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Summary
This work surveys an r-adaptive moving mesh finite element method for the
numerical solution of premixed laminar flame problems. Since the model of
chemically reacting flow involves many different modes with diverse length
scales, the computation of such a problem is often extremely time-consuming.
Importantly, to capture the significant characteristics of the flame structure
when using detailed chemistry, a much more stringent requirement on the spa-
tial resolution of the interior layers of some intermediate species is necessary.
Here, we propose a moving mesh method in which the mesh is obtained from the
solution of so-called moving mesh partial differential equations. Such equations
result from the variational formulation of a minimization problem for a given
target functional that characterizes the inherent difficulty in the numerical
approximation of the underlying physical equations. Adaptive mesh movement
has emerged as an area of intense research in mesh adaptation in the last decade.
With this approach, points are only allowed to be shifted in space leaving the
topology of the grid unchanged. In contrast to methods with local refinement,
data structure hence is unchanged and load balancing is not an issue as grid
points remain on the processor where they are. We will demonstrate the high
potential of moving mesh methods for effectively optimizing the distribution of
grid points to reach the required resolution for chemically reacting flows with
extremely thin boundary layers.

K E Y W O R D S

adaptive moving meshes, low Mach number combustion, Rosenbrock time integrators, stabilized
finite elements

1 INTRODUCTION

The numerical simulation of chemically reacting flows with detailed chemistry is still a challenging task due to the
presence of a large range of multi-scale aspects. High spatial resolution is needed in the vicinity of the flame zone,
while simultaneously coarser meshes can be used in regions with relatively large flow structures, for example, down-
stream of the flame. Adaptive mesh refinement (AMR) based on dynamically refining or coarsening the computational
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mesh to match local features has proven to be a very efficient strategy to perform a multi-scale combustion simula-
tion. An overview of the basic design concepts used to develop block-structured AMR algorithms for the low Mach
number model has been given by Bell and Day.1 Two of the authors, Braack and Lang, have also been contributing to
the development of AMR methods.2-5 However, since reacting flow applications with detailed chemistry and transport
models already tend to be significantly complex, an AMR implementation on parallel computers might quickly become
prohibitively intricate. In such a situation, adaptive moving mesh (AMM) methods are considered to be an attractive
alternative since the mesh topology and hence the underlying data structures are left unchanged. Such methods have
become available through the implementation of variational principles that define a moving mesh as the solution of
so-called moving mesh partial differential equations (MMPDEs) introduced by Huang and Russell, see Reference 6 for a
thorough overview. Recently, AMMs have been successfully applied to large eddy simulations of complex turbulent flows
by Liersch et al.7

In this article, we investigate the application of the AMM technique to steady low Mach number compressible
combustion problems in two spatial dimensions. Special emphasize is put on the design of the monitor function that
constitutes the heart of the MMPDE and links the movement of the grid points to the physical solution. We will discuss
two approaches that are based on the gradient and the curvature of selected chemical components, respectively. The lat-
ter one is motivated by a standard error estimate of the interpolation error. The steady combustion model is discretized
by stabilized linear finite elements that use pressure stabilization and streamline diffusion to enhance the main diagonal
of the resulting algebraic system. A pseudo linearly implicit time-stepping scheme is applied to solve the highly non-
linear algebraic systems. Two examples are considered to demonstrate the potential of our AMM method: a benchmark
three-component ozone decomposition and a methane flame in the practical application of a prototype lamelle burner
from the Bosch company.

2 THEORETICAL FUNDAMENTALS OF REACTIVE FLOWS

2.1 Models for stationary chemically reacting flows

We denote the flow velocities by v, the pressure by p, the temperature by T, and the density by 𝜌. Furthermore, w =
(w1,… ,wns)

T is defined as the vector of mass fractions wi of the i-th species, where i = 1,… ,ns. The basic equations for
a stationary reactive viscous flow express the conservation and balance laws for the total mass, momentum, energy, and
each species, respectively, accomplished by the equation of state:

∇ ⋅ (𝜌v) = 0, (1)

𝜌(v ⋅ ∇)v + ∇p + ∇ ⋅ 𝝉 = 𝜌g, (2)

𝜌v ⋅ ∇wi + ∇ ⋅ (𝜌Di∇wi) = Mi ẇi(T,𝝎), i = 1,… ,ns, (3)

cp𝜌v ⋅ ∇T − ∇ ⋅ (𝜆∇T) − v ⋅ ∇p + 𝝉 ∶ ∇v = −
ns∑

i=1
hiMiẇi(T,w), (4)

p = 𝜌RT
M

, M =

( ns∑
i=1

wi

Mi

)−1

, (5)

where g is the gravitational force and cp is the heat capacity of the mixture at constant pressure. For each species, Mi is
the molecular weight, hi its (mass-)specific enthalpy, ẇi its molar production rate, and Di its mass diffusion coefficient.
The viscous stress tensor 𝝉 is given by

