additional constraints or by developing a dynamic threshold setting, see the work of Klöckner et al7 and Lv et al,20

respectively.
The maximum admissible time step size of a DG method with a standard explicit global time stepping method is dictated

by the smallest grid cell and the order of the polynomial approximation.21,22 A shortcoming of artificial viscosity-based
methods is the severe time step restriction caused by the second-order term, eg, see the work of Gassner et al.23,24 The time
step size has a quadratic dependency on the characteristic grid size and the polynomial degree, plus a linear dependency
on the (artificial) viscosity.23 This can lead to a decrease of the stable time step size by up to two orders of magnitude and,
thus, increases the computational cost enormously. This motivates the use of local time stepping (LTS) methods where
the cells are grouped into cell clusters and updated according to their local maximum stable time step size while still
keeping time accuracy.25-28 Besides that, the cell locality allows for a straightforward combination of DG methods with
LTS approaches.29 Winters and Kopriva30 developed an explicit LTS scheme for a DG spectral element method on moving
meshes using Adams-Bashforth multirate methods. They confirmed spectral and temporal convergence along with pro-
viding speedup and memory estimates for test cases on static and moving meshes. Krämer-Eis31 extended their approach
by implementing a conservative flux interpolation method in the context of compressible flows. Another conservative
second-order LTS formulation was proposed by Krivodonova32 who used Heun's method in the context of nonlinear
conservation laws.

Immersed boundary methods (IBMs) are another well-suited field of application for LTS approaches. These were orig-
inally presented by Peskin33 in the context of blood flows. Here, Peskin used a Cartesian grid whose boundary was not
aligned with the geometrical topology. This makes IBM especially advantageous for simulations with underlying moving
or complex geometries. Starting from this work, many enhancements for several numerical schemes were published, eg,
see the work of Mittal and Iaccarino34 for an overview. When representing the immersed boundary as the zero isocon-
tour of a level set function, eg, as done by Qin and Krivodonova,35 the main work is shifted from the representation of the
geometry and the meshing procedure to the treatment of cells that are cut by the immersed boundary. Small or ill-shaped
cut cells can cause significant stability problems stemming from ill-conditioning and also increase the computational load
due to their cell local time step restriction. Müller et al generalized the work of Qin and Krivodonova35 by introducing a
hierarchical moment-fitting (HMF) strategy36 for integration in cut cells and extended their approach to the compressible
Navier-Stokes equations.37 Here, a nonintrusive cell agglomeration strategy35,38,39 was also being used to avoid ill-shaped
and small cut cells.

Within this work, we propose a novel combination of a versatile IBM, a shock-capturing scheme, and an adaptive LTS
strategy. For simplicity, we focus on inviscid high-speed flows in two dimensions, even though the algorithm directly
generalizes to more general applications. For resolving all occurring discontinuous physical phenomena properly, we
use an artificial viscosity–based shock-capturing strategy5 and embed this approach into the IBM.37 In order to improve
the stability of the underlying DG scheme and to lower the computational costs, we present an explicit adaptive LTS
strategy30,31 that is based on a multirate Adams-Bashforth time integration scheme. Our LTS approach features a dynamic
reclustering procedure in time, which makes the proposed method especially applicable for unsteady flow configurations.
We do not focus on the pure “standalone” quality of the results as we simply use the standard shock-capturing approach by
Persson and Peraire,5,19 but rather on the interaction of the different methods (IBM, shock-capturing, and adaptive LTS).

This work is organized as follows. In Section 2, we present the compressible Euler equations in a nondimensional
conservative form. In Section 3, we derive a standard DG discretization, before introducing an extension to the IBM. Here,
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we briefly outline the used cell agglomeration strategy. Section 4 deals with the artificial viscosity–based shock-capturing
approach. The adaptive LTS scheme is described in Section 5. We assess the results of common two-dimensional test cases
for the unsteady compressible Euler equations in terms of robustness, accuracy, and computational costs in Section 6. We
end this work with a conclusion in Section 7.

2 GOVERNING EQUATIONS

We consider the two-dimensional Euler equations for inviscid, compressible flow in a nondimensional conservative form

𝜕U⃗
𝜕t

+ 𝜕F⃗1(U⃗)
𝜕x

+ 𝜕F⃗2(U⃗)
𝜕𝑦

= 0 , (1)

where U⃗ is the vector of conserved quantities

U⃗ =
⎛⎜⎜⎜⎝

𝜌
𝜌u1
𝜌u2
𝜌E

⎞⎟⎟⎟⎠ , (2)

and F⃗1 and F⃗2 are the convective fluxes given by

F⃗1 = 1
𝛾M2

∞

⎛⎜⎜⎜⎝
𝜌u1

𝜌u1u1 + p
𝜌u1u2

u1(𝜌E + p)

⎞⎟⎟⎟⎠ , F⃗2 = 1
𝛾M2

∞

⎛⎜⎜⎜⎝
𝜌u2
𝜌u1u2

𝜌u2u2 + p
u2(𝜌E + p)

⎞⎟⎟⎟⎠ , (3)

where 𝜌 is the fluid density, u1 and u2 are the components of the velocity vector u⃗, 𝜌E is the total energy per unit mass,
p is the pressure, 𝛾 the heat capacity ratio, and M∞ is the reference Mach number. We set M∞ = 1∕

√
𝛾 for the sake of

simplicity. With this specific choice, equation system (1) matches its corresponding version with dimensions. Equation
system (1) is supplemented with suitable initial and boundary conditions.

For closing equation system (1), we consider the ideal gas law

p(𝜌, e) = (𝛾 − 1)𝜌e, (4)

where we set the heat capacity ratio 𝛾 to 1.4 to model standard air conditions and denote e as the specific inner energy.
When the local Mach number M = ||u⃗||∕a is equal or larger than 1, discontinuous flow phenomena like shocks can

occur. We denote a =
√
𝛾p∕𝜌 as the local speed of sound. The polynomial DG approximation will start to oscillate in the

vicinity of the discontinuities. In order to prevent the simulation from a failure, an appropriate shock-capturing strategy
has to be applied. In this work, we follow an artificial viscosity–based approach5 that adds a second order diffusive term
to the original equation system (1)

𝜕U⃗
𝜕t

+ 𝜕F⃗1(U⃗)
𝜕x

+ 𝜕F⃗2(U⃗)
𝜕𝑦

= 𝜀

(
𝜕2U⃗
𝜕x2 + 𝜕2U⃗

𝜕𝑦2

)
, (5)

where 𝜀 is the artificial viscosity parameter that still needs to be determined (cf Section 4.2). Artificial viscosity smoothens
the undesired oscillations around the discontinuities. Note that equation system (5) is not purely hyperbolic anymore.

3 DISCRETIZATION

In this section, we briefly introduce the discretization of the underlying DG IBM solver. Interested readers are referred to
the works by Müller et al37 and Kummer40 for more details. The present solver is implemented in the open source software
package BoSSS* that features a variety of applications in the context of computational fluid dynamics, eg, a solver for
multiphase flows with a sharp interface approach40 or an incompressible IBM solver for particle flows.41

*https://github.com/FDYdarmstadt/BoSSS

https://github.com/FDYdarmstadt/BoSSS
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(A) (B)

FIGURE 1 The configuration in a cut cell. The interface  (dashed line) with its normal vector n⃗ is implicitly defined by the zero
isocontour of a level set function. We consider the subdomain  (gray) as the fluid domain and the subdomain  (white) as void37

We discretize the entire computational domainΩ ⊂ ℝ2, which has to be polygonal and simply connected, into a discrete
set of nonoverlapping cells 𝒦 h = {1, … ,J} with ∫Ki∩K𝑗

1dx = 0 for i ≠ 𝑗, where h is a characteristic cell length
scale. On this domain, we additionally define a set of edges ℰi = {i,1, … , i,E} for each cell i with i,𝑗 ⊆ 𝜕i. Next, we
introduce a DG space

