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Abstract

A rheinforce composite consists of a laminar sheet of compacted micro-agglomerated
cork engraved by laser with a network of microchannels and filled with a concentrated
aqueous solution of shear-thickening fluid. Using it for personal protection equipment,
as an energy-absorbing material layer, is one of its important applications. An accurate
numerical modeling of such material is not currently available and would be a valuable
tool during design and manufacturing processes.

A virtual dynamic drop tower test can be used to shed lights on the dynamics of the energy
dissipation of the rheinforce composite. From the continuum mechanics point of view, it
can be translated into an initial-boundary value problem with enclosed-Fluid-Structure
Interaction, contact boundary and rigid body dynamics.

The open-source OpenFOAM toolbox called Solids4foam (S4F) offers a very attractive
starting point to build a solver for that initial-boundary value problem. Not only because
no commercial software available (as far as the author is aware) is as customizable as
needed, but also because S4F offers a strongly-coupled Fluid-Structure Interaction with
fully customizable and replaceable solid and fluid solvers. Furthermore, these solvers are
constructed based on only one numerical framework, the Finite Volume Method.

Unfortunately, numerical simulations revealed that the current finite volumemethodologies
for solid mechanics implemented in S4F, i.e. Segregated (SEG) and the recently developed
Block-Coupled (BC), cannot simulate the solid part of the rheinforce composite under the
finite strain regime. Moreover, the SEG method supports general materials (in theory
any material law can be used), but it can be very slow. The BC method is fast, but only
Hooke’s law (an infinitesimal strain model) is supported.

The principal aim of the thesis is to present the development of a new BC methodology
that preserves, in a great extent, the fast convergence of the original BC and material
generality (only requiring the elasticity tensor to have right-minor symmetry) of SEG.
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This work also demonstrates that the Field Operation and Manipulation (FOAM) concept
should be implemented in a high-level programming environment to fill an important
“prototyping gap” left untouched by OpenFOAM and S4F, that is, between concept de-
velopment and concept implementation in a high-performance programming language.
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Zusammenfassung

Ein Rheinforce-Verbundwerkstoff besteht aus einer laminaren Schicht aus Kork, in welche
mittels Lasertechnik ein Netzwerk von Mikrokanälen eingefräst wurde, die mit einer
konzentrierten wässrigen Lösung einer scher-verfestigenden Flüssigkeit gefüllt sind. Eine
der wichtigsten Anwendungen ist der Einsatz als energieabsorbierende Materialschicht in
persönlichen Schutzausrüstungen. Bis heute gibt es keine genaue numerischeModellierung
für ein solches Material, welche allerdings für den Prozess des Designs und der Herstellung
sehr nützlich wäre.

Ein virtueller dynamischer Fallturmtest kann angewendet werden, um die Dynamik der
Energiezerstreuung des Rheinforce-Verbundmaterials zu erforschen. Vom Standpunkt der
Kontinuumsmechanik kann die Dynamik als Anfangs-Randwertproblem mit der Inter-
aktion zwischen Struktur und eingeschlossener Flüssigkeit (Fluid-Strukturkopplung),
Kontaktgrenze und Festkörperdynamik betrachtet werden.

Das Open-Source Werkzeug Solids4foam (S4F) von OpenFOAM bietet einen attrakti-
ven Ausgangspunkt für die Entwicklung eines Programms zur Lösung des Anfangs-
Randwertproblems. Gründe dafür sind, dass es – soweit dem Autor bekannt - keine
kommerzielle Software gibt, welche so gut den jeweiligen Bedürfnissen angepasst werden
kann, und dass S4F eine stark gekoppelte Fluid-Struktur-Interaktion mit anpassungsfä-
higen und austauschbaren Lösungsprogrammen für Feststoffe und Lösungen anbietet.
Außerdem basieren diese Lösungsprogramme auf einem einzigen numerischen Grundge-
rüst, dem Finite-Volumen-Verfahren.

Leider zeigten numerische Simulationen, dass die aktuellen Finite-Volumen-Verfahren, die
Teil des S4F Werkzeuges sind, d.h. das segregierte (SEG) und das kürzlich entwickelte
Block-Coupled (BC) Verfahren nicht in der Lage sind, den Festkörperanteil des Rhein-
force-Verbundmaterials unter endlichen Belastungskonditionen zu simulieren. Außerdem
unterstützt die SEG-Methode allgemeine Materialien (theoretisch kann jedes Material-
gesetz verwendet werden) aber die Methode ist sehr zeitaufwendig. Die BC-Methode
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ist schnell, kann aber nur das Hookesche Gesetz (eine infinitesimale Spannungstheorie)
unterstützen.

Das Hauptziel dieser Doktorarbeit ist die Entwicklung einer neuen BC-Methode, welche
weitgehend die schnelle Konvergenz der ursprünglichen BC-Methode und die materielle
Allgemeinheit (welche nur des Elastizitätstensors bedarf, um die rechte Nebensymmetrie
zu erhalten) von SEG beibehält.

Diese Arbeit zeigt auch, dass das Field Operation And Manipulation (FOAM) Konzept in hö-
heren Programmierumgebungen eingeführt werden sollte, um eine wichtige “Prototypisie-
rungs-Lücke” zu schließen, welche bei OpenFOAM und S4F besteht, d.h. zwischen Kon-
zeptentwicklung und Konzepteinsatz in einer höheren Programmiersprache.
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1 Introduction

1.1 Motivation

Injuries due to accidents and violence are a major public health problem [1]. One in three
European workers is exposed to vibrations at work, resulting in vibration syndromes and
vibration-related injuries [2]. Prevention or minimization of many of these impact-related
and vibration-related issues could be achieved by wearing adequate personal protection
equipment, e.g. helmets or anti-vibration gloves. So, there is a strong motivation to
develop advanced passive energy-absorbing materials. There is also a growing public
awareness requiring eco-friendly, sustainable and recyclable materials.

The state-of-art of advanced passive energy-absorbing materials consists of impregnating
open-cell foams with Shear-Thickening Fluid (STF) [3]. The majority of these materials
deform by crushing, limiting their efficiency and use to just one single time due to a
permanent deformation. Moreover, they are not environmentally sustainable because they
are not renewable. Furthermore, the impregnation technique has two major drawbacks: i)
it cannot be applied to closed-cell materials (like cork); and ii) the path network through
which the fluid will flow is predetermined by the structure of the foam, which prevents
the optimization of the amount of energy dissipated for a specific application.

Galindo-Rosales et al. has patented a technology [4, 5, 6], hereafter named rheinforce,
that allows the reinforcement of the mechanical performance of any scaffold material by
adding a complex fluid through embedded microfluidic patterns. Microfluidics is known
for the manipulation of low amount of fluid in channels, with characteristic length scales
below one millimeter [7]; but also for allowing the design of microfluidic rectifiers [8, 9,
10, 11]. Microfluidic rectifiers are microfluidic channels specifically designed to exploit
the anisotropy in flow resistance [12]. If the flow resistance can be controlled, so can the
energy dissipated. Moreover, the shape of the microfluidic rectifiers can be numerically
optimized to maximize the flow resistance according to rheological properties of the fluid
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[13, 14]. It is also important to highlight the fact that the non-linear response of the
complex fluids is enhanced at micro scale. In the case of viscoelastic fluids, the elastic
instabilities can be triggered at low Reynolds numbers, resulting in an extra pressure
drop [15, 16, 16]; while shear thickening fluids show enhanced rise in the viscosity when
flowing under confinement [17, 18]. When the composite is subjected to an impact or
vibration, the energy is dissipated by the combined effect of: 1) the cork deformation; 2)
the complex fluid flows confined in the microchannels producing viscous dumping; and 3)
the fluid-structure interaction.

Thus, the rheinforce technology has been successfully applied to a closed-cell foam, i.e.
micro-agglomerated cork, [19] and it allowed the development of a helmet liner with
improved damping performance [20].

Optimization of the mechanical performance of the rheinforce composites cannot be done
exclusively by experiments, because it would be costly and inefficient. The Computational
Physics offers an alternative investigation framework through analytical and numerical
modeling [21].

However, the optimization of the microfluidic rectifiers is focused solely on the fluid flow
process and does not consider the deformation of the scaffold material nor the fluid-
structure interaction. Consequently, the rheinforce composite has not been fully optimized
yet considering the whole mechanical process of the impact (or vibration), as studies of
the solid mechanics and the fluid-structure interaction, have failed to be considered in
the design of composites [19, 22].

The rheinforce composites are tested experimentally in low velocity impact test machine,
which consist of measuring the force with which the composite responds to an impact of
an anvil with a controlled weight dropped from a certain height. Thus, the numerical
simulation of a 3-D dynamic test resorting to a drop tower can be used to shed light
on the dynamics of the energy dissipation of a rheinforce composite [23]. A natural
question would arise: How to model each part and the interaction between them? As a
first approximation, the object dropped on the brick can be modeled as a rigid body. Thus,
a solver to simulate rigid body dynamics would be needed. Which parts of the rigid body
and the composite are touching each other must be found by a contact algorithm [24,
25]. The solid part1, undergoing large compression, should be modeled as viscoelastic
solid, since cork is highly viscoelastic [28, 29, 30]. STF is a complex fluid which may be
assumed to be incompressible [22]. The boundary of a cavity is the interface where the
1Cork is a natural foam [26]. Interestingly, the Poisson’s ratio of the cork is close to zero [27], making it an
ideal material for the rheinforce composites, because during impact the microchannels do not get jammed.
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Figure 1.1: Schematic drawing of the initial-boundary value problem for a drop test.

fluid and the solid interact with each other, so to a more accurate model of the scenario a
Fluid-Structure Interaction (FSI)2 solver would also be necessary.

From the continuum mechanics point of view, the above simulation can be mapped into an
initial-boundary value problem with enclosed-Fluid-Structure Interaction (eFSI), contact
boundary and rigid body dynamics (see Fig. 1.1). As far as the author is aware, no
commercial software available is as customizable as needed (e.g. no way to re-implement
or adapt the FSI) to simulate such problem.

The open-source, therefore fully customizable, Finite Volume (FV) toolbox for solid
mechanics simulations Solids4foam (S4F)[32] is an alternative. It implements: i) the
classical FSI solver for initial-boundary value problems; ii) a Newtonian fluid solver that
can be extended to support STFs; and iii) a contact solver for linearized elasticity, that can
also be extended to support finite elasticity [24]. Currently, no viscoelastic solid model is
available.

As hinted above, the Finite-Element Method (FEM) is not the only way to simulate
solid mechanics. The Finite-Volume Method (FVM) can be considered as an alternative,
specially if FSI is a must. Using FVM as a single framework to simulate FSI cases simplifies
both understanding and programming, opens the possibility of using only one software
algorithm and ensures a conservative resolution of the governing equations. This thesis is
part of an effort made by an ongoing research which is extending the S4F toolbox, having
the single-framework approach in mind, to simulate the composite.
2A special solver is actually needed in order to take into account the fact that the fluid domain is entirely
enclosed by Dirichlet boundary condition [31].
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After an extensive investigation, it was revealed that the current solid solvers implemented
in S4F cannot handle the 3-D drop test3, mentioned above, using the state-of-art non-linear
material law commonly employed to simulate cork (namely Ogden-Storakers [33, 34]).
So it was inferred that, in fact, the FV methodologies for solid mechanics implemented in
S4F, namely Segregated (SEG) variants [35], are not able to simulate such case.

The SEG methodology for solid closely resembles the procedures commonly used in fluid
dynamics where memory-efficient segregated solution algorithms are used in conjunction
with iterative linear solvers. In practice, the linear momentum vector equation is tem-
porarily decoupled into three scalar component equations that are independently solved,
where outer Fixed-Point/Picard iterations provide the required coupling [36].

Besides the SEG approach, there is another FV methodology implemented in S4F called
Block-Coupled (BC). Recently developed by Cardiff et al. [36], in this method, the entire
momentum equation is arranged in a single linear system. The convergence rate is notably
higher than that obtained with the SEG approach/variants. Therefore, the implementation
resulted in less execution time and memory requirements than a FEM software for the set
of cases tested by Cardiff et al. [36].

Regarding the weaknesses of both approaches, on the one hand BC methodology is
restricted to linearized elasticity (currently, only Hooke’s law is supported, i.e., the simplest
constitutive equation). On the other hand, SEG can experience slow convergence rates
whenever there is strong coupling between displacement directions. This is particularly
disadvantageous in comparison with the BC approach when considering partitioned FSI
methods, which requires solving for both solid and fluid domains multiple times per time
step [37].

Hence, a natural question emerges: is there a possibility of combining both SEG and BC
to produce a superior method so that its implementation is close enough to the existing
implementations in S4F? The present work not only answer this question in affirmative,
but it also shows a concrete sample that can be readily implemented in S4F.

1.2 Objectives

These are the objectives of the thesis:
3All solvers diverge for no apparent reason at the first time step.
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• Create a fully coupled cell-centred FV methodology for the analysis of non-linear
elasticity4 in Computational Solid Mechanics (CSM). The new methodology, mostly
based on BC and named non-linear Block-Coupled (NLBC), should be better than
SEG and BC methodologies, i.e. being as general and as fast-convergent as SEG
and BC, respectively, without importing their major weakness. Furthermore, this
new methodology should allow the creation of a family of FVM methods for solid
mechanics;

• Expose the development of the NLBC and of a method based on it. Note that only
one NLBC variant is presented, and for practical purposes, it has the same name of
the methodology;

• Discuss why the tensorial field approach Field Operation And Manipulation (FOAM)
to Computational Continuum Mechanics (CCM) using class-oriented techniques,
developed by Weller et al. [38], should be promoted to a high-level programming
environment;

• Based on the previous discussion, create a new abstract high-level framework for
prototyping FVM concepts, i.e. a “FVM-based CCM laboratory”;

• Present the validation of this framework by means of a concrete implementation.

1.3 Contributions

The main contributions of this thesis are:

• The creation of a whole new methodology that closely resembles FEM in the sense
that: i) all displacement components are solved at the same time in a big linear
system generated by applying the Newton-Raphson procedure on an out of balance
force function; and ii) very general constitutive laws are supported in the finite
strain regime;

• The creation of a new method that validates the NLBC methodology. At least one
of the major qualities of each method, e.g. fast convergence (BC) and material
generality (SEG), is present in NLBC. This method can simulate cases that SEG can
not handle and BC will never do (simply because it is limited to linearized elasticity).

4In this work, this non-linearity means large displacements and large strains, i.e. it does not include
elastoplasticity or viscoplasticity, for example.
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Moreover, the method has an impressive convergence rate when compared to SEG. As
an example, in a specific linear test case (with strong coupling between displacement
directions), SEG needs more than 23000 iterations to converge, while NLBC needs
only one, just as BC. Furthermore, in all test cases, except one, NLBC exhibits errors
with many orders of magnitude smaller than that of produced by SEG;

• The current traction boundary discretization, adopted from BC, restricts the ap-
plicability of NLBC, but once a robust discretization is developed, it might be the
real opportunity, after four decades of development of FVM methods for solids, to
have the long awaited unification: one robust numerical method for both solid and
fluid simulations. The common split into “FEM for solid and FVM for fluid” would
be surpassed, in particular, with a methodology having the important conservative
property when FSI is a must;

• A validated abstract high-level framework for prototyping FVM concepts through
a concrete successful implementation, in particular, in the shape of a new CCM
toolbox, based on FV. As a Matlab [39] toolbox, nano Finite Volume Method (nFVM)
uses the high-level programming environment designed for numerical computations
to serve as an investigation and as a prototyping tool, e.g. to experiment, create and
test FV methodologies. As far as the author is aware, this is the first time a general
CSM solver for Matlab based on the FVM framework is depicted. This new toolbox
adopts the tensorial approach in combination with a class-oriented design to provide
flexibility when extension is needed. SEG, BC and NLBC are implemented in nFVM
and verified against the analytical solutions of several test cases.

1.4 Outline of thesis

This document is organized as follows:

• In Chapter 2, the necessary knowledge of continuum mechanics for solid is reviewed.
The kinematics and governing equations for structure are discussed followed by the
definition of an elastic body. Thereafter, the initial-boundary value problem and the
hyperelasticity framework, along with some constitutive equations are presented.

• The SEG and BC methodologies used as reference to build the new approach are
given in Chapter 3. The two discretizations are applied to the initial-boundary value
problem defined in the previous chapter. The whole presentation also serves as a
basis for delineating the NLBC approach, which is shown in the next chapter.
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• The Chapter 4 describes the fully coupled cell-centred FV discretization NLBC. The
methodology encompasses the mathematical framework for incremental displace-
ment description, momentum equation linearization, and discretization of (surface
and body) forces, boundary conditions and system of linear equations. The iterative
Newton-Raphson solution algorithm, applied to the new method, is also described.
It is also outlined that, by restricting deformation scope to linearized elasticity
framework, one can conclude that BC is a particular case of NLBC. In other terms,
the latter generalizes the former in some sense.

• The Chapter 5 is devoted to testing NLBC’s accuracy and convergence properties.
Several representative benchmark test cases are examined for independent testing
of different aspects of the new formulation. The results are compared with analytical
solutions. Results from SEG and BC are also considered.

• The advantages and disadvantages of having the aforementioned tensorial approach
implemented using the high-level programming environment designed for numerical
computations are revealed in Chapter 6. The nFVM is also presented. Not only fea-
tures and characteristics, such as support for mesh format of openFOAM, supported
boundary conditions, available FV methods, portability, extendability, generality,
usability, performance, but also the nFVM’s architecture is shown.

• Finally, summary and outlook are given in Chapter 7.
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2 Mathematical model

In this chapter, a mathematical model for a continuously deformable elastic solid body,
based on continuum mechanics, is described. Thus, the mechanical behavior of such solid
body is modeled as a continuous mass rather than as discrete particles and its deformation
is governed by an Elastodynamic field Equation. Also, a concise introduction of the
mathematical framework is presented.

2.1 Adopted mathematical framework

A subset of the continuum mechanics framework presented in Ref. [40] is adopted in this
thesis with some punctual modifications and additions. Its definitions, theorems, physical
laws, governing equations and (initial-)boundary problems are presented next. The main
motivation to create this subset was to supply concise necessary and sufficient tools to the
development of the new method.

In this work, standard differentiability assumptions sufficient to make an argument
rigorous are assumed.

