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1 Introduction

The extraction of physical observables in sectors containing three and more particles re-

mains one of the main challenges in lattice QCD. In contrast, this issue has already been

settled in the one- and two-particle sectors. Namely, in the one-particle sector one deter-

mines the effective masses of stable particles. The infinite-volume limit is straightforward as

lattice artifacts are exponentially suppressed at large volumes. In the case of the elastic two-

body scattering, the celebrated Lüscher formula [1] algebraically relates the finite-volume

energy eigenvalues to the infinite-volume scattering phase shift at the same energies. The

approach remains conceptually the same for coupled-channel inelastic scattering [2–9] and

has already been used to analyze the data in the two-channel system [10–12]. A related

approach that boils down to using a different parameterization of the infinite-volume am-

plitudes goes under the name of “unitary ChPT in a finite volume” [13–17] and has already

been used in ref. [18] to analyze P -wave ππ scattering and to study the properties of the

ρ-meson. When the number of coupled channels is large, it might be advantageous to di-

rectly extract the real and imaginary parts of the optical potential in selected channels [19]

(note also the recent work [20], which aims at the extraction of the total width of the reso-

nances decaying into the multiple channels). An alternative scheme aims at the extraction
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of hadronic potentials from the data [21–23] (see, e.g., refs. [24, 25] for the generalization

of this approach to the multi-channel case).

On the one hand, there is no such framework for intermediate states with three or

more particles, although several attempts in this direction have been undertaken. The first

formal investigation dates back to 2012, when it was rigorously shown that the three-body

spectrum in a finite volume is determined solely by the three-body S-matrix elements in

the infinite volume [26]. In the following years, further important aspects of the three-body

problem in a finite volume have been addressed [27–36]. In particular, the relativistic three-

particle quantization condition in a finite volume has been obtained in refs. [31, 32, 36].

In their subsequent papers, the authors were able to demonstrate that the framework is

capable of reproducing known results, e.g., for the many-body ground-state energy or the

energy shift of the three-body bound state in a finite volume. Despite this success, the

quantization condition in these papers is not yet given in a form suitable for the analysis of

the real lattice data: the whole formalism is still very complicated and the relation to the

physical observables is not transparent. Finally, we mention refs. [37–40], which addressed

the three-body problem in a finite volume numerically using an effective field theory in

the particle-dimer picture. Their numerical results for the finite volume spectrum strongly

support the statement that the spectrum does not depend on the off-shell behavior of the

three-body amplitudes, which was first proven in ref. [26] and confirmed in ref. [31]. These

studies also suggest a strategy for analytical investigations of three-body dynamics in a

finite volume.

On the other hand, recent years have seen a steady progress in lattice simulations

involving three- and more-particle states. As a prominent example, we cite the numerous

attempts to calculate the mass of the Roper resonance and solve the problem of the level

ordering between this resonance and the N∗(1535) [41–50]. It is a well known experimental

fact that the Roper resonance decays with a significant probability (up to 40%) into the

final state of a nucleon and two pions. Hence, a reliable extraction of its parameters is

impossible without solving the three-body problem in a finite volume. Furthermore, a

rapid advance of lattice nuclear simulations [51–53], as well as chiral effective field theories

on the lattice [54–57], provide us with data that can be properly analyzed, if and only if the

few-body dynamics in a finite volume is understood. Otherwise, the extraction of reaction

rates, elastic and inelastic cross sections, etc. from such calculations is not possible.

In our opinion, the main question which should be answered is the following: what is the

optimum set of infinite-volume parameters (observables) of the three-body system which

can be extracted directly from the data? To illustrate this question, we refer again to two-

body elastic scattering. In this case, we have one measured lattice observable (the energy

level) vs. one infinite-volume observable (the phase shift at the same energy). These two

are unambiguously related via the Lüscher equation. In the two-channel case, we have again

one finite volume energy level but three independent infinite-volume observables (K-matrix

elements at the same energy). Thus, the most convenient strategy consists of parameter-

izing the energy-dependence of the multi-channel K-matrix in terms of a few parameters

(resonance locations, residua, threshold expansion parameters) and fitting all available lat-

tice data in a given energy interval with this parameterization (see, e.g., [10–12]). In the
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next step, having fixed these parameters, we may reliably determine the K-matrix elements

everywhere in the given energy interval.

In case of three particles, much effort has been put into obtaining an analog of the

Lüscher equation through collecting all infinite-volume contributions into the three-body

K-matrix [26, 31, 32, 36]. The result is quite complicated and, in our opinion, is not

well suited for the analysis of lattice data. For example, “smooth cutoffs” should be

made and an “unconventional” K-matrix should be introduced at the intermediate stage.

We argue in this paper that most of these complications stem from the inappropriate

choice of parameters. Using the particle-dimer formalism, we arrive at a rather simple

parameterization of the infinite-volume three-body S-matrix as well as the three-body

spectrum in a finite volume. This provides a framework for the analysis of lattice data.

The layout of the paper is as follows. In section 2, we briefly review the infinite-

volume framework for the description of the two- and three-body sectors, which is based

on non-relativistic effective Lagrangians. The transition to the particle-dimer picture and

the issue of the off-shell behavior is discussed in detail. In section 3, we consider the same

theory in a finite volume and discuss the strategy for the lattice data analysis. A simple

illustration is provided for the statement that the finite-volume spectrum is determined

only by on-shell three-body S-matrix elements. In this section, we also present the results

of the numerical calculations of the volume-dependent three-body spectrum, both below

and above the three-particle threshold. In section 4, we make a detailed comparison with

the existing approaches. Finally, section 5 contains our conclusions.

2 Infinite volume

2.1 Two-particle sector

In order to simplify the formalism and highlight the central conceptual issues, we consider

the interaction of three identical non-relativistic scalars. In addition, we assume that two-

to-three particle transitions are forbidden. Thus for applications to QCD, our final result

still needs to be decorated with spin indices, relativistic boosts into non-rest frames, etc.

These effects can be included in a second stage. For example, the coupling of the two- and

three-particle sectors can be included along the lines of ref. [36]. We stress that none of

these issues affect the essence of the problem considered in this paper.

The three-particle Lagrangian can be written in the following form

L = ψ†
(
i∂0 +

∇2

2m

)
ψ + L2 + L3 , (2.1)

where ψ(x) denotes a non-relativistic field with the propagator

i〈0|Tψ(x)ψ†(y)|0〉 =

∫
d4p

(2π)4

e−ip(x−y)

w(p)− p0 − i0
, w(p) =

p2

2m
, (2.2)

m is the mass of the particle, and L2,L3 denote the two- and three-particle interaction

terms, respectively.
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Let us start from the two-particle term. It contains a tower of operators of increasing

mass dimension or, equivalently, an increasing number of space derivatives

L2 = −C0

2
ψ†ψ†ψψ +

C2

4

(
ψ†
↔
∇2ψ†ψψ + h.c.

)
+O

(
∇4
)
. (2.3)

Here, the first term corresponds to a non-derivative interaction which is purely S-wave. In

the second term, we employ the Galilean invariant derivative operator
↔
∇ ≡ (

→
∇ −

←
∇)/2,

which is understood to act only on the fields immediately left and right of the operator.

For identical spinless particles there are no odd partial waves, so the contribution of higher

partial waves starts at O(∇4).

It is more convenient to use the momentum representation for the analysis of the

higher-order terms. Because of Galilei invariance, the interaction does not depend on the

center-of-mass momentum. It is characterized by the relative momenta of the two particles

in the final and initial states, p and q, respectively. Using rotational invariance and Bose-

symmetry, the matrix element of the interaction Lagrangian between the two-particle states

can be written in the form

〈P,p|L2|q,P〉 =
∞∑

n,m,k=0

lnmkp
2nq2m(pq)2k , (2.4)

where lnmk are linear combinations of C0, C2, . . ..