ℙP(𝒦 h) ∶=

{
𝑓 ∈ L2(Ω) ∶ ∀i ∈ 𝒦 h ∶ 𝑓 |i∩Ω =

∑
0≤k+l≤P

xk𝑦lbkl, bkl ∈ ℝ
}

, (6)

with a maximum total polynomial degree P. To incorporate the IBM into the discretization, we introduce a sufficiently
smooth level function 𝜑(x⃗) ∈ C2(Ω) that partitions the numerical domain into a physical fluid domain

 =
{

x⃗ ∈ Ω ∶ 𝜑(x⃗) > 0
}
, (7)

the immersed boundary

 = 𝜕 ⧵ 𝜕Ω = {x⃗ ∈ Ω ∶ 𝜑(x⃗) = 0}, (8)

and a void domain

 = {x⃗ ∈ Ω ∶ 𝜑(x⃗) < 0}. (9)

A cut scenario is illustrated in Figure 1.
Moreover, we define a discrete set of cut cells 𝒦 c

h = {c
1, … ,c

J} by writing the fluid segment as

c
i = i ∩ . (10)

The respective fluid surface of a cut cell 𝜕c
i consists of a set of edges{

i,e

}
e=1,… ,E

= {i,e ∩}e=1,… ,E , (11)

and the corresponding boundary segment of the interface

i = i ∩ . (12)

Up to this point, we have not introduced any limitation to the shape or volume fraction

frac
(c

i
)
=

∫c
i
1dV

∫i
1dV

, (13)

of cut cells. However, this can cause significant issues when the cut cells are ill-shaped or extremely small. In the context
of DG, the maximum stable time step size of explicit time stepping schemes scales like Δt ∼ (h∕P)2 for diffusive terms.
Until here, we have only introduced a characteristic cell length scale h for uncut cells. In nonagglomerated cut cells, the
length scales can be significantly smaller than in uncut cells, which leads to a severe diffusive time step restriction and,
thus, to a drastic increase in computational costs. For details, the reader is referred to Section 5.1.
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To overcome these challenges, we use a nonintrusive cell agglomeration strategy,37 which shall be briefly outlined in the
following. In principle, we follow the algorithm presented by Kummer.42 We set an agglomeration threshold 0 ≤ 𝛿 < 1
based on the volume fraction.43 For every cut cell c

i , we determine the edge neighbors

 (c
i
)
=

⎧⎪⎨⎪⎩
c
𝑗 ∈ 𝒦 c

h ∶ ∮
c

i∩c
𝑗∩

1dS > 0, i ≠ 𝑗

⎫⎪⎬⎪⎭ , (14)

with the largest volume fraction. If frac(c
i ) ≤ 𝛿, we define a target cell

tar
(c

i
)
= arg max

c
𝑗 ∈ (c

i )
frac

(c
𝑗

)
>0

(
frac

(c
𝑗

))
(15)

for every cell in the fluid domain . If frac(c
i ) > 𝛿,

tar
(c

i
)
= c

i , (16)

which means that a nonagglomerated cut cell is, formally, also a target cell. Based on this, we build an agglomerated graph
consisting of nodes c

i and nondirectional edges {c
i , tar(c

i )} for all cut cells c
i with tar(c

i ) ≠ c
i . These edges are

called agglomeration pairs. The agglomeration graph is defined by the following properties.

• Isolated nodes c
i (nodes without agglomeration pairs) are nonagglomerated cut cells; we define agg

i = c
i .

• Each connected subset of the agglomerated graph forms one agglomerated cell agg
i .

– Let c
𝑗1
,c

𝑗2
, … ,c

𝑗N
be any maximal connected subset of 𝒦 c

h, ie, we have agglomeration pairs that connect these
nodes/cells, and there are no further nodes/cells that can be connected through agglomeration pairs.

– Out of the numbers j1, … , jN, we pick one representative, usually one of those where frac(c
𝑗i
) is maximal. Without

loss of generality, let this index be j1. We define an agglomerated cell as

agg
𝑗1

=
N⋃

i=1
c

𝑗i
,

agg
𝑗2

, … ,agg
𝑗N

= ∅,
(17)

where we admit empty cells for the sake of simplicity.

• The agglomerated grid 𝒦 agg
h is the set that contains all cells agg

i .

Our actual implementation exploits the locality of the outlined operations, requiring only a few more cell local
matrix-vectors products per time step. We set 𝛿 = 0.3, which is a good compromise between a reasonable conditioning of
the mass matrices (this holds true for large 𝛿 values), also resulting in larger maximum stable time step sizes, and larger
spatial discretization errors near the immersed boundary. An example for the presented cell agglomeration procedure is
shown in Figure 2.

Finally, the IBM simulations presented in Sections 6.3 and 6.4 are simply DG simulations on the space

ℙP
(
𝒦 agg

h

)
. (18)

The accuracy and performance of an IBM strongly depends on the applied quadrature procedure over the fluid segments
Ai and interface segments Ii of cut cells. In this work, we use the HMF strategy as first published by Müller et al.36

4 SHOCK CAPTURING

We follow the artificial viscosity–based shock-capturing approach presented by Persson and Peraire.5 The idea of artificial
viscosity is to spread the discontinuities over a length scale that can be adequately resolved by the numerical scheme. The
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(A) Initial configuration on the (B) Agglomerated grid for a small
agglomeration threshold

(C) Agglomerated grid for a large
agglomeration thresholdstandard grid

FIGURE 2 Illustration of the agglomeration procedure in cut cells. Black arrows denote the agglomeration direction (source → target),
gray dotted arrows are only used for naming purposes. (A) Small cut cells will be agglomerated to their direct neighbor with the largest fluid
volume fraction. (B) For small values of the agglomeration threshold 𝛿, cut cell c

3 (source) is agglomerated to cell c
1 (target). (C) For large

values of 𝛿, cell c
4 (source) is additionally agglomerated to cell c

2 (target)37

resolution of a higher-order polynomial scales with (h∕P) for DG methods. Therefore, Persson and Peraire argue that it
is reasonable to introduce a dependency of the artificial viscosity parameter on the resolution of the DG approximation
space, ie, 𝜀 = (h∕P). They aim at the term subcell resolution, meaning the shock profile can be significantly thinner than
the cell size when keeping the grid size h fixed while simultaneously increasing the polynomial degree P. The two-step
strategy consists of a detection step (cf Section 4.1) and a smoothing step (cf Section 4.2).

4.1 Shock sensor
First, let us write the cell local polynomial solution ch in a cell i ∈ 𝒦 agg

h , i ≠ ∅, on the agglomerated grid as

ch,i ∶= ch|i ∈ ℙP
({agg

i

})
. (19)

Moreover, we introduce a truncated solution on a basis with order P − 1

ĉh,i = ΠP−1(ch,i), (20)

by using the projection operator
ΠP−1 ∶ ℙP

({agg
i

})
→ ℙP−1

({agg
i

})
u → û,

(21)

with the essential property ⟨u − û|v⟩ = 0, ∀v ∈ ℙP−1({agg
i }), and ⟨·|·⟩ denoting the standard L2 scalar product.

Persson and Peraire5 now define a cell local shock sensor

Si(t) =
⟨ch,i − ĉh,i|ch,i − ĉh,i⟩⟨ch,i|ch,i⟩ . (22)

For a smooth and at least continuous cell local solution, we can expect the coefficients of the polynomial expansion
to decay quickly with a rate of ∼ 1∕P4 in analogy to spectral analysis.44 Thus, the same holds for the shock sensor Si,
which was confirmed through numerical experiments.5 In this work, we use the density as the numerical input variable
for determining the sensor values S(t).

