

Supplementary Material

Unimolecular Exciplexes by Ugi Four-component Reaction

Maria Ochs,^{1,2} Bernhard Mayer,¹ and Thomas J. J. Müller¹*

¹Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany

²Ernst-Berl Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany

* Correspondence: Thomas J. J. Müller: ThomasJJ.Mueller@hhu.de

Table of contents

1.	Optimization of the Synthesis of Compound 5a
2.	¹ H and ¹³ C NMR Spectra of Compounds 5
2.1	2-(<i>N</i> -(9-Anthrylmethyl)acetamido)- <i>N</i> -(<i>tert</i> -butyl)-2-(4-(dimethylamino)phenyl) acetamide (5a)
2.2	2-(9-Anthryl)- <i>N</i> -(<i>tert</i> -butyl)-2-(<i>N</i> -(4-(dimethylamino)benzyl)acetamido)acetamide (5b)7
2.3	2-(<i>N</i> -(9-Anthrylmethyl)acetamido)- <i>N</i> -tert-butylbutanamide (5c)
2.4	<i>N-tert</i> -Butyl-2-(4-(dimethylamino)phenyl)-2-(<i>N</i> -methylacetamido)acetamide (5d)
2.5	<i>N-tert</i> -Butyl-2-(<i>N</i> -(4-(dimethylamino)benzyl)acetamido)butanamide (5e)10
2.6	2-(9-Anthryl)- <i>N</i> -(<i>tert</i> -butyl)-2-(<i>N</i> -methylacetamido)acetamide (5f)11
2.7	<i>N-(tert-</i> Butyl)-2-(4-(dimethylamino)phenyl)-2-(<i>N</i> -(1-naphthylmethyl)acetamido) acetamide (5 g)
2.8	<i>N-tert</i> -Butyl-2-(<i>N</i> -(4-(dimethylamino)benzyl)acetamido)-2-(1-naphthyl)acetamide (5h) 12
2.9	<i>N-tert</i> -Butyl-2-(4-(dimethylamino)phenyl)-2-(<i>N</i> -(1-pyrenylmethyl)acetamido) acetamide (5i)
2.10	N-(tert-Butyl)-2-(N-(4-(dimethylamino)benzyl)acetamido)-2-(1-pyrenyl)acetamide (5j) 14
3.	Absorption and Emission Spectra of Compounds 5 16
3.1	2-(<i>N</i> -(9-Anthrylmethyl)acetamido)- <i>N</i> -(<i>tert</i> -butyl)-2-(4-(dimethylamino)phenyl) acetamide (5a)
3.2	2-(9-Anthryl)-N-(<i>tert</i> -butyl)-2-(N-(4-(dimethylamino)benzyl)acetamido)acetamide (5b) 18
3.3	2-(N-(9-Anthrylmethyl)acetamido)-N-tert-butylbutanamide (5c)
3.4	<i>N-tert</i> -Butyl-2-(4-(dimethylamino)phenyl)-2-(<i>N</i> -methylacetamido)acetamide (5d)20
3.5	<i>N-tert</i> -Butyl-2-(<i>N</i> -(4-(dimethylamino)benzyl)acetamido)butanamide (5e)

License: CC BY 4.0 International - Creative Commons, Attribution

3.6	2-(9-Anthryl)- <i>N</i> -(<i>tert</i> -butyl)-2-(<i>N</i> -methylacetamido)acetamide (5f)
3.7	<i>N-(tert</i> -Butyl)-2-(4-(dimethylamino)phenyl)-2-(<i>N</i> -(1-naphthylmethyl)acetamido) acetamide (5g)
3.8	<i>N-tert</i> -Butyl-2-(<i>N</i> -(4-(dimethylamino)benzyl)acetamido)-2-(1-naphthyl)acetamide (5h) 24
3.9	<i>N-tert</i> -Butyl-2-(4-(dimethylamino)phenyl)-2-(<i>N</i> -(1-pyrenylmethyl)acetamido) acetamide (5 i)
3.10	N-(tert-Butyl)-2-(N-(4-(dimethylamino)benzyl)acetamido)-2-(1-pyrenyl)acetamide (5j) 26
4.	Lippert-Mataga Analysis of Compound 5a
5.	DFT and TDDFT Calculations on the syn- and anti-Structures 5a, 5g, and 5i
5.1	Structure <i>anti</i> -5a
5.2	Structure <i>syn</i> - 5a
5.3	Structure <i>anti</i> - 5 g
5.4	Structure <i>syn</i> - 5 g
5.5	Structure <i>anti</i> -5i
5.6	Structure <i>syn-</i> 5i
5.7	TDDFT Calculations (Absorption Bands) of syn- and anti-Structures 5a, 5g, and 5i
5.8	TDDFT Calculations (Absorption and Exciplex Emission Bands) of <i>syn-</i> and <i>anti-</i> Structures 5a
5.8.1	anti-Structure 5a
5.8.2	<i>syn</i> -Structure 5a

1. Optimization of the Synthesis of Compound 5a

Table S1. Optimization of the Ugi-4CR synthesis of bichromophore 5a.

^aIn MeOH. ^bIn CH₂Cl₂. ^cTiCl₄ (5.00 mol%) was added as a catalyst. ^dAlCl₃ (5.00 mol%) was added as a catalyst. ^eThe stoichiometric ratio of **1a**:**2a**:**3**:**4** was 1.2:1.2:1:1. ^fCompound **2a** was added neat.

After liberation of the free amine with an auxiliary base and addition of a dichloromethane solution of aldehyde **2**, acetic acid (**3**) and isonitrile **4** were successively added after an hour of stirring at room temp. All reactions were performed on an equistoichiometric scale (1:1:1:1) with respect to compounds **1a**, **2a**, **3** and **4** and the reported yields are isolated yields after chromatographic purification.

In our previous study on donor-acceptor conjugates potassium carbonate could successfully employed for liberating the amine, however, here we found that triethylamine is clearly superior with respect to isolated yields (Table S1, entries 1 and 2). As a consequence further optimization was conducted with triethylamine as a base, where the amount of base did not affect the yield of isolated compound **5a** (Table S1, entries 3-12). Also the addition of catalytic amounts of Lewis acid catalysts for increasing the electrophilicity of the imine intermediate essentially did not affect the yield (Table 1, entries 4 and 5). Expectedly, increasing the substrate concentrations led to a slight increase in yield (Table S1, entries 3 and 4), as well as increasing the ratio of amine and aldehyde to acetic acid and isonitrile (Table S1, entry 7). However, the latter causes a deviation from the preferred equistoichiometric ratio. The temperature window for full conversion within 24 h lies within room temp and 40 °C, with a significant decrease in yield at 0 °C and 60 °C (Table S1, entries 8 and 10). Finally, increasing the reaction time does not affect the yield of compound **5a** (Table S1, entries 6, 11 and 12).

Optimization of the Ugi-4CR synthesis of bichromophore 5a.

In a 25 mL Schlenk tube with a magnetic stir bar were placed methylamine hydrochloride **1a** (123 mg, 0.50), a base, and methanol and the mixture was stirred for 30 min (for experimental details see Table 4). Then, aldehyde **2a** (76.6 mg, 0.50 mmol) dissolved in dichloromethane was added dropwise and the reaction mixture was stirred for 1 h. Finally, acetic acid (**3**) (30 mg, 0.50 mmol) and *tert*-butyl isocyanide (**4**) (0.06 mL, 0.50 mmol) were added and reaction mixture was stirred at the indicated temperature *T* for the time *t*. After removal of the solvents the crude products were purified by flash chromatography on silica gel (*n*-hexane/ethyl acetate) to give analytically pure bichromophore **5a** as a light yellow solid.

T (MeOH	CH_2Cl_2	D.	Τ	t	Yield of 5a	
Entry	[mL]	[mL]	Base	[°C]	[h]	$[mg](\%)^{a}$	
1	2.00	1.00	28 mg (0.5 mmol) of KOH	25	24	43 (18)	
2	2.00	1.00	0.14 mL (1.00 mmol) of NEt_3	25	24	128 (53)	
3	1.50	0.50	0.14 mL (1.00 mmol) of NEt_3	25	24	137 (57)	
4	1.50	0.50	0.14 mL (1.00 mmol) of NEt_3^{b}	25	24	145 (60)	
5	1.50	0.50	0.14 mL (1.00 mmol) of NEt_3^{c}	25	24	123 (51)	
6	1.00	0.25	0.07 mL (0.50 mmol) of NEt_3	25	24	144 (60)	
7 ^d	1.00	0.25	0.08 mL (0.60 mmol) of NEt_3	25	24	205 (71)	
8 ^b	1.00	0.25	0.07 mL (0.50 mmol) of NEt_3	0	24	19 (8)	
9	1.00	0.25	0.07 mL (0.50 mmol) of NEt_3	40	24	145 (60)	
10	2.00	-	0.07 mL (0.50 mmol) of NEt_3	60	24	53 (22)	
11	1.00	0.25	0.07 mL (0.50 mmol) of NEt_3	25	48	144 (60)	
12	1.00	0.25	0.07 mL (0.50 mmol) of NEt_3	25	98	140 (58)	

Table S2. Experimental details of the Ugi-4CR synthesis of the optimization of the Ugi-4CR synthesis of bichromophore **5a**.