Furthermore, the expression qi1 · · · qi2k is given by a sum of a traceless tensors of rank

2k and less, and terms containing the Kronecker symbol. For example,

qiqj =

(
qiqj −

1

3
δijq

2

)
+

1

3
δijq

2 , (2.5)

and similar expressions hold for higher order tensors. The first term in brackets is traceless

and corresponds to a D-wave. The Kronecker symbol δij in the second term will be convo-

luted with pipj and yields p2, corresponding to a S-wave. Continuing this way, we obtain

〈P,p|L2|q,P〉 =
∞∑

n,m,k=0

l′nmkp
2nq2m

∑
i1,···i2k

Fi1,···i2k(p)Fi1,···i2k(q) , (2.6)

where the Fi1,···i2k are traceless tensors in all indices and correspond to even orbital momen-

tum L = 2k, whereas l′nmk are linear combinations of lnmk. Hence, we obtain a clear-cut

classification of the operators of the Lagrangian in the partial waves and — within a sector

with a given value of the orbital momentum — in powers of momenta p2nq2m.

Next, we consider the matching of the couplings C0, C2, . . . to the physical observables.

We limit ourselves to a sector with a fixed value of the orbital momentum (say, the S-wave).

– 4 –



J
H
E
P
1
0
(
2
0
1
7
)
1
1
5

The available observables for fitting are the effective-range parameters1

p cot δ(p) = −1

a
+
re
2
p2 +

∞∑
n=2

b2np
2n , p2 = p2 . (2.7)

At order p4 we have two independent operators

LS−wave
2 = −C0

2
ψ†ψ†ψψ +

C2

4
(ψ†
↔
∇2ψ†ψψ + h.c.)

− C4

4
(ψ†
↔
∇4ψ†ψψ + ψ†

↔
∇2ψ†ψ

↔
∇2ψ + h.c.)

− C ′4
4

(ψ†
↔
∇4ψ†ψψ − ψ†

↔
∇2ψ†ψ

↔
∇2ψ + h.c.) +O(∇6) ,

〈P,p|LS−wave
2 |q,P〉 = −2C0 − C2(p2 + q2)− C4(p2 + q2)2 − C ′4(p2 − q2)2 . (2.8)

It is clear that the matching to b4 from eq. (2.7) determines the constant C4, whereas the

term with C ′4 vanishes on the energy shell p2 = q2 and thus is not fixed from matching.

Note that we use the standard terminology regarding the terms “off the energy shell” and

“on the energy shell” from non-relativistic scattering theory (cf. ref. [58]). Since we have

chosen a form of the Lagrangian in which the interaction terms are not energy dependent,

the on-shell condition reduces to p2 = q2. Such a form can always be achieved by suitable

field redefinitions.

Moreover, using the equations of motion(
i∂0 +

∇2

2m

)
ψ = C0ψ

†ψψ + · · · , (2.9)

we find that the off-shell term is proportional to a total time derivative (modulo surface

terms)

ψ†
↔
∇4ψ†ψψ − ψ†

↔
∇2ψ†ψ

↔
∇2ψ + h.c. ∝ ∂2

0(ψ†ψ†ψψ) , (2.10)

and, hence, does not affect the equations of motion. Note that the above relation holds

up to terms containing six fields. Consequently, if the three-particle sector is also con-

sidered, the off-shell terms in the two-particle sector can be eliminated in favor of the

three-particle forces.

Another statement concerns the two-particle spectrum in a finite volume. The validity

of the Lüscher equation implies that such off-shell terms do not affect the spectrum, which

is solely determined by the on-shell S-matrix elements. Physically, this stems from the

existence of two widely separated scales — the box size L and the typical interaction range

R, with R � L. This means that the two-particle wave function near the boundaries is

given by its asymptotic form determined by the phase shift. Hence, only this quantity

1Usually, the effective-range expansion is performed around threshold. This limits the applicability of

the method to small values of the three-momenta. However, the quantity p cot δ(p) can also be expanded in

powers of p2 near some p2 = p20 instead of p2 = 0. This corresponds to a rearrangement of the perturbation

series without changing the total result (the Lagrangian that leads to the modified series can easily be

written down). It is expected that with an appropriate choice of p20, the convergence of the series in a

limited interval of momenta can be improved.
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Figure 1. T -matrix in the non-relativistic theory. The filled boxes represent the tree-level La-

grangian containing the low-energy couplings C0, C2, C4, . . ..

enters the finite-volume quantization condition. Our aim is to verify the same statement in

the three-particle sector as well, where it looks less intuitive. Namely, there exist regions

in the configuration space, where two out of three-particles are close to each other and the

third particle is far away (at the distances of order of the box size L). Nevertheless, as we

shall see, the statement still holds.

The two-body scattering T -matrix is given by the sum of the bubble diagrams shown

in figure 1. On the mass shell, is equal to

T =
8π/m

p cot δ(p)− ip
, (2.11)

where p cot δ(p) is given by the effective-range expansion (2.7).

2.2 Dimer formalism

Next, we consider the introduction of the dimer field in the context of the pure two-body

problem. Note first that it is allowed to rewrite the above expression in a form

〈P,q|L2|p,P〉 = σ

∞∑
k=0

f(p2)f(q2)
∑

i1,···i2k

Fi1,···i2k(p)Fi1,···i2k(q) , (2.12)

where f(p2) = f0 + f1p
2 + . . .. Further, σ = −1 if C0 > 0 and vice versa. Since, at a given

order in p2, there is only one physically relevant constant that can be matched on shell, one

may recursively express the couplings f0, f1, . . . through the effective range parameters.

Now, let Ti1,···i2k be a field completely traceless in its indices, which describes a dimer

with spin equal to 2k. One may write down the Lagrangian

L = ψ†
(
i∂0 +

∇2

2m

)
ψ + σ

∞∑
k=0

∑
i1,···i2k

T †i1,···i2kTi1,···i2k

+

( ∞∑
k=0

∑
i1,···i2k

T †i1,···i2kψ
[
f(−i∇)Fi1,···i2k(−i∇)

]
ψ + h.c.

)
, (2.13)

where ψ
[
f(−i∇)Fi1,···i2k(−i∇)

]
ψ is a shorthand notation (the operator ∇ in the second line

should be interpreted as a “Galilei-invariant” operator, see the discussion below eq. (2.3)).

To explain this notation, consider first the spinless dimer k = 0. Writing down f(−i∇) =

f0 + f1(−i∇)2 + . . ., and taking into account the Bose-symmetry factors, we get

ψ
[
f0

]
ψ =

1

2
f0ψψ ,

ψ
[
f1(−i∇)2

]
ψ = −1

4
f1(ψ∇2ψ −∇iψ∇iψ) , (2.14)
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and so on. For the spin-2 dimer (i.e., k = 1 we have)

ψ
[
Fij(−i∇)

]
ψ = ψ

[
3

2
(−i∇)i(−i∇)j −

1

2
δij(−i∇)2

]
ψ

= −3

8
ψ∇i∇jψ +

3

8
∇iψ∇jψ +

1

8
δijψ∇2ψ − 1

8
δij∇kψ∇kψ , (2.15)

and so on. In the CM frame, one may perform the partial integration, leading to the same

result as before.

The dimer field Ti1,···i2k is an auxiliary field. Integrating it out with the use of the

equations of motion, or using the path integral, it is straightforward to verify that the

dimer formalism on the energy shell is mathematically equivalent to the theory defined

by the two-body Lagrangian, eq. (2.8). In particular, the on-shell T -matrix is again given

by eq. (2.11), also in non-rest frames. Putting it differently, the dimer picture is not an

approximation — it is an alternative description of two-body scattering. The scattering in

higher partial waves is represented through dimers with arbitrary integer spins.