When considering an orthogonal basis Φj for the cell local solution (we skip the index h for better readability),

ci =
N(P)∑
𝑗=1

c̃i,𝑗Φi,𝑗 , (23)
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with the coefficients c̃i,𝑗 and N(P) being the number of terms in the polynomial solution, the truncated expansion (20)
reads

ĉi =
N(P−1)∑
𝑗=1

c̃i,𝑗Φi,𝑗 . (24)

For the usage on cut cells, we reformulate the cell local shock sensor (22) as

Si(t) =

∑N(P)
𝑗=N(P−1)

∑N(P)
k=N(P−1) c̃i,𝑗 c̃i,k ∫ Φi,𝑗Φi,k dV∑N(P)

𝑗=1
∑N(P)

k=1 c̃i,𝑗 c̃i,k ∫ Φi,𝑗Φi,k dV
, (25)

where ∫ Φi,𝑗Φi,k dV is the cell local mass matrix Mi. Note that the structure of Mi strongly depends on the shape of the cut
cells and is therefore different from the mass matrix in uncut cells. For uncut cells on the standard grid, a simplification
can be obtained as the mass matrix is equal to the identity matrix (Mi = I) in the considered setting

Si(t) =
∑N(P)

𝑗=N(P−1) c̃2
𝑗∑N(P)

𝑗=1 c̃2
𝑗

. (26)

In the remainder of this work, we use this sensor as input variable for the calculation of the artificial viscosity due to
its favorable properties such as the h∕p-scaling and the straightforward extension for the usage on an agglomerated cut
cell grid. In our numerical experiments (cf Section 6), there was no limitation in the applicability or performance of this
sensor on an agglomerated cut cell grid. Furthermore, we do not focus on the improvements7 or other variants of this
shock sensor6,20 but rather apply the basic version5,19 to demonstrate the applicability in the IBM.

4.2 Artificial viscosity
When a troubled cell has been detected, artificial viscosity has to be added depending on the strength of the shock. The
underlying approach5 uses a smooth Heaviside function for determining the preliminary amount of artificial viscosity
(indicated by a prime)

for x⃗ ∈ i ∶ 𝜀′(x⃗, t) =
⎧⎪⎨⎪⎩

0, if si < s0 − 𝜅
𝜀0
2

(
1 + sin 𝜋(si−s0)

2𝜅

)
, if s0 − 𝜅 ≤ si ≤ s0 + 𝜅

𝜀0, if si > s0 + 𝜅,

(27)

where si = log10(Si). Additionally, as suggested by Persson and Peraire,5 we add scaling factors to the maximum viscosity
value 𝜀0 ∼ h∕P and to the user-defined sensor value s0 ∼ log10(1∕P4). Several authors7 hinted on a typographical error in
their publication5 as the logarithm of the sensor value should not scale with s0 ∼ 1∕P4 but rather with s0 ∼ log10(1∕P4).
The parameter 𝜅 ∼ (1) has to be adjusted in order to obtain the desired sharp shock profile.

The added amount of artificial viscosity also depends on some local characteristic velocity 𝜆. Klöckner et al7 started
from investigating the fundamental solution of the diffusion equation 𝜕u∕𝜕t = 𝜀Δu and derived scaling expressions of
𝜀0 ∼ 𝜆 and 𝜀0 ∼ h∕P verifying the result in the work of Barter and Darmofal.6 The Euler equations (1) feature several
characteristic velocities, eg, the supersonic propagation speed of a shock wave or the sonic background propagation veloc-
ity of a contact discontinuity. The question remains which velocity to choose. Klöckner et al7 state that it is reasonable to
take the maximum local characteristic velocity 𝜆max in order to get a running implementation with the price of smooth-
ing weak features, such as contact discontinuities, more than necessary. Klöckner et al7 empirically derived a correction
factor of 0.5 for the compressible Euler equations (1). The formula for the determination of artificial viscosity in a cell i
can now be written as

𝜀i(x⃗, t) = 𝜀′i(x⃗, t) · 0.5 · 𝜆max ·
h
P
. (28)

We tested several boundary conditions for the artificial viscosity flux. Our implementation is based on a standard sym-
metric interior penalty (SIP) formulation, which was first introduced by Arnold45 (for a detailed review, see the subsequent
work46). From a theoretical point of view, the boundary condition for the viscous terms is a delicate issue that affects the
physical as well as the mathematical properties of the governing PDE. As this work is focused on the applicability in the
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IBM, we abstain from going into details. We note, however, that we achieved best results in terms of stability and accuracy
when using zero Neumann boundary conditions, which have thus been applied in the remainder of this work.

There are several publications6,7,20 about the advantages and drawbacks of the original approach,5 each of them having
their own improvements and tunings of the underlying method. We stick to the standard approach except for the modi-
fications presented above. Anyway, we would like to mention that it is essential to enforce C0-continuity for the artificial
viscosity field (27) in order to obtain a robust and reliable method.6,19

First, we define a piecewise linear continuous space

ℚ1(𝒦h) ∶=

{
𝑓 ∈ L2(Ω) ∶ ∀i∈ 𝒦h ∶ 𝑓 |i∩Ω =

∑
0≤k,l≤1

xk𝑦lbkl, bkl ∈ ℝ
}

∩ C0(Ω), (29)

with a maximum polynomial degree of P = 1 (which is different from space (6)). We define the corresponding projection
operator

ΠC0 ∶ L2(Ω) → ℚ1(𝒦 h)
u → uC0 ,

(30)

with the essential property ⟨u − uC0 |v⟩ = 0, ∀v ∈ ℚ1. Finally, we project the cellwise constant artificial viscosity field (28)
onto the space ℚ1

𝜀C0 (x⃗, t) = ΠC0(𝜀(x⃗, t)) , (31)

in order to enforce continuity. The sensor values (22) and the artificial viscosity values (31) are updated in each (local)
time step (cf Section 5). Note that we chose 𝒦h instead of 𝒦 agg

h for technical reasons. Kinks of the artificial viscosity field
at cell boundaries are present on the background grid as well as on the agglomerated grid. After the C0-projection, the
spatial operator is first evaluated on the background grid before starting the cell agglomeration routine. Since the operator
is evaluated on ℙ(𝒦 c

h ) and then projected onto ℙ(𝒦 agg
h ), no, respectively, a little quadrature error is introduced by a kink

in 𝜖C0 on an agglomerated cell.

5 ADAPTIVE LOCAL TIME STEPPING

First, we outline the calculation of the time step restrictions in Section 5.1. Second, we present the strategy of an adaptive
LTS algorithm in Section 5.2, where we focus on the extension to a dynamic reclustering procedure in time in Section 5.3.

5.1 Time step restrictions
For a DG method, the maximum admissible time step size is dictated by the characteristic length scale h and the order of
the approximating polynomial P, eg, as derived by Cockburn and Shu.21,22

Analogous to the early publication by Courant et al47 who first postulated the CFL restriction, a sufficiently accurate
pendant for convection dominated problems was defined by Cockburn and Shu22 in the DG context

Δtc ≤ CCFL

2P + 1
h||u⃗|| + a

, (32)

where 0 < CCFL ≤ 1 is a user-defined scaling factor and ||u⃗||+ a describes the fastest propagation velocity, eg, of a shock,
in the hyperbolic Euler equations (1).

