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Baryon number fluctuations in the QCD phase diagram
from Dyson-Schwinger equations
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We present results for fluctuations of the baryon number for QCD at nonzero temperature and chemical
potential. These are extracted from solutions to a coupled set of truncated Dyson-Schwinger equations for
the quark and gluon propagators of Landau-gauge QCD with Ny =2 + 1 quark flavors, that has been
studied previously. We discuss the changes of fluctuations and ratios thereof up to fourth order for several
temperatures and baryon chemical potential up to and beyond the critical endpoint. In the context of
preliminary STAR data for the skewness and kurtosis ratios, the results are compatible with the scenario of
a critical endpoint at large chemical potential and slightly offset from the freeze-out line. We also discuss

the caveats involved in this comparison.
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I. INTRODUCTION

Extracting the location of a putative critical endpoint
(CEP) of QCD from heavy-ion collisions is one of the major
goals of the Beam Energy Scan (BES) program [1,2] at the
Relativistic Heavy Ion Collider (RHIC) at Brookhaven
National Laboratory and the future Compressed Baryonic
Matter (CBM) experiment [3] at the Facility for Antiproton
and Ion Research (FAIR).

Theoretically it is by no means clear that such a critical
endpoint exists. At zero chemical potential, there is firm
evidence from lattice QCD for an analytic crossover from a
low-temperature phase characterized by chiral symmetry
breaking to a high-temperature (partially) chirally restored
phase [4-9]. The corresponding pseudocritical temperature
has been localized at 7, ~ 156 MeV within a definition-
dependent range of several MeV [6,7,10,11]. However, the
situation is much less clear at (real) chemical potential,
where lattice calculations are hampered by the notorious
fermion sign problem. Model calculations suggest that the
continuous crossover becomes steeper with increasing
chemical potential and finally merges into a second-order
CEP followed by a region of a first-order phase transition at
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large chemical potential [12-21]; see, e.g., Refs. [22,23] for
review articles. This notion is supported by results from
Dyson-Schwinger equations [24-28], see Ref. [29] for a
recent review.

In order to put these theoretical ideas to the test in
experiments, observables have been identified that are
capable to deliver signals of the CEP. Provided the
freeze-out in heavy-ion collisions is sufficiently close to
the phase boundary, fluctuations of conserved charges
(baryon number, strangeness and electric charge) are
expected to provide this information [13,14,30-34].
Various ratios of cumulants of these conserved quantities
can be extracted from experiment in event-by-event analy-
ses and compared to corresponding ratios of fluctuations
that can be determined in theoretical calculations, see, e.g.,
Refs. [35,36] for reviews. Lattice-QCD results for fluctua-
tions and correlations at zero [37-41] and small chemical
potential [42,43] are available, but need to be extended
toward higher chemical potential.

In hadron resonance gas (HRG) approaches and refined
effective models, such as the Polyakov-loop enhanced
Nambu-Jona-Lasinio model and the Polyakov-loop
quark-meson model (PQM), a wealth of interesting results
on fluctuations have been obtained already, see, e.g.,
Refs. [20,44-55] and references therein. Concerning the
Yang-Mills sector, these models rely on the Polyakov loop
potential that couples aspects of confinement to the chiral
dynamics, however without backcoupling. Thus, gluons are
no active degrees of freedom (d.o.f.) and their reaction to
the medium can neither be studied nor directly taken into
account.

A different approach is possible in functional methods.
In a series of works [25-27,56] a coupled system of

Published by the American Physical Society
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Dyson-Schwinger equations (DSEs) for the quark and
gluon propagators has been considered and the physics
of the Columbia plot [57] has been explored. Results for
QCD with heavy quarks and at physical quark masses
(Ny =2+ 1and Ny =2 + 1 + 1) but zero chemical poten-
tial agree with corresponding lattice results, see Ref. [29]
for an overview. A critical endpoint has been found at
(TCEP, uSEP) = (117,488) MeV which corresponds to a
ratio pSEP /TCEP ~ 4.2, i.e., large chemical potential. In this
work we will use this framework to explore cumulants and
ratios thereof along the crossover line from ug = 0 to and
beyond the CEP. We thereby improve previous results for
fluctuations calculated in the DSE framework of Ref. [58],
where backcoupling effects have not been taken into
account. In particular, we discuss ratios involving the
skewness and kurtosis and compare our results with
preliminary data from the STAR collaboration extracted
from the BES at RHIC.

This work is organized as follows: In Sec. II we detail
our method to extract fluctuations from the quark propa-
gator and derivatives thereof. In Sec. III we summarize the
truncation scheme of the DSEs and discuss the (slight)
changes as compared to previous works [25,56]. In Sec. IV
we present our results and finally conclude in Sec. V.