^aIsolated yield after flash chromatography. ^bTiCl₄ (4.7 mg, 25 μ mol) was added as a catalyst. ^cAlCl₃ (3.3 mg, 25 μ mol) was added as a catalyst. ^dMethyl ammonium chloride **1a** (148 mg, 0.60 mmol), aldehyde **2a** (91.9 mg, 0.60 mmol), acetic acid (**3**) (30 mg, 0.50 mmol), and *tert*-butyl isocyanide (**4**) (0.06 mL, 0.50 mmol) were added in a stoichiometric ratio of 1.2:1.2:1:1.

- 2. ¹H and ¹³C NMR Spectra of Compounds 5
- 2.1 2-(*N*-(9-Anthrylmethyl)acetamido)-*N*-(*tert*-butyl)-2-(4-(dimethylamino)phenyl) acetamide (5a)

2.2 2-(9-Anthryl)-*N*-(*tert*-butyl)-2-(*N*-(4-(dimethylamino)benzyl)acetamido)acetamide (5b)

5c

2.4 *N-tert*-Butyl-2-(4-(dimethylamino)phenyl)-2-(*N*-methylacetamido)acetamide (5d)

2.5 *N-tert*-Butyl-2-(*N*-(4-(dimethylamino)benzyl)acetamido)butanamide (5e)

Figure S10. ¹³C NMR and 135 DEPT (75 MHz, $CDCl_3$) of compound 5e (recorded at T = 293 K).

2-(9-Anthryl)-N-(tert-butyl)-2-(N-methylacetamido)acetamide (5f) 2.6

Figure S12. ¹³C NMR and 135 DEPT (75 MHz, $CDCl_3$) of compound **5f** (recorded at T = 293 K).

2.7 *N-(tert-*Butyl)-2-(4-(dimethylamino)phenyl)-2-(*N*-(1-naphthylmethyl)acetamido) acetamide (5g)

2.8 *N-tert*-Butyl-2-(*N*-(4-(dimethylamino)benzyl)acetamido)-2-(1-naphthyl)acetamide (5h)

Figure S16. ¹³C NMR and 135 DEPT (75 MHz, CDCl₃) of compound **5h** (recorded at T = 293 K).

2.10 N-(tert-Butyl)-2-(N-(4-(dimethylamino)benzyl)acetamido)-2-(1-pyrenyl)acetamide (5j)

Figure S20. ¹³C NMR and 135 DEPT (75 MHz, CDCl₃) of compound 5j (recorded at T = 293 K).

- 3. Absorption and Emission Spectra of Compounds 5
- 3.1 2-(*N*-(9-Anthrylmethyl)acetamido)-*N*-(*tert*-butyl)-2-(4-(dimethylamino)phenyl) acetamide (5a)

Figure S21. UV/Vis spectrum of compound **5a** (recorded in CH_2Cl_2 (chromasolv), $c(5a) = 10^{-3}$ M, T = 293 K).

Figure S22. Emission spectrum of compound **5a** (recorded in CH₂Cl₂ (chromasolv), $c(5a) = 10^{-5}$ M, T = 293 K, $\lambda_{exc} = 391$ nm).

Figure S23. Solid state emission spectrum of dyad **5a** (λ_{exc} = 391 nm, *T* = 298 K).

Figure S24. Normalized excitation (absorption) (blue lines) and emission (red lines) spectra of compound 5a (recorded in CH₂Cl₂ (chromasolv), T = 298 K, $\lambda_{exc} = 268$ nm).

Figure S25. UV/Vis spectrum of compound **5b** (recorded in CH_2Cl_2 (chromasolv), $c(5b) = 10^{-3}$ M, T = 293 K).

Figure S26. Emission spectrum of compound **5b** (recorded in CH₂Cl₂ (chromasolv), $c(\mathbf{5b}) = 10^{-5}$ M, T = 293 K, $\lambda_{exc} = 391$ nm).

Figure S27. UV/Vis spectrum of compound **5c** (recorded in CH_2Cl_2 (chromasolv), $c(5c) = 10^{-3}$ M, T = 293 K).

Figure S28. Emission spectrum of compound **5c** (recorded in CH₂Cl₂ (chromasolv), $c(5c) = 10^{-5}$ M, T = 293 K, $\lambda_{exc} = 391$ nm).

Figure S29. UV/Vis spectrum of compound **5d** (recorded in CH_2Cl_2 (chromasolv), $c(5d) = 10^{-3}$ M, T = 293 K).

Figure S30. Emission spectrum of compound **5d** (recorded in CH₂Cl₂ (chromasolv), $c(5d) = 10^{-5}$ M, T = 293 K, $\lambda_{exc} = 268$ nm).

Figure S31. UV/Vis spectrum of compound **5e** (recorded in CH_2Cl_2 (chromasolv), $c(5e) = 10^{-3}$ M, T = 293 K).

Figure S32. Emission spectrum of compound **5e** (recorded in CH₂Cl₂ (chromasolv), $c(5e) = 10^{-5}$ M, T = 293 K, $\lambda_{exc} = 268$ nm).

Figure S33. UV/Vis spectrum of compound **5f** (recorded in CH_2Cl_2 (chromasolv), $c(\mathbf{5f}) = 10^{-3}$ M, T = 293 K).

Figure S34. Emission spectrum of compound **5f** (recorded in CH₂Cl₂ (chromasolv), $c(\mathbf{5f}) = 10^{-5}$ M, T = 293 K, $\lambda_{exc} = 391$ nm).

Figure S35. UV/Vis spectrum of compound **5g** (recorded in CH₂Cl₂ (chromasolv), $c(\mathbf{5g}) = 10^{-3}$ M, T = 293 K).

Figure S36. Emission spectrum of compound **5g** (recorded in CH₂Cl₂ (chromasolv), $c(\mathbf{5g}) = 10^{-5}$ M, T = 293 K, $\lambda_{exc} = 268$ nm).

Figure S37. UV/Vis spectrum of compound **5h** (recorded in CH_2Cl_2 (chromasolv), $c(\mathbf{5h}) = 10^{-3}$ M, T = 293 K).

Figure S38. Emission spectrum of compound **5h** (recorded in CH₂Cl₂ (chromasolv), $c(\mathbf{5h}) = 10^{-5}$ M, T = 293 K, $\lambda_{exc} = 268$ nm).

3.11 *N-tert*-Butyl-2-(4-(dimethylamino)phenyl)-2-(*N*-(1-pyrenylmethyl)acetamido) acetamide (5i)

Figure S39. UV/Vis spectrum of compound **5i** (recorded in CH_2Cl_2 (chromasolv), $c(5i) = 10^{-3}$ M, T = 293 K).

Figure S40. Emission spectrum of compound **5i** (recorded in CH₂Cl₂ (chromasolv), $c(5i) = 10^{-5}$ M, T = 293 K, $\lambda_{exc} = 348$ nm).

Figure S41. UV/Vis spectrum of compound **5j** (recorded in CH_2Cl_2 (chromasolv), $c(5j) = 10^{-3}$ M, T = 293 K).

Figure S42. Emission spectrum of compound **5j** (recorded in CH₂Cl₂ (chromasolv), $c(5j) = 10^{-5}$ M, T = 293 K, $\lambda_{exc} = 348$ nm).

