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Supplementary Table 1 | DMI vectors. The site information, distance (in Å), DMI vector 

(in meV), DMI strength (in meV) and D/J (J is the Heisenberg exchange) of the six 

inequivalent exchange paths. 

Path Site information Distance Dx Dy Dz |D| |D/J| 

I 8c-8c 2.295 0.01 1.00 0.05 1.00 0.044 

II 8c-12d 2.559 -4.36 -4.35 -4.87 7.85 0.854 

III 8c-12d 2.556 -1.03 -1.29 -1.30 2.10 0.278 

IV 8c-12d 2.430 -1.26 -0.65 -1.22 1.87 0.103 

V 12d-12d 2.517 3.91 3.37 2.93 5.94 0.417 

VI 12d-12d 2.613 -1.58 -1.21 -1.86 2.72 0.354 

Supplementary Figure 1 | Density of states. The total density of states (DOS) of p and d 

orbitals for Co(8c) (a) and Co(12d) (b). The DOS-p has been amplified by ten times for a 

better view. EF is the Fermi level. 
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Supplementary Figure 2 | Topological charge. The time evolution of topological charge 

under external fields from 3 to 10 T. The arrows point out when the topological charge is 

stabilized. The dashed lines represent expected stable −Q for longer relaxation time. 

 

 

Supplementary Figure 3 | Critical time and number of skyrmions. The critical time 

needed to stabilize the skyrmions and the number of skyrmions obtained in the simulation 

under different external fields. 
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Supplementary Note 1 | DMI and electronic structure. The DMIs are calculated by 

using the energy mapping technique developed by Xiang et al.1 by assuming that the 

generalized 3 × 3 exchange matrix [𝐉] is antisymmetric2 so that 𝐃 = (𝐽𝑦𝑧,  𝐽𝑧𝑥 ,  𝐽𝑥𝑦). Here, 

we list the DMI vectors and related information in Supplementary Table 1 for the six 

inequivalent exchange paths depicted in Fig. 1 in the main text. It can be seen that the DMIs 

for path II and V are remarkably strong, while other ones are much weaker. To verify the 

assumption, we also calculated the full [𝐉] using the same technique for path II and V. The 

obtained 𝐃 is −(4.26, 4.27, 4.74) meV and (3.80, 3.30, 2.86) meV for path II and path V, 

respectively, which are very close to the corresponding ones in Table 1. 

      Assuming that Moriya's theory3 applies to the case here, the DMI is given by a sum of 

different three-hopping processes between two atoms in the presence of SOC. The SOC 

strength is a constant (15.5 meV). Our calculation shows close spin moments of 1.66 and 

1.76 𝜇𝐵 for Co(8c) and Co(12d), respectively. The orbital moment is about 0.065 𝜇𝐵 for 

both sites. Hence, the difference in hopping can be expected to dominate the variation of 

DMI.3 A three-hopping process may be described in this way: an electron hops to an 

unoccupied state due to SOC, then the resulting hole hops to the occupied state of the 

neighboring atom and hops back finally to the unoccupied state of the original atom. As 

shown in the main text, the hopping magnitudes for path II and V are exceptionally strong. 

In particular, the hopping that involves p orbitals is much stronger than other ones without 

p orbitals. 

      In order to explore the physics behind the strong hopping in path II and V, we plot the 

total density of states (DOS) of p and d orbitals for both Co(8c) and Co(12d) sites in 

Supplementary Fig. 1. For both sites, an unoccupied d peak is shown in the DOS right 

above the Fermi level. It is clear that p and d orbitals strongly hybridize with each other in 

the occupied states. DOS-p has a larger energy span than DOS-d, indicating a farther spatial 

extension of wave functions that facilitates the hopping. Hence, it is expected that, after the 

mixing between occupied and unoccupied d states (contributed almost equally by all 

decomposed d orbitals) due to SOC, the resulting hole has both p and d characters and can 

hop to the occupied p or d states of the neighboring atoms due to large p−p and p−d hopping. 

Finally, the hole hops back to the unoccupied d states of the original atom due to a large 
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p−d and d−d hopping. It is worth mentioning that the decomposed orbitals extending 

toward each other generally have stronger hopping due to a larger overlap of wave 

functions according to the calculation. 

 

Supplementary Note 2 | Topological charge. To investigate the evolution of skyrmions 

from randomized spin configurations, we calculate the topological charge varying with 

simulation time. Instead of using the original definition of 𝑄 =
1

4𝜋
∫𝑑2𝑟𝐒 ∙ (𝜕𝑥𝐒 × 𝜕𝑦𝐒), 

the lattice version of topological charge4 is adopted since it was recently shown to better 

capture the dynamical process of topological transition.5 To construct the lattice model, the 

spin configuration is divided by a 200×200 square mesh and the magnetic moment of each 

mesh point is calculated by averaging the surrounding moments when their x and y 

coordinates fall into a lattice square. This is a reasonable choice because the moments do 

not rotate much relatively in a lattice square regarding that the square length is small (0.5a) 

compared to the spiral period (30a). Each skyrmion contributes −1 to the topological 

charge in this case. The −Q thus corresponds to the generated number of skyrmions (within 

small model errors) if skyrmions are the only non-collinear configurations in the pattern, 

as shown in Supplementary Fig. 2. As the external field increases, the stabilized −Q 

increases from 2.97 (~3) at 3 T to 13.88 (~14) at 8 T and then decreases to 9.98 (~10) at 10 

T. These results are well consistent with the number of skyrmions shown in the magnetic 

patterns. A higher external field stabilizes the topological charge faster. The critical time 

decreases rapidly from 28 to 2 ps when the external field increases from 3 to 10 T as shown 

in Supplementary Fig. 3. This is because the speed of spin realignment from a randomized 

configuration is accelerated by Zeeman effect under a higher external field while it is 

relatively slow when the magnetic pattern is a result of the compromise between 

Heisenberg exchange and DMI under a low external field. A fast realignment of moments 

by a higher external field also preserves more nuclei that can evolve into skyrmions until 

the field is so high that polarizes the spin textures. 
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