For diffusion dominated problems, Gassner et al23 derived a similar expression

Δtd ≤ CDFL

(2P + 1)2
h2√

d𝜈 max
(

4
3
, 𝛾

Pr

) , (33)

where 0 < CDFL ≤ 1 is another scaling factor and d is the number of spatial dimensions. Appropriate suggestions for the
scaling factors CCFL and CDFL can be found in their work.23
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FIGURE 3 Determination of the cell
local characteristic length scale h on cut
cells according to Krämer-Eis.31 The steady
compressible flow around a cylinder is
investigated, where the maximum stable
time step size is determined empirically
and afterwards compared to theory for
different measure of h

(A) The cylinder is slightly shifted
in order to produce different cut
configurations

(B) Three different measures for

For convection-diffusion problems (cf Equation (5)), we use the harmonic sum

Δt = 1
1
Δtc

+ 1
Δtd

(34)

as a more reliable measure of the maximum admissible time step size than the minimum of the pure convective and
diffusive time step restrictions (32) and (33), see the work of Watkins et al.48

In the past, various authors23,48-50 widely studied the calculation of the maximum stable time step size on structured
and unstructured boundary-fitted grids. In contrast, this topic was hardly addressed for a cut cell grid in the IBM. The
challenging part is the determination of a suitable choice of h on cut cells. Krämer-Eis31 investigated this issue for the
BoSSS IBM solver that has been used for this work. The following three different cell measures:

(i) |c
i |∕ |𝜕c

i |,
(ii) 2e (e being the distance from the barycenter of a cell to the closest edge or interface),

(iii) min(|i,e|) frac(c
i ),

were compared for a steady compressible flow configuration where a cylinder is embedded in a uniform grid, see Figure 3.
In order to quantify the influence of the different measures for different cut configurations, the cylinder was slightly
shifted in horizontal and vertical direction. For all cut scenarios, the maximum stable time step sizes were empirically
determined by numerical simulations. The theoretical time step size was additionally calculated using Equations (32)
and (33). The average percentage deviations from the empirically determined time size were 13.6% (measure (i)), 33.4%
(measure (ii)), and 25.6% (measure (iii)). This indicates that measure (i) is a suitable candidate for the IBM while measures
(ii) and (iii) underestimate the maximum stable time step sizes in cut cells and thus lead to an unnecessarily large amount
of time steps.

We abstain from going into details even further as the presented choice of h is sufficient for the purpose of this work.
Krivodonova and Qin51 showed that there is no generally valid choice of h for all cut scenarios. Moreover, they also state
that the number and position of small cells on a coarse grid with otherwise identical cells significantly influences the
maximum stable time step size.

For the remainder of this work, we choose the cell local characteristic length scale of a cell i as follows:

hi =

{
min(|i,e|), if i is a standard or agglomeration target cell|||c

i
||| ∕ |||𝜕c

i
||| , if i is a nonagglomerated cut cell.

(35)

5.2 Derivation of the basic scheme
Our implementation of an explicit LTS algorithm is based on the approach by Winters and Kopriva.30 Their scheme
is a simplification of the multirate linear multistep method of Gear and Wells52 that was combined with two-rate
Adams-Bashforth schemes, eg, as done by Stock.53 We use a variable coefficient Adams-Bashforth scheme to evolve the
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solution in time (cf Appendix A.1). For the standard static case, Krämer-Eis31 developed a flux correction procedure that
results in a conservative LTS formulation.

We make the following assumptions,30,31 which will be explained in the following.

• The grid cells are grouped into a set of cell clusters ℳ = {1, … ,M}, where i ⊆ 𝒦 agg
h or i ⊆ 𝒦h. The clustering

is based on a cell local characteristic measure. In this work, we use the maximum admissible cell local time step size Δti.
• The cell cluster time levels are synchronized at synchronization levels.
• The time scales of the cell clusters differ only by integer factors.

In the following, we briefly introduce a multirate time integration method for a coupled system of ordinary differential
equations (ODEs) 𝜕𝑦∕𝜕t = F(t, 𝑦), assuming a fast time scale and a slow time scale with superscripts (·)f and (·)s, as done in
previous works.30,52,53 Thus, the state vector and the right-hand side can be divided into slow, fast, and coupled components

𝑦 =
[
𝑦𝑓

𝑦s

]
, (36)

and

F =
[

F𝑓𝑓 F𝑓 s

Fs𝑓 Fss

]
, (37)

where 𝑦𝑓 has to be updated using smaller time steps than 𝑦s, ie,

Δts > Δt𝑓 . (38)

In Equation (37), the main diagonal components Fff and Fss can be calculated immediately as they are on the same time
scales.30 In the DG context, this step corresponds to the evaluation of the volume and surface integrals. The coupled
terms Fsf and Ffs, however, require an inter/extrapolation procedures from slow to fast time scales and vice versa, ie,
the evaluation of surface integrals along between neighboring cells. An interpolation is needed in order to calculate the
coupled component Fsf, whereas an extrapolation is needed for Ffs, which is an inherently unreliable calculation.30 Due
to the weak coupling between DG elements, the extrapolation Ffs can be treated separately, eg, see the work of Winters
and Kopriva30 for details. Therefore, Equation (37) reduces to

F =
[

F𝑓𝑓 0
Fs𝑓 Fss

]
. (39)

In the end, we only need to interpolate the right-hand side values from slow to fast time scales Fsf at intermediate time
levels. In total, less operator evaluations are needed for LTS than for a standard global Adams-Bashforth method, but
additional work has to be done in order to calculate the time interpolants and the coupled terms.30

We use Equation (34) for the determination of the cell local maximum admissible time step Δt̃i for a cell i on the
standard or agglomerated grid (i ∈ 𝒦h or i ∈ 𝒦 agg

h ). In the next step, we use the K-means algorithm54 to cluster
the cells into sets ℳ = {1, … ,M} of similar time step size. These clusters then fulfill the property

mini∈1
Δt̃i

⏟⏞⏟⏞⏟
∶=Δt1

> mini∈2
Δt̃i > · · · > mini∈M

Δt̃i , (40)

where Δt1 is the maximum admissible time step size of the slowest cluster 1 (with the largest time step size). We also
assume that the time scales Δtm between the different clusters only differ by integer factors fm

Δtm = Δt1

𝑓m
, ∀m = 2, … ,M, (41)

with

𝑓m = ceil
⎡⎢⎢⎣ Δt1

mini∈m

Δt̃i

⎤⎥⎥⎦ , 𝑓m ∈ ℕ . (42)
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Equation (41) results in the beneficial fact that all clusters are synchronized at synchronization levels depending on the
integer factor of the smallest cluster fM, ie,

tn+1 = tn + Δt1, n ∈ ℕ . (43)

At the initial synchronization level t0 = 0, Adams-Bashforth methods for an explicit order of Q ≥ 2 are not self-starting
because no time history is yet available. For the start-up phase, we therefore use a global explicit Runge-Kutta scheme of
one order higher than the Adams-Bashforth order in order to guarantee that the temporal error is dominated by the LTS
scheme.30 When the necessary time history is available, we switch back to the Adams-Bashforth scheme.

For a global time stepping method, the cell with the smallest time step size dictates the global time step size. For large
differences in the local time step sizes, the computational costs grow enormously. Obviously, this is the case for an artificial
viscosity–based shock-capturing approach in combination with a cut cell IBM. The reason for that is that the time step size
in nonagglomerated cut cells containing a shock can differ by up to two orders of magnitude from untouched cells in the
bulk flow. This motivates the application of an LTS scheme where the clustering is based on the cell local time step sizes.

5.3 Adaptive reclustering
In unsteady supersonic flows, shocks and other discontinuous phenomena propagate through the computational domain.
Accordingly, in numerics, the troubled grid cells with active artificial viscosity and small time step sizes also change in
time. This makes an adaption of the clustering necessary. A static clustering would miss the basic idea of LTS, namely, a
reasonable update of the cells according to their local time step sizes. Therefore, we introduce a reclustering interval ILTS ∈
ℕ where we rebuild the clustering and copy the time history of all cells when using an Adams-Bashforth scheme of
higher order. The history contains cell local information about the update times, the change rates (the weighted sum in
Equation (A3)), and the DG coordinates.

We outline the procedure for the adaptive LTS algorithm for two time intervals from synchronization levels tn → tn+1

and tn+1 → tn+2 in Figure 4. We set ILTS = 1 and assume a one-dimensional grid with four equidistant cells for the sake of
simplicity. Note that, in the x-t-diagram, the height of the cells refers to the time step size in the specific cluster according
to Equations (41) and (42). Cells with a small height can be interpreted as cells containing a shock (and, thus, artificial
viscosity) and/or being nonagglomerated cut cells.

