
June 2016 | Volume 3 | Article 311

Technology RepoRT
published: 07 June 2016

doi: 10.3389/frobt.2016.00031

Frontiers in Robotics and AI | www.frontiersin.org

Edited by:
Fumio Kanehiro,

National Institute of
Advanced Industrial Science

and Technology, Japan

Reviewed by:
Mehmet Dogar,

University of Leeds, UK
Wenzeng Zhang,

Tsinghua University, China

*Correspondence:
Stefan Kohlbrecher

kohlbrecher@sim.tu-darmstadt.de

Specialty section:
This article was submitted

to Humanoid Robotics,
a section of the journal

Frontiers in Robotics and AI

Received: 07 December 2015
Accepted: 13 May 2016

Published: 07 June 2016

Citation:
Kohlbrecher S, Stumpf A, Romay A,

Schillinger P, von Stryk O and
Conner DC (2016) A Comprehensive

Software Framework for Complex
Locomotion and Manipulation Tasks

Applicable to Different Types of
Humanoid Robots.

Front. Robot. AI 3:31.
doi: 10.3389/frobt.2016.00031

A comprehensive Software
Framework for complex locomotion
and Manipulation Tasks Applicable to
Different Types of humanoid Robots
Stefan Kohlbrecher1*, Alexander Stumpf1, Alberto Romay1, Philipp Schillinger1,
Oskar von Stryk1 and David C. Conner2

1 Simulation, Systems Optimization and Robotics Group, Department of Computer Science, Technische Universität
Darmstadt, Darmstadt, Germany, 2 Capable Humanitarian Robotics and Intelligent Systems Laboratory, Department of
Physics, Computer Science and Engineering, Christopher Newport University, Newport News, VA, USA

While recent advances in approaches for control of humanoid robot systems show
promising results, consideration of fully integrated humanoid systems for solving com-
plex tasks, such as disaster response, has only recently gained focus. In this paper, a
software framework for humanoid disaster response robots is introduced. It provides
newcomers as well as experienced researchers in humanoid robotics a comprehensive
system comprising open source packages for locomotion, manipulation, perception,
world modeling, behavior control, and operator interaction. The system uses the Robot
Operating System (ROS) as a middleware, which has emerged as a de facto standard in
robotics research in recent years. The described architecture and components allow for
flexible interaction between operator(s) and robot from teleoperation to remotely super-
vised autonomous operation while considering bandwidth constraints. The components
are self-contained and can be used either in combination with others or standalone.
They have been developed and evaluated during participation in the DARPA Robotics
Challenge, and their use for different tasks and parts of this competition are described.

Keywords: urban search and rescue, humanoid robots, mobile manipulation, human–robot interaction, motion
planning

1. InTRoDUcTIon

The 2015 DARPA Robotics Challenge (DRC) Finals showed that robotic systems provide promising
capabilities for providing assistance in disaster scenarios that necessitate complex locomotion and
manipulation abilities (see Figure 1). At the same time, the competition showed that there are still
numerous research challenges that have to be solved before robot systems are capable and robust
enough for use in real disasters.

Toward this goal, we present our ROS-based framework for solving complex locomotion and
manipulation tasks. To our knowledge, it is the first fully open-sourced framework featuring
documentation that allows other researchers to replicate the provided functionality and results in
simulation or, after necessary interfacing, on their own robot systems. Our framework is based on
ROS (Quigley et al., 2009), which has evolved to be the de facto standard robotics middleware within
the robotics research community and parts of the robotics industry.

http://www.frontiersin.org/Robotics_and_AI
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2016.00031&domain=pdf&date_stamp=2016-06-07
http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://dx.doi.org/10.3389/frobt.2016.00031
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:kohlbrecher@sim.tu-darmstadt.de
http://dx.doi.org/10.3389/frobt.2016.00031
http://www.frontiersin.org/Journal/10.3389/frobt.2016.00031/abstract
http://www.frontiersin.org/Journal/10.3389/frobt.2016.00031/abstract
http://www.frontiersin.org/Journal/10.3389/frobt.2016.00031/abstract
http://www.frontiersin.org/Journal/10.3389/frobt.2016.00031/abstract
http://loop.frontiersin.org/people/300323/overview
http://loop.frontiersin.org/people/321236/overview
http://loop.frontiersin.org/people/306537/overview
http://loop.frontiersin.org/people/306462/overview
http://loop.frontiersin.org/people/300563/overview
http://loop.frontiersin.org/people/306369/overview

FIgURe 1 | Two of the robot systems used. The Boston Dynamics Inc. (BDI) Atlas robot and the Robotics THOR-MANG robot.

2

Kohlbrecher et al. A Comprehensive Software Framework for Humanoid Robots

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 31

The contribution of this work is twofold:

•	 The framework and architecture of our approach for enabling
complex humanoid robots to fulfill challenging tasks in disas-
ter environments are detailed.

•	 We provide a detailed discussion of different components for
perception, locomotion, and manipulation contributing to
achieve the overall task of flexible disaster response.

2. RelATeD WoRK

While humanoid robotics is an active research area, the DRC
program demonstrated the wealth of open research challenges in
areas, such as controls, planning, and human–robot interaction.
For the first time, humanoids had to fulfill a variety of tasks in a
common competition setup, which shifted focus from concen-
tration on specialized research topics toward the realization of
humanoid (and other) systems that provide integrated percep-
tion, locomotion, and manipulation capabilities.

After the DRC Trials, publications by multiple teams described
their approaches, but the majority of teams did not make their
software available as open source that would allow for reproduc-
tion of the presented results. The MIT DRC team uses optimi-
zation-based planning and control (Fallon et al., 2015), LCM
(Huang et al., 2010) as a middleware, and the Matlab-based Drake
system as a planning and control backend.1 Team IHMC uses a
proprietary middleware based on Java (Johnson et al., 2015). Both
teams provide significant parts of their software as open source
software, but do not provide instructions and a setup that allows
running their full setup as used for the DRC in simulation. We

1 https://github.com/RobotLocomotion/drake

provide an overview of our DRC related research in Kohlbrecher
et al. (2015) and detail aspects in separate publications on footstep
planning (Stumpf et al., 2014), manipulation (Romay et al., 2014,
2015), and behavior control (Schillinger et al., 2016).

In Du et al. (2014), a manipulation approach used with the BDI
Atlas robot is described, focusing on some of the DRC tasks. In
Banerjee et al. (2015) another human-supervised manipulation
control approach is described with a focus on the door DRC task.

For manipulation, bilateral teleoperation approaches allow
teleoperation by the operator, while the robot simultaneously
provides force feedback. Although demonstrations show the
approach to be highly promising where applicable, there are
potential stability issues when using bilateral approaches (Willaert
et al., 2012) that make their use infeasible with constrained and
significantly varying communications conditions, such as those
considered in this work.

A relevant account by various teams of “What happened at the
DRC” is available online (DRC-Teams, 2015). This gives a brief
summary of issues and results from many teams.

3. ARchITecTURe

The goal of this work is to provide a comprehensive and re-
usable software ecosystem to enable humanoid robot systems to
perform complex locomotion and manipulation tasks. To provide
compatibility with a wide range of robot systems and to reduce
integration effort with existing open source software, the system
uses ROS as middleware.

3.1. Requirements
The ability to leverage existing developments and software in
a way that allows users to avoid the duplication of efforts and

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://github.com/RobotLocomotion/drake

3

Kohlbrecher et al. A Comprehensive Software Framework for Humanoid Robots

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 31

spending time re-implementing approaches is highly relevant for
advancing the field of robotics research. While this requirement
is not as relevant for mature commercialized robotic systems,
using standard software for functional system components
allows new users to reproduce results quickly. This is major driver
for accelerating research in robotics and, thus, a key factor for
accelerating the development of disaster response robots; that is,
developing supervised autonomous systems that are deployable
in real disaster situations.

The achievable complexity of robotic system architectures
is limited unless the architectural design allows a transparent
exchange of functional components (e.g., for manipulation or
footstep planning) and also can be extended by additional func-
tional components. Modularity, re-usability, and extensibility
are key properties of the architectural design needed to enable
sustainable robotic system development.

While robots can be considered expendable in the sense that
a loss is acceptable (in contrast to human responders), high reli-
ability and resilience are important aspects that disaster response
robotic systems have to provide. Failures in disaster situations can
have grave consequences; for instance, when a robot gets stuck
or otherwise unresponsive, it can then block future access for
responders, or tie up responders that could be required elsewhere.

As communications in disaster environments can be degraded,
the possibility of delayed, reduced bandwidth, intermittent, or
even completely absent communication has to be considered in
the system design. Appropriate measures have to be taken to be
tolerant of variations in communication link quality. This also
motivates the need for autonomous capabilities. Autonomous
performance under ideal (communications) conditions might
actually be inferior to a human expert using teleoperation; how-
ever, under constrained communication conditions with outages
or very high latencies, teleoperation might become impossible
to use. In that case, leveraging autonomous functionality, for
instance, for motion planning and control, is the only possible
way to proceed.

3.2. System Architecture
To achieve high reliability, as discussed for the coactive design
concept (Johnson et al., 2014) observability, predictability, and
directability of the robotic system are required. When consider-
ing the human supervisor and robot as a team, the members,
thus, have to allow each other to understand the state of the
other side (observability). They also have to be able to predict
and understand the intent of the other side (predictability). Lastly,
team members have to be able to communicate meaningful and
accurate commands (directability).

