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Abstract: We considered pattern formation, i.e. viscous fingering, in the ink splitting process between
an elastic flexographic printing plate and the substrate. We observed an unexpected scaling behavior
of the emerging pattern length scale (i.e., finger width) as a function of printing velocity, fluid viscosity,
surface tension, and plate elasticity coefficients. Scaling exponents depended on the ratio of the
capillary number of the fluid flow, and the elastocapillary number defined by plate elasticity and
surface tension. The exponents significantly differed from rigid printing plates, which depend on the
capillary number only. A dynamic model is proposed to predict the scaling exponents. The results
indicate that flexo printing corresponded to a self-regulating dynamical equilibrium of viscous,
capillary, and elastic forces. We argue that these forces stabilize the process conditions in a flexo
printing unit over a wide range of printing velocities, ink viscosities, and mechanical process settings.

Keywords: pattern formation; ink splitting; scaling laws; elastocapillarity; viscous fingering;
flexography; Saffman-Taylor instability

1. Introduction

Printing is the technology of fast manufacturing and structuring of solid surfaces by wetting with
printing liquids or inks. It serves the reproduction of visual information, of text, images, or patterns
for any other technical purpose. Structuring means that the border line between the inked areas and
the non-inked parts of the printing substrate is well-defined and reproducible on length scales down
to few d ∼ 10 µm. As this structuring proceeds with velocities v of several, sometimes up to 15 m/s,
the relevant wetting and fluid dynamics takes place on a time scale of ∆t ∼ d/v ∼ 1 . . . 10 µs. Our aim
here was to understand the delicate force equilibrium in the nip of a printing press by which the
printer keeps the printing process under control. In daily practice, printing is handled on the industrial
scale with great precision. Nevertheless, a precise understanding of the physics at the interfaces
which are in contact in the printing nip is still lacking. Recent results on interface science, on wetting
and liquid bridge dynamics, together with a new generation of digitally controlled high-precision
printing technology have created the opportunity to bring these two fields together, and to obtain a
new, scientifically rigorous view on an industrial process that has grown from, and is still coined by a
long empirical tradition.

We wanted to demonstrate that the printing process, specifically flexography, can be viewed
as a non-linear self-regulating dynamical system. The specific feature of flexography is the use of
flexible, mostly photopolymeric printing plates, and the peculiar feature is that the static impression
force on the printing substrate is kept small, in contrast to printing technologies as offset lithography
and gravure printing. Typical applications come from packaging industry: printing on corrugated
cardboard, recycled paper, or styrofoam. Enormous quantities of food packages and packaging foils
receive their full-color branding and design by this technique every day, frequently using cost efficient
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and sustainable water-based inks. Not only the low-cost applications, but also highly specific energy
and communication technologies define benchmarks for the development of flexography: printing
conductive current-collecting grids on brittle silicon solar cells, or on transparent front electrodes for
displays (see, e.g., [1]).

Despite the small static pressure between printing plate and substrate, the elastic deformation
of printing plate or substrate cannot be neglected compared to the viscous and capillary force in the
nip, and are in a delicate equilibrium. The dynamics of ink transport, the wetting of the substrate, and
elastic response of the printing plate can be assigned to a specific fixed point in printing parameter
space. Mechanical and hydrodynamical conditions in the printing nip are thus stabilized even though
the transferred ink quantities and the reproduced patterns are continuously varying. However, this
fixed point is not entirely stable. It is unstable with respect to specific perturbations which are known
as the finger instability, and which the printer calls the ribbing defect. The point of view of dynamical
fixed point theory is not new, but has been elaborated by Casademunt [2]. It defines the onset of a
pattern formation phenomenon which, in the mature phase, can be recognized as a branched stochastic
network of surface undulations on a thin printed layer. We would also like to convince the reader
that this type of pattern formation, although not desired in printing practice, can be a valuable tool to
examine the physics in the nip of a fast printing process, which is very hard to access by other means.

The finger instability was first demonstrated by Saffman and Taylor [3], who supplanted the water
contained in a shallow Hele–Shaw cell of height h by inflating air on one side of the cell. In contrast to
the expectation that the retracting meniscus between air and water would be kept straight by surface
tension, air fingers protruded into the liquid volume, with a characteristic size of

λ ∼ h Ca−1/2 (1)

where Ca = ηv/σ ∼ 10−3 . . . 1 is the capillary number, v the meniscus velocity, η and σ the viscosity
and the surface tension of the liquid. A straight meniscus only forms in the static limit, or at very
small retraction velocities. The Saffman–Taylor experiment is also a common model explaining pattern
formation at the meniscus in an ink splitting process in a fast gravure or flexographic printing press.
Typically, the scales are somewhat different here, as h is of order of few µm, and Ca ∼ 0.001 . . . 1.
Even at Ca ∼ 1 one finds that λ� h which is due to the peculiar cylindric geometry of the printing
nip (see Figure 1).
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Figure 1. Viscous fingering instability in the printing nip creates ribbing defect on the printed sample.
The cylinder revolution and substrate velocity v affects the dominant pattern wavelength λ.