II. FLUCTUATIONS

In Ny=2+1 flavor QCD there is a conserved charge for
each quark flavor controlled by the three quark chemical
potentials u,, ug, and p,. The quantities under study in the
present work are fluctuations of these conserved charges,
i.e., higher-order derivatives of the grand-canonical
potential

T
Q:—‘—/logZ(TMuu’ﬂd”uS) <1)

with respect to the quark chemical potentials. Here, Z is
the partition function of QCD, T the temperature, and
V the volume of the system. The fluctuations are then
included in'

1 oititkQ
T Sy Opyou

uds

Xijk = —

(2)

with 7, j, k € Ny. The quark chemical potentials are related
to the ones for baryon number (B), strangeness (S), and
electric charge (Q) via

'"We usually suppress the arguments of the fluctuations. How-

ever, one has to keep in mind that they are functions of temperature
and al'l cl}emicgl poten'tia.IS, i.q., ;(;‘j‘.}j = ;(;‘JC',:(T, ﬂp,ﬂd,ﬂs). If a
subscript is vanishing, it is omitted together with its superscript

counterpart, e.g., y5 = y5.

1 2

Hy = gﬂB +§/4Q’ (3)
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Hs = 3 HB =7 HQ = Hs: (5)

With these relations one finds for example the second-order
baryon number fluctuation

o170
X2 = T2 8:“2}3

1 u d S us ds ud
=g+t 204 + i + i)l (0)
in terms of quark d.o.f. Other fluctuations can be deter-
mined analogously.

Ratios of fluctuations in baryon number, electric charge,
and strangeness are particularly interesting since they are
equal to corresponding ratios of cumulants, which can be
extracted from experimental quantities accessible in event-
by-event analyses of heavy-ion collisions, see the review

articles [35,36,59] for more details. Interesting ratios
related to the baryon number are

B B B
X4 > 3 X1 Mg
—gB — KBOB, =5 = Spop, B 2 ¢ (7)
P B x5 x5 op

where kg, 023, S, and My denote the kurtosis, variance,
skewness, and mean of the net-baryon distribution, respec-
tively. Ratios of fluctuations are a suitable tool to explore
the phase diagram of QCD since they are sensitive to phase
transitions [13,14,31-34,60,61]. At the critical endpoint the
correlation length £ diverges (at least for infinite volume)
and x5 ~ & with ¢ > 0.

From the first BES at RHIC, the STAR collaboration
extracted results for the net-proton number fluctuations Mp,
o3, Sp, and xp [62,63], which can be used as a proxy for
fluctuations of the net-baryon number. The data suggest a
number of interesting tendencies, which are drastically
different from results of HRG model calculations, but agree
with results from lattice QCD [42,43,64] obtained for small
baryon chemical potential. As already mentioned in the
introduction, it is the purpose of this paper to provide
theoretical results for larger chemical potential in the
framework of functional approaches to QCD.

In the present work we consider the lowest-order
fluctuations with 1 <i+ j+ k <4 and determine them
via the quark number densities. We start with the grand-
canonical potential expressed as a functional of the propa-
gators of QCD. Consequently, £ contains contributions
from quarks, gluons, and ghosts. Since the latter are only
weakly chemical-potential dependent, we neglect their
contributions and arrive at [65]
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Q= ~v (TrlogT—Tf[“ - 5615} + (Dint[s]) (3)

with S being the dressed quark propagator with flavor,
color, Dirac, and momentum d.o.f.; §; denotes its bare
counterpart. The trace has to be taken in the functional
sense over flavor, color, Dirac, and momentum space and
the interaction functional ®;, contains all two-particle
irreducible diagrams with respect to S. Note that Eq. (8)
is nothing but the two-particle irreducible effective action
evaluated at the stationary point and therefore 6Q2/5S = 0.
The quark number densities then read”

0Q

np=——
! a//lf

_ _chgi TS ()

where f € {u,d,s} labels the flavor, N, = 3 denotes the

number of colors, Z’; is the quark wave function renorm-
alization constant, and ¢ = (®,.q) with fermionic
Matsubara frequencies w, = (2¢, + 1)aT; ¢, € Z. The
Matsubara sum as well as the three-momentum integration
is abbreviated by Y, =T3, o7 [d’q/(27)* and the

remaining trace has to be evaluated in Dirac space. The
quantity S,(¢g) denotes the dressed quark propagator at
nonzero temperature and chemical potential with only Dirac
and momentum d.o.f. left. Equation (9) can also be written
as an expectation value, ny = (y'y) 7= (Wray);, and its
gauge invariance as a density of a global charge is
guaranteed by the Landau-Khalatnikov-Fradkin transfor-
mations [66,67].