The capability of informing the operator about the robot
state using appropriate information and visualization must be
considered (Kohlbrecher et al., 2015). Predictability is achieved
by visualizing action outcomes prior to the command being
sent to the robot. Achieving directability requires interfaces that
allow for efficient and reliable interaction. These concepts will be
revisited in following sections.

As noted previously, to achieve high reliability and versatility,
the capability to flexibly change control and interaction modes
between autonomous and teleoperated operation is crucial.

While autonomous and assistive functions promise to reduce
workload of operators and in some cases higher reliability, they
can be brittle in real-world scenarios, where unexpected situa-
tions and failures can foil prior mission plans. In such cases, the
capability of flexible switching between modes can significantly
improve the reliability of the system, as the human supervisor has
a toolbox of options at her disposal and can dynamically switch
between them, adapting to the situation.

As the lowest level of interaction between operator and robot,
teleoperation should always be available, communication permit-
ting. Bypassing autonomous functions, this interaction mode
shifts burden to the operator. Importantly, connectivity between
robot and operator has to be sufficient in both directions; oth-
erwise teleoperation becomes slow, unsafe, or even impossible.

With currently fielded robotic systems, these good communi-
cations conditions have to be met, as otherwise the robot becomes
inoperable. Once autonomous assistance functionality is in more
widespread use, the capability to fall back to teleoperation can
be impeded by communication constraints, allowing for new
applications. As teleoperation is the last fallback mode in case
autonomous components fail, availability of it, no matter how
limited, is important for overall reliability as it provides the ability
to recover from unexpected scenarios.

In supervised autonomy mode, the operator provides task-
level goals to the robot that are then followed autonomously using
onboard systems. The operator observes actions, and generally
provides permission to proceed at significant steps. This reduces
reliance on connectivity and low latency communication, as
the robotic system can follow task-level goals even when com-
munication is intermittent; however, such an approach requires
sophisticated sensing and planning capabilities for onboard
systems. Using full autonomy, the human operator only specifies
the mission and associated tasks and provides a start command,
monitors data provided by the robot to maintain situation aware-
ness, and either reacts to requests from the robot or switches to a
lower autonomy mode on her own discretion. The clear advantage
of full autonomy is that there is no need for communications as
long as everything works well. The onboard autonomy system
leverages the capabilities for task-solving used in the supervised
autonomy mode and also makes use of planning capabilities,
either directly or via task-level autonomy functionality.

It is crucial that when using a flexible level of interaction, the
system stays in a well-defined state. For instance, when teleopera-
tion commands are sent, autonomous control components have
to be notified of the switch in interaction level as to not cause
undefined behavior when commands both from the operator
and autonomous executive are executed at the same time. This is
discussed in Section 6.

3.3. Middleware
Developing a modular system requires a common communica-
tion framework, or middleware. To satisfy the research-level
requirements on reproducibility and modularity, ROS is chosen
as the underlying middleware. The nearly ubiquitous prolifera-
tion of ROS in the research community allows for using estab-
lished standard interfaces and the ROS infrastructure allows
for the development of highly modular code. With a large user

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

4

Kohlbrecher et al. A Comprehensive Software Framework for Humanoid Robots

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 31

base, the barrier of entry for other researchers to use open source
 developments is much lower, which is highly advantageous con-
sidering the goal of advancing research for challenging applica-
tions, such as versatile disaster response robots.

While ROS provides solutions for many common robotics
tasks, there are capabilities that received less attention by the
research community than others. This is also true for disaster
response using humanoid robots. The following areas were
identified as requiring significant contributions to enable robot
to perform complex disaster response tasks:

•	 Communication over constrained connections. ROS does not
provide built-in facilities for communication over a degraded
link.

•	 Footstep planning for locomotion in challenging terrain.
•	 Operator guided manipulation.

In the remainder of this work, components that address these
shortcomings are detailed. It should be noted that the focus is not
on low-level control of humanoid robots; it is assumed that basic
control and locomotion capabilities are provided. The presented
contributions leverage and interface with these basic control
capabilities to achieve flexible high-level control.

3.4. constrained communications
While ROS provides transparent capability for distributing com-
ponents over different machines by means of the network-based
TCP/IP-based transport, communication constraints can impose
additional challenges that make using ROS standard transports
not feasible in some highly constrained scenarios. For those, spe-
cialized communication bridge tools need to be used, separating
the ROS networks of the onboard and operator control station
OCS sides. Such software has been developed by Team ViGIR
during participation in the DRC (Kohlbrecher et al., 2015). In
the sections that follow, we reference communications across the
comms bridge; therefore, this section provides a basic description
of the functionality.

The ROS middleware presumes a connection to a centralized
communications manager (ROS master). Furthermore, com-
munication with the ROS master requires a non-trivial amount
of communication as modules come on line. As the degraded
communications allowed by the DRC rules did not permit such
unrestricted communications, Team ViGIR used a dual master
setup between the OCS side and the robot onboard side.

The communication bridge system (comms bridge) developed
by Team ViGIR uses mirrored components on either side that
pass data across dedicated network channels. The components
subscribe to messages on one side, compress them using custom
encodings, send them across to the other side for uncompressing,
and republish them as standard ROS messages. The messages use
consistent names on each side to allow the system to also run
transparently as a single ROS network without the comms bridge.

As the communication channels and compression are opti-
mized for the specific rules of the DRC, and contain certain
proprietary data for the Atlas robot, we have not open sourced the
comms bridge and, therefore, it is not the focus of this paper. The
general idea of a comms bridge is generally applicable, so that this

paper describes several of the approaches to data communication
over constrained links in the sections that follow.

4. peRcepTIon AnD STATe eSTIMATIon

The worldmodel system has to provide state estimation and situa-
tional awareness (SA) to the supervisor–robot team. To effectively
leverage the human supervisor’s cognitive and decision-making
capabilities, a state estimate of both the internal and external state
of the system has to be made available via the often constrained
communication link between robot and operator. With current
state of the art sensors often providing sensor data at rates in
excess of 100 MB/s, this is both crucial and challenging.

The type of communication constraints under which the
perception system has to work depends on used hardware and
encountered scenario. They can include limited bandwidth,
significant latency, and intermittent communication outages. The
worldmodel system is designed to provide situational awareness
and state estimation for the operator under all of these conditions.
To achieve reliable and efficient manipulation with a remote
operator in the loop, obtaining 3D geometry data is crucial. In the
following sections, the approach and components for providing
SA to both human supervisors and the robot are described.

4.1. Worldmodel Server
The worldmodel server2 component preprocesses, collects, and
aggregates sensor data and makes it available to both onboard and
OCS system components. Leveraging established open source
libraries, such as PCL (Rusu and Cousins, 2011) and octomap
(Hornung et al., 2013), the worldmodel server allows queries of
information about the environment with flexible level of detail
and bandwidth consumption.

Three-dimensional sensing is provided by onboard sensors,
providing point cloud data. A frequently used setup used here is
a LIDAR and optionally a RGB-D type camera system. As RGB-D
sensing generally has a smaller field of view, is sensitive to light-
ing conditions, and has less consistent measurement accuracy,
LIDAR data are used as the default main source for creating a
3D geometry model of the environment onboard the robot. To
achieve this, the planar scans of the LIDAR have to be preproc-
essed and aggregated, so full 3D point clouds can be generated
from them. The following preprocessing steps are employed:

First, scan data are filtered for spurious measurements com-
monly called “mixed pixels” that occur at depth discontinuities
(Tuley et al., 2005; Tang et al., 2007), using the shadow point filter
available as a ROS package.

The filtered scan is then converted to a point cloud representa-
tion. During this process, motion of the LIDAR on the relative to
the robot is considered and a high fidelity projection is employed,
transforming every scan endpoint separately.

In a last step, parts belonging to the robot have to be filtered
out of LIDAR data. To increase robustness against errors in
kinematics calibration, a specialized robot geometry model uses

2 h t t p s : / / g i t h u b. c o m / t e a m - v i g i r / v i g i r _ p e r c e p t i o n / t r e e / m a s t e r /
vigir_worldmodel_server

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://github.com/team-vigir/vigir_perception/tree/master/vigir_worldmodel_server
https://github.com/team-vigir/vigir_perception/tree/master/vigir_worldmodel_server

5

Kohlbrecher et al. A Comprehensive Software Framework for Humanoid Robots

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 31

simplified and enlarged collision geometries for self-filtering
purposes.

LIDAR scans are saved in a ring buffer along with snapshots
of coordinate frames used within the system. By employing this
method, aggregate point clouds relative to different coordinate
frames can be provided on request. A ROS API allows querying
the world model via both ROS topics or services and flexibly
retrieving region of interest point cloud or octomap data relative
to different coordinate frames. This capability can be employed by
both onboard and OCS system components.

The primary onboard 3D geometry model is created using
octomap, a volumetric, probabilistic approach using an octree
as a back-end. Using this approach, the environment represen-
tation maintained onboard can be updated efficiently and in a
probabilistically sound way. Even in case of changes in the envi-
ronment or drift in state estimation, the environment model
is updated accordingly and maintains a useful representation.

The octomap environment model provides the main geom-
etry representation and is used for multiple purposes. Using ray
casting, distances to geometry can easily be determined. This
feature can be used from within the OCS to perform ray cast
distance queries against onboard geometry. In this case, only
the ray cast information has to be transmitted to the robot and
the distance information is transmitted back, utilizing only very
low bandwidth.

