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Preface 
 

The work presented in this thesis is part of the DFG project “Palaeozoic source to sink relationship 

around the northern Trans-Gondwana Mountain Belt (East Africa, Arabia)” in which Palaeozoic 

sandstones in Saudi Arabia and Ethiopia were studied using different provenance techniques. This PhD 

thesis covers the Ethiopia part of the project. The cumulative thesis includes three published articles on 

the provenance of two Palaeozoic glaciation-related sandstone formations in Ethiopia – the Ordovician–

Silurian Enticho Sandstone and the Carboniferous–Permian Edaga Arbi Glacials. A multi-method 

provenance analysis has been conducted on samples of these two formations. The articles cover different 

methodological approaches to sandstone provenance. In the following, a brief overview over the 

structure of the thesis is given. 

 

Chapter 1 is an introductory chapter into the overall topic of the thesis. A brief general literature review 

about the two ice ages, which are recorded in the studied formations, provenance studies on correlative 

sandstone formations in the region and previous studies on the Ethiopian Palaeozoic succession is given.  

Afterwards, the aims and objectives of this thesis are presented and an overview of the methodological 

strategy is given.  

 

Chapter 2 (first article): 

Lewin, A., Meinhold, G., Hinderer, M., Dawit, E.L., Bussert, R., 2018. Provenance of sandstones in 

Ethiopia during Late Ordovician and Carboniferous–Permian Gondwana glaciations: Petrography 

and geochemistry of the Enticho Sandstone and the Edaga Arbi Glacials. Sedimentary Geology 375, 

188-202. 

This article covers methods applied to the bulk samples: petrographic analysis of thin sections and 

analysis of the bulk chemical composition of the sandstone. By this, the questions of proximal vs. distal 

provenance and climate and weathering conditions that led to the petrographic and geochemical 

characteristics are discussed. The results are set in context with published models on extent and 

configuration of glaciers and ice sheets during the two glacial periods, during which the studied 

formations formed.   

 

Chapter 3 (second article): 

Lewin, A., Meinhold, G., Hinderer, M., Dawit, E.L., Bussert, R., Berndt, J., 2020. Provenance of 

Ordovician–Silurian and Carboniferous–Permian glaciogenic successions in Ethiopia revealed by 

detrital zircon U–Pb geochronology. Journal of the Geological Society London 177, 141-152. 

In this article, results of radiometric dating of detrital zircons from the two studied formations are 

presented. The age populations of zircons are compared to ages of potential source rocks on the super-

continent Gondwana. Furthermore, a statistical comparison with published zircon ages in 

stratigraphically equivalent and older sandstone formations of northern Gondwana is performed, 

discussing regional homogenisation of the sediment and the possibility of sedimentary recycling. 

 

Chapter 4 (third article): 

Lewin, A., Meinhold, G., Hinderer, M., Dawit, E.L., Bussert, R., Lünsdorf, N.K., 2020. Heavy minerals 

as provenance indicator in glaciogenic successions: An example from the Palaeozoic of Ethiopia. 

Journal of African Earth Sciences 165, 103813. 

This article covers the study of the heavy mineral assemblages in the studied samples, complemented 

with chemical analyses of rutile and garnet minerals. The ideas of the previous two articles are further 

developed and the provenance and the issue of sediment recycling are further constrained.  

 

Chapter 5 is a synthesis of the results and conclusions of the three articles. Here, the methodological 

strategy is revised and conclusions about the methods used and their helpfulness in answering the 

research questions are drawn. An integrated discussion of the new insights into the provenance of the 

two studied formations is presented with implications for the evolution of the regional sediment transport 

system.  
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In this PhD project, furthermore, a contribution was made to the article Detrital zircon provenance of 

north Gondwana Palaeozoic sandstones from Saudi Arabia (G. Meinhold, A. Bassis, M. Hinderer, A. 

Lewin and J. Berndt), which is in revision for publication in the Geological Magazine. The contribution 

included part of the zircon U–Pb analysis using LA-ICP-MS and assistance during preparation of the 

manuscript. 
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Summary 
 

The Gondwana supercontinent was completely assembled in the Late Neoproterozoic by closure of the 

Mozambique Ocean and formation of the extensive East African Orogen at the suture of East and West 

Gondwana. A peneplain formed on the northern margin of the supercontinent, on which a vast blanket 

of Palaeozoic sediment was deposited. Major amounts of sediment are assumed to have been eroded and 

transported from the East African Orogen to the continental margin via large sediment fans (Gondwana 

super-fan system).  

 

The Palaeozoic sedimentary succession of northern Ethiopia evidences two Gondwana glaciations, 

which are recorded in the Upper Ordovician–Lower Silurian Enticho Sandstone and the Upper 

Carboniferous–Lower Permian Edaga Arbi Glacials. These formations have been studied 

sedimentologically and palynologically, but their provenance remained unclear. This thesis presents a 

multi-method provenance study on samples of these two formations. Thin section petrography provides 

the basis; then the bulk sandstone samples were analysed for their major and trace element geochemistry. 

Heavy minerals were separated from the samples and their assemblage was determined. Mineral 

chemical analyses were conducted on rutile and garnet grains from both formations. Finally, detrital 

zircon ages were determined. The study followed the objective to fill a data gap in correlation of 

provenance patterns across Palaeozoic sedimentary rocks of northern Gondwana, providing further 

insights into the Palaeozoic sediment dispersal system and the influence of the two glaciations on 

sediment provenance.  

 

The Enticho Sandstone is composed of tillite at the base followed by glaciogenic sandstone, probably 

representing meltwater deposits. At the top of the formation, better sorting and distinct cross 

stratification show shallow marine reworking and evidence the post-glacial transgression. The Edaga 

Arbi Glacials comprise tillite and finely laminated sand- and siltstone with dropstones, interrupted by 

sandy layers.  

 

The two formations differ strongly in their mineralogical maturity. The Enticho Sandstone is highly 

mature and unusually quartzose for glaciogenic sandstone. The marine sub-unit shows even higher 

quartz contents. The geochemical composition underlines this high maturity and yields a high chemical 

index of alteration (85), pointing to intense chemical weathering and reworking of the material. It is 

likely that the alteration has taken place before the glaciation. The Edaga Arbi Glacials feature lower 

maturity with higher amounts of feldspar and rock fragments and a chemical index of alteration of 62. 

Trace and rare earth elements indicate a higher influence of juvenile source material than for the Enticho 

Sandstone. Juvenile crustal rocks are abundant in the underlying Nubian Shield. Comparison of the 

geochemical data with age-equivalent formations in Saudi Arabia shows similar patterns for the 

Ordovician–Silurian, but major differences in the Carboniferous–Permian, supporting previous 

assumptions of a large, uniform sedimentary system during the Late Ordovician glaciation and more 

localised sediment transport during the Carboniferous–Permian. 

 

Detrital zircon chronology resulted in main age populations of Pan-African (700–550 Ma), Tonian 

(900–700 Ma), Stenian–Tonian (1200–900 Ma) and minor Palaeoproterozoic and Archaean zircons for 

both formations. The relation of the Tonian and Stenian–Tonian populations, however, differs strongly 

between the two formations. The Enticho Sandstone is characterised by a prominent Stenian–Tonian 

population, which can be used to trace the Gondwana super-fan system. Correlation with Upper 

Ordovician (glaciogenic) and Cambrian–Ordovician sandstones in northern Africa and the Middle East 

yields high similarity with those in Israel, Jordan and Libya, which are assumed to represent a super-

fan. It further shows that no change in zircon age patterns occurs with the onset of the glaciation. It is 
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thus likely that the Enticho Sandstone contains recycled super-fan material. The Edaga Arbi Glacials 

have a characteristic Tonian population. Such ages are omnipresent in the southern Nubian Shield and 

represent its earliest formation stage, supporting the assumption of a rather proximal provenance. No 

regional or stratigraphic trends could be observed within one of the studied formations.   

 

The heavy mineral assemblages of both formations are highly different as well. The Enticho Sandstone 

is characterised by a large proportion of the ultra-stable heavy minerals zircon, tourmaline and rutile 

(ZTR). In the lower, glaciogenic sub-unit, significant amounts of garnet are also present. In the Edaga 

Arbi Glacials, on the other hand, apatite and garnet make up most of the heavy mineral assemblage. No 

stratigraphic trends were identified within the Edaga Arbi Glacials. Neither could regional trends be 

observed in one of the studied formations. These patterns underline the differences in mineralogical 

maturity revealed by petrography and geochemistry. Very little chemical alteration must have affected 

the Edaga Arbi Glacials, whereas the material forming the Enticho Sandstone is strongly altered. In the 

well sorted and permeable marine subunit of the Enticho Sandstone it is likely that diagenetic 

modification by corrosive pore fluids took place and reinforced the high mineralogical maturity. Rutile 

and garnet chemical analyses point to a combination of magmatic and metamorphic source rocks with 

metamorphic temperatures of mainly amphibolite-, but also granulite-facies grade for both formations. 

For the Enticho Sandstone, the heavy mineral analysis confirms the assumption that it contains recycled 

super-fan material, which was strongly weathered before on the North Gondwana peneplain. The garnet 

is thought to have been delivered by varying erosion of the basement of the Saharan Metacraton (and 

maybe also the Nubian Shield) by the glaciers. The proximal provenance of the Edaga Arbi Glacials is 

confirmed again by the high amounts of unstable heavy minerals. Since the directly underlying basement 

does not contain high-grade metamorphic rocks, a provenance from the southern hinterland is likely, 

where the Nubian Shield merges the Mozambique Belt and higher metamorphic grades were reached.  

 

Combining all methods and their outcome with information from the literature, the following 

provenance models can be inferred for the two studied formations. The Enticho Sandstone was formed 

during the Late Ordovician (Hirnantian) glaciation, when a large ice sheet covered much of northern 

Africa with a spreading centre in North-West Africa. The ice reached as far south-east as the study area. 

Ice and meltwater transported sediments to the study area; sediments, which were spread before via the 

Gondwana super-fan system and strongly weathered on the North Gondwana peneplain during the 

Cambrian and pre-glacial Ordovician. The original provenance of this super-fan material remains 

unclear. Material of the Saharan Metacraton basement was eroded by glaciers and admixed to variable 

amounts. During the post-glacial transgression in the Early Silurian, the upper part of the sedimentary 

succession was reworked by seawater without adding new detritus. In contrast, the Edaga Arbi Glacials 

are sourced from the southern hinterland of the Nubian Shield at the transition to the Mozambique Belt. 

In the Late Palaeozoic, a complex regional topography led to mountain glaciers that eroded the uplifted 

basement and transported material to nearby depressions, in which proglacial lakes formed. A period of 

non-deposition between the two formations may have been caused by a consecutive combination of 

isostatic-rebound after the Late Ordovician glaciation, eustatic sea-level fall in the late Silurian–early 

Devonian and up-doming prior to Neo-Tethys rifting. No recycling of the Enticho Sandstone by the 

Edaga Arbi Glacials took place on a grand scale. This was either because the deposition of the former 

was limited to northern Ethiopia and the source area for the latter was to the south or because the Enticho 

Sandstone was eroded in the source area of the Edaga Arbi Glacials before the Carboniferous–Permian 

glaciation.   
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Zusammenfassung 
 

Der endgültige Zusammenschluss des Superkontinents Gondwana ereignete sich im späten 

Neoproterozoikum, mit Schließung des Mozambique Ozeans und der Bildung des ausgedehnten 

Ostafrikanischen Orogens entlang der Verbindung von Ost- und Westgondwana. Am nördlichen Rand 

des Kontinents entstand eine weitläufige Ebene, die durch paläozoische Sedimente überdeckt wurde. 

Ein Großteil dieser Sedimente wurde vermutlich vom Ostafrikanischen Orogen abgetragen und über 

große Sedimentfächer (Gondwana super fan-System) transportiert.  

 

Die paläozoische Sedimentabfolge in Nordäthiopien entstand im Zuge zweier Gondwana-Vereisungen 

und setzt sich zusammen aus dem Enticho Sandstone (Oberes Ordovizium–Unteres Silur) und den 

Edaga Arbi Glacials (Oberes Karbon–Unteres Perm). An beiden Formationen haben bereits 

sedimentologische und palynologische Untersuchungen stattgefunden, deren Provenienz blieb jedoch 

unklar. Im Rahmen dieser Doktorarbeit wurde eine multi-proxy Provenienzanalyse an Proben beider 

Formationen durchgeführt. Die Basis bilden Dünnschliffanalysen, gefolgt von Haupt- und 

Spurenelementanalysen der Gesamtgesteinsproben. Die Schwerminerale wurden von den 

Gesamtgesteinsproben abgetrennt und ihre jeweiligen Anteile bestimmt. Mineralchemische Analysen 

wurden an Rutil und Granat aus beiden Formationen durchgeführt. Auch detritische Zirkone wurden 

datiert. Die Arbeit verfolgte das Ziel, eine Datenlücke in der Korrelation von Provenienzmustern 

paläozoischer Sandsteine Nordgondwanas zu schließen, um den Wissensstand über 

Sedimenttransportsysteme in Nordgondwana und den Einfluss der beiden Vereisungen auf die 

Sedimentprovenienz zu erweitern.  

 

An der Basis des Enticho Sandstone befindet sich Tillit, gefolgt von glaziogenem Sandstein, vermutlich 

Schmelzwasserablagerungen. Am Top zeugen eine bessere Sortierung und eine charakteristische 

Schrägschichtung von mariner Aufarbeitung und weisen auf die post-glaziale Transgression hin. Die 

Edaga Arbi Glacials setzen sich aus Tillit und feinlaminierten Sand- und Siltsteinen zusammen, 

unterbrochen von Sandlagen.  

 

Die beiden Formationen unterscheiden sich stark in ihrer mineralogischen Reife. Der Enticho Sandstone 

ist sehr reif und für glaziogenen Sandstein ungewöhnlich quarzhaltig. In der marinen Untereinheit sind 

sogar noch höhere Quarzgehalte zu finden. Die geochemische Zusammensetzung unterstreicht diese 

hohe Reife. Ein hoher Chemical Index of Alteration (CIA) von 85 lässt eine intensive chemische 

Verwitterung und Aufarbeitung des Materials vermuten. Diese hat wahrscheinlich schon vor Beginn der 

Eiszeit stattgefunden. Die Edaga Arbi Glacials zeichnen sich durch eine geringere Reife mit höheren 

Anteilen von Feldspat und Gesteinsfragmenten und einem CIA von 62 aus. Spurenelemente und seltene 

Erden deuten auf einen höheren Einfluss von juvenilem Ausgangsgestein hin, als beim Enticho 

Sandstone. Juvenile Krustengesteine finden sich im unterlagernden Nubischen Schild. Ein Vergleich 

der Geochemiedaten mit solchen von äquivalenten Formationen in Saudi-Arabien zeigt ähnliche 

Elementverteilungen für das Ordovizium–Silur, aber deutliche Unterschiede im Karbon–Perm. Dies 

stützt Hypothesen eines großen, homogenen Sedimentsystems während der spätordovizischen 

Vereisung und lokalerem Sedimenttransport im Karbon–Perm.  

 

Die Datierung detritischer Zirkone in beiden Formationen zeigt Hauptpopulationen pan-afrikanischen 

(700–550 Ma), tonischen (900–700 Ma), stenisch–tonischen (1200–900 Ma) and untergeordnet 

paläoproterozoischen and archaischen Alters. Das Verhältnis tonischer und stenisch–tonischer Zirkone 

unterscheidet sich zwischen den Formationen stark. Im Enticho Sandstone überwiegt eine prominente 

stenisch–tonische Population, welche charakteristisch für Sedimente des Gondwana super fan-Systems 

ist. Ein Vergleich mit anderen glazigenen Sandsteinen aus dem Oberordovizium und Sandsteinen aus 
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dem Kambrium bis Mittelordovizium in Nordafrika und dem Mittleren Osten ergab starke 

Ähnlichkeiten mit Sandsteinen in Israel, Jordanien und Libyen, die vermutlich einen super fan bildeten. 

Weiterhin fällt auf, dass mit Beginn der Vergletscherung keine Änderung in den Zirkonaltersspektren 

erfolgt. Es ist also wahrscheinlich, dass der Enticho Sandstone rezykliertes super fan-Material enthält. 

Die Edaga Arbi Glacials zeichnen sich durch eine charakteristische tonische Population aus. Diese Alter 

treten häufig in Gesteinen des südlichen Nubischen Schildes auf und repräsentieren dessen frühe 

Bildungsphase. Die Vermutung einer eher proximalen Provenienz der Edaga Arbi Glacials wird 

hierdurch bestätigt. Innerhalb der beiden Formationen konnten keine regionalen oder stratigraphischen 

Trends identifiziert werden.  

 

Die Schwermineralzusammensetzungen der beiden untersuchten Formationen unterscheiden sich 

ebenfalls stark. Der Enticho Sandstone weist einen hohen Anteil der ultrastabilen Schwerminerale 

Zirkon, Turmalin und Rutil (ZTR) auf, was die zuvor attestierte hohe mineralogische Reife bestätigt. In 

der unteren, glazigenen Einheit sind auch höhere Anteile Granat enthalten. Im oberen, marinen Teil 

wurden wahrscheinlich Minerale durch korrosive Porenwässer diagenetisch gelöst, wodurch die hohe 

Reife verstärkt wurde. In den Edaga Arbi Glacials ist die Schwermineralfraktion von Apatit und Granat 

geprägt. Hier konnten keine stratigraphischen Trends beobachtet werden. Die Sedimente müssen extrem 

wenig chemische Verwitterung erfahren haben. Regionale Trends konnten in keiner der Formationen 

festgestellt werden. Rutil- und Granatchemie in beiden Formationen deuten auf eine Kombination von 

magmatischen und metamorphen Ausgangsgesteinen hin, wobei metamorphe Temperaturen im 

amphibolitfaziellen bis teilweise granulitfaziellen Bereich erreicht wurden. Für den Enticho Sandstone 

wird durch die Schwermineralanalyse die Vermutung bestätigt, dass er rezykliertes super fan-Material 

enthält, welches zuvor stark verwittert wurde. Der Granat wurde wahrscheinlich aus dem Basement des 

Sahara-Metakraton (eventuell auch des Nubischen Schildes) beigemengt. Die Hypothese eines 

proximalen Liefergebiets für die Edaga Arbi Glacials wird durch die hohen Anteile weniger stabiler 

Schwerminerale bestätigt. Da das direkt unterlagernde Basement jedoch nur geringmetamorphe 

Gesteine aufweist, ist ein Liefergebiet im südlichen Hinterland wahrscheinlich, wo das Nubische Schild 

in den Mozambique Belt übergeht und höhere Metamorphosegrade erreicht wurden.  

 

Führt man die Ergebnisse aller durchgeführten Untersuchungen und Informationen aus der Literatur 

zusammen, lassen sich folgende Provenienzmodelle für die beiden untersuchten Formationen ableiten. 

Der Enticho Sandstone wurde während der Hirnantischen Vereisung im späten Ordovizium und der 

nachfolgenden Transgression gebildet. Ein Eisschild bedeckte große Teile Nordafrikas, wobei das 

Zentrum in Nord-Westafrika lag. Das Eis reichte bis ins Untersuchungsgebiet. Eis und Schmelzwasser 

transportierten Sedimente in Richtung des heutigen Äthiopiens. Diese Sedimente wurden zuvor im 

Gondwana super fan-System transportiert und auf der Tiefebene im Norden Gondwanas abgelagert, wo 

sie während des Kambriums und prä-glazialen Ordoviziums stark verwitterten. Die ursprüngliche 

Provenienz des super-fan Materials bleibt unklar. Material aus dem Sahara-Metakraton wurde teilweise 

von Gletschern erodiert und dem Sediment beigemengt. Während der Transgression im frühen Silur 

wurde der obere Teil der glazigenen Sedimentablagerungen vom Meerwasser aufgearbeitet, ohne dass 

neues Material dazu kam. Die Edaga Arbi Glacials hingegen wurden vom südlichen Hinterland des 

Nubischen Schildes am Übergang zum Mozambique Belt gespeist. Im späten Paläozoikum entstand eine 

komplexe regionale Topographie und führte zur Bildung von Eiskappen in ausreichender Höhenlage. 

Diese erodierten exponiertes Basementmaterial und transportierten es in nahegelegene Vertiefungen, 

wo sich proglaziale Seen bildeten. Zwischen dem Enticho Sandstone und den Edaga Arbi Glacials sind 

keine Ablagerungen erhalten. Gründe dafür könnten ein Aufeinanderfolgen von isostatischem Rebound 

nach der spätordovizischen Vereisung, eustatischem Meeresspiegelabfall im späten Silur–frühen Devon 

und Aufdomen vor der Öffnung der Neo-Tethys sein. Interessant ist zudem, dass kein bedeutendes 

Recycling des Enticho Sandstone durch die Edaga Arbi Glacials stattgefunden hat. Dies ist 
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wahrscheinlich so, weil die Ablagerung des Enticho Sandstone auf Nordäthiopien beschränkt war, 

während das Liefergebiet für die Edaga Arbi Glacials im Süden lag oder weil der Enticho Sandstone im 

Süden erodiert wurde.
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1. Introduction 
 

Reconstructing sedimentary systems of the past delivers valuable information about palaeo-

environments, climate and tectonics and their evolution. This, in turn, can be of use for assessing future 

developments. Furthermore, understanding the sedimentary system is an important aspect of exploration 

of groundwater and hydrocarbon reservoirs or sedimentary mineral deposits. Sedimentary provenance 

analysis aims to reconstruct and to interpret the history of sediment from the erosion of parent rocks to 

deposition and burial based on its mineralogical and chemical composition (Weltje and von Eynatten, 

2004).  

 

In this thesis, a combination of different sedimentary provenance methods is applied to two Palaeozoic 

sandstone formations in Ethiopia. It provides a piece of the puzzle disentangling the provenance and 

sedimentary history of a large blanket of Palaeozoic sandstone deposited along the northern part of the 

supercontinent Gondwana after its assembly in the Late Neoproterozoic.  

 

Core Gondwana comprised the modern continents of South America, Africa, Antarctica and Australia, 

as well as Madagascar and the Indian Subcontinent (Torsvik and Cocks, 2013). Gondwana was built of 

several Precambrian cratons “welded together” by Neoproterozoic orogenic belts. These formed during 

the Pan-African Orogeny and the largely contemporaneous Brasiliano and Pampean orogenies in South 

America, the Cadomian Orogeny in southern Europe and North Africa and the Kuungan Orogeny 

between India and East Antarctica (Torsvik and Cocks, 2013). The Pan-African Orogeny formed the 

East African Orogen (EAO), one of the largest accretionary orogens in the Earth’s history (Stern, 1994; 

Collins and Pisarevsky, 2005; Squire et al., 2006; Figure 1-1). Products of weathering and erosion of 

this extensive mountain range and the other Neoproterozoic orogens extended over large parts of 

Gondwana and covered millions of square kilometres (Garfunkel, 2002; Avigad et al., 2005). Outcrops 

of sandstones deposited in this time occur nowadays in many places in northern and north-eastern Africa 

and across the Arabian Peninsula (Avigad et al., 2005). Two glaciations affected the sedimentary 

systems of Gondwana, the Hirnantian glaciation in the Late Ordovician and the Late Palaeozoic Ice Age 

(LPIA) in the Carboniferous–Permian.  

 

 

Figure 1-1: Configuration of Gondwana in the Palaeozoic with its cratons and orogenic belts after Torsvik and Cocks (2013) 
and Avigad et al. (2017) and super-fan model for the East African Orogen proposed by Squire et al. (2006).  
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1.1. Gondwana glaciations 

Late Ordovician (Hirnantian) glaciation 

During the Late Ordovician, the South Pole was in the region of north-western Africa (Eyles, 1993; 

Torsvik and Cocks, 2013). A large polar ice sheet evolved – similar in size to the modern Antarctic ice 

sheet – that spanned over much of northern Africa and Arabia (Eyles, 1993 and references therein; 

Figure 1-2). Ghienne (2003) assumes a minimum configuration with a large ice sheet in North-West 

Africa and smaller ice sheets in the area of the Arabian–Nubian Shield (ANS), in South Africa and the 

centre of South America. Ghienne et al. (2007) suggest a small and a large scenario: in the small 

scenario, an ice sheet covered whole northern Africa and the Arabian Peninsula with satellite ice sheets 

in South Africa and the centre of South America; in the large scenario, these three ice sheets are 

connected. This large scenario was also drawn by Vaslet (1990). Le Heron and Craig (2008) assume a 

continuous ice cover of northern Africa from Mauritania to Egypt with a northern ice margin following 

the margin of the modern African continent and an undefined ice extent to the south.  

 

Uplift related to the Taconic orogeny along the West African plate margin in combination with high 

palaeolatitudes may have triggered the glaciation (Eyles, 1993). Late Ordovician climate was probably 

also affected by changes in the eccentricity of the Earth’s orbit (Sutcliffe et al., 2000). The Hirnantian 

glaciation was short. Villas et al. (2006) suggest a time span of less than a million years. Brenchley et 

al. (1994) infer a time span of 0.5–1 million years from changes in oxygen isotopes of brachiopod 

samples. Two phases of the Late Ordovician mass extinction can be correlated with changes in oxygen 

and carbon isotopes indicating onset and ending of the Hirnantian glaciation (Brenchley et al., 2003).  

 

The age of glacially related deposits is well constrained across northern Africa by microfossil 

assemblages in the strata and those below (Le Heron and Craig, 2008). Within the Hirnantian strata of 

North Gondwana, two first-order cycles of ice sheet advance and retreat can be recognized with a major 

mid-Hirnantian deglaciation event between them (Ghienne et al., 2007). Each cycle included 2–3 glacial 

phases separated by ice front retreats of several hundreds of kilometres (Ghienne et al., 2007). At the 

basal glacial unconformity, large palaeo-valleys are present, which can be traced over 50 km in West 

Africa and are of similar scale in the central Sahara and Saudi Arabia (Eyles, 1993). Their location and 

extent may be controlled by faults and lineaments in the underlying basement (Eyles, 1993). These 

tunnel valleys are created by ice-streams, corridors of fast-flowing ice (Ghienne et al., 2007; Le Heron 

and Craig, 2008). Such ice streams are areas of preferential glacial erosion and sediment deposition 

during glacier retreat (Ghienne et al., 2007). They define an ice stream network flowing outward from 

the central or southern Sahara region (Le Heron and Craig, 2008). The large amount of sediment that 

accumulated on the North Gondwana platform is striking assuming a polar ice sheet – the modern 

Antarctic ice sheet is characterised by cold-based glaciers and releases very little meltwater into the 

oceans (Eyles, 1993). Eyles (1993), therefore, suggest that the extensive sedimentary volume of the 

North Gondwana platform records the final decay phase of the ice sheet when climate was more 

temperate. Based on sediment structures, Le Heron (2004; 2005) and Keller et al. (2011) propose a 

model of a polythermal regime with an oscillating ice front and alternating cold-based and warm-based 

phases, followed by a late glacial surge and deglaciation for Libya and Saudi Arabia, respectively.  

 

Carboniferous–Permian glaciation/Late Palaeozoic Ice Age (LPIA) 

The Late Palaeozoic Ice Age lasted for about 100 Ma (ca. 350–250 Ma) and hence was the longest 

period of glaciation in the Phanerozoic (Eyles, 1993). However, the glaciation was not characterized by 

one single large ice sheet, but rather by several smaller ice masses that waxed and waned across the 

supercontinent (Crowell, 1983; Eyles, 1993; Figure 1-2). Fielding et al. (2008) suggest a series of glacial 

events of ca. 1-8 Ma duration with periods of warmer climate in between. In general, the glacial record 
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is oldest in the west and youngest in the east of Gondwana (Eyles, 1993). The ice age began with 

localized glacial events in South America in the latest Devonian and early Carboniferous and then spread 

further over South America, South Africa and Australia (Fielding et al., 2008). In the late Carboniferous 

(Middle to Late Pennsylvanian), a warmer period with a eustatic sea-level rise is inferred from the 

landward progradation of marine sedimentary systems, marine fauna and coal deposits on land 

(Montañez and Poulsen, 2013). The acme of the LPIA was reached in the early Permian when glaciation 

affected South America, South Africa, Antarctica, Australia, the Arabian Peninsula, India and the South 

Asian crustal blocks (Fielding et al., 2008; Montañez and Poulsen, 2013). Glacial deposits in Siberia 

point to a bipolar glaciation at that time (Fielding et al., 2008). The extensive occurrence of glaciomarine 

deposits indicate that glaciers reached sea-level, which requires widespread cooling (Isbell et al., 2012). 

The decline of the LPIA is recorded in marine transgressive deposits and the loss of ice-contact deposits 

across Gondwana (Montañez and Poulsen, 2013).  

 

Figure 1-2: Ice configurations during the two Gondwana glaciations. Gondwana palaeogeography and South Pole positions 
from Torsvik and Cocks (2013). Ice sheet locations and transport directions for the Late Ordovician after Ghienne et al. (2007), 
Le Heron and Craig (2008) and Torsvik and Cocks (2013), for the Carboniferous–Permian after Bussert and Schrank (2007), 
Fielding et al. (2008) and Isbell et al. (2012). In the Carboniferous–Permian, ice cover was diachronous.  

  

The triggers for the LPIA were probably a combination of several factors. Powell and Veevers (1987) 

suggest that the main control was the closure of the Palaeotethys ocean joining Gondwana and Laurussia 

and orogenic uplift was a second-order control. Atmospheric pCO2 fluctuations probably have played a 

fundamental role (Eyles, 1993; Fielding et al., 2008). During the Carboniferous–Permian, the lowest 

pCO2 values of the whole Phanerozoic prevailed, similar to the modern icehouse (Prokoph et al., 2008). 

A major factor causing this drop in pCO2 was the spread of vascular plants to upland areas in the 

Devonian, which, due to deep rooting and good drainage affected the chemical weathering of silicate 

rocks (Berner, 1998). Roots and root symbionts remove nutrients from silicates and enhance chemical 

weathering, which, in turn, removes CO2 from the atmosphere (Beerling and Berner, 2005). Another 

factor is the increased burial of plant-derived organic matter, as evidenced by the formation of vast coal 

deposits in the Mississippian and Permian (Berner, 1998; Beerling and Berner, 2005). Increased organic 

burial is also indicated by elevated ẟ13C in marine carbonates, while a decrease in seawater temperature 

is marked by an increase in ẟ18O (Veizer et al., 1999; Prokoph et al., 2008). The diachronous 

development of ice sheets and glaciers across different regions of Gondwana was probably caused by 

the migration of the continent across the south pole (Eyles, 1993; Fielding et al., 2008; López-Gamundí 

and Buatois, 2010). However, since there is little immediate correlation between the apparent polar 

wander path for the Carboniferous and the patterns of glacial growth, an additional, yet unknown, control 

may have been involved (Fielding et al., 2008).  
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North-East Africa and Arabia were not in polar position during the late Palaeozoic, but in mid-latitudes 

(50–60° south after Torsvik and Cocks, 2013). Glaciation most probably was of plateau or mountain 

type (Bussert and Schrank, 2007). A prominent upland in the Horn of Africa may have existed (Bussert 

and Schrank, 2007, and references therein). According to Eyles (1993), the glaciogenic deposits in 

Yemen, Saudi Arabia and Oman are placed on top of an unconformity surface recording Hercynian 

uplift. The tectonic-stratigraphic setting may be that of intracratonic subsidence accompanying and 

immediately postdating Hercynican uplift (Eyles, 1993; Sharland et al., 2001). The setting is directly 

comparable to upper Palaeozoic strata of the Parana (South America) and Karoo (South Africa) basins 

(Eyles, 1993).  

 

1.2. Provenance studies on North Gondwana sandstones 

Cambrian to Ordovician sandstones in Israel and Jordan have been studied intensively. They show an 

exceptionally high maturity, especially in the Middle Cambrian to Ordovician (Weissbrod and 

Nachmais, 1986; Amireh, 1991; Avigad et al., 2003; Avigad et al., 2005). Avigad et al. (2003; 2005) 

suggest that these sediments are first-cycle sediments and largely derived from the Arabian–Nubian 

Shield (ANS), the northern part of the EAO (Figure 1-1). They explain their high maturity by strong 

chemical weathering due to a corrosive Cambrian–Ordovician atmosphere and warm, humid climate. 

Kolodner et al. (2006) propose the ANS as main source area for the lower Palaeozoic sandstone as well 

but inferred a progressive influence of source areas further south as stratigraphic ages get younger from 

a change in detrital zircon age spectra. Morag et al. (2011) confirmed a significant contribution from 

source areas outside the ANS by Hf isotopic analyses of detrital zircons, which do not fit the signature 

of the ANS. They suggest that a significant proportion of the sediment is sourced from areas in the centre 

of Gondwana, which would mean that the ANS has been levelled by the middle of the Cambrian. Ben 

Dor et al. (2018) came to the same conclusion by using Sr, Nd and Pb isotopes of feldspars and clays in 

Cambrian–Ordovician sandstones in Israel. An early levelling of orogenic topography is also suggested 

by Avigad et al. (2017) from detrital rutile cooling ages in lower Palaeozoic sandstones of Israel and 

Jordan combined with zircon chronology. They inferred rapid cooling and exhumation of the source 

area and no direct linkage of the lower Palaeozoic sediments with active tectonics.  

