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Abstract: Since their introduction in 1954, cumulative sum (CUSUM) control charts have seen a
widespread use beyond the conventional realm of statistical process control (SPC). While off-the-shelf
implementations aimed at practitioners are available, their successful use is often hampered by inherent
limitations which make them not easily reconcilable with real-world scenarios. Challenges commonly
arise regarding a lack of robustness due to underlying parametric assumptions or requiring the availability
of large representative training datasets. We evaluate an adaptive distribution-free CUSUM based on
sequential ranks which is self-starting and provide detailed pseudo-code of a simple, yet effective
calibration algorithm. The main contribution of this paper is in providing a set of ready-to-use tables
of control limits suitable to a wide variety of applications where a departure from the underlying
sampling distribution to a stochastically larger distribution is of interest. Performance of the proposed
tabularized control limits is assessed and compared to competing approaches through extensive
simulation experiments. The proposed control limits are shown to yield significantly increased agility
(reduced detection delay) while maintaining good overall robustness.

Keywords: cumulative sums; distribution-free; nonparametric; sequential ranks; change point detection

1. Introduction

From a historical perspective, the advent of modern statistical process control (SPC) arose out of the
post industrial revolution realization that to yield goods of acceptable quality a manufacturing process
ought to operate within prespecified margins of error (in other words it ought to be stable or in control) [1].
In oversimplified terms, control charts are central to SPC and serve to continuously monitor a process to
assess whether the observed deviations from the nominal process are due to mere chance (in control) or
not (out-of-control) (see generally [1–3]).

Control charts were first introduced by W. A. Shewhart in 1924 and gained widespread popularity
following the publication of Shewhart’s seminal monograph [4] in 1931. The following decades witnessed
a substantial research interest and output resulting in important SPC developments including, but not
limited to, cumulative sum (CUSUM) [5] and exponentially weighted moving average (EWMA) [6] control
charts as well as Bayesian approaches [7–9]. Only the former will be considered here; the interested
reader is referred to [1–3,10] for an exhaustive treatment of the subject matter and to [11–13] for a more
concise overview.

Note that, as has been pointed out throughout the years by several prominent scholars [11,14,15], to
this date and despite considerable advances in nonparametric approaches, most control charts remain
based on the normality assumption. Despite its appeal, the normal distribution clearly is rarely an
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appropriate model for real-world applications. According to Stoumbos et al. [11] there exists a fundamental
disconnect between practitioners and researchers as well as a gap between applied and theoretical research:
“The existence of these gaps is disturbing, because it means that most practitioners have received little of
the potential benefit from the technical advances made in SPC over the last half-century.” (see [11] at 993).

The present work aims to shrink the above-mentioned gap by providing ready-to-use tables of control
limits for an adaptive self-starting distribution-free CUSUM suitable to a wide variety of applications
where a process is monitored for a departure from the underlying sampling distribution to a stochastically
larger distribution. While this procedure has previously briefly been outlined and used by this author
in [16,17], respectively, it is first thoroughly proposed and assessed in the current work.

Following a review of some pertinent fundamentals in Section 2 we proceed by reviewing the adaptive
distribution-free CUSUM, providing a simple, yet effective calibration algorithm and obtaining a set of
control limits suitable for a wide variety of scenarios. The performance of the control limits obtained as
outlined in Section 3 is then assessed through extensive simulation experiments, whose results are outlined
and discussed in Section 4; it will be shown that the proposed control limits yield a significantly reduced
detection delay while maintaining good overall robustness. Finally, our concluding remarks set out in
Section 5 complete this work.

2. Parametric and Nonparametric Univariate CUSUM Control Charts

The following subsections concisely restate the parametric (normal) univariate CUSUM and
McDonald’s sequential ranks CUSUM (SRC) [18]. All considerations will be limited to the most basic task
of detecting a positive shift in the mean of a sequentially observed process using one-sided control charts.

2.1. Conventional Parametric CUSUM

Let F and G denote normal distributions given as F ∼ N (µ0, 1) and G ∼ N (µ0 + δ, 1). Furthermore,
for the sake of simplicity, let µ0 = 0 and δ = 1. Consider observing a sequence of independent random
variables {xn, n ≥ 1} such that {x1, . . . , xτ−1} ∼ F and {xτ , xτ+1, . . . } ∼ G, i.e., a distributional shift
F → G occurs at time instance τ. Assuming perfect knowledge of all parameters describing F and G
(i.e., µ0 and δ) Page’s CUSUM [5] represents the gold standard change detection technique and can be
computed sequentially as

C0 = 0, Cn = max{0, Cn−1 + xn − kC}, n ≥ 1 . (1)

The CUSUM signals, thereby declaring a distributional shift to have occurred, if

Cn > hC , (2)

with hC and kC being the prespecified control limit and reference constant, respectively.
The CUSUM’s in-control average run length (ARL) is defined as the expected time until a change is

signaled under F, i.e.,

ARL = EF inf{n > 0 : Cn > hC} . (3)

Note that this is akin to a nominal type-I-error level in the realm of hypothesis testing and that hence
the closeness of the actual in-control ARL to ARL0 is commonly regarded as an indicator of the control
chart’s robustness [15,19]. Accordingly, hC and kC are chosen such that ARL0 is (at least approximately)
attained when the observed process is in-control (see, e.g., [3,20]). It is well known that choosing kC = δ/2
is optimal [21] (see also [22,23]).
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2.2. Sequential Ranks CUSUM (SRC)

Consider again the sequence {xn, n ≥ 1}; the sequential rank of xn is defined as

Rn = 1 +
n−1

∑
r=1

(xn − xr)
+ , (4)

where (x)+ is 1 for x > 0 and 0 otherwise. The SRC is then

CSRCn = max{0, CSRCn−1 +
Rn

n + 1
− kSRC} , n ≥ 1 , (5)

with CSRC0 = 0 and kSRC some reference constant. Akin to Equation 2, the SRC signals if CSRCn > hSRC.
A crucial advantage of the SRC stems from the fact that, given the observed process is in-control,

it can be shown (see [18] and references therein) that the quantities Rn
n+1 are independent and discrete

uniform on { 1
n+1 , 2

n+1 , · · · , n
n+1} . Hence, in addition to the approach followed in [18], hSRC for a fixed kSRC

can be obtained through a straightforward Monte Carlo procedure (see, e.g., [24] at 12) without requiring
any historical training data.