The capability to request ROI data of the environment model
allows to transfer small ROI geometry over the constrained
connection on supervisor demand and also makes geometry
available to other modules on request, like the footstep planning
system. Similarly, it is possible to request 2D grid map slices of
the octomap representation, aggregating 3D data into a 2D grid
map. Using compression during transmission, this representation
is very compact and often sufficient for supervisors to gain SA.

4.2. lIDAR Data compression
In case of intermittent communication, the approach for query-
ing the onboard worldmodel for data from the OCS as described
in the previous section can fail, as no data can be transmitted in
periods of communication loss. Instead, it is desirable to transmit
all geometry information available onboard to the OCS side as
long as a communication window is available. A mirror of the
worldmodel can then be queried on the OCS side instead of
relying on a connection to the remote onboard worldmodel. The
approach described in the following is available online.3

In case of intermittent communication between supervisors
and robot, two instances of the worldmodel server are used: one
for the onboard/robot side and one for the OCS side. As direct
transmission of point cloud data is error prone when experiencing
packet loss, additional processing on LIDAR data is performed to
make each packet compact enough to fit within a standard 1500-B
UDP packet and compress it as to be able to transmit a maximum
of data during a communications burst.

3 https://github.com/team-vigir/vigir_manipulation_planning/tree/master/
vigir_lidar_octomap_updater

For compression of LIDAR data, the GIS research community
developed solutions for large-scale airborne LIDAR datasets
(Isenburg, 2013), but these significantly differ in structure from
those by small planar scanners. For this reason, an approach lev-
eraging the special structure of data provided by planar scanners
is presented here.

Direct transmission of point cloud data generated onboard the
robot would cause prohibitive bandwidth cost as a point cloud
representation with at least three floating point values for each
Cartesian point is not a compact one. For this reason, the natural
and compact representation of a laser scan as an array of range
values is leveraged and used instead. To fully reconstruct the 3D
geometry captured by a single scan, a high fidelity projection
of the scan has to be performed, however, taking into account
motion of the LIDAR mirror during the data capture process. If
this motion is not considered, scan data show visible skew and
ghosting (double walls) once it gets converted to a point cloud
representation. The following approach is thus utilized:

•	 Perform a 3D high fidelity projection onboard the robot and
perform self-filtering. The onboard octomap and worldmodel
are updated simultaneously.

•	 Compress the scan data by writing the range values to a 2-Byte
array representing millimeters and also encoding self-filtering
information. Threshold and map intensity information to a
single Byte.

•	 Add information about the scanner transform in world frame,
one transform for the start of the scan and one for the end.
This information allows performing a high fidelity projection
of the scan after unpacking on the OCS side.

•	 Split the compressed scan into chunks that are small enough
to be compressible to <1500 B. A schematic of this approach is
available in Figure 2. By using this approach, each compressed
scan packet is a self-contained unit and can be unpacked
and used on the receiver side without the need for packet
reassembly.

On the OCS side, the compression process is reversed, and
resulting scan data are used to update the OCS world model.
The size of a LaserScan message is dominated by the range and
intensity fields. A typical Hokuyo LIDAR, for instance, provides
1080 measurements per scan. For compression, floating point
range values in meters are converted to millimeters and stored
in an unsigned 16 bit number. Self-filtering of robot parts from
LIDAR data requires knowledge of the whole transform tree of
the robot and, thus, has to be performed on the onboard side
if transmission of high bandwidth transform data to the OCS
side is to be avoided. Per default, self-filtering is, thus, performed
onboard and compressed laser scan data are annotated with a
single bit per scan point, indicating if the self-filter determined
that it belongs to the robot or objects attached to the robot.

Intensity data are converted from a floating point intensity to
an unsigned 8 bit number. Here, a loss in fidelity is acceptable as
intensity is mainly used for visualization and a range of 28 values
is sufficient for presentation to the human supervisors.

Table 1 shows the different scan representation and their
relative size. In Figure 3, the setup using one worldmodel
instance each on the onboard and OCS sides is visualized. The

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://github.com/team-vigir/vigir_manipulation_planning/tree/master/vigir_lidar_octomap_updater
https://github.com/team-vigir/vigir_manipulation_planning/tree/master/vigir_lidar_octomap_updater

FIgURe 2 | Splitting lIDAR scans for compression. A schematic view from the top is shown here and the rotation direction indicated by an arrow. A LIDAR
scan can be described by the start angle αstar and end angle αend. With a known angular resolution, scan points can be projected. To achieve a small packet size, the
scan is split and intermediate start and end angles computed.

TABle 1 | Different lIDAR scan representations and the associated data
size.

Data laserScan
(Bytes)

localizedlaserScan
(Bytes)

compressed
(Bytes)

Header ≥16 – –
Metadata 7 × 4 – –
Ranges 4 × 1080 2 × 1080 < × ×1

3 2 1080

Intensities 4 × 1080 1080 < × ×1
3 2 1080

Total 8684 3240 <1080

As shown, the compressed size results in a packet size below the 1500 B of a standard
size UDP packet.

6

Kohlbrecher et al. A Comprehensive Software Framework for Humanoid Robots

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 31

synchronization is performed using the previously described
compressed scan transmission mechanism.

4.3. Sensor Data processing for Situation
Awareness
To provide the supervisor(s) with the necessary SA for complex
manipulation tasks, not only geometry but also image and texture
data are crucial. In this section, components allowing for the
processing of sensor data to achieve suitable representations and
visualizations for obtaining supervisor SA are discussed.

4.3.1. Region of Interest Image Data
As images are readily compressible using standard compression
methods, providing such data to the operator is often possible and
can be feasible even when bandwidth is constrained. Often, only
a limited region of interest in the full image is required. Examples
are visually inspecting the quality of a grasp or the accuracy of
end-effector positioning. To provide this capability, the opera-
tor can request full image and region of interest independently,
making it possible to show coarse resolution full images, but
high-resolution regions of interest. To minimize communica-
tion requirements, an optional video frame-rate is part of the
request and images can be sent at a fixed rate without need for
bi-directional communication.

4.3.2. Mesh Generation
To provide a high fidelity visualization for 3D geometry data,
an infrastructure for generating meshes from both LIDAR
point clouds and camera or LIDAR-based depth images was
developed.4 Compared to plain point cloud visualization, this
approach allows for a clear view of geometry and texturing of
mesh surfaces, which allows for easier scene understanding by
human supervisors.

Figure 4 shows a schematic of the mesh generation data flow.
As indicated by the light blue OR gates, the mesh generation
process can be based on different kinds of input data. Based on
depth images, a mesh can be generated using a FastMesh (Holz
and Behnke, 2013) approach. The depth image can either be
provided by a RGB-D type camera or it can be generated from
LIDAR data. In the latter case, data have to be aggregated over
time, however. Instead of depth images, LIDAR-based point
clouds can also be used for mesh generation; in this case, the
mesh is generated from LIDAR point cloud data directly. This
approach does not have the restricted field of view of the depth
image-based one.

An example of generating meshes based on stereo camera
RGB and depth data is shown in Figure 5. Three novel rendered
viewpoints are shown, demonstrating how the approach com-
bines the fidelity of image data with 3D geometry.

4.3.3. Fisheye Camera
The Atlas robot could not rotate the Multisense sensor head
around the yaw axis, greatly limiting the field of view of the main
sensor system. With early versions of the Atlas robot, this was a
severe issue, as the volume of good manipulability for the arms
was outside the Multisense sensor field of view. To remedy this
issue, a system for rectification the Fisheye lenses of the fisheye
cameras was developed.5 Using a ROS-integrated version of the
OCamLib library (Scaramuzza and Siegwart, 2007), the fisheye

4 https://github.com/team-vigir/vigir_perception/tree/master/vigir_point_cloud_proc
5 https://github.com/team-vigir/vigir_wide_angle_image_proc

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://github.com/team-vigir/vigir_perception/tree/master/vigir_point_cloud_proc
https://github.com/team-vigir/vigir_wide_angle_image_proc

FIgURe 4 | options for generating a mesh representation of the environment. The RGB camera image gets texture mapped on a mesh generated from
LIDAR or depth image data. The depth image is either provided by a camera directly or can be generated from aggregated LIDAR point cloud data.

FIgURe 3 | overview of the Worldmodel server setup. Worldmodel information is synchronized via compressed LIDAR data. One instance of the worldmodel
server is running on the onboard and OCS side each.

7

Kohlbrecher et al. A Comprehensive Software Framework for Humanoid Robots

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 31

distortion is calibrated. This allows generating novel rectified
views from fisheye images not exhibiting severe distortion
that otherwise makes judging of spatial relations difficult for
operators.

Recomputing the rectification online, the system can track
arbitrary frames on the robot or in the environment. It is, thus,
possible to create a virtual pinhole camera that, for instance,
tracks an end effector of the robot.

5. plAnnIng

For manipulation, motions to move manipulators into desired
configurations for grasping or other tasks need to be generated. As
it can reduce operator workload considerably, a crucial capability
is automated collision avoidance, both considering self-collisions
of the robot (e.g., arm coming in contact with torso) and col-
lision of robot parts with the environment. When performing
manipulation in contact with the environment, motion must not
lead to unplanned high internal forces acting on the robot, as
these can quickly lead to damage to the robot, especially if it loses

balance as a result. While force or admittance control approaches
can reduce this risk, they are often difficult to implement due to
limited force sensing and control performance on real systems.
Preventing unintended contact in the first place thus serves as a
risk reduction measure.

As high latency limits the usefulness of otherwise promising
approaches for teleoperation of end effectors that rely on real-
time feedback (Leeper et al., 2013), direct control is not feasible.
Instead, the supervisor(s) specify goal joint configurations or
Cartesian goal poses and requests robot onboard systems to reach
them.