𝝉 = −𝜇
(
∇v + (∇v)T − 2

3
(∇ ⋅ v)I

)
, (6)

with 𝜇 being the dynamic viscosity of the fluid. Compressible flow equations admit material and acoustic waves that
propagate at velocity v and speed of sound c, respectively. In most practical combustion systems, the flow is in the low
Mach number regime, that is, M = |v|∕c ≪ 1. This disparity in scales can be exploited to compute combustion problems
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much more efficiently. A rigorous low Mach number asymptotic analysis8 for the behavior M → 0 shows that the total
pressure can be decomposed as

p(x) = Pth + phyd(x), (7)

where Pth is the constant thermodynamic pressure and phyd(x) is the hydrodynamic pressure. With this decomposition,
Pth defines the thermodynamic state and phyd plays the role of a Lagrange multiplier to constrain the flow so that the
thermodynamic pressure is equilibrated everywhere in space. Hence, compressibility effects due to chemical heat release
and other thermal processes are retained while acoustic wave propagation is entirely eliminated. Eventually, the simplified
low Mach number approximation for steady compressible reactive flows becomes9

∇ ⋅ v = 1
T

v ⋅ ∇T − 1
M

v ⋅ ∇M, (8)

𝜌(v ⋅ ∇)v + ∇phyd − ∇ ⋅ (𝜇∇v) = 𝜌g, (9)

𝜌v ⋅ ∇wi + ∇ ⋅ (𝜌Di∇wi) = Mi ẇi(T,w), i = 1,… ,ns, (10)

cp𝜌v ⋅ ∇T − ∇ ⋅ (𝜆∇T) = −
ns∑

i=1
hiMiẇi(T,w), (11)

𝜌 = PthM
RT

, M =

( ns∑
i=1

wi

Mi

)−1

. (12)

Here, we have differentiated the new equation of state in (12) to derive a constraint on the velocity in (8). As usual,
parts of the stress tensor have been absorbed into phyd. We will only consider ns − 1 species equations together with the
requirement

∑ns
i=1 wi = 1 to keep mass conservation and the computation of diffusion velocities consistent.10 Since only

laminar flames are considered, the influence of the gravitation in (9) is also often neglected. We set Pth = 101 325 Pa in
our applications.

2.2 Finite element discretization

To simplify the notation and write the system (8)-(12) in a more compact form, we extend the vector of mass fractions by
w0 ∶= T and introduce

𝜈0 = 𝜆, 𝜈i = 𝜌Di, i = 1,… ,ns, (13)

for the diffusion coefficients of all components of w = (w0,… ,wns )
T . With the new quantities

𝜷 = 𝜌v, m = M
−1
∇M, l = (𝜌T)−1, (14)

f0(w) = −
ns∑

i=1
hiMiẇi, fi(w) = Mi ẇi, i = 1,… ,ns, (15)

and the convention that 𝜷 = cp𝜷 for the temperature equation (i = 0) and 𝜷 = 𝜷 otherwise, the stationary low Mach
number system can be rewritten in the condensed form

∇ ⋅ v − l𝜷 ⋅ ∇w0 + v ⋅ m = 0, (16)

(𝜷 ⋅ ∇)v − ∇ ⋅ (𝜇∇v) + ∇phyd = 𝜌g, (17)

𝜷 ⋅ ∇wi − ∇ ⋅ (𝜈i∇wi) = fi(w), i = 0,… ,ns. (18)
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For the presentation of the finite element approximation of this system, we follow the approach presented in References
[ 9, section 2] and 11.

Let Ω ∈ R2 be our bounded computational domain with polygonal boundary 𝜕Ω. Introducing the inner product and
norm

(f , g) ∶= ∫Ω
f (x)g(x) dx, ||f || ∶= (

∫Ω
|f (x)|2 dx

)1∕2

, (19)

the Lebesgue space of all square-integrable functions on Ω, L2(Ω), is defined by all functions f(x) with ||f|| < ∞.
The functions from L2(Ω) with square-integrable generalized first-order derivatives form the Sobolev space H1(Ω).
We will use certain subspaces of these two spaces to set up a variational weak formulation for (16)-(18),
namely

p ∈ Q = L2(Ω)∕R, v ∈ H ⊂
(

H1(Ω)
)2
, w ∈ R ⊂

(
H1(Ω)

)ns+1
. (20)

Note that the pressure is determined only modulo constants, which is expressed by the special construction of the space
Q. The solution triple u ∶= (p, v,w) is now an element of the space V ∶= Q × H × R. Testing the equations (16)-(18) with
a function𝝓 = (𝜃,𝝌 ,𝝅) ∈ V, integrating over Ω, and applying integration by parts for the diffusive terms and the pressure
gradient yields the variational nonlinear equations

u ∈ V ∶ A(u,𝝓) = 0 for all 𝝓 ∈ V , (21)

with the semi-linear form

A(u,𝝓) ∶= (∇ ⋅ v, 𝜃) − (l𝜷 ⋅ ∇w0, 𝜃) + (v ⋅ m, 𝜃)
+ ((𝜷 ⋅ ∇)v,𝝌) + (𝜇∇v,∇𝝌) − (phyd,∇ ⋅ 𝝌) − (𝜌g,𝝌)

