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Abstract

The Snowden revelations of 2013 have shed some light on the extent of state-performed mass
surveillance programs that target people all over the world, violate their privacy, and endanger their
cyber security. The presumably most expensive of these surveillance programs is the NSA’s decryption
program, Bullrun, which aims at breaking and sabotaging cryptosystems. This program cost $254.9
million in 2013 alone. Cryptosystems are vulnerable to sabotage in their mathematical specifications,
standardization of their parameters, and their implementations. It has been a bitter surprise to
realize that the capabilities of adversaries that have been classically considered in cryptographic
models often do not even come close to what is attainable for big brother (i.e., state-level) adversaries.
Therefore, it is of utmost necessity to rigorously study cryptographic sabotage and to develop resilient
cryptosystems. Considering that the anticipated adversary is an extremely powerful one, finding
solutions against sabotage requires not only tailoring the existing approaches from various areas in
cryptography and other closely related disciplines to new scenarios but at times also entirely new
design and proof techniques. As such, this thesis aims at adding new knowledge and techniques to
the cryptographic toolbox to help better combat such attacks. In particular, we tackle the problem
of disabling backdoors embedded in the mathematical design of cryptographic primitives as well as
re-establishing security in their subverted implementations.

The first part of this thesis is concerned with defeating backdoors in hash functions, which are
one of the most fundamental and versatile primitives in cryptography. We formulate and study
backdoored hash functions, whereby a big brother designs a hash function that despite displaying
reasonable functionality and security properties, can be broken using a secret backdoor. We start
by modeling backdoored hash functions in the standard model (i.e., a model without idealized
primitives), where the backdoor is a key co-designed with the hash function. We then show the
feasibility of efficient backdoored hash functions for fixed-length inputs and how iterating such
functions in the Merkle–Damgård or the sponge constructions leads to backdoored hash functions
for inputs of arbitrary length, where crucial security guarantees break down. On the positive side,
we give evidence that the weak pseudorandomness property of hash functions, which rely on a secret
key, is in fact robust against backdooring. This result allows us to build a backdoor-resilient iterative
pseudorandom function, more precisely, a variant of HMAC. Furthermore, we show how the key
derivation function HKDF can be immunized against backdoors at little cost. Unfortunately our
findings also suggest that immunizing a hash function against backdoors, without relying on a secret
key, is presumably hard. This observation later motivated our study of combining independent hash
functions as a possible strategy in building secure backdoor-resilient hash functions.

We then introduce a model which we call the backdoored random-oracle (BRO) model, whereby a
big brother picks a random oracle, i.e., a random function, but he can also obtain arbitrary information

vii



viii Abstract

about the random oracle using a backdoor oracle. This model captures not only weaknesses that lead
to collision-finding and inversion attacks but also any conceivable weakness that can exist in a hash
function. Therefore, adversaries equipped with such a backdoor oracle are powerful to the extent that
no security can be achieved based on a single arbitrarily backdoored random oracle. However, when
two independent BROs are available, we show that certain security properties, such as one-wayness,
pseudorandomness, and collision resistance can be re-established. This is true even when we allow
unrestricted and adaptive access to both backdoor oracles. To this end we consider three common
combiners: concatenation, cascade, and xor. At the core of our results lie new reductions from
cryptographic security goals to the communication complexities of several two-party tasks. Along the
way we establish a communication complexity lower bound for set-intersection for cryptographically
relevant ranges of parameters and distributions and where deciding set-disjointness can be easy.

We further study the technique of combining independent BROs in order to construct a hash
function from two or more BROs in a way that it can be used in many cryptographic applications
that rely on a backdoor-free random oracle. The property that practically allows a hash function
construction to replace a random oracle is referred to as indifferentiability and was introduced by
Maurer, Renner, and Holenstein (TCC 2004). Achieving full indifferentiability in our model seems
very challenging at the moment. We however make progress in this direction by showing that the xor
combiner goes well beyond security against preprocessing attacks and offers indifferentiability as long
as the number of the adversary’s query switches between the backdoor oracles remains logarithmic
in the input size of the underlying BROs. We also show that an extractor-based combiner of three
BROs can provide indifferentiability even against adversaries that make a linear number of switches.
To prove these results we build on and refine a recent technique by Göös, Lovett, Meka, Watson,
and Zuckerman (STOC 2015) for decomposing high-entropy distributions into convex combinations
of distributions on bit strings that are fixed on some points and highly unpredictable on others.
Furthermore, a natural restriction of our definition of indifferentiability in the BRO model gives
rise to a notion of indifferentiability with auxiliary input, for which we give two positive feasibility
results.

The second part of this thesis aims at providing security in face of malicious implementations. We
put forward the notion of self-guarding cryptographic primitives as a countermeasure to a subclass of
so-called algorithm substitution attacks (ASAs). These attacks are formalized by Bellare, Paterson,
and Rogaway (CRYPTO 2014) as attacks, where a big brother secretly substitutes the genuine
implementation of a cryptosystem with a malicious one in order to undermine users’ security. The
authors also show that randomized symmetric encryption schemes are vulnerable to devastating
ASAs that practically allow a big brother to steal secret keys, while to users the input-output behavior
of the encryption algorithm remains undetectable from that of a genuine implementation. Detecting
ASAs, even if theoretically possible, is unfortunately not an easy task. Our self-guarding primitives,
however, do not rely on detection and can still prevent undesirable leakage by subverted algorithms,
usually for a bounded time, if one has the guarantee that the system has been working properly
during an initial phase. This secure initial phase is justified for instance, before a malicious software
update is performed or before a malicious internal state is reached. We present constructions of basic
self-guarding primitives for symmetric and asymmetric encryption and for signatures. We also argue
that the model captures attacks with malicious hardware tokens and show how to self-guard a key
exchange protocol that is based on a physical uncloneable function (PUF).



Zusammenfassung

Die Snowden-Enthüllungen aus dem Jahr 2013 gaben Aufschluss über das Ausmaß staatlich durchge-
führter Massenüberwachungsprogramme, die Menschen auf der ganzen Welt ausspionieren, ihre Pri-
vatsphäre verletzen und ihre Cyber-Sicherheit gefährden. Das vermutlich teuerste dieser Programme,
das Entschlüsselungsprogramm Bullrun der NSA, zielt darauf ab, Kryptosysteme zu brechen und
sogar zu sabotieren. Allein im Jahr 2013 kostete Bullrun 254,9 Millionen Dollar. Kryptosysteme sind
anfällig für Sabotage in ihren mathematischen Spezifikationen, der Standardisierung ihrer Parameter
und ihrer Implementierungen. Es war eine bittere Überraschung zu realisieren, dass die Fähigkeiten
von Angreifern, die in klassischen kryptographischen Modellen betrachtet werden, oft nicht annäh-
ernd an das herankommen, was für einen Big Brother, d.h. einen Angreifer auf Staatsebene, machbar
ist. Eine gründliche Untersuchung der kryptographischen Sabotage und die Entwicklung resistenter
Kryptosysteme sind deshalb von größter Notwendigkeit. Dadurch, dass der von uns berücksichtigte
Angreifer äußerst mächtig ist, erfordern Lösungen in solchen Szenarien nicht nur eine Anpassung
der bestehenden Ansätze aus diversen Bereichen der Kryptographie und anderen eng verwandten
Disziplinen an neue Szenarien, sondern manchmal auch völlig neue Design- und Beweistechniken.
Daher setzt sich diese Dissertation als Ziel, neue Erkenntnisse und Techniken zum kryptographischen
Werkzeugkasten beizutragen, damit man solche Angriffe besser bekämpfen kann. Wir befassen uns
insbesondere mit der Deaktivierung von Hintertüren im mathematischen Design kryptographischer
Primitiven sowie der Wiederherstellung der Sicherheit in ihren unterwanderten Implementierungen.

Der erste Teil dieser Dissertation beschäftigt sich mit dem Vernichten von Hintertüren in Hash-
funktionen, die eine der grundlegendsten und vielseitigsten Primitiven in der Kryptographie sind. Wir
formulieren und untersuchen Hashfunktionen mit eingebetteten Hintertüren, wobei ein Big Brother
eine Hashfunktion entwirft, die zwar vernünftige Funktionalität und Sicherheitseigenschaften vorzeigt,
aber mit einer geheimen Hintertür gebrochen werden kann. Wir beginnen mit der Modellierung von
Hashfunktionen mit Hintertüren im Standardmodell (d.h. ein Modell ohne idealisierte Primitiven),
wobei die Hintertür ein mit der Hashfunktion entworfener Schlüssel ist. Wir zeigen die Realisier-
barkeit effizienter Hashfunktionen mit fester Eingabelänge und eingebetteten Hintertüren und wie das
Iterieren dieser Funktionen durch die Merkle-Damgård- oder die Sponge-Kontruktionen zu Hashfunk-
tionen mit beliebiger Eingabelänge und Hintertüren führt, bei denen wesentliche Sicherheitsgarantien
versagen. Auf der positiven Seite zeigen wir, dass die schwache Pseudozufälligkeitseigenschaft der
Hashfunktionen, die einen geheimen Schlüssel verwenden, in der Tat robust gegen Hintertüren ist.
Dieses Resultat erlaubt es uns, eine hintertürresistente iterative Pseudozufallsfunktion zu bauen,
genauer gesagt eine Variante von HMAC. Wir zeigen auch, wie die Schlüsselableitungsfunktion,
HKDF, mit geringem Aufwand gegen Hintertüren immunisiert werden kann. Leider deuten unsere
Resultate auch darauf hin, dass das Immunisieren einer Hashfunktion, ohne sich dabei auf einen
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x Zusammenfassung

geheimen Schlüssel zu verlassen, vermutlich schwierig ist. Diese Beobachtung motivierte später unsere
Idee zum Kombinieren von unabhängigen Hashfunktionen als eine Strategie für die Konstruktion
sicherer und hintertürresistenter Hashfunktionen.

Wir führen anschließend ein Modell ein, das wir Backdoored-Random-Oracle (BRO) nennen,
auf Deutsch Zufallsorakel mit Hintertür, wobei ein Big Brother eine zufällige Hashfunktion, d.h.
ein Zufallsorakel, auswählt, aber dennoch beliebige Funktionen seiner Tabelle mit Hilfe eines Hin-
tertürorakels sehen kann. Dieses Modell erfasst zusätzlich zu den gewöhnlichen Angriffen wie Kolli-
sionsfindung oder Invertieren auch jegliche denkbare Schwäche, die eine Hashfunktion haben kann.
Ausgestattet mit einem solchen Hintertürorakel sind Angreifer daher so mächtig, dass keine auf
einem einzelnen BRO mit allmächtigem Hintertürorakel basierende Sicherheit erreichbar ist. Wir
zeigen jedoch, dass bestimmte Sicherheitseigenschaften wie One-Way-Sicherheit, Pseudozufälligkeit
und Kollisionsresistenz gerettet werden können, wenn zwei unabhängige BROs zur Verfügung stehen.
Dies gilt, auch bei uneingeschränktem und adaptivem Zugriff auf beide Hintertürorakel. Zu diesem
Zweck berücksichtigen wir drei weitverbreitete Kombinierer: Konkatenation, Kaskade und XOR. Im
Mittelpunkt unserer Resultate stehen neue Reduktionen von kryptographischen Sicherheitszielen
auf die Kommunikationskomplexitäten verschiedener Zweiparteienaufgaben. Dabei etablieren wir
auch eine neue Unterschranke für die Kommunikationskomplexität von Schnittmengenberechnung
für kryptographisch relevante Bereiche von Parametern und Verteilungen, wobei das Problem der
Mengendisjunktheit einfach sein kann.

Wir untersuchen die Technik der Kombination unabhängiger BROs weiter, um eine Hashfunk-
tion aus zwei oder mehr BROs zu bilden, so dass diese Konstruktion in vielen kryptographischen
Anwendungen verwendet werden kann, die auf ein hintertürfreies Zufallsorakel setzen. Die Eigen-
schaft, die es einer Hashfunktionskonstruktion praktisch erlaubt, ein Zufallsorakel zu ersetzen wird
als Undifferenzierbarkeit bezeichnet und wurde von Maurer, Renner und Holenstein (TCC 2004)
eingeführt. Das Erreichen vollständiger Undifferenzierbarkeit in unserem Modell scheint im Moment
sehr herausfordernd zu sein. Wir machen jedoch Fortschritte in dieser Richtung, indem wir zeigen,
dass der XOR-Kombinierer weit über die Sicherheit gegen Vorverarbeitungsangriffe hinausgeht und
Undifferenzierbarkeit bietet, solange die Anzahl der Abfragewechsel des Angreifers zwischen den Hin-
tertürorakeln logarithmisch in der Eingabelänge der einzelnen BROs bleibt. Wir zeigen auch, dass ein
auf einem Zufallsextrahierer basierender Kombinierer für drei BROs kann Undifferenzierbarkeit sogar
gegen Angreifer mit einer linearen Anzahl von Abfragewechsel anbieten. Um diese Behauptungen zu
beweisen, verwenden und verfeinern eine neue Technik von Göös, Lovett, Meka, Watson und Zucker-
man (STOC 2015) für die Zerlegung von Verteilungen mit hoher Entropie in konvexe Kombinationen
von Verteilungen über Bitstrings, die in einigen Punkten fixiert und in den restlichen Punkten sehr
unvorhersehbar sind. Eine natürliche Einschränkung unserer Definition von Undifferenzierbarkeit im
BRO-Modell führt außerdem zu einer Definition von Undifferenzierbarkeit mit Hilfseingabe, für die
wir zwei positive Machbarkeitsergebnisse liefern.

Der zweite Teil dieser Dissertation befasst sich damit, Sicherheit in der Gegenwart von unterwan-
derten Implementierungen zu bieten. Wir stellen die Idee des Selfguarding der kryptographischen
Primitiven als eine Gegenmaßnahme zu einer Unterklasse sogenannterAlgorithm-Substitution-Attacks
(ASAs), auf Deutsch Algorithmensubstitutionsangriffe, vor. Solche Angriffe werden von Bellare, Pa-
terson und Rogaway (CRYPTO 2014) als Angriffe formalisiert, bei denen ein Big Brother heimlich
die sichere Implementierung eines Kryptosystems durch ein Bösartiges ersetzt, um die Sicherheit der



xi

Nutzer zu unterminieren. Die Authoren zeigen darüber hinaus, dass randomisierte symmetrische Ver-
schlüsselungsverfahren anfällig für solch verheerende ASAs sind, die es einem Big Brother praktisch
ermöglichen, geheime Schlüssel zu extrahieren. Dabei bleibt das Ein-Ausgabeverhalten des Verschlüs-
selungsalgorithmus ununterscheidbar von dem einer aufrichtigen und sicheren Implementierung.
Die Erkennung von ASAs, auch wenn theoretisch möglich, ist leider keine leichte Aufgabe. Unsere
Selfguarding-Primitiven sind nicht auf Erkennbarkeit angewiesen und können trotzdem unerwünschte
Informationsleck durch unterwanderte Algorithmen unterbinden, meist für eine begrenzte Zeit, wenn
man die Garantie hat, dass das System während einer Anfangsphase richtig funktioniert hat. Diese
sichere Anfangsphase ist beispielsweise gerechtfertigt, bevor eine böswillige Software-Update durchge-
führt wird oder ein bösartiger interner Zustand erreicht wird. Wir präsentieren Konstruktionen für
symmetrische und asymmetrische Verschlüsselung und für digitale Signaturen. Wir argumentieren
auch, dass das Modell Angriffe mit bösartigen Hardware-Tokens erfasst und zeigen, wie ein Schlüsse-
laustauschprotokoll, das auf einer Physical-Unclonable-Function (PUF) basiert, Selfguarding werden
kann.
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Chapter 1
Introduction

Cryptography is about designing and analyzing systems that enable certain tasks, such as communi-
cation, in presence of adversaries. Assessing the security of a cryptosystem crucially relies on precise
and rigorous models and profound assumptions. Meaningful models give an accurate description of
reality, while still abstracting from less relevant details, in order to be applicable to conceptually
similar scenarios. To demonstrate our confidence in the security of a cryptosystem, we need to exclude
the possibility that adversaries with realistic capabilities can succeed in breaking the desired security
goals in the considered model. This is done by means of mathematical proofs. If the assumptions that
we rely on happen not to hold, or if the considered model is inadequate for the intended application,
the practical consequences can be devastating.

A particularly dangerous threat which has been unjustly neglected by our community is that
of big brother (i.e., state-level) adversaries who perform mass surveillance [Rog15]. It is generally
illusive to assume that this type of adversaries is already captured in traditional security models
as adversaries that simply have more computing power than classical ones, and that it suffices to
increase the security level, e.g., key sizes, to protect against them. This assumption falsely suggests
that big brothers operate more or less passively and overlooks the possibility of an active involvement
during the design, implementation, and standardization of software and hardware. Below we discuss
several historic examples which show that such an assumption can be very problematic.

Attempts at embedding government-mandated backdoors in everyday cryptosystems intensified
in the 1990s with the NSA’s Clipper chip: a backdoored encryption device which was going to be
included in every cell phone. We emphasize that regardless of the term used to describe backdoors,
e.g., key escrow, golden keys, or front doors, they introduce a vulnerability in the system and are
inherently in conflict with security, not only against the big brother responsible for the backdoor
but also against other adversaries. Luckily, Clipper chip was defunct by 1996. However, sabotaging
cryptography in various shapes and forms has been an ongoing operation. Tech-companies are
pressured to embed backdoors in their products as was showcased, starting February 2016, in the
case of the FBI demanding that Apple enables unlocking of iPhones [Con20]. Furthermore, the
Swiss company Crypto AG, which was secretly co-owned by the CIA and the BND from 1970 to
1993 and then solely by the CIA until its liquidation in 2018, was selling backdoored products
to many governments all around the world [Mil20]. Moreover, the specification of cryptosystems
and their standardization process are also vulnerable to manipulation, as the prominent case of
the NIST-standardized Dual_EC_DRBG pseudorandom generator indicates: the entity picking the
elliptic curve parameters used in Dual_EC_DRBG can not only distinguish its outputs from random
but also predict future outputs. Although Shumow and Ferguson [SF07] warned about this issue
already in 2007, compelling evidence that Dual_EC_DRBG was indeed backdoored by the NSA
as part of their Bullrun program was given about six years later in 2013 by some of the Snowden
revelations [PLS13, Men13, BLN16].

More generally, the Snowden revelations exposed several ongoing surveillance programs that
undermine security and privacy of foreigners as well as citizens [Arc13]. These programs include,
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among others, bulk collection of communication contents and meta data obtained from undersea
fiber-optic cables or from Internet companies, as well as inserting vulnerabilities and embedding
backdoors in computer systems and standards [BBG13, MBH+13, PLS13, Men13, GP13, Gre14].
The NSA program that aims at breaking and even sabotaging cryptography is called Bullrun, which
with a cost of $254.9 million in 2013 alone is believed to be by far the most expensive [BBG13].

Making mass surveillance difficult to perform is not merely a task for cryptographers. It rather
requires sincere effort in various other disciplines, from computer science in general to sociology
and law. Nonetheless, cryptography is a necessary part of the solution. In a 2014 statement, the
International Association for Cryptologic Research (IACR) called for “expediting research and de-
ployment of effective techniques to protect personal privacy against governmental and corporate
overreach” [Res14]. Despite the Snowden revelations, still very little is known about intelligence
agencies’ concrete abilities and attacks on cryptography. Nonetheless, knowing that they can be
and are often involved in the design, standardization, and implementation of cryptographic schemes
increases the responsibility of cryptographers more than ever to design secure schemes while keeping
such threats in mind. Motivated by such risks, this thesis aims at developing cryptographic primitives
that resist attacks that manipulate mathematical designs and concrete implementations.

1.1 Sabotage-Resilient Cryptography

Recent revelations have drawn our community’s attention more than ever before to the realness and
the gravity of attacks that sabotage cryptography on a massive scale and the increasing importance
of their rigorous treatment. The damage that attacks of such kind can effectively cause depends
on several factors, e.g., the resources needed to undermine the system, how easy it is to detect or
circumvent the weakness by users or for other attackers to exploit it, whether the attack can be
plausibly denied, who is affected by the attack, and so on. A comprehensive overview and discussions
on this topic is given by Schneier et al. [SFKR15].

Our focus here is on deliberate but at the same time non-trivial classes of sabotage that enable
a big brother adversary, who is aware of the secret sabotage mechanism, to easily break the system.
Consequently we do not consider generally insecure schemes, such as export restrictions, which
restricted US companies in the 1990s to only export weak cryptographic technologies, e.g., systems
with a symmetric key size of less than 40 bits. However, we emphasize that attempts of any kind
at weakening cryptography put users in unforeseen risks, even if the exploitation with little effort
seems to have been made exclusive (by cryptographic means) to those aware of the backdooring
strategy [AAB+97]. In NSA’s terminology such non-trivial vulnerabilities, which decrease the risk
of detection or exploitation by others, are referred to as nobody-but-us (NOBUS) attacks [Buc17].

We consider two important types of NOBUS sabotage in cryptographic primitives: a) tampering
with the publicly available mathematical design (a.k.a. specification) and b) tampering with the
actual implementation. Throughout this thesis, we use the term backdoor to refer to a design-specific
property that enables an adversary to compromise the security of a cryptosystem. We assume that
the specification on its own is public and, therefore, a (NOBUS) backdoored scheme is hard to
break without access to the backdoor. Furthermore, any implementation that truthfully follows the
specification of a backdoored system also implements the backdoor strategy and is, hence, insecure.



1.1. Sabotage-Resilient Cryptography 3

We refer to attacks that target the implementation of cryptosystems as algorithm substitution
attacks (ASAs), following the terminology of Bellare, Paterson, and Rogaway [BPR14]. Subverted
implementations are assumed to be accessed in a black-box manner, i.e., users are not provided access
to the source code. Contrary to backdoored primitives, access to the source code of a subverted
algorithm may even make it immediately possible for anyone to exploit its vulnerability. Furthermore,
subverted algorithms may keep a secret state, even if the specification of those algorithms do not.
Such a state may be used to gradually leak secrets or delay the malicious behavior to a later point
in time, e.g., to pass some initial security evaluation tests.

Further Related Work

In the realm of backdoored primitives, Dodis et al. [DGG+15] formally studied backdoored pseudo-
random generators (BPRGs), capturing the well-known Dual_EC_DRBG scheme, and showed that
they can be immunized by applying a non-trivial function (e.g., a pseudorandom function or a seeded
extractor) to their outputs. They also showed the equivalence of BPRGs and public-key encryption
schemes. Their notion of BPRGs was extended by Degabriele et al. [DPSW16] in order to investigate
backdoorability of forward-secure pseudorandom generators and robust pseudorandom generators
with continuously refreshed states. Other notable works in the context of the Dual_EC_DRBG-
related incidents include analyses of its usage in ScreenOS, which is the operating system of Juniper
Networks’ VPN routers [CMG+16] as well as the practical exploitability of the TLS protocol when
using Dual_EC_DRBG [CNE+14] by Checkoway et al. Furthermore, Bernstein et al. [BCC+15]
analyzed the cost of breaking elliptic-curve cryptography by standardizing sabotaged or broken
elliptic curves.

Albertini et al. [AAE+14] investigated backdoorability of hash functions due to the designers’
freedom in choosing the round constants. They illustrated the plausibility of malicious hash function
designs by providing a malicious version of SHA-1, under which two colliding messages can be found
with an approximate complexity of 248 calls, while adaptively choosing the round constants for this
SHA-1 variant. In comparison, the complexity of finding collisions for the standard SHA-1 is believed
to be over 263 calls to the hash function. Aumasson [Aum11] also presented a backdoored version of
BLAKE (SHA-3 competition’s finalist) where the designer adaptively modifies the operators used
in the finalization function in order to find a colliding pair of messages. Furthermore, AlTawy and
Youssef [AY15] gave a backdoored version of Streebog which is a GOST-standardized hash function,
and Morawiecki [Mor15] studied a malicious variant of Keccak (the winner of the SHA-3 competition).
Both papers modify the round constants and generate collisions using differential cryptanalysis.

The study of tampering with the implementation of cryptosystems with the intent of stealing
secret information was already initiated over two decades ago by Young and Yung in a line of work
referred to as kleptography, using cryptography against cryptography [YY96, YY97a, YY97b, YY04,
YY06]. Kleptography expands on subliminal channels, introduced by Simmons, which are used to
communicate secret messages covertly within other channels [Sim83]. In a kleptographic setting, an
implementation is subverted in a way that it leaks some secret information, e.g., users’ secret keys, to
the adversary. At the same time, the subverted implementation may even be undetectable to users
with black-box access to its algorithms. Such attacks are of added concern when using closed-source
software.
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Motivated by the Snowden revelations, Bellare, Paterson, and Rogaway [BPR14] formalized
algorithm substitution attacks (ASAs), which are undetectable kleptographic attacks, whereby a big
brother subverts implementations of cryptosystems with the goal of performing mass surveillance.
They showed that randomized symmetric encryption schemes are highly vulnerable to such attacks.
The subverting adversary can exfiltrate secret keys from ciphertexts, while the input-output behavior
of the subverted encryption algorithm looks completely innocent to users. Several recent work
further investigated such attacks [DFP15, BJK15, AP19b, AP19a] and suggested countermeasures
against them [MS15, AMV15, DMS16, BKR16, RTYZ16, CMY+16, RTYZ17, AFMV19, HPRV19].
Subversion of public parameters (e.g., prime numbers and elliptic curves) has also been considered by
Auerbach, Bellare, and Kiltz [ABK18] in the context of public-key encryption and key encapsulation
mechanisms.

Proposed countermeasures against ASAs often rely more or less on the ability to detect whether
implementations adhere to the mathematical specifications they are supposed to follow. A noteworthy
exception is the preventive approach of reverse firewalls, introduced by Mironov and Stephens-
Davidowitz [MS15], where a user’s outgoing communication is routed through an untrusted firewall
which may take further cryptographic steps, in order to prohibit leakage of secret information.
Furthermore, by considering a restricted type of subversion, Russel et al. [RTYZ18] showed that
so-called subverted random oracles (i.e., random functions) that are subverted on a negligible portion
of their outputs, can be transformed into functions which can effectively replace random oracles.
Their solution is based on the domain-efficient salting developed by Coretti et al. [CDGS18], which
is in turn based on a technique by Maurer [Mau92].

Another important capability of adversaries, especially big brothers, that should not be underesti-
mated, is the ability to perform off-line preprocessing computations on public schemes and parameters
in order to considerably expedite on-line attacks. This line of research includes classical inversion
attacks with consideration of memory-time tradeoff by Hellman [Hel80] and Fiat and Naor [FN91],
as well as a more recent line of work by Unruh [Unr07], Dodis, Guo, and Katz [DGK17], Coretti
et al. [CDGS18, CDG18], and Corrigan-Gibbs and Kogan [CK18], which gives security proofs of
primitives in ideal models with auxiliary input. Furthermore, motivated by the recent Logjam attack
on TLS [ABD+15], Auerbach, Giacon, and Kiltz [AGK20] introduce a framework to assess how
attacks on public-key encryption schemes scale when performed on masses.

1.2 Contributions and Structure of this Thesis

Despite an increased attention to the topic of sabotage-resilient cryptography in the last few years,
there are still various directions to explore and primitives to study in this new setting. This thesis
strives after cryptographic primitives that resist backdoors in their specification as well as subversion
of their implementations. To this end we present models that accurately reflect these settings and
search out assumptions that are reasonable to make. In order to advance our understanding of
sabotage in cryptography, we also explore some attacks. As countermeasures, we construct several
primitives that provably resist backdooring or subversion attacks. Modern cryptography already
presents an extensive and impressive set of tools and techniques that can be applied in analyzing
or providing security in numerous new settings. Nonetheless, it should not come as a surprise that
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achieving security against incredibly powerful state-level adversaries is not an easy task. We were
challenged to not only rethink and refine existing design and proof techniques, but at times also to
come up with entirely new ideas.

This thesis is organized into two parts based on the type of sabotage. The first part is concerned
with backdoors in cryptographic hash functions and consists of Chapters 3 to 7. The second part
is concerned with subverted implementations and consists of Chapter 8. We further include basic
notations and preliminaries in Chapter 2 and conclude with open problems in Chapter 9. The
results presented in this thesis are the product of inspiring collaborations with several incredible
individuals: Balthazar Bauer, Yevgeniy Dodis, Pooya Farshim, Marc Fischlin, Christian Janson, and
Stefano Tessaro. As research is a highly collaborative task, it is nearly impossible to give a detailed
account of each author’s contributions. For the purpose of this thesis, however, I will break down
the individual scientific contributions to the best of my memory and include them in the beginning
of their corresponding chapters.

While it is incredibly important to put effort in detecting potential backdoors and ASAs, detection
can be infeasible due to various reasons, including the complexity of designs and implementations,
lack of trust in the process of generating parameters and constants, and lack of access to the source
code (in case of ASAs). Instead, a high-level approach, which is present throughout this thesis, is to
bootstrap security by means of simple extra operations and based on assumptions that do not rely
on detection. In the first and main part of this thesis, we formally study backdoored hash functions,
providing different strategies that disable their backdoors and re-establish crucial security properties.
In the second part, we investigate the possibility of reviving security in subverted implementations of
cryptographic primitives if we have the guarantee that a trustworthy implementation was available
during a short setup phase. An overview of the most significant technical contributions of this thesis
is given below.

Modeling Backdoored Hash Functions

Hash functions are one of the most essential primitives in cryptography. Security of many cryp-
tographic tasks, such as digital signatures, pseudorandom generation, password protection, and
blockchains crucially relies on the security of the underlying hash functions. We are interested in
protecting hash functions against a variety of attacks that may arise due to built-in backdoors,
cryptanalytic advances, or preprocessing attacks. We also remark that hash functions are very foun-
dational and conceptually simple primitives and, hence, solutions for them are likely to be helpful
in developing solutions that defeat similar attacks in other primitives. In Chapter 3 we model
backdoored hash functions with the intuition that a big brother designs a hash function in a way
that he has a considerable advantage in breaking it. We take two different approaches in modeling
backdoored hash functions: standard-model backdoored hash functions (i.e., without any idealized
primitives) and backdoored hash functions in a model, where hash functions without backdoors are
random oracles, i.e., ideal hash functions. We then define meaningful variants of established security
notions for hash functions, including one-wayness, pseudorandomness, second-preimage resistance,
and collision resistance, in a setting with backdoors.

In our definition of standard-model backdoored hash functions, a backdoor key enables violating
the security of a backdoored hash function, in the sense of one-wayness, second-preimage resistance,
or collision resistance. Such a backdoor key is modeled as a short bit string co-designed with a family
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of backdoored hash functions. It can work either for some adversarially chosen hash function or for
any hash function from the family.

We also introduce a model for the analysis of backdoored hash functions which substantially
weakens the traditional random-oracle (RO) model. In our backdoored random-oracle (BRO) model,
besides access to a random oracle (i.e., a random function, or a very well-behaved hash function) H,
adversaries are provided with a backdoor oracle that can compute arbitrary leakage functions f of the
function table of H. Thus an adversary would be able to invert arbitrary points, find collisions in hash
outputs, test for membership in certain sets, and more. The BRO model allows for a parameterization
of the class of backdoor functions that can be computed by the backdoor oracle. However we work
with respect to the full set of functions. As we discuss shortly, the assumption that hash functions
are ideal if no access to the backdoor oracle is given, allows us to define simple constructions and
provide proofs of security for them without assuming restricted backdoor capabilities.

Understanding the Threat of Backdoored Hash Functions

In Chapter 4 we showcase the feasibility of efficient Merkle–Damgård-based as well as sponge-based
backdoored hash functions by iterating a (fixed input-length) backdoored hash function, which we
build based on trapdoor one-way functions, studied by Bellare et al. [BHSV98], where some images
have an exponential number of preimages. We discuss concrete attacks on such hash functions,
whereby an adversary can encode a backdoor key in inputs to the hash function in order to trigger a
misbehavior and easily find preimages and collisions, while the description of the hash function does
not reveal the backdoor key. Unfortunately we also show that although the HMAC construction of
an iterative pseudorandom function by Krawczyk, Bellare, and Canetti [KBC97] enjoys a secret key,
it is not automatically immune to such attacks. In other words, a potential backdoor in the hash
function underlying HMAC can entirely compromise HMAC’s pseudorandomness and security for
the purpose of message authentication. Overall, protecting standard-model hash functions (without
secret keys) against backdoors seems to be a hard task to achieve.

Defeating Backdoors in Pseudorandom and Key Derivation Functions

In Chapter 5 we raise the question of whether defeating backdoors in hash functions that have a secret
key is possible in the standard model. We particularly focus on immunizing arbitrarily backdoored
versions of HMAC by Krawczyk et al. [KBC97] as a pseudorandom function and the hash-based key
derivation function HKDF by Krawczyk and Eronen [KE10], both of which are widely deployed in
critical protocols such as TLS. Luckily we identify a property of common secret-keyed hash functions,
which are not based on public-key primitives, that is robust against backdooring. This property is
weak pseudorandomness which intuitively guarantees that outputs of a hash function, which uses a
secret key, on random inputs look random. This positive result allows us to build a backdoor-resilient
variant of HMAC using the randomized cascade approach by Maurer and Tessaro [MT08], and to
show that HKDF can be immunized against backdoors at little cost, using an approach by Halevi
and Krawczyk [HK06].



1.2. Contributions and Structure of this Thesis 7

Simple Combiners for Backdoored Random Oracles

Backdoored random oracles make the task of bootstrapping cryptographic hardness somewhat
challenging. Indeed, with only a single BRO, which allows for arbitrary queries to the backdoor
oracle, no hardness can be found, as any construction can be broken in any reasonable sense.
However, we show in Chapter 6 that when two (or more) independent hash functions are available,
hardness can emerge. Combining hash functions is a classical approach to providing protection
against failures of hash functions and re-establishing security as long as one of the underlying hash
functions is secure [BB06, FL07, FLP14] or all hash functions have some known weaknesses, such as
invertibility [HS08]. However, we aim at building backdoor-resilient hash functions by combining hash
functions that have arbitrary adversarial weaknesses and where no secure hash function is on hand.
We show in Chapter 6 that certain security properties, such as one-wayness, pseudorandomness,
and collision resistance can be re-established by combining two independent BROs, even if the
adversary has unrestricted and adaptive access to both backdoor oracles. To this end we consider
three well-known combiners: concatenation, cascade, and xor. We give several positive results for
these combiners depending on the size of their domains and co-domains.

Our security proofs rely on new reductions from cryptographic goals to the communication
complexities of several two-party tasks. The communication complexity of a problem is roughly
speaking the number of bits that are communicated by the best protocol that solves that problem.
Two well-known problems in this area are set-disjointness and set-intersection. In the set-disjointness
problem, two parties need to decide whether their sets intersect or not, whereas in the set-intersection
problem, they need to find a common element. On a high level, we show that security of the
aforementioned combiners as pseudorandom generators (PRGs) goes down to the hardness of solving
set-disjointness, while one-way security goes down to the hardness of solving the set-intersection
problem. We further define a variant of set-intersection, which we call multi-set double-intersection,
and reduce collision resistance of combiners to its conjectural hardness.

Communication complexity lower bound for set-intersection. Worst-case lower bounds for
the communication complexity of set-disjointness and set-intersection are quite well-studied. However,
we are (as usually is the case in cryptography) interested in the average-case (a.k.a. distributional)
hardness of solving these problems, i.e., hardness for a randomized choice of inputs from a certain,
often uniform, distribution. In Section 6.4 of Chapter 6, we give communication complexity lower
bounds for set-disjointness and set-intersection for cryptographically relevant ranges of parameters.
While the result for set-disjointness is a generalization of known bounds [MB12, GC13], the one for
set-intersection is, to the best of our knowledge, new. More precisely, we give a lower bound for the
distributional communication complexity of set-intersection on input of two independent sets, where
the elements in each set are chosen, independently of other elements, from a Bernoulli distribution.
Furthermore, our lower bound for set-intersection holds for protocols with arbitrary error and also for
parameters where the hardness of set-intersection is not implied by the hardness of set-disjointness,
i.e., deciding set-disjointness can be easy.
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Indifferentiability-Combiners for Backdoored Random Oracles

In Chapter 7 we further develop the technique of combining two or more independent BROs to
make their backdoors ineffective in a variety of applications. More precisely, we study the question
of combining BROs in the indifferentiability framework introduced by Maurer, Renner, and Holen-
stein [MRH04] in order to construct a hash function that can practically replace a conventional
backdoor-free random oracle in numerous scenarios. Achieving full indifferentiability seems to be
very challenging in this model. We, however, make progress in this direction by showing that the
xor combiner goes well beyond security against preprocessing attacks and offers indifferentiability as
long as the number of times where the adversary’s backdoor queries switch back and forth between
the backdoor oracles remains logarithmic in the input size of the underlying BROs. We also show
that an extractor-based combiner of three BROs achieves indifferentiability with better bounds and
even against adversaries that make a linear number of switches between the backdoor oracles. To
prove these results we build on a technique by Göös et al. [GLM+15] for decomposing distributions
with high min-entropy into convex combinations of distributions with more structure, where some
blocks (i.e., substrings inside bit strings taken from that distribution) are fixed, while any mix of
the remaining blocks still maintains a high min-entropy, i.e., the rest is highly unpredictable. We
refine this technique such that it can be applied in a more involved setting, where we can not only
decompose distributions of random oracles after responding to one backdoor query but also after
adaptive backdoor queries on a function taken from a decomposed distribution.

Indifferentiability with auxiliary input. The BRO model extends the auxiliary-input random-
oracle model studied by Unruh [Unr07], Dodis et al. [DGK17], and Coretti et al. [CDGS18]. It
can, therefore, model arbitrary preprocessing attacks (a.k.a. non-uniform attacks) as any auxiliary
information about the hash function can be computed via a one-time oracle access to the backdoor
oracle at the onset. We define this natural restriction of our definition of indifferentiability in the
BRO model and give rise to a notion of indifferentiability with auxiliary input. We give two positive
feasibility results for this notion in Section 7.5 of Chapter 7, one based on salting (i.e., using a public
random string as part of the input to the hash function) and the other based on combiners. We
emphasize, however, that salting does not help in the BRO model, since the adversary has permanent
access (in particular also after becoming aware of the chosen salt) to the backdoor oracle.

Self-Guarding Primitives against Subverted Implementations

The second part of this thesis, consisting of Chapter 8, is concerned with providing protection against
a class of algorithm substitution attacks, where the cryptosystem at hand runs properly and securely
during a short initial period. At a later point in time, however, the implementation starts to behave
maliciously. This can happen for instance, due to a malicious software update or triggered when
reaching a malicious internal state or receiving a malicious input. We introduce the concept of
self-guarding cryptographic primitives that can resist such attacks by relying on an initial secure
phase to immunize their future executions. In constructing self-guarding primitives, it is important
to rely on simple operations and not to trivialize the protection mechanism by implementing the
scheme under attack from scratch.
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Self-guarding primitives proactively thwart attacks without the need to detect them first, and
unlike reverse firewalls they do not assume an on-line external party. On the downside, the number
of secure executions of self-guarded schemes is usually limited if the subverted scheme maintains
an internal state. We present constructions of basic primitives for public-key (i.e., asymmetric)
and private-key (i.e. symmetric) encryption and for digital signatures. We also argue that our
model captures attacks with malicious hardware tokens and show how to self-guard a key exchange
protocol that employs a physical uncloneable function (PUF) against attacks that subvert the PUF
in transmission.





Chapter 2
Preliminaries

This chapter contains basic notations and definitions as well as known results that are either directly
used in following chapters or are overall helpful in understanding this thesis.

2.1 General Notation

Strings. We let N denote the set of non-negative integers. We denote the set of bit strings of
length n ∈ N by {0, 1}n and the set of bit strings of length at most n by {0, 1}≤n. The set of bit
strings of arbitrary length is denoted by {0, 1}∗. Special symbols ε0 ∈ {0, 1}∗ and ⊥ 6∈ {0, 1}∗ are
chosen to indicate the empty string and an error, respectively. By ({0, 1}n)+ we denote the set of
bit strings with a length that is a non-zero multiple of n. We let [n] denote the set {0, . . . , n − 1}.
When we write [N ] for any uppercase letter N , we use the convention that N is an integer that is
a power of two, i.e., N = 2n for some n ∈ N. The length of a bit string s ∈ {0, 1}∗ is denoted by
|s| and the concatenation of two bit strings s1 and s2 by s1‖s2. Let s ∈ {0, 1}∗ be a non-empty bit
string and i, j ∈ N be integers with 0 ≤ i ≤ |s| − 1 and i ≤ j. Then by s[i,j] we denote the substring
of s (from left to right) starting from the i-th bit and ending with the j-th bit, where the first index
of a string, i.e., i = 0, corresponds to the position of its most significant bit.

Functions. By Fun[n,m] we denote the set of all functions f : {0, 1}n → {0, 1}m. We denote by
dom(f) a function which returns the domain of a function f . We sometimes write Fun[dom(f),m] to
denote the set of all functions g : dom(f)→ {0, 1}m. Let log denote the binary logarithm function.
In fact all logarithms used in this thesis are to the base 2. We use [M ]N to denote the set of all bit
strings of length N · logM , which we often use as a compact representation of the set of all functions
f : [N ]→ [M ], i.e., Fun[logN, logM ]. In such a representation, we see the x-th logM -bit block of a
bit string f ∈ [M ]N as the image of x under the corresponding function, i.e., with a slight abuse of
notation f(x). Let f ∈ [M ]N and P ⊆ [N ]. By f(P ) we denote the set of images of all x ∈ P under
f . Furthermore, by img(f) := f([N ]) we denote the set of all possible images under f . A function
p ∈ [N ]N with img(p) = [N ] is called a permutation. We use f− to denote the inverse of f such
that for all x ∈ [N ] and y ∈ [M ] with f(x) = y we have x ∈ f−(y). In other words, f−(y) is a
set that contains all preimages of y under f . For a set I ⊆ [N ] we denote by fI ∈ [M ]|I| a string
which constitutes the projection of f onto the points in I. In particular, for x ∈ [N ], f{x} can be
understood as the image of x under f . Finally, we sometimes use e−x := limn→∞(1− x/n)n, where
e is the Euler’s number.

Data structures. Let A ⊆ {(a, b) | (a, b) ∈ [N ]× [M ]} be a set of assignments. We let A.1 ⊆ [N ]
(resp. A.2 ⊆ [M ]) denote the set containing the first (resp. second) coordinates of all elements in A.
Furthermore, a queue Q is an abstract collection of ordered elements. A new element x can be
added to the queue using an enqueue function enq(Q, x), and the oldest element in the queue can be

11
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accessed and at the same time removed from it using a dequeue function x← deq(Q). This makes
queues a first-in-first-out collection. Using the predicate is-empty(Q) ∈ {0, 1} we can check whether
the queue is empty. We denote an empty queue by �.

Probability distributions. We denote the uniform distribution over an arbitrary finite set S
by US . By s←← S (which is a simplification of s←← US) we denote the uniform sampling from the
set S. The Bernoulli distribution Ber(p) takes value 1 with probability p and 0 with probability 1−p,
where 0 ≤ p ≤ 1. The binomial random variable Bin(n, p) constitutes a sequence of n independent
Ber(p) samples. Let µ be a probability density function over the domain [M ]N , in other words over
functions from [N ] → [M ]. We write F ∼ µ to represent F as the corresponding random variable
to µ. Let g ∈ [M ]N . Then, we write µ(g) := Prf←←µ[f = g] as the probability that g is hit when
sampling from µ. Let D ⊆ [M ]N . Then we define µ(D) := Prf←←µ[f ∈ D] as the probability that
a sample drawn from µ falls into the domain D. By µ|D we denote the density µ conditioned on
the fact that samples f fall into D. For a function g : [M ]N → {0, 1}` and a string z ∈ {0, 1}`, by
µ|g(·)=z we denote µ conditioned on the fact that for any sample f we have that g(f) = z. Recall
that for a function f ∈ [M ]N and a set I ⊆ [N ] we denote by fI the projection of f onto the points
in I. Similarly, for a random variable F over [M ]N we denote by FI a random variable resulting
from the projection of all its values onto I. For a set of assignments A ⊆ {(a, b) | (a, b) ∈ [N ]× [M ]},
by µ|A we denote µ conditioned on f{a} = b for all (a, b) ∈ A and f ←← µ. A convex combination
of distributions µ1, . . . , µn is a distribution that can be written as α1 · µ1 + . . . + αn · µn, where
α1, . . . , αn are non-negative real numbers that sum up to 1.

Random variables and entropy metrics. Let X and Y be two random variables over the
domains DX and DY , respectively. We let supp(X) denote the support of X, i.e., the set of values
that have a non-zero probability of happening. We write X = x to denote the event that a value
sampled from X is equal to x. The Shannon entropy of X is defined by

H(X) := −
∑
x∈DX

Pr[X = x] · log Pr[X = x] .

The mutual information between X and Y is defined by

I(X;Y ) :=
∑
x∈DX

∑
y∈DY

Pr[X = x ∧ Y = y] · log Pr[X = x ∧ Y = y]
Pr[X = x] Pr[Y = y] .

It holds that I(X;Y ) = I(Y ;X) = H(X)−H(X|Y ) = H(X) + H(Y )−H(X,Y ), where conditional
entropy H(X|Y ) and joint entropy H(X,Y ) of X and Y are defined as expected.
The min-entropy H∞(X) of X is defined as

H∞(X) := − log max
x∈DX

Pr[X = x]

and can be understood as a measure of unpredictability, which makes it a very useful metric in
cryptography.
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Algorithms. For a natural number n ∈ N we denote its unary representation by 1n. Two of
the most common mathematical models of computation are Turing machines and circuits. For the
purpose of this thesis it suffices to think of algorithms as Turing machines. We use pseudocode to
describe algorithms, using notations and conventions that are common to well-known programming
languages, e.g., keywords such as return, if, else, and for. Regarding the efficiency of algorithms,
we use PPT to denote probabilistic polynomial-time and denote by poly(n) an unspecified polynomial
in the security parameter 1n, which is given as input (often implicitly for compactness) to algorithms.
For a probabilistic algorithm A, the random variable A(x) describes its output when run on input x,
and we write y ←← A(x) for the sampling. Adversaries are usually modeled as probabilistic algorithms.
We write AO(x) to denote the run of an algorithm on input x when given oracle access to an algorithm
called O. This in particular means that A does not have to run O internally and O’s time and space
complexity is irrelevant for A. We use DPT to denote deterministic polynomial-time algorithms. For
a deterministic algorithm we simply write y ← A(x) to denote y as the output of the algorithm on x.
Functions can be thought of DPT algorithms. We denote by A[param](input) a call of the algorithm
A with (constant) parameters param and variable inputs input. This is to provide clarity, among
multiple calls to the algorithm, about the main input, while the parameters remain unchanged.

2.2 Cryptographic Security

There are two main approaches to formalize security of cryptographic schemes: game-based and
simulation-based. The former approach formalizes a security property as a game, where an adversary
interacts with the cryptographic scheme in a specific way and with the goal of violating a desired
security goal. If the adversary wins the game, the scheme is deemed broken. The latter approach
declares a scheme secure if there exists an algorithm called the simulator which can, roughly speaking,
simulate the scheme in a way that the adversary cannot distinguish between the real world and the
simulated one. The simulated scheme does not know any secrets, nor does it show any weaknesses.
In other words, it describes an ideal notion of security. Hence, if the real world and the simulated
world are indistinguishable, the (real) scheme is secure. Throughout the thesis we almost always use
game-based security notions, since they are arguably more natural and easier to work with. However,
in Chapter 7, we use the notion of indifferentiability (see Section 2.4.1), which is simulation-based.

Advantage of adversaries and security proofs. Intuitively a cryptographic scheme is secure
if the probability that any adversary (with some assumed capabilities, often PPT) breaks it is
not significantly higher than the success probability of a naive strategy. This intuition is captured
by the notion of advantage of adversaries: the smaller the advantage is, the less successful is the
adversary. Consider for instance the security of one-way functions. The one-wayness game for a
function f ∈ Fun[n,m] starts with picking an element from the domain x ←← {0, 1}n uniformly at
random. Then the image y ← f(x) under f is computed and the adversary is challenged to find some
x′ (which may or may not be different than the original x) which is a preimage of y, i.e., f(x′) = y.
Here, the advantage of the adversary is its probability of winning (i.e., finding a preimage), where
the probability is over all random choices made, i.e., sampling x, as well as the internal coin tosses
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of the adversary. We denote the advantage of an adversary A in breaking a scheme Σ with respect
to a security game called Game by Advgame

Σ (A).
We differentiate between two important types of security games: unpredictability, where the

adversary has to predict a certain value (e.g., a preimage), and indistinguishability, where the ad-
versary has to distinguish between two possible situations (e.g., pseudorandom vs. truly random
or sampled from X vs. sampled from Y ). Indistinguishability games are actually a specific type
of unpredictability games, where just one bit is to be predicted. As a rule of thumb, the advan-
tage in unpredictability games is usually defined as the probability of correct prediction, i.e., the
probability of winning Pr[A wins]. The advantage in indistinguishability games is usually defined
as 2 Pr[A wins] − 1 (alternatively, Pr[A wins] − 1

2 ), where
1
2 is the probability of guessing a bit at

random. Furthermore, the probability of an adversary winning in a game is formally described as
the game outputting bit 1 after interacting with the adversary.

To bound the advantage of an adversary in breaking some security goal, we often need to rely on
assumptions about certain problems being hard to solve. We then relate the security of our scheme
to the hardness of the underlying problems by means of a reduction. In computational complexity
theory, a reduction from a problem P to a problem Q is an algorithm R that can solve P using
any algorithm that solves Q. This means that if solving P is hard for efficient algorithms and the
reduction is efficient, then solving Q is hard. In cryptographic terminology, suppose that a scheme S
is secure if an assumption A holds. Then, we can say that the security of S reduces to the hardness
of A, or alternatively, (the problem of) breaking A reduces to (the problem of) breaking S.

Unproven assumptions. Security of many cryptosystems relies on unproven assumptions about
the computational hardness of algebraic or number-theoretic problems. Hardness of factoring, discrete-
logarithm, Diffie–Hellman, and finding the shortest vector in a lattice are some of the most prominent,
well-studied, and unbroken problems that cryptography, in particular public-key cryptography, has
been relying on for years. In contrast, information-theoretically secure cryptosystems do not rely
on unproven assumptions about computational hardness of problems. Their security solely relies on
proven information-theoretic results and the adversaries not having sufficient information to break
the system.

Negligible functions. In asymptotic cryptography we usually say that the advantage of the
adversary in breaking a secure scheme should be negligible. A function ε : N→ R is called negligible,
often denoted as ε(n) ≈ 0, if for any polynomial p : N→ R+, there exists some N ∈ N such that for
all n ≥ N it holds that ε(n) ≤ 1

poly(n) . In simple words, a negligible function vanishes faster than the
inverse of any polynomial.

Weak security. Some constructions only achieve a weak security goal, where the advantage of
adversaries can be bounded away from 1, i.e., despite not being negligible, it is also not overwhelming.
We call the corresponding notions weak. However, note that weak pseudorandom functions (wPRF)
are an exception to this rule and there weak refers to the weakened ability of the adversary in that
evaluation of the wPRF on chosen messages is prohibited and only possible on random ones.

Indistinguishability. Two distributions X and Y over a common domain D are called computa-
tionally indistinguishable if no efficient algorithm can distinguish them with non-negligible probability.



2.3. Basic Cryptographic Primitives 15

More precisely, for any PPT adversary A it holds that the advantage

Advind
X,Y (A) :=

∣∣Pr[A(z) = 1 | z ←← X]− Pr[A(z) = 1 | z ←← Y ]
∣∣

is negligible. The probability is over A’s coin tosses and the random choice of z. We say X and Y
are statistically indistinguishable if their statistical distance is negligible. For two random variables
X and Y over a common support D, their statistical distance is defined as

SD(X,Y ) := 1
2
∑
z∈D

∣∣Pr[X = z]− Pr[Y = z]
∣∣ .

When two random variables have a statistical distance of at most γ, we refer to them as γ-close.

2.3 Basic Cryptographic Primitives

Here we briefly go over a few of the basic cryptographic primitives that are of interest in this thesis.
As the motivation of the thesis suggests, we will later build upon these definitions, modify, and
extend them to capture the setting of backdooring or subversion in order to enable the study of
what resilience means and what is required to make schemes resilient to such threats. Therefore, we
delay some of the formal definitions and their extension to the sabotaged setting to later chapters.

2.3.1 Hash Functions

A hash function is an efficiently computable function which takes an input, often referred to as mes-
sage, and outputs a usually shorter random-looking string, often referred to as digest. To name a few
applications, hash functions are used in message authentication codes (MACs) such as HMAC, signa-
ture schemes, pseudorandom generators, randomness extraction such as HKDF, password protection,
and proofs of work.

To bridge the gap between keyed hash functions in theory and unkeyed hash functions in practice,
we adopt the more general notion of hash functions as families of keyed functions. The keys are public
unless explicitly stated otherwise. Therefore a key here can be thought of as an index specifying which
particular hash function from the family is being considered. In practical unkeyed hash functions,
the key is set to some constant.

Formally, {Hk : X → Y | k ∈ K} is a family of hash functions with associated key space K,
message space X, and digest space Y . A hash function Hk from the family is identified by its key
k←← K chosen at random from the key space. Practical hash functions usually work for messages of
different lengths and are constructed by iterating a monolithic (i.e., fixed input-length) hash function
on message blocks to extend the domain to variable lengths. Monolithic hash functions which
produce outputs that are shorter than their inputs are often referred to as compression functions.
The Merkle–Damgård [Dam90, Mer90] and the sponge [BDPVA11] constructions are two widely
used domain-extenders for hash functions. They operates by iterating a compression function on
blocks of messages while always using the previous (intermediate) digest and the current message
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block to compute the next (intermediate) digest, until the entire message is processed and a final
digest is computed. For formal definitions we refer to Sections 4.2.1 and 4.3.1.

Depending on concrete cryptographic applications, hash functions are required to meet certain
security requirements, among which collision resistance, one-wayness, second-preimage resistance,
and pseudorandomness are the most common ones. Roughly speaking, collision resistance means
that it is infeasible to find any two distinct messages which will be mapped to the same digest.
One-wayness, also known as preimage resistance, concerns the infeasibility of finding a message that
hashes to a given digest of a random message from the domain. Second-preimage resistance indicates
that given a random message it is infeasible to find a second distinct message that collides with the
first message. Finally, pseudorandomness requires that it must be hard to distinguish the output
of the function on a random message from a random value in the co-domain. For relations and
separations among security notions for hash functions we refer to [RS04] by Rogaway and Shrimpton.
We formalize the above security notions (covering the setting of backdoors) later in the standard
model in Section 3.2 (Figure 3.1) and in the ideal model in Section 3.3 (Figure 3.2).

Hash function combiners. It is possible to combine multiple hash functions in order to retain
some level of security in case a number of them turn out to be insecure. For k hash functions, we
recall below four common combiners: concatenation, cascade, xor, and pairwise inner-product. The
concatenation combiner C‖ on some input x simply concatenates the outputs of hash functions on x.
The cascade combiner C◦ is basically the composition of hash functions, e.g., computing H2(H1(x))
(or H2 ◦H1(x)). The xor combiner C⊕ computes the exclusive or of the outputs of hash functions on
given inputs. Finally, the pairwise inner-product combiner Cpip on some input x is defined as the
inner-product (denoted by ·) of all pairs of images of hash functions on x.

CH1,...,Hk
‖ (x) := H1(x)‖ . . . ‖Hk(x) , CH1,...,Hk

◦ (x) := Hk(. . . (H1(x))) ,

CH1,...,Hk
⊕ (x) := H1(x)⊕ . . .⊕ Hk(x) , CH1,...,Hk

pip (x) :=
∑

1≤i<j≤k
Hi(x) · Hj(x) ,

where Hi ∈ Fun[n, n + si] in the first construction, H1 ∈ Fun[n, n + s1] and for i > 1 we assume
Hi ∈ Fun[n + si−1, n + si−1 + si] in the second construction, and Hi ∈ Fun[n, n + s] in the third
and also the fourth construction. Each si intuitively defines the stretch of the corresponding hash
function. The stretch values are integers and can assume negative values (compressing), positive
values (expanding), or be zero (length-preserving).

2.3.2 Randomness Extractors

A random variableX is called a (weak) k-source if H∞(X) ≥ k, i.e., for all x we have Pr[X = x] ≤ 2−k.
The min-entropy of a source typically determines how many bits can be extracted from it which
are statistically close to uniform. An efficiently computable function Ext : [S] × [N ] → [M ] is a
(k, ε)-extractor if for all k-sources X (over [N ]) and a uniform distribution of seeds U[S] we have
SD(Ext(U[S], X),U[M ]) ≤ ε. An extractor is called strong if the stronger condition of SD(Ext(U[S], X) |
U[S],U[M ] | U[S]) ≤ ε holds, i.e., the extracted value is close to uniform even when the seed is known.
Some extractors do not require a random seed but rather rely on multiple weak sources.
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Definition 2.1 (Multi-source extractors). An efficient function Ext : [N1]× . . .× [Nt]→ [M ] is a
(k1, . . . , kt, ε)-extractor if for all ki-sources Xi over [Ni], we have:

SD
(
Ext(X1, . . . , Xt),U[M ]

)
≤ ε ,

where ε is usually defined as a function of k1, . . . , kt. We call Ext an s-out-of-t (k1, . . . , kt, ε)-extractor
if Ext(X1, . . . , Xt) is ε-close to uniform even if only s arbitrary sources fulfill their min-entropy
condition.