Throughout this chapter (and the next ones) the following adopted conventions are used:

(i) Lightface Latin and Greek letters generally denote scalars;

(ii) Boldface lowercase Latin and Greek letters generally denote vectors, with the excep-
tion that the letters o, x, y and z are reserved for points;

(iii) Boldface uppercase Latin and Greek letters generally denote second-order tensors,
with the exception that the letters X, Y, and Z are reserved for points;

(iv) Boldface calligraphic letters generally denote fourth-order tensors, e.g., C and M;
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(v) The Einstein summation convention is extensively used, especially when writing a
tensor in terms of the basis vectors;

(vi) The symbol ≡ is commonly used to introduce simplified notations to improve read-
ability;

(vii) Sometimes it is important to distinguish a tensor of any order, say x, from its
coordinates xi (in a Cartesian frame ei). The connection between them, for this
example, is given by means of the relation x = xiei. Concerning a second-order
tensor T, it can be written as T = Tijei ⊗ ej (note that the second-order tensor
ei⊗ ej will be sometimes written as eiej). The components Tij can be arranged into
a two-dimensional array [T], then the element at the ith-position and jth-position,
along of the two dimensions respectively, is denoted by [T]ij and, of course, this is
equal to Tij . High-order tensors are denoted and treated similarly.

2.2 Body configuration

Here, it is presented the mathematical description of body and its configuration based on
the continuum hypothesis. Deformation, displacement and strain are also elaborated.

The continuum hypothesis [40] is assumed here: for any solid, the atomic nature of
the material is ignored and it is assumed that it is infinitely divisible. This makes a body
consisting of continuously distributed material.

The aforementioned hypothesis allows the identification of a material body with an open
subset of the synthetic physical space in which the body lives. Thus, it is postulated that a
material body occupies an open and bounded subset B of the Euclidean point space E3

[41, 40]. In particular, each material particle is identified with a point E3. The subset B is
called a configuration of the body in E3 and the following is assumed: (i) the bounding
surface ∂B is piecewise smooth; (ii) The ∂B is orientable in the sense that it clearly
has two sides. The above assumptions make B into a regular region. The Euclidean’s
associated vector space is denoted by V.

The functionϕ : B → B′, named deformation map relative to the reference configuration
B, which maps each point X ∈ B to a point x = ϕ(X) ∈ B′ (see Fig. 2.1), describes
the deformation of a body from a configuration B onto another configuration B′. It is
assumed that the function ϕ is one-to-one, det ∇ϕ(X) > 0 for all X ∈ B and possesses

10



Figure 2.1: Schematic representation of a deformation. The reference configurationB is
deformed onto the newconfigurationB′. The black dot in both configurations
represents one and the samematerial particle,ϕ represents the deformation
map and u is the spatial field.

appropriate regularity properties for the ensuing analysis. The displacement of a material
particle from its initial location X to its final location x is given by

U(X) = ϕ(X)−X ⇐⇒ Uα = ϕi −Xα, ∀X ∈ B, i = 1, 2, 3, α = 1, 2, 3. (2.1)

The mapping U : B → V is called displacement field associated with ϕ (see Fig. 2.1).

The displacement can also be given in terms of a spatial field1 u : B′ → V as

u(x) = x−ψ(x) ⇐⇒ ui = xi − ψα, ∀X ∈ B, i = 1, 2, 3, α = 1, 2, 3. (2.2)

where ψ = ϕ−1 : B′ → B (this is possible, since ϕ is assumed to be one-to-one). Of
course the relation between them is given by

u(x)

⃓⃓⃓⃓
⃓
x=ϕ(X)

= U(X). (2.3)

There are many useful tensor fields which can be used to describe measures of deformation
and strain. Those used in this thesis are described next. The gradient of ϕ, which is a
1Any field expressed in terms of points x of B′.
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second-order tensor field F : B → V2, is defined by

F(X) =
∂ϕ(X)

∂X
= ∇ϕ(X) ⇐⇒ Fiα =

∂ϕi

∂Xα
≡ ϕi,α, ∀X ∈ B (2.4)

and referred to as the deformation gradient tensor field. Because F provides a complete
description of homogeneous local deformation, it is considered to be the primitive measure
of deformation. Combining Equations (2.1) and (2.4) results in

F(X) = I+∇U(X) ⇐⇒ Fiα = δiα +
∂Ui

∂Xα
= δiα + Ui,α, ∀X ∈ B. (2.5)

Other deformation measures, associated with F, are provided by the right Cauchy-Green
deformation tensor C : B → V2 and the Green-Lagrange strain tensor E : B → V2,
which are given in terms of F as

C = FT · F, E =
1

2
(FT · F− I). (2.6)

Note that since C−1 = F−1 · F−T = (F−1 · F−T )T = (C−1)T , the C−1 is symmetric, i.e.

(C−1)KL = (C−1)LK . (2.7)

Also observe that the argument of the tensor fields above were omitted, and it will be
often the case from this point forward, to facilitate understanding.

Other important measures are the so-called principal invariants of a second-order ten-
sor. They are defined (and will be used in the hyperelasticity framework later on), e.g.
considering C, as

I1(C) = tr C = C : I = λ1 + λ2 + λ3

I2(C) = tr C ·C = C : C = λ21 + λ22 + λ23

I3(C) = det C = J2 = λ1λ2λ3,

(2.8)

where {λα} are the eigenvalues of C. The derivatives of the principal invariants will also
be necessary and are given as [42]

∂I1(C)

∂C
= I

∂I2(C)

∂C
= 2C

∂I3(C)

∂C
= J2C−1.

(2.9)
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2.3 Body motion

The definition of body motion, a continuous time sequence of displacements, is presented
here. This notion is part of the composition of the Kinematics theory (the study of motion
disregarding the influences of mass, force and stress). Material, spatial and density fields
are also defined.

By motion, it meant to be understood a continuous deformation of a body over the course
of time. Precisely, it is a continuous map

ϕ : B × [0,∞) → E3, (2.10)

such that for each fixed t ≥ 0 the function

ϕ(·, t) = ϕt : B → E3 (2.11)

is a deformation of B. This means that at any time t ≥ 0 the deformation ϕt maps the
reference configuration B onto a configuration Bt = ϕt(B). The subset Bt is called the
current or deformed configuration at time t.

It is assumed the existence of the identity map ϕ0(X) = X for all X ∈ B. Of course, this
implies that B0 = B. Thus, the continuous deformation of a body initially at configuration
B0 is represented by the defined concept of motion.

The displacement field associated to the motion is defined by

U : B × [0,∞) → V
(X, t) ↦→ U(X, t) = ϕ(X, t)−X.

(2.12)

As motion is already defined, the velocity V and acceleration A of a particle X ∈ B at a
time t ≥ 0 are defined indifferently by

V(X, t) = ϕ̇(X, t) = U̇(X, t) and
A(X, t) = ϕ̈(X, t) = Ü(X, t),

(2.13)

where the dot represents the material time derivative, i.e. U̇ = DU
Dt and Ü = D2U

Dt2
. In

this particular case, since U is a material field2, these derivatives reduce to the partial
derivatives, i.e.

U̇ =
∂U

∂t
and Ü =

∂2U

∂t2
. (2.14)

2Any field expressed in terms of points X (which obviously does not depend on t) of B.
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2.3.1 Material and spatial fields

Some fields are better described in terms of the current configuration Bt (or deformed
configuration B′ in case of elastostatics problem) whose point is labeled by x. However,
since x = ϕ(X, t), any function of x ∈ Bt can also be expressed as a function of X ∈ B.
In particular, to any spatial field Γ(x, t) we can associate a material field Γm(X, t) by the
relation

Γm(X, t) = Γ(ϕ(X, t), t). (2.15)

In this case, Γm is called material description of the spatial field Γ.

As an example, consider the following. The body has a mass density field per unit volume
ρ(x, t) > 0 for all x ∈ Bt. The associated material field ρm(X, t) = ρ(ϕ(X, t), t) is related
to the reference mass density ρ0(X) (i.e. the mass density in the reference field) through
the relations3

ρm(X, t) det F(X, t) = ρ(ϕ(X, t), t) det F(X, t) = ρ(X, 0) = ρ0(X). (2.16)

The opposite might also be convenient, i.e. given a material field, it can be associated a
spatial field using the inverse of the deformation map ψ. In this case, the subscript m is
replaced by s. The velocity and the acceleration fields are important examples of such
construction and they are defined as

v(x, t) = Vs(x, t) = V(X, t)

⃓⃓⃓⃓
⃓
X=ψ(x,t)

and

a = v̇ =
∂v

∂t
+ (∇v) · v

(2.17)

respectively.

2.4 System of forces

The inclusion of surface and body forces concepts to the Kinematics content allows ac-
counting for the action of external influences to move and change the shape of a body. The
first type of force is given by the traction or surface force field, a vector field tn̂ : Γ → V ,
3The conservation of mass law can be used to show this result [40].
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such that Γ is an arbitrary oriented surface in a configuration Bt (t ≥ 0) with unit normal
field n̂ : Γ → V. It is assumed that the function tn̂ gives the force, per unit area, exerted
by material on one side of the surface upon material on the other side [40].

Now the Cauchy’s postulate [40] is assumed in order to define the traction’s dependence
on surface geometry: the traction field tn̂ depends only pointwise on n̂. In particular,
there exists a function t : N ×Bt → V, where N ⊂ V denotes the set of all unit vectors,
such that tn̂(x) = t(n̂(x),x)

The Cauchy-Poisson theorem [43], one of the major results of continuum mechanics,
says that tn̂(x) is linear in n̂, that is, for each x ∈ Bt there is a second-order tensor
σ(x) ∈ V2 such that

tn̂(x) = σ(x) · n̂. (2.18)

This field is called Cauchy stress tensor field.

These allow the definition of arbitrary forces acting on parts or on the whole of the
boundary surface Γ = ∂Bt of Bt, accounting for external forces, thus also for traction
boundary condition definition.

To couple with the second type of force, the concept of body force is used. It is defined
here as a force vector and represented using the function b : Bt → V.

2.5 Governing equations

A discussion about the equations that govern the motion and state of the body are presented
here. Besides, the first and the second Piola-Kirchhoff stress tensor fields are defined,
and then used in the Lagrangian form of the linear momentum equation, which is also
described.

Irrespective of material properties, there are five fundamental laws (or principles) which
govern the motion and state of the continuum bodies [44], they are: i) mass conservation;
ii) angular momentum conservation; iii) linear momentum conservation; iv) energy
conservation; and v) entropy inequality. In this study, only isothermal modeling of
continuum bodies is considered. Thus, the energy conservation and the entropy inequality
laws will be ignored, because under these circumstances they decouple from the mass,
angular momentum and linear momentum conservation equations [40]. Moreover, the
mass conservation law is also disregarded because the Lagrangian framework is adopted
(instead of the Eulerian one as it is customary in fluid dynamics) [40].
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In other words, it is postulated only the existence of the fundamental (linear and angular)
momentum balance principles for the whole or arbitrary parts of a continuum body B.

It is assumed that the second-order Cauchy stress tensor field

σ : B × [0,∞) → V2

(x, t) ↦→ σ(x, t)
(2.19)

is symmetric in order to satisfy the conservation of angular momentum law [40], i.e.

σ = σT . (2.20)

Therefore, the only law directly of interest is the linear momentum law. It is possible to
use the Eulerian form of the linear momentum equation:

ρv̇ = ∇ · σ + ρb, in Bt, t ≥ 0, (2.21)

where v̇ is the acceleration field as in Eq. (2.17)2 and b(x, t) in the spatial body force per
unit mass. However, since the Lagrangian version of linear momentum Equation (2.21) is
of interest in this work, it is also necessary to use the first Piola-Kirchhoff stress field P.
Its definition is given in terms of σm as

P(X, t) = (detF(X, t))σm(X, t) · F(X, t)−T , ∀X ∈ B,F ∈ V2,det F > 0. (2.22)

The other important stress measure, the second Piola-Kirchhoff stress field, can then
be defined in terms of P as

Σ(X, t) = F(X, t)−1 ·P(X, t), ∀X ∈ B,F ∈ V2,det F > 0. (2.23)

Let ρ0(X) be the reference mass density field as defined in (2.16), bm(X, t) the reference
body force field (see Eq. 2.15) and P(X, t) the Piola-Kirchhoff stress tensor field defined
above, then the balance of linear momentum in Lagrangian form requires

ρ0Ü = ∇ ·P+ ρ0bm in B, t ≥ 0. (2.24)

2.6 Elastic body

An elastic body can be defined through the following elastic body axiom [40]: a con-
tinuum body with reference configuration B is elastic if ∃ ˆ︁σ : V2 × B → V2 such that

σm(X, t) = ˆ︁σ(F(X, t),X), ∀X ∈ B, t ≥ 0 andˆ︁σ(F,X)T = ˆ︁σ(F,X), ∀X ∈ B,F ∈ V2,det F > 0.
(2.25)
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Since this work considers only homogeneous bodies, the stress response function ˆ︁σ is
considered independent of X, thus σm(X, t) = ˆ︁σ(F(X, t)). Because of this axiom, there
are two functions ˆ︁P : V2 → V2 and ˆ︁Σ : V2 → V2 such that

P(X, t) = ˆ︁P(F(X, t)) and Σ(X, t) = ˆ︁Σ(F(X, t)), (2.26)

in particular, they must satisfy the relationsˆ︁P(F) = (det F)ˆ︁σ(F) · F−T and ˆ︁Σ(F) = F−1 · ˆ︁P(F). (2.27)

There is an axiom in physics which asserts that: any “observable quantity”, e.g. any
quantity with intrinsic character, such as mass density, an acceleration vector, etc., must
be independent of the particular orthogonal basis in which it is computed. The axiom
of material frame-indifference, a tailored version (applied to elastic materials) of this
general axiom, implies that: ∃ Σ : V2 → V2 such thatˆ︁P(F) = F ·Σ(C) and ˆ︁Σ(F) = Σ(C). (2.28)

Let A ∈ V2 and assume the Definition (2.6), then
∂C

∂F
: A = AT · F+ FT ·A, (2.29)

thus (using the chain rule and ∂F/∂∇U = I, i.e. the fourth-order identity tensor 4)
∂C

∂∇U
: A =

∂C

∂F
:

(︃
∂F

∂∇U
: A

)︃
=
∂C

∂F
:

(︃
I : A

)︃
=
∂C

∂F
: A

= AT · F+ FT ·A ≡ 2 · sym(FT ·A),

(2.30)

where sym(·) denotes the symmetric component of a tensor 5. The field ∂C/∂∇U is used
next.

The Green-Lagrange strain tensor E = 1
2(C− I) and the new function

(

Σ(E) = Σ(C(E))

can be used to find the elasticity tensor C = ∂

(

Σ /∂E in terms of ∂Σ/∂C as

∂

(

Σ

∂E
: A =

∂Σ

∂C
:

(︃
∂C

∂E
: A

)︃
(using again the chain rule)

=
∂Σ

∂C
:

(︃
2I : A

)︃
= 2

∂Σ

∂C
: A.

(2.31)

4The definition is I ≡ δacδbdea ⊗ eb ⊗ ec ⊗ ed which implies that I : A = A.
5The last equation shows that sym(B) ≡ 1

2
(B+BT ).
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The arbitrariness of A implies that

C =
∂

(

Σ

∂E
= 2

∂Σ

∂C
. (2.32)

Using Equation (2.28) and the definition of the two new functions ˜︁P(∇U) = ˆ︁P(F(∇U)) =ˆ︁P(I+∇U) and ˜︁Σ(∇U) = Σ(C(∇U)), the derivative of the stress response function ˜︁P is
given as

∂ ˜︁P
∂∇U

: A =
∂(F · ˜︁Σ)

∂∇U
: A (using Equation (2.28))

=

(︃
∂F

∂∇U
: A

)︃
· ˜︁Σ+ F ·

(︃
∂ ˜︁Σ
∂∇U

: A

)︃
= A · ˜︁Σ+ F ·

(︃
∂ ˜︁Σ
∂∇U

: A

)︃
(using ∂F/∂∇U = I)

= A · ˜︁Σ+ F ·
[︃
∂Σ

∂C
:

(︃
∂C

∂∇U
: A

)︃]︃
(using the chain rule)

= A · ˜︁Σ+ F ·
[︃
∂Σ

∂C
:

(︃
2 · sym(FT ·A)

)︃]︃
(using Eq. (2.30))

= A · ˜︁Σ+ F ·
[︃
C :

(︃
sym(FT ·A)

)︃]︃
(using Eq. (2.32)).

(2.33)

2.7 Initial-boundary value problem

The initial-boundary value problem for an elastic body is a set of equations for determining
the motion and deformation of a given body subject to specified initial conditions in B at
time t = 0, and boundary conditions on ∂B at times t ≥ 0.

A standard initial-boundary value problem for an elastic body with reference configuration
B is the following: find the displacement function U : B × [0, T ] → V such that

ρ0Ü = ∇ · ˜︁P(∇U) + ρ0bm in B.× [0, T ]

U = U inΓU × [0, T ]˜︁P(∇U) ·N = T in ΓT × [0, T ]
U(·, 0) = 0 in B.
U̇(·, 0) = U̇0 in B.

(2.34)
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In the above system, ΓU and ΓT are subsets of ∂B with the properties ΓT ∪ΓU = ∂B, and
ΓT ∩ ΓU = ∅, ρ0 is the reference mass density, bm is the material description of a spatial
body force field per unit mass,N is the unit outward normal field on ∂B, andU,T and U̇0

are prescribed fields. Equation (2.34)1 is the balance of linear momentum equation, (2.34)2
is a displacement boundary condition on ΓU , (2.34)3 is a traction boundary condition on
ΓT , (2.34)4 is an initial condition for the displacementU and (2.34)5 is an initial condition
for the material velocity field ϕ̇ = U̇. The initial conditions should be compatible with the
boundary conditions at time t = 0. This formulation is called elastodynamics problem.

It is important to note that, differently from the one given in [40], this non-linear initial-
boundary value problem uses ˜︁P(∇U) and U instead ˆ︁P(F) and ϕ. This is crucial in order
to allow the linearization of ˜︁P(∇U) applied by the new algorithm (done in Chapter 4).