3. Adaptive Control Limit SRC (AC-SRC)

As will be shown in detail in Section 4, the actual applicability of the SRC is often hampered due
to its virtually unacceptable performance in certain scenarios. More specifically, the SRC suffers from a
lack of agility, i.e., given a distributional shift actually occurred the SRC may require an undue amount
of time to signal (i.e., it exhibits a large detection delay); as will be shown, this is especially pronounced
if a change occurs soon after monitoring commenced. In such case, the amount of data gathered by the
SRC may be grossly insufficient, thus resulting in a prolonged time to signal. It should be noted that, as
McDonald correctly points out (see [18], pg. 628–629), the above mentioned lack of agility (compared to an
optimal parametric approach) and the poor detection of changes occurring after a relatively small number
of observations is to some degree inherent to all nonparametric procedures.

The idea behind the adaptive control limit SRC (AC-SRC) proposed by this author [16,17] is to mitigate
the SRC’s drawbacks while maintaining its ease-of-use, robustness, and the ability to obtain generally
valid control limits ahead of time. This is facilitated by the AC-SRC being inspired by and incorporating
large parts of a distribution-free bootstrap based CUSUM proposed by Chatterjee and Qiu [19]. Said
authors in 2009 proposed an elegant procedure where the conventional fixed control limit is swapped for a
sequence of control limits obtained from the conditional distribution of the test statistic (i.e., the CUSUM)
given the last time it was zero. Chatterjee and Qiu estimate these conditional distributions by means of
bootstrapping; note that among other things this implies the need of a large amount of representative
training data as well as a high computational burden. However, transferring the key idea of the approach
by Chatterjee and Qiu to the SRC results in the AC-SRC described and analyzed in the following.
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Akin to the SRC described in Section 2.2 let Rn and CAC-SRCn denote the sequential rank of xn and the
respective SRC as provided by Equations (4) and (5), respectively. Furthermore, let YAC-SRCj be a random
variable following the conditional distribution

YAC-SRCj ∼ [CAC-SRCn |TAC-SRCn = j] , (6)

where TAC-SRCn , also referred to as sprint length, denotes the time elapsed since CAC-SRCn was last zero, i.e.

TAC-SRCn = 0 if CAC-SRCn = 0

TAC-SRCn = j if CAC-SRCn 6= 0, . . . , CAC-SRCn−j+1 6= 0 ,

CAC-SRCn−j = 0 ; j = 1, . . . , n .

Central to the method by Chatterjee and Qiu is the fact that the conditional distributions in Equation (6)
depend only on j and F but not on n [19]. Then for any positive integer jmax ≤ n the (unconditional)
distribution of CAC-SRCn can be approximated by means of the conditional distributions in Equation (6) as

CAC-SRCn ∼
jmax

∑
j=1

YAC-SRCj ITAC-SRCn=j + Y∗ ITAC-SRCn>jmax , (7)

with I being the common indicator function and Y∗ ∼ [CAC-SRCn |TAC-SRCn > jmax] . Since the AC-SRC is
based on sequential ranks which, given the process is in control, are independent and discrete uniform
on { 1

n+1 , 2
n+1 , · · · , n

n+1} (see Section 2.2) the sequence of control limits {hj} can be determined (ahead of
time) without the need for training data by means of Monte Carlo simulations as outlined in Algorithm 1.

The AC-SRC then signals if TAC-SRCn = j and CAC-SRCn > hj for 1 ≤ j ≤ jmax or if TAC-SRCn > jmax

and CAC-SRCn > hjmax . Note that following recommendations by Chatterjee and Qiu the hj are only
calculated up to a reasonably small jmax after which, if the test statistic does not bounce back to zero, they
are kept fixed at hjmax . Furthermore, kAC-SRC is linked to jmax such that a desired sprint length tETn, which

is set to be proportional to jmax (see Section 3.1), e.g., as tETn = b 3jmax
4 c, is approximately attained by the

average sprint length. That is, kAC-SRC : T̄AC-SRCn ≈ tETn = b 3jmax
4 c.
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Algorithm 1: Adaptive Control Limit SRC (AC-SRC)

Input : B, B1 : number of Monte Carlo runs for main/fine-tuning procedure
tETn : desired expected sprint length E{TAC-SRCn} , default is tETn = b 3jmax

4 c
∆ : fraction (e.g., ∆ = 1

200 ) for fine-tuning

Part I: calibrate kAC-SRC

while T̄AC-SRCn 6= tETn ± 1% do
for i = 1 to B1 do

for n = 1 to NAC-SRC do
calculate CAC-SRCn = max{0, CAC-SRCn−1 + Yn − kAC-SRC} with
Yn ∼ unif{ 1

n+1 , 2
n+1 , · · · , n

n+1};
if CAC-SRCn = 0 for first time then save TAC-SRCni = n and break ;

end
end
T̄AC-SRCn = 1

B1
∑B1

b=1 TAC-SRCnb

if T̄AC-SRCn < tETn ± 1% then increase kAC-SRC by ∆ · kAC-SRC ;
else decrease kAC-SRC by ∆ · kAC-SRC ;

end

Part II: calculate {hj}jmax
j=1 for fixed kAC-SRC and jmax

for j = 1 to jmax do
Initialization: C∗AC-SRCold

= 0, T∗AC-SRCold
= 0, b = 0 ;

Step 0: set b = b + 1 ;
Step 1: update C∗AC-SRCnew

= max{C∗AC-SRCold
+ Y∗n − kAC-SRC, 0} ;

if C∗AC-SRCnew
> 0 then set T∗AC-SRCnew

= T∗AC-SRCold
+ 1 ;

else if C∗AC-SRCnew
= 0 then set T∗AC-SRCnew

= 0 ;
Step 2: if TAC-SRCnew = j then record YAC-SRCj:b = C∗AC-SRCnew

and return to Step 0 if b < B ;
else update C∗AC-SRCold

= C∗AC-SRCnew
and T∗AC-SRCold

= T∗AC-SRCnew
and return to Step

1;
end
set hj as B(1− ARL0

−1) ordered value of YAC-SRCj:1 , YAC-SRCj:2 , . . . , YAC-SRCj:B ;

set hj = hjmax for j > jmax ;

Part III: calibrate the ARL (by fine-tuning {hj}jmax
j=1 )

while ARL 6= ARL0 ± 5% do
calculate B1 CAC-SRCn as in Part I and estimate ARL based on (new) {hj}jmax

j=1 ;

if ARL < ARL0 ± 1% then increase all entries in {hj}jmax
j=1 by ∆ · {hj}jmax

j=1 ;

else decrease all entries in {hj}jmax
j=1 by ∆ · {hj}jmax

j=1 ;

end
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3.1. Remarks on and Suggestions for the Selection of AC-SRC Parameters

The aim of this Section is twofold: first, to complete the description of the proposed procedure
by justifying some seemingly completely arbitrary design choices of Section 3 , and second, to provide
guidance to practitioners in order to facilitate the applicability of our method.