Not only for printing, but also for other applications, the finger instability is of broad interest, as
pointed out by Saffman and Taylor [3]: exploitation of mineral oil sources by inflating a thin fluid into
a subterestrial deposit of highly viscous raw oil is challenged by such finger formation as discussed by
Brailovsky et al. [4]. For an overview of this phenomenon and its relation to other pattern formation
effects, we refer the reader to the review of Sahimi [5]. Drying of porous media from imbibed liquids
by inflating air will fail for the same reason (see Wooding and Morel-Seytoux [6], and Chen et al. [7]).

Lifting off the printing form from the printing substrate air fingers penetrate in the wedge
between the surfaces along the whole liquid meniscus. The liquid ink bridges between these air fingers
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form the origin of the ribbing pattern, with a dominant pattern wavelength λ. The liquid bridges
are expanded between the rotating cylinder and substrate, and finally break down. They leave the
more or less pronounced parallel ink stripes oriented in printing direction, as shown in Figure 1.
Kitsomboonloha et al. [8], and Bornemann et al. [9] studied the velocity scaling of the finger instability
in a gravure printing process. They used a rigid cylinder with a fine regular raster of period β of
gravure cells laden with printing liquid. The liquid drops from the cells were deposited on the substrate
and partially spreading. As soon as spreading liquid created a closed liquid meniscus in the nip, with
height D0, the finger instability was observed, and the fingering wavelength scaled as λ ∼ D0 Ca−1/2.
This was independent of the raster period β of the gravure pattern, at least when λ� β, and scaled
with v in the same way as observed in the experiment of Saffman and Taylor. This is remarkable as the
boundary conditions of the flows are quite distinct.

In a different setup, Voss [10] studied the ink splitting in the contact zone of rotating elastic and
rigid cylinders. The cylinders were pressed together with significant force such that an indentation
was formed in the surface of the elastic cylinder. The ink splitting flow was located in the wedge at the
contact line between the cylinder surfaces. The opening angle of this wedge is finite, and determined
by the cylinder radii and the indentation depth of the rigid cylinder in the soft one. Even though the
boundary conditions were completely distinct from those of the Hele–Shaw and the gravure cylinder
geometries, the same scaling law of the dominant pattern wavelength was found.

Printing inks, however, are typically non-Newtonian liquids characterized by finite yield stress
and shear thinning behavior. Lindner et al. [11,12] studied the consequences for the fingering
phenomenon. It became evident that pattern formation was modified in many respects, but also
that important aspects of scaling survived. In our study, relatively thin flexographic inks were used,
and partially diluted. In addition, gravure experiments have shown that non-Newtonian effects on
scaling are less pronounced.

In printing technology, scaling behavior is important process information since contemporary
machine design is no longer restricted to a narrow process window. With the introduction of digital
drive control, inline inspection, and web surveillance technology flexographic presses can be operated
in a wide range of velocities from 10 to 800 m/min, in some cases. Scaling observations from Hele–Shaw
and rigid-cylinder geometries are puzzling here and do not meet with practical observation. If the
v−1/2 scaling were true, the finger distance in the ribbing pattern of full-area flexographic printouts
should shrink by a factor of 3 when printing speed is raised from, e.g., 20 to 180 m/min. Although the
skilled printer knows that indeed finger distance and visibility of the ribbing pattern can be reduced
by speeding up the machine, the observed effect is much more humble. This also applies for other
ink-related imperfections in the reproduction as, e.g., the “outline” effect, the ink agglomeration at the
rim of a printed subject. In view of the considerable viscous forces that necessarily evolve in the such
fast ink-splitting processes, one may suspect that this discrepancy could be related to the finite elasticity
of printing plate and substrate. Another clue concerns the capillary forces in the nip. Differently
from the cuvette experiment of Saffman and Taylor where the height of the cuvette was macroscopic,
the thickness of a liquid film in the printing nip is of order of 1 µm. Accordingly, the capillary pressure
behind the ink meniscus is larger by orders of magnitude than in the cuvette experiment, and could
significantly contribute to the deformation of the printing plate on the µm-scale.

For this reason, we performed a series of flexographic printing experiments, using soft printing
plates, and unstructured plain-area printing layouts. Our aim was to verify the validity of scaling
arguments on pattern formation in the ink splitting process, and, if successful, to determine the
relevant scaling exponents relating finger width, printing velocity, fluid viscosity and surface tension,
and printing plate elasticity coefficients.

The interactions of viscous, elastic, and capillary forces have been well-studied in different
geometries in the past two decades. Bico et al. [13], and Roman and Bico [14] considered the contact
adhesion between hair that appears in the presence of water. The analogous case of attractive force
between two elastic sheets was considered by Kim and Mahadevan [15].
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It is physically reasonable to believe that an algebraic scaling of pattern length scales as a function
of these parameters could apply, as long as no system-immanent length scale comparable to the
expected pattern wavelength λ is introduced in the relevant range of few 100 µm. It is larger by orders
of magnitude than the microscopic scale of surface roughnesses, but smaller than printing width and
cylinder diameters by a comparable ratio.

Sauer et al. [16] proposed a model combining lubrication theory and sheet elasticity to explain
ink splitting phenomena on soft rotating printing cylinders. Based on perturbation theory scaling
exponents were predicted which are in tentative agreement with some observations. Relations between
the various exponents have been identified as well. It has been difficult, however, to extract substantial
data from existing studies. Moreover, the nature of the elastic response of flexographic printing plates
was not addressed. Compressible and incompressible materials are in use, and it is not obvious
whether their interactions with a liquid film under intense shear and high pressure are comparable.