2.8 Boundary value problem

When time-dependent behaviour is ignored, the above problem turns into an elastostatics
problem and it is simplified. In particular, the inertial ρ0Ü and body force ρ0bm terms are
excluded from the linear momentum equation. Of course initial boundary conditions are
also ignored. And in this case, the problem is: find the displacement function U : B → V
such that

∇ · ˜︁P(∇U) = 0 inB.
U = U inΓU .˜︁P(∇U) ·N = T inΓT .

(2.35)

The meaning of boundary conditions is analogous to that in the previous problem.

2.9 Constitutive equations

The vector Equation (2.24) do not completely determine the first Piola-Kirchhoff stress
tensor field P for a body in equilibrium. There are three partial differential equations in
(2.24) and three independent algebraic equations in (2.20) with which to determine the
nine components of P. This issue is addressed by adding a constitutive equation which
characterizes the specific material properties of a body.

19



In this section the Hookean and the hyperelastic models Neo-Hookean and Ogden are
presented. Only compressible forms of all material laws are considered.

2.9.1 Hyperelasticity

Hyperelasticity is a framework created to deal with large deformation and one of its pillars
is purely elastic models. This work is concerned precisely with such models. The use
of a strain-energy function (or elastic potential) W (a stored energy per unit in the
reference configuration) is offered by this framework to simulate the model. The definition
forW is given as

W : B × V2 → R
(X,F) ↦→W (X,F(X)).

(2.36)

For every homogeneous material model, the strain energyW depends only on the defor-
mation F. Furthermore, it is postulated that the first Piola-Kirchhoff stress tensor field P
is given as

P(X) =
∂W (F(X))

∂F
⇐⇒ Piα =

∂W

∂Fiα
=W,iα, ∀X ∈ B. (2.37)

Another implication of the axiom of material frame-indifference is: ∃ W | W (F) =
W (FT · F) =W (C) [45]. In this case the partial derivative of this strain-energy function
gives the second Piola-Kirchhoff stress tensor field Σ as

Σ(X) = 2
∂W (C)

∂C
, ∀X ∈ B. (2.38)

To account for material isotropy, another restriction is added: “the constitutive behaviour
is identical in any material direction” [42]. This implies that the strain-energy function
W must be independent of the material axes chosen and, consequently, W must only
be a function of the principal invariants of C, in the sense that there exist a functionˆ︂W : R3 → R such that

W (F) =W (C) = ˆ︂W (I1(C), I2(C), I3(C)) ≡ ˆ︂W (IC). (2.39)
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The second Piola-Kirchhoff tensorΣ can be rewritten, as a result of the isotropic restriction
from Equation (2.38) as

Σ(X) = 2
∂W (C)

∂C

= 2
∂ˆ︂W (IC)
∂C

= 2
∂ˆ︂W (IC)
∂I1

∂I1(C)

∂C
+ 2

∂ˆ︂W (IC)
∂I2

∂I2(C)

∂C
+ 2

∂ˆ︂W (IC)
∂I3

∂I3(C)

∂C
, ∀X ∈ B.

(2.40)

Introducing Expressions (2.9) into Equation (2.40) allows the second Piola-Kichhof stress
tensor field to be evaluated as

Σ(X) = 2
∂ˆ︂W (IC)
∂I1

I+ 4
∂ˆ︂W (IC)
∂I2

C+ 2J2∂
ˆ︂W (IC)
∂I3

C−1, ∀X ∈ B. (2.41)

Because of the relations between principal invariants and eigenvalues (Eq. 2.8), and
Equation (2.39), a functionW

⋀︁

: R3 → R can be defined such that

W (F) =W

⋀︁

(λ1, λ2, λ3), (2.42)

where the set {λα |α = 1, 2, 3} are the eigenvalues of C.

Knowing this relation, one can define a strain energy function only in terms of the “most
fundamental” measure of the stretches {λα}. In this case, the expression for the second
Piola-Kirchhoff stress tensor Σ(X) is [42]

Σ(X) =

3∑︂
α=1

Σ

⋀︁

ααNα ⊗Nα, ∀X ∈ B, (2.43)

where {Nα} are the eigenvectors of C and Σ

⋀︁

αα is equal to

Σ

⋀︁

αα = 2
∂W

⋀︁

∂λα
. (2.44)

The elasticity tensor C for a material given in terms ofW

⋀︁

is [42]

C =

3∑︂
α,β=1

4
∂2W

⋀︁

∂λα∂λβ
Nααββ +

3∑︂
α,β=1,α ̸=β

Σ

⋀︁

αα − Σ

⋀︁

ββ

λα − λβ
(Nαβαβ +Nαββα), (2.45)
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where

Nααββ = Nα ⊗Nα ⊗Nβ ⊗Nβ;

Nαβαβ = Nα ⊗Nβ ⊗Nα ⊗Nβ;

Nαββα = Nα ⊗Nβ ⊗Nβ ⊗Nα.

(2.46)

When λα = λβ the expression
Σ

⋀︁

αα − Σ

⋀︁

ββ

λα − λβ
(2.47)

is substituted by

2

(︃
∂2W

⋀︁

∂λβ∂λβ
− ∂2W

⋀︁

∂λα∂λβ

)︃
(2.48)

(see [42]).

Proposition: Every hyperelastic, homogeneous, frame-indifferent and isotropic model
has a right-minor symmetric elasticity tensor (this is important for Chapter 4).

Proof: noting that

[Nααββ ]IJKL = [Nα ⊗Nα ⊗Nβ ⊗Nβ]IJKL

= [Nα]I [Nα]J [Nβ]K [Nβ]L

= [Nα]I [Nα]J [Nβ]L[Nβ]K

= [Nα ⊗Nα ⊗Nβ ⊗Nβ]IJLK

= [Nααββ ]IJLK

(2.49)

and

[Nαβαβ ]IJKL = [Nα ⊗Nβ ⊗Nα ⊗Nβ]IJKL

= [Nα]I [Nβ]J [Nα]K [Nβ]L

= [Nα]I [Nβ]J [Nβ]L[Nα]K

= [Nα ⊗Nβ ⊗Nβ ⊗Nα]IJLK

= [Nαββα]IJLK

(2.50)

it is now straightforward to verify (using 2.45) that

[C]IJKL = [C]IJLK , (2.51)
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i.e. the elasticity tensor has the right-minor symmetry property:

[C]IJKL =

3∑︂
α,β=1

4
∂2W

⋀︁

∂λα∂λβ
[Nααββ ]IJKL

+

3∑︂
α,β=1,α ̸=β

Σ

⋀︁

αα − Σ

⋀︁

ββ

λα − λβ
([Nαβαβ ]IJKL + [Nαββα]IJKL)

=

3∑︂
α,β=1

4
∂2W

⋀︁

∂λα∂λβ
[Nααββ ]IJLK

+

3∑︂
α,β=1,α ̸=β

Σ

⋀︁

αα − Σ

⋀︁

ββ

λα − λβ
([Nαββα]IJLK + [Nαβαβ ]IJLK) (Eq. 2.49/2.50)

=

3∑︂
α,β=1

4
∂2W

⋀︁

∂λα∂λβ
[Nααββ ]IJLK

+

3∑︂
α,β=1,α ̸=β

Σ

⋀︁

αα − Σ

⋀︁

ββ

λα − λβ
([Nαβαβ ]IJLK + [Nαββα]IJLK) (commutativity

of addition)
= [C]IJLK . ■

(2.52)

The discretization of the new FVM, i.e. NLBC, requires a new tensor, say Td (d = 1, 2, 3),
which is a function of another new quantity called transformed elasticity tensor M =
F · C ·

(3)
FT (the operator ·

(3)
is a contraction at the third index) and the face normal N,

and is defined as

Td = MaJdLNJea ⊗ eL

= FaICIJKLFdKNJea ⊗ eL

= FaICIJKLf
d
KNJea ⊗ eL (fd = fdKeK = FdKeK)

≡ (F · C) :
(2,3)

(N⊗ fd).

. (2.53)

The full expression for Td depends of course on the material model and it is shown next.
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2.9.2 Neo-Hookean model

This compressible isotropic hyperelastic material model is able to describe the stress-strain
response for a moderate strain [42, 46]. Its strain-energy function is defined as

W (C) = ˆ︂W (IC) =
µ

2
(I1(C)− 3)− µ ln J +

λ

2
(ln J)2, (2.54)

where I3(C) = det C = J2. The Lamé (material) coefficients λ and µ relating to the

Young’s modulus E and Poisson’s ratio, ν, are given respectively as: µ =
E

2(1 + ν)
;

νE

(1 + ν)(1− ν)
for plane stress; and νE

(1 + ν)(1− 2ν)
for plane strain and 3-D. The second

Piola-Kirchhoff stress tensor is obtained from Equation (2.41) as

Σ = Σ(C) = µ(I−C−1) + λ(ln J)C−1. (2.55)

The elasticity tensor can be obtained by differentiation of Equation (2.55) with respect to
the components of E to give, after some algebra using ∂I3(C)/∂C = J2C−1, C as

C =
∂

(

Σ

∂E
= 2

∂Σ

∂C
= λC−1 ⊗C−1 + 2(µ− λ ln J)J , (2.56)

where the fourth-order tensor J is defined as

J = −∂C
−1

∂C
⇐⇒ JIJKL =

1

2

[︂
(C−1)IK(C−1)JL + (C−1)IL(C

−1)JK

]︂
. (2.57)

It is straightforward to show thatJ ,C−1⊗C−1 (using Eq. 2.7) and therefore the elasticity
tensor C above has right-minor symmetry, i.e.

CIJKL = CIJLK . (2.58)

The full expression forTd is obtained by substituting Equation (2.56) into Equation (2.53)
resulting in

Td = λ(F ·C−1 ·N)⊗ (fd ·C−1)

+ (µ− λ ln J)
[︂
(F ·C−1 · fd)⊗ (N ·C−1) + (N ·C−1 · fd)(F ·C−1)

]︂
= λ(A ·N)⊗ (fd ·C−1) + (µ− λ ln J)

[︂
(A · fd)⊗ b+ (b · fd)A

]︂
= λ(A ·N)⊗ (C−1 · fd) + (µ− λ ln J)

[︂
(A · fd)⊗ b+ (b · fd)A

]︂
(C−1 is symmetric),

(2.59)

where A = F ·C−1 and b = N ·C−1 = C−1 ·N.
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2.9.3 Ogden-Storakers model

The following strain-energy function

W

⋀︁

(λ1, λ2, λ3) =

q∑︂
i=1

µi
2α2

i

[︃
λαi
1 + λαi

2 + λαi
3 − 3 +

1

βi
(J−αiβi − 1)

]︃
, (2.60)

where {λα} are the eigenvalues of C and the values q, {αi} and {βi} are disposable,
has been proposed by [47] and [48] for describing the mechanical behaviour of highly
compressible polymers. The value q ∈ {1, 2, 3} being suitable in general to simulate real
materials [33, 34]. The second Piola-Kirchhoff stress tensor Σ(X) for this material is
computed using

Σ

⋀︁

ll = 2
∂W

⋀︁

∂λl
=

1

λl

q∑︂
i=1

µi
αi

[︂
λαi
l − (J)−αiβi

]︂
(2.61)

and Equation (2.43).

The elasticity tensor C is given by Equation (2.45), thus the tensor Td (see Eq. 2.53) for
this model can be easily computed by noting that

(F ·Nαβγδ) :
(2,3)

(N⊗ fd) = (Nβ ·N)(Nγ · fd)
[︂
(F ·Nα)⊗Nδ

]︂
, (2.62)

where N is the face normal and fd = fdKeK = FdKeK as seen before.
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3 Finite Volume Methods

The preceding chapter presented a mathematical model, without connection with nu-
merical methods, for a general elastic body. The task of this chapter is to present two
discretizations of the proposed initial-boundary value problem (Box 2.34), which de-
termines the motion and deformation of a general elastic body. Two FV discretization
methods are presented next: SEG and BC. Almost all the content of this chapter provides
a basis for developing the non-linear Block-Coupled (NLBC), which is done in the next
chapter. Both presentations are based on [36, 35].

The numerical methods SEG and BC were the major inspiration sources to create the
new method, NLBC, which tries to preserve the most relevant aspect of each one without
importing their major weakness. The SEG is a very flexible method of discretization, in
the sense that it does not constraint the constitutive equations and can be used in both
non-linear and linear elasticity. But, its major drawback is that it can be very slow for
many test cases, in particular, whenever there is a strong coupling between displacement
components [36]. The method of discretization BC has shown itself to be much faster
than SEG for those strongly coupling test cases 1. Furthermore, the BC solver by Cardiff
et. al [36] resulted in less execution time and memory requirements than a finite element
software for the set of cases tested2. Nevertheless, the current BC formulation is tied to
only one constitutive equation and linear elasticity [36].

A FV method is a discretization process which transforms one or more partial differential
equations into a corresponding system of algebraic equations. The solution of the system
produces a set of values that correspond to the solution of the original equations at some
pre-determined locations in space and time, provided certain conditions are satisfied. The
conditions for segregated can be seen in [49], but for BC there is no literature available
yet. Future studies can focus on finding conditions for NLBC, since this topic will not be
discussed in the current work.
1By a factor of 2.5-6 times [36].
2In fact it was almost 6 times faster and used 8 times less memory.
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The FV methodologies that are presented in this thesis directly discretize the strong
integral form of the governing equation (2.24), i.e. the discretization occurs directly in the
physical space (subdivided into finite volumes). The stress term in the governing equation
is turned into face fluxes and evaluated at the finite volume faces. The flux entering a
given volume is made identical to that leaving the adjacent volume, generating their main
advantage: strictly conservative, i.e. conservation of transported variable is guaranteed.
Thus the presented FV methodologies can easily incorporate coupling, e.g. to simulate
fluid-structure interaction. For a rather complete overview of FVM for solid mechanics
analysis, for example, see [35, 50].

3.1 Solution domain discretization

The starting point for a FV discretization is to decompose the solution domain B × [0, T ]
(or only B in case of non-transient simulation). The solution spatial domain B is usually
approximated by arbitrary and finite number nC of contiguous convex polyhedral cells
(also known as finite volume) ΩC ’s bounded by faces that do not overlap. But this thesis
adopts a specific polyhedral: the rectangular cuboid. The reason for choosing rectangular
cuboids is to avoid non-conformal (skewed and/or non-conjunctional) mesh [51] and the
complexities that arise from it. This way, investigation efforts focus only on the “core” (i.e.
minimal structure to be fully usable) of the NLBC algorithm. Non-essential extensions can
be added to NLBC after an extensive investigation of the core.

The approximation mentioned above is written as

B ≈ Bd =

nC⋃︂
C=1

ΩC , (3.1)

i.e. the continuous body B is approximated by the computational domain Bd which is the
union of nC cells. The Figure 3.1 shows (for two-dimensional case) the configuration of
one cell ΩC ∈ Bd.

The cell’s centroid, the computational node, stores the values of the displacement vector
as well as the physical properties of the material (e.g. ρ0). Because of the storage location,
this discretization is classified as cell-centered (an alternative is vertex-centered) [51].

Concerning the solution temporal domain [0, T ] (for transient simulation), the total speci-
fied simulation time T is divided into a finite number of time increments (of fixed size ∆t)
and the discretized governing equations are solved using time stepping procedure.
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Figure 3.1: Discretization of a body B into cells ΩC ’s. Every cell ΩC has a boundary ∂ΩC .
Note that because of the rectangular cuboid restriction, the boundary domain
∂B is approximated in a castellated staircase manner.

3.2 Discretization of governing equation

Only the linear momentum equation needs to be discretized, as discussed in the previous
chapter. The discretization process of this equation can be seen as a transformation
pipeline (see Fig. 3.2) such that each step converts one set of equations into another, the
first set composed by the differential equation (see Box 2.34)

ρ0Ü = ∇ · ˜︁P+ ρ0 (3.2)

and the last set having the algebraic equations forming the final linear system where the
unknowns are the displacements at the nodes.

To make things clearer, in the first step the Equation (3.2), which is valid for the whole
discretized domain Bd = ∪nC

C=1ΩC , is integrated for each finite volume ΩC , producing a
set of integral equations. Following this step, after applying some transformations, the set
of integral equations are converted into a set of coupled (by face values3) equations, say,
Discrete Algebraic Relations. Finally, interpolation profiles are used to express each face
value as a function of cell’s centroid values. The Figure (3.2) illustrates the block diagram
for the discretization process.
3The set of face values is composed by variables stored at the centroid of the faces. The definition of the
set of volume values is analogous.
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Differential Equation 
(For the whole domain                       ) 

⌦C

Integral Equations 
(For each volume      ) 

Discrete Algebraic Relations 
(Coupled by face values) 

Algebraic Equations 
(Coupled by centroid values) 

Bd = ∪nC
C=1ΩC

Figure 3.2: Block diagram illustrating the discretization processes of the FV methods
SEG, BC and NLBC.
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Figure 3.3: a) A cell ΩC , with centroid C of a 2D discretized domain, and its neighbours
Fi; b) A cell ΩC with its geometric parameters used in the finite volume dis-
cretization. In style of [52].

Before proceeding, note the geometric parameters shown in the Figures (3.3a-b) which
are needed in the FV discretization process of the governing equations. The Figure
(3.3a) shows a cell with its neighbours F ’s and their face centroids f ’s. The other image
(Fig. 3.3b) exemplifies a typical cuboid cell ΩC , having volume VC and the centroid, or
computational node, located at the point C.

3.2.1 Integral Equations

In the first step of the discretization process, the conservation law (3.2) is applied to each
finite volume ΩC ∈ Bd, rendering∫︂

ΩC

ρ0Ü dV

⏞ ⏟⏟ ⏞
Inertial force

=

∫︂
ΩC

∇ · ˜︁P dV

⏞ ⏟⏟ ⏞
Surface force

+

∫︂
ΩC

ρ0bm dV

⏞ ⏟⏟ ⏞
Body force

∀ ΩC ∈ Bd. (3.3)
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The next step is to use the divergence theorem to replace the volume integral of the
surface force term by surface integral, thus the equation above becomes∫︂

ΩC

ρ0Ü dV =

∮︂
∂ΩC

˜︁P ·N dS +

∫︂
ΩC

ρ0bm dV ∀ ΩC ∈ Bd, (3.4)

where N is the unit outward normal field on ∂ΩC . Because the FV is a polyhedral with
flat faces, the equation above can be converted into a sum of integrals over all faces to
become

∫︂
ΩC

ρ0Ü dV =
∑︂

Γf∈ ∂ΩC

⎛⎜⎝∫︂
Γf

˜︁P ·N dS

⎞⎟⎠+

∫︂
ΩC

ρ0bm dV ∀ ΩC ∈ Bd, (3.5)

where ∂ΩC =
⋃︁
f

Γf such that Γf is a flat face.