(A) (B) (C) (D)

(E) (F) (G) (H)

FIGURE 4 Illustration of the adaptive local time stepping procedure as x-t-diagram. We consider two time intervals [tn, tn+1] (first row)
and [tn+1, tn+2] (second row) and denote the clustering with a set of cell clusters ℳ = {1, … ,M}. (A)-(C) and (E)-(G) Filled gray cells are
at intermediate time t∗ and will be updated next. (D) and (H) All cells are at a synchronization level. Additionally, (E) a reclustering is
performed based on the current time step restrictions



GEISENHOFER ET AL. 459

An LTS method relies on an evolve condition that determines if a cell can be evolved in time. We use the evolve condition
as stated by Winters and Kopriva.30 They define an intermediate time t∗ between two synchronization levels tn and tn+1,
ie, t∗ ∈ [tn, tn+1]: “If the local time on cell i is equal to t∗, then the cell is ready to evolve one local time step.”

At the end of this section, we present a pseudocode for a generic implementation between two synchronization
levels tn → tn+1 in Algorithm 1.

6 NUMERICAL RESULTS

In this section, we present numerical results for several (pseudo-)two-dimensional test cases for high Mach number flows
using the supplemented Euler equations (5). We discretize the convective fluxes using the HLLC formulation as presented
by Toro55 and the artificial diffusive fluxes by the SIP formulation as presented by Hartmann and Houston.56 Their for-
mulation contains two parameters, ie, the cell local characteristic length scale hi and the global penalty scaling factor CIP.
We choose hi as stated in Equation (35) in combination with the applied cell agglomeration strategy (cf Section 3) and
CIP = 5.0 to ensure coercivity.37,40 For time integration, we use standard explicit time stepping schemes and the adaptive
LTS algorithm presented in Section 5.

As we focus on the robustness, stability, and applicability of the IBM in combination with a basic shock-capturing
approach and an adaptive LTS scheme, we do not compare our results to the works of other groups in terms of solution
accuracy. The feasibility of the underlying artificial viscosity–based shock-capturing approach5,19 or similar variants has
been successfully demonstrated in the past years by various other works.7,20,57,58 For more details, the interested readers
are referred to, eg, the work of Lv et al20 who presented an extensive study on the performance and accuracy of different
shock sensors including the basic version of Persson and Peraire5 in combination with artificial viscosity.

We selected the numerical test cases according to their increasing complexity and methodology.

(i) Shock-capturing + adaptive LTS: We investigate the Sod shock tube problem in Section 6.1 and a shock-vortex
interaction in Section 6.2. These first test cases verify the successful combination of the present shock-capturing
approach and the adaptive LTS scheme. Additionally, the computational costs are analyzed in terms of savings
through the adaptive LTS scheme.

(ii) IBM + shock-capturing + adaptive LTS: The results of the novel extension to a cut cell IBM featuring a cell agglom-
eration strategy is presented for a Sod shock tube variant with an immersed boundary in Section 6.3 and the double
Mach reflection (DMR) test case in Section 6.4. The results are analyzed in the same manner as for part (i).

6.1 Sod shock tube
This classical test case55 is often considered for the evaluation of a numerical scheme for its ability to capture simple, non-
interacting waves such as rarefaction waves, contact discontinuities, and shock waves. The initial conditions for density,
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FIGURE 5 Sod shock tube
problem. P-refinement study
using the artificial
viscosity–based shock-capturing
mechanism on a grid with
50 × 50 cells and a global
Adams-Bashforth scheme of
order Q = 3 at an end time of
tend = 0.25. Further, comparison
calculations were conducted
using the presented adaptive
local time stepping (ALTS)
scheme of the same temporal
order, an initial number of
clusters of Cinit = 3, and a
reclustering interval of ILTS = 1

(A) Entire domain (B) Zoom-in around the shock wave

(right bottom part of (A))

velocity, and pressure are given as

(𝜌,u1,u2, p)T =

{
(1, 0, 0, 1)T , for x ≤ 0.5 ,
(0.125, 0, 0, 0.1)T for x > 0.5 ,

(44)

on the (pseudo-)two-dimensional domain x ∈ [0, 1] × [0, 1] with a coarse grid consisting of 50 × 50 cells. The initial
discontinuity is located at x = 0.5. The simulation end time is tend = 0.25. Dirichlet boundary conditions are imposed on
the left and right part of the domain while adiabatic slip wall boundary conditions are used on the top and bottom. We
compare our numerical results with the exact solution of the one-dimensional Riemann problem.55 The shock-capturing
parameters were determined by numerical testing. We set S0 = 1.0 · 10−3, 𝜅 = 0.5, and 𝜀0 = 1.0 (cf Section 4).

Figure 5 shows the density profiles for different polynomial degrees. Results are taken at a horizontal line at y = 0.5.
For higher polynomial degrees, the solution converges to the exact solution capturing the position and the shape of the
different types of waves. Note that the shock-capturing parameters were specified once for a single polynomial degree and
were not changed afterwards. This verifies our proposed scaling of the artificial viscosity parameter (28). The P-refinement
study was conducted with a global Adams-Bashforth time stepping scheme of explicit order Q = 3. Moreover, we show
the results for the adaptive LTS algorithm of the same order, where we prescribe the initial number of clusters (Cinit = 3)
and set the reclustering interval to ILTS = 1. The adaptive LTS calculations were conducted for the respective polynomial
degrees matching the version of the global time stepping scheme without a loss of solution accuracy.

An illustration of the temporal evolution is depicted in Figure 6. The top plane shows the density profile colored with
artificial viscosity, the middle plane shows the local time step size, and the bottom plane shows the adaptive LTS clustering.
The snapshots are taken at three different points in time (t ≈ 0.09, t ≈ 0.21, t = 0.25). It is apparent that the artificial
viscosity is localized around the shock wave as it is the strongest discontinuous feature, as seen in Figures 6A and 6B. Thus,
the time step sizes are very small in the vicinity of the shock (cf Equation (33)). The green area in Figure 6B represents
cells whose time step sizes are dictated by the propagation velocity of the different wave types only. The LTS clustering
finally consists of three clusters: the untouched area (blue), the segment that is dominated by the convective time step
restriction only (green), and the segment where artificial viscosity is activated (red). We choose Figure 6C in order to show
that there can be several time steps where artificial viscosity is not active. The solution is sufficiently smooth at these
time steps. This yields a more homogeneous distribution of the local time step sizes, which is why the number of clusters
automatically reduces to two.

We choose the total number of cell updates Ntot as a measure to compare the speedup between a global Adams-Bashforth
scheme (ILTS = 0) and our adaptive LTS approach. This measure is independent of the actual implementation (quality) and
is therefore chosen as a generic benchmark. We investigate the influence of ILTS on Ntot and on the L2-error ||ui − uexact||2
with respect to the exact solution in Figure 7. A saving of 70.2% in terms of total cell updates compared to the global
Adams-Bashforth reference can be observed for ILTS = 1 while maintaining the solution accuracy. Furthermore, the
solution accuracy does not change for all depicted values of ILTS. It is reasonable that the number of cell updates increases
for larger reclustering intervals. This is due to the clustering remaining in a static state for a longer period of time and not
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(1)

(3)

(2)

Density

Artificial
viscosity

Time step
size

LTS
cluster

(A) (B) (C)

FIGURE 6 Sod shock tube problem. Illustration of the adaptive local time stepping (LTS) algorithm using three elevated planes (P = 3,
50 × 50 cells, Q = 3, Cinit = 3, ILTS = 1): (1) density profile colored with artificial viscosity, (2) local time step size, blue/red corresponds to
large/small time step sizes, and (3) cell clustering, blue/red corresponds to small/large values [Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 7 Sod shock tube
problem. Comparison of the
total number of cell updates Ntot

between a global
Adams-Bashforth scheme
chosen as reference (ILTS = 0)
and the adaptive local time
stepping (LTS) algorithm for
several reclustering
intervals ILTS. The
L2-error ||ui − uexact||2 does not
change for larger reclustering
intervals whereas the total
number of cell updates does.
(Other parameters are P = 3,
50 × 50 cells, tend = 0.25, Q = 3,
Cinit = 3)

considering the physical changes in the flow. This forces the time step size of the largest cluster Δt1 to become smaller
than necessary. In practice, the reclustering interval has to be chosen as a compromise between the total number of cell
updates and the computational overhead that is produced by the reclustering procedure itself.