Average in-control and out-of-control run lengths, which are commonly referred to as ARL0 and ARL1

in the SPC literature, play a crucial role in the design and use of control charts. The ARL0 characterizes
the chart’s propensity to false alarms in terms of the average number of samples they are separated by,
whereas ARL1 describes what we referred to as the control chart’s agility, i.e., the average delay between
the occurrence of an actual change and its detection. Clearly, then, there exists an inherent trade off
between the objectives of low false alarm rates (large ARL0) and small detection delays (small ARL1). In
this paper, we assume that the common approach of choosing an acceptable ARL0 followed by attempts
to minimize ARL1 is pursued. The suitability of an ARL0 highly depends on the particular problem at
hand and is influenced, among other things, by crucial aspects such as weighting the aforementioned
conflicting objectives to ensure compliance with requirements as well as detailed knowledge of the specific
application. Accordingly, we find further discussions pertaining ARL0 to be beyond the scope of this
paper and, again, refer the interested reader to selected representatives of the established SPC literature
[1–3].

Recall that, given a fixed and pre-determined jmax, Algorithm 1 starts out by calibrating kAC-SRC such
that the average sprint length T̄AC-SRCn equals the desired sprint length tETn within a reasonable margin
of error. Following Chatterjee and Qiu [19] ,we fix the desired sprint length tETn as a in theory arbitrary
ratio of jmax; throughout this work tETn = b 3jmax

4 c is used. Note that, although the rationale for linking
kAC-SRC and jmax is compelling, doing so is not required.

The behavior of the AC-SRC’s test statistic CAC-SRCn is crucially influenced by the specific choice
of kAC-SRC in that the propensity of CAC-SRCn bouncing back to zero decreases for smaller kAC-SRC (and
vice versa for larger values of the reference constant). In other words, the average sprint length T̄AC-SRCn

increases with a reduction of kAC-SRC, whereas increasing the reference value results in smaller sprint
lengths. Furthermore, the sensible constraint of choosing tETn � jmax restricts the computational burden
of Algorithm 1 and reasonably ensures its algorithmic stability. In fact, in the absence of constraints on jmax

and kAC-SRC, ‘inappropriate’ combinations such as, e.g., (very) large kAC-SRC and jmax could easily result in
the inability to evaluate Equation (6) which, in turn, is required in Part II of Algorithm 1 . While we find
the aforementioned to establish sufficient and convincing justification for the choice of calibrating kAC-SRC

such that T̄AC-SRCn ≈ tETn = b 3jmax
4 c holds, it is arbitrary in that other reasonable but not necessarily

superior design choices are readily discernible (see [19] ).
As expected, and consistent with the considerations expressed by Chatterjee and Qiu [19] pertaining

to their bootstrap-based method, we observed diminishing returns with increasing the length jmax of the
sequence of adaptive control limits {hj}

jmax
j=1 .

While we are unable to provide specific guidelines pertaining to the selection of AC-SRC’s pertinent
tuning parameters and further research in this area is required, we advocate the use of rather short
sequences {hj}

jmax
j=1 with 6 ≤ jmax � 30. Based on our current understanding and evidence, we recommend

to set up the AC-SRC as discussed above and to adjust it to the requirements of the specific scenario by
means of choosing either smaller or larger jmax.

As will be corroborated by simulation results in Section 4.2, a reasonably consistent degree of
fine-tuning is attainable with smaller jmax allowing for good agility, whereas using slightly larger values
for jmax yields improved robustness at the expense of an increased detection delay.
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4. Results and Discussion

4.1. Control Limits and Reference Values for the AC-SRC

Ready-to-use sets of reference constants kAC-SRC and respective sequences of control limits {hj}
jmax
j=1

for combinations of ARL0 and jmax have been determined following the calibration procedure described
in Algorithm 1. Again we emphasize that the main contribution of this work is in providing practitioners
with a wide choice of predetermined control limits to be used out-of-the-box without requiring any
further adjustments.

We used values for kAC-SRC calibrated such that T̄AC-SRCn ≈ tETn = b 3jmax
4 c and NAC-SRC = 5000, B =

5 · 104, B1 = 5000, ∆ = 1
200 . All result were further averaged over 200 Monte Carlo runs.

To improve readability the tabularized sets of control limits {hj}
jmax
j=1 and reference values kAC-SRC for

ARL0 = {100, 200, 300, 370, 400, 500, 600, 700, 800, 900, 1000} and jmax = {6, 8, 10, 12, 14, 16, 18} are deferred
to Tables A1–A11 in Appendix A. ARL0 = 370 was included due to its popularity among practitioners,
which stems from Shewhart x̄ control charts using three-sigma limits having an in-control ARL of 370 (see
generally [1]).

4.2. Performance Evaluation of the Proposed AC-SRC

To obtain an accurate representation of the proposed AC-SRC’s performance and put it into
perspective we conducted simulation experiments to ascertain a control chart’s detection delay (DD),
in-control ARL, and false alarm rate (FAR). A shift in the process distribution from F ∼ N (0, 1) to
G ∼ N (1, 1) occurring at various time instances τ was simulated. FAR in this context refers to instances
in which a particular control chart signaled although the actual shift at time instance τ had not occurred yet.
Results were obtained for τ = {10, 20, 30, 40, 50} , jmax = {6, 8, 10, 12, 14, 16, 18} , ARL0 = {100, 500, 1000}
and compared with optimal values for the parametric CUSUM (as provided in [3]) and the conventional
SRC (as provided in [18]) for the respective ARL0 as illustrated in Table 1. All results were averaged over
2 · 105 Monte Carlo runs.

Table 1. Optimal control limits h and reference values k for the parametric cumulative sum (CUSUM)
(C) and the conventional sequential ranks CUSUM (SRC) for ARL0 = {100, 500, 1000} (ARL = average
run length).