4. Lippert-Mataga Analysis of Compound 5a

Solvent	Permittivity ^[1] <i>E</i> r	Refractive index ^[2] n_D^{20}	Δf	Absorption λ_{max} [nm] (ε [Lmol ⁻¹ cm ⁻¹])	Emission $\lambda_{max,em}$ [nm]	Stokes shift $\Delta \tilde{v}$ [cm ⁻¹]
1,4-dioxane	2.25	1.4224	0.025	352 (6400), 370 (9900), 389 (8900)	418, 543	5773
dichloromethane	8.93	1.4241	0.217	352 (5100), 371 (8300), 391 (7700)	417, 444, 561	7750
acetone	20.7	1.3587	0.284	351 (6100), 369 (9400), 389 (8900)	418, 442, 560	7850
acetonitrile	35.94	1.3441	0.305	351 (6200), 369 (9300), 389 (8700)	416, 442, 572	8532
$\Delta f = \frac{\varepsilon_r - 1}{2\varepsilon_r + 1} - \frac{n^2 - 1}{2n^2 + 1}$						
Lippert-Mataga eo	$\tilde{v}_a - \tilde{v}_e = \frac{2\Delta f}{4\pi\varepsilon_0 hca^3} (\mu_E - \mu_G)^2 + const$					

Table S3. Selected solvent parameters and absorptions, emissions and Stokes shifts.

solvent orientation polarizability Δf

Figure S43. Lippert-Mataga-plot of dyad **5a** (Stokes shifts $\Delta \tilde{v} (= \tilde{v}_a - \tilde{v}_e)$ were determined from absorption and emission spectra at T = 298 K, $\Delta f = \frac{\varepsilon_r - 1}{2\varepsilon_r + 1} - \frac{n^2 - 1}{2n^2 + 1}$).

- 5. DFT and TDDFT Calculations on the *syn-* and *anti-*Structures 5a, 5g, and 5i
- 5.1 Structure *anti*-5a

B3LYP 6-311G** SCRF (solvent = dichloromethane) optimized S_0 ground state xyz-coordinates

- C -1.514970 -1.487121 -2.394061
- $N \quad \text{-}0.221151 \quad 0.119214 \quad \text{-}0.956352$
- $C \quad 1.063924 \quad 0.868975 \ \text{-}0.830911$
- $C \quad 1.079420 \quad 1.823446 \quad 0.390899$
- N 1.244453 3.125646 0.069779
- $C \quad 1.410716 \quad 4.265014 \quad 1.013641$
- O 0.627420 -0.623616 -2.932106
- O 0.996493 1.401497 1.543106
- C 2.662532 4.050149 1.881335
- C 1.587910 5.516411 0.141366
- C 0.154632 4.412740 1.889409
- C 2.283973 -0.035126 -0.697779
- C 2.274877 -1.208858 0.056065
- C 3.419244 -1.983429 0.212233
- C 4.650035 -1.600614 -0.367121
- C 4.648097 -0.419153 -1.142011
- C 3.490705 0.336799 -1.293037
- N 5.808749 -2.343872 -0.173764
- C 6.969330 -2.073902 -1.012370
- C 5.701889 -3.687542 0.380084
- $C \quad -1.429552 \quad 0.742766 \quad -0.324945$
- C -2.602996 -0.146368 0.054152
- C -2.457892 -1.064024 1.122487
- C -3.567909 -1.901586 1.508432
- C -4.790365 -1.765997 0.848729
- C -4.968878 -0.829758 -0.169997
- C -3.859040 0.001632 -0.583639
- C -6.238721 -0.690449 -0.814122
- C -6.427373 0.213670 -1.820057
- C -5.342473 1.031764 -2.240828
- C -4.112025 0.928979 -1.649663

C -1.241434 -1.198145 1.866886 -1.129196 -2.103041 2.889207 С C -2.218222 -2.947171 3.243216 C -3.404327 -2.842829 2.572179 H -1.835312 -2.043545 -1.514878 Н -2.358225 -0.885747 -2.738679 Н -1.241493 -2.179039 -3.189299 1.196907 1.462647 -1.740602 Η 1.293217 3.349770 -0.912846 Η 2.799811 4.905546 2.547982 Η 2.567453 3.149617 2.488054 Η 3.553424 3.957518 1.254712 Η 1.719186 6.395244 0.775466 Η 0.710834 5.683988 -0.490754 Η Η 2.469688 5.427928 -0.500062 Н -0.001102 3.525123 2.502474 Η 0.266351 5.276254 2.550364 H -0.731079 4.570345 1.268151 1.354981 -1.543874 0.518797 Η Н 3.347472 -2.892154 0.793527 5.548347 -0.087087 -1.639937 Η Η 3.534611 1.230806 -1.908089 Η 7.791694 -2.712304 -0.692348 Η 6.777290 -2.264330 -2.078752 Η 7.297565 -1.037597 -0.904255 5.235250 -3.668066 1.367542 Η Η 5.121150 -4.366882 -0.261338 6.702767 -4.100062 0.499486 Η H -1.079904 1.199028 0.596374 Н -1.765437 1.561729 -0.960458 Н -5.625114 -2.394701 1.142510 Н -7.053326 -1.325023 -0.481363 Н -7.394112 0.311201 -2.300337 H -5.493028 1.746469 -3.042151 H -3.320354 1.570831 -2.010287

H-0.400680-0.5576221.638535H-0.199107-2.1738893.442235H-2.105129-3.6610594.051201

Zero-point correction =	0.595967 (Hartree/particle)
Sum of electronic and zero-point energies = kcal/mol	-1516.926684 a.u., -951871.49421
Sum of electronic and thermal energies = kcal/mol	-1516.892196 a.u., -951849.85299
Sum of electronic and thermal enthalpies = kcal/mol	-1516.891252 a.u., -951849.2606299999
Sum of electronic and thermal free energies = kcal/mol	-1516.994622 a.u., -951914.125305

5.2 Structure syn-5a

B3LYP 6-311G** SCRF (solvent = dichloromethane) optimized S_0 ground state xyz-coordinates

- C -1.222807 -2.428771 -2.528425
- C -0.966391 -3.926751 -2.555851
- N -0.897852 -1.713119 -1.397286
- C -1.373477 -0.313397 -1.364911
- C -2.670090 -0.180907 -0.520260
- N -3.137806 1.082990 -0.415306
- $C \ -4.428551 \ 1.513854 \ 0.184433$
- O -1.716133 -1.889027 -3.522526
- O -3.251950 -1.169399 -0.077210
- C -4.483574 3.040130 0.022031
- $C \quad \text{-}5.602843 \quad 0.866491 \quad \text{-}0.569830$
- C -4.471413 1.147997 1.678040
- $C \quad \text{-}0.294942 \quad 0.740514 \quad \text{-}1.147755$
- C -0.044965 1.381891 0.069067
- C 0.947597 2.346163 0.201044
- C 1.748266 2.730557 -0.898538
- C 1.502613 2.072649 -2.126067
- C 0.502818 1.115629 -2.235891
- N 2.712307 3.718475 -0.785606

С 3.675193 3.902649 -1.864079 С 3.092484 4.197808 0.536918 С -0.466069 -2.408229 -0.160711 0.651490 -1.781923 0.664334 С С 1.969708 -1.737885 0.149830 С 3.052611 -1.261746 0.976008 С 2.790435 -0.863563 2.287764 С 1.502441 -0.912748 2.819610 С 0.403607 -1.374890 1.998489 1.259012 -0.511145 4.171095 С С 0.002165 -0.545592 4.704130 -1.088974 -0.980466 3.901436 С С -0.897867 -1.377479 2.605206 С 2.301041 -2.161814 -1.176788 С 3.587683 -2.123549 -1.644463 4.647155 -1.648622 -0.823617 С С 4.381341 -1.228273 0.449621 Η 0.083014 -4.179684 -2.389406 Н -1.559653 -4.444794 -1.798570 H -1.258806 -4.286818 -3.539886 Н -1.734639 -0.164514 -2.384846 H -2.559895 1.811098 -0.810228 H -5.415888 3.425351 0.439716 H -3.652871 3.522014 0.545877 Н -4.442543 3.325153 -1.033395 Н -6.550275 1.211106 -0.146755 Н -5.563293 -0.220155 -0.492565 Н -5.579009 1.143049 -1.627250 Н -3.639261 1.614084 2.212044 H -5.405464 1.506156 2.119369 H -4.414134 0.068402 1.816295 H -0.629319 1.131424 0.946110 1.096322 2.798775 1.171352 Η 2.087305 2.311111 -3.003482 Η H 0.343381 0.643242 -3.200199

H 4.301729 3.014274 -2.027255
H 3.171361 4.142927 -2.803530
H 4.325349 4.740476 -1.617278
H 2.229529 4.606454 1.068367
H 3.538961 3.410303 1.160531

H 3.819365 5.000892 0.425587

Н -1.346135 -2.567489 0.454905

Н -0.120667 -3.395035 -0.456800

Н 3.608830 -0.516550 2.910994

H 2.102758 -0.175767 4.765132

Н -0.170601 -0.239889 5.729735

Н -2.088290 -0.992812 4.322106

Н -1.762408 -1.676564 2.029912

Н 1.518993 -2.506500 -1.835940

Н 3.802395 -2.453413 -2.654820

Н 5.659034 -1.622976 -1.211726

Zero-point correction =

0.596034 (Hartree/particle)