The quark number densities need to be evaluated using a
very large number of Matsubara frequencies in order to
obtain stable results. In addition, with nonperturbative
propagators and a numerical cutoff in the three-momentum
integral this expression needs to be regularized. To this end,
we employ the subtraction scheme used in Refs. [28,68]
which is an Euclidean version of the contour integration
technique for Matsubara sums [69]. The regularized quark
number density is given by

g [ 4 10
ny % | ey (q) (10)

with

Ks(q) = TZ Tr[ysSs (4. q)]
¢, EZ

—%/_: d614Tf[74Sf(514»Q)}' (11)

*We work in four-dimensional Euclidean space-time with
Hermitian gamma matrices obeying {y,.7,} =28, u.v €
{1,2,3,4}. Our choice for the heat bath vector is u =
(ug,u) = (1,0).

The last term does not depend explicitly on temperature or
chemical potential and is known as a “vacuum contribu-
tion” in the literature [69]. We verified that its subtraction
leads to cutoff-independent results.

Having the quark number densities at hand, the fluctua-
tions are obtained by higher-order derivatives of these
densities. For example, the second-order up quark fluc-
tuation reads

on,
Opy

n= (12)

and other quantities are obtained analogously.

III. DYSON-SCHWINGER EQUATIONS

In the following, we briefly summarize the functional
framework used to determine the temperature and chemical
potential dependent dressed quark propagator needed to
determine the quark densities of Eq. (9). To this end we solve
a set of truncated Dyson-Schwinger equations. In contrast to
previous works on fluctuations in the DSE framework
[58,70] we take the back reaction of the quarks onto the
Yang-Mills sector explicitly into account. This establishes a
temperature and chemical-potential dependence of the gluon
controlled by QCD dynamics rather than simple modelling.
Furthermore, this allows for explicit control over the quark-
flavor dependence of all results. Our framework evolved
from the quenched case [71,72], to Ny = 2 [25,73,74] and
finally to Ny =241 and Ny =2+ 1+ 1 quark flavors
with physical quark masses [25,26].

With O(4) symmetry broken to O(3) due to the heat bath,
the dressed inverse quark propagator S;l for a flavor f at
nonzero temperature 7" and quark chemical potential y is
given by

S7H(p)=i(w, +ipp)rsCr(p) +ir-pAs(p) +Bs(p) (13)

with momentum p = (@,.p) and fermionic Matsubara
frequencies w, = (2¢,+1)xT, ¢, € Z. The dressing func-
tions Cy, Ay, and By depend on momentum and contain all
nonperturbative information. Furthermore, they depend on
temperature and chemical potential. The corresponding
bare quark propagator reads

Soir(p) = ZJZ‘.(i(a)p +iug)ys +iy-p + Z{ém_f) (14)

with ZJ, denoting the quark mass renormalization constant
and my is the renormalized current-quark mass. In princi-
ple, there is a fourth Dirac structure y,y - p contributing to
the inverse quark propagator. However, its contribution is
negligible [75] and therefore not considered in this work.

Since we work in Landau gauge, the gluon propagator is
purely transverse with respect to its four-momentum
k = (wy, k), where w, =26, xT (£, € Z) are bosonic
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Matsubara frequencies. However, due to the presence of the
heat bath, the transverse space splits into two parts and the
dressed gluon propagator reads

Z+(k)
k2

Zy (k)
K

Dy (k) = P, (k) + P (k) (15)

with projectors

PR = (1-84)(1-0,) (3, - 5%). (19

kK,
P;I;v(k) = 5pw - 22 - PED<k)' (17)

The dressed quark and the dressed gluon propagator each
satisfy a Dyson-Schwinger equation which read

S7'(p) = S5y (P) + Z¢(p), (18)
Dy} (k) = [DyM(K)] ™" + 1, (k). (19)

The symbol DEDM denotes the sum of the inverse bare gluon
propagator and all diagrams with no explicit quark content.
The quark self-energy X and the gluon self-energy from
the quark loop IL,, are given by

7!
%(p) = cpgzz—jij 1D (OS(@)TL(q.pik). (20)
q

2 f X
M, (k) = —%;é—jifrmsf<q>r£<q, PR/ (p)]
e1)

with f € {u,d,s}. The equations are shown diagrammati-
cally in Figs. 1 and 2. Note that different flavors are
nontrivially coupled through the quark loop II,,.
Furthermore, k = g — p and p = g — k in the quark and
gluon DSE, respectively, Z; is the ghost renormalization
constant, and I/ denotes the dressed quark-gluon vertex.
For the coupling we use a=g*/(4r) =0.3 (see
Refs. [71,72] for details) and Cp = (N2 —1)/(2N,) is

k=q-p
p p
P = — Tt —e
R

FIG. 1. The DSE for the quark propagator. Large filled circles
denote dressed quantities; solid and wiggly lines represent quarks
and gluons, respectively. There is a separate DSE for each quark
flavor.

p=q—k

FIG. 2. The DSE for the gluon propagator. The gray circle
denotes the bare gluon propagator together with all diagrams with
no explicit quark content. The flavor sum for the quark loop
diagram is implicit; we consider Ny = 2 + 1 quark flavors.

the SU(N.) quadratic Casimir factor in the fundamental
representation which stems from the color trace.

