Vanishing Hysteresis in Carbon Nanotube Transistors Embedded in Boron Nitride / Polytetrafluoroethylene Heterolayers

Sandeep Kumar,^{1,2} Daghan Dagli,^{1,2} Simone Dehm¹, Chittaranjan Das,⁵ Li Wei⁴, Yuan Chen⁴, Frank Hennrich³, and Ralph Krupke^{1,2,3}

¹ Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany

² Institute of Materials Science, Technische Universität Darmstadt, 76021 Karlsruhe, Germany

³ Institute of Quantum Materials and Technology, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany

⁴ School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia

⁵ Institute of Applied Materials, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany

Supplementary Material

Figure S1: Characteristics of reference devices fabricated on Si/SiO₂ without h-BN and PTFE

Figure S2: Optical image of grown h-BN

Figure S3: SEM images of grown h-BN

Table S1: Comparison of hysteresis in this work to previous literature for CNT transistors

License: CC BY 4.0 International - Creative Commons, Attribution

Figure S1: (a) Hysteresis in transconductance curves for SWNCT devices on Si/SiO2 without h-BN and PTFE encapsulation. (b-i) The corresponding transconductance curves were measured after vacuum annealing and are hence comparable to the h-BN supported devices prior Teflon coating.

Figure S2: Optical image of 80 nm thick h-BN grown on $300nm SiO_2$

Figure S3: SEM images of 80nm thick h-BN on 300nm h-BN at different magnifications.

Gate sweep	Hyst	Dielectric	Effective	CNT Condition	DOI
window	eresi	thickness	Dielectric		
(Electric field)	s in V		constant		
-3 to 3	2.2	SiO ₂ -500nm	SiO_2 +air = 2.13	Suspended (CNT on top of	10.1103/PhysRevB.86.115444
(3.14 MV/m)		Air-200nm		electrodes)	(ref 5)
-5 to 5	<0.1	SiO ₂ – 50nm	SiO ₂ =3.9	PTFE encapsulation Dielectric	10.1021/am5013326 (ref 17)
(2 MV/m)				Surface passivation	
				(Electrodes on top of CNT film)	
-10 to 10	5	SiO ₂ -200nm	SiO ₂ +	Hydrophobic film on dielectric	10.1002/adma.201004640
(16.7 MV/m)		Parylene-	Parylene (3.15)	(CNT on top of electrodes)	(ref 6)
		100nm	= 3.61		
-1 to 1	0.1	SiO ₂ -4nm	3.3	SAM on SiO2(Electrodes on	10.1021/nl061534m (ref 8)
(16.7 MV/m)		SAM-2nm		top of CNTs)	
-10 to 10	8	SiO ₂ -100nm	SiO ₂ = 3.9	PMMA passivation on top of	10.1143/JJAP.45.5501 (ref 14)
(80 MV/m)				CNT (Electrodes on top of	
				CNT)	
-5 to 5	0.5	ZrO ₂ -90nm	ZrO ₂ =10	PVDF-TrFE passivation on top	10.1063/1.4895069 (ref 15)
(5.55 MV/m)				of CNT (CNT film on top of	
				electrodes)	
-1.5 to 3	0.3	TiO ₂ -30nm	TiO ₂ =22	TiO2 top gate (Electrodes on	10.1021/acsnano.7b01164
(10 MV/m)				top of CNT film)	(ref 16)
-5 to 5	0.1	h-BN-80nm	h-BN = 3.29	PTFE + h-BN	This work
(0.263 MV/m)		SiO ₂ - 300nm	h-BN+SiO ₂ =	(CNT on top of electrodes)	
			3.75		

Table S1: Comparison of the hysteresis in this work to the literature