ARL0 = 100 ARL0 = 500 ARL0 = 1000

C SRC C SRC C SRC

k 0.5 0.6428 0.5 0.6425 0.5 0.6428
h 2.8497 0.798 4.3891 1.2031 5.0708 1.382

Furthermore, the robustness of all three control charts to deviations from the normal distribution was
assessed by simulating an impulsive noise environment through the use of a two component Gaussian
mixture model, as is often done in related work (see [25], pg. 176; see also [26,27]). Accordingly, instead of
F ∼ N (0, 1), the in-control are modeled as

F ∼ (1− η) N (0, 1) + η N (0, κ) (8)

with 0 ≤ η ≤ 1 expressing the probability that contamination with the heavy-tailed component modeled
using κ � 1 occurs. Thus, again, at time instance τ a shift in distribution from F ∼ (1− η) N (0, 1) +
η N (0, κ) to G ∼ (1− η) N (1, 1) + η N (1, κ) occurs. All reported results claiming impulsive noise
contamination were obtained using η = 0.1 and κ = 100.
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4.2.1. Performance under Normality

Tables 2–4 show results of simulation experiments as outlined in Section 4.2 for the normal use case,
i.e., a shift in distribution from F ∼ N (0, 1) → G ∼ N (1, 1) occurs at time instance τ.

Table 2. ARL0 = 100, 0% contamination.

jmax (AC-SRC)

τ C SRC 6 8 10 12 14 16 18

10
DD 5.5798 33.1970 28.9016 29.5565 34.0757 36.7935 40.1121 42.0636 45.7209
ARL 100.1217 118.7456 99.9766 99.9764 99.6454 99.8677 99.9687 99.2931 99.6043
FAR 0.0655 0.0056 0 0 0 0.0001 0.0001 0.0002 0.0003

20
DD 4.5829 12.4038 12.3431 12.7814 13.4354 14.7583 16.1362 16.9636 18.2698
ARL 100.1221 118.7666 99.8431 100.1864 99.5062 100.0187 100.0108 99.4962 99.5444
FAR 0.1566 0.0607 0.0148 0.0084 0.0064 0.0280 0.0518 0.0642 0.0779

30
DD 4.5789 8.2788 8.7000 9.3913 10.4685 11.2349 12.0707 12.4557 13.2802
ARL 100.0206 118.8567 99.7885 100.2029 99.4369 100.1514 99.7156 99.4519 99.5012
FAR 0.2390 0.1306 0.0702 0.0875 0.1068 0.1164 0.1314 0.1403 0.1587

40
DD 4.5749 6.9814 7.9473 8.5354 9.3278 9.8141 10.4779 10.9331 11.5477
ARL 100.0611 118.8167 99.9674 100.3011 89.7641 100.0303 89.8406 99.3637 99.3303
FAR 0.3141 0.2013 0.1799 0.1818 0.1878 0.2029 0.2186 0.2268 0.2405

50
DD 4.5802 6.3752 7.6181 7.9070 8.6649 9.2004 9.6475 10.0578 10.5800
ARL 100.1531 118.8285 99.8177 100.2513 99.3827 99.9977 99.7287 99.4817 99.6277
FAR 0.3810 0.2695 0.2668 0.2620 0.2823 0.2889 0.2951 0.3072 0.3224

Clearly the parametric CUSUM’s exceptional performance comes as no surprise considering its
optimality if, as is the case here, the monitored process is actually Gaussian. Questions of greater interest
concern whether or not a substantial performance difference between the SRC and the proposed AC-SRC
can be observed.

Our qualitative assessment of performance differences will focus on differences among the examined
control charts pertaining to:

• Detection delay (DD)

– One of if not the major objective in practical applications is to detect a change as quickly as
possible; hence, DD should be small (see also Section 3.1).

• Average run length (ARL)

– Recall that the ARL describes the average time or run length until the control chart signals under
in-control conditions, i.e., without a change having occurred. The ARL is, loosely speaking, akin
to the type-I error level in hypothesis testing. Rather than setting a false alarm rate control charts
are typically designed by choosing a desired ARL0. The actual in-control ARL determined in
our simulation experiment should be reasonably close to the nominal ARL0 and we interpret
this closeness as indicating the control chart’s robustness.

• False alarm rate (FAR)

– Moreover, recall that even if the monitored process is in-control any CUSUM chart will
eventually signal. Clearly there is a relation between FAR and ARL; however, since said relation
and false alarm properties of CUSUMs in general are neither well explored nor straightforward,
especially for rather small ARLs, a discussion is deemed beyond the scope of this work. The
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interested reader is referred to, e.g., [28]. Coming back to the issue at hand, as fas as our
performance assessment is concerned FAR values should be as small as possible (ideally zero).

Table 3. ARL0 = 500, 0% contamination.

jmax (AC-SRC)

τ C SRC 6 8 10 12 14 16 18

10
DD 7.4845 268.0231 127.1618 115.8420 114.1003 113.0386 118.7457 122.5208 134.0196
ARL 500.3259 532.0541 489.4462 487.0666 483.9462 486.4092 500.5751 504.5539 527.5008
FAR 0.0088 0.0001 0 0 0 0 0 0 0

20
DD 7.4774 89.3780 26.3227 36.4466 27.1662 28.6116 30.5613 32.5018 35.2079
ARL 499.8330 531.6094 484.7291 484.6379 484.0727 486.1253 500.1508 504.9982 526.9485
FAR 0.0280 0.0067 0.0012 0.0003 0.0001 0 0 0 0

30
DD 7.4762 36.6425 15.4354 16.9657 17.7711 19.1151 20.2779 21.8232 23.2656
ARL 500.0630 531.3130 489.2917 484.4814 484.2848 486.0503 499.7263 505.1260 526.9345
FAR 0.0473 0.0190 0.0094 0.0044 0.0030 0.0016 0.0010 0.0006 0.0003

40
DD 7.4691 20.2862 13.0108 14.5117 15.2444 16.3110 17.1893 18.4266 19.5790
ARL 500.2418 531.3190 487.2419 486.2570 484.3922 486.3174 500.3466 505.4857 527.5350
FAR 0.0661 0.0336 0.0233 0.0144 0.0117 0.0078 0.0056 0.0038 0.0025

50
DD 7.4804 14.5257 12.0488 13.4507 14.0356 14.9430 15.6976 16.7346 17.6902
ARL 499.8426 531.3030 487.4462 484.9996 483.3978 486.6009 500.5158 504.9296 527.0213
FAR 0.0849 0.0493 0.0410 0.0285 0.0252 0.0187 0.0147 0.0109 0.0077

Table 4. ARL0 = 1000, 0% contamination.

jmax (AC-SRC)

τ C SRC 6 8 10 12 14 16 18

10
DD 8.8165 648.1897 362.1763 324.2384 318.3756 317.0301 318.4782 316.5780 316.4286
ARL 998.8042 1045.7143 1003.2 996 993.8 997 991.7 992.7 993.7
FAR 0.0030 0 0 0 0 0 0 0 0