+
ns∑

i=0
{(𝜷 ⋅ ∇wi, 𝜋i) + (𝜈i∇wi,∇𝜋i) − (fi(w), 𝜋i)}. (22)

Here, for simplicity, we have used the free-stream outflow condition and homogeneous Dirichlet conditions. Other
boundary conditions can be handled by natural modifications.

We will now describe our finite element approximation. First, we decompose Ω into a regular partition of triangles
h = {K} and define the conforming finite element space of continuous piecewise linear functions by

Sh ∶= {f ∈ C0(Ω) ∶ f|K ∈ P1, K ∈ h}, (23)

where P1 is the space of all polynomials of degree not larger than one. Then, the infinite dimensional space V is approx-
imated by a finite dimensional space Vh = (Qh,Hh,Rh) and the corresponding discrete approximations uh = (ph, vh,wh)
are determined in the finite element spaces

Qh ∶= Sh∕R, Hh ∶= (Sh)2, Rh ∶= (Sh)ns+1. (24)

The main observation is now that a simple replacement of V by Vh in (21) does not give a stable discretization. Instead,
we use pressure stabilization and streamline diffusion to enhance the main diagonal of the resulting algebraic system.
This gives the finite element approximation

uh ∈ Vh ∶ A(uh,𝝓) + Sh(uh,𝝓) = 0 for all 𝝓 ∈ Vh (25)

with the stabilization term Sh defined by

Sh(uh,𝝓) ∶= ch(uh, 𝜃) + mh(uh,𝝌) +
ns∑

i=0
ti,h(uh, 𝜋i), (26)
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where

ch(uh, 𝜃) ∶=
∑

K∈h

𝛼K
(
(𝜷 ⋅ ∇)v + ∇phyd − 𝜌g,∇𝜃)

)
K , (27)

mh(uh,𝝌) ∶=
∑

K∈h

𝛿K
(
(𝜷 ⋅ ∇)v + ∇phyd − 𝜌g, 𝜷 ⋅ ∇𝝌)

)
K , (28)

ti,h(uh, 𝜋i) ∶=
∑

K∈h

𝛿K,i

(
(𝜷 ⋅ ∇)wh,i − fi(wh), 𝜷 ⋅ ∇𝜋i)

)
K
, i = 0,… ,ns. (29)

Here, (⋅, ⋅)K stands for the inner product over the triangle K. The density 𝜌h is a function of wh and determined from the
equation of state in (12). The mesh-dependent constants 𝛼k, 𝛽K , and 𝛽K,i must be chosen carefully in order to locally reflect
convection-dominated as well as diffusion-dominated flows in an appropriate manner. We follow Reference 12 and set in
each element K ∈ h,

𝛼K =
h♯

K

2V
Re√

1 + (Re)2
, Re ∶=

h♯

KV
𝜇

, (30)

𝛽K = hK

2|v| Re√
1 + (Re)2

, Re ∶=
hK|𝜷|
𝜇

, (31)

𝛽K,i =
hK

2|v| Re√
1 + (Re)2

, Re ∶=
hK|𝜷|
𝜈i

, i = 0,… ,ns, (32)

where V denotes a global reference velocity, h♯

K is the diameter of the 2D ball having the same area as K, and hK is the
length of the element K in the direction of the local velocity v.

The highly nonlinear system (25) is often hard to solve without the knowledge of a good initial guess. A
common technique is the use of a homotopy approach in order to stabilize Newton's method. This can be
best realized by a pseudo implicit time-stepping scheme. We formally add time derivatives to equation (25),
resulting in

uh(t) ∈ Vh ∶ (P𝜕tuh(t),𝝓) + A(uh(t),𝝓) + Sh(uh(t),𝝓) = 0 for all 𝝓 ∈ Vh, (33)

with a projection matrix P = diag(0, 1, 1). In this way, the hydrodynamic pressure phyd is still determined by a stationary
equation and therefore the characteristic property of the low-Mach number model is preserved. Since an accurate resolu-
tion of uh(t) is not important, we solve (33) with the linearly implicit Rosenbrock method ROS3PL13 employing variable
step sizes and a low tolerance until a stationary solution is obtained. This method has very good stability properties and
is suitable for the solution of differential-algebraic equations like (33).