Sum of electronic and zero-point energies = -1516.934380 a.u., -951876.32345 kcal/mol Sum of electronic and thermal energies = -1516.899808 a.u., -951854.62952 kcal/mol Sum of electronic and thermal enthalpies = -1516.898864 a.u., -951854.03716 kcal/mol Sum of electronic and thermal free energies = -1517.002577 a.u., -951919.1170675 kcal/mol

5.3 Structure anti-5g

B3LYP 6-311G** SCRF (solvent = dichloromethane) optimized \mathbf{S}_0 ground state xyz-coordinates

- $C \quad 0.483071 \quad 0.420044 \quad 2.870917$
- C 1.385577 -0.558297 3.598236
- N 0.281529 0.222280 1.526619
- C -0.784651 1.022533 0.866553
- C -0.214800 1.898503 -0.266834
- N -0.489497 3.217832 -0.133940
- C -0.136728 4.304515 -1.086036
- O -0.062612 1.337573 3.489215
- O 0.413181 1.416025 -1.206841

С 1.391952 4.410617 -1.223199 -0.791357 4.041972 -2.453307 С С -0.697063 5.599792 -0.480583 C -1.966514 0.170719 0.416954 -2.921041 -0.206326 1.371419 С С -4.015915 -0.995418 1.047222 -4.224422 -1.444481 -0.278875 С -3.254529 -1.072249 -1.236503 C -2.161188 -0.283086 -0.891628 С -5.334987 -2.196159 -0.622738 Ν -6.170417 -2.761545 0.429126 С C -5.388200 -2.832432 -1.932658 С 0.893600 -0.897945 0.804158 С 2.351937 -0.727097 0.398599 С 3.020295 -1.824471 -0.238529 4.394952 -1.677675 -0.620055 С С 5.063655 -0.451343 -0.364349 4.398720 0.584674 0.240881 С С 3.043628 0.441422 0.619764 С 2.379091 -3.063871 -0.518288 С 3.053943 -4.095205 -1.131768 С 4.409772 -3.946374 -1.501411 С 5.061310 -2.762329 -1.249889 Η 2.328786 -0.732445 3.080850 Η 1.583195 -0.158909 4.590823 0.877666 -1.521911 3.704994 Η Н -1.137410 1.675600 1.661480 Н -0.992795 3.498226 0.694536 1.646727 5.235288 -1.894315 Η 1.851806 4.605900 -0.250761 Η Η 1.810129 3.489711 -1.629239 Н -0.562423 4.864513 -3.136094 Н -1.877700 3.973033 -2.352029 H -0.421331 3.114925 -2.891342 Н -0.253566 5.800525 0.499198

Н -0.468939 6.444298 -1.133797 H -1.783708 5.543438 -0.367124 H -2.807123 0.122259 2.399810 H -4.715002 -1.253993 1.830256 H -3.348226 -1.395167 -2.263967 H -1.448367 -0.019886 -1.663321 Н -6.575476 -1.977201 1.073045 H -7.013131 -3.277017 -0.028655 H -5.627468 -3.479148 1.060825 H -4.586455 -3.570787 -2.076853 H -6.345291 -3.340265 -2.039763 Н -5.317411 -2.090766 -2.732045 H 0.789478 -1.807237 1.402534 Н 0.295700 -1.059574 -0.092895 Н 6.103358 -0.348954 -0.656590 H 4.906791 1.522933 0.433644 H 2.542855 1.277588 1.091372 Н 1.339753 -3.207153 -0.251568 H 2.541470 -5.028924 -1.334712 H 4.930650 -4.765707 -1.983817

Zero-point correction = 0.549461 (Hartree/particle) Sum of electronic and zero-point energies = -1363.320785 a.u., -855483.7925875 kcal/mol Sum of electronic and thermal energies = -1363.288779 a.u., -855463.7088225 kcal/mol Sum of electronic and thermal enthalpies = -1363.287835 a.u., -855463.1164625001 kcal/mol Sum of electronic and thermal free energies = -1363.387155 a.u., -855525.4397625 kcal/mol

5.4 Structure syn-5g

B3LYP 6-311G** SCRF (solvent = dichloromethane) optimized \mathbf{S}_0 ground state xyz-coordinates

- C -1.649528 -0.722843 2.003174
- C -1.813517 -1.862752 2.994736
- N -1.168718 -1.000311 0.748762
- C -1.099605 0.081801 -0.268668
- C -2.441695 0.854418 -0.456186

- N -3.556893 0.089573 -0.384533
 C -4.959243 0.543183 -0.577620
 O -1.973408 0.420930 2.321209
- O -2.441362 2.037844 -0.775230
- C -5.151677 1.058584 -2.014241
- C -5.841586 -0.692839 -0.348476
- C -5.317403 1.635155 0.445811
- C 0.108671 0.997626 -0.169369
- C 1.020540 1.034143 -1.226919
- C 2.139038 1.861594 -1.215895
- C 2.410310 2.698813 -0.112666
- C 1.474906 2.675612 0.947489
- C 0.360084 1.847038 0.914671
- N 3.548237 3.494732 -0.062735
- C 4.322049 3.696811 -1.280633
- C 3.636967 4.540595 0.948402
- $C \quad -0.847917 \quad -2.377045 \quad 0.298495$
- $C \quad 0.432496 \ -2.531401 \ -0.502982$
- C 1.729510 -2.427484 0.097794
- C 2.889226 -2.647282 -0.716354
- C 2.730526 -2.957830 -2.093337
- C 1.478817 -3.058723 -2.645267
- C 0.334445 -2.848433 -1.842153
- C 1.927655 -2.124797 1.471409
- C 3.190723 -2.049751 2.012122
- C 4.330567 -2.268398 1.205921
- C 4.179079 -2.559003 -0.128723
- Н -2.218571 -1.439708 3.911518
- H -2.501364 -2.625903 2.622059
- Н -0.865531 -2.353179 3.227484
- Н -0.989966 -0.449204 -1.217878
- Н -3.438330 -0.856418 -0.056244
- H -4.510869 1.918813 -2.206872
- H -4.913085 0.274921 -2.738506
- Н -6.192258 1.358652 -2.164746

Н -6.892915 -0.430567 -0.482449 H -5.718373 -1.081946 0.666804 H -5.597771 -1.487657 -1.059677 H -6.360119 1.937324 0.314721 H -5.193100 1.262691 1.465730 H -4.682830 2.512022 0.317449 H 0.860182 0.401713 -2.094652 H 2.800331 1.845197 -2.070911 H 1.610140 3.315431 1.808614 H -0.334338 1.870336 1.742930 H 3.748000 4.205105 -2.069533 H 5.195923 4.303503 -1.047031 H 4.680376 2.744790 -1.678879 H 4.607508 5.028185 0.866756 H 2.854397 5.305746 0.838731 H 3.564661 4.120165 1.953961 H -0.801986 -3.016061 1.176697 H -1.673437 -2.750514 -0.317076 H 3.616146 -3.119374 -2.698779 H 1.358012 -3.301863 -3.694645 H -0.647307 -2.943853 -2.294578 H 1.073362 -1.938363 2.107033 Η 3.313754 -1.816197 3.063604 5.320529 -2.204351 1.642947 Η

Zero-point correction = 0.549374 (Hartree/particle) Sum of electronic and zero-point energies = -1363.314876 a.u., -855480.08469 kcal/mol Sum of electronic and thermal energies = -1363.283078 a.u., -855460.131445 kcal/mol Sum of electronic and thermal enthalpies = -1363.282134 a.u., -855459.539085 kcal/mol Sum of electronic and thermal free energies = -1363.379721 a.u., -855520.7749275 kcal/mol

5.5 Structure anti-5i

B3LYP 6-311G** SCRF (solvent = dichloromethane) optimized S_0 ground state xyz-coordinates

C -0.024493 -2.420930 0.261508

0.141161 -2.264577 1.326367 Η 0.011683 -3.493988 0.082086 Η Ν 1.123111 -1.840234 -0.465938 С 1.408395 -0.422078 -0.164135 Н 0.800923 -0.223430 0.722189 С 2.852628 -0.126905 0.241120 С 5.521874 0.393678 1.125814 3.656584 0.819991 -0.394209 С С 3.408345 -0.810960 1.328551 4.705852 -0.573702 1.760352 С С 4.958416 1.076616 0.025006 Η 3.281217 1.369729 -1.249775 Η 2.822769 -1.563620 1.847053 5.081747 -1.143219 2.598720 Η Η 5.535242 1.812774 -0.516880 С 1.805000 -2.646321 -1.346733 С 3.030099 -2.113315 -2.058832 Η 3.243877 -2.790746 -2.884444 3.883831 -2.111105 -1.377262 Η Η 2.884073 -1.105773 -2.438335 1.447901 -3.812342 -1.541520 0 С 0.875096 0.531806 -1.270705 0.369792 1.690457 -0.789317 Ν 0.361372 1.805825 0.213579 Η -0.172187 2.828545 -1.580699 С -0.599660 3.891571 -0.558326 С 0.251822 4.226800 0.041280 Η H -1.370231 3.503302 0.113992 H -1.010655 4.760323 -1.076146 C -1.392426 2.368060 -2.396269 Н -2.165786 1.966075 -1.737075 Н -1.112611 1.597075 -3.113903 H -1.812458 3.217107 -2.942256 0.917680 3.400738 -2.503142 С Н 1.776291 3.742967 -1.919295