20
DD 8.7880 254.2445 60.9372 54.4992 54.1869 57.0418 59.4549 62.6949 64.8553
ARL 1003.3 1045.5714 1003.7 1001.1 993.1 996.5 992 992.8 993.8
FAR 0.0130 0.0023 0.0001 0 0 0 0 0 0

30
DD 8.7839 102.8965 24.4908 25.4678 27.1288 29.9713 31.4247 34.1553 35.4113
ARL 999.4 1044.6429 104.8 998.3 993.4 993.7 997.4 994.1 992.9
FAR 0.0229 0.0080 0.0021 0.0003 0.0002 0 0 0 0

40
DD 8.7871 47.5679 17.5591 20.3572 21.7860 24.2974 25.4796 27.6644 28.7028
ARL 1000.4571 1045.3143 1002.9 998.6 993.2 996.4 993.9 991.9 993.4
FAR 0.0328 0.0148 0.0061 0.0022 0.0014 0.0006 0.0003 0.0001 0.0001

50
DD 8.7878 26.7629 15.8388 18.3891 19.6391 21.7982 22.8171 24.7035 25.5985
ARL 1000.5 1045.7429 1007.6 997.3 994.2 996.9 995.7 993 993.3
FAR 0.0426 0.0222 0.0130 0.0065 0.0043 0.0023 0.0016 0.0009 0.0006

Examining the entries of Tables 2–4 it can generally be observed that the proposed AC-SRC performs
well, especially keeping in mind that the error margins allowed for in Algorithm 1 (namely up to 5%
deviation from ARL0) are fairly relaxed and could easily be tightened at the expense of an increased
computational burden. Still, the proposed AC-SRC more often than not outperforms the conventional
SRC in all aspects. More specifically, it is offers substantial benefits especially for larger ARLs and small to
medium τ.
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However, it ought also be pointed out that the AC-SRC does struggle to outperform the conventional
SRC for ARL0 = 100 as shown in Table 2. Its overall performance however still appears acceptable. A
likely cause stems from the fact that the sequential ranks approximation by an independent uniformly
distributed random variable strictly speaking only holds asymptotically and convergence appears to be
somewhat slow. Note that despite a deviation of up to 5% was allowed in the determination of the AC-SRC
control limits the AC-SRC’s actual ARL is remarkably close to ARL0 and the FARs are consistently lower
than both C and SRC. Finally, focusing on Tables 3 and 4 it is evident that the AC-SRC indeed results in an
increased agility, as evidenced by substantially reduced detection delays.

4.2.2. Performance under Impulsive Noise Contamination

The second part of our performance analysis focused on assessing the performance of C, SRC,
and AC-SRC when subjected to impulsive noise contamination (as described in Section 4.2). Recall
that at time instance τ the distributional shift now occurs from F ∼ (1− η) N (0, 1) + η N (0, κ) to
G ∼ (1− η) N (1, 1) + η N (1, κ) with η = 0.1 and κ = 100 .

The breakdown of the parametric CUSUM is hardly surprising and not worthy of further discussion;
rather the interest lies in whether or not the benefits shown by the SRC in the uncontaminated use case
persist if the underlying process is heavier tailed. Examining Tables 5–7 we answer in the affirmative.
More specifically, while a slight increase in both DD and ARL deviation is observed, all material arguments
raised in Section 4.2.1 apply mutatis mutandis.

In conclusion, we would like to re-emphasize the reasonably consistent degree of fine-tuning
attainable by means of sensibly choosing jmax, wherein smaller jmax yield reduced detection delays
at the expense of an increased type-I error rate, whereas larger jmax result in improved robustness and
decreased agility.

Table 5. ARL0 = 100, 10% contamination.

jmax (AC-SRC)

τ C SRC 6 8 10 12 14 16 18

10
DD 3.8910 52.2870 46.3682 47.2927 52.3379 55.5305 59.8147 62.2322 66.5670
ARL 24.7372 118.8468 99.6766 100.5088 99.6951 100.2877 99.7397 99.4211 99.5998
FAR 0.2834 0.0057 0 0 0 0 0.0001 0.0002 0.0004

20
DD 3.8894 26.8525 23.5949 23.2869 24.8711 26.7932 29.3518 30.8005 33.2495
ARL 24.7353 118.8606 100.0215 100.4114 99.8287 100.1349 99.7336 99.2912 99.6710
FAR 0.5369 0.0610 0.0147 0.0089 0.0066 0.0277 0.0529 0.0640 0.0778

30
DD 3.8831 18.4651 15.8380 16.2014 18.1705 19.2565 20.6417 21.3250 22.9193
ARL 24.7227 118.9065 99.9930 100.2403 99.7697 99.7791 99.8651 99.4605 99.5673
FAR 0.7007 0.1306 0.0696 0.0882 0.1088 0.1161 0.1334 0.1377 0.1585

40
DD 3.9057 14.8526 13.8203 14.0883 15.1973 15.9524 17.1175 17.9106 18.9459
ARL 24.7271 118.8372 99.9986 100.3971 99.7328 100.1732 99.6427 99.3361 99.6082
FAR 0.8071 0.2014 0.1821 0.1811 0.1890 0.2012 0.2189 0.2286 0.2415

50
DD 3.8800 13.0198 12.6930 12.7257 13.9105 14.5288 15.3389 15.9883 16.9118
ARL 24.7468 118.8856 99.9125 100.5026 99.7612 100.0074 99.6560 99.5814 99.4769
FAR 0.8756 0.2697 0.2665 0.2649 0.2843 0.2876 0.2937 0.3087 0.3216
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Table 6. ARL0 = 500, 10% contamination.

jmax (AC-SRC)

τ C SRC 6 8 10 12 14 16 18

10
DD 6.3947 353.9665 225.9275 209.4729 205.9059 204.0480 213.5904 214.6237 233.6764
ARL 65.5479 531.4316 488.0331 484.4087 488.4807 488.2045 499.9793 506.4905 526.8804
FAR 0.0931 0.0001 0 0 0 0 0 0 0

20
DD 6.3823 201.6783 81.3509 71.7558 70.5015 70.3994 72.9243 75.0408 82.1264
ARL 65.5938 531.5086 488.6755 483.7614 485.5939 487.7366 501.0609 506.4544 527.0465
FAR 0.2273 0.0068 0.0015 0.0003 0.0001 0 0 0 0

30
DD 6.3845 123.0448 40.4024 37.0531 36.8415 37.7073 39.4376 41.2816 44.6164
ARL 65.6212 531.4936 488.4589 482.7787 485.7063 487.1630 488.9567 507.7213 526.9891
FAR 0.3423 0.0192 0.0100 0.0043 0.0029 0.0017 0.0010 0.0005 0.0004