3 THE MOVING MESH METHOD

3.1 Basic formulation of the moving mesh PDE

In what follows, we will adopt the time-dependent moving mesh method described in References 6,14 to stationary com-
bustion problems. The mesh equation is formulated in terms of a coordinate transformation between the original physical
domain Ω and a computational domain ΩC which has the same topology. We denote the corresponding coordinates by
x = (x1,… , xn)T and 𝝃 = (𝜉1,… , 𝜉n)T . The time-depending mapping x(𝝃, t) ∶ ΩC → Ω is defined by the minimizer of the
quadratic functional

I[𝝃] = 1
2∫Ω

(∑
i
∇𝜉T

i G−1∇𝜉i

)
dx, (34)
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where G stands for the so-called monitor function that links to the physical solution and is used to control the mesh
density. Using a variational approach, the minimizer is approximated by the smooth solution of a modified gradient flow
equation which reads

𝜕𝝃

𝜕t
= −B

𝜏

𝛿I
𝛿𝝃

= B
𝜏
∇ ⋅ (G−1∇𝝃). (35)

Here, 𝜏 > 0 is a user specified parameter that controls the response time of the mesh movement and B is a balance function
to control the spatial movement of the mesh points. In order to compute the mapping x(𝝃, t) directly, we interchange the
roles of dependent and independent variables. The final form of the MMPDE can be expressed in the following form:

𝜏
𝜕x
𝜕t

= B

(∑
i,j

Aij
𝜕2x
𝜕𝜉i𝜕𝜉j

−
∑

i
bi
𝜕x
𝜕𝜉i

)
, (36)

where

Aij ∶= ∇𝜉T
i G−1∇𝜉j, bi ∶=

∑
j
∇𝜉T

i
𝜕G−1

𝜕𝜉j
∇𝜉j. (37)

The parameter B should be determined such that all mesh points move with a uniform time scale. This allows an easier
numerical integration of the MMPDE. The most convenient approach15 to obtain a well spatially balanced MMPDE is to
scale the terms on the right-hand side of (36) as follows:

B = 1√∑
i
(A2

ii + b2
i )
. (38)

The main advantage of this approach is that the coefficients in the right-hand side of (36) become (1). Then, the cor-
responding equations are x- and G-scaling invariant, that is, the MMPDE will not change if we rescale the physical
domain and the monitor function. This allows to use the positive parameter 𝜏 in (36) to adjust the time scale of the mesh
movement. In general, a smaller 𝜏 results in a faster mesh adaptation with respect to changes in the monitor function
G, while a larger 𝜏 produces slower movement in time.16,17 Since we only focus on the design of a static quasi-optimal
mesh to improve the approximation quality of the stationary solution, it is sufficient to set 𝜏 = 1 and to apply a pseudo
time-stepping method. For a complete specification of the coordinate transformation, we also need to supply the MMPDE
with appropriate boundary conditions. In our applications, we always fix the mesh points on the boundary. For more
advanced strategies, we refer to Reference 15.

3.2 Construction of the monitor function

A general approach for constructing monitor functions G in two dimensions is based on its eigendecomposition,

G = 𝜆1𝑣1𝑣
T
1 + 𝜆2𝑣2𝑣

T
2 , (39)

where v1 and v2 are mutually orthogonal normalized eigenvectors of G. The eigenvectors of G determine the directions
of the mesh adaptation, while the associated eigenvalues dictate the intensity of the concentration of the mesh in these
directions.

Given a vector-values quantity of interest 𝝍(uh(x)) computed from the stationary numerical solution uh(x), a class of
monitor functions can be constructed by harmonic mappings.18 This reads

𝑣1 = 𝝍||𝝍|| , 𝑣2 = 𝑣⟂1 ,

𝜆1 =
√

1 + 𝛼||𝝍||2, 𝜆2 = 1
𝜆1
,

(40)

where 𝛼 denotes a user-defined intensity parameter. Typical examples for the function 𝝍 are error indicators, curva-
ture, or gradient data taken from certain solution components. Heuristically, the numerical error is larger in regions
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where the solution changes dramatically. For example, suppose a numerical scalar solution uh exhibits a steep front and
the solution gradient is chosen to be one of the eigenvectors, that is, 𝝍 = ∇uh, then, by using (40), the intensity of the
adaptation determined by 𝜆1 along the normalized gradient direction v1 is much stronger than those determined by 𝜆2
in the tangential direction v2. Thus, it is expected that coordinate expansion and compression will mainly occur in the
gradient direction. However, it should be pointed out that using the solution gradient as 𝝍 may not always be the best
option for some problems. This topic will be discussed in our applications. Similar conclusion can already be found
in Reference 16.