3.2.2 Discrete Algebraic Equations

This section describes the process of transforming the Equation (3.5) into the corresponding
discrete algebraic relation, for each cell ΩC ∈ Bd, by means of eliminating surface and
volume integrals using mid-point rule (1-point Gauss integration approximation). The
relations that make up the resulting set of this process are coupled by face values (which
are not the primary unknowns). This is the reason why another step is necessary in order
to write these values, by assuming interpolation profiles, as a function of volume values
(where primary unknowns “live”).

The discretization of the inertial and the body force terms are fully described in this
section, since they are the same for all approaches (SEG, BC and NLBC). This is not the
case for the surface force term though. The complete surface force term discretization is
different for each method and it will be presented only partially here, i.e. only up to the
point right before their discretization differs from each other. The missing part for SEG
and BC will be presented in the next sessions, but that for NLBC will be presented later
on, in the next chapter.
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Inertial force

Essentially, mid-point integration approximation and Taylor expansions are used to express
the inertial force (see Equation 3.3) with the aid of volume values at different times. The
starting point is to use the mid-point rule to eliminate the volume integral as:∫︂

ΩC

ρ0Ü dV ≈ ρ0(XC)Ü(XC, t)VC ≡
(︁
ρ0ÜV

)︁
C,t

≡ ρ0,CÜ
t
CVC , (3.6)

where VC is the volume of a cell ΩC and XC is the position of cell’s centroid.

In order to calculate Ü, a first-order backward fully implicit Euler scheme4 is derived by
expressing the values of U at times t−∆t, t− 2∆t in terms of its value and the value of
its derivative at time t using Taylor series as

U(X, t−∆t) = U(X, t)−∆tU̇(X, t) +
∆t2

2
Ü(X, t) +O(∆t3) (3.7)

and

U(X, t− 2∆t) = U(X, t)− 2∆tU̇(X, t) +
(2∆t)2

2
Ü(X, t) +O(∆t3). (3.8)

Multiplying Equation (3.7) by −2 and subtracting the resulting equation from Equation
(3.8), a first order representation of the second derivative is obtained as

Ü(X, t) =
1

∆t2

[︃
U(X, t)− 2U(X, t−∆t) +U(X, t− 2∆t)

]︃
. (3.9)

Thus, considering the times ti, ti−1 = ti −∆t, ti−2 = ti − 2∆t and a cell ΩC , the final
expression for the inertial force term is calculated using the first-order backward fully
implicit Euler scheme above as

∫︂
ΩC

ρ0Ü dV ≈

[︄
ρ0V

∆t2

(︃
Uti − 2Uti−1 +Uti−2

)︃]︄
C

. (3.10)

4Actually, any appropriate finite difference scheme may be used [35].
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Body force

Also adopting the mid-point rule and considering a time ti, the body force term (see
Equation 3.3) is computed as∫︂

ΩC

ρ0bm dV ≈ ρ0(XC)bm(XC, ti)VC ≡
[︃
ρ0bmV

]︃
C,ti

≡ ρ0,Cb
ti
m,CVC . (3.11)

Surface force term

The surface force term (see Equation 3.3) discretization also uses the mid-point rule, but
this time to approximate surface integral instead of volume integral:

∑︂
Γf∈ ∂ΩC

⎡⎢⎣∫︂
Γf

˜︁P ·N dS

⎤⎥⎦ ≈
∑︂

f∈ centroids(∂ΩC)

[︃˜︁P(∇U(Xf , ti)) ·N(Xf )

]︃
Sf

≡
∑︂
f

[︃˜︁P(∇U(Xf , ti)) ·N(Xf )

]︃
Sf

≡
∑︂
f

[︃˜︁P ·N
]︃
f,ti

Sf

≡
∑︂
f

[︃˜︁P · S
]︃
f,ti

,

(3.12)

where centroids(∂ΩC) means the set having the centroids of all faces in ∂ΩC =
⋃︁

f Γf ,
surface area field S = SN and ti is a given time. To go beyond this point, it is necessary
to choose a FV method.

Considering a cell ΩC and using Equations (3.10)-(3.12), the final equation to be solved
(hiding the prefix C) is

ρ0V

∆t2

[︃
Uti − 2Uti−1 +Uti−2

]︃
=
∑︂
f

[︃˜︁P · S
]︃
f,ti

+

[︃
ρ0bmV

]︃
ti

. (3.13)
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3.2.3 Segregated FV methodology

The current approach [32] to simulate general constitutive relations using the SEGmethod-
ology is to split the surface force term (see Equation 3.3) into implicit and explicit compo-
nents, i.e. the Equation (3.13) becomes

ρ0V

∆t2

[︃
Uti − 2Uti−1 +Uti−2

]︃
=
∑︂
f

[︃
QPS

]︃
f,ti⏞ ⏟⏟ ⏞

implicit

+
∑︂
f

[︃˜︁P · S−QPS

]︃
f,ti⏞ ⏟⏟ ⏞

explicit

+

[︃
ρ0bmV

]︃
ti

,

(3.14)
where QP approximates the traction field Q = ˜︁P · N, implicit indicates contribution
to the matrix of the resulting discretized algebraic linear system and explicit indicates
contribution to the source vector of the linear system. In the case of linear elastic law, the
optimal approximation for Q is clear (see [32]), i.e. for Hooke’s law

˜︁P = µ∇U+ µ∇UT + λ (tr ∇U)I, (3.15)

where µ and λ are the Lamé coefficients, is

QP = K∇U ·N. (3.16)

such that the so-called implicit stiffness K is equal to 2µ+ λ. For non-linear elasticity5,
the scalar K can be obtained, e.g. using some invariant from the elasticity tensor C [32].

Regardless the choice for K, Q is discretized on a face Γf at a time ti using the standard
central differencing as follows:[︃

QP

]︃
f,ti

=

[︃
K∇U ·N

]︃
f,ti

≈
[︃
K

(︃
UC −UF

|dCF |

)︃]︃
f,ti

≡ Kti
f

(︄
Uti

C −Uti
F

|dCF |

)︄
,

(3.17)

where the vector connecting the centroids of the cells sharing the common face is dCF =
XF −XC (Fig. 3.3).
5Actually, the non-linear term, although quite common, is misleading, since elasticity cannot be linear [45]
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To include boundary conditions, the surface force term discretization at the boundary
faces is modified. In the case of a Neumann boundary condition, the specified traction T
is directly substituted in the surface stress expression ˜︁P ·N (see Box (2.34)3), while in the
case of Dirichlet boundary condition, the face displacement gradients are calculated at the
face using the specified displacement U, i.e. this value is directly used in Equation (3.17).
Finally, the current available displacement values are used to calculate the displacement
gradient by means of either the Green-Gauss or the Least Square methods [51], which in
turns is used to evaluate the explicit component.

Given a material law, assembling Equation (3.14) using the procedure just described
produces the following linear algebraic equation:

aCU
ti
C +

∑︂
F

aFU
ti
F = RC (3.18)

with one equation assembled for each finite volume C and

aT =
ρ0V

∆t2
,

aF =
Kti

f Sf

|dCF |
,

aC = aT −
∑︂
F

aF ,

RC = aT

(︂
2U

ti−1

C −U
ti−2

C

)︂
+
∑︂
f

[︃˜︁P · S−QPS

]︃
f,ti

+

[︃
ρ0bmV

]︃
ti

.

(3.19)

The terms Kf and
[︁˜︁P · S−QPS

]︁
f
are evaluated using the current available values of U

and the linear interpolation profile:

[Y ]f = fx[Y ]C + (1− fx)[Y ]F fx =
|XC −Xf |

|dCF |
, Y ∈ {K, ˜︁P · S−QPS}. (3.20)

Because Uti
C depends on the values in the neighbouring cells, the following system of

algebraic equations is created:
[A][U] = [R], (3.21)

where [A] is a sparse matrix, with coefficients aC on the diagonal and aF off the diagonal,
[U] is the vector of U’s for all FV’s and [R] is the right-hand side vector. The above system
is solved consecutively for three components of U, i.e. in a segregated manner. It is to be
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noted that RC contains contribution from the explicit component, which creates coupling
between displacement components, implying that an iterative solution (Picard/Fixed-
Point) is needed to provide the coupling. Each such iteration is called correction and
the number of corrections ncorr needed to conform with a chosen residual tolerance is
case-dependent.

The linear system (3.21) can be solved using an iterative solver, such as the incomplete
Cholesky pre-conditioned conjugate gradient method (ICCG), or directly using Gaussian
elimination or LU decomposition [36].

3.2.4 Block-coupled FV methodology

The BCmethod employs a solution procedure where all the three displacement components
are simultaneously solved in a large block system, which resembles the traditional Finite
Element Methods. Besides, it employs a complete linearization of the surface force in terms
of the unknowns, i.e. fully implicit (see Eq. 3.14), which has shown significant speedups
over the segregated methods for inter-component coupling cases [36]. In practical terms,
the surface traction (Q = ˜︁P ·N) is decomposed into normal (Qn) and tangential (Qt)
components:

∑︂
f

[︃˜︁P · S
]︃
f,ti

=
∑︂
f

Sf

[︃˜︁P ·N
]︃
f,ti

=
∑︂
f

Sf

[︃
I · ˜︁P ·N

]︃
f,ti

=
∑︂
f

Sf

[︃
I ·Q

]︃
f,ti

=
∑︂
f

Sf

[︃
(NN+ I−NN) ·Q

]︃
f,ti

=
∑︂
f

Sf

[︃
NN ·Q⏞ ⏟⏟ ⏞

Qn

+(I−NN) ·Q⏞ ⏟⏟ ⏞
Qt

]︃
f,ti

=
∑︂
f

Sf

[︃
(2µ+ λ)∇Un ·N+ λ(tr ∇tUt)N⏞ ⏟⏟ ⏞

Qn

+µ∇Ut ·N+ µ∇tUn⏞ ⏟⏟ ⏞
Qt

]︃
f,ti

,

(3.22)
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whereNN = N⊗N,Un = NN·U, Un = N·U,Ut = (I−NN)·U and∇t = (I−NN)·∇
is a tangential derivative. The expressions for Qn and Qt are derived in [36]. The
discretizations of normal and face tangential derivatives, (∇[ ] ·N) and (∇t[ ]), from the
equation above are shown next by considering a cell C, any of its face Γf and a time ti.

Normal derivative terms

The normal derivative terms (∇[ ] ·N) on a face Γf are discretized using the standard
central differencing as follows:[︃

∇Un ·N
]︃
f,ti

≈
[︃(︃

UC
n −UF

n

|dCF |

)︃]︃
f,ti

≈
[︃(︃

(NN ·U)C − (NN ·U)F

|dCF |

)︃]︃
f,ti

≡
[︃
NN ·

(︃
UC −UF

|dCF |

)︃]︃
f,ti

;

(3.23)

And analogously, [︃
∇Ut ·N

]︃
f,ti

≈
[︃
(I−NN) ·

(︃
UC −UF

|dCF |

)︃]︃
f,ti

, (3.24)

where the vector connecting the centroids of the cells sharing the common face dCF =
XF −XC (Fig. 3.3).
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Tangential derivative terms

The face tangential derivative ∇tUn is approximated using a face-Gauss/Finite Area
method [36]:

[︃
∇tUn

]︃
f,ti

≈ 1

Sf

[︃ ∑︂
e∈ edges(Γf )

(Un)eLeMe

]︃
ti

=
1

Sf

[︃ ∑︂
e∈ edges(Γf )

(Nf ·U)eLeMe

]︃
ti

=
1

Sf

[︃ ∑︂
e∈ edges(Γf )

LeMeNf ·Ue

]︃
ti

≡ 1

Sf

[︃∑︂
e

LeMeN ·Ue

]︃
f,ti

,

(3.25)

where edges(Γf ) refers to the set of all edges enclosing the face Γf , (Un)e is the edge-
centre displacement component, Le is the length of the edge e and Me is the edge-centre
unit bi-normal vector calculated using the cross product between ê (the unit vector parallel
with the edge e) and the face normal Nf , i.e.

Me = ê×Nf . (3.26)

The edge-centre displacement Ue is approximated using the average of the edge e end-
points as follows:

Ue ≈
1

2

[︃
Uep1 +Uep2

]︃
, (3.27)

where the edge end-point displacements (Un)epi are approximated in terms of the neigh-
bouring cell-centre values using a weighted least squares interpolation.

Uep ≈
∑︂
pc

wpcU
pc, (3.28)
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where wpc is a weighting factor. Using these interpolations in equation (3.25), the face
tangential derivative ∇tUn is approximated as[︃

∇tUn

]︃
f,ti

≈ 1

Sf

[︃∑︂
e

LeMeN ·

(︄
1

2

∑︂
pc

wpcU
pc

)︄]︃
f,ti

=
1

Sf

[︃∑︂
e

∑︂
pc

1

2
LewpcMeN ·Upc

]︃
f,ti

≡ 1

Sf

[︃∑︂
e,pc

1

2
LewpcMeN ·Upc

]︃
f,ti

.

(3.29)

The other face tangential derivative ∇tUt is approximated as[︃
∇tUt

]︃
f,ti

≈ 1

Sf

[︃∑︂
e

(Ut)eMeLe

]︃
f,ti

. (3.30)

The term (tr ∇tUt)N can now be computed using the above expression as follows:[︃
(tr ∇tUt)N

]︃
f,ti

≈

(︄
tr 1

Sf

[︃∑︂
e

(Ut)eMeLe

]︃
f,ti

)︄
Nf

=
1

Sf

[︃∑︂
e

[tr (Ut)eMe]Le

]︃
f,ti

Nf

=
1

Sf

[︃∑︂
e

Me ·UeLe

]︃
f,ti

Nf

=
1

Sf

[︃∑︂
e

LeNMe ·Ue

]︃
f,ti

=
1

Sf

[︃∑︂
e

∑︂
pc

1

2
LewpcNMe ·Upc

]︃
f,ti

≡ 1

Sf

[︃∑︂
e,pc

1

2
LewpcNMe ·Upc

]︃
f,ti

(3.31)

where the fact me ·Nf ≡ 0 and hence [tr (Ut)eMe] ≡ Me ·Ue have been used.

Boundary conditions

The BC method does not incorporate the boundary conditions (Box 2.34) directly into
the discretized momentum equation for control volumes adjacent to the boundary as it is
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done by the SEG method described in Section (3.2.3). Instead, the same discretization
procedure is applied to the boundary faces, where boundary-face values are implicitly
included as unknowns just as cell-centre values.

In the case of a Dirichlet boundary condition, the prescribed displacement U is used to
create an equation for the unknown displacement:

I ·Uf = U
ti
f (3.32)

where Uf and U
ti
f = U(Xf , ti) are the unknown and prescribed boundary-face centre

displacements respectively. While in the case of Neumann boundary condition, considering
that the traction on a boundary face is given by

T
ti
f Sf =

∫︂
Γf

[︃
(2µ+ λ)∇Un ·N+ λ(tr ∇tUt)N⏞ ⏟⏟ ⏞

Qn

+µ∇Ut ·N+ µ∇tUn⏞ ⏟⏟ ⏞
Qt

]︃
ti

dS, (3.33)

the discretization is applied in the same manner as for internal cell to

T
ti
f =

[︃
(2µ+ λ)∇Un ·N+ λ(tr ∇tUt)N⏞ ⏟⏟ ⏞

Qn

+µ∇Ut ·N+ µ∇tUn⏞ ⏟⏟ ⏞
Qt

]︃
f,ti

. (3.34)

There is also the Symmetry plane boundary condition (a mixed Dirichlet-Neumann condi-
tion), which specifies a zero normal displacement and a zero normal gradient of tangential
displacement as:

Un ≡ 0

∇Ut ·N ≡ 0
(3.35)

where the condition is enforced at the centre of a boundary face f . The equations are
discretized as: [︃

NN ·Uf

]︃
f,ti

= 0[︃
(I−NN) ·

(︄
Uf −UC

|dCF |

)︄]︃
f,ti

= 0

, (3.36)

where UC is the cell-centre unknown of the face owner cell. These two equations can
be summed to produce the final discretized boundary condition because the first only
refers to the normal component of the displacement whereas the second only refers to the
tangential component of the displacement.

41



Linear system

Assembling Equation (3.13) using the full discretization of the surface force term [˜︁P ·S]f,ti
given as (using Eq. 3.23, 3.24, 3.29 and 3.31)[︃
Sf

{︂
(2µ+ λ)NN+ µ(I−NN)

}︂
·
(︃
UC −UF

|dCF |

)︃
+
∑︂
e,pc

1

2
Lewpc (λNMe + µMeN) ·Upc

]︃
f,ti

,

(3.37)

produces the following linear algebraic equation

AC ·Uti
C +

∑︂
F

AF ·Uti
F = RC , (3.38)

one for each control volume C, where AC is the central tensor coefficient, AF are tensor
coefficients representing interactions with neighbour cell-centred unknowns or boundary-
face-centred unknowns and RC is the source vector contribution from inertia and body
forces terms. It is to be noted that these coefficients are second-order tensors and not
scalars as in Equation (3.18).

Let Nb be the number of boundary faces, then an additional Nb linear algebraic equations
are originated from boundary discretization processes, one for each boundary-face centre.
The linear equations format is analogous to that of above. Both sets of equations form a
system of linear equations which can be solved using, e.g. Bi-Conjugate Gradient Stabilised
(BiCGStab), Generalised Minimal Residual (GMRes) or even direct methods [36].
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4 The new Finite Volume Methodology

As highlighted in the introduction of this work, the SEG method is not able to simulate a
finite deformation test case of a three-dimensional virtual brick made of cork modeled
using the Ogden-Storakers material law (Sec. 2.9.3). This revelation, along with the fact
that current BC’s formulation is tied to one and only one linear material law (Hooke’s
law), was the major motivation to create the new FV methodology NLBC.