40
DD 6.3847 81.4736 27.3471 26.5232 27.0461 28.0854 29.3648 30.9860 33.1040
ARL 65.5715 531.2075 488.4647 485.5648 485.1457 487.8131 500.0233 506.9858 527.3921
FAR 0.4401 0.0338 0.0245 0.0152 0.0114 0.0080 0.0056 0.0036 0.0023

50
DD 6.3891 57.7347 22.3869 22.5064 23.1674 24.1505 25.1836 26.6830 28.3272
ARL 65.5934 531.5276 488.1271 484.9405 485.9766 487.5572 498.3469 506.6913 526.9864
FAR 0.5233 0.0493 0.0417 0.0297 0.0250 0.0191 0.0149 0.0108 0.0076

Table 7. ARL0 = 1000, 10% contamination.

jmax (AC-SRC)

τ C SRC 6 8 10 12 14 16 18

10
DD 7.5806 794.075 571.8691 533.4575 521.0822 520.3675 519.0203 508.9829 512.4341
ARL 97.3143 1044.2857 1007.3 996.5 995.5 998.7 997.2 991.8 992.1
FAR 0.0554 0 0 0 0 0 0 0 0

20
DD 7.5627 509.1507 223.2311 187.2751 180.3638 179.9559 175.3016 177.2089 178.9137
ARL 97.3286 1044.3714 1008.3 997.5 994.8 999.6 997.5 995.3 997.6
FAR 0.1511 0.0023 0.0001 0 0 0 0 0 0

30
DD 7.5561 331.2999 93.7481 76.7901 75.5415 75.9972 76.4086 78.6915 80.2621
ARL 97.3571 1044.9714 1006.5 996.5 998.6 1002.3 997.9 990.1 997.2
FAR 0.2375 0.0079 0.0018 0.0004 0.0002 0 0 0 0

40
DD 7.5618 221.1639 50.4663 44.4734 44.9347 47.2327 48.3099 51.1874 52.2784
ARL 97.3 1044.4857 1006.6 996.6 994.7 998.5 997.2 994.3 994.9
FAR 0.3152 0.0149 0.0063 0.0025 0.0015 0.0006 0.0003 0.0002 0.0001

50
DD 7.5575 152.8864 35.1211 33.7103 34.8390 37.2713 38.4121 41.0106 42.1451
ARL 97.3429 1044.6571 1006.7 996.2 994.1 996.6 996.8 992.8 995.1
FAR 0.3848 0.0224 0.0131 0.0064 0.0043 0.0023 0.0016 0.0009 0.0007

5. Conclusions

In the present work we evaluated an adaptive self-starting distribution-free CUSUM based on
sequential ranks and for the first time provided detailed pseudo-code of a simple, yet effective calibration
algorithm. The main original contribution of this work, however, is in providing precomputed control
limits and reference values for a wide variety of AC-SRC configurations, thus allowing practitioners to
apply the procedure off-the-shelf without further adjustments and irrespective of the data generating
model underlying their specific use case. Performance and robustness of the proposed tabularized control
limits were assessed and compared to both parametric CUSUM and conventional SRC through extensive
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simulation experiments. While far from optimal, we were able to show that the proposed control limits
result in a substantially decreased detection delay, while maintaining good overall robustness properties
and allowing for easy and intuitive fine-tuning.
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Abbreviations

The following abbreviations are used in this manuscript:

AC-SRC Adaptive Control Limit SRC
ARL Average Run Length
CUSUM Cumulative Sum Control Chart
DD Detection Delay
EWMA Exponentially Weighted Moving Average Control Chart
FAR False Alarm Rate
SPC Statistical Process Control
SRC Sequential Ranks CUSUM

Appendix A. Tabularized AC-SRC Control Limits and Reference Values

Table A1. Adaptive control limit SRC (AC-SRC) for ARL0 = 100.

ARL0 100 100 100 100 100 100 100

jmax 6 8 10 12 14 16 18

kAC-SRC 0.5486 0.5318 0.5267 0.5209 0.5180 0.5142 0.5131

h1 0.4168 0.4274 0.4250 0.4247 0.4221 0.4199 0.4165
h2 0.8487 0.8410 0.8331 0.8308 0.8251 0.8209 0.8144
h3 1.2013 1.2080 1.2012 1.1910 1.1775 1.1697 1.1598
h4 1.4961 1.5056 1.4885 1.4765 1.4627 1.4510 1.4378
h5 1.7470 1.7605 1.7395 1.7283 1.7110 1.6984 1.6826
h6 1.9664 1.9825 1.9652 1.9542 1.9375 1.9233 1.9053
h7 2.1859 2.1675 2.1558 2.1388 2.1223 2.1042
h8 2.3741 2.3520 2.3437 2.3244 2.3089 2.2895
h9 2.5270 2.5167 2.4970 2.4818 2.4627
h10 2.6886 2.6807 2.6632 2.6467 2.6268
h11 2.8359 2.8157 2.8016 2.7772
h12 2.9803 2.9638 2.9473 2.9238
h13 3.1035 3.0865 3.0624
h14 3.2351 3.2216 3.1945
h15 3.3497 3.3252
h16 3.4718 3.4474
h17 3.5652
h18 3.6794
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Table A2. AC-SRC for ARL0 = 200.

ARL0 200 200 200 200 200 200 200

jmax 6 8 10 12 14 16 18

kAC-SRC 0.5486 0.5318 0.5269 0.5207 0.5180 0.5145 0.5130

h1 0.4409 0.4557 0.4552 0.4586 0.4570 0.4570 0.4549
h2 0.8964 0.9173 0.9095 0.9112 0.9071 0.9070 0.9020
h3 1.2875 1.3083 1.3054 1.3049 1.2942 1.2925 1.2848
h4 1.6139 1.6366 1.6257 1.6265 1.6155 1.6105 1.6011
h5 1.8911 1.9201 1.9076 1.9136 1.9015 1.8981 1.8865
h6 2.1345 2.1715 2.1616 2.1657 2.1553 2.1488 2.1392
h7 2.3988 2.3878 2.3947 2.3837 2.3791 2.3673
h8 2.6087 2.5963 2.6087 2.5930 2.5904 2.5795
h9 2.7919 2.8033 2.7903 2.7884 2.7725
h10 2.9716 2.9882 2.9766 2.9725 2.9578
h11 3.1640 3.1468 3.1487 3.1324
h12 3.3281 3.3123 3.3123 3.2966
h13 3.4691 3.4709 3.4557
h14 3.6205 3.6227 3.6075
h15 3.7701 3.7512
h16 3.9081 3.8927
h17 4.0295
h18 4.1614

Table A3. AC-SRC for ARL0 = 300.