In order to determine the gluon propagator at nonzero
temperature and chemical potential, an efficient approxi-
mation that has been used in the literature is to replace
the Yang-Mills part of the equation, DYM, by quenched
temperature-dependent lattice data [72,76]. This approxi-
mation misses implicit quark-loop effects in the Yang-Mills
self-energies, which are subleading in a 1 /N, expansion as
compared to the explicit quark loop II,,. At zero temper-
ature, the effects of this approximation can be estimated
using the framework of Ref. [77] and are found to be well
below the five-percent level. This strategy has been used in
Refs. [26,27,56] to determine the location of the critical
endpoint and will be adopted also in this work.

Eventually, the quark-gluon vertex is the last quantity
which needs to be specified to obtain a closed system of
equations. We use the following ansatz (see Ref. [26] for
more details): The leading term of the Ball-Chiu vertex
construction [78] is multiplied by a phenomenological
vertex dressing function I' that accounts for non-Abelian
effects and the correct logarithmic running of the vertex in
the ultraviolet. The resulting equations are

5Tl a.pid) = (), LI D)

3 2

As(q) +As(p)

}n (2)

and

dl 1 aﬂo X 26
I(x)= Popg(1+2))", (23
() d2—|—x+l—|—x/A2<47t °g< +A2>> (23)

with § = —9N_/(44N. — 8N;) the anomalous dimension
of the vertex and S, = (11N, —2N;)/3. The squared
momentum argument of I' is x = k> in the quark self-
energy but x = p? + ¢ in the quark loop. This is necessary
to maintain multiplicative renormalizability of the gluon
DSE [77]. Note that the vertex ansatz includes effects from
nonzero temperature and chemical potential, as the full
vertex certainly would, since the terms from the Ball-Chiu
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construction involve the quark dressing functions. The
parameters d, = 0.5 GeV? and A = 1.4 GeV are fixed
to match the scales in the quenched gluon propagator from
the lattice.

Quark masses, vertex strength,
and chemical potentials

The remaining value of the vertex strength parameter d,
as well as the quark masses m, 4 are fixed using lattice
results for the subtracted quark condensate. The quark
condensate is given by

) =-NZZLY Tisa) )

for each quark flavor f. It is plagued by a quadratic
divergence for all flavors with nonzero quark masses
and needs to be regularized. This can be accomplished
by the difference

Aus = <l/_/l//>u - <l/_/l//>s’ (25)

which defines the subtracted quark condensate. It is an
order parameter for chiral symmetry breaking and may
be used to define the pseudocritical temperature, see
Eq. (26) below. We adapt the vertex strength parameter
d; = 8.49 GeV? such that the pseudocritical temperature
found on the lattice [6,7,10,11] is reproduced. We work in
the isospin-symmetric limit of equal up and down quark
masses m, = my. In the high-temperature phase A, is
mainly controlled by these masses and we adapt their
values to match the lattice results. Finally we fix the up-
to-strange quark mass ratio of mg/m, = 25.7 using results
for the pion and kaon masses in vacuum obtained from
the Bethe-Salpeter formalism developed in Ref. [79]. This
results in m, () = 0.8 MeV and my({) = 20.56 MeV at a
renormalization point of { = 80 GeV, ie., far in the
perturbative regime. Note that the values of d; and m,
are slightly different from the ones reported in Ref. [26]
because we employ a slightly lighter strange quark mass
and an additional Pauli-Villars regulator3 in the quark DSE
rather than a hard cutoff.

In principle, the chemical potentials should be adjusted
in order to implement strangeness neutrality as encountered
in a heavy-ion collision. This is done by an appropriate
dependence of pq and ug on pug. For temperatures around
150 MeV, the leading-order result from lattice QCD is
pg = —0.02up while pug ~ 0.2up [40,80]. Thus, to a good
approximation we choose y, = p4. Furthermore, it has
been checked within the framework of DSEs that values for
the strange quark chemical potential between y, = 0 and

*This amounts to D,,, (k) — D, (k)/(1 + k*/A3y) in Eq. (20).
For the Pauli-Villars scale we use Apy = 200 GeV.

us = pq hardly affects the location of the CEP [81]. Thus
for the purpose of this work we choose p, = 0 and the
baryon chemical potential is then given by ug = 3yt

IV. RESULTS
A. Phase diagram

Before we discuss fluctuations, we present our updated
result for the QCD phase diagram with Ny = 2 4+ 1 quark
flavors, which closely resembles the one already published
in Refs. [26,29]. Overall, changes due to the slightly
adapted strange quark mass and the different regularization
scheme are very small.