 

In Saudi Arabia, a Palaeozoic sandstone succession from the Cambrian to the Permian can be found. 

Knox et al. (2007) studied heavy minerals in the whole succession and identified provenance changes 

in the course of the Cambrian–Ordovician. They describe a sharp boundary towards the deposits of the 

Hirnantian glaciation, but with the same heavy mineral composition as in the deposits below. Another 

change in heavy mineral composition could be identified in the Devonian–Carboniferous. The deposits 

of the Late Palaeozoic Ice Age (LPIA) show a great variability in heavy minerals ascribed to a 

combination of different sources. Further studies on the Palaeozoic sedimentary succession of Saudi 

Arabia were performed by Bassis et al. (2016a; 2016b): they found an overall high mineralogical 

maturity, but assumed the Cambrian–Ordovician sandstones to be first-cycle sediments, likely derived 

from the underlying basement of the ANS. As proposed by Avigad et al. (2005) they assume that the 

ANS has been exposed to intense chemical weathering. For the Hirnantian deposits they suggest 

recycling of these first-cycle sediments. A higher influence of fresh basement material in the Late 

Palaeozoic, inferred from unstable heavy minerals, is associated with increasing tectonic activity at the 

northern margin of Gondwana during that time (Bassis et al., 2016a). This activity is attributed to crustal 

updoming and rifting prior to opening of the Neotethys ocean (Sharland et al., 2001). Detrital zircon 

chronology on sandstones of the Saudi Arabian Palaeozoic succession points to a main provenance from 

igneous rocks in the ANS with significant contribution of material of the Gondwana super-fan system 

described below and Palaeoproterozoic and Archaean zircons of uncertain provenance (Meinhold et al., 

in revision). 
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Palaeozoic sandstones in northern Africa are preserved from Egypt to Morocco and especially the 

Hirnantian glaciogenic sandstones are well studied and allow reconstructions of the palaeo-ice sheet 

(Ghienne et al., 2007; Le Heron and Craig, 2008) that is further described in Section 1.1. Lower 

Palaeozoic sandstones in Egypt are sub-mature to mature and based on bulk geochemistry, their 

provenance is assumed to be mainly the felsic plutons in the northern ANS (Akarish and El-Gohary, 

2008; Tawfik et al., 2017).  

 

In Libya, sandstones of the whole Palaeozoic are preserved and well studied: Three major provenance 

changes are identified from heavy mineral analysis. Thea are ascribed to 1) the final pulse of the Late 

Ordovician (Hirnantian) glaciation and the subsequent transgression, 2) eustatic sea-level fall in late 

Silurian/Early Devonian that led to a change in river systems and 3) the Late Palaeozoic Ice Age (LPIA) 

in the Carboniferous–Permian (Morton et al., 2011). The main source for the Libyan Palaeozoic 

sandstones is assumed to be the underlying Sahara Metacraton (Meinhold et al., 2011; Morton et al., 

2012; Altumi et al., 2013). Altumi et al. (2013) suggested also Neoproterozoic orogenic belts to the west 

and the West African Craton based on detrital zircon ages. For late Mesoproterozoic zircons, Meinhold 

et al. (2011) and Morton et al. (2012) propose source areas in the Congo and Tanzania cratons, implying 

a long transport distance, or Mesoproterozoic igneous rocks in eastern Chad.  

 

Cambrian–Ordovician sandstones in Algeria are studied petrographically and geochemically by Sabaou 

et al. (2009). They describe high mineralogical maturity and infer deeply weathered cratonic landmasses 

or recycled sediments as source rocks. Linnemann et al. (2011) studied detrital zircons of these 

sandstones and found ages consistent with a provenance in the Trans-Sahara or Brasiliano belts and the 

West African or Amazonian cratons of West Gondwana (Figure 1-1). They exclude source areas in the 

ANS or the EAO. A separation of two major provenance zones in northern Africa is evident based on 

detrital zircon age spectra with the boundary between Algeria and Libya (Linnemann et al., 2011; 

Stephan et al., 2019), named by Stephan et al. (2019) the “West African zircon province” and “East 

African–Arabian zircon province”.  

 

Avigad et al. (2012) studied Cambrian sandstones in Morocco regarding the U-Pb-Hf isotopes of detrital 

zircons. They found the lower Cambrian units to have values reflecting the local Anti-Atlas crustal 

evolution. In the upper and mineralogically more mature Cambrian sandstones, they found a higher 

influence of a source area dominated by crustal reworking and ascribed it to a more distal source, 

possibly the Tuareg Shield to the west of the Sahara Metacraton.   

 

In summary, lower Palaeozoic sedimentary rocks of North Gondwana are well studied in many places. 

They are generally highly mature, probably due to intense chemical weathering or recycling of earlier 

sediments (the latter especially assumed for sediments of the Hirnantian glaciation, e.g. Bassis et al., 

2016a). In most studies, a provenance from the underlying basement combined with variable 

contribution of further distal sources in central Gondwana is assumed. An extremely distal provenance 

is suggested by Rösel et al. (2014) for the Hirnantian glaciogenic Lederschiefer in Germany (Saxo-

Thuringia, which lay to the north of Gondwana during that time): based on a characteristic population 

of Stenian–Tonian zircons, they speculate that part of the material is derived from the Rayner Complex–

Eastern Ghats regions of Antarctica and India and has been transported several thousands of kilometres, 

either in a single or multiple sedimentary cycles.  

 

“Mass production” of Cambrian–Ordovician sediment and large-scale homogenisation of the distally 

sourced material that spread over the Gondwana peneplain after the Pan-African orogenies is likely 

(Garfunkel, 2002; Avigad et al., 2005). For the EAO, Squire et al. (2006) proposed a model of large 

sediment fans (“super-fans”) that transported detritus towards the continental margins (Figure 1-1). They 
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based their model on similar zircon age spectra in lower Palaeozoic sandstones from India, Israel, Africa, 

Australia, New Zealand, South America and Antarctica. For north-eastern Africa and the Arabian 

Peninsula, however, the model is very speculative. Meinhold et al. (2013) constrained the super-fan 

model for this area by correlating detrital zircon ages from Morocco, Algeria, Libya, Israel and Jordan 

(Figure 1-1). They assumed that there was a fan system in this area that reached Libya and the north-

western Arabian Peninsula, but not Algeria and Morocco. Stephan et al. (2019) statistically analysed an 

extensive dataset of zircon ages from northern Gondwana and the peri-Gondwana terranes and found 

three zircon provinces, one of which, namely the East African–Arabian zircon province, is in accordance 

with the assumed super-fan in this area. Lately, a detrital zircon study of Palaeozoic sandstones in Saudi 

Arabia could confirm that the super-fan reached Saudi Arabia (Meinhold et al., in revision).   

 

The upper Palaeozoic sandstones of North Gondwana are less intensively studied. Investigations show 

a lower mineralogical maturity, more variable composition and also higher variations between the 

different study areas (e.g. Knox et al., 2007; Morton et al., 2011; Bassis et al., 2016a). The late 

Palaeozoic topography of North Gondwana was more complex and regionally variable than it was in the 

early Palaeozoic and was influenced by Hercynian tectonism and Neotethys rifting (Sharland et al., 

2001; Laboun, 2010; Torsvik and Cocks, 2011). 

 

1.3. Palaeozoic sandstones in Ethiopia 

The peculiarity of the Palaeozoic sedimentary succession in Ethiopia is that it consists mainly of two 

formations that were deposited during and directly after the two major Gondwana glaciations in the Late 

Ordovician (Hirnantian glaciation) and Carboniferous–Permian (Late Palaeozoic Ice Age, LPIA): the 

Upper Ordovician–lower Silurian Enticho Sandstone and the upper Carboniferous–lower Permian 

Edaga Arbi Glacials.  Their spatial extent in outcrops is limited: they occur mainly in the northern 

Ethiopian province Tigray and to a very minor extent in the west of the country. Dow et al. (1971) 

presented the first evidence for Palaeozoic glaciogenic rocks in northern Ethiopia. They described two 

facies, tillite facies and sandstone facies, and ascribed both to one single glaciation, either the Late 

Ordovician or the Carboniferous–Permian. Beyth (1972a; 1972b) confirmed the occurrence of these 

sandstones in other localities in northern Ethiopia and provided facies descriptions. Saxena and Assefa 

(1983) found Discophyllum, a fossil hydrozoa, in glaciomarine sandstone near the town of Enticho and 

concluded an Ordovician age. Based on trace fossils, Kumpulainen et al. (2006) assumed an Ordovician 

age for equivalent deposits to the Edaga Arbi Glacials in Eritrea. Bussert and Schrank (2007), however, 

were able to refute this assumption: palynological analyses of the Edaga Arbi Glacials in northern 

Ethiopia prove a Carboniferous–Permian age. They suggest that the Enticho Sandstone, which was 

assumed to be a lateral equivalent of the Edaga Arbi Glacials, as well as the rocks described by 

Kumpulainen et al. (2006) in Eritrea represent older sedimentary units. The sedimentary record of two 

different Palaeozoic glaciations in northern Ethiopia was confirmed by Bussert and Dawit (2009) and 

complemented with detailed sedimentological descriptions, trace fossil and palynological observations. 

The Carboniferous–Permian Edaga Arbi Glacials were further studied regarding their glaciogenic 

landforms and depositional environments by Bussert (2010; 2014). A summary of the sedimentological 

descriptions of both formations, complemented with own observations and field photographs is given 

in Section 2.2.  

 

The provenance of the two Palaeozoic glaciogenic formations in Ethiopia has not been studied so far 

and data on geochemistry, heavy minerals or zircon chronology are not yet available. Such analyses are 

provided by work presented in this thesis.  
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1.4. Aims and objectives 

By the work presented in this thesis, the data gap of specific provenance-relevant data for the Palaeozoic 

sandstones of Ethiopia is filled. Such data comprise geochemical composition, heavy mineral spectra, 

mineral chemical analyses and detrital zircon ages. They are published for many Palaeozoic successions 

in North-East Africa and the Arabian Peninsula (see Section 1.2), but are not yet provided for the 

Ethiopian sandstones. By complementing existing data on sedimentology, biostratigraphy and facies 

analyses (see Section 1.3) with provenance-specific data, further insights into the configuration of the 

sedimentary systems during the two time slices recorded in the Enticho Sandstone and the Edaga Arbi 

Glacials are possible. The fact that two major Palaeozoic Gondwana glaciations are recorded in the 

Ethiopian succession makes it possible to study aspects of ice sheet extent and glacier dynamics in 

comparison with existing models (e.g. Ghienne et al., 2007; Fielding et al., 2008; Le Heron and Craig, 

2008; Bussert, 2010; Isbell et al., 2012; Section 1.1). In southern Libya (Morton et al., 2011) and Saudi 

Arabia (Knox et al., 2007; Bassis et al., 2016a) changing heavy mineral spectra in the Carboniferous 

suggest a re-organisation of the sediment dispersal system in the late Palaeozoic (Section 1.2). These 

changes may also be visible in the Ethiopian Palaeozoic formations. The super-fan model described in 

Section 1.2 (Squire et al., 2006; Meinhold et al., 2013; Stephan et al., 2019) is based on detrital zircon 

chronology and is still not well constrained for northern Gondwana nor confirmed with other methods. 

Ethiopia lies more proximal on the assumed sediment pathway of the super-fans and is thus highly 

interesting to test the model.  

 

In summary, the objectives of this thesis are the following: 

• provide provenance-specific data for the Ordovician–Silurian Enticho Sandstone and the 

Carboniferous–Permian Edaga Arbi Glacials to enable comparison and correlation with 

corresponding successions across north-eastern Gondwana, 

• test the Gondwana super-fan model at a more proximal location, 

• contribute to research on ice sheet extent and glacier dynamics during the Hirnantian glaciation 

and the Late Palaeozoic Ice Age (LPIA) by identifying source regions. 

By this, a better understanding of the Palaeozoic sediment dispersal system of northern Gondwana and 

the influence of the two glaciations is possible.  

 

 

1.5. Methodological strategy 

1.5.1. Sampling 

Samples for this thesis were mainly collected during a two weeks field trip in the province Tigray in 

northern Ethiopia in October 2015 (Figure 1-3). A second field trip has taken place to the Blue Nile 

region in western Ethiopia in April 2017 but in that area the sandstone formations of interest are hardly 

present. Therefore, the focus of this thesis is on samples from Tigray. Some samples were provided by 

Robert Bussert (TU Berlin), who collected them during previous field work. Two samples from the Blue 

Nile region (sample Hu-1 and Hu-2) were provided by him as well. Sampling in the field was based on 

previous stratigraphic and sedimentological work of Robert Bussert and Dawit Enkurie Lebenie 

(University of Mekele at that time, now University of Gondar, Ethiopia). They studied many sections in 

the region, provided facies analyses and stratigraphic classification through palynology, trace fossils and 

facies correlations (Bussert and Schrank, 2007; Bussert and Dawit, 2009; Bussert, 2014; Brocke et al., 

2015). Sandstone samples were taken from surface outcrops at sections that were studied by the two 

colleagues before with priority to sections that are biostratigraphically constrained. Moreover, we made 

sure that the sampling locations covered a large geographical spread. In long sections, several samples 

were taken to capture stratigraphic variations. However, in many places, especially in the lower part of 
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the Enticho Sandstone, the sediments are rather massive, suggesting that they have been deposited in 

relatively short time and little stratigraphic variations can be expected.  

 

During sampling, homogeneous areas in the outcrops were picked and samples with the grain size of 

fine sand were taken, where possible. Approximately 1–2 kg sandstone was taken per sample. 

Additionally, some samples were taken from granitoids, metasediments and metabasites from the local 

basement. Furthermore, boulders of granitoid, basalt and gneiss incorporated in tillites of the Edaga Arbi 

Glacials were sampled at two locations. In total, 16 samples were taken from the Enticho Sandstone 

(additional 11 samples were provided by R. Bussert), 15 samples from the Edaga Arbi Glacials (plus 

two additional from R. Bussert), 16 from the basement and 11 from boulders in tillite of the Edaga Arbi 

Glacials. A list of all taken samples with sampling location and short lithological classification can be 

found in the appendix (Table A 1). Prepared for analyses were 19 samples from the Enticho Sandstone, 

13 from the Edaga Arbi Glacials, 7 samples from basement and all boulder samples. The selection of 

samples for analyses was made by giving priority to samples that are biostratigraphically constrained 

for the sandstones, to cover a large geographic and stratigraphic spread and by the quality of the samples 

(little weathering, uniform grain size). An overview of the selected samples for analyses and the applied 

methods is given in the appendix (Table A 2). Sections 2, 3 and 4 contain lists of the samples used in 

the respective study as well as maps with the sample locations. All samples are stored at the Institute of 

Applied Geosciences, Technical University of Darmstadt.   

 

1.5.2. Multi-method provenance analysis 

The composition of a sandstone is rarely the exact image of the source rocks contributing to the detritus. 

A sediment is altered by many different processes on its way from source to sink (Figure 1-4): 

weathering in the source area, breaking and abrasion, sorting during transport, addition of intraclasts, 

weathering during alluvial storage, recycling, sorting during deposition and processes acting during 

burial diagenesis (e.g. Morton and Hallsworth, 1999; Weltje and von Eynatten, 2004). This makes it 

difficult to trace back the provenance of the sediment and to ascribe features to a certain cause or process. 

Since none of the various methods that can deliver provenance information yields unique results, it is 

necessary to use several methods on the same samples parallel. Figure 1-5 gives an overview over the 

methods used in this thesis and their systematics. In the following, the methods and how they 

complement each other are described in brief. 

 

Petrography 

Thin sections of the sandstones, the basement and boulders were studied under a polarizing microscope 

at the Institute of Applied Geosciences, Technical University of Darmstadt. The samples from boulders 

and the basement were studied only qualitatively to determine the rock type, whereas for the sandstone 

samples, the proportions of quartz, feldspar and lithic fragments were counted. Details on the counting 

procedure are given in Section 2.3. These proportions give information on the sediment’s mineralogical 

maturity, which is essentially influenced by chemical alteration during surface weathering (in the source 

area, at temporal storage during transport, or in the outcrop) or during diagenesis (Morton and 

Hallsworth, 1999; Garzanti, 2017). The textural maturity, i.e. roundness of the mineral grains and degree 

of sorting, can be assessed during petrography as well. It is influenced by processes acting during 

transport, such as transport medium, hydrodynamics and to a minor degree transport distance (Morton 

and Hallsworth, 1999; Garzanti et al., 2015; Garzanti, 2017). The matrix content can further reveal 

information on the transport process and depositional environment (e.g. beach sand vs. moraine 

deposits). While petrography provides rather a first approach on the nature of the samples and a bunch 

of possible processes that acted on the sediment, an advantage is that primary and secondary signals 

(such as authigenic phases that grew during diagenesis) can be separated.  
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Figure 1-3: Impressions of the landscape in northern Ethiopia, where most of the samples were taken, from the field trip in 
October 2015. a) near Edaga Robi; b) near Zalambassa; c) near Atsbi; d) near Adwa.  

 

Bulk geochemistry 

Bulk geochemical analyses where carried out using X-ray fluorescence spectroscopy (XRF) and 

inductively coupled plasma mass spectrometry (ICP-MS) at the Geoscience Centre, University of 

Göttingen. Analyses were conducted on powders of sandstone, basement and boulder samples. Details 

on the procedure are given in Section 2.3. Major elements and certain trace elements were determined 

by XRF; further trace element, including rare earth elements (REE) were measured by ICP-MS. By 

analysis of the major elements, information from petrography can be confirmed and quantified. For 

example, the degree of chemical weathering (or diagenetic modification) can be assessed by the 

chemical index of alteration (CIA) introduced by Nesbitt and Young (1982). Major and trace elements 

can point to the presence of certain minerals or mineral groups. A high proportion of Al, for instance, is 

often associated with a high clay or feldspar content, whereas a high P content may point to apatite. Zr 

and Th may indicate the presence of heavy minerals, such as zircon or monazite. Furthermore, the major 

and trace element compositions of the studied sandstone samples are compared to those of the 

underlying basement to test a possible provenance from the local basement. Many of the studied 

elements are, however, highly mobile and thus easily affected by processes altering the sediment, 

including weathering in the outcrop, from which the sample is taken. The interpretation should, 

therefore, be done with caution. An element group, which is less mobile, is the group of rare earth 

elements (McLennan, 1989). The pattern of REE in a sandstone sample, normalized to the composition 

of a standard chondrite, gives first hints to the parent rocks, from which the sediment stems. For instance, 

rocks from differentiated and undifferentiated magmas feature different REE patterns (McLennan et al., 

1993).   
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Figure 1-4: Processes altering a sediment on its pathway from source to sink and controlling factors for these processes 
(Figure from Weltje and von Eynatten (2004)).  

 

Conventional heavy mineral analysis 

Heavy minerals are minerals with a specific density higher than around 2.8 g/cm³ (Mange and Maurer, 

1992). They can be rock forming in their parent rock (such as amphiboles, pyroxenes and micas) or 

accessory (such as zircon, apatite or tourmaline). In clastic sediments they usually make up less than 

1 wt-% of the sediment (Mange and Maurer, 1992). Heavy minerals are often specific in origin and can 

be diagnostic for a certain source rock or rock type (e.g. metamorphic rocks, felsic igneous rocks, etc.). 

Some metamorphic minerals, such as andalusite, sillimanite and kyanite, even stand for certain pressure 

and temperature conditions. By conventional heavy mineral analysis, a study of the heavy mineral 

assemblage, i.e. counting the proportions of the various heavy minerals in the sample, is meant. Since 

the minerals have different potentials of being altered by physical and chemical processes (e.g. Morton 

and Hallsworth, 1999; Garzanti, 2017) and different hydrodynamic behaviours (e.g. Rubey, 1933; 

Garzanti et al., 2008), the study of mineral proportions may be misleading. Therefore, pairwise indices 

comparing the proportions of minerals with similar typical grain size, hydrodynamic behaviour and 

resistance to alteration can be used to assess, for instance, the influence of metamorphic versus magmatic 

parent rocks (e.g. Morton and Hallsworth, 1994). For conventional heavy mineral analysis, the grain 

size fraction of 63–125 µm has been used to ensure comparability with previous studies (Morton et al., 

2011; Bassis et al., 2016a). Some samples were further studied in their 40–63 and 125–250 µm fractions 

to reveal the influence of the studied grain size window  (for details see Section 4.3). The heavy minerals 

have been separated from the light ones using a liquid with a density of 2.8 g/cm³ and scatter mounts of 

the obtained heavy mineral concentrates were studied under a polarizing microscope at the Institute of 

Applied Geosciences, Technical University of Darmstadt. For some samples the heavy mineral 

proportions were additionally determined using Raman spectroscopy at the Geoscience Centre, 

University of Göttingen.  

 

Mineral chemistry 

The bulk of the heavy minerals in a sandstone is still significantly influenced by the above-described 

processes of alteration affecting a sediment on its way from source to sink. Therefore, for many minerals 

it is still not possible to discriminate, whether their presence/absence or ratios are due to certain source 

rocks that are involved, or due to later alteration. In most cases, it is probably a combination of both. To 

overcome this problem and get isolated provenance information, the study of single mineral species is 
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a powerful complementary technique (e.g. von Eynatten and Dunkl, 2012). The elemental or isotope 

composition of some heavy mineral species reflects certain chemical, pressure or temperature conditions 

during formation, which may point to a certain host rock type. In this thesis, the chemical compositions 

of rutile and garnet are studied. Rutile is one of the most stable heavy minerals and very resistant to 

physical and chemical alteration. Its chemical composition is dependent on the metamorphic 

temperature during formation and also on whether the mineral grows in a metafelsic or a metamafic host 

rock (e.g. Triebold et al., 2007; Meinhold, 2010; Triebold et al., 2012). Garnet chemical composition 

depends on host rock lithology, temperature and pressure conditions as well (Morton, 1987; Mange and 

Morton, 2007). For this thesis, rutile and garnet grains were hand-picked from the heavy mineral 

concentrates of ten samples under a binocular microscope, mounted in epoxy and polished. The chemical 

compositions were studied using electron microprobe analysis at the Geoscience Centre, University of 

Göttingen.  

 

 

Figure 1-5: Overview of the methods used in this thesis and their systematics. 

 

Detrital zircon chronology 

Another suite of provenance methods applied to single mineral species is the radiometric dating of 

minerals. In this thesis, U–Pb dating of detrital zircons is applied. Zircon, similar to rutile, is one of the 

most stable heavy minerals and very resistant to physical and chemical alteration. Furthermore, zircon 

is an abundant heavy mineral in many kinds of source rocks. During growth, it incorporates U, but no 

or little Pb (Roberts and Spencer, 2015). When the mineral cools below the closure temperature of the 

U–Pb system, no exchange with the environment can take place anymore and during radioactive decay 

of U, the daughter product Pb becomes trapped and enriched in the crystal. The decay reactions used 

here are 

𝑃𝑏206
𝑚𝑖𝑛𝑒𝑟𝑎𝑙 =  𝑃𝑏206

0 + 𝑈238
𝑚𝑖𝑛𝑒𝑟𝑎𝑙(𝑒𝜆238𝑡 − 1) and 

𝑃𝑏207
𝑚𝑖𝑛𝑒𝑟𝑎𝑙 =  𝑃𝑏207

0 + 𝑈235
𝑚𝑖𝑛𝑒𝑟𝑎𝑙(𝑒𝜆235𝑡 − 1). 

 

Knowing the decay constant values, the crystallisation age t of the zircon can be determined by 

measuring the proportions of 206Pb/238U and 207Pb/235U in a zircon crystal. A common diagram for the 

U–Pb dating of zircon and monazite is the Concordia diagram. Plotting the ratios of 206Pb/238U and 
207Pb/235U of many zircons of different age against each other after subtraction of the initial lead content 

yields a curve, along which the ages determined from the 206Pb/238U and 207Pb/235U ratio, respectively, 

are the same. A zircon grain which plots on the Concordia curve has been a closed system since its 



 

12 

crystallisation and its age can unequivocally be determined. A zircon grain plotting besides the curve is 

discordant due to diffusion of radiogenic Pb out of the crystal. If this lead loss occurred during a single 

(metamorphic) event, the intersections with the Concordia curve indicate the original crystallisation age 

and the age of lead loss (Okrusch and Matthes, 2005). However, the closure temperature of zircon 

regarding its U–Pb system is very high with ≥ 900 °C (Lee et al., 1997). This means that the U–Pb 

system can survive most metamorphic and post-depositional processes without being modified and lead 

loss due to a single metamorphic event is rare. In most cases, lead loss of discordant zircons occurs 

continuously due to damage of the crystal structure by its own radioactivity and the crystallisation age 

cannot be determined (Okrusch and Matthes, 2005). For provenance analysis, the age populations of 

zircons in the studied sand(stone) samples can be linked to potential source rocks if the ages of these 

source rocks are known. A problem with the study of ancient rocks is, however, that the source rocks 

may not be present anymore nowadays. For this thesis, as for rutile and garnet chemistry, zircons were 

hand-picked from the heavy mineral concentrates of 11 sandstone samples under a binocular 

microscope, mounted in epoxy and polished. The measurement of U and Pb isotopes was performed 

using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) at the Institute of 

Mineralogy, University of Münster. 

 

1.5.3. Statistical analysis of obtained data 

Some data obtained in this thesis (e.g. bulk geochemistry, mineral chemistry and zircon chronology) 

were statistically evaluated to explore the internal variability of the datasets and compare them to 

literature data.  

 

The data from petrographic and heavy mineral point counting, geochemical and mineral chemical 

analyses belong to the class of compositional data meaning that they contain relative information, are 

non-negative and sum up to a whole, e.g. 1 or 100% (Pawlowsky-Glahn and Egozcue, 2006). Standard 

statistical methods cannot readily be applied to this class of data, since such methods are designed for 

data in the real space that range from -∞ to +∞ and can lead to spurious effects when applied to parts of 

a composition (Pawlowsky-Glahn and Egozcue, 2006). The sample space for compositional data, 

however, is the simplex with the respective dimension (e.g. Egozcue et al., 2011). A way to transform 

compositional data from the simplex to the real space is taking log-ratios, that is, the logarithms of ratios 

of components (Aitchison, 1982; 1986). Aitchison (1982) introduced the additive and the centred log-

ratio transformations. For the former, one of the components is taken as the denominator, all others are 

divided by this one and the natural logarithms are taken. For the latter, the components are divided by 

the geometric mean of the whole composition and the natural logarithm is taken. Egozcue et al. (2003) 

later introduced the isometric log-ratio transformation, which is more complicated to perform and the 

ratios more complex to interpret, but has some advantages when processing the data further 

(Pawlowsky-Glahn and Egozcue, 2006; Tolosana-Delgado, 2012).  

 

In this study, centred log-ratio transformation (clr) is applied to prepare data for principal component 

analysis (PCA) as suggested by Tolosana-Delgado (2012). This method (PCA) reduces the dimensions 

of a multivariate dataset to principal components (PC) still containing the most important information 

and aiming to find the best summary of the data with a limited number of PCs (Lever et al., 2017). The 

PCs are linear combinations of the original variables of the dataset and can be seen as the directions in 

the dataset that explain a maximal amount of variance (Lever et al., 2017). There are as many PCs for a 

dataset as it contains variables and they are constructed in a way that the first PC represents the direction 

of the maximum variance within the dataset, the second PC the second largest amount of variance and 

so on. The result of a PCA can be displayed in a biplot of the first two PCs, making it possible to 

visualize the most important information contained in the dataset in two dimensions (Figure 1-6 a). In a 

clr-biplot the origin represents the centre (geometric mean) of the dataset (von Eynatten et al., 2003). 
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Both the samples and the variables are represented in the biplot (Figure 1-6 a). Variables are displayed 

as arrows pointing to their clr-loadings in the first two PCs (Tolosana-Delgado, 2012). The length of an 

arrow represents the variance of the corresponding clr-transformed variable, i.e. long arrows imply large 

variance, short arrows imply small variance (Tolosana-Delgado, 2012). A small angle between an arrow 

and one of the axes implies high influence of the respective variable on the corresponding PC (von 

Eynatten et al., 2003). A collinear set of arrows means that the respective variables are correlated, 

orthogonal arrows indicate that their pairs of log-ratios are uncorrelated (Tolosana-Delgado, 2012). The 

samples are displayed as points in the biplot. The distance between data points is a measure of similarity, 

that is, strong clustering of data points/samples implies that these samples have strong similarities in 

composition (von Eynatten et al., 2003). During interpretation of a compositional PCA biplot it must be 

kept in mind that only a portion of the total variability of the dataset is explained by the two-dimensional 

projection. The calculated percentage of variability represented by the two PCs of a biplot is a measure 

of strength of the biplot for data interpretation (von Eynatten et al., 2003). It is also possible to combine 

different datasets in one PCA, as it is done in Section 5.2. In this case, it is necessary to standardize the 

variables so that they have unit variance to account for the different units in the datasets (Lever et al., 

2017). 

 

For geochronological data, PCA is inappropriate. Vermeesch (2013), therefore, suggests 

multidimensional scaling (MDS) to facilitate multi-sample comparison of geochronological data. MDS 

is a superset of PCA and makes less assumptions about the data (Vermeesch, 2013). MDS is used in this 

study to compare detrital zircon age spectra obtained for the two studied formations to data from the 

literature. This technique produces a simple two-dimensional map (Figure 1-6 b) in which “similar” 

samples plot close together and “dissimilar” samples plot far apart (Vermeesch and Garzanti, 2015). 

The Kolmogorov–Smirnov statistics can be used as a dissimilarity measure (Vermeesch, 2013; 

Vermeesch and Garzanti, 2015). The MDS algorithm produces an R-dimensional configuration of points 

for which the Euclidian distance between two points approximates the disparity between the respective 

samples (Vermeesch, 2013). For R = 2, the result can be visualized as a map. For the most general case, 

making least assumptions about the data, non-metric MDS is used. The goal here is not to approximate 

the dissimilarities themselves, but rather their relative ranks (Vermeesch, 2013). The solution for non-

metric MDS is not found analytically but numerically (Vermeesch, 2013). As for PCA, it is important 

to note that MDS makes an abstraction of the data and does not always cover all the details of complex 

datasets (Vermeesch, 2013).  

 

 

Figure 1-6: Simple sketch of a) a typical principal component analysis (PCA) biplot and b) a multidimensional scaling (MDS) 
map. 
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Abstract 

We compare Ethiopian glaciogenic sandstone of the Late Ordovician and Carboniferous–Permian 

Gondwana glaciations petrographically and geochemically to provide insight into provenance, transport 

and weathering characteristics. Although several studies deal with the glacial deposits in northern Africa 

and Arabia, the distribution of ice sheets and continent-wide glacier dynamics during the two glaciations 

remain unclear. Provenance data on Ethiopian Palaeozoic sedimentary rocks are scarce. The sandstones 

of the Late Ordovician glaciation are highly mature with an average quartz content of 95% and an 

average chemical index of alteration of 85, pointing to intense weathering and reworking prior to 

deposition. No evidence for sediment recycling was found. In contrast, the Carboniferous–Permian 

glaciogenic sandstones are less mature with an average quartz content of 75%, higher amounts of 

feldspar and rock fragments and a chemical index of alteration of 62. Trace and rare earth element 

concentrations indicate a higher input of juvenile material, most probably from proximal sources. 

Comparison with stratigraphically corresponding formations in Saudi Arabia shows similar geochemical 

patterns for the Upper Ordovician, but major differences in the Carboniferous–Permian. This supports 

previous assumptions of a large, uniform sediment dispersal system during the Late Ordovician 

glaciation, in which a combination of long transport paths and exceptionally strong weathering prior to 

the glaciation produced mature sandstone. During the Carboniferous–Permian, the glacial systems seem 

to have been more localised and glacial abrasion exposed fresh basement material. 