2.3 Three-particle sector

Next, let us turn to the three-particle sector and write down the Lagrangian. At leading

order, it is given by

LLO
3 = −D0

6
ψ†ψ†ψ†ψψψ . (2.16)

Further, we turn to the next-to-leading order. As in the two-particle sector, it is easier

to carry out the classification of the derivative terms in momentum space. To keep the

discussion transparent, we restrict ourselves to the center-of-mass frame p1 + p2 + p3 =

q1 +q2 +q3 = 0 in the three-particle sector. It is always possible to rewrite the expressions

in a manifestly Galilei-invariant form using Galilei invariant derivatives. At next-to-leading

order, we have the following invariants:

p2
i , pipj , q2

i , qiqj , piqi , piqj , i 6= j , i, j = 1, 2, 3 . (2.17)

Bose-symmetry, time invariance and Hermiticity exclude all structures but one

〈q|LNLO
3 |p〉 = D2

3∑
i=1

(p2
i + q2

i ) (2.18)

which in position space gives

LNLO
3 = −D2

12
(ψ†ψ†∇2ψ† ψψψ + h.c.) . (2.19)

Let us now consider next-to-next-to-leading order. Using the condition p1 + p2 + p3 =

q1 + q2 + q3 = 0 and taking into account the Hermiticity of the Lagrangian and Bose-

symmetry, the set of linearly independent invariants is

O = (p4
1 + p4

2 + p4
3) + (q4

1 + q4
2 + q4

3) ,

O′ =
[
(p2

1 + p2
2 + p2

3) + (q2
1 + q2

2 + q2
3)
]2
,

O′′ =
[
(p2

1 + p2
2 + p2

3)− (q2
1 + q2

2 + q2
3)
]2
. (2.20)
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Note that we have written down only the terms that contribute to the S-wave. There are

also D-wave contributions generated at this order, say, by terms of the type
3∑

i,j=1
(piqj)

2.

For illustrative purposes, however, we restrict ourselves to the S-wave contribution only.

In position space, we get

LNNLO
3 =

D4

12

(
ψ†ψ†∇4ψ† ψψψ + h.c.

)
(2.21)

+
D′4
12

(
(ψ†ψ†∇4ψ† ψψψ + 2ψ†∇2ψ†∇2ψ† ψψψ + h.c.) + 6ψ†ψ†∇2ψ† ψψ∇2ψ

)
+
D′′4
12

(
(ψ†ψ†∇4ψ† ψψψ + 2ψ†∇2ψ†∇2ψ† ψψψ + h.c.)− 6ψ†ψ†∇2ψ† ψψ∇2ψ

)
The low-energy coupling D′′4 is analogous to the “off-shell” coupling C ′4 considered in the

two-particle sector — at tree level, it does not contribute to the three-particle amplitude.

Furthermore, using the equations of motion it can be shown that

−(2m)2∂2
0(ψ†ψ†ψ†) = 6ψ†∇2ψ†∇2ψ† + 3ψ†ψ†∇4ψ† + · · ·

−(2m)2∂2
0(ψψψ) = 6ψ∇2ψ∇2ψ + 3ψψ∇4ψ + · · · ,

−(2m)2∂0(ψ†ψ†ψ†)∂0(ψψψ) = −9ψ†ψ†∇2ψ†ψψ∇2ψ + · · · , (2.22)

where the ellipses stand for terms containing more field operators. Taking these equa-

tions into account, it is straightforward to see that the term proportional to D′′4 is a total

time derivative

− D′′4
36

(2m)2∂2
0(ψ†ψ†ψ†ψψψ) , (2.23)

and therefore does not contribute to the equations of motion.

2.4 Insertion of the off-shell terms into Feynman diagrams

As we have seen, the on-shell three-body scattering T -matrix does not depend on the low-

energy coupling D′′4 at tree level. We now want to expand this argument beyond tree level

and show that the T -matrix does not depend on D′′4 at all. This would have been easy in

the two-body sector: one would use dimensional regularization and argue that the off-shell

terms in perturbation theory lead to no-scale integrals that vanish in this regularization.

The final answer then should not depend on the regularization used. This argument,

however, rests on the fact that the two-body potential is a low-energy polynomial. This

is not true anymore in the three-body sector, where the pair interactions give rise to a

non-polynomial potential. For this reason, we have to examine the perturbation series in

the three-body sector more carefully.

The three-body T -matrix obeys the Lippmann-Schwinger equation

T = V + V G0T , (2.24)

where G0 is the free three-body Green function, and V denotes the kernel (potential) of

this equation — the sum of all Feynman diagrams which cannot be made disconnected by

cutting exactly three particle lines. Of course, it is well known that the above equation is
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mathematically ill-defined. All two-body interactions should be summed up first, leading

to the Faddeev equations. This fact, however, will not bother us in the following, since

we consider the Lippmann-Schwinger equation merely as a tool to generate a full set of

Feynman diagrams in the three-body T -matrix.

According to the discussion in the previous subsection, we may split off the off-shell

part from the potential V :

V = V̄ + V ′ , (2.25)

where, in our case, V ′ = κ(Ef − Ei)
2, κ ∝ D′′4 . Here, Ei = 1

2m (q2
1 + q2

2 + q2
3) and

Ef = 1
2m (p2

1+p2
2+p2

3) are the initial and final three-particle energies, respectively. Further,

it can be straightforwardly shown that

T = T ′ + (1 + T ′G0)ν(1 +G0T
′) , (2.26)

where T ′ is the scattering matrix of the “off-shell” potential V ′ only:

T ′ = V ′ + V ′G0T
′ (2.27)

and ν obeys the following equation

ν = V̄ + V̄ (G0 +G0T
′G0)ν = ν̄ + ν̄(G0T

′G0)ν , (2.28)

where ν̄ is the scattering matrix on the potential V̄ (without the “off-shell” term):

ν̄ = V̄ + V̄ G0ν̄ . (2.29)

Our aim is to demonstrate that

T

∣∣∣∣
onshell

= ν̄

∣∣∣∣
onshell

. (2.30)

This aim can be achieved in a few consecutive steps. First of all, it is immediately seen

that T ′ vanishes on shell. Indeed, using dimensional regularization, we get

T ′(E) = κ(Ef − Ei)2 + κ2(Ef − E)2g0(E)(E − Ei)2 . (2.31)

Here, E is the off-shell energy (in general, E 6= Ei 6= Ef ), and

g0(E) =

∫
k

1

E(k)− E − i0
, (2.32)

where∫
k

.
=

∫
ddk1

(2π)3

ddk2

(2π)3

ddk3

(2π)3
(2π)dδd(k1 + k2 + k3) , E(k) =

1

2m
(k2

1 + k2
2 + k2

3) . (2.33)

The expression (2.31) vanishes at Ei = Ef = E.

Further, let us consider the quantity T ′G0ν on shell:

T ′G0ν =

∫
k
(κ(Ef − Ek)2 + κ2(Ef − E)2g0(E)(E − Ek)2)

1

Ek − E − i0
ν . (2.34)
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Figure 2. Lowest-order Feynman graphs emerging in the expansion of the quantity ν.

The second term vanishes at Ef = E, while the first term can on the energy shell be

rewritten as

T ′G0ν

∣∣∣∣
onshell

= κ

∫
k
(E − Ek)ν . (2.35)

This expression also vanishes, if ν is a low-energy polynomial. However, in general it is not.