The monitor function G is usually constructed by nonsmooth operations applied to the numerical solutions. This can
result in very stiff MMPDEs. A usual remedy is to smooth the monitor function. Let xp be a mesh point in Ω and 𝝃p
the corresponding mesh point in Ωc. Then the following smoothing algorithm has proven to work quite satisfactorily in
practice:15,19

G0(xp) ∶= G(xp) for all grid points xp,

Gm+1(xp) ∶=
∫C(𝝃p )

Gm(xp(𝝃)) d𝝃

|C(𝝃p)| for all grid points xp,

m = 0, 1,… ,Ms − 1,
(41)

with C(𝝃p) ⊂ ΩC is the union of neighboring grid cells having 𝝃p as their common vertex. Here, the initial monitor function
G(xp) is directly obtained from (39) and (40). Ms is a user-specified parameter standing for the number of the smoothing
cycles to be performed. A smaller Ms gives a more accurate description of the profiles of the monitor function, since it
characterizes the exact features of the solutions. However, this usually makes the MMPDE harder to solve. Generally, the
value of the intensity parameter 𝛼 and Ms are problem-dependent.

4 APPLICATIONS

In this section, we present two reactive flow problems which have an increasing degree of complexity. Both prob-
lems have been extensively studied in References 9,11. The first example is the ozone decomposition flame. The
chemical processes are modelled with three species and six elementary chemical reactions. The motivation for this
application is to demonstrate and compare the numerical results for various monitor functions. Benefits and short-
comings of the moving mesh method will also be discussed. The second example describes a methane flame in a
complex geometry. The underlying chemical model contains 15 species and 84 elementary reactions. Some interme-
diate species have extremely thin flame layers that need to be resolved sufficiently. Furthermore, the whole process
possesses both extremely fast and slow motions, implying a strict requirement on the time resolution. All trans-
port coefficients for viscosity, thermal conductivity, and diffusion are evaluated from kinetic models collected in the
databases of the Sandia National Laboratories.20 The influence of the gravitation is neglected, that is, we set g = 0 in
our applications.

4.1 A 2D example for ozone decomposition

We use the mechanism for ozone decomposition reaction that consists of 6 elementary reactions proposed in Reference 21:

O3 + M
1

−−−−⇀↽−−−−
2

O2 + O + M, (42)

O + O + M
3

−−−−⇀↽−−−−
4

O2 + M, (43)

O + O3
5

−−−−⇀↽−−−−
6

O2 + O2. (44)

Here, M denotes an arbitrary third body, that is, it can be one of three considered species: oxygen atoms O, oxygen
molecules O2 or ozone O3. Further details of the reaction mechanism based on the Arrhenius law can be found in
Reference [ 9, table A.1].
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F I G U R E 1 Profiles of the numerical solution wO3 ,h (top) and
its recovered gradient |D1wO3 ,h| (bottom) [Colour figure can be
viewed at wileyonlinelibrary.com]

4.1.1 Specification of the simulation

The geometry of the simulation is supposed to consist of two flat plates (regarded as rigid walls) with an inflow at the
left side, comprising a cold mixture of ozone and oxygen molecules, and a free-stream outflow at the right side. The
computational domain is defined as Ω ∶=]0, 0.02[×]0, 0.005[ and 𝜕Ω = Γin ∪ Γwall ∪ Γout. The boundary conditions are

inflow on Γin: v = vin, T = Tin, w = win, (45)

rigid walls on Γwall: v = 0, T = Twall, ∇w ⋅ n = 0, (46)

outflow on Γout: − 𝜇∇v ⋅ n + pn = 0, ∇T ⋅ n = 0,∇w ⋅ n = 0. (47)

The initial mass fractions of species are 𝜔O3 = 0.2, 𝜔O2 = 0.8 and the initial temperature is

T(x) = 298 + (800 − 298) e−105(x1−0.005)2 , (48)

which is kept fixed at the inflow and at the rigid wall as Dirichlet boundary conditions. The velocity profile on the inflow
boundary is parabolic with a maximum velocity of 0.25 m/s. The Reynolds number is approximately Re = vcL∕𝜇 ≈ 62,
where vc is the mean value of the velocity at the inlet, L stands for the length of the geometry, and 𝜇 is the viscosity of the
mixture at the inflow.

A good indicator of the correct location of the flame front is the mean value of 𝜔O3 ,9

J(u) = 1|Ω|∫Ω
wO3 dx. (49)

The profiles of the numerical approximation of wO3 and its gradient are shown in Figure 1. We will use J(uh) to demonstrate
the performance of our moving mesh approach. To compare the accuracies for different meshes, we first compute a
reference solution with an adaptive, locally refined mesh with about 45 000 grid points using the KARDOS software22,23

and provide also values for regular meshes with different numbers of uniform grid points. The results are collected in
Table 1.