A function family {fk : [N ]→ [M ] | k ∈ [K]} is called 1/M -universal (or just universal) if for any
two distinct values x, x′ ∈ [N ] and a k chosen uniformly at random we have Pr[fk(x) = fk(x′)] ≤ 1/M .
A simple and well-known universal hash function is fk(x) = (k ·x)[0,m−1], where · is the multiplication
of elements in the Galois field over N , i.e., GF(N), and the output takes the first m bits of the
multiplication. 1/M -universal hash functions are strong (logM + 2 log ε−1, ε)-extractors with k as
their seed.

2.3.3 Other Primitives

Here we briefly describe a few other cryptographic primitives used in this thesis. The desired security
goals are defined later in relevant chapters, when these primitives are put in the context of backdoors
or subversion attacks.

Trapdoor One-Way Functions

A trapdoor one-way function (TDF) is a function which can be efficiently evaluated but is hard to
invert, unless a trapdoor key is available. In other words, a TDF is a one-way function which is easy
to invert for an adversary that knows its trapdoor. Bellare et al.˜[]C:BHSV98 investigated TDFs and
their relations to other primitives. It was already well known that TDFs with polynomial preimage
sizes (in particular trapdoor one-way permutations, TDPs) imply public-key encryption [Yao82,
GM84]. However, Bellare et al. showed that non-injective TDFs where the number of preimages of
at least one value is super-polynomial in the input size of the function can be constructed from any
one-way function. Therefore, it is widely considered infeasible to base public-key encryption solely
on such TDFs. Their construction of a TDF with super-polynomial preimage size from a one-way
function is elegantly simple. Given a one-way function f , for a randomly chosen β in f ’s range, build
a trapdoor one-way function g, with a trapdoor x∗ such that f(x∗) = β, as below.

g(y, x, v) :=

y if f(x) = β

f(v) otherwise .

Observe that g is one-way (because of f being one-way) unless a preimage x∗ of β under f (i.e., a
trapdoor) is known, in which case for any v the triple (y, x∗, v) is a valid preimage of any y under g.

Pseudorandom Functions and Message Authentication Codes

A function family {fk ∈ Fun[n,m] | k ∈ {0, 1}k} is pseudorandom if no efficient adversary can
distinguish (with non-negligible probability) a random function of the family from a function chosen



18 Chapter 2. Preliminaries

uniformly at random from the set of all functions in Fun[n,m]. A message authentication code (MAC)
scheme is a symmetric-key scheme consisting of three PPT algorithms (KGen,MAC,Vf), which can
be used to convince a receiver of the authenticity of a message. A MAC scheme is correct (with
some probability) if for any key k ←← KGen(1n) and message x we have Vf(k,MAC(k, x)) = 1, i.e.,
successful verification. A secure MAC must be hard to forge without knowing the secret key, even if
MAC tags for other messages under the same key are available. A pseudorandom function family
can be easily used to build a MAC scheme, by picking a key k ←← {0, 1}k uniformly at random,
one can generate MAC tags as t← fk(x) and verify them by checking fk(x) = t. Intuitively, since
the outputs of a pseudorandom function fk (with long enough outputs) are indistinguishable from
random, they are also unpredictable and, hence, unforgeable.

Encryption Schemes

Encryption enables confidential communications. An encryption scheme consists of three PPT al-
gorithms (KGen,Enc,Dec) for key generation, encryption, and decryption. A message or plaintext
is encrypted using a key to generate a ciphertext, which can be decrypted to the same plaintext.
There are symmetric (secret-key) and asymmetric (public-key) encryption schemes. In symmetric
encryption schemes, the key k ←← KGen(1n) used for encryption and decryption is the same and
must be kept secret. In asymmetric encryption schemes, a secret and a public key are generated
(sk,pk)←← KGen(1n). A person’s public key can be used by anyone to send a confidential message to
her, which only she can decrypt knowing the secret key matching that specific public key. Correctness
of an encryption scheme requires that ciphertexts decrypt to the plaintexts they encrypt, i.e., for
any message m we should have Dec(k,Enc(k,m)) = m (resp. Dec(sk,Enc(pk,m)) = m) with high
probability.

Indistinguishability against chosen-message attacks (IND-CPA, defined in Figure 8.3) and indis-
tinguishability against chosen-ciphertext attacks (IND-CCA) are two classical security notions for
encryption schemes. Roughly speaking, IND-CPA requires that no efficient adversary can decide
whether an encryption oracle always encrypts the left or the right message chosen by the adversary
in pairs. The IND-CCA security notion, which is stronger than IND-CPA, gives the adversary, in
addition to the encryption oracle, also access to a decryption oracle which decrypts ciphertexts that
have not been returned by the encryption oracle in the past.

Homomorphic encryption schemes are asymmetric encryption schemes that allow one to perform
operations on encrypted messages by computing directly on their ciphertexts. Below we recall the
formal definition. We assume that the message space M with some efficiently computable operation
“◦” forms a group (where the message space usually depends on the security parameter or the public
key, but we omit this reference for sake of simplicity). Analogously, we assume that the ciphertext
space C forms a group with some efficiently computable operation “�”. Furthermore, inverses in a
cyclic group are efficiently computable.

Definition 2.2 (Homomorphic Encryption Scheme). A homomorphic public-key encryption scheme
HE := (KGen,Enc,Dec) with associated message group (M, ◦) and ciphertext group (C, �) consists of
three algorithms:

KGen(1n) →→ (sk,pk): On input the security parameter 1n this PPT algorithm generates a
secret key sk and a public key pk.
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Enc(pk,m)→→ c: On input a public key pk and a message m ∈M this PPT algorithm outputs
a ciphertext c ∈ C.
Dec(sk, c)→ m: On input a secret key sk and a ciphertext c ∈ C, this DPT algorithm outputs
a message m ∈M .

For any n ∈ N, any (sk,pk)←← KGen(1n), any messages m,m′ ∈M the following conditions hold:

Correctness: Dec(sk,Enc(pk,m)) = m.
Homomorphism: Enc(pk,m ◦m′) has the same distribution as Enc(pk,m) � Enc(pk,m′).

A classical example of a homomorphic encryption scheme is the ElGamal encryption scheme [ElG84],
where ciphertexts c = (gr,pkr ·m) are pairs of elements from a cyclic group G with a generator g
and of prime order q, and messages are from G as well. The operations are multiplication in G for
messages, and component-wise multiplication in G for ciphertexts.

Signature Schemes

A digital signature scheme is a public-key primitive, which provides a way to verify the authenticity
of messages. It consists of three PPT algorithms (KGen,Sig,Vf). The key generation algorithm on
input of a security parameter 1n produces a secret signing key sk and a matching public verification
key pk. Suppose this key pair belongs to a party called Alice. She can then sign any message m and
produce a signature σ ←← Sig(sk,m). A receiver, Bob, can verify σ by calling Vf(pk, σ,m). If the
output is 1 (and not 0), Bob is convinced that m indeed comes from Alice and has not been altered
during transmission. No efficient adversary should be able to forge signatures on behalf of Alice
without knowing her secret key. This property is referred to as unforgeability. More precisely, we
often use existential unforgeability against chosen-message attacks (EUF-CMA), which requires that
it should be hard to forge a new signature that verifies under a given public key, even if the adversary
can see other valid signatures on many messages of its choice. See Figure 8.6 for a formal definition of
this game. Practical signature schemes usually follow the hash-then-sign approach, where messages
are first hashed to short digests of fixed length, for efficiency reasons, and then signed. The employed
hash function is usually required to be collision resistant.

Key Exchange

In a key exchange (a.k.a. key agreement) protocol, two or more parties interact to derive a shared
secret key, which they subsequently can use for example to establish a confidential channel. More
formally, a two-party key exchange protocol can be defined as a pair of algorithms (Alice,Bob) which
run on some inputs and interact with each other in a number of communication rounds. From their
interaction, Alice derives a key kA and Bob a key kB. The protocol is correct if kA = kB (with
high probability). There are various security goals that can be defined for a key exchange protocol,
based on two general flavors: unpredictability and indistinguishability. Roughly speaking, the former
type captures security against key recovery, saying that no efficient adversary, passively listening
on the interaction or actively modifying the communication, should be able to derive the same key
as Alice and Bob. The latter, key indistinguishability, requires that such adversaries cannot even
distinguish the real exchanged key from a random bit string of same size. A formal definition of key
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indistinguishability is given in Figure 8.10. One of the earliest practical key exchange protocols was
proposed by Diffie and Hellman [DH76].

Physical Uncloneable Functions

A physical uncloneable function (PUF) is an at least partially physical entity that is easy to evaluate,
if one is in possession of the PUF, and hard to predict otherwise. A PUF can be stimulated with
so-called challenges to which it responds with slightly noisy values, called responses. For the sake
of simplicity, we assume that PUFs deterministically return consistent answers. In practice a fuzzy
extractor [DRS04] can be applied to responses in order to eliminate the noise. Moreover, we only
consider PUFs that have exponential challenge and response spaces and, hence, cannot be efficiently
learned.

Due to uncontrollable variations in the manufacturing process, it is even for the manufacturer
practically infeasible to clone a good PUF. This property is referred to as unclonability. Only a
party (honest or malicious) that is in possession of the PUF can evaluate it. Besides the parties,
another PUF may be in possession of the PUF, called encapsulated PUFs [BKOV17] or PUF-inside-
PUFs [Rüh16]. In this case the outer PUF may then exclusively evaluate the inner PUF. The
possibility to encapsulate PUFs allows for example to perform simple checks, such as challenge-
response validation, before evaluating the PUF on the actual data; a malicious PUF may switch only
to a skewed mode after the checks. Alongside unclonability, PUFs can have various other properties
that make them attractive for cryptographic schemes. A property that we take advantage of is
pseudorandomness of PUF responses [AMSY16]. This means that the PUF approximates a random
function. A simplified and intuitive game for (computational) pseudorandomness in our terminology
that suffices for this thesis can be found in Figure 8.9 in Chapter 8. For a more comprehensive
and formal definition of PUFs and their security properties we refer to [BFSK11] by Brzuska et al.
and [AMSY16] by Armknecht et al.

2.4 Random Oracle Methodology

From a provable security perspective, a particularly successful methodology to use hash functions
in protocols has been the introduction of the random-oracle (RO) model [FS87, BR93]. In this
model all parties, honest or otherwise, are given oracle access to a uniformly chosen random function
H ←← Fun[n,m]. This formalizes the intuition that the outputs of a well-designed hash function
look random. The output of a random oracle on any input is uniformly random and independent
of the rest of the random oracle. It is often convenient in proofs to fill in the table of the random
oracle gradually and upon request, rather than fixing it completely beforehand. This technique
is called lazy sampling, where an output is sampled at random upon receiving a fresh query and
stored for future references. The strong randomness properties inherent in the random oracle, in
turn, facilitate the conjectured security analyses of many practical protocols such as RSA-PSS and
ElGamal (hash-then-sign) signatures and RSA-OAEP encryption [BR93, BR95, PS96, BR06].

The random-oracle model is an idealized model, i.e., it assumes an ideal or perfect hash function.
Other important idealized models used in cryptography are the ideal-cipher model (i.e., idealized block
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ciphers), random-permutation model (i.e., idealized permutations), and generic-group model (i.e.,
idealized cyclic groups). The term standard model (or plain model) is used to refer to a cryptographic
model that does not make use of ideal objects.

2.4.1 Indifferentiability

A common paradigm in the design of hash functions is to start with some underlying primitive, and
through some construction build a more complex one. The provable security of such constructions
have been analyzed through two main approaches. One formulates specific goals (such as collision
resistance) and goes on to show that the construction satisfies them if its underlying primitives
satisfy their own specific security properties. Another is a general approach, whose goal is to show
that a wide class of security goals are simultaneously met.

The latter has been formalized in a number of frameworks, notably in the universal composabil-
ity (UC) framework of Canetti [Can01], the reactive systems framework of Pfitzmann and Waid-
ner [PW01], and the indifferentiability framework of Maurer, Renner, and Holenstein [MRH04]. The
indifferentiability framework is by now considered a standard methodology to study the soundness of
cryptographic constructions, particularly symmetric ones such as hash functions [CDMP05, BDPV08]
and block ciphers [CPS08, HKT11, ABD+13, DSSL16] in idealized models of computation.

In the indifferentiability framework, a public primitive H is available and the goal is to build
another primitive, say a random oracle, from H through a construction CH. Indifferentiability formal-
izes a set of necessary and sufficient conditions for the construction CH to securely replace its ideal
counterpart F in a wide range of environments: as depicted below, for a simulator Sim, the systems
(CH,H) and (F,SimF) should be indistinguishable. Note that the adversary (or distinguisher) D in
the real world has access to the underlying primitive H.

D

HC F Sim

Below we restate a composition theorem proven by Maurer et al. but in a terminology similar
to the one by Coron et al. [CDMP05], which is applied to hash functions and is also more widely
used. A central corollary of this composition theorem is that indifferentiability implies any single-
stage security goal (i.e., a security game where either only one adversarial procedure is considered
or multiple ones that share full state). Single-stage security goals include one-wayness, collision
resistance, PRG security, PRF security, and more. In RO-indifferentiability, the ideal primitive F in
the theorem below is a random oracle.

Theorem 2.1 (Composition). Let G be a cryptosystem with oracle access to an ideal primitive F.
Let C be a construction such that CH is indifferentiable from F. Then, for any single-stage security
notion, the cryptosystem G when using CH is at least as secure as when it uses F.
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2.5 Communication Complexity

The communication cost [Yao79] of a two-party deterministic protocol π on inputs x and y is the
number of bits that are transmitted in a run of the protocol π(x, y). We denote this by CC(π(x, y)).
The worst-case communication complexity of π is max(x,y) CC(π(x, y)). A protocol π computes a
task (here, a function) f : X × Y → Z if the last message of π(x, y) corresponds to f(x, y). The
communication complexity of a task f is the minimum communication complexity of any protocol π
that computes f . Protocols can also be randomized and, thus, might err for given inputs (x, y) with
probability Pr[π(x, y) 6= f(x, y)].

In the cryptographic setting, we are interested in distributional (a.k.a. average-case) communica-
tion complexity measured by averaging the communication cost over random choices of inputs and
coins. A standard coin-fixing argument shows that in the distributional setting any protocol can be
derandomized with no change in communication complexity, and thus we can focus on deterministic
protocols. For a given distribution µ over the inputs (x, y), the protocol error and correctness are
computed by taking the probability over the choice of (x, y). Following cryptographic conventions,
we denote protocol correctness by Advf

µ(π), where f is a placeholder for the name of the task f and µ
is the distribution of the inputs. We define the distributional communication cost of a deterministic
protocol π as the expected communication complexity according to the distribution, i.e.,

Dµ(π) := E(x,y)←←µ[CC(π(x, y))] .

The distributional communication complexity of a task f with error ε is

Dε
µ(f) := min

π
Dµ(π) ,

where the minimum is taken over all deterministic protocols π which err with probability at most ε.
In this thesis we need to slightly generalize functional tasks to relational tasks R(x, y) ⊆ Z and
define error as Pr[π(x, y) 6∈ R(x, y)].

Two well-studied problems in this area are the set-disjointness and set-intersection problems
(see [CP10] by Chattopadhyay and Pitassi for a survey). In these problems two parties hold sets
S and T respectively. In set-disjointness, their goal is to decide whether or not S ∩ T = ∅; in
set-intersection they want to compute at least one element in this intersection. In this thesis we
will rely on distributional lower bounds for set-disjointness (Theorem 6.10) and set-intersection
(Theorem 6.11). For more on communication complexity, we refer the reader to the books [KN97]
by Kushilevitz and Nisan and [RY20] by Rao and Yehudayoff.

Cut-and-paste. There is a lemma called cut-and-paste from communication complexity, which
we will use later in proving Theorems 6.10 and 6.11. We restate this lemma below for the sake
of completeness. But before we do so, we need a few basics. First, the Hellinger distance between
random variables X and Y over a common domain D is defined as

∆Hel(X,Y ) :=
√

1−
∑
z∈D

√
Pr[X = z] · Pr[Y = z] .
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Furthermore, note that we can represent a set S ⊆ [N ] as an N -bit string X where its i-th bit xi
is 1 iff i ∈ S. We also need an understanding of combinatorial rectangles and why they are useful
in communication complexity. A set R ⊆ R1 × R2 is called a combinatorial rectangle iff whenever
(x, y) ∈ R and (x′, y′) ∈ R, then we also have (x′, y) ∈ R and (x, y′) ∈ R. Deterministic protocols
have a rectangle property, which means that any of their transcripts τ corresponds to some rectangle
Rτ = Sτ × Tτ . In other words, all combinations of inputs from Sτ for Alice and Tτ for Bob lead to
the same transcript τ .

Lemma 2.2 (Cut-and-Paste). Let Π(X,Y ) denote a random variable for the transcripts of a deter-
ministic protocol on input bit strings sampled from independent random variables (X,Y ) such that
the corresponding sets S and T are drawn from a product distribution µ, i.e., (S, T )←← µ where the
sets are independently chosen. Let a, b ∈ {0, 1} and define Πi

a,b(X,Y ) := Π(X,Y ) | xi = a ∧ yi = b,
where xi is the i-th bit of X and analogously yi is the i-th bit of Y . Then for each i, it holds that

∆2
Hel(Πi

0,0(X,Y ),Πi
1,1(X,Y )) = ∆2

Hel(Πi
0,1(X,Y ),Πi

1,0(X,Y )) .

Proof. By definition of ∆Hel it suffices to show that for each i and any transcript τ ,

Pr[Πi
0,0(X,Y ) = τ ] · Pr[Πi

1,1(X,Y ) = τ ] = Pr[Πi
0,1(X,Y ) = τ ] · Pr[Πi

1,0(X,Y ) = τ ] .

By the rectangle property of protocols, any transcript τ corresponds to a rectangle Rτ = Sτ × Tτ .
Thus

Pr[Πi
a,b(X,Y ) = τ ] = Pr[X−ia ∈ Sτ ∧ Y −ib ∈ Tτ ] ,

where X−i (resp. Y −i) is the input with i-th coordinate removed. By the independence of X and Y
we can write

Pr[X−ia ∈ Sτ ∧ Y −ib ∈ Tτ ] = Pr[X−ia ∈ Sτ ] Pr[Y −ib ∈ Tτ ]

That is

Pr[Πi
a,b = τ ] = Aia(τ)Bib(τ)

for some Aia and Bib. Thus we obtain

Pr[Πi
0,0 = τ ] Pr[Πi

1,1 = τ ] = Ai0(τ)Bi0(τ)Ai1(τ)Bi1(τ)

= Ai0(τ)Bi1(τ)Ai1(τ)Bi0(τ)

= Pr[Πi
0,1 = τ ] Pr[Πi

1,0 = τ ] .

2.6 Information-Theoretic Inequalities

In this section we recall a few information-theoretic inequalities and known results that will mostly
be of use in Chapter 6, more specifically, when giving lower bounds for the communication complexity
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of set-disjointness (Theorem 6.10) and set-intersection (Theorem 6.11) problems.

First, we recall that statistical distance (SD(X,Y ) := 1
2
∑
z∈D

∣∣Pr[X = z] − Pr[Y = z]
∣∣) and

Hellinger distance (∆Hel(X,Y ) :=
√

1−
∑
z∈D

√
Pr[X = z] · Pr[Y = z]) of two random variables X

and Y over D are related via

∆2
Hel(X,Y ) ≤ SD(X,Y ) ≤

√
2 ·∆Hel(X,Y ) .

To see this, let pz := Pr[X = z] and qz := Pr[Y = z]. For the first inequality, we proceed as follows,
where all the sums are over z ∈ D:

∆2
Hel(X,Y ) = 1−

∑√
pzqz

= (1/2) ·
∑

(pz + qz)−
∑√

pzqz

= (1/2) ·
∑

(√pz −
√
qz)2

= (1/2) ·
∑
|√pz −

√
qz||
√
pz −

√
qz|

≤ (1/2) ·
∑
|√pz −

√
qz||
√
pz +√qz|

≤ (1/2) ·
∑
|pz − qz|

= SD(X,Y ) .

For the second inequality, again taking all the sums over z ∈ D, we have

SD2(X,Y ) = (1/4) ·
(∑

|pz − qz|
)2

= (1/4) ·
(∑

|√pz −
√
qz||
√
pz +√qz|

)
≤ (1/4) ·

(∑
(√pz −

√
qz)2

)(∑
(√pz +√qz)2

)
(2.1)

= (1/2) ·∆2
Hel(X,Y ) ·

(
2 + 2

∑√
pzqz

)
= ∆2

Hel(X,Y ) · (2−∆2
Hel(X,Y ))

≤ 2 ·∆2
Hel(X,Y ) .

The first inequality (i.e., Line 2.1) is an application of the Cauchy–Schwarz inequality, which states
that (

∑
uv)2 ≤

∑
u2∑ v2.

Lemma 2.3. Let Π be any random variable and x1, . . . , xN , y1, . . . , yN be independent random
variables. Then we have

I(x1, . . . , xN , y1, . . . , yN ; Π) ≥
N∑
i=1

I(xi, yi; Π) .

Proof. We have

I(x1, . . . , xN , y1, . . . , yN ; Π)

= H(x1, . . . , xN , y1, . . . , yN ) + H(Π)−H(x1, . . . , xN , y1, . . . , yN ,Π)
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=
N∑
i=1

H(xi, yi) + H(Π)− (H(Π) +
N∑
i=1

H(xi, yi | x1, . . . , xi−1, y1, . . . , yi−1,Π)) (2.2)

=
N∑
i=1

(H(xi, yi)−H(xi, yi | x1, . . . , xi−1, y1, . . . , yi−1,Π))

≥
N∑
i=1

(H(xi, yi)−H(xi, yi | Π)) (2.3)

=
N∑
i=1

I(xi, yi; Π) ,

where the independence is used in Line 2.2. Note that H(xi, yi | x1, . . . , xi−1, y1, . . . , yi−1,Π) ≤
H(xi, yi | Π) holds since although xi and yi’s are independent, Π may still depend on them.

The next lemma relates the mutual information of two random variables with their Hellinger dis-
tance. In the proof we need the Kullback–Leibler (KL) divergence between probability distributions P
and Q on domain D, which is defined as

DKL(P‖Q) := −
∑
z∈D

P (z) · log Q(z)
P (z) .

Lemma 2.4. Let X and Y be random variables over DX and DY , respectively. Let Yx := Y |X = x,
i.e., Y conditioned on X = x. Then it holds that

E[∆2
Hel(Y, Yx)] ≤ I(X;Y ) .

Proof. Using shorthand notations P (y|x) := Pr[Y = y|X = x], and P (x, y) := Pr[X = x ∧ Y = y],
we have

E[∆2
Hel(Y, Yx)] = E

[
1−

∑
y

√
P (y|x) · P (y)

]
=
∑
x

P (x) ·
(
1−

∑
y

√
P (y|x) · P (y)

)
=
∑
x

P (x)−
∑
x,y

P (x)
√
P (y|x) · P (y)

)
= 1−

∑
x,y

√
P (y|x) · P (x) · P (x) · P (y)

= 1−
∑
x,y

√
P (x, y) · P (x) · P (y)

= ∆2
Hel(P (X,Y ), P (X)P (Y ))

≤ DKL(P (X,Y )‖P (X)P (Y )) (2.4)

= I(X;Y ) , (2.5)

where the sums are over x ∈ DY and y ∈ DY and Line 2.4 follows from Lemma 2.5 stated below
and Line 2.5 follows from the fact that I(X;Y ) = DKL(P (X,Y )‖P (X)P (Y )).
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The final lemma in this section relates KL-divergence and Hellinger distance.

Lemma 2.5. For any probability distributions P and Q over a domain D, we have

DKL(P‖Q) ≥ ∆2
Hel(P,Q) .

Proof. We have

∆2
Hel(P,Q) = 1−

∑
z∈D

√
P (z) ·Q(z)

≤ − log
∑
z∈D

√
P (z) ·Q(z) (2.6)

≤ − log
∑
z∈D

(
P (z) ·Q(z)

)
= − log

∑
z∈D

(
P (z) · Q(z)

P (z)
)

= − logEz∈D
Q(z)
P (z)

≤ −Ez∈D log Q(z)
P (z) (2.7)

= −
∑
z∈D

P (z) · log Q(z)
P (z)

= DKL(P‖Q) ,

where 2.6 holds because 1− x ≤ − log x and 7.2 is an application of Jensen’s inequality, which we
restate below.

Jensen’s inequality. Let X be a random variable and f a concave function. Then it holds that
E[f(X)] ≤ f(E(X)). For a convex function the direction of the inequality reverses.
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Chapter 3
Modeling Backdoored Hash Functions

In this chapter we formally define backdoored hash functions and adapt common security properties
for hash functions to the setting with backdoors. We consider a scenario, where a big brother designs
a hash function that can be broken easily with access to some secret backdoor, but the hash function
retains some security against adversaries without knowledge of that backdoor. This formalization
is justified, since it intuitively matches the NOBUS property to not only keep other adversaries
out but also to keep users oblivious towards the existence of any backdoors. We take two different
approaches in modeling backdoored hash functions: backdoored standard-model hash functions and
backdoored hash functions where the hash function without the backdoor is ideal, i.e., a random
oracle.

My Scientific Contribution in this Chapter

The formalization of backdoored standard-model hash functions is a part of [FJM18a], which is a
joint work with Marc Fischlin and Christian Janson. This model was devised jointly by Christian,
Marc, and me. The one presented in this thesis, in Section 3.2, differs mostly syntactically from
the original publication. I chose to modify the model to obtain more intuitive definitions and
enable a better comparison with the backdoored random-oracle model.

The backdoored random-oracle model described in Section 3.3 and the infeasibility of black-
box (0, k)-combiners in the standard model, discussed in Section 3.4, both appeared in [BFM18a],
which is a joint work with Balthazar Bauer and Pooya Farshim. Pooya and I jointly devised
the idea of combining two independently backdoored primitives to build a backdoor-resilient
one. Despite our strong intuition that this goal should be achievable, our attempts at proving
positive results in the standard model were not successful. Pooya then suggested that we move
to a backdoored version of an idealized model of computation (e.g., the random-oracle model),
which ultimately lead to our positive results in Chapter 6 (and a follow-up work described in
Chapter 7). Pooya and I jointly developed the BRO model in Section 3.3. The impossibility
result in Section 3.4 was conducted mostly by Pooya with my help.

3.1 Introduction

Hash functions are one of the most fundamental building blocks in cryptography. For this reason,
both the cryptanalysis and provable security of hash functions have been active areas of research in
recent years. While cryptanalytic validation can strengthen our confidence in the security of hash
functions, as such analyses improve, also weaknesses are discovered, which can lead to partial or total
break of their security. For example, the first known instances of collisions and chosen-prefix collisions
in SHA-1 were demonstrated recently by Stevens et al. [SBK+17] and Leurent and Peyrin [LP19],
respectively. Still, these analyses might fail to detect intentional weaknesses that may have been

29
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built into hash functions. Backdoors might even be themselves constructed using sophisticated
cryptographic techniques, which make them hard to detect. It is of utmost importance to understand
the risks that are posed by backdoors in hash functions and develop solutions to mitigate them. An
inevitable starting point is to adequately model the syntax and security of hash functions in such
adversarial settings.

We explore two different directions in modeling backdoors in hash functions: backdoors in
standard-model hash functions and backdoors in the random-oracle model. Both approaches are
useful for studying different aspects of attacks as well providing security under different assumptions,
as we show in Chapter 4 for attacks, and in Chapter 5 for defeating standard-model backdoors, as
well as in Chapters 6 and 7 for defeating backdoored random oracles. In both approaches we assume
that hash functions are designed (and potentially even standardized) by malicious authorities. These
hash functions may even display good behaviors, but they are insecure against adversaries that have
access to their backdoors.

In the first part of this chapter, we formalize backdoored hash functions in the standard model.
We often refer to backdoored hash functions in the standard model simply as backdoored hash
functions, when it is clear from the context that the underlying model is standard. Here a big brother
generates a backdoored hash function family together with a short bit string corresponding to a
so-called backdoor key. The adversarial influence in the design is captured by this definition in that
the hash function family and its internal constants can be chosen in a way that a short backdoor
key co-designed with that family enables bypassing some of the security properties. Meanwhile, we
assume that a backdoored hash function retains security against adversaries that do not hold a
backdoor key, reflecting the fact that a rational malicious designer would want the backdoor to be
NOBUS.

We include the possibility of having backdoored hash functions in four central security require-
ments, which are one-wayness, second-preimage resistance, collision resistance, and pseudorandom-
function security. Looking ahead, in Chapter 4 we analyze constructions of backdoored hash functions,
where the backdoor undermines one-wayness, second-preimage resistance, and collision resistance.
In Chapter 5 we discuss a technique to neutralize backdoors in pseudorandom functions.

In the second part of this chapter, we introduce an extension to the random-oracle model, which
we call the backdoored random-oracle (BRO) model. The BRO model substantially weakens the
traditional RO model by letting the adversary additionally access an oracle called the backdoor oracle
which can be used to break the random oracle in an arbitrary sense. Simply put, the backdoor oracle
can be queried on arbitrary functions, upon which it computes the queried function on the entire table
of the random oracle and returns the result. Contrary to the standard model, we cannot reasonably
capture breaking a variety of security notions if we model the backdoor as a short backdoor key,
since random oracles do not even have efficient descriptions. A short backdoor key in this setting
rather resembles an auxiliary input (e.g., a few points) dependent on the random oracle, than an
actual backdoor.

The BRO model is simple and does not make assumptions about the backdoor capability. It
might seem contradictory to assume RO-like behavior from a backdoored hash function. However
keep in mind that we assume this without access to the backdoor. This approach opens a door to
formalizing concepts such as independence of multiple hash functions and it enables building simple
backdoor-resilient hash functions with meaningful proofs of security. Such positive results are very
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challenging and often infeasible to prove in the standard model.
We again revisit a few essential security notions of hash functions to reflect the existence of

backdoors. Here, we choose one-wayness, pseudorandom-generator security, and collision resistance.
Looking ahead, in Chapter 6 we give positive results for these three security notions in a model
where two independent BROs are available. Hence, we define these notions for a combiner rather
than a single BRO.

Finally, we explore the difficulty of constructing a secure hash function by combining only
backdoored hash functions in the standard model. We confirm this intuition by giving an impossibility
result which rules out fully black-box reductions for such combiners in the standard model.

3.2 Backdoored Hash Functions

A standard-model backdoored hash function is a hash function which is designed by an adversary
together with a short backdoor key, whose knowledge enables violating the security of the hash
function. More precisely, we consider an efficient algorithm BDHGen, which on input of three integers
k, n, and m outputs a hash function family H, a key space K, and a backdoor key bk. The hash
function family H consists of hash function with key length k and output length m. Regarding the
input, the hash functions either accept variable-length inputs of up to a polynomial length poly(n) or
only inputs of a fixed-length poly(n). The key space is a subset of all strings of size k, i.e.,K ⊆ {0, 1}k.
If K 6= {0, 1}k, then the backdoor is key-dependent and works only for instances Hk, where k ∈ K.

Definition 3.1 (Backdoored Hash Function Generator). A PPT algorithm BDHGen is called a
backdoored hash function generator, if on input of parameters k, n,m ∈ N, it outputs a hash function
family H, a key space K ⊆ {0, 1}k, and a backdoor key bk ∈ {0, 1}∗. The hash function family is
either defined for variable-length inputs of up to a polynomial poly(n) length, in which case we have
H := {Hk : {0, 1}≤poly(n) → {0, 1}m | k ∈ {0, 1}k}, or for fixed-length inputs, in which case we have
H := {Hk : {0, 1}poly(n) → {0, 1}m | k ∈ {0, 1}k}.

3.2.1 Security Notions in the Standard Model

We give definitions for four of the most commonly used security notions of hash functions: one-way
security, second-preimage resistance, collision resistance, and security of pseudorandom functions.
These games are formalized in Figure 3.1. Furthermore, to avoid confusion about the secrecy of the
hash key in security notions, we often use iv (instead of k) to denote a publicly known key, also
called the initialization vector. In all but the PRF game, the key iv is public and is provided to the
adversary. However, in the PRF game, not only is the key k secret, but it is also chosen uniformly
at random from an unrestricted set of possible keys, i.e., from {0, 1}k instead of K. In defining
these games, we deviate slightly from common formulations and potentially give the adversary the
backdoor key. Our definitions are thus general enough to capture standard security notions without
backdoors (bd = 0) as well as security against backdooring adversaries (bd = 1). To sample an
element of the domain, which we need in the one-wayness and second-preimage resistance games,
or to sample a whole function with a certain domain, which we need in the PRF game, we use the
function dom(Hiv) to get the domain of Hiv. Recall also that we use Fun[dom(Hiv),m] to denote the
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Game OWA,bd
BDHGen(1k, 1n, 1m)

(H,K, bk)←← BDHGen(1k, 1n, 1m)
if bd = 0 then bk← ⊥
iv←← K

x←← dom(Hiv)
y ← Hiv(x)
x′ ←← A(H, iv, bk, y)
return (Hiv(x′) = y)

Game SPRA,bd
BDHGen(1k, 1n, 1m)

(H,K, bk)←← BDHGen(1k, 1n, 1m)
if bd = 0 then bk← ⊥
iv←← K

x←← dom(Hiv)
x′ ←← A(H, iv, bk, x)
return (x 6= x′ ∧ Hiv(x′) = Hiv(x))

Game CRA,bd
BDHGen(1k, 1n, 1m)

(H,K, bk)←← BDHGen(1k, 1n, 1m)
if bd = 0 then bk← ⊥
iv←← K

(x1, x2)← A(H, iv, bk)
y1 ← Hiv(x1)
y2 ← Hiv(x2)
return (x1 6= x2 ∧ y1 = y2)

Game PRFA,bd
BDHGen(1k, 1n, 1m)

(F,K, bk)←← BDHGen(1k, 1n, 1m)
if bd = 0 then bk← ⊥

k←← {0, 1}k

F0 ← Fk

F1 ←← Fun[dom(Fk),m]
b←← {0, 1}

b′ ←← AFb(F, bk)
return (b = b′)

Figure 3.1: The one-wayness, second-preimage resistance, collision resistance, and pseudorandom function
security games for a hash function generator BDHGen.

set of all functions f : dom(Hiv) → {0, 1}m. The advantage terms corresponding to the games of
Figure 3.1 are

Advow,bd
BDHGen(A, k, n,m) := Pr[OWA,bd

BDHGen(1k, 1n, 1m)],

Advspr,bd
BDHGen(A, k, n,m) := Pr[SPRA,bd

BDHGen(1k, 1n, 1m)],

Advcr,bd
BDHGen(A, k, n,m) := Pr[CRA,bd

BDHGen(1k, 1n, 1m)] ,

Advprf,bd
BDHGen(A, k, n,m) := 2 · Pr[PRFA,bd

BDHGen(1k, 1n, 1m)]− 1 ,

where all probabilities are over the internal randomness used in the game, BDHGen, and by A. We
say that a hash function generator is one-way, second-preimage resistant, or collision resistant (with
backdoor, in case of bd = 1), if the corresponding advantage of all PPT adversaries A is negligible.

Below, we formally define what it means for a hash function to be backdoored in a way that
knowledge of a backdoor key allows for breaking certain security properties. More formally, we denote
by a parameter c a backdoor capability, i.e., the security property of hash functions that a backdoor
targets. For instance we can have c ∈ {cr, ow, spr,prf} for the security games defined above or any
other security goal for hash functions. Intuitively, a c-backdoored hash function is a hash function
with a backdoor key that enables breaking the property c with a significant (a.k.a. large) probability.
The larger the probability, the more powerful is the backdoor. In particular the attacks that we
study in Chapter 4 have a success probability of 1. Note that a backdoor-resilient hash function
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is, however, a hash function that is hard to break with a non-negligible probability for any efficient
adversary.

Definition 3.2 (c-Backdoored Hash Function). Let BDHGen be a PPT backdoored hash function
generator and let c denote the backdoor capability. We call BDHGen a c-backdoored hash function
generator (and its output a c-backdoored hash function), if there is a PPT adversary A such that the
advantage Advc,1BDHGen(A, k, n,m) is significant. At the same time, however, for all PPT adversaries A
without bk the advantage Advc,0BDHGen(A, k, n,m) is negligible.

Restricted key space. As mentioned before, the key space K returned by BDHGen can be a
strict subset of {0, 1}k. Then the backdoor bk is supposed to break only those instances of the hash
function with iv’s included in the set K. In particular, this set can even contain just a single element,
in other words, a fixed public iv, which captures a very common setting in hash functions used in
practice. However, we show later in Chapter 4 that backdoored hash functions according to the
stronger notion of key-independent backdoors exist, which enable attacks for keys chosen uniformly
at random from the set of all possible strings, i.e., where K = {0, 1}k.

3.3 Backdoored Random Oracles

The random oracle (RO) methodology [BR93] has been very influential in designing secure and
practical cryptosystems (see Section 2.4 for some background). In this section we introduce a
substantially weakened RO model where an adversary, on top of hash values, can also obtain arbitrary
functions of the table of the hash function, which is modeled as a random oracle. We formalize this
capability via access to a backdoor oracle BD that on input a function f returns f(H), i.e., arbitrary
auxiliary information about the function table of the hash function H. In particular the queries
to BD do not have to be efficiently computable. We call this the backdoored random-oracle (BRO)
model. Here, a family of backdoored hash functions is simply the set of all possible functions (on a
predefined domain and co-domain) together with their backdoor oracles.

Our model captures backdoors that are powerful enough to allow for point inversions—simply
hardwire the point y that needs to be inverted into a function fy that searches for a preimage of y
under H—or finding collisions. But they can go well beyond such attacks. For example, although
Liskov [Lis07] proves one-way security of the combiner H(0‖x1‖x2)‖H(1‖x2‖x1) under random in-
versions, this construction becomes insecure when inverted points are not assumed to be random:
given y1‖y2 simply look for an inverse 0‖x′1‖x′2 for y1 such that 1‖x′2‖x′1 also maps to y2.

Backdoor functions. A backdoor function for H ∈ Fun[n,m] is a function f : Fun[n,m]→ {0, 1}`.
A backdoor capability class F is a set of such backdoor functions. The unrestricted class contains
all functions from Fun[n,m] to {0, 1}`. But the capability class can be also restricted, for example,
functions fy for y ∈ {0, 1}m whose outputs x are restricted to be in H−(y), where H−(y) is the set
of all preimages of y under H. If randomness is desired in computations, it can be hardwired in the
function description.
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The basic BRO model. In the BRO model, a random function H←← Fun[n,m] is sampled. All
parties are provided with oracle access to H. Adversarial parties are additionally given access to the
oracle

BD(f) : return f(H)

for f ∈ F . Formally, we denote this model by BRO[n,m,F ] but will omit [n,m,F ] when it is clear
from the context. When F = ∅, we recover the conventional RO model. In the BRO model, we only
consider functions with fixed input lengths, i.e., a domain of {0, 1}n for some n ∈ N. One can easily
extend the model to other domains.

In a setting, where the adversarial parties call the backdoor oracle only once and before any
hash queries, we recover random oracles with auxiliary input, i.e., the AI-RO model [CDGS18,
Definition 2]. Hence, BRO also models oracle-dependent auxiliary input or pre-computation attacks
on hash functions, which is an active area of research [Unr07, DGK17, CDGS18, CDG18], as special
cases. Since BD calls can be adaptive, salting the BROs does not help in our setting at all. Indeed,
with a single hash function which provides arbitrary backdoor capabilities no secure construction
can exist, as any construction CH can be easily inverted by a function that sees the entire H and
searches for inversions under the construction CH.

The k-BRO model. In practice it is natural to assume that independent hash functions are
available. We can easily model this by an extension to the k-BRO model, whereby k independent
ROs and their respective backdoor oracles are made available. The interpretation in our setting is
that different authorities have, independently of each other, designed and made public hash functions
that display good (i.e., RO-like) behaviors, but their respective backdoors enable computing any
function of the hash tables.

Our positive results in Chapters 6 and 7 are in the k-BRO model, i.e., they rely on combining
two or more independent BROs. In the k-BRO model (with the implicit parameters [ni,mi,Fi] for
i = 1, . . . , k) access to k independent random oracles Hi ∈ Fun[ni,mi] and their respective backdoor
oracles BDi with capabilities Fi are provided. That is, procedure BDi(f) returns f(Hi). In this thesis
we are primarily interested in the 1-BRO, 2-BRO, and 3-BRO models with unrestricted F .

We observe that the 2-BRO[n,m,F1, n,m,F2] model is identical to the 1-BRO[n+1,m,F ] model
where for H ∈ Fun[n + 1,m] we define H1(x) := H(0‖x), H2(x) := H(1‖x) and F to consist of two
types of functions: those in F1 and dependent on values H(0‖x), that is the function table of H1, only,
and those in F2 and dependent on values of H(1‖x), that is the function table of H2, only. Thus the
adversary in the unrestricted 2-BRO model has less power than in the unrestricted 1-BRO model.

3.3.1 Security Notions in the BRO Model

We recall the basic notions of one-wayness, pseudorandomness, and collision resistance for a con-
struction CH1,H2 in the 2-BRO model in Figure 3.2. These security notions can be easily defined in
the more general k-BRO model. For k > 2 we simply give the adversary access to the additional Hi
and BDi oracles and for k = 1 we remove access to H2 and BD2. These notions can also be defined
in the random-oracle model without backdoors by simply removing access to the backdoor oracles
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Game OWAC
for i = 1, 2 do

Hi ←← Fun[ni,mi]
x←← {0, 1}n

y ← CH1,H2(x)

x′ ←← AH1,H2,BD1,BD2(y)

return (CH1,H2(x′) = y)

Game PRGAC
for i = 1, 2 do

Hi ←← Fun[ni,mi]
y0 ←← {0, 1}m

x←← {0, 1}n

y1 ← CH1,H2(x)
b←← {0, 1}

b′ ← AH1,H2,BD1,BD2(yb)
return (b′ = b)

Game CRAC
for i = 1, 2 do

Hi ←← Fun[ni,mi]

(x1, x2)← AH1,H2,BD1,BD2

y1 ← CH1,H2(x1)

y2 ← CH1,H2(x2)
return (x1 6= x2 ∧ y1 = y2)

Figure 3.2: The one-way, pseudorandomness, and collision resistance games for a function CH1,H2 ∈ Fun[n,m].

BD1 and BD2. The advantage terms are

Advow
CH1,H2 (A) := Pr[OWACH1,H2 ], Advprg

CH1,H2 (A) := 2 · Pr[PRGACH1,H2 ]− 1,

Advcr
CH1,H2 (A) := Pr[CRACH1,H2 ] .

The above probabilities are also taken over random choices of H1 and H2. Informally, CH1,H2 is
OW, PRG, or CR if the advantage of any adversary A querying its oracles, such that the total length
of the received responses remains “reasonable”, is “small”. Weak security in each case means that
the corresponding advantage is less than 1, i.e., not overwhelming. Contrary to the standard-model
security notions, it is not necessary here to additionally require security without backdoors, since
the security of reasonable combiners, and in particular those that we will consider in this thesis, is
well-known (and often trivial) in the RO model.

We denote by Q(A) the number of oracle queries made by the adversary A to H1 and H2 as well
as to BD1 and BD2. Note that if one only considers backdoor functions with 1-bit output lengths, the
total length of the backdoor oracle responses directly translates to the number of backdoor queries
made by A.

Indifferentiability in k-BRO. Next we define indifferentiability in the k-BRO model. Looking
ahead, in Chapter 7 we give positive results in the 2-BRO and the 3-BRO models. For the classical
definition of indifferentiability we refer to Section 2.4.1. In the k-BRO model the underlying honest
interfaces are k random oracles Hi and their respective adversarial interfaces BDi. A simulator needs
to simulate both type of interfaces. We emphasize that the simulators do not get access to any
backdoor oracles. This ensures that any attack against a construction with backdoors translates
to one against the random oracles without any backdoors. In the backdoored setting, we define
the indifferentiability advantage of an adversary D with respect to a construction CH1,...,Hk and a
simulator Sim := (SimH1, . . . ,SimHk,SimBD1, . . . ,SimBDk) as

Advindiff
CH1,...,Hk ,Sim(D) :=

∣∣∣Pr
[
DCH1,...,Hk ,H1,...,Hk,BD1,...,BDk

]
−Pr

[
DRO,SimHRO

1 ,...,SimHRO
k ,SimBDRO

1 ,...,SimBDRO
k

] ∣∣∣ ,
where RO is a random oracle whose domain and co-domain match those of C.
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3.3.2 Further Remarks on the Model

Backdoors as weaknesses. A number of works [Lis07, HS08, LW15, NIT08, KNTX10] introduce
an intermediate weakened RO model, where hash functions are vulnerable to strong forms of attack,
but are otherwise random. This is an approach that we also adopt in defining the BRO model, albeit
allowing arbitrary weaknesses. One of the main motivations for the works of Liskov [Lis07] and Hoch
and Shamir [HS08] is the study of design principles for symmetric schemes that can offer protections
against weaknesses in their underlying primitives. For example, Hoch and Shamir study the failure-
friendly double-pipe hash construction of Lucks [Luc05]. Similarly, Liskov shows that his zipper hash
is indifferentiable from a random oracle even with an inversion oracle for its underlying compression
function. Proofs of security in the unrestricted BRO model would strengthen these results as they
place weaker assumptions on the types of weaknesses that are discovered. Furthermore, Katz, Lucks,
and Thiruvengadam [KLT15] study the construction of collision-resistant hash functions from ideal
ciphers that are vulnerable to differential related-key attacks. We leave the study of backdoored
ideal ciphers for future work.

Auxiliary inputs. As mentioned above, a closely related model to BRO is the AI-RO model,
introduced by Unruh [Unr07] and recently refined by Dodis, Guo, and Katz [DGK17] and Coretti et
al. [CDGS18], and also adapted to other ideal models by Coretti et al. [CDG18]. Here the result of
a one-time preprocessing attack with access to the full table of the random oracle is available to the
adversary. The BRO and AI-RO models are similar in that they both allow for arbitrary functions of
the random oracle to be computed. However, BRO allows for adaptive, instance-dependent auxiliary
information, whereas the AI-RO model only permits a one-time access at the onset. Thus AI-RO is
identical to BRO when only a single BD query at the onset is allowed. Extension to multiple ROs
can also be considered for AI-ROs, where independent preprocessing attacks are performed on the
hash functions. A corollary is that any positive result in the k-BRO model would also hold in the
k-AI-RO model. Results in k-AI-RO model can be proven more directly using the decomposition of
high-entropy densities as the setting is non-interactive. In more details, we study the relationship
between BRO and AI-RO models with the goal of achieving indifferentiability from a conventional
RO later in Section 7.5.

Feasibility in 1-BRO. As already discussed, any construction in the 1-BRO model is insecure with
respect to arbitrary backdoors. We can, however, consider a model where backdoor capabilities are
restricted. Security in such models will depend on the exact specification of backdoor functionalities
F . For example, under random inversions positive results can be established using standard lazy
sampling techniques. But another natural choice is to consider functions which output possibly
adversarial preimages, i.e., functions fy whose outputs are restricted to those x for which CH(x) = y.
As we saw for Liskov’s construction, under such generalized inversions provably secure constructions
can fail. Moreover, proving security under general inversions seems to require techniques from
communication complexity as we do in this thesis. A very interesting approach is taken by Golovnev
et al. [GGH+19, GGH+20], where instead of a backdoor oracle, the (on-line) adversary is given access
to some auxiliary information, which depends on a very large portion of the table of the random
oracle but not all of it. Their model is stronger than the 1-BRO model, since the backdoor oracle
not only sees the entire table of the function, but it can also be accessed by the adversary at any
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time during a security game. Golovnev et al. use these restrictions on the adversarial power together
with the assumed (i.e., not unconditional) hardness of a preprocessing variant of the 3SUM problem
to build a one-way function which is secure against adversaries with massive auxiliary information
about the random oracle.

3.4 Infeasibility of Securely Combining Backdoored
Hash Functions in Standard Model

A common approach to building a good hash function from a number of possibly “faulty” hash
functions is to combine them [Leh10]. For instance, given k hash functions H1, . . . ,Hk, the classical
concatenation combiner is guaranteed to be collision resistant as long as at least one of the k hash
functions is collision resistant. More formally, a black-box collision-resistance combiner C is a pair
of oracle algorithms (CH1,...,Hk ,RA) where CH1,...,Hk is the construction and RA is a reduction that
given oracle access to any algorithm A that finds a collision for CH1,...,Hk , returns collisions for all
of the underlying hash functions H1, . . . ,Hk. We are, however, interested in a setting, where none of
the available hash functions is secure. Under this assumption, a secure hash function must be built
from scratch, implying that the source of cryptographic hardness must lie elsewhere.

Here, we briefly explore the difficulty of building a secure construction from backdoored hash
functions in the standard model. Following the model of backdoored hash functions from Section 3.2,
we assume that our hash functions are weak due to the existence of backdoor keys co-designed with
the hash functions. We denote by iv the initialization vector (i.e., the publicly known hash key) used
for hashing and by bk the backdoor key which enables an unspecified backdoor capability (such as
finding preimages or collisions). Our hardness assumption is that the hash function with IV iv is
collision resistant without access to bk. However, when bk is available, no security is assumed. In
this setting the definition of a combiner can be simplified: instead of requiring the existence of a
reduction RA as above, we can proceed in the standard way and require that the advantage of any
adversary A(B) that gets any subset B ⊂ {bk1, . . . ,bkk} of size |B| < k to be small.1 Let us call a
combiner which is secure against any set of at most b backdoors a (k−b, k)-combiner.

It is trivial to see that a (0, k)-combiner is also a (1, k)-combiner. It is also easy to see that a black-
box combiner is a (1, k)-combiner. We are, however, interested in the feasibility of (0, k)-combiners.
In this setting constructions that have to work with a provided hash function family (and potentially
a given set of iv’s) seem hard. Without this restriction, a trivial construction exists: generate a good
backdoor-free hash function family, sample a fresh hash function from it and simply use that one.
In practice, however, this requires designing a hash function from scratch and it is unclear if the
designer can be trusted. Thus we assume that for any sampled hash function its backdoor is also
available. We next give a simple impossibly result that formalizes this intuition under fully black-box
constructions.

1The classical (backdoor-free) setting can be viewed as one where bk’s are fixed, which leads to a difficulty when
the new definition is used: a combiner (formally speaking) can “detect” which hash functions are the good ones and
use them. Since this detection procedure is not considered practical, one instead asks for the existence of a reduction
R as discussed above.
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Theorem 3.1. For any positive k ∈ N, there are no fully black-box constructions of compressing
collision resistant (0, k)-combiners.

Proof idea. Let H be a hash function family such that H(iv, ·) implements a random function and
let A be an algorithm which on inputs C, iv1, . . . , ivk, and bk1, . . . ,bkk operates as follows. It first
interprets C as the description of a combiner. It then checks that each bki indeed enables generating
collisions under H(iv, ·). If so, it (inefficiently) finds a random collision for CH(iv1,·),...,H(ivk,·) and
returns it. An efficient reduction R is given oracle access to A and H as well as a key iv∗ (without its
backdoor bk∗). It should find a collision for H(iv∗, ·) while making a small (below birthday bound)
number of queries to the two oracles A and H. We show that any such reduction R must have a
negligible success probability.

We distinguish between two cases based on whether the reduction R uses the provided oracle
A or not. Without the use of A, the reduction would break collision-resistance for iv∗ on its own,
contradicting the collision-resistance of iv∗ beyond the birthday bound. To use A, the reduction has
to provide it with k keys ivi and some other backdoor keys bki that enable finding collisions (since
A checks this). However, none of the provided keys ivi can be iv∗, since R must also provide some
b̃k∗ that enables finding collisions under iv∗, which means that R can directly use b̃k∗ to compute
a collision for H(iv∗, ·), once again contradicting the assumed collision resistance of iv∗ beyond the
birthday bound. Thus R does not use iv∗. A random oracle H(iv∗, ·), however, is collision resistant
even in the presence of random collisions for H(iv, ·) for iv 6= iv∗. This means that R, which places a
small number of oracle queries, will have a negligible success probability.

There is room to circumvent this result by considering non-black-box constructions. In Chapter 6
we will study basic security properties of the concatenation, cascade, and xor combiners for hash
functions in the unrestricted 2-BRO model, where the hash oracles model access to different iv
and the backdoor oracles model access to the corresponding bk’s. As mentioned in the previous
section, the approach of modeling weaknesses through a break oracle to a random oracle has also
been adopted in a number of prior work, both from a provable security as well as a cryptanalytic
view [HS08, Mit13, KNTX10, LW15, Jou04].



Chapter 4
Threat of Backdoored Hash Functions

This chapter starts with disproving a misconception about backdoored hash functions. One may
believe that building a backdoored hash function, which is secure without the backdoor key but
insecure with it, would imply public-key primitives and is, hence, not only slow but also highly
suspicious. In other words, this hypothesis declares any symmetric hash function as inherently
backdoor-free. We contradict this belief by giving constructions of a compression function based on
many-to-one trapdoor one-way functions with an exponential preimage size as studied by Bellare
et al. [BHSV98]. We then show that constructions of hash functions with variable-length inputs
which iterate such a backdoored compression function using the Merkle–Damgård or the sponge
transforms are also backdoored. Furthermore, we show at the example of HMAC that using a secret
key does not automatically prohibit such attacks. These examples serve a better understanding of
how backdoors may look like and which security implications they may have. This is an important
step towards defeating backdoors, not only by showcasing a concrete backdoor type and suspicious
design choices to watch for but more so because they guide us in searching for countermeasures.

My Scientific Contribution in this Chapter

The material in this chapter is published in [FJM18a] and its full version [FJM18b], which are
joint work with Marc Fischlin and Christian Janson. The idea of basing backdoored compression
functions on trapdoor functions with exponential preimage size, described in Section 4.1, was
suggested my me. Christian and I then jointly applied this idea to hash functions and analyzed the
attacks. I focused mainly on the Merkle–Damgård-based construction in Section 4.2. Christian
mainly worked on the sponge-based construction in Section 4.3, which appeared in the full
version [FJM18b, Section 8].

4.1 Introduction

It may appear that a backdoored hash function implies trapdoor permutations (or equivalently
public-key encryption), especially as it does in case of backdoored pseudorandom generators studied
by Dodis et al. [DGG+15]. In particular one might believe that backdoored hash functions that
allow for finding collisions are the same as chameleon hash functions, which were introduced by
Krawczyk and Rabin [KR98] and are believed to require public-key primitives [BR14]. If such an
equivalence were true, one could safely assume that common constructions of hash functions, which
are symmetric-key confusion/diffusion-style primitives, are backdoor-free. We show, however, that
for hash functions (without secret keys) and (strong) pseudorandom functions this is not necessarily
true. To this end we give backdoored constructions based on standard collision-resistant and one-way
functions used to construct a many-to-one trapdoor function with an exponential preimage size, which
are studied by Bellare et al. [BHSV98]. For a definition of such trapdoor functions see Section 2.3.3.

39
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Our constructions show clearly that backdoored hash functions can exist outside cryptomania, i.e.,
a world described by Impagliazzo [Imp95], where public-key cryptography exists. From an efficiency
point of view, backdoored hash functions can even be as fast as non-backdoored functions.

On a high level, a malicious designer can build a backdoored compression function (a.k.a. a
compressing hash function that works on fixed-length inputs) from an arbitrary and secure com-
pression function, where the backdoored function basically “mimics” the behavior of the healthy
function unless a backdoor key, which is a special bit string, is embedded as part of the input. For
this exceptional input the altered function returns something trivial, e.g., a part of its input. In other
words, the backdoor key triggers a malicious behavior in the backdoored compression function. It is
noteworthy that the backdoor can only be triggered by an adversary with prior knowledge of the
backdoor key, since it is cryptographically protected in the construction.

Furthermore we show that iterating such a backdoored function in the Merkle–Damgård or sponge
construction leads to a backdoored hash function with variable input lengths. Since the inputs to
hash functions can be chosen by the adversary during the attacks, finding collisions, preimages, and
second preimages becomes easy by triggering the backdoor. Furthermore, we show that even though
HMAC uses a secret key, it is not a secure pseudorandom function against an adversary that can
exploit the backdoor for the underlying hash function. This enables the adversary to find collisions
in the inner hash chain, which is exactly what makes it possible to forge MAC tags and distinguish
outputs from random.

We do not claim that any of today’s widely used hash functions such as SHA-1, SHA-2, or SHA-3
actually have backdoors. The constructions discussed in this chapter are mainly theoretical results
meant to increase our understanding of backdoors in hash functions and their complexity, as well as
eliminating a common misconception that backdoored hash functions necessarily have to be based
on public-key primitives. We note that, although it is infeasible to derive the backdoor key from
the specification, our constructions do look suspicious. As discussed in Section 1.1, other types of
backdoors in hash functions have been studied, e.g., by Albertini et al. which are less obvious but
can only give one single collision [AAE+14].