In order to give the readers also a sense for the speedup from a practical point of view, we consider the setting shown
in Table 1. Again, we want to stress that this study is strongly influenced by the implementation quality and the under-
lying setting. Thus, it is not generalizable. We compare the LTS simulation with simulations using a global time stepping
scheme. We did two runs with a standard Adams-Bashforth scheme (Q = 1) and the LTS code with only one cluster. Both
schemes are equal to the explicit Euler scheme in this case. We forced the reclustering in every time step (ILTS = 1) during
the LTS run in order to have a “worst case scenario” in terms of speedup. Moreover, the computational overhead of the
reclustering procedure was measured with around 8% within the LTS run. It can be stated that the maximum speedup
of the adaptive LTS scheme will be between 46.2% and 72.6% for this specific setting. When using other common explicit

http://wileyonlinelibrary.com
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TABLE 1 Sod shock tube problem. Run time cost breakdown and comparison between the adaptive
local time stepping (LTS) scheme and a global Adams-Bashforth time stepping scheme (GTS). The speedup
is listed in terms of run time and the total number of cell updates Ntot. (Other parameters are P = 2, 50 × 50
cells, tend = 5 · 10−3, Q = 3, Cinit = 3, ILTS = 1 (forced), single core)

Time stepping scheme Run time in s Fraction (run time) Ntot Fraction (Ntot)
GTS 10.4 s 100% 212500 100%

GTS with LTS code 12.1 s −16.3% 212500 100%
LTS 5.6 s 46.2% 58200 72.6%

time integrations schemes like Runge-Kutta schemata, the results will be different. We abstain from going into the details
because this issue is beyond the scope of this work.

6.2 Shock-vortex interaction
Another two-dimensional test case for compressible flows is the interaction of a vortex with a stationary shock wave. A
detailed description of the test case can be found, eg, in the works of Dumbser et al11 and Rault et al59 and the HiOCFD5
workshop†. This test case consists of a complex flow interaction featuring smooth weak and strong discontinuous
phenomena and is a challenging test case for higher-order numerical schemes.

The computational domain is set to Ω = [0, 2] × [0, 1]. A stationary normal shock wave with a Mach number of Ms
is located at x = 0.5. A typical range for the shock Mach number is Ms ∈ [1.1, 2]. The values for density, velocity, and
pressure in the pre-shock region on the left are given as

(𝜌l,u1,l,u2,l, pl)T =
(

1,
√

𝛾
pl

𝜌l
Ms, 0, 1

)T

, (45)

with a heat capacity ratio of 𝛾 = 1.4. The quantities in the post-shock region on the right can be calculated using the
normal shock wave relations60(p86-90)

𝜌r =
(𝛾 + 1)M2

s

2 + (𝛾 − 1)M2
s

𝜌l, (46)

u1,r =
2 + (𝛾 − 1)M2

s

(𝛾 + 1)M2
s

ul, (47)

u2,r = 0, (48)

pr =
(

1 + 2𝛾
𝛾 + 1

(
M2

s − 1
))

pl. (49)

Additionally, a moving vortex with an angular velocity profile of

vΦ(r) =
⎧⎪⎨⎪⎩

vm
r
a

for r ≤ a,
vm

a
a2−b2

(
r − b2

r

)
for a ≤ r ≤ b ,

0 otherwise ,

(50)

with r =
√
(x − xc)2 + (𝑦 − 𝑦c)2, is superimposed onto the initial conditions. The initial center of the vortex is located at

(x0, y0) = (0.25, 0.5). The initial temperature distribution of the vortex can be obtained by solving the following ODE

dT
dr

= 𝛾 − 1
R𝛾

v2
Φ(r)
r

. (51)

†https://how5.cenaero.be/content/ci2-%E2%80%93-inviscid-strong-vortex-shock-wave-interaction (02/13/2019).

https://how5.cenaero.be/content/ci2-%E2%80%93-inviscid-strong-vortex-shock-wave-interaction


GEISENHOFER ET AL. 463

This is done by performing a simple integration with respect to r on Equation (51)

T(r) = 𝛾 − 1
R𝛾

⎧⎪⎪⎨⎪⎪⎩
T(a) − 𝛾−1

R𝛾
v2

m
2

(
1 − r2

a2

)
for r ≤ a

T(b) − 𝛾−1
R𝛾

(
vma

a2−b2

)2 (
− r2

2
+ 2b2 ln(r) + b4

2r2 − 2b2 ln(b)
)

for a ≤ r ≤ b

0 otherwise ,

(52)

where the integration constants are obtained by T(b) = Tl for a ≤ r ≤ b and T(a) = T(a)a≤ r≤ b for r ≤ a. In a next step,
the density and pressure distributions are calculated using the expressions

𝜌 = 𝜌0

(
T
T0

) 1
𝛾−1

, (53)

p = p0

(
T
T0

) 𝛾

𝛾−1

. (54)
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FIGURE 8 Shock-vortex interaction. The results have been calculated for a configuration with a vortex Mach number of MV = 0.9 and a
shock Mach number of MS = 1.5. We show the Schlieren distribution calculated by ln(1 + ||∇𝜌||)∕ ln(10) (first row), the artificial viscosity
distribution (second row), the time step size (third row), and the local time stepping (LTS) clustering (last row) using the presented adaptive
LTS scheme for the points in time t = 0.16 (left column) and t = 0.7 (right column). (Other parameters are Q = 3, ILTS = 1, Cinit = 3, P = 3,
600 × 300 cells) [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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FIGURE 9 Shock-vortex
interaction. We show the density
distribution along two vertical
lines for a polynomial degree of
P = 3 at t = 0.7. Line (A) is
placed directly behind the shock
in the post-shock region. Line
(B) goes through the vortex
structure. Calculations were
conducted using the adaptive
local time stepping scheme and
their global version for a
comparison. (Other parameters
are Q = 3, ILTS = 1, Cinit = 3,
600 × 300 cells)
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The reference values are based on the undisturbed flow values upstream the shock wave, yielding p0 = R𝜌0T0, where the
gas constant R is set to 1 for the sake of simplicity. Typically, the strength of the vortex is varied by its Mach number MV =
vm∕c0, where c0 =

√
𝛾p0∕𝜌0 represents the speed of sound upstream on the left side of the shock. We set the parameters

to 𝛾 = 1.4, a = 0.075, b = 0.175, MS = 1.5, MV = 0.9. 𝜌0 = 𝜌l = 1 and p0 = pl = 1 are given by the undisturbed upstream
conditions. A typical range for the simulation end time is tend = [0.7, 0.8].

The results are reported in Figure 8. We show the pressure and artificial viscosity distribution for two different times t =
0.2 and t = 0.7 (first and second columns). Additionally, we present the time step size (third row) and the respective
LTS clustering (last row) for a simulation with a polynomial degree of P = 3. Further simulation parameters are listed
in the caption of Figure 8. At t = 0.2, the shock is distorted by the moving vortex. The distortion of the shocks strongly
depends on the strength of the vortex compared to the shock.61 Furthermore, the interaction between the vortex and the
shock produces sound waves that propagate downstream. The initial configuration creates a right running shock wave
that is similar to the numerical artifacts encountered in the DMR test case.62 The vortex breaks up into two parts with the
chosen parameters. The vast majority of artificial viscosity is added around the shock, which results in an almost static
LTS clustering except for the outliers caused by the generated sound waves.

For a quantitative assessment of the solution accuracy, we show the density distribution along the vertical lines x =
0.52 + 𝜀 and x = 1.05 + 𝜀 in Figure 9 (𝜀 = 1.0 · 10−4). The reference values were extracted from plots of the HiOCFD5
workshop. Our results are in very good accordance with the reference. Moreover, a reference simulation was conducted
for a global Adams-Bashforth scheme (Q = 3), which needed a total number of Ntot ≈ 31861 · 106 cell updates. The
adaptive LTS simulation only performed Ntot ≈ 9821 · 106 updates, which results in an approximate saving of 69%.