We determine the pseudocritical temperature of the
chiral crossover from the inflection point of the subtracted
quark condensate with temperature, i.e.,

T. = " 26
¢ = argmax| oo (26)

and find
T. = (156 + 1) MeV (27)

at vanishing chemical potential. The error given is purely
numerical in nature. In the left diagram of Fig. 3 we show
the subtracted quark condensate as a function of tem-
perature at vanishing chemical potential. As described in
the previous section, our result for the pseudocritical
temperature agrees by construction with the lattice result.
A nontrivial result, however, is the almost perfect match
regarding the steepness of the chiral transition. Another
highly nontrivial result is the matching of the unquenched
gluon propagator [25] with lattice results [83], as discussed
and summarized in Ref. [29].

Our result for the phase diagram at nonzero chemical
potential is shown in the right diagram of Fig. 3. The chiral
crossover line (dashed black) becomes steeper with increas-
ing chemical potential and terminates in a second-order
CEP at

(TCEP 4uSEPY — (119 £2,495 +2) MeV  (28)

followed by the coexistence region (shaded gray) of
a first-order transition bound by spinodals (solid black).’
Furthermore, we show the line of baryon chemical potential
to temperature ratio ug/T = 3 (dotted black), emphasizing

“In Ref. [82] the impact of strangeness neutrality on thermo-
dynamic observables is studied. Since at large chemical potentials
quantitative corrections of the order of 20% for some thermo-
dynamic quantities have been found, which may also affect
fluctuations, we strive to implement strangeness neutrality in
future work.

3See Ref. [90] for a more detailed discussion of the coexistence
region between the spinodal lines.

074011-5



ISSERSTEDT, BUBALLA, FISCHER, and GUNKEL

PHYS. REV. D 100, 074011 (2019)

1.0
0.8 1
S
< 0.6
~
S 04-
<
0.2 1
DSE
®  Lattice [Borsanyi et al.]
0~0 T T T T
100 120 140 160 180 200
T [MeV]
FIG. 3.

200
ug /T =3
& s
e . B
150 T o Tefln -
®i
— TR
% R £ ]
S 100 H|=—— DSE: Chiral crossover
— ®  DSE: Critical end point
~ —— DSE: Chiral first order
— - = Lattice: Chiral crossover [Bellwied et al.]
¢ Freeze-out points [Alba et al.]
50 Freeze-out points [Andronic et al.]
Freeze-out points [Becattini et al.]
A Freeze-out points [STAR collaboration]
#  Freeze-out points [Vovchenko et al.]
0 T T T T
0 150 300 450 600 750

Hp [(MeV]

Left: Subtracted quark condensate normalized to its vacuum value as a function of temperature at vanishing chemical potential

compared to the continuum-extrapolated lattice result of Ref. [6]. Right: Our result for the phase diagram for Ny = 2 4 1 quark flavors
compared to freeze-out points from heavy-ion collisions extracted by different methods/groups [84—89]. Shown is also the region of the
chiral crossover from lattice QCD (blue band) [10] (see also Ref. [11]).

that the CEP occures at rather large chemical potential with
a ratio of uSEP/TCEP ~4.2. Our updated value for the
location of the critical endpoint is only slightly different
than the previous DSE result of Ref. [26]. Again, the error
in Eq. (28) is purely numerical. In order to estimate the
systematic error due to our truncation assumptions, we
need to compare with different truncations as, e.g.,
employed very recently in the framework of functional
renormalization-group equations [91]. This will be a task
for future work.

In the plot in Fig. 3 we also show results for the chiral
transition obtained on the lattice (blue band) [10] (see also
Ref. [11]). As can be seen in the plot, this band features
a (very) small error at small chemical potential which
rapidly increases toward larger chemical potential. At about
ug/T =~ 3 the errors become so large that further extrapo-
lation becomes meaningless. Combined evidence of differ-
ent methods on the lattice points toward no critical endpoint
for ug/T <2-2.5 [10,92] in agreement with our result.
Furthermore, we also show results for the freeze-out points
extracted from heavy-ion collisions by different groups/
methods [84—89]. In the crossover region at small chemical
potential, the different results for the freeze-out points
spread over almost 20 MeV in temperature at and around
the pseudocritical temperature extracted on the lattice (see
[40,80] for a direct comparison of lattice results and
experimental data). While in the presence of a (first-order)
phase transition one would expect the freeze-out to occur at
temperatures below the critical one, this notion is hard to
formulate in the crossover region, where no unique
definition of a critical temperature exists. At large chemical
potential, however, where we see a first-order transition in
our DSE results, we have to expect corrections either to the
location of the experimental freeze-out points or to the
DSE results in order to account for a proper ordering of
temperatures. In this respect we would like to point out that

potential corrections to the DSE calculation have already
been identified (on a qualitative basis), which have the
potential to shift the CEP to larger temperatures and/or
chemical potentials thereby resolving this problem [27].