4.2 Merkle–Damgård-based Hash Functions and HMAC

In this section we demonstrate the feasibility of embedding a backdoor in ordinary hash functions, in
a way that the adversary in possession of the backdoor is able to undermine the most crucial security
properties of the hash function. What makes the threat even bigger, is that the hash function retains
all those security properties against adversaries that do not know the backdoor key. Hence, the
black-box behavior of the hash function does not raise any suspicion about existence of a backdoor.

Moreover, the specification only uses symmetric-key primitives and still resists reverse engineering
attempts by cryptographically hiding the backdoor key. Our construction resembles many-to-one
trapdoor one-way functions with an exponential preimage size. Bellare et al. [BHSV98] studied such
trapdoor one-way functions and showed that they can be built from ordinary one-way functions (see
Section 2.3.3) and, hence, building secure public-key encryption from them is presumably hard.

We discuss a backdoored Merkle–Damgård-based hash function which iterates a backdoored
compression function, i.e., a backdoored compressing hash function for fixed-length inputs. This
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backdoored compression function behaves like a secure compression function unless the backdoor is
triggered by a special key as part of the input message to the function. The construction sadly gives
evidence of how easy it is to embed a backdoor into the building block of hash functions and violate
their properties. We also investigate whether our construction has any weakening impact when used
in HMAC (where HMAC is used as is, without our immunization modifications). Unfortunately we
have to answer this in the affirmative and show that even though HMAC uses a secret key, it is not
secure, since the adversary has full control over the input message and can trigger the backdoor for
the underlying hash function.

4.2.1 The Merkle–Damgård Construction

The Merkle–Damgård construction [Dam90, Mer90] is one of the most commonly used approaches
for building a full-fledged hash function with arbitrary input length. Such constructions are also
referred to as domain extenders. The MD-construction works by iterating a compression function,
processing a single block of the input message in each iteration and using padding techniques to make
the entire input message length comply with the block length. In terms of security, for appropriate
paddings, the collision resistance of the iterated compression function is preserved. The MD domain
extender is extensively used in practice for hash functions including the MD family, SHA-1 and
SHA-2, while each one employs a different compression function.

Let h : {0, 1}`×{0, 1}b → {0, 1}` be a compression function. The MD-based hash function family
Hh
md := {Hh

md,iv : {0, 1}≤2p → {0, 1}` | iv ∈ {0, 1}`} iterating h is described in Figure 4.1. Here,
an input message x is first padded such that its length becomes a multiple of the block size b that
is processable by the compression function. The padded message is then partitioned into blocks
x0, x1, . . . , xn−1, where each message block is of size b. Below we discuss the padding function in
more detail. Then, the compression function h is iterated in such a way that the output of the
previous compression function and the next message block become the input to the next compression
function. The iteration starts with an initialization value iv←← {0, 1}` and the first message block x0

and the hash digest is the last output of h after consuming all message blocks.

Hh
md,iv(x)

x← x‖lpad(x, b, p)
parse x as x0‖ . . . ‖xn−1 where |xi| = b for all 0 ≤ i < n

y0 ← iv
for i = 0...n− 1 do
yi+1 ← h(yi, xi)

y ← yn

return y iv h

x0

-

-@
@

h

x1

-

-@
@

. . . h

xn−1

-

-@
@

- y

Figure 4.1: Merkle–Damgård construction from a compression function h.

Length padding. The padding algorithm used with a domain extender must itself be collision
free. Length padding is typically used in MD-based hash functions. It appends the length of the
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message to the end, while making sure that the length of the padded message is a multiple of the
block size b required by the compression function. We consider a compact length padding function
lpad that uses p bits to represent the message length, where p < b so that the length fits into one
block and also p ≤ `, which is also common for practical hash functions (e.g., p = 64 for SHA-256).
Hence, the padded message contains the message length in its last b-bits block possibly together
with some of the least significant bits of the message. Such a length padding function is commonly
used in practical MD-based hash functions, such as MD5, SHA-1 and SHA-2. A similar padding that
additionally prepends the length of the message with a bit of 1 is used in BLAKE. Let binary(x, y)
be the binary representation of x in y bits, then lpad is defined as:

lpad(x, b, p) := 1‖0(b−|x|−p−1) mod b‖binary(|x|, p).

A less compact and mostly theoretical variant of length padding uses exactly b bits for representing
the message length, which is then encoded in a separate block.

4.2.2 Backdoored MD-based Hash Functions

Let h : {0, 1}` × {0, 1}b → {0, 1}` be a collision-resistant compression function with b ≥ 2`. Consider
an algorithm BDHGen which creates a backdoored compression function h̃ : {0, 1}`×{0, 1}b → {0, 1}`

and its backdoor key bk ∈ {0, 1}`, as defined below. In order for h̃ to be collision resistant against
adversaries without knowledge of the backdoor, h̃ behaves essentially like h, unless the backdoor is
triggered. The backdoor bk is defined in a way that h(bk, a) = β, for fixed values a ∈ {0, 1}b and
β ∈ {0, 1}`. The values bk and a can for instance be chosen randomly by the malicious designer of
h̃, from which β is determined.

compression function :

h̃ : {0, 1}` × {0, 1}b → {0, 1}`

h̃(y, x) :=
{
x[`,2`−1], if h(x[0,`−1], a) = β

h(y, x), otherwise .

backdoor key :

any bk ∈ {0, 1}`

such that h(bk, a) = β .

Figure 4.2: Backdoored compression function h̃ and its backdoor key bk, built from any compression function
h : {0, 1}` × {0, 1}b → {0, 1}` with b ≥ 2`.

The backdoor key is a special point bk of admissible inputs of h. The malicious compression
function h̃ simply evaluates h on most inputs, except if it detects a backdoor key in the input. Let
us take a closer look at the definition of h̃. If the first ` bits of the processed b-bit block correspond
to the backdoor value bk (or another preimage of β under h(·, a)), then h̃ sets the output to the
next ` bits of that input string. This allows to program the output of any iteration of h̃ since the
input message block under adversarial control in many relevant security games. For all other inputs,
h̃ simply calls the underlying compression function h on the given inputs. We describe the attacks
in more detail shortly.
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Proposition 4.1. The compression function h̃ given in Figure 4.2 is collision resistant if the
underlying h is collision resistant and h(·, a) is one-way (for parameter `) for a←← {0, 1}b.

The idea is that a collision finder can only take advantage of the embedded case if it finds a
preimage for β for h(·, a). Else, it needs to find a collision from scratch.

Proof. Suppose to the contrary that there exists a PPT adversary A which finds collisions for h̃ with
a non-negligible probability, i.e., outputs (y, x) 6= (y′, x′), such that h̃(y, x) = h̃(y′, x′). We make a
case distinction:

• Assume that h(x[0,`−1], a) = β or h(x′[0,`−1], a) = β. Then it is straightforward to build an
adversary against the one-way security of h(·, a), since x[0,`−1] resp. x′[0,`−1] constitutes a
preimage for β.
• According to the other case we thus have h̃(y, x) = h(y, x) = h(y′, x′) = h̃(y′, x′) such that

(y, x) 6= (y′, x′). This, however, contradicts the collision resistance of h.

In summary, an adversary A successfully attacking collision resistance of h̃ can be used to build
an adversary that can either find preimages for h(·, a) or find collisions under h (in the same time).
Hence, A’s success probability is bounded by the sum of these cases.

With a similar argument we can show that the same holds for the other properties:

Proposition 4.2. The compression function h̃ given in Figure 4.2 is one-way if the underlying h
is one-way for parameter `+ b and if h(·, a) is one-way for parameter ` for a←← {0, 1}b.

As in the proof for collision resistance, this holds because an adversary A against one-way
security either needs to find a preimage for parameter ` (i.e., a backdoor key), or under the original
compression function h for the entire parameter `+ b.

Proposition 4.3. The compression function h̃ given in Figure 4.2 is second-preimage resistant for
parameter `+ b if the underlying h is second-preimage resistant for `+ b and h(·, a) is one-way for
parameter ` for a←← {0, 1}b.

Next we build from h̃ a backdoored hash function Hh̃
md using the standard MD domain extender,

which iterates the backdoored compression function h̃. Intuitively, with the backdoor key an adversary
can trigger one or more iterations of the compression function to land in a “weak mode” and then
abuse it to break the hash function, i.e., find collisions, preimages, and second preimages.

Deniability. Although it is hard to find the backdoor itself given the description of the compres-
sion function, the fact that the above construction is indeed backdoored is fairly obvious and cannot
be plausibly denied. However, a big brother adversary may employ techniques such as practical
obfuscation to better hide the (implicit) if-clause and the constants used for backdooring. The com-
plexity of permutations and compression functions used in practice can make detection even harder.
Furthermore, the attacker may also aim at weakening the implementation and insert malicious code
in a software update. The subverted implementation remains indistinguishable from its specification
via black-box testing.
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Exposure of the backdoor key. As discussed, a backdoor can enable adversaries to break
security of a hash function. The same backdoored construction is unexploitable by an adversary who
does not know the backdoor key. Attempts at detecting a potential backdoor via black-box testing
or finding the backdoor key by reverse engineering the code may easily fail. However, observe that
every collision, preimage, or second preimage found using the backdoor key, encodes the backdoor
key in the message. Therefore, using the backdoor may put the adversary in risk of being exposed.
It is unclear whether constructions of backdoored compression functions are possible that do not
expose their backdoor key in adversarial inputs and do not rely on indistinguishability obfuscation
to hide a secret key in the compression function and use it to internally decrypt malicious triggers.

Attack Description

We describe how a backdoor key bk as described in Figure 4.2 enables breaking collision resistance,
one-way security and second-preimage resistance of Hh̃

md. Definitions of these properties were given
in Section 3.2. Interestingly, for finding collisions and preimages, the adversary does not need to
actually evaluate the hash function at all. For finding second preimages, the adversary evaluates the
hash function only once when computing the digest of the challenge message. Here, we consider the
compact length padding lpad. However, we remark that backdoored compression functions, similar
to the one that we discuss below, do exist for other padding functions.

Finding collisions. The adversary’s goal is to find two messages x, x′ ∈ {0, 1}≤2p , that are
mapped to the same digest. We argue that any two messages x and x′ of the same length that have
an arbitrary prefix of the same size, which is a multiple of the block size b, followed by a common
suffix starting with bk, collide. It immediately follows from the exponential size of the message
space that the backdoor enables finding an exponential number of collisions. More precisely, for all
prefixes v, v′ ∈ ({0, 1}b)+ with |v| = |v′| and suffixes w ∈ {0, 1}∗ the colliding messages are:

x = v‖bk‖w and x′ = v′‖bk‖w.

Observe that, after padding, both messages contain the backdoor bk at the beginning of the same
block. This triggers the “bad” case of the backdoored compression function, which then outputs the
following ` bits of the message, ignoring the intermediate chaining value obtained from the previous
iteration. Since the messages do not differ after the backdoor and neither does the padding of the
equal length messages, their digests eventually coincide.

In a similar attack, the adversary is able to encode an targeted digest y ∈ {0, 1}` directly in
the messages. That is, for all prefixes v, v′ ∈ ({0, 1}b)+ of the same size (i.e., |v| = |v′|), and short
suffixes u, u′ ∈ {0, 1}≤b−2`−p−1 the following messages are both mapped to the same value by the
backdoored hash function:

x = v‖bk‖y‖u and x′ = v′‖bk‖y‖u′.

If b ≥ 2`+ p+ 1, the lengths of the messages fit in the same block as bk, y, and u resp. u′. Hence,
the encoded length binary(|x|, p) resp. binary(|x′|, p) is simply ignored by the backdoored compression
function and y is output as the final digest for both. Here, the messages do not even have to be of
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the same size. However, if 2` ≤ b < 2` + p + 1 the binary encoding of the message lengths cannot
be included in the same block as bk and y, hence, the above messages will collide (mapped to a
different digest than y) if their last blocks after padding (in particular their lengths) are equal.

Finding preimages. Let y ∈ {0, 1}` be the digest which an adversary is challenged to invert. We
distinguish two cases based on the length of message blocks. First we consider b ≥ 2`+ p+ 1, where
the backdoor key, the challenge digest, and the padded message length can all fit in a single block.
Second, we consider 2` ≤ b < 2`+ p + 1, where at least the backdoor key and the message length
can fit into the same block, however not together with the challenge digest.

If b ≥ 2`+ p+ 1, the adversary can encode y in the message directly after the backdoor key bk,
while still leaving space in the last block for the message length to be encoded in by the padding.
More precisely, for all prefixes v ∈ ({0, 1}b)+ and all short suffixes u ∈ {0, 1}≤b−2`−p−1 the following
message x is a valid preimage for y:

x = v‖bk‖y‖u.

Here, after the malicious case of the compression function is triggered by bk, the digest y will be
output, and the rest of the last block, containing the length is simply ignored.

The attack is slightly more subtle in case of 2` ≤ b < 2`+ p+ 1. However, one can still trigger
the backdoor in the last message block, causing the next ` bits to be output by the backdoored
compression function. Consider the message x = v‖bk‖u now with u ∈ {0, 1}≤b−`−p−1. If the ` bits
of the padded message immediately following the backdoor key bk, i.e., u and a prefix of lpad(x, b, p),
correspond to the challenge digest y, then x is a valid preimage.

Finding second-preimages. Finding second preimages is very similar to finding preimages. The
adversary simply performs the above attacks to find a second preimage x′ for a given message x, after
setting y = Hh̃

md,iv(x). Note that since the adversary can find an exponential number of preimages
by choosing different prefixes and suffixes, she can easily find a preimage x′ of y that different from
the challenge message x.

4.2.3 The HMAC Construction

Message authentication codes (MACs) provide message integrity, i.e., they prevent adversaries from
tampering with a communication without being detected by the receiver. The widely used HMAC
scheme [BCK96a] is built on a cryptographic hash function. It has been standardized in IETF
RFC [KBC97] and NIST [FIP02], and is widely deployed in various security protocols such as TLS and
IPSec. HMAC (to be precise, its theoretical counterpart NMAC) is provably a pseudorandom function
under the assumption that its underlying compression function is a pseudorandom function [Bel15].
Note that PRF security implies the standard notion of unforgeability for MAC schemes: if real (and
reasonably long) MAC tags cannot be distinguished from random strings, it is also infeasible to forge
them.

Definition 4.1 (HMAC). Let Hh
md := {Hh

md,iv : {0, 1}≤2p → {0, 1}` | iv ∈ {0, 1}`} be a Merkle–
Damgård-based hash function family. On input of a key k ∈ {0, 1}b and an IV iv ∈ {0, 1}`, the hash-
based message authentication HMACh with associated secret key space {0, 1}b is a DPT algorithm
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defined as

HMACh(k, iv, x) := Hh
md,iv

(
(k⊕ opad) ‖Hh

md,iv((k⊕ ipad) ‖x)
)
,

where ipad and opad are fixed, distinct b-bit constants.
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Figure 4.3: Illustration of HMAC for inputs x ∈ {0, 1}n·b.

4.2.4 Backdoored HMAC

Next we show that building HMAC upon the backdooredMD-based hash function Hh̃
md of Section 4.2.2

yields a backdoored HMAC scheme, which is forgeable using the backdoor key. More precisely, the
backdoored HMAC scheme is defined as HMACh̃ with a key space {0, 1}b. However, note that h̃ is
still a PRF against adversaries that do not know a backdoor key, as we prove below. Therefore, the
resulting HMAC construction HMACh̃ is still a PRF against such weak adversaries while broken
when a backdoor key is known.

Lemma 4.4. The compression function h̃ from Section 4.2.2 is a PRF if the underlying function h
is a PRF and h(·, a) is one-way (for parameter `) for a←← {0, 1}b.

Proof. Assume that there exist an adversary A with a non-negligible advantage Advprf,0
h̃ (A, `, b, `)

in distinguishing h̃ : {0, 1}` × {0, 1}b → {0, 1}` from a random function with the same domain and
range. We use A to build an adversary B against the PRF-security of h as follows. By definition
B gets access to an oracle which either implements h(k, ·), for a random key k, or a truly random
function f ←← Fun[b, `].

Initially, B picks random values bk, a and sets β := h(bk, a). Upon receiving a query y ∈ {0, 1}b

from A, our new adversary B simply forwards this query to its oracle and returns the answer unless
h(x[0,`−1], a) = β is met, in which case x[`,2`−1] is returned. When the adversary A terminates with
output b, then so does B.

For the analysis note that the only difference in the answers handed to A lie in the exceptional
case that h(x[0,`−1], a) = β, i.e., in case it is possible to compute a preimage of β under h(·, a) with
the help of A’s queries. This straightforwardly leads to a contradiction to the one-way security of
h, via the construction of some algorithm C against one-way security based on A. Otherwise, the
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behavior of A and B are identical. Therefore,

Advprf,0
h (B, `, b, `) ≥ Advprf,0

h̃ (A, `, b, `)− Advow,`
h (C, `, b, `)

Since h is supposed to be one-way, this contradicts the PRF security of h. Furthermore, note that it
is also unlikely that computing h̃(iv, k⊕ ipad) or h̃(iv, k⊕ opad) in HMAC triggers the exceptional
branch. The reason is that this could only happen in the unlikely case that the key parts constitute
a preimage of the backdoor value β. Thus, the claim holds.

Attack Description

Recall that the backdoor bk, defined in Figure 4.2, allows an adversary to find collisions for the
underlying hash function Hh̃

md. Finding collisions for the inner hash chain of the backdoored HMAC
construction is precisely what makes forging MAC tags easy. First, the adversary queries HMACh̃ on
a message x = v‖bk‖w, where v ∈ ({0, 1}b)+ and w ∈ {0, 1}∗. After receiving the corresponding tag t,
the adversary returns the pair (x∗, t) as a forgery, where x∗ := v′‖bk‖w, with any v′ ∈ ({0, 1}b)+,
such that v 6= v′, and |v| = |v′|.

Such messages x and x∗ lead to collisions under Hh̃
md. Since their prefixes v and v′ of equal length

can be arbitrary, they can in particular start with a block of b-bits equal to k ⊕ ipad. Hence it is
easy to see that after the messages are prepended by k ⊕ ipad, they still lead to a collision in the
inner hash chain of HMACh̃. Since the outer chain is equal for all messages, x and x∗ both have the
same tag t. Put differently, HMAC constructions do not automatically resist backdoors just because
they use a secret key. In summary, since an adversary holding a backdoor can forge a tag for a new
message, HMACh̃ is forgeable and, hence, not pseudorandom.

4.3 Sponge-based Hash Functions

In this section, after a brief review of the sponge construction, we discuss how backdooring the
underlying permutation can lead to a backdoored sponge-based hash function.

4.3.1 The Sponge Construction

The sponge construction was introduced by Bertoni et al. [BDPVA11]. As illustrated in Figure 4.4,
the sponge construction is, similar to the MD construction, of iterative nature, but it works in two
phases: absorbing messages and squeezing the digest. The sponge construction can be used to build
a function with variable-length input and output based on a permutation p operating on a fixed
number of bits b, called width. The sponge construction operates on a state of size b = r + c bits.
The value r is the bit rate and denotes the length of the first part of the state, where message blocks
of length r are absorbed. The value c is called the capacity and describes the length of the remaining
state, and generally it holds that r > c. The construction starts with the state being initialized with
a string of length b. The message x is first padded to a multiple of r bits and then divided up into
blocks of this length. In the absorbing phase, the message blocks are simply xored into the first r
bits of the state and then the permutation p is applied to the entire state. After all message blocks
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Hsponge
p,iv (x)

s0 ← iv
x← x‖pad10∗(x, r)
parse x as x0‖ . . . ‖xn−1 where |xi| = r for all 0 ≤ i < n

for i = 0...n− 1 do
s̃i ← si ⊕ (xi‖0c)
si+1 ← p(s̃i)

y ← sn[0,r]

while |y| < ` do
sn ← p(sn)
y ← y‖sn[0,r]

return y[0,`−1]

absorbing squeezing
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Figure 4.4: Sponge-based hash function with output-length ` for inputs x ∈ {0, 1}n·r. Illustration is a
modification of [Jea16].

were processed, the construction switches to the second phase, the so-called squeezing. Here the first
r bits of the state are returned as output blocks and the permutation p is applied to the state. The
squeezing process is repeated until the desired number of blocks are returned. We define sponge
constructions of a fixed (but arbitrary) output length `. Note that the capacity of the state is never
directly affected by the input message blocks and is not returned during the squeezing phase.

The sponge construction is used in building the SHA-3 hash function which is part of the
cryptographic hash function family known as Keccak [BDPVA09]. A sponge-based hash function
family Hpsponge := {Hpsponge,iv : {0, 1}≤poly(b) → {0, 1}` | iv ∈ {0, 1}b}, as formally described in
Figure 4.4, is constructed by iterating a permutation p : {0, 1}b → {0, 1}b as follows. The initial state
s of the sponge is set to an initialization vector iv ←← {0, 1}b. However, note that we use a more
general terminology and usually in SHA-3 the state is simply initialized with the zero bit string of
length b. On the input of a message x, the padding follows the standard convention and appends to
the message a bit string of the form 10∗ to form a message with a length that is a multiple of the
block size r. More formally the padding function is defined as

pad10∗(x, r) := 10(r−1−|x|) mod r .

A length padding is not necessary. Similar to Section 4.2.1, we remark that such a padding
function is itself collision free. The padded message is divided into blocks of size r. Finally, the
permutation p is iteratively applied to the state which is composed by xoring the current state
with the current message block (and a zero string of length c to form an admissible input for the
permutation). As soon as the whole message is absorbed, the first r bits of the state can be returned
as the digest in the squeezing phase. In case the length of the digest is smaller than required, the
permutation is applied further to produce r more bits. This is repeated until the required length of
` bits is obtained, and in case the digest is a few bits too long one can simply truncate the string to
exactly ` bits.
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4.3.2 Backdoored Sponge-based Hash Functions

A backdoored sponge-based hash function cannot directly apply the same “trick” as backdoored
MD-based hash functions from Section 4.2, where both the backdoor and the digest could enter
the same message block. Since the message blocks in the sponge construction can potentially be
of the same length or even smaller than the digest, we use a different encoding here. We consider
a backdoor key which is a string of length r that contains a “sub-backdoor” of length c < r in its
prefix. The basic idea is that after the adversary has triggered the backdoor in a message block, the
backdoored function simply programs the sub-backdoor into the lowest c bits of the output state.
This signals to the next iteration of the sponge that the absorbing phase is about to be finalized and,
hence, enables the backdoored function to encode the desired digest into the next message block
(upper state). Whenever, a backdoor is recognized in the lower state of its input, the backdoored
function simply let’s the upper r bits of the state pass through. In other words, the adversary can
precisely encode an arbitrary digest into the message blocks which will be simply output after the
backdoor was triggered and, hence, enables finding collisions. Below we formally define the iterated
backdoored function and in the next section we describe the attacks in more detail.

Let p : {0, 1}b → {0, 1}b be a one-way permutation where b := r + c. Let BDHGen create a
backdoored one-way function p̃ : {0, 1}b → {0, 1}b and its backdoor bk ∈ {0, 1}r as described in
Figure 4.5. In more detail, we denote a c-bit long prefix of bk as bkβ := bk[0,c−1]. The backdoor bk
is defined in terms of the conditions p(bk‖aα) = α and p(aβ‖bkβ) = β to hold for arbitrary but fixed
constants aα ∈ {0, 1}c, aβ ∈ {0, 1}r and α, β ∈ {0, 1}b. We remark that aα, aβ , and bk can be chosen
by a malicious designer of p̃ and α and β are computed as mentioned. Note that an admissible input
to p̃ is of the following form s = s[0,b−1] = s[0,r−1]‖s[r,b−1].

function :

p̃ : {0, 1}b → {0, 1}b

p̃(s) :=


p(s)[0,r−1]‖s[0,c−1], if p(s[0,r−1]‖aα) = α

s[0,r−1]‖p(s)[r,b−1], if p(aβ‖s[r,b−1]) = β

p(s), otherwise

backdoor key :

any bk ∈ {0, 1}r with
bkβ := bk[0,c−1]

such that p(bk‖aα) = α

and p(aβ‖bkβ) = β

Figure 4.5: Backdoored function p̃ build from any permutation p : {0, 1}b → {0, 1}b with a corresponding
backdoor key bk.

Let us take a closer look at the definition of p̃ in Figure 4.5. If the first r bits of the input s[0,r−1]

correspond to bk (or another partial preimage of α under p(·||aα)), then p̃ sets the first r bits of the
output to correspond to the correct execution of p while the remaining c bits are set to correspond to
the sub-backdoor bkβ . This step can be used when attacking the sponge construction to signal that
the absorbing phase is about to be finalized and hence the adversary has one iteration left to program
the output. In the second step, the first r bits of the input correspond to the sabotaged digest the
adversary wishes the function to output, while the lower c bits correspond to the sub-backdoor from
the previous iteration (or another partial preimage of β under p(aβ ||·)), then p̃ outputs the first r bits
from the input and the remaining c bits are set to the correct execution of p. Knowing a backdoor
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key, these two steps allow for programing the output, when the message blocks (and in particular
the last two) are under adversarial control, as in many security games. For all other inputs that
do not trigger a backdoor, the third case of p̃ applies, where p is simply evaluated on the provided
input. Note that the backdoor itself belongs to the set of admissible inputs of the underlying one-way
permutation, and without its knowledge it is hard to find collisions for p̃, since the underlying p is a
permutation.

Given the malicious construction p̃, a backdoored sponge-based hash function Hp̃sponge can be
built.

Attack Description

Next we describe how an adversary equipped with the backdoor key is able to find collisions, preimages,
and second preimages in the backdoored sponge-based hash function family Hp̃sponge. To some degree,
the attacks are similar to those described in Section 4.2.2 for MD-based hash functions but the
details are specific to the sponge construction.

Finding collisions. The adversary aims to output two messages x, x′ ∈ {0, 1}∗ that map to the
same hash value. For all equal-length prefixes v, v′ ∈ ({0, 1}r)n−3 the colliding messages are:

x := v‖b̃k‖ỹ and x′ := v′‖b̃k′‖ỹ′.

Note that the adversary cannot input the real backdoor key directly. The two blocks b̃k and
ỹ (analogously also b̃k′ and ỹ′) fulfill the following conditions (for fixed but arbitrary y ∈ {0, 1}r),
where s̃n−2 and s̃n−1 are the intermediate states for computing the digest of x (resp. x′) as defined
in Figure 4.4:

s̃n−2[0,r−1] ⊕ b̃k = bk and s̃n−1[0,r−1] ⊕ ỹ = y. (4.1)

Recall that collisions can be found by triggering the backdoor key in the inputs. However, the
sponge construction always uses as input to the permutation the first r bits of the state xored with
the current message block. If the message block simply equals a backdoor key, it is unlikely that
after xoring with the state the input to the function is still a valid backdoor key. But the adversary
can choose a message block of a form such that after the xor operation is performed the first r bits
of the state correspond to the backdoor key and then after being triggered enables the adversary to
efficiently find collisions.

Observe that when the above equations are satisfied, the first case of p̃ is triggered, which writes
the sub-backdoor into the lower state for the next call. Then, the sub-backdoor causes the second
case of p̃ to be triggered. This ensures that the first r bits of the state which correspond to the digest
y are simply passed through as the final output in the squeezing phase. The same applies to the
second message x′ and hence we have a collision on y.

Finding preimages. Given a digest y such that |y| = r, the adversary can use its backdoor by
following the above strategy to encode a message of the form x = v‖b̃k‖ỹ for some arbitrary prefix
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v ∈ ({0, 1}r)n−3. If this message satisfies both equations from (4.1) as specified above for a given
digest then the backdoor was successfully triggered and x is a valid preimage.

In case the digest is smaller than r bits, say |y| = ` ≤ r, the attacker can use the same message,
however, the second equation needs to satisfy a slightly different relation. Here, we require first to
pad the digest to the appropriate length of r bits by simply appending a bit string to complete the
block. Hence, we require that the relation

s̃n−1[0,r] ⊕ ỹ = y‖1‖0r−`−1

needs to be satisfied. The final output will then be the padded digest of length r. However, since we
require the digest to be of length ` we just strip the padding off the digest by truncating it to the
appropriate size, i.e., y[0,`−1] and, therefore, the adversary has successfully found a valid preimage x.

Finding second-preimages. The goal of finding a second preimage is similar to finding a preim-
age and follows the same strategy that have been put forward in Section 4.2.2 and simply apply the
attack to Hp̃sponge.

Long digests. The attacks on the presented backdoored sponge-based hash function are somewhat
restricted. They only deal with the case where digests are at most of the same size as a single message
block, i.e., the digest is at most r bits long, which corresponds to squeezing the sponge only once.
Still many applications (e.g. computing a MAC tag [BDPVA09]) are vulnerable to these attacks
since they only require short digests. As soon as the produced digest length |y| > r, the sponge
applies p̃ again to its state to obtain the next r bits corresponding to the digest block y1. Since p̃
behaves like p on an overwhelming number of inputs, it is harder to find preimages or collisions for
long digests. However, this does not help to immunize the construction against backdoors, since even
though the second digest block (and the following ones) are harder to program, the security of the
hash function is still very much compromised.

4.4 Practical Implications

The backdoored hash function designs discussed in this chapter use an if-then-else construct. Such
constructs, or derivatives thereof, are often implicit in the design of rounds inside compression
functions for nonlinearity reasons. For instance, SHA-1 and SHA-2 both use the function Ch(x, y, z) =
(x∧ y)⊕ (¬x∧ z) on 32-bit words in the round functions, implementing a bit-wise “if xi then yi else
zi” simultaneously over words. In SHA-3 the χ operation χ(a, b, c) = c⊕ (¬a ∧ b) on 64-bit words
can be viewed to implement “if ai then ci else bi ⊕ ci” for each bit in the words.

We stress, however, that we are not claiming that SHA-1, SHA-2, or SHA-3 actually have built-in
backdoors. In particular, embedding such type of backdoors would introduce additional complications
since one has less control over the inputs when the operations Ch and χ are applied in the iterations
of the round functions underlying the compression functions. Our constructions serve merely to raise
awareness by demonstrating that embedding very powerful backdoors in hash functions is possible
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in principle, does not imply public-key primitives, and that only mild operations are necessary to
exploit the backdoor.

If a practical hash function is vulnerable to such backdoors, security of countless practical
schemes that rely on a secure hash function may be compromised. For instance, hash-then-sign
signature schemes are forgeable by an adversary that can find a second preimage for a digest of a
message that it has obtained a signature for. Such an adversary can potentially forge public-key
certificates. Furthermore, the so-called nothing-up-my-sleeve numbers (NUMS) are supposed to be
hard-to-invert hash digests, which are widely used in practical cryptographic designs. Constants in
cryptographic algorithms are often hashed in order to destroy any potential structure that might
give some advantage to the authority that has chosen those constants. However, if the NUMS are
generated using a backdoored hash function, an adversary can use the backdoor to find a preimage
and, therefore, manipulate the constants.

On a final note, we again remark that every collision, preimage, or second preimage found using
the backdoor key for the constructions discussed in this chapter, encodes the backdoor key in the
message. Therefore, using the backdoor may put the adversary and the backdoor key in risk of being
exposed. An interesting open question here is to investigate whether constructions of backdoored
compression functions exist that do not expose their backdoor key in adversarial inputs and do not
rely on indistinguishability obfuscation to hide a secret key in the compression function and use it
to internally decrypt malicious triggers.



Chapter 5
Defeating Backdoors in Pseudorandom Functions

and Key Derivation Functions

In the next three chapters, we develop different strategies to defeat backdoors in hash functions. The
attacks discussed in Chapter 4 give evidence of the difficulty of achieving this goal for hash functions
in the standard model and without secret keys. In this chapter we show positive results for hash
functions that use a secret key. More precisely, we show how to build a secure backdoor-resilient
pseudorandom function and a key derivation function from any backdoor-free weak pseudorandom
function. The central contribution of this chapter lies in the justification of our reliance on a backdoor-
free weak pseudorandom function as the underlying primitive. We provide this by proving that any
backdoored weak pseudorandom function must necessarily rely on expensive public-key primitives.
Therefore, it is safe to assume that a symmetric-key weak pseudorandom function is backdoor-free.

My Scientific Contribution in this Chapter

The results in this chapter are published in [FJM18a], which is a joint work with Marc Fischlin
and Christian Janson. The observation that weak pseudorandomness of secret-keyed functions
that are not based on public-key primitives is preserved under backdooring attempts was made
by me. Marc and I then jointly developed the proof in Section 5.2. Christian, Marc, and I had
many discussions around potential immunization strategies, especially for HMAC, and were all
involved in applying the final strategies to HMAC and HKDF, which were suggested by Marc.
Christian and I mainly focused on immunizing HMAC using the randomized cascade idea in
Section 5.3, while Marc focused on the immunization of HKDF in Section 5.4. The proof of salted
NMAC being a secure KDF is included in the full version [FJM18b]. The high-level immunization
of TLS against potentially backdoored hash functions, in Section 5.5, was conducted by Marc.

5.1 Introduction

Withstanding backdoor attacks can be very challenging. As we demonstrated in Chapter 4, fast
backdoored hash functions, such that the knowledge of a backdoor key widely compromises security
in crucial aspects, can indeed exist. Our input-triggered constructions of backdoored hash functions
do not necessarily constitute the only possible type of backdoored hash functions. Nonetheless, some
evidence that this specific type of backdoors can be immunized was recently presented by Russel et
al. [RTYZ18] in a model called subverted random-oracle model. They show namely that if a hash
function is subverted on a negligible fraction of its outputs, with the rest being perfectly random (i.e.,
a random oracle), one can build, using an improved salting due to Coretti et al. [CDGS18], a hash
function that is indifferentiable from a random oracle. Overall, the quest for defeating backdoors in

53



54 Chapter 5. Defeating Backdoors in Pseudorandom Functions and Key Derivation Functions

standard-model hash functions without severely restricting the considered backdooring strategy is
still ongoing.

Here, we search for cryptographic properties of hash functions that can be used towards a
successful immunization against backdoors. Fortunately, we are able to identify a promising candidate
property of secret-keyed compression functions which cannot be weakened by a backdoor. This
property is weak pseudorandomness, intuitively saying that a compression function’s outputs on
uniformly random inputs look random. Contrary to the (strong) PRF game, in the weak PRF game
the adversary is not allowed to query its oracle on arbitrary inputs. Instead, it obtains some random
inputs and the corresponding outputs from an oracle which is either a random function from the
considered family or a uniformly random function from the set of all functions (for predetermined
domain and co-domain sets).

The reason for our optimism is that we can show that distinguishing outputs (on random inputs)
from random with a backdoor implies public-key encryption. In other words, placing a backdoor in a
hash function design, in a way that weak pseudorandomness is violated, implicitly needs to embed a
tedious public-key scheme and makes the design look suspicious. Of course there are instances, where
at the cost of additional computational overhead, one prefers to use a provably secure (by means of
security reductions to an assumed hard problem) hash function which implies public-key primitives.
However, this is not true for the overwhelming majority of constructions and applications of today’s
hash functions. Overall, unless there is surprising progress in the efficiency of public-key schemes,
fast compression functions will not be built from public-key tools and, hence, will remain weakly
pseudorandom, even with knowledge of the backdoor. This result resembles an idea of Pietrzak
and Sjödin [PS08] for building key agreement from secret-coin (i.e., the randomness used to sample
the inputs is not revealed) weak pseudorandom functions, as well as backdoored pseudorandom
generators implying public-key encryption, shown by Dodis et al. [DGG+15].

Using the assumption of weak pseudorandomness we are able to provide an immunization strategy
for HMAC based on the randomized cascade construction introduced by Maurer and Tessaro [MT08].
On a high level, this construction makes use of a prefix-free encoding to map blocks of the input
message to (honestly chosen) random strings and can be used to build a full-fledged PRF from a
weak PRF. We argue that since the randomized cascade construction yields a PRF, it can be used
in the inner HMAC chain showing that such a modified HMAC is indeed a backdoor-resilient PRF.
However, there is a small caveat in terms of efficiency since the underlying transformation in the
randomized cascade construction from a weak PRF to a PRF can be expensive in terms of the
number of compression function evaluations.

We further investigate whether there exist simpler immunization solutions for key derivation
functions (KDFs) based on hash functions, especially HKDF based on HMAC. Fortunately, we answer
this in the affirmative and show that an idea by Halevi and Krawczyk [HK06] for strengthening
hash-and-sign schemes via input randomization can be used to immunize HMAC when used as a
KDF. This result again relies on the weak pseudorandomness of the underlying compression function.
We also briefly discuss how such immunized primitives can be used in the TLS 1.3 protocol for
pre-shared keys, possibly enabling backdoor-resilient key exchange protocols.
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5.2 On the Implausibility of Backdoored
Weak Pseudorandom Functions

In this section we argue that it is reasonable to assume that a backdoored PRF, which is secure in
the standard sense against distinguishers who do not know the backdoor key, remains a weak PRF
even against distinguishers who do know the backdoor key. We prove that if a backdoor allows for
distinguishing outputs of a weak PRF on random inputs from random bit strings, then that weak
PRF family implies public-key encryption. Put differently, any such backdoored function would need
to already contain some form of public-key encryption. Such constructions are, however, significantly
slower than symmetric-key based pseudorandom functions and hence, in most practical applications
using them would raise suspicion.

Koblitz and Menezes point out that the availability of some auxiliary information (like a backdoor
key) may reduce the security of a pseudorandom function like HMAC noticeably [KM13]. The attack,
however, relies on the possibility to query the pseudorandom function on chosen inputs. Gazi et
al. [GPR14, Footnote 2] remarked that the attack is not known to be applicable to weak PRFs. Our
results, when viewing the backdoor as some kind of auxiliary information, gives some argument why
this is the case: it would mean that the weak PRF has already embedded a public-key encryption
scheme where the auxiliary information acts as a (non-efficiently computable) secret key.

5.2.1 Weak Pseudorandom Functions

A family of functions is weakly pseudorandom if no efficient adversary can decide which of the two
following behaviors is implemented by an oracle RoR (i.e., real-or-random) that it is given access
to: choosing random elements in the domain and returning them together with their image either
(a) under a function chosen uniformly at random from the function family or (b) under a uniformly
random function with the same domain and co-domain. This game is formalized in Figure 5.1.
Compared to the (strong) PRF game of Figure 3.1, the adversary in the wPRF game does not get
to choose the inputs to its oracle. The advantage of an adversary A in the wPRF game, optionally
using the backdoor bk (based on a bit bd), is defined as

Advwprf,bd
BDHGen(A, k, n,m) := 2 · Pr[wPRFA,bd

BDHGen(1k, 1n, 1m)]− 1 ,

where the probability is taken over the internal coin tosses in the game and by the adversary A.

Note that if the backdoor key is not given to the adversary, we obtain the standard security
notion for weak PRFs. We say that F is a backdoored weak PRF family if F is a weak PRF against
adversaries without the backdoor, while with the backdoor there exists a PPT distinguisher A against
its weak pseudorandomness that has a significant advantage.

When saying that a compression function h : {0, 1}` × {0, 1}b → {0, 1}` is weakly pseudorandom
we implicitly consider a generator returning the function family {hk : {0, 1}b → {0, 1}` | k ∈ {0, 1}`},
i.e., the key is chosen from the set {0, 1}`.
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Game wPRFA,bd
BDHGen(1k, 1n, 1m)

(F,K, bk)←← BDHGen(1k, 1n, 1m)
if bd = 0 then bk← ⊥

k←← {0, 1}k

F0 ← Fk

F1 ←← Fun[dom(Fk),m]
b←← {0, 1}

b′ ←← ARoR(b,F0,F1)(F, bk)
return (b = b′)

Oracle RoR(b,F0,F1)

x←← dom(Fb)
y ← Fb(x)
return (x, y)

Figure 5.1: weak-PRF security game for a backdoored hash generator BDHGen.

5.2.2 Backdoored Weak PRFs Imply Public-Key Encryption

In the following we construct a public-key encryption scheme from a backdoored weak PRF. More
precisely, we show that a backdoor key which can be used to distinguish truly random from pseudo-
random images (of random inputs), can be used to recover an encrypted bit with some probability
bounded away from 1

2 (and we can amplify the success probability via repetitions). Since one cannot
distinguish random outputs of a weak PRF from uniform outputs without the backdoor key, we
obtain a secure public-key bit-encryption scheme.

We give the construction and proof in terms of concrete security but occasionally refer to the
common asymptotic setting. As for asymptotic behavior, we note that we get an infinitely-often
public-key encryption scheme, where infinitely often means that the decryption algorithm works for
infinitely many security parameters.

Theorem 5.1. Let BDHGen be a generator for a backdoored weak pseudorandom function family.
Then we can build an IND-CPA-secure public-key bit-encryption scheme from BDHGen.

Proof. Let A be a PPT adversary against wPRF-security of BDHGen and suppose without loss
of generality that A makes exactly q ∈ N queries to its RoR-oracle. Suppose that the advantage
of A with the backdoor key is non-negligible, i.e., Advwprf,1

BDHGen(A, k, n,m) =: ε 6≈ 0. In particular,
let ε ≥ 1

poly(k,n,m) infinitely often. Furthermore, without loss of generality, let BDHGen(1k, 1n, 1m)
generate function families on the domain {0, 1}n, instead of the more general case of {0, 1}poly(n).

Then we can construct a public-key bit-encryption scheme with overwhelming correctness as
follows.1 For sake of simplicity we first construct an encryption scheme E := (KGen,Enc,Dec) with
correctness 1

2 + ε
2 and explain afterwards how to boost the correctness bound. Below oracle O is a

sub-algorithm used by the decryption algorithm to simulate the RoR-oracle from the wPRF game
for the adversary. This oracle simply returns one point (i.e., an input-output pair) from a set C
(which is a part of the ciphertext) after the other. Depending on the encrypted bit, the images from
the points in C are either pseudorandom or truly random.

1 Joseph Jaeger pointed out to us that the correctness of a previous version of our public-key bit encryption scheme
could not be amplified by a simple majority decision and suggested masking the plaintext bit. To see the issue with
directly encrypting the plaintext without masking it, consider an adversary A that given a pseudorandom function
outputs 1 with probability 1, and given a truly random function outputs 1 with probability 1− ε, for a noticeable ε,
and note that a majority decision would then lead to incorrect decryption of ciphertexts of 0.
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KGen(1k, 1n, 1m)

(F,K, bk)←← BDHGen(1k, 1n, 1m)

pk← F

sk← bk

return (pk, sk)

Enc(pk, b)

d←← {0, 1}; b′ ← d⊕ b

k←← {0, 1}k

C ← ∅

for i = 1 . . . q do

xi ←← {0, 1}n

if b′ = 0 then

yi ←← {0, 1}m

else

yi ← Fk(xi)

C ← C ∪ {(xi, yi)}

c← (d,C)

return c

Dec(sk,pk, c)

(d,C)← c

b′ ←← AO(C)(pk, sk)

return b′ ⊕ d

Oracle O(C)

(x, y)←← C

C ← C \ {(x, y)}

return (x, y)

Observe that a ciphertext can be correctly decrypted if A successfully distinguishes random out-
puts of Fk from uniformly random bit strings. Hence, we obtain the following correctness guarantee:

Pr[Dec(sk,pk,Enc(pk, b)) = b] = Pr[AO(Enc(pk,b))(pk, sk) = b]

=
Advwprf,1

BDHGen(A, k, n,m) + 1
2

= 1
2 + ε

2 .

In other words, the decryption error is noticeably smaller than 1
2 for infinitely many security param-

eters.
It remains to show that E is indistinguishable under chosen-plaintext attacks. Suppose to the

contrary that there exists a PPT adversary B against the security of E . Since we are concerned
with security of bit encryption, this means that B can decrypt a ciphertext with a non-negligible
advantage ε′. We can build from B a PPT adversary C against the weak-PRF security of BDHGen,
i.e., the generated family F (when not holding a backdoor key). The adversary C queries its oracle q
times to obtain a set C of input-output pairs. It then runs B and outputs the returned guess b as
its own. We obtain

Advwprf,0
BDHGen(C, k, n,m) = AdvIND-CPA

E (B, k, n,m) = 2 · Pr[B(pk,Enc(pk, b)) = b]− 1 = ε′.

Thus our adversary C, who does not know a backdoor key, has a non-negligible advantage against
the weak pseudorandomness of F. This contradicts our assumption of F being weakly pseudorandom
(without the backdoor key).

As a final step we note that it is possible to reduce the decryption error by standard techniques. For
this, we repeat the above basic encryption step a polynomial number of times, letting the sender always
generate pseudorandom or truly random strings in each of the repetitions. The decrypter outputs a
majority decision for all the decrypted bits. If we use (k + n+m) · ε2 ≤ (k + n+m) · poly(k, n,m)2

repetitions, where ε ≥ 1
poly(k,n,m) is the lower bound for the distinguisher’s advantage, then the
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Hoeffding-Chernoff bound implies that the decryption error is upper-bounded by e−(k+n+m). At the
same time, the security of the public-key encryption scheme remains intact for a polynomial number
of repetitions.

5.3 Backdoor-Resilient HMAC

According to the result presented in the previous section, we may assume that the compression
function used in an HMAC construction preserves weak pseudorandomness in the presence of
backdoors. In the following we use the randomized cascade (RC) construction introduced by Maurer
and Tessaro [MT08] in order to immunize HMAC under this weak pseudorandomness assumption.
In basic terms, the RC construction is an iterated construction of a PRF from a (constant-query)
weak PRF. The first construction of a PRF from a weak PRF is due to Naor and Reingold [NR99],
and a further construction was later proposed by Maurer and Sjödin [MS07]. In our case, we are
interested in an iterated construction of a PRF, where the candidate for a weak PRF is a compression
function. Maurer and Tessaro note that both constructions [MS07, NR99] may be turned easily into
iterative versions with the drawback that the number of calls to the underlying function would
increase significantly. In contrast, the randomized cascade construction is more efficient and requires
for input length b approximately b/log s (for some s ≥ 2) many calls to the underlying function and
also only requires the weaker underlying assumption of an s-query weak PRF2 instead of a weak
PRF.

Let us now review the idea of the RC construction which is based on the cascade construction for
hash functions introduced by Bellare, Canetti and Krawczyk [BCK96b]. The RC construction requires
a prefix-free encoding of the input message. Let X ⊆ {0, 1}poly(b) denote the message space. We say
an efficiently computable encoding encode : X → {0, . . . , s−1}+ is prefix-free if for all distinct inputs
x, x′ ∈ X and encode(x) is not a prefix of encode(x′). On a high level, the RC construction resembles
the Merkle–Damgård construction (cf. Figure 4.1) with some additional randomness whereby the
underlying building block is a s-weak PRF.

The RC construction with parameter s and message space X for the compression function
h : {0, 1}` × {0, 1}b → {0, 1}` and a prefix-free encoding encode as described above is a mapping
RCh : {0, 1}` × {0, 1}s·b ×X → {0, 1}`. The mapping uses as input a secret key k of length ` and a
(s · b)-bit long public string r which can be interpreted as the concatenation of s many b-bit strings
r0, . . . , rs−1 and a message x ∈ X. The message x is first padded (following Section 4.2.1) such that
the length becomes a multiple of b and is then further processed with the above prefix-free encoding
which outputs a sequence (m0, . . . ,mn−1) ∈ {0, . . . , s− 1}+. Then for i = 0, . . . , n− 1 the cascade
is computed as yi+1 ← h(yi, rmi) with y0 ← k. First let us remark that in each iteration the rmi ’s
are chosen according to the outputted sequence from the encoding. Maurer and Tessaro formally
prove that if h is a s-weak PRF, then the resulting RC construction is a PRF. The proof relies on
the encoding being done via a tree structure, where it is argued that by the definition of s-weak

2We say that a function f : {0, 1}k × {0, 1}i → {0, 1}o for some constant s with k < s · o is an s-query weak
PRF if f(k, ·) (under a secret key k) is indistinguishable from a random function when evaluated at s independent
known random inputs. This notion is weaker than a (regular) weak PRF where we require indistinguishability for
polynomially many random inputs.
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PRF whenever we evaluate the function under some secret key at s independent random inputs, it
produces s pseudorandom outputs and in particular sets all vertices in the tree to be pseudorandom.

Now let HMACh be a backdoored HMAC construction. Our goal is to replace the Merkle–Damgård
construction with the randomized cascade construction from above and argue that the resulting
variant of HMAC resists backdoors. The idea is that we first pad the input message x with the usual
length padding function and then use a prefix-free encoding obtaining a sequence m. According
to this sequence, the correct random string will be chosen and only then used as the input to the
compression function. More formally it follows that

HMACh
rc,r,iv(k, x) = Hh

iv
(
(k⊕ opad)‖Hh

iv((k⊕ ipad)‖rm0‖ . . . ‖rmn−1)
)
.

The above HMAC construction is a secure PRF, since its inner hash chain is a PRF even against
backdooring adversaries. In particular, the first iteration in the inner chain (i.e. h(iv, k ⊕ ipad)) is
computationally indistinguishable from a uniformly-distributed random string, assuming as a weak
dual PRF [Bel06]. This guarantees that the first chaining value is pseudorandom and, hence, can be
used as a “good” key in the RC construction. The same argument applies for the first chaining value
in the outer chain. The last iteration in HMAC receives as input from both chains a pseudorandom
input and, hence, the output is still pseudorandom and thus the above construction of HMAC is
secure.

On using randomized cascade for immunizing hash functions without secret keys. It
may seem that the idea of encoding a message by a sequence of random (but public and chosen
after the design) strings r = (r0, . . . , rs−1) before processing it by a compression function can
also immunize MD-based hash functions, since in the backdoored compression functions that we
described in Section 4.2.1 the backdoor key must be input directly to trigger the malicious behavior
and it is unlikely that such a backdoor key is included in r. However, we remark that although RC
may be useful for immunization of this particular type of backdoors, their usefulness as a general
immunization mechanism for hash functions (without secret keys) does not seem to have a solid
foundation.

5.4 Backdoor-Resilient HKDF

The above transformation from a weak PRF to a full-fledged PRF can be expensive in terms of the
number of compression function evaluations. More precisely, this number depends on the parameter s,
in a way that log s determines the length of the message blocks that need an individual encoding.
This means that for a message x, RC requires |x|/ log s many calls to the underlying compression
function. For instance, in the extreme case of s = 2, the encoding function would encode each bit
of x by either r0 or r1. Hence, for each bit of x, our backdoor-resilient HMAC makes one call to
the compression function (plus three more calls for the initial inner and outer chain of HMAC). In
this section we argue that for key derivation functions based on hash functions, in particular HKDF
based on HMAC, there exists a simpler solution.
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The HMAC-based key derivation function HKDF [Kra10, KE10] consists of two steps: an ex-
traction step to smooth the entropy in some input key material like a Diffie–Hellman key, and an
expansion step where sufficient key material is generated. The extraction step may use some (public)
salt extsalt (if not present, it is set to 0) and produces a pseudorandom key PRK from the input key
material IKM by calling HMAC. The expansion step takes the key PRK, some context information
info like a transcript from a key exchange protocol, and the requested output length len (in octets).
It iterates HMAC on PRK, the previous value, info, and a counter, encoded as an octet, to generate
sufficient key material. The last key part in the output may be truncated to match the requested
output length. Formally,

HKDF-Extract(extsalt, IKM)

PRK← HMAC(extsalt, IKM)

return PRK

HKDF-Expand(PRK, info, len)

i← 1

K,K0 ← ε0

while |K| < len do

Ki ← HMAC(PRK,Ki−1 ‖info ‖i)

K← K‖Ki

i← i+ 1

K← K[0,len−1]

return K

Immunizing HKDF boils down to hardening HMAC and, therefore, the compression function h.
The security of HKDF relies on the pseudorandomness of h, which does not hold for backdoored
functions according to the attack described in Section 4.2.4. As argued in Section 5.2, the assumption
that h is still a weak PRF in the presence of a backdoor appears to be more reasonable. Hence our
goal is to tweak HKDF to base its security on the weak-PRF security of its underlying compression
function h.

We use the idea of Halevi and Krawczyk [HK06] to strengthen hash-and-sign schemes via input
randomization. They propose to pick a fresh random string r with each signature generation and
then compute the hash as H((x0 ⊕ r) ‖ · · · ‖ (xn−1 ⊕ r)), i.e., xoring the random string to each
message block. This alleviates the necessary assumption for the compression function h from collision
resistance to some kind of second-preimage resistance. We stress that this strategy does not work to
immunize hash functions against backdoors, as our attacks in Section 4.2.2 show that a backdoored
compression function would even allow to break second-preimage resistance, the malicious behavior
can be triggered in the input by the adversary. In fact, one can show that a backdooring adversary
can still break the randomized hash-and-sign scheme.

The idea of Halevi and Krawczyk does apply, nonetheless, in the case of HMAC when used as a
key derivation function, if we allow for a random value salt in the computation. Suppose that, when
computing keying material, one is allowed to pick a random string salt of size b. Then, instead of using
the compression function h in the HMAC computations, we use the function hsalt(x, y) = h(x, y⊕salt).
Note that this means that we add salt to each input in each of the iteration steps. When outputting
the key material IKM, one can also generate the salt. Note that the salt sometimes even needs to be
published, for instance, in a key exchange protocol where the other party should be able to derive
the same key.
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Game SKDFA,bd
BDKDFGen(1k, 1b)

(KDF,Kkdf,bk)←← BDKDFGen(1k, 1b)
if bd = 0 then bk← ⊥
k←← Kkdf

g ←← {0, 1}

g′ ←← AKDFk(·,·),RoR(g,KDFk,·,·)(KDF, bk)
return (g = g′)

Oracle RoR(g,KDFk, info, len)

if g = 0 then
(salt,K)←← KDFk(info, len)

else

salt ←← {0, 1}b

K←← {0, 1}len

return (salt,K)

Figure 5.2: salted-KDF-security for a generator BDKDFGen.

The downside of our construction is that each HMAC call in the expansion requires a fresh salt.
However, usually only a few iterations in the expansion step are required. For example, the cipher
suite AES_256_CBC_SHA256 in TLS 1.2 requires 128 key bytes such that four iterations, each with
256 bits output, suffice.

5.4.1 Security of Salted Key Derivation

To define a security notion for salted key derivation functions we adopt the approach of Krawczyk [Kra10],
demanding that the KDF provides pseudorandom outputs even when the adversary can ask to see de-
rived keys on different information info. Since we use a fresh salt for each KDF call, we can even allow
the adversary to query the same information info multiple times and still demand indistinguishability
from fresh random key material.

In the SKDF security game, described in Figure 5.2, we consider a PPT generator BDKDFGen
which on input of parameters (1k, 1b) outputs a family of key derivation functions KDF := {KDFk :
({0, 1}poly(b))2 → {0, 1}b × {0, 1}poly(b) | k ∈ {0, 1}k} and possibly a backdoor key bk ∈ {0, 1}∗. We
assume that the function KDFk takes two inputs, a context information info and a length len, and
returns a random value salt (of size b) and keying material of size len. To claim indistinguishability
from random we consider an oracle RoR(·, ·) which on any input pair (info, len) returns a fresh
random value salt and a random string K of size len. The advantage of an adversary A in the SKDF
game, optionally given the backdoor bk, is defined by:

Advskdf,bd
BDKDFGen(A, k, b) := 2 · Pr[SKDFA,bd

BDKDFGen(1k, 1b)]− 1 ,

where the probability is over the random choices of the game, the generator BDKDFGen and A.

5.4.2 HKDF Expansion based on NMAC

We first discuss the case of expansion being based on NMAC instead of HMAC and argue afterwards
that the result can be lifted to HMAC and the extraction step, making some additional assumptions.
Recall that there are two differences between NMAC and its “practical cousin” HMAC. First, NMAC
takes two independent keys kin, kout ∈ {0, 1}` instead of using correlated keys k ⊕ ipad, k ⊕ opad as
in HMAC. Second, the keys in NMAC are used directly as a substitute for the initialization vector
iv, instead of making an extra iteration to first compute h(iv, k⊕ ipad) resp. h(iv, k⊕ opad) as done
in HMAC.
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Let sNMAC((kin, kout), ·) (for salted NMAC) be the probabilistic algorithm which, on being called,
picks a fresh salt ←← {0, 1}b and then computes NMAC on keys kin, kout for the salted compression
function hsalt . It outputs the result of the computation together with the salt. By the construction
of HKDF-Expand we can assume that the adversary in the SKDF experiment only queries the key
derivation function for length values len = ` equal to the output size of NMAC. This would already
allow the adversary to assemble the full key material by sequentially making the corresponding
queries.

Theorem 5.2. The sNMAC construction is a secure salted KDF, i.e., for any adversary A against
sNMAC we obtain an adversary B against the weak-PRF property for any generator BDHGen of the
underlying compression function such that

Advskdf,bd
sNMAC (A, k, b, `) ≤ 2nq · Advwprf,bd

BDHGen(B, k, b, `) ,

where B is the maximal number of message blocks and each of them has at most q key derivation
queries, and n := B + 2 · d`/be+ 3. Furthermore, the run times of A and B are essentially the same.