For this reason, let us consider a few typical diagrams shown in figure 2, in order to ensure

that the above expression still leads to no-scale integrals. Let us start from the diagram

shown in figure 2a which yields ν = 2C0(2π)dδd(k1−p1). Substituting this expression into

eq. (2.35), we get

T ′G0ν

∣∣∣∣
onshell

= 2C0κ

∫
ddk2

(2π)d

(
E − 1

2m

(
p2

1 + k2
2 + (k2 + p1)2

))
= 0 . (2.36)

Next, let us consider the one-loop diagram shown in figure 2b. Carrying out the same steps

as above, one obtains

T ′G0ν

∣∣∣∣
onshell

= 4C2
0κ

∫
ddk2

(2π)d
ddl

(2π)d

(
E − 1

2m

(
p2

1 + k2
2 + (k2 + p1)2

))
× 2m

p2
1 + l2 + (p1 + l)2 − 2mE − i0

= 0 . (2.37)

The last equality stems from the fact that the integral over k2 is a no-scale integral, even

if ν is not a low-energy polynomial.

Finally, we consider the diagram shown in figure 2c. The result is given by

T ′G0ν

∣∣∣∣
onshell

= 4C2
0κ

∫
ddk1

(2π)d
ddk2

(2π)d

(
E − 1

2m

(
k2

1 + k2
2 + (k1 + k2)2

))
× 2m

p2
2 + k2

1 + (p2 + k1)2 − 2mE − i0
= 0 . (2.38)

This integral also vanishes because it is a no-scale integral with respect to the momen-

tum k2.

This exhausts the list of the possible alternatives. Consequently, in general T ′G0ν

vanishes on shell, even if ν is not a low-energy polynomial. By the same token, νG0T
′ and

T ′G0νG0T
′ vanish on shell as well, leading to the conclusion that T and ν coincide on the

energy shell.
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Finally, we focus on eq. (2.28), which relates the quantities ν and ν̄. Consider the

second iteration of this equation, ν̄G0T
′G0ν̄, where T ′ is given by eq. (2.31). It is immedi-

ately seen that the contribution from the second term in eq. (2.31) factorizes and vanishes

on the energy shell, leading to an integral similar to the one given in eq. (2.35). Using the

simple algebraic identity

(Ef − Ei)2

(Ef − E)(Ei − E)
=
Ef − Ei
Ei − E

−
Ef − Ei
Ef − E

, (2.39)

the contribution from the first term can be also reduced to the integrals of the same

type. Higher order terms can be considered in a similar way. Thus, on shell ν = ν̄ and,

consequently, eq. (2.30) holds.

To summarize this rather lengthy but straightforward discussion, note that ν̄, defined

by eq. (2.29) is the three-body scattering T -matrix for D′′4 = 0. Thus, we have shown

that the coupling constant D′′4 does not appear in the on-shell T matrix (neither at tree

level, nor as an insertion in higher-order Feynman diagrams) and cannot be fixed from

experimental input. We remind the reader that this coupling multiplies an operator that

can be reduced to a total time derivative by using the equation of motion. In the infinite

volume, the omission of such operators cannot lead to observable consequences.

Thus one can always restrict oneself to physical operators. Through our discussion,

this is explicitly demonstrated for up to four spatial derivatives. However, we expect the

conclusion to hold for operators with more derivatives as well. In the next subsection,

we will demonstrate that this conclusion holds in the dimer-particle formalism as well by

matching to the three-particle sector.

2.5 The dimer formalism in the three-particle sector

In this subsection, we write down the particle-dimer interaction Lagrangian

and demonstrate its equivalence to the original three-particle Lagrangian for terms

with up to four derivatives explicitly. Equivalence for terms with more than four derivates

is expected as well. For a previous demonstration for terms with up to two derivatives

using field redefinitions, see ref. [59].

For simplicity, we restrict ourselves to the case of a scalar dimer. The generalization to

the higher partial waves is straightforward. We start from the Lagrangian (cf. eq. (2.13)),

L = ψ†
(
i∂0 +

∇2

2m

)
ψ + σT †T +

(
T †ψ

[
f(−i∇)

]
ψ + h.c.

)
+ h0T

†Tψ†ψ + h2T
†T (ψ†∇2ψ +∇2ψ†ψ)

+ h4T
†T (ψ†∇4ψ +∇4ψ†ψ) + h′4T

†T∇2ψ†∇2ψ + · · · , (2.40)

where

ψ
[
f(−i∇)

]
ψ =

1

2

(
f0ψψ + f1ψ(−i

↔
∇)2ψ + f2ψ(−i

↔
∇)4ψ + · · ·

)
,

ψ(−i
↔
∇)2ψ =

1

2

(
−ψ∇2ψ +∇iψ∇iψ

)
, and so on. (2.41)
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Figure 3. The kernel of the three-particle Lippmann-Schwinger equation: a) the exchange diagram

between the particle and the dimer; b) local particle-dimer interactions with couplings h0, h2, . . ..

Integrating out the dimer field, this Lagrangian can be rewritten as

L = ψ†
(
i∂0 +

∇2

2m

)
ψ (2.42)

−
(ψ
[
f(−i∇)

]
ψ)†(ψ

[
f(−i∇)

]
ψ)

σ + h0ψ†ψ + h2(ψ†∇2ψ +∇2ψ†ψ) + h4(ψ†∇4ψ +∇4ψ†ψ) + h′4∇2ψ†∇2ψ
+ · · · .

Expanding the denominator, one gets the previous result in the two-particle sector. In the

three-particle sector, the following operators emerge:

L3 =
f2

0h0

4
ψ†ψ†ψ†ψψψ +

(
−3f0f1h0

16
+
f2

0h2

4

)
(ψ†ψ†∇2ψ†ψψψ + h.c.) +O(∇4) . (2.43)

Here, we have used the fact that in the three-particle CM frame,

(ψ†∇2ψ†−∇iψ†∇iψ†)ψ†ψψψ=

(
ψ†ψ†∇2ψ†− 1

2
∇i(ψ†ψ†)∇iψ†

)
ψψψ=

3

2
ψ†ψ†∇2ψ†ψψψ .

(2.44)

Consequently,

• At order ∇0, the coupling constant D0 is matched to h0.

• At order ∇2, the coupling constant D2 is matched to h2.

• At order∇4 we have three coupling constants D4, D
′
4, D

′′
4 in the three-body formalism,

to be matched to the two constants h4, h
′
4 in the particle-dimer formalism. This shows

once more that one of the couplings (D′′4) is redundant and can be eliminated from

the theory without changing the physical content.

Note also that the off-shell terms in particle-dimer scattering are essential and should

not be eliminated. This is because the dimer does not have a fixed mass. The on-shell

three-particle T -matrix can uniquely be related to the off-shell particle-dimer T -matrix.

2.6 The scattering equation

In the simplest case, when only non-derivative interactions are present in the Lagrangian,

the particle-dimer scattering equation takes the form (see figure 3)

M(p,q;E) = Z(p,q;E) + 8π

∫ Λ d3k

(2π)3
Z(p,k;E)τ(k;E)M(k,q;E) . (2.45)
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Figure 4. Typical diagrams contributing to the particle-dimer scattering. The double line denotes

the dimer, the single line — the particle, and the filled boxes stand for the dimer-two-particle vertex.

Here, E denotes the total CM energy of three particles, a denotes the S-wave scattering

length, and

Z(p,q;E) =
1

−mE + p2 + q2 + pq
+

h0

mf2
0

,

τ(k;E) =
1

−a−1 +
√

3
4 k2 −mE

. (2.46)

The solution of the above equation unique because of the presence of the ultraviolet cutoff

Λ. Then, in order to ensure the independence of the observables on the cutoff, as Λ →∞,

the three-body coupling H0(Λ) = Λ2h0(Λ)/(mf2
0 ) should depend on Λ in a log-periodic

manner [60, 61].