B. Quark number fluctuations

After the discussion of the phase diagram in the last
subsection, we now focus on our results for the fluctua-
tions. In the left diagram of Fig. 4 the second-order up/
down quark fluctuation is shown as a function of temper-
ature at vanishing chemical potential (solid black) and
compared to results from lattice QCD [7,38]. The agree-
ment between both approaches is not as good as for the
quark condensate but still very reasonable. The DSE result
increases up to temperatures of 7 ~ 165 MeV and reaches
an asymptotic value of approximately 0.72 in the high-
temperature region. Clearly, this saturation is below the
Stefan-Boltzmann limit (y5 — 1 as 7 — oo) and happens
at much too low temperatures. We attribute this to a known
deficiency of our quark-gluon interaction.® Most important
for the purpose of this work, however, is the temperature

®Due to numerical efficiency our vertex ansatz Eq. (22) takes
only the leading Dirac structure y, into account. In the Landau
gauge employed in this work, the full vertex contains 24 different
structures. Half of these are only present when chiral symmetry is
broken, i.e., these terms react strongly on the chiral restoration
around 7. This effect is not captured by the ansatz. As a result,
the continuous weakening of the quark-gluon interaction that
drives the system and its fluctuations toward the Stefan-Boltz-
mann limit is not properly represented, thus leading to the
high-temperature artefacts seen in the left diagram of Fig. 4.
In principle, this behavior could be mimicked by making the
vertex strength parameter temperature dependent, i.e., d; =
d,(T) [93]. Such a modification could be motivated and guided,
e.g., by an explicit calculation of (parts of) the vertex as a function
of temperature. Preliminary results of this endeavor have been
discussed in Refs. [81,94] and need to be corroborated.
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FIG. 4. Left: Second-order up/down quark fluctuation at vanishing chemical potential. The lattice data are taken from Refs. [7,38],
respectively. Right: Up quark number density in the vicinity of the CEP for three different chemical potentials.

region 120-160 MeV below and around the crossover
temperature, where the vertex ansatz delivers satisfying
results.

Since y% experiences the most rapid growth in the region
of the chiral crossover, its inflection point with temperature
can also be used to define the pseudocritical temperature.

We find Tﬁm = 153 MeV, which is only slightly lower
than the value from the inflection point of the subtracted
condensate determined in the previous section to 156 MeV.
Note again that there is no unique definition of the critical
temperature due to the crossover nature of the transition
and both values are in agreement with lattice QCD
[6,7,10,11,95]. While we do not expect 3 to be strongly
affected by our choice of y, = 0 (instead of implementing
strangeness neutrality), this is certainly different for y5. We
therefore postpone a comparison of this quantity with
corresponding lattice results to future work.

Next we turn to nonzero chemical potential. The right
diagram of Fig. 4 displays the up/down quark number
density n, = T3 y¥ as a function of temperature for three
different chemical potentials around our CEP, Eq. (28). For
e = uSEP/3 = 165 MeV (dashed red), the slope tends to
infinity at 7 = T°F" corresponding to a diverging second-
order fluctuation. For chemical potentials above the critical
one, the system undergoes a first-order phase transition.
Thus, the density is discontinuous across the phase boun-
dary and shows a finite jump (solid blue). This behavior is
consistent with results obtained in effective models (see,
e.g., Refs. [96,97]). The location of the phase transition lies
within the (at this chemical potential small) region between
the upper and lower spinodal line shown in our phase
diagram (cf. Fig. 3). Below the critical chemical potential
where the transition is an analytic crossover (dash-dotted
green), the slope is finite around the pseudocritical temper-
ature and the density changes continuously as a function
of temperature for all u, < uSFP. In general, at large
temperatures the density is an almost linear function of

the temperature regardless of the value of the chemical
potential.