The proof idea is that each computation of sNMAC starts with an evaluation of the backdoored
compression function for x1 = h(kin, y0 ⊕ salt), where y0 is the first input block according to the
adversary’s query and salt is a fresh random value, picked independently after y0 has been determined.
This means that the input pair is random, such that we can conclude by the weak pseudorandomness
that the output value x1 looks random, too. The argument then applies to the next iteration step
as well, since the next input (x1, y1 ⊕ salt) to the compression function is (indistinguishable from)
random. The approach can be set forth to show that all final answers in the computations look
random, where the formal way to show this is via a hybrid argument. Since we pick a fresh salt in
each computation, the result also holds for multiple queries.

Proof. The proof strategy is to first show that in case A has access to two sNMAC oracles (i.e.,
can evaluate the KDF and the RoR oracle for g = 0), then we can replace both oracles by two
(independent) oracles of the type RoR with g = 0. This will be indistinguishable by the wPRF
property of the compression function. Then we can switch back the left oracle to sNMAC because
the right random oracle is easy to simulate, concluding again that this is indistinguishable by the
wPRF property. So let A be an adversary against two sNMAC oracles, making at most q queries to
both oracles together, each input information of at most B blocks. This means that, together with
the counter i, the `-bit value ki−1 of the previous iteration, and the padding, we evaluate h at most
B + d`/be+ 2 times in the inner NMAC computation. We make at most another d`/be+ 1 iterations
for the outer computation.

For the proof it is instructive to write down all pairs (xji , y
j
i ⊕ salti) inserted into the compression

function h during the experiment, where i denotes the number of the query, salti is the i-th chosen
salt value, and j the iteration within a full NMAC computation. We order these elements in a table,
where we put the iteration of the computation in the rows. The columns then correspond to the
iteration round, where different queries may have a different number of iterations. We put all the
outer computations in the final columns. In particular, since this number only depends on the hash
function parameters, the numbers of columns required for the outer computation are identical over
all queries. If A makes at most q queries we thus evaluate the compression function h on a table of
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the following form:

→ inner sNMAC computation→ outer sNMAC
query column 0 column 1 column 2 . . . column n− 1

1 (x0
1, y

0
1 ⊕ salt1), (x1

1, y
1
1 ⊕ salt1), (x2

1, y
2
1 ⊕ salt1), . . . (xn1−1

1 , yn1−1
1 ⊕ salt1)

2 (x0
2, y

0
2 ⊕ salt2), (x1

2, y
1
2 ⊕ salt2), (x2

2, y
2
2 ⊕ salt2), . . . (xn2−1

2 , yn2−1
2 ⊕ salt2)

...
q (x0

q, y
0
q ⊕ saltq), (x1

q, y
1
q ⊕ saltq), (x2

q, y
2
q ⊕ saltq), . . . (xnq−1

q , y
nq−1
q ⊕ saltq)

where ni ≤ n is the number of evaluations in the i-th query. Note that x0
i = kin is always the

inner key and in the part referring to the inner computations of NMAC we always have xj+1
i =

h(xji , y
j
i ⊕ salti) for all i, j. When proceeding to the outer computation, one has xji = kout for the

outer key, and yji is determined by the final hash value h(xj−1
i , yj−1

i ⊕ salti) of the inner computation.
By construction, the column where we progress to the outer computation is identical for all queries.

Our claim is now that the final output values in the last n-th column all look random. This
follows by a slightly involved but, nonetheless, standard hybrid argument over the columns of the
table. Since the argument is fairly straightforward to formalize we only explain the main idea.

First note that in the first column of the table we apply h for the same key kin = x0
i on

random inputs y0
i ⊕ salti for uniformly chosen salti. Intuitively, we can thus replace the output

x1
i = h(x0

i , y
0
i ⊕ salti) by a random value by the weak PRF property of the (backdoored) function

h. The formal argument is via a black-box reduction, where an algorithm B against the weak PRF
property simulates A’s attack against sNMAC. Adversary B initially receives as input q pairs (ai, bi),
where each ai is random and each bi is either h(k, ai) or random, too. It uses the bi’s as replacements
for the values x1

i , and sets salti = ai ⊕ y0
i for all i. Note that this makes salti a correctly distributed

uniform value. Algorithm B performs the remaining computations of the table as before, using the
now derived value salti in each row and picking the outer key kout itself. If the bi’s are pseudorandom,
then this corresponds exactly to the original computation, whereas for truly random bi’s we simulate
the slightly changed game.

Given that the values x1
i are random now, we can set the argument forth, noting that we can pick

the salt values salti afresh in the next hybrid step (because the values x0
i , y

0
i ⊕ salti have become

irrelevant). The argument in this step is, nonetheless, slightly more involved since we may have
different x1

i ’s, but some of these values may coincide. This can be resolved by handing over multiple
values (ai,j , bi,j) to B for i, j = 1, 2, . . . , q, where bi,j = h(kj , ai,j) for q independent keys kj , or all
bi,j ’s are random. By another hybrid argument it follows from the pseudorandomness of h that the
two cases are indistinguishable. Algorithm B can then “consume” sufficiently many values for the
simulation for identical x1

i .
In the formal hybrid argument, B picks a column k among the n ones at random and injects

values from the q2 input pairs (ai,j , bi,j) as above. For this injection strategy it sets all values xji
for “earlier” columns j < k to be independent random values, except for the xji ’s corresponding to
the inner and outer key (which are set to be an equal random value). This results in a security loss
equal to the number n of columns, and the number q of input sequences (ai,j , bi,j)j=1,...,q for B. This
yields the claimed bound, taking into account that we derive the factor 2 by switching the left oracle
back to sNMAC.
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5.4.3 Lifting the Result to HKDF

To extend the above argument to also cover the extraction step we need to assume, as in the original
security proof of HMAC [Bel06], that the compression function h is a weak dual PRF. This means
that h(·, IKM) is weakly pseudorandom for the input keying material IKM (with sufficient entropy).
This appears to be a widely accepted assumption, but in our case this should also hold for backdoored
compression functions. With a similar argument as in the wPRF case we can argue that a weak
dual PRF remains secure (for fixed extraction salt extsalt) even when having a backdoor, or else
one can again construct a public-key encryption scheme. The argument is as before, putting extsalt
as part of the public-key and using the backdoor to distinguish random values (for encryptions of a
bit b with d⊕ b = 0) from h(extsalt, IKM) values (for encryptions with d⊕ b = 1, where the sender
chooses IKM).

Similarly, we need to argue that using kin = h(iv, k ⊕ ipad) and kout = h(iv, k ⊕ opad) in the
HMAC computation, instead of random values kin, kout as in sNMAC, does not endanger the security,
even for backdoored h. The argument that the backdoored case should not make a difference is as
before: pseudorandomness of the (correlated values) h(iv, k ⊕ ipad) and h(iv, k ⊕ opad) should also
hold in the backdoored case, unless the backdooring already embeds a public-key encryption scheme.

5.5 Backdoor-Resilient TLS-like Key Exchange

Once we have immunized HMAC and HKDF the next question is how we can use these building
blocks in higher-level protocols to make them resilient against backdoors. We discuss this here briefly
for the case of the TLS 1.3 protocol [Res18], and especially for the pre-shared key (PSK) mode. The
PSK mode covers the case in which client and server already hold a shared key and do not need to
run a Diffie–Hellman key exchange sub-protocol; immunizing the latter would be beyond our work’s
scope. The PSK protocol only relies on a cryptographic hash function but used in different contexts:
as a collision-resistant hash function, as a MAC via HMAC, and as a key derivation function via
HKDF.

The PSK mode is displayed in Figure 5.3. We follow the presentation in [DFGS15, DFGS16]. In
the protocol the client starts with the ClientHello message, containing a nonce rc, and specifies iden-
tifiers for shared keys via the ClientPreSharedKey message. The server replies with the ServerHello
message, also containing a nonce rs, and the choice of key identifier in ServerPreSharedKey. The
server then starts deriving keys via HKDF on the pre-shared key PSK and the transcript hashes.
It sends the encrypted extension information {EncryptedExtensions}. The server also computes
a finished message ServerFinished which is an HMAC over the derived keys and the transcript
hash. The client subsequently computes the keys, checks the HMAC, and sends its finished message
ClientFinished. Both parties once more use HKDF and transcript hashes to derive the shared
session key.

5.5.1 Towards a Backdoor-Resilient PSK Mode

Not surprisingly, we are not able to show that the PSK mode of TLS 1.3, as is, can be immunized
against backdoors. There are both security-related as well as functional reasons. In terms of security,
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Client Server

ClientHello: rc ←← {0, 1}256

+ ClientPreSharedKey: psk_id1, . . .

ServerHello: rs ←← {0, 1}256

+ ServerPreSharedKey: psk_id

H1 ← H(CH‖SH) (incl. extensions)
ES← HKDF.HKDF-Extract(0,PSK)

XES← HKDF.HKDF-Expand(ES, "derived")
DHE← 0

HS← HKDF.HKDF-Extract(XES,DHE)
HTSC/HTSS ← HKDF.HKDF-Expand(HS, label1/label2‖H1)
tkchs/tk

s
hs ← HKDF.HKDF-Expand(HTSC/HTSS, label3)

{EncryptedExtensions}
H2 ← H(CH‖ . . . ‖EncryptedExtensions)

SFK← HKDF.HKDF-Expand(HTSS, "finished")
{ServerFinished}: HMAC(SFK, H2)

check SF = HMAC(SFK, H2)
CFK← HKDF.HKDF-Expand(HTSC, "finished")

{ClientFinished}: HMAC(CFK, H2)

check CF = HMAC(CFK, H2)
XHS← HKDF.HKDF-Expand(HS, "derived")

MS← HKDF.HKDF-Extract(XHS, 0)
H3 ← H(CH‖ . . . ‖SF)

TSS/TSC ← HKDF.HKDF-Expand(MS, label4/label5‖H3)
tkapp = (tkcapp/tksapp)← HKDF.HKDF-Expand(TSS/TSC, label3)

Protocol flow legend
MSG: Y TLS 1.3 message MSG containing Y
+ MSG message sent as extension within previous message
{MSG} message MSG AEAD-encrypted with tkchs/tk

s
hs

a/b alternative usage of a or b for server and client
labeli specific label in derivation step

Figure 5.3: The TLS 1.3 [Res18] PSK handshake protocol.

the main problem is that the protocol crucially relies on the collision resistance of the hash function
to compute the transcript hashes. As we discussed in Chapter 4, planting backdoors in collision-
resistant hash functions is rather easy, such that we may not get immunity for the given protocol.
Nonetheless, the transcript hashes are only used to enable the parties to store the intermediate hash
values instead of the entire transcript. In terms of security, one can easily forgo the transcript hashes
and feed the full transcript into the backdoor-resilient version of HMAC resp. HKDF.

Another obstacle to use our immunization strategy via salting of HKDF is that the salt needs
to be picked independently of the input to the hash function. This can only be done by the party
which evaluates the hash function next, e.g., when the server computes

HTSC/HTSS ← HKDF.HKDF-Expand(HS, label1/label2‖H1)

over the transcript hash H1 ← H(CH‖SH), or rather the full transcript H1 ← CH‖SH, to send the



66 Chapter 5. Defeating Backdoors in Pseudorandom Functions and Key Derivation Functions

encrypted {EncryptedExtensions} message, then the entire input is only determined when the
server is deriving the keys. The same holds on the client side for the finished message key CFK.
Hence, we require that both parties at some point pick a random salt in a trustworthy way and
therefore can only cover backdooring attacks against outsiders, eavesdropping on the communication
and not being able to modify the salt. Still, we preserve active security against adversaries which
cannot tamper with the cryptographic primitives.

Another problem with TLS 1.3 in its current form is that it is not clear how to embed the salt
in the protocol flow. The extensions currently do not offer a variable field for this. Hence, one would
need to change the specification to enable the inclusion of such extra data, as well as the algorithm
specifiers to capture the salted versions.

With all the modifications above, one obtains a PSK mode which only relies on the backdoor-
resilient modified primitives HMAC and HKDF. We omit a formal analysis as it would require to
define security of key exchange protocols, which is beyond the scope here.



Chapter 6
Simple Combiners

for Backdoored Random Oracles

This chapter explores the possibility of re-establishing a number of security guarantees in hash
functions without secret keys and in a setting where all available hash functions are backdoored.
We show several positive results by combining two independently backdoored hash functions in
the 2-BRO model using concatenation, cascade, and xor as combiners. We show that one-wayness,
pseudorandomness, and collision resistance can hold in this setting against adversaries that have
unrestricted and adaptive access to not just one but both backdoor oracles. To this end we give new
reductions from cryptographic security of these combiners to the communication complexities of
set-disjointness, set-intersection, and a new variant of set-intersection. We also establish a new lower
bound for the communication complexity of set-intersection for cryptographically relevant ranges of
parameters and distributions.

My Scientific Contribution in this Chapter

Most of the material in this chapter is published in [BFM18a], which is a joint work with
Balthazar Bauer and Pooya Farshim. Pooya and I formalized the security notions rPre, oPRG,
and IU, and connected rPre and oPRG to their classical relatives OW and PRG security (see
the results in Section 6.2). Balthazar and Pooya jointly developed the proofs for the IU security
of random functions in Section 6.2.1, while Pooya and I focused on proving the IU security
of combiners, stated in Lemma 6.1. Pooya and I analyzed the attacks (for certain parameter
regimes) of concatenation and cascade combiners, which are included in Sections 6.3.1 and 6.3.2,
respectively. These attacks were part of the full version of our paper [BFM18b, Appendix D].
Pooya later noticed that a multi-collision attack applies when combining iterative hash functions;
my formal analysis of this attack in Section 6.3.3 does not appear elsewhere. Pooya found out that
refined lower bounds for the communication complexity of set-disjointness and set-intersection
(from Section 6.4) could follow those of [MB12, GC13] for set-disjointness. Pooya had the idea
behind extending the set-intersection lower bound for large errors. Pooya and I then jointly
developed the proofs of Theorems 6.10 and 6.11. Balthazar established a refined lower bound
for set-disjointness which extends Theorem 6.10 to δ ≥ 0.8 (instead of δ ≥ 1). This refinement
is not included in this thesis and can be found in the full version [BFM18b, Appendix C.3]. The
high-level approach and intuition of why OW, PRG, and CR should hold for our combiners in
the 2-BRO model was suggested by Pooya. Marc Fischlin was involved in the early stages of
this project, mainly in the discussions around the question of what type of lower bounds can
be useful in our setting. Balthazar, Pooya, and I were all involved in the security results given
in Sections 6.5, 6.6, and 6.7. My main focus was on concatenation, and xor and the problem
instances, to which we can reduce the targeted security notions. Balthazar and Pooya developed
the solutions of ReDist and HashSam to fix the problems with non-binomial distributions in the
proofs of CR, in particular Theorem 6.16 and OW security of cascade, i.e., 6.18, respectively.
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6.1 Introduction

We revisit a classical question on protections against failures of hash functions. Numerous works in
this area have studied if, and to what extend, one can re-establish security guarantees by combining
different hash functions; see for instance [BB06, FL07, FLP14, HS08] for theoretical treatments
and [MRS09, LW15, Din16] for cryptanalytic work. However, most prior work focuses on unintentional
failures to protect against cryptanalytic advances. We continue with our more adversarial view of
hash function failures and ask if well-designed but possibly backdoored hash functions can be used
to build backdoor-resilient hash functions.

Hash-function combiners in the works mentioned above typically convert two or more hash
functions into a new one that is secure as long as at least one of the underlying hash functions
is secure. For example, the concatenation combiner builds a collision-resistant hash function given
k hash functions as long as one function is collision resistant. Multi-property combiners for other
notions, such as PRG, MAC or PRF security, also exist [FLP14].

As discussed in Section 3.4, typical black-box combiners are not necessarily expected to offer
protection when all hash functions fail. Intuitively, our goal is more challenging as we assume
that all “sources of hardness” have been rendered useless. We observe that the result of Hoch and
Shamir [HS08] can be seen as one building a collision-resistant hash function in the 2-BRO model
assuming backdoor oracles that allow for random inversions only. Since our goal is to protect against
adversarial weaknesses (a.k.a. backdoors), we place no assumptions on hash-function weaknesses—
they can go well beyond computing random preimages or collisions. In other words, we assume
unrestricted backdoor capability classes.

We ask whether BROs can be combined in a way that renders their backdoors useless. From a
high-level point of view, our main result shows that in the 2-BRO model cryptographic hardness
can be bootstrapped, even with access to both backdoor oracles and even when arbitrary backdoor
capabilities are provided. In other words, there are secure constructions in the 2-BRO model that
can tolerate arbitrary weaknesses in all underlying hash functions. At the core of our results lies
new links with hard problems in the area of communication complexity. For a brief introduction on
communication complexity we refer to Section 2.5.

6.1.1 Connection to Communication Complexity

We focus on three of the most important hash function combiners: concatenation, cascade, and xor
of two hash functions H1 and H2:

CH1,H2
‖ (x) := H1(x)‖H2(x) , CH1,H2

◦ (x) := H2(H1(x)) ,

CH1,H2
⊕ (x) := H1(x)⊕ H2(x) .

Here H1 ∈ Fun[n, n+ s1] and H2 ∈ Fun[n, n+ s2] in the concatenation combiner, H1 ∈ Fun[n, n+ s1]
and H2 ∈ Fun[n + s1, n + s1 + s2] in the cascade combiner, and H1,H2 ∈ Fun[n, n + s] in the xor
combiner.

Consider the one-way security of the concatenation combiner in the 2-BRO model, described in



6.1. Introduction 69

Figure 3.2. An adversary is given a point y∗ := y∗1‖y∗2 := H1(x∗)‖H2(x∗) for a random x∗. It has
access to the backdoor oracles BD1 and BD2 for functions H1 and H2 respectively. Its goal is to
compute a preimage x for y∗ under the construction CH1,H2

‖ . This is the case iff H1(x) = y∗1 and
H2(x) = y∗2 . Now define two sets S := H−1 (y∗1), the set of preimages of y∗1 under H1, and T := H−2 (y∗2),
the set of preimages of y∗2 under H2. Thus the adversary wins in the OW game iff x ∈ S ∩ T .

The two backdoor oracles respectively know S and T as they are part of the descriptions of the
two hash functions. This allows us to convert a successful one-way adversary to a two-party protocol
that computes an element x of the intersection S ∩ T , as we described below. Put differently, if
the communication complexity of set-intersection for sets that are distributed as above has a high
lower bound, then the adversary has to place a large number of queries, which, in turn, allows us to
conclude that the concatenation combiner is one-way in the 2-BRO model.

On a high level, the reduction works as follows. Alice is given a set S and Bob is given a set T .
Their goal is to find a common element x ∈ S ∩ T . Alice and Bob sample some y1 ←← {0, 1}n+s1

and y2 ←← {0, 1}n+s2 uniformly at random. Then, Alice locally builds a random oracle H1 such
that H−1 (y1) = S holds, while for all x 6∈ S she sets H1(x) = y for some y ←← {0, 1}n+s1 \ {y1}.
Analogously, Bob builds a random oracle H2 using y2 and T . Knowing the entire table of H1 (resp.
H2), Alice (resp. Bob) can compute any information about the truth table of H1 (res. H2). Recall
that Alice and Bob are unbounded in their local running time are only concerned about the cost of
their communication. Let A be any algorithm that invert images under the concatenation combiner
in the 2-BRO model. Alice and Bob run A in tandem on the input y1‖y2, answering its queries
using the simulated H1 and H2. That is, Alice answers BD1 queries until a BD2 query is made. Then,
she hands the execution of A with its current state consisting of BD1 responses over to Bob. Bob
resumes A using the responses received from Alice, and answering its further BD2 queries, until a
BD1 query is made, in which case he hands the execution with all new BD2 responses over to Alice,
and so on. Once A returns with some value x, either Alice or Bob communicates x as a last message
and they both terminate. If A is successful and x is indeed a preimage of y1‖y2, then it is also in
the intersection S ∩ T . The communication complexity of the protocol run by Alice and Bob is
determined by number backdoor queries made by A and the size of the corresponding responses. We
give a precise description of this protocol in Section 6.5.1.

Now the question is: for which sets S and T is set-intersection hard? Suppose the hash functions
H1,H2 ∈ Fun[n,m] are compressing and m = n−s, for a positive integer s ∈ N. Then, on average the
sets S and T would each have 2s elements. In a naive protocol, one party can of course communicate
its entire set in O(2s) bits and have the other party find a common element. However, the cost of
this attack when s is linear in n (or even super-logarithmic in n) becomes prohibitive. This raises
the question if set-intersection is hard for, say, s = n/2 and where the distribution over (S, T ) is
induced by the two hash functions, where except a single element in common (guaranteed to exist
by the rules of the one-way game) all others are sampled uniformly and independently at random
and included in the sets.

We observe that hardness of the set-disjointness problem implies hardness of set-intersection
as the parties can verify that a given element is indeed in both their sets.1 Set-disjointness is a
better studied problem. To the best of our knowledge two results on lower bounds of set-disjointness

1On the other hand, for sufficiently large sets that intersect with high probability, set-disjointness is easy whereas
set-intersection can remain hard.
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with parameters and distributions close to those in our setting have been proven. First, a classical
(and technical) result of Babai, Simon and Frankl [BFS86] which shows an Ω(

√
N) lower bound for

random and independent sets S and T of size exactly
√
N in a universe of size N . Second, a result

based on information-theoretic arguments due to Bar-Yossef et al. [BYJKS02], for dependent sets
S and T , which has been adapted to binomial product distributions in lectures by Moshkovitz and
Barak [MB12, Lecture 9] and Guruswami and Cheraghchi [GC13, Lecture 21]. The distribution is as
follows: for each of the N elements in the universe, independent Ber(1/

√
N) bits are sampled. (The

probability of 1 is 1/
√
N .) The sets then consist of all elements for which the bit is set to 1. Note

that the expected size of such sets is N/
√
N =

√
N , but this size can deviate from the mean and

this distribution is not identical to that by Babai et al. [BFS86]. The authors again prove an Ω(
√
N)

lower bound (which is tight up to logarithmic factors). We note that both these results only hold for
protocols that err with probability at most ε ≤ 1/100. However, we only found incomplete proofs
of set-disjointness for product binomial distributions, and thus have included a self-contained proof
here. We also prove a distributional communication complexity lower bound for set-intersection for
parameters where set-disjointness can be easy. Both theorems can be found in Section 6.4.

The results with binomial product distribution are better suited for our purposes as the size
restriction in [BFS86] would restrict us to regular random oracles. Indeed, the distribution induced
on the preimages of y∗1 (resp. y∗2) by the hash function outside the common random point is binomial,
i.e., Bernoulli with the probability: Pr[H1(x) = y∗1 ] = 1/2m (resp. Pr[H2(x) = y∗2 ] = 1/2m) for any
x and independently for all values of x, where the probability is over the random choice of H1 resp.
H2. We use this fact to show that set-intersection and set-disjointness problems are, respectively,
sufficient to prove it is hard to invert random co-domain points (a property that we call random
preimage resistance, rPre) or even decide if a preimage exists (which we call oblivious PRG, oPRG).
The main benefit of these games is that they do away with the common point guaranteed to exist by
the rules of one-way game (and also similar technicalities associated with the standard PRG game).
These games can then be related to the one-way and PRG games via cryptographic reductions.

6.1.2 Security of Combiners in the 2-BRO Model

Our lower bound for set-intersection allows us to prove strong one-way security for some parame-
ters, while the set-disjointness bound only enables proving weak PRG security. Using amplification
techniques we can then convert the weak results to strong one-way functions [Gol01] or strong
PRGs [MT10]. Note that the reductions for all these results are fully black-box and thus would
relativize [RTV04]. This implies that the same proofs also hold in the presence of backdoor or-
acles. Construction of other primitives in minicrypt also relativize. This means we also obtain
backdoor-resilient PRFs, MACs, PRPs, and symmetric encryption schemes in our model. The re-
sulting constructions, however, are often too inefficient to be of any practical use. The bottleneck
for PRG efficiency here is the proven lower bounds for set-disjointness. New lower bounds that give
trade-offs between protocol error and communication complexity will enable more efficient/secure
constructions. We show in Section 6.4 why the current proof does not permit this.

Recall that collision resistance can not be based on one-way functions [Sim98]. The concatenation
combiner, on the other hand, appears to be collision resistant as simultaneous collisions seem hard
to find, even with respect to arbitrary backdoors for each hash function. Indeed, an analysis of
collision resistance for this combiner reveals a natural multi-set analogue of the set-intersection
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problem for finding two elements, a problem that we call multi-set double-intersection (or multi-set
2INT), which to the best of our knowledge has not been studied yet. We conjecture that this problem
has a high communication complexity and then show that, assuming the hardness of this problem,
we get collision resistance. We note that fully black-box amplification for collision resistance also
exists [CRS+07], and it is sufficient to prove hardness for small values of protocol error ε (should
this be the case as in the setting of single-instance set-disjointness).

We carry out similar analyses for the cascade and xor combiners, for which different choices
of parameters lead to security. Although the overall approach remains the same, we need to deal
with some difficulties in the security proofs of these combiners. For the cascade combiner these
arise from the fact that one of the sets is the image of a hash function. The latter distribution is
somewhat different to binomial sets (as elements are not chosen independently). We show, however,
that by addition of noise one-way and PRG security can be based on known lower bounds. For
collision resistance we give a reduction to multi-set double-intersection. For the xor combiner, the
communication complexity problem that directly underlies our reduction for one-wayness is multi-set:
both parties hold multiple sets and need to find an intersection in two sets of their own choice. We
are, however, able to relate this problem to the standard set-intersection by generating one larger
set for each party which labels and contains all smaller sets.

We do not treat PRF security of combiners. Nonetheless, we remark that the weak PRF security
of a combiner intuitively goes down to the problem of deciding whether there is at least one pair
of keys k1 and k2 that can simultaneously explain the obtained values for H1 and H2, which is a
variant of set-disjointness. We also leave out discussions on second-preimage resistance of combiners.
The reason is that in this chapter we concentrate on achieving security and whenever we achieve
one-wayness, second-preimage resistance follows. Similar to our detour in proving one-way security
through rPre-security, in any case, we would also have to obtain second-preimage resistance through
rPre-security.

We summarize our results in Table 6.1. The parameters for collision resistance and the weak PRG
security of xor are conjectural. Recall that strong security demands that the advantage of adversaries
in the corresponding security game is negligible, while for weak security it suffices that the advantage
is not overwhelming. In the table, concatenation is with respect to hash function H1 ∈ Fun[n, n+ s1]
and H2 ∈ Fun[n, n + s2]. Cascade is with respect to hash function H1 ∈ Fun[n, n + s1] and H2 ∈
Fun[n+s1, n+s1+s2]. The xor combiner is with respect to hash functions H1,H2 ∈ Fun[n, n+s]. The
stretch values s1, s2, and s can assume negative values (compressing), positive values (expanding), or
be zero (length-preserving). The range of secure stretches are described using a variable 0 ≤ σ ≤ 1.

As a final remark, note that proofs in the random-oracle model often proceed via direct information-
theoretic analyses. However, here we give cryptographic reductions (somewhat similarly to the stan-
dard model) that isolate the underlying communication complexity problems. These problems have
diverse applications in other fields (such as circuit complexity, VLSI design, and combinatorial auc-
tions), which motivate their study outside cryptographic contexts. Any improvement in lower bounds
for them would also lead to improvements in the security/efficiency of cryptographic constructions.
We discussed the benefits of proofs for arbitrary error above. As other examples, results in multi-party
communication complexity would translate to the k-BRO model for k > 2 or those in quantum
communication complexity can be used to build quantum-secure BRO combiners.
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Combiner Strong OW Weak PRG Strong CR

Concatenation s1, s2 = −(σ + 1) · n/2
for 0 < σ < 1/3

s1 = −n/2 + 1,
s2 = −n/2

s1, s2 ≤ −n/2− 1
(Conjectural)

Cascade s1 = (1 + σ) · n, s2 = −n
for −1/2 < σ < 0

s1 = 2n,
s2 = −2n+ 1

s1 = 2n, s2 = −2n− 1
(Conjectural)

Xor s = σ · n
for −0.42 < σ < 0

Any s
(Conjectural)

Any s
(Conjectural)

Table 6.1: Overview of results for concatenation, cascade, and xor. Functions Hi have stretch si. For xor we
assume s1 = s2 = s.

6.2 Random Preimage-Resistance and Oblivious PRGs

We define variants of the one-wayness and PRG games which will be helpful in our analyses. We
formalize these games in Figure 6.2. The random preimage-resistance (rPre) game is defined similarly
to everywhere preimage-resistance (ePre) [RS04] except that a random co-domain point (as opposed
to any such point) must be inverted. This definition differs from one-way security in two aspects: the
distribution of C(x) for a uniform x might not be uniform. Furthermore, some points in the co-domain
might not have any preimages. We also define a decisional variant, called oblivious PRG (oPRG),
where the adversary has to decide if a random co-domain point has a preimage. The advantage terms
are defined as:

Advrpre
CH1,H2 (A) := Pr[rPreACH1,H2 ] Advoprg

CH1,H2 (A) := Pr[oPRGACH1,H2 ]

Game rPreAC
for i = 1, 2 do

Hi ←← Fun[ni,mi]
y ←← {0, 1}m

x′ ← AH1,H2,BD1,BD2(y)

if y 6∈ img(CH1,H2)
return (x = ⊥)

return (CH1,H2(x) = y)

Game oPRGAC
for i = 1, 2 do

Hi ←← Fun[ni,mi]
y ←← {0, 1}m

b′ ← AH1,H2,BD1,BD2(y)

return (b′ = (y ∈ img(CH1,H2)))

Figure 6.1: The random preimage-resistance (rPre) and oblivious PRG (oPRG) games for CH1,H2 ∈ Fun[n,m].
Let img(CH1,H2) := CH1,H2({0, 1}n).

Recall that weak analogues of security notions (for example weak rPre or weak oPRG) are
defined by requiring the advantage to be bounded away from 1 (i.e., not to be overwhelming). These
definitions can be formalized in the asymptotic language, but we use concrete parameters here.



6.2. Random Preimage-Resistance and Oblivious PRGs 73

We state two lemmas that relate OW and rPre as well as PRG and oPRG: for functions that have
uniform images, as defined below, we show that OW security is implied by rPre security (Lemma 6.8)
and PRG security is implied by oPRG security (Lemma 6.9).

6.2.1 Image Uniformity

In the image uniformity game IU for a construction CH1,H2 , defined in Figure 6.2, an adversary, given
access to all backdoor oracles, must decide whether a given value is chosen uniformly at random
from the image of CH1,H2 or computed as the image of a value x chosen uniformly at random from
the domain. The advantage term is

Adviu
CH1,H2 (A) := 2 · Pr[IUACH1,H2 ]− 1 .

Game IUAC
for i = 1, 2 do

Hi ←← Fun[ni,mi]

y0 ←← img(CH1,H2)
x←← {0, 1}n

y1 ← CH1,H2(x)
b←← {0, 1}

b′ ← AH1,H2,BD1,BD2(yb)
return (b′ = b)

Figure 6.2: The image uniformity (IU) game for CH1,H2 ∈ Fun[n,m].

The following lemma upper bounds the advantage of adversaries playing the image uniformity
game for combiners with different stretch values. The results are then used to relate OW and rPre
security as well as PRG and oPRG security notions.

Recall that we denote by US the uniform distribution over a set S. Let f ∈ Fun[n,m]. By Up
f we

denote the distribution over {0, 1}m, which for all y ∈ {0, 1}m is defined by Up
f (y) = |f−1(y)|/2n,

i.e., the probability that an element of the co-domain of f is hit is proportional to the number of its
preimages under f .

Lemma 6.1. Image-uniformity of combiners Let CH1,H2
t ∈ Fun[n,m] be a combiner for the type

t ∈ {‖, ◦,⊕}. Then it holds that

Adviu
CH1,H2
t

(A) ≤ EH∈Fun[n,m]
[
SD
(
Uimg(H),Up

H
)]

+ 2 · pt ,

where p‖ = p⊕ = 0 and p◦ ≤ 22n1−m1 is the probability that H1 ∈ Fun[n1,m1] is not injective (i.e.,
it has at least one collision). Let 2n = C · 2m·γ for constants C and γ. Then the expected above
statistical distance is negligible for γ > 1 and 0 < γ < 1 when C = 1, while for γ = 1 and C ≤ 1 it
is less than e−C ·

(
C/(1− e−C)− 1

)
plus negligible terms.
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Proof. Let H1, H2, and H be random variables denoting uniform functions in Fun[n1,m1], Fun[n2,m2],
and Fun[n,m] respectively. The distinguishing advantage of an adversary A in the image-uniformity
game is, by definition, upper bounded as

Adviu
CH1,H2
t

(A) ≤ SD
(
(H1,H2,CH1,H2

t (X)), (H1,H2, Y )
)
,

where X is uniform over {0, 1}n and Y is uniform over the image of CH1,H2
t . Note that we can

ignore the backdoor oracles in the statistical distance above, since the backdoor oracles can be fully
determined by H1 and H2. We claim that

SD
(
(H1,H2,CH1,H2

t (X)), (St(H),H(X))
)
≤ pt

and SD
(
(H1,H2, Y ), (St(H), Y )

)
≤ pt ,

where the simulators St(H) output simulated H1 and H2 tables as follows.

Concatenation: The simulator outputs the left m1 bits and the right m2 bits of the outputs of
H as the two hash functions respectively. It is easily seen that such (H1,H2) is identically
distributed to S‖(H).

Cascade: The simulator samples uniformly at random H1 from Fun[n1,m1] and H2 from Fun[n1,m1].
It then redefines H2 to map all H1(x) values to H(x). The latter results in a consistent random
function unless H1(x) is not injective. The probability of latter is, by definition, p◦.

Xor: The simulator samples a function H1 uniformly at random from Fun[n1,m1] and then defines
H2(x) := H(x)⊕H1(x) for all x. It is easily seen that the pair (H1,H2) is identically distributed
to S⊕(H).

It thus remains to bound

SD
(
(St(H),H(X)), (St(H), Y )

)
.

Since St(H) is a randomized transformation of H, we can simply bound SD
(
(H,H(X)), (H, Y )

)
.

Note that H(X) is identical to Up
H and Y is identical to Uimg(H). We have

SD
(
(H,Uimg(H)), (H,Up

H)
)

= 1
2
∑
(h,y)

∣∣Pr[(H,Uimg(H)) = (h, y)]− Pr[(H,Up
H) = (h, y)]

∣∣
= 1

2
∑
(h,y)

Pr[H = h]
∣∣Pr[h(x) = y]− Pr[Uimg(h) = y]

∣∣
= 1

2
∑
h

Pr[H = h]
∑
y

∣∣Pr[h(x) = y]− Pr[Uimg(h) = y]
∣∣

= 1
2
∑
h

Pr[H = h]SD(H(x),Uimg(h))

= Eh←←Fun[n,m]
[
SD(Uimg(h),Up

h)
]
.
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For the upper bound on p◦, by Stirling’s approximations and using m1 > 2n1 we have

Pr
H1←←Fun[n1,m1]

[H1 is injective] = 1
(2m1)2n1 ·

2m1 !
(2m1 − 2n1)! > e−22n1−m1

> 1− 22n1−m1 .

Thus

p◦ := Pr
H1←←Fun[n1,m1]

[H1 not injective] ≤ 22n1−m1 ,

which is negligible for m1 = (2 + ε) · n1 with ε > 1. We note that for m1 = 2n1 we asymptotically
have that p◦ = 1− 1/

√
e.

The above expected statistical distance can be bounded by Corollaries 6.4, 6.5, and 6.7 as given
below.

Image Uniformity of Random Functions

In the remaining of this section we upper-bound the expected statistical distance EH
[
SD
(
Uimg(H),Up

H
)]

from Lemma 6.1, i.e., for the random choice of H←← Fun[n,m], we upper-bound the difference between
choosing an image of H uniformly at random versus choosing an image proportional to the number
of its preimages under H. For a more compact notation, in the following we use [M ]N for the set of
all functions H : [N ]→ [M ].

The expanding case. We start by treating expanding functions. The following lemma give us
the expected image size for functions H ∈ [M ]N .

Lemma 6.2. Let N,M ∈ N. Then the expected image size (i.e., the number of non-empty bins in
the balls-in-bins problem) is

EH[|img(H)|] = M −M · (1− 1
M

)N .

Proof. Below, all probabilities and expectations are taken over the random choice of H←← [M ]N .

EH[|img(H)|] = E[|{y ∈ [M ] : ∃x ∈ [N ] : H(x) = y}|]

=
∑
y∈[M ]

Pr[∃x ∈ [N ] : H(x) = y]

= M · (1− Pr[∀x ∈ [N ] : H(x) 6= y])

= M · (1− (1− 1/M)N )

= M −M · (1− 1/M)N

In the second equality above we have used the linearity of expectation.

We now bound the expected statistical distance for expanding functions in the following lemma.

Lemma 6.3. Let N,M some integers, let 1 ≤ αN < N . Then

EH
[
SD(Uimg(H),Up

H)
]
≤ Pr

[
N − |H([N ])| ≥ αN

]
+ αN

N
.
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Proof. Let EαN := {H ∈ [M ]N : N − |H([N ])| < αN}, i.e., the set of those functions with a support
which has at most αN elements less than the domain. We have

EH
[
SD(Uimg(H),Up

H)
]
≤ Pr

[
N − |H([N ])| ≥ αN

]
+ EH∈EαN [SD(Uimg(H),Up

H)] .

In order to upper bound SD(Uimg(H),Up
H) for each H ∈ EαN we define

S− := {i ∈ [M ] : Uimg(H)(i)− Up
H(i) < 0} .

Then, by the symmetry of statistical distance, and the fact that |H([N ])| ≤ N we have

SD(Uimg(H),Up
H) ≤

∑
i∈S−

(
|H−1(i)|
N

− 1
N

)
≤

∑
i∈H([N ])

(
|H−1(i)|
N

− 1
N

)
≤ N − |H([N ])|

N
≤ αN

N
.

We have also used the facts that the summands are positive. Note also that
∑
i∈H([N ]) |H−1(i)| = N

and
∑
i∈H([N ]) 1 = |H([N ])|. This concludes the proof of the claim.

For large M , it holds that ln
(
1− 1

M

)
= − 1

M −
1

2M2 +O
( 1
M3

)
. Hence, we can write

(
1− 1

M

)N =
exp

(
N · ln

(
1− 1

M

))
= exp

(
−N
M −

N
2M2 +O

(
N
M3

))
. Note that exp(x) is the natural exponential

function, i.e., ex.

Corollary 6.4. Let 0 < γ < 1 and C be a positive constant. Suppose N = C · Mγ . Then
EH(SD(Uimg(H),Up

H)) is negligible in logN .

Proof. We set αN := M (1−γ)/2 (N −M +M(1− 1
M )N

)
. By construction, and using the expected

number of collisions and Markov’s inequality,2 we have

Pr
[
N − |H([N ])| ≥ αN

]
≤ 1/M (1−γ)/2 .

Thus the first term in the bound shown in the claim above is negligible. It remains to show that
αN/N is also negligible in logN . We have

αN = M (1−γ)/2 (CMγ −M +M · exp
(
−C ·Mγ−1 − C/2 ·Mγ−2 +O

(
Mγ−3)))

= M (1−γ)/2 (C ·Mγ −M +M
(
1− C ·Mγ−1 +O

(
M2γ−2)))

= M (1−γ)/2O
(
M2γ−1) = O

(
M3/2·γ−1/2

)
.

Thus αN/N = O(M (γ−1)/2), which is negligible for γ < 1.

The length-preserving case. We now deal with the case where the function is either length
preserving or only slightly expanding.

2Recall this states that Pr[X ≥ tE[X]] ≤ 1/t for positive X.
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Lemma 6.5. Suppose N = CM with C ≤ 1, and 0 < δ < 1. Set µ1 := M(1− 1
eC

) and µ2 := CM
eC

.
Then

EH[SD(Uimg(H),Up
H)] ≤Pr [|H ([N ])| < (1− δ)µ1]

+ Pr
[∣∣{i ∈ [M ] :

∣∣H−1 (i)
∣∣ = 1}

∣∣ > (1 + δ)µ2
]

+
(1 + δ)

(
C − (1− δ)

(
1− 1

eC

))
eC (1− δ)

(
1− 1

eC

) ,

where for negligible δ, the first two terms are negligible and the last term is 1
eC
·
(

C

(1− 1
eC

) − 1
)
.

Proof. Let us define a set F ⊆ [M ]N of approximately length-preserving hash functions as the
intersection of two sets F1 and F2 (i.e., F := F1 ∩F2) as follows. Roughly speaking F1 contains hash
functions that are not too compressing, while F2 contains hash functions that are not too expanding
(or have a certain number of collisions). Later in the proof, we will set the variables δ, µ1, and µ2.

F1 :=
{

H ∈ [M ]N : |H ([N ])| ≥ (1− δ)µ1
}

F2 :=
{

H ∈ [M ]N :
∣∣{i ∈ [M ] :

∣∣H−1 (i)
∣∣ = 1}

∣∣ ≤ (1 + δ)µ2
}
.

Then

EH[SD(Uimg(H),Up
H)] ≤ Pr [H /∈ F ] + EH∈F

[
SD
(
Uimg(H),Up

H
)]

≤ Pr
[
|H ([N ])| < (1− δ)µ1

]
+ Pr

[ ∣∣{i ∈ [M ] :
∣∣H−1 (i)

∣∣ = 1}
∣∣ > (1 + δ)µ2

]
+ EH∈F

[
SD(Uimg(H),Up

H)
]
.

For each H ∈ F define S−H := {i ∈ [M ] : Uimg(H)(i) − Up
H(i) < 0}. For H ∈ F we have |H ([N ])| ≥

(1− δ)µ1 and for i ∈ S−H we have Uimg(H)(i) < Up
H(i). Thus,∣∣H−1 (i)

∣∣
N

<
1

|H ([N ])| ≤
1

(1− δ)µ1
,

∣∣H−1 (i)
∣∣ ≤ C(

1− 1
eC

) ≤ 1(
1− 1

e

) < 2 .

The penultimate inequality is due to the fact that the map C 7→ C

(1− 1
eC

) has a positive derivative

and that we have assumed C ≤ 1. Hence,
∣∣H−1 (i)

∣∣ < 2 and because i ∈ H ([N ]), we can deduce∣∣H−1 (i)
∣∣ = 1 (since

∣∣H−1 (i)
∣∣ is an integer). Hence, S−H ⊆ {i ∈ [M ] :

∣∣H−1 (i)
∣∣ = 1}, which allows us

to upper bound the cardinality of S−H by (1 + δ)µ2 (since H ∈ F ⊆ F2). Now

SD
(
Uimg(H),Up

H
)

=
∑
i∈S−H

(
1

|H(([N ])| −
∣∣H−1 (i)

∣∣
N

)
≤
∑
i∈S−H

(
1

(1− δ)M
(
1− 1

eC

) − 1
N

)

≤ (1 + δ)CM
eC

(
1

(1− δ)M
(
1− 1

eC

) − 1
CM

)
=

(1 + δ)
(
C − (1− δ)

(
1− 1

eC

))
eC (1− δ)

(
1− 1

eC

) .
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If we set δ := N−1/4 the (expectation of the) above term is asymptotically upper bounded by
1
eC
·
(

C

(1− 1
eC

) − 1
)

as N grows. We can also use the Chernoff bounds to upper bound the two

remaining probabilities. We note that

EH [|H ([N ])|] = M −M
(

1− 1
M

)CM
≥M(1− 1

eC
) = µ1 ,

and that

EH
[∣∣{i ∈ [M ] :

∣∣H−1 (i)
∣∣ = 1}

∣∣] =
∑
i∈[M ]

Pr
(∣∣H−1 (i)

∣∣ = 1
)

= M ·
(
CM

1

)(
1− 1

M

)CM−1 1
M

≤ CM

eC
= µ2 .

Thus µ1 lower bounds the first expectation and µ2 upper bounds the second expectation. Using
these facts and Chernoff we obtain

Pr
[
|H ([N ])| < (1− δ)µ1

]
≤ e−

1
2 δ

2·M
(

1−(1− 1
M )CM

)
≤ e−

1
2C ·
√
N(1− 1

eC
)

Pr
[∣∣{i ∈ [M ] :

∣∣H−1 (i)
∣∣ = 1}

∣∣>(1+δ)µ2
]
≤e−

1
3 δ

2·CM(1− 1
M )CM−1

≤e−
1

3eC
·
√
N ,

where we used the facts that
(
1− 1

M

)CM ≤ 1
eC

and
(
1− 1

M

)CM−1 ≥ 1
eC

.

The compressing case. We now deal with the case of compressing functions.

Lemma 6.6. Let N,M be integers and δ > 0. Then

EH
[
SD(Uimg(H),Up

H)
]
≤ Pr

[
∃i ∈ [M ] :

∣∣∣∣∣∣H−1(i)
∣∣− N

M

∣∣∣∣ ≥ δ NM
]

+ Pr [H ([N ]) 6= [M ]] + δ

2 .

Proof. Let F be a set of compressing hash functions where the set of images covers the entire
co-domain and where the number of preimages for each image is not far from N/M .

F :=
{

H ∈ [M ]N : H ([N ]) = [M ] ∧ ∀i ∈ [M ]
∣∣∣∣|H−1(i)| − N

M

∣∣∣∣ < δ
N

M

}
.

Then we can bound the desired statistical distance as follows.

EH
[
SD(Uimg(H),Up

H)
]
≤ Pr [H /∈ F ] + EH∈F

[
SD(Uimg(H),Up

H)
]
.

Let H ∈ F . Then

SD(Uimg(H),Up
H) ≤ 1

2
∑
i∈[M ]

∣∣∣∣∣
∣∣H−1(i)

∣∣
N

− 1
M

∣∣∣∣∣ ≤ 1
2N

∑
i∈[M ]

∣∣∣∣∣∣H−1(i)
∣∣− N

M

∣∣∣∣ ≤ 1
2N

∑
i∈[M ]

δ
N

M
≤ δ

2 .

Corollary 6.7. Suppose N = Mγ with γ > 1. Then EH
[
SD(Uimg(H),Up

H)
]
is negligible in logN .
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Proof. Let δ := M (1−γ)/4. Note that δ is negligible in logM . Furthermore,

Pr [H ([N ]) 6= [M ]] ≤ Pr
[
∃i ∈ [M ] : f−1(i) = ∅

]
≤M · Pr

[
f−1(0) = ∅

]
≤M

(
1− 1

M

)N
≤Me−M

γ−1
,

which is negligible. We now upper bound the first term in the claim above.

Pr
[
∃i ∈ [M ] :

∣∣∣∣∣∣H−1(i)
∣∣− N

M

∣∣∣∣ ≥ δ NM
]
≤
M−1∑
i=0

Pr
[∣∣∣∣∣∣H−1(i)

∣∣− N

M

∣∣∣∣ ≥ δ NM
]

≤M · Pr
[∣∣∣∣∣∣H−1(0)

∣∣− N

M

∣∣∣∣ ≥ δ NM
]
.

By the Chernoff bounds we have

Pr
[
∃i ∈ [M ] :

∣∣∣∣∣∣H−1(i)
∣∣− N

M

∣∣∣∣ ≥ δ NM
]
≤ 2e− δ

2N
3M = 2e−M

(γ−1)/2
3 ,

which when multiplied by M remains negligible.

6.2.2 rPre and One-Way Security

Now we can relate our notions of rPre and oPRG to their classical variants, i.e., one-wayness and
PRG security.

Lemma 6.8 (rPre + IU =⇒ OW). Let CH1,H2 ∈ Fun[n,m] be a construction in the 2-BRO model.
Then for any adversary A against the one-way security of CH1,H2 , there is an adversary B against
the image uniformity and an adversary C against the rPre security of CH1,H2 , all in the 2-BRO model
and using identical backdoor functionalities, such that

Advow
CH1,H2 (A) ≤ Adviu

CH1,H2 (B) + 1
α
· Advrpre

CH1,H2 (C)− 1− α
α

,

where α := Pr[y ∈ img(CH1,H2)] over the random choice of y ∈ {0, 1}m, H1, and H2.

Proof. Let OW-RI (OW with random image) be a game which differs from the standard OW game
in that in OW-RI the challenge y is chosen randomly from the set of possible images img(CH1,H2)
rather than indirectly as the image of a randomly chosen x ∈ {0, 1}n. By definition of these games,
any difference in the advantage of an adversary A in these two games is bounded by the advantage
of an adversary B in the IU game, i.e.,

Advow
CH1,H2 (A)− Advow-ri

CH1,H2 (A) ≤ Adviu
CH1,H2 (B) .

We can now build an adversary C against rPre security of CH1,H2 as follows. On input y ∈ {0, 1}m,
algorithm CBD1,BD2 simply runs ABD1,BD2(y), while using its own backdoor oracles to answer A’s
queries. After A terminates with some x, adversary C outputs x if CH1,H2(x) = y and ⊥ otherwise.
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Let a and c be the outputs of ABD1,BD2(y) and CBD1,BD2(y) respectively. Let I := img(CH1,H2),
i.e., the image of CH1,H2 . Below we analyze C’s advantage in the game rPre where all probabilities
are over y ←← {0, 1}m and random choices of H1 and H2.

Advrpre
CH1,H2 (C) = Pr[CH1,H2(c) = y ∧ y ∈ I] + Pr[c = ⊥ ∧ y 6∈ I]

= Pr[CH1,H2(a) = y ∧ y ∈ I] + Pr[CH1,H2(a) 6= y ∧ y 6∈ I]

= Pr[CH1,H2(a) = y | y ∈ I] · Pr[y ∈ I] + Pr[CH1,H2(a) 6= y ∧ y 6∈ I]

= Advow-ri
CH1,H2 (A) · Pr[y ∈ I] + Pr[CH1,H2(a) 6= y | y 6∈ I] · Pr[y 6∈ I]

= Advow-ri
CH1,H2 (A) · α+ 1 · (1− α)

≥ Advow
CH1,H2 (A) · α− Adviu

CH1,H2 (B) · α+ (1− α)

Therefore, we get

Advow
CH1,H2 (A) ≤ Adviu

CH1,H2 (B) + 1
α
· Advrpre

CH1,H2 (C)− 1− α
α

.

As long as Advrpre
CH1,H2 (C) < 1−α ·Adviu

CH1,H2 (B) (and is not too close to 1), we get Advow
CH1,H2 (A) < 1,

which means weak rPre with advantage smaller than 1−α ·Adviu
CH1,H2 (B) translates to weak one-way

security. Note that a non-negligible bound on IU advantage would be sufficient for weak OW security
as long as rPre advantage is sufficiently small. For overwhelming α and negligible image-uniformity
advantage, strong rPre security implies strong OW security.

6.2.3 oPRG and PRG Security

An analogous result also holds for oPRG security.

Lemma 6.9 (oPRG + IU =⇒ PRG). Let CH1,H2 ∈ Fun[n,m] be a construction in the 2-BRO
model which is expanding with m−n ≥ 0.53. Then for any adversary A against the PRG security of
CH1,H2 , there is an adversary B against the image uniformity and an adversary C against the oPRG
security of CH1,H2 , both in the 2-BRO model and using identical backdoor functionalities, such that

Advprg
CH1,H2 (A) ≤ Adviu

CH1,H2 (B) + 1− α
α
· Advoprg

CH1,H2 (C)− (1− α) ,

where α := Pr[y ∈ img(CH1,H2)] over the random choice of y ∈ {0, 1}m, H1, and H2.

Proof. Let PRG-RI (PRG with random image) be a game which differs from the standard PRG
game in that in PRG-RI if a secret bit is 1 the challenge y is chosen randomly from the set of possible
images img(CH1,H2) and not indirectly as the image of a randomly chosen x ∈ {0, 1}n. By definition
of these games, any difference in the advantage of an adversary A in these two games is bounded by
the advantage of an adversary B in the IU game, i.e.,

Advprg
CH1,H2 (A)− Advprg-ri

CH1,H2 (A) ≤ Adviu
CH1,H2 (B) .
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Note that we use image uniformity only once above, since in case b = 1 the PRG and PRG-RI games
are identical.

Next we build an adversary C against the oPRG security of CH1,H2 as follows. On input y ∈ {0, 1}m,
algorithm C simply runs ABD1,BD2(y), while using its own backdoor oracles to answer A’s queries.
After A terminates with a guess bit, C outputs the same bit as its own guess.

Let a and c be shorthand for ABD1,BD2(y) = 1 and CBD1,BD2(y) = 1, respectively. Furthermore,
let I := img(CH1,H2). Below we analyze C’s advantage in the game oPRG, where all probabilities are
over y ←← {0, 1}m and random choices of functions H1 and H2.

Advoprg
CH1,H2 (C) = Pr[c ∧ y ∈ I] + Pr[¬c ∧ y 6∈ I]

= Pr[a ∧ y ∈ I] + Pr[¬a ∧ y 6∈ I]

= Pr[a | y ∈ I] · Pr[y ∈ I] + Pr[¬a | y 6∈ I] · Pr[y 6∈ I]

= Pr[a | y ∈ I] · α+ Pr[¬a | y 6∈ I] · (1− α)

Let bprg-ri be the challenge bit chosen in the PRG-RI game. We can now write the advantage of
A in the intermediate PRG-RI game as below.

Advprg-ri
CH1,H2 (A) = 2 · Pr[a = bprg-ri]− 1

= Pr[a | y ∈ I] + Pr[¬a]− 1

= Pr[a | y ∈ I] + Pr[¬a | y ∈ I] · Pr[y ∈ I] + Pr[¬a | y 6∈ I] · Pr[y 6∈ I]− 1

= Pr[a | y ∈ I] + Pr[¬a | y ∈ I] · α+ Pr[¬a | y 6∈ I] · (1− α)− 1

= Pr[a | y ∈ I] + (1− Pr[a | y ∈ I]) · α+ Pr[¬a | y 6∈ I] · (1− α)− 1

= Pr[a | y ∈ I] · (1− α) + Pr[¬a | y 6∈ I] · (1− α)− (1− α)

Putting the above together and assuming that 1−α ≥ 1/2 (which follows from s := m−n ≥ 0.53
and α = 1− (1− 1/2m)2n ≈ 1− e−2−s) we obtain

α · Advprg-ri
CH1,H2 (A)− (1− α) · Advoprg

CH1,H2 (C)

= ((1− α)− 2(1− α)2) · Pr[¬a | y 6∈ I] + (1− α)2 − (1− α)

≤ (1− α)2 − (1− α) .

The equality follows after some algebra and the inequality uses the fact that when x2 − 2x ≤ 0 for
x ≥ 1/2. Rearranging we get

Advprg-ri
CH1,H2 (A) ≤ 1− α

α
· Advoprg

CH1,H2 (C)− (1− α) ,

and overall we conclude that

Advprg
CH1,H2 (A) ≤ Adviu

CH1,H2 (B) + 1− α
α
· Advoprg

CH1,H2 (C)− (1− α) .
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When Advoprg
CH1,H2 (C) < (2 − α − Adviu

CH1,H2 (B)) · α/(1 − α) (and is not too close to 1), we get an
overall bound that is less than 1 and, hence, weak PRG security.

6.3 Attacks in the 2-BRO Model

In this section we informally describe attacks against the concatenation and cascade combiners.
Furthermore, we discuss why in building secure iterative hash functions in k-BRO, combiners should
be used on the level of compression functions, rather than simply combining iterative hash functions.
This section serves as a warm-up exercise to provide a better understanding of the potential issues
when combining BROs before we move on to our positive results. The success of attacks on the con-
catenation and cascade combiners depends on the sizes of the domain and co-domain of the available
hash functions. As we indicate in Section 7.3 the xor combiner seems to be secure independently of
its parameter regime.

For constants α > 0 and β we call a hash function H ∈ Fun[n, α · n + β] compressing if α < 1,
approximately length preserving if α = 1, and expanding if α > 1. Furthermore, over a random
choice of H, any point y in the co-domain of H will be in img(H) with probability

Pr[∃x : H(x) = y] = 1− Pr[∀x : H(x) 6= y] = 1− (1− 1/2αn+β)2n .

For α < 1 this probability is overwhelming, for α = 1 it is constant, and for α > 1 it is negligible.

6.3.1 Concatenation

Consider two hash functions H1 ∈ Fun[n, α1n+ β1] and H2 ∈ Fun[n, α2n+ β2] used in the concate-
nation combiner. The combined function is in Fun[n, (α1 + α2)n+ (β1 + β2)].

An adversary can attempt to invert y∗1‖y∗2 = H1(x)‖H2(x) by using the backdoor oracle BD1

to compute preimages for y∗1 under H1 and the backdoor oracle BD2 to compute preimages for y∗2
under H2. The two sets of preimages obtained must have a non-empty intersection in order to find a
valid preimage for the combined function. When either of the hash functions, say H1, is expanding
or approximately length preserving, the corresponding set of preimages of y∗1 will be of polynomial
size. Hence, a preimage under the concatenation combiner can be found with good probability after
polynomially many inversion queries to figure out which one of y∗1 ’s preimages is also a preimage for
y∗2 under H2. To attack PRG security note that whenever not even weak OW security is satisfied,
weak PRG security is not, either. Since one can check if a value is pseudorandom or not by inverting
it and checking whether it is a valid preimage. However, a slightly expanding function (say by 1 bit),
built by concatenating two compressing functions, can be weakly OW and also weakly PRG secure.
As for collision resistance, note that collisions for H1 or H2 do not necessarily lead to collisions for
the combined function. Indeed, we are not able to give attacks for any stretch pattern here.