The inclusion of the higher-order terms (still in the S-wave) boils down to two modi-

fications:

a) Replacing τ(q;E) with the exact propagator

τ(q;E) =
1

p∗ cot δ(p∗) +
√

3
4 q2 −mE

, (p∗)2 = mE − 3

4
q2 . (2.47)

b) Adding derivative particle-dimer couplings to Z:

H0(Λ)→ H0(Λ) +H2(Λ)(p2 + q2) + · · · . (2.48)

In case of the dimers with higher spins, one should consider transitions between all possible

particle-dimer states.

In order to demonstrate, how the expression p∗ cot δ(p∗) emerges, let us consider few

diagrams shown in figure 4. In particular, in the diagram from figure 4a, the energy

denominators emerging from the “hopping” of a particle between a particle and a dimer are:

1

k2 + q2 + kq−mE − i0
and

1

k2 + p2 + kp−mE − i0
, (2.49)

whereas the factors in the dimer-two-particle vertices (marked as 1 and 2 in the figure) are,

respectively

f0 + f1

(
q +

k

2

)2

+ · · · and f0 + f1

(
p +

k

2

)2

+ · · · . (2.50)
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Writing

f0 + f1

(
q +

k

2

)2

+ · · · = (k2 + q2 + kq−mE) + (f0 + f1(k∗)2) + · · · ,

f0 + f1

(
p +

k

2

)2

+ · · · = (k2 + p2 + kp−mE) + (f0 + f1(k∗)2) + · · · , (2.51)

where (k∗)2 = mE− 3
4 k2, it is immediately seen that the first term in the above expressions

cancels with the pertinent energy denominators. The resulting expression has exactly the

form obtained by inserting the local particle-dimer coupling in the diagram. Consequently,

it can be removed by redefining the couplings h0, h2, . . .. The remaining piece contains the

factor f2((k∗)2), where f((k∗)2) = f0 + f1(k∗)2 + · · · . Moreover, the same factor f((k∗)2)

emerges from the diagram figure 4b as well — here one may use dimensional regularization

to regulate the loop, so the remainder leads to the no-scale integrals and explicitly vanishes

(albeit the result, of course, does not depend on the regularization). To summarize, in the

case without derivative interactions, the dimer propagator was given by

f2
0

σ
+
f4

0

σ2
I(k∗) + · · · = 1

σf−2
0 − I(k∗)

∝ 1

−a−1 − ik∗
, (2.52)

where I(k∗) ∝ ik∗ denotes the loop integral in figure 4b with no derivative vertices. If

there are derivative vertices present, the above series is modified:

f2((k∗)2)

σ
+
f4((k∗)2)

σ2
I(k∗) + · · · = 1

σf−2((k∗)2)− I(k∗)
∝ 1

k∗ cot δ(k∗)− ik∗
. (2.53)

An important remark is in order. Usually, in the calculations, the quantity p cot δ(p) is

approximated by the first few terms in the effective-range expansion. This may lead to the

emergence of the spurious poles in the dimer propagator, which lie far outside the region of

applicability of the effective-range expansion, and which may render the numerical solution

of the scattering equation unstable. In order to circumvent this problem, e.g., in refs. [61–

64] a perturbative expansion of the dimer propagator in the effective radius has been

proposed. A similar problem might also arise in a finite-volume case, which is our primary

concern in this paper. Here we assume that this problem has already been addressed and

solved in the infinite volume — e.g., by finding a proper parameterization for p cot δ(p)

which, at small values of p, reproduces the effective-range expansion to a given order, but

has a reasonable behavior at large p2 and does not lead to spurious poles in the dimer

propagator.

2.7 Short summary: three-body problem in the infinite volume

The main features of the three-body problem in the infinite volume can be summarized

as follows:

(i) All physical observables in the three-particle sector at low energies are parameter-

ized in terms of the two-particle C0, C2, . . . and three-particle D0, D2, . . . couplings.

Using equations of motion for reducing number of the independent couplings does

not change the observables. The usual power counting applies in the two- and three-

particle sector.
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(ii) The particle-dimer picture is not an approximation but an equivalent language for the

description of the three-particle dynamics. In this picture, one trades the couplings

D0, D2 for the couplings h0, h2, . . .. In order to incorporate the higher partial waves,

dimers with arbitrary (integer) spin should be incorporated.

(iii) The three-body scattering T -matrix, which contains information about all physical

observables in the three-particle sector, can be expressed in terms of the particle-

dimer scattering amplitude M, which obeys the equation (2.45), modified in the

presence of derivative couplings. Note that the quantity τ(k;E) in this equation is

already parameterized in terms of the physical observables (phase shift) and does not

explicitly depend on the regularization used.

3 Finite volume

3.1 Strategy

In the previous section, we have thoroughly considered the formulation of the three-particle

problem in the infinite volume and have demonstrated that the particle-dimer picture

provides an equivalent description of this problem. The reason why we have done this is

simple — we will show that the quantization condition can be obtained almost immediately

and in an absolutely transparent manner, assuming that the three-momenta in a finite

volume are quantized.

The main question here is the choice of an appropriate set of physical observables

(parameters), which should be determined from the measured finite volume spectrum. As

mentioned before, the previous attempts in the literature were focused on splitting the

equations in a finite volume into the infinite-volume part and the rest. We believe that the

most convenient choice of the parameters is provided by the low-energy couplings them-

selves — once these couplings are determined on the lattice, the particle-dimer scattering

amplitude can be constructed by solving the scattering equation in the infinite volume.

Let us explain the procedure in more detail. The “scattering amplitude” in a finite

volume is determined by the equation2

ML(p,q;E) = Z(p,q;E) +
8π

L3

Λ∑
k

Z(p,k;E)τL(k;E)ML(k,q;E) , (3.1)

where k = 2π
L n , n ∈ Z3 is a quantized three-momentum in a finite volume and

τ−1
L (k;E) = k∗ cot δ(k∗) + S(k, (k∗)2) , (3.2)

where

S(k, (k∗)2) = −4π

L3

∑
l

1

k2 + l2 + kl−mE
. (3.3)

2Here we restrict ourselves again to the case of a scalar dimer only. Higher partial waves can be included

straightforwardly in a later stage.
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This sum diverges in the ultraviolet and needs to be regularized and renormalized. The sim-

plest way to do this is to perform a subtraction at some (k∗)2 = −µ2 < 0 (one subtraction

suffices, but more subtractions lead to a faster convergence). Then, we get

S(k, (k∗)2) =
[
S(k, (k∗)2)− S(k,−µ2)

]
+ S(k,−µ2) . (3.4)

The first term in brackets is finite. The second term is equal to

S(k,−µ2) = −4π

L3

∑
l

1(
l + k/2

)2
+ µ2

= µ−
∑
n 6=0

1

nL
exp

(
− i

2
Lkn− nLµ

)
, (3.5)

where n = |n| and we have used Poisson’s summation formula. Note that the ultraviolet

divergence in the above expression can be tamed, e.g., by using dimensional regularization.

Note also that the equation (3.1) was used earlier in refs. [37–40] to calculate the spectrum

of the three-body bound states in a finite volume numerically.

Now, our strategy for the analysis of data in the three-particle sector can be formulated

as follows:

1. Consider first the two-particle sector, extract the phase shift δ(p) at different mo-

menta by using the Lüscher equation. Parameterize the function p cot δ(p) so that it

fits the lattice data and does not lead to spurious poles at large momenta.

2. Fix the cutoff Λ. Truncate the partial-wave expansion (consider dimers with a spin

below some fixed value). Fit the spectrum in the three-particle sector, using h0, h2, . . .

as free parameters. Repeat this until the fit does not improve anymore by adding

parameters.

3. Solve the equations in the infinite volume by using the same values of the parameters

and the same cutoff Λ. Calculate different cross sections, bound-state energies, etc.

