
Appendix A: Variations of the Malmquist Index

This appendix provides a more detailed formal presentation of the methods to compute
the productivity change. Speci�cally, the de�nition of the Malmquist index is based on
the technology set at a particular period in time t,

Tt =
{
(xt,yt) ∈ Rp+q : xt ≥ 0 can produce yt ≥ 0

}
, (A1)

with xt ≥ 0 as the vector of p inputs used to produce the vector of q outputs yt ≥ 0
of a particular country in period t. For later reference this technology set is referred to
as the contemporaneous technology set. This technology set is the basis to de�ne the
output-oriented distance function (Shephard (1970)) of the input-output combination of
a country in period s to the frontier function in period t by

Dt(xs,ys) = inf{θ : (xs,ys/θ) ∈ Tt}. (A2)

This distance function measures the reciprocal of the maximum enhancement of the out-
puts of period s needed so that the input-output combination (xs,ys/θ) remains in the
technology set of period t, Tt. In the case of the same-period distances (with s = t) the
largest possible value of the distance function is equal to one for input-output combina-
tions on the boundary of the technology set (the frontier function). For input-output
combinations below the frontier function the distance function is smaller than one, imply-
ing that the output vector can be enhanced by the largest factor 1/θ (smallest θ) to reach
the frontier function. Taking the reciprocal is required to obtain an e�ciency measure
with the largest value normalized to one for the e�cient countries on the frontier and
values lower than one for the ine�cient countries below the frontier. In the case of the
mixed-period distance functions (with s 6= t) values of the distance function larger than
one may arise when the input-output combination of a country in period s is located
outside of the technology set of a di�erent period t.

For the actual computation with real data there exist linear programming formulations
related to the distance functions. Let xit and yit denote the input and output data, re-

spectively, of country i = 1, ..., n at time t = 1, ..., T . Correspondingly, X t = (x1t
......

...xnt)
is the p × n matrix containing the data for the p inputs of all n countries at time t and

Y t = (y1t

......
...ynt) is the q× n matrix containing the data for the q outputs for the entire

country sample at time t (here '
...' indicates side-by-side stacking of the vectors). Under

the assumption of constant returns to scale (CRS) the distance function can be computed
by solving the DEA linear programming problem

Dc
t (xis,yis) = min{θ : X tλ ≤ xis, Y tλ ≥ yis/θ, λ ≥ 0} (A3)

for country i ∈ {1, ..., n} (Charnes et al. (1978)). The values in the n-vector λ are
computed jointly with θ as the solution of the linear programming problem and give
the weights of the sample countries for constructing the projection point of the obser-
vation (xs,ys) on the frontier function of period t. This leads to a frontier function
constructed as a piece-wise linear envelopment of the input-output combinations in the
sample. Therefore, the method does not rely on a particular functional form such as a
production function, giving the method its nonparametric character.
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Basic Malmquist Index

Based on the four distance functions Dc
t (xit,yit), D

c
t+1(xi,t+1,yi,t+1), D

c
t+1(xit,yit) and

Dc
t (xi,t+1,yi,t+1), the Malmquist index MI for the change of total factor productivity

between periods t and t+ 1 under CRS can be stated for country i ∈ {1, ..., n} as

MIt,t+1 =

[
Dc

t (xi,t+1,yi,t+1)

Dc
t (xit,yit)

×
Dc

t+1(xi,t+1,yi,t+1)

Dc
t+1(xit,yit)

]1/2
. (A4)

This index is de�ned as the geometric mean of two ratios of distance functions for the
input-output combinations of the periods t and t+1 with respect to the frontier function
of period t in the case of the �rst ratio and with respect to the frontier function of period
t+1 in the case of the second ratio. The �rst ratio is larger (smaller) than one if the input-
output combination of a country in period t+ 1 is closer to (farther from) the frontier of
period t than it was in period t. With technological progress input-output combinations
may be positioned above that frontier. The second ratio makes the same comparison with
respect to the frontier function of period t + 1. Since there is no reason to prefer the
frontier function of period t or that of period t+1 as the benchmark for the measurement
the geometric mean of both is taken.

De�ning the Malmquist index in this way has the advantage that the productivity change
can be decomposed into two meaningful factors as shown by Färe at al. (1994), i.e.

MIt,t+1 =
Dc

t+1(xi,t+1,yi,t+1)

Dc
t (xit,yit)

×
[
Dc

t (xit,yit)

Dc
t+1(xit,yit)

Dc
t (xi,t+1,yi,t+1)

Dc
t+1(xi,t+1,yi,t+1)

]1/2
(A5)

= ECt,t+1 × TCt,t+1.