6.3 Sod shock tube for immersed boundaries
We reuse the Sod shock tube problem (cf Section 6.1) in order to show the viability of our novel combination between

(i) a cut cell IBM that uses a cell agglomeration procedure (cf Section 3),
(ii) an extended shock-capturing scheme (cf Section 4), and

(iii) an adaptive LTS scheme (cf Section 5).

We set the level set function to

𝜑(x⃗) = −(x2 − tan(𝜋∕6)(x1 − 0.2))(x2 − (tan(𝜋∕6)x1 + 0.2)) . (55)

In combination with a grid consisting of 75× 55 cells and a computational domain of [0.0, 1.5] × [0.0, 1.1], the interface 
cuts the grid as depicted in Figure 10. We choose an agglomeration threshold of 𝛿 = 0.3, such that small cut cells are
agglomerated to their largest neighbors in the fluid part of the domain due to the definition of the level set function (55).
The shock sensor values are calculated using Equation (22).

In Section 6.3.1, we briefly evaluate the performance of the sensor on a agglomerated cut cell grid in order to verify its
extension to the IBM. Afterwards, we present the speedup obtained by the adaptive LTS scheme in Section 6.3.2 as done
in the previous test cases.
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FIGURE 10 Sod shock tube for an
immersed boundary method. A Cartesian
grid with 75 × 55 cells is used, where the
fluid part of the computational domain is
cut out by the zero isocontour of the level
set function. The initial density distribution
is shown, cf Equation (44). The cut cells
have a very small fluid fraction and, thus,
are agglomerated to their largest (fluid)
neighbor cell. The fluid part of the domain
is denoted with , the interface with , and
the void part with  [Colour figure can be
viewed at wileyonlinelibrary.com]

0.9 0.925 0.95 0.975 1
0.1

0.15

0.2

0.25

D
en

si
ty

Exact
h = 1⁄50
h = 1⁄100
h = 1⁄200

(A) h-refinement study for = 3

0.9 0.925 0.95 0.975 1
0.1

0.15

0.2

0.25

Exact
= 2
= 3
= 4

(B) -refinement study for 75 × 55 cells

FIGURE 11 Sod shock tube
problem for an IBM. h- and
P-refinement study verifying the
applicability of the presented
modal-decay sensor (25) on an
agglomerated cut cell grid. The
1∕P4-scaling of the critical sensor
value S0 that activates artificial
viscosity and the h∕P-scaling of
the artificial viscosity
determination formula (28) work
as expected. The plots show the
density distributions for
tend = 0.25. Moreover, the
adaptive local time stepping
scheme is applied (Q = 3,
ILTS = 1, Cinit = 2)

6.3.1 Sensor performance on cut cells
In order to verify the main scaling properties of the presented sensor and also its applicability on an agglomerated cut cell
grid (cf Section 4.1), we performed an h- and P-refinement study. Figure 11 shows the density distribution at a zoom-in
around the shock wave for an end time of tend = 0.25. In both refinement studies, the density curves approach the exact
solution for an increasing h∕P-resolution. When keeping h fixed and increasing P even more, the shock can be resolved
in one single cell (subcell resolution).

These investigations confirm that the proposed 1∕P4-scaling of the critical sensor value S0 that activates artificial
viscosity and the artificial viscosity determination formula (28) are also valid in the IBM.

6.3.2 Speedup on cut cells
We compare again the accuracy of our adaptive LTS scheme to a reference simulation that uses a global time stepping
scheme and also to the exact solution55 in Figure 12. The results have been obtained for the following setting: P = 3,
Q = 3, ILTS = 1, and Cinit = 2. We reuse the shock-capturing parameters stated in Section 6.1 without any modifications,
which clearly indicates the robustness of the proposed approaches in combination with the IBM. The adaptive LTS scheme
performs well, also in the context of an IBM with active cell agglomeration, resulting in a saving of ≈ 63.0% in terms of
total cell updates for different reclustering intervals. In contrast to the results shown in Figure 7, the speedup remains
almost the same. This fact strongly depends on the LTS clustering that is dominated by the small nonagglomerated cut
cells in IBM simulations. Here, the clustering only consists of two clusters, whereas it consists of three clusters in the
boundary-fitted case. The number of substeps between the different LTS clusters can vary up to two orders of magnitude
in IBM simulations. We did not experience any problems with caused by this issue during our numerical experiments. The

http://wileyonlinelibrary.com
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FIGURE 12 Sod shock tube
problem for an immersed
boundary method. The grid is
defined as shown in Figure 10.
We compare the adaptive local
time stepping scheme (Q = 3,
ILTS = 1, Cinit = 2) with a global
time stepping scheme as
reference (ILTS = 0) for a
polynomial degree of P = 3.
Moreover, we list the speedup in
terms of the total number of cell
updates Ntot for several
reclustering intervals ILTS

TABLE 2 Sod shock tube problem for an IBM. We list the speedup in terms of the total number of
cell updates Ntot for a reclustering interval of ILTS = 1 for several polynomial degrees P. We compare the
adaptive LTS scheme (Q = 3, Cinit = 2) with a global time stepping scheme of the same temporal order
for every single polynomial degree

P ILTS Ntot Ref. Speedup
2 1 63935248 171615808 62.7%
3 1 114520668 309109936 63.0%
4 1 230659014 640100976 64.0%

underlying K-means clustering algorithm54 could be tuned in a way that it produces a clustering with a different number
of clusters which could be more suitable for a higher speedup. We abstained from doing additional studies because we
focus on the applicability of the method itself.

Moreover, we list the speedup for the P-refinement study that has been reported in Section 6.3.1 in Table 2. Again,
the speedup is calculated with respect to a reference simulation with a global Adams-Bashforth scheme of the same
temporal order (Q = 3). The results indicate that higher savings in terms of the total number of cell updates can be
obtained for higher polynomial degrees when using the adaptive LTS scheme. The reason for this is the diffusive time
step restriction (33) that scales with (1∕P2) while keeping h fixed. This effect strongly depends on the topology of the
test case and, thus, on the LTS clustering. This effect is only slightly present for this specific test case.

6.4 Double Mach reflection
As a final test case, we investigate the complex two-dimensional DMR that was first proposed by Woodward and Colella.62

This self-similar flow configuration contains several challenging features like two moving triple points and complicated
shock reflections and interactions. The setting is based on a shock wave with a Mach number of MS = 10 hitting a reflecting
wall, which is inclined at an angle of 30◦. Experimentally, the DMR can be set up by creating a supersonic flow that hits a
ramp or a wedge. We consider an ideal gas with a heat capacity ratio of 𝛾 = 1.4. The right side of the incident shock is set
to be at rest, while on the left side, the corresponding post-shock conditions are prescribed satisfying the normal shock
wave relations60(p86-90)

(𝜌,u1,u2, p)T =

{
(8, 8.25, 0, 116.5)T for x < 0.16,
(1, 0, 0, 1)T for x ≥ 0.16 .