The proposed scheme has apparent advantages with respect to the ones proposed in the

literature. First of all, it is extremely simple. For example, since we do not want to single

out the scattering amplitude in the infinite volume, we do not need to introduce a “smooth

cutoff” on the momentum l in eq. (3.3). Furthermore, the procedure is systematic: the

particle-dimer coupling constants h0, h2, . . ., corresponding to a dimer with a fixed spin,

obey the usual counting rules. At the lowest order in the momentum expansion it is just

one constant h0 for the scalar dimer, which describes the whole three-body spectrum.

Finally, the minimal set of couplings is observable, in the sense that they can be uniquely

determined from matching to the on-shell T -matrix.

In view of the above discussion, the fundamental statement that the finite-volume

energy spectrum is determined solely by the three-body S-matrix, can be rephrased as

follows: the off-shell couplings (like D′′4 considered in the previous section) have no impact

on the finite-volume spectrum. This statement can be checked immediately by using exactly

the same diagrammatic technique as in the previous section. Indeed, using the no-scale

argument, we have proven that D′′4 does not enter the on-shell three-body T -matrix. The

finite-volume counterpart of this T -matrix, which is defined by the same set of Feynman
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integrals with 3-momentum integrations replaced by sums, determines the spectrum of the

three-body system in a finite volume. Namely, its poles correspond to the energy levels. The

no-scale integrals in a finite volume also give vanishing contribution (to be more precise,

the contribution from the off-shell LECs will be exponentially suppressed ∝ exp(−ML),

where the scale M ∼ m is much larger than typical non-relativistic momenta). Thus, the

fundamental statement from refs. [26, 31] looks almost trivial in the new framework.

3.2 Application

In order to demonstrate, how the proposed framework works in practice, we have done a

simple exercise. We have restricted ourselves to the scalar dimer and neglected derivative

couplings, both in the two-particle and in the three-particle sectors. Thus, for a fixed

parameter Λ, we have two free parameters — the two-body scattering length a and the

particle-dimer coupling h0(Λ) which can be traded for H0(Λ), see subsection 2.6. Hence,

we want to find the poles of the amplitude ML, defined by the eq. (3.1), where eq. (3.2)

takes the form

τ−1
L (k;E) = −a−1 + S(k, (k∗)2) , (3.6)

and

Z(p,q;E) =
1

−mE + p2 + q2 + pq
+
H0(Λ)

Λ2
. (3.7)

In the vicinity of a pole E = En, the amplitude ML factorizes

ML(p,q;E) =
F(p)F(q)

E − En
+ regular terms. (3.8)

Consequently, the spectrum will be determined from the following homogeneous equation:

F(p) =
8π

L3

Λ∑
q

Z(p,q;E)τL(q;E)F(q) . (3.9)

Next, we would like to perform a partial-wave expansion in this equation. Note that, since

the rotation symmetry is broken down by the cubic lattice, a mixing of the partial waves

will occur. Using the so-called cubic harmonics, the maximal diagonalization of the matrix

equation can be achieved. In doing so, we shall use the general formalism described in

refs. [65, 66] The final result coincides with that of ref. [40].

We start with the expanding of Z and F in partial waves

Z(p,q;E) = 4π
∑
lm

Ylm(p̂)Zl(p, q;E)Y ∗lm(q̂) ,

F(p) =
√

4π
∑
lm

Ylm(p̂)Flm(p) , (3.10)

where p̂, q̂ are unit vectors in the direction of p,q, and Ylm denotes spherical functions.

Since the spherical symmetry is broken, Flm depends on m. Further,

Zl(p, q;E) = − 1

2pq
ReQl

(
mE − p2 − q2

pq

)
+
H0(Λ)

Λ2
δl0 , (3.11)
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where Ql(z) = 1
2

∫ 1
−1 dx

Pl(x)
z−x is the Legendre function of the second kind. In particular,

Z0(p, q;E) =
1

2pq
ln

∣∣∣∣p2 + pq + q2 −mE
p2 − pq + q2 −mE

∣∣∣∣+
H0(Λ)

Λ2
. (3.12)

The equation (3.9) can be now rewritten in the form

Flm(p) =
Λ∑
q

∑
l′m′

Zl(p, q;E)Rlm,l′m′(q;E)Fl′m′(q) , (3.13)

where

Rlm,l′m′(q;E) =

(
8π

L3

)
× (4π)

∑
|q|=q

Y ∗lm(q̂)τL(q;E)Yl′m′(q̂) , (3.14)

and p, q take the discrete values: p, q = 2π
L

√
n2

1 + n2
2 + n2

3 , n1, n2, n3 ∈ Z.

The system of the homogeneous linear equations (3.13) has a solution if and only if its

determinant vanishes. Consequently, the quantization condition takes the form

det

(
δll′δmm′δpq − Zl(p, q;E)Rlm,l′m′(q;E)

)
= 0 . (3.15)

We see explicitly that partial-wave mixing occurs in the quantization condition due to the

lost rotational symmetry. It is still possible to block-diagonalize this equation, using the

remnant cubic symmetry on the lattice. The basis vectors of the irreducible representations

of the cubic group are given by the linear combinations of those of the rotation group [65, 66]

|Γαln〉 =
∑
m

cΓαn
lm |lm〉 . (3.16)

Here, Γ denotes one of the five irreducible representations A1, A2, E, T1, T2 of the cubic

group, n = 1, . . . N(Γ, l), where N(Γ, l) is the number of occurrences of Γ in the irreducible

representation Dl of the rotation group, and α = 1, . . . dim(Γ) labels the basis vectors

in the irreducible representation Γ. Further, cΓαn
lm are Clebsch-Gordan coefficients. Next,

we define

RΓΓ′
lnα,l′n′α′(q;E) =

∑
mm′

(cΓαn
lm )∗Rlm,l′m′(q;E)cΓ′α′n′

l′m′ = δΓΓ′δαα′RΓ
ln,l′n′(q;E) , (3.17)

where the last equality was obtained by using Schur’s lemma. Using the orthogonality of

the Clebsch-Gordan coefficients, eq. (3.15) can be rewritten as follows:

det

(
δnn′δll′δpq − Zl(p, q;E)RΓ

ln,l′n′(q;E)

)
= 0 . (3.18)

For simplicity, let us restrict ourselves to the S-waves l = l′ = 0. Then, only Γ = A1

appears in the above expansion and we get

det

(
δpq − Z0(p, q;E)RA1(q;E)

)
= 0 , (3.19)
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Figure 5. The determinant from eq. (3.21). The values of the parameters are Λa = 225 L/a = 1,

while the shaded blobs correspond to the position of the energy levels.

where

RA1(q) =
8π

L3

∑
|q|=q

τL(q;E) . (3.20)

The matrix can be symmetrized, leading to the eigenvalue equation

det

(
s(p;E)δpq −

√
|RA1(p;E)|Z0(p, q;E)

√
|RA1(q;E)|

)
= 0 , (3.21)

where s(p;E) = RA1(q;E)/|RA1(q;E)|.
The equation (3.21) can be solved numerically. The square matrix is finite, since

p, q are both bound by Λ. We choose the parameters as in ref. [40]. First of all, we

take m = 1. Further, the cutoff Λ is fixed through the two-body scattering length, a,

by Λa = 225. Finally, we require that the energy of the bound state in the infinite

volume is equal to E∞ = −10(ma2)−1. This fixes the coupling constant H0 = 0.1925.

Calculating now the determinant in eq. (3.21) as a function of E, one may find the discrete

values of E = E1, E2, . . ., where this function crosses the horizontal axis. Repeating the

calculations at different values of the box size L, one gets the volume-dependent spectrum

E1(L), E2(L), . . .. Figure 5 shows the results of calculation of the determinant at one

particular value of L, whereas figure 6 displays the volume-dependent spectrum — both

below and above three-particle threshold.