The paper proceeds as follows. In Section 2, we briefly outline the arguments of the model
from [16] leading to the estimates on scaling exponents. In Section 3, the experimental setup is
described. We also present our procedure to characterize the elasticity of the flexographic plates,
and viscosity and surface tension of our printing liquids. For evaluation of the pattern formation,
the printed samples were digitalized, and evaluated using concepts of FFT-based spectral analysis.
This is shown in Section 4. The results are discussed in Section 5, considering the scaling concept
and the predictions from the theory section. Additional information on the experiment is given in
Appendix A.

2. Theory

We briefly summarize the principal design of a flexograpic printing unit, and the essential points
in [16] on the fluid dynamics therein. The schematics of a flexographic printing unit is shown in
Figure 2. Ink is supplied to the printing plate by the anilox roller. This is a metal or ceramic cylinder
with a fine gravure raster on its surface. The gravure transfers ink from the reservoir to the printing
plate. The components we focused on are the printing cylinder, carrying the printing plate or sleeve,
and the impression roller, which conducts the paper web through the unit. Consider the printing
cylinder, with radius r1, and the impression roller with radius r2 which supports the web. They are
rotating with the same circumferential velocity v and are in mutual contact along the nip line, which is
indicated as N.

Figure 2. Principal design of a flexographic printing unit. A, B, incoming and outgoing ink meniscus;
N, printing nip; D0, meniscus height; `, width of the wetted zone.
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When one places a drop of liquid in the nip, it will fill the narrow wedges between the menisci A
and B in front of and behind N. This is due to the capillary forces. The liquid will fill a zone of width `

between the cylinders. Provided that the wetting contact angles are finite, that contact angle hysteresis
is absent, and that viscous friction is negligible (i.e., capillary number Ca � 1 is small), the liquid
volume will almost preserve its shape under rotation. The length ` of the wetted zone remains constant
as the velocity v is raised. The height D0 of the two menisci at points A and B is given by

D0 =
`2

8 rn
(2)

where r−1
n = r−1

1 + r−1
2 is the sum of the cylinder curvatures. Note that this is true for rigid cylinders.

If the surfaces are elastic, hydrodynamical forces will cause deformation of the cylinder surface in the
wetted area. The shape of the liquid volume is then depending on v as well.

Even though the lifting velocities of the co-rotating cylinder surfaces are smaller than v by a ratio
of (D0/rn)2 � 1, the relative velocities in the fluid flow profile are still of order of v. Liquid is dragged
with the two moving surfaces, but has to reflow in opposite direction with almost the same velocity.
This implies a significant shear of the liquid of order of γ̇ ∼ 2v/D0. The fluid flow is reversed in the
nip and at the stagnation points A and B. The outer shape of the fluid volume remains stationary.
Gaskell et al. [17] demonstrated such flows by particle tracking in a gravure coater. In a liquid of finite
viscosity η, this implies the presence of a pressure gradient. According to Darcy’s law, the pressure

gradient in the nip is related to this flow by ~v = − D2
0

16 η
~∇p. Neglecting capillary pressure at the two

menisci, we can estimate the pressure gradient as |~∇p| ≈ 2p0/` where p0 is the amplitude of the
pressure distribution in the liquid volume. One thus obtains

v ∼
D2

0 p0

8 η `
(3)

For elastic, i.e., linearly compressible surfaces, and under the condition that the mechanical stress
in the wetted zone disappears when the fluid volume and pressure p vanish, the average film thickness
D̄ in the wetted zone and the pressure p are linearly related by some constant κ, and of order of the
meniscus height D0:

D0 ≈ D̄ = κ p0 (4)

The gap widening coefficient κ depends on the elastic properties of the surfaces. Eliminating D0

and p0 by mutual insertion of the last three equations, one obtains the following relation for the length
` of the wetted zone as a function of the rotation velocity v:

` ∼ 4
(

4 η κ r3
n v

)1/5
(5)

Intuitively one might expect that the amount of fluid supplied to the printing plate by the inking
unit should appear in Equation (5). This is not the case under equilibrium conditions. The key
observation is that Equation (4) for the gap height D0 already imposes a condition which fully
determines the fluid quantity in the nip. We refer to this as the excess ink volume conducted in the nip.
Printing liquid is continuously added at the incoming wedge (B), and removed at the outgoing one (A).
The excess volume is completely determined by the equilibrium of elastic, viscous and capillary forces.
Equation (5) could be considered as a fixed point solution in a highly non-linear dynamical system.

The fixed point is stable to various external perturbations (e.g., adding variable amounts of
ink per time), but it is not stable with respect to the hydrodynamical mode that causes the finger
instability. The excess volume will not spread uniformly along the width of the nip, but tend to

gather in finger-shaped undulations with average period λ = `2(v)
8rn

Ca−1/2. The reason the printing
nip remains under control is the short period of time that the fluid spends in the nip: the pattern
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growth phase is cut off by film rupture into liquid bridges, as, e.g., discussed in [18]. This happens on
a completely different time scale. Nevertheless, the initially created length scale remains visible on
the printouts.