 

2.1. Introduction 

During the amalgamation of the Gondwana supercontinent in the Neoproterozoic (between 650 Ma and 

600 Ma), the East African Orogen was formed – one of the largest accretionary orogens in Earth’s 

history (Stern, 1994; Collins and Pisarevsky, 2005; Squire et al., 2006). In Northeast Africa, a stable 

platform developed after the consolidation of the newly formed continent, on which a vast blanket of 

Palaeozoic sand was deposited (Garfunkel, 2002; Avigad et al., 2005). The sediment transport direction 

is generally assumed to have been towards the margin of northern Gondwana (e.g. Meinhold et al., 2011; 

Morag et al., 2011). However, the exact provenance of the sediment and its pathways are still poorly 

understood. Palaeozoic sedimentary rocks in Ethiopia are related to the two major Gondwana 

glaciations: 1) the Late Ordovician glaciation and the following transgression, probably up to early 

Silurian and 2) the Carboniferous–Permian glaciation (Saxena and Assefa, 1983; Kumpulainen et al., 

2006; Bussert and Schrank, 2007; Kumpulainen, 2007; Bussert, 2010) with a large hiatus between them. 
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Although several studies deal with the glacial deposits in northern Africa and Arabia (Ghienne, 2003; 

Le Heron et al., 2009; Bussert, 2010; Keller et al., 2011), the distribution of ice sheets and continent-

wide glacier dynamics remain unclear. For the Late Ordovician glaciation, a scenario of a large ice sheet 

covering the whole Saharan region or even whole central Gondwana is proposed (e.g. Ghienne et al., 

2007; Le Heron and Craig, 2008). During the Carboniferous–Permian glaciation, a more complex spatial 

and temporal pattern of ice sheets is likely. Different authors propose a system of several local ice centres 

that developed asynchronously across Gondwana (e.g. Eyles, 1993; Fielding et al., 2008). The late 

Palaeozoic topography in northern Gondwana was influenced by the Hercynian tectonic event and by 

thermal uplift prior to the formation of the Zagros rift zone that later formed the Neo-Tethys ocean 

(Sharland et al., 2001). In such elevated areas mountain glaciers may have formed in the Carboniferous–

Permian (Konert et al., 2001; Bussert and Schrank, 2007; Le Heron et al., 2009). In southern Libya 

(Morton et al., 2011) and Saudi Arabia (Knox et al., 2007; Bassis et al., 2016a), provenance changes 

were identified during the Carboniferous based on heavy minerals, pointing to re-organisation of the 

sediment dispersal system. A comparative field study on deposits of both Gondwana glaciations in Saudi 

Arabia has been carried out by Keller et al. (2011); detailed petrographic and bulk-rock geochemical 

data on these formations were provided by Bassis et al. (2016b). Though, in these studies, common 

glacial and proglacial sedimentary features can be found in both formations, the sedimentary rocks of 

the Late Ordovician glaciation are significantly more quartzose than those of the late Palaeozoic 

glaciation. The high maturity of lower Palaeozoic sedimentary rocks of northern Gondwana – untypical 

for post-orogenic sediment – was also discussed by Garfunkel (2002) and Avigad et al. (2005). 

Recycling of older sedimentary units cannot be ruled out, but Avigad et al. (2005) suggested strong 

chemical weathering under a corrosive Cambrian–Ordovician atmosphere in a vegetation-free landscape 

to be the reason for this high sandstone maturity. Strong chemical weathering is indicated by the highest 

marine 87Sr/86Sr level in Earth’s history during that time (e.g. Squire et al., 2006) and may have been 

enhanced by acidic precipitation due to Ordovician volcanism (Keller and Lehnert, 2010). Morag et al. 

(2011) assumed a far distant sediment source for lower Palaeozoic sedimentary rocks in Israel and 

Jordan based on pre-Pan-African detrital zircon ages. In Ethiopia, sedimentological and palynological 

studies on Palaeozoic glacial successions have been carried out by Dow et al. (1971), Beyth (1972a; 

1972b), Saxena and Assefa (1983), Bussert and Schrank (2007), Bussert and Dawit (2009) and Bussert 

(2010; 2014), providing evidence that two different glaciations are recorded. Geochemical and heavy 

mineral data to assess the provenance of these sedimentary rocks are lacking so far. A likely proximal 

source area is the Arabian–Nubian Shield, which forms the northernmost part of the East African Orogen 

and reaches south to the northern Ethiopian basement (Figure 2-1). It consists of Neoproterozoic juvenile 

arcs, younger sedimentary and volcanic basins, voluminous granitoid intrusions and minor remobilised 

pre-Neoproterozoic crust and further contains ophiolite (Stern, 1994; Meert, 2003; Johnson et al., 2011; 

Stern et al., 2012). Potential distal source areas are the Archean cratons and the Proterozoic mobile belts 

in the centre of Gondwana (Figure 2-1).  

 

In this study, we provide petrographic and geochemical data for the two Palaeozoic glaciogenic 

successions in Ethiopia in order to: 

• Differentiate both formations based on petrography and geochemistry making it possible to 

assign unknown samples to one of them, 

• Show that different weathering and transport conditions prevailed during both glacial periods, 

• Point out a change in regional correlation with Saudi Arabia (Keller et al., 2011; Bassis et al., 

2016a; 2016b) between the two glaciations, reflecting different extents of the palaeo-ice sheets. 
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Figure 2-1: Eastern Africa and Arabia with occurrences of Precambrian rocks and major tectonic units. The outline of Ethiopia 
and the study regions are indicated in blue. 

 

2.2. Geological setting 

Palaeozoic sedimentary rocks crop out in the northern Ethiopian province Tigray around the Mekelle 

Basin and to a minor extent in the Blue Nile region in the west of the country (Kazmin, 1972; Garland, 

1980; Tsige and Hailu, 2007). The Palaeozoic units comprise sediments of the two major Gondwana 

glaciations in the Upper Ordovician and the Carboniferous–Permian (Saxena and Assefa, 1983; 

Kumpulainen et al., 2006; Bussert and Schrank, 2007; Kumpulainen, 2007; Bussert, 2010). They overlie 

Neoproterozoic basement rocks and are in turn overlain by Mesozoic clastic and carbonate sediments 

(Beyth, 1972a; Tefera et al., 1996; Dawit, 2010).   

 

The basement in Ethiopia represents the junction of the Mozambique Belt in the south and the Arabian–

Nubian Shield in the North (Kazmin et al., 1978; Tefera et al., 1996; Stern et al., 2012; Figure 2-1). In 

the southern part of the Ethiopian basement, Neoproterozoic low-grade metavolcanic and 

metasedimentary rocks record submarine volcanism and marine sedimentation at the northern rim of the 
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closing Mozambique Ocean (Kazmin et al., 1978; Miller et al., 2003; Miller et al., 2009). In northern 

Ethiopia, the basement comprises two main units: the metavolcanic/metavolcaniclastic Tsaliet Group 

and the overlying Tambien Group, a slate and metacarbonate succession, both of up to greenschist facies 

(Beyth, 1972b; Alene et al., 2006). Syn- and post-tectonic granites and diorites intruded both units 

(Beyth, 1972b; Kazmin et al., 1978; Tefera et al., 1996).  

 

 

Figure 2-2 Geological maps of the study areas showing the sampling locations. Numbers next to the sampling locations 
correspond to those in Table Table 2-1. (a) Northern Ethiopia, modified after Arkin et al. (1971), Garland et al. (1978), 
Bussert (2014). (b) Blue Nile region, modified after Tsige and Hailu (2007), Dawit (2014). The term “Fincha Sandstone” is 
taken from Dawit (2014). 
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The Palaeozoic glacial deposits of Ethiopia were first described by Dow et al. (1971) and Beyth (1972a; 

1972b) as two facies (tillite facies – Edaga Arbi Glacials and sandstone facies – Enticho Sandstone), 

which interfinger laterally and both, in places, lie unconformably on the basement. They assigned both 

facies to one glacial episode. Later, early Palaeozoic trace fossils (e.g. Arthrophycus alleghaniensis) 

were found in the upper part of the Enticho Sandstone and gave a minimum age for the underlying 

glaciogenic deposits (Saxena and Assefa, 1983; Kumpulainen et al., 2006). In the Edaga Arbi Glacials, 

Carboniferous–Permian palynomorphs provide age control (Bussert and Schrank, 2007; Bussert, 2014).  

 

The Enticho Sandstone unconformably overlies the Neoproterozoic basement and has a thickness of up 

to 200 m (Saxena and Assefa, 1983; Dawit, 2010). Bussert and Dawit (2009) provide detailed facies 

descriptions. It consists of basal tillite, a lower glaciogenic sandstone unit and an upper shallow marine 

sandstone unit. The tillite is exposed only in the area east of Wukro (Figure 2-2). Its matrix is red medium 

sand. Clasts are angular boulders of metavolcanics, metapelites and conglomerates, probably from the 

local basement and well-rounded quartz pebbles, which may be recycled (Figure 2-3 g). Since large 

volumes of sandstone are not present in the local basement, the matrix material may have been 

transported from further away. Associated with the tillite are soft sediment deformation structures in 

underlying sandstone (Figure 2-3 h) and in the tillite itself, which may represent shallow marine push-

moraine or grounding line complexes (Dawit, 2010). The glaciogenic unit consists mainly of massive, 

partly large-scale cross-bedded fine- to medium-grained sandstone, with intercalated gravel beds (Figure 

2-3 f) interpreted to represent pulses of glacial outwash (Bussert and Dawit, 2009; Dawit, 2010). The 

shallow marine unit comprises well-sorted sandstones with bipolar cross-bed sets and rhythmic mud 

drapes suggesting a tide-dominated shallow marine depositional setting (Bussert and Dawit, 2009; 

Dawit, 2010). The Enticho Sandstone occurs along the eastern rim of the Mekelle Basin (Figure 2-2 a).  

 

The Edaga Arbi Glacials unconformably overlie the Enticho Sandstone and, in places, lie directly on the 

basement (e.g. Beyth, 1972b). They crop out along the western and southwestern margin of the Mekelle 

Basin and to a minor extent in the Blue Nile region in western Ethiopia (Figure 2-2). Their thickness is 

around 200 m in northern Ethiopia, but significant lateral thickness variations occur (Bussert, 2010). 

Bussert and Dawit (2009) and Bussert (2014) give detailed descriptions of the sediment facies. The 

Edaga Arbi Glacials consist of tillite at the base overlain by laminated clay- and siltstones, which contain 

scattered out-sized clasts and lenses of sandstone (Beyth, 1972b; Bussert and Dawit, 2009; Bussert, 

2014). In the tillite, mostly rounded boulders of granitoid, metabasic and metasedimentary rock are 

found and often exhibit striated surfaces (Figure 2-3 c). Outsized clasts in rhythmic lamination of 

sandstone and silt- to claystone (Figure 2-3 b) are interpreted as dropstones (Bussert and Dawit, 2009; 

Bussert, 2014). The sandstone lenses may represent channelized glacial outwash deposits or 

hyperpycnal sediment flows (Bussert and Dawit, 2009; Bussert, 2014).  Bussert (2014) proposed a 

model for the generation of this succession with initial glacier advance and deposition of tillites, 

followed by the formation of subaerial and subaqueous outwash fans during the glacier retreat and the 

final suspension settling of silt and clay in calm water of a proglacial lake or fjord. Periodic hyperpycnal 

sediment flows and the deposition of dropstones interrupted the suspension settling. The association of 

the Edaga Arbi Glacials with glacial landforms on the basement surface, such as roche moutonnées, 

rock drumlins as well as glacial striae confirms a glacial origin (Bussert, 2010). In the Blue Nile region 

(Figure 2-2 b) Permian–Triassic continental sandstones partly overlie the Edaga Arbi Glacials (Dawit, 

2014). The Palaeozoic succession is – unconformably in northern Ethiopia – overlain by the Mesozoic 

Adigrat Sandstone, the Antalo Limestone, Agula Shale and Amba Aradam Formation (Beyth, 1972b; 

Dawit, 2010). 
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Figure 2-3: Field photographs. (a) Sandstone lens above tillite with muddy matrix and rounded clasts of various compositions 
at the base of the Edaga Arbi Glacials. (b) Dropstones in rhythmically laminated sandstone and silt- to claystone in Edaga Arbi 
Glacials. (c) Striated boulder in tillite at the base of Edaga Arbi Glacials. (d) Rhythmic mud drapes on cross-beds in marine part 
of the Enticho Sandstone indicating intertidal environment. (e) Herringbone cross-lamination in marine part of Enticho 
Sandstone indicating tidal environment. (f) Alternation of gravel beds and sandstone in glaciogenic part of Enticho Sandstone. 
(g) Tillite at the base of glaciogenic Enticho Sandstone. (h) Soft-sediment deformation structures in sandstone underlying 
tillite in the basal part of Enticho Sandstone.  
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2.3. Sampling and methods 

Thirty-two sandstone samples were taken from surface outcrops, 19 from the Enticho Sandstone and 13 

from the Edaga Arbi Glacials. The focus of the sampling campaign was on northern Ethiopia since 

Palaeozoic glacial sediments are more abundant there. In the Blue Nile region in the west of the country, 

glacial sediments could be identified at only one locality (Figure 2-2 b). In addition to the sedimentary 

rocks, 7 samples from the local basement of northern Ethiopia were studied, as well as 11 samples from 

boulders in tillite of the Edaga Arbi Glacials. Figure 2-2 shows the sample locations; Table 2-1 provides 

the corresponding coordinates. Sampling sites were chosen in order to cover a laterally extensive area 

based on previous stratigraphic and sedimentological work of R. Bussert and E. L. Dawit (Bussert and 

Schrank, 2007; Bussert and Dawit, 2009; personal communication). We paid attention to select sampling 

sites where there is biostratigraphic control on the sediments. Furthermore, we distinguished the Enticho 

Sandstone and Edaga Arbi Glacials based on homo-/heterogeneity in grain size and mineralogy and on 

sedimentary structures: the outcrops of the Enticho Sandstone – apart from the tillite at the base of one 

outcrop (see Section 2) – appear uniform in grain size and mineralogy (highly quartzose). The Edaga 

Arbi Glacials are much more heterogeneous (see Section 2.2). In the Edaga Arbi Glacials, we mainly 

sampled from the sandy lenses. Three samples are from the tillite matrix (Table 2-1). One sample was 

taken with highly uncertain stratigraphic assignment (sample Eda-5, Table 2-1). For reasons of 

comparability, we focused on the fine-grained parts of the sandstones during sampling, i.e. a dominating 

grain size of 63–250 µm, using the grain-size comparator chart for field work by Stow (2005). 

 

Petrography 

Thin sections were prepared from all samples. The samples from basement and tillite boulders were 

studied only qualitatively in to determine the rock type. The framework composition of the sandstone 

samples was assessed by point-counting of 300 grains per sample using the “traditional” counting 

method (e.g. Decker and Helmold, 1985). In contrast to the Gazzi-Dickinson method (e.g. Ingersoll et 

al., 1984; Zuffa, 1985), minerals within lithic fragments are counted as the type of fragment they occur 

in. We used this method to make sure that information conveyed by the type of lithic fragment is not 

lost. However, only few lithic fragments are present in the samples so that the choice of the counting 

method does not have a significant effect on the result. The matrix content was estimated based on the 

comparison chart of Folk (1951) with an upper grain-size limit for the matrix of 30 µm. Sorting and 

roundness of the framework grains were estimated according to Powers (1953). For sandstone 

classification, we used the scheme of McBride (1963; Fig. 2-4). We did not use the scheme of Dott 

(1964) that includes wackes, even though many samples have a high matrix content (Table A 3). This 

is, because in many cases it cannot be decided whether the matrix is primary or secondary.  

 

Major and trace element geochemistry 

For geochemical analysis, ~50 g of each of the 50 samples were pulverised to a particle size <63 µm 

using an agate vibratory disc mill. Geochemical analyses were carried out at the Geoscience Centre at 

the University of Göttingen, Germany. Concentrations of major elements and selected trace elements 

were determined by X-ray fluorescence analysis (XRF) on fusion tablets. For each sample 2.8 g of rock 

powder were mixed with 5.6 g of a di-lithium tetraborate/lithium metaborate fluxing agent 

(Spectromelt® A12, Merck) and 0.64 g lithium fluoride and fused in platinum crucibles at 1250 °C. 

XRF analysis was performed using a PANalytical AXIOS Advanced sequential X-ray fluorescence 

spectrometer equipped with a rhodium target tube for sample excitation and the software SuperQ 4 for 

data processing. Further trace elements, including rare earth elements (REE) were quantified using 

inductively coupled plasma mass spectrometry (ICP-MS) on the dissolved sample. For each sample 

100 mg of rock powder were digested in the following steps using a PicoTrace® acid sample digestion 

system: (1) pre-reaction with 2 ml HNO3 at 50 °C overnight, (2) first pressure phase with 3 ml HF (40%) 
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and 3 ml HClO4 (70%) at 150 °C for 8 hours, (3) evaporation at 180 °C for 16 hours, (4) second pressure 

phase with 10 ml double de-ionised water, 2 ml HNO3 and 0.5 ml HCl at 150 °C for 4 hours. The 

resulting solution was diluted to 100 ml with ultrapure water. Analysis was performed using a 

ThermoElectron VG PlasmaQuad 2 quadrupole ICP-MS. Measurements were calibrated to the standard 

JA-2 of the Geological Survey of Japan.  

 

Table 2-1: Samples, corresponding locations and geographic coordinates (WGS84). The stratigraphic assignment is based on 
biostratigraphic evidence (B) or lithofacies characteristics (LF) in the outcrop or it is uncertain (U). 

# Sample Formation Age Location North(°) East(°) Position 
within Fm. 

Facies/ 
Lithology 

Strati-
graphic 
assignment 

1 Enti-4 Enticho Upper Ordovician Atsbi south 13.83465 039.71262 Base Tillite matrix U 
2 Enti-5 Enticho Upper Ordovician Atsbi north 13.88828 039.74783 Base  Glacial B 
3 Enti-7 Enticho Upper Ordovician Atsbi north 13.88842 039.74259 Base Glacial B 
4 Enti-9 Enticho Upper Ordovician Wollwello 14.22037 039.65014 Base  Glacial B 
5 Enti-13 Enticho Upper Ordovician Zalambassa 14.49275 039.41911 Base Glacial LF 
6 S1 Enticho Upper Ordovician Sinkata 13.96861 039.61167 Base Glacial B 
7 S2 Enticho Upper Ordovician Sinkata 13.96861 039.61167 Base Glacial B 
8 Nib-1 Enticho Upper Ordovician Adigrat south 14.25194 039.48972 Base Glacial B 
9 Nib-2 Enticho Upper Ordovician Adigrat south 14.25194 039.48972 Base Glacial B 
10 North-1 Enticho Upper Ordovician Adigrat north 14.31333 039.46000 Base Glacial B 
11 North-2 Enticho Upper Ordovician Adigrat north 14.31333 039.46000 Base Glacial B 
12 Enti-6 Enticho Upper Ordovician Atsbi north 13.88842 039.74827 Top Marine B 
13 Enti-10 Enticho Upper Ordovician Wollwello 14.21839 039.64994 Top Marine B 
14 Enti-12 Enticho Upper Ordovician Zalambassa 14.49627 039.41911 Top Marine LF 
15 S3 Enticho Upper Ordovician Sinkata 13.97056 039.61111 Top Marine B 
16 S4 Enticho Upper Ordovician Sinkata 13.97056 039.61111 Top Marine B 
17 Nib-3 Enticho Upper Ordovician Adigrat south 14.25222 039.49583 Top Marine B 
18 Nib-4 Enticho Upper Ordovician Adigrat south 14.25222 039.49583 Top Marine B 
19 North-3 Enticho Upper Ordovician Adigrat north 14.31944 039.45889 Top Marine B 
20 Eda-2 Edaga Arbi Carboniferous-Permian Enticho 14.28166 039.14725 Base Tillite matrix B 
21 Eda-3 Edaga Arbi Carboniferous-Permian Enticho 14.27929 039.14836 Base Sand lens U 
22 Eda-4 Edaga Arbi Carboniferous-Permian Edaga Robi 14.38906 039.18161 Base  Tillite matrix U 
23 Eda-6 Edaga Arbi Carboniferous-Permian Edaga Arbi west 14.05667 039.07095 Base  Sand lens LF 
24 Eda-8 Edaga Arbi Carboniferous-Permian Megab south 13.90944 039.32301 Base  Sand lens B 
25 Eda-10 Edaga Arbi Carboniferous-Permian Dugum 13.84957 039.49003 Base  Sand lens LF 
26 Eda-11 Edaga Arbi Carboniferous-Permian Abi Addi 13.61842 039.00042 Base  Sand lens LF 
27 Hu-1 Edaga Arbi Carboniferous-Permian Bure, Blue Nile 10.31057 037.05068 Base  Sand lens LF 
28 Eda-9 Edaga Arbi Carboniferous-Permian Megab south 13.90915 039.32235 Top  Sand lens B 
29 Eda-12 Edaga Arbi Carboniferous-Permian Samre 13.17844 039.19745 Top  Sand lens B 
30 Hu-2 Edaga Arbi Carboniferous-Permian Bure, Blue Nile 10.31057 037.05068 Top  Sand lens LF 
31 Eda-1 Edaga Arbi Carboniferous-Permian Adigrat west 14.31171 039.40472 Uncertain Tillite matrix LF 
32 Eda-5 Uncertain Uncertain Adwa east 14.19102 038.93957 Uncertain Sand lens U 

33 Bas-1 

Boulders 
in 

Edaga 
Arbi 
tillite 

Unknown Megab 13.93496 039.36520  Metabasite  
34 Bas-2 Unknown Megab 13.93496 039.36520  (Meta)basite  
35 Gn-1 Unknown Megab 13.93496 039.36520  Paragneiss  
36 Gr-3 Unknown Adigrat west 14.31171 039.40472  Granitoid  
37 Gr-4 Unknown Adigrat west 14.31171 039.40472  Granitoid  
38 Gr-5 Unknown Adigrat west 14.31171 039.40472  Granitoid  
39 Gr-6 Unknown Megab 13.93496 039.36520  Granitoid  
40 Gr-7 Unknown Megab 13.93496 039.36520  Granitoid  
41 Gr-8 Unknown Megab 13.93496 039.36520  Granitoid  
42 Gr-9 Unknown Megab 13.93496 039.36520  Diorite/Gabbro  
43 Gr-10 Unknown Megab 13.93496 039.36520  Diorite/Gabbro  

44 Neop-1 Basement Neoproterozoic Atsbi south 13.83374 039.71132  Metagreywacke  
45 Neop-2 Basement Neoproterozoic Negash 13.83561 039.61442  Metatillite  
46 Neop-3 Basement Neoproterozoic near Negash 13.94186 039.59876  Metabasite  
47 Neop-4 Basement Neoproterozoic Zalambassa 14.49276 039.41899  Metapelite  
48 Neop-5 Basement Neoproterozoic Road Debre Damo 

– Enticho  
14.37729 039.27883  Metagreywacke  

49 Gr-1 Basement 
pluton 

Neoproterozoic Negash 
highschool 

13.89164 039.60517  Granitoid  

50 Gr-2 Basement 
pluton 

Neoproterozoic Sebea 14.46629 039.48225  Granitoid  

 

 

The Eu anomaly of the sandstone samples was calculated as suggested by McLennan (1989): 

𝐸𝑢

𝐸𝑢*
=  

𝐸𝑢𝑁

(𝑆𝑚𝑁 ∗ 𝐺𝑑𝑁)0.5
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The subscript N indicates chondrite-normalised values (see Figure 2-6). To put the degree of weathering 

and leaching into numbers, we calculated the frequently used chemical index of alteration as proposed 

by Nesbitt and Young (1982): 

𝐶𝐼𝐴 =  
𝐴𝑙2𝑂3

(𝐴𝑙2𝑂3+𝐶𝑎𝑂* +𝑁𝑎2𝑂+𝐾2𝑂)
∗ 100. 

 

The molecular proportions of the respective oxides are used. CaO* is the amount of CaO incorporated 

in silicates. Therefore, out of the Edaga Arbi Glacials only five samples without carbonate cementation 

are considered. To get an idea of the tectonic signature of the sandstones we used the tectonic setting 

discrimination diagrams of Verma and Armstrong-Altrin (2013) based on discriminant functions 

employing major oxides and trace elements. 

 

For statistical analysis of the data, their compositional nature – vectors of non-negative values summing 

up to a whole – was taken into account. Standard multivariate statistical methods are designed for data 

in the real space whereas the sample space of compositional data is the simplex with the respective 

dimension (Aitchison, 1982; Egozcue et al., 2011). To transform compositional data from the simplex 

to the real space, Aitchison (1986) introduced the principle of log-ratio transformation, that is, taking 

the logarithms of ratios of components. In this study, we used the centred log-ratio (clr) transformation 

to perform a principal component analysis (PCA) of the major and trace element data. This means that 

parts of a composition (e.g., element concentrations of a sample) are transformed by taking the natural 

logarithm of the ratio of the respective part and the geometric mean of the whole composition (Aitchison, 

2003). We performed a second PCA not considering the highly mobile elements K, Rb, Ba, Sr, Mn and 

Na. The high variability of these elements masks the provenance signal. Moreover, Ca and Mg are 

excluded, because they are probably influenced by carbonate cement. The major and trace element data 

of the local basement and tillite boulders were used for comparison. For the use of log-ratios the data 

set must not contain any zeros. Therefore, those have to be replaced by small values. We chose a 

multiplicative zero replacement using 0.65 times the detection limit, as suggested by Martín-Fernández 

et al. (2003), since only very few values are below the detection limits of the XRF and ICP-MS. 

 

2.4. Results 

Petrography 

According to the classification scheme of McBride (1963) the glaciogenic facies of the Enticho 

Sandstone is quartzarenite to  subarkose with an average composition of 90.5% quartz, 7.4% feldspar 

and 1.4% lithic fragments. The marine facies is quartzarenite with an average composition of 99.0% 

quartz, 0.2% feldspar and 0.3% lithic fragments (Figure 2-4, Table A 3). The lithic fragments are mostly 

plutonic or sedimentary. The sedimentary lithoclasts are fine sand- to siltstone, sometimes with 

metamorphic overprint, indicated by foliation. As expected, grain size and roundness are more variable 

in the glaciogenic than in the marine unit (Figure 2-5 b, c, Table A 3). The average matrix content is 

16% with an average in the glaciogenic unit of 20% and 11% in the marine unit. Accessory minerals are 

mostly zircon, tourmaline, rutile and some opaque phases. The sandstones in the Edaga Arbi Glacials 

are subarkose to arkose with an average composition of 74.8% quartz, 18.9% feldspar and 3.3% lithic 

fragments (Figure 2-4, Table A 3). Most lithic fragments are plutonic or sedimentary, as in the Enticho 

Sandstone, but few volcanic lithics were also counted (Table A 3). Apart from zircon, tourmaline, rutile 

and opaque phases, garnet is an additional accessory mineral. The sandstones in the Edaga Arbi Glacials 

are generally heterogeneous in composition and texture with variable roundness and moderate sorting 

(Figure 2-5 a, Table A 3). The average matrix content is 20%. 4 of 13 analysed samples of the Edaga 

Arbi Glacials are strongly cemented with calcite with 20–25% of the thin section area, 4 samples contain 

up to 5% calcite cement and the remaining 5 samples contain almost no calcite. No indicators for 
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significant sediment recycling, such as abraded quartz overgrowths or abundant sedimentary lithoclasts 

were found in either of the two formations. 

 

The samples taken from the basement include two metagreywackes, one metatillite, one metapelite, one 

metabasite and two granites. The boulders sampled from the tillite at the base of the Edaga Arbi Glacials 

are classified as six granitoids, two diorites/gabbros two metabasites and one paragneiss (Table 2-1). 

 

 

Figure 2-4: Sandstone classification diagram after McBride (1963). Q = quartz, F = feldspar, L = lithic fragments (thin section 
point-counting). 

 

Bulk-rock geochemistry 

The Enticho Sandstone, especially the marine unit, is depleted in the mobile elements Rb, Ba, K and Sr 

but enriched in Th and Zr compared to the average upper continental crust (Figure 2-6). Its elemental 

composition is highly variable, especially in the mobile elements. The REE pattern is typical for 

sedimentary rocks of upper crustal origin (Figure 2-6; McLennan et al., 1993). The chondrite-normalised 

LaN/YbN, which quantifies the LREE enrichment, is on average 10.7. The Eu anomaly is pronounced 

(i.e. <1) in the Enticho Sandstone with a mean Eu/Eu* for the glaciogenic facies of 0.8 and 0.7 for the 

marine facies. The CIA is on average 92 for marine facies and 78 for the glaciogenic facies (Table A 4). 

The elemental composition of the Edaga Arbi Glacials is more uniform. The depletion in mobile 

elements and the Zr enrichment is less than for the Enticho Sandstone. The chondrite-normalised 

LaN/YbN is on average 5.9 and the mean Eu/Eu* 0.9. The average CIA is 62 (Table A 4). Sample Eda-

5, with uncertain stratigraphic assignment, differs from the Edaga Arbi Glacials sandstone by high 

depletion in mobile elements, Zr enrichment (Figure 2-6) and a high CIA of 95.  

 

In the PCA biplot of major and trace elements (Figure 2-7 a), a clear separation between the two 

formations as well as between the glaciogenic and the marine facies becomes obvious: along the rays of 

Ni and Th (enriched in Enticho Sandstone) versus Ca, Mg and Na (enriched in Edaga Arbi Glacials) the 

two formations can be distinguished. Along the rays K, Rb, Ba and Sr (enriched in glaciogenic) versus 
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P, Y, V, Sc and HREE (enriched in marine), different facies separate. Sample Eda-5 has a similar 

composition to the Enticho Sandstone. The first three PCs (Figure 2-7 b, c) of the principal component 

analysis excluding mobile elements and carbonate cement influence together explain 74% of the total 

variability. Again, a separation of the two formations is possible with the Enticho Sandstone being 

enriched in Th, Zr, Hf, U, Si and depleted in P and Al compared to the Edaga Arbi Glacials. This 

separation is facies-independent since no clustering of marine and glaciogenic Enticho Sandstone is 

visible. No patterns related to stratigraphic or geographic sampling position were detected (not shown 

in Fig. 7).  

 

 

Figure 2-5: Thin section photomicrographs of the Edaga Arbi Glacials and the marine and glaciogenic units of the Enticho 
Sandstone. Qz = quartz, Pl = plagioclase, Kfs = potassium feldspar, Lp = plutonic lithic fragment, Lv=(meta)volcanic lithic 
fragment, St = staurolite, Ky = kyanite, Zrn = zircon (mineral abbreviations after Kretz (1983); Whitney and Evans (2010)). 
PPL = plane-polarised light, XPL = cross-polarised light. 

 

In the tectonic setting discrimination diagram of Verma and Armstrong-Altrin (2013) based on major 

oxide concentrations, the Enticho Sandstone plots in the “continental rift” field, the Edaga Arbi Glacials 

in the “continental rift” and “collision” fields (Figure 2-8 a). In the active versus passive margin diagram 

of Verma and Armstrong-Altrin (2016; Figure 2-8 b) based on major oxides and selected trace elements, 

the Enticho Sandstone is assigned to a passive margin setting whereas the Edaga Arbi Glacials plot 
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partly in the active and partly in the passive margin field. The Th/Sc and Zr/Sc ratios are generally higher 

for the Enticho Sandstone than for the Edaga Arbi Glacials (Figure 2-9). Significant Zr enrichment that 

would lead to a deviation from the compositional trend is not clearly visible for either of the formations. 

A plot of the Th/Sc versus Zr/Sc ratios of the samples grouped geographically into north, centre and 

south (Figure 2-9 b) reveals a trend towards higher Th/Sc and higher Zr/Sc ratios along the assumed 

transport direction from south to north for both formations.  

 

 

Figure 2-6: Selected major and trace element concentrations normalised to the average upper continental crust (UCC; 
normalising values from McLennan (2001)) are shown on the left side. Rare earth element concentrations normalised to 
average CI chondrites (normalising values from Taylor and McLennan (1985)) are shown on the right side. 

 

Of the basement samples, the granites are enriched in Nb, HREE and Y and depleted in Cr and Ni 

compared to the centre of the data set plotted in Figure 2-10. The metasediments are enriched in V, Sc, 

Fe, Ni and Cr and depleted in Zr, Th, Hf and U, similar to the metabasite (Figure 2-10). The overall 

composition of the basement samples resembles that of the Edaga Arbi Glacials (Figure 2-10). Of the 
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boulders sampled from tillite at the base of the Edaga Arbi Glacials, the granitoids have similar 

compositions to the granites in the basement (Figure 2-10 a). The diorites/gabbros have variable 

compositions, one being rich in P and the other in Fe and Sc (Figure 2-10 a). Of the basalts, one is 

enriched in HREE, Nb and Y, the other in V, Sc and Cr. The composition of the paragneiss is close to 

the centre of the data set with slight enrichment in Fe, Sc and Cr.  

 

 

Figure 2-7: Compositional biplots of (a) the first two principal components of a principal component analysis (PCA) based on 
the clr-transformed concentrations of the major and trace elements considered in Fig. Figure 2-6 with the sum of LREE and 
HREE, (b) the first and second and (c) the first and third principal components of a PCA based on the clr-transformed 
concentrations of a subset of the elements considered in Fig. Figure 2-6, which is assumed to be less affected by diagenesis 
and leaching. 

 

2.5. Discussion 

When interpreting bulk-rock geochemical data, grain-size effects have to be considered (e.g., Rollinson, 

1993; von Eynatten et al., 2012). The grain-size distribution of a sediment is influenced by transport 

processes, such as hydraulic sorting and comminution (e.g., Rubey, 1933; Garzanti et al., 2008; von 

Eynatten et al., 2012) and by the inherited grain size of the respective minerals in the parent rock (Morton 

and Hallsworth, 1994). Even though we collected samples of the same major grain size, the degree of 

sorting of framework grains and the matrix content differ (Section 2.4; Table A 3). Therefore, for 

instance, the high contents of Mg, Ca, Na and K in the glacial samples (Figure 2-7 a) are probably not 

only related to (little) weathering and (strong) diagenesis but also to the poor sorting and higher matrix 

content of the glacial samples as compared to the marine (Table A 3). To account for the facies 

differences, we plotted the glaciogenic and marine facies of the Enticho Sandstone separately in the 

respective diagrams (Figure 2-4, Figure 2-6 to 2-10). 