4.1.2 A first monitor function

A central issue when applying a moving mesh method is to define a proper monitor function to control the distribution of
the grid points. In most cases, the monitor function should ensure that the grid points are concentrated in regions where

http://wileyonlinelibrary.com
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T A B L E 1 Values for J(uh) defined in (49) for uniform meshes with different
numbers of points (noP) and absolute values of the numerical errors
J(e) = J(u − uh) derived from an adaptive reference solution with about 45 000
grid points

noP J(uh) |J(e)|

1105 0.03331313 1.912892 ×10−4

2835 0.03347317 1.570370 ×10−4

4257 0.03348598 1.844070 ×10−5

Adaptive 0.03350442 –

F I G U R E 2 Comparison of the numerical solution
wO3 ,h computed on uniform and adaptive meshes. Left:
numerical solution wO3 ,h with high resolution computed on a
uniform mesh with 148 417 grid points (above) and with low
resolution on a uniform mesh with 2835 grid points (below).
Right: numerical solution wO3 ,h with high resolution
computed on a regular mesh with 148 417 grid points (above)
and on an adaptive mesh with 2835 grid points (below)
[Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 3 Left: 2D plot of the
mesh density

√
det(G(D1wO3 ,h(x))) after

smoothing (above) and corresponding
adaptive moving mesh (below). Right:
error distribution of the mass fraction of
ozone molecules 𝜔O3

; approximate
interpolation error indicator (above) and
hierarchical basis error estimator
(below) [Colour figure can be viewed at
wileyonlinelibrary.com]

the physical solutions require a higher resolution. So the grid points on a uniform mesh should be relocated so that the
requirement on the number of the mesh cells necessary to appropriately resolve a flame layer can be satisfied.24 Common
practice when constructing a monitor function is to employ some heuristic choices. For problems where the solutions
change dramatically within a small region, such as the flame layer of the ozone molecules𝜔O3 illustrated in Figure 1, there
are usually larger numerical errors in regions with large gradients. Thus, the gradients of certain solution components
often represent a good error indicator. The gradient of a piecewise linear function is a constant vector in each element
K ∈ h. In order to improve the approximation property, we apply a standard gradient recovery operator D1 ∶ Sh → (Sh)2

as introduced in Reference 25, and choose in our first experiment

𝝍 ∶= D1wO3,h, (50)

as eigenvector v1 of the monitor function G to enforce a mesh adaption in this direction. From Figure 2, we can make the
following observations: The contour of the flame layer becomes more distinct and can be better approximated through
adjusting the locations of the grid points close to the sharp flame front. The mesh cells are compressed to different extents
along the convective direction of the flow so that an obvious anisotropic behavior is visible. Moreover, the mesh points are
correctly concentrated in the area where the gradient is large. This is exactly the location where the mesh density takes
its peak values, as illustrated in Figure 3. However, Table 2 shows that the accuracy of J(uh) does not always improve with
increasing grid points as one would expect. A similar behavior has been observed in Reference 15.
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noP J(uh), uniform J(uh), adaptive |J(e)|, uniform |J(e)|, adaptive

1105 0.03331313 0.03356365 2.912892 ×10−4 5.918997 ×10−5

2835 0.03347317 0.03344742 1.570370 ×10−4 5.703389 ×10−5

4257 0.03348598 0.03344386 1.844070 ×10−5 6.059835 ×10−5

The reference value is J(u) ≈ 0.03350442.

T A B L E 2 Results for uniform and
moving meshes with the quantity of interest
𝝍 = D1wO3 ,h and parameters Ms = 8 and
𝛼 = 80 for the moving mesh design

In the following, we would like to discuss two reasons for this behavior. First, while the grid points are concentrated
in regions with large gradients of wO3,h, the accuracy of the other components, which also influence the balance of O3,
might be lower due to certain local expansions of mesh lines, resulting in a worse accuracy for J(uh). Second, although
regions of large solution gradients can usually reflect areas with large numerical errors, this is not always true for the
exact error distribution. Because of the coupling of all components, using the gradient of a single component may lead
to an over-concentration of mesh points in areas that have already been sufficiently resolved. The right graph in Figure 3
illustrates an estimated error distribution which is based on a hierarchical error estimator proposed in Reference 23. Obvi-
ously, the error distribution differs significantly from the density function illustrated in the left graph in Figure 3, which
governs the concentration of the grid points in the MMPDE. The error distribution has a double-layer structure, where
the numerical errors are mainly accumulated in regions with large flame curvature. More specifically, at the downstream
edge, the numerical errors are larger than those on the upstream side. The downstream edge of the flame layer is located
in a transitional reaction zone, where the dynamics of the species is governed by both convection and source terms. There
the intermediate species are also frequently produced and consumed. Thus, a higher resolution in this region is preferable.
Next we will construct a monitor function which is based on local error information.