0.519873 4.254904 -3.057382 Η 1.256036 2.651907 -3.219590 Η 0 0.932296 0.244582 -2.461827 6.803583 0.665449 1.572201 Ν С 7.685813 1.484532 0.750835 Η 7.901973 1.025521 -0.224482 8.627130 1.628040 1.278683 Η 7.252672 2.472320 0.575332 Η H -1.055150 -2.605108 -2.175532 С -1.747556 -2.094268 -1.516423 -1.376325 -1.886026 -0.182763 С C -3.883358 -1.000541 -1.185641 С -2.273326 -1.224276 0.688421 C -2.968074 -1.666118 -2.013586 -3.537742 -0.775351 0.178913 С C -1.992401 -0.970167 2.079594 Н -3.223720 -1.845570 -3.052380 С -2.875212 -0.325198 2.887852 Н -1.055478 -1.302720 2.505505 Н -2.628807 -0.152483 3.930330 C -4.142036 0.137376 2.399993 C -5.063925 0.804188 3.220873 C -4.463840 -0.098010 1.030778 С -6.285414 1.236758 2.710909 H -4.815198 0.979617 4.262058 Н -6.987476 1.750587 3.357848 C -6.612098 1.012681 1.376369 Н -7.565905 1.351229 0.985974 C -5.720518 0.348820 0.518644 -6.032313 0.102567 -0.861045 С Η -6.988450 0.442940 -1.244283 -5.153925 -0.542632 -1.673271 С Н -5.399858 -0.724155 -2.714258 С 7.429348 -0.229291 2.537906 Н 6.844437 -0.283791 3.459320

Zero-point correction = 0.608416 (Hartree/particle) Sum of electronic and zero-point energies = -1593.185127 a.u., -999723.6671925 kcal/mol Sum of electronic and thermal energies = -1593.150525 a.u., -999701.9544375 kcal/mol Sum of electronic and thermal enthalpies = -1593.149580 a.u., -999701.36145 kcal/mol Sum of electronic and thermal free energies = -1593.253836 a.u., -999766.782090 kcal/mol

5.6 Structure syn-5i

B3LYP 6-311G** SCRF (solvent = dichloromethane) optimized \mathbf{S}_0 ground state xyz-coordinates

- coordinates C -0.385558 -1.762974 0.369176 H -0.682702 -1.401442 -0.615091 H -0.250876 -2.842751 0.280229 N -1.508426 -1.536109 1.282468 C -2.539093 -0.557205 0.902715 H -3.179362 -0.428705 1.774475 C -1.983725 0.822750 0.579628 C -0.902914 3.423161 0.075329 C -1.530990 1.191068 -0.692312 C -1.888837 1.785343 1.591063 C -1.362859 3.049271 1.360176 C -0.997193 2.447759 -0.945522 H -1.594950 0.491274 -1.518870 H -2.228438 1.542870 2.593554 H -1.311884 3.745829 2.185132 H -0.655683 2.668834 -1.946836 C -1.687523 -2.445552 2.293441 C -2.932739 -2.344876 3.156507
- Н -2.881364 -3.136736 3.900798
- Н -3.842998 -2.474123 2.566515
- Н -2.994925 -1.383484 3.672492
- O -0.850635 -3.322893 2.510205
- C -3.479270 -1.152344 -0.195985
- N -4.428233 -0.294490 -0.630647

- Н -4.358741 0.657593 -0.299897 C -5.509167 -0.577553 -1.612849 C -6.311724 0.724480 -1.749940 H -5.681450 1.539050 -2.118955 Н -6.742686 1.023927 -0.790121 H -7.129965 0.583952 -2.458911 C -6.419548 -1.698468 -1.083178 Н -6.858162 -1.415093 -0.122637 H -5.861240 -2.625535 -0.952645 Н -7.233077 -1.879699 -1.790577 C -4.902046 -0.963176 -2.973023 H -4.265994 -0.158772 -3.351905 H -5.700517 -1.138465 -3.698895 H -4.305006 -1.871464 -2.889280 -3.376705 -2.320661 -0.555775 0 N -0.403271 4.686152 -0.175744 С 0.262148 4.955888 -1.444501 Η 1.163626 4.343674 -1.585045 0.551499 6.004829 -1.475139 Η H -0.410068 4.774626 -2.287081 0.229227 -0.361640 2.638272 Η С 1.083542 -0.449468 1.979751 С 0.938412 -1.128664 0.771845 С 3.419470 0.034605 1.531071 С 2.055109 -1.245648 -0.089922 С 2.293631 0.122463 2.357985 3.302070 -0.658599 0.289602 С С 1.995319 -1.940160 -1.349631 Η 2.370548 0.644002 3.306265 С 3.079952 -2.039059 -2.165572 Η 1.066320 -2.401862 -1.658861 3.004233 -2.570532 -3.108489 Η С 4.340964 -1.455757 -1.809929 С 5.471251 -1.547492 -2.638035
- C 4.439805 -0.762468 -0.567335

- C 6.678882 -0.970156 -2.256634
- Н 5.393895 -2.076406 -3.581959
- Н 7.542808 -1.050031 -2.906897
- C 6.787021 -0.291261 -1.044762
- Н 7.732372 0.154745 -0.754447
- C 5.684366 -0.174913 -0.184811
- C 5.765217 0.516321 1.072765
- H 6.713454 0.959233 1.358649
- $C \quad 4.683934 \quad 0.614917 \quad 1.890361$
- $H \quad 4.758513 \quad 1.137809 \quad 2.838221$
- $C \quad \text{-}0.118255 \quad 5.580234 \quad 0.939610$
- H -1.018255 5.772097 1.529351
- Н 0.226922 6.535145 0.547194

Zero-point correction = 0.608554 (Hartree/particle) Sum of electronic and zero-point energies = -1593.190946 a.u., -999727.318615 kcal/mol Sum of electronic and thermal energies = -1593.155632 a.u., -999705.15908 kcal/mol Sum of electronic and thermal enthalpies = -1593.154688 a.u., -999704.56672 kcal/mol Sum of electronic and thermal free energies = -1593.260765 a.u., -999771.1300375 kcal/mol

5.7 TDDFT Calculations (Absorption Bands) of syn- and anti-Structures 5a, 5g, and 5i

TDDFT calculations of the absorption maxima for the *syn-* and *anti-*dyads **5a**, **5g**, and **5i** (starting geometries see chapters 4.1.-4.6.) were calculated using the PBE1PBE³/6-31G**⁴ functional and basis set applying the Polarizable Continuum Model (PCM)⁵ for dichloromethane as a solvent. The data, also comparison to the experimental UV/Vis absorptions are summarized in Table S4.

Table S4. Selected UV/Vis absorption bands and TDDFT calculations of the absorption maxima for the *syn-* and *anti-*dyads **5a**, **5g**, and **5i** (calculated using the PBE1PBE/6-31G** functional and basis set applying the Polarizable Continuum Model (PCM) for dichloromethane as a solvent).