In fact, the SEG method can be formulated using the Total Lagrangian (TL) or Updated
Lagrangian (UL) formulations [35]. The Total and Updated attributes relate to the
reference configuration choice. All static and kinematic variables are referred to the initial
configuration at the initial time in the TL approach. The UL formulation is based on the
same procedures, but in the solution all static and kinematic variables are referred to the
last calculated configuration [53]. Furthermore, all kinematic non-linear effects, due to
large displacements, large rotations, and large strains, are included in both the TL and
UL formulations.

As far as displacement is concerned, each approach above can be subdivided. The choices
are: Total (the displacement is referred to the first configuration) or Incremental (the
displacement is referred to the last configuration). The combinations give rise to the
following frameworks: Total Lagrangian Total Displacement (TLTD); Total Lagrangian
Incremental Displacement (TLID); and Updated Lagrangian Incremental Displacement
(ULID). Thus, the aforementioned manifestations are SEG-TLTD, SEG-TLID and SEG-ULID
[54]. Thus, it becomes evident that BC method uses the TLTD. Further in this chapter, it
will be shown that NLBC uses the TLID.

As mentioned in Chapter 1, the two FVM programs used for this work were the nFVM
and the Solids4foam [32]. The former implements SEG-TLTD, BC and NLBC1. The latter
implements all SEG manifestations and BC. The Figure (4.2) compares the TLTD and the
TLID framework.
1A more complete acronym would be NLBC-TLID.
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This chapter presents the NLBC methodology. As the name implies, the new methodology
is (mostly) based on the BC approach, but it uses the TLID (due to Newton-Raphson
method) instead of TLTD. The NLBC was developed to be as general as the SEG method
and as fast-convergent as the BC method, without importing their major weakness (see Fig.
4.1). The first characteristic (generality) is largely retained, because the only imposition is
that the elasticity tensor C of a chosen material law must have the right-minor symmetry
property (Eq. 2.51). It was seen in Chapter 2 that every hyperelastic, homogeneous,
frame-indifferent and isotropic material model has this property. Therefore, a large class of
non-linear materials can be simulated. The numerical tests presented in the next chapter
show that the second characteristic (convergence rate) is also retained.

Segregated Block-Coupled Non-Linear Block-Coupled

Only the laplacian term is
linearized in terms of the

unknowns

Discretizes all terms in the
Hookean’s constitutive
equation in terms of the

unknowns

Apply a second-order Taylor
expansion to the constitutive
equation and linearize the
second term in terms of the

unknowns

Implicit + explicit
discretization Implicit discretization Implicit + explicit

discretization

Each displacement
component is solved

separately using three linear
systems

All displacement components
are solved at the same time

in a big linear system

All displacement components
are solved at the same time

in a big linear system

Any constitutive equation Only Hookean’s constitutive
equation

Any constitutive equation
(with right-minor symmetric

elasticity tensor)

Figure 4.1: Differences and similarities between the presented FVM approaches consid-
ering only the stress tensor term in the momentum equation.
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Figure 4.2: Two schematic representations of the same deformation. The image on the
left illustrates the TLTD method, where the primary unknown is the displace-
ment U . The other on the right illustrates the TLID, where the primary un-
known is the delta displacement δu. The time-dependent boundary condi-
tions are not modified in the intermediate configurations between time ti−1

and ti. The black dots represent one and the same material particle.

4.1 Mathematical framework for incremental description

To describe the incremental approach, let the following maps be defined:

ϕ : X ∈ B → B′ ∋ x,

φ : X ∈ B → B◦ ∋ y and
χ : y ∈ B◦ → B′ ∋ x,

(4.1)

where B◦ can be thought as an intermediate (also labeled as old) body state between the
reference body state B and the current body state B′ (see Fig. 4.3). Then, by using the
composition χ◦φ , it is derived the relation between the deformation gradients associated
with the mappings as

x = ϕ(X) = χ(φ(X)) =⇒ ∂ϕ

∂X⏞⏟⏟⏞
F

=
∂χ

∂y⏞⏟⏟⏞
δF

· ∂φ
∂X⏞⏟⏟⏞
F◦

,
(4.2)
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Figure 4.3: A deformation is illustrated by considering the reference configurationB, the
old configuration B◦ and the current deformed configuration B′. The black
dots represent one and the same material particle.

thus obtaining the relation between the deformation gradients as

F = δF · F◦. (4.3)

The symbol δF is the well known [41, 55] incremental (or relative) deformation
gradient, and its relation with the so-called incremental (or relative) displacement
gradient ∇◦δu is found using the incremental displacement field δu : B◦ → B′ (Fig.
4.3) as:

δu(y) = χ(y)− y =⇒ ∂δu

∂y⏞⏟⏟⏞
∇◦δu

=
∂χ

∂y
− ∂y

∂y
= δF− I, (4.4)

therefore
∇◦δu = δF− I. (4.5)

The intermediate (or old) displacement field U◦(X) = φ(X)−X gives rise to the inter-
mediate (or old) displacement gradient

∇U◦ = ∇φ− I =⇒ ∇U◦ = F◦ − I. (4.6)

It will be necessary later to linearize the stress tensor ˜︁P at the current body state B′. To
accomplish that, there must be found a way to compute a gradient increment. This is

46



done using (4.3), (4.4) and (4.6) as

F = δF · F◦

I+∇U = (I+∇◦δu) · F◦ =⇒
∇U = F◦ +∇◦δu · F◦ − I =⇒
∇U = ∇U◦ +∇◦δu · F◦,

(4.7)

where is to be noted that a gradient increment is driven by ∇◦δu · F◦.

4.2 Momentum equation linearization

To solve the Equation (3.4), it is first rearranged to

R(U,∇U) =

∫︂
ΩC

ρ0Ü dV −
∮︂

∂ΩC

˜︁P(∇U) ·N dS −
∫︂
ΩC

ρ0bm dV = 0, ∀ ΩC ∈ Bd, (4.8)

where R : V × V2 → V can be called residual function, since R(U,∇U) is the so-
called, in FEM terminology, residual or out-of-balance force [42]. The solution of this
equation is sought using a Newton-Raphson iterative process whereby, given a solution
estimate (Un−1,∇Un−1) at iteration n − 1, a new value (Un = Un−1 + δu,∇Un =
∇Un−1 +∇◦δu · Fn−1) is obtained by establishing the linear approximation2:

R(Un,∇Un) ≈R(Un−1,∇Un−1) +
∂R(Un−1,∇Un−1)

∂U
· δu

+
∂R(Un−1,∇Un−1)

∂∇U
: (∇◦δu · Fn−1) = 0.

(4.9)

Or, using a simplified notation, the above relations are written as

R(U•,∇U•) ≈ R(U◦,∇U◦) +
∂R(U◦,∇U◦)

∂U
· δu+

∂R(U◦,∇U◦)

∂∇U
: (∇◦δu · F◦) = 0,

(4.10)

or even

R• ≈ R◦ +
∂R◦

∂U
· δu+

∂R◦

∂∇U
: (∇◦δu · F◦) = 0, (4.11)

2The approximation is just a truncated Taylor series.
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where the first term is simply

R◦ =

∫︂
ΩC

ρ0Ü
◦
dV −

∮︂
∂ΩC

˜︁P◦
·N dS −

∫︂
ΩC

ρ0bm dV. (4.12)

The second and the third terms are calculated as

∂R◦

∂U
· δu =

∂

∂U

⎡⎢⎣∫︂
ΩC

ρ0Ü dV

⎤⎥⎦
◦

· δu =

∫︂
ΩC

ρ0
∂Ü

∂U

⃓⃓⃓⃓
⃓
◦

· δu dV

=

∫︂
ΩC

ρ0
∂2

∂t2

[︃
∂U

∂U
· δu

]︃◦
dV =

∫︂
ΩC

ρ0
∂2δu

∂t2
dV =

∫︂
ΩC

ρ0δü dV,

(4.13)

and as

∂R◦

∂∇U
: (∇◦δu · F◦) = − ∂

∂∇U

⎡⎢⎣ ∮︂
∂ΩC

˜︁P(∇U) ·N dS

⎤⎥⎦
◦

: (∇◦δu · F◦)

= −
∮︂

∂ΩC

[︄
∂ ˜︁P(∇U)

∂∇U
: (∇◦δu · F◦)

]︄◦
·N dS

= −
∮︂

∂ΩC

[︄
∂ ˜︁P◦

∂∇U
: (∇◦δu · F◦)

]︄
·N dS,

(4.14)

respectively. Assuming the above linearization and substituting the expressions (4.12)-
(4.14) into Equation (4.11) give∫︂
ΩC

ρ0

(︂
Ü

◦
+ δü

)︂
dV

⏞ ⏟⏟ ⏞
inertial force

−
∮︂

∂ΩC

[︄
∂ ˜︁P◦

∂∇U
: (∇◦δu · F◦)

]︄
·N dS

⏞ ⏟⏟ ⏞
surface force increment

−
∮︂

∂ΩC

˜︁P◦
·N dS

⏞ ⏟⏟ ⏞
old surface force

−
∫︂
ΩC

ρ0bm dV

⏞ ⏟⏟ ⏞
body force

= 0.

(4.15)

Note that “old” in this context can be read as “old iteration of the Newton-Raphson
process”, but during the first iteration it coincides to the old time point (see Fig. 4.4 and
4.5). It is revealed in the next section how these terms are discretized. The body force
term is the exception, its discretization is given in Section (3.2.2).
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4.3 Discretization of the force terms

Each term of the Equation (4.15) needs a different discretization which are shown next.

4.3.1 Inertial force

Let the displacements U◦, Uti−1 and Uti−2 refer to values obtained at a previous iteration,
and at a previous and at two time-steps earlier, respectively. The discretization of the
inertial force term, from Equation (4.15), follows Equation (3.10), i.e.∫︂

ΩC

ρ0

(︂
Ü

◦
+ δü

)︂
dV ≈

[︄
ρ0V

∆t2

(︃
(U◦ + δu)− 2Uti−1 +Uti−2

)︃]︄
C

, (4.16)

where U◦ + δu is an approximation for the current unknown displacement Uti (see Fig.
4.2).

4.3.2 Surface force increment

Before proceeding to the discretization of the surface force increment, the Equation (2.33)
needs to be extended by taking the C’s right-minor symmetry into consideration (see 2.51)
as

∂ ˜︁P
∂∇U

: A = A · ˜︁Σ+ F ·
[︃
C :

(︃
sym(FT ·A)

)︃]︃
= A · ˜︁Σ+ F ·

[︃
C :

(︃
FT ·A

)︃]︃
(using C’s symmetric property)

= A · ˜︁Σ+ F ·
[︃
CαβγδFaγAaδeα ⊗ eβ

]︃
= A · ˜︁Σ+

(︃
F · C ·

(3)
FT

)︃
: A

= A · ˜︁Σ+M : A, ∀A ∈ V2,

(4.17)

whereM is the transformed elasticity tensor defined in the paragraph preceding Equation
(2.53). Note that the right-minor symmetry restriction, which could not be overcome,
creates a class of supported materials. This is discussed in more details in Chapter 7.

49



Now, the integral of the surface force increment term is approximated as:∮︂
∂ΩC

[︄
∂ ˜︁P◦

∂∇U
: (∇◦δu · F◦)

]︄
·N dS

=
∑︂

Γf∈ ∂ΩC

∫︂
Γf

[︄
∂ ˜︁P◦

∂∇U
: (∇◦δu · F◦)

]︄
·N dS (∂ΩC is a polyhedral)

≈
∑︂
f

Sf

[︄{︄
∂ ˜︁P◦

∂∇U
: (∇◦δu · F◦)

}︄
·N

]︄
f

(mid-point rule integration).

(4.18)

Substituting for A = ∇◦δu · F◦ into Equation (4.17) yields[︄{︄
∂ ˜︁P◦

∂∇U
: (∇◦δu · F◦)

}︄
·N

]︄
f

=

[︃(︃
∇◦δu · F◦ · ˜︁Σ◦

)︃
·N
]︃
f

+

[︃{︃
M◦ :

(︃
∇◦δu · F◦

)︃}︃
·N
]︃
f

,

(4.19)

where ˜︁Σ◦
= ˜︁Σ(∇U◦) and M◦ = M(∇U◦). Letting NN = N⊗N, the first term on the

right-hand side of Equation (4.19) is[︃
∇◦δu · F◦ · ˜︁Σ◦

·N
]︃
f

=

[︃
(∇◦δu)abF

◦
bcΣ

◦
cdNdea

]︃
f

=

[︃
(∇◦δu)abv

◦
bea

]︃
f

(v◦ = v◦beb = F ◦
bcΣ

◦
cdNdeb)

=

[︃
∇◦δu · v◦

]︃
f

=

[︃
∇◦δu · v◦

n +∇◦δu · v◦
t

]︃
f

(v◦
n = (v◦ ·N)N, v◦

t = (I−NN) · v◦)

=

[︃
(v◦ ·N)∇◦δu ·N+∇◦δu · v◦

t

]︃
f

.

(4.20)

Note the projection of v◦ onto the face normal direction and onto the face plane. This
step creates the opportunity to apply the same discretization procedures, employed by
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the BC method, to calculate the normal and tangential derivative terms (i.e. ∇◦δu ·N
and ∇◦δu · v◦

t , see Section 3.2.4). The second term on the right-hand side of Equation
(4.19) is computed as:[︃{︃

M◦ :

(︃
∇◦δu · F◦

)︃}︃
·N
]︃
f

=

[︃
M◦

abcd(∇◦δu)ceF
◦
edNbea

]︃
f

=

[︃
M◦

acd(∇◦δu)ceF
◦
edea

]︃
f

(M◦
acd = M◦

abcdNb)

=

[︃∑︂
d

M◦
acd(∇◦δu)ceg

◦
edea

]︃
f

(g◦
d = g◦edee = F ◦

edee)

=

[︃∑︂
d

T◦
d · ∇◦δu · g◦

d

]︃
f

(T◦
d = M◦

acdea ⊗ ec)

=

[︃∑︂
d

T◦
d · ∇◦δu · ((g◦

d ·N)N+ (I−NN) · g◦
d))

]︃
f

(project g◦
d)

=

[︃∑︂
d

(g◦
d ·N)T◦

d · (∇◦δu ·N)

]︃
f

+

[︃∑︂
d

T◦
d · (∇◦δu · h◦

d)

]︃
f

(h◦
d = (I−NN) · g◦

d).

(4.21)
Using (4.20) and (4.21), the term (4.19) is given as:[︃{︃

∂ ˜︁P◦

∂∇U
: (∇◦δu · F◦)

}︃
·N
]︃
f

=

[︃
(v◦ ·N)∇◦δu ·N+∇◦δu · v◦

t

]︃
f

+

[︃∑︂
d

(g◦
d ·N)T◦

d · (∇◦δu ·N)

]︃
f

+

[︃∑︂
d

T◦
d · (∇◦δu · h◦

d)

]︃
f

=

[︃{︂
(v◦ ·N)I+

∑︂
d

(g◦
d ·N)T◦

d

}︂
· (∇◦δu ·N)

]︃
f⏞ ⏟⏟ ⏞

(1)

+

[︃
∇◦δu · v◦

t +
∑︂
d

T◦
d · (∇◦δu · h◦

d)

]︃
f⏞ ⏟⏟ ⏞

(2)

.

(4.22)
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The underlined terms (1) and (2) from the equation before are approximated using the
same approach taken by the BC method (see Section 3.2.4), i.e. the normal derivative
term (1) is discretized using the central differencing method as[︃{︂

(v◦ ·N)I+
∑︂
d

(g◦
d ·N)T◦

d

}︂
⏞ ⏟⏟ ⏞

H◦
n

·
(︃
δuC − δuF

|dCF |

)︃]︃
f

, (4.23)

where the vector connecting the centroids of the cells sharing the common face dCF =
XF −XC .

The tangential face derivative term (2) above is discretized using the face-Gauss/Finite
Area method (Session 3.2.4) as[︃

1

S

∑︂
e

Le(Me · v◦
t )δue +

∑︂
d

T◦
d ·
{︂ 1

|S|
∑︂
e

Le(Me · h◦
d)δue)

}︂]︃
f

=

[︄
1

S

∑︂
e

Le

[︃
(Me · v◦

t )I+
∑︂
d

(Me · h◦
d)T

◦
d

]︃
⏞ ⏟⏟ ⏞

H◦
t

·δue

]︄
f

.
(4.24)

4.3.3 Old surface force

The discretization of this term uses the mid-point integration approximation as∮︂
∂ΩC

˜︁P◦
·N dS =

∑︂
Γf∈ ∂ΩC

∫︂
Γf

˜︁P◦
·N dS (∂ΩC is a polyhedral)

≈
∑︂
f

[︃˜︁P◦
· S
]︃
f

(mid-point rule integration),
(4.25)

where ˜︁P◦
is the last known value of the first Piola-Kirchhoff stress tensor.

4.4 Boundary conditions

The boundary conditions (Box 2.34) are handled in the same way as in the BC method
(Session 3.2.4), except by the fact that, instead of Uf , U◦

f + δuf is used. Thus, Equation
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(3.32) becomes

I ·
(︁
U◦

f + δuf

)︁
= U

ti
f =⇒ I · δuf = U

ti
f −U◦

f , (4.26)

and Equation (3.34) becomes

T
ti
f =

[︃˜︁P(∇U◦) ·N+

{︃
∂ ˜︁P(∇U◦)

∂∇U
:

(︃
∇◦δu · F◦

)︃}︃
·N
]︃
f

(4.27)

to be discretized using the same processes applied to the surface force increment and to
the old surface force terms described before. The symmetry plane boundary condition is
discretized analogously to BC’s approach (Eq. 3.36).

4.5 Linear system

Assembling Equation (4.15) using (4.16), (4.23), (4.24), (4.25) and (3.2.2) along with
a material law produces a linear algebraic equation with the same structure seen in the
Block-Coupled method (Eq. 3.38). However, instead of solving for Uti , it is solved for δu,
i.e. the final equation becomes

AC · δuC +
∑︂
F

AF · δuF = RC . (4.28)

The contribution from the boundary discretization is also analogous to that of the BC
method, and also contributes to the final system of linear equations, say [A][δu] = [R],
which can be solved using the same linear solvers already cited.