Summarizing the relation between the characteristic wavelength λ of the finger instability, and
employing Equations (1) and (2) for D0, one obtains the scaling relation

λ ∼ 2 · 161/5 r1/5
n σ1/2 κ2/5 η−1/10 v−1/10 ∼ rn Ca−1/10 Ks2/5 (6)

where the dimensionless ratio Ks = κσ/r2
n ∼ 3 . . . 5 · 10−14 � 1 can be understood as the static

capillary pressure acting on the curved printing cylinder surface in units of the elastic strength of the
printing plate. The elastocapillary number of the system could be estimated as κσ/D2

0 = Ks (rn/D0)
2

which is, as rn � D0, of order of unity.

3. Experimental

3.1. Elastic Printing Plates

We used two different types of flexo printing plates, compressible and incompressible ones.
The compressible ones consisted of a photopolymeric plate (Nyloflex FAH Digital, hardness 60 ShA,
thickness 1.14 mm, from Repro-Form, Dieburg, Germany). These plates were attached to the printing
cylinder. Details of the printing setup are shown in the Appendix A. For attachment, adhesive foam
tape with a thickness of 0.38 mm was used. Actually, we used two different types of such tape, a hard
and a soft version of Softprint 52015/52017 Steel Master from Tesa SE, Kiel, Germany. This was done
to obtain two different values of the nip widening coefficient κ. As incompressible printing plates, we
used EPDM and NBR rubber sleeves (nominal hardnesses of 61–69 ShA from F. Böttcher GmbH &
Co. KG, Cologne, Germany). The printing sleeves did not require any taping, as they were held on
the steel cylinder by their own elastic tension. As the printing substrate, we used supercalendered
paper (reel width 33 cm) traded by IGEPA (www.igepa.com), type Maxisatin. Grammage was 90 g/m2,
thickness was 77 µm, and surface smoothness (according to ISO 8791-4) was 2.0 µm.

The motivation to use both compressible and incompressible printing plates was that they exhibit
different internal distributions of stress and strain, and it was not clear whether this would have impact
on their elastic response in the printing nip. When a normal force is exerted on a compressible printing
plate, the surface can elastically recede without substantial squeezing in lateral direction. The Poisson
ratio of the compressible stack is almost 0. In contrast, an incompressible plate (with a Poisson ratio
close to 0.5) can only recede if it simultaneously extends in lateral direction. This, in turn, depends
on the shape of the compression zone. If the compression zone in the nip were infinitely wide and
uniform, no elastic deformation could occur at all, and one would expect that pattern formation might
be similar to the case of rigid (i.e., gravure) rather than to elastic compressible printing plates.

We specified the elastic properties of both types of printing forms by a gap widening coefficient κ.
It is defined as the thickness reduction db of the printing plate surface by a printing liquid when its
hydrostatic pressure is increased by dp. Reducing plate thickness would increase the height h of the
flow channel of the printing liquid by dh = −db. This implies that pressure gradients in the liquid
channel would not only cause a lateral liquid flow through the printing nip, but also a proportional
modulation of the height h of the flow channel. We defined the gap widening coefficient as

κ =
dh
dp

∣∣∣∣
b/dn=const.

(7)

We determined this coefficient using a Zwick-Roell Z050 stress-strain measurement device (see
Figure 3). Stacks of pieces of the printing plates were placed under the face of a cylindric heading
tool with a diameter of dn = 18 mm. Air entrainments were carefully removed from the adhesive
interfaces in the elastic stack by pressure treatment. Deformation −∆b was recorded as a function of

www.igepa.com
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the impression force Fn. At not too high impression forces, the curves clearly showed reversible linear
elastic behavior with constant slope −∆b/∆Fn. The gap widening coefficient was then calculated by
κ = π

4 d2
n
(−∆b)

∆Fn
. With pressures of up to 0.9 MPa, a relative deformation of up to 12 % was observed

for the compressible plates. We ignored possible local inhomogeneities of the stress distribution in our
samples as far as they were related to the finite aspect ratio b/dn of sample thickness and diameter.
This would have lead to a constant overall correction factor to κ of order of unity. We considered this
correction as irrelevant as we were interested in the relative scaling features of κ only.

-Δb

Ø dn

Fn

2

1

2

Figure 3. Experimental setup to determine the gap widening coefficient κ. A cylindric heading tool (1)
with diameter dn is used to deform the printing plate (2) by −∆b. The applied force is Fn.

For the reason of defining b-independent material parameters, we also calculated an apparent
compressibility K̃ of the plate which is related to κ by κ = b/K̃. We obtained apparent compressibilities
of K̃ = 11.19± 0.33 MPa and 9.57± 0.18 MPa for the plates with harder and softer adhesive tape,
respectively. With a total thickness of printing plate and adhesive tape of b = 1.52 mm, this yielded
gap widening coefficients of κ = b/K̃ = 0.136± 0.004 mm3/N and 0.159± 0.003 mm3/N, respectively.
Results are displayed in Table 1. Finally, we observed that the apparent compressibilities K̃ of
compressible and incompressible printing forms were, in fact, not too far apart. This can be assigned
to the feature that the Young’s and shear moduli of the incompressible rubber plates may be much
smaller than those of the photopolymeric material such as to admit an easy lateral squeezing in the nip.

Table 1. Measured apparent compressibilities and gap widening coefficients of the used compressible
(Pcomp) and incompressible (Pinc) printing plates.