The system described in this section is available as open
source.6

5.1. previewing Manipulation
As described in Chapter 4, the worldmodel server provides the
supervisor(s) with the necessary tools to achieve situational aware-
ness of the environment state in a variety of different bandwidth

6 https://github.com/team-vigir/vigir_manipulation_planning

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://github.com/team-vigir/vigir_manipulation_planning

A B

C D E

FIgURe 5 | Rendering novel views based on textured mesh data. (A) RGB image, (B) depth image, and (c–e) novel view points rendered based on applying
texture to a mesh generated from the depth image.

8

Kohlbrecher et al. A Comprehensive Software Framework for Humanoid Robots

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 31

conditions. To be able to reliably perform manipulation, an
approach for predictive visualization of how the robot interacts
and likely will interact with the environment in the future is
required.

With the high number of DOF of humanoid systems and
the challenges of balance control, judging the reachability and
manipulability of the robot for a given task can be much more
difficult than for more conventional robots. While inverse
reachability approaches show promising results in the literature
(Vahrenkamp et al., 2013; Burget and Bennewitz, 2015), they do
not consider constraints beyond kinematics and self collisions.
Such additional constraints are for instance sensor visibility
constraints or control-related constraints due to appendage
control performing better in some configurations than others. It
would be possible to incorporate those into inverse reachability
analysis, but this remains a largely unsolved topic for research
at this time.

To provide an intuitive interface to human operators, the so
called “ghost robot” is used. This is a interactive puppet robot
that can be used to predictively simulate the kinematics of

manipulation tasks. The state of the ghost robot can be modified
in the user interface without effects on the real robotic system.
Once the supervisor is satisfied with ghost robot based plan-
ning, planning and motion requests can be generated based on
the ghost robot state using variety of different options detailed
below.

The ghost robot is an essential tool for teleoperation and
supervised autonomy and is used for the full range of manipula-
tion and locomotion control. While it remains possible to move
the robot by sending joint angles directly, this is discouraged due
to the high risk involved in such actions.

As shown in Figure 6 the ghost robot state can be modified
based via a ROS API that allows for the following options:

•	 Joint angles. The ghost robot can externally be set to be in a
desired joint angle configuration. Importantly, a subset of
joints can be used here.

•	 Cartesian goals for end effectors. The ghost robot end effectors
can be moved to Cartesian goals. In this case, an IK solver is
used internally to solve for the joint positions.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

FIgURe 6 | Schematic showing inputs and outputs for the ghost robot that is used for pre-planning manipulation tasks.

9

Kohlbrecher et al. A Comprehensive Software Framework for Humanoid Robots

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 31

•	 Cartesian goals for the robot pose. The ghost robot root frame
(frequently the pelvis in case of a humanoid) can be moved to
a desired Cartesian goal pose.

If a whole body IK solver is used externally, the ghost can
also be set to a desired state by jointly using the joint angle and
Cartesian robot pose interfaces simultaneously.

Based on the ghost robot state, the following types of com-
mands can be generated to be executed on the real robot:

•	 A goal pose for the footstep planner based on the ghost robot
pelvis position in the global frame.

•	 The joint configuration of one of the ghost’s appendage groups
can be sent to the onboard controller as a motion target.

•	 The same joint configuration can be sent to the onboard
motion planner, which then generates a collision free trajectory
for it.

•	 The Cartesian end-effector pose can be sent to the onboard
motion planner, which then generates a collision free trajec-
tory to reach it.

It should be noted that the last two options are not equivalent
on most humanoid robots, as balance control generally will shift
the pelvis pose when the arm configuration of the robot changes,
resulting in an offset for the first option.

Figure 7 shows use of the ghost robot during the DRC Trials. It
is used for determining a stand pose for the robot on the left and
for planning manipulation of a valve on the right.

5.2. planning System Details
Manipulation for disaster response often incorporates prolonged
contact situations, for instance when opening a door or turning
a valve. Especially in disaster response applications, cluttered
environments present a challenge, as obstacles have to be avoided
during motion planning.

The manipulation planning system is based on the MoveIt!7
(Chitta et al., 2012) motion planning framework available for
ROS. This framework provides a powerful API for planning and
different planning components.

The system enables planning to goal joint configurations and
to goal end-effector poses and thus is directly compatible with
the ghost robot approach described in the previous section. Two
planning modes are available: the default mode is unconstrained
planning, with joints free to move between the start and goal joint
configurations. The other mode is a constrained motion mode.
Here, motion is constrained to follow a Cartesian path between
the start and goal end-effector pose. In this case, waypoints are
generated based on linear interpolation between start and goal
position and orientations for waypoints are generated using slerp
(Shoemake, 1985) between start and goal end-effector quaterni-
ons. More complex constrained motions such as circular motion
for turning a valve are generated by concatenating multiple short
linearly interpolated Cartesian paths.

7 http://moveit.ros.org/

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://moveit.ros.org/

A B

FIgURe 7 | Two examples of using the ghost robot for previewing manipulation. (A) The ghost robot is used to preview the stand pose before performing
manipulation. (B) Previewing arm motion during the valve task at the DRC Trials. The solid robot is the current true state, while the translucent green one is the ghost
robot.

10

Kohlbrecher et al. A Comprehensive Software Framework for Humanoid Robots

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 31

For obstacle avoidance, the volumetric octomap representa-
tion as described in Chapter 4 is used. As contact with the
environment is required in many manipulation tasks, collision
checking between end effectors and the environment can option-
ally be disabled by the supervisor(s). For instance, collision
avoidance is needed to safely bring the robot hand into a position
to pick up a drill. In order to grasp the drill, collisions between
the palm and fingers of the hand and the drill handle must be
allowed, however.

In challenging conditions, noise in sensor data that lead
to geometric artifacts, preventing successful planning due to
spurious collisions cannot be ruled out completely. To cope
with such situations, collision checking against the octomap
environment model can also be disabled for the complete robot
geometry; in this case, the ghost robot changes color to warn
the operator.

For motion planning, the number of joints (DOF) to use can
be selected by the supervisor(s). For instance, on Atlas, planning
can be performed using either 7 DOF with the arms only, or by
including the torso joints and using up to 10 DOF. As the 10
DOF planning mode tends to result in higher control error or
oscillation in some joint configurations, the operator can lock a
selection of torso joints to restrict the planning space. The same
approach can be used on other robotic systems transparently.

To allow for safety and robustness, the ability to select
the desired trajectory execution speed with every planning
request was introduced. Using standard MoveIt! functionality,
trajectories were previously time parameterized according to
the velocity limits supplied in the URDF robot model. This
approach turned out to be not flexible enough for challenging
manipulation in contact that might require moving appendages
slow for safety.

5.3. planning Interface
To implement the described manipulation back-end, the MoveIt!
API was used and DRC-specific capabilities were implemented in
a separate move_group capability plugin. This offers the advantage
of retaining standard MoveIt! library planning features, while
simultaneously allowing the development of extended capabili-
ties specific for disaster response manipulation tasks.

As shown in Figure 8, the planning system is exposed via a
ROS Action server interface and, thus, provides feedback about
the planning and plan execution process. The Action interface is
the sole entry point for requesting and executing motion plans
and (in order of increasing autonomy) used for teleoperation,
affordance-based manipulation planning and for motion plan
requests generated by the behavior executive. For teleoperation,
an onboard node translates compressed and compact motion
requests by the operator into an Action request that then gets
forwarded to the planning system.

5.4. Supervised and Autonomous control
The described planning system offers a powerful API that can be
used to plan for complex manipulation tasks. In the preceding
sections, both the teleoperation interface and the planning back-
end are described.

To achieve both task-level supervised operation and
autonomous control, two additional software components for
manipulation use the described planning system as a back-end
for performing manipulation: an object template framework and
the FlexBE behavior engine.

Figure 9 shows an overview of how the different system
components interact to achieve the full range of capability from
teleoperation to full autonomy in interaction with one or more
human supervisors.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

FIgURe 8 | overview of the planning back-end. Both the planning interface and the LIDAR octomap updater are loaded into the standard MoveIt! move_group
process as plugins. Using this approach, existing functionality provided by MoveIt! is kept, but extended.

FIgURe 9 | Supporting multiple levels of interaction for manipulation capable avatar robots.

11

Kohlbrecher et al. A Comprehensive Software Framework for Humanoid Robots

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 31

5.4.1. Object Templates
Instead of directly controlling appendages, the object template-
based approach for manipulation (Romay et al., 2014, 2015)
uses models of objects to be manipulated, the so-called object
templates. These are placed by the human operator in the virtual
environment model where 3D sensor data of the environment are
visualized and serve as references to achieve manipulation task at
a higher level of abstraction.

Object Templates contain relevant information about the
objects they represent, such as physical and abstract information.
With this, the operator can provide the robot with potential stand-
ing poses, grasp poses, usable parts of the object, and manipula-
tion skills or affordances (Gibson, 1977) to manipulate the object.
With each template offering a set of affordances, motion can be
specified by the operator on the affordance level. A door opening
motion can, for instance, be commanded by using the “open”

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

FIgURe 10 | Atlas traversing chevron hurdles based on computed footstep plan.

12

Kohlbrecher et al. A Comprehensive Software Framework for Humanoid Robots

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 31

affordance defined for the door handle and the “push” affordance
defined by the door hinge.

The information that object templates provide can also be
abstracted by higher system layers, such as autonomous behaviors.

