TECHNISCHE
UNIVERSITAT
DARMSTADT

ULIS}

Enclave Computing Paradigm: Hardware-assisted Security

DOI (TUprints):

Lizenz:

Publikationstyp:

Fachbereich:

Quelle des Originals:

Architectures & Applications

Brasser, Franz Ferdinand Peter
(2020)

https://doi.org/10.25534/tuprints-00011912

@050

CC-BY-NC-ND 4.0 International - Creative Commons, Namensnennung, nicht kom-
merziell, keine Bearbeitung

Dissertation
20 Fachbereich Informatik
https://tuprints.ulb.tu-darmstadt.de/11912

https://doi.org/10.25534/tuprints-00011912
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://tuprints.ulb.tu-darmstadt.de/11912

ENcLAVE COMPUTING PARADIGM:
HARDWARE-ASSISTED SECURITY ARCHITECTURES
& APPLICATIONS

Vom Fachbereich Informatik (FB 20)
an der Technischen Universitidt Darmstadt
zur Erlangung des akademischen Grades eines Doktor-Ingenieurs
genehmigte Dissertation von:

MSc. Franz Ferdinand Peter Brasser
Geboren am 27. April 1984 in Wolfenbiittel, Deutschland

Referenten:
Prof. Dr.-Ing. Ahmad-Reza Sadeghi (Erstreferent)
Prof. Gene Tsudik, PhD (Zweitreferent)

Tag der Einreichung: 06. April 2020
Tag der Disputation: 23. Juni 2020

TECHNISCHE
UNIVERSITAT
DARMSTADT

System Security Lab
Fachbereich fiir Informatik
Technische Universitit Darmstadt

Hochschulkennziffer: D17

Franz Ferdinand Peter Brasser:
Enclave Computing Paradigm: Hardware-assisted Security Architectures & Applications
© April 2020

PHD REFEREES:
Prof. Dr.-Ing. Ahmad-Reza Sadeghi (1% PhD Referee)
Prof. Gene Tsudik, PhD (2"d PhD Referee)

Darmstadt, Germany April 2020

Veroffentlichung unter CC-BY-NC-ND 4.0 International
Namensnennung, nicht kommerziell, keine Bearbeitung @

https://creativecommons.org/licenses/

https://creativecommons.org/licenses/

ABSTRACT

Hardware-assisted security solutions, and the isolation guarantees they provide, consti-
tute the basis for the protection of modern software systems. Hardware-enforced isolation
of individual components reduces complexity of the overall software as well as the size
and complexity of the individual components. The basic idea is that a reduction in com-
plexity minimizes the probability of vulnerabilities in the software, thus strengthening
the system’s security.

In classical system architectures, an application’s security depends on the security of
all privileged system entities, for example the Operating System. The Trusted Execution
Environment (TEE) concept overcomes the dependence of security critical components on
the systems overall security. TEEs provide isolated compartments within a single system,
allowing isolated operation of a system’s individual components and applications.

The enclave computing paradigm enhances the TEE concept by enabling self-contained
isolation of system components and applications, fulfilling the needs of modern software.
It enables novel use cases by providing many parallel mutually isolated TEE-instances
without the need to rely on complex privileged entities.

The TEE solutions developed by industry and deployed in today’s systems follow
distinct design approaches and come with various limitations. ARM TrustZone, which is
widely available in mobile devices, is fundamentally limited to a single isolation domain.
Intel’s TEE solution Software Guard Extensions (SGX) provides multiple mutually iso-
lated execution environments, called enclaves. However, SGX enclaves face severe threats,
in particular side-channel leakage, that can void its security guarantees. Preventing side-
channel leakage from enclaves in a universal and efficient way is a non-trivial problem.
Nevertheless, these deployed TEE solutions enable various novel applications. However,
different TEE architectures come with diverse properties and features that require special
consideration in the design of TEE applications.

Security architectures for embedded systems face additional challenges that have not
been solved, neither by industry nor by academic research. These security architectures
need to be compliant with and need to preserve all functional requirements of an
embedded system. Since network-connected embedded devices are increasingly used
in safety critical systems, such as industrial control systems or automotive scenarios,
security architectures that combine safety and security aspects are vitally needed.

Remote Attestation (RA) is a security service that relies on the isolation guarantees
of TEESs. It is of particularly high relevance for connected embedded systems. It allows
trust establishment between these devices enabling their reliable collaboration in large
connected systems. However, many aspects of RA, such as its scalability in large networks
or its applicability in autonomous connected systems, are unexplored.

In this dissertation, we present novel isolation architectures that bring the enclave
computing paradigm to mobile and embedded platforms. We present the first security

I

architecture for small embedded systems that provides isolated execution enclaves and
real-time guarantees. Moreover, we present a novel multi-TEE security architecture
for TrustZone-systems bringing the enclave computing paradigm to mobile systems,
overcoming TrustZone’s fundamental limitation.

Furthermore, we deal with Intel SGX'’s vulnerability to side-channel attacks. We demon-
strate the severity of side-channel leakage due to observable memory access patterns of
SGX enclaves. To counter side-channel attacks, we present solutions that hide memory
access patterns of enclaves for both accesses to enclave-external memory as well as access
patterns within enclaves’ private memory.

We present two TEE-applications that follow different design approaches, leveraging
the specific capabilities of Intel SGX and ARM TrustZone, respectively. We introduce a
cloud-based machine learning solution that enables privacy-preserving speech recog-
nition utilizing isolated execution enclaves. We also demonstrate the limitations of the
enclave computing paradigm and show a (remote) policy enforcement solution for mobile
devices, which requires an isolated execution environment with elevated privileges.

Additionally, we investigate novel RA schemes, which tackle many important aspects
of RA that are highly relevant in emerging connected systems. We develop solutions to
prevent the misuse of remote attestation for Denial-of-Service (DoS) attacks and present
the first efficient multi-prover attestation scheme. Furthermore, we introduce the concept
of data integrity attestation, which allows the efficient and reliable collaboration of
autonomous connected devices.

v

ZUSAMMENFASSUNG

Hardware-basierte Sicherheitslosungen und die durch sie gebotenen Sicherheitsgarantien
bilden die Basis zum Schutz moderner Softwaresysteme. Durch die Isolation von Sys-
temkomponenten durch Hardwaremechanismen konnen die Grofie und Komplexitat
des Gesamtsystems als auch der individuellen Komponenten reduziert werden. Somit
sorgt Isolation fiir eine Verbesserung der Systemsicherheit, denn eine Reduktion der
Komplexitat fithrt in der Regel gleichzeitig zu einer Reduktion der Wahrscheinlichkeiten
von Schwachstellen in der Software.

In herkdmmlichen Computerarchitekturen hingt die Sicherheit einer Anwendung
von der Sicherheit aller privilegierten Systemkomponenten, wie etwa dem Betriebssys-
tem, ab. Das Konzept von Trusted Execution Environments (TEEs) tiberwindet diese
Abhingigkeit, d.h. sicherheitskritische Systemkomponenten sind nicht mehr von der
Sicherheit des Gesamtsystems abhidngig. TEEs stellen isolierte Bereiche innerhalb eines
einzelnen Systems bereit, diese erlauben die abgeschottete Ausfithrung der individuellen
Komponenten eines Systems.

Das Enclave Computing Paradigma entwickelt das TEE Konzept weiter und bietet in
sich geschlossene Isolationsbereiche fiir Systemkomponenten und Anwendungen. Somit
erfiillt es die Anforderungen moderner Software. Es ermoglicht neuartige Anwendungs-
falle, da viele parallele, wechselseitig isolierte TEE-Instanzen geschaffen werden, ohne
auf komplexe privilegierte Komponenten angewiesen zu sein.

Die durch die Industrie entwickelten und aktuell verfiigbaren TEE-Losungen folgen
unterschiedlichen Ansitzen und leiden unter verschiedenen Nachteilen. ARM TrustZone,
das in vielen mobilen Systemen integriert ist, hat die zentrale Einschrankun, dass es nur
eine einzige Isolationsdomaéne bietet. Intel Software Guard Extensions (SGX) bietet hinge-
gen viele, wechselseitig isolierte Ausfithrungsumgebungen, die Encalves genannt werden.
Allerdings werden SGX-Enclaves von schwerwiegenden Schwachstellen bedroht, die
ihre Sicherheitsgarantien zunichtemachen konnen. Vor allem Angriffe, die Seitenkanile
ausnutzen, bedrohen SGX. Eine generelle und effiziente Losung zu finden, die Seit-
enkanalangriffe auf Enclaves verhindern kann, stellt dabei ein nicht-triviales Problem dar.
Trotz ihrer Probleme ermdoglichen diese bereits verfiigbaren TEE-Losungen viele neue An-
wendungen. Bei der Konzeptionierung und Entwicklung von TEE-Anwendungen miissen
allerdings die spezifischen Eigenschaften der jeweiligen TEE-Architekturen berticksichtigt
werden.

Bei Sicherheitsarchitekturen fiir eingebettete Systeme ergeben sich zusitzliche Her-
ausforderungen, die iiberwunden werden miissen. Dies ist bislang weder der Industrie
noch der akademischen Forschung gelungen, da diese Sicherheitsarchitekturen die funk-
tionalen Eigenschaften des zugrundeliegenden Systems erhalten miissen. Vernetzte
eingebettete System werden zunehmend in sicherheitskritischen Bereichen, etwa in der
Industrieautomatisierung oder in der Fahrzeugsteuerung, eingesetzt. Deshalb sind hier

Sicherheitsarchitekturen, die Funktionalitdt und Sicherheit gleichermafien gewihrleisten,
von entscheidender Bedeutung.

Remote Attestation (RA) ist ein Sicherheitsmechanismus, der auf den Isolations-
garantien von TEEs aufbaut. RA ist besonders wichtig im Kontext vernetzter eingebetteter
Systeme. Es erlaubt den Aufbau von Vertrauensverhiltnissen zwischen Systemen und
ermoglicht so die verldssliche Kollaboration dieser in weitvernetzten Anlagen. Allerdings
sind viele Aspekte von RA, etwa zur Skalierbarkeit in grofiflichigen Netzwerken oder
zur Anwendbarkeit in autonomen Systemen, noch unerforscht.

In dieser Dissertation stellen wir neue Isolationsarchitekturen vor, die das Enclave-
Konzept fiir Mobilsysteme und eingebettete Systeme umsetzen. Wir préasentieren die erste
Sicherheitsarchitektur fiir kleine eingebettete Systeme, die isolierte Ausfithrungsumge-
bungen ermoglicht und gleichzeitig Echtzeitgarantien bietet. Fiir mobile Systeme prasen-
tieren wir eine neuartige Sicherheitsarchitektur, die viele unabhdngige TEE-Instanzen auf
TrustZone-basierten Systemen ermoglicht, und somit die zentrale Einschrankung von
TrustZone tiberwindet.

Weiterhin betrachten wir die Verwundbarkeit von Intel SGX durch Seitenkanalangriffe.
Wie demonstrieren die Ernsthaftigkeit von Angriffen, welche die Speicherzugriffsmuster
einer SGX-Enclave tiberwachen. Zur Abwehr von Seitenkanalangriffen prasentieren wir
Losungen, die sowohl den Zugriff einer Enclave auf externen Speicher wie auch die
Zugriffsmuster im Enclave-eigenen Speicher verbergen.

Wie prasentieren zwei TEE-Anwendungen, die unterschiedlichen Konzepten folgen,
dabei nutzen sie die spezifischen Moglichkeiten von Intel SGX bzw. ARM TrustZone.
Wir stellen eine Cloud-basierte Losung fiir maschinelles Lernen vor, die Privatsphére-
schiitzende Spracherkennung durch die Nutzung von Enclaves ermoglicht. Zudem
zeigen wir die Grenzen des Enclave Computing Paradigmas anhand einer Losung auf,
die ortsabhdngige Nutzungsregeln fiir Mobilgerdte durchsetzen kann, welche jedoch nur
mit einer isolierten Ausfithrungsumgebung mit erhohten Privilegien umsetzbar ist.

Dartiber hinaus entwickeln wir neue RA Mechanismen, die wichtige Aspekte be-
trachten, die vor allem im Kontext von kiinftigen vernetzten Systemen hohe Relevanz
haben. Wir entwickeln Losungen, die den Missbrauch von Remote Attestation fiir Dienst-
verweigerungsattacken (Denial-of-Service) verhindern, und wir présentieren das erste
Protokoll zur effizienten gleichzeitigen Attestierung vieler Gerate. Weiterhin fiihren wir
das Konzept der Datenintegritdtsattestierung ein, welches die verldssliche und effiziente
Kollaboration von autonom interagierenden Geraten ermoglicht.

VI

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor Prof. Ahmad-Reza Sadeghi for his
guidance and support during my doctorate. His dedication to research has inspired me
already during my master studies and encouraged me to pursue a PhD. He supported
my research in various ways, most importantly, he gave me the freedom to follow my
own research ideas, he connected me with many well established researchers worldwide,
and he made me a part of his System Security Lab for almost a decade — first as a student
assistant and later as a research assistant.

I am very honored to have Prof. Gene Tsudik as my thesis co-advisor and would like to
thank him for his detailed feedback on this thesis as well as for the inspiring discussions
in the course of our collaborations.

During my time at the System Security Lab I had the opportunity and pleasure to have
worked together with many professors, colleagues, and students. I had many interesting
projects with them and I want to thank everyone for their contribution to the success
of these collaborations. My thanks go to the external collaborates from academia and
industry as well as to my colleagues and students at TU Darmstadt. I want to express
my thanks to the team members of the System Security Lab that were always supportive
and contributed to a pleasant work atmosphere.

Finally, I would like to thank my family and friends for their support before and during
my doctorate. Special thanks go to my parents. They always supported me and believed
in me. Thanks to them I was able to study, even after some throwbacks. Without their
encouragement I could not have made it.

VIl

CONTENTS

1

INTRODUCTION
1.1 Contributions L
1.2 Previous Publications o o
PRELIMINARIES AND BACKGROUND
2.1 Computer Architectures L.
2.1.1 Memory Management and Memory Protection
2.1.2 Cache Architectures
2.2 Security Services
2.2.1 SecureBoot L L
2.2.2 Attestation Lo oo
2.3 Security Architecturesand TEEs
2.3.1 ARMTrustZone
2.3.2 Intel Software Guard Extensions
2.4 Background on Side-Channel Attacks
2.4.1 Controlled-Channel Attacks
2.4.2 Cache Side-Channel Attacks
SECURITY ARCHITECTURES
3.1 TYTAN: Tiny Trust Anchor for Tiny Devices
3.1.1 Requirements
System and Trust Model,
TYTAN Design
Implementation o Lo o
Security Analysis L
Evaluation
3.1.7 Conclusion.
3.2 SANCTUARY: ARMing TrustZone with User-space Enclaves
3.2.1 Background oo
3.2.2 Adversary Model and Requirements
3.2.3 SANCTUARY Design
3.2.4 Implementation
3.2.5 Security Analysis L
3.2.6 Evaluation
3.2.7 Conclusion. L
3.3 Related Work
3.3.1 Virtual-Memory-based Systems
3.3.2 Physical-Memory-based Systems
TEE ATTACKS AND DEFENSES
4.1 Software Grand Exposure L L.
4.1.1 Background o oo

W W W W W
R i
NUl A~ W N

ON NN &~ W R

IX

X

CONTENTS
4.1.2 System and Adversary Model 73
4.1.3 Our Attack Design 75
4.1.4 Attack Instantiations oo Lo oL 78
4.1.5 Conclusion. L 85

4.2 HardIDX e 86
4.2.1 Backgroundo oo 87
4.2.2 Modeland Assumptions. L., 88
4.2.3 HardIDX Design 89
4.2.4 Search Algorithms 90
4.2.5 Performance Evaluation 92
4.2.6 Conclusion. L 93

4.3 DRSGX 94
4.3.1 Modeland Assumptions. 95
4.3.2 DRSGX Conceptand Design 97
4.3.3 DRSGX Implementation 102
4.3.4 Performance Evaluation 104
4.3.5 Security Analysis Lo Lo 104
4.3.6 Conclusion. L 106

4.4 Related Work 107
4.4.1 Side-Channel Attacks 107
4.4.2 Side-Channel Countermeasures 111

5 TEE APPLICATIONS 117

5.1 VoiceGuard 118
5.1.1 Model and Assumptions. 119
5.1.2 VoiceGuard Design 119
5.1.3 Implementation and Evaluation 122
5.1.4 Conclusion. L 123

5.2 Regulating ARM TrustZone Devices in Restricted Spaces 124
5.2.1 System Model, Assumptions and Requirements 125
5.2.2 Design 127
5.2.3 Implementation and Evaluation 130
5.2.4 Conclusion. L 131

5.3 Related Work 132
5.3.1 Privacy-preserving Machine Learning 132
5.3.2 Mobile Device Management 133
5.3.3 (Remote) Memory Operations 134
5.3.4 Trusted Execution Environment (TEE) Applications 135

6 SECURITY SERVICE: REMOTE ATTESTATION 137

6.1 Prover’s Perspective on Remote Attestation 138
6.1.1 System and Adversary Model 138
6.1.2 Mitigating Advext oL 141
6.1.3 Mitigating Advroam - - - . .« . ..o oo 143
6.1.4 Implementation0 L. 144
6.1.5 Evaluation L 147

6.1.6 Conclusion
6.2 SEDA: Scalable Embedded Device Attestation
System Model and Preliminaries
SEDA Protocol
Prototype and Implementation
Performance Evaluation
Security Analysis
Protocol Extensions
Physical Attacks
Conclusion
6.3 DIAT: Data Integrity Attestation
Model and Assumptions
DIAT Design
Implementation
Performance Evaluation
Security Analysis
Discussion
Conclusion
6.4 Related Work

6.4.1 Attestation

6.4.2 Integrity Enforcement
DISCUSSION AND CONCLUSION
7.1 Summary of Dissertation
7.2 Future Research Directions

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.2.7
6.2.8

6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6
6.3.7

ABOUT THE AUTHOR

BIBLIOGRAPHY

APPENDIX

CONTENTS

201

235

LIST OF TABLES

Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8
Table 9
Table 10
Table 11
Table 12

TYTAN use-case evaluationresults 49
TYTAN'’s secure task context saving performance 49
TyTAN'’s secure task context restoring performance 49
TYTAN’s task relocation performance 49
TyTAN secure task creation performance 49
TYTAN’s EA-MPU configuration performance 50
TYTAN'’s task measurement performance 50
TYTAN OSmemorycost 51
TYTAN LoC o 52
Siskiyou Peak cryptographic primitives performance 140
Summary of Denial-of-Service (DoS) attack mitigation features. . 143
TYTAN components hardware cost 148

LIST OF FIGURES

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19

XII

Hierarchical computer architectures

Memory Management Unit (MMU) 9
Memory Protection Unit (MPU) 11
Execution-Aware Memory Protection Unit (EA-MPU) 12
Central Processing Unit (CPU) caches mappings 13
Cache hierarchy and addressing 14
Chain of Trust (CoT) Concept 14
Chain of Trust (CoT): validation and execution order 15
Secure boot with embedded IMVs 16
Secure boot with central IMVs storage 17
Secure boot with IMV certificates 17
TrustZone software and hardware components 21
Prime+Probe side-channel attack 26
TYTAN trustrelations 33
TYTAN system architecture 35
TyTAN'’s interrupt handler protection 41
TYTAN secure task contextsaving 43
TYTAN’s secure task creation 44
TYTAN prototype platform 48

Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Figure 36
Figure 37
Figure 38

LIST OF FIGURES

TYTAN evaluationusecase 48
SANCTUARY design 57
SGX side-channel attacks high-level view 74
Side-channel attack on RSA 80
Side-channel attack on RSA results 81
Hash table access during genome sequence analysis 82
Side-channel trace of PRIMEX hash table access 84
Bf-tree 87
HardIDX high-level design 89
DR.SGX memory block randomization 98
DR.SGX systemdesign 100
VoiceGuard architecture 120
Advroqm mitigation memory configuration 146
SEDA swarm attestation 152
SEDA implementation based on SMART [139] 156
SEDA implementation based on TrustLite [226] 157
Abstract view of a collaborative autonomous system. 168
Collaborative drones example 171
DIAT system architecture 174

XIIT

INTRODUCTION

In an increasingly connected world of computing systems that become ever more com-
plex, ensuring the security of these system is a growing challenge. Our experiences
from decades of computer security show that building secure computing systems is a
hard problem, which — despite all efforts — has not been solved. In particular, software
vulnerabilities continuously endanger our systems [328, 232, 146, 347, 76, 195, 98, 196],
and recently also side-channel-based attacks have gained prominence [225, 247, 390].

Today’s devices, due to their ubiquitous connectivity, typically do not operate self-
contained. Instead they largely depend on services provided by other entities, for instance
cloud services, that are central for many applications and use cases. This dependence
implies strong trust requirements, which are hard to establish with today’s systems.
Connected systems are often built, maintained, and operated by mutually distrusting par-
ties. Furthermore, compromised, i. e., systems controlled by an adversary, can negatively
impact a connected overall system through all sorts of malevolent actions.

For instance, cloud services imply extensive trust in the cloud provider that must
act honestly and ensure that the cloud infrastructure cannot be compromised by an
adversary. The strict hierarchical privilege architecture in classical computer platforms
leads to large and complex software systems that need to operate correctly to provide
the desired protections, e. g., to protect applications operating on sensitive data from
unauthorized accesses. Furthermore, the correct behavior of a system cannot be validated
by external parties, for instance, a cloud client cannot verify that the cloud infrastructure
is not compromised.

Hardware-assisted security promises to solve many long-existing problems of vul-
nerable software. Hardware security features are used to store and protect sensitive
information such as cryptographic keys, to isolate a minimal set of security critical soft-
ware, or to implement security critical functions directly in hardware. The assumptions
are that hardware is less likely to have vulnerabilities and that it is desirable to minimize
the amount and size of security critical software. Minimizing the security critical software
reduces its complexity, which will also reduce the likelihood for vulnerabilities in the
software. Furthermore, hardware features are commonly used as Root of Trust (RoT) to
establish trust relations between different entities. The immutable nature of hardware
preserves its integrity and, thus, helps to sustain trust placed in it.

The development, standardization and deployment of hardware security primitives
has mainly been propelled by industry. The security and privacy concerns of users
and businesses with regard to cloud computing have been the focus of research for
many years. Early solutions relied on Trusted Platform Modules (TPMs) and software
isolation based on trusted hypervisors [266]. Also, in mobile devices, Trusted Execution
Environments (TEEs) are widely deployed, ARM TrustZone [24] is the dominant solution

INTRODUCTION

in this sector. However, its design is intended to divide a platform into only two isolation
domains, one domain for insecure legacy applications and a second domain for security
critical functions. In order to protect the security domain, access to it is highly restricted.
In this work, we present SANCTUARY, our security architecture providing multiple
mutually isolated TEEs on TrustZone-based systems [73].

With the introduction of Intel’s TEE, called Software Guard Extensions (SGX) [267,
193, 20], many solutions have been published aiming to secure cloud applications using
TEEs [41, 339, 33, 355]. SGX provides multiple mutually isolated TEEs, called enclaves,
that promise code integrity, as well as integrity and confidentiality for their data.

Unfortunately, SGX’s isolation guarantees can be circumvented via side-channel at-
tacks [68, 340, 277, 174, 184, 405, 109, 412, 183, 176, 239, 143], as we demonstrate in this
work (cf. Section 4.1). To improve the security of industry TEEs, such as SGX, additional
measures must be taken. SGX enclaves must be protected against various side-channel
attacks. The access patterns to externally managed resources, for example data stored in a
database, can reveal confidential information meant to be protected inside an enclave. Sim-
ilarly, the memory access patterns of an enclave, e. g., observed through an enclave’s cache
usage, can disclose sensitive information. With HardIDX we present an SGX-protected
database index that hides access patterns to enclave-external resources [149, 151]. DR.SGX
is our novel data randomization scheme to obfuscate enclaves’ cache access patters in
order to prevent side-channel leakage [72].

The progression of the Internet of Things (IoT) has let embedded devices become the
heart of many security critical applications. Embedded devices control almost all aspects
of our lives as they are connecting home appliances, vehicles, medical devices, industrial
facilities, critical infrastructure, and many more. Despite some efforts in academia and
first steps by industry, TEE solutions for embedded systems are not widely available. The
functional requirements for embedded systems as well as their constrained resources
pose additional challenges for the development of comprehensive embedded systems
security architectures. In particular, real-time capabilities are crucial for many safety
critical systems. Our security architecture TYTAN presents the first TEE solution for
small embedded devices providing enclave-like execution environments and real-time
guarantees, allowing TYTAN to be applied in many safety critical applications [62].

TEEs provide security guarantees for individual services that execute isolated on a
single device. However, the ubiquitous connectivity of today’s devices demands solutions
for the secure collaboration of devices.

Relying on centralized services to secure connected large-scale systems is not desirable.
Centralized services have various disadvantages, e. g., they often do not scale well and
represent a single point of failure in the overall system. Therefore, it is desirable for
future systems to be composed of interconnected devices that act autonomously and
collaboratively work together towards a common goal without relying on central entities
or services. For instance, in connected vehicle scenarios, where cars must make decisions
based on information provided by other traffic participants, internet connectivity, e.g., to
a cloud service, cannot always be assumed and vehicles have to directly communicate
with each other.

1.1 CONTRIBUTIONS

Remote Attestation (RA) is a powerful security service that allows trust establishment
between remote parties in connected systems, i. e., a prover device can attest to another
device, called verifier, its current state. However, RA has limitations regarding scalability,
while safety critical systems have high availability requirements that can conflict with
RA protocols and systems. To address this conflict RA has to be considered from the
prover’s perspective in scenarios where the verifier might not be completely trusted and
try to misuse the attestation primitive. In this work, we present solutions to prevent
Denial-of-Service (DoS) attacks that misuse RA [65]. For large-scale systems, or swarms
of connected devices, efficient RA protocols are required that perform significantly better
than attesting each device individually. We present the first collective attestation scheme,
called SEDA [34], that allows the efficient attestation of very large swarms of devices.
In autonomous systems, where embedded devices take both roles, prover and verifier,
advanced attestation schemes, such as run-time attestation [3], are not applicable, due to
the limited resources of these devices. We overcome this central limitation and enable run-
time attestation for collaborative embedded systems with our Data Integrity Attestation
(DIAT) [4]. DIAT’s presents a novel attestation paradigm, as it proves correctness of
exchanged data rather than the correctness of entire systems.

1.1 CONTRIBUTIONS

In this work we make contributions in the area of Trusted Execution Environment (TEE)
architectures and their applications. Furthermore, we introduce novel and extended
Remote Attestation (RA) schemes.

* We design and develop two new security architectures.

- We present TYTAN, the first security architecture for low-end embedded
systems that enables dynamically managed, mutually distrusting TEEs while
ensuring real-time compliance of the overall platform [62].

— SANCTUARY is our novel security architecture for mobile systems that brings
enclave-like TEEs to ARM TrustZone devices [73].

¢ We investigate side-channel attacks and defenses for Intel’s Software Guard Exten-
sions (SGX).

— We show a novel and powerful cache side-channel attack against SGX leverag-
ing the adversary’s amplified capabilities and control over the target system in
the context of SGX [68].

- We develop HardIDX, a database search index leveraging SGX to securely
search outsourced databases while preventing information leakage due to data
accesses to untrusted memory outside of the HardIDX-enclave [149, 151].

- DR.SGX is our fully automated side-channel defense mechanism for SGX,
based on a novel concept, called semantic-agnostic data randomization [72].
DR.SGX’s fine-granular data randomization thwarts an adversary from in-

4 INTRODUCTION

ferring sensitive information from memory access patterns that observable
through various side channels.

* We present novel applications that leverage TEEs to allow privacy-preserving
speech recognition as well as policy enforcement for smart devices.

— Our Automated Speech Recognition (ASR) framework VoiceGuard uses SGX
to protect both, the user’s voice input data, i. e., user’s privacy, as well as the
speech recognition model, i. e., the provider’s Intellectual Property (IP) [71].

- Based on ARM TrustZone, we develop a novel method to remotely enforce
usage policies on smart devices while asserting the device owner’s security
and privacy [64].

¢ We improve and advance RA beyond the classical one-to-one attestation scenarios,
where a trusted verifier validates the state of a single prover device.

— We develop solutions to extend RA protocols to protect against malicious
verifiers that try to misuse RA to attack prover devices [65].

— We introduce SEDA [34], the first collective attestation scheme for efficient
verification of swarms of devices, inspiring many follow-up works [16, 199,
201, 82].

- We devise a novel attestation concept that enables efficient and secure inter-
action of collaborative devices, called data integrity attestation (DIAT) [4]. It
presents a paradigm shift in the area of RA, moving away from attestation
of entire device to ensure their integrity towards ensuring the integrity of
generated and processed data.

1.2 PREVIOUS PUBLICATIONS

This work is based on the following peer-reviewed publications, which are structured
into four chapters: Chapter 3 to Chapter 6; the full list of the author’s publications is
provided in Chapter 8.

Chapter 3: Security architectures TYTAN and SANCTUARY.

Ferdinand Brasser, Patrick Koeberl, Brahim El Mahjoub, Ahmad-Reza Sadeghi, and
Christian Wachsmann. TyTAN: Tiny Trust Anchor for Tiny Devices. In Proceedings of
IEEE/ACM Design Automation Conference (DAC), 2015.

Ferdinand Brasser, David Gens, Patrick Jauernig, Ahmad-Reza Sadeghi, and Emmanuel
Stapf. SANCTUARY: ARMing TrustZone with User-space Enclaves. In Proceedings of
Annual Network and Distributed System Security Symposium (NDSS), 2019.