Printing Plate K̃ [MPa] κ [mm/MPa]

Pcomp
so f t 9.57± 0.18 0.159± 0.003

Pcomp
hard 11.19± 0.33 0.136± 0.004

Pinc
1 3.57± 0.05 1.961± 0.028

Pinc
2 4.86± 0.05 1.440± 0.015

Pinc
3 7.97± 0.12 0.878± 0.013

Pinc
4 8.81± 0.06 0.795± 0.005

3.2. Printing Liquids

We used two types of water based flexo printing inks for our experiments, as indicated in
Table 2. For printing runs at variable velocities, we used Aqualabel Processmagenta HK from
Siegwerk, Siegburg, Germany, in the as-delivered (LS1) and in a formulation (LS2) diluted 4:1 with
deionized water. The experiments where the surface tension had to be varied used standard (LK1)
and customer-tailored (LK2) versions of Kappaflex ink from Kapp Chemie, Miehlen, Germany, with
σ = 29 and 39 mN/m.
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Samples of the printing liquids were drawn from the printing unit before and after each
printing run, and characterized with respect to viscosity and surface tension. This provision was
suggested to countercheck whether the fluid properties had changed within the printing runs, e.g.,
by water evaporation from the ink reservoir or by pigment aggregation. Within the accuracy of our
measurements, however, no such effect was observed.

We used printing liquids with viscosities between 20 mPas and 480 mPas at a temperature of
26 ◦C. This corresponded to the average operation temperature of our printing unit. Viscosities were
determined with a Brookfield DV III ULTRA rotational rheometer in a shear range between 1 and
100 s−1. The results are shown in Table 2.

Table 2. Viscosities and surface tensions of the printing liquids.

Ink ID Printing Liquid η [mPas] γ̇ [s−1] σ [mN/m]
at 26 ± 1 ◦C at 24 ± 1 ◦C

LS1 Siegwerk magenta 305± 21 1–7 38.1± 0.4
std. formulation 100± 5 2 000

LS2 4:1 diluted 19.3± 1.7 50–100 37.1± 0.4
with water 19± 1 2000

LK1 Kappaflex red 46.6± 0.9 6–50 39.0± 0.4
std. formulation

LK2 + tenside 51.3± 5.1 6–50 28.8± 0.6

In an additional sequence of viscosity measurements of selected liquids, we checked that printing
fluids were Newtonian also in a range of shear rates up to 5000 s−1, as shown in Figure 4. The additional
measurements were done with a Malvern Kinexus rotational rheometer. For water-diluted printing
inks, we indeed found Newtonian behavior over a broad range of shear rates. However, using
as-prepared industrial ink products, we observed considerable shear thinning: viscosity drops with
raising shear rate even at several 1000 s−1. We therefore expected deviations from our ink splitting
theory when using such printing liquids.

Figure 4. The viscosities of printing inks LS1 and LS2 versus shear rate.

Surface tensions were determined by the pendant-drop method using a Krüss DSA 100 contact
angle measurement device. Flexographic inks, by industrial standard, usually have surface tensions of
37–39 mN/m. We resigned from formulating inks with a largely different surface tension ourselves,
but used a customer-specific preparation from Kapp Chemie with σ = 28.75 mN/m (LK2) for our
studies. Reformulation of existing inks would have meant to extensively change the ingredients, e.g.,
replacing water and multiple alcohols by chemically very distinct organic solvents. This, in turn,
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would have caused various technical risks as, e.g., aggregate formation in the ink, or swelling of the
printing plates, with possible effect on their shape and their elastic properties.

4. Results

We plotted the obtained finger wavelengths λi for printing velocities v ∈
{10, 20, 60, 100, 160}m/min, using different printing forms and fluids. The plots in Figure 5
(left and middle) show the results for hard and soft compressible printing plates Pcomp

hard and Pcomp
so f t

using either the printing fluid at standard formulation LS1 or the diluted (Newtonian) version LS2,
whereas Figure 5 (right) is from the incompressible elastomer printing plate Pinc

4 and the diluted
printing fluid LS2.
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Figure 5. The finger wavelength λ as a function of printing velocity v for different printing forms and
fluids in double logarithmic plots: (Left) compressible printing plates with printing fluid at standard
formulation; (Middle) compressible printing plates with diluted fluid; and (Right) incompressible
elastomer printing plate with diluted fluid.

First, we considered the fingering wavelengths from printing runs with diluted (Newtonian)
printing inks using different printing plates, as shown in Figure 5 (middle and right). The plots show
an approximate scaling behavior, with correlation measures R2 between 0.94 and 0.97. The best-fit
exponents are αv = −0.0738, −0.0483, and −0.0884, respectively. The scaling exponents for the
compressible and the incompressible printing plates do not significantly differ.

The experiments where non-diluted printing inks with a slight tendency to non-Newtonian
shear-thinning were used yield a less conclusive result. The fingering wavelengths obtained with the
compressible printing plates and the non-diluted ink are displayed as a function of printing velocity in
Figure 5 (left). The general tendency that λ drops with increasing printing velocity persists, but the
fit to a scaling profile is much less convincing than for the diluted ink. The correlation coefficient R2

drops to values between 0.54 and 0.64, although the estimates for the scaling exponents αv = −0.0546
and −0.0629 are still in a range compatible with the above findings. It is worth mentioning that the
coloring capability of printing inks drastically drops when diluting them. We took advantage of this
feature when preparing ink formulation LS2, as dilution makes the ink viscosity more Newtonian and
increases the optical contrast of the printed finger pattern. Considering the finger patterns that are
evolving in both cases, the optical contrast of the pattern as detected by the scanner is therefore lower
for the original ink formulation. This may partially be the origin of the correlation loss.