(56)

The computational domain is chosen asΩ = [0, 3]×[0, 2] together with a grid consisting of 300×200 cells for the IBM case.
We assign supersonic boundary conditions to the inlet, the bottom boundary (x < 0.16), the top boundary, and the outlet.
Additionally, we prescribe the exact movement of the incident shock wave at the top boundary. For x ≥ 0.16, we apply an
adiabatic slip wall boundary condition along the ramp. If the position where the initial conditions change (x = 0.16) is not
exactly located on a cell boundary, we apply a smoothing over several cells in order not to introduce additional oscillations
by the initial projection. We choose an agglomeration threshold of 𝛿 = 0.3 in order to agglomerate small cut cells to their
nearest fluid neighbor cells. The sensor value that is responsible for activating artificial viscosity is set to S0 = 1.0 · 10−4.
Severe oscillations can occur due to the abrupt, unphysical change of the boundary conditions at x = 0.16. While these
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FIGURE 13 Double Mach reflection using an immersed boundary method (IBM). The results were obtained for a polynomial degree of
P = 3 using the presented IBM with a cell agglomeration threshold of 𝛿 = 0.3. We show the density distribution with 20 equally distributed
contour lines, the artificial viscosity distribution, the time step size, and the local time stepping (LTS) clustering using the adaptive LTS
scheme for t = 0.2. (Other parameters are Q = 3, ILTS = 1, Cinit = 2, 300 × 200 cells) [Colour figure can be viewed at wileyonlinelibrary.com]

can be damped via an excessive amount of artificial viscosity, we choose to fix the characteristic velocity (𝜆max = 25) in
order to guarantee a sufficient smoothing during the development phase of the self-similar structure.

The results for the IBM case are depicted in Figure 13. The density and artificial viscosity distribution is being shown
again with the corresponding time stepping information for a polynomial degree of P = 3. We choose another color scale
for some plots for a better visibility. Please note that the thin vertical stripes, eg, visible at x ≈ 0.9 and x ≈ 1.8, are numerical
artifacts caused by the initial condition and the top boundary condition, respectively.62 The top boundary condition is
dynamically adapted with the exact shock velocity. Additionally, we apply a smoothing over several cells as done for
the initial condition. Most troubled cells are located around the incident shock wave, the reflected shock waves, and the
Mach stem that emanates from the first triple point. The most challenging part is the wall jet at the bottom right part
and the Kelvin-Helmholtz instabilities along the first slip line. In order to resolve these flow phenomena, adjustments of
the underlying shock-capturing scheme are necessary, eg, by a dynamic threshold setting20 or an appropriate a posteriori
limiting,11 when not willing to increase the resolution to a maximum. We would like to note that we could resolve the
instabilities with our basic shock-capturing approach for a finer resolution or a larger end time that has the same effect
due to the self-similarity of the flow structure (results are not shown here).
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FIGURE 14 Double Mach
reflection. Comparison between
the immersed boundary method
(IBM) simulation (left, cf
Figure 13) and a boundary-fitted
simulation (right) using a global
Adams-Bashforth time stepping
scheme of order Q = 3 for a
polynomial degree of P = 3.
Right: the domain size is
[0, 4] × [0, 1] with 300 × 75 cells
(a zoom-in is plotted). Other
parameters are chosen as for the
IBM test case [Colour figure can
be viewed at
wileyonlinelibrary.com]
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Especially, in this IBM test case with a very strong incident shock wave, the adaptive LTS scheme together with the
presented cell agglomeration strategy shows its potential compared to a global time stepping method. This is due to the
fact that the time step sizes in nonagglomerated cut cells with activated artificial viscosity can differ up to two orders
of magnitude compared to nontroubled standard cells. Suitable parallelization techniques in combination with the LTS
strategy start to play an important role for these large test cases. A detailed assessment of the computational time is
therefore not presented for this test case as it is beyond the scope of this work. The reader is referred to the previous
sections for a basic analysis of the computational costs.

For a comparison of the solution accuracy, we additionally present the results for a global Adams-Bashforth time step-
ping scheme on a boundary-fitted mesh in Figure 14. We chose a comparable spatial resolution to the IBM setting. The
results are in very good agreement, eg, when considering the position of the triple points or the shape of the wall-near
jet. It can be stated that the combination of the IBM, the adaptive LTS method, and the basic shock-capturing approach
maintains the accuracy of the numerical solution. See Section 6.3 for a more detailed analysis and a proof of concept of
the presented combination of methods.

7 CONCLUSION

In this work, we have presented a novel efficient combination in the context of a cut cell DG IBM for high Mach number
flows consisting of an artificial viscosity–based shock-capturing mechanism and an adaptive explicit LTS scheme. Our
approach also makes use of a nonintrusive cell agglomeration strategy that avoids problems with small or ill-shaped cut
cells.

Nonagglomerated cut cells with activated artificial viscosity represent a worst-case scenario in terms of the maximum
admissible time step size because the time step size of these cells can differ up to two orders of magnitude compared to
standard cells. Both, the adaptive LTS scheme and the cell agglomeration strategy, significantly decrease the otherwise
immense computational costs while not introducing additional spatial or temporal errors.

The performance of our approach was validated in three common two-dimensional test cases in terms of robust-
ness, stability, and accuracy. For example, we compared our numerical results with the exact solution of the
(pseudo-)two-dimensional Sod shock tube problem for several polynomial degrees P ≥ 2 in a boundary-fitted and an
immersed boundary configuration. In both cases, the same error levels were obtained as for a global time stepping scheme
while saving up to 60% to 80% in terms of total cell updates depending on the adaptive LTS reclustering interval. More-
over, we presented numerical results for complex two-dimensional test cases, such as for the shock-vortex interaction and
the DMR test case, which showed the geometrical flexibility of the presented cut cell IBM.

We applied the basic version of the shock-capturing approach presented by Persson and Peraire5,19 without major mod-
ifications except for the calculation of the actual viscosity used.7,18 Before that, the artificial viscosity field had been
projected on a C0-continuous field.

Our future work will be focused on the parallel performance by means of implementing an effective dynamic load
balancing strategy. For test cases in the context of compressible flows, expensive cells are typically the ones containing
shocks. We conducted first numerical experiments63 where we used space-filling Hilbert curves64 together with suitable
cell cost estimators in order to partition the grid. It is clear that troubled cells with artificial viscosity and also small
nonagglomerated cut cells dictate the maximum admissible time step size and therefore the computational costs. These
expensive cells typically occur very locally at some parts in the computational domain. Consequently, possible cell cost
estimators should consist of multiple balance constraints and could be based on the artificial viscosity values or the LTS
clusters. The implementation of the LTS cell update strategy (cf Figure 4) also begins to play an important role as soon as
LTS clusters are distributed among several processors.
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APPENDIX A

TIME INTEGRATION

A.1 A variable coefficient Adams-Bashforth time integration scheme
In this section, we briefly present a variable coefficient Adams-Bashforth time integration scheme.31 Since the LTS clus-
tering is dynamically adapted in time (cf Section 5.3), we need a variable coefficient implementation that has also been
used, eg, for simulations on moving meshes.30

We start from the definition of a general ODE system

d𝑦
dt

= 𝑓 (𝑦, t) , (A1)

which we integrate in time from tn to tn+1

𝑦n+1 = 𝑦n +

tn+1

∫
tn

𝑓 (𝑦, t)dt, (A2)

with 𝑦n = 𝑦(tn). The integrand in Equation (A2) is replaced by the weighted sum of current and previous flux
evaluations 𝑓n−q with some coefficients 𝛽q

𝑦n+1 = 𝑦n +
Q−1∑
q=0

𝛽q𝑓n−q . (A3)

We determine the coefficients 𝛽q by means of the Lagrange formula

𝛽q(t) =

tn+1

∫
tn

lq(s)ds , where lq(t) =
Q−1∏
i=0
i≠q

t − tn−1

tn−q − tn−i
. (A4)

As an example, we expand the weighted sum in Equation (A3) for an order of Q = 2

1∑
q=0

𝛽q(t)𝑓n−q =

tn+1

∫
tn

s − tn−1

Δtn
ds𝑓n +

tn+1

∫
tn

s − tn

−Δtn
ds𝑓n−1 , (A5)
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with Δtn = tn − tn−1. We introduce the substitution u = (tn+1 − s)∕Δtn+1 to solve for the integrals in Equation (A5) (not
shown), which yields

𝛽0 = Δtn+1

2

(
Δtn+1

Δtn
+ 2

)
, 𝛽1 = −Δtn+1

2

(
Δtn+1

Δtn

)
. (A6)

The final form reads

𝑦n+1 = 𝑦n +
(
𝛽0𝑓n + 𝛽1𝑓n−1

)
. (A7)
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