C. Baryon number fluctuations

Having the quark number fluctuations at hand, we are
now able to compute the baryon number fluctuations. In
particular we are interested in the changes induced by
growing chemical potential in various ratios of baryon
number fluctuations as we approach the critical endpoint.
In the present work we restrict ourselves to quark number
fluctuations diagonal in quark flavor and neglect off-
diagonal elements that are much harder to be determined
and are relegated to future work.’ Then, the nth-order
baryon number fluctuation is given by

1
= 3 22+ 1) (29)

with n > 1. We choose a selection of fixed baryon chemical
potentials and evaluate the fluctuations as a function of
temperature. The results are shown in the left diagram of
Fig. 5 where we display the second-order baryon number
fluctuation approaching the CEP. At ug =0 MeV (solid
black), the behavior is similar to the up quark number
fluctuation, cf. Fig. 4, i.e., we find a monotonous increase
below and around the crossover transition. At nonzero
chemical potential about halfway toward the critical end-
point (dashed blue) a bulge begins to develop at and around
the pseudocritical transition temperature. This bulge
becomes larger as we further increase the chemical poten-
tial (dash-dotted red). Close to the location of the CEP,
the bulge grows considerably and becomes a sharp peak
(dash-dot-dotted green) which finally diverges at the CEP

"This is justified by lattice results indicating that off-diagonal
correlations are subleading as compared to diagonal ones [41].
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principle a logarithmic plot in both positive and negative direction.

(dotted purple), as expected from the behavior of the quark
number density, discussed above.®

The behavior of x5 in the first-order region of the
phase diagram is shown in the right diagram of Fig. 5. The
second-order baryon number fluctuation shows two
branches corresponding to the chirally broken solution
(solid blue) and partially chirally restored solution (dashed
red) of the DSE for the quark propagator. The overlap of
the two solutions defines the coexistence region of the
first-order transition that is bounded by the spinodals
at temperatures indicated by vertical dotted gray lines.

*While in principle one could fine-tune the chemical potential
to come arbitrarily close to the actually divergence, in practice
limited numerical accuracy together with finite computer resour-
ces always lead to a very large but still finite correlation length.

For temperatures above and below the coexistence region,
x5 is only very slowly varying with temperature.

Next we discuss ratios of fluctuations which are directly
related to experimental quantities in heavy-ion collisions
through event-by-event analyses [see Eq. (7)]. In Fig. 6
we plot the skewness ratio y%/ 4% (left) and the kurtosis
ratio y2/ x5 (right) again as a function of temperature
for various lines of constant chemical potential up to the
critical endpoint. These show distinctive features. Whereas
for small chemical potential up to halfway toward the
critical endpoint all structures are very small in size, these
grow rapidly when the CEP is approached. The skewness
develops a characteristic rise with temperature accompa-
nied by a zero crossing and subsequent equally drastic
decrease in magnitude when the temperature is further
increased. This structure becomes extremely pronounced
close to the CEP. Correspondingly, the kurtosis ratio
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2%/ x5 develops an asymmetric double peak structure
across the phase boundary.

There are a number of caveats when comparing results
from theoretical calculations with data extracted from
experiment. These are related to the experimental con-
ditions such as the finite volume and the finite temporal
extent of the fireball and the question whether and when the
system is in thermodynamical equilibrium. Furthermore,
these are related to details of the experimental analysis such
as centrality cuts, the question whether proton number
fluctuations are a proxy for baryon number fluctuations and
potential other issues, see the reviews [35,36] and refer-
ences therein. Still, there is considerable interest in com-
paring experimental data with results from theoretical
calculations along the phase boundary. Such a comparison
is done in the following.

In Fig. 7 we display our results for the ratio y%/ 5
extracted along our crossover transition line. For small
chemical potential, i.e., up to ug/T < 1.5, it is expected
from the HRG model [98,99] that the ratio is approximately
given by tanh(ug/T). This has been seen as well in the
PQM model [100] and also shows up in our calculation.
Sizeable deviations only occur for larger chemical poten-
tial: After the maximum at ug/T = 1.6 the ratio goes down
again and signals the approach to the CEP due the increase
of 4% already seen in Fig. 5.

Even more interesting are the ratios involving higher-
order fluctuations. In Fig. 8 we present results for the
skewness ratio x5/ 5 (upper diagram; blue solid line) and
the kurtosis ratio y2/ x5 (lower diagram; blue solid line)
along our chiral phase boundary determined from the
inflection point of the chiral condensate, Eq. (26). For
the skewness this criterion leaves us on the left and positive
branch of the oscillations shown in Fig. 5. For the kurtosis,
however, we probe the (small) negative region around the
phase boundary once the chemical potential becomes large.
At small chemical potential there is very good agreement

1.0

-

0.8 g
0.6 7
0.4 4 /

024 7

Wl
=== tanh(ug/T)
0.0 T T T T

0.0 0.6 1.2 1.8 2.4 3.0
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FIG.7. Theratio %/ % as a function of ug /T compared to the
HRG result tanh(ug/T) [98,99] along the crossover line.
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FIG. 8. Skewness ratio x5/ x® (top) and kurtosis ratio x5/ x%
(bottom) along the crossover line and for lines with a fixed
temperature distance from the crossover. Also shown are pre-
liminary data from the STAR collaboration [63,101] at most
central collisions. We adopt the ug-+/s translation from Ref. [87].