1.2 PREVIOUS PUBLICATIONS

Chapter 4: Side-channel attack on Software Guard Extensions (SGX) enclaves, SGX-
secured database index HardIDX and side-channel defense through data randomization
with DR.SGX.

Ferdinand Brasser, Urs Miiller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan Cap-
kun, and Ahmad-Reza Sadeghi. Software Grand Exposure: SGX Cache Attacks Are
Practical. In Proceedings of USENIX Workshop on Offensive Technologies (WOOT), 2017.

Benny Fuhry, Raad Bahmani, Ferdinand Brasser, Florian Hahn, Florian Kerschbaum, and
Ahmad-Reza Sadeghi. HardIDX: Practical and Secure Index with SGX. In Proceedings of
Conference on Data and Applications Security and Privacy (DBSec), 2017.

Ferdinand Brasser, Srdjan Capkun, Alexandra Dmitrienko, Tommaso Frassetto, Kari
Kostiainen, and Ahmad-Reza Sadeghi. DR.SGX: Automated and Adjustable Side-Channel
Protection for SGX using Data Location Randomization. In Proceedings of Annual Computer
Security Applications Conference (ACSAC), 2019.

Chapter 5: Restricted spaces policies enforcement on mobile devices and private speech
recognition with SGX.

Ferdinand Brasser, Vinod Ganapathy, Liviu Iftode, Daeyoung Kim, Christopher Liebchen,
and Ahmad-Reza Sadeghi. Regulating ARM TrustZone Devices in Restricted Spaces. In
Proceedings of International Conference on Mobile Systems, Applications, and Services (Mo-
biSys), 2016.

Ferdinand Brasser, Tommaso Frassetto, Korbinian Riedhammer, Ahmad-Reza Sadeghi,
Thomas Schneider, and Christian Weinert. VoiceGuard: Secure and Private Speech Pro-
cessing. In Proceedings of Interspeech, 2018.

Chapter 6: Verifier authentication in Remote Attestation (RA), swarm attestation SEDA
and data integrity attestation DIAT.

Ferdinand Brasser, Kasper Rasmussen, Ahmad-Reza Sadeghi, and Gene Tsudik. Remote
Attestation for Low-End Embedded Devices: the Prover’s Perspective. In Proceedings of
IEEE/ACM Design Automation Conference (DAC), 2016.

N. Asokan, Ferdinand Brasser, Ahmad Ibrahim, Ahmad-Reza Sadeghi, Matthias Schunter,
Gene Tsudik, and Christian Wachsmann. SEDA: Scalable Embedded Device Attestation.
In Proceedings of ACM SIGSAC Conference on Computer and Communications Security (CCS),
2015.

Tigist Abera, Raad Bahmani, Ferdinand Brasser, Ahmad Ibrahim, Ahmad-Reza Sadeghi,
and Matthias Schunter. DIAT: Data Integrity Attestation for Resilient Collaboration of

5

6

INTRODUCTION

Autonomous Systems. In Proceedings of Annual Network and Distributed System Security
Symposium (NDSS), 2019.

PRELIMINARIES AND BACKGROUND

In this chapter we provide general background relevant for this work. Background
specific to individual system and solutions is provided in the corresponding section.

2.1 COMPUTER ARCHITECTURES

Most computer systems follow a hierarchical protection and management paradigm.
Software entities can execute with different privileges, where the privileges of an entity
residing higher in the hierarchy are a super-set of the privileges of entities residing lower
in the hierarchy. For instance, the Operating System (OS), as the higher privileged entity,
has accesses to its own memory and the memory of applications or processes, which are
less privileged, while, processes cannot access the memory of the OS. This is enforced
via memory access control that is under the OS’s governance (cf. Section 2.1.1). This
principal repeats at multiple layers, as illustrated in Figure 1.

Similarly, (unprivileged) processes have access only to a subset of Central Processing
Unit (CPU) instructions, while additional instructions are only available to privileged
software entities, such as the OS. Typically, instructions that are used to configure the
system and its resources, e.g., define access rules, are reserved for more privileged
entities.

The CPU can operate in different modes defining the privilege levels of the software
currently in execution.” The naming of the CPU modes is platform specific. For instance,
on ARM processors the modes are called exception levels and are numbered from lowest
privileges (ELO) to highest privileges (EL3). On x86, in contrast, unprivileged code is
executed in so-called ring 3, while the OS executes in ring 0. Following this systematic,
higher privileged modes are numbered in descending order, for instance, the Virtual
Machine Monitor (VMM) mode is often referred to as “ring -1”.

Transition between different CPU modes can be initiated by different events, such as
exceptions or interrupts. Also, external events, for instance hardware interrupts, cause
a transition to privileged execution mode where interrupts are handled by Interrupt
Service Routines (ISRs). Unprivileged entities can also initiate a transition. Typically, this
is to request services from the OS, via system calls, by executing dedicated instructions,
for example sysenter or syscall on x86 systems. The OS can return to unprivileged
entities using corresponding instructions, e.g., sysexit or sysret.

The higher privileged software is responsible for managing, i. e., controlling resource
access, as well as providing services for less privileged software. When the less privileged
software is aware of its limitations and the existence of a higher privileged entity, then it

1 On multi-core systems each CPU-core can operate in different modes independently.

8

PRELIMINARIES AND BACKGROUND

VM

Process Process
<> 1 *&Z
<

T)
Hypervisor / VMM
#Z#

Firmware / System Mode Firmware

< > Regulated Access 1 Access Privileges 1 Access Protection

Figure 1: Common computer architecture using a hierarchical protection and management
paradigm. Higher privileged entities can access unprivileged entities (unrestricted),
while unprivileged entities have no direct access to privileged entities.

explicitly requests services from the higher privileged entity, e. g., an application requests
services from the OS through system calls, invoking a predefined function of the OS.
Otherwise, the higher privileged entity has to be transparent and needs to emulate the
behavior of the underlying system as expected by the less privileged entity. For instance,
hypervisors can provide the OS executing in a Virtual Machine (VM) the impression of
running directly and exclusively on the computer’s hardware.

While the main CPU and the software executing on it adhere to this hierarchical model,
many platforms have additional system components that are orthogonal to this model.
For instance, Intel’s CSME is a co-processor that can access the main memory enabling it
to access the data and code of all software entities, regardless of the privilege level [148],
as illustrated in Figure 1.

2.1.1 Memory Management and Memory Protection

Memory access control is a central concept for computer security. Limiting the access
to memory allows the protection of information’s integrity and confidentiality stored in
it. In general, potential malicious or faulty entities should be restricted with respect to
the memory locations that they can access. Additionally, for accessible memory location
the mode of access should be regulated, e. g., allowing read-only access or execute-only
access.

Memory access control can be realized using different approaches, e.g., by testing
memory accesses for compliance with a given list of rules or by encrypting the memory
content. Subsequently techniques relevant for the rest of this work are described.

2.1 COMPUTER ARCHITECTURES

. j----------- Process 1 Process 2 m———-- 1

Virtual | - i
. wr r H

Address | " r4 i

Space | ‘oxo ¥ %9 %0 7 0x0 |
ISR Ny m~— MMU | CPU i
Page
i Tabl i

EEEEE EEEEE/@m
J
AN

Physical A

Address .

Space

PC: Program Counter ~ PT:Page Table r1/4:Register 1/4 rd:read wr: write

Figure 2: The Memory Management Unit (MMU) translates virtual memory addresses to physical
memory addresses. The mapping between virtual memory and physical memory is
defined per process and is managed via a hierarchical data structure, called page
tables. The root of the currently executing process’ page table is stored in a dedicated
CPU-register (PT Base).

Read-Only Memory. Memory that cannot be written to, typically due to its physical
properties, provides strong integrity protection of its content. Alternatively, Read-Only
Memory (ROM), i.e., memory must not be written to, can be implemented using ap-
proaches that enforce access permissions for memory, e. g., using a Memory Management
Unit (MMU) or Memory Protection Unit (MPU).

Memory Management Unit. The concept of virtual memory provides software entities, in
particular processes, with a continuous memory space independent of other software
entities running on a system. This is achieved by translating all memory access of a
process: processes operate on virtual memory addresses which are mapped and translated
on the fly to addresses in the computer’s physical memory. Each process has its own
virtual memory space, which gets mapped to physical memory locations exclusively
reserved to each process. This mapping is managed by privileged software, typically the
OsS.

Figure 2 shows the virtual address space of two processes. The mapping of virtual
memory to physical memory is done in fixed units of memory, called memory pages.
For each memory page of the virtual memory space, its mapping to the corresponding
memory page in physical memory is stored in a hierarchical data structure, called page
table. And for each virtual memory space a separate page table maps virtual memory
pages to physical memory pages.

The Memory Management Unit (MMU) is a hardware unit that translates all memory
accesses, i. e., for each memory access the MMU substitutes the virtual memory address

9

10

PRELIMINARIES AND BACKGROUND

with the corresponding physical memory address using the page table, as shown in
Figure 2. The page table to be used by the MMU is specified by a CPU-register. Thus, the
active virtual address space can be defined by updating this register, e. g., the OS updates
it when scheduling a new process.

The page tables define for each memory page access permissions, i. e., the access mode
for each memory page. Additionally, not all virtual memory pages need to be mapped to
physical memory addresses, virtual pages for which no mapping exist are inaccessible,
and thus, providing isolation. For instance, physical memory pages that are mapped to
one process’ virtual memory are inaccessible for all other processes that do not have
a mapping from their virtual memory space to these physical memory pages. When
software tries to access a virtual memory page that is not mapped to a physical page, an
exception is raised by the MMU notifying the OS about the access attempt.

Swapping. Not having physical memory pages mapped to the virtual memory space of a
process is also done for dynamic resource management, allowing the OS to over-provision
the system’s physical memory. The OS can mark virtual memory pages as unavailable,
resulting in an exception when the process tries to access that page. During exception
handling, the OS can allocate a physical memory page, create a mapping for the virtual
memory page that caused the exception and make the virtual memory page as available.
Afterwards, the process can continue, using the previous unavailable virtual memory
page.

When no physical memory is available, the OS has to re-use a physical memory page
that is already allocated and mapped to another virtual memory page, i.e., swap the
memory pages. To prevent data loss, the OS copies the content of the memory page that
should be freed to another memory system, e. g., non-volatile memory. When the content
of the swapped out memory page is again accessed by its process, the OS has to revert
the process, i. e., restore the page’s content to a newly allocated physical memory page
and map the process’ virtual memory page to the new physical memory page.

Memory Protection Unit. The MPU is a hardware unit that provides memory protection
by enforcing memory access control policies. It is most commonly used in low-end
embedded systems that do not provide virtual memory abstraction, i.e., where all
software operates in the physical address space.

The MPU moderates all accesses of the CPU to the memory, as shown in Figure 3.
The access control policies can be defined per memory region, i. e., different parts of the
memory can be accessed in different modes. Thus, regions can be marked non-executable
or can be marked non-writable.

The memory access rules have global validity, i. e., all rules are enforced regardless of
the software entity currently executing. On systems with different execution modes, e. g.,
privileged and unprivileged mode, often distinct rules for each mode can be defined,
e.g., allowing to isolate privileged code and data from unprivileged software’s accesses.

Execution-Aware Memory Protection Unit. The EA-MPU extends the concept of MPUs
by making it execution-aware, i.e., it takes the current executing software into account
when deciding whether a memory accesses should be allowed or denied [226]. Access
permission rules get extended by a second address range, which defines the code region

2.1 COMPUTER ARCHITECTURES

CPU

PC KZEA ‘I

11

1
1
1
1
i
E MPU
1 | |
E Start End Read = Write Execute
! 0x00 0x19 X x
H 0Oxla 0x34 X x
H 0x35 Ox6a X x
! 0x6b 0xd9 X
! [Coxda | oxff | | [x |
E
1
1
i
Physical *.
Address :g
Space 0x00 Oxla 0x35 0x6b 0x8f Oxda Oxff

Start/End: Memory Section PC: Program Counter rl: Register 1 rd: read

Figure 3: The Memory Protection Unit (MPU) enforces memory access rules, which are defined
per memory regions.

for which an access rule is valid. On each memory access, the EA-MPU checks whether
the currently executing code, identified by the Program Counter (PC) register, lies in the
specified code region, in addition to the access mode checks performed by a standard
MPU, as shown in Figure 4.

This concept allows memory access rules to be defined per software entity, e. g., process
or task, independent of privilege levels.

2.1.2 Cache Architectures

In the following we provide details of the Intel x86 cache architecture [208, 205].> We
focus on the Intel Skylake processor generation, i.e., the type of CPU we used for our
side-channel attack and defense presented in Chapter 4.

Memory caching “hides” the latency of memory accesses to the system’s Dynamic
Random Access Memory (DRAM) by keeping a copy of currently processed data in faster
memory, called cache. Caches are fast but small memories, which are built into the CPU.
Typically, they are realized as Static Random Access Memory (SRAM). Although SRAM
caches have better performance compared to DRAM memory, they cannot be produced
at the same density as DRAM, resulting in higher cost. Due to their higher cost (e. g., in
terms of production and energy consumption), caches are orders of magnitude smaller
than DRAM and only a subset of a system’s memory content can be present in the cache
at any point in time, i.e., to leverage their advantages of both memory types they are
used in combination.

2 We will use the terminology from Intel documents [203].

12

PRELIMINARIES AND BACKGROUND

CPU
e
.]
Y MPU

[

C-Start C-End D-Start D—End Read Write Execute
0x00 0x19 0x00 0x19 X X X

0Ox6b 0x8e 0x6b 0x8b x x
0x00 0x1b 0x35 Ox6a X X
Oxda oxff Oxda oxff x x
[oxda | oxff | ox8f | oxd9 | x | x | |
Physical
Address
SPaCe 0x00 0x1la 0x35 0x6b 0x8f Oxda Oxff
C-Start/End: Code Section PC: Program Counter rd: read
D-Start/End: Data Section rl: Register 1

Figure 4: The Execution-Aware Memory Protection Unit (EA-MPU) enforces memory access rules
depending on the currently executing software, i.e., memory access is only granted
to specified software entities, which are identified based on the code region currently
being executed.

When a memory operation is performed, the cache controller checks whether the
requested data is already cached, and if so, the request is served from the cache, called a
cache hit, otherwise cache miss.3

The cache controller aims to maximize the cache hit rate by predicting which data
are used next by the CPU. This prediction is based on the assumption of temporal and
spatial locality of memory accesses. Temporal locality means that recently used data
are more likely to be used soon than data that have not be accessed in a while. Spatial
locality describes the assumption that data located next to data currently in use is likely
to be used as well. Hence, two types of data should be available in the cache: data that
have been used most recently, and data close to those data. The first is accounted for by
the cache replacement strategy. The latter is achieved by loading chunks of data into the
cache, called cache line.

For each memory access the cache controller has to check if the data are present in the
cache. Sequentially iterating through the entire cache would be very time-consuming.
Therefore, the cache is divided into cache lines and for each memory address the corre-
sponding cache line can be quickly determined, typically the lower bits of a memory
address select the cache line. Hence, multiple memory addresses map to the same cache
line. In Figure 5 the first line of each cache page in memory maps to the first cache line.#

For the rest of this work we focus on read operations from data caches. Also, we exclude uncacheable memory
from our discussion, i.e., memory regions that are explicitly prevented from being stored in the cache,
which is, for instance, required for ensuring coherency with external devices supporting Direct Memory
Access (DMA).

4 In general, cache page are different from virtual memory pages.

2.1 COMPUTER ARCHITECTURES 13

CPU Core
Cache Page

(9]
n
9]
9]
Q
<

Set k

Main Memory

Figure 5: Caches are organized in ways and sets. The cache way is selected based on (a part) of
the memory address of the data to be cached. The sets refer to the number of concurrent
cache locations data can be stored.

Having one cache entry per cache line quickly leads to conflicts and the controller has to
evict data from cache to replace it with newly requested data. For instance, in Figure 5
the first line of cache pages 0 and m — 1 are mapped to the same cache line. To minimize
such conflicts caches are often (set) associative. Multiple copies of each cache line exist in
parallel, also known as cache sets, thus #cachesets many data from conflicting memory
locations can stay in the cache simultaneously. When the maximum number of allowed
conflicts is exceeded, the cache controller must evict data from a cache line to replace
it with newly requested data. Which cache line to evict is determined by the cache
replacement policy. The “least recently used” policy is often used, i.e., the data that has
not been access for the longest time frame is evicted.

Figure 6 shows the cache hierarchy of current Intel CPUs, with a three level hierarchy
of caches: The Last Level Cache (LLC), also known as Level 3 (L3) cache, is the largest and
slowest cache; it is shared between all CPU-cores. The Level 1 (L1) and Level (L2) caches
are exclusive to each CPU-core, i. e., each CPU-core has a dedicated L1 and L2 cache. The
L1/L2 caches are shared between Simultaneous Multithreading (SMT) execution units.>

The LLC is inclusive, i.e., all data that is present in the L1 or L2 cache of any CPU-
core is also present in the LLC, as shown for Core0 in Figure 6. L2 cache and the LLC
are physically indexed, while the L1 cache is virtually indexed. This means that the
L1 cache is accessed and managed based on the virtual memory address as used by
the applications directly. When accessing the other caches, virtual addresses first get
translated to physical addresses to determine the cache line. Another unique feature of
the L1 cache is its separation into data and instruction cache. Code fetches only affect the

5 SMT is also known as Hyper-threading (HT) in Intel CPUs.

14

PRELIMINARIES AND BACKGROUND

Physical Addr. Virtual Addr.

]
L1D

L1l

Core 0

L1I: Level 1 Instruction

Cache
Core N L1D: Level 1 Data Cache
L2: Level 2 Cache
inclusive non-inclusive LLC: Last Level Cache

Figure 6: Cache hierarchy and configuration of Intel Skylake processors. The Last Level Cache
(LLC) is inclusive, i.e., all data stored in any per-core L1/Lz2 is also stored in LLC.
L1 cache is divided into separated parts for data and instructions. The L1 cache is
addressed using virtual addresses, while L2 and L3 caches are addressed by physical
addresses.

instruction cache and leave the data cache unmodified, and vice versa. In L2 and LLC
caches code memory and data memory compete for the available cache space.

2.2 SECURITY SERVICES

2.2.1 Secure Boot

Secure boot gradually verifies the integrity of a system’s software components while it
is starting. Before any component is executed its integrity is checked. The verification
process is started by the initial component Ey of the platform’s boot process (e.g.,
the BIOS or UEFI code) and iteratively continued by all components E; ... E,, that are
executed afterwards (e. g., the boot loader, hypervisor, and the Virtual Machines (VMs))
until the last component E,, ;1 has been verified and executed (cf. Figure 7).

)
Entity Entity . Entity
E, E, |

Figure 7: Chain of Trust (CoT) concept.

Since the integrity of each component E; is verified by its predecessor E;_; before it
is executed, only known (i. e., authentic) software components are loaded and executed.
When the integrity of a software component cannot be verified, different reactions are
possible. For instance, the system may stop execution (also called fail secure mode) or it
may use an authentic fallback version of the software component whose integrity check

Root of
Trust
(Entity E,)

2.2 SECURITY SERVICES

failed [23]. The integrity verification of a component is meaningful only if the component
that performs the verification itself is benign. Hence, the initial component Ey must be
trusted and is often denoted as Root of Trust (RoT). This means that the integrity of Eg
must be protected against (software) attacks, e. g., by storing the code and data of Ey in
Read-Only Memory (ROM). The integrity of all other components E; ... E, is ensured
by the fact that the integrity of every component E; is verified by its predecessor E;_1
before E; is executed.

The method used to verify the integrity of a component depends on the requirements
of the application. The most common approach is for the secure boot mechanism to
compute an Integrity Measurement Value (IMV), which typically is the cryptographic
hash digest, of the binary code of the software component to be verified. The IMV is then
compared to a reference IMV that is typically certified by the platform manufacturer,
the platform user, or the software provider. If the IMV computed by the secure boot
mechanism matches the certified reference IMV provided by the software provider, the
integrity of the software component is preserved.

2.2.1.1 Order of Integrity Verification

It must be ensured that the integrity of each software component is verified before it is
executed. Except for this fundamental rule, there are no other restrictions on the order
of the integrity verification and software execution. This means that the integrity of the
software component E,, can be verified by any software component Ey...E,_7 thatis
executed before E,,.

@)
Entity ®
E
I @ A\ 4
Root of . .
Trust Entity En;ty
(Entity E,) 4

Entity —» Measurement
—» Control flow

Figure 8: Integrity validation and execution order in Chain of Trust (CoT).

Figure 8 illustrates such a scenario, where the integrity of software components Eq, E;,
and Ej3 is verified by software component Ey (@, @ and (3) in Figure 8) before E4, E;, or
E3 is executed (@), ® and () in Figure 8). Similarly, E verifies E4 () in Figure 8) although
E; is not loaded directly before E4. Nevertheless, in this example, the integrity of each
software component is verified before it is loaded.

15

16

PRELIMINARIES AND BACKGROUND

2.2.1.2 Reference Measurement Values

The integrity and authenticity of the reference IMV must be ensured. Depending on the
requirements on the flexibility of the secure boot mechanism, different approaches are
possible to store and manage reference IMVs.

Reference IMVs Embedded in Software Components. One approach to manage refer-
ence IMVs is to embed the reference IMV of software component E; into the predecessor
component E;_; that verifies the integrity of E;, as illustrated in Figure 9. The initial
component Eq includes the reference IMV of E; denoted M(E1), i. e., the expected IMV of
E;. The integrity of M(E1) is protected by the same mechanism that ensures the integrity
of E, itself. The integrity of the actual software component E; is verified by Eq before
E} is executed. More detailed, Ey computes the hash digest of the binary code of Ej,
denoted M(E}) (@ in Figure 9) and compares the result with the reference IMV M(E;)
stored in E¢ (@ in Figure 9). The verification of the integrity of E{ succeeds only if M(E})
matches M(Eq). If this is the case, E] is executed (@) in Figure 9) and takes over the role
of Eo, i.e., E] measures the binary code of E, and executes E), only if its measurement
M(E}) matches the reference IMV M(E;) of software component E;, which is stored in
E}. This process is continued until the integrity of all software components has been
verified.

M(E,) M(E,)

Q| |®
—

| Entity E. Entity E, —»> Measurement
M(E,) '@ M(E;) —> Verification

@ —» Control flow

\ 4

v

Figure 9: Secure boot with embedded IMVs.

One major limitation of this approach is its lack of flexibility. Specifically, updating
software component E; requires updating the reference IMVs in all software components
E; with j < i.

Reference IMVs Managed in Central Database. An more flexible approach, compared
to the embedding approach described before, is managing the reference IMVs in a central
database, illustrated in Figure 10. Before the initial component E, passes execution to
component Ej, it verifies the integrity of Ej. Again, Ey measures the binary code of
E; and compares the result M(E}) with the reference IMV M(E;) of E;. However, this
time the reference IMV is stored in a central database that can be read by all software
components performing integrity verification. To ensure the authenticity and integrity
of the reference IMVs, the integrity of the database must be protected. One approach
to protect the integrity of the database is using the same method used to protect the
integrity of the initial component Eg or to use Eg to verify the integrity of the database.

2.2 SECURITY SERVICES

\ 4

»| Entity E; Entity E,

v

=—» Measurement
—» Verification
—» Control flow

Figure 10: Secure boot with central IMVs storage.

This method allows the flexible update of individual software components. However,
updating software components requires updating the corresponding reference IMVs in
the database in an authentic way.

Certified Reference IMVs. The most practical approach to implement secure boot to is
using digital signatures (certificates) to ensure the integrity and authenticity of refer-
ence IMVs. This approach is shown in Figure 11. The reference IMV of every software
component is contained in a digital certificate issued by a signing authority. The signing
authority might be the platform manufacturer, platform user, and/or a software provider.
The certificate does not need to be stored in protected memory since its authenticity
is ensured by a digital signature o,k issued by the signing authority. Before the initial
component E(passes execution to Ej, it verifies the integrity of E]. Again, Ey measures
the binary files of Ef and compares M(E}) to the reference IMV M(E) of E}, which is
included in the certificate. The authenticity of the reference IMV is checked by verifying
the certificate using the authentic public verification key pk of the signing authority.

M(E;) M(E,)
@| |©
S
Entity E, e »| Entity E; () > Entity E,
o8 >
M(E,) M(E;) —» Measurement

Sigpk @ a Sigpk —» Verification
—» Control flow

Figure 11: Secure boot with IMV certificates.

When updating a component E,, a new certificate must be issued for the version of E,,
and stored on the platform. Since the certificate can be validated with the same public
verification key pk, neither entity Eo nor the protected memory containing pk must be

17

18

PRELIMINARIES AND BACKGROUND

updated. Since Ep and pk need to be updated rarely or even never during the lifetime
of the platform, simple hardware-based protection such as ROM can be used to protect
their integrity and authenticity.

Revocation. In secure boot systems, revocation might be necessary either because an
entity E,, is no longer trustworthy and should not be allowed to be executed, e. g., because
a vulnerability was discovered in its code and an update version E;; has been released,
or a signing key, used to authenticate code certificates, was compromised.

In the first case, the measurement M(E;) must be removed and replaced with an
updated measurement M(E}). Depending on the secure boot variant used, this requires
updating E;’s predecessor components with an updated embedded IMVs (M(EY)), up-
dating the central IMV storage or issuing a new certificate for M(E}). In all variants the
authenticity of the updates must be ensured.

In the second case, the secure boot system must learn that the compromised key can
no longer assert the integrity of any entity E,,, or the authenticity and integrity of other
keys, e.g., when a Public Key Infrastructure (PKI) is used in the secure boot system.

In all cases the revocation information must be made available to the secure boot
system. If a device is not compromised, it can retrieve the updated information over the
network, e. g., in form of a Certificate Revocation List (CRL) to revoke certificates [105].
A device under an adversary’s control, e. g., a device on which the adversary exploited a
vulnerability in an entity E;, will not voluntarily update the revocation information. In
these cases, the update must be enforced, for instance, certificates can be issued with an
expiration date rendering updates mandatory after the certificate validity period. How-
ever, these solutions require that the secure boot system can receive updated information,
e. g., via network. Further, to prevent attacks, such as roll-back attacks, devices need to
store the latest revocation information securely or maintain version information using a
secure monotonic counter. To ensure up-to-date revocation information, devices need
access to reliable time information.

If a secure boot system’s RoT is compromised, e.g., if E¢ is insecure, the RoT must be
replaced or updated [289], which is impossible in many systems.

2.2.2 Attestation

Attestation enables one entity, called verifier, to gain assurance about the state of another
entity, called prover. The rationale behind attestation is to verify that the prover is in a
correct state and is therefore trustworthy, i. e., attestation is often used to bootstrap trust
in the prover.

Typically, the state of a device is defined by its memory content. In particular, the
memory that is determining the behavior of a computing device is considered, i.e.,
memory containing the provider’s program code, such as binary code loaded in Random
Access Memory (RAM). This type of attestation is also called binary attestation or static
attestation, as it captures the static state of the prover, allowing the detection of malware
infections and other attacks that alter the code memory of a prover device [382, 139].
More sophisticated attack techniques, for instance Return-Oriented Programming (ROP)

2.2 SECURITY SERVICES

attacks, can only be captured by approaches that record and report the run-time behavior
of the prover device, called run-time attestation [3, 130, 129, 416].

The correct state of a prover device can be defined arbitrarily, however, in practice the
state is typically considered correct if it conforms with the manufacturer’s specifications
for the prover device, i.e,, if the state has not been altered in an unauthorized way.6

Most attestation mechanism represent the prover’s state in a compressed form, typically,
the state is fed into a cryptographic hash function to map it to a short, fixed size value.
The verifier usually is assumed to know all hash values representing correct states, hence,
the verifier can decide, based on the value provided by the prover, whether the prover is
in a correct state.

For the verifier, to be able to establish trust in a prover device based on the reported
state, the following necessary conditions must hold. (1) binding between state mea-
surement value and prover authentic identity, (2) integrity of state measurement value,
(3) freshness of state measurements, (4) trustworthy state capture mechanism, (5) unpre-
dictable time of attestation, i. e., the time of attestation must be unknown in advanced to a
potential adversary, and (6) equality of the prover’s state and its measurement regarding
prover’s correctness.

In different systems and scenarios these requirements can be assumed or can be met
by different means.

Local attestation scenarios rely on a trusted link or channel between prover and verifier,
e.g., a connection via a dedicated physical wire which is assumed to be untampered.
Hence, the authenticity of the prover entity and the integrity of the transmitted mea-
surement value can be assumed. In Remote Attestation (RA) schemes, the authenticity
of the prover and the integrity of the transmitted measurement value must be ensured
by other means. This can be done, for instance, using a digital signature or Message
Authentication Code (MAC), however, the key used to authenticate the prover must be
protected such that it is only accessible to trusted entities and each prover needs to have
a unique cryptographic key. Additionally, the signature/MAC binds the measurement
value to the prover’s identity.

The freshness of a state measurement can be achieved by integrating a nonce in the
measurement that cannot be foreseen by a potential adversary and for which the verifier
can validate that it is timely, otherwise the adversary can pre-compute a valid attestation
report or reuse a previous report. Either the verifier sends a fresh nonce to the prover, i.e.,
the verifier knows when the nonce was disclosed to the prover, or a nonce is generated
in a trustworthy way on the prover device. If the verifier initiates the attestation process,
it can follow a strategy unknown to the adversary. However, if the prover reports its state
independent of verifier requests it is important that an adversary can neither influence
this process, e. g., prevent or delay the reporting, nor foresee the attestation time, i.e.,
allowing a roaming adversary to leave the prover device reverting all its changes before
attestation is performed (cf. Section 6.1.1.2).