The �rst factor is the e�ciency change component EC which is larger (smaller) than one
if the input-output combination of the country in period t+ 1 is closer to (farther from)
the frontier function of this period than it was in period t with respect to the frontier
function of that period. This component can be interpreted as indicating catching up
or falling behind of a country with respect to the frontier function between two periods
t and t + 1. The second factor is the technology change component TC which is larger
(smaller) than one if the part of the piece-wise linear frontier function pertaining to the
country under evaluation is shifting forwards (backwards).1

As de�ned above, the Malmquist index and its components are all measured under CRS.
Wheelock and Wilson (1999), among others, provide a re�nement of this decomposition
which takes account of the possibility that the true technology may exhibit variable returns
to scale (VRS). This re�nement permits a four-factor decomposition of the Malmquist
index with further decomposing the e�ciency change and technology change components
under CRS into e�ciency change and technology change component under VRS and
the respective scale change components. This requires the computation of the distance
functions also under a VRS technology which can be achieved by solving the modi�ed
linear programming problem

Dv
t (xis,yis) = min{θ : X tλ ≤ xis, Y tλ ≥ yis/θ, 1

′λ = 1, λ ≥ 0} (A6)

1See Färe et al. (1994, p. 70) for a graphical illustration.
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for country i ∈ {1, ..., n} (Banker et al. (1984)) with the additional constraint 1′λ = 1
which forces the weights to add up to unity.

Following Wheelock and Wilson (1999), the Malmquist index can be decomposed as

MIt,t+1 =
Dv

t+1(xt+1,yt+1)

Dv
t (xt,yt)

×
[
Dv

t (xt,yt)

Dv
t+1(xt,yt)

Dv
t (xt+1,yt+1)

Dv
t+1(xt+1,yt+1)

]1/2
×
Dc

t+1(xt+1,yt+1)/D
v
t+1(xt+1,yt+1)

Dc
t (xt,yt)/D

v
t (xt,yt)

(A7)

×
[

Dc
t (xt,yt)/D

v
t (xt,yt)

Dc
t+1(xt,yt)/D

v
t+1(xt,yt)

Dc
t (xt+1,yt+1)/D

v
t (xt+1,yt+1)

Dc
t+1(xt+1,yt+1)/D

v
t+1(xt+1,yt+1)

]1/2
= PEC × PTC × SEC × STC.

Therein, the �rst component (PEC) represents the pure e�ciency change and is inter-
preted analogously to EC but now with respect to the VRS technology instead of the CRS
technology. The second component (PTC) represents pure technology change component
and is interpreted analogously to TC but now also with respect to the VRS technology.
The third and fourth components (SEC and STC) are the scale-related components scale
e�ciency change and scale technology change.2

While the basic Malmquist index under CRS has the disadvantage that the CRS tech-
nology is more restrictive and therefore less realistic, the variant of Wheelock and Wilson
has two other de�ciencies. First, the solvability of the mixed-period linear programming
problems (with t 6= s) is guaranteed only under CRS, they need not have a solution under
VRS. This infeasibility problem always a�ects the technology change component under
VRS and therefore the whole productivity index for a subset of the sample countries.
Excluding these countries from the sample provides no resolution since other countries
would then be a�ected by this problem. It is not much recognized that this inevitably
leads to a sample-selection problem since the drop-outs from the sample are not random
but systematically related to their position in the input-output space. Second, the results
of the scale-related components arising in the four-factor decomposition (scale e�ciency
change and scale technology change) are di�cult to interpret as the related discussion in
Wheelock and Wilson (1999) shows.

For the subsequent empirical application we build a Malmquist index under VRS by
just putting together the pure e�ciency change and pure technology change components
resulting the following basic variant

MIvt,t+1 =
Dv

t+1(xt+1,yt+1)

Dv
t (xt,yt)

×
[
Dv

t (xt,yt)

Dv
t+1(xt,yt)

Dv
t (xt+1,yt+1)

Dv
t+1(xt+1,yt+1)

]1/2
. (A8)

In this way we circumvent the di�cult interpretation of the scale-related components.
We accept the infeasibility problem for this index variant and take the opportunity to
evaluate its importance in the context of the empirical application by a comparison with
two other variations of the Malmquist index which are explained next.

2See Diewert and Fox (2017) and Zo�o (2007) for overviews of alternative decompositions of the
Malmquist index.