Moreover, we observed that the ratios of dominant pattern wavelengths λ
(LS1)
i /λ

(LS2)
j between

two samples i and j printed with inks LS1 and LS2 of different viscosity, but at identical velocities v, gap
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widening coefficients κ, and surface tensions σ, did coincide within an accuracy of 7 %. This indicates
that scaling also applied with respect to ink viscosity. We can thus obtain an estimate on the exponent

αη =
∂ log λ
∂ log η =

log λ(LS1)−log λ(LS2)

log η(LS1)−log η(LS2) . As the viscosity of LS1 was not very well determined because of shear

thinning, the calculated exponent is not accurate. With log10 η(LS1) − log10 η(LS2) = 0.94± 0.24, one
obtains αη = −0.20± 0.06. The detailed findings are shown in Table 3.

Table 3. The ratios of the observed dominant pattern wavelengths in samples printed with the inks
LS1 and LS2 of viscosities η(LS1) = 200± 100 mPas and η(LS2) = 19 mPas, respectively, but identical
surface tensions σ = 38± 1 mN/m, using printing plates with the same velocities v and gap widening
coefficients κ.

v [m/min] κ [mm/MPa] Ratio λLS1/λLS2

10 0.136 0.6110
20 (plates Pcomp

hard ) 0.6306
60 0.6059

100 0.5880
160 0.6953

10 0.159 0.6237
20 (plates Pcomp

so f t ) 0.7025
60 0.7057

100 0.6627
160 0.5981

average: 0.642± 0.044

Table 4 summarizes the scaling exponents

αj =
∂ log λ({xi})

∂ log xj

∣∣∣∣∣
xk=const.,k 6=j

(8)

of the finger wavelength λ as a function of the printing parameters xi ∈ {v, η, σ, κ, rn} as extracted
linear regression of the double logarithmic data plots, and compare them to the predictions from
Equation (6). We found that the velocity and viscosity exponents are in reasonable agreement with
the theory from Section 2. Specifically, the values are clearly distinct from exponents measured in the
analogous gravure printing experiment using rigid printing surfaces (κ = 0). Here, one would expect

substantially different values of α
(grav)
v = α

(grav)
η = −0.5, the scaling exponents for gravure printing.

We did not determine αrn , as it was not possible to insert printing cylinders of different radii.

Table 4. Experimental vs. theoretical scaling exponents of the viscous finger wavelength λ(x) ∼ xαx ,
as a function of the printing parameters x: printing velocity v, ink viscosity η, surface tension σ, gap
widening coefficient κ, and cylinder radius rn. The theoretical exponents for rigid, i. e. non-deformable
plates, are shown for comparison.

Exponent Theory Experiment

αx = ∂ log λ
∂ log x Rigid (κ = 0) Elastic (κ > 0) Elastic Plates

αv −0.5 −0.1 −0.07± 0.02
αη −0.5 −0.1 −0.20± 0.06
ασ +0.5 +0.5 +0.21± 0.23
ακ — +0.4 +0.74± 0.49
αrn 0 +0.2 (not measured)
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5. Discussion and Conclusions

From our measurements, we could derive estimates on further scaling exponents of quantities,
which we were not able to measure directly, i.e., the length ` of the wetting zone, the height D0 of the
meniscus, the pressure amplitude p0, and the shear rate γ̇ of the printing liquid in the nip. First, we
consider the theoretical predictions. Equation (5) implies that `(v) ∼ v0.2. Further, as D0 ∼ `2/8rn

according to Equation (2), the meniscus height should scale as D0(v) ∼ v0.4. The same holds for the
pressure amplitude p0(v) ∼ v0.4 as it is proportional to D0. The shear rate in the nip is proportional to
γ̇ ∼ v/D0(v) ∼ v0.6.

Assuming that the relation λ(v) ∼ D0 (ηv)−0.5 from Equation (1) is exact, as it has experimentally
been well-established in the Hele–Shaw cell [3] and in the rigid rotating cylinder geometry [8,9],
predictions on the additional parameters become possible. From the relation λ(v) ∼ `2(v) v−1/2/8rn,
one can relate the exponents βD0 = ∂ log D0/∂ log v and β` = ∂ log `/∂ log v to the measured value of
αv (which we know with good precision):

βD0 = 2 β` = αv + 1/2 (9)

This implies that βD0 = 0.57± 0.02, and β` = 0.285± 0.01, whereas we expect these exponents to
vanish in the case of rigid cylinders. Note that β` has been determined in [16] to be 0.15± 0.059 by
measuring the excess volume in the flexographic nip. Note that these estimates are all independent of
our dynamical model, and only make use of the geometrical features of the rotating cylinder geometry.