The measurement reported to the verifier must be correct, i.e., an adversary must
not be able to tamper with the measurement process. In particular, the integrity of

Authorized alterations of a device’s software, e. g., due to a software update, usually should not lead to an
incorrect state.

19

20

PRELIMINARIES AND BACKGROUND

the component performing the measurement must be ensured, otherwise the verifier
cannot trust the attestation report. Additionally, the temporal integrity of the measured
state must be ensured while the measurement is being performed [84]. The integrity
of the measurement component is achieved in different ways by different RA schemes.
Existing RA approaches can be divided into three categories: (i) software-based attestation,
(ii) hardware-based attestation, and (iii) hybrid software/hardware-bases attestation. In
hardware-based and hybrid attestation solutions the measurements engine’s integrity is
ensured, e. g., by isolating it in an isolated execution environment such as a co-processor
or in a Trusted Execution Environment (TEE). The same protection mechanism can also
be used to protect cryptographic keys to authenticate the prover to a remote verifier and
protect the integrity of an attestation report when transmitted via network. Software-
based attestationrelies only on unprotected software to measure the state of the prover
device. Hence, the integrity of the measurement engine cannot be guaranteed. The
integrity of the measurement engine is tested using its execution characteristics, such as
its timing behavior. The assumption is that the measurement engine is time-optimal, i.e.,
no faster way of measuring the prover’s state exists, thus, if an adversary manipulated
the measurement engine, its run time increases, which will be detected by the verifier.
However, these timing assumptions only hold if the adversary is limited to the prover
device’s unaltered resources for generating an attestation report. If the adversary, for
instance, increases the processing speed of the prover or receives assistance in the
computations from another device, these underlying assumptions do not hold, and hence,
software-based attestation cannot provide the required security guarantees. Furthermore,
the lack of protection capability averts the usage of cryptographic methods to authenticate
and protect the integrity of attestation reports, as the required cryptographic keys cannot
be protected from unauthorized access by the adversary.

2.3 SECURITY ARCHITECTURES AND TRUSTED EXECUTION
ENVIRONMENTS

2.3.1 ARM TrustZone

TrustZone represents a set of security enhancements to ARM’s processor and System-on-
Chip (SoC) designs. TrustZone extends the processor, memory system (including caches),
and peripherals. A TrustZone-enabled processor can execute in two security modes at
any given time. The two modes are called normal world and secure world, respectively. The
normal world retains backwards-compatibility and hosts all software that is not explicitly
made for the secure world. All security critical software is meant to be isolated in the
secure world, protected from the untrusted software in the normal world. The secure and
normal world both manage their own address spaces using the traditional privilege levels
for separation of the Operating System (OS) kernel and application code (cf. Section 2.1).
More specifically, current ARM processors provide four privilege levels (Exception Levels —
ELO to EL3). The normal world provides ELO (unprivileged applications), EL1 (privileged
0S), and EL2 (hypervisor, also privileged). In the secure world, two privilege levels (S-EL®

2.3 SECURITY ARCHITECTURES AND TEES 21

Normal World Secure World
| |
(Legacy)| ! |(Legacy) Trusted | Trusted
! ! ELO
App 1| App App W App ©
J] 3
................................. E
(Legacy) - Ry
Operating System LatEd O EL1 e
Trusted Firmware EL3
CPU
\8)
Mem S
NS =1 NS =0| Bus ¢ ..§
Ctrl S
a§]
Normal World Secure World RAM

= Physical Memory Partitioning
==+ Virtual Memory Isolation

Figure 12: TrustZone software and hardware components. Software can be executed in normal
world or in secure world. Isolation between these two worlds is enforced by the memory
controller (TZASC) that checks for each memory access which world it originates from.

and S-EL1) are available in current ARM architectures.” The highest privileged mode EL3,
also called monitor mode, executes the ARM Trusted Firmware (TF).

Typically, the normal world hosts the user facing software, including a smartphone
OS, e.g., Android [172], and applications (often abbreviated “apps” in the context of
smartphones). In the secure world a Trusted OS (TOS) is running that manages the
Trusted Apps (TAs), see Figure 12.

Each processor core can switch from normal to secure world via a dedicated secure
monitor call (smc) instruction. When an smc instruction is invoked from normal world,
the processor core performs a context switch to the secure world (via the monitor mode),
the execution of the normal world is suspended while the secure world is executing. In a
multi-core system, each processor core can independently execute in any of the modes,
i.e., at any privilege level (EL® to EL3) in either world.

TrustZone can separate physical memory into two partitions, with one partition being
exclusively accessible by the secure world. This isolation is enforced by the memory
controller (TZASC) that evaluates for every memory transaction whether it originates
from the secure world or the normal world. This evaluation is done based on an addition
flag included in each transaction, called the non-secure flag (NS), indicating that the
transaction was issued by a processor in normal mode (normal world, NS = 1) or in
secure mode (secure world, NS = 0). Accesses to the memory partition reserved for the
secure world is only granted if the processor issuing the access is executed in secure-

7 Future versions of the ARM architecture will support S-EL2, i.e., hardware virtualization in the secure
world [31].

22

PRELIMINARIES AND BACKGROUND

world mode (or monitor mode / EL3). While the normal world cannot access memory
assigned to the secure world, the secure world can access normal-world memory.

Further, TrustZone allows individual peripheral devices to be assigned exclusively to
the secure world. For these peripherals, hardware interrupts are directly routed to and
handled by the secure world. Accesses to the devices configuration interface, which occur
via transactions on the system bus, are restricted based on the non-secure flag (NS), i.e.,
only bus transactions with NS = 0 are accepted.

A device running ARM TrustZone boots up in the secure world. After the secure
world finished its initial setup by booting the TOS, it switches to the normal world
and boots the Legacy OS (LOS). Most TrustZone-enabled devices are configured to
use secure boot (cf. Section 2.2.1), i.e., the boot loader cryptographically checks the
TOS prior to execution [24]. For example, the device vendor could sign the code with
its private key, and the vendor’s code in the boot Read-Only Memory (ROM) would
verify this signature using the vendor’s public key. ARM suggests using On-SoC One-
Time-Programmable (OTP) hardware, such as poly-silicon fuses, allowing the device
manufacturer to store a unique vendor public key in each SoC [25].8 These checks ensure
that the integrity of the boot-time code in the secure world has not been compromised,
e.g., by modifying binary code or data in persistent storage. In fact, many vendors lock
their devices via secure boot to ensure integrity of the secure world and to prevent
end-user modification. This allows them to make the secure world-part of their Trusted
Computing Base (TCB).

Limitations of TrustZone. Despite TrustZone’s wide-spread deployment more than a
decade after TrustZone was initially released [137], a flourishing landscape of secure
mobile services is largely missing. This is mainly due to the fact that TrustZone separates
the platform into only two security domains. The normal world is occupied by legacy
code, i.e., the LOS such as Android and user applications. All sensitive code has to
share the secure world, divided into TAs managed by the TOS and isolated via virtual
memory. Past incidents have shown severe weaknesses of this concept of TrustZone [329,
46, 350, 47, 365, 351, 48]. Therefore, device vendors typically limit the access to the secure
world for third-party developers, i.e., they use the secure world exclusively for their own
purposes.

Google’s ProjectZero [49] summarized the core limitations of TrustZone’s design:
(i) TrustZone’s weak isolation between TAs inside the secure world leading to (ii) TCB
expansion, and (iii) extensive platform access privileges of the secure world, making
TrustZone a valuable attack target.

Device vendors established very strict policies for software admitted to the secure
world in order to prevent adversaries from gaining control over the secure world. Each
TA admitted to the secure world enlarges the platform’s TCB, as it can potentially
attack and compromise the TOS and other TAs. Furthermore, each TA is a potential
attack target enlarging the attack surface of the secure world. Hence, each TA must be
trusted, requiring extensive security assessments of third-party TAs that come with large

8 In order to minimize OTP memory cost a cryptographic hash of the vendor public key can be stored.

2.3 SECURITY ARCHITECTURES AND TEES

management overheads [166], which in turn induces high monetary costs for application
developers.

As a result of these limitations, TrustZone’s isolated execution environment is, in
general, unavailable for third-party software developers.

2.3.2 Intel Software Guard Extensions

Software Guard Extensions (SGX) is an extension of the x86 Instruction Set Architec-
ture (ISA) introduced with the 6th generation of Intel’s Core processors (code name
Skylake) [267, 193, 20, 206]. It introduces new instructions for creating and managing
isolated software components, called enclaves. Enclaves are isolated from all software
running on the system including privileged software, thus providing a protection mecha-
nism that is orthogonal to the traditional hierarchical model (cf. Section 2.1). In particular,
enclaves are isolated from the OS and the hypervisor as well as the System Management
Mode (SMM), firmware (BIOS/UEFI), and other enclaves.

Memory Isolation. On SGX enabled platforms, programs can be divided into two parts,
an untrusted part and an isolated, trusted part. The trusted part, called enclave in SGX
terminology, is located in a dedicated partition of the physical RAM, called Enclave Page
Cache (EPC). Enclaves are loaded as part of a host process and are embedded in its
virtual memory, similar to a library.

SGX dedicates a fixed amount of the system’s main memory (Random Access Memory
(RAM)) for enclaves and related metadata, called EPC. For current systems, this memory
is limited to 128 MB which is used for both, SGX metadata and the memory for the
enclaves themselves. As a result, enclaves can only utilize about 96 MB of physical
memory. The EPC memory is reserved in the early boot phase and is static throughout
the run time of the system.

Enclave memory isolation is enforced by SGX’s extended memory access control for
the EPC. In particular, all other software on the system, including privileged software
such as the OS, hypervisor and firmware (BIOS/UEFI) cannot access enclave memory.?
Enclaves cannot access memory in the EPC that was not explicitly allocated to them.

Trusted Computing Base. SGX assumes the Central Processing Unit (CPU) itself to be
the only trustworthy hardware component of the system, i. e., enclave data is handled
in plain-text only inside the CPU. Data is stored unencrypted in the CPU’s caches and
registers, however, whenever data is moved out of the CPU, e.g., into the Dynamic
Random Access Memory (DRAM)), it is encrypted and integrity protected. Decryption
and integrity checks are performed when data from DRAM is loaded into the CPU’s
internal memory, i.e., caches and registers. This protects enclaves, for instance, from
being attacked by malicious hardware components with Direct Memory Access (DMA)
capabilities.

The software TCB of SGX comprises the code of an enclave itself. Additionally, Intel’s
architectural enclaves — Provisioning Enclave (PvE) and Quoting Enclave (QE) — must be
trusted. They handle the platform’s cryptographic keys, such as the provisioning key

9 Enclaves are also isolated from further privileged software subsystems such as the SMM.

23

24

PRELIMINARIES AND BACKGROUND

and the attestation key. Hence, to ensure the confidentiality, integrity, and correct use of
these keys, the PVE and QE must not be malicious or compromised.

Enclave Management. Enclaves and their memory are managed by the untrusted OS.
It allocates memory from the EPC for enclaves, manages virtual to physical address
translation for all enclave’s memory (cf. Section 2.1.1) and copies the initial data and code
into an enclave when created. All relevant actions of the OS during enclave creation are
recorded and included in a cryptographic hash representing an enclave’s integrity.

During run time, the OS can dynamically manage enclave memory by swapping and
out enclave pages (cf. Section 2.1.1). However, SGX ensures integrity, confidentiality, and
freshness of swapped pages as well as the correct virtual to physical memory mapping
when a page is brought back.

The OS can also interrupt and resume enclaves — similar to normal processes — causing
an Asynchronous Enclave Exit (AEX). To prevent information leakage, SGX handles the
context saving of enclaves in hardware and erases all sensitive register content before
passing control to the OS. When an enclave is resumed, again the hardware is responsible
for restoring the enclave’s context, preventing manipulations of an enclave’s state.

The (untrusted) host process can invoke the enclave only through a well-defined
interface.

Attestation. SGX supports local attestation as well as Remote Attestation (RA). With
local attestation two enclaves on the same host system can verify each other while Remote
Attestation enables a remote entity to verify that an enclave was initialized correctly and
is running on a genuine SGX device.

During enclave creation, the initial code and data loaded into the enclave are measured.
This measurement can be provided to an (external) party to prove the correct creation
of an enclave. During local attestation, the authenticity of the measurement is ensured
by the SGX hardware. For RA, the authenticity of the measurement, the integrity of the
measurement, as well as the fact that the measurement originates from a benign enclave
is ensured by a signature. Its freshness is ensured by a challenge provided by the external
party [20]. This signature is created by a special enclave, called QE, using the platform
attestation key. This allows a remote entity to verify enclave measurements.

Secure Channel Establishment and Provisioning. Furthermore, the RA feature allows for
establishing a secure channel to an enclave, which in turn can be used for the provisioning
of confidential data to an enclave.

The initial content of an enclave is loaded from unprotected memory; hence, it can
be manipulated and is not kept confidential. Therefore, confidential data must be provi-
sioned to an enclave over a secure channel after it has been created.

Once an enclave is created, its integrity is protected, i.e., its operations cannot be
manipulated from the untrusted host. Hence, if the enclave creates a secret key after it
was initialized, this key cannot be accessed by the untrusted host. With a public key
cryptography scheme, e.g., Rivest-Shamir-Adleman (RSA), the secret key sk and the
public key pk are generated inside the enclave. The randomness required to create a
secure key is provided by the CPU directly to the enclave preventing privileged host

2.4 BACKGROUND ON SIDE-CHANNEL ATTACKS

software from tampering with the process. In particular, the rdrand instruction can be
used to retrieve randomness from the hardware’s Random Number Generator (RNG).

Sending pk to an external entity allows it to encrypt data and send it to the enclave.
However, to prevent Man-in-the-Middle (MitM) attacks, the external entity needs assur-
ance of pk’s authenticity. This is achieved by binding pk to the cryptographic hash of the
originating enclave. In particular, SGX’s QE provides a signature over both, the enclave’s
cryptographic hash and pk.

The QE receives the enclave’s pk together with the request for creating an attestation
quote via SGX'’s local attestation mechanism. This ensures that the QE can assure that pk
originates from a specific enclave.

Sealing. SGX’s sealing capability enables persistent secure storage of data, such that the
data is only available to correctly created instances of one specific enclave.

Once available inside an enclave, secret data can be encrypted using an enclave-specific
key and written to untrusted storage, e. g., the hard disk. The sealing mechanism allows
an enclave to use secret data across multiple instantiations.

2.4 BACKGROUND ON SIDE-CHANNEL ATTACKS

Side-channel attacks on software exist in many different forms. In general, any kind of
resource use that is influenced by the software’s execution and can be observed by the
adversary, can serve as a side channel, e. g., the use of electricity as well as effects thereof
such as electro-magnetic emission, or the use of shared Central Processing Unit (CPU)
caches. In this work software side channels are of most relevance, i.e., those that are
observable by software programs running on the target machine. Therefore, we focus in
this section on software side-channel attacks, excluding physical or hardware side-channel
attacks.

In the realm of software side-channel attacks, several distinct variants exist that can
be categorized according to different aspects. On one hand, side-channel attacks can
be categorized based on the shared resource used to leak information, for instance the
different caches of the CPU, or the virtual memory management mechanism. On the
other hand, side-channel attacks can target different information, including sensitive
access patterns to data as well as secret dependent code execution paths.

We focus on controlled channel and cache side-channel attacks, which are particularly
relevant in the context of Software Guard Extensions (SGX) and for this work. A detailed
discussion of these attacks is provided in Section 4.4.1, where we discuss their differences
to our own side-channel attack [68] and elaborate on the effectiveness of our side-channel
defense [72] against these attacks.

2.4.1 Controlled-Channel Attacks

Xu et al. [412] demonstrated page-fault side-channel attacks on SGX, where an untrusted
Operating System (OS) exfiltrates secrets from enclaves by tracking memory accesses at
the granularity of memory pages. Memory access traces of enclaves can be generated

25

26 PRELIMINARIES AND BACKGROUND

for each cline Z if (keybit[i] == 0) For each cline Z
3 write(2) read(X) read(Z)
8 else measure_time(read) |,
. read(Y)
» cache line 0 cache line 0 cache line 0
_E:: » cache line 1 cache line 1 » cache line 1
8 » cache line 2 cache line 2 cache line 2
cache line n cache line n cache line n
ty: Prime ty: Victim t,: Probe

Figure 13: Prime+Probe side-channel attack technique; first the adversary primes the cache, next
the victim executes and occupies some of the cache, afterwards the adversary probes
to identify which cache lines have been used by the victim. This information allows
the adversary to draw conclusion on secret data processed by the victim process.

using various techniques [389, 183, 176], e. g., memory segmentation [183] or Translation
Look-aside Buffer (TLB) observations [176].

2.4.2 Cache Side-Channel Attacks

Using branch shadowing, i. e., monitoring the Branch Target Buffer (BTB), control flow of
an enclave can be inferred, as demonstrated by Lee et al. [239]. Similarly, the directional
branch predictor can be used to extract control flow information from enclaves, as shown
by Evtyushkin et al. [143].

Cache side-channel attacks targeting SGX enclaves by monitoring data caches have
been using the L1 cache [277, 174, 68, 119, 184, 405] as well as L3 cache [239].

Yarom et al. [415], Moghimi et al. [278] have investigated the possibility of leaking
information through a side-channel with granularity smaller than a single cache line.

CacheBleed [415] exploits cache bank conflicts to leak fine-grained information. However,
this attack does not apply to SGX CPUs due to an updated cache design.

Mem]Jam [278] uses read-after-write false dependencies to introduce latency when a
victim program reads data with a specific page offset. By measuring the run time of
the victim program, a high number of times while jamming different page offsets, the
adversary can infer which offsets are read more often by the victim. This attack can
leak information with a four-byte granularity, however, is very noisy and requires an
extremely high number of repetitions (50 million runs).

Exploiting the CPU’s speculative execution unit Foreshadow can extract all data from
SGX enclaves on non-updated platforms [390].

Prime+Probe Cache Monitoring Technique. The main steps of the Prime+Probe [294]
attack are depicted in Figure 13. First, at time to, the adversary primes the cache, i.e., the
adversary accesses memory such that the entire cache is filled with data of the attacker
process.’® Afterwards, at time ty, the victim executes code with memory accesses that are

10 To prime all cache sets the adversary needs to write to #cachesets cache pages, see Section 2.1.2 for details.

2.4 BACKGROUND ON SIDE-CHANNEL ATTACKS

dependent on the victim’s sensitive data, e. g., a cryptographic key. The victim accesses
different memory locations depending on the currently processed key-bit. In the example
in Figure 13, the key-bit is zero, therefore address X is read. Address X is mapped to
cache line 2, hence, the data stored at X are loaded into the cache and the data that were
present in cache line 2 before are evicted. The data at address Y are not accessed and
therefore the data in cache line 0 remains unchanged.

At time t,, the adversary probes which of the adversary’s data got evicted, i. e., which
cache lines were used by the victim. A common technique to check for cache line eviction
is to measure access times. The adversary reads from memory mapped to each cache
line and measures the access time. If the adversary’s data are still in the cache the read
operation returns them fast. However, if the read operation takes longer, the data were
evicted from the cache and had to be loaded from slower memory. In Figure 13, the
adversary will observe an increased access time for cache line 2. Since the adversary knows
the code and access pattern of the victim, the adversary knows that address X of the
victim maps to cache line 2, and thus, that the sensitive key-bit must be zero. This cycle is
repeated by the adversary for each sensitive key-bit that is processed by the victim until
the adversary learned the entire key.

27

SECURITY ARCHITECTURES

Embedded and mobile systems are at the core of many security-sensitive and safety-
critical applications, such as mobile banking or critical infrastructure. Security architec-
tures from mobile and embedded systems provide the foundation to protect these vital
use cases.

In this chapter we present security architectures for mobile and embedded platforms.
In Section 3.1 we present the TYTAN security architecture for embedded real-time
systems. To the best of our knowledge, TYTAN is the first security architecture for
embedded systems that provides (1) hardware-assisted strong isolation of dynamically
configurable tasks and (2) real-time guarantees. TYTAN's security guarantees and
real-time capabilities were utilized in a collaboration project with automotive industry
partners, which had the goal to establish the integrity of all Electronic Control Units
(ECUs) in a car that are connected via the in-vehicles network. In Section 3.2 we present
SANCTUARY, a security architecture for platforms with ARM processors, which is the
predominant processor-type in mobile devices. SANCTUARY extends and enhances
ARM’s TrustZone architecture to support enclave-like Trusted Execution Environments
(TEEs). SANCTUARY's strong two-way isolation allows it to tolerate potential malicious
applications executing in the isolated environments it provides, thus overcome the main
restriction of the deployed ARM TrustZone ecosystem.

29

30

SECURITY ARCHITECTURES

3.1 TYTAN: TiNy TRUST ANCHOR FOR TINY DEVICES

Already today embedded systems constitute the backbone of most safety and security
critical applications. Current developments in industry, in particular the trend to “connect
the unconnected” in the Internet of Everything, will carry the crucial role of embedded
systems forward. The term embedded system is generally used to refer to a large variety of
systems ranging from micro-controllers with minimal functionality to relatively powerful
systems such as smartphones and enterprise routers [115]. In this section, we focus on
resource-constrained embedded systems, such as Intel’s Siskiyou Peak [324].

Embedded systems generate, process, and exchange vast amounts of security and
safety critical data as well as privacy sensitive information, and hence are appealing
targets for various attacks. Recent studies have revealed many security vulnerabilities in
embedded devices [111, 115, 313, 233, 93, 274, 359, 202]. This poses new challenges on
the design and implementation of secure embedded systems that typically must provide
multiple functions, basic security features, and real-time guarantees at minimal cost. To
ensure the correct operation of these devices, it is crucial to assure their integrity, in
particular the integrity of their code and data.

Most established hardware security solutions, such as Trusted Platform Module
(TPM) [383], do not scale to embedded systems due to their high complexity and
costs [409, 369, 295, 267]. Software-based solutions [217, 342, 343, 244], on the other
hand, typically rely on strong assumptions that are hard to achieve in practice [32].

Previous approaches that specifically target low-end embedded devices do not meet
the real-time requirements of many embedded applications, or are highly inflexible, for
instance, they assume a static software configuration and do not allow dynamic loading
of applications at run time [139, 368, 286, 226] (see Section 3.3.2 for a more detailed
discussion).

Goals and Contributions. The goal of this work is to design and develop a security
architecture for small embedded devices, which allows dynamic loading of isolated tasks
that might originate from mutually distrusting stakeholders. In particular, tasks must
be isolated from all other tasks as well as all privileged software, e.g., the Operating
System (OS).

Isolated tasks should be able to exchange information with other isolated tasks and
with external entities in a secure way, i. e., providing integrity, confidentiality, freshness,
and authenticity of the exchanged information.

Furthermore, the platform must be able to provide real-time execution guarantees even
in the presence of potential malicious (isolated) tasks.

* We present TYTAN, which, to the best of our knowledge, is the first security
architecture for low-end embedded systems providing (1) a hardware-assisted
dynamic Root of Trust (RoT) that allows secure task loading at run time; (2) secure
Inter-Process Communication (IPC); (3) local attestation as well as Remote Attesta-
tion (RA); and (4) real-time guarantees. TYTAN is designed for multi-stakeholder
scenarios and allows for secure execution of mutually distrusting tasks.

3.1 TYTAN: TINY TRUST ANCHOR FOR TINY DEVICES

* Our TYTAN implementation is based on Intel’s Siskiyou Peak [324], an architecture
intended for deeply embedded systems.

¢ In our evaluation we show TYTAN’s efficiency and effectiveness. We show that all
of TYTAN’s components are real-time compliant and demonstrate its applicability
to automotive embedded control systems.

3.1.1 Requirements

Safety and security critical applications of embedded systems, for instance, in automotive
use cases, require: (1) real-time guarantees; (2) isolation of system components; (3) dy-
namic configuration; (4) techniques for device integrity verification (RA); and (5) support
for multiple, potentially mutually mistrusting, stakeholders. All these requirements
should be realized while relying on a minimal Trusted Computing Base (TCB), both in
software and hardware. Additionally, the system should work with existing hardware
security architectures for embedded systems.*

Real-time Guarantees. Acting reliably within strict time frames is highly relevant, yet not
considered by most security architectures for embedded devices [139, 368, 286]. Real-time
capabilities required for systems to be usable in safety critical applications.

Isolation. Faults in one system component cannot (directly) influence other components
and an adversary is detained from manipulating security critical system parts or leaking
secrets. Isolation is fundamental to protect critical components against unintended access
by other (malicious) components.

Dynamic Configuration. Tasks (applications) can be dynamically loaded, unloaded,
started, and stopped on demand at run time. Dynamic task creation enables better
utilization of embedded system’s resources, e.g., when a component or function is
rarely used, it can be loaded on demand only when needed. This way it does not
continuously allocate resources. Furthermore, dynamic task management improves the
system’s security as it allows updating vulnerable software components at run time.
By unloading the old version of the component and dynamically loading the patched
version, the system can be updated.

Integrity Verification and Secure Provisioning. While local attestation allows different
components on the same system to mutually verify their integrity, Remote Attestation (RA)
allows a device to prove the integrity of its software state to other devices. Furthermore,
secure provisioning of confidential data to secure tasks must be enabled, e.g., by es-
tablishing an authentic and secure channel between a task and other local or remote
entities.

Multiple Stakeholders. Embedded devices increasingly execute tasks from multiple,
mutually distrusting stakeholders. Even smartcards compliant to the JavaCard standard
can execute third party code [293]. Also in automotive Electronic Control Units (ECUs),

TYTAN builds on top of TrustLite [226], a security architecture for embedded system enabling isolated
execution environments (cf. Section 3.3).

31

32

SECURITY ARCHITECTURES

often software provided by the component supplier and the car manufacturer run in
parallel on the same device. While the component supplier requires protection of its
intellectual property and the integrity of its software components, the car manufacturer
wants to ensure the correct and reliable operation of its tasks. This requires both, means to
minimize the required trust between the individual software providers and stakeholders
as well as mechanism to establish explicit trust between them when needed.

3.1.2 System and Trust Model

TYTAN targets multi-stakeholder scenarios where mutually distrusting parties provide
software for real-time embedded systems. Therefore, multiple entities are involved during
deployment and operations of a TYTAN system.

Stakeholders. TYTAN’s model involves the following parties: the device manufacturer M,
the device owner O, and multiple task providers P;. In the context of embedded systems
applications are usually called tasks. M provides the platform’s underlying hardware
and software components, comprising TYTAN’s TCB, which is critical for the correct
operation of TYTAN (marked as trusted software in Figure 15). These parts must be
trusted by all parties. O controls the OS. The OS and the tasks provided by P (e. g., Task
A - D in Figure 15) are mutually distrusting. All tasks are isolated from each other and
secure tasks are in addition isolated from the OS.

3.1.2.1 Adversary Model

The adversary ADV’s goal is to break the security guarantees of any secure task that is
not provided by ADYV itself. ADV can compromise or deploy normal tasks as well as
secure tasks. Furthermore, ADV can compromise the Real-time Operating System (RTOS)
and other privileged software outside the TCB. However, if ADV has gained control
over the RTOS, it does not aim at affecting the platform’s availability. We discuss the
distinctive trust layers of TYTAN below.

Hardware attacks are out of scope, hence, ADV cannot extract information protected
by TYTAN’s hardware security architecture, e. g., via side-channel attacks, or manipulate
the TCB’s software components, which are protected by secure boot.

Trust Relations. The device manufacturer M is trusted by the device owner O and by all
task providers P;, shown by the green arrows in Figure 14. The device manufacturer M
ensures that the security critical parts of the system (i. e., the TCB) are integrity protected.
The TCB is protected by hardware security mechanisms, e. g., Execution-Aware Memory
Protection Unit (EA-MPU)?* and secure boot.

The device owner O has control of all software components on the system except
for those software components that are explicitly protected, i.e., integrity protected
components started with secure boot and isolated by the hardware isolation mechanism
(EA-MPU). All other software components, including privileged software such as the
Operating System, can be manipulated by O. However, O does not trust the providers of

2 An EA-MPU can restrict access to data depending on the currently executed code (cf. Section 3.1.3.2).

3.1 TYTAN: TINY TRUST ANCHOR FOR TINY DEVICES

2 N é

Task Provider P, Task Provider Py Task Provider P
L

[
||
Tosk, RS

Privileged Software <:"@ 8

Device Owner O

S

Controls
Controls

N

L A 4

8 P TCB

J
Device Manufacturer M
1
== Trust === Optional trust == Dependence on allocation of resources / availability

Figure 14: Trust relations between different stakeholders in TYTAN.

tasks running on the platform. Therefore, O isolates the privileged software (i.e., the OS)
from all tasks.

Task providers P do not trust any part of the system except for the TCB. Furthermore,
P are not trusted by any other party, i.e., M, O and all other P. However, all task providers
have to trust and rely on the device owner with regard to resource access (indicated
by the black arrows in Figure 14), i.e., O can simply refuse to execute a task, provide
network services, etc. Furthermore, any P can freely decide to trust other tasks on the
system and collaborate with them (green dashed arrows in Figure 14), in particular,
after establishing secure channels between secure tasks where both involved tasks are
authenticated.

Trust Layers. TYTAN has three different layers of trust. The first layer is the TCB
(marked green in Figure 15). This layer is trusted by all parties and is protected by the
hardware. The second layer is privileged software, such as the OS, and is generally
untrusted, colored red in Figure 15. However, since it has control of the resource usage it
can deny the execution of the system or parts of the system. The third layer comprises the
tasks running on the system. “Normal” tasks are completely untrusted, they are shown as
white boxes in Figure 15. They are not integrity protected; thus, they can be manipulated
by the OS and depend on both, the system’s TCB and all privileged software. Secure
tasks are integrity protected and can be trusted by their respective task providers (violet
and blue in Figure 15). Optionally, task providers can establish further trust relations
among each other. Importantly, secure tasks as well as normal tasks cannot disturb the
operation of the platform.