	$\lambda_{ m max,abs}$ [nm]	$\lambda_{max, calcd}$ [nm]	Most dominant contributions	Oscillator strength	$\lambda_{max,calcd}$ [nm]	Most dominant contributions	Oscillator strength
	$(\varepsilon [L \text{ mol}^{-1} \text{ cm}^{-1}])^{[a]}$	syn-5			anti-5		
5a	391 (7700)	433.1	HOMO \rightarrow LUMO (98.9%)	0.0167	418.3	HOMO \rightarrow LUMO (99.7%)	0.0030
	371 (8300)	388.1	HOMO-1 \rightarrow LUMO (97.9%)	0.0850	393.4	HOMO-1 \rightarrow LUMO (98.7%)	0.1362
	352 (5100)	322.7	HOMO-3 \rightarrow LUMO (37.6%)	0.0002	321.0	HOMO-1 → LUMO+1 (47.3%) HOMO-2 → LUMO (38.7%)	0.0005
		297.5	HOMO-2 \rightarrow LUMO (84.4%) HOMO \rightarrow LUMO+1 (7.0%)	0.0037	290.5	HOMO-4 → LUMO (61.7%) HOMO-2 → LUMO (32.8%)	0.0056
		294.3	HOMO → LUMO+1 (58.6%) HOMO-1 → LUMO+1 (20.8%)	0.0159	287.9	HOMO \rightarrow LUMO+1 (98.4%)	0.0007
		283.0	HOMO \rightarrow LUMO+2 (57.6%) HOMO \rightarrow LUMO+3 (11.3%)	0.0406	286.3	HOMO \rightarrow LUMO+2 (48.6%) HOMO \rightarrow LUMO+5 (21.6%)	0.0718
		280.7	HOMO-4 → LUMO (78.7%) HOMO-3 → LUMO (7.8%)	0.0024	275.7	HOMO \rightarrow LUMO+2 (43.1%) HOMO \rightarrow LUMO+5 (41.9%)	0.3140
		271.7	HOMO \rightarrow LUMO+3 (65.6%) HOMO \rightarrow LUMO+2 (15.5%)	0.0713	273.8	HOMO-3 \rightarrow LUMO (93.5%) HOMO-2 \rightarrow LUMO (2.4%)	0.0021
		270.2	HOMO → LUMO+4 (31.2%) HOMO-6 → LUMO (17.8%)	0.0133	269.1	HOMO \rightarrow LUMO+4 (43.5%) HOMO \rightarrow LUMO+6 (23.5%)	0.0091
		264.1	HOMO-5 → LUMO (48.1%) HOMO → LUMO+4 (31.3%)	0.0049	268.4	HOMO-7 \rightarrow LUMO (47.5%) HOMO-1 \rightarrow LUMO+3 (25.0%)	0.0043

Supplementary Material

5g	353 (200)	366.1	HOMO \rightarrow LUMO (99.7%)	0.0023	321.3	HOMO \rightarrow LUMO (99.2%)	0.0099
	316 (sh)	296.3	HOMO \rightarrow LUMO+1 (99.0%)	0.0094	288.6	HOMO-1 → LUMO (95.3%) HOMO-3 → LUMO+1 (3.1%)	0.1577
	309 (sh)	287.4	HOMO-1 → LUMO (95.1%) HOMO-4 → LUMO+1 (3.1%)	0.1155	284.4	HOMO → LUMO+2 (86.3%) HOMO → LUMO+3 (5.3%) HOMO-4 → LUMO+3 (2.6%)	0.0532
		277.7	HOMO-1 → LUMO+1 (45.7%) HOMO-4 → LUMO (41.8%) HOMO-2 → LUMO (8.8%)	0.0002	277.7	HOMO-1 → LUMO+1 (49.4%) HOMO-3 → LUMO (44.1%) HOMO → LUMO+1 (3.3%)	0.0002
	295 (sh)	277.7	HOMO \rightarrow LUMO+3 (79.3%) HOMO \rightarrow LUMO+2 (12.4%)	0.0380	267.4	HOMO \rightarrow LUMO+1 (62.8%) HOMO \rightarrow LUMO+3 (28.4%) HOMO \rightarrow LUMO+5 (2.6%)	0.1180
	283 (sh)	268.2	HOMO \rightarrow LUMO+4 (42.7%) HOMO \rightarrow LUMO+2 (38.6%) HOMO \rightarrow LUMO+5 (6.1%) HOMO \rightarrow LUMO+3 (4.0%) HOMO \rightarrow LUMO+8 (3.4%)	0.0568	264.7	HOMO \rightarrow LUMO+3 (38.3%) HOMO \rightarrow LUMO+1 (30.6%) HOMO \rightarrow LUMO+4 (15.6%) HOMO \rightarrow LUMO+5 (7.5%) HOMO \rightarrow LUMO+2 (3.2%)	0.0535
		260.4	HOMO-2 → LUMO (84.3%) HOMO-4 → LUMO (5.3%) HOMO-3 → LUMO (3.7%) HOMO-1 → LUMO+1 (2.6%) HOMO-7 → LUMO (2.1%)	0.0037	256.5	HOMO \rightarrow LUMO+4 (59.7%) HOMO \rightarrow LUMO+3 (20.1%) HOMO \rightarrow LUMO+5 (6.0%) HOMO \rightarrow LUMO+2 (4.8%) HOMO \rightarrow LUMO+6 (3.2%)	0.3341
	270 (24000)	255.9	HOMO \rightarrow LUMO+4 (40.7%) HOMO \rightarrow LUMO+5 (29.1%) HOMO \rightarrow LUMO+2 (19.1%) HOMO \rightarrow LUMO+3 (3.4%) HOMO-3 \rightarrow LUMO (3.1%)	0.1987	254.4	HOMO-2 → LUMO (95.6%)	0.0085
		254.0	HOMO-3 → LUMO (89.8%) HOMO-2 → LUMO (3.5%)	0.0126	241.4	HOMO \rightarrow LUMO+7 (72.0%) HOMO \rightarrow LUMO+6 (15.4%) HOMO \rightarrow LUMO+5 (3.0%) HOMO \rightarrow LUMO+4 (2.2%)	0.0035

44

HOMO \rightarrow LUMO+8 (2.1%)

		248.6	HOMO → LUMO+5 (53.4%) HOMO → LUMO+2 (25.5%) HOMO → LUMO+3 (5.4%) HOMO → LUMO+6 (5.3%) HOMO → LUMO+4 (3.9%) HOMO → LUMO+8 (2.7%)	0.0670	240.4	HOMO → LUMO+5 (64.9%) HOMO → LUMO+4 (12.1%) HOMO → LUMO+9 (6.0%) HOMO → LUMO+7 (5.2%) HOMO → LUMO+8 (3.4%) HOMO → LUMO+3 (2.8%)	0.0097
5i	377 (800)	365.3	HOMO → LUMO (94.7%) HOMO-1 → LUMO (4.6%)	0.0435	363.2	HOMO \rightarrow LUMO (98.8%)	0.0511
	347 (36000)	346.9	HOMO-1 → LUMO (90.8%) HOMO-2 → LUMO+1 (4.7%) HOMO → LUMO (3.9%)	0.4684	344.6	HOMO-1 \rightarrow LUMO (93.8%) HOMO-2 \rightarrow LUMO+1 (4.7%)	0.4882
	331 (27000)	329.0	HOMO-1 \rightarrow LUMO+1 (42.6%) HOMO-2 \rightarrow LUMO (41.7%) HOMO \rightarrow LUMO+1 (14.6%)	0.0017	330.3	HOMO-1 → LUMO+1 (53.6%) HOMO-2 → LUMO (40.0%) HOMO → LUMO+1 (3.6%)	0.0016
	317 (13000)	292.7	HOMO \rightarrow LUMO+1 (72.1%) HOMO-1 \rightarrow LUMO+1 (15.8%) HOMO \rightarrow LUMO+2 (4.5%) HOMO \rightarrow LUMO+3 (4.0%)	0.0017	292.5	HOMO → LUMO+1 (93.9%) HOMO-1 → LUMO+1 (2.3%)	0.0222
	300 (sh)	286.6	HOMO-1 → LUMO+2 (50.3%) HOMO → LUMO+2 (20.5%) HOMO-1 → LUMO+3 (19.4%) HOMO → LUMO+3 (4.9%)	0.0079	288.5	HOMO-1 → LUMO+2 (85.2%) HOMO → LUMO+2 (7.7%) HOMO-1 → LUMO+3 (3.3%)	0.0046
		283.3	HOMO → LUMO+3 (49.3%) HOMO → LUMO+2 (23.6%) HOMO → LUMO+1 (7.2%) HOMO-1 → LUMO+2 (5.7%) HOMO-1 → LUMO+3 (5.6%) HOMO-1 → LUMO+1 (3.4%)	0.0275	286.0	HOMO → LUMO+3 (80.6%) HOMO → LUMO+4 (5.2%) HOMO → LUMO+2 (5.1%)	0.0451
	279 (47600)	273.5	HOMO-2 → LUMO (51.4%) HOMO-1 → LUMO+1 (33.7%) HOMO → LUMO+1 (4.6%)	0.3257	278.9	HOMO-3 → LUMO (40.7%) HOMO-2 → LUMO (37.8%)	0.1554

Supplementary Material

		HOMO-1 \rightarrow LUMO+2 (3.1%)			HOMO-1 \rightarrow LUMO+1 (17.2%)	
268 (39900)	265.1	HOMO → LUMO+4 (65.2%) HOMO-3 → LUMO (11.3%) HOMO-1 → LUMO+4 (7.2%) HOMO → LUMO+5 (3.7%) HOMO → LUMO+6 (2.8%) HOMO → LUMO+9 (2.3%)	0.1141	271.7	HOMO-3 → LUMO (53.5%) HOMO-1 → LUMO+1 (24.1%) HOMO-2 → LUMO (17.9%)	0.2748
258 (sh)	264.8	HOMO-3 → LUMO (84.2%) HOMO → LUMO+4 (8.0%)	0.0346	267.7	HOMO → LUMO+4 (47.2%) HOMO → LUMO+2 (35.4%) HOMO → LUMO+7 (5.2%) HOMO → LUMO+6 (4.4%) HOMO-1 → LUMO+2 (2.5%)	0.1567
	264.0	HOMO-5 → LUMO (95.7%)	0.0072	262.8	HOMO-6 → LUMO (88.2%) HOMO-7 → LUMO (4.3%) HOMO-5 → LUMO (2.2%)	0.0009

[a] Recorded in dichloromethane, T = 293 K, $c(5) = 10^{-4}$ M.