4.6 Newton-Raphson algorithm

Before the algorithm is presented, a residual formula should be given: let a = max
C

|Un
C −

U
ti−1

C |, b = max (max
C

|Un
C |, ϵ) and d = a if a > ϵ or d = b otherwise, then a residual can

be defined as max
C

|Un
C−Un−1

C |
d , where the scope of max function is all the computational

points and ϵ is a small value, e.g. 10−7 (the same value used in both nFVM and S4F).
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In practice, the resulting Newton-Raphson algorithm is given in Figure (4.4), where each
assignment happens to all computational nodes at the same time. The inner loop finishes
when the residual is below a certain threshold or the number of iterations is equal to the
maximum number of corrections ncorr . A graphical illustration for one time increment is
given by Figure (4.5).

Newton-Raphson Algorithm

• INPUT geometry, material law and solution parameters
• INITIALIZE x = X // initial geometry
• INITIALIZE Uti = 0, U• = 0
• LOOP over time increments

• SET U◦ = Uti

• UPDATE time-dependent boundary conditions
• SET n = 0
• WHILE n < ncorr // Loop over δu’s

• FIND ∇U◦ // Using Green-Gauss or least square approach [51]
• SET F◦ = I+∇U◦

• SET [A] and [R]
• SOLVE the linear system [A][δu] = [R]
• UPDATE x = x+ δu
• SET U◦ = U•

• SET U• = x−X // current approximation of Uti

• COMPUTE residual
• IF residual < tolerance

• BREAK // U• is considered close enough to Uti

• ENDIF
• UPDATE n = n+ 1

• ENDLOOP
• UPDATE Uti−1 = Uti

• UPDATE Uti = U•

• ENDLOOP

Figure 4.4: Note that each assignment happens to all computational nodes at the same
time.
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Figure 4.5: Schematic representation of an incremental deformation. The old reference
configuration at the time ti−1 is deformed onto the new configuration at the
time ti. To compute this deformation, it is supposed here that three iterations
of the inner loop (while scope) in the Newton-Raphson algorithm (Fig. 4.4)
suffice.
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4.7 Linearized elasticity

As mentioned in the introduction of this chapter, the BC method is restricted to the
linearized elasticity framework. The attribute “linearized”, in this case, means that
infinitesimally small displacements are assumed and linear elastic material laws, e.g.
Hooke’s law, are considered relatively good approximations. The displacement assumption
implies that strains are small. Consequently, the difference between the initial and current
dimensions becomes irrelevant and only one configuration is used [50]. Furthermore, the
two Piola-Kirchhoff and Cauchy stress tensors become indistinguishable, i.e. P = Σ = σ.

Precisely, a linear elastic material has the form

P = C : E, (4.29)

which means that P is linear in E. As the Hooke’s elasticity tensor is given by

C = λJ+ 2µI ⇐⇒ Cabcd = λδabδcd + µ(δacδbd + δadδbc), (4.30)

it is straightforward to see that by substituting this equation and the expression for E (Eq.
2.6) into Equation (4.29) gives (3.15). Besides, the Hooke’s T◦

d is given by

(T d
ab)

◦ = λNaδbd + µ(Ndδab + δadNb). (4.31)

As an important fact, when NLBC is also restricted to linearized elasticity, it reduces to BC
formulation. Thus, NLBC can be seen as a generalization of BC. The demonstration is as
follows. Assume the reference configuration is undeformed (F◦ = I =⇒ ˜︁Σ◦

= ˜︁P◦
= 0),

the Hooke’s law is employed (C is given by Eq. 4.30) and neglect inertial and body forces
for clarity. For that reason, it suffices to show that the surface force increment (left-hand
side of Eq. 4.22 multiplied by S) is equal to Equation (3.37), i.e.

[︃{︃
∂ ˜︁P◦

∂∇U
: (∇◦δu · F◦)

}︃
· S
]︃
f,ti⏞ ⏟⏟ ⏞

NLBC’s surface force increment

=

[︃
�
��
0˜︁P◦
· S+

{︃
∂ ˜︁P◦

∂∇U
: (∇◦δu · F◦)

}︃
· S
]︃
f,ti⏞ ⏟⏟ ⏞

NLBC’s surface force (see Eq. 4.15)

=

[︃˜︁P · S
]︃
f,ti

.⏞ ⏟⏟ ⏞
BC’s surface force (Eq. 3.37)

(4.32)
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And this is straightforward because the sum of the terms composing the increment (Eq.
4.23 and 4.24 ), i.e.[︃

SfH
◦
n ·
(︃
δuC − δuF

|dCF |

)︃]︃
f

=

[︃
Sf

{︂
(v◦ ·N)I+

∑︂
d

(g◦
d ·N)T◦

d

}︂
·
(︃
δuC − δuF

|dCF |

)︃]︃
f

=

[︃
Sf

{︂∑︂
d

(g◦
d ·N)T◦

d

}︂
·
(︃
δuC − δuF

|dCF |

)︃]︃
f

(Σ◦ = 0 =⇒ v◦ = 0)

=

[︃
Sf

{︂∑︂
d

NdT
◦
d

}︂
·
(︃
δuC − δuF

|dCF |

)︃]︃
f

(F◦ = I =⇒ g◦ad = δad)

=

[︃
Sf

{︂
(2µ+ λ)NN+ µ(I−NN)

}︂
·
(︃
δuC − δuF

|dCF |

)︃]︃
f

(Equation 4.31)

(4.33)
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and [︄∑︂
e

H◦
t · δue

]︄
f

=

[︄∑︂
e
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(Me · v◦
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d
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· δue
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=
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e

Le
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(Me · δd)T◦
d
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=
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e

Le

[︃∑︂
d

(Me)dT
◦
d

]︃
· δue

]︄
f

=

[︄∑︂
e

Le (λNMe + µMeN) · δue

]︄
f

(using 4.31)

=

[︄∑︂
e,pc

1

2
Lewpc (λNMe + µMeN) · δupc

]︄
f

(using 3.27 and 3.28)

(4.34)

is precisely the surface force given in Equation (2.35), and the proof is complete. Note
that it also shows analytically that NLBC works in the linearized elastic framework.
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5 Method verification

This chapter presents the application of the NLBC to several representative benchmark
test cases. The goal is to use a sequence of benchmarks, with increasing complexity, to
analyze the accuracy and robustness of NLBC. As reported in the introduction of this work,
the methods SEG, BC and NLBC were implemented in the new Matlab toolbox nFVM (see
Chapter 6). The S4F’s SEG1 implementation was also used for one specific test case in
order to confirm the result given by nFVM’s SEG implementation. Note that, for all test
cases examined in this chapter, a solution is considered converged when the residual falls
below 10−7.

The NLBC methodology is examined along three sections:

• Linearized elasticity – A representative benchmark, used to verify the NLBC method
for this framework, is examined in this section. It also serves to show that SEG
can experience slow convergence rates whenever there is strong coupling between
displacement directions.

• Non-linear elasticity – Using this framework, which allows simulation of accurate
“large displacement-large strain” models, it is presented in this section the compari-
son of NLBC with the SEG solution procedure.

• Conclusion – The main relevant aspects collected from the numerical results are
summarized.

It is shown next only 2-D test cases, because the analysis of 3-D cases did not contribute
to any extra significant insights.

1The SEG-TLTD manifestation was used (see introduction of Chapter 4).
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5.1 Linearized elasticity

As shown in Section (4.7), when NLBC is restricted to the linearized elasticity framework,
it reduces to BC formulation. Thus, the latter can be seen as a special case of the former.
The results from the test case presented in this section, that of a slender 2-D cantilever
undergoing bending, show this fact by means of numerical simulation. This case was used
by Cardiff et al. [36] in their seminal work on the BC method.

The geometry of the test case, shown in Figure (5.1), consists of a rectangle beam 2 x 0.1
m with a Young’s modulus E of 200 GPa and a Poisson’s ratio ν of 0.3. Three uniform
quadrilateral meshes were considered: 60x3, 100x5 and 300x15 cells. The mesh with
100x5 cells is shown in Figure (5.2). The beam is fixed at the left end, by imposing the
boundary displacement condition U = [0 0]Tm, and is subjected to a uniform distributed
traction at the other end, by imposing the boundary traction condition T = [0 1]T MPa.
The top and bottom boundaries are traction-free, i.e. T = 0. Plane strain conditions are
assumed.

This problem has analytical solution and the deflection on the right-end of the beam is
given as [56]:

∆ =
PL3

3
(︂

E
1−ν2

)︂
I
= 14.56× 10−3m (5.1)

where P = 0.1 × 106 N is the applied load, L = 2 m is the length of the beam, and
I = bh3

12 = 0.13

12 m4 m is the second moment of area of the beam about its bending axis. A
metric defined as the difference between the predicted displacement and the analytical
solution shows that both results from BC and NLBCmatch consistently (Fig. 5.3), reflecting
the analytical proof of equivalence between the formulations inside the boundaries of the
linearized elasticity framework.

The Neo-Hookean law was chosen for NLBC, but Hooke’s law was also an option, since
for small strain they are equivalent [42]. Only one correction step was sufficient for
convergence of both methods. Finally, just for comparison, the SEG needs more than
23000 correction steps (using either nFVM or S4F) for mesh 60x3 cells.
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L

Figure 5.1: Geometry and boundary conditions for the slender cantilever beam in bend-
ing test case.

Figure 5.2: Deformed profile (scaled by factor of 10) for mesh 100x5 cells.
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Figure 5.3: Error in cantilever end-deflection for different mesh refinements. Clearly the
approaches match consistently.

5.2 Non-linear elasticity

The comparison of the NLBC method with the classical SEG solution procedure is given
in this section by means of an examination of three representative test cases for large
deformation, large rotation or both. In particular, uniaxial, shear and bending cases were
investigated. All test cases were created using the accepted standard of verification testing,
the Method of Manufactured Solutions (MMS), which allows validation against analytical
solution [57]. A MMS test prescribes the deformation map ϕ, or any other map that
allows one to recover it.

The Neo-Hookean and Ogden-Storakers laws were used to model the agglomerated cork
AC216 [34] material. The former was used for all test cases. But, the latter was confined
to the uniaxial compression case because only experimental data for compression was
available. The following curve-fitting parameters

i αi[−] βi[−] µi[Pa]

1 19.35 0.5423 1.982× 106

2 28.58 2.0905 1.5478× 102

3 19.9 0.3967 1.1045× 106

(5.2)
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were used to set Ogden-Storakers law. The density ρ0 was set to 216 kg/m3; the Young’s
Moduli E and Poisson’s ratio ν were set to 0.02 GPa and 0.3, respectively (for the Neo-
Hookean law).

The first two tests (uniaxial and shearing) focus on elastostatics equations, where “time”
defines the motion parametrically. Only one time step was considered. The body and
inertia forces were disregarded. All simulations use the unit square domain and its five
uniform discretization levels. In particular, five Cartesian meshes were considered: 3×3,
8×8, 16×16, 32×32 and 64×64 cells. The coarsest and finest meshes are shown in Figure
(5.4).

Figure 5.4: The Coarsest (3×3 cells) and the finest meshes (64×64 cells).

The following metrics were defined to quantify the difference between the predicted
displacement and the analytical solution:

eabs

⎧⎪⎪⎨⎪⎪⎩
Mean error = 1

ncells

ncells∑︁
i=1

ri

Max error = max{r1, r2, ..., rncells}
Min error = min{r1, r2, ..., rncells},

(5.3)

where ncells is the total number of cells composing the mesh, the sum is over all cells
and considering a cell Ca, ra = |UCa

calculated − UCa

analytic|. Every test case was split into
two versions: one for displacement-only (Dirichlet) boundary conditions and another
for traction-only boundary (Neumann) conditions (except for one boundary, which is set
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to zero-displacement in order to avoid rigid-body motions). This split scheme isolates
patterns which arise due to different boundary condition discretizations employed by
NLBC and errors from each one can be investigated individually.

5.2.1 Uniaxial test cases

Two homogeneous uniaxial strain MMS were simulated using only nFVM. The deformation
gradient F is the mapping prescribed for these cases and it is given as:

F =

⎡⎣φ(t) 0 0
0 1 0
0 0 1

⎤⎦ , where φ(t) = 1 + (Λ− 1)t and 0 ≤ t ≤ 1. (5.4)

Note that F is homogeneous, i.e. does not depend on a material pointX. The deformation
map is defined as: x = ϕ(X) ≡ F ·X and it is used to set the displacement boundary
condition by imposing

U = x−X (5.5)

at the boundary face centroids. A traction boundary counterpart can be set by noting that
a traction T acting on the face with unit normal N is

T = ˜︁P(∇U) ·N = ˜︁P(F− I) ·N. (5.6)

Compression for displacement boundary

A variation of the homogeneous uniaxial strain test case described in [57] is presented in
this section. However, instead of traction, displacement boundary condition was adopted.
The Neo-Hookean and Ogden-Storakers laws were employed for this case. Two compres-
sion levels were investigated by assigning different values for the compression factor Λ, in
particular, Λ = 0.65 and = 0.1 (see Fig. 5.5 and 5.6).
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Figure 5.5: The final deformed domain at
compression level Λ = 0.65.

Figure 5.6: The final deformed domain at
compression level Λ = 0.1.

The computed solution with the coarsest mesh was already enough to produce eabs < 10−16,
regardless the method and material law, for Λ = 0.65 (see Fig. 5.7). The convergence in all
scenarios was achieved with only one correction step, i.e. ncorr = 1. When Λ is decreased
to 0.1, the SEG method produces eabs < 10−9. The errors for NLBC also increase when
Λ get smaller, but they are still relatively small (eabs < 10−13) and only one correction is
needed, considering any mesh.

Compression for traction boundary

Just changing from Dirichlet to Neumann makes the convergence a challenge for both
methods, in particular, they are not able to simulate big compressions. The summarized
results gathered from simulations are:

• The SEG method converges only when using the 3×3 cells mesh and Λ ≥ 0.8, but
with relatively high errors (eabs > 10−2).

• The NLBC method also converges only for Λ ≥ 0.8 and provided that meshes are
more refined than or equal to the mesh 16×16. For these scenarios, eabs < 10−7.
The Neo-Hookean law was used.

• The NLBC method does not converge using Ogden-Storakers law (unless traction
boundary condition on top and bottom boundaries is substituted by symmetry
boundary condition).
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Figure 5.7: Errors from compression for displacement boundary test case using Neo-
Hookean material. The missing data corresponds to when the difference
between the solutions is below machine precision.

Tension for displacement boundary

The cases above were repeated, but with Λ > 1 in order to simulate tension, in particular,
Λ = 2 was adopted. The Figure (5.8) shows the final deformed domain for the coarsest
mesh.

Interestingly, something changes when tension is simulated. Both methods converge for
all meshes with errors eabs < 10−8 (see Fig. 5.9). Note that NLBC produces significantly
smaller errors. Both methods converge with only one correction step.

Tension for traction boundary

Once again, when traction is introduced, SEG does have convergence problems. In fact,
it does not converge for Λ much greater than one. And even when Λ is close to one, e.g.
1.2, the errors are relatively high (either with nFVM or S4F). Regarding NLBC’s results,
they show good agreement with analytical solution. The method converges for all meshes,
for any Λ ∈ (1, 2] and the errors are relatively small (eabs < 10−6), but much higher than
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Figure 5.8: The final deformed domain for tensile strain case and for displacement
boundary condition.
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Figure 5.9: Errors from tension for displacement boundary test case. The missing data
corresponds to when the difference between the solutions is belowmachine
precision.
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Figure 5.10: Error in tension for traction boundary test case as mesh is refined. The ncorr
as mesh is refined is also shown. Results are only for NLBC, since SEG
method could not handle this case.

the corresponding test which uses displacement boundaries (see Fig. 5.10 and compare
with Fig. 5.9).

5.2.2 Shear test cases

This test case consists of a simple shear [42]. The deformation gradient for this manufac-
tured solution is very similar to that of the uniaxial test case and is given by (being the
shear factor ω = 0.45 chosen arbitrarily):

F =

⎡⎣1 φ(t) 0
0 1 0
0 0 1

⎤⎦ , where φ(t) = ωt and 0 ≤ t ≤ 1. (5.7)

The Figure (5.11) shows the deformed profile for mesh 16×16. The boundary condition
is imposed in the same manner as it was done in uniaxial test cases.
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Figure 5.11: Deformed profile for mesh 16×16 in shear test case.

Shear for displacement boundary

The results from simulations were qualitatively similar to that of the uniaxial compression,
or tension, for displacement boundary (compare Fig. 5.7 and 5.9 with Fig. 5.12). The
nFVM’s SEG and NLBC needed only one correction for all meshes. The S4F’s SEG was
also tested and the output shows that as mesh gets refined, it needs more corrections to
achieve convergence (ncorr = 23, 30 and 35 for meshes 3×3, 8×8, 16×16 respectively).
Besides, it did not converge for meshes finer than 16×16.
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Figure 5.12: Error in shear for displacement boundary test case as mesh is refined. The
number of correction ncorr as mesh is refined for S4F’s SEG is also shown.
The SEG and NLBC implementations in nFVM needed only one correction
to achieve convergence.

Shear for traction boundary

Once more, when displacement boundaries are replaced by traction boundaries, the SEG
method has convergence problems (both in nFVM and in S4F). In fact, convergence is
achieved, however with relatively high errors (see Fig. 5.13). The SEG approach needs
more than 100 correction steps to converge and for the finer the mesh, more correction
steps are necessary for convergence (see Fig. 5.14).

The results from the NLBC method were in good agreement with analytical solutions and
only one correction was needed in order to achieve convergence (see Fig. 5.14) using any
mesh.

The final deformation domain (Fig. 5.15) for SEG is clearly “warped” (and refining the
mesh does not reduce this spurious artifact).
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Figure 5.13: Error in shear for traction boundary test case as mesh is refined.
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Figure 5.15: Deformed profiles for SEG using S4F (lower-left corner)
and nFVM (lower-right corner). On top the result from
NLBC. Traction boundary was used.

5.2.3 Bending test cases

In this section, it is examined the bending bar transient test case from [57]. This is more
complete than the previous test cases because all terms in the momentum equation (Eq.
2.24) are considered. This MMS test comprises large deformation and large rotation of
a thick vertical beam due to action of body force, acceleration and prescribed displace-
ment (or traction) on the boundary. Effectively, all material points undergo an identical
deformation mode: uniaxial strain with superimposed rotation (see Fig. 5.16).
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Figure 5.16: Snapshot of deformation in time for bending test case. In style of [57].