33

34

SECURITY ARCHITECTURES

Trust Model for Task Providers. Figure 15 shows the trust model from the perspective of
task provider P 5, providing Secure Task A. Naturally, P 5 trusts its own task. Furthermore,
Pa has to trust the platform’s TCB, marked green. Pa does not need to fully trust the
OS, this is enabled by TYTAN's security architecture that isolates Secure Task A from
the OS. However, the OS has still control of the resource usage on the platform and could
refuse to execute tasks. Therefore, the OS could launch a Denial-of-Service (DoS) attack
against Secure Task A (and any other task), which means P4 has to trust the OS with
regard to availability.

P does not need to trust any other task because all tasks — secure tasks and “normal”
tasks — are isolated from each other. In a multi-stakeholder system, P4 might not know
and trust the other task providers and their tasks coexisting on the platform. However,
even if Pa does not assume other task providers to be malicious, other tasks might be
attacked and controlled by an adversary ADYV threatening Pa’s task without TYTAN’s
isolation guarantees.

Nevertheless, P o can decide to have a secure and authenticated connection to a subset
of the other tasks. For instance, P4 could collaborate with Secure Task B, i.e., trust Pg.
While establishing a communication channel, tasks can mutually verify their integrity
and gain trust in each other.

3.1.2.2 Hardware Platform

We focus on resource-constrained embedded systems as used in many automotive and
industrial applications. The term embedded system is widely used for a large variety of
systems reaching from micro-controllers-based systems with minimal functionality to
quite powerful systems such as home routers or smartphones. Sometimes even enterprise
routers are attributed as embedded systems, even-tough they are as big, complex, and
powerful as full-flashed servers [115].

Our prototype is based on a system consisting of approximately 400,000 gates. Pro-
duced in a fairly old structure size, this results in a chip in the scale of 1 mm?. Further-
more, the system has very low power consumption (1 mW /100 Mhz). Typical examples
of devices that fall into this category are the TI MSP430, ARM Cortex M3, and Intel
Siskiyou Peak. All devices need to be equipped with an EA-MPU in order to be used
for TYTAN. We used Intel’s Siskiyou Peak with an EA-MPU [226] as base platform for
TYTAN. The EA-MPU concept that was introduced in TrustLite [226] is described in
detail in Section 2.1.1. For the remaining of this section we will consider this class of
systems when using the term embedded system.

3.1.3 TYTAN Design

TYyTAN combines different functional and security components in an architecture that
provides both real-time capabilities and strong isolation for security critical tasks. Ty-
TAN’s architecture and its main components are described subsequently.

3.1 TYTAN: TINY TRUST ANCHOR FOR TINY DEVICES 35

Normal Normal | Unprivileged
Task C Task D Software
IPC Proxy
Privileged
EA-MPU Config Software

EA-MPU Platform Key (Kp) (Slt’srr;gzelr?lo) Hardware

Figure 15: TYTAN system architecture providing secure tasks that are mutually isolated and
isolated from the RTOS through strong hardware-based isolation, indicated by bold
borders. Normal tasks are not isolated from the RTOS, shown by the dashed line.
Components marked green comprise TYTAN’s TCB.

3.1.3.1 TYTAN Architecture

TYTAN combines hardware security features with real-time capable software compo-
nents. It provides TEEs that allow the isolated execution of security critical tasks without
trusting the system’s privileged software components, in particular the OS. Hence, Ty-
TAN provides Trusted Execution Environments (TEEs) for embedded systems that are
conceptional similar to Software Guard Extensions (SGX) enclaves. TYTAN goes beyond
other platforms that aim to achieve similar isolation properties by providing real-time
guarantees, which requires that all functionalities of the system have the property of
either having bounded execution time3 or being interruptible. TYTAN ensures that all
security critical components are not endangered by these properties.

TYTAN adapts existing components, e. g., the RTOS, in order to integrate them with
the underlying security architecture TrustLite [226]. TYTAN extends the traditional
hierarchical isolation model of computer architectures and creates a new, orthogonal
delimitation between trusted and untrusted system components. This allows TYTAN
to utilize features and capabilities of the real-time RTOS to create a secure real-time
capable system with a minimal TCB, i.e., the TCB does not need to contain complex
functionalities such as a real-time scheduler.

Figure 15 shows TYTAN'’s architecture. At the hardware level, TYTAN relies on
the security guarantees provided by an embedded system security architecture such as
TrustLite [226], which provides basic mechanisms such as memory isolation, a platform
key and secure boot capabilities. The hardware capabilities are managed by privileged
software. TYTAN divides the privileged software into components that are critical (green
in Figure 15) and those that are non-critical for security. TYTAN’s goal is to minimize
the amount and complexity of critical components.

Critical software components are responsible for managing the security functionalities
of the system, e. g., by managing the access to the platform key or configuring memory

The maximal length of uninterruptible execution is application dependent. In Section 3.1.6 we evaluate the
execution times of TYTAN’s uninterruptible components.

36

SECURITY ARCHITECTURES

isolation in the EA-MPU. All uncritical tasks are managed by the untrusted OS compris-
ing the majority of privileged software. The critical components are protected from the
untrusted components utilizing the underlay platform isolation mechanisms, i. e., using
the EA-MPU. Secure boot ensures the integrity of all critical software components that
are loaded at boot time. The EA-MPU configuration module takes control of the EA-MPU
before any untrusted code is loaded, hence, it can maintain the isolation of itself and all
other critical components throughout the run time of the system.

TYTAN delegates as many tasks as possible to unprivileged software. This allows
TYTAN to minimize complexity and allows these components to benefit from the
functionalities provided by the privileged system software. In particular, security critical
tasks, such as the Root of Trust for Measurement (RTM) or the RA services, can rely on
the real-time scheduling capabilities of the RTOS. TYTAN ensures these components’
correct behavior even if their execution is interrupted by the RTOS, thus they do not
need to have bounded execution times without violating the real-time properties of the
platform.

TyTAN maintains legacy compatibility by supporting “normal” tasks that are isolated
from other tasks on the system. However, their memory is not protected from accesses by
the untrusted RTOS. Secure tasks, on the other hand, are protected from the RTOS, i.e.,
the integrity and confidentiality of their memory is ensured by TyTAN. Nevertheless,
the RTOS can dynamically manage both “normal” and secure tasks, i. e., create, destroy
and suspend them during run time.

For secure tasks TYTAN provides a set of security functionalities, in particular, all
secure tasks are measured when created. This measurement serves as an identity for each
tasks and can be used for remotely attesting the integrity of a task, locally identifying
tasks to establish secure channels between tasks, and to store data securely allowing
secure tasks to maintain data confidentiality across multiple executions.

3.1.3.2 TYTAN Components

TYTAN, see Figure 15, is composed of several components that are described in the
following. The hardware and components shown in green comprise TYTAN’s TCB. The
Operating System (OS) is not part of the TCB.

Tasks. TYTAN supports two types of tasks: normal tasks are accessible by the OS, they are
only isolated from other tasks. Secure tasks are isolated from all other software including
the OS. Each secure task t has a unique identifier id;, i. e., the hash digest of its binary
code, which is measured during task creation. All tasks are loadable, unloadable, and
suspendable at run time.

TYTAN ensures that secure tasks are isolated throughout their entire lifetime guaran-
teeing their integrity and confidentiality during execution. Furthermore, TYTAN ensures
the deletion of all information from memory before accesses is given to untrusted com-
ponents, e. g., when a task is unloaded, the task’s memory is erased before handed back
under the control of the OS. Similar, registers are erased before execution is passed to the
OS, e.g., when a secure task is interrupted or exits. The initial integrity of secure tasks is
measured by TYTAN and can be validated via remote and local attestation.

3.1 TYTAN: TINY TRUST ANCHOR FOR TINY DEVICES

Real-time Operating System (RTOS). TYTAN adapts and extends an existing RTOS
(FreeRTOS [15]) and inherits the real-time properties of this OS, i.e., TYTAN provides
real-time scheduling for “normal” tasks as well as for secure tasks. It ensures that all
tasks and system components can be interrupted to allow other pending operations to
proceed within the time frame allocated to them.

Our modifications and extensions to FreeRTOS do not violate the system’s underlying
assumptions for a RTOS. In particular, a real-time kernel has to fulfill the following
requirements as identified by Stankovic and Rajkumar [362]:

1. Multi-tasking support

2. Priority-based preemptive scheduling

3. Bounded execution time for primitives

4. High-resolution real-time clock

5. Special alarms and time-outs

6. Real-time queuing

7. Delay processes, i.e., interrupt and resume task execution

Multi-task support, priority-based scheduling, high-resolution clock, alarms, and time-
outs as well as the real-time queuing of FreeRTOS are not influenced by TYTAN. However,
the ability of interrupting and resuming tasks had to be adapted with the introduction
of secure tasks. We will detail on TYTAN’s handling of secure task in Section 3.1.4.2
and explain how secure task can be managed by FreeRTOS’s preemptive scheduler.
Another important property that is affected by TYTAN's extensions is requirement 3
(bounded execution time for primitives). As we already identified in our requirements
analysis (cf. Section 3.1.1), TYTAN is designed such that all primitives have a maximum
execution time or to be interruptible. In Section 3.1.6 we evaluated the execution time of
all primitives we added to FreeRTOS and show that all uninterruptible executions have
bounded execution times.

The OS is not included in TYTAN’s TCB, i.e,, it is not trusted with respect to the
security properties of secure components and tasks of the platform. Therefore, all op-
erations by which a malicious OS could violate these properties, e. g., modify a secure
tasks initial memory content, are validated by TYTAN. As the OS is in control of the
systems resources and controls, for instance, the execution schedule of tasks and access
to peripherals, it can prevent the loading or execution of tasks. However, the OS can only
impair availability of the platform or individual tasks.

Central Processing Unit (CPU) and Peripherals. The TYTAN platform comprises uni-
versal hardware components including processing units, i.e., a CPU, and peripheral
devices, such as network interfaces, storage devices, etc. These components are part of
TyTAN’s TCB.

Peripherals are accessed through memory-mapped configuration registers. This allows
controlling access to devices via memory access control mechanisms, i.e., using the

37

38

SECURITY ARCHITECTURES

EA-MPU access to peripherals can be provided (exclusively) to secure tasks. The CPU is
shared, executing trusted and untrusted software. TYTAN ensures that no information
is leaked between consecutively executed entities by erasing the CPU’s internal state,
e.g., registers, before executing untrusted software.*

EA-MPU. TYTAN utilizes an Execution-Aware Memory Protection Unit (EA-MPU) [226]
as memory isolation mechanism. An EA-MPU is a hardware component providing;:
(1) memory access control enforcement based on the code that attempts to access a data
region, e. g., the stack of a task can be accessed only by the task itself; (2) each task can
be invoked only at a dedicated entry point; and (3) interrupts are handled such that the
memory isolation rules of the EA-MPU are enforced, i. e., a (malicious) interrupt handler
cannot gain any information about the state of an interrupted task. Section 2.1.1 provides
a more detailed explanation of the EA-MPU.

Platform Key. The TYTAN hardware platform comes with a platform key K. Access to
this key is controlled by the EA-MPU. Only trusted software components have access to
K. Additional keys can be derived from K, e. g., for RA or for secure storage.

An asymmetric key pair for RA can be derived from the device’s symmetric platform
key K, using it as seed to instantiate a Deterministic Random Bit Generator (DRBG) [40],
which is used to in the generate of the asymmetric key pair [280]. The public key needs
to be transmitted to the Certification Authority (CA) in an authentic way, e. g., it can
be extracted during manufacturing the device. The CA generates a certificate for the
device’s public key, which is later made available to the remote verifier.

Secure Boot. TYTAN's trusted software components (i.e., EA-MPU driver, Int Mux,
IPC Proxy, RTM task, Remote Attest and Secure Storage) are loaded with secure boot
and isolated from the rest of the system by the EA-MPU to ensure their integrity. These
components are not higher privileged than the OS and only some of them have the same
privileges as the OS (e.g., EA-MPU driver).

3.1.3.3 Trusted Execution

TYTAN provides trusted execution by isolating secure tasks and trusted software com-
ponents based on the access control enforced by the EA-MPU. Each security primitive
isolated from all other system components. The individual security primitives are de-
scribed in the following.

EA-MPU Driver. The dynamic handling of tasks requires the EA-MPU to be dynamically
configurable. This is performed by the EA-MPU driver, which sets the memory access
control rules in the EA-MPU when loading or unloading secure tasks. The EA-MPU rules
for the static components (including the EA-MPU driver itself) are set during secure boot.

Attestation. In order to prove the integrity of a task t to a local or remote verifier, the
Root of Trust for Measurement (RTM) task computes a cryptographic hash function over the
binary code of each secure task when it is created. This hash digest serves as identity of
the task (id;). To meet real-time requirements, the RTM task must be interruptible during

4 TYTAN is targeted to small embedded systems that neither provide multi-core CPUs nor caches.

3.1 TYTAN: TINY TRUST ANCHOR FOR TINY DEVICES

the hash calculation. By isolating t's memory and preventing its execution, TYTAN
ensures that t is immutable while the RTM task computes id;. This guarantees the
correctness of the measurement and enables reliable verification of id;.

The authenticity of id; and its origin is crucial. TYTAN supports different authentica-
tion methods for local and Remote Attestation. The EA-MPU ensures that only the RTM
task can modify id;. For local attestation, id; can be used as both identifier and attestation
report of t. TYTAN’ RA mechanism uses Message Authentication Code (MAC) with an
attestation key K, to prove the authenticity of id; to a remote verifier. K, is derived from
K}, and only accessible to the Remote Attest task.>

Secure Inter-Process Communication (IPC). TYTAN enables secure communication
between tasks via an IPC proxy, which forwards messages m from a sender § to the
receiver R. § copies m and the identity idg of R in general-purpose CPU-registers and
invokes the IPC proxy via a software interrupt.® The IPC proxy determines R’s memory
location and writes m and idg to R’s memory. This implicitly authenticates m and idg
since the EA-MPU ensures that only the IPC proxy can write to R’s memory. To efficiently
transfer large amount of data between tasks, the IPC proxy can set up shared memory
that is accessible only to the communicating tasks.

Secure Storage. Secure storage is realized as a secure task. For each task, a task key
K; = HMAC(id;|K;) is generated, which is bound to the task identity (id;) and the
platform (Kj). Tasks interact with the secure storage task over secure IPC, which allows
the identification of the requesting task. All data a task ¢ sends to the secure storage task
get encrypted with K;. Since id; is included in K; a task that tries to access data stored
before will only succeed if it has the same id; as the task that stored the data, i.e., if it is
the same task.

3.1.4 Implementation

In this section we describe our implementation of TYTAN. First, we describe the hard-
ware platform of TYTAN. Afterwards we explain our extensions of the OS and its
functionalities. Lastly, we elaborate on TYTAN's platform security services. The source
code of TYTAN was developed on a non-public Intel platform and is not available as
open source.

3.1.4.1 Hardware platform

We implemented TYTAN on the Intel Siskiyou Peak architecture [324], a low-power,
32-bit core intended for embedded applications. Siskiyou Peak uses a flat, physical
addressing model and interacts with peripherals using Memory-Mapped Input/Output
(MMIO). Siskiyou Peak was extended with an EA-MPU as presented in TrustLite [226].
An EA-MPU defines access control rules to memory depending on the currently executed
code (cf. Section 2.1.1). The concept of an EA-MPU is not limited to the Siskiyou Peak

5 In Sancus [286] a key derivation scheme is shown, which allows the creation of individual attestation keys per task
provider P.
6 Provisioning 8 with idy is left to the task developer.

39

40

SECURITY ARCHITECTURES

platform and could be implemented on other embedded processors as well. Hence, the
TYTAN architecture is not limited to one specific platform and can be adapted to other
processors.

We extend the static EA-MPU usages presented in TrustLite [226] with dynamic
configuration of memory access control rules. We implemented TYTAN on a Xilinx
Spartan-6 Field Programmable Gate Array (FPGA) running at 48 MHz.

3.1.4.2 Operating System

TYTAN uses the FreeRTOS [15] Real-time Operating System. We ported FreeRTOS to
Siskiyou Peak and extended FreeRTOS with dynamic handling of secure tasks and sup-
port for the EA-MPU. Additionally, security primitives, such as secure IPC and secure
interrupt handling were added to the OS. All our extensions to FreeRTOS were designed
such that they do not violate the real-time requirements identified by Stankovic and
Rajkumar [362]: (1) multi-tasking support, (2) priority-based pre-emptive scheduling,
(3) bounded execution time for primitives, (4) high-resolution real-time clock, (5) special
alarms and time-outs, (6) real-time queuing, and (7) delaying of processes (interrupt/re-
sume task execution) [362].

Specifically, we made the following adaption and extensions to FreeRTOS. (i) Func-
tionalities for dynamic task handling had to be extended, i.e., loading of tasks at run
time. (ii) We extended FreeRTOS’s preemptive scheduler to support secure tasks, i.e., in
TYTAN the untrusted OS is not responsible to save the state of secure tasks on the task’s
stack nor to restore the secure task’s state before resuming its execution. (iii) The OS
had to become aware of Siskiyou Peak’s extended hardware features (memory isolation
via EA-MPU). This involves maintaining the Memory Protection Unit (MPU) rules, such
as setting new protection rules on creation of a secure task. (iv) For secure IPC, a new
system call interface has been added to FreeRTOS.

Interrupts. Interrupts are handled by software routines, called interrupt handlers, which
are typically part of the OS. In order to invoke the correct interrupt handler for each
type of interrupt the Interrupt Descriptor Table (IDT) assigns interrupt handler starting
addresses to interrupt types. The hardware interrupt engine automatically invokes the
corresponding interrupt handler routine on occurrence of an interrupt, i.e., the IDT
determines the platform’s behavior on interrupts.

TYTAN ensures the correct use of interrupt handlers by protecting the integrity of the
IDT using the EA-MPU. This is crucial as the IPC proxy, for instance, should always be
executed when a defined software interrupt is issued. If an adversary ADV manages to
modify which interrupt handler is invoked by a task, e. g., to send a secure message, ADV
could acquire confidential data or violate a message’s integrity. Hence, the IDT entries (at
least those of critical handlers) have to be protected from unauthorized modification. To
restrict access to the IDT to TYTAN’s TCB only, an EA-MPU rule protects the memory
area containing the IDT, as depicted in Figure 16. The dashed line shows that the
green components are integrity protected by the EA-MPU. In contrast to more powerful
platform such as Intel’s x86 or ARM systems the IDT in TYTAN's hardware the IDT is

3.1 TYTAN: TINY TRUST ANCHOR FOR TINY DEVICES

set at a fixed location. Hence, the register pointing to the IDT (known as IDTR) cannot be
modified to install a new, possibly malicious, IDT.

interrupt Operating System
handler

interrupt interrupt interrupt
handler handler handler

Hardware

IDT: Interrupt Descriptor Table IDTR: Interrupt Descriptor Table Register

Figure 16: Interrupt handler protection in TYTAN. The IDT as well as handler routines for critical
interrupts are protected by the EA-MPU. Uncritical interrupt handlers remain in the
untrusted OS.

Dynamic Task Handling. By default, FreeRTOS does not support dynamic loading
of tasks, i.e., tasks have to be loaded into memory at boot time together with the OS.
However, dynamic task loading allows for better resource utilization making it a desirable
feature.

Dynamic Task Loading. FreeRTOS had to be extended to allow loading tasks at run time,
which requires: (1) allocation of memory for the new task; (2) loading the new task’s
code and static data into memory and preparing its stack: FreeRTOS operates on physical
memory and the base address of a task changes depending on which memory regions
are free at load time, making relocation necessary; and (3) invocation of the task, i.e.,
adding it to the OS scheduler.

To perform those steps, we extended FreeRTOS with an ELF (Executable Linking
Format) loader. Executable Linking Format (ELF) is one of the most commonly used
formats for executables; it is used, for instance, on Linux. Siskiyou Peak and FreeRTOS
operate on physical memory, task binaries have to be relocatable. When loaded at run
time, the base address of a task will change depending on which memory regions are
currently free. ELF supports relocatable binaries and encodes all information in the
binary file’s header section. This includes the size of the code and data section as well
as the address of the initial starting address, i.e., at which point the task should start
executing. Furthermore, the ELF header contains a list of all absolute references within
a binary. These references are memory addresses used by the code and depend on the
memory address at which a task is loaded, i. e., they have a fixed offset from the start of
a task’s memory area (more precisely from the section start) and their final address is
therefore the start address of their section plus the provided offset. Hence, this calculation
has to be done for every reference in the relocation process after the memory location
of a task is determined. However, the positions of the references themselves within the
program are again expressed as an offset from the section beginning. To find a reference
in memory its offset again has to be added to the sections base address. The offsets to the

41

42

SECURITY ARCHITECTURES

references are listed in the header along with the offset to their target addresses, which
have to be placed in the code.

Dynamic Task Unloading and Suspending. Unloading a task requires deleting it from the OS
scheduler and reclaiming its memory. Reclaiming the task’s memory by the untrusted OS
requires to deactivate the EA-MPU rules isolation the memory from being accessed by the
OS. However, all remaining memory content — that might contain sensitive information —
has to be erased before lifting the access control policies for a secure task’s memory.

Task suspending requires the OS scheduler to maintain a list of tasks that are loaded in
memory without being executed at the moment. The tasks memory remains unchanged
and is kept inaccessible from the OS.

Secure Tasks. Secure tasks are isolated from other software components, i. e., the memory
of a secure task can be accessed only by the task itself and trusted system components.
The OS is not trusted and cannot access the task’s memory. Furthermore, the EA-MPU
enforces that secure tasks are invoked only at a dedicated entry point to prevent code
reuse attacks.

These restrictions of secure tasks effect how the OS can interact with secure tasks. We
adapted FreeRTOS to reflect these restrictions when interrupting and (re)starting secure
tasks.

Interrupting Secure Tasks. Tasks are frequently interrupted, e. g., to react to external events
such as arriving network packets. Whenever an interrupt occurs, the hardware exception
engine stops the current task and executes a predefined routine, called interrupt handler,
which reacts to the interrupt and resumes the task afterwards. This entire process should
be transparent to the task, i. e., after the interrupt, the interrupted task should continue
execution as if it had never been interrupted,” which requires the interrupt handler not to
change the state of the task. The task’s state consists of the content of the task’s memory
and the CPU registers (known as the context of the task). While the task’s memory
typically remains unchanged, the CPU registers are used by the interrupt handler itself
and, thus, must be saved. The instruction pointer (EIP) and flags register (EFLAGS) are
saved by the hardware exception engine to the stack of the interrupted task. For normal
tasks, all other CPU registers are saved to the task’s stack by the interrupt handler. Since
the context and stack of a secure task may contain sensitive information, the untrusted
OS must not be able to access this data. TYTAN uses the trusted interrupt multiplexer
(Int Mux in Figure 15) to securely save the context of a task to its stack before control
is passed to the potentially untrusted interrupt handler. Figure 17 shows the control
flow for handling an interrupt during the execution of a secure task, using a trusted
software component to securely store the tasks context before executing the untrusted
OS’s interrupt handler. Alternatively, context saving for secure tasks can be implemented
as a dedicated hardware engine, reducing latency at the cost of additional hardware, as
proposed by TrustLite [226].

(Re)starting Secure Tasks. When a normal task is resumed after it has been interrupted,
its context is loaded from the task’s stack to the CPU-registers by the OS. The registers

7 If the task requests a service from the OS via an interrupt this has of course an effect on the task, however,
in this case the change is intended.

3.1 TYTAN: TINY TRUST ANCHOR FOR TINY DEVICES 43

Interrupt delivered

Secure Task
Interrupt handler selected

from IDT

restore() @

task _core_job()
Trusted context saver
e routine issued
saved eax

saved ebx
Task context saved to task’s

stack, registers cleared

Store Operating System
Context ()

Interrupt handler issued

Resume task’s execution

O 6 ® 006

Task state restored and
execution continued

interrupt interrupt || interrupt
handler handler handler
0] :
Interl.'upt EA-MPU CPU
Engine Registers

Figure 17: Secure context saving in TyTAN. Before a potential untrusted interrupt handler is
executed the secure task’s context, i.e., CPU register content, is saved on the task’s
stack. When the task is resumed it restores its own saved context before continuing,
preventing the untrusted OS from learning the secure task’s internal state.

Hardware

IDT: Interrupt Descriptor Table

saved by the hardware (EIP and EFLAGS) are restored by a dedicated CPU instruction
(iret), which continues to execute the task from the instruction pointed to by the EIP,
i.e., where the task was interrupted. When a new task is created, the OS prepares the
stack of the new task as if it had been executed before and was interrupted at the starting
instruction of the task, typically the main function. Then the OS loads the initial context
of the task to the CPU registers and “resumes” the task.

For secure tasks there are two restrictions: (1) the OS cannot access the stack of a secure
task to restore its context; and (2) secure tasks can be invoked only with a dedicated entry
routine. This entry routine detects whether the task has been (re)started or was invoked
to receive a message. TYTAN provides this information in a CPU register, which is
checked by the task’s entry routine. When the task has been (re)started, the entry routine
restores the task’s context and continues the task’s execution. If the task is invoked in
order to receive a message via IPC, the message receiver handler of the task is called.
Since the entry routine is similar for all secure tasks, it is automatically included by the
TYTAN tool chain and is not need to be implemented by the task developer.

3.1.4.3 Platform Security Primitives

RTM Task. When a task t is loaded, the RTM task computes the hash digest of the task
t’s code, static data, and initial stack layout.8 This measurement is the basis for TYTAN's

In our prototype implementation we used Secure Hash Algorithm 1 (SHA1), however, the hash algorithm
can be changed easily when required.

44

SECURITY ARCHITECTURES

RTM Allocate memory

check _isolation(); start()

PP AT [Tty { Load new task’s binary

Prepare new task’s stack

Hash Table ¥

ebx[init value]
eax[init value]
| eip[*start()]

Isolate new task’s memory

Measure new task’s initial
state

©® @600 06

MPU OS Store new task’s

check_policy(); create task() measurement

protect region();

alloc();

load binary();
prepare_stack();
isolate();
neasure(): RTM: Root of Trust for

Measurement

Figure 18: Creation of a new secure task in TYTAN. The new task is loaded and initialized by the
untrusted OS. Before the task is executed it is isolated and its initial state is measured
and recorded.

local and Remote Attestation. The integrity of the RTM task is protected by secure boot
and the EA-MPU. As described before, during the loading of t it is subject to relocation. A
measurement of a “relocated” task would only be verifiable with additional information,
e.g., the memory location at which the task is loaded. To provide a position-independent
measurement for tasks, the RTM task temporarily reverts the changes made during
relocation before computing the hash digest.

The process of loading a new task on TYTAN is shown in Figure 18. (1) The OS
allocates memory for the new task. (2) The task’s code and static data is loaded by the
OS similar to a “normal” task, which includes the relocation process. Next, (3) the stack
of the new tasks is prepared by the OS. Any of these steps might be done incorrectly
by the untrusted OS, therefore TYTAN ensures that all modifications will be reflected
by the measurement of the task. (4) The memory of the new task is protected by the
EA-MPU, thus the OS cannot change the task’s memory any further. From this point on
only trusted components (the task is not able to execute yet) can access the task’s memory.
(5) The memory of the new task is measured by the RTM task. Since the new task is
not executable at this time and the integrity of the task’s memory is protected by the
EA-MPU the measurement can be interrupted without jeopardizing the correctness of
the measurement. (6) The measurement is recorded by the RTM tasks, the task is marked
executable and the OS gets notified that it may schedule the task.

The measurement component is implemented as a secure task that is scheduled by the
untrusted OS. This means that the OS can interrupt the RTM task to make sure other
tasks can meet their real-time deadlines. However, unlike other secure tasks, the RTM
task is loaded in the platform’s early boot phase — before the RTOS — protected via secure
boot, i. e., its integrity is guaranteed.

9

10

3.1 TYTAN: TINY TRUST ANCHOR FOR TINY DEVICES

Remote Attestation. TYTAN’s RA task (Remote Attest in Figure 15) can attest the correct
creation of a secure task to an external entity. For this the measurement of the secure
task is digitally signed with a platform specific attestation key that is derived from the
platform key Kj,. In particular, secure tasks can request an attestation report from Remote
Attest by sending a message via secure IPC. The secure tasks can include a payload in
the message to Remote Attest that will be included in the signature binding the payload
to the identity of the secure task. This enables the establishment of a secure channel
between the secure task and an external entity.

When Remote Attest receives an attestation request from a secure task, the secure
IPC mechanism provides the identity of the requesting task. Remote Attest uses the
attestation key, to which it has exclusive access, to create a digital signature over the
sender’s identity (i.e., cryptographic hash over the task’s initial memory content) and
the provided payload.® The resulting signature is send back to the secure tasks, again via
secure IPC.

Remote Attest executes as a secure task, i. e., the OS can schedule and interrupt it to
ensure the real-time behavior of the system. Its integrity is guaranteed by secure boot
and TyTAN’s run time isolation via the EA-MPU.

Secure Storage. TYTAN realizes secure storage as a security service running as a secure
task. It provides each secure task with an individual key. These individual keys can be
used by secure tasks to encrypt data for storage. As these keys are derived from the
platform key and the secure tasks’ identities, each secure task will always have the same
key, whether it was temporarily unloaded or when the platform was restarted.