 

 

Figure 2-8: Tectonic setting discrimination diagrams after Verma and Armstrong-Altrin (2013; 2016). (a) Discriminant 
functions (DF) based on major oxides (SiO2, TiO2, Al2O3, Fe2O3, MnO, MgO, CaO, Na2O, K2O, P2O5; Verma and Armstrong-Altrin, 
2013). (b) Discriminant function based on major oxides and selected trace elements (SiO2, TiO2, Al2O3, Fe2O3, MnO, MgO, 
CaO, Na2O, K2O, P2O5, Cr, Nb, Ni, V, Y, Zr; Verma and Armstrong-Altrin, 2016). 
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A clear distinction of the two formations is possible, particularly in terms of their major and trace 

element compositions (e.g. Figure 2-7, Figure 2-8). This makes it possible to assign stratigraphically 

uncertain samples: sample Eda-5 was tentatively assigned to the Edaga Arbi Glacials by 

sedimentological characteristics in the field but without biostratigraphic evidence. Based on the 

geochemical characteristics it is likely that it belongs to the Enticho Sandstone instead. Furthermore, the 

samples taken from an outcrop in Enticho (samples Eda-2 and Eda-3) – originally the type location of 

the Enticho Sandstone – can be assigned to the Edaga Arbi Glacials based on their petrography and 

chemical composition (Table A 3, Table A 4).   

 

 

Figure 2-9: Th/Sc versus Zr/Sc diagram after McLennan et al. (1993). (a) Samples analysed in this study, stratigraphically 
equivalent units from Saudi Arabia (Bassis et al., 2016b), boulders in tillite of the Edaga Arbi Glacials (granitoid, 
diorite/gabbro, metabasite and gneiss) and local basement (granitoid, metabasite and metasedimentary rocks; this study). 
(b) Samples analysed in this study grouped by their geographic position. 

 

The high variability in Ca, Mg, Na, K, Rb and Ba (Figure 2-7 a) in the data set reflects the high mobility 

of these elements, which are present in the glaciogenic sedimentary rocks but leached from the marine. 

The enrichment of Si in the Enticho Sandstone (Figure 2-7) indicates a higher quartz content, which is 

in agreement with petrographic observations (Figure 2-4, Table A 3) and points to high maturity. The 

negative correlation of Al and Si (Figure 2-7 b) indicates transport processes that remove clay minerals 

and feldspars and destroy lithic fragments and thus relatively enrich quartz in the Enticho Sandstone. 

Similarly, the negative correlation of P and Th (Figure 2-7 b, c) suggests weathering under acidic 

conditions, in which apatite is destroyed and Th persists and which affected the Enticho Sandstone more 

than the Edaga Arbi Glacials. This is supported by the higher CIA values for the Enticho Sandstone 

(Table A 4). The correlations of Hf, Th, U and Nb with Zr and Ti in the Enticho Sandstone (Figure 

2-7 b, c) suggests that these elements are carried zircon and rutile. The presence of these stable heavy 

minerals is an additional indicator for maturity. The high maturity of the Enticho Sandstone is probably 

a consequence of (1) intense chemical weathering in the source area prior to the glaciation and (2) long 

transport and/or marine reworking, in which clay minerals produced during weathering are removed 

from the sediment. Intense chemical weathering in northern Gondwana under a corrosive 

Neoproterozoic to pre-glacial Ordovician atmosphere was suggested by, e.g., Avigad et al. (2005). The 

assignment of the Enticho Sandstone to “continental rift” and “passive margin” settings based on major 

     

             

     

    

   

 

  

 
 
  

 

          

              

                   

                        

                 

         

         

     

          

       

     

       

     

     

       

     

     

  

         

          

          

              

            

          

         

           

          

         
  

 
 
 
 
  
  

  
 
 
  
 
 

            
            



 

29 

and trace element composition (Figure 2-8; Verma and Armstrong-Altrin, 2013; 2016) is related to the 

higher maturity as well.  

 

For the Edaga Arbi Glacials, on the other hand, Al enrichment indicates a higher content of feldspar and 

clay minerals and thus a lower maturity (Figure 2-7 b, c). Since Eu is enriched in plagioclase, the less 

pronounced anomaly in the Edaga Arbi Glacials (Figure 2-6) corresponds to a higher feldspar content 

as well. This is in accordance with the petrographic observations (Figure 2-4, Table A 3). The higher 

concentration of HREE in the Edaga Arbi Glacials is probably related to the presence of garnet. The 

tendency of the Edaga Arbi Glacials to “collision” and “active margin” signatures (Figure 2-8) points to 

fresher, less reworked material deposited in the Carboniferous–Permian and does not have to indicate 

different tectonic settings.  

 

 

Figure 2-10: Compositional biplots of (a) the first and second and (b) the first and third principal components of a principal 
component analysis (PCA) based on the clr-transformed concentrations of the major and trace elements in Fig. Figure 2-7 (b, 
c) comparing the samples analysed in this study with stratigraphically equivalent samples from Bassis et al. (2016b), local 
basement samples and boulders in tillite of the Edaga Arbi Glacials (this study). Co is left out, because it was not measured 
by Bassis et al. (2016b). Carb. = Carboniferous, Perm. = Permian, Ord.= Ordovician. 

 

Neither petrography nor the Th/Sc and Zr/Sc ratios give hints to sedimentary recycling being an 

important process for one of the formations. The few fine-grained and foliated sedimentary lithoclasts 

may be due to local erosion of slates from the Neoproterozoic basement. The south-north trend of Th/Sc 

and Zr/Sc ratios in both formations (Figure 2-9 b) may be due to progressive enrichment of stable heavy 

minerals, such as zircon, along the transport path. Zircon is a major carrier of Zr and Th (Figure 2-7). 

Another possibility would be the admixture of felsic material.  

 

The enrichment of the Enticho Sandstone in Zr, Hf, Th, U, Nb and the light REE (Figure 2-5, Figure 

2-7) points to felsic source rocks. The pronounced negative Eu anomaly (Figure 2-5) indicates evolved 

crustal material as a source. Possible source areas are the Archean cratons (Congo craton, Tanzania 
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craton) or the Meso- and Neoproterozoic mobile belts (Kibaran Belt, Irumide Belt, Mozambique Belt) 

in the inner part of Gondwana (Figure 2-1). A distal source area in central Gondwana has also been 

proposed for Cambrian–Ordovician sandstone in Israel and Jordan: Based on detrital zircon ages, 

Kolodner et al. (2006) infer a progressive southward migration of the source area during the Cambrian–

Ordovician. Hf isotopic data in Neoproterozoic zircons of these formations are incompatible with the 

local Arabian Nubian Shield. This led Morag et al. (2011) to the assumption that the source region might 

be within the remobilised crustal areas further south (Figure 2-1). If this trend extends to the Upper 

Ordovician, a distal source area in the inner part of Gondwana for the Enticho Sandstone is likely.  

 

In the Edaga Arbi Glacials, the relative enrichment of V and Cr and the higher proportion of HREE 

indicates a higher influence of mafic and garnet-bearing source material (e.g. Bhatia and Crook, 1986; 

McLennan et al., 1993). For example, smectite – commonly a weathering product of mafic precursor 

minerals – can be rich in Cr and V (Chamley et al., 1979). Garnet is a major carrier of HREE (Harangi 

et al., 2001). The poor Eu anomaly (Figure 2-6) indicates contribution of juvenile source material 

(McLennan et al., 1993). Similarly, the lower Th/Sc of the Edaga Arbi Glacials compared to the Enticho 

Sandstone points to a higher influence of undifferentiated crustal material (McLennan et al., 1993). A 

proximal source area composed mainly of juvenile crust would be the Arabian–Nubian Shield, which is 

the northernmost edge of the East African Orogen (Johnson et al., 2011). Ophiolites in the ANS, as 

described for instance by Meert (2003), Johnson et al. (2011) and Stern et al. (2012), could be the source 

for mafic input in the Edaga Arbi Glacials. Volcanic rock fragments in the Edaga Arbi Glacials may 

indicate Late Palaeozoic volcanism, as speculated by Sacchi et al. (2007). However, it cannot be said 

with certainty that the rock fragments are not metamorphically overprinted and older. Metavolcanic 

rocks are abundant in the Neoproterozoic basement and are a likely source for these fragments. The 

similar overall composition of the local basement samples and the Edaga Arbi Glacials (Figure 2-10) 

supports the assumption of a local source for these and a different source area for the Enticho Sandstone.  

 

Petrographic and chemical compositions of glacial successions of Upper Ordovician and Carboniferous–

Permian sandstone in Saudi Arabia are similar to those obtained in Ethiopia: a signature of old crustal 

material in the early Palaeozoic and a higher influence of juvenile material in the late Palaeozoic (Bassis 

et al., 2016b). In the PCA biplot (Figure 2-10), however, the Carboniferous–Permian samples from 

Saudi Arabia plot far away from the corresponding samples of this study, whereas the Upper Ordovician 

samples are grouped with the corresponding. Therefore, for the early Palaeozoic a common provenance 

for the glacial sandstones of both areas is likely, whereas in the late Palaeozoic the sediments were 

probably supplied from different local sources (Figure 2-11). This supports the assumption of a large 

North-Gondwanan ice sheet in the Late Ordovician (Ghienne et al., 2007; Le Heron and Craig, 2008) 

and more local glacial systems during the Carboniferous–Permian glaciation (Eyles, 1993; Fielding et 

al., 2008). 

 

2.6. Conclusions 

The petrographic and geochemical comparison of sandstones deposited during the two Gondwana 

glaciations in the Late Ordovician and the Carboniferous–Permian reveals clear differences: The Upper 

Ordovician Enticho Sandstone is highly mature with a major and trace element composition typical for 

an old differentiated crustal provenance. In contrast, the sandstone of the Carboniferous–Permian Edaga 

Arbi Glacials is less mature with a geochemical signature of more juvenile source material. Its major 

and trace element composition resembles that of the local basement. Stratigraphically equivalent 

formations in Saudi Arabia show similar patterns for the Late Ordovician but significant differences for 

the Carboniferous–Permian. The distinct petrographic and geochemical differences between the two 

formations make it possible to assign stratigraphically uncertain samples. 
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The high maturity of the Upper Ordovician Enticho Sandstone is probably a consequence of strong 

chemical weathering in the source area before the glaciation combined with long transport by the 

glaciers and reworking in a shallow marine environment after the glaciation. The material is possibly 

sourced from Archean cratons and/or Meso- and Neoproterozoic mobile belts in central Gondwana, such 

as the Congo and Tanzania cratons or the Kibaran, Irumide or Mozambique belts. The Edaga Arbi 

Glacials have a proximal source, most likely the Arabian–Nubian Shield. These findings support 

previous models of a large ice sheet covering northern Gondwana in the Late Ordovician, leading to a 

regional mixture and homogenisation of source material and a complex pattern of local glaciers in the 

Carboniferous–Permian. 

 

 

Figure 2-11: Summary of the main findings of this study for the two Gondwana glaciations in Ethiopia. Gondwana 
palaeogeography and south pole positions from Torsvik and Cocks (2013). Ice sheet locations and transport directions for 
the Late Ordovician are after Ghienne et al. (2007), Le Heron and Craig (2008) and Torsvik and Cocks (2013); for the 
Carboniferous–Permian they are after Bussert and Schrank (2007), Fielding et al. (2008) and Isbell et al. (2012). 
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Abstract 

Palaeozoic sedimentary successions in northern Ethiopia contain evidence for two Gondwana 

glaciations during the Late Ordovician and Carboniferous–Permian. We compare sediments of the two 

glaciations regarding their detrital zircon U–Pb ages. The main age group for both formations is Pan-

African (c. 550–700 Ma). However, the remaining spectra are different: The Upper Ordovician–Lower 

Silurian Enticho Sandstone is characterised by a Stenian–Tonian (c. 1 Ga) zircon population. The 

Carboniferous–Permian Edaga Arbi Glacials contain a prominent c. 800 Ma population. The Stenian–

Tonian zircons are likely derived from the centre of the East African Orogen and were supplied via the 

Gondwana super-fan system. This material was transported by the Late Ordovician glaciers and formed 

the Enticho Sandstone. Tonian (c. 800 Ma) zircons are abundant in the Ethiopian basement and represent 

the earliest formation stage of the southern Arabian–Nubian Shield. Glaciers of the Late Palaeozoic Ice 

Age must have cut deeply into the basement for efficient erosion. No recycling of the Enticho Sandstone 

by the Edaga Arbi Glacials took place on a grand scale — probably because sedimentation of the former 

was limited to northern Ethiopia, whereas the source area for the latter was to the south. 

 

3.1. Introduction 

The Gondwana supercontinent comprised Archean to Mesoproterozoic cratons surrounded by 

Neoproterozoic mobile belts. These belts include juvenile crust and crust that was reactivated in the 

orogenic processes (e.g. Stern, 1994; Burke et al., 2003; Collins and Pisarevsky, 2005; Figure 3-1). The 

East African Orogen (EAO), which formed between 650 and 600 Ma at the suture of East and West 

Gondwana, is regarded as one of the largest accretionary orogens in the Earth’s history (Stern, 1994; 

Collins and Pisarevsky, 2005; Squire et al., 2006). In northern Africa, a vast peneplain developed after 

the consolidation of the newly formed continent, on which a blanket of Palaeozoic sandstone was 

deposited (Garfunkel, 2002; Avigad et al., 2005). The direction of sediment transport during the early 

Palaeozoic is generally assumed to the north towards the margin of Gondwana (e.g. Meinhold et al., 

2011; Morag et al., 2011; Avigad et al., 2012). The high maturity of the North Gondwana Lower 

Palaeozoic sandstones is striking. It can be attributed either to long transport distance and/or multiple 

recycling (e.g. Garfunkel, 2002; Morag et al., 2011) or strong chemical weathering at the time of 

deposition (e.g. Avigad et al., 2005).  
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Figure 3-1: (a) Map of Gondwana showing the overall geological setting (modified after Torsvik and Cocks, 2013). (b) Map of 
Eastern Africa and Arabia showing exposures of Precambrian rocks and major tectonic units (modified after Fritz et al, 2013). 
ANS, Arabian–Nubian Shield; B, Bangweulu; CC, Congo Craton; IB, Irumide Belt; SES, Southern Ethiopian Shield; TC, Tanzania 
Craton; UB, Ubendian Belt; US, Usagaran Belt; WES, Western Ethiopian Shield; WG, Western Granulite Belt; ZKC, Zimbabwe– 
Kalahari Craton. References for age information: (1) Teklay et al. (1998); (2) Woldemichael et al. (2010); (3) Kebede et al. 
(2001); (4) Kröner et al. (2003); (5) Bingen et al. (2009); (6) Mänttäri (2014); (7) Fritz et al. (2013); (8) Johnson et al. (2011). 
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Based on the similarity of detrital zircon U–Pb age spectra throughout Gondwana, Squire et al. (2006)  

postulated the existence of large sediment fans that brought detritus from the EAO towards the 

continental margins. In a compilation of detrital zircon age spectra from Cambrian–Ordovician 

sandstones of North Africa and NW Arabia, Meinhold et al. (2013) extended the super-fan model to the 

northern Gondwana margin. Ethiopia would hence lie more proximal along the sediment path. Here, the 

Palaeozoic is mainly composed of sedimentary rocks related to the two Gondwana glaciations: (1) the 

Enticho Sandstone, deposited during the Late Ordovician (Hirnantian) glaciation and the following 

transgression, probably up to the early Silurian; and (2) the Edaga Arbi Glacials that formed during the 

Carboniferous–Permian glaciation. The Late Ordovician glaciation was short-lived and affected large 

parts of Gondwana synchronously (e.g. Eyles, 1993; Ghienne et al., 2007; Le Heron and Craig, 2008; 

Le Heron et al., 2018). A more complex spatial and temporal pattern of ice sheets is likely for the Late 

Palaeozoic Ice Age (LPIA) that affected Ethiopia in the Carboniferous–Permian (e.g. Eyles, 1993; 

Bussert and Schrank, 2007; Fielding et al., 2008; Bussert, 2014).  

 

We analysed 11 sandstone samples from the Upper Ordovician–lower Silurian Enticho Sandstone and 

the Carboniferous–Permian Edaga Arbi Glacials for their detrital zircon U–Pb ages to link them to 

potential source areas. Our aim was to test the Gondwana super-fan hypothesis (Squire et al., 2006; 

Meinhold et al., 2013) at a more proximal location and to review the assumption of a distant provenance 

for the Enticho Sandstone and a proximal provenance for the Edaga Arbi Glacials (Lewin et al., 2018).  

 

3.2. Geological setting 

In Ethiopia, outcrops of the Palaeozoic successions are present around the Mekelle Basin in the Tigray 

province of northern Ethiopia and, to a minor extent, in the Blue Nile region in the west of the country 

(Kazmin, 1972; Garland, 1980; Tsige and Hailu, 2007; Figure 3-2). Sedimentological and palynological 

studies on these successions have been carried out by Dow et al. (1971), Beyth (1972a; 1972b), Saxena 

and Assefa (1983), Bussert and Schrank (2007), Bussert and Dawit (2009), Bussert (2014) and Dawit 

(2014). The two formations studied here overlie the Neoproterozoic basement and are overlain by 

uppermost Palaeozoic and Mesozoic sediments (Beyth, 1972b; Tefera et al., 1996; Dawit, 2010; 2014; 

Figure 3-2).  

 

The basement in Ethiopia represents the junction of the Arabian–Nubian Shield in the north and the 

Mozambique Belt in the south, together making up the EAO (Kazmin, 1972; Tefera et al., 1996; Stern 

et al., 2012; Figure 3-1). The Arabian–Nubian Shield comprises a collage of Neoproterozoic juvenile 

arcs, younger sedimentary and volcanic basins, voluminous granitoid intrusions and a few enclaves of 

pre-Neoproterozoic crust (Johnson et al., 2011). Woldemichael et al. (2010) described the evolution of 

the Arabian–Nubian Shield in a supercontinent cycle from the break-up of Rodinia to the amalgamation 

of Gondwana, with early rifting beginning at c. 900–860 Ma. With the opening of the Mozambique 

Ocean, a passive margin formed in the area and early intrusions were emplaced at c. 860–830 Ma. 

Subduction and back-arc formation began at 830–750 Ma, followed by terrane accretion, metamorphism 

and syntectonic intrusions. The ocean closed at c. 750–650 Ma with further accretion and intrusions. 

Between 650 and 550 Ma, the assembly of the Arabian–Nubian Shield was in its final stage and 

metamorphism as well as post-tectonic intrusions occurred. The rocks of the Arabian–Nubian Shield 

were metamorphosed at low-grade greenschist facies (Beyth, 1972b; Alene et al., 2006; Stern, 2008). 

 

By contrast, the Mozambique Belt to the south comprises medium- to high-grade gneisses and 

amphibolites as well as granulites. Here, the Ediacaran collision between East and West Gondwana was 

most intense. Mountains rose to a great height and were eroded in the Late Ediacaran and Early 

Palaeozoic (Stern et al., 2012). The Mozambique Belt contains large amounts of Archean to 
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Mesoproterozoic crust that was reworked during Neoproterozoic metamorphism and anatexis, although 

subordinate amounts of juvenile Neoproterozoic igneous rocks are present (Stern, 2008; Johnson et al., 

2011; Fritz et al., 2013).  

 

 

Figure 3-2: Maps of the study areas showing the sampling locations. (a) Northern Ethiopia, modified after Arkin et al. (1971), 
Garland et al. (1978), Bussert (2014). (b) Blue Nile region, modified after Tsige and Hailu (2007), Dawit (2014). The term 
‘Fincha Sandstone’ is taken from Dawit (2014). 

 

The basement of northern Ethiopia is considered to be part of the Arabian–Nubian Shield because it 

consists mainly of juvenile Neoproterozoic crustal material (Alene et al., 2000; Beyth et al., 2003; Fritz 

et al., 2013). The arc phase is represented by effusive flows and diverse volcaniclastic rocks of the upper 



 

37 

Tonian Tsaliet Group (Beyth, 1972b; Miller et al., 2009). When magmatism ceased, the marine 

siliciclastic and carbonate succession of the Cryogenian Tambien Group was deposited (Alene et al., 

2006; Avigad et al., 2007; Miller et al., 2009). Both units experienced greenschist facies metamorphism 

and the intrusion of syn- and post-tectonic granitoids and diorites (Beyth, 1972b; Kazmin et al., 1978; 

Tefera et al., 1996). In western and southern Ethiopia, the basement can be regarded as the transition 

between the Arabian–Nubian Shield and the Mozambique Belt because it shows features of both; the 

crust is mainly juvenile Neoproterozoic with an age range indistinguishable from that of the Arabian–

Nubian Shield (Teklay et al., 1998; Stern et al., 2012). The basement also includes a significant 

proportion of ophiolitic and volcano-sedimentary units (Woldemichael et al., 2010; Stern et al., 2012).  

High-grade metamorphic rocks are abundant in western and southern Ethiopia (Yibas et al., 2002; 

Woldemichael et al., 2010; Stern et al., 2012) and Archean protoliths have been recognized in the Alghae 

Terrane in southern Ethiopia (Stern et al., 2012). The east Ethiopian basement, however, represents a 

separate crustal domain. Here, the granitoid chemistry, zircon ages and Nd–Sr isotopes point to 

considerable reworking of pre-Neoproterozoic crust (Teklay et al., 1998). These characteristics extend 

to northern Somalia and perhaps even to the southernmost Arabian Peninsula because similar basement 

has also been found in southern Yemen (Windley et al., 1996; Teklay et al., 1998).  

 

The Phanerozoic sediment cover in Ethiopia starts with the Upper Ordovician–Lower Silurian Enticho 

Sandstone. Cambrian or Early Ordovician sediments are missing. The Enticho Sandstone occurs north 

of the Mekelle Basin (Figure 3-2 a) and has a thickness of up to 300 m (e.g. Saxena and Assefa, 1983; 

Dawit, 2010). It consists of a lower glaciogenic unit and an upper shallow marine unit (Bussert and 

Dawit, 2009). The glaciogenic part comprises massive and largescale cross-bedded sandstones and 

conglomerates, assumed to be (subaerial or subaqueous) meltwater deposits. Foreset dips indicate a 

transport direction towards the south-east (Bussert and Dawit, 2009), although, in places, the transport 

directions are towards the north (Kumpulainen, 2007; Bussert and Dawit, 2009). Diamictites occur 

rarely (Bussert and Dawit, 2009; Dawit, 2010). In the upper part, well-sorted sandstones with bipolar 

cross-bed sets point to a tide dominated shallow marine depositional setting (Bussert and Dawit, 2009; 

Dawit, 2010). Locally, a mudstone unit separates the glaciogenic and shallow marine sandstones. The 

age of the Enticho Sandstone was constrained by body and trace fossils, as well as palynoflora 

(cryptospores). Saxena and Assefa (1983) assigned an Ordovician age based on fossil siphonophorid 

impressions. Bussert and Dawit (2009) discovered Arthrophycus alleghaniensis, an ichnospecies that is 

largely restricted to the early Silurian, in the upper, shallow marine unit (Seilacher, 2007; Buatois and 

Mángano, 2011). Additional biostratigraphic evidence comes from recently discovered cryptospores, 

colonial algae and phosphatic-shelled inarticulate brachiopods from the lower glaciogenic unit of the 

Enticho Sandstone. These were assigned by Brocke et al. (2015) as post-Hirnantian (latest Ordovician–

early Silurian).  

 

The Edaga Arbi Glacials are mainly exposed along the western and southwestern margin of the Mekelle 

Basin and to a minor extent in the Blue Nile region in western Ethiopia (Figure 3-2 b). Their thickness 

is up to 200 m in northern Ethiopia, but significant lateral variations occur (Bussert, 2010). The Edaga 

Arbi Glacials lie unconformably on top of the Enticho Sandstone and, in places, directly on the basement 

(e.g. Beyth, 1972b). They are laminated claystones and siltstones containing scattered outsized clasts, 

lenses of sandstone and a polymict glacial conglomerate at the base (Beyth, 1972b; Bussert and Dawit, 

2009; Bussert, 2014). The occurrence is often in north–south oriented troughs and channels that carve 

into the basement with an inferred transport direction from south to north (Bussert, 2010). The following 

model for the generation of this succession has been proposed by Bussert (2014): (1) initial glacier 

advance led to the deposition of tillites; (2) outwash fans (subaerial and subaqueous) formed during 

glacial retreat; and (3) fines settled from the water column in a proglacial lake or fjord-like environment, 

interrupted by periodic hyperpycnal sediment flows and the deposition of dropstones. In the Blue Nile 
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region (Figure 3-2 b), Permian–Triassic continental sedimentary rocks partly overlie the glacial 

sediments presumed to be equivalent to the Edaga Arbi Glacials (Dawit, 2014). A more detailed facies 

description of the Enticho Sandstone and the Edaga Arbi Glacials is given by Bussert and Dawit (2009), 

Bussert (2014) and Lewin et al. (2018). The age of the Edaga Arbi Glacials is constrained by the rich 

and well-preserved microfloral assemblages, including Potonieisporites sp., Plicatipollenites sp., 

Cycadopytes cymbatus and Microbaculispora sp. (Bussert and Schrank, 2007). These palynotaxa are 

known from the Early Permian glacial sequences across the whole Gondwana region and are used for 

stratigraphic correlations (Kemp et al., 1977; Backhouse, 1991; Stephenson et al., 2003). 

 

3.3. Methods 

Sandstone samples were mainly collected from surface outcrops in northern Ethiopia, where Palaeozoic 

glaciogenic sedimentary rocks are abundant. In the Blue Nile region, in the west of the country, such 

sandstones could only be sampled in one locality (Figure 3-2 b). The choice of sampling sites was based 

on previous stratigraphic and sedimentological work (Bussert and Schrank, 2007; Bussert and Dawit, 

2009). Four sections were sampled that were biostratigraphically constrained (Bussert and Dawit, 2009; 

Brocke et al., 2015). The other sampled sections were assigned to one of the two formations by 

lithofacies characteristics. The field classification was confirmed by geochemical analyses, which are 

well suited to distinguish between the two formations and assign unknown samples (Lewin et al., 2018). 

Eleven samples were chosen for detrital zircon geochronology: six samples from the Enticho Sandstone 

and five from the Edaga Arbi Glacials (Table 3-1). This choice was made to cover a large geographical 

and stratigraphic spread within each formation.  

 

Table 3-1: Sample information. Locations are given in geographical coordinates (WGS84). The stratigraphic assignment to one 
of the two studied formations is based on biostratigraphic evidence (B) or lithofacial characteristics (LF) in the outcrop or, in 
one case, uncertain (U). Detailed information on the petrography and geochemistry of each sample is given in Lewin et al. 
(2018). Last three columns: summary of detrital zircon ages of samples analysed in this study. The full dataset is given in the 
supplementary material. 

Sample Longitude  

(°) 

Latitude  

(°) 

Formation Strati-

graphic 

assignment 

Lithology Ages 

deter-

mined 

Concor-

dant 

ages 

% 

concor-

dant 

ages 

Enti-4 039.71262 13.83465 Enticho  U Diamictite 54 48 89 

Enti-6 039.74827 13.88842 Enticho  B Sandstone 85 82 96 

Enti-12 039.42093 14.49627 Enticho  LF Sandstone 85 66 78 

Enti-13 039.41911 14.49275 Enticho  LF Sandstone 86 74 86 

Nib-1 039.48972 14.25194 Enticho  B Sandstone 85 76 89 

Nib-3 039.49583 14.25222 Enticho  B Sandstone 86 75 87 

Eda-9 039.32235 13.90915 Edaga Arbi  B Sandstone 89 73 82 

Eda-11 039.00042 13.61842 Edaga Arbi  LF Sandstone 85 80 94 

Eda-12 039.19745 13.17844 Edaga Arbi  B Sandstone 73 69 95 

Hu-1 037.05068 10.31057 Edaga Arbi  LF Sandstone 47 41 87 

Hu-2 037.05068 10.31057 Edaga Arbi  LF Sandstone 77 72 94 

 

To prepare for zircon analysis, 1–2 kg of each sample was disaggregated using a jaw-crusher followed 

by a mortar and pestle and then wet sieved. Heavy minerals were separated from the 63–125 μm grain 

size fraction using sodium polytungstate with a density of 2.85 g ml−1. We chose this grain size fraction 

to ensure comparability with existing data from Palaeozoic sandstones in Libya. Zircon grains were 

randomly hand-picked from the heavy mineral concentrates, mounted in epoxy resin and polished to 

expose the interior of the grains. Cathodoluminescence images of the grains were taken to reveal the 

internal structures prior to analysis. We analysed 80 zircons per sample because this appears to produce 

a robust number of ages for deciphering the sources of natural detrital samples (e.g. Sláma and Košler, 
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2012). For samples Enti-4 and Hu-1, the zircon fertility was too low to analyse 80 grains and only 54 

and 47 grains, respectively, could be dated (Table 3-1). If the zircon grains had inherited cores, then the 

measuring spot was set, where possible, on the outer rim to consistently date the latest event.  

 

Zircon U–Pb analyses were performed at the Institute of Mineralogy at the University of Münster using 

a ThermoFisher Element 2 single-collector inductively coupled plasma mass spectrometer coupled with 

a Photon Machines Analyte G2 laser ablation system. The laser spot size was 25 μm. Masses of 202 (to 

determine 204Hg interference with 204Pb), 204, 206, 207 and 238 were measured. Common Pb correction 

was performed after Stacey and Kramers (1975) if the common 206Pb fraction of the total 206Pb exceeded 

1%. The GJ-1 reference zircon (Jackson et al., 2004) was used for calibration by bracketing ten 

unknowns with three analyses of the reference zircon. To further ensure the reproducibility and precision 

of the U–Pb ages, the 91500 reference zircon (Wiedenbeck et al., 1995) was regularly analysed. The 

measured isotopic ratios matched the published values of Wiedenbeck et al. (1995).  

 

Data processing was carried out with an in-house Excel spreadsheet (Kooijman et al., 2012). As a result 

of the lower precision of 207Pb/206Pb values for young zircons, the data were filtered based on two 

criteria: (1) agreement in the U–Pb ages ((206Pb/238U)/(207Pb/235U)) in the range 90–110% for grains 

younger than 1200 Ma; and (2) 90–110% concordance in terms of (206Pb/238U)/(207Pb/206Pb) for grains 

older than 1200 Ma. Zircons younger than 1200 Ma are quoted by their 206Pb/238U age, whereas the 
207Pb/206Pb age is used for zircons older than 1200 Ma. This age was chosen due to the natural gap of 

zircon ages in the analysed samples. The R-package Provenance (Vermeesch et al., 2016) was used for 

visualization of the zircon age spectra as kernel density estimates and for multi-sample comparison in 

multidimensional scaling maps, as suggested by Vermeesch (2013). 

 

3.4. Results 

In total, 852 zircon grains were dated in 11 samples from the studied formations, of which 756 were 90–

110% concordant using the respective data filters described earlier. In the Enticho Sandstone, 481 grains 

were analysed, of which 421 (88%) were concordant, and in the Edaga Arbi Glacials 371 grains, of 

which 335 (90%) were concordant (Table 3-1). Most zircons are prismatic or short prismatic in shape 

and subrounded to well rounded. They mostly exhibit oscillatory (magmatic) zoning in the 

cathodoluminescence images (Figure 3-3). Very few zircons are unzoned and thus probably 

metamorphic in origin or metamorphically overprinted.  

 

Five main age groups can be defined in detrital zircons of the Enticho Sandstone and the Edaga Arbi 

Glacials (Figures 3-4 to 3-6): Pan-African (700–550 Ma), Tonian (900–700 Ma), Stenian–Tonian 

(1200–900 Ma), Palaeoproterozoic (2500–1600 Ma) and Archaean (>2500 Ma). The Pan-African 

population is ubiquitous in both formations and comprises c. 40% of the zircon grains. The Tonian age 

group is very prominent in the Edaga Arbi Glacials (45% of all zircon grains on average; Figure 3-5), 

yet less important in the Enticho Sandstone (22% of all zircon grains on average; Figure 3-6). An 

exception is sample Nib-1, which shows a well-defined peak of Tonian aged zircons (Figure 3-4). By 

contrast, the Stenian–Tonian age population is characteristic of the Enticho Sandstone (Figure 3-4, 

Figure 3-6), where it comprises 19% of all ages, in contrast with the Edaga Arbi Glacials with 5% of the 

ages in this group.  

 

The ratios of Tonian to Stenian–Tonian ages is on average 1.2 in the Enticho Sandstone (range 1.0–1.6) 

and 13.1 in the Edaga Arbi Glacials (range 5.0–22.0) and can be used to discriminate between the age 

spectra of both formations. No stratigraphic pattern in zircon age spectra was detected within the 

formations. Mesoproterozoic ages older than Stenian are rare in both formations and comprise only five 
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of the 756 concordant ages. The Palaeoproterozoic and Archaean age populations are more prominent 

in the Enticho Sandstone than in the Edaga Arbi Glacials. The former contains, on average, 9% 

Palaeoproterozoic and 5% Archaean zircons, whereas in the latter 4% of the zircons are 

Palaeoproterozoic and 1% Archaean in age. The proportion of Palaeoproterozoic to Archaean zircons 

varies with the geographical position of the samples (Figure 3-6). Four per cent of the zircons in both 

formations are younger than 550 Ma (Figure 3-6).  