Unlike the previous, this case has a time and space-varying deformation gradient F, which
can be decomposed into rotation and stretch F = R ·U, where R is the rotation tensor
and U is the stretch tensor:

R =

⎡⎣cosα(t) − sinα(t) 0
sinα(t) cosα(t) 0

0 0 1

⎤⎦ , U =

⎡⎣1 0 0
0 Λ(t) 0
0 0 1

⎤⎦ , (5.8)

α(t) =
β(t)X2

H
, Λ(t) =

β(t)X1

H
+ 1 and (5.9)

β(t) =
A(1− cos(2πtT ))

2
, (5.10)

where α(t) is the angle of rotation at the material point of interest, Λ(t) is the amount of
stretch in the 2-direction, β(t) is the amplitude function, A is the peak amplitude, T is
the stop time of the simulation, t is time, 0 ≤ t ≤ T and H is the height of the bar. The
deformation map ϕ is given as⎡⎣x1x2

x3

⎤⎦ = ϕ(X, t) =

⎡⎢⎢⎣
− H

β(t) +
(︂

H
β(t) +X1

)︂
cos
(︂
βX2

H

)︂(︂
H
β(t) +X1

)︂
sin
(︂
βX2

H

)︂
X3

⎤⎥⎥⎦ . (5.11)
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In this MMS, it is assumed that all terms in the momentum equation are known except
the body force. The acceleration Ü can be obtained from Equation (5.11) and the stress
tensor P can be obtained from the given deformation gradient F. Thus, the body force
bm can be obtained for any location and time.

The parameters for the following simulations are: H = 1 (the domain is still the unit
square); A = π/7, number of time steps nt = 3; and T = 1. Only 0.5 second is simulated
(see Figures 5.18 and 5.19).

Bending for displacement boundary

The results from this test are:

• NLBC diverges for meshes more refined than the mesh 8×8. Changing the number
of time steps does not change the scenario. It also diverges if the peak amplitude A
is greater than π/7;

• Still considering NLBC, the simulation with mesh 16×16 (and more refined) starts
diverging after some corrections steps, but only at the last time step;

• The Segregated method converges for all meshes with relatively small errors (Fig.
5.17).
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Figure 5.17: Errors frombending for displacement boundary test case asmesh is refined.
The missing data corresponds to when NLBC diverges.

Figure 5.18: The initial undeformed mesh
for mesh 8×8.

Figure 5.19: Deformed profile at the last
time step for mesh 8×8.

Bending for traction boundary

Both SEG and NLBC seems to be unable to run this test case. Either the simulations
diverge at the second time step or the errors are very high. Again, the current traction
boundary condition discretization, at least in NLBC, is causing divergence.
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5.3 Conclusions

In this chapter, the NLBCmethodology was investigated by means of numerical simulations.
The other approaches were considered as well, namely, SEG and BC. Results from several
test cases were examined and the findings are summarized as follows:

• The convergence rate of NLBC is impressive when compared to that of SEG’s;

• The NLBC method has shown to be superior when comparing with BC, since the
latter is restricted to linearized elasticity;

• In all test cases, except the bending problem, NLBC approach was much superior
than SEG approach, i.e. in regard to convergence rate and divergence;

• Test cases without traction boundary condition, when converging for all time steps,
NLBC does that with relatively small errors;

• The NLBC’s convergence problems from traction discretization is case-dependent;

• The tests clearly showed that the adopted traction boundary condition discretization
needs to be improved;

• The “borrowed” (from BC) traction boundary discretization for NLBC seems to cause
divergence.
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6 FOAM’s approach in a high-level
programming environment

6.1 Introduction

As already seem, FOAM stands for Field Operation And Manipulation, a concept conceived
to be a C++ class library for Computational Continuum Mechanics (CCM). It was unveiled
in the 1990s with a clear intention, as stated by Weller et al. [38]: “to make it as easy as
possible to develop reliable and efficient computational continuum-mechanics codes”. Roughly
speaking, it would be a tool devoted to give numerical solution of partial differential
equations on unstructured polygonal meshes by means of FVM. The breakthrough inno-
vation consisted in a tensorial approach to CCM using object-oriented techniques and
operator overloading. Therefore, instead of manipulating individual floating-point values
(and arrays) and using only procedural programming, a new abstraction layer would be
added. Furthermore, it is considered, from the viewpoint of tensor calculus, appropriate
for FVM, where the discretization can be formulated in the physical space on unstructured
polygonal meshes [38].

In the computer science field, when a language is specialized to a particular application
domain, it is called Domain-Specific Language (DSL) [58]. Therefore, the FOAM concept
creates an embedded1 DSL, i.e. a language that has its own look, feel and semantics,
where the application domain is: tensor field algebra/calculus and solution of partial-
differential equations on meshes. Note that, although primarily conceived in C++, the
FOAM concept can be implemented in any other programming language, provided there
exists a minimum support for user-defined types and operator overloading.

1The C++ programming language would be the “host language”.
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As it is shown in Section (6.4), nFVM re-implements the FOAM-C++ DSL on top of
another DSL, the Matlab2 language, which has numerical computing and analysis as
application domain. The relevant features to implement FOAM concept, present in the
Matlab environment, i.e. combination of software and language, are analyzed in Section
(6.3). Note that every statement in this chapter, related to Matlab, should be mostly valid
for its open-sourced alternative called Octave, since the latter is largely compatible with
the former [59].

OpenFOAM is the open-sourced FOAM library that, in the past decade, has become one of
the most popular library for CFD and multi-physics simulations [60, 61]. Furthermore, it
has a widespread adoption both in academia and in industry [32]. In OpenFOAM, solvers
are executables, i.e. stand-alone programs, each designed for a specific group of problems,
e.g. one for heat conduction, another for isothermal laminar Newtonian incompressible
Navier-Stokes equations and also for small strain/rotations Hookean elastic equations.

Recently, the S4F toolbox (for OpenFOAM) has emerged. As Cardiff et al. [32] says, “[it]
aims to generalize the OpenFOAM design further to allow straightforward implementation
of advanced solid mechanics and fluid-solid interaction procedures”. Instead of stand-
alone programs, it adopts a class-oriented solvers approach, i.e. a solver is encapsulated in
a class, opening the possibility of, when dealing with FSI, combining different solvers. In
practice, this is mostly accomplished by defining abstract classes representing the concepts
of fluid, solid and fluid-coupling. Since each abstract class defines an interface, a protocol,
the implementation of a new, say fluid solver, is a matter of realizing3 the fluid abstract
class, or just subclassing an existing solver and making the necessary changes (overriding
functions, for example).

OpenFOAM and S4F together have been successfully applied to many complex problems,
such as, eFSI for finite elasticity [60], transient coupled temperature-displacement analysis,
transient viscoelastic analysis [32], FSI benchmarks [37], metal forming [54], contact
mechanics [24] and reactor dynamics [62], proving to be useful tools. Nevertheless, they
leave untouched a gap that remains open, in particular, one between concept development
and concept implementation in a high-performance programming language. Actually,
both are sub-optimal tools for prototyping/experimenting new FV methodologies, models
or algorithms. Two major factors for this scenario can be identified.

It is well known that the problem of error isolation and correction, i.e. debugging, is
ubiquitous during the prototyping stage and it can take considerable amount of time.
2Matlab is a software and a language at the same time.
3In UML jargon, implement the behavior specified by the inherited abstract class.
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This important process is indeed not trivial for OpenFOAM (and for S4F). To create a
solver or other tool for OpenFOAM, as stated by Damián et al. [63], “a deep knowledge is
needed concerning with classes structure, for value storage in geometric fields and also for
matrices resulting from equation systems, becoming a hard task for debugging”. For example,
values examination gets hard when viewing the desired data involving polymorphism
and inheritance connected with the virtual methods used by the library. For this, it is
necessary to walk through the class tree looking for the desired data members. Once
the members are found, these maybe do not directly represent the desired information.
Furthermore, this exploratory task requires relatively strong knowledge in pointers, let
alone the necessary usage of complex sentences during the inspection. Moreover, things
can get even more complex when inline functions and/or macros are involved [63].

The problem above motivated the creation of a tool (or a macro layer) called gdbOF [63],
attachable to the general, defacto standard, C++ debugger gdb (GNU debugger) [64].
The calling of a gdbOF macro triggers a sequence of actions that include OpenFOAM class
tree navigation, data collection and reordering for representation in an user readable
format or formated appropriately to be imported in Matlab/Octave, so that inspection
can actually happen. Of course these also applies for S4F as well. See Listing (6.1) for
comparison between debugging expressions.

1 $(gdb) p *(U. boundaryField_ . p t r s _ . v_ [0 ] . v_ ) // gdb expression (two lines)
2 @(U. boundaryField_ . p t r s _ . v_ [0 ] . s i z e _ )
3
4 $(gdb) ppatchvalues U 0 // gdbOF expression
5
6 K>> U. boundary (1 ) . data // nFVM expression

Listing 6.1: View boundary values of a vector field U using gdb, gdbOF and nFVM, re-
spectively. It is assumed that the first boundary is inspected (in Matlab, the
indexing starts at 1). The gdb expression is long and complex. The gdbOF’s
is simpler, but the user has tomemorize syntax and names (ppatchvalues
stands for print patch values). In nFVM, tab completion in the Matlab Com-
mand Window facilitates expression composition. In addition, only in nFVM,
the expression being written is the same found outside the debugging pro-
cess.

The second factor relates to the nature of C++. It seems that academic researchers
have found dynamically-typed programming languages (e.g. Matlab and Python) more
productive than statically-typed languages (e.g. C++ and Java). A quote from Okon et
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al. [65]: “Many researchers today do their day-to-day work in dynamic languages”. As
stated by Sargado et al. [66], “it can be argued that there is now a clearer divide between
academia and industry, with most of the programming work related to implementation of new
approaches and models being done by academic researchers utilizing interpreted languages
such as Matlab and Python”. Furthermore, “The popularity of these platforms stems from the
fact that they allow for rapid implementation, prototyping and visualization of results as well
easier debugging due to access to intermediate states of variables during execution time. On
the other hand, codes used to generate results in publications are often hand-tailored to the
specific problems being solved and are impossible to apply without substantial modification
to other cases” [66]. In fact, these codes adopt a functional programming style, where a
pre-determined flow of execution is used. More on dynamic languages in Section (6.2).

Taking the previous paragraphs into consideration, it seems reasonable to require that in a
high level prototyping environment for CCM, using FV framework, three aspects must be
present: I) a debugging process as easy as possible; II) the modular class-oriented solvers
approach adopted by S4F; and III) a dynamic language must be preferably the primary
one having numerical computing and analysis as application domain. To the present time,
no such environment has been unveiled as far as the author is aware.

This chapter shows that the implementation of FOAM approach using Matlab4, i.e. the
high-level programming environment designed for numerical computations and analysis,
fills the current open gap. As a concept demonstration, the nFVM, a CCM Matlab toolbox
based on FVM, is presented. As said in the previous chapter, this library has the three FV
methodologies already discussed, SEG, BC and NLBC. They were implemented following
the same class-oriented solvers approach taken by S4F.

6.2 Dynamically-typed programming languages

The convenience of dynamic languages comes from their support of the duck typing
feature, also known as cross-hierarchy polymorphism [67, 68]. It indicates that one
variable may bind to objects whose types are unrelated, i.e. do not have any common
parent implementing/requiring a method invoked on that variable. This feature matches
conveniently with the prototyping processes, giving a lot of freedom to programmers, in
the sense that they do not need to define interface classes (abstract ones in C++ and
Matlab) at all. It is as if the language type-checking system was turned off in this case.
4As said before, the same applies to Octave.
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Thus, no need to start the process by first elaborating abstract concepts, e.g. composing
class hierarchies. This step can be postponed until after the moment when the code
is already running as expected. That is, cycles of “implement, check if the results are
consistent, extract abstract/general concepts from the implementation, then apply code
refactoring5” can be applied during prototyping processes. This approach was successfully
applied during the development of the nFVM toolbox.

On the other extreme, in C++ it is not possible to turn off the language type-checking
system, i.e. it is completely rigid. Therefore, every change in types might be prevented
by type constraints, even if the programmer intends just to test a localized piece of code
for a moment. Furthermore, realizing these considerations, one can safely conclude that
systems in dynamically languages with duck typing are intrinsically more extensible, thus
more flexible for prototyping, than statically-typed languages. See Tratt et al. [69] for a
survey of dynamic languages.

In classic dynamically-typed languages, all code is polymorphic, i.e. the types of any
values are rarely restricted (only by explicitly checking types or when objects fail to
support operations at run-time). Thus, type-incompatibility errors only happen at run-
time. However, within the statically-typed language paradigm, those kind of errors are
checked, as much as it is possible, at compile-time. Therefore, the errors can be found
before even executing the program. From a statically-typed language user perspective,
these two considerations would demonstrate one of the major disadvantages of dynamic
languages [69, 70].

Nevertheless, still in the context of errors, the debugging process also should be taken
into consideration. It can be defined as a two-step procedure: i) errors detecting; and
ii) errors fixing. Therefore, when a compiler is issuing a type-incompatibility error, it is
doing the first step for the programmer, which in turn has to finish the process by doing
the next step on his/her own. But note that type-incompatibility errors found during the
compilation process, or because of a runtime crash, are almost always trivially corrected
in the codes of both classes of languages (statically and dynamically-typed), although not
necessarily found immediately in dynamic-language codes. When it comes to debugging
errors in algorithms (logic errors), both the compiler and the runtime are almost always
helpless, and a low-level interactive debugging environment together with low-level codes
can make things even worse, as seen in the introduction of this chapter. So, depending on
the type of application, having the combination of a high-level debugging environment
and also high-level code, as offered by the dynamic language approach, might more than
compensate for the lack of compile-time type check.
5It is the process of restructuring existing computer code without changing its external behavior.
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Another major disadvantage concerns the run-time speed. It is well known that high-level
dynamic languages are usually slow. But depending on the main goal, e.g. fast prototyping
numerical concepts, it might be irrelevant. One can first “approve” a prototype using many
test cases with small degrees-of-freedom, then re-implement it in a language suitable
for computationally intensive problems as statically-typed language such as C++ and
Fortran.

Last, but not least, the Section (6.5) discusses how the analysis tools of Matlab can be
used to create a high-level numerical dynamic analysis environment in nFVM.

6.3 Matlab/Octave environment for prototyping

Graydon Hoare, the author of Rust, said once [70]: “Programming languages are mediating
devices, interfaces that try to strike a balance between human needs and computer needs.
Implicit in that is the assumption that human and computer need[s] are equally important,
or[and] need mediating”. Ultimately, programs consist of data (that is held during runtime)
and operations on data6. As the computer knows more about the data, it is better at
executing operations on this data. The programming language data types are exactly this
metadata. For human to describe this metadata, i.e. the types, a real effort is necessary.
The more a dynamically-typed language dispenses with type definition, the greater the
productivity, but also the lower the performance, as the compiler and the runtime cannot
benefit from metadata information that is crucial to generate fast code. This is why
dynamically-typed language is generally better suitable for prototyping. In terms of the
above needs, the following ordered list can be established: (assembly, C++, Fortran,
Matlab), where on one extreme assembly language favors much more computer needs,
and on the other, Matlab, by means e.g. of removing all variable type declarations, largely
favors human needs. Note that C++ should be on the left of Fortran specially for numerical
computing (one can just consider, for non-trivial programs, the usage of C++ pointers to
handle numerical data).

Fortran stands for FORmula TRANslating system. It was developed in 1953 to be an
alternative to assembly. The first motivation to develop such a programming language
was related to the fact that, back then, it was very complex to do numerical computation
in assembly. For example, there was not a floating-point type and no way to write
mathematical formulae in algebraic notation [71].
6Arrays, lists, graphs, constants, etc.
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The second motivation relates to debugging in assembly, in particular involving numerical
codes. At that time, it was very time-consuming (from one quarter to one half of the
computer’s time was spent in debugging) and it demanded a significant knowledge of the
computer hardware instructions (this is why it is said to be a very low-level programming
language) [71].

By implementing an easier way to entry equations into computer, i.e. by means of a DSL,
Fortran became the “original numerical computing language” [70]. As a result, Fortran
dominated the scientific and engineering application areas for decades [72].

Later on, in the 90’s, object-oriented programming (OOP) was generally recognized to
produce code that was easier to write, validate, and maintain than procedural techniques
[38] (at that point in time, Fortran was only a procedural language7). By opting for OOP,
offered by C++, FOAM designers abdicated a numerics-oriented language, i.e. Fortran,
with a built-in numerical computation environment (well established numerical libraries).
And at the same time, it also offered to the programmer a framework written much more
in favor of compiler needs (when compared to Fortran). As a side effect, the previously
mentioned debugging complexities have emerged.

By implementing FOAM concept in Matlab, to fill the above gap (the absence of a high-
level tool for prototyping/experiment new FV methodologies, models or algorithms), a
numerical computation (plus, as a bonus, analysis) environment is brought back, one that
is much richer than “the original” one. Note that, compared to C++/Fortran, Matlab is
slow. Luckily, during prototyping, speed is usually not the major concern.

Matlab stands for MATrix LABoratory. Its developer wanted the students to have easy access
to LINPACK and EISPACK (linear algebra libraries), without writing Fortran programs. The
facilitation was promoted by not going through edit-compile-link-load-execute process
that was ordinarily required when using Fortran.

After almost four decades of improvements, today’s Matlab is a high-level numerical
dynamic language (when compared to C++, much closer to human needs). The most
important features favoring the implementation of FOAM-Matlab are the following:

• it supports OOP and operator overloading;

• it has a modern numerical computation and analysis environment with a:

7OOP could only be partially simulated in Fortran 90 [73].
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– REPL8 for testing/creating/exploring code, therefore it offers an “interactive
computer programming environment”;

– vast library for numerical analysis, that can be used during runtime. In particu-
lar, tightly integrated graph-plotting features and data, matrix decomposition,
“eigen-analysis”, different linear solvers and many others;

– Computer Algebra System (CAS), i.e. it supports symbolic computing;

– built-in support for complex tensor manipulations;

– facility of changing class/function definitions at runtime;

• class/function definitions can be changed at runtime time, a language feature called
intercession, which is mostly found in dynamic languages [69];

• it has interactive documentation (via shell);

• it has numerical-friendly debugging system.

6.4 The nFVM toolbox

By adopting the OOP design of FOAM-C++ (but using the modular class-oriented solvers
approach adopted by S4F), nFVM refutes the generally adopted approach when developing
FV-based CSM codes in dynamic languages (as in [74]), i.e. hand-tailored code to a specific
problem being solved (therefore making it impossible to apply to other problems without
substantial modification).