A secure task can request a secure storage key via secure IPC. The secure storage task
uses the platform key, which is only accessible to TCB of TYTAN, and the sender’s
identity, which is provided by secure IPC along with the request, to derive a task-specific
key.” The derived key is sent back to the requesting task, again via secure IPC.

Secure IPC ensures that a secure task can only request its own key and ensures that
the task’s key can only be received by the requesting task. Furthermore, the requesting
task gets assurance that the received key is authentic, i. e., that it was generated by the
secure storage task.

The secure storage task executes as a secure task, i. e., the OS can schedule and interrupt
it to ensure the real-time behavior of the system. Its integrity is guaranteed by secure
boot and TYTAN'’s run time isolation via the EA-MPU.

Secure IPC. TYTAN's secure IPC mechanism provides (1) confidentiality of the trans-
mitted data, (2) integrity of the data, (3) freshness and (4) authenticity for both sender and
receiver. Integrity and confidentiality are ensured because only the sender and receiver
task as well as the IPC proxy, which is part of the TCB, can access the sent messages.
Freshness is guaranteed by the IPC proxy which will deliver each message only once to
the receiver. Authenticity again is managed by the IPC proxy that will deliver messages
only to the intended receiver and provides the receiver with the identity of the sender.

The data to be signed are compressed to a fixed length bit sting using a cryptographic hash function before
calculating the digital signature.

The derivation can be extended to include a sender provided value allowing a secure task to request multiple
different keys.

45

46

11

SECURITY ARCHITECTURES

Secure IPC in TYTAN starts with the sender § loading a message m and the identity
idg of the receiver R (i. e., the measurement™ of R) into the CPU registers. 8 then issues an
interrupt, which invokes the IPC proxy. The IPC proxy obtains the origin of the interrupt
from the hardware, i. e., the hardware provides the memory address of the instruction
where the interrupt was issued. From this memory address IPC proxy determines 8’s
identity idg, as the code location of the interrupt issuing instruction uniquely identifies
the sender task. The memory location of R is stored by the RTM task, which maintains a
list of the identities of all loaded tasks and their memory addresses (entry points). Then
the IPC proxy writes m and idg to the memory of R. For synchronous communication,
the IPC proxy branches to R, to enable its entry routine to process m. For asynchronous
communication, the IPC proxy continues executing 8 and R processes m the next time it
is scheduled.

3.1.5 Security Analysis

The primary goal of TYTAN is to assure the integrity of critical software components
and secure tasks, as well as the confidentiality of data processed by these components.
This is achieved through secure boot and hardware-enforced memory access control. In
particular, the integrity must be ensured at load time and then maintained at run time.

Integrity. For the TYTAN components the load time integrity is guaranteed by secure
boot, i.e., the platform can only boot if the software is untampered. Therefore, the
TCB components of TYTAN start executing with their integrity guaranteed while no
other untrusted software is executing that could violate their integrity. Before any other
software is loaded and executed TYTAN's security critical components are protected
by the EA-MPU. From this point on the integrity of these component is maintained
throughout the entire run time of the system due to their isolation.

Similarly, tasks” memory is isolated by the EA-MPU during their run time, ensuring
their integrity. A task’s initial (load time) integrity can be validated by external entities
before providing sensitive information to a task or accepting data from it, i.e., a secure
task’s initial integrity guarantees are established on demand.

Confidentiality. Confidentiality of the memory content of secure tasks and TYTAN's
critical components is, similar to their integrity, ensured by the memory isolation via
EA-MPU at run time. Secure data can be provisioned to secure tasks via a secure channel
that can be established via RA. Using the secure storage feature, data can be kept
confidential across multiple instantiations of secure tasks.

The confidentiality of platform secrets, in particular the platform key K, is ensured
by secure boot. Only legitimate software can be loaded on the platform initially. The
legitimate software will setup the memory protection for the platform secrets before any
untrusted software is loaded, i. e., the platform secrets are never accessible by untrusted
software ensuring their confidentiality.

For enhanced performance, our prototype implementation uses only the first 64 bits of the hash digest. For
operational systems, the full digest of a secure hash function should be used.

3.1 TYTAN: TINY TRUST ANCHOR FOR TINY DEVICES

Availability. Another important property of TYTAN is real-time execution of tasks,
which relies on the availability of the platform. There are different attack vectors that
an external adversary Adveyt can leverage to undermine the availability of TYTAN:
DoS and compromising the platform’s software in order to disturb the operation of the
system.

DoS attacks are domain specific (e. g., network flooding if a network interface exists, or
disconnection the power supply if the device is physically accessible to the adversary),
and no general solution exists to prevent DoS attacks.

To disturb the system’s operations via software, an adversary ADV needs to gain
control over the OS or a trusted software component, e. g., the EA-MPU driver. Normal
tasks as well as secure task cannot disturb the operations of other components of TYTAN,
due to the fact that they are isolated, and bound in their use of system recourse (e.g.,
execution time or memory). Hence, an adversary ADYV controlling a task cannot disturb
the availability of the platform, regardless whether ADYV is a task provider (P) how
deployed a malicious task, or if the ADV compromised an initially benign task. Only if
ADYV can exploit a vulnerability in the OS, to gain higher privileges, ADV can affect the
system’s availability.

An adversary ADV cannot exploit TYTAN's security services to launch a DoS at-
tack, which would prevent the system from executing its real-time tasks. In particular,
TYTAN’s attestation service is executed as a secure task, which can be interrupted by
the RTOS. Regardless of the number and frequency of attestation request sent by ADYV,
the attestation task is only executed if the system’s processing time is not allocated to
other tasks. Hence, ADV cannot occupy the system’s processing resources with attes-
tation requests. Additionally, methods presented in Section 6.1 can be used to prevent
unauthorized RA invocations.

Local attestation can only be launched by an adversary controlling a secure task.
The ADV’s tasks must be scheduled for execution to issue local attestation requests
exhausting the execution time slices allocated to it. The RTOS is responsible for allocating
execution time slice to tasks such that they do not conflict with the real-time execution
requirements of other tasks.

3.1.6 Evaluation

We evaluate the performance and applicability of TYTAN for embedded control systems
in automotive environments. To validate TYTAN's real-time properties, we evaluate the
performance of all components added or modified in TYTAN.

3.1.6.1 Evaluation Hardware Platform

We evaluated TYTAN on an FPGA instantiation of the Intel Siskiyou Peak processor
extended with an EA-MPU. We used a Xilinx Spartan-6 FPGA running at 48 MHz with
147000 logic cells.

Figure 19 shows our Spartan-6 FPGA mounted on a connector-board with a microphone
sensor connected (on the right).

47

48

SECURITY ARCHITECTURES

Figure 19: TYTAN prototype platform: Xilinx Sparta-6 with extension board and an attached
sensor.

Software

Figure 20: TYTAN use-case scenario of an adaptive cruise control system.

3.1.6.2 Use-case Evaluation

Our use case concerns a simulated adaptive cruise control system, where an embedded
device controls the speed of a vehicle depending on the accelerator pedal position and
the speed of a vehicle in front (measured by a radar sensor). The device runs three secure
tasks (see Figure 20), which are scheduled on a regularly at a frequency of 1500 Hz, i.e.,
every 0.67 ms. Task ¢ permanently monitors the accelerator pedal position sensor. Task ¢,
is loaded on demand when adaptive cruise control is activated by the driver; it monitors
the radar sensor. Task to controls the speed of the vehicle based on the data provided
by t; and t, i.e., tp implements the engine control software. When cruise control is
activated, t, is loaded into memory, which involves relocation, preparing the stack, and
measuring t;. All these operations take 27.8 ms, which is longer than the time available
between two scheduling cycles of ¢y and t;. Hence, loading t, could block ty and t; if
the loading procedure was not interruptible. Our results in Table 1 show that ty and ¢1,
despite the fact that they have to be scheduled at high frequency, meet their deadlines
while ¢, is loaded. TYTAN’s capability to reliably schedule ty and t7 is crucial for safe
and precise control of the vehicle’s speed.

3.1 TYTAN: TINY TRUST ANCHOR FOR TINY DEVICES

Table 1: Use-case evaluation results as illus- Table 3: Performance of restoring the context of

trated in Figure 20 a secure task (in clock cycles)
Task H ty to Branch Restore Overall Overhead
Before loading t, 1.5kHz — 1.5kHz 106 254 384 130
While loading t, 1.5kHz — 1.5kHz

After loading f; 1.5kHz 15kHz 15kHz Table 4: Performance of relocation for different
numbers of addresses changed by the
relocation process (in clock cycles)

Table 2: Performance of saving the context of a # of Runtime Runtime
secure task (in clock cycles) addresses (min) (avg)
Store Wipe Branch Overall Overhead 0 37 37
context regis- 1 673 703
ters
2 1,346 1,372
38 16 41 95 57 4 2,634 2,711

Table 5: Performance of creating a secure task (in clock cycles)

Task type Relocation EA-MPU RTM Overall Overhead
Secure 3,692 225 433,433 642,241 437,380
Normal 3,602 225 o 208,808 3,917

3.1.6.3 Performance of TYTAN Components

We evaluated the performance of TYTAN, in particular, all components that could
have an impact on its real-time behavior, namely: (1) interrupt handling; (2) secure task
creation; and (3) secure [PC.

We present all results in clock cycles; measurements in units of time are less meaningful
because they depend on the platform” clock-speed, which is variable and depends on
many factors that are not related to TYTAN.

Interrupt Handling. When an interrupt occurs, a context switch from the executing task

to the OS is performed. This involves three main tasks, which we evaluated individually:

(1) saving the context, (2) wiping the CPU registers, and (3) branching to the routine
handling the interrupt. Table 2 shows the results of the individual steps in TYTAN and
the overhead TYTAN induces compared to an unmodified FreeRTOS.

When a previously interrupted secure task should be continued, its context must be

restored. For this, the OS first branches execution to the entry address of the secure task.

Afterwards, the task restores its own context before continuing execution where it was
interrupted. Table 3 shows our evaluation results for restoring a secure task as well as
the overhead compared to an unmodified FreeRTOS.

Secure Task Creation. In TYTAN the creation process of a secure task t requires three
additional operations, which we evaluated individually: (1) FreeRTOS was extended with

49

50

SECURITY ARCHITECTURES

Table 6: Performance of configuring EA-MPU depending on the position of the first free slot in
the EA-MPU with 16 slots in total (in clock cycles)

Free slot position Finding free slot Policy check Writing rule Overall
1 76 824 225 1,125
2 95 824 225 1,144
16 399 824 225 1,448

Table 7: Performance of measuring a task depending on its memory size and number of memory
addresses changed during relocation (in clock cycles)

Memory size Runtime # of addresses Runtime
1 block 8,261 o) 114
2blocks 12,200 1 680
4blocks 20,078 2 1,188

8 blocks 35,790 4 2,187

the capability for dynamic loading of tasks, which implies memory address relocation
in the binary. The performance is dependent on the number of memory addresses that
need to be processed. Only for secure tasks two further operations need to be performed
in the creation process. (2) Secure tasks are isolated by setting EA-MPU rules, including
the validation of relevant security policies, e. g., ensuring that protected memory regions
do not overlap. And (3) every task is measured by the RTM task. This measurement
is dependent on the memory size and the number of memory addresses affected by
relocation.

Table 5 compares the performance of creating a secure task versus a “normal” task,
however, both types of tasks are loaded dynamically. For this evaluation, a task was used,
which had a memory size of 3962 Byte and 9 memory addresses that had to be processed
for relocation. While the relocation as well as the measurement — performed by the RTM
task — induce considerable overhead both operations are interruptible, i. e., they do not
prevent the platform from performing real-time tasks.

Relocation. For all dynamically loaded tasks, whether it is a secure task or a “normal” task,
relocation has to be performed. The performance of relocation depends on the number n
of addresses in task t’s code that need to be updated in the relocation process. Table 4
shows our evaluation results for different n. From these measurements we can conclude
that the run time of the relocation process is linear in the number of the references, with
the cost per reference being relocperrer = 650 clock cycle and fix cost of 73 clock cycle.
Hence, the overall run time cost for relocation of a task t with n addresses can be
calculated as: run time ~ 37 clock cycle +n - 650 clock cycle.

EA-MPU Configuration. Configuring the EA-MPU requires three steps. First, finding a
free EA-MPU slot for the new access control rule; second, checking the new rule against
existing EA-MPU rules (e. g., ensure that protected regions do not overlap); and, finally,

3.1 TYTAN: TINY TRUST ANCHOR FOR TINY DEVICES

Table 8: Memory consumption of TYTAN’s OS

FreeRTOS TyTAN Overhead

215,617 Bytes 249,943 Bytes 15.92%

writing the rule to the free EA-MPU slot. The number of MPU regions is fixed by the
hardware configuration. For our implementation with 16 available MPU regions, setting
a new rule resulted in the measurements listed in Table 6. Our evaluation shows that the
first step, finding a free slot, depends on the current EA-MPU utilization. However, the
worst case, i.e., only the last slot is empty, has a fixed execution time, thus it does not
violate the requirements for real-time execution when executed uninterruptible.

Task Measurement. The overall time required to measure a task t depends on three factors:
First, the memory size of the task ¢ to be measured. The measurement is done using
a cryptographic hash, which processes the memory in blocks of fixed length. For each
block, a routine has to be repeated, hence, the execution time is linear in the number
of blocks being processed. The second factor is the number of memory addresses in ¢
changed by relocation, which need to be converted in a position independent format for
the measurement. Third, the number of interruptions of the RTM task while measuring
task .

Since the interruption and scheduling of the RTM task are use case specific, we provide
our evaluation results excluding this factor.

Table 7 shows the performance evaluations results for measuring a task t. These results
show that the run time of the measurements depends linearly on the memory size
of the measured task and the number of memory address references involved in the
relocation process. Calculating the SHA1 hash of a task consists of a fixed overhead

shalfix =~ 4,300 clock cycle and a per block cost of shalperglock = 3,900 clock cycle.

For the reverse relocation, the fix cost is relocsix = 110clock cycle and the cost per
reference is relocperrer ~ 500clock cycle. Hence, the run time (T) of measuring a
task depends on the number of blocks (b) and the number of relocated addresses (a):
T = shalfix +b-shalperBlock + Telocrix + a - relocperrer ~ 4,300 clockcycle +b -
3,300 clock cycle + 110 clock cycle 4+ a - 500 clock cycle.

Secure IPC. TYTAN’s communication performance depends on the run time of the IPC
proxy and the execution time of the entry routine of the receiver task. The IPC proxy,
which is part of TYTAN’s TCB and executes uninterruptible, takes 1,208 clock cycles.
Importantly, the run time is independent of the sender task, the receiver task and the
message, including message size. Hence, the IPC proxy’s execution time is fixed, and
thus, compliant with TYTAN’s real-time requirements.

The entry routine of the receiver processing the message takes 116 clock cycles to call
the receiver task’s function that is responsible for handling the message. The run time of
the message processing is implementation specific. However, all processing performed by
the receiver task is interruptible, thus not impacting the platform’s real-time capabilities.

The overall performance of the secure IPC mechanism is 1,324 clock cycles.

51

52

SECURITY ARCHITECTURES

3.1.6.4 Memory consumption

The memory consumption of TYTAN's OS is the amount of memory used when no task
is loaded, however, the RTM task is always loaded and therefore included in our memory
overhead evaluation. Table 8 compares the memory consumption of TYTAN and an
unmodified FreeRTOS. It shows that TYTAN incurs moderate additional memory costs
of approximately 16 %.

3.1.6.5 Trusted Computing Base

We have evaluated the TCB of TYTAN in terms of Lines of Code (LoC). Our measure-
ments were made with the tool cloc [12].

Not all components of TYTAN’s TCB are required for the system to work, therefore,
we provide an evaluation for the minimal set of required components, i. e., the interrupt
system, the IPC proxy, the EA-MPU components and the RTM task. Table g lists the
number of LoC for each component as well as the total number for the entire TCB.

Table 9: Lines of Code in TYTAN’s TCB

Interrupt IPC proxy EA-MPU RTM TyTAN’s TCB FreeRTOS

79 133 149 73 545 7891

Our evaluation shows the advantages of TYTAN compared to traditionally embedded
system designs in which the entire RTOS has to be considered trusted. TYTAN shows a
reduction of the TCB by 93 % in number of lines of code compared to FreeRTOS.

3.1.7 Conclusion

TyTAN is the first comprehensive security architecture for low-end embedded systems
that provides (1) dynamic loading and configuration of secure tasks, (2) secure IPC, and
(3) real-time guarantees. We implemented TYTAN on the Intel Siskiyou Peak architecture
and demonstrated its effectiveness and efficiency through extensive evaluation.

The TYTAN architecture enables many new applications and use cases for low-end
embedded systems. In the subsequent sections we present novel solutions for collaborative
autonomous systems enabled by TYTAN's platform security guarantees.

3.2 SANCTUARY: ARMING TRUSTZONE WITH USER-SPACE ENCLAVES

3.2 SANCTUARY: ARMING TRUSTZONE WITH USER-SPACE
ENCLAVES

Mobile devices, in particular smartphones, have become the most used personal comput-
ing devices, i. e., today, the most common way of accessing internet services is through
mobile device, replacing traditional devices such as desktop and laptop computer [269].
The success of mobile devices is rooted in the software ecosystems of — often cloud-
connected — services that evolved around them.

However, the success of mobile devices and their increasing use for sensitive appli-
cations, including mobile banking, payments and elD services, makes them attractive
targets. The large attack surfaces of today’s mobile devices, due to their feature richness
and complexity, pose challenging privacy and security risks.

The need for secure mobile services motivated ARM in 2008 to develop a security
architecture for mobile devices, called TrustZone [24] (see Section 2.3.1 for details).
TrustZone divides a platform into two logically isolated systems, where one, called
normal world, hosts all non-critical code and data. The second system, called secure
world, is reserved for security critical services, providing them with a Trusted Execution
Environment (TEE).

Unfortunately, TrustZone does not provide an open and accessible TEE solution as
desired by third party application developers, which would also be beneficial for the
users.

Limitations of TrustZone. In TrustZone, all sensitive code has to share a single TEE
due to TrustZone’s separation into only two security domains. As a result, all Trusted
Apps (TAs) enlarge the platform’s Trusted Computing Base (TCB), compelling device
vendors to establish very restrictive usage policies, and thus, largely limiting the access
of TrustZone’s TEE capabilities for third party developers, as described in more details
in Section 2.3.1.

In an effort to make the TEE security advantages more widely available, device vendors
provide limited TEE functionalities, such as key storage, to applications in the normal
world through public interfaces. However, this approach does not allow developers
to protect their own security-sensitive code and data, i. e., it is not sufficient to create
feature-rich and secure mobile services.

Mobile Security Architectures. Security architectures targeting ARM-based systems
previously proposed by academic researchers rely on virtual memory for isolation [197,
36, 145], using the same isolation mechanism proven insufficient for isolating TAs within
ARM TrustZone’s secure world [49]. Approaches that rely solely on temporal isolation,
i.e., suspending the entire normal world to provide protection for TA execution, are
not suitable for today’s multi-core platforms [264, 371], since they effectively disable
multitasking and parallel execution for the entire platform, which imposes severe usage
restrictions that directly affect user experience.

Goals and Contributions. Our main goal is to enable multiple independent TEEs on
ARM-based platforms without requiring hardware changes. This allows third party
application developers to benefit from make use of the full potential of TEEs.

53

54

SECURITY ARCHITECTURES

SANCTUARY is a novel security architecture for Trusted Execution Environments
(TEEs) on ARM-based systems. It provides isolated execution domains, comparable to
the user-space enclaves provided by Software Guard Extensions (SGX) on Intel platforms,
within the normal world. SANcTUARY allows third party apps to benefit from the same
strong isolation guarantees TrustZone relies on to separate the secure world from the
untrusted legacy code in the normal world. This design solves the dilemma of TrustZone
by enabling security-sensitive apps — called Sanctuary Apps (SAs) — to benefit from the
TEE security guarantees without endangering the security of the entire platform through
the addition of potential malicious or vulnerable code to the secure world.

SANCTUARY achieves SA isolation by dynamically partitioning and re-allocating sys-
tem resources: CPU cores and physical memory are temporarily reserved for isolated
compartments in which SAs execute without suspending the rest of the system. SaANc-
TUARY leverages TrustZone’s Address-Space Controller (TZASC) to ensure hardware-
enforced, two-way isolation between SAs and all other system components. This enables
an SGX-like usage of TrustZone without requiring any hardware modifications.

Our main contributions are as follows:

* We present SANCTUARY, a novel security architecture design providing enclave-
like isolated, normal-world compartments for ARM-based platforms, building on
existing TrustZone hardware and software components.

¢ In our conference publication [73] we present a Proof of Concept (PoC) implementa-
tion of SANCTUARY, using the HiKey 960 development board and the open-source
software OP-TEE for TrustZone.

* We analyze and discuss the security properties of SANCTUARY considering strong
adversaries with control over all normal-world software (including the Legacy
OS (LOS)) as well as malicious SAs.

* We evaluate several performance aspects of SANCTUARY and demonstrate SaANc-
TUARY’s practical performance and real-world benefits in a concrete use case.
Detailed evaluation results of SANCTUARY are presented in our conference publi-
cation [73].

3.2.1 Background

In this section we provide the background knowledge specific to SANcTUARY. Gen-
eral background information, e.g., on ARM TrustZone and Intel SGX are provided in
Chapter 2.

TrustZone Address Space Controller. TrustZone’s memory isolation between the secure
world and the normal world is enforced by partitioning the physical memory address
space. All memory accesses are moderated by the TrustZone Address Space Controller
(TZASC), which inspects all memory transaction on the system bus (see Figure 12) and
enforces the inaccessibility of secure-world memory regions from the normal world. This
enforcement is done based on specific bus transaction characteristics. The first version of

3.2 SANCTUARY: ARMING TRUSTZONE WITH USER-SPACE ENCLAVES

the TZASC — named TZC-380 — was published in 2010 [26], and could distinguish two
types of memory accesses based on a single bit, named “non-secure” (NS): non-secure
accesses (NS = 1), and secure accesses (NS = 0). All memory transactions issued by a
Central Processing Unit (CPU) core carry the NS-bit indicating whether the CPU core
was execution in the secure world (NS = @) or in the normal world (NS = 1) when issuing
a transaction.

The TZASC’s newer version (TZC-400) was introduced in 2013. It provides extended
filtering capabilities for memory transactions based on additional characteristics [27]. Its
new feature, called identity-based filtering, allows the definition of non-secure memory
regions, which are accessible only by selected bus masters, i. e., devices that can access the
memory. Bus masters are identified based on a so-called bus-master ID, which is included
in every memory transaction a bus master issues. In the ARM reference design, these
bus-master IDs are assigned to individual devices, such as CPU, GPU, DMA controller.
The identity-based filtering was designed by ARM for their TrustZone Media Protection
Architecture [28].

3.2.2 Adversary Model and Requirements

3.2.2.1 Adversary Model

SANCTUARY's adversary model is based on the same standard assumptions as TrustZone
and related work [156, 36, 35, 60, 122, 197], i.e., all normal-world software, including
privileged software such as the Operating System (OS) (executing in EL1, cf. Section 2.3.1)
and the hypervisor (executing EL2), are under the control of the adversary. However,
secure-world software as well as the monitor mode (EL3) are assumed to be immune
against the adversary.

The adversary is assumed to be capable of performing passive physical attacks. Invasive
physical attacks, such as fault injection at run time, are out of scope.

Further, SANCTUARY does not provide availability guarantees, i. e., we do not consider
Denial-of-Service (DoS) attacks.

In details, SANCTUARY's assumptions are:

¢ All normal-world software is considered untrusted, independent of its privilege
level, including applications (EL®), the LOS (EL1) and the optional hypervisor (EL2).

e Privilege levels (EL2 - ELO) are isolated via virtual memory.

¢ Software protection mechanism, e. g., Execute Never (XN), Unprivileged Execute
Never (UXN), Privileged Execute Never (PXN), and Privileged Access Never (PAN)
are available and active.

* Secure world and normal world are isolated through physical memory partitioning
enforced by the TrustZone hardware extensions [24].

* Secure-world software, including the boot loader and the firmware (monitor mode
executing in EL3), is trusted, i. e., comprising the system’s TCB.

55

56

SECURITY ARCHITECTURES

¢ Individual SAs can be compromised without risking the security guarantees of

other SAs or the system’s TCB.

3.2.2.2 Requirements Analysis

To enable mutually isolated security domains on ARM TrustZone-based systems, several
security requirements as well as functional requirements, listed below, need to be fulfilled.
SanNcruAaRry fulfills all security requirements as we show in Section 3.2.5. Further, we
demonstrate that SANCTUARY meets the functional requirements by our evaluation
presented in Section 3.2.6 and in our conference publication [73].

1.

Code and data integrity. The integrity of an SA’s code and data must be pre-
served. This can be achieved by (i) isolation during SA execution in combination
with (ii) attestation of the SA code and static data when loaded into the isolated
compartment.

Data confidentiality. Confidentiality of data processed in an SA must be preserved.
This can be achieved by (i) a secure channel for provisioning the data, (ii) spatial
isolation during execution, and (iii) temporal isolation to prevent that sensitive
information becomes accessible after SA execution has finished.

. Secure channel to secure world. An SA needs a secure channel to utilize security

services provided by the secure world without tampering by the normal world.
This can be realized via exclusive shared memory, i. e., shared memory accessible
only by the SA and the secure world, which, at the same time, is inaccessible by
untrusted normal-world software.

Protection from malicious SAs. To enable unrestricted usage models for SAs,
malicious SAs must be tolerated. Protecting the platform from malicious SAs can
be achieved by limiting the access privileges of SAs (i. e., SAs execute at privilege
level ELO) and preventing them from accessing normal-world memory.

. Hardware-enforced resource partitioning. To ensure strict isolation, both spatial

and temporal isolation are needed.

Minimal software changes. Leveraging existing interfaces of the secure-world OS
and the normal-world OS prevents extensive modification of the software stack.

Positive user experience. Assigning a single CPU core for limited time to SA
execution leads to low impact on the overall system performance for most usage
scenarios on today’s commonly available multi-core architectures. Latency should
be kept low by minimizing the SA run-time environment.

3.2.3 SANCTUARY Design

The goal of the SANCTUARY architecture is to enable secure and widespread use of
TEEs (e. g., through third-party developers) on ARM-based devices. SANCTUARY allows

3.2 SANCTUARY: ARMING TRUSTZONE WITH USER-SPACE ENCLAVES

the creation of multiple parallel isolated compartments on ARM devices in the normal
world, which are strictly isolated from the LOS and Legacy Apps (LAs). The isolated
compartments, which we call SANCTUARY Instances, run security-sensitive apps called
Sanctuary Apps (SAs). Every SANCTUARY Instance executes only a single SA at a time.
Since all SANCTUARY instances are independent and separated from each other, SAs are
strongly isolated from each other. Additionally, all SANCTUARY instances are isolated
from the existing TrustZone secure world.

Spatial isolation of a SANCTUARY Instance is achieved by (i) partitioning the physical
memory using the TZC-400 memory controller, (ii) dedicating a CPU core to the SANC-
TUARY Instance, and (iii) excluding the SANCTUARY Instance’s memory from shared
caches. Temporal isolation is ensured by launching the SANcTUARY CPU core from a
trustworthy state (ARM Trusted Firmware (TF)) and erasing all sensitive information
from memory, caches and registers before it exits.

We designed SANCTUARY in such a way that the required changes to the existing
software ecosystem are minimal: in fact, SANCTUARY can extend existing TEE architec-
tures without affecting the functionality of already deployed software in both the normal
world and the secure world.

3 Normal World > Secure World =>|

SANCTUARY

L | Legacy App (LA) Legacy App (LA) Sanctuary App (SA) j} Trusted App (TA)

s

£

& Legacy OS (LOS) Sanctuary Lib (SL) Trusted OS (TOS)

o CPU Core 0 CPU Core 1 CPU Core 2

<

=

i)

el s

Normal World RAM Sanctuary RAM |Secure World RAM

Figure 21: The SANCTUARY design reserves one CPU core in the normal world to enable isolated
execution of SAs. The TCB includes the hardware (gray) and the secure-world software
(green) that is involved in the initialization of an SA.

Figure 21 shows an abstract view of SANCTUARY's design. In the following, we
describe SANCTUARY’s isolation mechanism, its initialization, and its security services.

3.2.3.1 SANCTUARY Isolation

In addition to the existing security boundary between TrustZone’s secure world and
normal world, SANCTUARY enables isolation within the normal world. A dedicated
memory region is made exclusively accessible by one CPU core by leveraging ARM’s
new memory access controller TZC-400. Details on how the controller needs to be
configured to achieve this physical memory partitioning are provided in our conference
publication [73]. As a result, all software executing on that CPU core is protected from

57

58

SECURITY ARCHITECTURES

untrusted software executing on the remaining CPU cores of the system. In Figure 21,
CPU core 2running a SANCTUARY Instance is configured to have exclusive access to
the Sanctuary RAM partition, as depicted by the arrows. The untrusted normal-world
software, executing on CPU cores 0 and 1, can only access the normal-world memory.
Furthermore, the CPU core assigned to the SANCTUARY Instance is not allowed to access
normal-world memory, achieving a two-way isolation, which allows SANCTUARY to
tolerate potentially malicious SAs. However, SANCTUARY does support shared memory
between normal world and SA for efficient communication as well as shared memory
between secure world and SA to establish a secure channel. This enables scenarios such
as secure UI relying on purpose-built TAs. SANcTUARY’s handling of shared memory is
explained in detail in our conference publication [73].