5.4.2. Automatic Behavior Control
For autonomous execution of complex manipulation and loco-
motion tasks, the Flexible Behavior Engine (FlexBE) has been
developed during the DRC. A detailed overview is provided in
Section 6. The object template system is also used within FlexBE
to represent manipulatable objects. The behavior executable can,
thus, take over responsibility for coordinating complex tasks
from remote human supervisors where applicable.

5.5. Whole-Body planning
While the developed motion planning system performs well for
many manipulation tasks requiring only upper body motion,
sampling-based planning falls short for planning whole-body
motions that require the consideration of balance constraints.
To also support this, the optimization-based planning approach
available as part of the Drake framework (Fallon et al., 2015) has
been integrated with the Team ViGIR planning system. Planning
using Drake can transparently be used by specifying the plan
request. Drake has also been integrated with the ghost robot on
the OCS side and the operator can use Drake-based whole-body
inverse kinematics to pre-plan tasks, such as reaching toward the
ground for picking up objects.

5.6. Footstep planning
A key challenge of the DRC was enabling the robot be able to
tackle locomotion tasks, such as the traversal of sloped stairs,
ramps, and rubble. While Team ViGIR depended on a manu-
facturer supplied footstep controller for stepping and stability,
the specification of footstep placements remained a significant
challenge; Team ViGIR extended an existing planner for 2D
environments to handle this more complex 3D terrain.

The footstep planner has to satisfy two main requirements:
the planner has to solve the navigation problem of finding the
shortest safe path in a given environment. Second, it has to gen-
erate a feasible sequence of footstep placements, which can be
executed by the robot with minimal risk of failure. Additionally,
the DRC competition discouraged the use of slow footstep

planning approaches due to mission time limits. Here, operator
performance highly depends on the speed and performance of the
used footstep planning system, so planning efficiency becomes
important. It is desirable that the planning system provides all
parameters of the walking controller for each step, so that the
complex low-level walking controller interface is completely
hidden from the operator to reduce the chance of operator error.
This kind of footstep planning systems has not been applied to
human-size real robots in complex terrain scenarios, such as the
DRC before.

5.6.1. Overview
Our footstep planning approach satisfies the requirements
mentioned above and requires the operator to only provide a
goal pose to start planning. During the DRC competition, we
have introduced the first search-based footstep planner capable
of generating sequences of footstep placements in full 3D under
planning time constraints and using an environment model based
on online sensor data (Stumpf et al., 2014). The planner solves the
navigation problem of finding shortest and collision-free paths
in difficult terrain scenarios while simultaneously computing
footstep placements appropriate for a given walking controller.
A 3D terrain generator allows to generate terrain models for the
footstep planning system online. It is able to efficiently compute
the full 6 DoF foot pose for foot placements based on 3D scans
of the environment. In addition, a novel collision check strategy
based on ground contact estimation allows the planner to con-
sider overhanging steps, significantly enhancing performance in
rough terrain scenarios.

The described approach has been successfully applied to three
different biped humanoid robots during the DRC Finals. As the
only team at the DRC Trials, we demonstrated that our approach
is able to generate suitable footstep plans over entire obstacles that
had been executed without interruptions (see Figure 10).

5.6.2. Terrain Modeling
Planning in difficult terrain scenarios needs a suitable 3D terrain
model that can efficiently be generated and utilized by the footstep
planner. Therefore, a terrain model generator8 was implemented
which analogously to the worldmodel server (see section 4.1)

8 see https://github.com/team-vigir/vigir_terrain_classifier

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://github.com/team-vigir/vigir_terrain_classifier

13

Kohlbrecher et al. A Comprehensive Software Framework for Humanoid Robots

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 31

accumulates all incoming LIDAR scans given as point clouds.
All data are stored in a discrete octree to reduce the amount of
needed memory and enable efficient data fusion.

For each point in an incoming point cloud, a normal estima-
tion9 with respect to the point neighborhood is immediately
performed. Afterwards, the octree is updated with this new
information. Each node within the octree, thus, provides the
3D position of the scan point and the estimated surface normal.
Through the sparse laser scan updates of the spinning LIDAR,
this operation can be performed in real-time on a single core of a
CPU. In general, performing this operation with stereo vision or
RGB-D systems is possible too, but needs further investigation as
they generate more noisy data.

The described approach allows to run real-time terrain model
generation on a robotic system as long as it is capable of providing
point clouds given in an absolute world frame.

5.6.3. Footstep Planning Framework
The main objective is to provide an integrated footstep planning
framework that may be deployed easily into an existing ROS
setup. Providing a framework, the planner has to be expandable
for new features but closed for modifications. Any user of the
framework should only have to implement and extend robot-
specific elements to use the planning system instead of develop-
ing a modified version of an existing planner or even starting
from scratch each time. Already implemented and, thus, proven
algorithms are kept untouched, reducing the likelihood of errors
and saving implementation effort. Although the framework
must generalize well, it has to be able to solve difficult terrain
task problems and utilize the versatile locomotion capabilities of
robot-specific walking controllers.

In order to meet this objective, parameter (vigir_generic_
params)10 and plugin (vigir_pluginlib)11 management systems
have been implemented.

5.6.3.1. Parameter System
In real-world applications, different terrain scenarios need to be
tackled (e.g., flat surface, stairs or sloped terrain). The footstep
planner can perform best if an appropriate set of parameters is
defined for each kind of terrain scenario. This allows the operator to
easily switch between different planning behaviors. Furthermore,
it is desirable to be able to modify a parameter set if the situation
requires it. In general, these requirements can be solved using
the available ROS message infrastructure. Frameworks, such
as the presented footstep planner, however, are supposed to be
extended with new features. The structure of parameter sets may
vary during runtime that is in conflict to ROS messages requiring
a static structure. A simple solution would be separate configura-
tion files and well as user interfaces for each plugin. Due to high
maintenance effort this, however, is undesirable.

9 http://pointclouds.org/documentation/tutorials/normal_estimation.php
10 https://github.com/team-vigir/vigir_generic_params
11 https://github.com/team-vigir/vigir_pluginlib

5.6.3.2. Plugin System
The vigir_pluginlib provides the capability to manage versatile
plugins that can be also used outside of the footstep planning
domain. The approach is based on pluginlib that already allows for
dynamically loading plugins using the ROS build infrastructure.
We have extended the package into a semantic plugin manage-
ment system. The practical implementation consists of two parts:
the plugin base class and the plugin manager.

5.6.3.3. Framework Overview
The plugin and parameter management systems form the infra-
structure base of the footstep planning framework.12,13,14 The foot-
step planner pipeline has multiple injection points where a user
might want to customize the behavior of the planner. For each of
those, a semantic base class has been introduced as follows:

•	 CollisionCheckPlugin: basic collision check for a given state or
transition,

•	 CollisionCheckGridMapPlugin: specialized CollisionCheckPlugin
for occupancy grid maps,

•	 HeuristicPlugin: computes heuristic value from current state
to goal state,

•	 PostProcessPlugin: allows performing additional computation
after each step or step plan has been computed,

•	 ReachabilityPlugin: check if transition between two states is
valid,

•	 StepCostEstimatorPlugin: estimates cost and risk for given
transition,

•	 StepPlanMsgPlugin (unique): marshaling interface for robot
specific data, and

•	 TerrainModelPlugin (unique): provides 3D model of
environment.

The last two semantic base classes are defined to be unique; only
a single instance might be running instance at a time. Figure 11
shows the use of plugins within the planner pipeline. For a quick
deployment of the framework, concrete plugin implementations
for common cases already exist for all semantic-based classes.

A major goal is maintaining footstep planner efficiency.
Therefore, the computational overhead of the plugin system
must be kept to a minimum. It obviously is inefficient to reload
needed plugins in each single iteration of the planning process.
For this reason, the planner loads all plugins only once and sets
their parameters once before starting planning. Additionally, a
mutex locks all critical callback functions of the planning system.
The footstep planner is, thus, protected against any changes of the
plugin as well as parameter manager during the planning process.

Advanced walking controllers usually need very specific data
to allow for performing complex locomotion tasks. For instance,
these data could be intermediate trajectory points of the foot or
the convex hull of expected ground contact. The framework has
been designed to be able to provide this capability. The plugin
system allows to inject additional computation needed by the

12 https://github.com/team-vigir/vigir_footstep_planning_msgs
13 https://github.com/team-vigir/vigir_footstep_planning_basics
14 https://github.com/team-vigir/vigir_footstep_planning_core

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://pointclouds.org/documentation/tutorials/normal_estimation.php
https://github.com/team-vigir/vigir_generic_params
https://github.com/team-vigir/vigir_pluginlib
https://github.com/team-vigir/vigir_footstep_planning_msgs
https://github.com/team-vigir/vigir_footstep_planning_basics
https://github.com/team-vigir/vigir_footstep_planning_core

Footstep Planning

State

Step PlanPlan Request

State
found?

Solu�on
found?

Successor State

Add to Open List
New

Successor
available?

Get Best Open State

Heuris�cPlugin

Es�mate Cost

StepCostEs�matorPlugin

Check Collision

CollisionCheckPlugin

Generate Successor

PostProcessPlugin

ReachabilityPlugin

TerrainModelPlugin

Error

No

Yes

Yes

No

Yes

No

Data PluginProcessing

Extract Step Plan

StepPlanMsgPlugin

PostProcessPlugin
Add Ini�al State

FIgURe 11 | plugins embedded into Footstep planning pipeline.