What does one learn from these results? For a fixed value of Λ and L, the spectrum

is determined by a limited set of the parameters H0, H2, . . . (we imply that C0, C2, . . . are

determined in the two-particle sector). In the simplest case considered here, this is just one

parameter H0. For the analysis of the lattice data, one has to calculate the energy levels

as a function of H0 and fit to the existing data. If this is not enough, one has to include

derivative couplings and dimers with higher spin, until the quality of fit does not change.
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Figure 6. The dependence of the energy levels on the box size for a fixed value Λa = 225. The levels

both below and above the three-particle threshold are considered. The behavior of the subthreshold

level agrees well with the result of ref. [40].

We stress once more that this is a systematic prescription — the derivative couplings obey

counting rules and are less and less relevant at low energies. The same is true for the

partial-wave truncation — higher partial ways give little contribution at low energies.

To summarize, the framework described above gives a simple and systematic tool to

analyze the lattice data in the three-particle sector.

4 Comparison with existing approaches

Several groups have previously addressed the three-particle problem in a finite volume. In

this section, we would like to briefly review these approaches and clarify the relation to the

approach which was considered in the present paper.

We start from refs. [31, 32, 36], where the three-particle quantization condition has

been obtained. That derivation has been carried out looking for the poles of the three-

particle Green function in a finite volume. Since we have explicitly demonstrated that

the particle-dimer picture is equivalent to the three-particle description, and since our

formalism also extracts the poles of the particle-dimer scattering amplitude, it is no wonder

that, diagrammatically, both quantization conditions are the same. This will be explicitly

shown below.

First, note that the quantity Kdf
3 , defined in ref. [31], is a counterpart of our H0 + . . .

(a more precise statement will follow). The three-particle Green function in the framework

of refs. [31, 32, 36] and the particle-dimer Green function in our approach are shown in

figures 7a and 7b, respectively. It is clear that one may relate these two quantization

conditions, if the corresponding shaded blobs (containing only pair interactions), or only

two-particle dimer interactions, are related to each other. These blobs are depicted in

figures 8a and 8b, respectively.
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Figure 7. a) The three-particle Green function and b) The particle-dimer Green function: insertion

of the three particle/particle-dimer couplings. The shaded blobs contain only self-energy insertions

and particle “hopping,” see figure 8.
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Figure 8. The shaded blobs in figure 7 describe the propagation of the spectator particle and a)

a pair of particles interacting with each other through contact interactions, or b) a dressed dimer.

These two lines are connected by particle “hopping”.

The blob in figure 8b contains two-types of diagrams: self-energy insertions into the

dimer line, and the particle “hopping”. In order to get a feeling, let us calculate few

diagrams shown in figure 9 (for simplicity, let us restrict ourselves to the non-derivative

couplings, which means only S-waves are extracted ). Using split dimensional regularization

in the first term,3 it can be shown that

Ma =

∫∑
l

1

σ

1
l2

2m − E + l0 − i0
= 0 ,

Mb =
1

2
f2

0

∫∑
l

∫∑
k

1

σ2

1
l2

2m − E + l0 − i0
1

k2

2m − k0 − i0
1

(l+k)2

2m − l0 + k0 − i0

=
1

2
f2

0

1

L3

∑
l

1

L3

∑
k

1
1
m (l2 + k2 + lk)− E

,

Mc = f2
0

∫∑
l

∫∑
k

1

σ2

1
l2

2m − P0 + l0 − i0
1

k2

2m − P0 + k0 − i0
1

(l+k)2

2m − P0 − k0 + l0 − i0

= f2
0

1

L3

∑
l

1

L3

∑
k

1
1
m (l2 + k2 + lk)− E

, (4.1)

3Using split dimensional regularization boils down to declaring the l0-integral in the first term equal to

zero, since the pole is on one side of the axis. Note that this prescription was not used in the derivation of

eqs. (2.45) and (3.1). However, it can be shown that the change of the regularization is equivalent to the

redefinition of the coupling H0 and is thus physically irrelevant.
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Figure 9. The lowest-order diagrams, contributing to the shaded blob in the particle-dimer picture,

see figure 8b. The double line depicts a dimer and the single line — a particle.

and so on, where ∫∑
l

(· · · ) =

∫
dl0
2πi

1

L3

∑
l

(· · · ) . (4.2)

Denoting the self-energy insertion by J and the “hopping” diagram by −G, and defining

a0 = 1
2 f

2
0 , the blob shown in figure 8b can be symbolically written down as

Mdimer = (a2
0J + a3

0J
2 + · · · )− (a0 + a2

0J + · · · )G(a0 + a2
0J + · · · ) + · · ·

=
a2

0J

1− a0J
− a0J

1− a0J
G

a0J

1− a0J
+ · · · . (4.3)

Next, we prove a key equality that allows one to transform this expression into the form

given in refs. [31, 32, 36]. J is equivalent to F from refs. [31, 32, 36] which is, in fact,

the difference of a sum and a principle value integral. Since we are using dimensional

regularization here, the subtraction is zero so that J appears as simple a sum. The final

result must hold in any regularization, of course. It is seen from eq. (4.1) that, if G

appears on the left or on the right of all insertions, then G can be replaced by −2J .

This is a general property which is valid for any number of insertions. Indeed, as seen

from figure 9, contracting the free dimer propagator to a point, topologically there is no

difference between the diagrams figure 9b and figure 9c. This will remain true, if any

number of insertions (both J and G) are placed on the left or on the right (but not both!).

Now, we are able to demonstrate that our quantization condition is equivalent to that

of refs. [31, 32, 36]. To this end, we introduce the following notations for the two- and

three-body amplitudes:

M2 =
a0

1− a0J
, M3 =M2 −M2GM3 . (4.4)

Using these definitions and replacing G by (−2J) on the left and on the right in all terms,

after lengthy but straightforward algebraic transformations (see appendix A), we obtain

Mdimer = 9a2
0

(
1

3
J + JM3J

)
. (4.5)

This is exactly the same expression as in refs. [31, 32, 36]. Explicitly, J corresponds to F in

refs. [31, 32, 36] as mentioned above while G, M2 and M3 (Kdf
3 =0) are the same modulo

the use of different cutoff, higher partial waves and relativistic effects.
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Though we have just demonstrated that diagrammatically both quantization conditions

are equivalent, some differences remain. In the refs. [31, 32, 36] a smooth cutoff, introduced

first in ref. [26], has been used both in the self-energy insertion J as well as on the sum

over the momenta q of the spectator particle. Denoting the cutoff function by H(q), the

sum over q is given by

1

L3

∑
q

(· · · ) =
1

L3

∑
q

[
H(q) + (1−H(q))

]
(· · · ) . (4.6)

The cutoff function is chosen so that (1−H(q)) = 0, if mE > 3
4 q2 (in the non-relativistic

limit). This means that the second term in this equation is smooth and the sum can be

replaced by the integral. Consider now eq. (3.1). Symbolically, it can be written as

ML = Z +
∑
q

H(q)ZτLML +

∫
q
(1−H(q))ZτML , (4.7)

where τ = limL→∞ τL. Defining now the “non-standard K-matrix” in the context of the

particle-dimer picture

MH = Z +

∫
q
(1−H(q))ZτMH , (4.8)

we arrive at

ML =MH +
∑
q

H(q)MHτLML . (4.9)

The quantization condition that can be obtained from this equation has exactly the same

form as in refs. [31, 32, 36]. Consequently, the main difference with our approach consists

in moving down the cutoff from Λ. The advantage of this is that the system of the linear

equations that determines the finite-volume spectrum is lower-dimensional, since the max-

imum momentum is determined by the cutoff. However, one has to introduce the quantity

MH instead of a single parameter H0, and further find the conventional infinite-volume

K matrix by solving an integral equation involving MH . Alternatively, if the momentum

expansion of MH , which indicates derivative three-particle (particle-dimer) interactions,

converges fast, the framework of refs. [31, 32, 36] can be brought to a form which is similar

to the present approach. This might, however, require a delicate tuning of the cutoff.