The secure-world software is trusted and therefore allowed to access all memory,
including normal-world memory, SANCTUARY memory, and secure-world memory
(black arrows in Figure 21).

Multi-SA Isolation. SANCTUARY instances are either executed consecutively on the
same CPU core, or execute on separate, mutually isolated CPU cores, each with a
dedicated memory partition assigned. Thus, SANCTUARY supports parallel execution of
multiple SAs by dedicating multiple CPU cores to SANCTUARY instances, each with its
own memory partition. After SA execution finished, the system returns to its original
state (see Section 3.2.3.2) and the next SANCTUARY instance can be launched. This
ensures strong isolation between SAs: all SAs are executed completely independently of
each other.

Privilege Isolation. SAs are limited to execute in user-mode. The privileged mode of a
CPU core used by SANCTUARY is occupied by the Sanctuary Library (SL). Important to
note is that the SL is not part of the TCB, a compromised SL cannot violate SANCTUARY's
security guarantees. Its purpose is to provide two main functionalities: (i) initializing an
execution environment for the SA, and (ii) providing service interfaces to the SA, e. g,
for accessing SANCTUARY’s security services.

3.2.3.2 SANCTUARY Initialization

SANCTUARY’s isolation does protect the integrity and confidentiality of an SA while it is
executing on the dedicated CPU core. However, the SA code is loaded by the untrusted
LOS, therefore its integrity must be verified. The initialization process of SANCTUARY
provides the necessary verification mechanism.

For better resource utilization, SANCTUARY does not dedicate one CPU core for
executing SAs permanently. When a new SANCTUARY instance is created, one CPU
core is shut down and removed from the resources available to the LOS executing in the
normal world. All remaining CPU cores stay under control of the LOS. Hence, the LOS
can continue execution of normal-world tasks preserving the system’s availability, i.e.,
the user does not notice negative effects due to the creation of a SANCTUARY Instance
and the execution of an SA.

Next, the code to be executed on the SANCTUARY core, i.e., SL and SA, is loaded
into a separate memory section. After the memory isolation has been activated, the

3.2 SANCTUARY: ARMING TRUSTZONE WITH USER-SPACE ENCLAVES

loaded code is validated using digital signatures. The signature for the SL is provided
by the device vendor, whereas the signature for the SA is provided by the SA developer.
The detailed verification process is described in our conference publication [73]. After a
successful verification, the dedicated CPU core is restarted. The SANCTUARY core starts
from a defined initial state, boots the SL and executes the SA.

After an SA has finished, the SANCTUARY core removes all information from the
memory, invalidates all cached data, and shuts down. The isolation for the wiped memory
is deactivated, making the memory available to the LOS again. The CPU core is restarted
and reassigned to the LOS.

3.2.3.3 SANCTUARY Security Services

The initial content of an SA is loaded from unprotected memory, hence, it can be
manipulated and must not contain confidential data. Therefore, SANCTUARY provides
a mechanism to provision confidential data to an SA over a secure channel after it
has been created. However, to ensure that secret data is not sent to a malicious (or
maliciously modified) SA, the integrity and authenticity of an SA needs to be verified
before provisioning secret data. To enable secure provisioning of secret data to an SA
and secure storage of secret data, SANCTUARY provides a set of security services
implemented as TAs. These TAs are supplied by the device vendor; therefore, they are
called vendor TAs throughout this work. These TAs run on top of the secure-world
Trusted OS (TOS) (see Figure 21).

Remote Attestation (RA) allows an SA to establish a secure channel to an external entity.
Through the platform identity feature of TrustZone, the integrity measurement of SANC-
TUARY can be authentically reported to a third party. Linking the authentic integrity
report with the establishment of a secure channel to the SA, creates a secure and authen-
ticated channel through which confidential data can be provisioned (cf. Section 2.3.2).

Sealing allows SAs to store sensitive data such that only instances of the originating SA
can access the data. SANCTUARY provides each SA with a unique encryption key that is
derived from the hash value computed over the SA binary. This unique key can be used
to encrypt data, e. g., before writing it to persistent storage.

Further security services, e.g., monotonic counters, secure timers, or secure ran-
domness, can be provided by TrustZone’s secure world, as well. Similar security ser-
vices are commonly available in commercial TEE implementations, for instance Intel
SGX [206, 267, 193, 20] and can be implemented similarly in SANCTUARY. In addition,
secure user interfaces for SAs can be easily provided by TAs, as secure 1/0O is already
supported by TrustZone.

3.2.3.4 SANCTUARY Software Model

With SANCTUARY, every application developer is able to utilize TEE functionalities, i.e.,
every developer can deploy SAs. Each SA is bundled with an untrusted LA. This allows
straightforward deployment through existing app markets: SAs come as part of LAs
using the standard installation routine.

59

60

SECURITY ARCHITECTURES

Additionally, by coupling each SA with an LA, the functionalities of the SL can be
minimized. In particular, the LA acts as a proxy and allows the SA to make use of all
functionalities provided by the LOS, such as file system access. The LA and SA can
efficiently exchange information and interact with each other via shared memory. When
an SA wants to provide sensitive data to the LA, e. g., for persistent storage, the SA can
use the sealing service (see Section 3.2.3.3) to encrypt the data before sending it to the
LA.

How to partition an application into security-critical and uncritical parts is an orthogo-
nal problem.

3.2.4 Implementation

Our SANCTUARY prototype is implemented on a HiKey 960 development board, which
is equipped with a recent ARMv8 System-on-Chip (SoC). It is based on a big.LITTLE
processor architecture with eight CPU cores in total, four Cortex-A73 and four Cortex-
As3 cores. Importantly, the HiKey 960 board allows developers to access and modify the
secure-world software.

SANCTUARY's software components adapt and extend, on one hand, OP-TEE [245],
which provides an open-source implementation of a secure-world TOS. OP-TEE is
extended to validate load-time integrity of SAs and to enforce run-time isolation of
SAs. Furthermore, SANCTUARY’s security services, e. g., for RA and sealing, are added
to OP-TEE. In total, SANCcTUARY adds 1313 Lines of Code (LoC) to the TCB. On the
other hand, the normal-world LOS — a recent Linux distribution with support for the
HiKey 960 board — is extended to dynamically manage the systems resources (CPU
cores and memory) as well as SAs. The Zircon micro kernel [171] is used within each
SANCTUARY Instance to provide a run-time environment (SL) to the SAs.

The details of our implementation are presented in our conference publication [73].

3.2.5 Security Analysis

SANCTUARY’s goal is to protect against a strong adversary, as defined in Section 3.2.2.1.
To achieve this goal, SANCTUARY needs to fulfill all security requirements defined in
Section 3.2.2.2.

We will analyze SANcTUARY with regards to all attack vectors included in our
adversary model (Section 3.2.2.1), i. e., the adversary can control (i) unprivileged normal-
world execution, (ii) privileged normal-world execution, and (iii) malicious SAs. In any
case, the adversary has at least one of the following two goals: (1) compromise the
integrity or confidentiality of a benign SA, or (2) misuses a malicious SA to gain control
over the LOS. We discuss the second case separately in Section 3.2.5.5. Subsequently we
consider the first attack goal.

An attack can occur at any point in an SA’s life cycle, i.e., before a SANCTUARY
Instance is started, while the execution of an SA is prepared (setup), during the boot of

3.2 SANCTUARY: ARMING TRUSTZONE WITH USER-SPACE ENCLAVES

the SANCTUARY Instance, while an SA is executed, during tear-down of a SANCTUARY
Instance, or after a SANCTUARY Instance has finished.

Before and after a SANCTUARY Instance executes, the adversary can attempt to
compromise the integrity or confidentiality of stored data. In particular, the adversary
can violate the integrity of an SA’s binary or the SL binary (Section 3.2.5.1). Addition-
ally, SA’s data protected via SANCTUARY’s secure storage mechanism can be attacked
(Section 3.2.5.2).

While a SANCTUARY Instance is executing, the adversary can target SANCTUARY's
isolation for code and data, either directly (Section 3.2.5.3), or via cache attacks (Sec-

tion 3.2.5.4).
3.2.5.1 Binary Integrity

The adversary can manipulate the binaries of SL and SAs, as they are stored unencrypted
in memory accessible from the normal world. To overcome with this threat, SANcTU-
ARY measures the integrity of the binaries at load time, allowing their verification via
SANCTUARY’s local and Remote Attestation features. The SL binary is locally verified by
the secure world during the setup of a SANCTUARY Instance. Its integrity is enforced,
i.e., an integrity validation of the SL aborts the SANCTUARY Instance creation process.
An SA’s load time integrity can be validated by verified via Remote Attestation before
provisioning sensitive information to it. Thus, compromised SAs cannot gain access to
sensitive data. When an SA’s binary is modified after sensitive data have been provi-
sioned in a previous execution, SANCTUARY’s secure storage mechanism validates the
integrity of the binary before enabling access to the stored data, as described below.

3.2.5.2 Secure Storage

SANCTUARY provides secure storage functionality to SAs, which is rooted in the secure
world. The cryptographic keys used for secure storage are derived from the SA’s binary
integrity measurement, i. e., cryptographic hash of the binary, and a secret exclusively
available to SANCcTUARY’s TCB, i. e, the platform key. Thus, only a SANCTUARY Instance
started with an unmodified binary will allow the derivation of the correct key to decrypt
previously stored data. Furthermore, by incorporating a unique platform key, stored data
can be bound to a specific device, and by utilizing features of the secure world, e.g.,
monotonic counters, roll-back protection can be achieved.

3.2.5.3 Code and Data Isolation

SANCTUARY enforces code and data isolation through the same strong physical memory
partitioning mechanism that is used to separate TrustZone’s normal world and secure
world. Only the CPU core that is assigned to the SANCTUARY Instance can access the
reserved SANCTUARY memory, hence, memory isolation is ensured. SANCTUARY's
memory isolation is configured by the TF and is enabled before the integrity of loaded
code, i.e., SL and SA, is verified, and also before any confidential data is loaded, e.g.,
from secure storage. Hence, once the integrity of the loaded code is validated, its integrity

61

62

SECURITY ARCHITECTURES

is preserved by the isolation. Similarly, data confidentiality is preserved as critical data is
only made available to an SA when isolation is enforced. Before a SANCTUARY Instance
is terminated all confidential data is erased before deactivating the memory isolation,
hence, when the memory is made available to the LOS again, no confidential data leaks.
To prevent the leakage of confidential data through CPU registers, e. g., during context
switches, SANCTUARY ensures that the selected CPU core cannot change execution
mode in an uncontrolled way. In particular, before confidential data is processed, SL
configures the interrupt handling of the SANcTUARY CPU core such that it cannot be
influenced from untrusted devices or other CPU cores. This configuration cannot be
reverted by another CPU core executing potentially malicious code. This also prevents
that the SANcTUARY CPU core can be forcefully shutdown.

SANCTUARY Instance can selectively share information with trusted parties, e.g.,
SANCTUARY services such as secure storage. When initiating a request to SANCTUARY's
secure services a SANCTUARY Instance issues a Secure Monitor Call (SMC), which
causes a switch to the TF before control is transferred to the security service executing in
the secure world. The TF validates the origin of the call and passes this information to
the security service; thus, the security service can authenticate the entity that initiated the
request. This prevents that security services can be misused in confused deputy attacks.

3.2.5.4 Cache Attack Protection

SANCTUARY prevents cache-based attacks by ensuring that caches used by a SANcTU-
ARY Instance are excursively used by this SANCTUARY Instance.

For CPU core exclusive caches, e.g., the L1 cache on typical ARMv8 platforms, the
adversary is left with only two options. (1) Influence the cache state before the CPU core
is assigned to a SANCTUARY Instance in order to observe changes in the SA’s behavior,
such as changed execution time. This is prevented by setting the cache into a defined
state before executing a SANCTUARY Instance reverting all influences by the adversary.
(2) After a SANCTUARY Instance finished execution the adversary can try to extract
information remaining in the cache. This is prevented by flushing the cache before exiting
a SANCTUARY Instance.

Caches shared between CPU cores (e.g., L2 cache on ARMv8) have the potential to
leak sensitive information from a SANCTUARY Instance when used simultaneously by
SAs and untrusted software. To prevent such leakage SANCTUARY ensures that shared
caches are not used by the SA by configuring the caching policy for the isolated memory
accordingly.

3.2.5.5 Malicious Sanctuary App

Sanctuary Apps (SAs) can be malicious and an adversary can try to misuse them to
gain privileged control over the system. An adversary controlling only unprivileged
normal-world code and an SA can aim to compromise the LOS or attack other LAs. SAs
have, similar to LAs, unprivileged execution permissions (EL0). The privileged execution
mode in a SANCTUARY Instance is controlled by the SL, which is provided by the device
vendor and can therefore be trusted to not exploit its privileges to compromise the

3.2 SANCTUARY: ARMING TRUSTZONE WITH USER-SPACE ENCLAVES

normal-world software or disturb the system’s operation. Furthermore, SANCTUARY's
memory isolation prevents the SL from directly accessing the LOS’s memory and memory
of LAs that is not explicitly shared. Hence, an adversary does not gain an advantage
from controlling a malicious SA compered to control over a malicious LA, i.e., in both
cases the adversary has to find and exploit a vulnerability in the underlying privileged
software (SL or LOS respectively) to escalate its privileges.

To attack the secure world control over a SANCTUARY Instances does not provide the
adversary with additional capabilities. SANCTUARY Instance execute in normal-world
mode and have no additional privileges compared to the legacy software, such as the
LOS and LAs, executing in the normal world.

3.2.5.6 Security Requirements

Requirement 1: Code and data integrity is fulfilled by the combined properties described in
Section 3.2.5.1 and Section 3.2.5.3. SANCTUARY fulfills requirement 2: Data confidentiality
through the combination of the properties described in Section 3.2.5.2, Section 3.2.5.3 and
Section 3.2.5.4. Requirement 3: Secure channel to secure world is fulfilled by the properties
described in Section 3.2.5.3. Requirement 4: Protection from malicious SAs is fulfilled as
described in Section 3.2.5.5. And requirement 5: Hardware-enforced resource partitioning is
fulfilled by SANCTUARY's properties described in Section 3.2.5.3 and Section 3.2.5.4.

3.2.6 Evaluation

We evaluated different aspects of SANCTUARY using our prototype implementation
(cf. Section 3.2.4) on the HiKey 960 development board. Firstly, our prototype imple-
mentation adds less than 1400 LoC to the system’s TCB. The end-to-end performance of
SANCTUARY is evaluated using a real-world use-case prototype. Our prototype imple-
ments a typical security critical functionality: a one-time password generator as used,
for instance, in online banking. It shows that SANCTUARY does not disrupt the LOS
while SAs execute. Furthermore, all components were evaluated individually — using
micro-benchmarks — as well as the complete life cycle of an SA to demonstrate the exact
run-time behavior of SANCTUARY. Our evaluation shows that a SANCTUARY Instance
can be launched in less than 200 ms, where 7 ms are required to load the SA binary,
113 ms are consumed to shut down and remove one CPU core from the LOS’s control,
13 ms are required by the secure world to verify the loaded code and apply the memory
isolation policy, and 59 ms are required to start up the isolated SANCTUARY core with
both, the SL and the SA. Further, typical operations, such as communications between an
SA and a TA, are evaluated.

A detailed description of our evaluation setup, our evaluation methodology as well as
our extensive evaluation results are presented in our conference publication [73].

63

64

SECURITY ARCHITECTURES

3.2.7 Conclusion

SANCTUARY is novel security architecture for extending the TrustZone software ecosys-
tem with user-space enclaves, called Sanctuary Apps (SAs). SANCTUARY provides
hardware-enforced two-way isolation obviating the need to trust or vet the code of
SAs, as malicious SAs have no more privileges or capabilities than normal user-space
applications.

SANCTUARY is based on the bus master identity filtering feature, which was intro-
duced with ARM’s TZC-400 memory controller design and allows the parallel isolation
of individual CPU cores for executing security-sensitive code. Furthermore, our proof-
of-concept implementation and our evaluation results show SANCTUARY’s low latency
for typical use cases, all of which constitutes to the high practicality of our SANCTUARY
security architecture.

3.3 RELATED WORK

3.3 RELATED WORK

A wide variety of security architectures has been developed by industry as well as
academia. These security architectures target different platforms, ranging from server
and desktop computers to low-end embedded systems, pursue different design goals,
use varying approaches and mechanisms, and operate under diverse assumptions.

TYTAN and SANCTUARY, as most hardware security solutions, provide isolated
execution environments that integrate with the System-on-Chip (SoC), which enables
Trusted Execution Environments (TEEs) that can utilize the computing capabilities of the
main processor while executing in isolation. In contrast, solutions such as the Trusted
Platform Module (TPM) [383] provide a dedicated co-processor that usually has limited
(computation) resources and limited functionality.

Integrated TEEs can be realized using various memory isolation mechanism, where
the available mechanisms depend on the underlying platform and architecture. Systems
can be divided into platforms that support virtual memory abstractions, as common
in end-user and high-end devices such as smartphones, desktop and laptop computers
or servers, and platform where software operates using physical memory addresses,
commonly used in low-end devices such as micro-controllers (cf. Section 2.1.1).

Solutions for both types of systems have been proposed in the literature. We discuss
them subsequently. Virtual-memory-based systems (Section 3.3.1) are most related to
SANCTUARY, as it targets ARM systems with virtual memory support, while TYTAN is
closer related to security architectures for physical-memory-bases systems (Section 3.3.2).

Maene et al. [259] compare different Trusted Computing Architectures, including TYTAN,
with respect to seven security properties (support for isolation, attestation, sealing,
Dynamic Root of Trust (RoT), code confidentiality, side-channel resistance, and memory
protection) as well as seven architectural properties (lightweight, co-processor-based,
hardware-only Trusted Computing Base (TCB), preemption of enclaves, upgrade-able
TCB, and backwards compatibility). With respect to architectural properties they find that
TYTAN does not rely on a co-processor, and that TYTAN’s TCB consists of hardware
and software. Regarding security properties, the authors conclude that TYTAN is lacking
support for code confidentially, side-channel resistance and memory protection, i.e.,
encryption of data stored to memory outside the SoC. While TYTAN does not provide
code confidentially by default, it does provide a secure provisioning mechanism, thus
loading of confidential code can trivially be implemented by a secure task if need. TYTAN
does not provide explicit protection against side-channel attacks, as TYTAN's target
platform has neither caches nor virtual memory management. It is thus inherently secure
against the side-channels listed by Maene et al. [259]. Similarly, TYTAN'’s target platform
uses on-chip Static Random Access Memory (SRAM)), i. e., it does not use memory outside
of the SoC containing sensitive data that would need to be protected. SANCTUARY is
not considered in the work by Maene et al. [259] as it was published later.

Strackx and Piessens [367] propose the Ariadne framework, addressing the state-
continuity problem, which is relevant for many enclaved applications. Relying on secure
non-volatile memory, Ariadne can provide state-continuity, including roll-back protection
while also ensuring that an enclave interruption, e.g., due to a system crash, does

65

66

SECURITY ARCHITECTURES

not render an enclave inoperable. When extending our security solution (TYTAN and
SANCTUARY) with secure non-volatile memory, the Ariadne framework can be used
with our security solutions.

3.3.1 Virtual-Memory-based Systems

The most widely used processor architectures supporting virtual memory are Intel’s
x86 architecture [208] and ARM processors [29]. More recently, the RISC-V architecture
has emerged as an open source Instruction Set Architecture (ISA) [403] with (optional)
support for virtual memory. Security solutions for these systems are typically too complex
and not applicable to low-end embedded systems, as targeted by TYTAN.

The security solutions for these systems either extend the platform with additional
memory isolation mechanism in hardware (see Section 3.3.1.1) or utilize the memory
isolation provided by the virtual memory mechanism (see Section 3.3.1.2).

3.3.1.1 Hardware Security Architectures

Intel Software Guard Extensions (SGX) [206, 267] and ARM TrustZone [24] are two
widely deployed security solutions available in commercial off-the-shelf products.

Intel’s SGX provides isolated execution environments, called enclaves, as described
in more detail in Section 2.3.2. However, SGX is developed particularly for Intel’s x86
architecture and therefore not available on other architectures that are common in
embedded and mobile devices.

For ARM TrustZone [24], strict vendor policies regarding which Trusted Apps (TAs) get
access to the secure world limit the availability of TrustZone’s security functions to third
party developers, as discussed in Section 2.3.1. SANCTUARY overcomes this restriction
by providing isolated enclaves in the normal world that can run arbitrary sensitive code
while limiting the secure-world code to a minimal and fixed set of functionalities.

SecTEE proposes an enclave architecture for systems with ARM TrustZone, where
enclaves are executed as trusted applications inside the secure world [422]. To protect
enclaves from physical attacks on the Dynamic Random Access Memory (DRAM), SecTEE
uses the On-Chip Memory (OCM) mechanism of OP-TEE [246] to store enclave’s code
and data during execution in on-chip memory only. Further, SecTEE extends the memory
management of the secure world, to implement cache coloring, prevent cross-enclave
side-channel attacks. To protect against side-channel attacks from the normal world,
SecTEE uses cache pre-loading based on techniques from Zhang et al. [417]. SecTEE
core mechanism, i. e., software-isolated enclaves in the secure world, is similar to open
source systems such as OP-TEE [245] and commercial solutions such as Qualcomm’s
SEE that has been shown to be vulnerable to software attacks [49] (see Section 2.3.1
for a more detailed discussion on the limitations of TrustZone’s software-only isolation
approach). SANCTUARY, in contrast, uses the same strong hardware-based isolation
that separates the secure world from the normal world to isolate the system’s TCB from
potential malicious enclaves.

3.3 RELATED WORK

Further security architectures proposed by academic research [110, 369, 90] require
hardware modification hindering their adaption in practice or have negative impact on
the system’s overall performance [264, 371].

Sanctum [110] proposes a security architecture for RISC-V platforms that provides
enclave execution similar to Intel’s SGX. In addition, Sanctum offers protection against
side-channel attacks. It integrates cache partitioning for the Last Level Cache (LLC) and
flushes the per-code L1 cache upon enclave exit. Furthermore, each enclave is responsible
for its own virtual memory management (paging).

AEGIS [369] is a security architecture that can provide temper-evident execution of
programs, guaranteeing the correct execution of a program, and private temper-resistant
execution, which additionally ensures the confidentiality of a program’s data. AEGIS’
TCB can optionally be implemented completely in hardware or in a software-hardware
co-design where parts of the TCB functionality is implemented as a secure kernel in
software.

Flicker [264] and TrustICE [371] provide temporal isolation only, i. e., they cannot provide
isolation for systems where TEEs execute in parallel with untrusted software. Hence, on
multi-core systems — as commonly used today — the applicability of these approaches
is very limited. With temporal isolation, the entire system has to be suspended, i.e.,
hibernation of the entire untrusted software stack including Operating System (OS) and
all applications. Afterwards, the TEE can execute exclusively on the system; only after the
TEE has terminated, the normal system can be restored and continue execution. Flicker
uses Intel’s Trusted Execution Technology (TXT) to reset the system at run time to a
trusted execution state. TrustICE is conceptually similar to Flicker: it uses the TrustZone
secure world, rather than TXT, to reset the normal world to a trusted state prior execution
of sensitive code.

3.3.1.2 Software Security Architectures

Isolation of TEE instances can be implemented by trusting a privileged software entity,
e.g., a hypervisor or micro-kernel, that configures and manages the (extended) virtual
memory system of existing hardware platforms [9o, 266, 197, 35, 140]. In these systems the
hypervisor (or micro-kernel) is part of the TCB and its integrity is crucial for the system’s
security, hence, its integrity must be guaranteed by existing hardware mechanism [266,
197, 140] or by custom hardware extensions [go]. However, the usage of a hypervisor
or micro-kernels results in a relatively large and complex TCB, which makes ensuring
the TCB’s correctness a non-trivial task [140, 141]. In addition, most solutions occupy
the hardware-virtualization functionality of the platform prohibiting its use in scenarios
where these features are required for non-security functions.

Basion [9o] utilized hardware-supported virtualization controlled by a trusted hypervi-
sor to create and manage isolated execution environments. The integrity of the hypervisor
itself is ensured via a secure boot mechanism.

TrustVisor [266] uses a hypervisor to extend Flicker’s concept [264] to provide isolated
execution environments while improving flexibility and performance. TrustVisor uses the

67

68

SECURITY ARCHITECTURES

Dynamic Root of Trust for Measurement (DRTM) [9] concept to ensure the hypervisor’s
integrity.

vTZ [197] provides virtualization-based TEEs in the normal world of ARM TrustZone
enabled devices. The integrity of vIZ’s hypervisor is ensured by extension of TrustZone’s
secure boot mechanism.

Secure Kernel-level Execution Environment (SKEE) [35] creates an isolated execution
environment within the kernel in order to perform additional policy checks on kernel
operations.

HYDRA strives to reduce the hardware features required for Remote Attestation (RA)
architectures by utilizing formally verified software [140, 141]. In particular, HYDRA
utilizes the formally verified selL4 [223] to realize memory access control and protec-
tion, which are required to protect the attestation routine and an authentication secret.
Load-time integrity of the software TCB is ensured via secure boot and verified boot,
respectively. During run time integrity is guaranteed by the memory access control
based on a standard Memory Management Unit (MMU), as commonly available on
more capable devices that are targeted by HYDRA. TYTAN targets smaller embedded
systems, which do not provide memory virtualization, i. e., provide an MMU. However,
the base concepts of TYTAN and HYDRA are similar, i. e., a trusted software component
is responsible for (re-)configuring a memory access control hardware mechanism at run
time. TYTAN aims to minimize the size and complexity of the trusted software while
HYDRA relies on formal verification to ensure the correctness of the software TCB.

3.3.2 Physical-Memory-based Systems

Security solutions for small embedded systems, i. e., systems without virtual memory
abstraction, are typically based on hardware-enforced isolation of security-critical code
and data from other software on the same platform. Most solutions aim to provide TEEs
for arbitrary programs [368, 286, 125, 287, 173, 226, 30, 406], some without assuming
hardware-based isolation mechanism [120, 19], while others provide tailored solutions to
provide protection of specific functions, such as RA [139, 147]. However, unlike TYTAN,
none of these approaches can fulfill all requirements for a real-time system as identified
by Stankovic and Rajkumar [362], e. g., bounded execution time for all primitives.

3.3.2.1 Hardware Security Architectures

Self-protecting modules (SPM) is a concept that extends an OpenMSP430 embedded
processor with an Execution-Aware Memory Protection Unit (EA-MPU), which can be
utilized by three new processor instructions to create isolated tasks [368]. However, these
isolated tasks have a fixed memory layout and cannot be interrupted for preemptive
scheduling as required for real-time systems [362]. SPM has been extended to support
interrupts for isolated tasks [125] and extended with remote management capabilities
(e.g., secure provisioning) [286, 287] as well as confidentiality for loaded code [173].
However, the execution time of the integrity measurement operation performed for newly
created tasks remains unbounded, violating the requirements for real-time systems [362].

3.3 RELATED WORK

TrustLite generalizes the concept of code-dependent memory access control [226], as
used by SPM [368] as well as SMART [139], by introducing a general purpose Execution-
Aware Memory Protection Unit (EA-MPU). In addition, TrustLite supports interrupts for
isolated tasks. However, TrustLite requires all software components to be loaded and their
isolation to be configured at boot time. Further, the Inter-Process Communication (IPC)
mechanism proposed by TrustLite is not applicable to dynamically loadable tasks.

TrustZone-M is a security architecture for low-end ARM processors [30]. Similar to
the legacy TrustZone design, known from more complex processors, it partitions the
system into two virtual worlds (known as normal world and secure world), where each
world comprises a privileged and an unprivileged execution mode. In order to allow
parallel execution of multiple sensitive tasks, the secure world needs to be partitioned by
software, i.e., an OS, leading to a large and complex TCB.

Tan et al. [374] propose a systematic design approach for heterogeneous multiprocessor
System-on-Chips (MPSoCs) implemented as Network-on-Chip (NoC). Their goal is to
isolate tasks and restrict the accesses of tasks to resources, assuming that each task is
directly mapped to a dedicated processing node, i.e., Tan et al. [374] are concerned with
isolation at the NoC level rather than providing isolation of tasks sharing the hardware
resources such as the Central Processing Unit (CPU) and memory.

SMART provides DRTM for embedded systems using a hardware/software co-
design [139]. It protects the integrity of only one specific task, which is responsible
for calculating RA reports, using Read-Only Memory (ROM). It ensures the confiden-
tiality of the RA task’s secrets through an extended memory access logic. SMART does
not allow code changes after deployment and the integrity protected task must not be
interrupted during attestation, rendering SMART incompatible for real-time systems.

TYTAN provides higher flexibility by providing dynamic loading and unloading of
multiple tasks at run time, secure IPC with sender and receiver authentication, and
real-time scheduling.

Malenko and Baunach [262] propose an approach for task isolation and exclusive
peripheral usage for RISC-V micro-controllers without virtual memory abstraction. They
sandbox tasks by utilizing the Memory Protection Unit (MPU) to ensure that tasks can
only access their own memory and shared memory regions. To ensure that a task’s
memory is continuous in memory they modified the linker used in the task development
tool chain. Furthermore, the MPU is extended to protect accesses to peripheral’s memory
mapped configuration registers on a per-task basis. This enables the OS to exclusively
assign peripherals to tasks (at run time). Unlike TYTAN and SANCTUARY, this approach
does not aim to enable enclave-like execution, which requires, for instance, means to
ensure the initial integrity of loaded software. Furthermore, the authors assume a trusted
OS, which can access task memory (possibly by re-configuring the MPU).