3



Global and Biennial Malmquist Index

One practical way out of the infeasibility problem is the idea of the global Malmquist
productivity index put forward by Pastor and Lovell (2005). This proposal relies on
modi�ed distance functions which are computed with respect to a �global� technology set
in which the observations from all countries and all periods are pooled together.

Formally, the idea relies on two di�erent speci�cations of the technology set. The �rst is
the contemporaneous benchmark technology Tt consisting of the production possibilities
in a particular period t as de�ned above in (A1). This is the technology set we considered
so far for de�ning the distance function (A2) which may be computed under CRS (A3)
or VRS (A6). The second speci�cation of the technology set is the global benchmark
technology TG proposed by Pastor and Lovell (2005). This is de�ned as the convex
envelope of the union of all contemporaneous technology sets T1 ∪ ... ∪ TT spanning the
entire time period under investigation. The corresponding global distance function is
de�ned as

DG(xs,ys) = inf{θ : (xs,ys/θ) ∈ TG}. (A9)

and can be computed for a particular country i by substituting the p × nT matrix

(X1
......

...XT ) forX t and the q×nT matrix (Y 1
......

...Y T ) for Y t in the linear programming

problems (A3) for CRS or (A6) for VRS. Now, the dots '
...' simply mean stacking matrices

side-by-side which implies a simple pooling of all observations from all periods.

Productivity change between periods t and t + 1 can be de�ned with respect to the
global benchmark technology as the ratio of the global distance function evaluated at the
observation of period t+ 1 and the global distance function evaluated at the observation
of period t (for some country i ∈ {1, ..., n}) leading to the global Malmquist index3

GMIt,t+1 =
DG(xi,t+1,yi,t+1)

DG(xit,yit)
. (A10)

The index is larger (smaller) than one if the country i is more (less) e�cient in period
t+1 than in period t, in both periods evaluated with respect to the global technology set.
Since the index is based on the global technology, it avoids taking the geometric mean
with two di�erent base periods. This construction endows the index with the property
of circularity as emphasized by Pastor and Lovell (2005), which is a desirable feature for
index numbers in general and is not given for the basic Malmquist index. Moreover, all
linear programming problems involved in the computation of the index and its components
are guaranteed to be feasible also under variable returns to scale.

Like the basic Malmquist index discussed above the global Malmquist index can be de-
composed into two components

3It is important to recognize that the distance functions have no indication of constant and variable
returns to scale (the superscripts 'c' and 'v' are missing) since this index can always be computed under
both constant and variable returns to scale.
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GMIt,t+1 =
Dt+1(xi,t+1,yi,t+1)

Dt(xit,yit)
×
DG(xi,t+1,yi,t+1)/Dt+1(xi,t+1,yi,t+1)

DG(xit,yit)/Dt(xit,yit)
(A11)

= ECt,t+1 × BPCt,t+1.

The �rst component of (A11) represents e�ciency change EC with the same interpretation
as before. The second component depends on the so-called best-practice gap DG(·)/Dt(·)
between the global and the contemporaneous technology frontier. Technological change
is measured by the change of this best-practice gap between the two time periods t and
t+1. Thus, here BPC > 1 (BPC < 1) represents an improvement (deterioration) of the
technology.

A potential problem with the global index, as emphasized by Afsharian and Ahn (2015),
is that the global frontier may consist of observations from di�erent time periods implying
that convex combinations of observations across rather di�erent time periods are feasible.
This problem is mitigated by a variation of the global Malmquist index, the biennial
Malmquist productivity index as proposed by Pastor et al. (2011). The biennial index
provides a compromise of the basic and the global index which amounts to modify the
speci�cation by restricting the global technology to just the two periods t and t+ 1 over
which the productivity change is to be measured. This means that TG is here the convex
union only of Tt and Tt+1 and the matrices for the inputs and the outputs used in the linear
programming problems are constructed by just stacking the two single-period matrices

side-by-side, i.e. substituting (X t
...X t+1) for X t and (Y t

...Y t+1) for Y t in (A3) or (A6).
This is su�cient to guarantee the computational feasibility under both CRS and VRS.
The circularity property of the global index is lost for the biennial variant, however.4

In the presentation of the results we indicate in the �gure headings for which variant of
the index (basic, global or biennial) the results are computed. For clarity and simplicity,
the global index is just abbreviated by MI and the components are abbreviated by EC
and TC (with the latter actually meaning the BPC component in (A11) in the case of
the global and biennial index variants). All linear programs in the papers are computed
under VRS.
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