6.3.2 Cascade

Consider two hash functions H1 ∈ Fun[n, α1n+ β1] and H2 ∈ Fun[α1n+ β1, α2n+ β2] used in the
cascade combiner. The combined function is in Fun[n, α2n+ β2].



6.3. Attacks in the 2-BRO Model 83

When H2 is somewhat expanding or approximately length preserving (that is, α2 ≥ α1) an
adversary can attempt to invert the challenge y∗ := H2(H1(x∗)) under H2 and with non-negligible
probability obtain a point z such that z = z∗ where z∗ := H1(x∗). The adversary can then try to
invert z∗ under H1 to obtain a preimage. Note that this last step will succeed if the adversary is
lucky and gets z = z∗ in the first step. Otherwise, if H1 is either approximately length preserving
or somewhat compressing (α1 ≤ 1) any obtained z will invert with good probability. In case H1 is
expanding, the adversary can proceed to the next z (polynomially many times, since α2 ≥ α1) and
try to invert it under H1. This leaves the composition of a somewhat expanding H1 with a somewhat
compressing H2 (the expand-then-compress construction) as the only option which can offer strong
one-way security.

For PRG security, as seen above, if the outer function H2 is not sufficiently compressing, a random
point will fail to invert under H2 with non-negligible probability, whereas an honestly computed
PRG value always will.

For collision resistance, any collision for H1 is also a collision for the combiner. Collisions can
be easily found for H1 in the BRO model and, hence, H1 must be injective even for weak collision
resistance. The probability that a random H1 ∈ Fun[n,m] with m > n is injective is

Pr[H1 is injective] = 1
(2m)2n

2m!
(2m − 2n)! ≈ e

−22n−m
,

using Stirling’s approximations. If α1 > 2 the exponent 2n−m tends to −∞ as n grows, and the
above probability is overwhelming. Collisions for H2, on the other hand, do not necessarily give rise
to those for the combined function. One can thus set α1 = 3, β1 = 0, α2 = 1 and β2 = −1 to get a
combined function that compresses by 1 bit and is conjecturally collision resistant.

6.3.3 Iterative Hash Functions

Here we argue that the approach of directly combining two iterative hash functions in the 2-BRO
model, i.e., even if the underlying compression functions are independent BROs, suffers from serious
security deficits. More precisely, we show at the example of collision resistance that the concatenation
of two MD-based hash functions in 2-BRO is generally not secure. The attack is based on the well-
known multi-collision attack by Joux [Jou04]. We conjecture that the issue can be generalized
for other combiners, other security properties, and other domain-extenders using variants of multi-
collision attacks [NS06]. Although more invasive, a safer choice is, hence, to immunize the underlying
compression functions by a suitable choice of combiner and then iterating it.

Formally, for hash functions H1 ∈ Fun[n1 +m1,m1] and H2 ∈ Fun[n2 +m2,m2], the concatenation
of their iterative MD-based hash functions is defined as MDH1,H2

‖,iv1,iv2
as:

MDH1,H2
‖,iv1,iv2

(x) := MDH1
iv1

(x)‖MDH2
iv2

(x) .

For the sake of simplicity, let us assume that m1 = m2 and n1 = n2. Let m := m1 and n := n and
suppose that MDH1,H2

‖,iv1,iv2
∈ Fun[` · n, 2m] and no padding function is used. For more details on the

MD-construction we refer to Section 4.2.1.
A 2r-multi-collision for a hash function H is a set C of size 2r, where for all x, x′ ∈ C it holds that

H(x) = H(x′). In 2004 Joux presented a simple 2r-multi-collision attack on iterated MD-based hash
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functions with a time complexity of Θ(r · 2m/2), which is much smaller than the time complexity
of the birthday attack, i.e., Θ(2m·(2r−1)/2r ) [Jou04]. In other words, finding 2r-multi-collisions costs
only about r times as much as ordinary 2-collisions. In the same paper, Joux used the multi-collision
attack to show that the security of the concatenation combiner is far from being optimal. Suppose
H ∈ Fun[n+m,m] is the compression function in use and we have a collision finding oracle Col on
hand, which given a chaining value yi ∈ {0, 1}m finds two values xi, x′i ∈ {0, 1}n such that xi 6= x′i
and H(yi‖xi) = H(yi‖x′i). The oracle can then be used on yi+1 := H(yi‖xi) and so on to build many
collisions, as depicted below.

y0 := iv y1 y2 y3 · · · yr−1 yr

x0

x′0

x1

x′1

x2

x′2

xr−1

x′r−1

The above multi-collision algorithm finds 2r messages of length n · r which all map to the same
image. Interestingly, these messages collide after any number of blocks and can be represented by
a combination of 2r many blocks. Hence, the output of the collision finding algorithm Col has a
compact representation of only 2rn bits. Furthermore Col can easily be implemented by one call to
each of the backdoor oracles BD1 and BD2. The adversary obtains two sets for the compact collisions
under MDH1

iv1
and MDH2

iv2
, builds all possible 2r collisions for both functions. As a collision for the

combined function, the adversary returns any (x, x′) that is common in both sets, which can be
made very likely by choosing a large enough r. In fact, for r ≥ m2/2 we can conclude by the birthday
paradox that among the collisions under MDH1

iv1
, there will be one that leads to a collision under

MDH2
iv2

with good probability. Attacking one-wayness, i.e., inverting some y∗1‖y∗2 is very similar to
finding collisions, except that instead of using the multi-collision attack to find two sets of 2r many
collisions to two random images, they have to map to y∗1 and y∗2 , which is again easy which access
to backdoor oracles.

6.4 Distributional Communication Complexity of
Set-Disjointness and Set-Intersection

Two central problems in communication complexity that have received substantial attention are the
set-disjointness and the set-intersection problems. In set-disjointness two parties, holding sets S and
T respectively, compute the binary function DISJ(S, T ) := (S ∩ T = ∅). In set-intersection, their
goal is to compute the relation INT(S, T ) := S ∩ T ; that is, the last message of the protocol should
be equal to some element in the intersection. Note that set-disjointness can be seen as a decisional
version of set-intersection and is, therefore, easier. As mentioned, we are interested in average-case
lower bounds for these tasks and moreover, we focus on product distributions, where the sets are
chosen independently.

Two main results to this end have been proven in previous work.3 A classical result of Babai,
Frankl, and Simon [BFS86] establishes an Ω(

√
N) lower bound for set-disjointness where the input

3We note that most of the work on distributional communication complexity is driven by Yao’s min-max lemma,
which lower bounds worst-case communication complexity using distributional communication complexity for some
(often non-uniform) distribution.
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sets S and T are independent random subsets of [N ] of size exactly
√
N . This result, however, is

restrictive for us as it roughly translates to regular functions in the cryptographic setting. Moreover,
its proof uses intricate combinatorial arguments, which are somewhat hard to work with.

A second result considers the following distribution. Each element x ∈ [N ] is thrown into S
independently with probability p. (And similarly for T with probability q.) We can view S as an N -
bit string X where its i-th bit xi is 1 iff i ∈ S. Thus the distribution can be viewed as N independent
and identically distributed Bernoulli random variables xi ←← Ber(p) where p := Pr[xi = 1]. Thus
the elements of the sets form a binomial distribution, and accordingly we write S ←← Bin(N, p) and
T ←← Bin(N, q). We define µ(p, q) as the product of these two distributions. When p = q = 1/2 we
get the product uniform distribution over the subsets of [N ]× [N ], but typically we will be looking
at much smaller values of p and q, e.g., of order 1/

√
N .

Using information-theoretic techniques [BYJKS02], the following lower bound for set-disjointness
can be established. Our proof, which follows those in [MB12, GC13], is applicable to the case of
pq = 1/(δN) for δ > 1, which was originally only claimed for p = q = 1/

√
N . However, in the full

version of the paper [BFM18b, Appendix C.3], a new refined proof is included which extends the
theorem to δ ≥ 0.8 (instead of δ ≥ 1). Roughly speaking, our proof of Theorem 6.10 proceeds along
the following lines. We can lower bound the communication complexity of any protocol by the total
information leaked by its transcripts about each coordinate (xi, yi). The latter can be lower bounded
based on the statistical distance in protocol transcripts when xi = 1 ∧ yi = 0 and xi = 0 ∧ yi = 1.
This step uses a number of information-theoretic inequalities, which we have included with proofs
in Section 2.6. Finally, we show that a highly correct protocol can be used as a distinguisher with
constant advantage: When xi = 0 ∧ yi = 0, for a constant fraction of the inputs the sets will be
disjoint with high probability. However, when xi = 1 ∧ yi = 1 they necessarily intersect, but this
condition happens for a constant fraction of the inputs. We get a lower bound by averaging over
the i’s.

Theorem 6.10 (Set-disjointness lower bound). Let N ∈ N and assume p, q ∈ (0, 1/2] with p ≤ q and
pq = 1/(δN) for some δ > 1. Let µ(p, q) be the product binomial distribution over subsets S, T ⊆ [N ].
Assume ε < (δ−1)p0

(4+δ) and let p0 := Pr[DISJ(S, T ) = 0]. Then

Dε
µ(p,q)(DISJ) ≥ Np

8 ·
(
(δ − 1)p0 − (4 + δ)ε

)2
.

Proof. Let π be a deterministic protocol with an error probability of at most ε. Hence

Pr
(S,T )←←µ

[π(X,Y ) = DISJ(S, T )] ≥ 1− ε ,

whereX = (x0, . . . , xN−1) and Y = (y0, . . . , yN−1) (with xi, yi ∈ {0, 1}) are bit string representations
of S and T , as described above. Let Π(X,Y ) denote a random variable for the transcripts of protocol
π on inputs (X,Y ) such that the corresponding sets are drawn from µ, i.e., (S, T )←← µ. We have

Dε
µ(p,q)(DISJ) ≥ log |supp(Π(X,Y ))|

≥ H(Π(X,Y ))

= H(Π(X,Y )) + H(X,Y )−H(X,Y,Π(X,Y ))
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= I(X,Y ; Π(X,Y ))

= I(x0, . . . , xN−1, y0, . . . , yN−1; Π(X,Y ))

≥
N−1∑
i=0

I(xi, yi; Π(X,Y )) ,

where the last inequality holds by Lemma 2.3, since xi’s and yi’s are independent. Let Πi
a,b(X,Y )

be Π(X,Y ) conditioned on the i-th coordinates of X and Y being fixed to a and b respectively:

Πi
a,b(X,Y ) := Π(X,Y ) | xi = a ∧ yi = b .

By Lemma 2.4

I(xi, yi; Π(X,Y )) ≥ E(a,b)[∆2
Hel(Πi

a,b(X,Y ),Π(X,Y ))] ,

where (a, b) ←← Ber(p) × Ber(q). Since q ≥ p we have that q(1 − p) ≥ p(1 − q). Since q ≤ 1/2, we
also have that p(1− q) ≥ p/2. Thus

I(xi, yi; Π(X,Y )) ≥ p(1− q) ·∆2
Hel(Πi

1,0(X,Y ),Π(X,Y )) + q(1− p) ·∆2
Hel(Πi

0,1(X,Y ),Π(X,Y ))

≥ p(1− q) ·
(
∆2

Hel(Πi
1,0(X,Y ),Π(X,Y )) + ∆2

Hel(Πi
0,1(X,Y ),Π(X,Y ))

)
≥ p

2 ·
(
∆2

Hel(Πi
1,0(X,Y ),Π(X,Y )) + ∆2

Hel(Πi
0,1(X,Y ),Π(X,Y ))

)
≥ p

4 ·
(
∆Hel(Πi

1,0(X,Y ),Π(X,Y )) + ∆Hel(Πi
0,1(X,Y ),Π(X,Y ))

)2
≥ p

4 ·∆
2
Hel(Πi

1,0(X,Y ),Πi
0,1(X,Y )) .

The last inequality is by the triangle inequality for the metric ∆Hel, and the penultimate inequality
uses x2 + y2 ≥ (x+ y)2/2. Hence

Dε
µ(p,q)(DISJ) ≥ N · Ei[I(xi, yi; Π(X,Y ))]

≥ Np

4 · Ei[∆
2
Hel(Πi

1,0(X,Y ),Πi
0,1(X,Y ))]

= Np

4 · Ei[∆
2
Hel(Πi

0,0(X,Y ),Πi
1,1(X,Y ))]

≥ Np

8 · Ei[SD2(Πi
0,0(X,Y ),Πi

1,1(X,Y ))]

≥ Np

8 ·
(
Ei[SD(Πi

0,0(X,Y ),Πi
1,1(X,Y ))]

)2
where the equality uses the cut-and-paste lemma (Lemma 2.2). The penultimate inequality uses
SD(A,B) ≤

√
2∆Hel(A,B) (discussed in Section 2.6), which implies ∆2

Hel(Πi
0,0(X,Y ),Πi

1,1(X,Y )) ≥
(1/2)SD2(Πi

0,0(X,Y ),Πi
1,1(X,Y )), and the last inequality is by Jensen’s inequality. Thus it remains

to lower bound SD(Πi
0,0(X,Y ),Πi

1,1(X,Y )).
Let E := (DISJ(S, T ) = 1 ∧ xi = yi = 0). By correctness,

1− ε ≤ Pr[Π(X,Y ) = DISJ(S, T )]

= Pr[Π(X,Y ) = DISJ(S, T ) ∧ E] + Pr[Π(X,Y ) = DISJ(S, T ) ∧ ¬E]



6.4. Distributional Communication Complexity of Set-Disjointness and Set-Intersection 87

≤ Pr[Π(X,Y ) = DISJ(S, T ) ∧ E] + 1− Pr[E]

= Pr[Π(X,Y ) = 1 ∧ E] + 1− Pr[E] .

Hence

Pr[Π(X,Y ) = 1 ∧ E] ≥ Pr[E]− ε .

For every i we have

Pr[Πi
0,0(X,Y ) = 1] = Pr[Π(X,Y ) = 1 ∧ xi = yi = 0]/Pr[xi = yi = 0]

≥ Pr[Π(X,Y ) = 1 ∧ E]/Pr[xi = yi = 0]

≥ (Pr[E]− ε)/Pr[xi = yi = 0]

= Pr[DISJ(S, T ) = 1|xi = yi = 0]− ε/Pr[xi = yi = 0]

≥ Pr[DISJ(S, T ) = 1]− ε/Pr[xi = yi = 0]

≥ Pr[DISJ(S, T ) = 1]− ε/((1− p)(1− q))

Complementing the output bit and setting p0 := Pr[DISJ(S, T ) = 0] we get

Pr[Πi
0,0(X,Y ) = 0] ≤ p0 + ε/((1− p)(1− q)) ≤ p0 + 4ε .

Now we look at the case of xi = yi = 1. Here, it holds that DISJ(S, T ) = 0. A natural strategy
at this point would be to argue that π outputs 0 with good probability for every i (since it is highly
correct). This, however, does not work as Pr[xi = yi = 1] can be small. Despite this, Pr[∃i : xi =
yi = 1] is high, and the protocol π over the random choice of i should output 0 with good probability.
We proceed as follows. Note that

1− ε ≤ Pr[Π(X,Y ) = 0 ∧DISJ(S, T ) = 0] + (1− p0) .

Thus Pr[Π(X,Y ) = 0 ∧DISJ(S, T ) = 0] ≥ p0 − ε. Now

Ei[Pr[Πi
1,1(X,Y ) = 0]] = 1

N
·
∑

Pr[Π(X,Y ) = 0|xi = yi = 1]

= 1
N
·
∑

Pr[Π(X,Y ) = 0 ∧ xi = yi = 1]/Pr[xi = yi = 1]

= 1
Npq

·
∑

Pr[Π(X,Y ) = 0 ∧ xi = yi = 1]

≥ 1
Npq

· Pr[Π(X,Y ) = 0 ∧ ∃i : xi = yi = 1]

= 1
Npq

· Pr[Π(X,Y ) = 0 ∧DISJ(S, T ) = 0]

≥ (p0 − ε)/(Npq)

Putting the above two bounds together we get

Ei[SD(Πi
0,0(X,Y ),Πi

1,1(X,Y ))] ≥ (p0 − ε)/(Npq)− p0 − 4ε .
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Since pq = 1/(δN), we get a lower bound (δ − 1)p0 − (4 + δ)ε, which is positive for

ε <
(δ − 1)p0

(4 + δ) .

Consequently, this proof does not extend to large error. Overall for ε satisfying the above we get

Dε
µ(p,q)(DISJ) ≥ Np

8 · ((δ − 1)p0 − (4 + δ)ε)2 .

Next we also prove a communication complexity lower bound for the set-intersection problem
over Bernoulli sets for which set-disjointness can be easy. Although the overall proof structure will
be similar to that of set-disjointness, i.e., Theorem 6.10, our strategy differs in a number of places,
when we turn to lower bounding SD(Πi

0,0(X,Y ),Πi
1,1(X,Y )). We use the fact that a candidate

element can be checked to belong to the intersection (whereas a decision bit for disjointness cannot
be checked for correctness). This ensures that the protocol error is one-sided, and allows us to remove
the requirement of ε being sufficiently small. Additionally, we will bound the probability that the
protocol outputs a random element in the intersection. This leads to a distinguisher that succeeds
with smaller advantage, but it overall will lead to a non-trivial bound. We state and prove the formal
result next. As above we leave the Bernoulli parameters free so as to be able to compute a feasible
region where the lower bound will be non-trivial.

Theorem 6.11 (Set-intersection lower bound). Let N ∈ N and assume p, q ∈ (0, 1/2] with p ≤ q.
Let µ(p, q) be the product binomial distribution over subsets S, T ⊆ [N ]. Let ε be the protocol error
and set p0 := Pr[DISJ(S, T ) = 0]. If ε ≤ p0 then

Dε
µ(p,q)(INT) ≥ Np

8 ·
(p0 − ε
Npq

)2
.

For sufficiently large N we have p0 = 1− (1− pq)N ≈ 1− e−Npq. If pq � 1/N we get that p0 ≈ 1
(the sets intersect with overwhelming probability) and for the theorem we would need that ε ≤ 1.

Proof. Let π be a deterministic protocol with error at most ε, i.e.,

Pr
(S,T )←←µ

[π(X,Y ) ∈ INT(S, T )] ≥ 1− ε ,

where X = (x0, . . . , xN−1) and Y = (y0, . . . , yN−1) are bit string representations of S and T as
explained above. Let Π(X,Y ) denote a random variable for the transcripts of protocol π on inputs
(X,Y ) with corresponding sets (S, T )←← µ. We have

Dε
µ(p,q)(INT) ≥ log |supp(Π(X,Y ))|

≥ H(Π(X,Y ))

= H(Π(X,Y )) + H(X,Y )−H(X,Y,Π(X,Y ))

= I((X,Y ; Π(X,Y ))
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= I(x0, . . . , xN−1, y0, . . . , yN−1; Π(X,Y ))

≥
N−1∑
i=0

I(xi, yi; Π(X,Y )) ,

where the last inequality holds due to the independence of x0, . . . , xN−1, y0, . . . , yN−1 (cf. Lemma 2.3
in Section 2.6). Let Πi

a,b(X,Y ) be Π(X,Y ) conditioned on the i-th coordinates of X and Y being
fixed to a and b respectively:

Πi
a,b(X,Y ) := Π(X,Y ) | xi = a ∧ yi = b .

By Lemma 2.4 we know

I(xi, yi; Π(X,Y )) ≥ E(a,b)[∆2
Hel(Πi

a,b(X,Y ),Π(X,Y ))] ,

where (a, b) ←← Ber(p) × Ber(q) and ∆Hel is the Hellinger distance. Since q ≥ p we have that
q(1− p) ≥ p(1− q) and since q ≤ 1/2, we also have that p(1− q) ≥ p/2. Thus

I(xi, yi; Π(X,Y )) ≥ p(1− q) ·∆2
Hel(Πi

1,0(X,Y ),Π(X,Y )) + q(1− p) ·∆2
Hel(Πi

0,1(X,Y ),Π(X,Y ))

≥ p(1− q) ·
(
∆2

Hel(Πi
1,0(X,Y ),Π(X,Y )) + ∆2

Hel(Πi
0,1(X,Y ),Π(X,Y ))

)
≥ p

2 ·
(
∆2

Hel(Πi
1,0(X,Y ),Π(X,Y )) + ∆2

Hel(Πi
0,1(X,Y ),Π(X,Y ))

)
≥ p

4 ·
(
∆Hel(Πi

1,0(X,Y ),Π(X,Y )) + ∆Hel(Πi
0,1(X,Y ),Π(X,Y ))

)2
≥ p

4 ·∆
2
Hel(Πi

1,0(X,Y ),Πi
0,1(X,Y )) .

The last inequality is by the triangle inequality for the metric ∆Hel, and the penultimate inequality
uses x2 + y2 ≥ (x+ y)2/2. Hence

Dε
µ(p,q)(INT) ≥ N · Ei[I(xi, yi; Π(X,Y ))]

≥ Np

4 · Ei[∆
2
Hel(Πi

1,0(X,Y ),Πi
0,1(X,Y ))]

= Np

4 · Ei[∆
2
Hel(Πi

0,0(X,Y ),Πi
1,1(X,Y ))]

≥ Np

8 · Ei[SD2(Πi
0,0(X,Y ),Πi

1,1(X,Y ))]

≥ Np

8 ·
(
Ei[SD(Πi

0,0(X,Y ),Πi
1,1(X,Y ))]

)2
,

where the third inequality uses Lemma 2.2 which states that for any deterministic protocol π
we have ∆2

Hel(Πi
1,0(X,Y ),Πi

0,1(X,Y )) = ∆2
Hel(Πi

0,0(X,Y ),Πi
1,1(X,Y )). The penultimate inequality

uses ∆2
Hel(Πi

0,0(X,Y ),Πi
1,1(X,Y )) ≥ (1/2)SD2(Πi

0,0(X,Y ),Πi
1,1(X,Y )), and the last inequality is by

Jensen’s inequality. Thus it remains to lower bound SD(Πi
0,0(X,Y ),Πi

1,1(X,Y )). For every i we have

Pr[Πi
0,0(X,Y ) = i] = 0 .

This is because we have conditioned on xi = yi = 0 and the two parties can actually check whether
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or not i belongs to their sets.

Now we look at xi = yi = 1. We show that the protocol over the random choice of i should
output i with the expected probability, that is, 1/|S ∩ T | since the common element can intuitively
be any element in the intersection. Note that the expected size of the intersection is

E[|S ∩ T |] = E[
N−1∑
i=0

xi · yi] =
N−1∑
i=0

E[xi · yi] = Npq ,

where we have used the linearity of expectation and independence of xi and yi. We proceed as
follows.

Ei[Pr[Πi
1,1(X,Y ) = i]] = 1

N

∑
i

Pr[Π(X,Y ) = i|xi = yi = 1]

= 1
Npq

∑
i

Pr[Π(X,Y ) = i ∧ xi = yi = 1]

= 1
Npq

∑
i

∑
(x,y): xi=yi=1∧π(x,y)=i

Pr[(X,Y ) = (x, y)]

= 1
Npq

∑
(x,y): π(x,y) correct and x∩y 6=∅

Pr[(X,Y ) = (x, y)]

= 1
Npq

( ∑
(x,y)

Pr[(x, y)]−
∑
x∩y=∅

Pr[(x, y)]−
∑

π(x,y) fails

Pr[(x, y)]
)

≥ 1− Pr[DISJ(S, T ) = 1]− ε
Npq

= p0 − ε
Npq

.

Thus we get that

Ei[SD(Πi
0,0(X,Y ),Πi

1,1(X,Y ))] ≥ (p0 − ε)/(Npq) ,

and overall we obtain the claimed bound of

Dε
µ(p,q)(INT) ≥ Np

8 ·
(p0 − ε
Npq

)2
.

Letting p = 1/Nα and q = 1/Nβ with α ≥ β (since we assumed p ≤ q), for a non-trivial lower
bound—that is an exponentially large right-hand side in the displayed equation above—we would
need to have that α+ 2β > 1. We also require that 1− α− β > 0 so that the expected intersection
size Npq is exponentially large, in which case p0 ≈ 1 and the set-disjointness problem is easy. These
inequalities lead to the feasibility region shown in Figure 6.3. We have included the symmetric region
for α ≤ β.

6.4.1 Multi-Set Variants

In this chapter, besides relying on set-disjointness and set-intersection problems, we also need
the following multi-set extensions of them. These problems are additionally parameterized by the
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Figure 6.3: The gray region describes parameters where set-intersection is hard with p = 1/Nα and q = 1/Nβ .

number of input sets. Here Alice holds M1 sets Si ←← Bin(N, p) for i ∈ [M1] and Bob holds M2 sets
Tj ←← Bin(N, q) for j ∈ [M2]. Their goal is to solve the following problems.

• Find (i, x) such that x ∈ Si ∩ Ti, or return ⊥ if all the intersections are empty. We call this
the (M1,M2)-INT problem, a natural multi-set version of INT. A decisional variant would ask
for an index i and a decision bit indicating if Si ∩Ti = ∅. When M1 = M2 = 1, these problems
are the usual INT and DISJ problems.

• Find (i, j, x, x′) with x 6= x′ such that x, x′ ∈ Si ∩ Tj , or return ⊥ if no such tuple exists. We
call this the (M1,M2)-2INT problem. When M1 = M2 = 1 this problem is at least as hard as
the INT problem since finding two distinct elements in the intersection is harder than finding
one element.

The INT problem is a harder task than the (M1,M2)-2INT problem (which we can also call the
multi-set double-intersection problem). One can solve the (M1,M2)-2INT problem using a protocol
for INT as follows. Alice chooses a random point x in one of its sets Si and sends it to Bob. Bob
will then search through his sets to find a set Tj such that x ∈ Tj . With high probability such a set
exists if the number of sets and/or the probability parameters are large enough. Alice and Bob will
then run the protocol for INT on sets Si and Tj to find an x′ ∈ Si∩Tj . This element will be different
from x with good probability (again under appropriate choices of parameters). Indeed, this is simply
the communication complexity way of saying “collision resistance implies one-wayness.” However,
we are interested in a reduction in the converse direction, as we already have proven lower bounds
for INT. This seems hard as from a cryptographic point of view, as a classical impossibility result
by Simon [Sim98] shows that collision resistance cannot be based on one-way functions (or even
permutations) in a black-box way. Despite this, it is conceivable that direct information-theoretic
analyses (similar to those for set-disjointness and set-intersection) can lead to non-trivial lower
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bounds. We leave proving hardness for this “collision-resistance” analogue of set-intersection as an
interesting open problem for future work.

6.5 The Concatenation Combiner in the 2-BRO Model

In this section we study the security of the concatenation combiner CH1,H2
‖ (x) := H1(x)‖H2(x) in the

2-BRO model, where H1 ∈ Fun[n, n+ s1] and H2 ∈ Fun[n, n+ s2]. We will prove one-way security,
pseudorandomness, and collision resistance for this construction. Our results will rely on the hardness
of set-intersection and set-disjointness for the first two properties, and the presumed hardness of
finding two elements in the intersection given multiple instances.

6.5.1 One-Way Security

In Section 6.3.1 we showed that when H1 or H2 is approximately length preserving or somewhat
expanding, the concatenation combiner is not (strongly) one-way in the 2-BRO model. In both cases,
preimage sets will be only polynomially large and can be efficiently communicated. Accordingly, only
when both hash functions are (somewhat) compressing we can achieve one-way security.

To this end we first give a reduction from random preimage resistance (rPre, as defined in
Figure 6.2) to set-intersection. By Lemma 6.8 we know that any (weak) rPre-secure function is also a
(weak) OW-secure function. In particular, for the highly compressing setting where s1, s2 ≤ −n/2−4
we show strong one-way security. For settings where the parameters only enable weak security
according to the set-intersection theorem, we can apply hardness amplification [Gol01] to get a
strongly one-way function.

In our reductions to communication complexity protocols throughout this chapter, we make the
following four simplifying assumptions without loosing of generality.

• The adversary is deterministic;
• It does not query Hi at all and instead computes hash values via the BDi oracles;
• It queries BDi oracles only on functions that have 1-bit outputs; and
• It starts with a query to BD1.

Recall from Section 2.5 that we denote the protocol correctness by Advf
µ(π), with f being a

placeholder for the name of the task f and µ being the distribution of the inputs. Also, we defined
Q(A) in Section 3.3 as the total number of queries made by A to its oracles. We are now ready to
prove our first cryptographic hardness result.

Theorem 6.12. Let H1 ∈ Fun[n, n+s1] and H2 ∈ Fun[n, n+s2] and CH1,H2
‖ (x) := H1(x)‖H2(x). Then

for any adversary A against the rPre security of CH1,H2
‖ in the 2-BRO model there is a 2-party protocol

π against set-intersection with the distribution µ := µ(p, q) where p := 1/2n+s1 and q := 1/2n+s2

and such that

Advrpre
CH1,H2
‖

(A) ≤ Advint
µ (π) and Dµ(π) ≤ Q(A) + 3n+ s1 + s2 .
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Proof. Let A be an adversary against the rPre security of CH1,H2
‖ in the 2-BRO model for H1 and

H2. Adversary A is given a random point y := y1‖y2 ∈ {0, 1}2n+s1+s2 and needs to either find an x
such that H1(x)‖H2(x) = y1‖y2 or say that no such x exists. Let us define two preimage sets

S1 := H−1 (y1) and S2 := H−2 (y2) .

Hence, A outputs an x ∈ S1 ∩ S2 as long as S1 ∩ S2 6= ∅. We note that these sets are binomial.
Indeed, for each x we have that PrH1 [x ∈ S1] = 1/2n+s1 and PrH2 [x ∈ S2] = 1/2n+s2 , and these
events are independent for different values of x.

We use A to build a 2-party protocol π for set-intersection over a product binomial distribution
µ := µ(p, q) with p := 1/2n+s1 and q := 1/2n+s2 as follows. Alice holds a set S1 ⊆ {0, 1}n and Bob
holds a set S2 ⊆ {0, 1}n distributed according to µ. Alice (resp., Bob) samples hash function H1

(resp., H2) as follows. Alice picks a random y1 ∈ {0, 1}n+s1 and Bob picks a random y2 ∈ {0, 1}n+s2 .
Alice defines H1 to map all points in S1 to y1. She maps remaining points x ∈ {0, 1}n \ S1 to
random points in {0, 1}n+s1 \ {y1}. Similarly Bob defines H2 to map all points x ∈ S2 to y2 and
x ∈ {0, 1}n \ S1 to random points in {0, 1}n+s2 \ {y2}. As a result, Alice knows the full function
table of H1 and similarly Bob knows the full function table of H2.

Alice and Bob now run two copies of A in tandem as follows, where the state values stA and stB
are initially set to y1‖y2 (with only 2n+ s1 + s2 bits of communication).

Alice: She resumes/starts A(stA). She terminates if she receives a final guess x from Bob. She
answers all pending BD2 queries—there are none to start with—using the values just received
from Bob. She answers all BD1 queries using the function table of H1 until A queries BD2 or
terminates. If A terminates with a final guess x, she forwards x to Bob and terminates. Else
she saves the current state stA of A locally and forwards all BD1 answers that she has provided
to A since the last resumption to Bob. She hands the execution over to Bob.

Bob: He resumes A(stB). He terminates if he receives a final guess x from Alice. He answers all
pending BD1 queries using the values received from Alice. He answers all BD2 queries using
the function table of H2 until A queries BD1 or terminates. If A terminates with a final guess
x, he forwards x to Alice and terminates. Else he saves the current state stB of A locally and
forwards all BD2 answers that he has provided to A since the last resumption to Alice. He
hands the execution over to Alice.

We claim that Alice and Bob run A in an environment that is identical to the rPre game in
the 2-BRO model. First, we observe that the hash functions H1 and H2 sampled by Alice and
Bob implement two independent random oracles. The fact that H1 and H2 are independent follows
immediately from the simulation and the independence of S1 and S2. To see that H1 is a random
oracle we need to show that the probability that for any x and y we get H1(x) = y is 1/2n+s1 , where
the probability is over the coin tosses of Alice. Moreover, the probability should be the same even
when conditioned on the rest of H1 on points excluding x. To see this, let R := H1

(
{0, 1}n \ {x}

)
be

the rest of H1. Then we can write

Pr [H1(x) = y | R] = Pr [H1(x) = y | x ∈ S1 ∧ y 6= y1 ∧R] · Pr[x ∈ S1 ∧ y 6= y1 | R]

+ Pr [H1(x) = y | x ∈ S1 ∧ y = y1 ∧R] · Pr[x ∈ S1 ∧ y = y1 | R]



94 Chapter 6. Simple Combiners for Backdoored Random Oracles

+ Pr [H1(x) = y | x 6∈ S1 ∧ y 6= y1 ∧R] · Pr[x 6∈ S1 ∧ y 6= y1 | R]

+ Pr [H1(x) = y | x 6∈ S1 ∧ y = y1 ∧R] · Pr[x 6∈ S1 ∧ y = y1 | R]

= 0 · Pr[x ∈ S1 ∧ y 6= y1 | R] + 1 · Pr[x ∈ S1 ∧ y = y1 | R]

+ 1
2n+s1 − 1 · Pr[x 6∈ S1 ∧ y 6= y1 | R] + 0 · Pr[x 6∈ S1 ∧ y = y1 | R]

= p

2n+s1
+ 1

2n+s1 − 1
(
1− 1

2n+s1

)
(1− p)

= 1
2n+s1

The argument for H2 is analogous. We also need to show that the challenge value y1‖y2 as sampled
above is uniformly chosen in the co-domain of the combiner. To see this note that y1 is randomly
chosen in the co-domain of H1. Further the distribution of the preimage set S1 induced by the
Bernoulli distribution with parameter p is exactly that of preimages of a point in the co-domain
(and, we emphasize, not in the image) of H1. Similarly y2 is chosen uniformly in the co-domain of
H2. Since the co-domain of the combiner is the concatenation of the co-domains of the two hash
functions, we get that y1‖y2 is uniformly distributed.

Thus Alice and Bob faithfully run A in the environment that it expects by answering its backdoor
queries using their knowledge of the full tables of the two functions. WheneverA succeeds in breaking
the rPre security of CH1,H2

‖ , the protocol above computes an x ∈ S1∩S2 or says that no such x exists.
In either case, the protocol solves the set-intersection problem. Thus the correctness of this protocol
is at least the advantage of the adversary A.

This execution of A by Alice and Bob ensures that oracle queries do not affect the communication
cost of Alice and Bob. It is only their answers (plus the final x) that affects the communication
cost, since the queried functions f are locally computed and only their answers are communicated.
If A makes Q(A) queries to BD1 and BD2 in total and each query has a 1-bit output, the total
communication complexity of the protocol is Q(A) plus those bits needed to communicate y1 and
y2 and the final guess x.

We now check that the parameters for hash functions can be set such that their concatenation is
a one-way function.

Corollary 6.13. For H1,H2 ∈ Fun[n, (1− σ)n/2] with 0 < σ < 1/3 the concatenation combiner is
a strongly one-way compressing function in Fun[n, (1− σ)n].

Proof. The feasible region in Figure 6.3 for α = β consists of 1/3 < α < 1/2, i.e., where set-
intersection is hard for protocols with arbitrary error. In our setting α = β = (1−σ)/2, which means
concatenation is strongly rPre secure when 0 < σ < 1/3. Since the combined function is compressing
(where γ = 1/(1 − σ) > 1), the image-uniformity bound is negligible and also Pr[y ∈ img(CHi)] in
Lemma 6.8 is overwhelming. Using these bounds and Lemma 6.8 we get that strong rPre security
implies strong OW security.

We conjecture that concatenation is strongly one-way even for 1/3 ≤ σ < 1. The intuition is
that in the one-way game a point is “planted” in a large intersection, which seems hard to discover
without essentially communicating the entire intersection. Tighter lower bounds for set-intersection
can be used to establish this in the future.
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6.5.2 PRG Security

We now consider the PRG security of the concatenation combiner. Our reduction in Theorem 6.12
from rPre to set-intersection can be easily adapted to the decisional setting. That is, we can show
that a decisional variant of rPre can be reduced to the set-disjointness problem. The decisional
variant of rPre asks the adversary to decide whether or not a random co-domain point y1‖y2 has a
preimage. This is exactly the oblivious PRG (oPRG) game that we defined in Figure 6.2. We get
the following result.

Theorem 6.14. Let H1 ∈ Fun[n, n + s1] and H2 ∈ Fun[n, n + s2] and CH1,H2
‖ (x) := H1(x)‖H2(x).

Then for any adversary A against the oPRG security of CH1,H2
‖ in the 2-BRO model there is a

2-party protocol π against set-disjointness with the distribution µ := µ(p, q) where p := 1/2n+s1 and
q := 1/2n+s2 and such that

Advoprg
CH1,H2
‖

(A) ≤ Advdisj
µ (π) and Dµ(π) ≤ Q(A) + 2n+ s1 + s2 + 1 .

We next check if concrete parameters can be set to obtain an expanding PRG.

Corollary 6.15. For H1 ∈ Fun[n, n/2 + 1] and H2 ∈ Fun[n, n/2] the concatenation combiner gives
a weak PRG in Fun[n, n+ 1].

Proof. The theorem gives a reduction to the set-disjointness problem with parameters p = 1/2n/2+1

and q = 1/2n/2. For large n we get, δ = 2, p0 = 1−e−1/2 and (δ−1)p0/(4+δ) < 0.0656, which means
we can set ε = 0.065. By set-disjointness lower bound, this means any adversary with advantage at
least 0.935 must place at least O(2n/2) queries in total to its oracles.

By Lemma 6.1 we have that Adviu
CHi (B) ≤ e−C ·

(
C/(1− e−C)− 1

)
. In our case C = 1/2 < 1,

and the right hand side above is upper bounded by 0.165. (We have removed the negligible terms
and instead approximated the constants by slightly larger values.)

In Lemma 6.9 in order to meet the bound Advoprg
CHi (C) < (2−α−Adviu

CHi (B)) ·α/(1−α), we would
need 0.935 ≤ (2−α− 0.165) ·α/(1−α). After some algebra this gives α ≥ 0.39343. With m = n+ s,
we need to have 1− e−2−s ≥ 0.39343, which means s ≤ 1.00018. Thus we can set s = 1 (which also
satisfies s ≥ 0.53 as required in the lemma) and get a combiner that expands by one bit.

We can obtain a strong PRG by amplification. However, we need an amplifier that woks on
PRGs with (very) small stretch. Such a construction is given by Maurer and Tessaro [MT10]. In
their so-called concatenate-and-extract (CaE) construction one sets

PRG(r, x1, . . . , xm) := r‖Ext
(
r,CH1,H2
‖ (x1)‖ · · · ‖CH1,H2

‖ (xm)
)
,

where Ext is a sufficiently good randomness extractor, for instance a universal hash function. We
refer to the original work for concrete parameters. It is safe to assume the extractor is backdoor-free,
since it is an information-theoretic object and relatively easy to implement.

6.5.3 Collision-Resistance

The classical result of Simon [Sim98] shows that collision resistance relies on qualitatively stronger
assumptions than one-way security. In the theorem below we prove collision resistance based on the
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hardness of the multi-set 2INT problem as defined in Section 6.4. As discussed in the final remark
of that section, we do not expect that a reduction to the INT problem exists.

Theorem 6.16. Let H1 ∈ Fun[n, n + s1] and H2 ∈ Fun[n, n + s2] and CH1,H2
‖ (x) := H1(x)‖H2(x).

Then for any adversary A against the collision resistance of CH1,H2
‖ in the 2-BRO model there is a

2-party protocol π′ against multi-set double-intersection problem (M1,M2)-2INT over µ′ := µ′(p′, q′)
with p′ := 2n ln 2/2n+s1 and q′ := 2n ln 2/2n+s2 and where Alice holds M1 := 2n+s1 sets and Bob
holds M2 := 2n+s2 sets such that

Advcr
CH1,H2
‖

(A) ≤ Advmi-2int
µ′ (π′) + 2 · 2−n and Dµ′(π′) ≤ Q(A) + 4n+ s1 + s2 .

Proof. We follow an overall strategy that is similar to the one for the rPre reduction. For each
i ∈ {0, 1}n+s1 , Alice sets H−1 (i) := Si and for each j ∈ {0, 1}n+s2 Bob sets H−2 (j) := Tj and they
simulate the two hash functions. However, this leads to a problem: Si’s are not necessarily disjoint
and, furthermore, their union does not necessarily cover the entire domain {0, 1}n. (The same is true
for Tj ’s.) Hence, this way of simulation leads to some H1 and H2 that are not random oracles, even
if defined on the whole domain. Put differently, the distributions of sets formed by hash preimages
of co-domain points do not match independently chosen sets from a binomial distribution.

We handle this problem in two step. The first step is a direct reduction to a “partitioned”
modification of the multi-set 2INT problem. In this partitioned problem Alice gets sets Si := H−1 (i)
for i ∈ {0, 1}n+s1 and a random oracle H1 ∈ Fun[n, n + s1]. Similarly, Bob gets sets Tj := H−2 (j)
for j ∈ {0, 1}n+s2 and an independent random oracle H2 ∈ Fun[n, n + s2]. Their goal is to find a
tuple (i, j, x, x′) with x 6= x′ such that x, x′ ∈ Si ∩ Tj . Thus these sets exactly correspond to hash
preimages as needed in the reduction above, and a solution would translate to a collision for the
combined hash function.

As the second and final step we show below (in Lemma 6.17) that the hardness of the (standard)
multi-set double-intersection problem implies the hardness of the partitioned problem with an
increase in the Bernoulli parameter with the same number of sets involved.

Lemma 6.17 (Partitioned =⇒ Independent). For any two-party protocol π against the partitioned
multi-set 2INT problem there is a two-party protocol π′ against multi-set 2INT problem such that

Advmi-2int
µ′ (π′) ≥ Advpart-2int

µ (π)− 2 · 2−n and Dµ′(π′) ≤ Dµ(π) .

Here µ := µ(p, q) is the distribution induced by hash preimages in {0, 1}n and µ′ := µ′(p′, q′) is a
product Bernoulli with p′ := 2n ln 2 · p and q′ := 2n ln 2 · q.

Proof. To focus on the core ideas, we simplify and let M1 = M2 = M = 2n+s and p = q = 1/2n+s.
Suppose we have sets Si and Tj for i = 1, . . . ,M and j = 1, . . . ,M as an instance for the multi-set
2INT. Let p′ = q′ = 2n ln 2 · p. Then

Pr[∃x ∈ {0, 1}n ∀i ∈ [M ] : x 6∈ Si] ≤ 2n Pr[∀i ∈ [M ] : x 6∈ Si] ≤ 2n(1− p′)1/p ≤ 2ne−2n ln 2 = 2−n ,

which is negligible. Thus with these parameters the sets Si (and similarly Tj) will, with overwhelming
probability, cover the full domain, i.e.,

⋃M
i=1 Si = {0, 1}n.
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ReDist(S1, . . . , SM )

for x ∈ {0, 1}n do
Ax := {i ∈ [M ] : x ∈ Si}
ix ←← Ax

for j ∈ [M ] ∧ j 6= ix do

S̃j ← S̃j \ {x}

return (S̃1, . . . , S̃M )

Figure 6.4: Redistribution of elements to form a partition.

Our next step it to redistribute the elements among the sets so that they form partitions. We do
this via the algorithm ReDist shown in Figure 6.4. ReDist iterates through elements x in the domain
and leaves x in exactly one of the sets. Note that by the above covering property such a set always
exits.

This procedure will be applied to Si (resp., Tj) to produce non-overlapping sets S̃i (resp. T̃j).
Furthermore, we always have that S̃i ⊆ Si and T̃i ⊆ Ti, since elements are only deleted from the
sets and never added to them. Thus S̃i ∩ T̃j ⊆ Si ∩Tj as well, and this means that any solution with
respect to the tweaked sets will also be a valid solution for the original (binomial) sets.

We still need to show that the distribution of the tweaked sets is identical to that given by hash
preimages under a random oracle. Let Ex,i be the event that x ∈ S̃i. Since the algorithm does not
treat any of the i’s in a special way, we claim that Pr[Ex,i] is independent of i. Indeed for any i, j
we have

Pr[Ex,i]=Pr[x ∈ Si] Pr[ix = i|x ∈ Si]=Pr[x ∈ Sj ] Pr[ix = j|x ∈ Sj ]=Pr[Ex,j ].

This is because Pr[x ∈ Si] = Pr[x ∈ Sj ] and Pr[ix = i|x ∈ Si] = Pr[ix = j|x ∈ Sj ], since Si
and Sj are independent sets with the same Bernoulli parameter. If we call the above common
probability px, since x is guaranteed to belong to one of the M sets, we have that

∑
i∈[M ] px = 1.

Thus px = 1/M = Pr[H1(x) = i]. Note that the algorithm assigns different values of x independently
of all other values already assigned, we get that the event H1(x) = i is independent for different x.

Finally, solutions with respect to the tweaked sets always exist when s1 + s2 < 0. This is because
the problem is equivalent to finding collisions for a function H1(x)‖H2(x) that is compressing, which
necessarily exist.

The birthday attack gives a 2max(n+s1,n+s2)/2 upper bound on the security of the combined hash
function. Balancing the digest lengths with s1 = s2 = −n/2, leads to a maximum collision security
of at most 2n/4. Proving a lower bound, on the other hand, remains an interesting open problem.
We formulate a conjecture towards proving this next.

Conjecture 6.1. The multi-set double-intersection problem over binomial sets in a universe of size
N with p = q = 1/

√
N and

√
N sets for each party has communication complexity

Dε
µ(p,q)((

√
N,
√
N)-2INT) ≥ Ω̃(N1/4),
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for a sufficiently small protocol error ε and where Ω̃ hides logarithmic factors.

We note that a lower bound for protocols with a sufficiently small error would be sufficient for
feasibility results as collision resistance can also be amplified in a black-box way [CRS+07].

6.6 The Cascade Combiner in the 2-BRO Model

We now look at the security of the cascade combiner CH1,H2
◦ (x) := H2(H1(x)) in the 2-BRO model,

where H1 ∈ Fun[n, n + s1] and H2 ∈ Fun[n + s1, n + s1 + s2]. We will prove one-way security and
pseudorandomness based on set-intersection and set-disjointness respectively, and collision resistance
based on the hardness of the multi-set double-intersection problem given multiple instances for one
party and a single set for the other.

6.6.1 One-Way Security

Here we give a reduction from the random preimage resistance (rPre) of the cascade combiner to
hardness of set-intersection in an approach relatively similar to the one for concatenation combiner.

Theorem 6.18. Let H1 ∈ Fun[n, n+s1] and H2 ∈ Fun[n+s1, n+s1+s2] and CH1,H2
◦ (x) := H2(H1(x)).

Then for large enough n and any adversary A against the rPre security of CH1,H2
◦ in the 2-BRO

model there is a 2-party protocol π against set-intersection with µ := µ(p, q) where p := 1/2s1 and
q := 1/2n+s1+s2 and such that

Advrpre
CH1,H2
◦

(A) ≤ Advint
µ (π) +

√
n2−n/2(1 + 2−s2−s1) and Dµ(π) ≤ Q(A) + 3n+ 2s1 + s2.

Proof. We follow a strategy similar to the reductions for the concatenation combiner in Section 6.5.
Given a random y∗ ∈ {0, 1}n+s1+s2 the task of the adversary A against the rPre security of CH1,H2

◦

is to a find a z such that CH1,H2
◦ (z) = y∗. With such a z, one can then also compute x := H1(z) and

conclude that x ∈ I ∩ T where

I := H1({0, 1}n) and T := H−2 (y∗)

with I, T ⊆ {0, 1}n+s1 . The set T is binomial with parameter Pr[y ∈ T ] = 1/2n+s1+s2 . Hence Bob
can program a random oracle H2 similar to the proof of Theorem 6.12 in a way that H−2 (y∗) = T

holds for a randomly chosen y∗ ∈ {0, 1}n+s1+s2 . However, although set I appears to be binomial,

Pr[x ∈ I] = 1− Pr[∀z : H1(z) 6= x] = 1− (1− 1/2n+s1)2n

it is not, since these events are not independent for different values of x. In particular, observe that
we always have |I| ≤ 2n for a set of images I, whereas this is not always the case for a binomial set.

Our strategy to deal with this, and ultimately construct a protocol π for solving set-intersection,
is to start with a binomial set S (Alice’s input), and program H1 on all x ∈ {0, 1}n to values y that
will be taken from S, but the values are also set to collide with the “right” probability. This will
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HashSam(S)

X ← ∅; Y ← ∅
for i = 1, . . . , 2n do
x←← {0, 1}n \X; X ← X ∪ {x}
b←← Ber(|Y |/2m)
if b = 1 then y ←← Y

if b = 0 ∧ S = ∅ then
y ←← {0, 1}m \ Y ; Y ←← Y ∪ {y}

if b = 0 ∧ S 6= ∅ then
y ←← S; Y ← Y ∪ {y}; S ← S \ {y}

H1 ← H1 : [x 7→ y]
return H1

Figure 6.5: Hash sampler centered around a binomial set S.

ensure that the image of H1 contains most of S and is also distributed as the image of a random
oracle.

We proceed as follows. Initially the set of assigned domain points X and assigned co-domain
points Y are empty. We then iterate through x ∈ {0, 1}n in a random order. A bit b at each iteration
decides if the hash value y for x should collide with a previously assigned value or not. If so, we
sample y from the set of already assigned values Y . Otherwise, y should be a non-colliding value and
we sample it from S if S is non-empty (and remove y from S), or otherwise we sample it outside the
already assigned points Y . The pseudo-code for this algorithm, which we call HashSam, is shown in
Figure 6.5.

Setting m := n+ s1, we now need to check that (1) the returned hash function H1 is distributed
as a random oracle in Fun[n,m] when the set S is binomial with parameter p = 1/2s1 , and (2) if
x ∈ H1({0, 1}n) ∩ H−2 (y∗), then we also have that x ∈ S ∩ T with good probability.

We first prove (1). The intuition is that the algorithm treats all inputs and outputs in a uniform
way, and hence no particular values are special. Formally, let x∗ and y∗ be any fixed values. We show
that Pr[H1(x∗) = y∗] = 1/2m, even given the previously assigned values. We use a subscript i to
denote the values of various variables in the i-th iteration. Looking at different execution branches
of the algorithm we can calculate Pr[yi = y∗|xi = x∗, Yi, Xi] as

Pr[bi = 1] Pr[y∗ ∈ Yi]
1
|Yi|

+ Pr[bi = 0]
(

Pr[Si = ∅] Pr[y∗ 6∈ Yi]
1

2m − |Yi|

+ Pr[Si 6= ∅] Pr[y∗ ∈ Si]
1
|Si|

)
.

Letting θi := Pr[Si = ∅] we can simplify to

|Yi|
2m
|Yi|
2m

1
|Yi|

+
(

1− |Yi|2m
)(
θi
(
1− |Yi|2m

) 1
2m − |Yi|

+ (1− θi)
|Si|
2m

1
|Si|

)
= 1

2m .
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Note we have used the fact that Si is a binomial set in Pr[y∗ ∈ Si] = |Si|/2m. Hence

Pr[H1(x∗) = y∗|Y,X] =
2n∑
i=1

Pr[yi = y∗|xi = x∗, Yi, Xi] Pr[xi = x∗] = 1
2m .

Therefore, the probability of sampling any given hash function is (1/2m)2n , as required.
Let us now consider (2). When I ⊆ S, which is the case where images are never picked from

outside of S (i.e., the second if-statement has not ever been true), any solution with respect to I is
also one with respect to S, in other words, solutions are not lost. Hence we only look at the case
S ⊆ I and bound |I \ S| = |I| − |S|. This corresponds to the setting, where all elements of S are in
I, and once S has become empty, potentially new elements are also added to I. Since |I| ≤ 2n and
E[|S|] = 2n+s1/2s1 = 2n, we get that for any t

Pr[|I| − |S| > t] ≤ Pr[2n − |S| > t] = Pr[E[|S|]− |S| > t] .

Applying the Chernoff bounds we obtain

Pr
[
E[|S|]− |S| > tE[|S|]

]
≤ e−t

2/(2+t)E[|S|] .

Setting t :=
√
n/2n, we get with overwhelming probability (of at least 1−

√
n · 2−n/2) that |I \S| ≤

√
n2n/2 . Hence T ∩ (I \ S) will be non-empty with negligible probability

√
n2−n/2−s1−s2 , in which

case if x ∈ I ∩ T =⇒ x ∈ S ∩ T .
For the communication complexity of π note that it is upper bounded by Q(A) (similar to all

reductions) plus n+ s1 + s2 bits for communicating y∗, n bits as the output of A which potentially
needs to reach Alice, such that she can compute and output its image, and n+ s1 bits to send (as
the final message) the element in the intersection of two sets.

For hash functions H1 ∈ Fun[n, (2+σ)n] and H2 ∈ Fun[(2+σ)n, (1+σ)n]) we have a reduction to
set-intersection with parameters N = 2(2+σ)n, p = 1/2(1+σ)n, and q = 1/2(1+σ)n. Thus with notation
as in the description of the feasible region in Figure 6.3 we have that α = β = (1 + σ)/(2 + σ).
As in Corollary 6.13 we would need that the point (α, β) lies in the feasible region for 1/3 <

(1 + σ)/(2 + σ) < 1/2, which means −1/2 < σ < 0. Since the combined function is compressing
(with γ = 1/(1 +σ) > 1) and p◦ ≈ 1− e−2−σ·n is negligible, the image uniformity bound is negligible
and also Pr[y ∈ img(CHi)] in Lemma 6.8 is overwhelming. Hence, similarly to Corollary 6.13 we get
strong OW security.

6.6.2 PRG and CR Security

Here we outline how to treat the PRG security and collision resistance of the cascade combiner. We
omit the proofs as the techniques and proof structures are similar to our other results above.

In proving oblivious PRG security of the cascade construction, the reduction is identical to the
one given for rPre security in Theorem 6.18, except that the underlying assumption is set-disjointness.
Setting s1 = 2n (H1 is length doubling) and s2 = −2n+ 1 (H2 compresses by almost a factor of 3)
leads to a reduction to an instance of set-intersection with parameters N = 23n, p = 1/22n, and
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q = 1/2n+1. In this case δ = 2 and p0 = 1−e−1/2. With these parameters we can carry out an analysis
similar to Corollary 6.15: We set the error ε = 0.065 which is smaller than (δ− 1)p0/(4 + δ) < 0.0656
as required in Theorem 6.10 for an exponential number of queries. The combined hash function maps
n bits to n+ 1 bits and hence C = 1/2. Furthermore, p◦ is negligible as a function from n bits to
3n bits is injective with overwhelming probability. Thus we can apply Lemma 6.9 with s = 1 as in
Corollary 6.15 to get a weak PRG.

We can treat the collision resistance of cascade similarly. The difference is that in the reduction
Alice will use the HashSam algorithm in Figure 6.5 to adapt a (single) binomial set S that she holds
to a hash image set I. On the other hand, Bob uses the ReDist algorithm in Figure 6.4 to redistribute
elements in multiple binomial sets that he holds so that they form a partition of the entire domain
of H2. The rest of the proof proceeds similarly to Lemma 6.17. For setting parameters, observe that
any collision for H1 is necessarily a collision for H2(H1(·)). Since collisions for H1 can be easily found
using BD1, we need H1 to be injective. For example, s1 = 2n (co-domain points are 3n bits) would
lead to an injective H1 with overwhelming probability.

6.7 The XOR Combiner in the 2-BRO Model

In this section we study the security of the xor combiner CH1,H2
⊕ (x) := H1(x)⊕ H2(x) in the 2-BRO

model, where both H1,H2 ∈ Fun[n, n+ s]. We will prove one-way security based on the hardness of
the set-intersection problem and briefly discuss PRG security and collision resistance. In the next
chapter, specifically Section 7.3, we show that security of this combiner may go well beyond the
three properties discussed in this section: there we prove indifferentiability against adversaries with
bounded adaptivity with respect to the backdoor oracle queries.

6.7.1 One-Way Security

We prove rPre-security of the xor combiner similarly to the previous combiners. Although the
communication complexity problem directly underlying our reduction is multi-set, we can still relate
it to a standard single-instance INT problem, for which lower bounds are known.

Theorem 6.19. Let H1,H2 ∈ Fun[n, n+s] and CH1,H2
⊕ (x) := H1(x)⊕H2(x). Then for any adversary

A against the rPre security of CH1,H2
⊕ in the 2-BRO model there is a 2-party protocol π against

set-intersection with the distribution µ = µ(p′, q′) where p′ = q′ = 2n ln 2/2n+s and such that

Advrpre
CH1,H2
⊕

(A) ≤ Advint
µ (π) + 2 · 2−n and Dµ(π) ≤ Q(A) + 4n+ 2s .

Proof. Similarly to Theorem 6.16 we present the proof in two steps: we identify the underlying
communication complexity problem and then relate it to a more standard one, for which we have
proven lower bounds.