In addition, ref. [31] it was argued that the introduction of the cutoff H allows one to

always define the Lorentz boost, bringing the pair of two interacting particles to the rest

frame. Namely, the cutoff excludes the region, where the total momentum squared of two

particles is negative. While the latter statement is certainly true, in this case the problem

is merely shifted to the calculation of MH . Note also that the same problem would arise

in the three-body problem in the infinite volume as well, leading to the conclusion that

one cannot move the cutoff above some fixed point determined by kinematics. The fact is

that, even if the boost is undefined, the two-body scattering amplitude is defined for all

momenta, given the non-relativistic Lagrangian, in which the couplings are matched to the

effective-range expansion parameters defined in the CM frame. In the relativistic case, it is

convenient to use the covariant version of the non-relativistic effective field theory [67, 68],

which provides explicitly Lorentz-invariant expression of the two-body amplitudes.
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Having considered refs. [31, 32, 36] in detail, we next turn to ref. [26]. The three-particle

Green function, considered here, contains the same set of diagrams as in refs. [31, 32, 36]

(including, in particular, two-to-three transitions as well). The final answer is given in a

form of a system of linear equations, and the quantization condition can straightforwardly

be obtained by declaring the determinant of this system equal to zero. What is different,

is the cutoff on the spectator momentum, which is now moved down to zero (the cutoff

in the self-energy diagram stays where it was before). Since Lüscher’s regular summation

theorem in the spectator momentum q cannot be applied everywhere, the dimensionality of

the equations is the same as in refs. [31, 32, 36] and, because the “non-standard K-matrix”

has to be introduced, this formalism is very complicated as well.

Finally, the formalism constructed in ref. [30] is based on the particle-dimer picture

and is close to the one we are using here. The authors go further and replace the exact

dimer propagator by a sum over the finite-volume two-particle poles (there is always a finite

number thereof, limited by kinematics) and the rest, that can be calculated in the infinite

volume. This effectively amounts to introducing a cutoff on the spectator momentum,

defined by the lowest-lying pole. All above discussion also applies here.

To summarize, the alternative approaches discussed in this section separate finite- and

infinite-volume contributions in the three-particle amplitude. This leads to the introduction

of the quantities like the “unconventional K-matrix” that render the formalism rather

complicated. Instead of this, we advocate for solving the particle-dimer equation in a finite

volume directly and fitting the low-energy couplings to the measured spectrum. Note also

that, since all these unconventional K-matrices should be low-energy polynomials (the

low-energy region is cut off in the integral equation), one could expand these quantities

in momenta and arrive at equations which are formally similar to our equations but are

using a smooth cutoff at Λ ∼ m. Exactly the same result can be obtained in much more

direct way, lowering the cutoff Λ in our equations and taking into account the fact that the

couplings run with Λ.

5 Conclusions

In this paper, we propose an effective field theory framework, which can be used to analyze

the three-particle spectrum on the lattice.

(i) The crucial point consists in the choice of a convenient set of parameters that can

be fit to the lattice data. Within our framework, this set is formed by the particle-

dimer couplings (effective couplings in the two-particle sector should be determined

separately). Any physical observable can be determined, using the set of couplings

determined on the lattice.

(ii) The proposed approach is hardly new. However, it was important to realize that it

is algebraically equivalent to existing approaches, known in the literature. Moreover,

we have demonstrated that the formalism is systematic and much simpler than the

existing approaches. Its performance in the analysis of synthetic data, will be studied
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in a future publication. In addition, the analysis of the lattice data in some models

is planned.

(iii) As an illustration, we have used this approach to calculate the energy spectrum

(both below and above the three-particle threshold) by using the input values of

the couplings. As a further illustration, note that this approach was successfully

used [69] to reproduce the result of ref. [27] on the three-body bound state energy

shift in a finite volume, as well as to study the role of the three-particle force and the

generalization of the above result beyond the unitary limit.

(iv) In order to emphasize the main conceptual problem and its solution, technical details

like relativistic kinematics, higher partial waves, etc. have been left out. These will

be included in future publications.

(v) The treatment in this paper rests on a particular form of the effective field theory

that describes the three-particle system in a finite volume. In the case of the nu-

cleons, for example, one may have to take into account the pion exchanges between

nucleons explicitly leading to a different “chiral” effective field theory. This does not,

however, change the underlying idea of our proposal — considering a given effective

field theory (relativistic or non-relativistic) in a finite volume, calculating the spec-

trum numerically and fitting the low-energy constants to the spectrum. Note also

that a very similar strategy is pursued within the framework of the unitary ChPT

in a finite volume [13–17], which is used in the analysis of data in the two-particle

sector. A possible alternative scheme in the three-body sector based on the isobar

approximation was recently discussed in ref. [70].

(vi) Our approach builds upon a systematic momentum expansion of the effective interac-

tions. One can imagine situations where this momentum expansion of the interactions

breaks down, e.g., through non-analyticities from left-hand cuts in the two-particle

amplitude or from divergent expansions in the three particle sector itself. The former

can be taken into account by dropping the effective range expansion. At the end of the

day, the quantity k cot δ(k) emerges in our equations through the dimer propagator,

and one could use a different parametrization for k cot δ(k) (although the equation

was initially derived using the effective range expansion). The key observation is that

the finite-volume effects, emerge only from the right-hand cut(s) which are captured

correctly. In the latter case of a divergent expansion in the three-particle sector, our

approach must be modified.
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A Derivation of eq. (4.5)

The equation (4.5) can be obtained by transforming the expression (4.3) as

a−2
0 Mdimer = J

1

1−a0J
− 1

1−a0J

{
G−G a0

1−a0J
G+G

a0

1−a0J
G

a0

1−a0J
G−·· ·

}
1

1−a0J

= J
1

1−a0J
− 1

1−a0J

{
G−G(M2−M2GM2+· · ·)G

}
1

1−a0J

= J
1

1−a0J
− 1

1−a0J

{
G−GM3G

}
1

1−a0J

= J
1

1−a0J
−G− a0J

1−a0J
G−G a0J

1−a0J
− a0J

1−a0J
G

a0J

1−a0J

+GM3G+
a0J

1−a0J
GM3G+GM3G

a0J

1−a0J
+

a0J

1−a0J
GM3G

a0J

1−a0J
. (A.1)

In some terms of the above expression, G appears on the very left or on the very right.

Here, one may replace G with −2J , arriving at the following expression

a−2
0 Mdimer = J

1

1− a0J
+ 2J +

4a0J
2

1− a0J
− a0J

1− a0J
G

a0J

1− a0J

+ 4JM3J −
2a0J

1− a0J
GM3J − JM3G

2a0J

1− a0J
+

a0J

1− a0J
GM3G

a0J

1− a0J

= J

{
M2GM3GM2 −M2GM2 + 4M3 − 2M2GM3 − 2M3GM2

}
J

+ J
1

1− a0J
+ 2J +

4a0J
2

1− a0J
. (A.2)

The last term can be replaced by

4a0J
2

1− a0J
= 4JM2J . (A.3)

Finally, using eq. (4.4), we get

a−2
0 Mdimer = 9JM3J + 3J − J(M2J + 1) +

J

1− a0J
= 9

(
1

3
J + JM3J

)
, (A.4)

which coincides with eq. (4.5).
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