14

Kohlbrecher et al. A Comprehensive Software Framework for Humanoid Robots

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 31

walking controller. Analogously to the parameter management
system, all custom data can be carried as a byte stream within
regular step plan messages. Marshaling algorithms already avail-
able for basic data types can be applied here as well. Marshaling
for complex data types has to be implemented as a customized
StepPlanMsgPlugin. The framework is, thus, able to pack all
custom data into the generic step plan message and send it to
the hardware adapter, where it gets unpacked and forwarded to
the walking controller. The framework, thus, supports any kind
of walking controller via the plugin system without required
modifications to the framework code base.

5.6.4. Interactive Footstep Planning
During the DRC Trials, the inability to refine generated footstep
plans was identified as a shortcoming. Even though the planner
is able to generate feasible plans, the possibility that the resulting
plan contains undesirable steps due to noisy sensor data remains.
In this case, the operator previously had to request a new step
plan in the hope to get a better result. For this reason, the foot-
step planning system was extended to provide multiple services
to manage footstep plans. These services can be used by user
interfaces to enable interactive footstep planning, allowing full
human in the loop planning. This mode allows for plan stitch-
ing, plan revalidation, and editing single steps with assistance
of the footstep planner. The operator is able to quickly adjust
single steps, while the planner will automatically update the 3D
position of the new foot pose if enabled and provides immediate
feedback if the modified step sequence is still feasible for the
walking controller.

6. BehAVIoR eXecUTIVe

Combination of multiple, complex software components on
a high level is an often underestimated issue when composing
robot systems. Existing solutions are often very application
specific and require expert developers for implementing mission
specifications. Thus, in order to provide a suitable task-level layer
of control for full or assisted robot autonomy, the behavior engine
FlexBE15 (Schillinger, 2015) has been developed. It is based on
SMACH (Bohren and Cousins, 2010) and extends it by several
helpful capabilities in order to facilitate both development and
execution of high-level behaviors. Furthermore, FlexBE provides
an extensive user interface, enabling even non-expert users
to compose and execute mission specifications within short
time frames. During runtime, execution can be monitored and
controlled remotely and the robot autonomy level can be flexibly
adjusted.

6.1. component Interface
FlexBE (standing for “flexible behavior engine”) adapts the
concept of hierarchical state machines similar to the implementa-
tion in SMACH. Each state corresponds to an action executed
by the robot and transitions reflect the possible outcomes of
these actions while data gathered during runtime can be passed
between states. This approach enables to focus on the internal
state of the robot (i.e., the current state of action execution).
Knowledge about the external environment is only considered

15 http://flexbe.github.io

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://flexbe.github.io

FIgURe 12 | conceptual overview of a behavior composition. Each behavior is defined by a hierarchical state machine that instantiates and connects (lower
part) re-usable state implementations (upper part).

15

Kohlbrecher et al. A Comprehensive Software Framework for Humanoid Robots

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 31

implicitly when designing a behavior, but is not needed to be
exactly known during execution. Especially in disaster response,
where the environment cannot be precisely modeled and events
are typically the result of own actions, this concept helps to effec-
tively define high-level behaviors.

Each action state is given by a class definition implementing a
specific interface. Depending on the situation, a state returns one
of its outcomes, leading to a transition in the respective containing
state machine. Furthermore, states can declare input and output
keys for sharing common data during runtime. As depicted by the
concept overview in Figure 12, these state implementations form
the atomic building blocks from which behaviors are composed.
Each action state refers to a well-defined and encapsulated high-
level capability of the robot, for example, closing fingers, planning
footsteps, or executing a trajectory.

6.2. Behavior Development
In order to support the user in composing state instantiations to
a complete behavior, FlexBE provides a comprehensive graphical
user interface, including a state machine editor. Figure 13 shows
a screenshot of this editor displaying a behavior as used for the
DRC task of turning the valve. Yellow boxes denote states, white
boxes are embedded state machines, and the boxes in pink refer

to other complete stand-alone behaviors, which can be embedded
as well. Transitions are given by arrows between the states, where
their labels refer to the outcomes of the outgoing states, i.e.,
under which condition the respective transition is taken. Their
color corresponds to the required level of autonomy, which can
be selected by the user.

The editor also provides a set of useful tools for making sure
that states are composed in the correct way. For example, a
dataflow graph can be displayed in order to check how data will
be accessed and potentially modified by the different robot capa-
bilities during runtime. More importantly, each time a behavior
is saved, or on demand, consistency of a behavior is validated.
This includes checks such as that each outcome corresponds to
a well-defined transition and no runtime data are potentially
accessed before being written. FlexBE allows to make behavior
modifications even during runtime and for updating behaviors
while they are executed. With the static check functionality, the
state machine editor ensures that such modifications do not lead
to runtime failure.

Experience from designing task-level behaviors for the DRC
showed that the usage of these concepts and the related tools
not only helped facilitating the definition of complex behaviors
since state machines could be modeled graphically instead

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

FIgURe 13 | Behavior to solve the DRc task of turning the valve, visualized by FlexBe’s state machine editor. Even during execution, the structure can
easily be re-arranged with just a few mouse-clicks and without manually writing code.

16

Kohlbrecher et al. A Comprehensive Software Framework for Humanoid Robots

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 31

of manually writing code, but also because a well-defined
encapsulation of robot capabilities and the re-usability of all
parts encouraged proper software engineering practices, such
as modularity and a clear separation of control and data flow.
Furthermore, the augmentation of states by detailed documen-
tation was helpful when working with a multitude of different
capabilities.

6.3. Behavior execution
Execution of behaviors is embedded in the graphical user
interface as well. During runtime, the currently active state is
displayed in the center, with transitions pointing to the possible
successor states. While a robot would always proceed to the
next state whenever possible in full autonomy, the operator is
able to limit the autonomy level of the robot in order to prevent
wrong transitions in phases of limited situational awareness. If a
transition requires more autonomy than allowed by the operator,
this transition will be highlighted in the runtime control user
interface and the operator is asked to either confirm or decline
this decision. The operator can also force a completely different
one at any time.

Although this concept of collaborative autonomy is helpful for
the control flow of behaviors, the operator also needs to be able

to provide specific data to the robot as required during runtime if
the robot fails to retrieve it on its own. For this purpose, an input
data server is running as part of the OCS. Whenever requested by
the robot, the operator can assist and provide the required data
manually, for example, place an object template. This is invoked
by using an input state, which is implemented as a robot capability
like any other perception state.

In order to account for constrained communication, robot–
operator collaboration is carefully designed to be bandwidth
efficient. A behavior mirror component runs on the OCS and
mimics the onboard behavior, requiring only minimal runtime
updates. It is, thus, possible to abstract from the fact that the
behavior is not running locally and components, such as the user
interface, can work on this mirror in order to retrieve the data
they need for monitoring the runtime status.

7. eXpeRIMenTS

7.1. DRc Finals
The DRC Finals took place at Pomona, CA, USA on June 5th
and 6th 2015. In the DRC Finals, three teams used the software
described in this work, demonstrating the claimed flexibility and
modularity.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

17

Kohlbrecher et al. A Comprehensive Software Framework for Humanoid Robots

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 31

Unlike in the previously held DRC Trials, tasks were not
attempted separately. Instead teams had 60 min time to score
as many of the 8 tasks as they could. Each team was allowed
two runs in the competition, one on the first and one on the
second competition day. The first objective was reaching the
door, behind which the other tasks were situated. This could
be done either by starting the robot in a Polaris Ranger vehicle
and letting the robot drive up to the goal line close to the door,
or by starting outside the vehicle and letting the robot walk the
whole distance. Scoring awarded 0 points for walking, 1 point for
driving, and 1 point for egress from the vehicle. Teams could opt
out from performing egress. In this case, a reset had to be called
and the robot manually extracted from the vehicle, resulting in
a 10 min reset penalty and no point for egress. Traversing the
door was the next task, with one point for full traversal through
the door frame.

After traversing the door, communication constraints went
into effect, meaning that the high bandwidth connection for
perception data had pseudo-random dropouts of up to 30 s
length, with 1 s windows of communication in-between. Fifteen
minutes before run end, the drop outs stopped, allowing for full
communication again.

7.1.1. Team Hector
Team Hector used a THOR-MANG robot. While the system
showed promising capabilities during the qualification for the
DRC Finals and prior to them during testing, slope of the ground
at the Trials and hardware problems resulted in the robot falling
in both Final runs.

The driving task was performed reliably, but on both days the
robot fell while attempting to perform the door task.

7.1.2. Team Valor
Team VALOR used the ESCHER robot in the DRC Finals. The
team decided to not attempt the driving task. ESCHER was one
of two robots that successfully walked the complete distance from
the start point up to the door. The attempt at opening the door
was not successful due to encountered hardware issues.

7.1.3. Team ViGIR
Team ViGIR used the most recent, untethered version of the BDI
Atlas robot. Originally, the team intended to skip the driving task.
When it became clear that it would be allowed to not perform
egress, but instead call for a reset, a decision was made to attempt
the driving task. The performance for both competition days is
briefly described the next two paragraphs.

7.1.3.1. Finals Day One
Starting in the Polaris Ranger vehicle, teleoperation was used to
drive the robot down the vehicle course. A worldmodel of the
course was obtained through LIDAR and cameras, and it was
visualized in the OCS as described in Section 4. With this percep-
tion information, operators were able to use a driving controller
system that generated the necessary joint motions to actuate the
steering wheel and actuate the gas pedal. Details on the driving
controller system will be described in Section 7.2. After com-
pleting the driving course, an intervention (with an associated

10-min penalty pause as specified in the DRC rules) was then
used to manually extract the robot from the car.