SIA aims to provide a security architecture for intermittent computing device [132],
i.e., devices that only operate if sufficient power is available using energy harvesting
techniques. It utilizes Texas Instruments Intellectual Property Encapsulation extension
available on some MSP430 systems [376], which allows to set code and data regions of
the flash memory to be only accessible by the code in a specified code region. SIA utilizes
this feature to isolate software modules on the platform, including security functionalities

69

70

SECURITY ARCHITECTURES

such as RA. Unlike TYTAN and SANCTUARY this approach provides only a single
isolated entity on the platform, due to the fact that the Intellectual Property Encapsulation
extension supports only a single isolated memory region. Furthermore, SIA assumes that
the isolated code runs uninterrupted preventing its use in real-time systems.

3.3.2.2 Software Security Architectures

Daniels et al. [120] introduce SV, a pure software-based isolation architecture for small
embedded systems without hardware-based memory isolation capabilities, such as an
MPU. A so-called microvisor, which was later formally verified [19], serves as the RoT,
implementing memory isolation, and functionalities such as RA. Memory isolation is
achieved by restricting assembly instruction available to untrusted applications and
memory addresses accessed by untrusted application code. The microvisor enforces
these restrictions by verifying all code that is loaded on the platform before execution.
Additionally, SuV was extended to be compliant with the Global Platform [167] TEE
standard specifications [212]. Unlike TYTAN, SuV is not concerned with real-time
execution and does not support dynamic loading of sensitive applications.

TRUSTED EXECUTION ENVIRONMENT
ATTACKS AND DEFENSES

Trusted Execution Environments (TEEs) are designed to protect the confidentiality and
integrity of data processed and code executed inside of them. This is achieved by isolating
the TEE from accesses by untrusted components and entities. Typically, this isolation is
accomplished by employing additional access control rules on system resources, in par-
ticular memory. However, preventing direct access to memory is not necessarily sufficient
to ensure isolation. In particular, side-channel attacks endanger the confidentiality of
data processed in TEEs [412, 340, 277, 174] (cf. Section 2.4). In Section 4.1 we show that
Intel Software Guard Extensions (SGX) is susceptible to cache side-channel attack. An
adversary can exploit the fact that all system resources are under the adversary’s control,
aggravating the severity of side-channel attacks in the context of SGX.

Our attack as well as other published attacks [412, 389, 354, 183, 176, 174, 184, 405]
against SGX demonstrate that enclaves need additional protection against side-channel
attacks. In Section 4.2 we present HardIDX, a secure searchable encryption solution
utilizing Intel SGX. It enables search over outsourced encrypted data, based on a database
index with logarithmic size, outperforming all cryptographic searchable encryption
solutions. HardIDX implements only the security critical core, i. e., the search engine, in
an enclave while the data are stored outside of the enclave. While this approach benefits
HardIDX’s scalability, it induces extensive accesses to external resources, leading to
potential information leakage. HardIDX protects against such leakage by randomizing
external memory accesses and storage order. Furthermore, HardIDX provides protection
against side-channel attacks leaking information at memory page granularity [412, 389,
354, 183, 176].

DR.SGX provides a software-only approach to protect SGX enclaves against side-
channel leakage for all data access of an enclave to RAM (cf. Section 4.3). DR.SGX
continuously re-randomizes the data memory layout of an SGX enclave to break the link
between accessed memory locations — which are observable by an adversary — and the
semantic of the data stored at that memory location. Without this semantic information
the adversary cannot reconstruct which data has been accessed, and therefore, cannot
deduce confidential information.

71

72

TEE ATTACKS AND DEFENSES

4.1 SOFTWARE GRAND ExPOSURE: SGX CACHE ATTACKS
ARE PRACTICAL

Intel Software Guard Extensions (SGX) promises integrity and confidentiality for data
processed inside enclaves. However, shortly after the release of SGX attacks have shown
that information about an enclave’s memory access patterns can be leaked by exploit-
ing the Operating System (OS)’s privilege to induce and observe page faults for an
enclave [412].

In response to this class of attacks, different defenses have been developed that primar-
ily aim at detecting the effects of such attacks [353, 96]. In particular, these defenses allow
enclaves to detect whether they are interrupted frequently, e. g., due to page faults in-
duced by an adversary. Thus, an enclave can avert the processing of sensitive information
when (potentially) under attack.

However, it has also been speculated that SGX may be vulnerable to other side-
channel attacks. In particular, cache-based side-channel attacks, which have been studied
extensively independent of SGX [308, 294, 210, 252, 414, 180, 181], hold the potential to
circumvent SGX's isolation guarantees.

Parallel with our work, multiple cache-based side-channel attacks targeting SGX
enclaves have been developed [340, 277, 174]. We discuss the differences to our attack in
Section 4.4.1.

Goals and Contributions. Our goal is a novel cache attack technique specifically targeted
at SGX enclaves leveraging the full potential of SGX’s adversary model, i. e., assuming the
system’s privileged software, such as the OS, being under the adversary’s control. Our
side-channel attack should be stealthy to prevent its detection by side-channel defense
mechanism developed for SGX, in particular T-SGX [353] or Déja Vu [96].

Furthermore, our goal is to show that not only cryptographic secrets and algorithms
are susceptible to side-channel attack. Other sensitive data, such as genetic information,
processed inside an enclave can be extracted via side-channel attacks, as well.

We make the following contributions:

¢ We introduce a novel cache side-channel attack technique against SGX enclaves.
Our attack leverages the adversary’s capabilities in the context of SGX to extract
information from an enclave without interrupting the enclave, i.e., making the
attack stealthy, and with low noise.

¢ We demonstrate that non-cryptographic applications leak highly sensitive informa-
tion via side channels. In our case study on an enclave processing genome data we
demonstrate that we can extract sufficient information to identify the person whose
DNA is processed in the attacked enclave.

4.1 SOFTWARE GRAND EXPOSURE

4.1.1 Background

This section provides background on Performance-Monitoring Counters (PMCs), which
we use in our attack (Section 4.1.3). Background on Intel SGX as well as the cache
architecture of Intel CPUs is provided in Section 2.3.2 and Section 2.1.2 respectively.

Performance Counter Monitor. The Performance Counter Monitor (PCM) is a feature
of the Central Processing Unit (CPU) for recording hardware events. The PCM’s primary
goal is to give software developers insight into their program’s effects on the hardware,
allowing them to optimize their programs.

The CPU provides a set of PMCs, which can be configured to monitor different events,
for instance, executed cycles, cache hits or cache misses for the CPU’s different caches,
mis-predicted branches. PMCs are configured by selecting the event to monitor as well
as the mode of operation. This is done by writing to Model-Specific Registers (MSRs),
which can only be done by privileged software. PMC are read via the RDPMC instruction
(read Performance-Monitoring Counter), which can be configured to be available in
unprivileged mode.

Hardware events recorded by PMCs could be misused as side channels, e.g., to
monitor cache hits or misses of a victim process or enclave. Therefore, SGX enclaves
can disable PMCs on enclave-entry by activating a feature called Anti Side-Channel
Interference (ASCI) [208]. It suppresses all thread-specific performance monitoring, except
for fixed cycle counters. Hence, hardware events triggered by an enclave cannot be
monitored through the PMC feature. For instance, cache misses of memory loaded by an
enclave will not be recorded in the PMCs.

4.1.2 System and Adversary Model

We assume a system equipped with Intel SGX, i.e., a hardware mechanism to isolate
data and execution of a software component from the rest of the system’s software that
is considered untrusted. The resources which are used to execute the isolated component
(or enclave), however, are shared with the untrusted software on the system. The system’s
resources are managed by untrusted, privileged software, i. e., the Operating System (OS).
Figure 22 shows an abstract view of the adversary model, an enclave executing on a
system with an adversary-controlled OS, sharing a CPU core with an attacker process.

The adversary’s objective is to learn secret information from the enclave, e. g., a secret
key generated inside the enclave through a hardware Random Number Generator (RNG),
or sensitive data supplied to the enclave after initialization through a secure channel.

Adversary capabilities. The adversary is in control of all system software, except for
the software executed inside the enclave." Although the adversary cannot control the
program inside the enclave, the initial state of the enclave is known to the adversary, i.e.,

Due to integrity verification, the adversary cannot modify the software executed inside an enclave without
being detected. Tempering by the adversary would be revealed by SGX’s Remote Attestation (RA) feature,
preventing that confidential data is provisioned to the enclave. SGX's secure storage feature prevents that a
modified enclave can gain access to secrete data stored by a previous, benign instance of an enclave.

73

74

TEE ATTACKS AND DEFENSES

(&5

Attacker

Victim

Process 1
Process 2
Process k

process
Software J Enclave (Prime + Probe)
Stack
Operating
SMT 0 SMT 1 SMT m+1
2 Y Y 2
cru | L1/L2 Cache L1/L2 Cache

Core 0 (attack core) Coren

Last Level Cache (LLC)

SMT: Simultaneous multithreading

Figure 22: High-level view of our attack; the victim enclave and the adversary’s Prime+Probe
code run in parallel on a dedicated CPU core. The malicious OS ensures that no other
code shares that CPU core minimizing noise in the core-exclusive L1/L2 cache.

the program code of the enclave and its initial data. In particular, randomization through
mechanisms such as Address Space Layout Randomization (ASLR) are visible to the
adversary. The adversary knows the mapping of memory addresses to cache lines and
can reinitialize the enclave and replay inputs, hence, the adversary can run the enclave
arbitrarily often. Further, since the adversary has control over the OS and controls the
allocation of resources to the enclave, including the time of execution, and the processing
unit (CPU core) the enclave is running on. Similarly, the adversary can configure the
system’s hardware arbitrarily, e. g., define the system’s behavior on interrupts, or set the
frequency of timers. However, the adversary cannot directly access the memory of an
enclave. Moreover, the adversary cannot retrieve the register state of an enclave, neither

during the enclave’s execution nor when an enclave is interrupted, and control is passed
to the OS.

Adversary Goals. The adversary aims to learn about a victim enclave’s cache usage
by observing effects on the cache’s availability to its own program. In particular, the
adversary leverages the knowledge of the mapping of cache lines to memory locations
in order to infer information about access patterns of an enclave to secret-dependent
memory locations, which in turn allows the adversary to draw conclusions about sensitive
data processed by a victim enclave. We show two concrete attacks for recovering a Rivest—
Shamir-Adleman (RSA) key in Section 4.1.4.1 and identifying individuals in genome
processing applications in Section 4.1.4.2.

4.1 SOFTWARE GRAND EXPOSURE

4.1.3 Our Attack Design

Our attack technique is based on the Prime+Probe cache monitoring technique [294].
The “classical” variant of Prime+Probe is described in the Section 2.4. Subsequently we
discuss our improvements of Prime+Probe beyond the basic approach.

4.1.3.1 Prime+Probe for SGX

Cache monitoring techniques, for instance Prime+Probe, experience significant noise.
Therefore, most of the previously reported attacks, e. g., extracting a full cryptographic
key, require thousands and even millions of repeated executions to average out the
noise [415, 419]. Our goal is to build an efficient attack, i.e., an attack that works with
a low number of repeated executions. The key to achieve this is to reduce noise (or
pollution) in the cache monitoring channel.

There are two main aspects that guide our selection of possible noise reduction tech-
niques — and also distinguish us from most of the previous attacks. (1) Our goal is to
build an attack that cannot be easily detected using the early side-channel attack detec-
tion approaches for SGX [353, 96]; this requirement limits the possible noise reduction
techniques we can use, e. g., we cannot interrupt the enclave’s execution. (2) In contrast
to “classical” side-channel attack the adversary is in control of the privileged OS; this
condition enables us to leverage new methods that were previously inaccessible to the
adversary (e.g., the use of PMCs).

Challenges. Given these conditions, we list the main challenges in our attack realization.
1. Minimizing cache pollution caused by other tasks.
2. Minimizing cache pollution by the victim itself.

3. Uninterrupted victim execution to counter side-channel protection techniques and
to prevent cache pollution by the OS.

4. Reliably identifying cache evictions.

5. Performing cache monitoring at a high frequency.

Next, we describe a set of new attack techniques that we developed to address each of
the challenges listed above.

4.1.3.2 Noise Reduction Techniques

(1.) Isolated Attack Core. We isolate the attack core, i.e., the CPU core on which the attack
is executed, from all other processes executed on the system in order to minimize the
noise in the side channel. Figure 22 shows our approach to isolate the victim enclave on
a dedicated CPU core, which only executes the victim and the adversary’s Prime+Probe
code.

75

76

TEE ATTACKS AND DEFENSES

By default, Linux schedules all processes of a system to run on any available CPU core,
hence, the caches of all CPU cores are affected all executed processes. The adversary
cannot distinguish between cache evictions caused by the victim and those caused by any
other process. By modifying the Linux scheduler, the adversary can make sure that attack
core is exclusively used by the victim and the adversary (“Core 0” in Figure 22). This
way no other process can pollute the attack core’s exclusive caches, i.e., L1/L2 cache.

(2.) Self-pollution. The adversary needs to observe specific cache lines that correspond
to memory locations relevant for the attack. From the adversary’s point of view it is
undesirable if those cache lines are used by the victim for any other reason than accessing
these specific memory locations, e. g., by accessing unrelated data or code that map to
the same cache line.

In our attack, we use the L1 cache, which has the advantage of being divided into
a data cache (L1D) and an instruction cache (L1l). Therefore, code accesses, regardless
of the code’s memory location, never influence the cache lines of the L1 data cache,
which is of interest to the adversary. However, victim accesses to unrelated data stored in
memory locations that map to relevant cache lines lead to noise in the side channel. This
noise source cannot be influenced by the adversary given that the memory layout of the
victim is fixed. This challenge can be tackled partially by a high monitoring frequency
(see below) in order to extract information before it is expunged by unrelated memory
accesses.

(3.) Uninterrupted Execution. Interrupting the victim enclave yields two relevant prob-
lems. (a) When an enclave is interrupted, an Asynchronous Enclave Exit (AEX) is per-
formed and the OS’s Interrupt Service Routine (ISR) in invoked (see Section 2.3.2). Both,
the AEX and the ISR use the cache, and hence, such an event induces significant noise
in the side channel. (b) By means of transactional memory operations an enclave can
detect that it has been interrupted. This feature has been used for a side-channel defense
mechanism [353, 96]. We discuss the details of these defenses in Section 4.4.2. Hence,
making the enclave execute uninterrupted is important for the victim enclave to remain
unaware of our side-channel attack.

In order to observe the changes in the victim’s cache throughout its execution, we
need to monitor the cache of the attack core in parallel. To achieve this, we execute the
attacker code on the same CPU core. The victim is running on the first Simultaneous
Multithreading (SMT) execution unit while the attacker code is running on the second
SMT execution unit (see Figure 22). As the victim and attacker code compete for the L1
cache, the adversary can observe the effects of the victim’s execution on the cache.

The attacker code is, similar to the victim code, executed uninterrupted by the OS.
Interrupts usually occur at a high frequency, e. g., due to arriving network packets, user
input, etc. By default, interrupts are handled by all available CPU cores, including the
attack core, and thus the victim and attacker code are likely to be interrupted. The OS
code executed on arrival of an interrupt will pollute the cache, or the victim enclave
could detect its interruption, assume an attack, and stop itself.

To overcome this problem, we leverage the adversary’s control over the system’s
privileged software and configured the interrupt controller such that interrupts are not

4.1 SOFTWARE GRAND EXPOSURE

delivered to the attack core, i.e., it can run uninterrupted. The timer interrupt is an
exception and cannot be reconfigured the same way. Each CPU core has a dedicated
timer and the interrupt generated by the timer can only be handled by the associated
CPU core. However, we reduced the interrupt frequency of the timer to 100 Hz, which
allows victim and attacker code to run for 10 ms uninterrupted. This time frame is
sufficiently large to run a complete attack cycle undisturbed (with high probability).> As
a result, the OS is not executed on the attack core while the attack is in progress (depicted
by the dashed-line OS-box in Figure 22). Also, because the victim is not interrupted it
cannot detect the attack with mechanism proposed in literature, such as T-SGX [353] or
Déja Vu [96].

(4.) Monitoring Cache Evictions. In the previous Prime+Probe attacks, the adversary
determines the eviction of a cache line by measuring the time required for accessing mem-
ory locations that maps to the cache line of interest to the adversary. These timing-based
measurements represent an additional source of noise to the side channel. Distinguishing
between cache hit and miss requires precise time measurements. For instance, for the
Skylake architecture Intel reports that a L1 cache a cache hit takes at least 4 cycles [205].
If the data got evicted from the L1 cache, they can still be present in the L2 cache. Reading
data from L2 cache takes 12 cycles in the best case.This small difference in access times
makes it challenging to distinguish a cache hit in L1 cache and a cache miss in L1 that is
served from L2 cache. Furthermore, Intel states that “software-visible latency will vary
depending on access patterns and other factors” [205]. Reading the time stamp counter
to calculate the time a read operation takes, itself suffers from noise, which is in the order
of the difference between L1 and L2 cache accesses. Thus, when the timing measurement
does not allow for a definitive distinction between a cache hit and a cache miss, the
observation has to be discarded. To eliminate this noise, we use PMCs to determine if a
cache line got evicted by the victim. This is possible in the SGX adversary model because
the adversary controls the OS and can freely configure and use the PMCs.

Usage of PMCs for cache attacks was previously explored by Uhsadel et al. [387],
Bhattacharya and Mukhopadhyay [51]. For instance, Uhsadel et al. [387] demonstrated
that measurements collected using PMC for L1 cache misses require the least amount
of traces compare to other measurement methods, such as time stamp counters. One
should, however, note that PMCs are only beneficial if adversary is privileged, but cannot
directly read the victim memory. To the best of our knowledge, we are the first to use
PMC in such a setting.

We recall that Intel processors provide the ASCI feature (cf. Section 4.1.1) that prevents
monitoring of cache related events caused by enclaves’ executions, i. e., the straightfor-
ward approach to monitor cache related events of the victim is obstructed by the fact that
PMCs are disabled for enclave code (cf. Section 4.1.1). This, however, does not prevent
our attack since our attack does not monitor cache activity of the victim. Instead, the
adversary observes cache events of the attacker process, which shares the cache with
the victim. In particular, the entire cache is primed by the adversary before the victim is
executed. When the victim executes it evicts a subset of cache lines. In the probe phase

2 When an interrupt occurs by chance the attack can be repeated. If the time frame is too short the timer
frequency can be reduced further.

77

78

TEE ATTACKS AND DEFENSES

the adversary detects which cache lines were evicted by monitoring cache miss events for
the attacker process.

(5.) Monitoring Frequency. As discussed before, the victim should run uninterrupted
while its cache accesses are monitored in parallel. Hence, our attack needs to execute
priming and probing of the cache, i. e., sample the cache usage of the victim, at a high
frequency to not miss relevant cache events. In particular, probing each cache line to
decide whether it has been evicted by the victim is time consuming and leads to a
reduced sampling rate. The required monitoring frequency depends on the frequency
at which the victim is accessing the secret-dependent memory locations. To not miss
any access, the adversary has to complete one prime and probe cycle before the next
relevant access by the victim occurs. In our implementation the access to PMCs is the
most expensive operation in the Prime+Probe cycle.

To tackle this challenge, we monitor individual (or a small subset of) cache lines over
the course of multiple executions of the victim. In the first run, we learn the victim’s
accesses to the first cache line, in the second run accesses to the second cache line, and so
on. By aligning the results of all runs we learn the complete cache access pattern of the
victim.

4.1.4 Attack Instantiations

We implemented and evaluated our attack for two concrete targets. We performed and
evaluated our attack on a Dell Latitude E5470 with an Intel Core i7-6600U CPU (at
2.60 GHz) running Ubuntu Linux 14.04 with a customized kernel in version 4.4.0-57 and
Intel SGX Software Developer Kit (SDK) version 1.6.

RSA Attack. The first target for our attack was the RSA algorithm. Attacks on crypto-
graphic algorithms are the prime example for many cache side-channel attacks, as these
algorithms process highly sensitive information (i. e., the secret key). Therefore, attacks on
cryptographic primitives are well studied in previous works [308, 294, 210, 252, 414, 180,
181]. This makes a cryptographic algorithm an obvious first attack target. We describe
our attack subsequently in Section 4.1.4.1. Parallel works attacking cryptographic imple-
mentations in SGX [340, 277, 174] and their differences to our approach are discussed in
Section 4.4.1.

Genome Sequence Attack. In our second attack instance, we target an enclave processing
genome sequences, i. e., a non-cryptographic algorithm that nevertheless processes highly
sensitive data.

Due to the fact that cryptographic algorithms are popular targets for side-channel
attacks, many cryptographic libraries are hardened against cache monitoring using
techniques such as scatter-gather [75]. Hence, side-channel attacks against cryptographic
libraries can be thwarted by using appropriate implementations [50].

Unfortunately, the implementations of most other, non-cryptographic algorithms pro-
cessing sensitive data are not hardened in a similar way, making them vulnerable to
cache monitoring attacks. While these algorithms can be manually hardened as well, it
requires both developer expertise and effort to make an algorithm side-channel resilient.

4.1 SOFTWARE GRAND EXPOSURE

As a consequence, many non-cryptographic algorithms, used inside SGX enclaves to
process sensitive data, remain vulnerable to cache monitoring attacks.

In Section 4.1.4.2 we demonstrate that critical information can be extracted from an
SGX enclave processing genome data.

4.1.4.1 RSA Attack

In our first attack instance, we targeted an RSA implementation from the Intel Integrated
Performance Primitives (IPP) crypto library, which is part of Intel’s SGX SDK. The private
key was chosen randomly. In particular, we extracted memory access patterns of the
decryption algorithm from the fixed-size sliding window exponentiation implementa-
tion [207]. We implemented a victim enclave that uses this library to decrypt a single
message when started. The enclave was compiled with default optimization flags and
compiler settings. Intel’s IPP crypto library also includes an RSA implementation vari-
ant that is hardened against cache attacks. However, the goal of this work is to show
the effectiveness of our attack techniques against cryptographic algorithms, which are
implemented without the use of explicit protection mechanism, to make our results com-
parable to previous and concurrent works on side-channel attacks. We discuss defenses
in Section 4.4.2 and present our own side-channel defense DR.SGX in Section 4.3.

Our target implementation of RSA uses the Chinese Remainder Theorem (CRT) to
optimize performance. A message is decrypted by separate exponentiation operations
using two pre-computed values d,, and dq. The values d,, and d4 are derived in advance
from the cryptographic key’s prime factors p and q, i. e., the private key. In our experiment
we used RSA keys of length 2048 bit, hence, during the decryption exponentiation is
performed two times, each being a 1024 bit exponentiation.

The implementation of the fixed window exponentiation of our target is shown in
Figure 23. The algorithm takes the base a, the exponent e (i.e., d, and dq respectively),
and the parameter N (which is public). First, the multiplier table g is pre-computed
for the given a. Next, the exponent e is divided into a 2* representation, i.e., the
exponent is divided into windows of fixed size (kbit), resulting in [n/k] windows
(ej,ej—1,...,€1,€0). Calculating the exponentiation result involves a lookup in the table g
for each window (ej, ej_1,..., €1, e0) determining the pre-calculated multiplier that has
to be multiplied with the intermediate result. Hence, for each window one entire from
the table g is accessed.

Figure 23 shows the lookup in the table g for the windows of e. Due to the size of the
table entries, each entire spans two cache lines, i. e., the table access for the first window
(1010) will affect cache lines 19 and 20.

Attack Details. Our attack employs all noise reduction mechanism described in Sec-
tion 4.1.3. In particular, to increase the monitoring frequency we monitor accesses to each
multiplier, i. e., entries in table g, in individual executions. Each multiplier is 1024 bit
and occupies two, consecutive cache lines when accessed. Thus, to detect the use of a
particular multiplier, we probe the two corresponding cache lines. Our attack allows us
to make one observation every c cycles. Next, we divide all observed cache accesses into
epochs of p probes each. The size of the pre-computed multiplier in table g means that 16

79

8o

TEE ATTACKS AND DEFENSES

Victim Enclave

Exponent e
0001010011110101...

—_—
[S——

Attacker Process

Line 0
Line 1

Line 19
Line 20
Line 21
Line 22

tiation Cache

my | 21 122 L19 L20

Figure 23: Memory accesses and cache updates in RSA exponentiation. The processed window
value from exponent e determines the accessed entry from table g in memory which
defines the impacted cache line.

repeated memory accesses are needed to read it from memory, i. e., we expect 16 memory
access to the table entire of a multiplier within one epoch. When our observations meet
this condition, we considered the corresponding multiplier a candidate.

The accesses to each multiplier in table g is monitored consecutively. In our attack we,
monitored 10 out of 16 multipliers in the table g. On one hand, monitoring a subset of
multipliers is sufficient to extract enough information about the key to recover the entire
key. On the other hand, we encountered significant noise in our observations of the cache
lines corresponding to the remaining multipliers. This noise rendered these observation
worthless for our goal of recovering the private key.

We repeated the observation of each multiplier t = 15 times to collect a sufficiently
large fraction of the key. Our monitoring frequency was % = 5% cycles; we divided our
monitoring trace into epochs of p = 33 probes each, which gave accurate results. The
epoch length is based on the average execution time required for a single iteration of the
exponentiation algorithm. We varied the number of multiplies being observed during
a single execution of the victim enclave as well as the monitoring frequency. However,
monitoring more than one multiplier as well as increasing the monitoring frequency
(c < 500) causes significant noise in the measurements, i.e., it does not improve our
attack.

Attack Results. Our measurement results are illustrated in Figure 24. Each row of the
graph corresponds to one measurement trace for each of the ten multipliers we monitored,

4.1 SOFTWARE GRAND EXPOSURE

i.e., our t = 15 repetitions resulted in 15 rows in the graph. Whenever two cache lines
that correspond to a particular multiplier is access 16 times within one epoch a dot
is plotted; every multiplier is represented by a different color. Thus, a vertical line of
same-colored dots is a clear indication that the cache lines associated with one particular
multiplier was accessed at the same time during all repetitions of the algorithm. This
allows us to conclude which multiplier was used at this point in the algorithm.

TMIOTOIE

10000 20000 30000 40000 50000 60000

Figure 24: Access patterns to the table of pre-computed multipliers in the exponentiation of an
RSA decryption. Each dot represents the access to the cache lines corresponding to one
multiplier, i. e., 16 repeated memory accesses to particular cache lines. Each multiplier
is plotted in a different color. All cache lines were monitored 15 times, each repetition
is shown in a separate row. Vertical lines of same-colored dots clearly indicate the use
of a particular multiplier.

In each iteration of the algorithm one multiplier is accessed, which produces one access
observation in each repeated execution of the victim enclave, resulting in a vertical line
in the graph (Figure 24). Since the execution time for the iterations of the algorithm is
sufficiently constant, we can correlate each line in the measurement plot to its window of
the exponent e.

In our experiment, we used a simple heuristic to decide whether a multiplier was
accessed: if more than half of the monitoring rounds report the same value for a single
epoch, we consider this value confirmed and assume that the respective multiplier was
used by the algorithm. If no multiplier accesses are observed in an epoch, we conclude
that the exponent window for this iteration was zero and no table entry was accessed.

Using this approach, we could extract approximately 70 % of all bit of our randomly
chosen key correctly, which is sufficient information to reconstruct the entire key, and
thus, rendering our attack successful.

4.1.4.2 Genome Sequence Attack

Genome data analysis is an emerging field that highly benefits from cloud computing due
to the large amounts of data being processed. At the same time, genome data is highly
sensitive, as they allow the identification of persons and carry information about a per-
son’s predisposition to specific diseases. Thus, maintaining the confidentiality of genomic
data is paramount, in particular when processed in untrusted cloud environments.
Genome sequences are represented by the order of the four nucleotides: adenine,
cytosine, guanine and thymine, usually abbreviated by their first letter (A, C, G, T). Mi-
crosatellites or Short Tandem Repeats (STR) are repetitive nucleotides base sequences.
STR analysis is a common genomic forensics technique, where the lengths of the mi-
crosatellite (STR) at specific locations in the genome are used to identify individuals [78].

81

82

TEE ATTACKS AND DEFENSES

Victim Enclave

Input
ATCGCGACTAGT ...

——
—

—

@ Attacker Process

Satellite AN BNGNCNE

Figure 25: Genome sequence analysis based on hash tables; the positions of the genome’s subse-
quences (called k-mers) are inserted into a hash table for statistical analysis and fast
search for k-mers.

For example, many US forensics labs use STR lengths in 13 standardized locations to
define a genotype for an individual.

Efficient search of genome sequences is vital for many analysis methods. Therefore,
the genomic data is usually preprocessed before the actual analysis is performed. One
common way of preprocessing is to divide the genome sequence into substrings of a
tixed length k, called k-mer. The k-mers represent a sliding window over the input string
of genome bases.

In Figure 25 the input sequence “AGCGC..." is split into 2-mers. Starting from the left
the first 2-mer is AG, next the sliding window is moved by one character resulting in the
second 2-mer GC, and so on. The k-mers are inserted into a hash table, usually, for each
k-mer its position in the genome sequence is stored in the hash table. Thus, given a k-mer
that is part of a microsatellite one can quickly lookup at which positions it appears in the
input genome sequence.

Another use case is statistical analysis of the input genome sequence, for instance, the
distribution of k-mers in the sequence can easily be extracted from the hash table.

Primex. Our victim enclave implements the preprocessing step for a genome sequence
analysis, as described above. Our victim enclave uses an open source k-mer analysis tool
called PRIMEX [241], which inserts each k-mer position into the hash table. Each hash
table entry holds a pointer to an array that stores the positions of each k-mer.