In the rPre game for the xor combiner an adversary A is given a random point y∗ ∈ {0, 1}n+s

and its task is to find a point x∗ ∈ {0, 1}n such that H1(x∗)⊕H2(x∗) = y∗. Such an adversary exists
iff there is an adversary that can output a pair (i, x∗) such that H1(x∗) = i and H2(x∗) = i ⊕ y∗.
That is, this adversary finds an x∗ ∈ Si ∩ Ti⊕y∗ , where Si := H−1 (i) and Ti⊕y∗ := H−2 (i⊕ y∗).
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We simplify further. Given y∗, let H̃2(x∗) := H2(x∗)⊕ y∗. Then the problem becomes equivalent
to finding an x∗ ∈ Si ∩ T̃i where Si is as before and T̃i := H̃−2 (i). Thus the problem at hand is
(2n+s, 2n+s)-INT on a product binomial distribution with parameters p = q = 1/2n+s.

We can relate this problem to the single-instance set-intersection as follows. Suppose we have
an instance (S∗, T ∗) for set-intersection with parameters p′ := q′ := 2n ln 2 · p over subsets of the
universe {0, 1}(n+s)+n. We consider elements x = xl‖xr ∈ S∗ where xl ∈ {0, 1}n+s and xr ∈ {0, 1}n,
and compute the probability that the xr’s do not cover {0, 1}n as follows.

Pr[∃xr ∈ {0, 1}n ∀xl ∈ {0, 1}n+s : (xl‖xr) 6∈ S∗] ≤ 2n Pr[∀xl ∈ {0, 1}n+s : (xl‖xr) 6∈ S∗]

≤ 2n(1− p′)2n+s
≤ 2ne−2n ln 2 = 2−n ,

which is negligible. Thus with parameter p′, the xr’s in S∗ will cover {0, 1}n with overwhelming
probability. A similar result holds for T ∗. Thus if we define Sxl := {xr} and T̃xl := {xr} we will
have with overwhelming probability that⋃

xl∈{0,1}n+s

Sxl = {0, 1}n and
⋃

xl∈{0,1}n+s

T̃xl = {0, 1}n .

Our next step it to redistribute the elements among the sets so that they form partitions. As
in Lemma 6.17, we can do this using the ReDist algorithm of Figure 6.4. As shown in the proof of
Lemma 6.17, the sets output by ReDist will be correctly distributed as preimages under a random
oracle. Therefore, the two simulated functions H1 (by Alice) and H2 (by Bob) are random oracles
and they can run A in tandem (similar to the proof of Theorem 6.12). Finally, after A terminates
with a preimage xr ∈ {0, 1}n of y∗ under the combiner, Alice computes xl := H1(xr) and outputs
xl‖xr as an element in the intersection of S∗ and T ∗. (Since ReDist only removes duplicates, an
intersection will be found).

The communication complexity of such a protocol π run by Alice and Bob is bounded by the
query complexity of A, plus n + s bits for communicating y∗, n bits for potentially sending xr to
Alice, and 2n+ s for the final message being the element xl‖xr.

If H1,H2 ∈ Fun[n, (1 + σ)n], we have a reduction to INT with p′ = q′ = 2n ln 2/2(1+σ)n and a
universe of size N = 2n+(1+σ)n. We can write p′ (and q′) as 1/Nα with α = (1+σ)n−log(2n ln 2)

(2+σ)n . The
feasible region in Figure 6.3 for α = β consists of 1/3 < α < 1/2. These inequalities for n ≥ 128
translate to − 13

32 + 3
256 log (ln 2) ≈ −0.42 < σ < 0. For such parameters we thus get strong rPre

security. Furthermore, since σ < 0 the functions are (highly) compressing, which means the image
uniformity bound is negligible. With an analysis similar to Corollary 6.13 we get strong one-way
security.

6.7.2 PRG and CR Security

For oPRG security, a reduction to set-disjointness can be given following the structure of Theo-
rem 6.19. With H1,H2 ∈ Fun[n, n + s], we have N = 22n+s and p′ = q′ = 2n ln 2/2n+s in the
reduction and hence δ = 1/(Npq) = 2s/(2n ln 2)2. We set s = 2 logn+ 2, in which case we have that
δ = 1/(ln 2)2 > 1, and the set-disjointness lower bound is non-trivial (and is at least 2n−O(logn))
when the error ε < 0.067. This establishes the oPRG security of xor for s = 2 logn + 2. However,
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an attempt to show weak PRG security (as for the other combiners) fails. The term corresponding
to image uniformity bound in Lemma 6.1 when s = 2 logn+ 2 (i.e., when C := 1/2s = 1/(4n2)) is
less than 0.001 for n ≥ 12 (and hence small enough). However, in order to upper bound the PRG
advantage via Lemma 6.9, we would have to use Pr[y ∈ I] ≈ 1 − e−1/(4n2) ≈ 1

4n2 and thus would
need the overall bound 0.001 + (4n2 − 1) · (1 − ε) − (1 − 1

4n2 ) < 1. This means that ε should be
1 − O(1/n2), whereas the DISJ bound is only established for sufficiently small values of protocol
error. We conjecture, however, that the xor combiner is a PRG in 2-BRO for arbitrary stretch and
the issues with setting the parameters can be overcome with tighter proofs and lower bounds for
problems with distributions that match xor better.

Similarly, collision resistance of xor in 2-BRO is also conjectural. We, however, note that its
analysis can be based on a multi-set 2INT problem.

In the next chapter (cf. Section 7.3) , we continue exploring the security of the xor combiner in
more generality. There, we take a different approach and use different proof techniques to study the
power of xor in the context of indifferentiability.





Chapter 7
Indifferentiability-Combiners

for Backdoored Random Oracles

In this chapter we examine the possibility of building a hash function which is indifferentiable
from a backdoor-free random oracle by combining multiple backdoored random oracles. We make
considerable progress in this direction by showing that the xor combiner in the 2-BRO model goes
well beyond security against preprocessing attacks. Indeed it provides indifferentiability as long as
the adversary’s backdoor queries do not switch back and forth between the backdoor oracles more
than a logarithmic number of times. We also study a 2-out-of-3-source extractor in the 3-BRO model
and show that it achieves indifferentiability even with respect to a linear number of switches. To
prove these results we refine a technique by Göös et al. [GLM+15] for decomposing distributions with
high min-entropy into convex combinations of high min-entropy distributions with more structure
and show how this technique can be applied in more involved settings, where adaptive backdoor
queries are allowed. Finally, we define a notion of indifferentiability with auxiliary input, which is a
natural restriction of indifferentiability in the BRO model and provide two secure constructions.

My Scientific Contribution in this Chapter

The material in this chapter was published in [DFMT20a] and its full version [DFMT20b],
which are joint work with Yevgeniy Dodis, Pooya Farshim, and Stefano Tessaro. Recall that in
Chapter 6 we conjectured that the xor combiner in the 2-BRO model retains OW, PRG, and
CR-security for all stretch values. Pooya raised the question of whether this combiner in the
2-BRO model is indifferentiable from a random oracle. Pooya and I then discussed potential
indifferentiability simulators that took advantage of the decomposition technique. I developed the
refined decomposition technique of Section 7.2 with the help of Pooya, Stefano, and Yevgeniy. The
indifferentiability proof of xor in Section 7.3 and of the 2-out-of-3-source extractor in Section 7.4
are the result of many iterations and discussions with all authors. Stefano and Yevgeniy proposed
the idea of using an extractor-based combiner to achieve better bounds. Yevgeniy suggested
pairwise inner-product as a potential instantiation and the proof of Lemma 7.9, which we wrote
together. The parameter estimations for xor (at the end of Section 7.3) and for pairwise inner-
product (at the end of Section 7.4) were conducted jointly by all authors. The auxiliary-input
indifferentiability notions and achieving them via combiners and salting, included in Section 7.5,
were mainly conducted by Pooya, with my help.

7.1 Introduction

In the previous chapter, we studied the security of concatenation, cascade, and xor combiners in
the 2-BRO model. Using new types of reductions to problems with high communication complexity,
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we proved that central cryptographic security properties, such as one-way security, pseudorandom
generator security and collision resistance are indeed achievable by these combiners. However, reduc-
tions to communication complexity problems are at times tedious and very specific to the combiner.
Furthermore, hardness of the communication complexity problem underlying collision resistance,
i.e., multi-set double-intersection, is conjectural and remains to be proven. Moreover, a number of
deployed protocols have only been shown to be secure in the random-oracle model, and thus may rely
on security guarantees beyond one-wayness, pseudorandomness, or collision resistance. This raises
the question whether or not other cryptographic properties expected from a good hash function
are also met by these combiners. We formalize and study this question in the indifferentiability
framework (cf. Section 2.4.1), which has been immensely successful in justifying the soundness of
hash-function designs.

7.1.1 Indifferentiability in the k-BRO Model

The central question tackled in this chapter is whether combiners that are indifferentiable from
a conventional (backdoor-free) random oracle exist, when the underlying primitives are two (or
more) backdoored random oracles. For a more general definition of indifferentiability we refer to
Section 2.4.1 in the preliminaries. Recall that in the k-BRO model the underlying honest interfaces
are k random oracles Hi and the adversarial interfaces are the respective k backdoor oracles BDi.
Also let us recall the indifferentiability advantage of an adversary D with respect to a combiner
CH1,...,Hk in the k-BRO model and a simulator Sim := (SimH1, . . . ,SimHk,SimBD1, . . . ,SimBDk),
which we defined in Section 3.3.1 as

Advindiff
CH1,...,Hk ,Sim(D) :=

∣∣∣Pr
[
DCH1,...,Hk ,H1,...,Hk,BD1,...,BDk

]
−Pr

[
DRO,SimHRO

1 ,...,SimHRO
k ,SimBDRO

1 ,...,SimBDRO
k

] ∣∣∣ .
Here RO is a random oracle whose domain and co-domain match those of C. We emphasize that the
simulators do not get access to any backdoor oracles and have to simulate these on their own. This
ensures that any attack against a construction with backdoors translates to one against the random
oracles without any backdoors.

Let us consider the concatenation combiner H1(x)‖H2(x), where H1 and H2 are both backdoored.
This construction was shown in Section 6.5 to be one-way, PRG secure, and (conjecturally) collision
resistant if both underlying functions are highly compressing. Despite this, the concatenation com-
biner cannot be indifferentiable from a random oracle: using the backdoor oracle for H1, an attacker
can compute two inputs x and x′ such that H1(x) = H1(x′), query them to the construction and
return 1 iff the left sides of the outputs collide. However, any simulator attempting to find such a pair
with respect to a backdoor-free random oracle must place an exponentially large number of queries.
Note that attacks on the cascade combiner H2(H1(x)) were given in Section 6.3.2 for a wide range of
parameter regimes, leaving only the expand-then-compress case as potentially indifferentiable. On
the other hand, the xor combiner H1(x)⊕H2(x), which is simpler, more efficient and one of the most
common ways to combine hash functions, resists these. Furthermore, an indifferentiability proof of
the expand-then-compress cascade combiner seem to closely follow that of the xor combiner and
thus we focus on the latter here.
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Decomposition of distributions. When proving results in the presence of auxiliary input,
Uhruh [Unr07] observed that pre-computation (or leakage) on a random oracle can leak a sig-
nificant amount of information only on restricted parts of its support. The problem of dealing with
auxiliary input was later revised in a number of works [DGK17, CDGS18, CDG18]. In particular,
Coretti et al. [CDGS18], building on work in communication complexity, employed a pre-sampling
technique to prove a number of positive results in the RO model with auxiliary input (AI-RO) in a
more generic way. At a high level, this method permits writing a high min-entropy distribution (here,
over a set of functions) as the convex combination of a (large) number of distributions which are
fixed on a certain number of points and highly unpredictable on the rest, the so-called (p, 1−δ)-dense
distributions. Roughly speaking, such distributions are fixed on p points, while the min-entropy on
the remaining points is high and correlated with 1− δ. This decomposition technique was originally
introduced in the work of Göös et al. [GLM+15].

The simulator. Our indifferentiability simulator for the xor combiner builds on the technique to
decompose distributions into a convex combination of (p, 1− δ)-dense distributions. Simulation of
backdoor oracles is arguably quite natural and proceeds as follows. Starting with uniform random
oracles H1 and H2, on each backdoor query f for H1 the simulator computes z = f(H1) and updates
the distribution of the random oracle H1 to be the uniform distribution over all functions of the same
signature, conditioned on the output of f being equal to z. This distribution is then decomposed into
a convex combination of some (p, 1− δ)-dense distributions, from which one function H1 is sampled
by the simulator in order to respond to future queries. For all the fixed points, the simulator sets
the value of H2 consistently with the random oracle (and H1) and the distribution of H2 is updated
accordingly. An analogous procedure is implemented as the simulator for the second backdoored
random oracle.

Technical analysis. The first technical contribution of our work is a refinement of the decompo-
sition technique which can be used to adaptively decompose distributions after backdoor queries.
We show that this refinement is sufficiently powerful to allow proving indifferentiability up to a log-
arithmic (in the input size) number of query switches between the backdoor oracles. We prove this
via a sequence of games which are carefully designed so as to be compatible with the decomposition
technique. A key observation is that in contrast to previous works in the AI-RO model, we do not
replace the dense (intuitively, unpredictable) part of the distribution of random oracles with uniform:
queried backdoor functions “see” the entire table of the random oracle and this replacement would
result in a noticeable change. Second, we modify the number of fixed points in the (partially) dense
distributions so that progressively smaller sets of points are fixed. Even though each leakage corre-
sponds to fixing a large number of points, it is proportionally smaller than the previous number of
fixed points. Thus the overall bound that we obtain remains small. In order to overcome the bounded
switch restriction and prove full indifferentiability, one would require an improved decomposition
technique which fixes considerably less points after each leakage. We discuss this open question
briefly in Chapter 9.

Simulator efficiency. Our simulator runs in doubly exponential time in the bit-length of the
random oracle and thus is of use in information-theoretic settings. These include the vast majority
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of symmetric constructions. Protocols based on computational assumptions (such as public-key
encryption) escape this treatment: the overall adversary obtained via the composition theorem
(cf. Theorem 2.1) would run the decomposition algorithm and, hence, will not be poly-time. This
observation, however, also applies in more generality to the BRO model as the backdoor oracles
also allow for non-polynomial time computation, trivially breaking any computational assumption
if unrestricted. We leave exploring solutions around this to future work, but we will include some
discussion in Chapter 9.

An extractor-based combiner with improved security. We apply the above proof technique
to the analysis of an alternative combiner for three independent backdoored random oracles, which
relies on 2-out-of-3-source extractors that output good randomness as long as two out of the three
of the inputs have sufficient min-entropy. Given such an extractor Ext, our combiner is

CH1,H2,H3
3ext (x) := Ext

(
H1(x),H2(x),H3(x)

)
.

As mentioned above, our simulator for the xor combiner programs H2 on the fixed points for H1 (and
vice versa) using the random oracle. This results in a loss in the security level since dense values are
replaced with uniform values. In contrast, here the extractor ensures that image values are closer to
uniform and thus the overall loss is lower. We show that a 2-out-of-3-source extractor can tolerate
even a number of switches between the backdoor oracles which is linear in the size of the BRO inputs.
This gives us more hope for unbounded adaptivity, in case improved decomposition techniques are
found.

Composition. Let c denote the number of times the adversary switches between one backdoor
oracle to the other. Regarding the query complexities of our simulators, each query to a backdoor
oracle translates to roughly N1−2−c queries to the random oracle for the xor combiner and roughly
N1−3/(c+3) queries to the random oracle for the extractor combiner. This in particular means that,
for a wide range of parameters, composition is only meaningful with respect to security notions
whereby the random oracle can tolerate a large number of queries. This, for example, would be the
case for one-way, PRG, and PRF security notions where the security bounds are of the form O(q/N).
However, with respect to a smaller number of switches (as well as in the auxiliary-input setting with
no adaptivity), collision resistance can still be achieved.

7.1.2 Indifferentiability with Auxiliary Input

When our definition of indifferentiability is restricted so that only a single backdoor query to each
function at the onset is allowed, we obtain a notion that formalizes indifferentiability with auxiliary
input. This definition is interesting as it is sufficiently strong to allow for the generic replacement
of random oracles with iterative constructions even in the presence of preprocessing attacks, where
the adversary has potentially invested resources during an off-line phase to build-up data structures
that considerably speed up the actual on-line phase of the attack. Accordingly our positive results in
the BRO model when considered with no adaptivity translate to indifferentiability with independent
preprocessing attacks. To complement this picture, we also discuss the case of auxiliary-input indif-
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ferentiability with a single BRO and show, as expected, that a salted indifferentiable construction is
also indifferentiable in presence of an auxiliary input.

7.2 Refined Decomposition of High Min-Entropy
Distributions

Any distribution with high min-entropy can be written as a convex combination of distributions
that are fixed on a number of points and have high min-entropy on the rest. Such distributions are
referred to as (p, 1− δ)-dense distributions, for some number of points p ∈ N and some min-entropy
rate δ > 0. Formally, we have the following definitions (adopted from [GLM+15]) of (partially) dense
distributions, resp. probability density functions. Intuitively, bit strings from a dense distribution are
unpredictable not only as a whole but also in any of their substrings (or blocks) and any combination
of those substrings.

Definition 7.1 (Dense distributions). Let µ be a probability density function over the domain [M ]N .
Recall that for a random variable F ∼ µ and a set I ⊆ [N ], we denote by FI a random variable over
the domain [M ]|I| which corresponds to F projected on blocks determined by I. Then µ is called

• (1− δ)-dense if for the random variable F ∼ µ, it holds that for every subset I ⊆ [N ] we have
H∞(FI) ≥ (1− δ) · |I| · logM .

• (p, 1− δ)-dense if for the random variable F ∼ µ there exists a set I ⊆ [N ] of size |I| ≤ p such
that H∞(FI) = 0, while for every subset J ⊆ [N ] \ I we have H∞(FJ) ≥ (1− δ) · |J | · logM .
That is, µ is fixed on at most p coordinates and is (1− δ)-dense on the rest.

We call a distribution dense, if the corresponding probability density function is dense.

The decomposition technique introduced by Göös et al. [GLM+15] has its origins in communica-
tion complexity theory. We generalize this technique, with a terminology closer to that of Kothari
et al. [KMR17], in order to allow for adaptive leakage. The original lemma, also used by Coretti et
al. [CDGS18], can be easily derived as a special case of our lemma. For this, one assumes that the
starting distribution before the leakage was uniform, in other words (0, 1)-dense.

When proving results in the AI-RO model, Uhruh [Unr07] observed that pre-computation (or
leakage) on a random oracle can cause a significant decrease of its min-entropy only on restricted
parts of its support (i.e., at most on p points), causing that part to become practically fixed, while
the rest remains indistinguishable from random to a bounded-query distinguisher. This means that
for proofs in the AI-RO model, after fixing p coordinates of the random oracle, the rest can be
lazily sampled from a uniform distribution. Coretti et al. [CDGS18] recently gave a different and
tighter proof of this technique consisting of two main steps. First, the decomposition technique is
used to show that the distribution of a random oracle given some leakage is statistically close to a
(p, 1− δ)-dense distribution. Second, they prove that no bounded-query algorithm can distinguish a
(p, 1− δ)-dense distribution from one that is fixed on the same p points and is otherwise uniform (a
so-called p-bit-fixing distribution), as suggested by Unruh [Unr07].
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Since in the BRO model adaptive queries to the backdoor oracles are allowed, a function queried
to a backdoor oracle is able to “see” the entire random oracle, rather than a restricted part of it.
Hence, when analyzing the distribution of a random oracle after adaptive leakage, it is crucial that
we keep the distributions statistically close. In other words we use (p, 1 − δ)-dense distributions
instead of p-bit-fixing.

In the k-BRO model, we are concerned with multiple queries to the backdoor oracles, i.e., con-
tinuous and adaptive leakage that can depend on previously leaked information about both hash
functions. Intuitively, since the leakage function can be arbitrary, it can in particular depend on the
previously leaked values. We still need to argue that the distribution obtained after leakage about
a starting (pstrt, 1 − δstrt) distribution, which is not necessarily uniform, is also close to a convex
combination of (p, 1 − δ) distributions. Naturally, we have δ ≥ δstrt, since min-entropy decreases
after new leakage, and p ≥ pstrt, since additional points are fixed.

Looking ahead, in the indifferentiability proofs, this refined decomposition lemma allows us to
simply fix a new portion pfrsh of the simulated hash function after each leakage (i.e., backdoor query)
and not to worry about the rest, which still has high entropy and can be lazily sampled (from a
dense distribution) upon receiving the next query.

Lemma 7.1 (Refined decomposition after leakage). Let µ be a (pstrt, 1−δstrt)-dense density function
over [M ]N for some pstrt, δstrt ≥ 0. Let f : [M ]N → {0, 1}` be an arbitrary function and z ∈ {0, 1}`

be a bit string. Then for any pfrsh, γ > 0, the density function conditioned on the leakage µ|f(·)=z is
γ-close to a convex combination of finitely many (p, 1− δ)-dense density functions for some p and δ
such that

pstrt ≤ p ≤ pstrt + pfrsh and δstrt ≤ δ ≤
δstrt · logM · (N−pstrt) + `z + log γ−1

pfrsh · logM ,

where `z := H∞(G)−H∞(F ) is the min-entropy deficiency of F ∼ µ|f(·)=z compared to G ∼ µ.

Proof. This refined decomposition lemma differs from the original lemma in that the starting density
function µ is (pstrt, 1− δstrt)-dense. As a first step, we modify the original decomposition algorithm
from [GLM+15, KMR17] so that it additionally gets the set of pstrt indices Istrt ⊆ [N ] that are
already fixed in µ from the start.

Our refined decomposition algorithm RefinedDecomp, given below, recursively decomposes the
domain [M ]N , according to the density function after leakage µz := µ|f(·)=z, into d+ 1 partitions
D1, . . . , Dd, Derr ⊆ [M ]N such that

(⋃d
i=1Di

)
∪Derr = [M ]N , where err stands for erroneous. For

all i with 1 ≤ i ≤ d the partition Di defines a (p, 1− δ)-dense density function µz|Di .
Each recursive call on a domain D to RefinedDecomp (other than the call leading to Derr, which

we will discuss shortly) returns a pair (Di, Ii), where Di represents a subset of [M ]N , where the
images of all points in the set Ii ⊂ [N ] are fixed to the same values under all functions H ∈ Di. In
other words, we have HIi = αi for some αi ∈ [M ]|Ii|. The algorithm finds such a pair (Di, Ii) by
considering the biggest set Ii (excluding those points fixed from the start, i.e., Istrt) such that the
min-entropy of FIi (for F ∼ µz|D) is too small (as determined by the rate δ) and then finding some
αi which is a very likely value of FIi . Then Ii is returned with some Di as the partition that contains
all H with HIi = αi. The next recursive call will exclude Di from the considered domain.
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Decomposition halts either if the probability of a sample falling into the current domain is smaller
than γ (i.e., µz(D) ≤ γ) or the current distribution is already (pstrt, 1− δ)-dense. In both cases the
algorithm returns the current domain D together with an empty set. In the former case the returned
domain is marked as an erroneous domain Derr := D, since it may not define a (p, 1 − δ)-dense
distribution. Let us without loss of generality assume that µz is not (pstrt + pfrsh, 1 − δ)-dense, as
otherwise the claim holds trivially.

The formal definition of RefinedDecomp is given below. Before calling RefinedDecomp, we initialize
the desired min-entropy rate as δ := δstrt·logM ·(N−pstrt)+`z+log γ−1

pfrsh·logM .

RefinedDecomp[µz, δ, γ, Istrt](D)

if µz(D) ≤ γ then return (Derr ← D, ∅)

if µz|D is (|Istrt|, 1− δ)-dense then return (D, ∅)

for the random variable F ∼ µz|D let I ⊆ [N ] be a maximal set such that

H∞(FI) < (1− δ) · |I| · logM and I ∩ Istrt = ∅.

let α ∈ [M ]|I| be such that Pr[FI = α] > 2−(1−δ)·|I|·logM .

Dα ← D ∩ {H ∈ [M ]N | HI = α}

D6=α ← D ∩ {H ∈ [M ]N | HI 6= α}

return ((Dα, I),RefinedDecomp[µz, δ, γ, Istrt](D6=α))

Now we turn our attention to proving that every partition Di (other than Derr) returned by the
above decomposition algorithm defines a density function µz|Di which is (p, 1− δ)-dense.

Claim. For all i with 1 ≤ i ≤ d we have that µz|Di is (p, 1 − δstrt·logM ·(N−pstrt)+`z+log γ−1

pfrsh·logM )-dense,
where pstrt ≤ p ≤ pstrt + pfrsh.

Proof. Let δ := δstrt·logM ·(N−pstrt)+`z+log γ−1

pfrsh·logM . Let I be the set of freshly fixed points in µz|Di and
I ∪ Istrt := [N ]\(I∪Istrt). Let α∪ ∈ [N ]|I∪Istrt| be such that HI∪Istrt = α∪ for all functions H←← µz|Di .
We show the claim in two steps. First we argue for the (1− δ)-density of µz|Di on values projected
to I ∪ Istrt and in a second step we upper bound the size of I.

1. Suppose to the contrary that µz|Di is not (1 − δ)-dense on I ∪ Istrt. Then there must exist
a non-empty set which violates the density property. That is, there exists a non-empty set
J ⊆ I ∪ Istrt and some β ∈ [M ]|J| such that

Pr[FJ = β] = Pr[FJ = β | FI∪Istrt = α∪] > 2−(1−δ)·|J|·logM ,

with probabilities taken over the random choice of functions according to the random variable
F corresponding to the density function µz|Di , i.e., F ∼ µz|Di . Now the union of the three
sets I∗ := I ∪ Istrt ∪ J forms a new set such that for some value β∗ ∈ [M ]|I∪Istrt∪J| we have

Pr[FI∗ = β∗] = Pr[FI∪Istrt = α∪ ∧ FJ = β]

= Pr[FI∪Istrt = α∪] · Pr[FJ = β|FI∪Istrt = α∪]

> 2−(1−δ)·|I∪Istrt|·logM · 2−(1−δ)·|J|·logM
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= 2−(1−δ)·|I∪Istrt∪J|·logM .

Since J was assumed to be non-empty and disjoint from I ∪ Istrt (and in particular with I), its
existence violates the maximality of I. Therefore, we conclude that FI∪Istrt is (1− δ) dense.

2. We now bound the size of I, given that δ = δstrt·logM ·(N−pstrt)+`z+log γ−1

pfrsh·logM . Let F ∼ µz and
G ∼ µ. We have H∞(F ) = H∞(G) − `z ≥ (1 − δstrt) · (N − pstrt). logM − `z, where the
inequality holds, since µ is (1 − δstrt)-dense when ignoring pstrt many fixed values. For an
arbitrary β ∈ [M ]|I| we can write

Pr
µz|Di

[FI = β] ≤ Pr
µz

[FI = β]/µz(Di)

≤ Pr
µz

[FI = β]/γ

=
∑

β′∈[M ]N−|I|−|Istrt|
Pr
µz

[FI = β ∧ F[N ]\(I∪Istrt) = β′]/γ

≤ 2(N−|I|−pstrt)·logM · 2−H∞(F )/γ (7.1)

≤ 2(N−|I|−pstrt)·logM · 2−((1−δstrt)·(N−pstrt)·logM−`z)/γ

= 2δstrt·N ·logM−δstrt·pstrt·logM−|I|·logM+`z/γ

= 2δstrt·logM ·(N−pstrt)−|I|·logM+`z+log γ−1
.

By definition of the decomposition there exists an α ∈ [M ]I such that Prµz|Di [FI = α] >
2−(1−δ)·|I|·logM . Therefore, we obtain

|I| ≤ δstrt · logM · (N − pstrt) + `z + log γ−1

δ · logM .

Substituting δ by δstrt·logM ·(N−pstrt)+`z+log γ−1

pfrsh·logM , we obtain |I| ≤ pfrsh and, therefore, for the
total number of fixed points p := |I ∪ Istrt| we get

pstrt ≤ p ≤ pstrt + pfrsh ,

as stated in the claim.

Overall µz can be written as a convex combination of µz|D1 , . . . , µz|Dd and µz|Derr , i.e.,

µz =
d∑
i=1

µz(Di) · µz|Di + µz(Derr) · µz|Derr .

Since µz(Derr) ≤ γ when the algorithm RefinedDecomp terminates, we can say that µz is γ-close to
a convex combination of (p, 1− δ)-distributions.
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A special case of the above lemma for a uniform (i.e., (0, 1)-dense) starting distribution µ, where
pstrt = 0 and δstrt = 0, implies the bound δ ≤ (`z + log γ−1)/(pfrsh · logM) used by Coretti et
al. [CDGS18].

On achieving better bounds. Note that the coefficient of δstrt in the right hand side of the
inequality established in the above lemma is of the order O(N/pfrsh). Looking ahead (see discussions
on parameter estimation for indifferentiability proofs) this results in a large increase in the number
of points that the simulator needs to fix in order to make sure that the advantage of differentiators
remains small. Fixing these points by the simulator needs to happen every time before a differentiator
switches from querying one backdoor oracle to the other. Thus any improvement in the bound
established in this lemma would translate to tolerating a higher level of adaptivity with respect
to the number of switches between backdoor oracles and/or obtaining an improved bound on the
indifferentiability. In our current proof, when estimating the number of fixed points, the step to
Line 7.1 above only uses the min-entropy of F . There may be a more fine-grained proof which uses
the fact that the distribution before leakage was actually (1− δ)-dense, which is more desirable than
a high min-entropy distribution. We leave exploring possible improvements for future.

When ` bits of information is leaked about a random variable, it is hard to make a generic
statement about how much the min-entropy of that random variable actually falls. Below we show,
however, that the expected min-entropy deficiency after leaking ` bits of information can be upper-
bounded by ` bits. We will make use of this lemma later in our indifferentiability proofs.

Lemma 7.2. Let F be a random variable over [M ]N and f : [M ]N → {0, 1}` be an arbitrary
function. Let `z := H∞(F )−H∞(F |f(F )=z) be the min-entropy deficiency of F |f(F )=z. Then,
we have

Ez∈f(supp(F ))[`z] ≤ ` .

Proof. Recall that H̃∞(A|B) := − log
(
Eb
[

maxa Pr[A=a|B=b]
])

defines the average min-entropy
of A, given B.

Ez∈f(supp(F))[`z] = H∞(F)− Ez∈f(supp(F))[H∞(F|f(F) = z)]

≤ H∞(F)− H̃∞(F|f(F) = z) (7.2)

≤ H∞(F)−H∞(F) + log |f(supp(F))| (7.3)

≤ ` ,

where for Line 7.2 we use Jensen’s inequality and for Line 7.3 we use [DRS04, Lemma 2.2.b].1

1The lemma is as follows. Let A, B be random variables. Then we have H̃∞(A|B) ≥ H∞(A, B)−n ≥ H∞(A)−n,
where B has at most 2n possible values.
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7.3 Indifferentiability of the XOR Combiner
in the 2-BRO Model

In this section we study the indifferentiability of the xor combiner CH1,H2
⊕ (x) := H1(x) ⊕ H2(x) in

the 2-BRO model from a random oracle RO. We show indifferentiability against adversaries that
switch between the two backdoor oracles BD1 and BD2 only a logarithmic number of times in the
input size of the hash functions, while making arbitrary queries to the underlying BROs H1 and
H2, as well as to the random oracle RO. To prove indifferentiability we need to show the existence
of a simulator Sim := (SimHRO

1 ,SimHRO
2 ,SimBDRO

1 ,SimBDRO
2 ) such that no distinguisher placing a

“reasonable” number of queries can distinguish

(CH1,H2
⊕ ,H1,H2,BD1,BD2) and (RO,SimHRO

1 ,SimHRO
2 ,SimBDRO

1 ,SimBDRO
2 ) .

Such a simulator is described in Figure 7.1. As discussed in the introduction to this chapter, our
simulator is not efficient, since it needs to sample entire BROs and decompose distributions, which
require exponential memory and time. However, the result is still useful in information-theoretic
settings, including the vast majority of symmetric constructions.

Simulating the evaluation queries to H1 and H2 is quite straightforward. In simulating the
backdoor queries, we take advantage of the refined decomposition technique (discussed in Section 7.2)
for transforming high min-entropy distributions on functions into convex combinations of distributions
on functions that have a number of fixed points and are dense otherwise. The backdoor simulator
SimBD1 (resp. SimBD2) computes the queried function f on the truth table of H1 (resp. H2), where
H1 and H2 are initialized by picking two functions uniformly at random. For the sake of simplicity,
we consider an adversary that makes Q consecutive queries, ignoring evaluation and RO-queries in
between, to one backdoor oracle before moving to the other. After the i-th sequence of Q queries to
one of the backdoor oracles, the leaked backdoor information is translated into fixing pi rows of the
hash function such that the rest is dense and the resulting distribution is statistically close to the
true one. In other words, the distribution conditioned on the leakage is γ-close (for some γ > 0) to
a convex combination of (p, 1− δ)-dense distributions obtained after decomposition.

Regarding the min-entropy rate δi’s, we use odd values of i for the distributions obtained after
backdoor queries on H1 and even values of i for distributions of H2. Note that is crucial for the sta-
tistical distance of these two distributions on the entire table to remain small, since the distinguisher
can adaptively query a backdoor oracle which sees and can depend on the entire hash function table,
as opposed to a limited number of coordinates.

Finding a distribution, which is partly fixed and partly dense, is performed by the FixRows
algorithm also described in Figure 7.1. On input of a distribution µz, integer p ∈ N, and a set
Istrt ∈ [N ], the algorithm FixRows returns a new distribution which is fixed on points in a set I of
size at most p+ |Istrt| and is for some δ, (1− δ)-dense on the rest, together with a set of assignments
A for elements in I according to the output distribution. The FixRows algorithm internally calls the
refined decomposition algorithm RefinedDecomp, which is described in the proof of Lemma 7.1. The
distribution returned by FixRows is indeed one of the distributions in the convex combination built
by RefinedDecomp.
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RO(x)

if ∃y ∈ [M ] s.t. (x, y) ∈ hstRO then return y

y ←← [M ]
hstRO ← hstRO ∪ {(x, y)}
return y

SimHRO
1 (x)

y1 ← H1(x)
hst1 ← hst1 ∪ {(x, y1)}
hst2 ← hst2 ∪ {(x,RO(x)⊕ y1)}
µ1 ← µ1|hst1

µ2 ← µ2|hst2

H2 ←← µ2

return y1

SimHRO
2 (x)

y2 ← H2(x)
hst2 ← hst2 ∪ {(x, y2)}
hst1 ← hst1 ∪ {(x,RO(x)⊕ y2)}
µ2 ← µ2|hst2

µ1 ← µ1|hst1

H1 ←← µ1

return y2

SimBDRO
1 [p̄, γ](f)

q ← q + 1
z ← f(H1)
µ1 ← µ1|f(·)=z

if q = Q do
(µ1, A1)←← FixRows[γ](µ1, p2s+1, hst1.1)
H1 ←← µ1

hst1 ← hst1 ∪A1

for (x, y1) ∈ A1 do
hst2 ← hst2 ∪ {(x,RO(x)⊕ y1)}

µ2 ← µ2|hst2

H2 ←← µ2

q ← 0
return z

SimBDRO
2 [p̄, γ](f)

q ← q + 1
z ← f(H2)
µ2 ← µ2|f(·)=z

if q = Q then
(µ2, A2)←← FixRows[γ](µ2, p2s+2, hst2.1)
H2 ←← µ2

hst2 ← hst2 ∪A2

for (x, y2) ∈ A2 do
hst1 ← hst1 ∪ {(x,RO(x)⊕ y2)}

µ1 ← µ1|hst1

H1 ←← µ1

q ← 0
s← s+ 1

return z

FixRows[γ](µz, p, Istrt)

((D1, I1), . . . , (Dd, Id), (Derr, Ierr))←← RefinedDecomp[µz, p, γ, Istrt]([M ]N )

Derr ← [M ]N

(Di, Ii)←← {(D1, I1), . . . , (Dd, Id), (Derr, Ierr)} with probability µz(Di), where i ∈ {1, . . . , d, err}
A← ∅; H←← Di

for x ∈ Ii do A← A ∪ {(x,H(x)}
return (µ|Di , A)

Figure 7.1: Indifferentiability simulator for the xor combiner. We assume initial values hst1 = hst2 = hstRO :=
∅, µ1 = µ2 := U[M ]N , H1,H2 ←← U[M ]N , q := 0, and s := 0.
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Upon fixing H1(x) for any row x, the simulator SimBD1 has to immediately set H2(x) := RO(x)⊕
H1(x) (and, analogously, so does SimBD2) to assure consistency with RO. The simulator specifies a
priori the number of points that it can afford to fix (since every such query requires a call to the
random oracle RO) and the statistical distance γ that it wants to keep. This strategy of assuring
consistency with RO is also followed by evaluation simulators SimH1 and SimH2, whereby at most
one coordinate of each BRO is fixed upon every query.

Note that SimBD1 programs values of H2, which were supposed to be dense (after a first SimBD2

query), to values that are uniform instead. Therefore, we need to argue later that the statistical
distance between a uniform and a dense distribution is small for the number of points that are
being treated this way. This is formalized in Lemma 7.3, below. Looking ahead, the need to keep
the advantage of the differentiator small is the reason why our simulator adapts the number of fixed
points with a differentiator’s switch to the other backdoor oracle. Finally, via a hybrid argument we
can upper bound the total number of random oracle queries by the simulator and the advantage of
the differentiator.

Lemma 7.3. Let U be the uniform distribution and V be a (1− δ)-dense distribution, both over the
domain [M ]t. Then we have

SD(U ,V) ≤ t · δ · logM .

Proof. This proof follows that of [CDGS18, Claim 3]. Let V+ be the set of all values z ∈ [M ]t for
which Pr[V = z] > 0 holds. We can write the statistical distance between U and V as:

SD(U ,V) =
∑

z∈[M ]t
max

{
0,Pr[V = z]− Pr[U = z]

}
=
∑
z∈V+

max
{

0,Pr[V = z]− Pr[U = z]
}

=
∑
z∈V+

Pr[V = z] ·max
{

0, 1− Pr[U = z]
Pr[V = z]

}
.

Now, observe that for any value z ∈ [M ]t, we have Pr[V = z] ≤ M−(1−δ)·t and Pr[U = z] = M−t.
Hence, we have:

SD(U ,V) ≤ 1−M−δ·t ≤ t · δ · logM ,

where the last inequality uses the fact that for all x ≥ 0, it holds that 2−x ≥ 1− x (and, therefore,
x ≥ 1− 2−x).

The following theorem states the indifferentiability of the xor combiner.

Theorem 7.4 (Indifferentiability of xor in 2-BRO with bounded adaptivity). Consider the xor
combiner CH1,H2

⊕ (x) := H1(x)⊕ H2(x) in the 2-BRO model with backdoored hash functions H1,H2 ∈
[M ]N . It holds that for any p̄ := (p1, . . . , pc+1) ∈ Nc+1, 0 < γ < 1, and an integer c ≥ 0, there
exists a simulator Sim[p̄, γ] := (SimHRO

1 ,SimHRO
2 ,SimBDRO

1 [p̄, γ],SimBDRO
2 [p̄, γ]) such that for any

differentiator D that always makes Q consecutive queries to a backdoor oracle (starting from BD1

and always receiving an `-bit response) before switching to the other, with a total number of c switches,
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while being allowed to make up to qH primitive queries as well as qC construction queries, we have

Advindiff
CH1,H2
⊕ ,Sim[p̄,γ](D) ≤ (c+ 1) · γ

+ logM ·
( c∑
i=1

pi · δi−1 + qH · δc+1 + qC · (δc + δc+1)
)
,

where δ−1 := δ0 := 0 and the density rate after the i-th sequence of Q-many backdoor queries
is δi :=

(
δi−2 · (N −

∑i−2
j=1 pj) · logM +Q · `+ log γ−1)/(pi · logM

)
. The simulator places at most

qSim ≤ qH +
∑c+1
i=1 pi queries to the random oracle RO.

Proof. We prove indifferentiability by (1) defining a simulator, (2) upper bounding the advantage of
any differentiator in distinguishing the real and the simulated worlds, and (3) upper bounding the
number of queries that the simulator makes to the random oracle.

Simulator. All four sub-algorithms of the simulator are described in Figure 7.1. They are parts
of the same simulator and, therefore, share state. In particular they share variables to keep track
of the fixed history and the current distributions. Two sets hst1, hst2 are used to keep track of
the fixed coordinates of the simulated BROs H1 and H2, respectively. The density functions, from
which the simulated BROs will be sampled, are denoted by µ1 and µ2. Furthermore, the simulator
uses a counter s to recognize switches from one backdoor oracle to the other in order to use the
appropriate number of points to fix from the list p̄. It also maintains a counter q for counting the
number of consecutive queries to a backdoor oracle in order to decompose, i.e., substitute the current
distribution with a partially fixed and partially dense distribution, only when necessary which is
the case after each set of Q backdoor queries. We assume the initial values µ1 = µ2 := U[M ]N ,
H1,H2 ←← U[M ]N , hst1 = hst2 = hstRO := ∅, q := 0, and s := 0.

Security analysis. Next we analyze the indifferentiability of the xor combiner with respect to our
simulator. For this purpose we use a sequence of eight cryptographic games Game0, . . . ,Game7. The
starting game Game0 is the real game, where the adversary has access to the real oracles CH1,H2

⊕ , H1,
H2, BD1, and BD2. The final game is the ideal game, where the adversary has access to the oracles
RO, SimHRO

1 , SimHRO
2 , SimBDRO

1 , and SimBDRO
2 .

We define the intermediate games Game1 through Game6 by gradually modifying the oracles and
highlighting the changes in each step. Unchanged oracles are omitted in the description of these
games and correspond to those from their direct predecessor. In each step, we bound the advantage of
differentiators in distinguishing every two consecutive games. In what follows we use the shorthand
notation Pr[DGamei ] := Pr[DGamei = 1], where DGamei denotes the interaction of an adversary D
(respecting the assumptions put by the theorem) with a game Gamei.
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Game0 : CH1,H2
⊕ (x)

y1 ← H1(x); y2 ← H2(x)

y ← y1 ⊕ y2

return y

Game0 : H1(x)

y1 ← H1(x)

return y1

Game0 : H2(x)

y2 ← H2(x)

return y2

Game0 : BD1(f)

z ← f(H1)

return z

Game0 : BD2(f)

z ← f(H2)

return z

Game1. We next update the distributions of hash functions based on past evaluation queries,
backdoor queries, and the history of coordinates that have been fixed through construction queries.
The distributions µi are conditioned on these updates but are never actually used (i.e., sampled
from) anywhere in the game. Thus, it is easy to see that these two games are actually identical, i.e.,
we have

SD(Game0,Game1) = 0 .

Game1 : CH1,H2
⊕ (x)

y1 ← H1(x); y2 ← H2(x)

hst1 ← hst1 ∪ {(x, y1)}

hst2 ← hst2 ∪ {(x, y2)}

µ1 ← µ1|hst1 ; µ2 ← µ2|hst2

y ← y1 ⊕ y2

return y

Game1 : H1(x)

y1 ← H1(x)

hst1 ← hst1 ∪ {(x, y1)}

µ1 ← µ1|hst1

return y1

Game1 : H2(x)

y2 ← H2(x)

hst2 ← hst2 ∪ {(x, y2)}

µ2 ← µ2|hst2

return y2

Game1 : BD1(f)

z ← f(H1)

µ1 ← µ1|f(·)=z

return z

Game1 : BD2(f)

z ← f(H2)

µ2 ← µ2|f(·)=z

return z

Game2. Here, after each sequence of Q queries to a backdoor oracle, i.e., right before a switch,
a (p, 1 − δ)-dense distribution µ′i is obtained using the algorithm FixRows by decomposing the
distribution of the corresponding hash function after responding to the last query in the sequence
(i.e., µi|f(·)=z). However, since the new distributions µ′i are never actually used elsewhere, Game2

remains identical to Game1, i.e., it holds that

SD(Game1,Game2) = 0 .
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Game2 : BD1(f)

q ← q + 1

z ← f(H1); µ1 ← µ1|f(·)=z

if q = Q then

(µ′1, A1)←← FixRows[γ](µ1, p2s+1, hst1.1)

q ← 0

return z

Game2 : BD2(f)

q ← q + 1

z ← f(H2); µ2 ← µ2|f(·)=z

if q = Q then

(µ′2, A2)←← FixRows[γ](µ2, p2s+2, hst2.1)

q ← 0

s← s+ 1

return z

Game3. In this game evaluation queries on a value x, fix its images under both functions, i.e., to
H1(x) and H2(x). Similarly, in backdoor simulation, for each x-coordinate in the set of assignments
A1 (resp. A2), images of the same x are fixed under the other hash function H2 (resp. H1) according
to its current distribution. In both games, the oracles’ responses are at all times consistent with
their past responses (and with the construction). Moreover, we still do not sample from the updated
distributions. Overall it does not matter if more or less of the hash function tables are fixed in each
query and, therefore, the two games are identical, i.e., we obtain

SD(Game2,Game3) = 0 .

Game3 : H1(x)

y1 ← H1(x)

hst1 ← hst1 ∪ {(x, y1)}

hst2 ← hst2 ∪ {(x,H2(x)}

µ1 ← µ1|hst1

µ2 ← µ2|hst2

return y1

Game3 : H2(x)

y2 ← H2(x)

hst2 ← hst2 ∪ {(x, y2)}

hst1 ← hst1 ∪ {(x,H1(x))}

µ2 ← µ2|hst2

µ1 ← µ1|hst1

return y2

Game3 : BD1(f)

q ← q + 1

z ← f(H1); µ1 ← µ1|f(·)=z

if q = Q then

(µ′1, A1)←← FixRows[γ](µ1, p2s+1, hst1.1)

for x ∈ A1.1 do

hst2 ← hst2 ∪ {(x,H2(x))}

µ2 ← µ2|hst2

q ← 0

return z

Game3 : BD2(f)

q ← q + 1

z ← f(H2); µ2 ← µ2|f(·)=z

if q = Q then

(µ′2, A2)←← FixRows[γ](µ2, p2s+2, hst2.1)

for x ∈ A2.1 do

hst1 ← hst1 ∪ {(x,H1(x))}

µ1 ← µ1|hst1

q ← 0

s← s+ 1

return z
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Game4. In this game the distributions obtained by decomposition finally replace the distributions
conditioned on leakage. Hence, the histories are also updated and a new Hi is later sampled for
potential usage in the construction. According to Lemma 7.1, there is a convex combination of
(p, 1− δ)-dense distributions which is γ-close to the real distribution, one of such distributions being
the one returned by FixRows as defined in Figure 7.1. Thus, the distinguishing advantage can increase
by γ for every Q sequence of backdoor queries, leading to

∣∣Pr[DGame3 ]− Pr[DGame4 ]
∣∣ ≤ (c+ 1) · γ .

Game4 : BD1(f)

q ← q + 1

z ← f(H1); µ1 ← µ1|f(·)=z

if q = Q then

(µ1, A1)←← FixRows[γ](µ1, p2s+1, hst1.1)

hst1 ← hst1 ∪A1

H1 ←← µ1

for x ∈ A1.1 do

hst2 ← hst2 ∪ {(x,H2(x))}

µ2 ← µ2|hst2

q ← 0

return z

Game4 : BD2(f)

q ← q + 1

z ← f(H2); µ2 ← µ2|f(·)=z

if q = Q then

(µ2, A2)←← FixRows[γ](µ2, p2s+2, hst2.1)

hst2 ← hst2 ∪A2

H2 ←← µ2

for x ∈ A2.1 do

hst1 ← hst1 ∪ {(x,H1(x))}

µ1 ← µ1|hst1

q ← 0

s← s+ 1

return z

Game5. This game behaves exactly as Game4 except when fixing values for the distribution of the
other BRO. The game fixes those points by calling C⊕ (rather than doing so directly using H1 resp. H2)
and then it redundantly updates the history of fixed points, e.g., with some (x,H1(x)⊕C⊕(x)). Finally,
the game samples a new BRO from the updated distribution. However, since the construction C⊕
itself calls the BROs, Game5 is only taking a detour and the two games are perfectly indistinguishable,
i.e., we have

SD(Game4,Game5) = 0 .
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Game5 : H1(x)

y1 ← H1(x)

hst1 ← hst1 ∪ {(x, y1)}

hst2 ← hst2 ∪ {(x,C⊕(x)⊕ y1}

µ1 ← µ1|hst1 ; µ2 ← µ2|hst2

H2 ←← µ2

return y1

Game5 : H2(x)

y2 ← H2(x)

hst2 ← hst2 ∪ {(x, y2)}

hst1 ← hst1 ∪ {(x,C⊕(x)⊕ y2)}

µ2 ← µ2|hst2 ; µ1 ← µ1|hst1

H1 ←← µ1

return y2

Game5 : BD1(f)

q ← q + 1

z ← f(H1); µ1 ← µ1|f(·)=z

if q = Q then

(µ1, A1)←← FixRows[γ](µ1, p2s+1, hst1.1)

hst1 ← hst1 ∪A1

H1 ←← µ1

for (x, y1) ∈ A1 do

hst2 ← hst2 ∪ {(x,C⊕(x)⊕ y1)}

µ2 ← µ2|hst2

H2 ←← µ2

q ← 0

return z

Game5 : BD2(f)

q ← q + 1

z ← f(H2); µ2 ← µ2|f(·)=z

if q = Q then

(µ2, A2)←← FixRows[γ](µ2, p2s+2, hst2.1)

hst2 ← hst2 ∪A2

H2 ←← µ2

for (x, y2) ∈ A2 do

hst1 ← hst1 ∪ {(x,C⊕(x)⊕ y2)}

µ1 ← µ1|hst1

H1 ←← µ1

q ← 0

s← s+ 1

return z

Game6. This is our last intermediate game before reach the ideal world. Here we modify C⊕ to
start to resemble a lazily sampled random oracle. In the new construction oracle, a query is stored
together with its image in the history hstRO. In case a query is repeated, its stored image is simply
returned. Otherwise, there are three cases to consider: an image for the current query x is fixed in
both hash functions, in one of them, or in neither one. In the first case the output of the construction
is computed by xoring the individual images stored in hst1 and hst2. In the second case, a uniformly
random value is chosen (and stored in hstRO). In the final case, Game6 behaves exactly as Game5.
So, the distinguishing advantage is bounded by distinguishing uniform points (set to uniform when
xoring with the returned uniform value of C⊕) from dense points. In fact, according to Lemma 7.3,
for each evaluation query it adds at most δc+1 · logM , since δc+1 is the largest δi. Moreover, for all
points that are fixed upon a backdoor query this adds pi · δi−1 · logM , except for the last one, since
there will be no backdoor query after that which can see all pc+1 points. Overall we obtain

∣∣Pr[DGame5 ]− Pr[DGame6 ]
∣∣ ≤ logM ·

( c∑
i=1

pi · δi−1 + qH · δc+1
)
.
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Game6 : CH1,H2
⊕ (x)

if ∃y ∈ [M ] s.t. (x, y) ∈ hstRO then return y

if ∃y1, y2 ∈ [M ] s.t. (x, y1) ∈ hst1 ∧ (x, y2) ∈ hst2 then return y1 ⊕ y2

if ∃y′ ∈ [M ] s.t. (x, y′) ∈ hst1 ∨ (x, y′) ∈ hst2 then

y ←← [M ]

else

y1 ← H1(x); y2 ← H2(x)

hst1 ← hst1 ∪ {(x, y1)}; hst2 ← hst2 ∪ {(x, y2)}

µ1 ← µ1|hst1 ; µ2 ← µ2|hst2

y ← y1 ⊕ y2

hstRO ← hstRO ∪ {(x, y)}

return y

Game7. The construction oracle in our final game differs from Game6 in that it never evaluates
the individual hash functions anymore (in particular, not even if x is in neither history). We can
safely remove the second case distinction, where x is in both hst1 and hst2, since this case is covered
by the first case where x has been queried to the construction itself. With these modifications the
construction oracle becomes a lazily sampled random oracle. It remains to bound the adversary’s
advantage in distinguishing the two games while making fresh queries x to the construction oracle
that are prior to the query fixed for neither hash function.

Lemma 7.5. Let X and Y be two independent (1 − δ) and (1 − δ′)-dense distributions over a
domain [M ]N . Then the xor distribution X ⊕ Y is (1− (δ + δ′))-dense over the same domain [M ]N .

Proof. Let I ⊆ [N ] and z ∈ [M ]|I| be arbitrary. Then we have:

Pr[XI ⊕ YI = z] =
∑
x

Pr[XI =x ∧ YI =x⊕ z] =
∑
x

Pr[XI =x] · Pr[YI =x⊕ z]

≤ 2|I|·logM · 2−(1−δ)·|I|·logM · 2−(1−δ′)·|I|·logM = 2−(1−(δ+δ′))·|I|·logM .

We can now bound the distinguisher’s advantage by computing the distance between the sum of
two dense distributions from uniform, given that only qC queries to C⊕ are allowed. Below, in the
second line, we use the fact that according to Lemma 7.1, δ’s should increase.

∣∣Pr[DGame6 ]− Pr[DGame7 ]
∣∣ ≤ qC ·logM · max

0≤i≤c
{δi + δi+1}

= qC ·logM ·(δc + δc+1) .
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Game7 : CH1,H2
⊕ (x)

if ∃y ∈ [M ] s.t. (x, y) ∈ hstRO then return y

if ∃y1, y2 ∈ [M ] s.t. (x, y1) ∈ hst1 ∧ (x, y2) ∈ hst2 then return y1 ⊕ y2

if ∃y′ ∈ [M ] s.t. (x, y′) ∈ hst1 ∨ (x, y′) ∈ hst2 then

y ←← [M ]

else

y1 ← H1(x); y2 ← H2(x)

hst1 ← hst1 ∪ {(x, y1)}; hst2 ← hst2 ∪ {(x, y2)}

µ1 ← µ1|hst1 ; µ2 ← µ2|hst2

y ← y1 ⊕ y2

hstRO ← hstRO ∪ {(x, y)}

return y

The last game Game7 is identical to the simulated world. Therefore, the overall advantage of D
is as stated in the theorem.

Query complexity. The queries made by the simulator to RO consist of those made when sim-
ulating evaluation oracles and those made when simulating backdoor oracles. Responding to each
evaluation query requires exactly one query to RO, which makes a total of qH queries. Right after
the Q-th consecutive backdoor query (i.e., right before a switch), the simulator fixes some points
of the other BRO, where for each fixed point one query to the random oracle RO is made. The
maximum number of points that should be fixed after each sequence of Q queries to BD1 or BD2

is predetermined by the simulator’s parameter p̄ := (p1, . . . , pc+1). Hence, we obtain the following
bound on the query complexity of the simulator.

qSim ≤ qH +
c+1∑
i=1

pi .

We now provide estimates for the involved parameters.

Corollary 7.6. Let the number of switches be c ≥ 1. Then for any α1 > 1− 1/Fc+1, where Fi are
the Fibonacci numbers, there is an indifferentiability simulator Sim for the C⊕ construction in the
2-BRO model which has query complexity qH + (c+ 1) ·Nα1 for any distinguisher with qH queries to
the underlying BROs. Furthermore, any such distinguisher which places qC construction queries and
Q consecutive queries to the same backdoor oracle before switching has advantage at most

(c+ 1) · γ + logM · (c2B + 2qH + 2qC) ·N (1−α1)·Fc+1/Fc+2−1/Fc+2 ,

against the simulator, where B := (Q` + log γ−1)/ logM . Asymptotically the query complexity is
qH +O(N1−1/Fc+2) and the advantage O((qH + qC) ·Q · `/N0.38/Fc+2).
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Proof. From Lemma 7.1 we have that

δi ≤ (δi−2 ·A+B)/pi ,

where A := N and B := (Q`+ log γ−1)/ logM . Recursively applying the equation we get for odd i

δi ≤
B

pi
+ AB

pipi−2
+ · · ·+ A(i−1)/2B

pipi−2 · · · p1

Using pi < A, the terms progressively get larger. Thus, in general

δi ≤
c ·N (i−2+imod 2)/2B

pipi−2 · · · p1+(i+1) mod 2
.

For the indifferentiability advantage to be small, we would need to minimize

c∑
i=1

pi · δi−1 + (qH + qC)(δc + δc+1).

Let’s assume pi = Nαi for some αi ∈ [0, 1). Then the i-th summand for i > 1 is

c ·B ·Nαi−αi−1−αi−3−···−α1+imod 2+(i−3+(i−1) mod 2)/2 .

To minimize, we set all terms equal to a common value c ·B ·Nθ. We obtain

αi − αi−1 − . . .− α1+imod 2 + (i− 3 + (i− 1) mod 2)/2 = θ ,

Solving this system of linear equations gives

αi = Fi · θ + Fi−1 · (α1 − 1) + 1 ,

where Fi are the Fibonacci numbers with F0 = 0 and F1 = 1.
We may arrange the terms so that (δc + δc+1) = 2 ·Nθ (not including the (qH + qC) factor). To

this end, we set αc+2 = 0 so that δc+1 = Nθ/pc+2 = Nθ and δc = Nθ/pc+1 ≤ Nθ/pc+2 = Nθ. Thus
we set αc+2 = 0. This gives θ = (1− α1) · Fc+1/Fc+2 − 1/Fc+2. Now for θ < 0 we would need that
α1 > 1− 1/Fc+1. This means that the query complexity of the simulator is qH + (c+ 1) ·Nα1 and
its advantage is

(c+ 1) · γ + logM · (c2B + 2qH + 2qC) ·N (1−α1)·Fc+1/Fc+2−1/Fc+2 .