5.8 TDDFT Calculations (Absorption and Exciplex Emission Bands) of *syn-* and *anti-*Structures 5a

5.8.1 anti-Structure 5a

PBE1PBE 6-31G** SCRF (solvent = dichloromethane) optimized S_0 ground state xyz-coordinates

С	-0.407284	-0.458895	-2.192047
С	-1.686554	-1.186476	-2.517543
Ν	-0.292845	0.222310	-0.993057
С	1.007692	0.907309	-0.870549
С	1.086667	1.832130	0.355270
Ν	1.394552	3.108614	0.061788
С	1.659394	4.180945	1.038755
0	0.534878	-0.499884	-2.975899
0	0.937821	1.405345	1.501372
С	2.848589	3.795930	1.921669
С	1.994824	5.429285	0.224847
С	0.410895	4.431121	1.888081
С	2.186986	-0.042895	-0.749050
С	2.102485	-1.272536	-0.099206
С	3.215547	-2.087353	0.059090
С	4.485095	-1.690893	-0.410614
С	4.561445	-0.451442	-1.079443
С	3.435703	0.345748	-1.234017
Ν	5.604019	-2.478022	-0.220025
С	6.821364	-2.150179	-0.926644
С	5.436186	-3.835148	0.248035
С	-1.464244	0.836236	-0.325785
С	-2.601896	-0.076504	0.083769
С	-2.376645	-1.049839	1.083551
С	-3.437067	-1.942730	1.470809
С	-4.697333	-1.800379	0.892502
С	-4.957378	-0.801835	-0.044007
С	-3.896030	0.081131	-0.464644
С	-6.264608	-0.654792	-0.598041

С	-6.535129	0.308063 -1.526333
С	-5.498173	1.178949 -1.953265
С	-4.232807	1.069149 -1.445294
С	-1.122429	-1.182661 1.756428
С	-0.928226	-2.150374 2.705227
С	-1.965714	-3.056541 3.051024
С	-3.188753	-2.946937 2.453284
Η	-2.005026	-1.842088 -1.705037
Η	-2.505745	-0.491954 -2.722009
Η	-1.494107	-1.774643 -3.414835
Η	1.164646	1.502014 -1.780659
Η	1.479020	3.352814 -0.913316
Η	3.062723	4.602955 2.629073
Η	2.629729	2.885788 2.483315
Η	3.740791	3.626321 1.310958
Η	2.199904	6.266590 0.896776
Η	1.159225	5.713384 -0.424088
Η	2.882691	5.268688 -0.396348
Η	0.146753	3.535459 2.453427
Η	0.597869	5.248488 2.591371
Η	-0.435871	4.710820 1.253313
Η	1.142384	-1.615995 0.273244
Η	3.089795	-3.043500 0.553746
Η	5.502670	-0.106706 -1.491290
Η	3.538007	1.292326 -1.761114
Η	7.598831	-2.862062 -0.646570
Η	6.704613	-2.180702 -2.020988
Η	7.178764	-1.151369 -0.652775
Η	4.953830	-3.855404 1.231415
Η	4.837030	-4.454913 -0.436788
Η	6.417657	-4.298258 0.357339
Η	-1.085028	1.288785 0.590742
Н	-1.835790	1.659706 -0.940556

H-5.498821-2.4738051.187851H-7.042840-1.333551-0.258753H-7.5333930.411742-1.940488H-5.7132971.944093-2.693449H-3.4775951.758881-1.803872H-0.320388-0.4838971.540343H0.031763-2.2204593.208972

H -1.786517 -3.821808 3.800467

Electronic energy: -1515.415992 a.u. = -41236.5907247088 eV (set to 0.00 eV)

TDDFT-calculated Franck-Condon longest wavelength absorption $S_0 \rightarrow S_1^*$: 2.9878 eV (414.97 nm)

PBE1PBE 6-31G** SCRF (solvent = dichloromethane) vibrationally excited S_0 state xyz-coordinates

- C -0.199047 -0.790680 -1.919151 C -1.430554 -1.579931 -2.255815 N -0.199680 0.144968 -0.924061 C 1.054152 0.899076 -0.886739 C 1.129912 1.846894 0.335460 N 1.069784 3.151454 0.023027 C 1.128571 4.270109 0.985041 O 0.850359 -1.007514 -2.540701 0 1.276702 1.397570 1.468335 C 2.467177 4.242536 1.725825 C 1.014559 5.550484 0.160098 C -0.040875 4.172221 1.967062 C 2.253563 -0.006865 -0.803317 C 2.266091 -1.119688 0.068215 C 3.398244 -1.867970 0.240033 C 4.602260 -1.530150 -0.449222 C 4.591044 -0.391472 -1.311023
- C 3.446510 0.343116 -1.470462
- N 5.719787 -2.263214 -0.289866

С	6.925072 -	-1.970857 -1.054186
С	5.758897 -	-3.375942 0.649453
С	-1.400533	0.755330 -0.280321
С	-2.544770	-0.145557 0.063779
С	-2.391670	-1.038770 1.167099
С	-3.494538	-1.893246 1.540624
С	-4.703777	-1.796770 0.829341
С	-4.882780	-0.895547 -0.237133
С	-3.781248	-0.051042 -0.644630
С	-6.115963	-0.800271 -0.927958
С	-6.294703	0.066655 -1.995155
С	-5.228387	0.868893 -2.413150
С	-4.003416	0.803028 -1.754981
С	-1.201476	-1.133919 1.929949
С	-1.077160	-2.023287 2.995283
С	-2.141788	-2.863281 3.338387
С	-3.327857	-2.793360 2.622667
Η	-1.770352	-2.153612 -1.391219
Η	-2.258875	-0.933930 -2.556532
Η	-1.165322	-2.250883 -3.073250
Η	1.150376	1.487635 -1.809712
Η	0.919686	3.392507 -0.945207
Η	2.521694	5.086431 2.420101
Η	2.575083	3.315943 2.292884
Η	3.299160	4.323921 1.019341
Η	1.055896	6.420081 0.820735
Η	0.065304	5.586245 -0.385286
Η	1.836920	5.631953 -0.558814
Η	0.014126	3.245609 2.541911
Η	-0.012140	5.016944 2.661925
Η	-0.995537	4.199137 1.432654
Η	1.354877	-1.389475 0.588548
Η	3.369251	-2.726474 0.897837

Н 5.490307 -0.092436 -1.832928 Н 3.455762 1.206979 -2.126952 Н 7.642300 -2.773501 -0.902155 Н 6.697727 -1.906845 -2.119813 Η 7.373818 -1.030444 -0.720972 H 5.405424 -3.060314 1.632754 H 5.140763 -4.204108 0.290546 Н 6.785428 -3.720791 0.745675 H -1.024170 1.194777 0.648002 H -1.729116 1.591886 -0.904759 H -5.536676 -2.434061 1.120658 H -6.934025 -1.438288 -0.599390 H -7.253148 0.115695 -2.505361 H -5.348117 1.544619 -3.255905 H -3.198151 1.435337 -2.117563 Н -0.366220 -0.478972 1.702096 Н -0.148887 -2.057701 3.559805 H -2.045146 -3.562248 4.165417

Electronic energy: -1515.400116 a.u. = -41236.1587165224 eV (equals $\Delta E = 0.4320081864 \text{ eV}$) TDDFT-calculated Franck-Condon longest wavelength absorption $S_0^* \rightarrow S_1$: 2.1747 eV (570.11 nm)

5.8.2 syn-Structure 5a

PBE1PBE 6-31G** SCRF (solvent = dichloromethane) optimized S_0 ground state xyz-coordinates

- C -1.106430 3.030999 1.813590
- C -0.883502 4.466546 1.388992
- $N \quad -0.868069 \quad 2.028853 \quad 0.905673$
- $C \ -1.304777 \ 0.692369 \ 1.309120$
- $C \ -2.614802 \ \ 0.305489 \ \ 0.599266$
- N -3.021294 -0.958807 0.823686
- C -4.305289 -1.545418 0.404060
- O -1.490279 2.791292 2.958113