ARL0 300 300 300 300 300 300 300

jmax 6 8 10 12 14 16 18

kAC-SRC 0.5490 0.5318 0.5266 0.5205 0.5180 0.5143 0.5129

h1 0.4534 0.4678 0.4666 0.4706 0.4696 0.4713 0.4696
h2 0.9374 0.9482 0.9445 0.9519 0.9486 0.9526 0.9496
h3 1.3456 1.3714 1.3611 1.3605 1.3508 1.3553 1.3496
h4 1.6910 1.7255 1.7138 1.7148 1.7049 1.7073 1.7001
h5 1.9880 2.0307 2.0157 2.0219 2.0084 2.0103 2.0058
h6 2.2470 2.2975 2.2822 2.2905 2.2776 2.2836 2.2728
h7 2.5398 2.5260 2.5360 2.5230 2.5290 2.5178
h8 2.7641 2.7492 2.7598 2.7476 2.7539 2.7459
h9 2.9559 2.9689 2.9586 2.9645 2.9548
h10 3.1476 3.1676 3.1502 3.1638 3.1522
h11 3.3505 3.3367 3.3494 3.3405
h12 3.5272 3.5136 3.5292 3.5158
h13 3.6829 3.6986 3.6892
h14 3.8398 3.8602 3.8491
h15 4.0177 4.0039
h16 4.1662 4.1569
h17 4.2997
h18 4.4396
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Table A4. AC-SRC for ARL0 = 370.

ARL0 370 370 370 370 370 370 370

jmax 6 8 10 12 14 16 18

kAC-SRC 0.5489 0.5316 0.5267 0.5208 0.5178 0.5144 0.5130

h1 0.4822 0.5002 0.4747 0.4773 0.4764 0.4785 0.4744
h2 0.9830 1.0085 0.9522 0.9539 0.9505 0.9545 0.9527
h3 1.4209 1.4516 1.3758 1.3710 1.3600 1.3616 1.3602
h4 1.7870 1.8226 1.7224 1.7251 1.7161 1.7210 1.7170
h5 2.1002 2.1490 2.0337 2.0357 2.0246 2.0302 2.0252
h6 2.3789 2.4335 2.3032 2.3066 2.2951 2.3016 2.2936
h7 2.6923 2.5494 2.5554 2.5423 2.5512 2.5462
h8 2.9309 2.7765 2.7809 2.7690 2.7788 2.7749
h9 2.9873 2.9948 2.9819 2.9936 2.9876
h10 3.1838 3.1934 3.1799 3.1936 3.1881
h11 3.3806 3.3685 3.3837 3.3782
h12 3.5565 3.5472 3.5600 3.5547
h13 3.7132 3.7353 3.7295
h14 3.8774 3.8995 3.8938
h15 4.0602 4.0521
h16 4.2078 4.1982
h17 4.3509
h18 4.4898

Table A5. AC-SRC for ARL0 = 400.

ARL0 400 400 400 400 400 400 400

jmax 6 8 10 12 14 16 18

kAC-SRC 0.5486 0.5316 0.5267 0.5206 0.5180 0.5142 0.5129

h1 0.4935 0.5121 0.4817 0.4826 0.4785 0.4809 0.4794
h2 1.0109 1.0346 0.9718 0.9706 0.9607 0.9647 0.9619
h3 1.4632 1.4870 1.3973 1.3911 1.3722 1.3779 1.3723
h4 1.8388 1.8735 1.7536 1.7491 1.7297 1.7348 1.7287
h5 2.1609 2.2105 2.0728 2.0667 2.0436 2.0475 2.0394
h6 2.4470 2.5056 2.3480 2.3429 2.3170 2.3226 2.3141
h7 2.7729 2.6001 2.5929 2.5664 2.5744 2.5657
h8 3.0145 2.8307 2.8272 2.7992 2.8061 2.7965
h9 3.0449 3.0424 3.0084 3.0214 3.0094
h10 3.2445 3.2425 3.2114 3.2261 3.2125
h11 3.4314 3.3986 3.4169 3.4044
h12 3.6114 3.5831 3.6012 3.5891
h13 3.7542 3.7728 3.7589
h14 3.9180 3.9374 3.9242
h15 4.0984 4.0863
h16 4.2527 4.2403
h17 4.3870
h18 4.5315
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Table A6. AC-SRC for ARL0 = 500.

ARL0 500 500 500 500 500 500 500

jmax 6 8 10 12 14 16 18

kAC-SRC 0.5485 0.5314 0.5265 0.5208 0.5182 0.5142 0.5131

h1 0.5208 0.5440 0.5122 0.5059 0.4900 0.4909 0.4846
h2 1.0788 1.1047 1.0372 1.0241 0.9914 0.9933 0.9804
h3 1.5573 1.5953 1.4967 1.4720 1.4230 1.4251 1.4062
h4 1.9657 2.0181 1.8898 1.8564 1.7922 1.7919 1.7678
h5 2.3154 2.3803 2.2343 2.1982 2.1222 2.1218 2.0951
h6 2.6225 2.7034 2.5356 2.4945 2.4104 2.4119 2.3772
h7 2.9926 2.8089 2.7667 2.6718 2.6698 2.6350
h8 3.2611 3.0592 3.0123 2.9119 2.9129 2.8743
h9 3.2905 3.2440 3.1390 3.1376 3.1000
h10 3.5081 3.4586 3.3519 3.3483 3.3045
h11 3.6607 3.5419 3.5462 3.5036
h12 3.8516 3.7302 3.7389 3.6848
h13 3.9112 3.9227 3.8699
h14 4.0841 4.0928 4.0387
h15 4.2556 4.2060
h16 4.4243 4.3662
h17 4.5165
h18 4.6654

Table A7. AC-SRC for ARL0 = 600.