 

 

Figure 3-3: Cathodoluminescence images of representative zircons of the defined age groups. Pan-African, 700–550 Ma; 
Tonian, 900–700 Ma; Stenian–Tonian, 1200–900 Ma; Palaeoproterozoic, 2500–1600 Ma; Archaean, >2500 Ma. 

 

3.5. Discussion 

Enticho Sandstone 

The largest zircon population in the Enticho Sandstone is of Pan-African age (700–550 Ma; Figure 3-4, 

Figure 3-6). Rocks of this age are ubiquitous in the whole EAO and record syn- and post-collisional 

magmatism associated with the final assembly of Gondwana (e.g. Fritz et al., 2013). It is thus hard to 

assign a particular provenance to these zircons. Of greater interest is the Stenian–Tonian (1200–900 Ma) 

age group because it is characteristic of the Enticho Sandstone (Figure 3-4, Figure 3-6). In the basement 

of the Arabian–Nubian Shield, zircons of this age are found in Neoproterozoic metasediments in Sinai, 

the Elat area in southern Israel and also in Cryogenian diamictites in Ethiopia (Avigad et al., 2007; 

Be’eri-Shlevin et al., 2009; Morag et al., 2012). Be’eri-Shlevin et al. (2009) postulate a tract of c. 1 Ga 

old crust incorporated in the Arabian–Nubian Shield and conclude a proximal provenance for the upper 

Neoproterozoic and lower Palaeozoic sediments. Similar considerations are made by Avigad et al. 

(2007) on the origin of c. 1 Ga zircons in the Cryogenian diamictites in Ethiopia. It may thus be possible 

that the Stenian–Tonian zircon population in the Enticho Sandstone is derived from such metasediments 

or the postulated former crustal tract. The nearest crust with an age of c. 1 Ga still existing in North–

East Africa, however, is reported from the Central Saharan Belt (Toteu et al., 2001; De Wit et al., 2005) 

and the Irumide Belt and plutons in the Ubendian Belt, both part of the Mozambique Belt in Tanzania 

and Mozambique (Bingen et al., 2009; De Waele et al., 2009; Fritz et al., 2013).  

 



 

41 

 

Figure 3-4: Kernel density estimate plots of the zircon age spectra in samples of the Enticho Sandstone. Inset shows a close-
up of the 1300–500 Ma age range. Samples are arranged from left to right according to their geographical location from south 
to north, with the lower row from the glaciogenic basal part of the formation and the upper row from the shallow marine 
upper part. 

 

Figure 3-5: Kernel density estimate plots of the zircon age spectra in samples of the Edaga Arbi Glacials. Inset shows a close-
up of the 1300–500 Ma age range. Samples are arranged from left to right according to their geographical location from south 
to north, with the lower row from the basal part of the formation and the upper row from the middle to upper part. 
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Figure 3-6: Bar chart showing the distribution of the defined age groups in the analysed samples. Samples of the respective 
formations are arranged from bottom to top according to their geographical location from south to north. 

 

According to the super-fan hypothesis (Squire et al., 2006; Meinhold et al., 2013), c. 1 Ga zircons were 

transported from regions in the centre of the EAO (the Mozambique Belt) towards the continental 

margin of Gondwana during the early Palaeozoic. The high similarity between the Upper Ordovician–

Lower Silurian sandstones in Ethiopia and Libya can be revealed in a multidimensional scaling map of 

the detrital zircon age spectra (Figure 3-7). The Algerian Hirnantian sandstone, however, is not part of 

the cluster. We did not consider age-equivalent deposits outside the Gondwana mainland because the 

palaeogeographical position of the peri-Gondwana terranes is highly uncertain. The differences are 

mainly in the presence or absence of c. 1 Ga zircons, which can be used as a tracer for areas within reach 

of the super-fan system (Meinhold et al., 2013). The boundary between this East African–Arabian zircon 

province and the West African province has also been illustrated by Linnemann et al. (2004) and 

statistically highlighted by Stephan et al. (2019). The remarkable accordance of the detrital zircon age 

spectra in sandstones from Libya and Ethiopia makes a common provenance within the Gondwana 

super-fan system, which led to regional homogenization of the detritus, more likely than a derivation of 

the Stenian–Tonian zircons from the local basement of Ethiopia.  

 

When also including zircon ages from older sandstones (Cambrian–Ordovician) of northern Africa in 

the multidimensional scaling map (Figure 3-8), a spatial clustering appears rather than a temporal 

clustering. The Enticho Sandstone clusters with Cambrian–Ordovician sandstones from Israel and 

Jordan and the Libyan sandstones are in the vicinity, whereas the Algerian and Moroccan sandstones 

are further away in the plot, implying the least similarity of the age spectra. The high similarity of the 

Cambrian–Ordovician age spectra with those of the Hirnantian glaciogenic sandstones leads to the 

assumption that no change in provenance occurred with the onset of glaciation. Rather, the glaciers 

reworked the sediment delivered by the super-fan system, which was strongly weathered in the source 

area or during transport and temporal storage (Garfunkel, 2002; Avigad et al., 2005). A cannibalization 

of pre-Hirnantian sediments by the Hirnantian glaciers is also suggested by Ghienne et al. (2018) for the 

Upper Ordovician sandstones in Morocco, although these cannibalized sediments probably did not 

belong to the super-fan system (Figure 3-8).  

 

Because no Cambrian or Lower to Middle Ordovician sedimentary rocks exist in Ethiopia, the area was 

probably a site of sediment bypass or erosion during this period and was still elevated in the aftermath 
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of the Pan-African Orogeny. If erosion took place, it was probably minor compared with the whole 

super-fan material: a prominent population of c. 800 Ma zircons, the signature for the Ethiopian 

basement, is not present in the super-fan sediments (Meinhold et al., 2013). Alternatively, the Ethiopian 

basement, rich in c. 800 Ma zircons, may only have been exhumed later and covered by a blanket of 

detrital material transported in the super-fan system. The Hirnantian glaciation probably extended 

eastwards to northern Ethiopia, as witnessed by the tillite from which sample Enti-4 was taken (see also 

Bussert and Dawit, 2009). Massive amounts of sediment were transported to Ethiopia through glaciers 

or ice streams and meltwater and were released and deposited during meltdown of the ice sheet. The 

lower part of the Enticho Sandstone is interpreted to represent outwash fan deposits (Bussert and Dawit, 

2009).  

 

 

Figure 3-7: Non-metric multidimensional scaling map for the Ordovician–Silurian period. Only Precambrian ages (>541 Ma) 
are used here due to the low reliability of younger ages (see discussion for details). Published data: (1) Linnemann et al. 
(2011); (2) Morton et al. (2012); and (3) Meinhold et al. (2011). 

 

The post-glacial transgression provided increased accommodation space to store sediment and to allow 

deposition of the upper, shallow marine part of the Enticho Sandstone. The original depositional site of 

the super-fan sediments that were reworked and transported to Ethiopia during the glaciation remains 

unclear. Assuming an ice spreading centre in mid- to northern Africa (e.g. Ghienne et al., 2007; Le 

Heron and Craig, 2008), these sediments may have come from the NW – that is, the area of Libya. This 

transport direction would agree with foreset dips towards the SE, as observed in meltwater deposits by 

Bussert and Dawit (2009).  

 

A considerable population of Palaeoproterozoic to Archaean zircons is present in the Enticho Sandstone 

(Figure 3-4, Figure 3-6). Such pre-Neoproterozoic zircons are also detected in increasing amounts up-

section in the Cambrian–Ordovician successions in Libya, Israel and Jordan and are interpreted to record 

the southwards migration of river systems associated with the Gondwana super-fan system (Kolodner 

et al., 2006; Meinhold et al., 2013). Based on the Hf isotopic signatures of zircons in Cambrian–
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Ordovician sandstones in Israel and Jordan, Morag et al. (2011) postulated that a large proportion of the 

material was sourced from ancient terranes outside the Arabian–Nubian Shield. This was confirmed by 

Ben Dor et al. (2018) analysing Sr and Nd isotopes in the feldspars and clays of such sandstones. This 

supports a distant provenance of the material in the Enticho Sandstone and the recycling of super-fan 

sediments. However, the proportion of the oldest zircon populations varies with the geographical 

position of the samples, with the highest proportion in samples Nib-1 and Nib-3 (Figure 3-6). Hence it 

cannot be ruled out that these older zircons are a local phenomenon. Hargrove et al. (2006) reported 

inherited Palaeoproterozoic and Archaean zircons in magmatic rocks of the Arabian–Nubian Shield in 

Saudi Arabia, which may also be the case in the Ethiopian Neoproterozoic basement.  

 

 

Figure 3-8: Non-metric multidimensional scaling map comparing the detrital zircon age spectra of Ordovician–Silurian 
sandstones analysed in this study with published data from Ordovician–Silurian and Cambrian–Lower Ordovician sandstones. 
Only Precambrian ages (>541 Ma) are used here due to the low reliability of younger ages (see discussion for details). 
Published data: (1) Meinhold et al. (2011); (2) Morton et al. (2012); (3) Linnemann et al. (2011); (4) Kolodner et al. (2006); (5) 
Altumi et al. (2013); and (6) Avigad et al. (2012). Note that the published data are those compiled by Meinhold et al. (2013) 
augmented by those from Altumi et al. (2013). 

 

Avigad et al. (2017) analysed detrital rutile U–Pb cooling ages in Cambrian–Ordovician sandstones in 

Israel and Jordan and one sample from the Enticho Sandstone in Ethiopia. They found younger cooling 

ages in the Ethiopian sandstone than in the samples from Israel and Jordan and ascribed this to a change 

in the drainage system and supply from new crustal vestiges. The detrital zircon age spectrum of that 

sample is, however, very similar to the spectra in the Edaga Arbi Glacials (Figure 3-5), with a prominent 

age peak at c. 800 Ma and only a few c. 1 Ga old zircons, leading to a high ratio of Tonian to Stenian–

Tonian ages. The Ethiopian sample analysed by Avigad et al. (2017) might therefore be of 

Carboniferous–Permian and not Ordovician–Silurian age. 

 

Edaga Arbi Glacials 

In addition to the Pan-African (700–550 Ma) ‘background signal’, the Tonian (c. 800 Ma) age group is 

very pronounced in the Carboniferous–Permian Edaga Arbi Glacials (Figure 3-5, Figure 3-6). This age 

coincides with the earliest stage of formation of the Arabian–Nubian Shield when Rodinia broke up. 

Woldemichael et al. (2010) postulated magmatism in western Ethiopia associated with the opening of 
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the Mozambique Ocean and constrained the pulses of magmatism at 860–850 and 795–785 Ma. Kebede 

et al. (2001) dated the granitoids of the Western Ethiopian Shield to an age of 815 Ma. In the Southern 

Ethiopian Shield, magmatic episodes can be defined at 890–840 and 790–700 Ma (Teklay et al., 1998; 

Yibas et al., 2002; Stern et al., 2012). They overlap in age with the arc and back-arc magmatism of the 

Tsaliet Group in North–East Ethiopia and Eritrea (Avigad et al., 2007). Johnson et al. (2011) assigned 

protolith ages of 870–840 Ma to the Tokar–Barka terrane in the north Ethiopian–Eritrean basement. 

Altogether, 900–700 Ma magmatic rocks are abundant in the local and regional basement and are thus 

the most likely source for the zircons of this age in the Edaga Arbi Glacials. This agrees with earlier 

considerations of a local provenance for this formation based on sandstone petrography and 

geochemistry (Lewin et al., 2018).  

 

The glaciers of the LPIA in North–East Africa were probably of the local mountain glacier type (Konert 

et al., 2001; Bussert and Schrank, 2007; Le Heron et al., 2009). Uplift of the Ethiopian basement 

probably occurred due to Carboniferous Hercynian tectonism (Al-Husseini, 1992; Sharland et al., 2004). 

On the Arabian Peninsula, this tectonism caused north–south-oriented faults, sags and swells (Al-

Husseini, 2004). The Edaga Arbi Glacials in northern Ethiopia are presumed to have been deposited in 

a large north-north-east trending trough in which glacial erosion may have followed and reinforced this 

pre-glacial topography (Bussert, 2014). Another reason for uplift could be thermal up-doming prior to 

the formation of the Zagros rift zone, which later formed the Neo-Tethys ocean (Sharland et al., 2001). 

Bussert (2010) studied erosional landforms associated with the LPIA in northern Ethiopia and proposed 

a landscape of areal scouring, in which wet-based ice carved deeply into the basement. This would have 

enabled the efficient erosion of c. 800 Ma zircon bearing rocks, which may also have provided the rutiles 

analysed by Avigad et al. (2017). In the Enticho Sandstone, sample Nib-1 also contains a notable age 

peak of c. 800 Ma (Figure 3-4). The assignment of this sample to the Enticho Sandstone is through 

biostratigraphy and is further confirmed by geochemical analysis (Lewin et al., 2018) and the ratio of 

Tonian to Stenian–Tonian zircons of 1.1. This leads to the assumption that the Ordovician glaciers were 

locally able to erode the basement effectively due to differences in topography or in glacier dynamics.  

 

Few concordant Phanerozoic zircon ages are present in the two studied formations, mainly in the range 

520–450 Ma. Almost all these young zircons are corrected for common Pb, so they may be over-

corrected, leading to younger ages. However, we cannot exclude magmatic activity in the area at that 

time. There is no clear evidence for early Palaeozoic magmatism in Ethiopia, although Sacchi et al. 

(2007) identified fresh volcanic clasts in Palaeozoic tillite in northern Ethiopia. It is doubtful whether 

this tillite is of Ordovician or Carboniferous–Permian age. In the explanations of the geological map of 

the Mekelle area from 1970, a black lava layer is described that lies on top of the basement peneplain 

and is interpreted to have formed before the Mesozoic (Levitte, 1970). Even though it is described as 

ultrabasic, it may have delivered minor amounts of zircon to the Palaeozoic sediments. Middle 

Ordovician volcanic ash beds (K-bentonites) have been reported in Libya (Ramos et al., 2003) and 

ascribed to volcanic activity in northern Gondwana during that time. Such volcanic products could have 

provided an additional or alternative source. Cambrian post-collisional plutons in the Arabian–Nubian 

Shield have been reported by Fritz et al. (2013), although it is unknown whether they were exposed at 

the times of deposition of the studied formations.  

 

The preservation of mainly glaciation-related sediments in the Palaeozoic of Ethiopia is striking. As an 

explanation, we propose a combination of increased sediment delivery by glaciers, ice streams and 

meltwater and increased accommodation space at the time of deposition. The melting ice sheet released 

large amounts of sediment towards the end of the Hirnantian glaciation and accommodation space was 

created in the area of Ethiopia through the following transgression. The later isostatic rebound may have 

caused uplift of the area, leading to another period of nondeposition. Sea-level fall has also accompanied 
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Silurian–early Devonian Palaeotethys rifting (Torsvik and Cocks, 2011). In the Carboniferous–Permian, 

Hercynian tectonism produced a complex local geomorphology. Areas that were uplifted, glaciated and 

eroded were close to local depressions in which proglacial lakes provided numerous depocentres for the 

accumulation of sediment.  

 

A remaining question is why no major recycling of the Enticho Sandstone by the Edaga Arbi Glacials 

has taken place. This may be because the deposition of the Enticho Sandstone was limited to northern 

Ethiopia (Kazmin, 1972; Tefera et al., 1996). The source area of the Edaga Arbi Glacials was probably 

to the south and a northwards transport direction was inferred by Bussert (2010) based on the orientation 

and geometry of palaeo-landforms such as roches moutonnées. Sedimentary rocks presumed to be 

equivalent to the Edaga Arbi Glacials are also present in the Blue Nile area (samples Hu-1 and Hu-2, 

showing the same zircon age signature as other samples from the Edaga Arbi Glacials) and in other parts 

of Ethiopia (e.g. Bussert and Dawit, 2009, and references therein). 

 

3.6. Conclusions 

The U–Pb dating of detrital zircons in the Upper Ordovician (Hirnantian) to lower Silurian Enticho 

Sandstone and the Carboniferous–Permian Edaga Arbi Glacials in northern Ethiopia reveals distinct 

differences in the age spectra of both formations. Differences exist mainly in the Tonian (900–700 Ma) 

age population, which is characteristic of the Edaga Arbi Glacials, and the Stenian–Tonian (1200–

900 Ma) group, which is prominent in the Enticho Sandstone. We can therefore rule out recycling of the 

Enticho Sandstone by the Edaga Arbi Glacials on a grand scale.  

 

The Stenian–Tonian zircons are correlative with characteristic populations of this age in Hirnantian 

sandstones in Libya and Cambrian–Ordovician sandstones in Libya, Israel and Jordan. Following the 

hypothesis of a Gondwana super-fan system in the Early Palaeozoic that can be traced by c. 1 Ga zircons, 

the Enticho Sandstone can be regarded as super-fan sediments reworked by the Late Ordovician glaciers 

and during the subsequent transgression. The Tonian zircon population, which is prominent in the 

Carboniferous–Permian Edaga Arbi Glacials, is probably derived from the local basement of Ethiopia. 

Here, 900–700 Ma magmatic rocks are abundant and represent the earliest formation stage of the 

southern Arabian–Nubian Shield. These basement rocks must have been uplifted and exposed for 

efficient erosion by the glaciers of the LPIA.  

 

The preservation of mainly glaciation-related sediments in the Palaeozoic of Ethiopia is probably a 

consequence of (1) the high sediment supply due to the erosional and transport potential of glaciers, ice 

streams and meltwater and (2) the creation of accommodation space during these times. For the Enticho 

Sandstone, the latter resulted from base-level rise due to postglacial transgression that reached 

southwards (in present day coordinates) as far as Ethiopia. For the Edaga Arbi Glacials, accommodation 

space was created in proglacial lakes in local depressions. Because the deposition of the Enticho 

Sandstone was probably limited to northern Ethiopia and the inferred source area of the Edaga Arbi 

Glacials is to the south, no major recycling of the former by the latter took place. 
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Abstract 

We use heavy minerals and rutile and garnet chemical compositions to constrain the provenance of two 

glaciogenic sandstone formations that build up the Palaeozoic succession in Ethiopia. The heavy mineral 

assemblage of the Upper Ordovician–lower Silurian Enticho Sandstone is dominated by ultra-stable 

minerals, implying high maturity of the sediment. Variable amounts of garnet are present as well. The 

Carboniferous–Permian Edaga Arbi Glacials contain mainly less stable heavy minerals, such as garnet 

and apatite, suggesting little chemical alteration. A combination of magmatic and metamorphic source 

rocks is likely for both formations. Rutile and garnet chemistry point to mainly amphibolite-facies and 

to a lesser extent granulite-facies metamorphic source rocks with generally slightly higher metamorphic 

temperatures for detrital heavy minerals in the Enticho Sandstone. We conclude that the Enticho 

Sandstone is mainly the product of reworked mature Cambrian–Ordovician sediment, which may have 

been supplied via the Gondwana super-fan system. Locally, glaciers of the Late Ordovician glaciation 

eroded fresh basement material, delivering the garnet. For the Edaga Arbi Glacials, a rather proximal 

provenance is likely. The potential source area is the southern hinterland, where Precambrian low-to 

higher grade metamorphic rocks of the Arabian–Nubian Shield occur at the transition to the 

Mozambique Belt. 

 

4.1. Introduction 

Two glaciations affected the supercontinent Gondwana in the Palaeozoic: The Late Ordovician 

(Hirnantian) glaciation was short-lived and reconstructions propose a large ice sheet covering much of 

northern Gondwana (e.g. Eyles, 1993; Ghienne et al., 2007; Le Heron and Craig, 2008; Le Heron et al., 

2018). The Late Palaeozoic Ice Age (LPIA) affected Ethiopia in the Carboniferous–Permian (Bussert 

and Schrank, 2007) and is considered more complex in its spatial and temporal extend (e.g. Eyles, 1993; 

Fielding et al., 2008). The Palaeozoic sedimentary succession in Ethiopia is the product of these two 

glaciations and comprises the Upper Ordovician–lower Silurian Enticho Sandstone and the 

Carboniferous–Permian Edaga Arbi Glacials. Sedimentological and palynological studies of the two 

formations by Dow et al. (1971), Beyth (1972a; 1972b) Saxena and Assefa (1983), Bussert and Schrank 

(2007), Bussert and Dawit (2009) and Bussert (2010; 2014) provide stratigraphic control and evidence 

that two different glaciations are recorded.  
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Petrographic and bulk geochemical analyses (Lewin et al., 2018) reveal a very high mineralogical 

maturity for the Enticho Sandstone, which is striking for glaciogenic sediments. In contrast, the Edaga 

Arbi Glacials are less mature and more variable in composition. These trends have also been observed 

in age-equivalent formations in Saudi Arabia (Keller et al., 2011; Bassis et al., 2016b). In the Lower 

Palaeozoic, high maturity is a common feature of sandstones in northern Gondwana (Garfunkel, 2002; 

Avigad et al., 2005; Morag et al., 2011). The high similarity of early Palaeozoic sedimentary rocks 

across Gondwana, not only in maturity, but also in their detrital zircon age spectra, led Squire et al. 

(2006) to propose a model of large sediment fans that transported masses of detritus from the East 

African Orogen in the centre of Gondwana (Figure 4-1) towards the continental margins. The long 

transport, possibly in combination with strong chemical weathering under a corrosive Cambrian–

Ordovician atmosphere, may have led to the high maturity (Avigad et al., 2005; Morag et al., 2011). The 

super-fan hypothesis was confirmed for northern Gondwana by Meinhold et al. (2013) and Stephan et 

al. (2019). Detrital zircon ages in the Enticho Sandstone in Ethiopia are very similar to those of the 

presumed super-fan sediments, suggesting that the formation contains reworked super-fan material 

(Lewin et al., 2020).  

 

 

Figure 4-1: Map of Gondwana showing the overall geological setting (modified after Torsvik and Cocks, 2013; Avigad et al., 
2017). 

 

For the Edaga Arbi Glacials, the low maturity and zircon ages similar to those in the Arabian–Nubian 

Shield make a local provenance likely (Lewin et al., 2018; 2020). A re-organisation of the sediment 

dispersal system during the Carboniferous is also inferred for southern Libya (Morton et al., 2011) and 

Saudi Arabia (Knox et al., 2007; Bassis et al., 2016a) based on changes in the heavy mineral spectra. 

Heavy mineral data for the Ethiopian Palaeozoic sandstones are missing so far.  

 

Heavy minerals in sediments and sedimentary rocks are widely used to infer the sediments’ provenance 

by assigning the minerals and their parageneses to certain source rock lithologies, for which they are 
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characteristic. Because the heavy mineral assemblage in a sediment is not only influenced by source 

rock lithology, but also by processes operating during weathering, transport, deposition and diagenesis 

(e.g. Morton and Hallsworth, 1994), single grain geochemical analyses on specific mineral species are 

a powerful complementary technique (von Eynatten and Dunkl, 2012). Rutile is one of the ultra-stable 

heavy minerals and very resistant to physical and chemical alterations. Furthermore, its trace element 

composition is dependent on the metamorphic temperature conditions during growth and the lithology 

of the host rock, making it a good candidate for provenance studies (e.g. Triebold et al., 2007; Meinhold, 

2010; Triebold et al., 2012). Similarly, garnet composition depends on host rock lithology and pressure 

and temperature conditions during growth and its use in provenance analysis is well established (e.g. 

Morton, 1987; Mange and Wright, 2007; Krippner et al., 2014; Stutenbecker et al., 2017). 

  

In this study we use the heavy mineral assemblages and rutile and garnet chemistry to further constrain 

the provenance of the two Palaeozoic sandstone formations in Ethiopia. This study tests the assumption 

that the Enticho Sandstone contains reworked material from the Gondwana super-fan system and that 

the Edaga Arbi Glacials originate from proximal source areas in the Arabian–Nubian Shield. We also 

examine whether a regional correlation of changes in the heavy mineral spectra from early to late 

Palaeozoic with sedimentary rocks in Libya and Saudi Arabia is possible. This allows a better 

understanding of the Palaeozoic sediment dispersal system of northern Gondwana and the influence of 

the two glaciations.  

 

4.2. Geological setting 

Both the Upper Ordovician–Lower Silurian Enticho Sandstone and the Carboniferous–Permian Edaga 

Arbi Glacials are exposed around the Mekelle Basin in the northern Ethiopian province Tigray (Kazmin, 

1972; Garland et al., 1978; Tsige and Hailu, 2007; Figure 4-2). The Enticho Sandstone lies 

unconformably on the Neoproterozoic metamorphic basement. In some areas, also the Edaga Arbi 

Glacials lie unconformably on the Neoproterozoic basement while in others on the Enticho Sandstone. 

Both the Enticho Sandstone and the Edaga Arbi Glacials and are overlain by Mesozoic sediments 

(Beyth, 1972b; Tefera et al., 1996; Dawit, 2010; Figure 4-2). In addition, glacial sediments 

corresponding to the Edaga Arbi Glacials occur in the Blue Nile region in western Ethiopia (Figure 

4-2 b). 

 

The basement in Ethiopia is part of the East African Orogen, comprising the Arabian–Nubian Shield in 

the north and the Mozambique Belt in the south (Kazmin, 1972; Tefera et al., 1996; Stern et al., 2012; 

Figure 4-1). The Arabian–Nubian Shield is composed of mainly juvenile Neoproterozoic crust, which 

experienced greenschist- to amphibolite-facies metamorphism (e.g. Johnson et al., 2011). In the 

Mozambique Belt, amphibolite- to granulite-facies metamorphic grades can be found, ascribed to the 

intense Ediacaran collision between East and West Gondwana (Stern et al., 2012). The basement of 

northern Ethiopia is considered to belong to the Arabian–Nubian Shield (e.g. Stern et al., 2012; Johnson, 

2014). The upper Tonian Tsaliet Group consists of effusive flows and diverse volcaniclastic rocks 

(Beyth, 1972b; Miller et al., 2009). The Cryogenian Tambien Group is made of marine siliciclastic and 

carbonate rocks deposited in post-magmatism basins (Alene et al., 2006; Avigad et al., 2007; Miller et 

al., 2009). Both units were metamorphically overprinted to greenschist-facies grade and syn- and post-

tectonic granitoids and diorites intruded (Beyth, 1972b; Kazmin et al., 1978; Tefera et al., 1996). The 

Western and Southern Ethiopian Shields contain high-grade metamorphic rocks of the Mozambique 

Belt (Yibas et al., 2002; Woldemichael et al., 2010; Stern et al., 2012).   

 

The Palaeozoic sedimentary succession starts with the Upper Ordovician–lower Silurian Enticho 

Sandstone. Cambrian, Lower and Middle Ordovician sediments are missing. Body and trace fossils as 



 

50 

well as palynoflora (cryptospores) constrain the age of the formation (Saxena and Assefa, 1983; Bussert 

and Dawit, 2009; Brocke et al., 2015); its thickness is up to 300 m (Saxena and Assefa, 1983; Dawit, 

2010). The lower part is glaciogenic. Massive, large-scale trough or sigmoidal cross-bedded sandstones 

and conglomerates occur, which are interpreted as subaqueous meltwater deposits. Diamictite occurs in 

one location, which is probably a tillite. In the upper part of the Enticho Sandstone, well-sorted 

sandstones with bipolar cross-bed sets indicate a tidal deposition in a shallow sea (Bussert and Dawit, 

2009; Dawit, 2010).  

 

Between the Upper Ordovician–lower Silurian Enticho Sandstone and the Carboniferous–Permian 

Edaga Arbi Glacials there is a long hiatus; middle Silurian to middle Carboniferous rocks are not 

preserved. The Edaga Arbi Glacials have a thickness of up to 200 m in northern Ethiopia (Bussert, 2010) 

and lie unconformably either on the Enticho Sandstone or directly on the basement (e.g. Beyth, 1972b). 

They are biostratigraphically constrained by their well-preserved microfloral assemblage (Bussert and 

Schrank, 2007). At the base, a polymict conglomerate probably represents a tillite; it is followed by 

laminated claystones and siltstones with scattered out-sized clasts and lenses of sandstone, interpreted 

as suspension settle-outs in a pro-glacial lake or fjord-like environment, with periodic hyperpycnal 

sediment flows and the deposition of dropstones (Beyth, 1972b; Bussert and Dawit, 2009; Bussert, 

2014). For a more detailed facies description of the two studied formations and field photographs we 

refer to Bussert and Dawit (2009), Bussert (2014) and Lewin et al. (2018).  

 

4.3. Sampling and methods 

The selection of sampling sites was based on previous stratigraphic and sedimentological work and 

priority was given to sections that are biostratigraphically constrained (Bussert and Schrank, 2007; 

Bussert and Dawit, 2009; Brocke et al., 2015). In other sections, the assignment to one of the two 

formations was through lithofacies characteristics in the field and could be confirmed by geochemical 

analyses (Lewin et al., 2018; Table 4-1). Only one sample (Eda-5) was erroneously classified in the field 

and could be assigned to the Enticho Sandstone by bulk geochemistry. We chose 20 samples from the 

Enticho Sandstone and 11 samples from the Edaga Arbi Glacials for heavy mineral analysis (Table 4-1). 

The selection was made to cover a large spatial and stratigraphic range. 

 

Approximately 1 kg of sample material was disaggregated using a jaw crusher followed by mortar and 

pestle. The material was treated with 10% acetic acid to dissolve carbonate, which was found in many 

samples as cement, especially in the Edaga Arbi Glacials. Furthermore, a mixture of sodium citrate, 

sodium bicarbonate and sodium dithionite (60 g, 8 g and 20 g, respectively, in 1 L of water) was used 

to remove iron oxide coating, which was especially strong in samples of the Enticho Sandstone. After 

being placed in an ultrasonic bath for five minutes, the samples were wet sieved to obtain the grain size 

fractions 40–63 µm, 63–125 µm and 125–500 µm. For further analyses, we focused on the grain size 

interval of 63–125 µm to ensure comparability with corresponding data from previous studies in Libya 

(Morton et al., 2011) and Saudi Arabia (Bassis et al., 2016a). The other grain size intervals were 

additionally considered in four samples during conventional heavy mineral analysis to assess the 

influence of chosen grain size windows on the heavy mineral assemblage (Table A 8). These samples 

were selected due to their relatively large grain size variation compared to the other samples and to cover 

a large geographical spread. Heavy mineral separation was done using sodium polytungstate with a 

density of 2.8 g/cm³ in a separatory funnel. The separation procedure was performed two times per 

sample to ensure proper separation of the heavy and the light minerals.  
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Figure 4-2: Maps of the study areas showing the sampling locations (after Lewin et al., 2018). (a) Northern Ethiopia, modified 
after Arkin et al. (1971), Garland et al. (1978), Bussert (2014). (b) Blue Nile region, modified after Tsige and Hailu (2007), Dawit 
(2014). The term “Fincha Sandstone” is taken from Dawit (2014). 

      

       

       

                       

 

       

       

     

     

     

     

        

        

       

    

      

      

      

                  

               

      

            

      

      

      

      

        

 

 

   

   

             

         

            

             

     

          

        

        

         

        

      

      

        

          

 
 
 
 
 
 
  

      

     

      

      

                   

                 

           

 

 

      

              

              

           

                 

               

            

      

         

         
     

     

     

        



 

52 

Table 4-1: Sample information. Locations are given in geographical coordinates (WGS84). The stratigraphic assignment (Strat) 
to one of the two studied formations is based on biostratigraphic evidence (B), lithofacies characteristics (LF) in the outcrop 
or geochemical analyses (C). Detailed information on the petrography and geochemistry of each sample is given in Lewin et 
al. (2018). HMA-o – heavy mineral analysis using an optical microscope, HMA-r – heavy mineral analysis using Raman 
spectroscopy, HMA*-r – heavy mineral analysis with both optical microscopy and Raman spectroscopy, rtl – rutile chemical 
analysis, grt – garnet chemical analysis. 