0	-3.265359	1.136244	-0.034907
С	-4.295684	-2.992358	0.894178
С	-5.463853	-0.781595	1.050538
С	-4.425471	-1.514951	-1.121610
С	-0.199939	-0.344947	1.363179
С	0.002000	-1.346067	0.409807
С	1.052170	-2.248775	0.509332
С	1.966250	-2.190520	1.581931
С	1.766124	-1.173982	2.541007
С	0.704813	-0.289980	2.428504
Ν	3.001074	-3.092822	1.695639
С	4.037522	-2.857042	2.675978
С	3.300331	-3.964641	0.581820
С	-0.560317	2.325218	-0.496479
С	0.488041	1.465676	-1.174682
С	1.841961	1.577613	-0.787072
С	2.862316	0.873031	-1.516288
С	2.502663	0.085726	-2.609756
С	1.172744	-0.043847	-3.003830
С	0.138063	0.649908	-2.274425
С	0.825251	-0.858779	-4.123191
С	-0.474761	-1.009992	-4.509711
С	-1.503347	-0.353015	-3.782880
С	-1.211034	0.446404	-2.711576
С	2.262623	2.382534	0.315039
С	3.581877	2.487730	0.662609
С	4.582411	1.790363	-0.064118
С	4.227012	1.003497	-1.122790
Η	0.144885	4.663137	1.070656
Η	-1.547081	4.748293	0.566111
Η	-1.104977	5.092583	2.252463
Η	-1.624161	0.856174	2.346671
Н	-2.401864	-1.545369	1.364451

Η	-5.228838	-3.487313	0.612648
Η	-3.466091	-3.552677	0.449605
Η	-4.203834	-3.038517	1.984832
Η	-6.418488	-1.227027	0.753309
Η	-5.452231	0.264366	0.737229
Η	-5.389434	-0.823040	2.141738
Η	-3.591504	-2.052215	-1.584163
Η	-5.359685	-1.994618	-1.430350
Η	-4.422161	-0.485458	-1.484487
Η	-0.665798	-1.427281	-0.442699
Η	1.164981	-2.996544	-0.266725
Η	2.441134	-1.072921	3.382646
Η	0.579979	0.479319	3.187548
Η	4.570777	-1.908386	2.512596
Η	3.625377	-2.843833	3.690981
Η	4.763318	-3.669628	2.629532
Η	2.447409	-4.610712	0.346229
Η	3.570951	-3.412379	-0.330834
Η	4.135758	-4.612100	0.850264
Η	-1.491839	2.305840	-1.061518
Η	-0.199575	3.353586	-0.537581
Η	3.276605	-0.435859	-3.168668
Η	1.626742	-1.361226	-4.658848
Η	-0.728340	-1.633960	-5.361538
Η	-2.539181	-0.491297	-4.079458
Η	-2.030569	0.902518	-2.167899
Η	1.518358	2.899958	0.906622
Η	3.868397	3.106134	1.508316

H 5.624528 1.884608 0.226393

$$\label{eq:constraint} \begin{split} \text{Electronic energy:} & -1515.42559 \text{ a.u.} = -41236.851899726 \text{ eV} \text{ (set to } 0.00 \text{ eV)} \\ \text{TDDFT-calculated Franck-Condon longest wavelength absorption $S_0 \rightarrow S_1^*: 2.8834 \text{ eV} (429.99 \text{ nm})$ \end{split}$$

$\label{eq:pbe1} PBE1PBE \ 6-31G^{**} \ SCRF \ (solvent = dichloromethane) \ vibrationally \ excited \ S_0 \ state \ xyz-coordinates$

С	-1.279669	-3.487227	0.219569
С	-1.049507	-4.444577	1.365073
Ν	-0.965983	-2.166937	0.403899
С	-1.394901	-1.268895	-0.653374
С	-2.698669	-0.535359	-0.284931
Ν	-3.121889	0.354577	-1.207323
С	-4.418755	1.057838	-1.197909
0	-1.732054	-3.902507	-0.849173
0	-3.323074	-0.833166	0.727646
С	-4.427207	1.955185	-2.434242
С	-5.562461	0.043221	-1.277297
С	-4.542955	1.913737	0.063962
С	-0.235744	-0.471720	-1.203472
С	-0.083968	0.921297	-1.084442
С	1.073206	1.538938	-1.490482
С	2.131214	0.782302	-2.072299
С	1.918700	-0.605037	-2.315631
С	0.769603	-1.203422	-1.872748
Ν	3.318008	1.359573	-2.349322
С	4.396136	0.599425	-2.963923
С	3.592332	2.720490	-1.918060
С	-0.506041	-1.622552	1.705211
С	0.510671	-0.519514	1.638564
С	1.857951	-0.850485	1.294402
С	2.862849	0.187417	1.277616
С	2.491126	1.500153	1.625008
С	1.178231	1.837460	2.013549
С	0.156445	0.816096	2.017535
С	0.840389	3.157889	2.393494
С	-0.450588	3.505903	2.761507
С	-1.450435	2.528369	2.749423

С	-1.151630	1.219275	2.383390
С	2.270704	-2.157285	0.945481
С	3.588072	-2.451279	0.594365
С	4.553543	-1.442282	0.578379
С	4.191343	-0.142873	0.918420
Η	0.006769	-4.507238	1.644642
Η	-1.611898	-4.148558	2.254896
Η	-1.383715	-5.428664	1.038429
Η	-1.703519	-1.962247	-1.451982
Η	-2.575080	0.440943	-2.051884
Η	-5.369498	2.506614	-2.486644
Η	-3.608976	2.682300	-2.398137
Η	-4.331717	1.364978	-3.352588
Η	-6.525223	0.563734	-1.285080
Η	-5.535688	-0.629211	-0.417267
Η	-5.486247	-0.552391	-2.192500
Η	-3.714911	2.626283	0.130035
Η	-5.482036	2.475201	0.037029
Η	-4.533722	1.286356	0.956774
Η	-0.855757	1.510470	-0.604619
Η	1.183258	2.603771	-1.337197
Η	2.682737	-1.204473	-2.791984
Η	0.637092	-2.272181	-2.006248
Η	4.779609	-0.147152	-2.261354
Η	4.045868	0.101695	-3.870277
Η	5.199109	1.281352	-3.234141
Η	2.980950	3.436366	-2.475630
Η	3.380576	2.819420	-0.848823
Η	4.641061	2.945256	-2.096519
Η	-1.389642	-1.309469	2.264323
Н	-0.071096	-2.465467	2.247406
Н	3.258779	2.272505	1.653783
Н	1.629151	3.907857	2.391074

- H -0.681305 4.527707 3.051036
- H -2.470408 2.784792 3.023967
- H -1.962038 0.499100 2.362558
- Н 1.539303 -2.957806 0.921570
- Н 3.858254 -3.471142 0.332946
- Н 5.583134 -1.670611 0.314246

Electronic energy: -1515.41285067 a.u. = -41236.505245eV (equals $\Delta E = 0.346655$ eV) TDDFT-calculated Franck-Condon longest wavelength absorption $S_0^* \rightarrow S_1$: 2.1698 eV (571.4 nm)

⁴ Krishnan, R., Binkley, J. S., Seeger, R., and Pople J. A. (1980). Self-consistent molecular orbital methods.
 XX. A basis set for correlated wave functions. J. Chem. Phys. 72, 650–654. DOI: 10.1063/1.438955

¹ Reichardt, C. (2010). Solvents and Solvent Effects in Organic Chemistry. Wiley-VCH Publishers, 4th ed., Weinheim. DOI: 10.1002/9783527632220

² Smallwood, I. M. (1996). *Handbook of organic solvent properties*, Arnold, London.

³ a) Perdew, P., Burke, K., and Ernzerhof, M. (1996). Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865-68. DOI: 10.1103/PhysRevLett.77.3865. b) Perdew, J. P., Burke, K., and Ernzerhof, M. (1997). Errata: Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396. DOI: 10.1103/PhysRevLett.78.1396 c) Adamo, C., and Barone, V. (1999). Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 110, 6158–6170. DOI: 10.1063/1.478522 d) Ernzerhof, M., and Scuseria, G. E., (1999). Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional. J. Chem. Phys. 110, 5029-5036. DOI: 10.1063/1.478401

⁵ Scalmani, G., and Frisch, M. J. (2010). Continuous surface charge polarizable continuum models of solvation. I. General formalism. J. Chem. Phys. 132, 114110. DOI: 10.1063/1.3359469