4.1.3 A second monitor function

Now, we will introduce a second monitor function which is based on an approximate interpolation error indicator.
First, we recall the Sobolev space H2(Ω) which consists of all functions from H1(Ω) with square-integrable general-
ized second-order derivatives. In what follows, we will denote by | ⋅ |Hi , i = 1, 2, the usual semi-norm in Hi defined by
derivatives of i-th order only. Let u ∈ H2(Ω) ∩ C0(Ω), for the moment, be a scalar solution, uh its linear finite element
approximation, and Π1u ∈ Sh its linear interpolant defined by u(xi) = Π1u(xi) for all mesh points xi. Then a standard
argument for the interpolation error

|u − Π1u|H1(Ω) =

(∑
K∈h

|u − Π1u|H1(K)

)1∕2

≤ C
∑

K∈h

hK|u|H2(K), (51)

gives the a priori error estimate for the linear finite element solution,

||u − uh||H1(Ω) ≤ Ch|u|H2(Ω), (52)

where h ∶= maxK∈h hK . This, together with the observations made in the previous section, motivates to use second deriva-
tives of uh to control the local density of the moving mesh. An approximation D2uh ∈ (Sh)2 for (𝜕x1x1 u, 𝜕x2x2 u)T is derived
from a quadratic interpolation of uh [ 16, section 4.2]. Then, we set for our application,

𝝍 ∶= D2wO3,h. (53)

We would like to mention that this choice is in line with the Hessian-based monitor function proposed by Huang and
Li,26 where the second derivatives are used to control the error with respect to functionals in an optimal manner. It reads
in our case

|J(u) − J(uh)| = 1|Ω| ||||∫Ω
(wO3 − wO3,h) dx

|||| → Minimize! (54)

In Figure 4, the profile of wO3,h and its approximate interpolation error indicator |D2wO3,h| are shown. We observe that
this error indicators gives nearly as good information on the local errors as the more sophisticated error estimator based
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F I G U R E 4 Profiles of the numerical solution wO3 ,h

(top) and its interpolation error indicator |D2wO3 ,h| (bottom)
[Colour figure can be viewed at wileyonlinelibrary.com]

T A B L E 3 Computation results for moving
meshes with two monitor function based on the
gradient D1wO3 ,h (gradient) and on the interpolation
error indicator D2wO3 ,h (interr) with Ms = 8, 𝛼 = 80

noP J(uh), gradient J(uh), interr |J(e)|, gradient |J(e)|, interr

2835 0.03344742 0.03344717 5.703389 ×10−5 3.272824 ×10−5

4257 0.03344386 0.03504592 6.059835 ×10−5 1.347509 ×10−7

The reference value is J(u) ≈ 0.03350442.

F I G U R E 5 Comparisons of moving meshes generated by different monitor functions for 4257 mesh points. Color curves represent the
contour lines of 𝜔O3

. Left: Close-up view of the adaptive mesh around the O3-flame layer computed by the gradient-based function
𝝍 = D1wO3 ,h. Right: Close-up view of the adaptive mesh around the O3-flame layer computed by the second derivative-based function
𝝍 = D2wO3 ,h [Colour figure can be viewed at wileyonlinelibrary.com]

on a hierarchical basis, compare Figure 3, but is much cheaper. From Table 3, we see that the results obtained by using
the new monitor function are much better than those based on the gradient of wO3,h. From a comparison of both methods
shown in Figure 5, it becomes visible that with the new monitor function grid points are concentrated in a larger area
due to the higher second derivatives and hence numerical errors.

4.2 A 2D example for methane combustion

In this section, we consider a methane combustion problem described by the following global reaction

CH4 + 2O2 → CO2 + 2H2O. (55)

http://wileyonlinelibrary.com
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F I G U R E 6 Geometry of the methane burner considered

The reaction mechanism with 15 species and 84 elementary reactions is taken from Reference 27. We will consider a
lamella burner which is modified from a prototype constructed by JUNKERS Bosch Thermotechnik.28 The geometry for
the simulation is given in Figure 6.

4.2.1 Specification of the simulation

A stoichiometric mixture of methane (CH4) and air (O2∕N2) flows from the bottom of the burner through a sample of
slots which have a uniform width interval of 2 mm and three different heights varying from 15 mm to 11 mm. All slots
have the same width of 1.5 mm. The inflow velocity is v2 = 0.27 m/s. The solution is assumed to be spatially periodic.
Thus it is sufficient to restrict the computational domain to three slots which define Ω, see Figure 6. The lamellae can
be considered as obstacles. Dirichlet boundary conditions are used for the temperature, no-slip conditions for the veloc-
ities, and Neumann boundary conditions for the species on the wall of the lamellae. To specify the temperature on the
wall of the slots, we use three piecewise linear functions varying from 298 K to 393 K, 453 K, and 463 K, respectively.
On the cut boundary of Ω, symmetric boundary conditions are used for all the variables. For more details, we refer to
References 9,11,29.

This problem is characterized by the interaction of different physical processes and largely separated scales. A simu-
lation on uniform meshes can be very prohibitive. We expect that moving mesh strategies designed with an appropriate
monitor function will improve the numerical approximation even on relatively coarse meshes.