# Sample Formation Age Location North(°) East(°) Facies/ 
Lithology 

Strat. Methods 

1 Enti-4 Enticho Upper Ordovician Atsbi south 13.83465 039.71262 Tillite matrix C HMA*-r, rtl, grt 
2 Enti-5 Enticho Upper Ordovician Atsbi north 13.88828 039.74783 Glacial B HMA-r, grt 
3 Enti-7 Enticho Upper Ordovician Atsbi north 13.88842 039.74259 Glacial B HMA-o 
4 Enti-9 Enticho Upper Ordovician Wollwello 14.22037 039.65014 Glacial B HMA-r, grt 
5 Enti-13 Enticho Upper Ordovician Zalambassa 14.49275 039.41911 Glacial LF HMA-r, rtl 
6 S1 Enticho Upper Ordovician Sinkata 13.96861 039.61167 Glacial B HMA-o 
7 S2 Enticho Upper Ordovician Sinkata 13.96861 039.61167 Glacial B HMA-o 
8 Nib-1 Enticho Upper Ordovician Adigrat south 14.25194 039.48972 Glacial B Rtl 
9 Nib-2 Enticho Upper Ordovician Adigrat south 14.25194 039.48972 Glacial B HMA-r, grt 
10 North-1 Enticho Upper Ordovician Adigrat north 14.31333 039.46000 Glacial B HMA-o 
11 North-2 Enticho Upper Ordovician Adigrat north 14.31333 039.46000 Glacial B HMA-o 
12 Enti-6 Enticho Upper Ordovician Atsbi north 13.88842 039.74827 Marine B HMA-r, rtl 
13 Enti-10 Enticho Upper Ordovician Wollwello 14.21839 039.64994 Marine B HMA-o 
14 Enti-12 Enticho Upper Ordovician Zalambassa 14.49627 039.41911 Marine LF HMA*-r, rtl 
15 S3 Enticho Upper Ordovician Sinkata 13.97056 039.61111 Marine B HMA-o 
16 S4 Enticho Upper Ordovician Sinkata 13.97056 039.61111 Marine B HMA-o 
17 Nib-3 Enticho Upper Ordovician Adigrat south 14.25222 039.49583 Marine B Rtl 
18 Nib-4 Enticho Upper Ordovician Adigrat south 14.25222 039.49583 Marine B HMA-o 
19 North-3 Enticho Upper Ordovician Adigrat north 14.31944 039.45889 Marine B HMA-o 
20 Eda-5 Enticho Upper Ordovician Adwa east 14.19102 038.93957 Sand lens C HMA-r 
21 Eda-2 Edaga Arbi Carboniferous-Permian Enticho 14.28166 039.14725 Tillite matrix B HMA*-r, rtl 
22 Eda-3 Edaga Arbi Carboniferous-Permian Enticho 14.27929 039.14836 Sand lens C HMA-r, rtl 
23 Eda-4 Edaga Arbi Carboniferous-Permian Edaga Robi 14.38906 039.18161 Tillite matrix C HMA-o 
24 Eda-6 Edaga Arbi Carboniferous-Permian Edaga Arbi west 14.05667 039.07095 Sand lens LF HMA-o 
25 Eda-8 Edaga Arbi Carboniferous-Permian Megab south 13.90944 039.32301 Sand lens B HMA-o 
26 Eda-9 Edaga Arbi Carboniferous-Permian Megab south 13.90915 039.32235 Sand lens B HMA-r, rtl, grt 
27 Eda-10 Edaga Arbi Carboniferous-Permian Dugum 13.84957 039.49003 Sand lens LF HMA-o 
28 Eda-11 Edaga Arbi Carboniferous-Permian Abi Addi 13.61842 039.00042 Sand lens LF HMA-r, rtl, grt 
29 Eda-12 Edaga Arbi Carboniferous-Permian Samre 13.17844 039.19745 Sand lens B HMA-r, grt 
30 Hu-1 Edaga Arbi Carboniferous-Permian Bure, Blue Nile 10.31057 037.05068 Sand lens LF HMA*-r, grt 
31 Hu-2 Edaga Arbi Carboniferous-Permian Bure, Blue Nile 10.31057 037.05068 Sand lens LF HMA-r, grt 
          

 

Conventional heavy mineral analysis 

For optical analysis of the heavy mineral assemblage, representative subsamples of the heavy mineral 

concentrates obtained with a micro-riffle splitter were mounted on glass slides embedded in Cargille 

MeltmountTM with a refraction index of 1.662. Mineral species were identified using a polarizing 

microscope and 200 translucent grains per sample were counted where possible. Since the grain size  

windows analysed are narrow, no area-sensitive counting method was used and all grains encountered 

under the microscope were counted until 200 counts were reached. The proportions of translucent and 

opaque minerals were assessed based on 100 counts per sample. 

 

Raman spectroscopy 

To confirm the results from the optical analysis of the heavy mineral assemblages, we applied a semi-

automatic identification and counting method based on Raman spectroscopy at the Geoscience Centre 

of the University of Göttingen (Lünsdorf et al., 2019) to 15 of the samples (Table 4-1). The samples 

were chosen to cover all different minerals and assemblages identified during optical analysis. 

Representative subsamples of the respective heavy mineral concentrates were embedded in epoxy resin 

and polished to reveal the grains’ interior on a flat surface. High-resolution mosaic images of the mounts 

were taken using a Zeiss Axio Imager M2m polarizing microscope with the ZEN Pro software at high 

magnification (50x, 0.75 NA) in transmitted and reflected light. Measuring spots were selected on these 

mosaics using the Coordsetter software introduced by Lünsdorf et al. (2019) and the coordinates were 

transferred to a Horiba Scientific XploRA PLUS Raman microscope. Raman spectroscopy was 

performed with a laser wavelength of 532 nm, laser power of 25% (of 100 mW) and circular polarization 

(lambda/4 retarder plate). The following measurement parameters were used; spectral grating: 

1200 gr/mm, spectrometer position: 1310 cm-1, objective: 50x, 0.5 NA, LWD, exposure time: 0.1 s 
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(min.)/30 s (max.), number of accumulations: 1, max. intensity: 5000 cts. Automated identification of 

heavy mineral species was done with an in-house program using a modified version of the RRUFF 

database in combination with the segmental hit quality index approach (Lünsdorf et al., 2019). 

Depending on the quality of the mount and the proportions of translucent and opaque grains, between 

87 and 937 translucent minerals per sample were confidently identified (Table A 7).  

 

Electron microprobe analysis 

Rutile chemical analyses were performed on six samples from the Enticho Sandstone and four samples 

from the Edaga Arbi Glacials; garnet chemical analyses were performed on four samples from the 

Enticho Sandstone and five samples from the Edaga Arbi Glacials. The choice was made based on the 

amount of the respective mineral in the heavy mineral concentrate. Rutile and garnet grains were 

randomly handpicked under a binocular microscope from the heavy mineral concentrates of the 63–

125 µm grain size fraction, embedded in epoxy resin and polished to expose the grains’ interior on a flat 

surface. The mounts were carbon-coated to ensure conductivity. Chemical analyses of the mineral grains 

were performed with a JEOL JXA 8900 RL electron microprobe equipped with five wavelength 

dispersive spectrometers at the Geoscience Centre of the University of Göttingen. Rutile was analysed 

with a beam current of 80 nA and an accelerating voltage of 25 kV. A counting time of 200 s was used 

for Al, Cr, Nb, V and Zr, 100 s were used for Fe, Si, Sn and W and 15 s for Ti. Garnet was analysed 

with a beam current of 20 nA and an accelerating voltage of 15 kV. The counting times per spot were 

15 s for Al, Ca, Fe, Mg and Si and 30 s for Cr, Mn and Ti. Detection limits and standard errors are given 

in the supplementary material together with the analytical data.  

 

To visualise the datasets obtained from electron microprobe analyses and their variability, a principal 

component analysis (PCA) was performed with the centred log-ratio transformed chemical data for rutile 

and garnet, respectively. The log-ratio transformation is necessary to account for the compositional 

nature of the data (Aitchison, 1986). Values below the detection limit were replaced by 0.65 times the 

detection limit, as suggested by Martín-Fernández et al. (2003), to make sure that the dataset for log-

ratio transformation does not contain any zeros. 

 

Rutile growth temperature was assessed using the latest Zr-in-rutile thermometer introduced by Tomkins 

et al. (2007) in the α-quartz field after the following equation:  

 

T(°C) = ((83.9 + 0.410 P) / (0.1428 – R ln(Zr[ppm]))) – 273. 

 

R is the gas constant with 0.0083144 kJ K−1. A default pressure P of 10 kbar was used, as proposed by 

Triebold et al. (2012) for detrital rutile with unknown growth pressure conditions. The dependency of 

Cr and Nb concentrations in rutile on host rock chemistry was used to deduce the proportions of 

metamafic and metafelsic rutiles with the following Cr–Nb separation line after Triebold et al. (2012): 

 

x = 5 (Nb[ppm] – 500) – Cr[ppm]. 

 

Here, rutiles from metamafic rocks yield negative values for x, while for rutiles from metafelsic rocks x 

is positive. 

 

The assignment of detrital garnet to certain source lithologies is difficult given the complex control of 

garnet composition by host rock chemical composition and pressure and temperature during formation 

(e.g. Krippner et al., 2014; Tolosana-Delgado et al., 2018). To account for the overlap of compositional 

fields of garnets from different host rock lithologies and the need for robust multivariate statistical 

methods for garnet classification, Tolosana-Delgado et al. (2018) proposed a new discrimination 
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scheme, which is applied in this study. It is hierarchical, based on linear discriminant analysis and gives 

a set of probabilities for a garnet grain of belonging to one of the five host rock categories: igneous 

rocks, ultramafic rocks or eclogite-, amphibolite- and granulite-facies metamorphic rocks.  

 

4.4. Results 

Heavy mineral analysis 

The full data set obtained during optical heavy mineral analysis and Raman spectroscopy is available in 

the supplementary material to this article (Table A 7). The proportions of heavy minerals with respect 

to the bulk of the respective grain size fractions used for separation are low. Heavy mineral yields vary 

between 0.01 wt% and 3.94 wt% of the respective grain size fractions with most yields below 1 wt% 

(Table A 7). No systematic difference between the two formations is visible in the heavy mineral yield. 

The ratio between translucent and opaque grains is highly variable and no pattern is observable (Table 

A 7). An overview of photomicrographs of the most common heavy minerals in the studied samples is 

given in Figure 4-3. The analysis of the heavy mineral assemblages reveals distinct differences between 

samples of the Enticho Sandstone and the Edaga Arbi Glacials. The heavy mineral suite of the Enticho 

Sandstone, especially the upper, marine, subunit, is dominated by the ultra-stable minerals zircon, rutile 

and tourmaline (Figure 4-4). The lower glaciogenic subunit contains significant amounts of garnet and 

in some samples apatite and staurolite (Figure 4-4). The highest garnet content in the Enticho Sandstone 

is found in sample Enti-4, which is taken from the basal tillite. Moreover, monazite is a common mineral 

in the Enticho Sandstone.  

 

 

Figure 4-3: Photomicrographs of the most common heavy minerals in the studied samples. The bars represent 50 µm, 
respectively. 

In the Edaga Arbi Glacials, the proportion of the ultra-stable heavy minerals is much lower. Instead, 

apatite and garnet make up the largest heavy mineral groups, but with strongly varying relations (Figure 

4-4). Garnet contents range from zero to 86% and apatite contents from 7 to 77.1% (Figure 4-4, Table 

A 7). Remarkable is the exceptionally high epidote content in two samples from the Edaga Arbi Glacials 
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(Eda-6 with 45% and Eda-12 with 50.6%). Regarding the TiO2 polymorphs (rutile, anatase and 

brookite), differentiated by Raman spectroscopy, rutile constitutes more than 80% in most studied 

samples (Table A 7). However, some samples, especially in the Edaga Arbi Glacials, contain 

considerable amounts of anatase and brookite intergrowths.  

 

For four samples, two from each formation, the heavy mineral assemblages in the grain size fractions 

40–63 µm and 125–250 µm were analysed additionally to reveal the influence of the chosen grain size 

window (Figure 4-5). Generally, the same heavy mineral assemblage can be observed within different 

grain size fractions of one sample, but with varying proportions of the respective minerals. It is evident 

that zircon preferentially occurs in the finest grain size fraction, whereas tourmaline and garnet are more 

abundant in the largest grain size fraction. An exception is sample Enti-4, where staurolite and monazite 

occur in the largest fraction, which are not present in the two finer fractions. Figure 4-5 also reveals 

differences in heavy mineral identification optically and using Raman spectroscopy; the 63–125 µm 

fraction of these four samples was counted with both methods. The result is similar, however, tourmaline 

and minerals of the epidote group are generally overestimated during optical counting, whereas garnet 

is underestimated (Figure 4-5).  

 

 

Figure 4-4: Heavy mineral assemblages in the 63–125 µm grain-size fractions of the studied samples. For samples marked 
with an asterisk (*) the heavy minerals were identified using Raman spectroscopy, for the other samples with a polarising 
microscope. The samples are arranged according to their stratigraphic order as inferred during field work. 

 

The two studied formations can well be discriminated using heavy mineral indices (e.g. Morton and 

Hallsworth, 1994; Table 4-2). The dominance of the ultra-stable heavy minerals in the Enticho 

Sandstone is shown in the zircon–tourmaline–rutile (ZTR) index of 79.7 on average. In the Edaga Arbi 

Glacials ZTR is on average 13.4. On the other hand, the high proportions of garnet and apatite in the 

Edaga Arbi Glacials are reflected in a garnet–tourmaline index (GTi) of 88.3 and an apatite–tourmaline 
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index (ATi) of 88.7. In the Enticho Sandstone these indices are on average 17.3 and 14.6, respectively. 

The rutile–zircon index (RZi) is higher in the Edaga Arbi Glacials with a mean of 43.0, while in the 

Enticho Sandstone RZi is 20.4 on average. The staurolite–tourmaline index (STi) is higher in the Enticho 

Sandstone (14.4) than in the Edaga Arbi Glacials (0.9; Table 4-2).  

 

 

Figure 4-5: Comparison of the heavy mineral assemblages in the grain-size fractions 40–63 µm, 63–125 µm and 125–250 µm 
for four samples. Note that the 63–125 µm fraction was studied by both optical microscopy and Raman spectroscopy (*).   

 

Table 4-2: Heavy mineral indices (Morton and Hallsworth, 1994): ZTR = zircon + rutile + tourmaline; RZi = 100 rutile / (rutile + 
zircon); GZi = 100 garnet / (garnet + zircon); ATi = 100 apatite / (apatite + tourmaline); STi = 100 staurolite / (staurolite + 
tourmaline). Samples marked with an asterisk (*) are studied with Raman spectroscopy, other samples using optical 
microscopy.  

Sample Formation ZTR RZi GZi ATi STi 

Enti-4* Enticho Sandstone 22.4 25.0 84.5 61.9 0.0 

Enti-5* Enticho Sandstone 49.5 19.3 56.3 0.0 23.9 

Enti-6* Enticho Sandstone 86.2 22.9 0.0 0.0 23.1 

Enti-7 Enticho Sandstone 82.5 20.3 16.2 8.3 24.1 

Enti-9* Enticho Sandstone 70.1 45.7 49.0 0.0 11.8 

Enti-10 Enticho Sandstone 90.5 31.5 0.0 5.4 2.8 

Enti-12* Enticho Sandstone 99.9 10.8 0.1 0.0 0.0 

Enti-13* Enticho Sandstone 94.9 10.1 0.2 0.0 0.0 

S1 Enticho Sandstone 67.9 14.3 6.7 30.3 30.3 

S2 Enticho Sandstone 79.0 17.9 2.8 60.0 9.1 

S3 Enticho Sandstone 85.1 20.2 3.7 12.5 22.2 

S4 Enticho Sandstone 86.0 12.6 1.0 0.0 23.2 

Nib-2* Enticho Sandstone 87.6 29.2 16.2 0.0 0.0 

Nib-4 Enticho Sandstone 91.2 35.4 0.0 4.5 4.5 

Nord-1 Enticho Sandstone 85.0 12.4 13.0 0.0 10.0 

Nord-2 Enticho Sandstone 74.5 15.6 26.0 0.0 0.0 

Nord-3 Enticho Sandstone 86.5 22.4 3.2 0.0 15.0 

Eda-2* Edaga Arbi Glacials 21.7 33.3 4.0 88.6 1.6 

Eda-3* Edaga Arbi Glacials 32.5 40.7 0.0 81.7 0.0 

Eda-4 Edaga Arbi Glacials 23.0 26.3 54.8 83.5 0.0 

Eda-5* Enticho? 96.2 12.7 0.0 20.7 4.4 

Eda-6 Edaga Arbi Glacials 4.0 50.0 96.6 87.5 0.0 

Eda-8 Edaga Arbi Glacials 6.0 37.5 91.9 97.0 0.0 

Eda-9* Edaga Arbi Glacials 31.1 64.4 72.8 77.5 2.3 

Eda-10 Edaga Arbi Glacials 6.5 23.1 94.5 100.0 0.0 

Eda-11* Edaga Arbi Glacials 10.8 47.4 93.3 93.9 0.0 

Eda-12* Edaga Arbi Glacials 5.1 92.3 98.2 99.3 0.0 

Hu-1* Edaga Arbi Glacials 4.3 16.0 95.8 97.1 0.0 

Hu-2* Edaga Arbi Glacials 2.4 0.0 95.3 99.2 0.0 

       
Enticho mean 79.7 20.4 17.3 14.6 14.4 

Edaga Arbi mean 13.4 43.0 88.3 88.7 0.9 
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Rutile chemistry 

The PCA biplot of the rutile chemical data (Figure 4-6) gives a first overview of the variability within 

the data set. The colour code by formation reveals clustering of the samples from the Enticho Sandstone 

and the Edaga Arbi Glacials, respectively. Rutiles from the Enticho Sandstone are enriched in Zr, V and 

Nb, whereas rutiles from the Edaga Arbi Glacials contain more Al and Fe (Figure 4-6). A group of 

rutiles from the Enticho Sandstone is enriched in Fe as well and is dominated by rutiles in sample Enti-

6 (Figure 4-6). When looking at the first and third principal component (Figure 4-6 b), a group of rutile 

grains in the Enticho Sandstone is striking that is significantly depleted in Al compared to all other 

grains. This group is not from one single sample but contains grains from all analysed Enticho Sandstone 

samples (Figure 4-6).  

 

According to the Zr-in-rutile thermometry after Tomkins et al. (2007), most analysed rutiles have grown 

under amphibolite-/eclogite-facies thermal conditions (ca. 500–750 °C for metapelitic rutiles, following 

Zack et al., 2004), while both formations contain also granulite-facies rutiles (>750 °C, following Zack 

et al., 2004; Figure 4-7). The proportion of granulite-facies rutiles is higher in the Enticho Sandstone 

(mean: 17.7%, range: 10.6–22.7%) than in the Edaga Arbi Glacials (mean: 15.8%, range: 7.0–33.3%). 

According to the source rock lithological assessment using the Cr and Nb contents most of the rutile 

grains in both formations are probably from metafelsic host rocks (Figure 4-7). The Edaga Arbi Glacials 

contain a higher proportion of rutile grains that might be derived from metamafic sources (mean: 39.8%, 

range: 28.9–48.7%) than the Enticho Sandstone (mean: 27.0%, range: 16.7–34.0%).  

 

Garnet chemistry 

Garnet chemical analyses yield similar compositions for garnets from the Enticho Sandstone and from 

the Edaga Arbi Glacials. In a PCA biplot no clear clustering is visible (Figure A 3). However, garnets 

in the Enticho Sandstone appear to be slightly more Mn-rich (spessartine), while garnets in the Edaga 

Arbi Glacials are more Fe-rich (almandine). According to the garnet classification scheme after 

Tolosana-Delgado et al. (2018) most garnets are derived from metamorphic rocks. Both formations 

contain also a significant amount of garnets classified as from felsic igneous rocks, which is higher in 

the Enticho Sandstone (11.5%) than in the Edaga Arbi Glacials (5.9%; Figure 4-8). Only one garnet 

grain in a sample from the Enticho Sandstone is classified with the highest probability as from an 

ultramafic source. The metamorphic garnets are mostly classified as derived from amphibolite-facies 

and to a minor extent from granulite-facies metamorphic rocks (Figure 4-8). Only a few metamorphic 

garnets are with high probabilities from eclogite-facies sources. The proportion of metamorphic garnets 

probably from granulite-facies rocks is higher in the Enticho Sandstone (average: 29%, range 16.7–

43.8%) than in the Edaga Arbi Glacials (average: 16.9%, range: 8.9–34.0%; Figure 4-8). Within the 

formations, inter-sample variations can be observed. In the Enticho Sandstone, samples Enti-4 and Enti-

5 contain more high-grade metamorphic garnets than the other samples (Figure 4-8 a). In the Edaga Arbi 

Glacials, a tendency to high metamorphic grades can be observed for sample Eda-9 (Figure 4-8 b).  

 

4.5. Discussion 

Enticho Sandstone (Ordovician–Silurian)  

The very high proportion of ultra-stable heavy minerals (ZTR; Figure 4-4) and monazite, hence the very 

high mineralogical maturity, is untypical for glaciogenic sediments. In an ice-house climate chemical 

weathering is poor. An explanation for the high maturity can be the recycling of older sediments or 

sedimentary rocks that have undergone substantial diagenetic modification dissolving unstable minerals 

(Garzanti, 2017). Typical indicators for recycled sedimentary rocks, such as abraded quartz overgrowth 

or sedimentary lithoclasts, have not been identified during petrographic analyses. However, if the  
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Figure 4-6: PCA biplot based on the centred log-raio (clr) transformed concentrations of the measured trace elements in rutile 
from Enticho Sandstone and Edaga Arbi Glacials. (a) First and second principal component. (b) First and third principal 
component. (c) First and third principal component with colour-code by sample. 

 

sediment incorporated and transported by the glaciers and meltwater of the Hirnantian glaciation was 

not significantly lithified, such indicators are less pronounced. As parent sediment for the Enticho 

Sandstone, the Cambrian–Ordovician quartzarenites that covered much of northern Gondwana 

(Garfunkel, 2002; Avigad et al., 2005) are a likely candidate. It is unlikely that these sediments have 

been buried to a depth in which substantial diagenetic dissolution of unstable minerals took place before 

they were taken up by the Hirnantian glaciers. However, the high maturity of the parent sediment may 

have been caused by strong chemical surface weathering due to warm and humid climate conditions 

combined with a low relief and low sedimentation rates in the aftermath of the Pan-African orogeny 

under a corrosive Cambrian–Ordovician atmosphere, as suggested by Avigad et al. (2005). The Enticho 

Sandstone may thus represent reworked Cambrian–Ordovician sediments leading to its strikingly high 

maturity. This assumption is also made for Hirnantian glaciogenic sandstones in Saudi Arabia (Hussain 

et al., 2004; Knox et al., 2007; Bassis et al., 2016a; 2016b). 

 

The glaciogenic basal part of the Enticho Sandstone, however, does also contain substantial amounts of 

less stable minerals, mainly garnet. This is particularly true for sample Enti-4, which was taken from the 

basal tillite (Figure 4-4). High proportions of garnet have also been observed in Hirnantian sandstones 

in Israel (Weissbrod and Bogoch, 2007) and ascribed to proximal sources since glacio-fluvial channels 

cut deeply into the basement. In Libya, an increase in garnet content, together with an increase in RZi 

is observed at the base of the Tanezzuft Formation (Meinhold et al., 2011; Morton et al., 2012), which 

is equivalent to the shallow marine part of the Enticho Sandstone (Figure 4-9 b). This shift is ascribed 

to the final pulse of the Hirnantian glaciation, during which glaciers have cut deeply into the hinterland 

and brought new material, which was then reworked during transgression. In the Enticho Sandstone, 

there are numerous indications of several glacier advance-retreat cycles, such as large and intense 

deformation structures in the glaciogenic sediments and the occurrence of tunnel valleys filled with 

glaciogenic sediments and eroded into older glaciogenic sediments. The unstable heavy minerals in the 

basal glaciogenic sediments may thus have been derived from intensive erosion during the first glacier 

advance. The subsequent glacial advances probably did not erode these glaciogenic sediments down to 

the basement, so that fresh basement material was not admixed during the subsequent advances. In 

Saudi-Arabia, Hirnantian sandstones are devoid of garnet (Bassis et al., 2016a), so glacial erosion of the 

basement was probably geographically variable. The absence of garnet in the shallow marine upper part 

of the Enticho Sandstone may be a consequence of selective removal during diagenesis. Corrosive pore 

fluids could penetrate the well-sorted and highly permeable marine sandstone better than the less 
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permeable glaciogenic part of the formation. Corroded garnet surfaces that could be observed during 

optical investigation of the heavy mineral concentrates (Figure 4-3, lower left image) further indicate 

such dissolution effects. The interpretation of the garnet content as a provenance signal should, 

therefore, be taken with caution.  

 

 

Figure 4-7: Left: histograms of the calculated formation temperatures from Zr-in-rutile thermometry after Tomkins et al. 
(2007). Approximate temperature boundaries of metamorphic facies for metapelitic rutile following Zack et al. (2004). Right: 
Cr–Nb crossplot and pie charts for classification of rutiles derived from metamafic and metafelsic source rocks after Triebold 
et al. (2012). 

 

Despite the above-mentioned differences in garnet content, the heavy mineral assemblages in Ethiopia, 

Saudi Arabia and Libya are largely similar in the Ordovician–Silurian succession, as illustrated in the 

heavy mineral index cross plots (Figure 4-9). This supports the hypothesis of continent-scale 

homogenisation of the sediment in the early Palaeozoic. RZi is notably higher in some Libyan samples, 

likely implying a higher influence of metamorphic sources (Figure 4-9). In the Enticho Sandstone, the 

ratio of metamorphic and magmatic sources, as mirrored in RZi, is rather constant with little variation 

between the samples (Figure 4-9). Rutile and garnet chemical analyses point to mainly amphibolite-

facies metamorphic source rocks, while both provide evidence for a certain contribution of granulite-

facies sources as well (Figure 4-7, Figure 4-8). For rutile, the ratio of granulite-facies to amphibolite-

facies grains is quite constant from sample to sample in the Enticho Sandstone, while garnet displays 

significant inter-sample variations (Figure 4-10). In samples Enti-4 and Enti-5 the proportion of garnets 

probably from granulite-facies sources is much higher than in the other samples (Figure 4-10). These 

samples are those with the highest garnet content, so that the ratio may be more reliable than for the 

other samples. Post-depositional dissolution may have affected different garnet-types differently. 

Additionally, it must be noted that the ratios are based on probabilities that grains grew under the 
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respective metamorphic conditions and not on a distinct classification (Tolosana-Delgado et al., 2018). 

If the inter-sample differences are not an artefact, they indicate that in the Enticho Sandstone there have 

been geographical differences in the contribution of different source areas and that garnet and rutile are, 

at least partly, from different sources.  

 

 

Figure 4-8: Garnet classification after Tolosana-Delgado et al. (2018) using the prior “global”. For the pie charts, garnets were 
assigned to one class if the highest probability was calculated for the respective class, even if it was < 50 %. Ternary diagrams 
further classify the metamorphic garnets. 

 

Rutile, as a chemically and physically very stable heavy mineral, can have been sourced from the 

reworked sediment incorporated in the Enticho Sandstone. The original provenance of this material is 

unclear, but following the Gondwana super-fan hypothesis, it may have originated in the central part of 

the East African Orogen (Mozambique Belt). Amphibolite- to granulite-facies metamorphic rocks are 

abundant there (e.g. Stern et al., 2012; Fritz et al., 2013) and may have supplied the rutile. The group of 

Fe-rich rutiles in sample Enti-6 (Figure 4-6) shows that differences in provenance exist within the 

Enticho Sandstone. Since this sample is taken from the shallow marine upper part of the formation, it 

may indicate that locally different material is brought to the basin during the transgression. 

 

The garnet is probably derived from fresh basement material, which was eroded by the glaciers of the 

Hirnantian glaciation. The local basement in northern Ethiopia comprises mainly greenschist-facies 

metamorphic rocks (Beyth, 1972b; Kazmin et al., 1978; Tefera et al., 1996), but in the vicinity of 

intrusions, higher temperatures may have led to amphibolite-facies metamorphism. Reconstructions of 

the Hirnantian ice sheet assume the ice spreading centre to be in north-west Africa (Ghienne et al., 2007; 

Le Heron and Craig, 2008; Torsvik and Cocks, 2013), making a western provenance likely. 

Amphibolite- to granulite-facies rocks are present in the Sahara Metacraton (e.g. Abdelsalam et al., 

2002) and may have supplied the garnet. Garnet chemistry further reveals a certain proportion of garnets 

that originate with high probability from felsic igneous rocks (Figure 4-8). Such rocks are, however, 

abundant in all parts of the East African Orogen and elsewhere in northern and central Gondwana, 

making it difficult to deduce any source area.  

 

Summarizing, the heavy mineral assemblage of the Enticho Sandstone is probably a consequence of 1) 

reworking of mature sand by glaciers of the Hirnantian glaciation, 2) admixing garnet-rich material 

eroded by the glaciers from the basement and 3) post-depositional modification by dissolution of 

chemically unstable minerals, especially in the well-sorted and highly permeable marine part of the 

formation. The reworked mature sediments may have belonged to the postulated super-fans that 

transported large amounts of material towards the Gondwana margins during the early Palaeozoic 
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(Squire et al., 2006; Meinhold et al., 2013; Stephan et al., 2019), a hypothesis that is also underlined by 

detrital zircon age spectra in the Enticho Sandstone (Lewin et al., 2020). The variably admixed fresh 

basement material that delivered the garnet may origin from sources in the Sahara Metacraton. A 

northwesterly source area for the Enticho Sandstone is supported by palaeocurrent directions derived 

from the dip direction of foreset beds within cross-bedded sandstone (Bussert and Dawit, 2009). 

 

 

Figure 4-9: Cross-plots of heavy mineral indices for the studied formations (Table 2) and for stratigraphically corresponding 
formations in Saudi Arabia and Libya. (1) Bassis et al. (2016a), (2) Knox et al. (2007), (3) Morton et al. (2011), (4) Morton et 
al. (2012). 

 

Edaga Arbi Glacials (Carboniferous–Permian) 

In the Edaga Arbi Glacials, apatite and garnet, and in two samples epidote, are present with very high 

proportions (Figure 4-4). This means that 1) the formation cannot be (solely) the product of recycling 

of the Enticho Sandstone and 2) very little chemical alteration of the sediment must have taken place. 

Besides the generally low influence of chemical weathering in glacial environments, it may indicate 

short transport of the material, with little time for temporal storage and weathering. Furthermore, the 

potential of post-depositional intrastratal dissolution was lower in the Edaga Arbi Glacials, because the 

sandstone is poorly sorted with significant proportions of clay. The clay may have filled the pores 

avoiding the penetration of corrosive fluids (see also petrographic description in Lewin et al., 2018).  

 

An increase in garnet content in the Upper Palaeozoic is also observed in Libya at the base of the 

Carboniferous Mrar Formation (Morton et al., 2011) and in Saudi Arabia in the Carboniferous–Permian 

glaciofluvial Juwayl Formation (Bassis et al., 2016a) and interpreted as a change in provenance. The 

comparison of heavy mineral indices of the Upper Palaeozoic sandstones in these regions to the Edaga 

Arbi Glacials (Figure 4-9), however, reveals substantial differences. In all plots presented in Figure 4-9, 

the Edaga Arbi Glacials differ significantly from all other formations. The heavy mineral assemblage is 

thus not regionally correlative and probably the result of local provenance and sedimentary conditions. 

Striking is particularly the high abundance of apatite and the absence of staurolite in the Edaga Arbi 
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Glacials as compared to stratigraphically equivalent formations in Saudi Arabia and Libya (Figure 4-9). 

Apatite is abundant in many magmatic and metamorphic rocks and widespread in the northern Ethiopian 

basement. This is supported by geochemical analyses of some samples from the local basement that 

revealed relative enrichment in phosphorus (Lewin et al., 2018; Figure 2-10 a). The high epidote content 

in two samples, Eda-6 and Eda-12 (Figure 4-4), may also be due to a very proximal provenance of the 

material and could be derived from the greenschist-facies metavolcanics of the Tsaliet Group (Beyth, 

1972b; Miller et al., 2009).  

 

 

Figure 4-10: Comparison of the proportions of amphibolite/eclogite-facies and granulite-facies rutiles and garnets for the two 
studied formations, respectively, as inferred from Zr-in-rutile thermometry after Tomkins et al. (2007) and the garnet 
classification scheme after Tolosana-Delgado et al. (2018). Large pie charts show the respective total proportions for the 
whole formation, which are broken down to the single samples in the small pie charts. 

 

Garnet and rutile chemistry indicate mainly amphibolite- but also granulite-facies metamorphic rocks 

as sources, though to a smaller proportion as in the Enticho Sandstone (Figure 4-7, Figure 4-8, Figure 

4-10). The ratio of granulite- and amphibolite-facies garnet and rutile is similar so that both minerals 

could be derived from the same source rocks (Figure 4-10). The separation of rutile in both formations 

according to its chemical composition, as revealed in the PCA biplot (Figure 4-6), indicates that rutile 

in the Edaga Arbi Glacials is, at least partly, derived from a different source area than rutile in the 

Enticho Sandstone. This is also indicated by the different proportions of rutile assigned to metamafic 

and metafelsic host rocks by their Cr–Nb contents with a higher proportion of metamafic rutiles in the 

Edaga Arbi Glacials (Figure 4-7). The greenschist-facies metamorphism of the local basement in 

northern Ethiopia, as discussed above, questions a very local provenance for the rutile and garnet in the 

Edaga Arbi Glacials. The transport direction is inferred from south to north based on the orientation and 

geometry of palaeo-landforms, such as roche moutonnées (Bussert, 2010). The amphibolite- and 

granulite-facies garnets and rutiles may thus be derived from the high-grade metamorphic rocks in the 

Southern and Western Ethiopian Shields (Yibas et al., 2002; Woldemichael et al., 2010; Stern et al., 

2012). Striking is the exceptionally high proportion of granulite-facies rutiles and garnets in sample Eda-
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9 (Figure 4-10). Raman spectroscopy of this sample revealed that it contains also significant amounts of 

anatase and brookite, which may have led to erroneous results of Zr-in-rutile thermometry. However, 

for Raman spectroscopy, random grain mounts were analysed and we assume that during picking of 

rutile grains for microprobe analysis rutile is selected intuitively. An analysis of the picked rutile trace 

element composition after Triebold et al. (2010) resulted in rutile being the dominant TiO2 polymorph 

in the mounts for single-grain analysis (99.4% of all grains, in sample Eda-9 98%). Furthermore, garnet 

chemistry shows a similar proportion of granulite-facies grains in sample Eda-9, which is much higher 

than in the other samples (Figure 4-8, Figure 4-10). This leads to the assumption of geographic (and 

maybe also stratigraphic) differences in provenance within the Edaga Arbi Glacials. Such differences 

are also indicated by the generally less uniform and systematic heavy mineral assemblage in the Edaga 

Arbi Glacials compared to that of the Enticho Sandstone (Figure 4-4) and by the variations in RZi 

(Figure 4-9).  