After the penalty time, the door task was attempted. During
the attempt to perform the door task, the supervisor team
noticed that high-level behavior execution did not work as
intended. This was later traced back to a faulty setup of the
communications bridge system and increased saturation of the
wireless links used in the competition. The supervisor team,
thus, switched from using assisted autonomy via FlexBE behav-
iors to using object templates and teleoperation. Operators
inserted the door template in the OCS where the sensor data
of the door was displayed and commanded the robot to walk
to the pre-defined stance pose for opening the door. After
locomotion was performed, the operators attempted to open
the door using the “open” affordance defined in the door object
template. The robot hand slipped away from the door handle
and, thus, the autonomous execution of the affordance failed.
For this reason, the operators switched to Cartesian-space
teleoperation. Using this approach, the door was successfully
opened as seen in Figure 14A. After opening the door, the
operators manually commanded the robot to walk toward a
stance pose to open the valve. The valve task was solved using
mainly the affordance-level control provided by the valve object
template (see Figure 14B). Finally, before being able to actuate
the switch in the surprise task, time ran out, ending the run. A
video is available online.16

7.1.3.2. Finals Day Two
The second-day mission again started by the supervisor team
using teleoperation for driving the Polaris vehicle. Due to erratic
network connectivity and possible operator error, a barrier was
touched and a reset had to be called. In the second attempt, the
driving task was performed successfully. The door opening task
was performed using object template and automated behavior
control. After the door was opened, the pump of the robot shut
down for unknown reasons and the robot fell. After this forced
reset, another attempt at traversing the door was made, resulting
in another fall. A video is available online.17

7.1.4. Discussion
The perception system worked as designed during the compe-
tition, providing image and full LIDAR-based environment
geometry data. It provided the necessary data also under com-
munication constraints after traversing the door only allowed
intermittent communication over the 300MBit high data rate
connection from the robot.

All three teams using Team ViGIR’s software were able to lever-
age the contributions described in this work, which enabled them
to perform supervised locomotion and manipulation with highly
diverse bipedal robot systems. Due to encountered issues, the full
potential, however, could not be demonstrated at the DRC Finals.
The DRC competition operated on a tight schedule. This meant that
delays in hardware availability presented significant challenges,

16 https://youtu.be/VEsUICAa4rg
17 https://youtu.be/Whw-tG0Wh9U

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://youtu.be/VEsUICAa4rg
https://youtu.be/Whw-tG0Wh9U

A

B

FIgURe 14 | Team VigIR Atlas robot view of performing tasks at the DRc Finals. (A) Door task. From left to right: Door Template aligned, Pre-grasp, Grasp,
Turn Clockwise affordance, Push affordance (fails to open), door opened after Cartesian teleoperation. (B) Valve task. From left to right: Valve Template aligned,
Pre-grasp, Grasp, Open affordance 45°, 135°, and 270°. Images courtesy of Alberto Romay.

18

Kohlbrecher et al. A Comprehensive Software Framework for Humanoid Robots

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 31

as they would reduce the time available for testing software and
training operators. This general constraint is a contributing factor
to the issues encountered, such as the communications setup issue
experienced, during the first day by Team ViGIR.

Open source whole-body controllers for the ATLAS and Thor-
MANG robot were not available; instead manufacturer-provided
libraries were used for low-level control of these robots. While
capabilities offered by these libraries proved useful, their closed
source nature provided little transparency and did not allow for
tighter coupling between high-level and low-level control. The
fact that ATLAS teams who developed their own controller based
on prior research scored higher than those who used the BDI-
supplied one supports this assertion.

While using a sliding level of autonomy up to full teleoperation
worked well, offloading the task of object perception and pose
estimation from supervisors is an aspect that has not been focused
on so far. Instead, the described approach relied on providing
supervisors with the necessary situational awareness to perform
these tasks. Reliable automated solutions have the potential to
improve performance and speed at which complex tasks can be
performed.

7.2. Driving a Vehicle
Demonstrating the applicability of the framework to different
robot systems and tasks, we focus here on the realization of the
driving task for both the ATLAS and Thor-MANG robot as an
example.

7.2.1. Controlling the Vehicle
To control the vehicle, both the steering wheel and gas pedal
have to be actuated. Depending on the robot used, this can be

challenging due to factors, such as size, strength, and sensing
capabilities. To increase robustness, adapters that can be added
to the Polaris Ranger XP900 vehicle were developed. As shown in
Figure 15A, a knob attached to the steering wheel with a spring
was used for steering control. While allowing for actuation of
the steering wheel, the spring adds compliance to the setup and
prevents high forces being exerted on either robot or vehicle. For
the pedal shown in Figure 15B, an adapter was used that limits
pedal travel as to limit the maximum speed of the vehicle. For
the ATLAS robot, the adapter also had to mechanically transfer
the steering command from the passenger side of the vehicle
to the pedal, as the robot was too big to fit at the driver side.
As a safety measure, a spring was added to the pedal adapter that
always brings the adapter back into the idle position when not
pressed down.

7.2.2. Perception
As generic and robust ego-motion estimation for humanoid
robots placed in vehicles is highly challenging and prone to fail-
ure, a teleoperation-based approach was used. Steering angle and
gas pedal angle are set by the operator. As a safety measure, the
system automatically stops if no commands have been received
within a threshold duration.

7.2.3. Results
In the DRC Finals, for both ATLAS and THOR-MANG, the
capability to drive a car as required in the DRC Finals rules was
demonstrated. A video is available online.18

18 https://www.youtube.com/watch?v=noxAK7YdJUE

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://www.youtube.com/watch?v = noxAK7YdJUE

A B

FIgURe 15 | hardware attachment for driving a car. (A) Compliant steering wheel adapter. (B) Pedal adapter for the Thor-MANG robot.

19

Kohlbrecher et al. A Comprehensive Software Framework for Humanoid Robots

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 31

7.3. Simulation
Due to the high cost of complex humanoid robot systems, it is
highly desirable to be able to simulate them. This allows perform-
ing research and experiments when real systems are not available.

7.3.1. Simulation of Humanoids
The components described in this work are available as open
source software and an example setup using the THOR-MANG
robot in Gazebo simulation can be reproduced easily using avail-
able install instructions.19 A tutorial video showing the use of the
example setup is available online.20

7.3.2. Example of Use with a Non-Biped Robot
Demonstrating the flexibility and modularity of the provided
architecture, we show how manipulation capabilities can be
added to a robot system that combines the proven mobility of a
tracked base with a humanoid upper body.

The robot is capable of fully autonomous exploration of
environments using the software components described in
Kohlbrecher et al. (2014). In a demonstration video,21 it first
explores parts of the environment fully autonomously, with the
supervisor observing progress. When the supervisor notices that
the closed door prevents the robot from continuing exploration,
she uses the manipulation capabilities of the robot to open the
door using teleoperation or affordance-level control using the
contributions described in this work. Afterwards, the supervi-
sor can command the robot to keep exploring the environment
autonomously or continue operating in a lower autonomy mode.

19 https://github.com/team-vigir/vigir_install/wiki/Install-thor-mang-vigir-gazebo
20 https://www.youtube.com/watch?v=6fS89HGPEf4
21 https://youtu.be/6ko27gKZGdA

Instructions for install and use of the shown system are available
online.22

8. conclUSIon

This work discusses a comprehensive software framework for
performing complex disaster response tasks using humanoid
robots with human supervisors in the loop. System architecture
design considerations are detailed and comprehensive contribu-
tions toward different aspects, such as communication, percep-
tion, manipulation and footstep planning, and behavior control,
are detailed.

The described contributions are available as open source
software23 for ROS. In contrast to other approaches, it has been
successfully used on three different highly complex humanoid
systems, demonstrating the flexibility and modularity of the
system.

As discussed in the Section 7.1.4, while abstraction and
decoupling from the low-level control system provided by
robot systems can be considered a strength, achieving highest
possible performance with a biped robot system requires full
integration with and leveraging the capabilities of a whole-
body control system. The realization of this is a subject of
future work.

AUThoR conTRIBUTIonS

SK: Perception and manipulation; AS: Footstep planner; AR:
Object/affordance tem plate approach; PS: FlexBE behavior engine;
OS: Advisor, overall design; and DC: Advisor, overall design.

22 https://github.com/tu-darmstadt-ros-pkg/centaur_robot_tutorial
23 https://github.com/team-vigir/vigir_install

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://github.com/team-vigir/vigir_install/wiki/Install-thor-mang-vigir-gazebo
https://www.youtube.com/watch?v = 6fS89HGPEf4
https://youtu.be/6ko27gKZGdA
https://github.com/tu-darmstadt-ros-pkg/centaur_robot_tutorial
https://github.com/team-vigir/vigir_install

20

Kohlbrecher et al. A Comprehensive Software Framework for Humanoid Robots

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 31

ReFeRenceS

Banerjee, N., Long, X., Du, R., Polido, F., Feng, S., Atkeson, C. G., et al. (2015).
“Human-supervised control of the atlas humanoid robot for traversing doors,”
in 15th IEEE-RAS International Conference on Humanoid Robots (Humanoids).
Seoul.

Bohren, J., and Cousins, S. (2010). The SMACH high-level executive [ROS news].
IEEE Robot. Automat. Mag. 17, 18–20. doi:10.1109/MRA.2010.938836

Burget, F., and Bennewitz, M. (2015). “Stance selection for humanoid grasping
tasks by inverse reachability maps,” in Robotics and Automation (ICRA), 2015
IEEE International Conference on, Seattle. 5669–5674.