ARL0 600 600 600 600 600 600 600

jmax 6 8 10 12 14 16 18

kAC-SRC 0.5486 0.5320 0.5268 0.5205 0.5181 0.5142 0.5132

h1 0.5482 0.5680 0.5379 0.5378 0.5144 0.5150 0.4981
h2 1.1295 1.1626 1.0953 1.0912 1.0411 1.0418 1.0075
h3 1.6341 1.6843 1.5875 1.5711 1.4977 1.4969 1.4460
h4 2.0644 2.1303 2.0031 1.9906 1.8963 1.8942 1.8294
h5 2.4385 2.5102 2.3621 2.3501 2.2444 2.2388 2.1667
h6 2.7623 2.8489 2.6882 2.6741 2.5530 2.5514 2.4636
h7 3.1570 2.9789 2.9677 2.8323 2.8265 2.7325
h8 3.4369 3.2453 3.2338 3.0898 3.0840 2.9809
h9 3.4938 3.4808 3.3257 3.3265 3.2161
h10 3.7211 3.7120 3.5470 3.5446 3.4283
h11 3.9335 3.7595 3.7615 3.6345
h12 4.1429 3.9641 3.9624 3.8278
h13 4.1480 4.1512 4.0177
h14 4.3312 4.3343 4.1938
h15 4.5149 4.3631
h16 4.6828 4.5280
h17 4.6861
h18 4.8414
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Table A8. AC-SRC for ARL0 = 700.

ARL0 700 700 700 700 700 700 700

jmax 6 8 10 12 14 16 18

kAC-SRC 0.5485 0.5318 0.5269 0.5208 0.5185 0.5146 0.5129

h1 0.5729 0.5981 0.5655 0.5654 0.5399 0.5408 0.5253
h2 1.1772 1.2201 1.1495 1.1459 1.0942 1.0956 1.0609
h3 1.7063 1.7644 1.6641 1.6521 1.5692 1.5707 1.5224
h4 2.1557 2.2336 2.1034 2.0897 1.9904 1.9890 1.9284
h5 2.5459 2.6385 2.4855 2.4705 2.3538 2.3501 2.2775
h6 2.8870 2.9966 2.8256 2.8117 2.6776 2.6768 2.5981
h7 3.3249 3.1313 3.1167 2.9722 2.9705 2.8835
h8 3.6161 3.4151 3.4005 3.2427 3.2436 3.1445
h9 3.6734 3.6624 3.4919 3.4926 3.3935
h10 3.9141 3.9049 3.7263 3.7323 3.6206
h11 4.1381 3.9465 3.9507 3.8318
h12 4.3565 4.1583 4.1654 4.0471
h13 4.3633 4.3671 4.2385
h14 4.5495 4.5640 4.4302
h15 4.7462 4.6082
h16 4.9226 4.7855
h17 4.9518
h18 5.1086

Table A9. AC-SRC for ARL0 = 800.

ARL0 800 800 800 800 800 800 800

jmax 6 8 10 12 14 16 18

kAC-SRC 0.5487 0.5316 0.5269 0.5206 0.5181 0.5144 0.5134

h1 0.5900 0.6251 0.5884 0.5935 0.5703 0.5702 0.5459
h2 1.2147 1.2666 1.1924 1.1997 1.1524 1.1523 1.1024
h3 1.7631 1.8362 1.7274 1.7317 1.6618 1.6580 1.5869
h4 2.2318 2.3283 2.1874 2.1918 2.1045 2.0984 2.0080
h5 2.6372 2.7569 2.5894 2.5957 2.4860 2.4804 2.3743
h6 2.9928 3.1350 2.9422 2.9539 2.8334 2.8273 2.7040
h7 3.4745 3.2697 3.2773 3.1406 3.1403 3.0023
h8 3.7846 3.5575 3.5746 3.4295 3.4231 3.2787
h9 3.8327 3.8521 3.6982 3.6907 3.5340
h10 4.0909 4.1112 3.9451 3.9418 3.7774
h11 4.3554 4.1809 4.1773 3.9958
h12 4.5831 4.4028 4.4008 4.2094
h13 4.6160 4.6165 4.4223
h14 4.8154 4.8222 4.6167
h15 5.0125 4.8086
h16 5.2057 4.9797
h17 5.1611
h18 5.3314
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Table A10. AC-SRC for ARL0 = 900.

ARL0 900 900 900 900 900 900 900

jmax 6 8 10 12 14 16 18

kAC-SRC 0.5491 0.5318 0.5267 0.5204 0.5181 0.5148 0.5131

h1 0.6016 0.6433 0.6097 0.6173 0.5909 0.5892 0.5726
h2 1.2415 1.3066 1.2347 1.2472 1.1946 1.1904 1.1571
h3 1.8051 1.8973 1.7927 1.8051 1.7256 1.7173 1.6715
h4 2.2886 2.4069 2.2714 2.2870 2.1874 2.1766 2.1170
h5 2.7038 2.8523 2.6929 2.7108 2.5906 2.5776 2.5060
h6 3.0740 3.2459 3.0660 3.0866 2.9494 2.9373 2.8504
h7 3.5973 3.3982 3.4314 3.2756 3.2617 3.1673
h8 3.9184 3.7021 3.7371 3.5752 3.5587 3.4569
h9 3.9949 4.0333 3.8552 3.8354 3.7322
h10 4.2626 4.3011 4.1154 4.0952 3.9796
h11 4.5601 4.3648 4.3439 4.2216
h12 4.7992 4.5941 4.5710 4.4496
h13 4.8169 4.7958 4.6658
h14 5.0292 5.0140 4.8737
h15 5.2138 5.0763
h16 5.4120 5.2603
h17 5.4477
h18 5.6263

Table A11. AC-SRC for ARL0 = 1000.

ARL0 1000 1000 1000 1000 1000 1000 1000

jmax 6 8 10 12 14 16 18

kAC-SRC 0.5488 0.5315 0.5267 0.5204 0.5180 0.5145 0.5131

h1 0.6210 0.6627 0.6288 0.6365 0.6123 0.6133 0.5929
h2 1.2830 1.3521 1.2773 1.2897 1.2401 1.2415 1.2002
h3 1.8660 1.9650 1.8565 1.8668 1.7946 1.7942 1.7343
h4 2.3673 2.4839 2.3538 2.3700 2.2772 2.2754 2.2008
h5 2.7970 2.9581 2.7936 2.8136 2.7032 2.6998 2.6098
h6 3.1839 3.3639 3.1819 3.2012 3.0771 3.0784 2.9711
h7 3.7312 3.5328 3.5546 3.4182 3.4149 3.3030
h8 4.0695 3.8544 3.8793 3.7291 3.7279 3.6101
h9 4.1454 4.1850 4.0249 4.0271 3.8824
h10 4.4204 4.4694 4.2975 4.2991 4.1504
h11 4.7359 4.5586 4.5521 4.4033
h12 4.9908 4.7935 4.8017 4.6367
h13 5.0253 5.0380 4.8617
h14 5.2440 5.2558 5.0762
h15 5.4759 5.2897
h16 5.6774 5.4903
h17 5.6778
h18 5.8687
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