 

A rather proximal provenance for the Edaga Arbi Glacials is in accordance with earlier findings from 

petrographic and geochemical analyses and detrital zircon geochronology (Lewin et al., 2018; Lewin et 

al., 2020) and supports the assumption of a complex pattern of ice sheets during the Late Palaeozoic Ice 

Age (e.g. Eyles, 1993; Fielding et al., 2008). In north-east Africa, complex local geomorphology evolved 

during ‘Hercynian’ tectonism (Al-Husseini, 1992; Sharland et al., 2001), leading to mountain glaciers 

during the Late Palaeozoic Ice Age (Konert et al., 2001; Bussert and Schrank, 2007; Le Heron et al., 

2009). Alternatively, thermal up-doming prior to the formation of the Zagros rift zone, which later 

formed the Neo-Tethys ocean, could have caused basement uplift (Sharland et al., 2001). The glaciers 

then could effectively erode material from the uplifted areas and transport it to nearby depocentres, 

leading to the immature heavy mineral assemblage found in the Edaga Arbi Glacials.  

 

The findings show that no major recycling of the Enticho Sandstone by the Edaga Arbi Glacials took 

place. This is probably because the deposition of the Enticho Sandstone was limited to northern Ethiopia 

(Kazmin, 1972; Tefera et al., 1996), while the inferred source area of the Edaga Arbi Glacials is to the 

south. 

 

 

 

Figure 4-11: Overview over the main findings of this study. Extent and ice flow directions for the Hirnantian ice sheet are after 
Ghienne et al. (2007), Le Heron and Craig (2008) and Torsvik and Cocks (2013). The contour of Ethiopia is given in red. SMC – 
Saharan Metacraton, ANS – Arabian–Nubian Shield, MB – Mozambique Belt. 
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4.6. Conclusions 

A summary of the main findings of this study is given in Figure 4-11. The study of heavy minerals in 

the Ordovician–Silurian Enticho Sandstone and the Carboniferous–Permian Edaga Arbi Glacials 

revealed significant differences in the heavy mineral assemblages. The Enticho Sandstone is 

characterised by a highly mature heavy mineral assemblage, which is uncommon for glaciogenic 

sediments. We, therefore, conclude that it is composed of recycled material of older sediments. 

Additionally, various proportions of garnet, especially in the tillite, indicate an admixture of fresh 

basement material through glacial erosion. Heavy mineral assemblage and rutile and garnet chemical 

analyses point to magmatic and metamorphic source rocks with metamorphic temperatures of mainly 

amphibolite-, but also granulite-facies grade. Garnet and rutile are not necessarily derived from the same 

metamorphic host rocks. The recycled/reworked sediments incorporated in the Enticho Sandstone may 

have been part of the Gondwana super-fan system that transported large amounts of sediment from the 

inner part of the continent to the margins. The original provenance of the material remains unclear. The 

fresh basement material delivering the garnet could originate from the Sahara Metacraton.  

 

The heavy mineral assemblage of the Edaga Arbi Glacials is dominated by less stable minerals, mainly 

garnet and apatite. Therefore, very little chemical weathering of the sediment must have taken place. 

We assume a more proximal provenance for the Edaga Arbi Glacials. The source area is characterised 

by magmatic and metamorphic rocks as well. Rutile and garnet chemistry indicate mainly amphibolite 

metamorphic temperatures, while also granulite-facies host rocks were inferred. Rutile in the Edaga Arbi 

Glacials and the Enticho Sandstone are probably from different host rocks, as inferred from differences 

in trace element compositions. The local basement in northern Ethiopia experienced only greenschist-

facies metamorphism, but higher metamorphic grades were reached in the southern Arabian–Nubian 

Shield (Western and Southern Ethiopian Shields). This agrees with an assumed transport direction of 

the Edaga Arbi Glacials from south to north. Since the deposition of the Enticho Sandstone was probably 

limited to northern Ethiopia, no recycling by the Edaga Arbi Glacials took place. 

 

These findings confirm previous assumptions of reworked mature sediment as the major constituent of 

the Enticho Sandstone and a proximal provenance for the Edaga Arbi Glacials. They also support 

previous models for the two glaciations with a large ice sheet covering northern Gondwana in the Late 

Ordovician and a complex pattern of local glaciers in the Carboniferous–Permian.  
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5. Synthesis 
 

5.1. Comparison and validity of methods 

In this thesis, methods on different scales were applied, from bulk sample to certain mineral species. An 

overview of the methods used is given in Section 1.5 and Figure 1-5. In the following, a short synopsis 

of the validities and informative values of the respective methods in answering the research questions 

shall be given.  

 

The petrographic study of thin sections provided the basis for further steps in provenance analysis. It 

helped to get a general understanding of the nature of the samples, their texture and main constituents 

and mineralogical and textural maturity. It also helped to assess the relevance of matrix and authigenic 

phases. The bulk geochemical analyses of major and trace elements mainly confirmed the results of 

petrography and heavy mineral analysis. It turned out as an excellent tool to distinguish the two studied 

formations. With this, samples of uncertain stratigraphic classification can be assigned to one formation, 

as has been shown by the example of sample Eda-5, originally classified as belonging to the Edaga Arbi 

Glacials in the field. Using the geochemical data, it could clearly be assigned to the Enticho Sandstone. 

The typical diagrams for assessment of the tectonic setting in which the sediments were deposited (e.g. 

Verma and Armstrong-Altrin, 2013; 2016) did not provide much additional information to the mere 

assessment of the geochemical data via multivariate statistical methods (e.g. PCA) but are another tool 

for discrimination of the two formations. The measurement of rare earth elements (REE) could provide 

the first hint to differences in provenance of the two formations by their different patterns in the relation 

of heavy and light REE and in Eu anomaly. The conventional heavy mineral analysis was able to confirm 

the previous findings on maturity, assess the influence of chemical weathering and diagenetic 

modification and give further insights into provenance. In the heavy mineral assemblages, the strongest 

differences between the two formations were revealed. Especially with Raman spectroscopy, efficient 

determination of heavy mineral species was possible and the operator bias could be reduced. The 

conventional heavy mineral analysis further provided the basis for single grain analyses, e.g. if the 

necessary number of grains of a certain mineral species could be reached. Rutile and garnet chemical 

analysis yielded rather similar results for the two formations. Furthermore, the information obtained is 

not directly assignable to a certain source terrain but rather to a type of (metamorphic) rock, all of which 

are present in many places in possible source areas. However, slight differences in rutile chemistry 

between the two formations indicated that the rutiles were (partly) from different sources. Moreover, 

the indicated metamorphic grades higher than greenschist-facies could rule out a major provenance from 

the directly underlying basement for the Edaga Arbi Glacials. The tool which could most precisely 

indicate a certain source (area) in this study was detrital zircon chronology. Impressive differences 

between the two formations could be revealed and the sources could be constrained.  

 

To sum up, the most helpful methods for addressing the research questions of this thesis were thin 

section petrography, REE analysis, conventional heavy mineral analysis and detrital zircon chronology. 

Major and trace element analysis turned out as a tool to distinguish the two formations clearly and assign 

unknown samples (chemostratigraphy). This evaluation is, of course, only valid for this certain study 

with its specific research questions. In other cases, another combination of provenance methods may be 

most useful. An overview of the used methods, the characteristic results for the respective formation 

and the kind of information that is revealed by the methods is given in Table 5-1.   
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Table 5-1: Overview of the methods used in this study, the characteristic results for the two formations from Ethiopia, the 
kind of information that could be revealed by the respective method and an evaluation of the helpfulness to answer the 
research questions of this thesis (the more + the more helpful the method was).  

Category Method Characteristics in Enticho 

Sandstone 

Characteristics in Edaga 

Arbi Glacials 

Information revealed Eva-

luation 

Bulk 

sample 

Petrography Quartzarenite (especially 

marine part), subarkose; 

well sorted and rounded in 

marine part, poorly in 

glaciogenic 

Subarkose, lithic 

subarkose, arkose; variable 

roundness, moderate 

sorting 

Mineralogical maturity, 

textural maturity; 

Chemical alteration 

(weathering, diagenesis), 

transport mode  

++ 

Major and 

trace 

elements 

CIA of 92 (marine part) / 78 

(glaciogenic part); relative 

enrichment in Zr, Th, Hf, U 

CIA of 62; relative 

enrichment in Al, P, Sc, V 

Mineralogical maturity; 

Chemical alteration 

(weathering, diagenesis) 

+ 

Rare earth 

elements 

Strong enrichment in LREE, 

strong Eu anomaly  

Less enrichment in LREE 

(flat pattern), little to no Eu 

anomaly 

Mineralogical maturity, 

provenance; 

Chemical alteration 

(weathering, diagenesis), 

type of source rocks 

++ 

Heavy 

minerals 

Conventional 

heavy mineral 

analysis  

ZTR of 79.7; variable 

amounts of garnet 

(especially in glaciogenic 

part) 

ZTR of 13.4; high amounts 

of garnet and apatite, but 

with strongly varying 

relations  

Mineralogical maturity, 

provenance; 

Chemical alteration 

(weathering, diagenesis), 

type of source rocks  

++ 

Rutile 

chemistry 

Relatively enriched in Zr, V 

and Nb, temperature mainly 

amphibolite-facies, host 

rock lithology mainly felsic 

Relatively enriched in Al 

and Fe, temperature mainly 

amphibolite-facies, host 

rock lithology mainly felsic, 

slightly higher mafic 

contribution than for 

Enticho Sandstone 

Provenance; 

Metamorphic temperature 

and lithology (felsic/mafic) 

of source rocks 

+ 

Garnet 

chemistry 

Most garnets metamorphic 

(mainly amphibolite-facies, 

some granulite-facies), 

some felsic igneous 

Most garnets metamorphic 

(mainly amphibolite-facies, 

less granulite-facies than in 

Enticho Sandstone), less 

felsic igneous than in 

Enticho Sandstone 

Provenance; 

Type and metamorphic 

grade of source rocks  

+ 

Zircon 

chronology 

Characteristic Stenian–

Tonian (1200–900 Ma) 

population, ratio of Tonian 

to Stenian–Tonian zircons 

is 1.2 

Characteristic Tonian (900–

700 Ma) population, ratio of 

Tonian to Stenian–Tonian 

zircons is 13.1 

Provenance; 

Age of source rocks 

+++ 

 

 

5.2. Multi-method provenance analysis 

In a principal component analysis (PCA; explanation in Section 1.5.3) results obtained from different 

methods can be combined. A final PCA has been carried out, summarizing the most significant 

parameters characterising the two studied formations, as inferred from the three articles (Sections 2, 3 

and 4). Biplots of this PCA are presented in Figure 5-1. They contain data from petrography, bulk 

geochemistry including REE and conventional heavy mineral analysis. Since data from mineral 

chemistry and zircon chronology have only been obtained from few samples, they were not integrated. 

All data integrated in the PCA are compositional making it necessary to transform them by centred log-

ratio transformation before the operation (see explanation in Section 1.5.3). Furthermore, the variables 

have been standardized to unit variance to account for the different units (Lever et al., 2017).  

 

Two biplots are presented for the integrated PCA (Figure 5-1). In Figure 5-1 a, all parameters are 

summarized that have been identified as characterising the two studied formations most. In Figure 5-1 b, 

the apatite and garnet contents, which have a large influence on the variability structure, are left out to 

enhance the visibility of the remaining variability. The two studied formations can be separated very 

well. The separation is mainly along the line ZTR–Ap (Figure 5-1 a). This is the direction of variability 

in mineralogical maturity: the highly mature Enticho Sandstone is characterised by high amounts of the 

ultra-stable heavy mineral assemblage zircon-tourmaline-rutile (ZTR). This is accompanied by a high 



 

67 

Th content, a trace element, which is often present in stable heavy minerals such as zircon or monazite. 

Furthermore, the Enticho Sandstone is characterised by an enrichment in quartz and Zr, underlining the 

high mineralogical maturity (Figure 5-1 a). On the other hand, the enrichment of the Edaga Arbi Glacials 

in apatite indicates lower mineralogical maturity and little influence of chemical weathering. 

Furthermore, the high Al proportions in Edaga Arbi Glacials point to higher amounts of feldspar and 

clays. Garnet is enriched in samples from both the Edaga Arbi Glacials and the glaciogenic part of the 

Enticho Sandstone (Figure 5-1 a). In the latter, diagenetic modification and garnet dissolution had a 

much lower effect than in the marine subunit due to lower permeability (see discussion in Section 4.5). 

Interestingly, the rays of garnet and apatite contents are orthogonal to each other implying that the 

variables are uncorrelated. However, it must be kept in mind that the biplot in Figure 5-1 a explains only 

65.1% of the total variance of the displayed dataset.  

 

In the biplot without the apatite and garnet contents (Figure 5-1 b) the two formations are again separated 

along a “mineralogical maturity axis” represented by ZTR and Th versus P. The latter indicates the high 

apatite content in the Edaga Arbi Glacials. The relative enrichment of Fe, Ni, Sc and HREE in the Edaga 

Arbi Glacials points to a higher influence of mafic source rocks. This is also indicated by rutile 

chemistry, though not very pronounced (see next paragraph). In the second biplot (Figure 5-1 b), the 

samples of the glaciogenic and marine parts of the Enticho Sandstone appear largely in clusters. 

Interestingly, most samples of the glaciogenic subunit cluster along the rays of quartz content and LREE. 

This is difficult to interpret, because the quartz content is generally higher in the marine subunit (Figure 

2-4). Both subunits show similar enrichment in LREE, while the sample with the strongest enrichment 

is in the glaciogenic part (Figure 2-6). It may be that the relative enrichment in Zr and Th in the marine 

subunit is so high that these two variables mainly influence the clustering of the two subunits. Again, it 

must be noted that the biplots are only a projection onto a plane and explain only part of the variability 

of the dataset (in Figure 5-1 b it is only 59.6%), so the relations should not be overinterpreted. The same 

holds true for the Eu anomaly (Eu/Eu*), which is not very indicative in the biplots.    

 

 

Figure 5-1: (a) Biplot of a the first and second principal component of a principal component analysis combining data from 
different methods obtained for all studied samples. (b) Biplot of the first and second principal component of a principal 
component analysis of the parameters in (a) leaving out the garnet (Grt) and apatite (Ap) contents of the respective samples 
to enhance visibility of the variabilities in the remaining variables. For both plots, all variables have been standardized to unit 
variance to account for the different scales.   
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Mineral chemical analyses and zircon chronology are not included into the final PCA because they have 

been conducted only on few samples. These are the indicators that are typically independent from 

weathering and sorting effects because only one mineral type is investigated. Rutile and garnet chemistry 

yield rather similar results for both formations. Rutile and garnet metamorphic temperatures are similar 

(mainly amphibolite-facies but also granulite-facies), with a slight tendency in the Enticho Sandstone 

towards higher temperatures. This supports the assumption that material transported via the Gondwana 

super-fan system from the centre of the EAO, where metamorphism was strong, is contained in the 

Enticho Sandstone. Rutile Cr-Nb analysis yields contribution of mainly metafelsic host rocks, but also 

metamafic host rocks for both formations. However, there is a slight tendency to more mafic input for 

the Edaga Arbi Glacials, which confirms the assumption of a higher influence of the ANS. Chemical 

differences between rutiles from the two formations are indicated by a PCA of the measured elements, 

showing that rutiles from the Enticho Sandstone are enriched in Zr, V and Nb, whereas rutiles from the 

Edaga Arbi Glacials generally contain more Al and Fe (Figure 4-6). Hence, rutiles of the two formations 

are probably from – at least partly – different sources. For garnet, no such clustering appears.  

 

The differences in heavy mineral assemblages between the two studied formations become clearly 

visible in the heavy mineral charts in Section 4 (Figure 4-4). They are largest in ZTR – characteristic 

for the Enticho Sandstone – and garnet and apatite content – characteristic for the Edaga Arbi Glacials 

(while the glaciogenic part of the Enticho Sandstone does also contain significant amounts of garnet). 

These characteristics indicate mainly differences in chemical alteration. Apatite is highly sensitive and 

garnet moderately sensitive to surficial weathering (Velbel, 1984; Bateman and Catt, 2007; van Loon 

and Mange, 2007; Morton et al., 2012). However, indirectly they may indicate differences in 

provenance, because when transport distance is short, there are few occasions for weathering during 

transport and temporal storage on the way. It may even be that the material contained in the Enticho 

Sandstone originally contained as much garnet and apatite as is now found in the Edaga Arbi Glacials 

but was so strongly weathered that almost all these minerals were leached. Such strong alteration, 

however, needs time, supporting the hypothesis that the Enticho Sandstone contains recycled material 

that was strongly weathered on the North Gondwana peneplain before taken up and transported by the 

glaciers of the Hirnantian ice age. The garnet in the glaciogenic part of the Enticho Sandstone is probably 

derived from glacially eroded basement material (Saharan Metacraton and/or Nubian Shield) that was 

admixed in variable amounts to the recycled super-fan sediments (see also discussion in Section 4.5). It 

is unlikely that this garnet comes from the recycled super-fan sediments, since they were so strongly 

weathered that garnet should have been largely removed. Furthermore, pre-Hirnantian sandstones in 

Libya (Morton et al., 2011) and Israel (Weissbrod and Bogoch, 2007), assumed to belong to the super-

fan sediments, contain only very small amounts of garnet, much less than the Enticho Sandstone. The 

strong difference in garnet content between the glaciogenic and the marine part of the Enticho Sandstone 

is probably highly affected by dissolution during burial diagenesis, to which garnet is susceptible 

(Morton and Hallsworth, 2007; Andò et al., 2012).      

 

Zircon chronology shows unequivocal differences between the two studied formations. These are mainly 

in their characteristic populations of Tonian (900–700 Ma, typical for zircons in the Edaga Arbi 

Glacials) and Stenian–Tonian (1200–900 Ma, typical for zircons in the Enticho Sandstone). The relation 

of these two populations is a useful indicator to separate the two formations. The Stenian–Tonian 

population is characteristic for the Gondwana super-fan system in North–East Africa and the Arabian 

Peninsula (Meinhold et al., 2013; Stephan et al., 2019). The age spectra in the Enticho Sandstone are 

correlative with Cambrian–Ordovician sandstones in Libya, Israel, Jordan and Saudi Arabia (Kolodner 

et al., 2006; Meinhold et al., 2011; Morton et al., 2012; Altumi et al., 2013; Meinhold et al., in revision), 

indicating a common origin in the Gondwana super-fan system and a recycling of super-fan sediments 

by the Hirnantian glaciers. Zircon chronology of sample Enti-4 could confirm its belonging to the 
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Enticho Sandstone, as inferred from field relationships. This is an important finding, since it is the only 

location where tillite was found in this formation. It underlies glaciofluvial/glaciomarine deposits of the 

Enticho Sandstone. This evidences that glaciers of the Hirnantian glaciation reached the study area. The 

Tonian population is characteristic for the local basement of the southern Nubian Shield (see Section 3).  

 

Geographic inter-sample trends within the respective formations are almost not present. The only 

geographic pattern is the variation in Th/Sc and Zr/Sc, which both become higher from south to north 

for both formations (Figure 2-9). The progressive enrichment of Th and Zr may be due to the enrichment 

in stable heavy minerals such as zircon along the transport path. However, a transport from south to 

north is only assumed for the Edaga Arbi Glacials (Bussert, 2010). For the Enticho Sandstone, palaeo-

transport indicators, such as foreset dips of meltwater deposits point to varying directions, mainly 

towards the south-east or the north (Kumpulainen, 2007; Bussert and Dawit, 2009). A general 

provenance of the material from the (north-)west is likely, because the ice spreading centre of the 

Hirnantian ice sheet is assumed to have been in North-West Africa, which also corresponds to the 

direction of tunnel valleys (Ghienne et al., 2007; Le Heron and Craig, 2008). Locally, transport 

directions may have varied due to differences in ice dynamics or topography. Another explanation for 

the Th and Zr enrichment from south to north could be progressive marine reworking towards the north 

due to the transgression. The stratigraphic inter-sample variations within the respective formations are 

mainly between the glaciogenic basal part of the Enticho Sandstone and the marine upper part. They can 

be attributed to facies differences rather than to provenance changes with stratigraphy. Within the Edaga 

Arbi Glacials, no systematic stratigraphic pattern could be observed in any of the studied parameters.  

 

A comparison of data obtained in this study with stratigraphically corresponding formations in other 

regions of northern Africa and the Arabian Peninsula complemented the provenance interpretations for 

the Enticho Sandstone and the Edaga Arbi Glacials. Bulk geochemical data of this study was compared 

to data from Saudi Arabia in a PCA biplot (Figure 2-10) yielding similarities in the Ordovician–Silurian 

samples and dissimilarities in the Carboniferous–Permian samples. Comparing heavy mineral indices 

(Figure 4-9), stratigraphically equivalent sandstones in Saudi Arabia, Libya and Ethiopia are rather 

similar in the Ordovician–Silurian, while stronger differences occur in the Carboniferous–Permian. 

These patterns point to a large-scale sedimentary dispersal system with strong regional homogenisation 

of sediment and continent-wide provenance patterns in the Early Palaeozoic (Gondwana super-fan 

system and large ice-sheet of the Hirnantian glaciation). In the Late Palaeozoic, however, sediment 

dispersal systems were more complex and provenance was more locally confined. Comparing detrital 

zircon age spectra of the Enticho Sandstone to those in Hirnantian sandstones form Libya and Algeria 

could prove the belonging of the Enticho Sandstone to the East African–Arabian zircon province sensu 

Stephan et al. (2019), as do the Libyan sandstones. This zircon province is assumed to represent a super-

fan (Meinhold et al., 2013; Meinhold et al., in revision). Including pre-Hirnantian Palaeozoic sandstones 

of North-East Africa and the Middle East in the comparison revealed that no change in provenance 

occurred with the onset of the glaciation but the glaciogenic sandstones contain recycled super-fan 

material (see Figure 3-8 and Section 3.5). Recycling of pre-Hirnantian sediments by Hirnantian glaciers 

and a higher influence of fresh basement sources during the Late Palaeozoic Ice Age is also assumed 

for the Saudi Arabian succession (Hinderer et al., 2009; Keller et al., 2011; Bassis et al., 2016a). 

Meinhold et al. (in revision) compared detrital zircon age spectra in Saudi Arabian glaciogenic 

sandstones with those in Ethiopia and found high similarities in the Hirnantian spectra. A spatial 

correlation could be observed: the northernmost samples from Ethiopia resemble most those of the 

northern study area in Saudi Arabia, whereas those form the southern study area cluster with the 

Ethiopian samples further south. Hence, slight changes in provenance or spatial differences probably 

occurred during the Hirnantian glaciation (Meinhold et al., in revision). For the Carboniferous–Permian 

sandstones, a clearer clustering appears between Saudi Arabia and Ethiopia in a multidimensional 
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scaling map. However, the samples from both countries are still in close vicinity to each other leading 

to the assumption that the Saudi Arabian sandstones contain major amounts of material from the Nubian 

Shield, as do the Ethiopian (Meinhold et al., in revision).  

 

Altogether, the integrated provenance analysis using several complementary methods reveals substantial 

differences between the two studied formations in several parameters. It shows that the lower Palaeozoic 

Enticho Sandstone is highly mature – unusual for glaciogenic sediments – and that this high maturity is 

probably due to recycling of sediments that have been transported in the Gondwana super-fan system 

and strongly weathered in the source area and on the North Gondwana peneplain before taken up by 

glaciers and ice streams of the Hirnantian ice sheet. The material was transported to the study area from 

the North-West. It is likely that glacial erosion admixed material from the basement of the Saharan 

Metacraton (and maybe also the Nubian Shield). For the Edaga Arbi Glacials, a much lower maturity is 

indicated by the used methods and a less distal provenance from Neoproterozoic basement rocks of the 

Nubian Shield in the southern hinterland is likely.   

 

5.3. Final synoptic provenance model for the two studied formations as inferred from the 
results of this thesis 

Taking into account all results obtained in this study and the discussion and conclusions of all three 

articles, a final provenance model for the two studied formations is inferred, which is presented in Figure 

5-2. The regional configuration and depositional models for the Enticho Sandstone and the Edaga Arbi 

Glacials are drawn in Figure 5-2 b, c and e. The depositional models result from observations made in 

the field and previous studies of Robert Bussert and Enkurie L. Dawit (Bussert and Dawit, 2009; Bussert, 

2010; Bussert, 2014). Figure 5-2 a and d represent literature information and theoretical considerations 

on regional evolution before and between deposition of the two studied formations. 

 

Cambrian–Ordovician (Fig. 5-2 a) 

After the Pan-African orogeny in the Neoproterozoic, which led to the final amalgamation of the 

supercontinent Gondwana, the hypothetical “Gondwana super-fan system” transported large amounts 

of detritus from the respective orogens, especially the East-African Orogen, to the continental margins 

(Squire et al., 2006; Meinhold et al., 2013). On the northern margin of the continent, a large peneplain 

existed, on which the sediments were deposited (e.g. Garfunkel, 2002). The study area was no major 

site of deposition by that time, probably because it was still elevated as part of the orogen. The climate 

was warm and humid and the atmosphere corrosive leading to strong chemical weathering in the source 

areas and the sediments stored on the peneplain (Avigad et al., 2005).  

 

Late Ordovician (Hirnantian, Fig. 5-2 b) 

During the Hirnantian glaciation, a giant ice sheet developed with its centre in North-West Africa 

(Ghienne et al., 2007; Le Heron and Craig, 2008). The ice reached the study area, as witnessed by tillite 

in northern Ethiopia (sample Enti-4). Ice streams or glaciers and associated meltwater transported super-

fan material south–east to the study area. Since the material was strongly weathered before, unusually 

mature glaciogenic sediments result. Variable amounts of basement material (from the Saharan 

Metacraton and maybe also the Nubian Shield) were admixed to the recycled super-fan sediments, 

supplying minerals such as garnet (see Section 4). The tillite may represent a terminal moraine, marginal 

moraine or basal till, whereas the sandstones are probably from subaerial or subaqueous outwash fans 

(Bussert and Dawit, 2009). Most of the glaciogenic part of the Enticho Sandstone are meltwater deposits 

and a thick succession could be observed in the field. Probably, large amounts of sediment were 

deposited in a short time interval. Therefore, it is likely that these sediments were mainly released during 

the final meltdown of the ice sheet, when high amounts of meltwater were produced.  
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Figure 5-2: Final model of the provenance and depositional settings of the two studied formations and considerations of 
regional setting during these times and the phases before and between. The time slices b, c and e are inferred based on the 
results of this study, literature and personal discussions on the depositional environments of the two studied formations 
(Bussert and Schrank, 2007; Bussert and Dawit, 2009; Bussert, 2010; 2014). Extent of the transgression in c is after Luening 
et al. (2000). Assumed ice sheets on the Arabian Peninsula in e are after Bussert and Schrank (2007), Fielding et al. (2008) and 
Isbell et al. (2012). Time slices a and d illustrate hypotheses based on literature and theoretical considerations (Squire et al., 
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2006; Craig et al., 2008; Torsvik and Cocks, 2011; Meinhold et al., 2013; Stephan et al., 2019; Meinhold et al., in revision). The 
contour of Africa and Ethiopia (green) are depicted for scale and orientation. The green numbers indicate the respective 
palaeolatitude of the study area after Torsvik and Cocks (2011; 2013). The African continent was in the centre of the 
Gondwana supercontinent (see also Fig. 3-1). SMC – Saharan Metacraton, ANS – Arabian–Nubian Shield, MB – Mozambique 
Belt.  

 

Early Silurian (Fig. 5-2 c) 

The post-glacial transgression in the Early Silurian reached the study area and seawater reworked the 

upper part of the sediment sequence. Fines were washed out and the material became well sorted. The 

study area was probably in the tidal zone, as witnessed by bipolar cross-bed sets observed in the field.  

  

Mid-Silurian to Mid-Carboniferous (Fig. 5-2 d) 

No sediments of this time interval are present in the study area. Initially, the area may have become a 

site of non-deposition due to isostatic rebound after the meltdown of the Hirnantian ice sheet. Eustatic 

sea-level fall occurred in the latest Silurian–Early Devonian (Craig et al., 2008) and is ascribed to 

Palaeotethys rifting (Torsvik and Cocks, 2011). Crustal up-doming prior to Neo-Tethys rifting starting 

in the latest Devonian (Torsvik and Cocks, 2013) further led to uplift at the northern Gondwana margin. 

Part of the Late Ordovician to Early Silurian succession of the Enticho Sandstone must have been 

eroded, as indicated by channels and troughs to which sedimentation of Late Palaeozoic sediments in 

central and southern Ethiopia is limited. Furthermore, the Edaga Arbi Glacials contain mainly fresh 

basement material, hence, little sediment must have been available to be incorporated. Erosion is also 

indicated by a clastic pulse in the Palaeozoic succession of Saudi Arabia in the Devonian (Al-Ajmi et 

al., 2015).    

 

Late Carboniferous to Early Permian (Fig. 5-2 e) 

In the Late Palaeozoic, a complex local geomorphology evolved. Uplift of the Ethiopian basement may 

have occurred due to the Carboniferous “Hercynian event” (Al-Husseini, 1992; Sharland et al., 2004). 

In uplifted areas, mountain glaciers or small ice sheets formed. Material of the uplifted local or regional 

basement to the south (Arabian–Nubian Shield at the transition to the Mozambique Belt, e.g. Western 

and Southern Ethiopian Shields) was eroded and transported to nearby depressions. The cold climate 

and short transport left little room for significant weathering of the material. The tillite probably 

represents moraine material. The fines and dropstones are thought to have been deposited in proglacial 

lakes or fjords, in which episodic hyperpycnal sediment flows interrupted the settling-out and deposited 

sand bodies (Bussert, 2014). A similar setting with lake sediments containing dropstones is observed in 

the Saudi Arabian Juwayl Formation (Hinderer et al., 2009; Keller et al., 2011). The dropstones are 

assumed to be sourced from the southern hinterland, which has been uplifted (Hinderer et al., 2009; 

Keller et al., 2011). A vast glacial lake or a series of lakes probably existed in south-eastern Saudi Arabia 

and Oman and in Ethiopia (Keller et al., 2011). No recycling of Ordovician–Silurian sediments is 

evidenced in the Carboniferous–Permian succession. This may be either because the sedimentation of 

the Enticho Sandstone was limited to northern Ethiopia, whereas the source area of the Edaga Arbi 

Glacials was to the south. Another possibility is that all Ordovician–Silurian sediments in the south have 

been eroded in the time interval before the Edaga Arbi Glacials formed.  

 

5.4. Conclusions 

Provenance analysis of ancient rocks – in comparison to modern sediments – faces difficulties, e.g. due 

to diagenetic overprint and leaching of minerals. A direct connection to potential parent rocks and areas 

cannot easily be drawn and it is not even known if the parent rocks still exist. Despite these difficulties, 

using a combination of different methods, valuable new insights could be revealed on the provenance 
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of the two studied formations and the study showed once more that provenance analysis of ancient rocks 

is possible and helpful for the reconstruction of past sedimentary systems.  

 

Thin section petrography provided the basis for further analyses and revealed first insights into 

mineralogical and textural composition and maturity. The maturity patterns could be confirmed by bulk 

geochemistry, which furthermore turned out as an excellent tool to distinguish the two formations and 

assign unknown samples (chemostratigraphy). Analysis of the REE provided first insights into 

provenance. Conventional heavy mineral analysis revealed extreme differences between the two 

formations, especially in the ultrastable versus unstable and metastable minerals, and provided further 

constraints on chemical weathering and diagenetic modification. Rutile and garnet chemistry did not 

turn out as very helpful for distinction of the two formations but provided some further constraints to 

provenance. The most helpful method for provenance interpretation was detrital zircon chronology.    

 

For the Upper Ordovician–lower Silurian Enticho Sandstone, a relation to the Gondwana super-fan 

system can be drawn, particularly by means of detrital zircon age spectra, which contain the typical 

fingerprint for the super-fan sediments. The spectra can be correlated with those of Hirnantian 

sandstones in Libya and Cambrian–Ordovician sandstones in Libya, Israel, Jordan and Saudi Arabia. It 

is concluded that the material of the Enticho Sandstone is mainly the product of recycling of super-fan 

sediments stored and strongly weathered on the North Gondwana peneplain. The material was then 

transported to the study area by ice streams, glaciers and meltwater of the Hirnantian glaciation. By this, 

unusually mature glaciogenic deposits could be produced. The original source of the material remains 

unknown and may be in the centre of the East African Orogen, from which the super-fans are assumed 

to have come off.  Variable admixture of material from the basement of the Saharan Metacraton and/or 

the Nubian Shield is indicated by the presence of garnet. The super-fan model as well as models of a 

large ice sheet covering North Africa in the Hirnantian, reaching south-east until Ethiopia and 

transporting material from its centre to the margin in the study area can be confirmed.  