4.2.2 Application of moving meshes

Since the underlying combustion mechanism is relatively complicated, it is not possible to calculate a stable stationary
solution on quasi-uniform meshes with around 40 000 grid points. Higher resolution is needed near the flame front in the
reaction zone and in the pre-heating zone, where the chemical and convection-diffusion processes are strongly coupled.
These regions are unknown a priori. Therefore, we directly couple the physical PDE with the MMPDE by an arbitrary
Lagrangian-Eulerian approach.

We first define ûh(t) ∶= ûh(x(𝝃, t), t) = ûh(𝝃, t). Under the mapping x(𝝃, t), we then transform (33) into a system
involving the computational coordinates 𝝃, that is,

ûh(t) ∈ Vh ∶
(

P
(
𝜕tûh(t) − (𝜕tx ⋅ J−T∇̂) ûh(t)

)
,𝝓

)
+ Â(ûh(t),𝝓) + Ŝh(ûh(t),𝝓) = 0 for all 𝝓 ∈ Vh.

(56)

Here, ∇̂ denotes the gradient operator with respect to 𝝃 and J = 𝜕x∕𝜕𝝃 is the Jacobian of the mapping x(𝝃, t). The oper-
ators Â and Ŝh are obtained from A and Sh by using the identity ∇ = J−T∇̂ and replacing uh by ûh. The additional term
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F I G U R E 7 1D study of the production rate of
some intermediate species. We choose HCO as candidate
for the mesh design [Colour figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 8 Mass fraction of CH4, H, and HCO at
the steady state [Colour figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 9 Adaptive grid (left) and profile of the
radical HCO (right) close to the top of the lamellae at steady
state. The elements colored in magenta show enlarged
triangles (up to 15%), and the elements colored in cyan
illustrate the compressed cells (up to −5%). The mesh
resolution is clearly aligned to the flame structure [Colour
figure can be viewed at wileyonlinelibrary.com]

(𝜕tx ⋅ J−T∇̂) ûh on the left side can be viewed as a correction for the convective effects of the mesh motion. Note that
the linear finite element space Vh is now related to a time-independent regular partition of triangles of the computa-
tional domain ΩC. Equation (56) is simultaneously solved with the MMPDE defined in (36) in the course of the pseudo
time-stepping method. The location of the mesh points described by the mapping x(𝝃, t) is immediately adapted to the
evolving flame structure until the stationary state is reached. Adjusting the mesh points in this way yields a stable numer-
ical solution, even on relatively coarse meshes. In our calculation, we start with an isotropic quasi-uniform mesh with
29 864 grid points delivered from the 2D-mesh generator TRIANGLE.30 We first compute the temperature-dependent
flow field without combustion and then start our mesh moving approach including all reaction terms.

For the choice of the monitor function, we study a 1D simplification of the chemical reaction process. A corresponding
simulation shows that the formyl radical HCO and its production rate have an extremely thin flame layer, see Figure 7.
Moreover, both are very sensible with respect to insufficient mesh resolution.29 Hence, wHCO is a good candidate for the
mesh design. We set 𝝍 = D2wHCO,h, which is now updated in each time step. In Figure 8, we show the mass fraction of
CH4, H, and HCO at the steady state. The thin reaction zone of HCO is clearly visible. A closer look at the top of the
lamellae presented in Figure 9 and Figure 10 reveals that the mesh cells are strongly compressed there and aligned with
respect to the flame structure. Their areas are correspondingly reduced.

http://wileyonlinelibrary.com
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F I G U R E 10 Resolution of the flame layer of HCO at the top of
the hottest lamella. Color curves represent contour lines of the mass
fraction of HCO: blue/green/brown correspond to 0.1, 0.3,
0.5 ∗ ||wHCO,h||∞, respectively [Colour figure can be viewed at
wileyonlinelibrary.com]

We would like to mention that the detection of the formyl radical HCO is also of great interest since it can provide
information about the local heat release rate which is a key parameter in the understanding of combustion processes. Due
to the low signal level, some optical diagnostic techniques, such as HCO planar laser-induced fluorescence (PLIF), are not
capable for visualization and quantitative measurements.31 Thus, the numerical investigation of the dynamic behavior of
this radical can reveal more information for further research.

5 CONCLUSIONS

In this article, we have presented a 2D adaptive moving mesh method based on combustion-specific design criteria in
order to improve the numerical resolution of steady state premixed flames in the low Mach number regime. We have
discussed the key ideas needed to design moving meshes which allow a relocation of mesh points without changing their
connectivity. An iterative and simultaneous moving mesh strategy that balances solution gradients or interpolation errors
over the whole spatial mesh have been applied to two combustion problems in 2D: a ozone decomposition and a methane
flame for a lamella burner. In both simulations, a curvature-based adaptation of the mesh points yielded an improved
flame resolution and a stable calculation of the steady state. Adaptive moving meshes led to an enhanced simulation
capability that has made it possible to simulate realistic flames without using more sophisticated local mesh refinement
methods.
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