The computational tensor field algebra (a DSL) in nFVM is possible thanks to the class
hierarchies and operator overloading methods implemented in the same fashion as in
FOAM-C++ [38]. For each tensor order (0,1,2), there are four field classes (see Fig.
6.1). For example, considering zero-order tensors, the scalarField is just a list of
scalars with the operator overloading feature implementing arithmetic operations at list
level. The volScalarField9 adds an abstraction layer on top of scalarField to
creates the notion of discrete tensor field, in mathematical sense, where the domain
is the set of computational nodes. This FV field (just like the volVectorField and
8REPL means read–eval–print loop, it is an interactive program that accepts single user inputs (i.e. single
expressions), evaluates (executes) them, and returns the result to the user.

9The prefix vol stands for volume, or more precisely, finite volume.
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volTensorField for first- and second-order tensors) has access to the polyhedral mesh
via an object of the type fvMesh.

Still considering Figure (6.1), it can be seen that volScalarField class relates to
scalarField and bScalarField classes by means of composition, i.e. an instance of
the first contains one instance of each of the latter classes. Because volScalarField
relates to scalarField via a “has-a” relationship, the former has to re-implement the
operator overloading. An instance of bScalarField has a list of objects of the type
patchScalarField, one for each collection of faces associated to a boundary condition.
Furthermore, to implement a boundary condition, inheritance is used, e.g. a “fixed-
displacement” constraint is implemented by the class fixedDisplacement, which is a
sub-class of patchScalarField. Thus, as a modular approach, implementing a new
boundary condition is just a matter of subclassing patchScalarField or maybe a
subclass of it.

As a result, with this arrangement, the top-level syntax of the code is as close as possible
to conventional mathematical notation for tensors fields. The Listing (6.2) shows the
generally adopted in Matlab array-oriented style to compute, for example, a material law
(in this case the Hooke’s law). In contrast, the level of abstraction obtained by adopting the
tensor-oriented approach is much higher and it can be seen in Listing (6.3). See Listing
(6.4) for a complete function used to compute the Neo-Hookean material law, written in
nFVM. Check also Listing (6.5) for an even more complex expression, in particular having
even tensor product. Access to an individual component of a tensor field is also possible,
permitting the computation of “low-level” material law expressions (see Fig. 6.2).

The Figure (6.3) presents the class hierarchies and the relations between packages com-
posing the CSM framework. It was designed to be flexible and extensible for develop-
ers to implement new FV solid methodologies and material laws. The abstract class
SolidModelSolver, in the solidModel package, defines an interface (i.e. a “con-
tract”) to be implemented by a solid solver. As it can be seen, the three solvers discussed
in this work are implemented by creating classes (i.e. BC, NLBC and SEG) that realize this
interface. In fact, two additional classes are necessary, a subclass of MechanicalModel
(from mechanicalModels packages), which is used to decouple a solver from a material
law, and a subclass of MaterialLaw (from materialLaws package). The decoupling
opens the opportunity, e.g. to implement a multi-material solid model as in S4F.

Remember that each FV solid methodology defines a set of supported material laws. This
constraint is enforced by creating a material law interface associated to each methodology,
e.g. the NLBCMaterialLaw abstract class (which is a subclass of MaterialLaw) is such
an interface associated to NLBC.
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A material library is also available and trivially extensible (because every material is a
class), thus promoting reusability. Furthermore, because of the class-oriented approach
(instead of the statically-based one implemented in S4F), complex (e.g. dynamic) materials
can be easily created. Moreover, materials can be selected using tab completion. The
library is actually a package, called materials. Every material class must implement the
interface defined, indirectly, by one or more material laws. For example, the Cork216
material implements the OgdenStorakerean interface, which in turn is required by a
material law, in this case, OgdenStoraker.

Differently from S4F, nFVM uses a class-oriented approach to define problems, therefore
test cases. In addition, by exploring the dynamic-language nature of Matlab, instead
of defining a test case as a set of parameter-value pairs (as in S4F), code written in
Matlab can be used to set up a test case without resorting to external tools or to an
edit-compile-execute process. The architecture is the following: there is an abstract class
called Problem and, to a specific problem to be investigated, there must be a subclass, e.g.
Cantilever, implementing the interface defined by Problem (see Fig. 6.3). Then, one
or more test cases can be created instantiating the new class, in this case, Cantilever.
Thus, such subclass defines, in a sense, a family of test cases. Furthermore, all members of
a family can be changed at the same time, by just modifying one class. Moreover, making
problems using inheritance promotes re-usability, e.g. a 2-D problem can be easily created
by subclassing a 3-D problem class (see Fig. 6.3).
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Figure 6.1: A simplified UML class diagram of the computational field classes.
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1 [ lambdaH_x , lambdaH_y ,miuH_x ,miuH_y ]= . . .
2 Lambda_miu_Harmonic (N_x , N_y , lambda , miu ) ;
3
4 for i =1:N_x+1
5 s t r e s s _ x x ( i ,:)=−((2*miuH_x( i , :)+ lambdaH_x( i , : ) ) . * dUx_dx( i , : ) + . . .
6 lambdaH_x( i , : ) . * dUy_dy_bar ( i , : ) ) ;
7 s t r e s s _ x y ( i ,:)=−(miuH_x( i , : ) . * ( dUy_dx( i , : )+dUx_dy bar ( i , : ) ) ) ;
8 end
9

10 for j =1:N_y+1
11 s t r e s s _ y y ( : , j )=−((2*miuH_y ( : , j )+lambdaH_y ( : , j ) ) . * dUy_dy ( : , j )+ . . .
12 lambdaH_y ( : , j ) . * dUx_dx_bar ( : , j ) ) ;
13 s t r e s s _ y x ( : , j )=−(miuH_y ( : , j ) . * ( dUx_dy ( : , j )+dUy_dx_bar ( : , j ) ) ) ;
14 end

Listing 6.2: Matlab code excerpt from [74]. It shows the computation of the Hooke’s law
using the low-level and classical array-oriented approach. Note not only the
profusion of indices and the usage of for loops (over computational points
of themesh), but also the necessary computation of each component of the
stress tensor separately. Here, no DSL (for tensor field algebra) is used, only
plain Matlab language.

1 [Mu, Lambda] = Lambda_miu_Harmonic (mesh , lambda , mu) ;
2
3 E = 0.5*( gradU + gradU . ’ ) ; // ≡ E = 0.5(∇U+ (∇U)T )
4 traceE = E . trace ( ) ;
5
6 Sigma = 2*Mu*E + Lambda* t raceE * I ; // ≡ Σ = 2µE+ λ(tr E)I

Listing 6.3: Matlab code excerpt from nFVM. Operator overloading and tensor field
classes concepts create a DSL that allows the syntax to closely resembles
conventional mathematics notation. Compare with Listing (6.2). Here, no
indices, for or mention to computational points of the mesh are needed. All
happens at tensor field level.
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1 H = ten so rF i e l d (G. numberOfElements ( ) ) ;
2
3 H(1 ,1) = G(2 ,2)*G(3 ,3) − G(2 ,3)*G(3 ,2) ;
4 H(1 ,2) = G(2 ,3)*G(3 ,1) − G(2 ,1)*G(3 ,3) ;
5 H(1 ,3) = G(2 ,1)*G(3 ,2) − G(2 ,2)*G(3 ,1) ;
6 H(2 ,2) = G(1 ,1)*G(3 ,3) − G(1 ,3)*G(3 ,1) ;
7 H(2 ,3) = G(3 ,1)*G(1 ,2) − G(1 ,1)*G(3 ,2) ;
8 H(3 ,3) = G(1 ,1)*G(2 ,2) − G(1 ,2)*G(2 ,1) ;
9

10 J3 = Sqrt (Det (G) ) ;
11 c = −(Beta + 2) ;
12
13 Sigma = mu*( I − ( J3̂ c )*H) ;

H11 = G22G33 −G23G32

H12 = G23G31 −G21G33

H13 = G21G32 −G22G31

H22 = G11G33 −G13G31

H23 = G31G12 −G11G32

H33 = G11G22 −G12G21

J3 =
√
detG

c = −(β + 2)

Σ = µ (I− Jc
3H)

Figure 6.2: Matlab code excerpt from nFVM and the corresponding mathematical ex-
pressions to show manipulation at tensor field component level. Given the
tensorFieldG, the expression, sayG(1, 1), returns ascalarField. Thus,
access to, say H(1, 1), allows modification of all tensors, belonging to the
tensor fieldH , at the same time, in contrast to modification of only one array
component. This is the Blatz-Ko material law [75].

1 function Sigma = computeSigmaTensorField ( obj , C , I )
2 % Computes the second p i o l a s t r e s s g i v en the r i g h t Cauchy−Green
3 % s t r a i n tanso r ( as a t e n s o r F i e l d ) . The equat ion i s d e s c r i b e d
4 % in [6.28 , Bonet − 2008].
5 %
6 % computeSigmaTensorF ie ld (C , I ) r e t u rn s a t e n s o r F i e l d . The
7 % arguments C and I must be t e n s o r F i e l d s too .
8
9 lnJ = C . det ( ) . sqrt ( ) . log ( ) ;

10 invC = C . inv ( ) ;
11 Sigma = obj .mu()* ( I−invC ) + ( obj . lambda ()* lnJ )* invC ;
12 // ≡ Σ = µ(I−C−1) + λ(ln J)C−1

13 end

Listing 6.4: Matlab code excerpt fromnFVM. It shows the implementation of themethod
that computes the Neo-Hookean material law (given by Equation (2.55) and
shown in blue). The method belongs to the NeoHookean class. Note the
absence of templates, type declarations, pointers and references that per-
vades the C++ (statically-typed) language.
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1 function Td = Td( obj , F , n , t )
2 % Td r e t u rn s (FC) : n t , | t = f̂ d ,
3 % (2 ,3)
4 % where n i s the f a c e normal and t i s any v e c t o r . The i npu t s
5 % must be t ensor , v e c t o r and v e c t o r f i e l d s r e s p e c t i v e l y .
6
7 C = F . ’ * F ;
8 lnJ = Log ( Sqr t (Det (C ) ) ;
9 invC = Inv (C) ;

10
11 mu = obj .mu( ) ;
12 lmb = obj . lambda ( ) ;
13
14 one = Ones( lnJ ) ;
15 A = F* invC ;
16 b = invC*n ;
17 Td = ((A*( lmb*n)) & ( invC* t ) ) + . . .
18 (mu*one − lmb* lnJ )* ( ( (A* t ) & b) + ( b̂ t )*A) ;
19 // ≡ Td = λ(A ·N)⊗ (C−1 · fd) + (µ− λ ln J)

[︁
(A · fd)⊗ b+ (b · fd)A

]︁
20 end

Listing 6.5: Matlab code excerpt from nFVM comparing with the Neo-Hookean’s Td

given by Equation (2.59) and shown in blue. Even a relatively complex ten-
sor expression is readily understood. Note that the logical AND operator &
is overloaded to create a tensor product operator for vector fields.
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Figure 6.3: A simplified UML class diagram of the CSM framework implemented in
nFVM.
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6.5 A high-level analysis library in nFVM

In general, after an OpenFOAM simulation is finished, the generated data must be analyzed.
There are many dedicated tools for such tasks, but paraView is the standard post-processing
(and open source) tool that comes with OpenFOAM [61]. Note that, as a toolbox for
OpenFOAM, S4F users usually resort to paraView too.

As already seen, Matlab has not only numerical computing, but also numerical analysis
as application domain. This is due to the vast library for numerical analysis that can be
used during runtime. Consequently, with nFVM the analysis can happen while simulating.
That is, a running simulation can be paused at any time and inspection can take place.
This characterizes a high-level analysis environment.

In addition, by wrapping some existing analysis functions in Matlab, higher-level functions
can be created and grouped in a library. For example, instead of using the Matlab plot
function, a new function called plotVolVectorField was created. As one can imagine,
it accepts a volVectorField object, e.g. a displacement field, as input. This opens the
opportunity to plot any vector field at any time during a simulation (see Fig. 6.4). And,
consequently, a field resulting from a complex tensorial expression, written at simulation
time, can be inspected using this function. Furthermore, no external library is needed
and analysis functions can be easily incorporated/removed into or from the code.

6.6 Conclusion

This chapter has presented:

• The core of the FOAM concept and why the current implementations in C++ are
sub-optimal regarding (fast) prototyping;

• The reason dynamic languages should be used during prototyping phase;

• A “FVM-based CCM laboratory”, called nFVM, that fills the gap between theory and
high-performance implementation. Furthermore, note that the development had the
goal to make it as easy as possible not only to prototyping and investigation, but also
to teach FV methodologies, concepts, algorithms and material laws at numerical
computation level;
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(a) Displacement field. (b) Deformed profile.

(c) Final deformed profile.

Figure 6.4: One and the same uniaxial (with plane-symmetry on the left boundary) defor-
mation case is shown. The images on the top (created using nFVM during
runtime) show the deformed state at the first time step, while the lower one
corresponds to the last time step. The displacement field shownwas created
using the plotVolVectorField function.
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• The arguments that allow one to say: on the one hand OpenFOAM and S4F toolbox
sacrifice prototyping in order to achieve high performance and, on the other hand,
nFVM is exactly the opposite. In this sense, they complement each other;

• The improved problem definition system, where test cases are instances of classes
that make parts of a hierarchy. Differently of a pair-value based problem system, the
new one promotes re-use, modularity and flexibility;

• How nFVM creates a modular material library based on OOP.
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7 Summary and outlook

The S4F toolbox offers a very attractive starting point to build a rheinforce composite solver.
It is completely modifiable, has a strong-coupling FSI solver and its (fluid and solid) model
solvers are modular (due to the adopted OOP technique). Furthermore, as the underlying
methods are based on the FVM framework, the discretization is applied directly to the
strong integral form of the governing equations, producing strictly conservativeness, a
very important feature for FSI simulations. Moreover, its C++ code has been carefully
written with high-performance as a goal.

Unfortunately, no solid solver available in S4F is able to compute the large strain necessary
to simulate a large deformation of a three-dimensional virtual brick made of cork and
modeled using the Ogden-Storakers material law. This limitation lies on the FVM method-
ologies themselves (all SEG manifestations and BC), not on their implementations. This
frame originated the following motivation. Is there a possibility of combining both SEG
and BC to produce a superior methodology so that its implementation is close enough to
the existing implementations in S4F?

Creating a notable contribution to finite elasticity, this work gives an affirmative answer
to the question above. The new methodology NLBC, which is mostly based on BC, has
been designed for finite elasticity and it preserves, in a great extent, the fast convergence
of BC and material generality (only requiring the elasticity tensor to have right-minor
symmetry) of SEG. The first property is a consequence of the fact that all the displacement
components are solved at the same time (instead of “segregating” them, as in SEG and
as it is typically done in fluid dynamics) in a big linear system (similar to FEM). The
second property emerges from the fact that NLBC uses an incremental approach in order
to linearize a generic stress tensor (as opposed to BC, which fixes it) at each iteration.

As it is shown in Chapter 5, based on numerical results from representative test cases with
analytical solutions (the presented MMS problems), the rate of convergence of NLBC is
really impressive, i.e. when compared to that of SEG’s. This turns out to be very important
when considering partitioned FSI methods, which requires solving multiple times per
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time step for both solid and fluid domains. Furthermore, it was demonstrated analytically
and exemplified numerically (in Chapters 4 and 5, respectively) that NLBC has the same
discretization as BC when the elasticity is restricted to the small strain regime.

Finally, as regards the implementation of NLBC in S4F, it can be readily done because
the discretizations of the differential operators are the same employed by BC, and their
codification are the only complex parts.

Considering the second goal of this work, it was clearly demonstrated that the tensorial
approach to CCM using OOP with operator overloading and based on FVM, i.e. the FOAM
concept, when promoted to a high-level numerical computation and analysis environment,
offers huge benefits. In particular, it fills the very important “prototyping gap”, i.e. the
one between concept development and concept implementation in a high-performance
programming language. The combination of a high-level dynamic language, which is a DSL
with numerical computation and analysis domain, and the very popular Matlab/Octave
desktop environment tuned for iterative analysis fills this gap.

An improved, and yet simplified, architecture of the flexible and extensible object-oriented
framework present in the S4F toolbox has been established. This architecture, at the core
of the nFVM toolbox, was verified since the three FVM methodologies were successfully
used in a series of simulations.

Concerning the limitation of this work, because the current NLBC methodology requires
the presence of a right-minor symmetric elasticity tensor, it defines a class of “officially”
supported solid models (note that Hooke’s material does not fulfill all the requirements,
but nevertheless can give satisfactory results). In fact, it was demonstrated in Chapter 3
that a large set of important solid models (those that are hyperelastic, frame-indifferent,
homogeneous and isotropic) belong to this class. As a matter of fact, frame-indifference
should be required independently of the FVM methodology, since it is required in finite
elasticity, otherwise different observers could collect different results [45]. This symmetric-
related elasticity restriction should be subjected to investigation in order to establish if it
can be removed or at least weakened.

The current traction discretization for NLBC (“borrowed” from BC) is causing divergence
problems, as seen in Chapter 5. On the one hand, the BC method naturally “asks for”
an implicit traction discretization because all the other discretizations do not require an
iterative process. Therefore, it becomes necessary to solve only one linear system per time
step. On the other hand, the NLBC is an iterative procedure (employs Newton-Raphson
method). Thus it seems totally acceptable to use an explicit traction discretization. After
all, iteration is inevitable anyway.
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Note that the boundary discretizations employed in BC remove one of the most attractive
aspect of the “classical” FVM: the ease to implement a variety of boundary conditions in a
non-invasive manner. This is because the unknown variables are evaluated at the centroids
of the volume, not at their boundaries. Using the suggested iterative approach would
restore this rather precious property. Moreover, this would greatly reduce the number
of computational points needed, reducing the size of the final linear system, since there
would be no unknowns on the boundaries.

As regards mesh support, NLBC assumes that finite volumes are rectangular cuboids. How-
ever, by judging how other FV methodologies handle convex polyhedral, the modification
to add support to it should be relatively straight-forward.

Ultimately, a convergence analysis of the NLBC has a great appeal, but it is far beyond the
scope of the work.
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