 

For the upper Carboniferous–lower Permian Edaga Arbi Glacials, a more proximal provenance is 

concluded based on major and trace element signatures and zircon age spectra resembling those of the 

local basement.  Large amounts of garnet and apatite point to little time for weathering and alteration 

during temporal storage along the transport path. Geochemical and heavy mineral signatures are 

significantly different from those in stratigraphically equivalent formations in North-East Africa and the 

Arabian Peninsula. Hence, a more complex supply pattern existed, probably resulting from a 

rejuvenation of topography in the Late Palaeozoic in the course of rifting and opening of the Neo-Tethys 

ocean along the continental margin of North-East Gondwana. However, an exclusive provenance from 

the directly underlying basement is unlikely, since detrital rutile and garnet indicate higher metamorphic 

temperatures than reached in the local basement. This agrees with a previously assumed source area of 

the Edaga Arbi Glacials to the south, where the Arabian–Nubian Shield merges the Mozambique Belt 

(e.g. Western and Southern Ethiopian Shields) and higher metamorphic temperatures were reached. 

Variable admixture of the local basement, however, is likely as well. The data of this thesis confirm 

previous assumptions of a complex local pattern of ice sheets and glaciers during the Late Palaeozoic 

Ice Age.  

 

Strikingly, no major recycling of the Enticho Sandstone by the Edaga Arbi Glacials has taken place. 

This was either because the deposition of the Enticho Sandstone was limited to northern Ethiopia and 

the source area for the Edaga Arbi Glacials was to the south or due to complete erosion of the Enticho 

Sandstone in the source area of the Edaga Arbi Glacials before the Late Palaeozoic Ice Age.  
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Another interesting aspect is the almost exclusive preservation of glaciation-related sediments in the 

Palaeozoic of the study area and the long hiatus between the Enticho Sandstone and the Edaga Arbi 

Glacials. An explanation could be the increased accommodation space and sediment supply during the 

glacial periods. The glaciers formed troughs and valleys that could take up sediments. Further 

accommodation space is provided during the transgression. For the Edaga Arbi Glacials, proglacial lakes 

in local depressions offered space for sediment deposition. The sediment supply during the glacial 

periods was high due to erosion and transport of massive amounts of sediment by ice streams, glaciers 

and meltwater. Before the deposition of the Enticho Sandstone, the study area was probably still elevated 

as part of the East African Orogen. The Silurian–Carboniferous hiatus can be explained by a decrease 

in accommodation space due to uplift of the area, leading to erosion.  

 

5.5. Outlook 

To improve statistical analysis of the two studied formations and make it possible to detect geographic 

or stratigraphic patterns within one formation, it would be helpful to complement the analyses performed 

so that there are more samples, on which all methods are applied. This could provide further insights 

into variations in provenance and glacier dynamics in the course of the respective glaciations.  

 

To further constrain the provenance of the two studied formations, complementary single-grain 

analyses, e.g. Hf isotopes in detrital zircons could be used. Detrital rutile U–Pb chronology can provide 

insights into cooling and exhumation of the source area following Avigad et al. (2017). For the Enticho 

Sandstone, however, it must be kept in mind that it mainly contains recycled material and the sediment 

pathway is uncertain. This makes it difficult to use the data to correlate provenance patterns in the 

Cambrian–Ordovician succession of northern Gondwana as it is done by Avigad et al. (2017).  

 

Zircon chronology of the basement in the study area and the Western and Southern Ethiopian Shields 

(assumed source region for the Edaga Arbi Glacials) can provide more specific provenance information 

for the Edaga Arbi Glacials and enable an assessment of the contributions of the directly underlying 

basement versus the southern hinterland. This is of importance to further constrain the ice sheet extent 

in the study area during the Late Palaeozoic Ice Age. 

 

A remaining question, which was not in the focus of this thesis but may be interesting for future studies, 

is the question of Palaeozoic volcanism in the study area. Cambrian–Ordovician zircons dated in this 

thesis may origin from such volcanic rocks or from post-orogenic plutons in the Arabian–Nubian Shield. 

Lithic fragments in the Edaga Arbi Glacials, of which it is uncertain if they are volcanic or metavolcanic, 

underline this question. It can, therefore, be of interest to further study lithic fragments in the two 

formations to address the topic.  

 

Finally, to continue reconstruction of the sediment dispersal system in northern Gondwana and its 

evolution, the study of provenance data can be extended to younger stratigraphic ages in Ethiopia. 

Samples of the Permian–Triassic Fincha Sandstone have been taken during the second field trip, which 

took place in the Blue Nile region in western Ethiopia and are studied in another PhD project at the 

Institute of Applied Geosciences in Darmstadt. Provenance studies of the Palaeozoic–Mesozoic 

sedimentary successions in Eritrea and Sudan would be of interest for regional correlation and 

broadening of the geographical scope. 
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Appendix 
Appendix to Chapter 1 

Table A 1: List of all taken samples, geographical information and lithological description of the hand sample prior to further 
analysis. Abbreviations: vf – very fine; f – fine; m – medium; c – coarse; vc – very coarse; sst – sandstone; mst – mudstone; qz 
– quartz; akf – alkali feldspar  
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R
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 c
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 p
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w
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 c
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Table A 1 continued.  
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v
e 

co
n
ta

ct
 t

o
 

b
as

em
en

t 

G
la

ci
al

 s
st

. 

G
la

ci
al

 s
st

.,
 c

a.
 2

0
m

 b
el

o
w

 b
o
u
n

d
ar

y
 t

o
 m

ar
in

e 

G
la

ci
al

 s
st

, 
ca

. 
6
0

m
 b
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w
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p
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Table A 1 continued.  
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Table A 1 continued.  
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Table A 2: Overview of the samples analysed in this thesis and which methods have been applied to which sample (X if the 
respective method has been applied to the sample). X* in the column thin section petrography indicates that the respective 
samples were only studied qualitatively without point counting. In the column HMA (Heavy mineral analysis) R indicates 
analysis by Raman spectroscopy while O indicates optical analysis with a polarising microscope.  

# Formation Sample 
Thin section 

petrography 

Bulk geo-

chemistry 
HMA 

Rutile 

chemistry 

Garnet 

chemistry 

Zircon 

chrono-

logy 

1 Enticho Sandstone Enti-4 X X R X X X 

2 Enticho Sandstone Enti-5 X X R  X  

3 Enticho Sandstone Enti-6 X X R X  X 

4 Enticho Sandstone Enti-7 X X O    

5 Enticho Sandstone Enti-9 X X R  X  

6 Enticho Sandstone Enti-10 X X O    

7 Enticho Sandstone Enti-12 X X R X  X 

8 Enticho Sandstone Enti-13 X X R X  X 

9 Enticho Sandstone S1 X X O    

10 Enticho Sandstone S2 X X O    

11 Enticho Sandstone S3 X X O    

12 Enticho Sandstone S4 X X O    

13 Enticho Sandstone Nib-1 X X  X  X 

14 Enticho Sandstone Nib-2 X X R  X  

15 Enticho Sandstone Nib-3 X X  X  X 

16 Enticho Sandstone Nib-4 X X O    

17 Enticho Sandstone Nord-1 X X O    

18 Enticho Sandstone Nord-2 X X O    

19 Enticho Sandstone Nord-3 X X O    

20 Edaga Arbi Glacials Eda-1 X X     

21 Edaga Arbi Glacials Eda-2 X X R X   

22 Edaga Arbi Glacials Eda-3 X X R X   

23 Enticho Sandstone* Eda-4 X X O    

24 Edaga Arbi Glacials Eda-5 X X R    

25 Edaga Arbi Glacials Eda-6 X X O    

26 Edaga Arbi Glacials Eda-8 X X O    

27 Edaga Arbi Glacials Eda-9 X X R X X X 

28 Edaga Arbi Glacials Eda-10 X X O    

29 Edaga Arbi Glacials Eda-11 X X R X X X 

30 Edaga Arbi Glacials Eda-12 X X R  X X 

31 Edaga Arbi Glacials Hu-1 X X R  X X 

32 Edaga Arbi Glacials Hu-2 X X R  X X 

33 

Boulders in Edaga Arbi 

tillite 

Gr-3 X* X     

34 Gr-4 X* X     

35 Gr-5 X* X     

36 Gr-6 X* X     

37 Gr-7 X* X     

38 Gr-8 X* X     

39 Gr-9 X* X     

40 Gr-10 X* X     

41 Bas-1 X* X     

42 Bas-2 X* X     

43 Gn-1 X* X     

44 Basement Gr-1 X* X     

45 Basement Gr-2 X* X     

46 Basement Neop-1 X* X     

47 Basement Neop-2 X* X     

48 Basement Neop-3 X* X     

49 Basement Neop-4 X* X     

50 Basement Neop-5 X* X     

 

 

 

 



 

 

Appendix to Chapter 2 

Table A 3: Results of petrographic point-counting analysis of thin sections. Values given in %. Qzm = monocrystalline quartz, 
Qzmu = monocrystalline quartz with undulose extinction, Qzp = polycrystalline quartz (subgrain formation), Qzmicr = 
microcrystalline quartz, Pl = plagioclase, Kfs = potassium feldspar, Lp = plutonic lithic fragment, Lv = volcanic lithic fragment 
(includes metavolcanic clasts, since oriented texture is rarely visible but metamorphic overprint is probable), Ls = sedimentary 
lithic fragments, Lms=metasedimentary lithic fragments, Lmi=metamorphic igneous lithic fragment, other=minor 
components such as accessories, unid.= unidentified, e.g., strongly altered. Mineral abbreviations of accessories after Kretz 
(1983) and Whitney and Evans (2010). Ap = apatite, Cal = calcite, Chl = chlorite, Grt = garnet, Ms = muscovite, Op = opaque, 
Px = pyroxene, Sil = sillimanite, St = staurolite, Tur = tourmaline, Zrn = zircon. Carbonate cement: 0 = not present, + = up to 
5%, ++ = 20–25%. GS = grain size. Sorting: – – = very poor, – = poor, 0 = moderate, + = good, ++ = very good. Roundness: – – 
= angular, – = subangular, 0 = subrounded, + = rounded, ++=well rounded. 

Sample Formation Qzm 

[%] 

Qzmu 

[%] 

Qzp 

[%] 

Qzmicr 

[%] 

Pl 

[%] 

Kfs 

[%] 

Lp 

[%] 

Lv 

[%] 

Ls 

[%] 

Lms 

[%] 

Lmi 

[%] 

Other 

[%] 

Unid

[%] 

Cts 

Enti-4 Enticho 69.3 5,7 9,3 1,0 5,0 5,7 2,3 0,0 1,0 0,0 0,0 0,7 0,0 300 

Enti-5 Enticho 69.0 9,7 8,7 0,0 4,0 7,3 0,3 0,0 0,0 0,0 0,0 0,0 1,0 300 

Enti-7 Enticho 63.7 14,3 5,7 0,7 5,3 10,0 0,0 0,0 0,0 0,0 0,0 0,0 0,3 300 

Enti-9 Enticho 68.3 15,7 6,7 0,0 4,0 4,0 0,0 0,0 0,7 0,0 0,0 0,7 0,0 300 

Enti-13 Enticho 62.3 14,7 18,3 0,7 0,3 1,3 0,7 0,0 1,0 0,0 0,0 0,3 0,3 300 

S1 Enticho 48.3 31,0 12,3 0,0 1,3 5,3 1,7 0,0 0,0 0,0 0,0 0,0 0,0 300 

S2 Enticho 68.7 15,3 6,3 0,0 3,3 4,3 0,0 0,0 0,0 0,0 0,0 0,7 1,3 300 

Nib-1 Enticho 80.3 8,7 4,0 0,7 0,3 1,3 0,7 2,0 0,0 0,0 0,0 0,7 1,3 300 

Nib-2 Enticho 73.3 9,0 5,7 0,0 4,3 7,0 0,3 0,0 0,0 0,0 0,0 0,0 0,3 300 

North-1 Enticho 70.0 21,3 1,3 0,0 2,0 5,0 0,3 0,0 0,0 0,0 0,0 0,0 0,0 300 

North-2 Enticho 73.3 15,7 6,7 0,0 0,0 0,0 0,0 0,0 4,3 0,0 0,0 0,0 0,0 300 

Enti-6 Enticho 78.0 17,7 3,3 0,3 0,0 0,7 0,0 0,0 0,0 0,0 0,0 0,0 0,0 300 

Enti-10 Enticho 85.0 9,3 2,3 0,0 0,3 0,0 0,0 0,0 0,0 0,0 0,0 3,0 0,0 300 

Enti-12 Enticho 87.3 8,3 3,7 0,0 0,0 0,3 0,0 0,0 0,0 0,0 0,0 0,3 0,0 300 

S3 Enticho 77.3 12,0 9,3 0,7 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,7 0,0 300 

S4 Enticho 79.0 14,7 6,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 300 

Nib-3 Enticho 84.7 7,7 5,3 0,0 0,3 0,0 1,7 0,0 0,0 0,0 0,0 0,3 0,0 300 

Nib-4 Enticho 70.3 26,3 2,7 0,0 0,0 0,0 0,3 0,0 0,0 0,0 0,0 0,3 0,0 300 

North-3 Enticho 81.7 18,0 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 300 

Eda-2 Edaga A. 63.0 14,3 0,3 3,7 3,3 3,0 0,0 2,7 1,7 0,0 0,0 6,7 1,3 300 

Eda-3 Edaga A. 76.3 10,7 0,3 0,0 3,3 8,3 0,7 0,0 0,0 0,3 0,0 0,0 0,0 300 

Eda-4 Edaga A. 68.7 20,0 0,0 0,0 4,0 5,7 0,3 0,7 0,0 0,3 0,0 0,0 0,3 300 

Eda-5 Edaga A. 84.3 10,3 0,7 0,0 0,0 4,0 0,0 0,0 0,0 0,0 0,0 0,3 0,3 300 

Eda-6 Edaga A. 60.7 3,7 1,0 0,3 5,3 21,0 0,0 0,3 3,7 0,0 0,0 3,0 1,0 300 

Eda-8 Edaga A. 76.0 10,0 0,0 1,3 5,0 3,3 0,0 0,0 1,3 0,0 0,0 0,0 3,0 300 

Eda-10 Edaga A. 52.3 4,7 3,0 0,7 6,3 22,3 6,0 1,7 1,0 1,3 0,3 0,3 0,0 300 

Eda-11 Edaga A. 70.7 2,3 2,7 5,3 6,3 6,3 0,0 1,0 1,3 0,0 0,0 1,3 2,7 300 

Hu-1 Edaga A. 39.3 5,7 0,7 0,0 12,0 36,7 4,3 0,0 1,0 0,0 0,0 0,3 0,0 300 

Eda-9 Edaga A. 67.7 14,7 2,0 2,0 1,7 3,7 0,0 0,0 0,0 0,0 0,0 7,7 0,7 300 

Eda-12 Edaga A. 61.3 5,3 1,3 1,3 7,3 16,3 0,0 1,7 0,0 0,0 0,0 1,0 4,3 300 

Hu-2 Edaga A. 46.0 7,3 0,0 0,0 9,0 37,0 0,0 0,0 0,0 0,0 0,0 0,7 0,0 300 

Eda-1 Edaga A. 58.3 7,3 3,0 1,3 6,7 8,0 7,0 2,7 1,7 0,3 0,0 1,3 2,3 300 

 
Sample Formation Accessories Carbonate  

cement 

Matrix [%] GS (mm) Sorting Roundness 

Enti-4 Enticho Tur, Zrn 0 40 0.05-4 -- - 

Enti-5 Enticho  0 40 0.05-4 -- -- to ++ 

Enti-7 Enticho  0 10 0.1-1 0 + 

Enti-9 Enticho Mica, Px (?) 0 35 0.05-2; 0.1-1 (layers) - - to + 

Enti-13 Enticho Zrn 0 5 0.1-1 0 - to + 

S1 Enticho  0 < 5 0.1-5 -- + to ++ 

S2 Enticho  0 < 5 0.1-1 - - to ++ 

Nib-1 Enticho Tur 0 < 5 0.1-1 0 - to + 

Nib-2 Enticho Zrn 0 25 0.05-1.2 - - to ++ 

North-1 Enticho  0 5 0.1-0.5 + - to + 

North-2 Enticho  0 50 0.05-7 - - to ++ 

Enti-6 Enticho  0 5 0.1-1 + - to ++ 

Enti-10 Enticho Op+, Px?, Chl, Ap 0 < 5 0.1 ++ - 

Enti-12 Enticho Grt 0 10 0.1-1.2 + + 

S3 Enticho Chl, Op 0 < 5 0.1-1 - - to + 

S4 Enticho  0 55 0.1-1 0 + 

Nib-3 Enticho Zrn 0 < 5 0.1-1 0 + 

Nib-4 Enticho  0 < 5 0.1-0.8 + + 

North-3 Enticho  0 < 5 0.1-0.6 + + to ++ 

Eda-2 Edaga Arbi Op+, Grt, Zrn+, Cal, Ms + 25 0.05-0.2 + + 

Eda-3 Edaga Arbi  + < 5 0.05-0.3 0 0 to + 

Eda-4 Edaga Arbi Grt 0 15 0.05-0.3 0 0 to + 

Eda-5 Edaga Arbi Zrn+ 0 35 0.05-0.5 0 -- to + 

Eda-6 Edaga Arbi Zrn+, Grt, Sil, St ++ < 5 0.1-0.3 + - 

Eda-8 Edaga Arbi  ++ 25 0.05-0.1 + + 

Eda-10 Edaga Arbi  + 20 0.1-0.7 0 - to 0 

Eda-11 Edaga Arbi Op, Chl ++ 40 0.05-0.5 0 - 

Hu-1 Edaga Arbi Op + 5 0.1-3 -- - to 0 

Eda-9 Edaga Arbi Chl+, Ms 0 35 0.05-0.1 ++ + 

Eda-12 Edaga Arbi Zrn, Grt, Cal 0 40 0.05-0.2 0 - to 0 

Hu-2 Edaga Arbi Tur, Grt 0 10 0.1-0.3 + 0 to + 

Eda-1 Edaga Arbi Op, Grt ++ < 5 0.1-0.3 0 + 

 



 

 

Table A 4: The analytical data of bulk geochemistry (XRF and ICP-MS) can be found as Excel file in the supplementary material 
to this thesis and in the supplementary material of the article Provenance of sandstones in northern Ethiopia during Late 
Ordovician and Carboniferous–Permian Gondwana glaciations: petrography and geochemistry of the Enticho Sandstone and 
the Edaga Arbi Glacials (https://doi.org/10.1016/j.sedgeo.2017.10.006).   

  



 

 

Appendix to Chapter 3 

Table A 5: Laser Ablation ICP-MS operation parameters. 

Laboratory Institut für Mineralogie, Westfälische Wilhelms-Universität Münster 

  

Laser ablation system Photon Machines, Analyte G2, Excimer laser 

Ablation cell HelEx 2-volume cell 

Wavelength 193 nm 

Pulse width 4 ns 

Fluence 3–4 J/cm² 

Repetition rate 10 Hz 

Ablation time 37 s 

Spot size 25µm 

Sampling mode Static 

Carrier gas He in the cell, Ar sampling and cooling gas 

Carrier gas flow 0.9 L/min for mass-flow controller 1; 0.4 L/min for mass-flow controller 2 

  

ICP-MS instrument ThermoFisher Element 2, single-collector ICP-MS 

Radio frequency power 1250 W 

Sample and cooling gas flow 1 L/min; 16 L/min 

Detection system SEM 

Masses measured 202, 204, 206, 207, 238 

Settling time 1 ms/amu 

Sample time 40 ms (202, 204, 207), 10 ms (206), 4 ms (238) 

Sweep time 160 ms (202, 204, 207), 40 ms (206), 10 ms (238) 

Integration time 0.56 ms 

Number of runs 91 

Background time 12 s 

 

 

 

Table A 6: The analytical data of zircon U–Pb geochronology can be found as Excel file in the supplementary material to this 
thesis and in the supplementary material to the article Provenance of Ordovician–Silurian and Carboniferous–Permian 
glaciogenic successions in Ethiopia revealed by detrital zircon U–Pb geochronology (https://doi.org/10.1144/jgs2019-027).  

 



 

 

Appendix to Chapter 4 

Table A 7: Heavy mineral counts in %. Samples marked with an asterisk (*) have been counted using Raman spectroscopy. 
Zrn – zircon, Rtl – rutile, Tur – tourmaline, Grt – garnet, Ap – apatite, Ep – epidote group, St – staurolite, Mon – monazite, Tit 
– titanite, n – number of grains counted. 

Sample Zrn Rtl Tur Grt Ap Ep St Mon Tit Others Sum n 

Enti-4* 12.6 4.2 5.6 68.5 9.1 0.0 0.0 0.0 0.0 0.0 100.0 143 
Enti-5* 34.4 8.2 6.8 44.4 0.0 0.2 2.2 3.7 0.0 0.0 100.0 511 

Enti-6* 55.0 16.4 14.9 0.0 0.0 0.7 4.5 7.8 0.0 0.7 100.0 269 

Enti-7 57.0 14.5 11.0 11.0 1.0 0.0 3.5 1.0 1.0 0.0 100.0 200 
Enti-9* 28.7 24.1 17.2 27.6 0.0 0.0 2.3 0.0 0.0 0.0 100.0 87 

Enti-10 50.0 23.0 17.5 0.0 1.0 0.0 0.5 7.5 0.5 0.0 100.0 200 

Enti-12* 77.8 9.4 12.7 0.1 0.0 0.0 0.0 0.0 0.0 0.0 100.0 937 
Enti-13* 78.3 8.8 7.8 0.2 0.0 0.2 0.0 4.7 0.0 0.0 100.0 591 

S1 39.6 6.6 21.7 2.8 9.4 2.8 9.4 7.5 0.0 0.0 100.0 106 

S2 58.0 12.6 8.4 1.7 12.6 0.0 0.8 5.9 0.0 0.0 100.0 119 
S3 56.0 14.2 14.9 2.1 2.1 0.0 4.3 5.0 1.4 0.0 100.0 141 

S4 52.0 7.5 26.5 0.5 0.0 0.0 8.0 5.0 0.5 0.0 100.0 200 

Nib-2* 51.9 21.4 14.3 10.0 0.0 0.0 0.0 2.4 0.0 0.0 100.0 210 
Nib-4 49.7 27.2 14.3 0.0 0.7 0.0 0.7 7.5 0.0 0.0 100.0 147 

Nord-1 70.5 10.0 4.5 10.5 0.0 0.5 0.5 3.5 0.0 0.0 100.0 200 

Nord-2 54.0 10.0 10.5 19.0 0.0 1.5 0.0 4.5 0.5 0.0 100.0 200 
Nord-3 60.5 17.5 8.5 2.0 0.0 1.0 1.5 6.5 2.5 0.0 100.0 200 

Eda-2* 7.9 4.0 9.9 0.3 77.1 0.7 0.2 0.0 0.0 0.0 100.0 607 

Eda-3* 10.4 7.1 14.9 0.0 66.9 0.0 0.0 0.6 0.0 0.0 100.0 154 
Eda-4 7.0 2.5 13.5 8.5 68.5 0.0 0.0 0.0 0.0 0.0 100.0 200 

Eda-5* 73.6 10.7 11.8 0.0 3.1 0.0 0.5 0.0 0.2 0.0 100.0 549 

Eda-6 1.5 1.5 1.0 42.0 7.0 45.0 0.0 1.5 0.5 0.0 100.0 200 
Eda-8 2.5 1.5 2.0 28.5 64.0 0.0 0.0 0.0 1.5 0.0 100.0 200 

Eda-9* 5.6 10.2 15.3 15.1 52.8 0.0 0.4 0.5 0.0 0.0 100.0 549 

Eda-10 5.0 1.5 0.0 86.0 7.5 0.0 0.0 0.0 0.0 0.0 100.0 200 
Eda-11* 5.0 4.5 1.3 69.8 19.3 0.0 0.0 0.3 0.0 0.0 100.0 400 

Eda-12* 0.4 4.6 0.1 20.8 17.6 50.6 0.0 0.0 5.9 0.0 100.0 790 

Hu-1* 2.9 0.6 0.8 67.0 27.9 0.1 0.0 0.1 0.3 0.3 100.0 724 
Hu-2* 2.0 0.0 0.4 40.5 57.0 0.0 0.0 0.0 0.0 0.0 100.0 901 

 

Table A 7 continued.  TiO2 minerals: Rtl – rutile, An – anatase, Bro – brookite, An-bro – anatase-brookite intergrowth, An-rtl 
– anatase-rutile intergrowth.  

     

TiO2 minerals identified during Raman  

spectroscopy (%) 

Sample opaque translucent n 
HM yield 

[wt%] 
Rtl An Bro An-bro An-rtl 

 
Enti-4* 58 42 100 0.993 83.3 0.0 0.0 16.7 0.0  
Enti-5* 10 90 100 0.467 82.9 0.0 0.0 14.6 2.4  
Enti-6* 51 49 100 0.365 81.4 7.0 9.3 2.3 0.0  
Enti-7 62 38 100 0.977       
Enti-9* 29 71 100 0.426 76.2 4.8 0.0 4.8 14.3  
Enti-10 23 77 100 0.566       
Enti-12* 31 69 100 2.496 89.7 0.0 0.0 6.9 3.4  
Enti-13* 38 62 100 0.915 92.3 3.8 0.0 3.8 0.0  
S1 76 24 100 0.948       
S2 79 21 100 0.754       
S3 71 29 100 0.044       
S4 58 42 100 0.016       
Nib-2* 62 38 100 1.244 100.0 0.0 0.0 0.0 0.0  
Nib-4 70 30 100 3.941       
Nord-1 18 82 100 0.367       
Nord-2 18 82 100 0.030       
Nord-3 21 79 100 1.560       
Eda-2* 30 70 100 0.035 83.3 4.2 0.0 12.5 0.0  
Eda-3* 51 49 100 0.430 63.6 0.0 0.0 36.4 0.0  
Eda-4 27 73 100 1.007       
Eda-5* 40 60 100 0.584 84.7 5.1 0.0 10.2 0.0  
Eda-6 25 75 100 2.043       
Eda-8 76 24 100 0.460       
Eda-9* 12 88 100 0.097 33.9 14.3 10.7 35.7 5.4  
Eda-10 16 84 100 3.117       
Eda-11* 67 33 100 2.123 55.6 5.6 0.0 38.9 0.0  
Eda-12* 17 83 100 0.370 35.3 5.9 8.8 26.5 23.5  
Hu-1* 53 47 100 0.905 50.0 0.0 0.0 50.0 0.0  
Hu-2* 25 75 100 0.876       



 

 

Table A 8: Heavy mineral counts for four samples of which different grain size fractions have been analysed in %. Note that 
the fraction 63–125 µm has been counted by both optical analysis and Raman spectroscopy. Zrn – zircon, Rtl – rutile, Tur – 
tourmaline, Grt – garnet, Ap – apatite, Ep – epidote group, St – staurolite, Mon – monazite, Tit – titanite.  

  Method Zrn Rtl Tur Grt Ap Ep St Mon Tit Others Sum 

Enti-4 40-63 µm Optical 23.0 9.0 5.5 51.0 8.0 2.0 0.0 1.5 0.0 0.0 100 

 63-125 µm Optical 22.0 4.0 12.0 54.0 8.0 0.0 0.0 0.0 0.0 0.0 100 

 63-125 µm* Raman 12.6 4.2 5.6 68.5 9.1 0.0 0.0 0.0 0.0 0.0 100 

 125-500 µm Optical 10.0 6.7 13.3 53.3 3.3 0.0 6.7 6.7 0.0 0.0 100 

              
Enti-12 40-63 µm Optical 69.5 11.0 16.0 0.0 0.0 0.0 0.0 1.5 2.0 0.0 100 

 63-125 µm Optical 58.0 5.5 24.5 0.0 0.0 9.0 1.0 1.0 0.0 1.0 100 

 63-125 µm* Raman 77.8 9.4 12.7 0.1 0.0 0.0 0.0 0.0 0.0 0.0 100 

 125-500 µm Optical 45.1 6.3 46.5 1.4 0.0 0.0 0.0 0.7 0.0 0.0 100 

              
Eda-2 40-63 µm Optical 25.5 3.5 8.5 0.0 60.5 1.5 0.5 0.0 0.0 0.0 100 

 63-125 µm Optical 8.5 4.5 16.0 0.5 66.5 4.0 0.0 0.0 0.0 0.0 100 

 63-125 µm* Raman 7.9 4.0 9.9 0.3 77.1 0.7 0.2 0.0 0.0 0.0 100 

 125-500 µm Optical 28.0 12.0 8.0 2.0 46.0 2.0 0.0 0.0 2.0 0.0 100 

              
Hu-1 40-63 µm Optical 6.0 0.0 3.0 46.5 44.5 0.0 0.0 0.0 0.0 0.0 100 

 63-125 µm Optical 1.5 0.5 1.0 55.5 39.0 2.5 0.0 0.0 0.0 0.0 100 

 63-125 µm* Raman 2.9 0.6 0.8 67.0 27.9 0.1 0.0 0.1 0.3 0.3 100 

 125-500 µm Optical 1.5 0.5 1.5 77.5 19.0 0.0 0.0 0.0 0.0 0.0 100 

 

 

 

Table A 9: The analytical data from rutile and garnet chemical analyses can be found as Excel file in the supplementary 
material to this thesis and in the supplementary material to the article Heavy minerals as provenance indicator in glaciogenic 
successions: An example from the Palaeozoic of Ethiopia (https://doi.org/10.1016/j.jafrearsci.2020.103813).  

 



 

 

 

Figure A 1: Results of rutile chemical analyses displayed for the single samples of the Enticho Sandstone. Left: histograms of 
the calculated formation temperatures from Zr-in-rutile thermometry; Right: Cr-Nb crossplot and pie charts for classification 
of rutiles derived from metamafic and metafelsic source rocks after Triebold et al. (2012). 

 
 
 
 
 

 
 
 
 

      

             

             

             

             

             

             

      

 
 

 
 

 
 

 
  

 
 
 
 
 
 

 
 

 
 

 
 

 
  

 
 
 
 
 
 

 
 

 
 

 
 

 
  

 
 
 
 
 
 

 
 

 
 

 
 

 
  

 
 
 
 
 
 

 
 

 
 

 
 

 
  

 
 
 
 
 
 

 
 

 
 

 
 

 
  

 
 
 
 
 
 

         

 
 
 
 
 

 
 
 
 

         

         

         

         

         

 
 
 
 
 

 
 
 
 

 
 
 
 
 

 
 
 
 

 
  
  

 
 

 
 
  
  

 
 

 
 
  
  

 
 

 
 
  
  

 
 

 
 
  
  

 
 

 
 
  
  

 
 

 

        

 
 
 
 
 

 
 
 
 

 
 
 
 
 

 
 
 
 

     

      

        

      
        

       
        

       
        

     
        

     
        

 
 
 
 
 
 
 
 
  
 
 

 
  
 
 
 
 
  
 

 
 

 
 
  
 
   
 
 

 
 
  
 
  
 

 
 
 
 
 
   
 



 

 

 

Figure A 2: Results of rutile chemical analyses displayed for the single samples of the Edaga Arbi Glacials. Left: histograms of 
the calculated formation temperatures from Zr-in-rutile thermometry; Right: Cr-Nb crossplot and pie charts for classification 
of rutiles derived from metamafic and metafelsic source rocks after Triebold et al. (2012). 

     
        

     
        

     
        

      
        

 
 

 
 

 
 

 
  

 
 
 
 
 
 

             

 
 

 
 

 
 

 
  

 
 
 
 
 
 

 
 

 
 

 
 

 
  

 
 
 
 
 
 

 
 

 
 

 
 

 
  

 
 
 
 
 
 

      

             

             

             

 
  
  

 
 

 

 
 
 
 
 

 
 
 
 

 
  
  

 
 

 

 
 
 
 
 

 
 
 
 

 
  
  

 
 

 

 
 
 
 
 

 
 
 
 

 
  
  

 
 

 

 
 
 
 
 

 
 
 
 

         

         

         

         

        

     

      

 
  

 
 
 
 
 
  

  

 
  

 
 
 
 
  

 

 
 

 
 
  

 
  
  

 

 
 
  

 
  
 

 
  

 
 
  
  



 

 

 

Figure A 3: PCA biplot based on the centred log-ratio (clr) transformed concentrations of the endmember-sensitive elements 
in garnet from the Enticho Sandstone and the Edaga Arbi Glacials. (a) First and second principal component. (b) First and third 
principal component. 

   

   

   

  

  

 

       

   

  

  

  

 

       

 
 
  
  
 
 
  
  

 

                          

 
 
  
  
 
  
  

 

      

                 

                   

  

  
  

  

  

  

  
  