If one accepts that Equation (4) is also valid, the exponents βp = ∂ log p0/∂ log v and
βγ = ∂ log γ̇/∂ log v for pressure amplitude and shear rate, respectively, can be obtained: βp = βD0 =

0.57± 0.02 and βγ = 1− βD0 = 0.43± 0.02. An overview is given in Table 5.
We emphasize that the validity of Equation (4) is not out of question as it is motivated by

considerations on pressure distribution in the nip between rigid cylinders [16]. Moreover, its
applicability to flexographic printing plates is limited by viscoelastic effects. The elastic strain response
to an applied stress is usually not immediate but delayed on a certain time scale. One would thus
suppose that κ itself might depend on the printing velocity v.

In summary, we could give evidence that scaling arguments are useful for the understanding
of the highly non-linear physics in the flexographic printing nip. Doubling the printing velocity of a
flexographic machine would not reduce viscous finger wave length by a ratio of 1/

√
2 ∼ 0.707, i.e., by

30 %, but only by 5 %. Doing so, the length ` of the wetting zone between printing plate and substrate
will not be unaffected, but increase by 22 %. The shear rate of the printing ink, even if Newtonian,
is far from being a linear function of printing velocity. It raises by 35 % only. This is quite different
from gravure printing where rigid metal printing cylinders are used. Here, linearity is a reasonable
approximation. Interestingly, we did not observe a significant difference in the exponents obtained with
compressible and incompressible printing plates. This may be caused by the feature that the relevant
parameter, the gap widening coefficient, is not too different for these plates. Moreover, many of our
observations are in qualitative agreement with the theoretical model described in Section 2. There are
still open questions that should be considered in future studies, as they most likely have impact on
scaling: the role of non-Newtonian behavior of the printing ink, and the viscoelastic properties of the
printing plates.
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Table 5. Estimates of scaling exponents of further parameter as a function of the printing velocity v,
derived from the exponents in Table 4: meniscus height D0, length of the wetting zone `, pressure
amplitude p0, and shear rate γ̇.

Parameter Exponent Theory Derived from Exper.

βy =
∂ log y
∂ log v Rigid (κ = 0) Elastic (κ > 0) Elastic Plates

Nip meniscus height βD0 0 +0.4 +0.57± 0.02
Wetting zone length β` 0 +0.2 +0.285± 0.01
Pressure amplitude βp 1 +0.4 +0.57± 0.02

Nip shear rate βγ 1 +0.6 +0.43± 0.02
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Abbreviations

The following abbreviations are used in this manuscript:

RGB digital image color encoding format (red-green-blue)
TIFF Tagged image file format using lossless image data compression
FFT Fast Fourier transform algorithm
EPDM Ethylene propylene diene rubber (synthetic)
NBR Acrylonitrile butadiene rubber (synthetic)

Appendix A

Appendix A.1. Printing Setup

For the printing experiment, we used the industrial-scale web-fed label printing press Gallus RCS
330-HD in our printing lab. The printing press consisted of an unwinding unit for the paper web, four
subsequent printing terminals, which could individually be equipped with independent printing units,
and a recoiling unit. Our experiment was installed on the second of the four terminals. It consisted of a
18-inch (330 mm) flexo printing module from Gallus, two IST HID hot air driers of proper width, and
an additional inkjet unit for individually labeling the printing samples on the reel. The Gallus printing
press and flexo printing module are shown in Figure A1. Each sample corresponded to a paper web
section of 457.2 mm in length, according to the circumference of the printing cylinder. Each sample
thus showed a complete image of the printing plate. The anilox cylinder, which dosed the ink from the
blade-chamber reservoir to the printing plate, had a ceramic surface with a laser-engraved rhombic
cell raster of 130 lines per cm, a raster angle of 45◦, and a nominal transfer volume of 13.2 cm3/m2.
Moreover, a frame of metal brushes was suspended over the web before it entered the printing unit in
order to remove possible electrostatic surface charges.
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Figure A1. (Left) Gallus RCS 330-HD printing press; and (Right) Flexo printing module with printing
with blade-chamber reservoir (1), anilox roller (2), printing cylinder (3), impression roller (4) and
substrate (5).

Inside the unit, the paper web was conducted over a steel with a diameter equal to that of the
printing cylinder, with a deflection of 180◦, as shown in Figure A2. The printing nip was located at the
central 90◦-position of the web support zone on the impression roller. Paper web tension was adjusted
to FW = 300 N/m. In this way, it could be avoided that the paper was lifted from the impression roller
by its adhesion with the printing plate at the instant of fluid splitting.

Figure A2. Web transport and roller arrangement in the used printing unit. The paper web is held
under tension with a constant force of FW .

The 33 subsequent printing runs were distributed over three days. The surface temperature of the
printing form and relative air humidity in the lab were 26 ± 1 ◦C, and 35 to 62 % r.H., and all material
was taken from the same reel. Hot drying air was moderately applied to the paper web that left the
printing unit when required, i.e., at elevated printing velocities when ink imbibition and drying were
insufficient for recoiling. The temperature of the inking reservoir was stabilized. For determination of
ink viscosity and surface tension, samples were taken from the reservoir before and after each printing
run. The printing velocity of the unit was digitally controlled using a compulsory servo drive. Thus,
we cannot specify any significant errors in the printing velocities. From the total printout, we only
evaluated material produced under steady-state conditions of the experiment.