We obtain the bound stated in the asymptotic part of the corollary by setting α1 := 1− 1/Fc+2 >

1− 1/Fc+1.

We note that in the special case where c = 1, we must have that α1 > 1−1/F2 = 0. In particular
we can set α1 := 1/4 to obtain a simulator that places Nα1 = N1/4 ≤

√
N queries. Thus in this

case we obtain collision resistance. Note, however, that as soon as c ≥ 2 we would need to have that
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α1 > 1 − 1/F3 = 1/2, which means the simulator places at least
√
N queries, and we do not get

collision resistance.
The above corollary shows that the xor combiner can only tolerate a logarithmic number of

switches in logN , which we think of as the security parameter. This is due to the fact that the
simulator complexity needs to be less than N/2 for it to be non-trivial. Although our bounds are
arguably weak, they are still meaningful, and we conjecture that much better bounds in reality hold.

7.4 Indifferentiability of 2-out-of-3-Source Extractors
in the 3-BRO Model

In this section we study the indifferentiability of extractor-based combiners and show that they can
give better security parameters compared to the xor combiner of Section 7.3. Recall that the k-BRO
model considers adversaries that have access to all k backdoor oracles. A query to the backdoor
oracle BDi reveals some information about the underlying BRO Hi. The resulting distribution
of Hi conditioned on the leakage can, using the refined decomposition technique of Section 7.2,
be translated into a distribution on functions that have a number of fixed coordinates, while the
distribution of the other coordinates remains dense. An indifferentiability simulator then fixes some
rows in the function table of the other BRO(s) in a way that consistency with the random oracle
RO (which is to be indistinguishable from the construction) is ensured.

We demonstrated this idea in the previous section for the xor combiner, where before a switch
to the other backdoor oracle, the simulator always substituted p images of that BRO by uniformly
random values, more precisely, the RO images xored with the images just fixed. According to
Lemma 7.3, this replacement causes a security loss of p · δ · logM per switch, for some δ computed
according to Lemma 7.1. This loss corresponds to the advantage of an adversary distinguishing p
uniform values from p (1− δ)-dense ones.

Multi-source extractors as combiners. Now consider a multi-source (k1, . . . , kt, ε)-extractor
as a combiner in t-BRO. The hope in using such an extractor is that as long as the images of the
BROs have high min-entropy, the output of the extractor is ε-close to uniform. This makes it possible
for us to express the loss described above, caused by adjusting images in BROs in order to assure
consistency with RO, in terms of a negligible value ε and forgo the requirement on δ to be negligible.
Overall, such a combiner requires fixing considerably less points, since δ’s (recall that they have
some p in their denominator) do not need to be negligible. Indeed we can show that a multi-source
extractor can tolerate up to a linear number of switched between the backdoor queries, giving hope
to achieve indifferentiability with unbounded number of switches in the future.

We focus on 2-out-of-3-source extractors, i.e., extractors that only require a minimal amount
of min-entropy from two of the sources. More formally, let Ext : [M ]3 → [2] be a 2-out-of-3-source
(k1, k2, k3, ε)-extractor. For three functions H1,H2,H3 : [N ]→ [M ], the combiner CH1,H2,H3

2/3ext : [N ]→ [2]
is defined as:

CH1,H2,H3
2/3ext (x) := Ext

(
H1(x),H2(x),H3(x)

)
.
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We show in this section that CH1,H2,H3
2/3ext in the 3-BRO model is indifferentiable from a random oracle.

For some background on randomness extractors we refer the reader to Section 2.3.2.

Why not a two-source extractor? Note that we cannot guarantee that images which are being
fixed by the simulator in some Hi as a result of a BDi-query have any min-entropy whatsoever. To
understand why, simply consider an adversary that makes a backdoor query to BD1 requesting a
preimage of the zero-string y∗ := 0logM under the function H1. Suppose BD1 responds to this query
with x∗ ∈ [N ]. In this case H1(x∗) has no min-entropy, since y∗ = H1(x∗) was chosen by the adversary
and is, therefore, completely predictable. Hence, H1(x∗) cannot be used in a (k1, k2, ε)-two-source
extractor, i.e., Ext(H1(x∗),H2(x∗)), which relies on min-entropy from both sources in order to output
a string that is ε-close to uniform. In other words, the output of a combiner based on a two-source
extractor is not ε-close to the output of a random oracle RO. Overall, using a two-source extractor
does not seem to have any advantage over the xor combiner in 2-BRO. On the contrary, when using
a 2-out-of-3-source extractor, assuming that the rows under consideration are not already fixed in
the function tables of all three BROs due to some previous query, there will be two images with high
min-entropy, from which we can extract a value ε-close to uniform.

Theorem 7.7 (Indifferentiability of 2-out-of-3-source extractors in 3-BRO with bounded adaptivity).
Let Ext : [M ]3 → [2] be a (k1, k2, k3, ε)-2-out-of-3-source randomness extractor, where ε is a function
of k1, k2, k3. Consider the combiner CH1,H2,H3

3ext (x) := Ext(H1(x),H2(x),H3(x)) in the 3-BRO model
with backdoored hash functions H1,H2,H3 ∈ [M ]N . It holds that for all values of p̄ := (p1, . . . , pc+1) ∈
Nc+1, 0 < γ < 1, and an integer c ≥ 0, there exists a simulator Sim[p̄, γ] := (SimHRO

1 ,SimHRO
2 ,

SimHRO
3 ,SimBDRO

1 [p̄, γ],SimBDRO
2 [p̄, γ],SimBDRO

3 [p̄, γ]) such that for any differentiator D that always
makes Q consecutive queries to one backdoor oracle (always receiving an `-bit response) before
switching to the next, with a total number of c switches, while making up to qH primitive queries and
qC construction queries, we have

Advindiff
CH1,H2,H3

3ext ,Sim[p̄,γ](D) ≤ (c+ 1) · γ

+
c∑
i=1

SD
(
E1| · · · |Epi ,U[2]pi

)
+ qH · SD

(
E1,U[2]

)
+qC ·ε

(
(1−δc−1)·logM, (1−δc)·logM, (1−δc+1)·logM

)
,

where for all n ∈ N, we define En := Ext(X,Y, Z) for some random variables X,Y, Z over [M ] such
that at least 2 of them have min-entropy (1− δc) · logM . Furthermore, we let δ−2 := δ−1 := δ0 := 0
and for other values of i ≤ c+1 let δi :=

(
δi−3 · (N−

∑i−3
j=1 pj) · logM +Q · `+ log γ−1)/(pi · logM

)
be the density rate after the i-th sequence of Q-many backdoor queries. The simulator places at most
qSim ≤ qH +

∑c+1
i=1 pi queries to the random oracle RO.

Proof. The proof structure closely follows the proof of Theorem 7.4. We show indifferentiability by
(1) defining a simulator, (2) upper bounding the advantage of any differentiator in distinguishing
the real world from the simulated world, and (3) upper-bounding the number RO-queries made by
the given simulator.
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SimHRO
i (x)

yi ← Hi(x); hsti ← hsti ∪ {(x, yi)}
µi ← µi|hsti

j ← (imod 3) + 1; k ← (jmod 3) + 1
y ← RO(x)
if i = 1 then Hk ←← µk|Ext(yi,Hj(x),Hk(x))=y

elseif i = 2 then Hk ←← µk|Ext(Hk(x),yi,Hj(x))=y

else Hk ←← µk|Ext(Hj(x),Hk(x),yi)=y

hstj ← hstj ∪ {(x,Hj(x))}
hstk ← hstk ∪ {(x,Hk(x))}
µj ← µj |hstj

µk ← µk|hstk

Hk ←← µk

return yi

RO(x)

if ∃y ∈ [2] s.t. (x, y) ∈ hstRO then
return y

y ←← [2]
hstRO ← hstRO ∪ {(x, y)}
return y

SimBDRO
i [p̄, γ](f)

q ← q + 1
z ← f(Hi)
µi ← µi|f(·)=z

j ← (imod 3) + 1
k ← (jmod 3) + 1
if q = Q then

(µi, Ai)←← FixRows[γ](µi, p3s+i, hsti.1)
Hi ←← µi

hsti ← hsti ∪Ai
for x ∈ Ai.1 do rx ← RO(x)
if i = 1 then Hk ←← µk|∀(x,yi)∈Ai. Ext(yi,Hj(x),Hk(x))=rx

elseif i = 2 then Hk ←← µk|∀(x,yi)∈Ai. Ext(Hk(x),yi,Hj(x))=rx

else Hk ←← µk|∀(x,yi)∈Ai. Ext(Hj(x),Hk(x),yi)=rx

for x ∈ Ai.1 do
hstj ← hstj ∪ {(x,Hj(x))}
hstk ← hstk ∪ {(x,Hk(x))}

µj ← µj |hstj

µk ← µk|hstk

Hk ←← µk

q ← 0
if i = 3 then s← s+ 1

return z

Figure 7.2: Indifferentiability simulator for the 2-out-of-3-source extractor. We assume for i = 1..3 initial-
ization values hsti = hstRO := ∅, µi := U[M ]N , Hi ←← U[M ]N , q := 0, and s := 0. The FixRows algorithm is
identical to that of Figure 7.1.
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Simulator. The simulator is described in Figure 7.2 by algorithms SimHi and SimBDi, where
i ∈ {1, 2, 3}. The simulator sub-algorithms share state and keep track of the current distribution of
the backdoored hash functions. The histories hst1, hst2, hst3, initialized as empty sets, are used to
keep track of the fixed coordinates of the simulated BROs. The distributions, according to which
the simulated backdoored hash functions are sampled, are denoted by µ1, µ2, and µ3 and initialized
as U[M ]N , since the hash functions without the backdoors are supposed to behave like random
oracles. The corresponding hash functions are initialized as uniform random functions Hi ←← U[M ]N .
Furthermore, the simulator uses a counter q to keep track of the number of consecutive queries to a
backdoor oracle and use this information to decompose the current distribution, only when necessary
(i.e., when q = Q), as opposed to doing so upon every backdoor query.

Each time images of a simulated Hi are fixed by the simulator BDi, images of the same rows must
be fixed for Hj and Hk (i.e., the other two functions) to provide consistency with the random oracle
RO. For this, images of Hj are fixed truthfully according to the currently sampled function, while Hk
is tweaked in a way that the extracted values match images of RO. Note that the simulators need to
re-sample Hi and Hk if their distribution is modified in a non-trivial way, i.e., not just fixing more
values but either through FixRows or when forcing consistency with RO.

Security Analysis. We analyze indifferentiability of the 3ext-combiner using a sequence of eight
games Game0, . . . ,Game7. The starting game Game0 is the real game, where the adversary has access
to the real oracles CH1,H2,H3

2/3ext , H1, H2, H3, BD1, BD2, and BD3. The final game Game7 is our ideal game,
where the adversary has access to the oracles RO, SimHRO

1 , SimHRO
2 , SimHRO

3 ,SimBDRO
1 , SimBDRO

2 ,
and SimBDRO

3 . We define the intermediate games Game1 through Game6 by gradually modifying the
oracles. The modified lines in each game are highlighted. Oracles are omitted in some games if they
have not changed since the previous game. In each game hop, we bound the adversary’s advantage
in distinguishing two consecutive games from one another.

Game0 : CH1,H2,H3
2/3ext (x)

for i = 1..3 do

yi ← Hi(x)

y ← Ext(y1, y2, y3)

return y

Game0 : Hi(x)

yi ← Hi(x)

return yi

Game0 : BDi(f)

z ← f(Hi)

return z

Game1. In the first intermediate game, distributions of the simulated hash functions are updated
based on evaluation queries, backdoor queries, and the history of coordinates that are fixed through
construction queries. The distributions µi are conditioned on these values but are never actually
sampled from anywhere in the game. Therefore, the two games are identical to any distinguisher,
i.e., we have

SD(Game0,Game1) = 0 .
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Game1 : CH1,H2,H3
2/3ext (x)

for i = 1..3 do

yi ← Hi(x)

hsti ← hsti ∪ {(x, yi)}

µi ← µi|hsti

y ← Ext(y1, y2, y3)

return y

Game1 : Hi(x)

yi ← Hi(x)

hsti ← hsti ∪ {(x, yi)}

µi ← µi|hsti

return yi

Game1 : BDi(f)

z ← f(Hi)

µi ← µi|f(·)=z

return z

Game2. In game Game2, after each sequence of Q queries to a backdoor oracle BDi, i.e., right before
switching to a different one, a (p, 1− δ)-dense distribution µ′i is obtained from the real distribution
using the algorithm FixRows by decomposing the distribution of the corresponding hash function
after responding to the last query in the sequence (i.e., µi|f(·)=z). The number of fixed points p is
a parameter determined by the simulator and the min-entropy rate δ can be obtained by applying
Lemma 7.1. However, since the new distributions µ′i are never used elsewhere, Game2 remains identical
to the previous Game1, i.e., we still have

SD(Game1,Game2) = 0 .

Game2 : BDi(f)

q ← q + 1

z ← f(Hi)

µi ← µi|f(·)=z

if q = Q then

(µ′i, Ai)←← FixRows[γ](µi, p3s+i, hsti.1)

q ← 0

if i = 3 then s← s+ 1

return z

Game3. In this game the fixed rows in one simulated BRO are also fixed for the other two BROs.
For instance, in backdoor simulation, the rows in the set of assignment Ai are fixed for Hj and Hk.
In both games Game2 and Game3, the oracles’ behaviors are at all times consistent with their past
responses as well as the construction. Hence, it does not matter if more or less of the hash function
tables are fixed in each query. The two games are again perfectly indistinguishable, i.e., it holds that

SD(Game2,Game3) = 0 .
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Game3 : Hi(x)

yi ← Hi(x)

hsti ← hsti ∪ {(x, yi)}

µi ← µi|hsti

j ← (imod 3) + 1

k ← (jmod 3) + 1

hstj ← hstj ∪ {(x,Hj(x))}

hstk ← hstk ∪ {(x,Hk(x))}

µj ← µj |hstj

µk ← µk|hstk

return yi

Game3 : BDi(f)

q ← q + 1

z ← f(Hi); µi ← µi|f(·)=z

j ← (imod 3) + 1

k ← (jmod 3) + 1

if q = Q then

(µ′i, Ai)←← FixRows[γ](µi, p3s+i, hsti.1)

for x ∈ Ai.1 do

hstj ← hstj ∪ {(x,Hj(x))}

hstk ← hstk ∪ {(x,Hk(x))}

µj ← µj |hstj ; µk ← µk|hstk

q ← 0

if i = 3 then s← s+ 1

return z

Game4. In Game4 the distribution obtained by FixRows finally replaces the true distribution, i.e.,
the one conditioned on the recent backdoor responses. Therefore, the history is updated. Notably, a
new function Hi must be sampled for future references, since its distribution has changed in a non-
trivial way. According to Lemma 7.1, there is a convex combination of (p, 1− δ)-dense distributions
which is γ-close to the real distribution, one of such distributions being the one returned by FixRows.
Thus the distinguishing advantage increases by γ after each sequence of backdoor queries.

∣∣Pr[DGame3 ]− Pr[DGame4 ]
∣∣ ≤ (c+ 1) · γ .

Game4 : BDi(f)

q ← q + 1

z ← f(Hi); µi ← µi|f(·)=z

j ← (imod 3) + 1; k ← (jmod 3) + 1

if q = Q then

(µi, Ai)←← FixRows[γ](µi, p3s+i, hsti.1)

Hi ←← µi

hsti ← hsti ∪Ai
for x ∈ Ai.1 do

hstj ← hstj ∪ {(x,Hj(x))}

hstk ← hstk ∪ {(x,Hk(x))}

µj ← µj |hstj ; µk ← µk|hstk

q ← 0

if i = 3 then s← s+ 1

return z
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Game5. Contrary to Game4, the next game Game5 somewhat indirectly fixes images of rows x in
the set of fresh assignments Ai (and x queries to SimHi) for the other functions Hj and Hk. More
precisely, the simulator calls the construction C2/3ext on freshly fixed rows according to Ai and
samples a Hk in such a way that it is consistent with those construction images and aligned Hi and
Hk images. Notice that a query to the construction already fixes the images for the underlying BROs
and, hence, sampling Hk in a consistent way and fixing coordinates of Hj and Hk in the simulator is
simply redundant. Therefore, we have

SD(Game4,Game5) = 0 .

Game5 : Hi(x)

yi ← Hi(x)

hsti ← hsti ∪ {(x, yi)}

µi ← µi|hsti

j ← (imod 3) + 1; k ← (jmod 3) + 1

y ← RO(x)

if i = 1 then Hk ←← µk|Ext(yi,Hj(x),Hk(x))=y

elseif i = 2 then Hk ←← µk|Ext(Hk(x),yi,Hj(x))=y

else Hk ←← µk|Ext(Hj(x),Hk(x),yi)=y

hstj ← hstj ∪ {(x,Hj(x))}

hstk ← hstk ∪ {(x,Hk(x))}

µj ← µj |hstj ; µk ← µk|hstk

Hk ←← µk

return yi

Game5 : BDi(f)

q ← q + 1

z ← f(Hi); µi ← µi|f(·)=z

j ← (imod 3) + 1; k ← (jmod 3) + 1

if q = Q then

(µi, Ai)←← FixRows[γ](µi, p3s+i, hsti.1)

Hi ←← µi

hsti ← hsti ∪Ai
for x ∈ Ai.1 do rx ← C2/3ext(x)

if i = 1 then

Hk ←← µk|∀(x,yi)∈Ai. Ext(yi,Hj(x),Hk(x))=rx

elseif i = 2 then

Hk ←← µk|∀(x,yi)∈Ai. Ext(Hk(x),yi,Hj(x))=rx

else Hk ←← µk|∀(x,yi)∈Ai. Ext(Hj(x),Hk(x),yi)=rx

for x ∈ Ai.1 do

hstj ← hstj ∪ {(x,Hj(x))}

hstk ← hstk ∪ {(x,Hk(x))}

µj ← µj |hstj ; µk ← µk|hstk

Hk ←← µk

q ← 0

if i = 3 then s← s+ 1

return z

Game6. In this game we modify C2/3ext so that it starts to resemble a lazily sampled random oracle.
Query-response pairs of the construction are kept in a set hstRO and in case a query is repeated, the
stored image is simply returned. Otherwise, we distinguish three cases: (a) the corresponding row to
the current query x is fixed in all hash functions, (b) in one of them, or (c) in none of them. In case
(a), Game6 computes the output of the construction by extracting from the individual images stored
in histories of the BROs. Note, however, that this case is never reached, since if the current x is in
all individual histories, then the construction must have already been called on x in some previous
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evaluation or backdoor query. Hence, x must also be in hstRO. In case (b), a uniformly random value
is chosen (and stored in hstRO). In the final case (c), Game6 behaves exactly as Game5.

Overall, the distinguishing advantage is bounded by distinguishing p uniform (chosen by the
construction) points each time a backdoor query fixes p points from values that were supposed to be
extracted from three sources, from which one is not guaranteed to have any min-entropy, as well as
qH many times distinguishing a single extracted value from random. Let En := Ext

(
H1(xn),H2(xn),

H3(xn)
)
, where xn ∈ Ai.1 is a row being fixed. Note that we can assume that two of the input images

have a min-entropy of at least (1 − δc) · logM as stated in the theorem, since δi’s increase with i.
We obtain:

∣∣Pr[DGame5 ]− Pr[DGame6 ]
∣∣ ≤ c∑

i=1
SD
(
E1| · · · |Epi ,U[2]pi

)
+ qH · SD

(
E1,U[2]

)
,

Game6 : CH1,H2,H3
2/3ext (x)

if ∃y ∈ [M ] s.t. (x, y) ∈ hstRO then

return y

if ∃y1, y2, y3 ∈ [M ] s.t. (x, y1) ∈ hst1 ∧ (x, y2) ∈ hst2 ∧ (x, y3) ∈ hst3 then

return Ext(y1, y2, y3)

if ∃y′ ∈ [M ] s.t. (x, y′) ∈ hst1 ∨ (x, y′) ∈ hst2 ∨ (x, y′) ∈ hst3 then

y ←← [M ]

else

for i = 1..3 do

yi ← Hi(x)

hsti ← hsti ∪ {(x, yi)}

µi ← µi|hsti

y ← Ext(y1, y2, y3)

hstRO ← hstRO ∪ {(x, y)}

return y

Game7. The C2/3ext oracle in Game7 differs from Game6 in that it never evaluates the underlying
BROs and rather acts as a lazily sampled random oracle. We can safely remove the case distinction
(a), where x is included in all histories hst1, hst2, and hst3, since this x would also be in hstRO.

It remains to bound the adversary’s advantage in distinguishing the two games while making up
to qC fresh queries x to the construction C2/3ext that are not fixed for any of the BROs. While the
outputs of the construction are uniformly random in Game7, they are extracted from three dense
images in Game6. The distinguisher can only try to maximize the distance between qC uniform values
vs. values extracted from three dense images of BROs by querying the construction on values and
at times which it can choose freely.

∣∣Pr[DGame6 ]− Pr[DGame7 ]
∣∣ ≤ qC∑

t=1
max

xt,H1,H2,H3

(
SD
(
Ext(H1(xt),H2(xt),H3(xt)),U[2]

))



7.4. Indifferentiability of 2-out-of-3-Source Extractors in the 3-BRO Model 133

≤ qC · max
x,H1,H2,H3

(
SD
(
Ext(H1(x),H2(x),H3(x)),U[2]

))
≤ qC · ε

(
(1−δc−1)·logM, (1−δc)·logM, (1−δc+1)·logM

)
,

where according to Lemma 7.1 we have δi as defined in the theorem statement with `i being the
min-entropy deficiency after the i-th sequence of Q-many backdoor queries. Note that the maximum
statistical distance corresponds to minimum entropy of the BRO-images, which is in turn given for
the last three (c− 1, c, c+ 1) values of the min-entropy rate.

Game7 : CH1,H2,H3
2/3ext (x)

if ∃y ∈ [M ] s.t. (x, y) ∈ hstRO then

return y

if ∃y1, y2, y3 ∈ [M ] s.t. (x, y1) ∈ hst1 ∧ (x, y2) ∈ hst2 ∧ (x, y3) ∈ hst3 then

return Ext(y1, y2, y3)

if ∃y′ ∈ [M ] s.t. (x, y′) ∈ hst1 ∨ (x, y′) ∈ hst2 ∨ (x, y′) ∈ hst3 then

y ←← [M ]

else

for i = 1..3 do

yi ← Hi(x)

hsti ← hsti ∪ {(x, yi)}

µi ← µi|hsti

y ← Ext(y1, y2, y3)

hstRO ← hstRO ∪ {(x, y)}

return y

The last game Game7 is identical to the simulated world. Therefore, the overall advantage of D
is as stated in the theorem.

Query complexity. The simulator makes queries to the random oracle RO in order to set images
of the other BROs each time one point of some BRO is fixed, which is either caused by evaluation
queries or by backdoor queries right after the Q-th consecutive backdoor query (i.e., before a switch).
We obtain the following upper bound on the number of queries that the simulator makes to RO.

qSim ≤ qH +
c+1∑
i=1

pi .

7.4.1 Instantiation with the Pairwise Inner-Product Extractor

Next we investigate a concrete instantiation of such a 2-out-of-3-source extractor. Most multi-source
extractors such as those from [BKS+05, Raz05, Li15] require a minimal amount of min-entropy
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from every source and are, therefore, inapplicable in our setting. We can, however, use the pairwise
inner-product extractor as introduced by Lee et al. [LLTT05], which roughly speaking needs the
sum of min-entropies to be sufficient. Recall the definition of the pairwise inner-product extractor
Extpip : [M ]t → [2], which we gave in Section 2.3.1 as:

Extpip(x1, . . . , xt) :=
∑

1≤i<j≤t
xi · xj .

The above extractor is proven ([LLTT05], Corollary 1) to be a (k1, . . . , kt, ε)-extractor with an
indistinguishability of ε = 2−(k+k′−logM+1)/2 from random, where k and k′ are the two largest
values among k1, . . . , kt. Thus, Extpip is also a 2-out-of-t extractor.

Corollary 7.8. Let Extpip : [M ]t → [2] be a pairwise inner-product extractor. Then the construction
CH1,H2,H3

pip (x) := Extpip(H1(x),H2(x),H3(x)) in the 3-BRO model is indifferentiable from a random
oracle, where

Advindiff
CH1,H2,H3

2/3ext ,Sim[p,γ](D) ≤(c+1)·γ + c ·
√

(ep·M−(1−2δc) − 1)/2 +
(
qH + qC

)
·2−((1−2δc+1)·logM+1)/2 ,

while the simulator makes up to qSim ≤ qH + (c+ 1) · p queries to RO.

Proof. The differentiator’s advantage stated in the corollary is easily obtained by upper bounding
the term SD

(
E1,U[2]

)
by 2−((1−2δc+1)·logM+1)/2 and upper bounding the term SD

(
E1| · · · |Ep,U[2]p

)
from the advantage in Theorem 7.7, using the following claim.

Lemma 7.9. Let xi ∈ [N ] and Ei := Extpip
(
H1(xi),H2(xi),H3(xi)

)
for i = 1..n. Suppose that for

all xi, at least two of the (distributions of the) functions H1, H2, H3 are (1− δ)-dense. Then for all
n ∈ N we have:

SD(E1| · · · |En,U[2]n) ≤
√

(en·M−(1−2δ) − 1)/2 .

Proof. In the proof below we use the parity lemma 2 (1) and the fact that the pairwise inner product
(in [L]) is linear, i.e.,

∑
n∈I En =

∑
n∈I Extpip(H1(xn),H2(xn),H3(xn)) = Extpip(H1(x1)| · · · |H1(x|I|),

H2(x1)| · · · |H2(x|I|),H3(x1)| · · · |H3(x|I|)) = EI (2).

SD(E1| · · · |En,U[2]n) ≤
√ ∑

0n log 2 6=a∈[2]n

(
SD(E1| · · · |En · a,U[2])

)2 (1)

=

√√√√ ∑
∅6=I⊆{1,...,n}

(
SD
(∑
i∈I

Ei,U[2]
))2

=
√ ∑
∅6=I⊆{1,...,n}

(
SD(EI ,U[2])

)2 (2)

≤
√ ∑
∅6=I⊆{1,...,n}

2−(|I|·logM ·(1−2δ)+2−log 2)

2Let X be a random variable over [2`]. Then we have SD(X,U[2`]) ≤
√∑

0` 6=a∈[2`]

(
SD(X · a,U[2])

)2
.
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=
√

2−2+log 2 ·
∑

∅6=I⊆{1,...,n}

2−|I|·logM ·(1−2δ)

=
√

2−1 ·
∑

∅6=I⊆{1,...,n}

(
M−(1−2δ)

)|I|
=
√((

1 +M−(1−2δ)
)n − 1

)
/2

≤
√

(en·M−(1−2δ) − 1)/2

Hence, the claim about the advantage holds. The query complexity of the simulator is bounded
by the sum of qH and (c+ 1) · p.

We now provide estimates for the involved parameters.

Corollary 7.10. Let the number of switches be c ≥ 1 and assume the range size of the three random
oracles are M ≥ N9. Then there is an indifferentiability simulator Sim for the Cpip construction in
the 3-BRO model that places at most

qH + (c+ 1) ·
(

6Q`
logM

)1/α(c)
·N1−1/α(c)

queries to RO, where α(c) :=
⌊
c
3
⌋

+ 1, against any distinguisher with qH queries to the underlying
BROs. Further, any such distinguisher with qC construction queries and Q consecutive queries to the
same backdoor oracle before switching, has advantage at most (c+ 1) · γ + (c+ qH + qC)/N against
this simulator.

Proof. The recurrence relations for δi in the statement of Theorem 7.7 can be written as

δi ≤ A · δi−3 +B ,

where A := N/p and B := (Q`+ log γ−1)/p logM . Solving this recurrence relation we get

δi ≤
Ab

i−1
3 c+1 − 1
A− 1 ·B .

We set δc+1 ≤ 1/3 so that the term 1− 2δc+1 is positive. To this end, it is sufficient to have that

Ab
c
3c+1 − 1
A− 1 ·B ≤ 1

3 .

Substituting A and B and removing the −1 in the numerator we need to have that

(
N

p

)b c3c+1
≤ A− 1

3B = (N/p− 1)p logM
3Q` = N logM − p logM

3Q` ≤ N logM
6Q` ,
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where for the last inequality we have assumed that p ≤ N/2. Thus,

p ≥
(

6Q`
logM

)1/α(c)
·N1−1/α(c) ,

where α(c) :=
⌊
c
3
⌋

+ 1. For sufficiently large c, the factor above is at most 2.
The advantage stated in Corollary 7.8 is

(c+ 1) · γ + c ·
√
p/M1−2δc + (qH + qC) ·

√
1/M1−2δc+1 .

Since 1− 2δc+1 ≤ 1− 2/3 = 1/3, δc ≤ δc+1, p ≤ N and M ≥ N9, the advantage is upper-bounded
by (c+ 1) · γ + (c+ qH + qC)/N .

Note that for c = 1, 2 the query complexity of the simulator does not involve the N1−1/α(c) factor,
and hence we obtain collision resistance. For c ≥ 3, however there is a factor of at least N1/2.

The above corollary shows that the extractor combiner can tolerate a linear number of switches
in logN (which can be thought of as the security parameter) for the simulator query complexity to
be less than N/2. As for the xor combiner we conjecture that (much) better bounds for the extractor
combiner are possible.

7.5 Indifferentiability with Auxiliary Input

In this section we discuss indifferentiability in a setting where there is no adaptivity and the backdoor
oracles are called only once at the onset. Although this may seem overly restrictive, the resulting
definition is sufficiently strong to model indifferentiability in the presence of auxiliary input, i.e.,
against non-uniform adversaries, whereby we would like to securely replace random oracles in generic
applications even in the presence of auxiliary input. Generally speaking, security against non-uniform
adversaries is more desirable, since it takes into consideration that the adversary may have done
some off-line preprocessing to prepare useful information or data structures (e.g., rainbow tables)
that help speed up the actual on-line attack, when additional information becomes known to the
adversary.

In this setting we can view an indifferentiability simulator as operating in two stages: An off-
line stage which responds to the single backdoor queries for each BRO, and an on-line stage which
simulates direct evaluation calls to the underlying BROs. The off-line phase of the simulator can pass
an arbitrary state to its on-line phase. Further, both stages have access to the reference object oracles
(although the query complexities of both stages need to be small). More precisely, this definition in
the 2-RO model with auxiliary input requires that for any (D0,1,D0,2,D1) in the real world with
two random oracles H1 and H2 with

z1 ←← D0,1(H1); z2 ←← D0,2(H2, z1); b←← DCH1,H2 ,H1,H2
1 (z1, z2) ,
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there exists some (SimRO
0,1,SimRO

0,2,SimRO
1,1,SimRO

1,2) in the ideal (simulated) world

(z1, st)←← SimRO
0,1(); (z2, st)←← SimRO

0,2(st); b←← DRO,SimRO
1,1[st],SimRO

1,2[st]
1 (z1, z2) ,

with indistinguishable outputs b. The on-line simulators can also share state.

Let us now take a step back and define indifferentiability with auxiliary input driven by a
composition theorem: for any game G and any attacker A1 in this game against CH1,H2 which
receives auxiliary input on H1 and H2, there is an attacker B1 on RO in the same game G but now
without auxiliary input. More explicitly, the real world

z ←← A0(H1,H2); b←← GCH1,H2 ,AH1,H2
1 (z)

and the ideal world

(z, st)←← BRO
0 (); b←← GRO,BRO

1 (z,st)

are indistinguishable. Once again the query complexity of B0 should be small (or even zero) to
obtain a definition which meaningfully formalizes indifferentiability from random oracles without
auxiliary input. This definition, however, turns out to be unachievable: A0 can simply encode a pair
of collisions for the construction, which B0 will not be able to match (with respect to RO) without
an exponentially large number of queries to RO.3 This, however, does not come as a surprise, since
a random oracle in presence of auxiliary input is not collision resistant and, hence, it should not be
indifferentiable for any reasonable definition of indifferentiability.

There are two natural ways to overcome this: (1) restrict the interface of the construction; or (2)
restrict the form of preprocessing. The former is motivated by use of salting as a means to defeat
preprocessing, and the latter by independence of preprocessing for BROs.

A final question arises here: is it possible to simplify this definition further by removing the
quantification over A1 (as done for standard indifferentiability)? This could be done in the standard
way by absorbing A1 into G to form a differentiator D1. However, this means that D1 must receive
the auxiliary information z. The resulting notion is stronger and models composition with respect
to games that also depend on preprocessing. Thus, due to its simplicity, strength, and the fact that
we can establish positive results for it, we focus on this definitional approach. Below we make the
two definitions arising from restriction (1) and (2) explicit.

Salted AI-indifferentiability. We call a construction CH salted if it takes a salt hk ∈ {0, 1}k as
input and prepends all calls to H with hk. We define salted AI-indifferentiability from a random
oracle by requiring that for any (D0,D1) in the real world

z ←← D0(H); hk←← {0, 1}k; b←← DCH(hk,·)(hk,·),H
1 (hk, z)

3One can formulate an intermediate notion of indifferentiability from random oracle with auxiliary input. Without
salting, this notion would not be of great help, either. Consider, for example, the case of domain extension via an
iterative hashing mode. Due to Joux’s multi-collision attack [Jou04] one can encode exponentially many collisions for
the construction in a small auxiliary input, whereas this would not be possible for the random oracle.
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there is a simulator (SimRO
0 ,SimRO

1 ) in the ideal world

(z, st)←← SimRO
0 (); hk←← {0, 1}k; b←← DRO(hk,·),SimRO

1 [st]
1 (hk, z)

resulting in indistinguishable outputs b. We denote the advantage of an adversary D in the salted
AI-indifferentiability game with simulator Sim for a construction CH by Advs-ai-indiff

CH,Sim (D). Notice that
in the above definition, the distinguisher gets access to a salted RO. A different definition arises
when the distinguisher gets access to an unsalted RO instead. However, since the simulated auxiliary
information is computed given access to an unsalted RO (which can be interpreted as having implicit
access to the salt), such a definition calls for the existence of a more powerful simulator. In particular,
such Sim0 and D1 can easily call RO on common points. The practical implications of such a definition
are unclear to us, and moreover, it is strictly weaker than our definition.

AI-indifferentiability with independent preprocessing. We define AI-indifferentiability with
independent preprocessing by requiring that for any adversary (D0,1,D0,2,D1) in the real world

z1 ←← D0,1(H1); z2 ←← D0,2(H2); b←← DCH1,H2 ,H1,H2
1 (z1, z2)

there is a simulator (SimRO
0,1,SimRO

0,2,SimRO
1,1,SimRO

1,2) in the ideal world

(z1, st)←← SimRO
0,1(); (z2, st)←← SimRO

0,2(st); b←← DRO,SimRO
1,1[st],SimRO

1,2[st]
1 (z1, z2)

resulting in indistinguishable outputs b. Note that this is slightly weaker than the definition of
indifferentiability in 2-BRO since z2 is fully independent of z1, whereas BRO indifferentiability
allows for a limited amount of dependence. We denote by Advai-indiff

CH,Sim (D) the advantage of D in the
AI-indifferentiability game with independent preprocessing with respect to a simulator Sim and a
construction CH1,H2 in the 2-BRO model.

We are now ready to prove our feasibility results for AI-indifferentiability.

Theorem 7.11 (AI-Indifferentiability). Any construction CH1,H2 that is indifferentiable with back-
doors from a random oracle with no backdoor adaptive queries is also AI-indifferentiable from a
random oracle with respect to independent preprocessing attacks. More precisely, for any auxiliary-
input differentiator D := (D0,1,D0,2,D1) with independent preprocessing for two random oracles there
is a 2-BRO differentiator D̃ := (D̃0,1, D̃0,2, D̃1) with one-time non-adaptive access to each backdoor
oracle such that for any 2-BRO indifferentiability simulator ˜Sim := ( ˜Sim0,1, ˜Sim0,2, ˜Sim1,1, ˜Sim1,2)
there is an auxiliary-input simulator Sim := (Sim0,1,Sim0,2,Sim1,1,Sim1,2) such that

Advai-indiff
CH1,H2 ,Sim(D) = Advindiff

CH1,H2 , ˜Sim(D̃) .

Further, any salted construction CH (with k bits of salt) that is indifferentiable (in the standard
sense) from a random oracle is also salted AI-indifferentiable from a random oracle. More precisely,
for any auxiliary-input differentiator D := (D0,D1), with an auxiliary input of size `, there is
a (standard) differentiator D̃ := (D̃0, D̃1) such that for any indifferentiability simulator ˜Sim :=
( ˜Sim0, ˜Sim1) there is an auxiliary-input simulator Sim := (Sim0,Sim1) such that for any p ∈ N and
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any γ > 0

Advs-ai-indiff
CH,Sim (D) ≤ Advindiff

CH, ˜Sim(D̃) + `+ log γ−1

p
+ p

2k + γ .

Proof. The first part of the theorem follows directly from the discussion above that indifferentia-
bility with backdoors and no adaptivity is stronger than indifferentiability with auxiliary input for
independent preprocessing.

We now prove the second part of the theorem.

Game0: We start with the real game in the salted AI-indifferentiability game:

z ←← D0(H); hk←← {0, 1}k; b←← DCH(hk,·)(hk,·),H
1 (hk, z) .

Game1: We now move to the bit-fixing RO model

(z,A)←← D̃0(); hk←← {0, 1}k; b←← DCH[A](hk,·)(hk,·),H[A]
1 (hk, z) .

Here D̃0 runs D0 by simulating an H for it and then runs the decomposition algorithm to get
a set of assignments A for p fixed points (for any p ∈ N) according to the auxiliary input z
output by D0. We may now apply [CDGS18, Theorem 5] to deduce that for any γ > 0,

Pr[Game1]− Pr[Game0] ≤ `+ log γ−1

p
+ γ ,

where ` is the size of auxiliary information.

Game2: We now move to a setting where C uses H rather than H[A], i.e.,

(z,A)←← D̃0(); hk←← {0, 1}k; b←← DCH(hk,·)(hk,·),H[A]
1 (hk, z) .

This modification is justified by the fact that the probability that a uniform hk is (the prefix of
the first component of some point) in A is at most p/2k. Hence, Pr[Game2]−Pr[Game1] ≤ p/2k.

Game3: We now move to a world where D1 is replaced by a differentiator D̃1 that gets the list A
and does not query H on points in A:

(z,A)←← D̃0(); hk←← {0, 1}k; b←← D̃CH(hk,·)(hk,·),H
1 (hk, z, A) .

Here D̃1(hk, z, A) runs D1(hk, z) relaying its queries to the first oracle to its own first oracle
and the second oracle queries to its own second oracle except when a queried point appears as
a prefix of the first component of an entry in A in which case D̃1 uses A to answer the query.
We have that Pr[Game3]− Pr[Game2] = 0.

Game4: We now absorb D̃0 and D̃1 into a single differentiator D̃:

b←← D̃CH(hk,·)(hk,·),H .
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Here D̃ simply runs D̃0, followed by picking hk←← {0, 1}k, and then running D̃1. We have that
Pr[Game4]− Pr[Game3] = 0.

Game5: We now use the standard indifferentiability of the construction to move to the world

b←← D̃RO(hk,·), ˜SimRO
,

where ˜Sim is an indifferentiability simulator. We get Pr[Game3]− Pr[Game2] ≤ Advindiff
CH, ˜Sim(D̃).

Game6: We now syntactically unroll D̃ into (D̃0, D̃1):

(z,A)←← D̃0(); hk←← {0, 1}k; b←← D̃RO(hk,·), ˜SimRO

1 (hk, z, A) .

We have that Pr[Game6]− Pr[Game5] = 0.

Game7: We further unroll D̃1 into D1 and define Sim1[A] to be ˜Sim except that it uses A to answers
queries in A:

(z,A)←← D̃0(); hk←← {0, 1}k; b←← DRO(hk,·),SimRO
1 [A]

1 (hk, z) .

We have that Pr[Game7]− Pr[Game6] = 0.

Game8: Finally, we define Sim0 := D̃0 and arrive at the simulated world

(z,A)←← Sim0(); hk←← {0, 1}k; b←← DRO(hk,·),SimRO
1 [A]

1 (hk, z) .

We have that Pr[Game8]− Pr[Game7] = 0.

Hence, the second part of theorem follows by summing the (in)equalities established above; that is
for any p ∈ N and any γ > 0 we get that

Advs-ai-indiff
CH,(Sim0,Sim1)(D0,D1) = Pr[Game0]− Pr[Game8]

≤ Advindiff
CH, ˜Sim(D̃) + `+ log γ−1

p
+ p

2k + γ .

We may instantiate the first part of the theorem with the xor combiner and an indifferentiability
simulator for it given in Section 7.3. Additionally, the extractor combiner from Section 7.4 provides
similar guarantees in the 3-BRO model. Let us discuss the xor combiner in more detail. In this case
the off-line phase of the simulator makes no queries to the RO (and outputs simulated auxiliary inputs
by picking hash functions for the queried backdoor functions to BD1 and BD2). This off-line phase
also outputs two sets of p1 and p2 preset points as its state, which will be shared with the on-line phase
of simulation. The second phase of the simulator is a simple xor indifferentiability simulator which
ensures consistency with the preset points. Here our simulator fixes p1 points for H1 and p2 points
for H2. This results in a simulator query complexity of qH + p1 + p2. The corresponding advantage
bound is at most 2γ+qH · logM ·δ2 +qC · logM(δ1 +δ2) which is of order O(qH`/p2 +qC(`/p1 +`/p2)).
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Setting p1 = p2 = p we get a simulator with O(qH + p) queries for an advantage O((qH + 2qC)`/p).
For p = o(

√
N) we get a bound that is meaningful for collision resistance.

As a result, we get that the xor combiner is collision resistant in the presence of independent
auxiliary input (with no-salting). We note that the xor construction comes with added advantage
that its security goes beyond AI-indifferentiability, and is also more domain efficient than the salting
approach. Strictly speaking, however, the two settings are incomparable as the form of auxiliary
information changes, requiring independent preprocessing in the 2-BRO model.
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Chapter 8
Self-Guarding Primitives

against Subverted Implementations

In this chapter we introduce the notion of self-guarding cryptographic primitives to combat a type
of algorithm substitution attacks. We investigate how self-guarding primitives can resist substitution
attacks that are conducted or activated after the primitive has been working properly and securely
during an initial phase. We present constructions of basic primitives for public-key and private-key
encryption as well as digital signatures. We also show how to self-guard a PUF-based key exchange
protocol. Our constructions put great value on the simplicity and efficiency of the operations employed
in making the primitive under attack self-guarding, so as to keep the trusted core as small as possible.
On the downside, self-guarding schemes can usually only guarantee a limited number of secure
executions.

My Scientific Contribution in this Chapter

The material in this chapter is a joint work with Marc Fischlin and appears in [FM18]. Marc
and I jointly devised the idea of making use of secure initial states of certain primitives to
re-establish security in their future executions. I developed the model in Section 8.2 with Marc’s
help. Regarding the constructions, my focus lay mainly on the homomorphic and the symmetric
encryption schemes presented in Sections 8.3 and 8.4, respectively. Marc focused on the signature
scheme of Section 8.5 and the PUF-based key exchange protocol of Section 8.6.

8.1 Introduction

The formal study of algorithm substitution attacks (ASAs) as an instrument of mass surveillance was
initiated by Bellare, Paterson, and Rogaway [BPR14] on the example of symmetric encryption. ASAs
constitute a class of attacks, where the adversary subverts the implementation of a (well-designed,
non-backdoored) cryptosystem by a malicious one in order to compromise its security. The adversary’s
goal in this setting is formalized in [BPR14] roughly as violating the cryptosystem’s security while
remaining undetectable to users. Note that an attack that is easy to detect is highly unlikely to be
carried out by a cautious adversary. For instance, a NOBUS subversion of an encryption algorithm
would not simply output messages in clear nor would it induce a high decryption failure. Prior work has
been quite successful in raising awareness of the danger of ASAs in terms of describing various attacks
that can be mounted while risking detection as little as possible [DFP15, BJK15, AP19b, AP19a].
However, the list of countermeasures to ASAs, which we will discuss shorty, is unfortunately still
relatively sparse and the practicality of some of them is questionable. A first observation that we made
to understand how positive results can look like was the following: to prevent ASAs, a detection-based
definition is not a particularly suitable one, since it implies that resistance against ASAs either means
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that the subverted system is still secure, or that the attack is detectable. Detectability, however,
does not say much about how feasible it is that the attack is actually detected in the real world. In
other words, such a definition would declare many potential real-world subversions as secure for the
mere fact that they are theoretically detectable.

8.1.1 Detecting Substitution Attacks

Detecting algorithm substitution attacks can be hard, sometimes even impossible. It was shown that
randomized symmetric encryption is prone to ASAs that can leak the secret key, while not only avoid-
ing detection by any efficient detector (a.k.a. watchdog as called in [RTYZ16]) with black-box access
to the algorithm, but can even produce ciphertexts that are perfectly decryptable [BPR14, BJK15].
Attacks strategies that slightly relax the correctness assumptions can still be practically undetectable.
Degabriele, Farshim, and Poettering illustrated this threat for subversions with input-triggered mis-
behavior [DFP15]. Armour and Poettering also showed how minor but strategic decryption or
verification error can lead to exfiltration of secret keys in authenticated encryption schemes and mes-
sage authentication codes [AP19b, AP19a]. Taking into account the strong black-box impossibility
results, some works have suggested to use deterministic encryption schemes with unique ciphertexts
such that one can compare against the expected values [BPR14, BH15, BJK15, DFP15].

Even in situations where detection is theoretically possible, it is arguably very difficult to design
proper detectors in practice. A detector gets access to an implementation which, due to the nature of
the attack, may be arbitrarily subverted, and the detector has to decide if any efficient adversary is
able to violate its security. Overall, it is unclear which kinds of irregularities the detector should look
for and which detection capabilities are reasonable to assume. For instance, deterministic schemes
are considered detectable by on-line detectors, since they can compare the output of the possibly
subverted algorithm with the expected output at runtime [BPR14, DFP15, BJK15]. Aside from being
rather inefficient, this assumes that the detector has a good implementation of the same algorithm
at hand and that scans are performed while the system is active.

Another tricky situation arises when implementations behave honestly only as long as they are
under scrutiny, say, through an off-line detector. However, malicious behavior can be triggered to wake
up at a later point in time or in some future state. Degabriele et al. [DFP15] describe an undetectable
ASA on randomized symmetric encryption that is triggered to leak the secret key upon being called
on a special input. Such attacks have also been discussed in the context of software and also in
the domain of cryptographic hardware backdoors and trojans, e.g., [WS11, DFS16]. For protection
against similar attacks in hardware tokens that implement a deterministic function, Dziembowski,
Faust, and Standaert [DFS16] make use of a semi-on-line detector that regularly tests the tokens
against the specification that they are supposed to implement, while malicious input-triggers are
prevented via masking, a technique which can also be useful in our setting.

Conceptually, a malicious or simply insecure software update also fits into the category of ASAs
that become active by a trigger after running securely for some time. Two prominent testimonies are
the heartbleed vulnerability in the open source library OpenSSL and the Juniper Dual_EC incident.
The heartblead bug was introduced with version 1.0.1 in 2011 and went unnoticed for over two years
(see heartbleed.com). In 2015, Juniper Networks announced that the source code of ScreenOS, the
operating system of their VPN routers, was maliciously modified in 2012 [CMG+16]. Although one
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can speculate about whether these and similar attacks were inadvertent or not, they showcase the
possibility of substitution attacks being performed in the real world as a mean of mass surveillance.

The problem of detecting ASAs by comparing outputs with trusted variants can even be acute
if hardware components are involved. For example, in case of physical uncloneable functions (PUFs)
this seems to be impossible: a good PUF ideally implements a random and uncloneable function
(unlike hardware tokens considered by Dziembowski et al. [DFS16] which implement a specified
function), but the internal computations are not assessable. It is unclear what the detector should
check for, maybe except for basic properties such as the absence of collisions. Furthermore, the
detector may not be able to check output values later if it does not have access to the PUF anymore.
The infeasiblility of verifying security of hardware tokens also motivated Camenisch, Drijvers, and
Lehmann [CDL17] to design an anonymous attestation protocol which achieves privacy even with
subverted trusted platform modules (TPM).

Another issue with detectors is that they need to be trustworthy entities and their implementations
also need to be reliable. A detector that colludes with a mass surveillance agency or is subverted
itself is clearly unreliable. Even worse, in some scenarios the detection algorithm requires access
to the secret key [BPR14, DFP15], introducing other potential security risks. The latter may make
detection also hard in case of hardware components, if keys are not allowed to leave the devices that
they are stored on.

8.1.2 Preventing Substitution Attacks

Considering the difficulty of detecting algorithm substitution attacks, a question that comes to
mind is if it is possible to neutralize attacks without the requirement to detect them first. Although
neutralizing algorithm substitution attacks is a highly challenging task, it can be more promising
than detection-based approaches both in terms of security and efficiency. Furthermore the approach
of (off-line) detection is often reactive and cannot obscure loss of crucial information when the system
is being used. A proactive solution, however, can prevent leakage in the first place.

Indeed cryptographic reverse firewalls, introduced by Mironov and Stephens-Davidowitz [MS15],
follow the approach of prevention [MS15, DMS16]. The idea of reverse firewalls is to distribute the
trust between the user and a firewall. The outgoing communication, say, a signature, is first routed
through the firewall which may take further cryptographic steps, such as verifying the signature and
re-randomizing it, in order to prevent subliminal channels. The targeted security guarantee is: as long
as one of the two components (user or firewall) is trustworthy and has a proper implementation, no
information can be transferred through the firewall. Reverse firewalls may not be readily applicable
to every existing protocol. In fact, a goal of [MS15, DMS16] is to design protocols that can be used
with reverse firewalls. How to design amenable protocols for symmetric-key primitives, or when using
hardware tokens, without complex detection mechanisms remains open.

In two recent works by Russel et al. [RTYZ16, RTYZ17] the detector model is combined with some
prevention mechanism. Their approach is based on a split-program methodology, where an algorithm
is split into deterministic and probabilistic parts that can be individually tested by the detector.
This allows prevention of for instance rejection-sampling attacks by not letting the deterministic part
of the algorithm request more randomness that it needs, and prevention of input-triggered attacks
by adding a random value to the input, i.e., masking it. Despite remarkable improvements in the
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power that a detector in the split-program model gains, some of our criticisms, e.g., requiring a good
implementation and failing to detect state-dependent attacks, remain.

8.1.3 The Concept of Self-Guarding Security

Our contribution is providing an alternative defense mechanism to reverse firewalls which, too,
proactively thwarts ASAs but does not depend on external parties. We focus on a setting where the
party at some point holds a genuine version of the algorithm, before the algorithm gets substituted
by e.g., a malicious software update, or before an input or a state triggers the malicious behavior
of the algorithm. In other words, our “security anchor” is the assumption of having a secure initial
phase. We call a cryptographic scheme that is secure despite making black-box use of possibly
subverted underlying schemes self-guarding. Such a scheme uses information (from now on called
samples) gathered from its underlying primitives during their good initial phase in addition to basic
operations to prevent leakage later on, or to implement a new protocol securely without implementing
the required primitives securely from scratch. We emphasize that subverting or exfiltrating samples
(e.g., pairs of message and ciphertexts, which depend on users’ keys) would require targeted attacks,
which is a considerably more difficult attack to carry out in a large scale than algorithm substitution
attacks. The downside of this approach is, however, that especially in case the underlying primitives
are subverted with stateful algorithms, it is tricky to reuse samples for self-guarding and the number
of secure executions after a possible ASA becomes effectively limited.

Related Approaches

Our idea of a trusted initialization phase resembles several other methods in the literature. In the area
of program self-correction [BLR90] an algorithm can take advantage of a program which computes
correctly on an overwhelming fraction of inputs to build one which always outputs correct answers
with high probability. This bootstrapping is similar to our idea here, only that we use temporary
correctness and security of the program. In self-correction, as well as program checking [BK89],
it is important to not trivialize the problem by implementing a trusted program oneself. Instead,
one should only use basic operations on top. Another related setting is the one of non-interactive
verifiable computing introduced by Gennaro, Gentry, and Parno [GGP10], whereby a powerful but
untrusted server performs some computation for a client, which the client can verify using simple
operations. Similar austerity principle applies in our setting, with the main difference that we are
interested in reviving the security and not necessarily the correctness of the computations.

The concept also appears in the context of digital certificates. A technique called HTTP Public
Key Pinning (HPKP) [EPS15], albeit argued about, is a trust-on-first-use technique for checking the
validity of certificates. On first usage certificates are declared as trustworthy (“pinned”) such that
substitution of certificates in subsequent executions becomes infeasible.

Finally, in interactive protocols involving physical uncloneable functions (PUFs) or other hardware
tokens, the question of security in the presence of malicious tokens has been brought up (e.g.,
in [OSVW13, Rüh16, BKOV17]). Here, the sender of the token typically first holds a genuine version
of the token. The adversary may subvert the token later, when in transmission. This corresponds
to our setting with a trusted initialization phase and subversion afterwards, only that the protocol
involves two parties and hardware tokens.
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Comparison to Detectors and Reverse Firewalls

As mentioned before, self-guarding schemes, as well as reverse firewalls, prevent leakage by construc-
tion. The difference is how the security anchor is provided: In reverse firewalls it is ensured by trust
distribution, in self-guarding schemes it is based on a temporary trusted phase. Self-guarding applies
more smoothly to symmetric primitives and hardware tokens, but for other primitives it currently
comes with a performance inferior to today’s reverse firewall solutions.

At first glance one might think that the initialization phase of self-guarding schemes could simply
be executed by a detector with the specified program, such that we immediately get a detecting
solution. However, our self-guarding schemes will pass state between the phases, whereas detectors
typically do not forward data to individual users. Furthermore, although one could in principle
combine our approach with some detection mechanism, self-guarding does not aim at spotting
malicious behavior innately. Another noteworthy difference between self-guarding and the detector
model is that self-guarding schemes do not need the subverted algorithm in the beginning.

8.1.4 Self-Guarding Constructions

We show how to build self-guarding solutions for multiple basic primitives: public-key encryption,
symmetric encryption, and signatures. To show that our model applies to hardware tokens, too,
we also show how to build a self-guarding PUF-based key exchange protocol if the adversary can
substitute tokens in transmission. While the general idea of passing samples of the primitive in
question from the initialization phase to the execution is shared by all solutions, the techniques differ
in details and also in terms of security guarantees and efficiency.

We first give a simple and efficient construction for a self-guarding IND-CPA-secure public-key
encryption scheme from any homomorphic encryption scheme, e.g., ElGamal encryption. Our scheme
is self-guarding even against stateful subversions of the underlying scheme. Yet, the disadvantage
is that, if the subverted scheme is stateful, we are limited to only encrypting as many messages
securely as we have sample ciphertexts from the first phase. Our construction is inspired by an
elegant idea by Russel et al. [RTYZ17] to prohibit input-triggered attacks in encryption schemes.
This is achieved by xoring a random message to the input of an encryption algorithm and sending
the random message along with the ciphertext.

The second construction provides an IND-CPA-secure self-guarding symmetric-key encryption
scheme, starting with any regular IND-CPA-secure scheme. Here the number of encryptions is again
limited by the number of available samples, and the message space is also bounded. Despite these
limitations, we find this construction quite intriguing, since the only other proposal for subversion-
resisting randomized symmetric encryption is in a split-program detection-based model [RTYZ17].

Our third construction is a self-guarding signature scheme. It is built upon any deterministic
EUF-CMA-unforgeable signature scheme. This time, however, the overhead is bigger than in case
of encryption, and it only self-guards against stateless subversion of the underlying scheme. In
contrast, it can be securely used to sign arbitrarily often after the substitution took place. Moreover,
contrary to re-randomizing reverse firewalls for signatures, as proposed in [AMV15], it does not rely
on an honest implementation of the verification algorithm for signing. We do, however, assume that
the verification algorithm is not subverted so that we can exclude such trivial attacks where the
verification algorithm accepts invalid signatures.
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Finally, we give a PUF-based key exchange protocol that is self-guarding against subversion of
the PUF with malicious, stateful, and encapsulated PUFs. This is noteworthy as for more complex
tasks such as oblivious transfer there are negative results concerning such malicious PUFs [vR12,
DFK+14, Rüh16]. Our key exchange protocol has four rounds and uses only a single genuine sample
from the initialization phase for deriving each key. It thus matches the non-self-guarding PUF-based
protocols in terms of the number of samples.

8.2 Modeling Self-Guarding Primitives

In this section we first define the syntax of self-guarding schemes. We then give a generic model of
cryptographic games and finally turn to defining a generic security notion for self-guarding.