Chitta, S., Sucan, I., and Cousins, S. (2012). MoveIt! IEEE Robot. Automat. Mag. 19,
18–19. doi:10.1109/MRA.2011.2181749

DRC-Teams. (2015). What Happened at the DARPA Robotics Challenge? Available
at: http://www.cs.cmu.edu/~cga/drc/events/

Du, C., Lee, K.-H., and Newman, W. (2014). “Manipulation planning for the
atlas humanoid robot,” in Robotics and Biomimetics (ROBIO), 2014 IEEE
International Conference on, 1118–1123.

Fallon, M., Kuindersma, S., Karumanchi, S., Antone, M., Schneider, T., Dai, H.,
et al. (2015). An architecture for online affordance-based perception and whole-
body planning. J. Field Robot. 32, 229–254. doi:10.1002/rob.21546

Gibson, J. J. (1977). “The theory of affordances,” in Perceiving, Acting, and Knowing,
eds R. Shaw and J. Bransford (Madison, WI), 67–82.

Holz, D., and Behnke, S. (2013). “Fast range image segmentation and smoothing
using approximate surface reconstruction and region growing,” in Intelligent
Autonomous Systems 12, Volume 194 of Advances in Intelligent Systems and
Computing, eds S. Lee, H. Cho, K.-J. Yoon, and J. Lee (Berlin, Heidelberg:
Springer), 61–73.

Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., and Burgard, W. (2013).
Octomap: an efficient probabilistic 3D mapping framework based on octrees.
Auton. Robots 34, 189–206. doi:10.1007/s10514-012-9321-0

Huang, A. S., Olson, E., and Moore, D. C. (2010). ‘‘LCM: Lightweight communica-
tions and marshalling,’’ in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ
International Conference on. Taipei: IEEE.

Isenburg, M. (2013). Laszip. Photogramm. Eng. Remote Sens. 79, 209–217.
doi:10.14358/PERS.79.2.209

Johnson, M., Bradshaw, J. M., Feltovich, P. J., Jonker, C. M., Van Riemsdijk, M. B.,
and Sierhuis, M. (2014). Coactive design: designing support for interdepen-
dence in joint activity. J. Hum. Robot Interact. 3, 2014. doi:10.5898/JHRI.3.1.
Johnson

Johnson, M., Shrewsbury, B., Bertrand, S., Wu, T., Duran, D., Floyd, M., et al.
(2015). Team IHMC’s lessons learned from the DARPA robotics challenge
trials. J. Field Robot. 32, 192–208. doi:10.1002/rob.21571

Kohlbrecher, S., Meyer, J., Graber, T., Petersen, K., Klingauf, U., and von Stryk, O.
(2014). “Hector open source modules for autonomous mapping and navigation
with rescue robots,” in RoboCup 2013: Robot World Cup XVII, Volume 8371
of Lecture Notes in Computer Science, eds S.Behnke, M.Veloso, A.Visser, and
R.Xiong (Berlin, Heidelberg: Springer), 624–631.

Kohlbrecher, S., Romay, A., Stumpf, A., Gupta, A., von Stryk, O., Bacim, F., et al.
(2015). Human-robot teaming for rescue missions: team ViGIR’s approach
to the 2013 DARPA robotics challenge trials. J. Field Robot. 32, 352–377.
doi:10.1002/rob.21558

Leeper, A., Hsiao, K., Ciocarlie, M., Sucan, I., and Salisbury, K. (2013). “Methods
for collision-free arm teleoperation in clutter using constraints from 3D sensor
data,” in IEEE Intl. Conf. on Humanoid Robots (Atlanta, GA).

Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J., et al. (2009).
“ROS: an open-source robot operating system,” in ICRA Workshop on Open
Source Software. Kobe.

Romay, A., Kohlbrecher, S., Conner, D. C., Stumpf, A., and von Stryk, O. (2014).
“Template-based manipulation in unstructured environments for supervised
semi-autonomous humanoid robots,” in Humanoid Robots (Humanoids), 2014
14th IEEE-RAS International Conference on (Madrid: IEEE), 979–986.

Romay, A., Kohlbrecher, S., Conner, D. C., and von Stryk, O. (2015). “Achieving
versatile manipulation tasks with unknown objects by supervised humanoid
robots based on object templates,” in IEEE-RAS Intl. Conf. on Humanoid Robots.
Seoul.

Rusu, R. B., and Cousins, S. (2011). “3D is here: point cloud library (PCL),” in
Robotics and Automation (ICRA), 2011 IEEE International Conference on
(Shanghai: IEEE), 1–4.

Scaramuzza, D., and Siegwart, R. (2007). ‘‘A practical toolbox for calibrating omni-
directional cameras,’’ in Vision Systems Applications. Vienna: I-Tech Education
and Publishing.

Schillinger, P. (2015). An Approach for Runtime-Modifiable Behavior Control of
Humanoid Rescue Robots. Master’s thesis. Technische Universität Darmstadt,
Darmstadt.

Schillinger, P., Kohlbrecher, S., and von Stryk, O. (2016). “Human-robot collabo-
rative high-level control with application to rescue robotics,” in Proc. IEEE Int.
Conf. on Robotics and Automation (ICRA).

Shoemake, K. (1985). Animating rotation with quaternion curves. ACM
SIGGRAPH Comput. Graph. 19, 245–254. doi:10.1145/325165.325242

Stumpf, A., Kohlbrecher, S., Conner, D. C., and von Stryk, O. (2014). “Supervised
footstep planning for humanoid robots in rough terrain tasks using a black box
walking controller,” in Humanoid Robots (Humanoids), 2014 14th IEEE-RAS
International Conference on (Madrid: IEEE), 287–294.

Tang, P., Huber, D., and Akinci, B. (2007). “A comparative analysis of
 depth-discontinuity and mixed-pixel detection algorithms,” in D Digital
Imaging and Modeling, 2007. 3DIM’07. Sixth International Conference on
(Montreal: IEEE), 29–38.

Tuley, J., Vandapel, N., and Hebert, M. (2005). “Analysis and removal of artifacts
in 3-D ladder data,” in Robotics and Automation, 2005. ICRA 2005. Proceedings
of the 2005 IEEE International Conference on (Barcelona: IEEE), 2203–2210.

Vahrenkamp, N., Asfour, T., and Dillmann, R. (2013). “Robot placement based
on reachability inversion,” in Robotics and Automation (ICRA), 2013 IEEE
International Conference on (Karlsruhe: IEEE), 1970–1975.

Willaert, B., Van Brussel, H., and Niemeyer, G. (2012). “Stability of model-mediated
teleoperation: discussion and experiments,” in Haptics: Perception, Devices,
Mobility, and Communication (Tampere: Springer), 625–636.

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2016 Kohlbrecher, Stumpf, Romay, Schillinger, von Stryk and Conner.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) or licensor are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://dx.doi.org/10.1109/MRA.2010.938836
http://dx.doi.org/10.1109/MRA.2011.2181749
http://www.cs.cmu.edu/~cga/drc/events/
http://dx.doi.org/10.1002/rob.21546
http://dx.doi.org/10.1007/s10514-012-9321-0
http://dx.doi.org/10.14358/PERS.79.2.209
http://dx.doi.org/10.5898/JHRI.3.1.
Johnson
http://dx.doi.org/10.5898/JHRI.3.1.
Johnson
http://dx.doi.org/10.1002/rob.21571
http://dx.doi.org/10.1002/rob.21558
http://dx.doi.org/10.1145/325165.325242
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	A Comprehensive Software Framework for Complex Locomotion and Manipulation Tasks Applicable to Different Types of Humanoid Robots
	1. Introduction
	2. Related Work
	3. Architecture
	3.1. Requirements
	3.2. System Architecture
	3.3. Middleware
	3.4. Constrained Communications

	4. Perception and State Estimation
	4.1. Worldmodel Server
	4.2. LIDAR Data Compression
	4.3. Sensor Data Processing for Situation Awareness
	4.3.1. Region of Interest Image Data
	4.3.2. Mesh Generation
	4.3.3. Fisheye Camera

	5. Planning
	5.1. Previewing Manipulation
	5.2. Planning System Details
	5.3. Planning Interface
	5.4. Supervised and Autonomous Control
	5.4.1. Object Templates
	5.4.2. Automatic Behavior Control

	5.5. Whole-Body Planning
	5.6. Footstep Planning
	5.6.1. Overview
	5.6.2. Terrain Modeling
	5.6.3. Footstep Planning Framework
	5.6.3.1. Parameter System
	5.6.3.2. Plugin System
	5.6.3.3. Framework Overview

	5.6.4. Interactive Footstep Planning

	6. Behavior Executive
	6.1. Component Interface
	6.2. Behavior Development
	6.3. Behavior Execution

	7. Experiments
	7.1. DRC Finals
	7.1.1. Team Hector
	7.1.2. Team Valor
	7.1.3. Team ViGIR
	7.1.3.1. Finals Day One
	7.1.3.2. Finals Day Two

	7.1.4. Discussion

	7.2. Driving a Vehicle
	7.2.1. Controlling the Vehicle
	7.2.2. Perception
	7.2.3. Results

	7.3. Simulation
	7.3.1. Simulation of Humanoids
	7.3.2. Example of Use with a Non-Biped Robot

	8. Conclusion
	Author Contributions
	References