Appendix A.2. Sample Digitalization and Spectral Analysis

For evaluating the samples, the web was cut into pieces of 165 mm × 297 mm in size, and defined
full-tone areas of 110 mm × 260 mm were scanned with an Epson Perfection V800 Photo flatbed
scanner using the software SilverFast Ai Studio 8. Nominal scanner resolution was 2400 dpi, actual
resolution was determined to 1825 dpi, using a standard USAF-1951 resolution target. A Kodak IT8
target was used for color calibration. The digital data were saved as lossless 48 bit RGB TIFF files.
The width and height of each image corresponded to npix = 10,394 pixels and nrows = 24,568 pixels,
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respectively. The size of a pixel is 10.58 µm. Calibration was necessary to guarantee reproducibility
and to ensure that the digital RGB signal generated by the scanner was comparable amongst our
samples, i.e., the digital R, G, and B signals should shift proportionally with the tone value of the
printed samples, but preserve constant mutual ratios. For the evaluation of the finger patterns, the data
from red color channel were used exclusively (blue would have been possible as well), whereas the
green color channel was void of any pattern information. In view of the spectral absorption of the red
ink pigments that we used, this was physically consistent. Thus, within each sample, differences of the
digital color signal of each image pixel could be considered as being proportional to differences in the
amount of ink deposited in this point of the printed sample. Consequently, the Fourier amplitudes of
the digital image could be interpreted in terms of a linear superposition of harmonic waves in local
ink quantities.

The 99 digital images of our samples (3 images for each of the 33 printing runs) were finally
digitally aligned with the printing direction using the MATLAB 2018b Hough transform function,
and 1D-FFT-transformed line by line, see Figure A3. On average, each line comprised a continuous
section through 300–600 individual fingers, with dominant pattern wavelength of 180–370 µm on the
different samples. The Fourier transforms of each line were finally added up and divided by the total
number of lines nrows, yielding a sample-averaged non-negative spectral amplitude Ai(k) for each
sample i. No window algorithm was applied for sake of preserving the structure of the FFT amplitude
spectrum for later evaluation. Artifacts resulting from the FFT boundary conditions could be identified
as well. As they were located in predictable positions of the spectra, they could be excluded from
further analysis.

Plotting the spectral amplitudes Ai(k) against their wave numbers k = 2π/W ·
(0, 1, 2, . . . , npix/2− 1), where W is the image width, clear maxima kmax

i could be identified in the
predefined region of interest. Note that the amplitude is an even function of k, thus we omitted
negative values of k. Ai(0) corresponds to the average tone value of the sample. The dominant pattern
wavelength λi in a sample is defined by λi = 2π/kmax

i = W/nF, where nF is the number of fingers per
image width W. The positions kmax

i of spectra from different samples were converted to λi and plotted
against printing velocity, ink viscosity, etc. according to the selection of the samples.
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Figure A3. Measurement procedure for the dominant pattern wavelength λi of each sample i. In the
first step, a one-dimensional Fast Fourier Transform Algorithm (1D-FFT) is applied to each line of the
input image in MATLAB 2018b. The 1D-FFT delivers nrows = 24,568 amplitude spectra. Each amplitude
spectrum shows the spectral amplitudes Ai(k) versus their wave numbers k. In the second step,
a sample-averaged amplitude spectrum is calculated from which a clear maximum kmax

i is obtained in
the predefined region of interest. Finally, the dominant pattern wavelength λi is calculated from kmax

i .

Appendix A.3. Symbols

Table A1 contains a short explanation of all symbols used in the text.
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Table A1. List of symbols. In the text, physical parameters are sometimes given in derived units (e.g.,
mm and MPa).

Symbol Quantity Units (SI)

Ai(k) Spectral amplitude function of the Fourier transformed digital image of sample i -
αx Scaling exponent expressing pattern wavelength λ as a function of a quantity x -

α
(grav)
x Scaling exponent in a gravure printing setup -

βy Scaling exponent expressing a quantity y as a function of velocity v -
b Thickness of the flexo printing plate m
β Raster period of the gravure cells on a gravure printing plate m
Ca Capillary number -
d Typical lateral printing resolution m
D0 Height of the fluid menisci of the nip m
D̄ Average liquid film thickness in the nip m
dn Heading tool diameter in the stress-strain measurement system m
∆t Typical contact time of printing plate and substrate s
Fn Compression force exerted on printing plate pieces in the stress-strain measurement system n
FW Web tension of the paper substrate in the printing press N/m
γ̇ Shear rate of the printing liquid s−1

h Thickness of the liquid layer in a Hele–Shaw cell, or between printing plate and substrate m
η Dynamical viscosity of the printing fluid Ns/m2

k Wave number defined for spectral image evaluation m−1

kmax
i Wave number corresponding to the dominant pattern wavelength λ m−1

K̃ Apparent compressibility modulus of the printing plate N/m2

κ Gap widening coefficient m3/N
` Distance between incoming and outgoing fluid menisci of the nip m
λ, λi Dominant pattern wavelength of the instability, on sample i m
Ks Ratio of capillary versus elastic forces -
npix, nrows Pixel numbers of the digitalized images of the printed samples -
nF Number of fingers across a printed sample -
p, p0 Fluid pressure, pressure amplitude in the nip N/m2

r1, r2 Radii of printing cylinder, impression roller m
R2 Statistical correlation coefficient -
rn Radius corresponding to the total curvature of printing cylinder and substrate m
σ Surface tension of the printing fluid N/m
v Cylinder revolution and substrate velocity m/s
W Physical width of the evaluated sector of a printed sample m
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