To distinguish genuine from potentially malicious implementations, we use a notation similar
to [RTYZ16, RTYZ17], i.e, we use indices GNN for a trusted and genuine implementation, and SBV

for a subverted implementation. For simplicity, we sometimes omit the index GNN for the original
algorithms, if this is clear from the context. We are interested in schemes Π which make use of a
possibly subverted primitive Σ. We require Π to obey a specific interface. In particular, it should
provide means for generating parameters for the scheme and sampling their algorithm interfaces. More
formally, given a cryptographic scheme Σ, we define ΠΣ := (Π.GenΣ,Π.SampleΣ,Π.XΣ

1 , . . . ,Π.XΣ
n )

for some n ∈ N, where

• Π.GenΣ(1λ)→→ P = (Ps, Pp). On input of a security parameter 1λ, this PPT algorithm outputs
secret parameters Ps and public parameters Pp.

• Π.SampleΣ(P )→→ S = (S1, . . . , Sn). On input of parameters P = (Ps, Pp), this PPT algorithm
outputs collections Si of input-output samples of Π.XΣ

i for 1 ≤ i ≤ n. The size of each Si is
determined by the protocol Π and may depend on the security parameter.

• Π.XΣ
i are PPT or DPT algorithms that are placeholders for other functionalities of Π, for all i

with 1 ≤ i ≤ n.

We remark here that Π can basically take two different roles. It can either provide a different,
possibly more complex functionality, while remaining secure despite using a subverted algorithm
ΣSBV, or it can simply neutralize a possible substitution attack by ΣSBV. For the former role, Π can
for instance be a key exchange protocol using some cryptographic primitive Σ (e.g., a signature
scheme), and the security game may capture the indistinguishability of the derived keys. Intuitively,
the adversary’s goal is now to distinguish keys from random by subverting Σ. In the latter case, Π
and Σ can have a similar functionality, for example providing the usual interfaces for encryption and
decryption. In this case Π’s task is to neutralize a potential subversion attack on Σ.

In principle, preventing an attack is trivial to achieve in real executions, simply by having Π
deploy its own secure implementation of ΣGNN, ignoring the potentially substituted implementation
ΣSBV. To avoid such issues we assume that Π makes only black-box use of Σ and only implements
very basic extra steps for the immunization, which are easy to implement and hard to subvert. In
other words, in a practical construction, the internal part of Π concerning the immunization, i.e.,
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excluding the queries to Σ and possibly an own functionality, must be as simple as possible. This
assumption is important in order to keep the trusted component, i.e., Π, as small as possible.

For a meaningful definition we require the genuine implementations, i.e., ΠΣGNN , to be correct.
Since our main objective here is preventing ASAs, we generally do not expect a correct functionality
from ΠΣSBV , i.e., in the event of subversion. In particular, if Π detects subversion of ΣSBV, it may
simply output an error message ⊥. However, for Π to be able to meaningfully use ΣSBV as a black
box, we do assume that ΣSBV respects the interface of the corresponding genuine scheme ΣGNN, i.e., it
has the same set of algorithms with the same number and space of input and outputs.

We follow [HH09] and [RTYZ16] in giving a definition for security of standard cryptographic
schemes. Our definition is generic enough to capture regular security games, but it is adapted in a
way that parameters P and samples S of the scheme can be provided as inputs to the security game.
Looking ahead, this is done to model the parameter and sample generation as genuine, non-subverted
computations. One may think of parameters Pp and Ps as for instance being the public and secret
key, respectively. For an ordinary (non-self-guarding) scheme, S is empty.

Definition 8.1 (Cryptographic Game). A game-based security property for a scheme Π is defined by
a probabilistic algorithm Game and associated constants α, δ ∈ N. On input of scheme parameters P
and potentially a set of samples S, the algorithm GameΠ,P,S interacts with an adversary A on input
of a security parameter 1λ and outputs a bit b. We denote this interaction by b←← GameAΠ,P,S(1λ).
The advantage of an adversary A in the game Game is defined as:

Advgame
Π,P,S(A, λ) := α · Pr

[
GameAΠ,P,S(1λ)

]
− δ ,

where the probability is over the internal coins of the game and the adversary. We say that the
scheme Π is Game-secure if for any PPT adversary A and a randomized choice of parameters
P ←← Π.Gen(1λ) and samples S ←← Π.Sample(P ) the advantage Advgame

Π,P,S(A, λ) is negligible.

As a rule of thumb, for unpredictability games (e.g., one-wayness, collision resistance, unforge-
ability) we usually have α = 1 and δ = 0, whereas for indistinguishability games (e.g., PRG and
PRF security, key-indistinguishability) we have α = 2 and δ = 1.

8.2.1 Self-Guarding Security

In the self-guarding game SGuard we consider two phases. During the first phase the challenger has
access to a genuine version of the underlying scheme, i.e., ΣGNN. There, the challenger can set up
ΠΣGNN by generating parameters and creating n samples from ΣGNN and storing them in a collection S
(which are meant to be chosen and used by the user later in real executions).

Afterwards, the challenger starts the second phase of the self-guarding game by calling the
adversary A(subv, Pp) on a command subv and public parameters Pp, giving A the opportunity to
provide an arbitrary (while still respecting the original interface) implementation ΣSBV for Σ and
a state st ∈ {0, 1}∗. In the subsequent steps, the challenger will either use the original algorithm
ΣGNN or the subverted version ΣSBV. The choice is made based on a fixed value β ∈ {GNN, SBV}. In
either case the challenger runs the adversary A(break, Pp, st) on a command break, the public
parameters and the state obtained from the subverting adversary to play the security game Game
for the scheme ΠΣβ with parameters P and secure samples S.
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The self-guarding ability of Π under subversion of Σ now states that the adversary’s success
probability in winning the game Game should not increase significantly when Σ is subverted. In
other words, winning should not depend significantly on the value of β, which indicates if the original
or the subverted algorithm is used.

Game SGuard(Game)A,βΠΣ (1λ) with β ∈ {GNN, SBV}

— trusted setup phase —

(Ps, Pp)←← Π.GenΣGNN (1λ)

S ←← Π.SampleΣGNN (Ps, Pp)

— subversion phase —

ΣSBV, st←← A(subv, Pp)

b←← GameA(break,Pp,st)

ΠΣβ ,Ps,Pp,S
(1λ)

return b

Figure 8.1: Game for self-guarding of Π against subversion of Σ.

Definition 8.2 (Self-guarding against Subversion). Let Σ and Π be cryptographic schemes, and let
Game be a security game for ΠΣ. The advantage of an adversary A in the self-guarding game of
Figure 8.1 is defined by:

Advsguard(game)
ΠΣ (A, λ) := Pr

[
SGuard(Game)A,SBV

ΠΣ (1λ)
]
− Pr

[
SGuard(Game)A,GNN

ΠΣ (1λ)
]
.

We say that ΠΣ is self-guarding with respect to Game against subversion of Σ if for all PPT
adversaries A, the advantage Advsguard(game)

ΠΣ (A, λ) is negligible.

Intuitively, the above definition requires that the security of a self-guarding scheme ΠΣ should
not decrease noticeably if an adversary subverts the underlying primitive Σ. As discussed before,
the simplicity of the guarding performed by Π is crucial in practical applications. In particular,
we assume that Π does not implement its own secure version of Σ, nor does it implement “heavy”
detection procedures. This also implies that Π is usually not able to verify correctness of Σ itself,
still allowing the adversary to modify Σ at will.

Our definition is (almost) non-adaptive in the sense that the subverted algorithm is chosen
before the actual security game starts, but it may depend on the public parameters. This complies
with some efforts in the literature, such as the subversion-resistant signature scheme in [RTYZ16]
where the subverted algorithm may not even depend on the signer’s public key. The subversion
attacks on symmetric encryption schemes in [BPR14, DFP15] are also non-adaptive in nature. Such
notions provide a basic level of robustness in the setting of mass surveillance where targeted attacks
may be too cumbersome to mount. At the same time, targeted attacks may still be an important
aspect, e.g., when the signer is a certification authority such that forging signatures allows to create
arbitrary certificates. We stress that there are adaptive notions in the literature, for example for the
subversion-resistant signature schemes by Ateniese, Magri, and Venturi [AMV15], but in general the
distinction is not explicit.
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Our notion is able to capture a type of misbehavior that happens after a certain point in time.
While we do not have a notion of time in our model, the adversary can in principle provide an
algorithm which uses the original algorithm as a subroutine and only enters a malicious mode after
some calls, if the algorithm can be stateful and, say, maintain a counter. Similarly input-triggers can
also be implemented directly in the subverted algorithm.

8.3 Self-Guarding Public-Key Encryption

In this section we show how to build a self-guarding encryption scheme, with respect to IND-CPA
security, from any homomorphic encryption scheme. The guarding mechanism is simple, efficient,
and for typical instantiations, such as under ElGamal encryption, it does not need to perform any
modular exponentiation, nor to change anything on the decryptor’s side. Another gain is that the
solution enjoys security even in case the subverted encryption algorithm keeps state, a property
which is usually hard to achieve. If the subverted scheme is stateful, we can, however, only encrypt
as long as a fresh sample is available, since a stateful algorithm can store the used samples.

The idea of our generic construction of a self-guarding scheme HEsg, described in Figure 8.2, is as
follows. The sample generator encrypts multiple ciphertexts of random messages m$,i and outputs
them at once. At this point, the encryption algorithm still complies with the specification, such that
the samples are valid encryptions. Since we do not need any specific order of these samples, we will
store them in a queue structure, which we can access with the usual enq and deq commands, and
check if the queue is empty via is-empty.

When encrypting a given messagem, we call the (now potentially subverted) encryption algorithm
to encrypt the message m ◦m$,i for a fresh message m$,i from the sample queue. The idea is that
the subverted algorithm then only gets to “see” a random (i.e., blinded) message when producing
the ciphertext. To decrypt a ciphertext, one needs to unblind the message using the homomorphic
property, dividing out the ciphertext form$,i. For instance, when we use ElGamal encryption this cor-
responds to two modular multiplications and an inversion in the group. Remarkably, we do not need
to be able to distinguish valid and invalid ciphertexts returned by the encryption algorithm, which
saves us for example from performing an exponentiation for such a check for ElGamal encryption.
Note that although re-randomizing samples allows for an unlimited number of secure encryptions,
such involved techniques, which quasi means to implement one’s own encryption algorithm, should
be avoided.

HEsg.Gen(1λ)

(sk, pk)←← HE.Gen(1λ)
return (sk, pk)

HEsg.Sample(pk)

S ← �

for i = 1..n do
m$,i ←←M

c$,i ←← HE.Enc(pk,m$,i)
enq(S, (m$,i, c$,i))

return S

HEsg.Enc(pk, S,m)

if is-empty(S) then
return ⊥

(m$, c$)← deq(S)
c←← HE.Enc(pk,m ◦m$)
csg ← c � c−1

$

return csg

HEsg.Dec(sk, c)

m← HE.Dec(sk, c)
return m

Figure 8.2: Self-guarding encryption scheme HEsg from homomorphic encryption scheme HE.
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Game IND-CPAAE,P,S(1λ)

b←← {0, 1}

b′ ←← ALoR(P,S,b,·,·)(Pp)
return (b = b′)

LoR(P, S, b,m0,m1)

if |m0| 6= |m1| then return ⊥
c←← E.Enc(P, S,mb)
return c

Figure 8.3: IND-CPA game for encryption schemes E.

Correctness. As long as fresh samples are available and the underlying scheme HE is not under
a subversion attack, correctness of our encryption scheme HEsg follows from correctness and the
homomorphic property (which also implies that

(
Enc(pk,m)

)−1 and Enc(pk,m−1) have the same
distribution for all pk and m) of the underlying HEGNN. Considering that the encryption algorithm
HEsg.Enc practically stops working afterwards, correctness beyond that point is clearly not provided.

Before proving security of our construction, we formally define the notion of IND-CPA follows
the common left-or-right security game and is given in Figure 8.3 in our terminology. We capture
security for both public-key and private-key encryption simultaneously, by setting Pp = pk and
Ps = sk resp. Pp = ⊥ and Ps = k. Looking ahead, the notion for private-key encryption will be used
in Section 8.4. Recall once more that the game basically describes the second phase of substitution
attacks. Also, in the self-guarding game of Figure 8.1, if the adversary always chooses ESBV = EGNN

and S is empty, we obtain the standard security notions without a substitution attack.

Theorem 8.1. The encryption scheme HEsg from Figure 8.2 is self-guarding with respect to
IND-CPA-security against subversion of the underlying scheme HE, if HE is an IND-CPA-secure
homomorphic encryption scheme.

Proof. Assume that adversary A plays the self-guarding game SGuard(IND-CPA)A,βHEsg . We argue in
the following that A’s probabilities for predicting the secret bit b in the two settings, β = GNN and
β = SBV, are almost equal.

The case β = GNN. Consider first the case that the security game uses a genuine scheme HEGNN.
Then A’s probability of predicting b is negligibly close to 1

2 . To see this, note that A, upon receiving
pk, provides the subverted algorithm HESBV. This encryption algorithm is then ignored. It follows
that in each challenge query m0,m1 of A, where the remaining number of samples is not exhausted
yet, the adversary receives an encryption of m0 or of m1, only computed as the product of genuine
ciphertexts, derived via EncGNN. Since the homomorphic property implies that this has the same
distribution as a fresh encryption of the message, it follows immediately from the IND-CPA-security
of HE that the probability of predicting b is negligibly close to 1

2 .

The case β = SBV. Next, consider the case that the security game now uses the subverted algorithm
HESBV in the second phase. In each such query for a pair of messages m0,m1 we use a message m$ to
mask the challenge message and encrypt the masked message under the subverted algorithm. The
message m$ has been chosen at random and encrypted under the genuine algorithm EncGNN(pk,m$)
in the sampling phase. The final ciphertext csg is derived by multiplying the first ciphertext with
the inverse of the second one.
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Suppose now that, instead of using c$, which is the encryption of m$ under EncGNN, in each
challenge query, we use the encryption of an independent random message m′$ and compute the final
ciphertext from that. Then the adversary cannot possibly learn anything more than the random
message m$ ◦ m0 or m$ ◦ m1, possibly leaked through the subverted algorithm EncSBV, and the
encryption of an independent random message m′$. This also covers the case that the ciphertext in
the challenge phase is malformed, e.g., does not belong to the correct subgroup. In other words, each
challenge query yields an answer which is independently distributed from the bit b. The adversary’s
success probability for predicting b is then at most the guessing probability of 1

2 .
It remains to argue that encrypting m′$ instead of m$ does not significantly add to A’s success

probability. This follows directly from the IND-CPA-security of HE by usingA to build an adversary B
against HE. The adversary B initially receives a public key pk and forwards it to A. Adversary A
then provides the subverted algorithm HESBV. Then B simulates the rest of the self-guarding game,
picking the bit b←← {0, 1} itself but trying to predict an external secret bit b′ in its IND-CPA-game.

Adversary B answers each challenge query m0,m1 of A for a message with a ciphertext csg,
computed as follows. Adversary B picks a random message m$ ←←M , computes m$ ◦m0 (for b = 0)
resp. m$ ◦m1 (for b = 1). It encrypts this message under EncSBV and pk to get a ciphertext c. It picks
another random message m′$ and forwards m$ and m′$ to its own challenge oracle to get a ciphertext
c$. It returns csg ← c � c−1

$ to adversary A. When A eventually outputs a guess for bit b, adversary
B checks if the guess is correct. If so, it outputs the prediction 0 for bit b′, else it outputs 1.

For the analysis note that, if A’s success probability drops significantly from the case that one
correctly encrypts m$ to the case where one encrypts m′$, then this would immediate a contradiction
to the IND-CPA-security of HE. That is, letting B = 0 and B = 1 denote the events that B outputs
0 and 1, respectively, and bA denote the event that A predicts b correctly, we have:

Pr[B = b′ ] = 1
2 · Pr[B = 0 | b′ = 0 ] + 1

2 · Pr[B = 1 | b′ = 1 ]

= 1
2 · Pr[B = 0 | b′ = 0 ] + 1

2 · (1− Pr[B = 0 | b′ = 1 ])

= 1
2 + 1

2 · (Pr[B = 0 | b′ = 0 ]− Pr[B = 0 | b′ = 1 ])

= 1
2 + 1

2 · (Pr[bA | b′ = 0 ]− Pr[bA | b′ = 1 ]) .

The difference in the parentheses is non-negligible, by assumption, such that our algorithm B has a
non-negligibly larger prediction probability than 1

2 .

8.4 Self-Guarding Symmetric Encryption

In this section we present a self-guarding mechanism for randomized symmetric encryption without
restricting the subversion strategy. In particular, our construction is self-guarding against biased-
ciphertext attack (cf. [BPR14]) and stateful subversions. Unlike public-key encryption, a subverted
symmetric encryption algorithm has access to the secret key and can potentially leak it. Therefore
simply masking the plaintext cannot fully neutralize the attack. Interestingly, we can thwart leakage
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Esg.Gen(1λ)

k←← E.Gen(1λ)
return k

Esg.Sample(k)

S ← �

for i = 1..n do

m$,i ←← {0, 1}`

c$,i ←← E.Enc(k,m$,i)
enq(S, (m$,i, c$,i))

return S

Esg.Enc(k, S,m)

c←← E.Enc(k,m)
if is-empty(S)

or |m| > `− x− 1
or |c| > `− 1 then

return ⊥
(m$, c$)← deq(S)

csg ← [c‖10`−|c|−1]⊕m$

return (csg, c$)

Esg.Dec(k, (csg, c$))

m$ ← E.Dec(k, c$)
c‖10 . . . 0← csg ⊕m$

m← E.Dec(k, c)
return m

Figure 8.4: Self-guarding symmetric encryption scheme Esg built upon a symmetric encryption scheme E
with maximum ciphertext expansion of e bits for each message.

by using a random message to mask the output. We then send along the encryption of this random
message (computed in the trusted sampling phase) so that the resulting ciphertext can be decrypted.

The computational overhead of the proposed scheme is small. For encryption we basically need a
reliable ⊕-operation, and for decrypting we need two calls to the decryption of the underlying scheme,
and again a trustworthy implementation of ⊕. On the downside, we can only encrypt securely as
long as a fresh sample is available. Moreover, the self-guarding decryption algorithm differs from the
underlying decryption algorithm, and also we can only encrypt messages that are shorter than the
sampled messages.

Our construction Esg from Figure 8.4 is built upon an arbitrary IND-CPA-secure encryption
scheme E that has a maximum ciphertext expansion x. Here, the ciphertext expansion describes the
maximum number of extra bits in the ciphertext to encrypt a message, e.g., to store a random IV.

In the sampling phase we generate multiple ciphertexts of random messages m$,i of bit length `.
At this point, the encryption algorithm still complies with the specification, such that the samples
are valid and secure encryptions c$,i. Similar to the previous section, we store the samples in a queue
structure S, such that we can access the queue with the usual enq and deq commands, and check if
it is empty via is-empty. The sample messages are used as a one-time-pad key to hide the ciphertext
produced by a potentially malicious implementation. This is intuitively the reason why we need
sample messages that are at least as long as the ciphertexts produced by E. To deal with potentially
shorter ciphertexts we use the common padding 10 . . . 0 to expand all ciphertexts to equal length.
To make sure that the receiver is able to decrypt, the honest encryption of the sample message is
sent along with the actual encryption.

In theory we are able to lift the restriction on the new message space by using a pseudorandom
function to expand the sample messages. However, we chose to keep the construction simple and the
number of trusted components to a minimum.

Correctness. As long as fresh samples are available and the construction is not under a subversion
attack, correctness of our symmetric encryption scheme Esg for messages with maximum length of
` − x − 1, follows trivially from correctness of the underlying symmetric encryption scheme EGNN.
Since the encryption algorithm Esg.Enc essentially aborts if no more samples are left, correctness is
not given beyond that point.
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Next we prove that our construction is self-guarding with respect to the IND-CPA game, given
that the underlying encryption scheme is IND-CPA during the initial trusted phase.

Theorem 8.2. The symmetric encryption scheme Esg from Figure 8.4 is self-guarding with respect
to IND-CPA-security against subversion of the underlying scheme E, if E is an IND-CPA-secure
symmetric encryption scheme with a maximum ciphertext expansion of x ∈ N.

Proof. Consider an adversary A playing the self-guarding game SGuard(IND-CPA)A,βEsg . We show
that A’s probability of predicting the secret bit b in the two settings, β = GNN and β = SBV, cannot
differ significantly.

The case β = GNN. Consider first the case that the security game uses the actual scheme EGNN.
Then A’s probability of predicting b is negligibly close to 1

2 , because the subverted algorithm ESBV

is ignored, such that on each query m0,m1 (of at most `− x− 1 bits each) the adversary receives
an encryption of m0 or of m1, where the (padded) ciphertext is xored with a random message m$,
which is at least as long as the ciphertext. The adversary also receives the genuine encryption of m$

(i.e., c$) from S, previously computed using EncGNN.
For the genuine encryption algorithm EncGNN we actually get a “twofold” secure encryption. First,

and this suffices for the formal argument, the encryption of the challenge message under the IND-CPA-
secure scheme EncGNN already hides the secret bit b. This can be straightforwardly formalized by
simulating the extra layer of the encryption with m$ and creating the ciphertext c$ with the help of
the encryption oracle in the IND-CPA game, also keeping track of the number of available samples.
At the same time, we could also argue along the security of c$, hiding m$, which in turn is then
used to mask the ciphertext. Hence, we can conclude that the probability of predicting b in the
self-guarding game for EncGNN is negligibly close to 1

2 by the IND-CPA-security of EGNN.

The case β = SBV. Next, consider the case that the security game uses the subverted algorithm
ESBV in the challenge queries. In each such query for a pair of messages m0,m1 we, hence, encrypt
the message under the subverted algorithm and get a possibly malicious ciphertext c. We check the
validity of the length of the ciphertext, and then add the message m$ to the (padded) ciphertext
to obtain csg. The result, together with the genuine encryption c$ ←← EncGNN(k,m$), which was
computed during the sampling phase, is output as the final ciphertext (csg, c$).

Suppose now that, instead of using the encryption c$ of m$ under EncGNN, we use an independent
random message m′$ ←← {0, 1}` for masking and send its encryption as the second part of the
ciphertext. Then, the adversary would learn no more than the encryption of an independent random
message m′$ under a secure encryption algorithm, since csg is hidden by another random message m$.
In other words, each challenge query yields an answer which is independently distributed from the
bit b. The adversary’s success probability for predicting b is then at most the guessing probability
of 1

2 .
We are once more left to argue that encrypting m′$ instead of m$ does not significantly contribute

to A’s success probability. This follows once more from the IND-CPA-security of E. From adversary
A we build an adversary B against E. Adversary A first provides the subverted algorithm ESBV. Then
B simulates the rest of the self-guarding game, picking the bit b←← {0, 1} itself but playing against
an external secret bit b′ in its IND-CPA-game.
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Adversary B answers each challenge query m0,m1 of A of length at most `− x− 1 as follows. It
first checks the length restrictions and makes sure the number of samples is not yet exceeded. If so,
B encrypts the message under EncSBV and xors the padded result with a randomly chosen message
m$ ←← {0, 1}` to get a ciphertext csg. It picks another random message m′$ of the same length and
forwards m$ and m′$ to its own challenge oracle and receives c$. It returns (csg, c$) to A.

When A eventually outputs a guess for bit b, adversary B checks if the prediction is correct. If so,
it outputs 0 for bit b′, else it outputs 1. The analysis is now identical to the case of the public-key
scheme (see proof of Theorem 8.1) and omitted here. By assumption, our algorithm B, therefore,
has a non-negligibly larger winning probability than 1

2 .

8.5 Self-Guarding Signatures

A subverted signing algorithm may try to leak information about the secret key, or a different
signature. A subverted verification algorithm can enable attacks in a trivial way, e.g., by accepting
invalid signatures. Here, we focus on the former scenario, which is arguably both more dangerous
and more realistic. We assume that the verification algorithm is not subverted and (even subverted)
signatures will ultimately be verified using genuine algorithms.

In the domain of reverse firewalls, the idea of Ateniese et al. [AMV15] is to have any signature
created by the signer verified by the (trusted) reverse firewall with respect to the public key and, if
correct, re-randomized before it is sent out. 1 The combination of re-randomization and verification
of signatures prevents against subliminal leakage even when triggered by malicious inputs. For
unique signatures, which have only one valid signature for each message under the public key, the
re-randomization step is trivial and can be omitted.

It is possible to apply the same idea in our self-guarding setting, if the verification step and the re-
randomization step can be implemented robustly. In this case the signer generates a signature, verifies
it with the trustworthy verification step, and re-randomizes it securely. This approach may be viable
in some settings, e.g., when verifying FDH-RSA signatures with low exponents such as e = 216 + 1,
where only a few modular multiplications and, what is more critical, a hash evaluation would need
to be carried out safely. Still, in other scenarios implementing the full verification procedure securely
may just be beyond the signer’s capabilities, whereas storing a number of message and signature
pairs reliably is usually a much easier task than correctly implementing cryptographic code. We,
therefore, propose an alternative solution below.

Our self-guarding signature scheme is built upon a deterministic signature scheme. Here we
consider only stateless subversions. In the initialization phase random messagesm$ and corresponding
signatures σ$ are computed and stores in S. Later, when signing a given message m, we hand over the
two messagesm$ andm$⊕[m‖σ$] in random order to the potentially subverted signing algorithm such
that if the algorithm deviates for one of the two signatures, we will detect this with probability 1

2 and
abort forever. Including the signature σ$ in the second message prevents combination attacks against
unforgeability, and requires that m$ is long enough to range over m‖σ$. Note that deterministic
signatures can produce shorter signatures, e.g., if first hashing the message.

1Interestingly, Ateniese et al. [AMV15] define re-randomization with respect to the original signature algorithm, but
the solution presumably requires re-randomization of maliciously generated signatures under the subverted algorithm.
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Since we assume that the substituted algorithm is stateless such that both messages look equally
random to it, even if we re-use the random message across multiple signature creations. To increase
the detection probability to overwhelming we will repeat the above λ times with independent key
pairs. The independence of the keys ensures that, even if the adversary manages to leak information
about some signing keys, the other keys are still fresh. Although the trusted samples are used here
to enforce security via detection, the detection strategy is very simple and avoids the problems with
usual detectors discussed in the introduction to this chapter 8.1.

More formally, our self-guarding signature scheme Ssg = (KGensg,Sigsg,Vfsg) is based on a deter-
ministic signature scheme S = (KGen,Sig,Vf) and works as follows. The key generation algorithm
KGensg(1λ) creates λ key pairs (ski,pki)←← S.KGen(1λ) of the underlying signature scheme. It sets
sksg ← (sk1, . . . , skλ) and pksg ← (pk1, . . . ,pkλ) and outputs them together with a flag err initially
set to 0, indicating that no invalid signature was detected.

In the initialization phase we also pick λ random messages m$,1, . . . ,m$,λ ← {0, 1}` and create
the signatures σ$,1, . . . , σ$,λ for all messages. We store the pairs (m$,i, σ$,i) in the sample queue S.
The common bit length ` of the messages m$,i determines an upper bound on the messages m which
can later be signed. Namely, any message m can be at most the length of m$,i, minus the bit length
for signatures, where we assume without loss of generality that all signatures are of equal length
s. Longer messages m may be hashed first, outside of the signing algorithm. For sake of a cleaner
presentation we assume below that all input messages are tightly of length `− s. With padding for
shorter messages, the proof can be transferred to a more general setting easily.

When signing a message m under the possibly subverted algorithm Sig, with the key sksg and
the samples S, the self-guarding signing algorithm does the following. If no invalid signatures were
detected so far, i.e., err is still 0, for each i = 1..λ pick a random bit bi ←← {0, 1} and call the signing
algorithm twice, one time for ski,m$,i and the other time for ski,m$,i ⊕ [m‖σ$,i]. Use this order if
bi = 0 and the reverse order if bi = 1. Let σi be the returned signature for the message m$,i⊕ [m‖σ$,i].
For each i check that the provided signature for m$,i equals σ$,i. If not, abort after setting err to 1.
Else output σsg ← (m$,1, σ$,1, σ1, . . . ,m$,λ, σ$,λ, σλ) as the signature.

Verification is straightforward. For each i build the message m$,i ⊕ [m‖σ$,i] from the given
message m and the data in the signature, and verify the signature σi with respect to pki, as well as
the signature σ$,i for m$,i. Accept iff all verification steps succeed.

Regarding security, we aim at showing self-guarding of our scheme with respect to unforgeability
against chosen-message attacks, i.e., EUF-CMA. We define EUF-CMA in our terminology in Fig-
ure 8.6 (with α = 1 and δ := 0). In the self-guarding game of Figure 8.1, if S = � and the adversary
always chooses SSBV = SGNN, we obtain the standard security notion without a substitution attack.

For the security proof we need another property of the underlying signature scheme, namely,
that the (equal length) signature strings are never zero-bitstrings. This can be easily achieved by
prepending or appending a bit ‘1’ to any signature and verifying that this bit really appears in the
signature. We call such signature schemes zero-evading.

Theorem 8.3. The signature scheme Ssg from Figure 8.5 is self-guarding with respect to EUF-CMA
security against stateless subversion of the signing algorithm S.Sig, if S is a deterministic, EUF-CMA-
secure, and zero-evading signature scheme.

Proof. Consider an adversary A playing the self-guarding game SGuard(EUF-CMA)A,βSsg . We can
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Ssg.Gen(1λ)

for i = 1..λ do

(ski,pki)←← S.KGen(1λ)
(sksg,pksg)← ((sk1, . . . , skλ), (pk1, . . . , pkλ))
err ← 0
return (sksg,pksg, err)

Ssg.Sample(sksg)

S ← �

for i = 1..λ do

m$,i ←← {0, 1}`

σ$,i ← S.Sig(ski,m$,i)
enq(S, (m$,i, σ$,i))

return S

Ssg.Vf(pksg,m, σ)

σ = (m$,1, σ$,1, σ1, . . . ,m$,λ, σ$,λ, σλ)
d← [|m| = `− s]
for i = 1..λ do
d← d ∧ |m$,i| = ` ∧ |σ$,i| = s

d← d ∧ S.Vf(pki,m$,i, σ$,i)
d← d ∧ S.Vf(pki,m$,i ⊕ [m‖σ$,i], σi)

return d

Ssg.Sig(sksg,m, S, err)

if err = 1 or |m| 6= `− s then
return ⊥

S′ ← S

for i = 1..λ do
(m$,i, σ$,i)← deq(S′)
bi ←← {0, 1}
if bi = 0 then

(m0,m1)← (m$,i,m$,i ⊕ [m‖σ$,i])
else

(m0,m1)← (m$,i ⊕ [m‖σ$,i],m$,i)
σ0 ← S.Sig(ski,m0)
σ1 ← S.Sig(ski,m1)

if σbi 6= σ$,i then
err ← 1
return ⊥

σi ← σ1−bi

if |σi| 6= s then return ⊥
σ ← (m$,1, σ$,1, σ1, . . . ,m$,λ, σ$,λ, σλ)
return σ

Figure 8.5: Self-guarding signature scheme Ssg with message space {0, 1}`−s built from signature scheme S
producing signatures of length s.

Game EUF-CMAAS,Ps,Pp,S(1λ)

M ← ∅

(m∗, σ∗)←← ASig(Ps,S,·)(Pp)
if m∗ 6∈M and S.Vf(Pp,m∗, σ∗) then

return 1
return 0

Sig(Ps, S,m)

M ←M ∪ {m}
σ ←← S.Sig(Ps, S,m)
return σ

Figure 8.6: EUF-CMA game for signature schemes S. We have α := 1 and δ := 0

show that the advantage of A is negligible by the security of the underlying signature scheme S,
implying that A cannot increase its success probability noticeably by subverting S.

In the attack, as well as in the reduction below, we denote the message in the j-th signature
query by mj . The i-th signature component in the j-th query for message m$,i⊕ [mj‖σ$,i] is denoted
as σi,j . We assume that A makes q signature queries. The forgery attempt is denoted by m∗ and
(m∗$,1, σ∗$,1, σ∗1 , . . . ,m∗$,λ, σ∗$,λ, σ∗λ).
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Reduction to signature scheme. We construct an adversary B against the unforgeability of
the underlying signature scheme S via a black-box reduction. Upon receiving as input a verification
key pk, the adversary B first picks k ←← {1, 2, . . . , λ} at random and sets pkk ← pk. It generates all
the other key pairs (ski,pki) ←← S.KGen(1λ) for i 6= k itself. Then B picks the messages m$,i and
creates the signatures σ$,i, for i 6= k with the help of the signing key ski, and for i = k by calling its
signature oracle. It starts the attack of A.

Whenever B is supposed to create a signature, it executes the same steps as the self-guarding
algorithm for any index i 6= k. In particular, it checks if the returned signature components for m$,i

match the previously sampled value. For the k-th index it uses the previously obtained oracle value
σ$,k and it now calls the external oracle to get a signature for m$,k ⊕ [m‖σ$,k]; it does not need to
check these answers. Algorithm B uses all these data to assemble the signature in the same way our
signing algorithm does.

If the adversary eventually outputs a forgery for message m∗ and signature (m∗$,1, σ∗$,1, σ∗1 ,
. . . ,m∗$,λ, σ

∗
$,λ, σ

∗
λ), then B does the following:

• If m∗$,k = m$,k then output the message m∗$,k ⊕ [m∗‖σ∗$,k] together with σ∗k as the signature.

• Else, if m∗$,k 6= m$,k ⊕ [mj‖σ$,k] for all j = 1, 2, . . . , q, then output the message m∗$,k with
signature σ∗$,k.

• Else, if m∗$,k = m$,k ⊕ [mj‖σ$,k] for some j, then output the message m∗$,k ⊕ [m∗‖σ∗$,k] with
the signature σ∗k.

Analysis. We first argue that the subverted signing algorithm, with overwhelming probability,
must output only valid signatures for one of the keys pki in the actual attack. Let us call the i-th
entries σ$,i,j and σi,j in the j-th signature reply valid if they correspond to the signature for the
messages under the specified signature algorithm. Then we claim that, with overwhelming probability,
there must be some index i such that the signature entries in all queries are valid. In case of an
abort, this refers to all signatures created up to the aborting query (exclusively), and else this refers
to all queries.

Suppose that for each i the subverted algorithm outputs an invalid signature in some query j.
This query may vary with the index i. Since the algorithm is stateless, the input messages m$,i,j

and message m$,i,j ⊕ [mj‖σ$,i,j ] both look random to the algorithm. Furthermore, the order of the
signing request is determined by a random bit bi, such that the algorithm creates an invalid signature
for the sampled message m$,i,j with probability 1

2 . Hence our self-guarding signature algorithm will
detect this with probability 1

2 and abort after setting err to 1.
Any detected invalid signature will lead to an immediate abort and prohibits computing future

signatures, and for each key pki the detection probability is independent of the other case. Hence,
if the adversary tries to output an invalid signature in some query for any key pki, our algorithm
will detect this, except with probability 2−λ. We can, therefore, from now on condition on the event
that for some index i all signature entries in all queries are valid, losing only a probability 2−λ in
A’s success probability.

If there is a good index i for which the subverted algorithm never outputs a wrong signature,
then B picks this index k = i with probability 1

λ . Given this, all signatures created via the external
oracle perfectly mimic the values returned by the subverted algorithm. From now on assume that
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this is the case. Since any values of invalid length will lead to an abort, we assume that the signature
values are of correct length.

It remains to analyze the probability that, in a good simulation, adversary B creates a valid
signature for a fresh message. Note that a valid forgery of A must be for a new message m∗ and
must consist of a vector of valid signatures, such that each component carries a valid signature. We
distinguish the three cases for A’s output as in the output generation of B:

• If m∗$,k = m$,k (and, by determinism, therefore, σ∗$,k = σ$,k for a valid signature), then we
must have that B’s output message satisfies

m∗$,k ⊕ [m∗‖σ∗$,k] = m$,k ⊕ [m∗‖σ$,k] 6= m$,k ⊕ [mj‖σ$,k]

for all j, sincem∗ 6= m1, . . . ,mq for a successful forgery ofA. Furthermore, since σ∗$,k = σ$,k 6= 0
by assumption about the zero-evasion of the signature scheme, B’s output message cannot
match m$,k either. We conclude that B has never queried its signing oracle about this message,
neither in the sampling phase, nor in a signing step. But since this message is checked against
σ∗k under pkk, adversary B would also win if A does.

• Else, if m∗$,k 6= m$,k ⊕ [mj‖σ$,k] for all j = 1, 2, . . . , q, then the message m∗$,k is new; it is
distinct from all queries in the signing step and also different from the query m$,k in the
sampling step, by the first case.

• Else, if m∗$,k = m$,k ⊕ [mj‖σ$,k] for some j, the adversary A has swapped this message part
from the j-th query to the other signature position for the k-th entry. But in the signature
verification one checks in the other component that the message

m∗$,k ⊕ [m∗‖σ∗$,k] = m$,k ⊕ [(m∗ ⊕mj)‖(σ$,k ⊕ σ∗$,k)]

is valid. Since m∗ 6= mj this message cannot match m$,k for which B has called the oracle
for the sampling step. Moreover, zero evasion implies that σ∗$,k is not zero and, therefore,
σ$,k ⊕ σ∗$,k 6= σ$,k. It follows that B has not called its oracle about the output message in any
of the signing requests either.

In summary, we have

Pr
[
SGuard(EUF-CMA)A,SBV

SsgS (1λ)
]
≤ λ · Adveuf-cma

S (B, λ) + λ · 2−λ.

This is negligible if we presume unforgeability of S.

8.6 Self-Guarding PUF-based Key Exchange

The interesting aspect of using PUFs in key exchange protocols is that one can achieve information-
theoretic security, when the PUF is ideal and the time during which the adversary has access to the
PUF is limited. There exist already several proposals for PUF-based key exchange protocols in this
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line [vD10, Rüh11, BFSK11, vR12]. However, these protocols do not withstand substitution attacks
as we briefly exemplify for the case of [vR12] below. We then design a new PUF-based key exchange
protocol and prove that it indeed resists subversion of the PUF. For some basics on PUFs, we refer
the reader to Section 2.3.3.

At the core of any PUF-based key exchange protocol, a party, Alice, measures the PUF at a
random challenge point and then sends her PUF to the other party, Bob. After making sure that
Bob has received the PUF, Alice sends him the challenge through an authenticated channel.2 Both
parties use the PUF’s response on this challenge to derive a shared secret key. An adversary, not
yet knowing the challenge when getting access to the PUF during transmission, may evaluate it on
at most polynomially many challenges. Then the adversary relays the PUF to Bob, therefore, loses
access, and only afterwards learns the actual challenge used by the parties. With high probability
this challenge will not be among the ones queried by the adversary before, implying that the derived
key looks random to the adversary. Instead of sending a fresh PUF for each key derivation, the PUF
may also be used multiple times.

Example attack on a PUF-based key exchange. Before introducing our protocol, we briefly
argue that the common technique of checking validity of a PUF by verifying a challenge-response pair
is vulnerable to substitution attacks. The derived PUF is stateless and encapsulates the original PUF.
We describe the attack on the protocol suggested by van Dijk and Rührmair [vR12] (see Figure 8.7
below), which is secure against malicious PUFs that produce responses that are simulatable by
software. Here we consider an attacker that can build a subverted (stateless) PUF by encapsulating
the original PUF. When stimulated, this malicious PUF flips a coin and either returns the original
response, or the all-zero string. Then, with probability 1

4 it will pass the check and make Bob output
the all-zero key, thus breaking the protocol. This process can even be derandomized by using a 2-wise
independent hash function H outputting a single bit, returning the original response on challenge c
if H(c) = 1, and the zero string if H(c) = 0.

KE

Alice Bob

c←← C; r ← PUF(c)
c∗ ←← C; r∗ ← PUF(c∗)

PUF

1

(c, r), c∗

if r 6= PUF(c) then abort
k← r∗ else k← PUF(c∗)

Figure 8.7: PUF-based key exchange protocol from [vR12], vulnerable to PUF-substitution attack.

2See [BFSK11] for a discussion that an authenticated digital channel is necessary for reasonable protocols.
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Our self-guarding protocol. Motivated by the above attack, we draw connections to algorithm
substitution attacks, which in this scenario can be more accurately described as token substitution
attacks. In Figure 8.8 we propose a PUF-based key exchange protocol that self-guards against
subversion of the PUF. It intuitively does so by splitting the initially derived key y into a test
part and an evaluation part. This splitting is done via universal hash functions huniv, h′univ, where
huniv(y) and h′univ(y) act as authentication codes of the key (towards Bob resp. towards Alice),
and an extractor hextr which is used to extract sufficiently many random bits hextr(y) from the
remaining bits. Alice transmits huniv, h′univ, hextr, and huniv(y) over the authenticated channel, and
Bob checks that the authentication part matches its initially derived key. The receiver replies with
its authentication tag.

For our protocol, we consider a PUF that has super-logarithmic input bit size and output size
5λ. If we have a PUF with only λ output bits, we can expand the output size via domain separation,
and evaluate the PUF at points 000‖x, . . . , 100‖x, and concatenates the responses. Furthermore,
we model the manufacturing process as a function create(), which creates a new PUF and a unique
PUF identifier pid ∈ N. We denote the concrete PUF then as PUFpid , or following our self-guarding
notations, as PUFGNN. Similarly, we denote a subverted PUF by PUFSBV. In order to capture the
possibility of encapsulated PUF attacks, we also allow create to be called with a malicious algorithm
A in which case the PUF evaluates A on the input, or with A and previously created PUF identifiers
pid1, . . . , pidn in which case A may also call the PUFs with these identifiers as subroutine. We say
that a PUF pid ′ encapsulates a PUF pid if pid ′ has been created by including pid.

We further denote by H[5λ, λ, p] a family of hash functions with input bit size 5λ and output
bit size λ, having some property p. Here, p is either being 2−λ-universal, saying that for fixed
r 6= r′ ∈ {0, 1}5λ we have huniv(r) = huniv(r′) with probability at most 2−λ over the random
choice of huniv from the family. Similarly, for property p being a (3λ, 2−λ)-extractor we have that
(hextr, hextr(y)) has statistical distance 2−λ from (hextr, z) for uniform z ∈ {0, 1}λ, as long as y has
min-entropy at least 3λ. After losing at most 2λ bits through the authentication tags huniv(y) and
h′univ(y), we still have this min-entropy left in the uniform value y.

Our result holds with respect to malicious, stateful, and encapsulated PUFs. This is not subsumed
by any of the previous results, nor does it contradict any of the impossibility results so far. As for
positive results note that the oblivious transfer protocol of Brzuska et al. [BFSK11], in the version
of Dachman-Soled et al. [DFK+14], from which one could build a key exchange protocol, does
not withstand encapsulating and stateful PUFs. Considering that the physical channel used for
transmitting the PUF may not be authenticated, the adversary is now not only able to measure the
PUF but can also subvert it, potentially even encapsulating the original PUF, e.g., send PUFpid∗ for
pid∗ ← create(A, pid). Even with an authenticated physical channel, a more powerful adversary may
be able to gain physical access to the PUF while it is in control of one of the parties for a short time,
just enough to subvert it. The impossibility result to build key exchange protocols by van Dijk and
Rührmair [vR12] only applies to PUFs which are accessible by the adversary after the execution, a
property which we do not consider here.

In some works PUFs are also treated as random functions per se, but we prove the result to
hold more generally also for (computationally) pseudorandom functions. In Figure 8.9, we give a
simplified game for pseudorandomness in our terminology that suffices for our purposes. Note that
unclonability is basically ensured by allowing the adversary to internally create further PUFs. A PUF
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KEsg.Gen(1λ)

pid ← create() such that PUFpid :∈ Fun[λ, 5λ]
return pid

KEsg.Sample(pid)

S ← �

for i = 1..n do

x$,i ←← {0, 1}λ

y$,i ← PUFpid(x$,i)
enq(S, (x$,i, y$,i))

return S

KEsg.Exch(pid, S)

Alice(pid, S) Bob

PUFpid

1

for i = 1..n do
(x, y)← deq(S)

huniv ←← H[5λ, λ, 2−λ-universal]

h′univ ←← H[5λ, λ, 2−λ-universal]

hextr ←← H[5λ, λ, (3λ, 2−λ)-extractor]
a← huniv(y)

x, huniv, h
′
univ, a, hextr

y ← PUFpid(x)
if a 6= huniv(y) then abort
a′ ← h′univ(y)

a′

if a′ 6= h′univ(y) then abort
ki ← hextr(y) ki ← hextr(y)

endfor
k← (k1, . . . , kn) k← (k1, . . . , kn)

Figure 8.8: Self-guarding PUF-based key exchange protocol KEsg, where PUF has challenge and response
space {0, 1}λ and {0, 1}5λ, respectively. Solid arrows denote authenticated digital transmissions, while the
dashed arrow denotes a physical transmission.
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is pseudorandom if the probability of predicting the challenge bit b, given one challenge-response
pair, is negligibly close to 1

2 in the game. A hybrid argument implies that the same is true if we use
n challenge-response values instead of only one, where the advantage over 1

2 grows by the factor n.
Note that the second-stage adversary that gets to see a challenge and the real or a random response,
does not anymore have access to the PUF. Otherwise it could trivially win the game by simply
evaluating the PUF.

Game INDAPUF,pid(1λ)

(done, st)← APUFpid ,create(1λ)
c←← C
r0 ← PUFpid(c)

r1 ←← {0, 1}|r0|

b←← {0, 1}
b′ ←← Acreate(st, c, rb)
return (b = b′)

Figure 8.9: Game for pseudorandomness of PUF responses with the constants α := 2 and δ := 1 for the
advantage.

We now need to define the targeted security property of a key exchange protocol for self-guarding.
Since we assume authenticated digital transmissions, the adversary may read but cannot tamper
with the transmissions (beyond replacing the PUF). We are interested in a strong type of key
confidentiality, namely, that the adversary cannot even distinguish keys from random, as well as
robustness in the sense that, if both parties compute their keys, then they also hold the same key.
In the security game we, therefore, give the adversary a transcript of a run of the key exchange
protocol (where the adversary may have replaced the PUF before, however), and hand over the n
keys derived by one party, or random values instead. The choice is made according to some secret bit
b. We declare the adversary to win if it either manages to predict b, or to make both parties accept
with different keys (in which case we hand over b, unifying the threshold to the guessing probability
of 1

2 for both cases).
The game is formalized in Figure 8.10. With a slight abuse of notation, this game assumes that a

key exchange protocol returns a transcript transc of the communication together with the generated
keys. Note that IND-KEY is needed in the second phase of the self-guarding game. In the first phase,
one creates the PUF (and a unique identifier), then samples challenge and responses, while in the
second phase the adversary may subvert the PUF and then plays the robust key indistinguishability
game for a key exchange protocol using either the original or the subverted PUF.

Theorem 8.4. Our key exchange protocol KEsg from Figure 8.8 is self-guarding with respect to
the robust key indistinguishability game IND-KEY, against subversion of PUF, if the initial PUF is
pseudorandom.

Proof. Consider an adversary A playing the self-guarding game SGuard(IND-KEY)A,βKEsgPUF . We argue
that A’s success probability in distinguishing keys, established by the protocol, from random strings
is negligible, regardless of which value β takes. We let q denote the number of queries which A makes
to the original PUFGNN itself, before it reaches Bob.
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IND-KEYAKE,Ps,Pp,S(1λ)

(k0
1, . . . , k0

n, transc)←← KE.Exch(Ps, Pp, S)
b←← {0, 1}
if k0

i,Alice 6= k0
i,Bob and k0

i,Alice, k0
i,Bob 6= ⊥ for some i then a← b else a← ⊥ fi

(k1
1, . . . , k1

n)←← Kn

b′ ← A(Pp, kb1, . . . , kbn, transc, a)
return (b = b′)

Figure 8.10: The robust key-indistinguishability game IND-KEY with associated constants α := 2 and δ := 1
for a key exchange protocol KE. Here k0

i = k0
i,Alice and k0

i,Bob denote the key output in the i-th execution by
Alice and Bob, respectively. We assume that keys are set to ⊥ for non-accepting executions; transc denotes
the communication between by all parties in all executions; K denotes the key space.

We first note that, instead of using a pseudorandom PUFGNN, we may equally well use a truly
random PUF. If this would decrease A’s success probability significantly, then we would immediately
derive a contradiction to the pseudorandomness of the PUF.

Next, we argue that, if the adversary does not encapsulate PUFGNN in PUFSBV then, except with
negligible probability, neither party will accept in any of the n runs. To see this note that the
probability that A queries PUFGNN on any of the n challenge values x, before some PUFSBV is delivered
to Bob, is at most nq · 2−λ. Condition now on the event that such a query has not happened.

In the moment when PUFSBV is handed over, and by the authenticated 1-acknowledgement sent
by Bob this happens before the adversary gets to learn the challenges, each value y ← PUFGNN(x) is
distributed independently of the function in PUFSBV. Here we use that PUFSBV does not encapsulate
PUFGNN. Hence, for each challenge, except with probability of at most 2−5λ, the random response y is
different from the response y′ computed by PUFSBV. In this case, with probability at most 2 · 2−λ by
the property of the universal hash functions huniv, h′univ (also chosen independently of y, y′), either
of the authentication tags a or a′ complies with the expected answer. Summing over all n challenges
implies that only with negligible probability A can afford to not encapsulate PUFGNN and still make
either party accept in any execution.

If, on the other hand, PUFSBV encapsulates PUFGNN, then the adversary cannot determine any of
the random value y ← PUFGNN(x), since we have already ruled out that it has queried x before. Since
the value contains 5λ bits of min-entropy, and we lose at most 2λ bits through the two hash values
a, a′, the extractor ensures that k is 2−λ close to uniform, given hextr. The statistical distance of all
n independent samples is then given by n · 2−λ.

The same line of reasoning for the case that the substituted PUF does not encapsulate the
original one, shows that the adversary cannot make the parties accept but for different keys, except
with negligible probability. For this note that they can only derive distinct keys if they end up with
different values y 6= y′. Here, the universality of huniv and h′univ and the fact that the responses are
determined independently of the choice of the hash function again imply that the probability of such
a collision with the expected value a or a′ is at most 2 · 2−λ.

In conclusion, we obtain that the success probability of any adversary A in winning IND-KEY
against KEsg is negligibly close to 1

2 .

Note that the hashing steps are crucial for security. If one would, say, simply divide y into strings
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a‖a′‖k of lengths λ, λ and 3λ, respectively, then the adversary could send an encapsulated PUF
which agrees upon the first 2λ bits but returns a different part k. In this case both parties would
accept but with distinct keys. Even worse, Bob’s key part k may be easy to predict for the adversary.



Chapter 9
Conclusion and Open Problems

Reviving cryptography at times of surveillance has been receiving increased attention in recent years.
I hope that this thesis has made at least a small step towards this goal and away from a future
in 1984. There are still numerous open questions and unsolved problems in this area. Backdoor
and subversion-resilient constructions of many primitives remain to be built and further realistic
assumptions for achieving security remain to be explored. Below we describe a few open problems
that are closely related to the topics studied in this thesis, categorized roughly by the three different
models that we considered.

Standard-Model Backdoored Hash Functions

A natural open question is, whether immunizing hash functions is possible in the standard model
without using secret keys and without relying on strong assumptions. Since adversaries can use
malicious inputs to trigger misbehavior in backdoored hash functions, a generic solution that applies
a public transformation to the inputs to destroy their potentially malicious structure (similar to the
solutions we discussed for HMAC and HKDF in Chapter 5) does not seem to exist for hash functions
without secret keys or further assumptions. Furthermore, the security proofs in the 2-BRO and 3-BRO
models (i.e., our positive results in Chapters 6 and 7) build on results in communication complexity
theory which are somewhat non-trivial and unlikely to be useful for proofs in the standard model. We
also showed, in Section 3.4, an impossibility result for (0, k)-combiners in the standard model. Overall,
although building backdoor-resilient standard-model hash functions seems to be a challenging task,
impossibility results can often be overcome. In particular, there may be immunization strategies
that are specific to certain applications of hash functions or with respect to less powerful backdoors.
We leave the question of finding secure constructions outside idealized models of computation open.

In order to facilitate detection of backdoored functions in practice and design hash functions that
inherently resist backdoors, it is helpful to understand the various ways backdoors can be embedded
in hash functions. Our constructions in Chapter 4 show that it is mathematically feasible to embed a
very powerful backdoor in a hash function, while not affecting its efficiency. A backdoored version of
SHA-1, studied by Albertini et al. [AAE+14], somewhat shows the other extreme, where the backdoor
gives only a single collision. However, their modification of SHA-1 is relatively unsuspicious, except
that its internal constants look arbitrary and are not NUMS-numbers. An important direction here
is to study further backdooring strategies with different variations in such a trade-off between the
adversaries’ exploitation power and their deniability.

Moreover, it is unclear whether constructions of powerfully backdoored hash functions are possible
which do not expose their backdoor key in adversarial inputs, unlike our constructions in Chapter 4,
and do not rely on public-key primitives directly or the usage of obfuscation to hide a secret key in
the hash function and use it to internally decrypt malicious triggers. In other words, it is interesting
to investigate the exposure of the backdoor key (when used by the adversary) and to what extend
such exposure is inherent to non-public-key-based and efficient backdoored hash functions.

169
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Backdoored Random Oracles

We introduced the BRO model in Section 3.3 as an extension to the well-known random-oracle model,
where a backdoor oracle exists that can compute functions of the random oracle for adversaries. We
observed that backdoor oracles also allow for non-polynomial-time computation and if unrestricted,
they can be, somewhat counterintuitively, used to solve computationally hard problems, such as
factoring or finding discrete logarithms. Despite this, in a setting where the computational assumption
holds relative to the backdoor oracles, positive results may be provable. To achieve this, we can
for example look for meaningful restrictions of the backdoor capability class. Another promising
avenue is to rely on an independent idealized model such as the generic-group model (GGM) and
for instance, prove IND-CCA security of Hashed ElGamal in the k-BRO and (backdoor-free) GGM
models.

In order to overcome the bounded-switch restriction in our indifferentiability proofs of Chapter 7
and prove full indifferentiability, one would require an improved decomposition technique which
fixes considerably less points after each backdoor query. This seems to be a challenging task. In
particular, such a result is likely to simultaneously prove known communication complexity lower
bounds for a host of problems, such as set-disjointness and set-intersection, and potentially provide
a first lower bound for the conjecturally hard problem of multi-set double-intersection, which we
defined in Section 6.4. Indeed the xor combiner and the extractor combiner may achieve security
well beyond what was established in this thesis. Furthermore, as the extractor combiner suggests,
the form of the combiner and the number of available BROs can also affect the overall bounds and
it is worth taking such ideas into account.

Some of the other open problems that are closer to work in communication complexity involve
improving or finding lower bounds for the problems that we use in Chapter 6. For instance, lower
bounds for the set-disjointness problem that do not assume a small error would improve the security
and/or efficiency of our PRG constructions. Moreover, we do not currently have a lower bound for
the multi-set double-intersection problem that we need for proving collision resistance of combiners.

As discussed before, achieving security in the 1-BRO model with respect to an unstricted backdoor
capability class is impossible. A natural question here is, hence, what are the maximal backdoor
capabilities in the 1-BRO model, under which hardness can be bootstrapped. Furthermore, one can
additionally rely on hardness assumptions, as done by Golovnev et al. [GGH+19] who rely on the
hardness of a preprocessing version of the 3SUM problem to build from a random oracle a one-way
function that is secure even when a massive amount of auxiliary information is available to the
adversary.

Finally, we leave defining backdoored variants of other ideal objects such as ideal ciphers and
random permutations, as well as studying combiners for them, for future work.

Self-Guarding Primitives

Currently the biggest concern for our self-guarding constructions of Chapter 8 is to improve their
efficiency. For the self-guarding public-key and symmetric encryption schemes it is less the computa-
tional overhead, but rather that one can encrypt securely only as long as fresh samples are available.
More generally, in face of stateful ASAs, it seems difficult to fully revive the security of cryptographic
schemes using a small set of secure samples. Recall that involved techniques such as re-randomization
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of samples, which quasi means to implement one’s own encryption algorithm, should be avoided. In
this context, one can instead study the possibility of reusing samples after each system reboot to
protect against stateful subversions that can only use a volatile memory to store their states.

When considering weaker ASAs, such as stateless ones, better solutions may exist. Indeed our
self-guarding signature scheme can be applied an unbounded number of times for stateless subverted
algorithms. However, it requires many calls to the signature algorithm and produces large signatures.
Here, using specific signature schemes may be helpful in overcoming these limitations.

In terms of efficiency, our self-guarding PUF-based key exchange protocol is reasonably fast. It
remains an interesting open question if other PUF-based protocols, e.g., for oblivious transfer (OT),
can be self-guarded. As for negative results, Rührmair [Rüh16] argues that the strategy of interleaving
test and evaluation challenges fails for the OT protocol of Dachman-Soled et al. [DFK+14]. But this
attack is based on the specific OT protocol where the adversary has some control over the input to
the PUFs. An option may be to use a different OT protocol where the adversary has less influence
on the inputs fed into the PUF.

A different, yet also promising, approach to combat ASAs is to combine multiple implementations
of the same scheme or alternatively, different schemes. How security can be achieved in a setting
where all schemes are subverted and to what extent this is possible is an interesting question to
study. Nonetheless, in case at least one secure implementation is available (even when not knowing
which one), existing (1, k)-combiners, e.g., those studied by Herzberg in [Her02] or the ones that we
studied for BROs, can also be useful against ASAs.
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