between our results and the (preliminary) data from the
STAR collaboration. From +/s = 14.5 GeV on, about
halfway toward our CEP, this agreement becomes worse
and disappears for /s < 11.5 GeV. In order to discuss this
aspect further, we also evaluated the skewness and kurtosis
ratios on lines with a fixed temperature distance of 3, 6, and
9 MeV below the crossover line. The general idea of this
comparison is to study the impact of two different effects:
(i) as mentioned already several times, there is no unique
definition of the critical temperature in the crossover region
and it is therefore by now means clear, whether a given
definition should coincide with the experimental freeze-out
line or not; (ii) as the chemical potential becomes larger and
a potential CEP is approached, it is also not clear whether
the freeze-out line and the crossover line have the same
curvature. In other words, it may very well be, that the
freeze-out line bends stronger than the crossover line and
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the distance between the two lines grows with chemical
potential.

Taken at face value, our results shown in Fig. 8 seem
to support this notion at least on a qualitative level. At small
chemical potential the variations in both ratios with
temperature are very small and cannot be discriminated
by the data. The two data points at /s = 19.6 GeV and
/s = 14.5 GeV, however, favor a scenario with a freeze-
out line very close to the crossover line and we conclude
that this is generally the case for /s > 14.5 GeV. The
results for the kurtosis ratio at /s = 11.5 GeV and
/s = 7.7 GeV, however, suggest that the freeze-out line
in this region of the phase diagram is separated from the
crossover line by at least 9 MeV. The corresponding results
for the skewness ratio show the same general trend,
although on a less quantitative level than the ones for
the kurtosis.

There are several caveats involved in the comparison of
the experimental STAR data and our results in Fig. 8. Some
caveats on the experimental side have been discussed
already above and are reviewed in Refs. [35,36]. Our
theoretical calculation suffers from several limitations.
First, we did not yet take into account the effect of off-
diagonal contributions to the baryon number fluctuations.
Second, there may be a substantial error associated with the
precise location of the critical endpoint. The source of this
error is entirely located in the truncation for the quark-
gluon vertex and may be reduced in the future by extended
DSE calculations [27,94] and/or systematic comparisons
with similar calculations in the functional renormalization
group framework [91,102,103]. Third, one has to bear in
mind that the fluctuations triggering the CEP in this work
are gluonic in nature. Consequently, the critical exponents
of our CEP are mean field. In Ref. [73] it has been shown
that the inclusion of fluctuations from composite pion and
sigma fields in the quark DSE serves to generate the critical
O(4) physics of the chiral two-flavor theory. We therefore
expect that the extension of that framework toward chemi-
cal potential places our CEP in the correct Z(2) universality
class due to the fluctuating sigma field. Furthermore, one
may expect a decrease of the size of the critical region
around the CEP [97], which in turn will drive the results
shown in Fig. 8 further towards the STAR data, even if the
location of the CEP remains unchanged. Since the inclusion
of pions and the sigma leads to a significant increase in
complexity and CPU-time in our calculations, this is left for
future work. A first step toward this can be found
in Ref. [90].

V. SUMMARY AND CONCLUSIONS

In this work we extracted ratios of cumulants involving
the skewness and the kurtosis from baryon number fluc-
tuations at nonzero temperature and chemical potential. To
this end, we employed a framework of Dyson-Schwinger
equations for Ny =2 + 1 quark flavors, which has been
studied extensively in the past [29] and shown to agree with
lattice results in the small and moderate chemical potential
region. At large chemical potential, where lattice QCD
cannot be applied, this approach features a critical endpoint
at (TCEP, uSEP) = (119,495) MeV. Due to inherent limi-
tations of the truncation scheme used, this value may have
systematic errors of at least twenty percent. Future heavy-
ion collision experiments such as FAIR/CBM, NICA, and
the STAR Fixed-Target program will be able to probe the
corresponding region of the QCD phase diagram. In order
to facilitate these experiments and to make contact with
already existing preliminary data from the BES at RHIC,
we determined skewness and kurtosis ratios along our
crossover line up to the CEP. Furthermore, we scanned
lines of equal temperature distance below the transition
line. For chemical potentials g < 250 MeV, our results
are in agreement with the STAR data. For larger values we
obtain qualitative and quantitative differences when we
approach the CEP on the crossover transition line.
However, qualitative agreement between our results and
the STAR data can be obtained, if we assume that the
freeze-out line and the transition line separate at larger
chemical potential. We also discussed several caveats
in this interpretation, which need to be checked in
future work.
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