4.1 SOFTWARE GRAND EXPOSURE

Attack Details. Our attack aims at leaking the length of microsatellites (STR) at the stan-
dardized locations used for STR analysis when an input genome sequence is preprocessed
(indexed) by the victim enclave. According to our attack assumptions (cf. Section 4.1.2)
the adversary is in control of all system resources. This enables the adversary to prevent
interference with the victim enclave’s execution leading to a deterministic execution time
for our victim enclave, allowing precisely correlating of cache monitoring observations
with position in the input sequence.

Through our cache side channel, we can observe cache activities, which can be linked to
the victim’s insertion operation into the hash table. Figure 25 shows how insertions into
the hash table affect different cache lines. For each k-mer the victim looks up a pointer to
the respective array from the hash table. From the source code we learn the hash function
used to determine the table index for each k-mer. By reversing the mapping function, we
are able to infer the input based on the accessed table index.

Unfortunately, individual table entries do not map to unique cache lines. Multiple table
entries fit within one cache line. Therefore, we cannot directly conclude which index
was accessed from observing cache line accesses. This problem is illustrated in Figure 25.
Here four table indexes map to a single cache line. When the adversary observes the
eviction of cache line 0, the adversary does not learn the exact table index of the inserted
k-mer. The adversary only learns a set of candidate k-mers that could have been inserted:
{AA,AC,AG,AT}.

However, the adversary can divide a microsatellite of interest into k-mers and deter-
mine which cache lines will be used when it appears in the input sequence. In Figure 25
the microsatellite is split into four 2-mers, where the position of the first 2-mer (AT) will
be inserted in the first quarter of the table, hence, cache line 0 will be used by the victim
enclave. The position of the second 2-mer (TC) will be inserted into the last quarter of the
hash table, thus activating cache line 3. Following this scheme, the adversary determines
a sequence of cache lines that will be used by the enclave when processing the target
k-mer. Monitoring for this sequence will reveal to the adversary at which position of the
input genome the target k-mer is processed.

Attack Results. We provided a genome sequence string to the victim enclave and executed
it in parallel to our attack code. We chose k = 4 for the k-mers leading to 4* = 256 4-mers
(four nucleotides possible for each of the four position). Each 4-mer is represented by
a unique table entry, each table entry is a pointer (8 Byte), and thus each cache line
contains 64 Byte/8 Byte = 8 table entries.

The adversary’s goal is to determine the microsatellite length at each of the 13 stan-
dardized locations. For example, in location CSF1PO the aim is to extract the length of the
repeating sequence TAGA, which is expected at this position. First, the four 4-mers occur-
ring repeatedly in the microsatellite are determined, as well as the corresponding cache
lines for each 4-mer: TAGA = cache line 7; AGAT = cache line 28; GATA = cache line 9;
ATAG = cache line 20.

In our attack, we monitor these four cache lines individually and align them, as shown
in Figure 26. When the microsatellite appears in the input string, the cache lines 7, 28, 9
and 20 will be used repeatedly by the victim enclave. This increase in utilization of these
cache sets can be observed in the measurements. In Figure 26, the increased density of

83

84

TEE ATTACKS AND DEFENSES

observed cache events is visible, marked by the solid line rectangle. Since all four cache
lines are active at the same time, one can conclude that the microsatellite occurred in the
input sequence.

False Positives. False positives due to monitoring noise are highly unlikely due to the fact
that we observe four cache lines. Figure 26 shows extensive activation in the top cache
line (pink) marked by the dashed line rectangle. However, in the three other cache lines
there is low activity making this event clearly distinguishable from a true positive event,
which is marked by the solid line rectangle as described before.

RSES TS ERNEYS ‘“rifﬂ%m ATAG
R NS R £ 0 e SRR e saest. GATA
¥ W -.i’i%?ia‘&fﬁﬂm"‘ N SRR I AGAT

SIS AL RO TS TAGA

Time

Figure 26: Access pattern of hash table accesses by PRIMEX processing a genome sequence [241].
Four cache sets are shown in different colors with 20 repeated measured for each cache
set. The cache sets correspond to the 4-mers of the microsatellite TAGA. Increased activity
in all four cache sets (marked by the solid line rectangle) indicates the occurrence of
the microsatellite in the processed genome sequence.

Length Accuracy. For STR analysis one should, ideally, know the exact microsatellite
length at sufficiently many standard locations. Due to cache monitoring noise, as seen in
Figure 26, our attack cannot extract the precise length of microsatellites.

We determine possible microsatellite lengths by manually comparing the attack traces
(see Figure 26) to pre-computed reference traces with known lengths. Through a manual
verification we confirm that our attack is able to extract the length with an accuracy of
+1 in the vast majority of test samples, i. e., if the true length is eleven in a location, e. g.,
CSF1PO, we learn from our measurements that microsatellite’s length is between ten and
twelve.

Target Identification. Given the three possible lengths for each standard location, one can
compute the probability that a random person from a given population would match
the leaked genomic information as the Combined Probability of Inclusion (CPI) [78]. The
probability of identifying an individual depends on the genotype of the attack target. The
worst case, and therefore the lower bound for our attack’s accuracy, is when the target
individual has the most common genotype, i.e., the most frequently seen microsatellite
length in each of the 13 locations. Assuming that the attack target is a Caucasian person
with the most common genotype. From the known frequencies [78, Chapter 11] we
compute a CPI value of 7.027 x 10~°. This means that from a population of 10 million
people (e. g., a small country), statistically 703 people would have a genotype that matches
the information leaked through our attack.

The average case is one where the attack target has more variation in his or her geno-
type. In the majority of such cases, statistically less than one person from a population of
10 million match the leaked information. We conclude that our attack is, therefore, able
to identify the person whose genome is processed with high probability.

4.1 SOFTWARE GRAND EXPOSURE

Other Applications. Similar information leakage is likely to apply to many other appli-
cations as well. Especially, programs that construct or access lookup tables, or similar
data structures, are ideal targets for our attack. Such patterns are often seen in database
systems, medical and scientific data processing applications, and machine learning
models.

4.1.5 Conclusion

In this work we demonstrate that cache attacks on SGX are indeed practical and pose a
serious threat on the core security benefit of SGX. Our goal was to develop an attack that
cannot be mitigated by countermeasures aiming at detecting side-channel attacks [353, 96],
therefore, we mount the attack on uninterrupted enclave execution. We developed a set
of novel attack techniques and demonstrated our attack on RSA decryption and genome
indexing.

85

86

TEE ATTACKS AND DEFENSES

4.2 HARDIDX: PRACTICAL AND SECURE INDEX WITH SGX

Outsourcing encrypted data to untrusted cloud environments while still being able
to search these data has been pursued for long time using cryptographic techniques.
Encrypted databases have been approached using cryptographic schemes such as
property-preserving encryption [44, 56], functional encryption [59] and searchable en-
cryption [358, 117, 257]. However, for all these schemes performing efficient and secure
range queries is challenging. Efficient methods, such as order-preserving encryption, e. g.,
used by CryptDB [314], are susceptible to simple attacks [282].

Most schemes for encrypted searches that support range queries have search time
linear in the number of database entries, while schemes achieving polylogarithmic search
time have query size, storage size or leakage problems [128, 144, 257]. Thus, designing an
efficient searchable encryption scheme with minimal leakage on the queried ranges remains
an open challenge.

General secure computation techniques, for example Secure Multiparty Computation
(SMC) and Fully Homomorphic Encryption (FHE) [157], typically provide strong security
guarantees, however, they are impractical for large-scale systems [158].

Another line of research leverages Trusted Execution Environment (TEE) technologies
to enable secure databases [37, 41]. However, these solutions execute an entire unmodified
Database Management System (DBMS) inside a TEE. And they do not formally consider
the information leakage due to side channels or access patterns to resources outside of
the TEE. Furthermore, they do not scale well as they do not account for the memory
limitations TEEs typically face.

Goals and Contributions. Our goal is the design and implementation of an efficient and
secure scheme for search over encrypted data that can be used as a database index. Our
solution should provide high performance, significantly improving over existing software-
based schemes [128, 144], by utilizing the isolation guarantees of Intel Software Guard
Extensions (SGX), and provide better security and scalability, compared to previously
proposed hardware-based solutions [37, 41]. Further, our scheme should organize data
using BT -tree structures, which are used as indexes in many DBMS [322].
The main contributions are as follows:

e HardIDX, our secure and efficient database index scheme. It has logarithmic com-
plexity in the size of the index, allowing searches within a few milliseconds, even
in large databases.

* We analyze HardIDX’s security, in particular its information leakage, and show
that it is comparable to the best known searchable encryption schemes.

* We provide an implementation and evaluate of HardIDX. We evaluate HardIDX for
large databases with up to 50 000 000 key-value pairs and identify the performance
and functional constrains of SGX.

4.2 HARDIDX

4.2.1 Background
We provide background on SGX and side-channel attacks in Section 2.3.2 and Section 2.4,
respectively. Subsequently we provide a brief introduction of B -trees.

BT -tree. A BT -tree is an n-ary tree, often used for efficient searches in databases. It has
three types of nodes: a root node, internal nodes, and leaf nodes. It can store a large
number of key-value pairs, where the keys are used to index the values. Values are only
stored in leaf nodes.

BT -trees used in storage systems often have a high fanout. Fanout denotes the number
of child nodes each node can have, also referred to as branching factor.

Root Node

o7 W |

Internal Nodes

! |
2 6
]

Leaf Nodes I Ll I
! v !
5 1 4

DoN| Ea
=1 11 11 T 3
d 14 |4 d |4 |4

1 1 1
g g

Grady Tristin Emma Eliza Hans Charlie Serrena Philipp Garnet Donelle Katie
Batts Tolle Bryan Turner Derrick Thurst Pitts Allrad Larson Wray Hamble

Figure 27: B*-tree example: unique IDs for each employee are used as keys for the employee’s
record.

Figure 27 shows a BT -tree for an employee database, where each value (record of
employee data such as the name) is indexed by a unique search key (or ID). Every node
x contains [k| keys k, which are stored in a non-decreasing order: kq < ... < kjy| For every
key ki an internal node x; holds a pointer p; to the child node containing elements that

are greater than or equal to k; and smaller than all other keys k; + 1...ky stored in x;.

Po points to a node which contains only elements smaller than kj. In leaf nodes each
pointer p; points to the value corresponding to the pointer’s key k;.

87

88

3

TEE ATTACKS AND DEFENSES

4.2.2 Model and Assumptions

4.2.2.1 System Model

In this section we consider a setting in which a database is hosted on a server D3 under
the control of an untrusted service provider SP and serves queries (we focus on range
queries) from a trusted client €. Without loss of generality, we assume a single client C
that is securely authenticated to the server D.4

In general, the server D, e.g., a cloud server, is untrusted. However, D has TEE
capabilities, in particular, we assume a server equipped with Intel SGX. This enables
D to provide an isolated execution environment, which we call HardIDX enclave. The
HardIDX enclave is trusted by € after explicitly validating its integrity through Remote
Attestation (RA). Furthermore, C validates, also through RA, that the latest microcode
update for SGX is installed and Simultaneous Multithreading (SMT) is deactivated,
making sure that the server is not vulnerable to a number of known side-channel
attacks [390, 68, 174].

The initialization of the database is performed in a trusted environment. HardIDX
focuses on the secure operation of the database, i. e., searches in the database.

4.2.2.2 Adversary Model

The adversary ADV’s goal is to learn the content of the database stored on the server
D or the content of the queries sent by the client C. SGX's isolation prevents ADYV from
directly accessing the memory of an enclave. However, ADV aims to exploit information
leaked through side channels to learn sensitive information.

ADYV has full control over the server D’s software, except for the HardIDX enclave.
In particular, ADV controls D’s privileged software, and thus, all resources of D. This
enables ADYV to (1) observe all interaction of the HardIDX enclave with system resources
outside of the enclave, including the access pattern to (encrypted) data stored outside
of the enclave. And (2) ADV can observe the memory usage of the enclave at the
granularity of memory pages (4 kB), e. g., by utilizing a page-fault-based side-channel
attack [412, 389, 354, 183, 176].

Cache side-channel attacks are considered out of scope, they are addressed in our
side-channel defense DR.SGX (Section 4.3) as well as related works such as Cloak [182].

Hardware attacks are out of scope in HardIDX. Further, Denial-of-Service (DoS) attacks,
e.g., on the cloud infrastructure or the network, are considered out of scope. In this
section, we focus on passive attacks, strategies to prevent active attacks are presented in
our journal article [151] and technical report [150].

For sake of consistency throughout this work all computing devices, whether they are servers or embedded
devices, are named D.

4 We provide a discussion on multi-user setups in our conference publication [149].

4.2 HARDIDX

4.2.3 HardIDX Design

The high-level design of HardIDX is shown in Figure 28. The design involves three

entities: (1) the client € that is under the data owner’s control and is therefore trusted.

(2) The untrusted SGX enabled server D is under control of the untrusted service provider
8P and (3) the trusted SGX enclave within the server D.

Client C Cloud

(D Deploy Tree and Data

SGX-enabled Server D
@ Provision SKy

w Enclave
Query k m
SKy
()
® Send Query 0000 Kk ég)
Eﬂﬁ e o0, O
Load

@ Return Results N b 1 |
« (® Result List

k=SK, v=S5K,

Figure 28: High-level design and life cycle of HardIDX. The search tree and data are stored
encrypted in the cloud. Search queries are processed inside an enclave, which loads the
search tree (partially) to perform the search. The encrypted results are sent back to C.

Initially, C prepares its data values by augmenting it with (index) search keys. We
abbreviate data values as values and the search keys as keys throughout this section. All

other values and keys (e. g., cryptographic keys) are clearly differentiated if ambiguous.

The values are stored in pseudo-random position. The keys are then inserted into a
BT -tree where the storage order of all nodes is pseudo-random, as well. The tree and
values are linked by adding pointers to the leaves of the tree identifying the random
position of the corresponding values. A value can be any data such as records in a
relational database or files/documents in other database types. C then encrypts all nodes
of the tree with a secret key SKy and all values with SK,. The encrypted B*-tree and

encrypted values are deployed on the untrusted cloud server D (see step @ in Figure 28).

C uses SGX’s RA feature for authenticating the enclave and establishing a secure
connection between C and the enclave (we provide an explanation how to establish a
secure channel to an SGX enclave in Section 2.3.2). Through this connection, € provisions
SKy into the enclave (step @). This completes HardIDX’s setup, which needs to be
executed only once.

For visualization purposes, the tree nodes and values are shown to be encrypted as a block. In our HardIDX
implementation each node and value is encrypted individually.

89

90

TEE ATTACKS AND DEFENSES

Now, € can send (index) search queries to D, which are encrypted with a probabilistic
encryption scheme under SKy.. Hence, D and the untrusted 8P do not learn anything
about the content of a query, not even if the same query was sent before. When a query
arrives in the enclave it is decrypted using SKy (see step (3)).

In step @, the enclave loads the B*-tree structure from the untrusted storage into
enclave memory and decrypts it. Only the nodes of the B"-tree are loaded, the values
stored in the database are not loaded into the enclave. Given sufficient memory, the entire
tree is loaded into the enclave and the search is performed afterwards (see step (5). As
the tree size can exceed the memory available inside the enclave, we provide a second
design. In this case, only a subset of tree nodes is loaded into the enclave. The tree is
traversed starting from the root node and nodes are fetched from the untrusted storage
when necessary. In both cases the search algorithm eventually reaches a set of leaf nodes,
which hold pointers to values matching the query. This list of pointers, representing the
search result, is output by the enclave to the untrusted server part (see step ®). To ensure
that D, which is under control of the untrusted 8P, does not learn anything except the
cardinality of the result set, the values in the result list are stored in a randomized order.

The result of the index search could be processed further, e. g., in combination with
additional Structured Query Language (SQL) operators, in an SGX enclave in 8P infras-
tructure. In order to complete the end-to-end secure search, we assume that D uses the
pointers from the result set to fetch the encrypted values from untrusted storage and
sends them to C, where they are decrypted using SK, (see step %)).

Notably, the plaintext values are never available on D. They are encrypted with
strong standard cryptography methods (Advanced Encryption Standard (AES) in
Galois/Counter Mode (GCM) in our implementation) and never decrypted on D, not
even inside the SGX enclave. SK,, is only known to C.

4.2.4 Search Algorithms

We designed two algorithms enabling secure range queries using SGX. As mentioned
above we use an encrypted B*-tree, which is processed inside an SGX enclave. For this
approach we have to consider two cases: (1) The B -tree can be loaded into the enclave
completely, or (2) the BT -tree has to be loaded piecemeal into the enclave. We will briefly
describe our two algorithm constructions below, a more detailed description is provided
in our conference publication [149], which also includes proofs for the correctness and
security of our second construction. The proofs for our first construction are provided in
our journal article [151] and our technical report [150].

Our algorithms consist of two phases, (i) an initialization phase, and (ii) an operation
phase. The initialization phase is the same for both algorithm constructions, while the
operation phases differ in our two constructions.

4.2.4.1 Initialization Phase

In the initialization phase, the BT -tree, which allows the efficient search for values and
ranges of values stored in the database, is constructed. This construction is assumed to

4.2 HARDIDX

be performed in a trusted environment, e. g., it can be done locally at the client side or in
another SGX enclave. The B -tree structure and the values are encrypted with SKy and
SK,, respectively, using an authenticated encryption scheme. The resulting encrypted
data are transferred to D, where they are stored in untrusted memory. Furthermore,
the HardIDX enclave is created on D and a secure channel is established between the
initialization environment and the HardIDX enclave (see Section 2.3.2 for details on
secure channel establishment via RA). Through this secure channel SKy is provisioned to
the HardIDX enclave.

4.2.4.2 Operation Phase

During operation, our two algorithm constructions work differently, we describe them
below individually.

Construction 1. For the first case, our algorithm assumes that the entire B -tree is loaded
into the HardIDX enclave. Either, the B*-tree is small enough to fit in the physical
memory available to the enclave, or SGX’s demand paging functionality is used to load
the required memory pages when needed.

First, the encrypted B'-tree is loaded into the HardIDX enclave and all nodes are
decrypted using SKy, which was provisioned during the initialization phase. The B*-
tree can be loaded either precautionary or on-demand when a range query should be
processed. Next, when a search query token T is send by € to the server D, it is forwarded
to the HardIDX enclave. The enclave decrypts T and traverses the B*-tree, resulting
in a list of pointers to all values that fall within the range specified in T. A random
permutation of the list of pointers is output by the HardIDX enclave to D.D collects the
encrypted values and sends them back to €. Finally, € decrypts the values using SK,,.

Side-Channel Leakage. All de- and encryption operation of the enclave are performed using
side-channel resilient implementations, in particular, Intel’s hardware extension AES
New Instructions (AES-NI) is used, which keeps all intermediate data of the crypto-
graphic operation in registers, mitigating side-channel leakage and providing improved
performance.

The initial decryption of the BT -tree does not leak side-channel information about the
structure of the tree. All nodes are decrypted sequentially, independent of the B -tree
structure.

The traversal of the BT -tree could leak the order of processed nodes. To prevent this,
our algorithm ensures that for each node always all child nodes are accessed, whether
they are actually processed or not. This way, the adversary ADV cannot learn which
child node was actually relevant for a processed range query. However, ADV can observe
the enclave’s memory access patterns at page granularity, which enables ADYV to learn
relations between groups of nodes, where a group of nodes are all nodes that fit within a
single page.

The final list of pointers to values in the result set is again randomized, thus ADV only
learns the cardinality of the result set.®

6 Different methods could be integrated into HardIDX to hide result sizes [411].

91

92

TEE ATTACKS AND DEFENSES

Construction 2. Our second algorithm construction requires only a constant amount of
memory for the HardIDX enclave. The nodes of the BT -tree are loaded on-demand, i.e.,
only those nodes that need to be processed are loaded into the enclave.

As the first step, the BT-tree’s root node is loaded into the enclave and decrypted
using SKy. The second step is the same as in our first construction, i. e., when a search
query token T is send by C to the server D, it is forwarded to the HardIDX enclave, and
decrypted in the enclave. Next, the range search in the BT-tree is performed, where
nodes that are not already loaded into the HardIDX enclave are requested on-demand
from D’s untrusted storage. To optimize communication overhead between enclave and
untrusted host a list of nodes is created that need to be processed next and loaded into
the enclave in a single batch operation. The batch size can be limited to a fixed size to
achieve constant memory usage of the enclave. Eventually, all nodes of the B -tree, which
are needed to identify values within the requested range, are loaded into the enclave,
allowing the enclave to output the list of pointers to the encrypted values (again in a
random permutation). The values contained in the result set are send to C that decrypts
them using SK,.

Side-Channel Leakage. Similar to our first algorithm construction, we use side-channel
resilient implementation for all cryptographic operations (Intel’s AES-NI).

In this construction, we do leak information about the B™-tree structure, since ADYV
can observe which node are requested by the HardIDX enclave while the tree is traversed.
However, the nodes of the B*-tree are stored in a random order in D’s untrusted
storage, thus ADV only learns partial information about node relation, in particular,
ADV learns which nodes were requested before others. In the best case ADV can conclude
(incomplete) hierarchy information about the B*-tree structure. The values or the order
of leaf nodes is hidden from ADYV.

Similar to our first construction, the final list of pointers to values is randomized, thus
ADYV only learns the cardinality of the result set.”

4.2.5 Performance Evaluation

We evaluated HardIDX on an Intel Core i7-6700 processor at 3.40 GHz, with support for
Intel SGX, and 32 GB DDR4 Random Access Memory (RAM). We used Ubuntu 14.04.1
(64 bit version) Operating System (OS) and the Intel SGX Software Developer Kit (SDK).

We tested different aspects of HardIDX, comparing the performance of our two al-
gorithm constructions, in particular, the impact of the memory management for large
search trees.

The details of our evaluation as well as a performance comparison to related work
is provided in our conference publication [149], journal article [151] and technical re-

port [150].
Performance Comparison. We measured the run time for our two algorithm construc-

tions, with a tree branching factor of 10, i.e., each node in the B*-tree has 10 child
nodes, and 1000000 database entries, i. e., key-value pairs. The performance of our two

7 Different methods could be integrated into HardIDX to hide result sizes [411].

4.2 HARDIDX

constructions converge for increasing numbers of values resulting from a range query. For
small rages, with result sets < 28 elements, the second construction has a recognizable
overhead, however, for larger ranges the difference becomes negligible.

Memory Management. To comprehend the effects of the different memory management
approaches we evaluated our constructions with different tree sizes with up to 50 000 000
key-value pairs. Additionally, we tested four different branching factors (10, 25, 50 and
100). Our results show that a low branching factor of 10 has a significant impact on
the first construction for tree sizes over 1000000 key-value pairs, while the second
construction’s run time remains constant for all tested tree sizes.

The sensitivity of our first construction lies in the increased memory page swapping
that is required for large trees with low branching factors, as we elaborate in our
conference publication [149].

4.2.6 Conclusion

HardIDX provides a highly performant solution to search for values and ranges of values
over encrypted data. It utilizes SGX enclaves to process sensitive data in an untrusted
environment, for instance the cloud. Our implementation minimizes the side-channel
leakage of sensitive information about the database’s content. This work shows that
enclave-based systems can be hardened against side-channel attacks using engineering
techniques, such as the use of side-channel resilient implementations of cryptographic
primitives, combined with a careful design of the data processing patterns of used
algorithms.

93

94

TEE ATTACKS AND DEFENSES

4.3 DR.SGX: AUTOMATED AND ADJUSTABLE SIDE-
CHANNEL PROTECTION FOR SGX UsING DAaTAa Lo-
CATION RANDOMIZATION

The main objective of Intel’s Software Guard Extensions (SGX) is to protect the con-
fidentiality and integrity of data processed in an enclave as well as the integrity of
enclave execution. However, as has been repetitively demonstrated, SGX's isolation can
be circumvented via software-based side-channel attacks [412, 389, 68, 340, 277, 174, 176].
A more detailed description of different side-channel attacks against SGX is provided in
Section 4.4.1. Our own novel side-channel attack against SGX is presented in Section 4.1.
Oblivious RAM (ORAM) and Oblivious Execution provide general concepts to protect
against information leakage at a very high cost, e. g., Obfuscuro [11] that implements
oblivious execution for SGX induces 83 x overhead on average (up to 220 x in some
cases). Other side-channel defenses for SGX rely on functionalities that are not available
in all SGX-enabled Central Processing Units (CPUs) [353, 96, 182], while some approaches
require manual effort and expertise from enclave developers, e.g., to annotate critical
data [182, 323] or even redesign software [75]. Due to the disadvantages of existing
side-channel defenses for SGX there is a demand for a more efficient, fully automated
defense mechanism that relies solely on features available in all SGX-enabled CPUs.

Goals and Contributions. Our goal is to design a side-channel protection mechanism
that prevents the adversary from learning the sensitive information processed inside
an SGX enclave. Using fine-grained data randomization, we detain the adversary from
inferring useful information from side-channel leakages. Our solution should work as an
automated tool, which does not rely on enclave developers” assistance, and provide an
adjustable security-performance trade-off.

The focus of this work is on information leakage caused by enclaves” data accesses,
which was the target of many SGX side-channel attacks [68, 340, 277, 174]. Information
leakage due to control-flow events in an enclave’s code represents an orthogonal problem.

The main contributions of DR.SGX are as follows:

* We propose a novel side-channel defense approach for SGX. Our approach is based
on a novel concept, called semantic-agnostic data randomization, which enables
fine-granular data randomization without requiring information regarding the
structure or semantics of the data.

¢ We present the design of DR.SGX, a fully automated tool implementing our
semantic-agnostic data randomization scheme. DR.SGX permutes an enclave’s
entire data memory at cache-line granularity and instruments the enclave’s code to
operate on these permuted memory locations. Additionally, DR.SGX re-randomizes
the data memory repeatedly at a configurable frequency.

¢ We evaluate DR.SGX'’s performance and analyze possible leakages. We show that
the leakage of DR.SGX depends on properties of the target enclave, i. e., whether

4.3 DR.SGX

an enclave executes memory accesses following patterns that are predictable to by
adversary.

4.3.1 Model and Assumptions

In this work, we focus on systems that provide an isolated execution environment, which
is implemented as an execution mode of the main CPU. In particular, the CPU’s shared
resources, such as caches, are used by all execution modes of the CPU and thus are shared
between isolation domains. Our work is targeted towards Intel SGX, however, the same
model also applies to other architectures such as ARM TrustZone [24] or software-based
isolation solutions [266].

4.3.1.1 Problem Space

Side-channel attacks on software in general, and SGX in particular, come in many different
forms. Any kind of resource use that is influenced by the software’s execution and can be
observed by an adversary, can serve as a side channel. For instance, the use of electricity
as well as effects thereof, such as electro-magnetic emission, or the use of shared CPU
caches. In this work we focus on software side channels, i.e., those that are observable
by a software program running on the target machine, precluding physical or hardware
side-channel attacks.

In the realm of software side-channel attacks, a number of distinct variants exist. On
one hand, different shared resources can be used as a side channel, for instance the
different caches of the CPU, or the virtual memory management. On the other hand,
side-channel attacks can target different information, including sensitive access patterns
to data as well as secret dependent code execution paths.

In this work we focus on software side-channel attacks that target data accesses. We
consider attacks that aim at inferring the control flow of a program an orthogonal problem.
Our rationale is two-fold. First, many side-channel attacks on SGX have been based on
data access patterns [68, 340, 277, 174]. Furthermore, our solution can be combined with
existing protections against control-flow leakage attacks, for example with the Zigzagger
approach proposed by Lee et al. [239].

4.3.1.2 Adversary Model

The adversary’s goal is to extract sensitive information from an isolated execution
environment (enclave) through cache side-channel attacks [68, 277, 340, 119, 184, 405]
(including CPU-internal caches such as the Translation Look-aside Buffer (TLB) [175, 176])
and/or paging side-channel attack [412, 389]. Sensitive data in this context are not limited
to cryptographic keys, which are the “classical” targets of side-channel attacks. Instead,
sensitive data have to be seen much broader, for instance, when processing privacy-
sensitive data in the cloud [68].

The adversary can freely configure and modify all software of the system, including
privileged software such as the Operating System (OS). The adversary knows the initial

95

96

TEE ATTACKS AND DEFENSES

memory layout of the target enclave, i.e., the code and initial data of the enclave.
Furthermore, we assume that the adversary can initiate the enclave as often as desired.

However, the adversary cannot directly access the memory of the enclave. The internal
processor state (e. g., the CPU registers) is inaccessible to the adversary, in the event of an
interrupt the state is securely stored in an isolated memory region. The adversary cannot
modify the code or initial data of the enclave, as the enclave’s integrity can be verified
using Remote Attestation (RA).

Attacks such as Meltdown [247] and Spectre [225], which circumvent isolation bound-
aries using transient execution, constitute an orthogonal problem. While these attacks
can be applied to SGX [95, 390], they can be prevented by other means. Intel provides
security updates for SGX that prevent those attacks [95]. RA allows a remote party to
verify that these updates are used before provisioning secret information to an enclave.
The more general problem of data-access driven side-channels is much harder to solve in
architectures such as SGX. DR.SGX addresses the latter and more difficult problem.

We assume the position of the adversary to be as strong as possible and therefore
we assume the adversary to have a noise-free cache side-channel and to be able to
obtain a “perfect memory access trace” of an enclave. This means that the adversary
can observe all memory accesses of an enclave, e.g., using a cache attack technique
such as Prime+Probe [294]. The adversary can precisely determine which cache line has
been used by an enclave and also the order in which the cache lines have been accessed.
The adversary cannot extract information which is more fine grained than accesses to
cache lines, i.e., the offset inside a cache line is not observable to the adversary (see
Section 4.4.1 for a discussion of possible attacks with finer granularity). Additionally, for
each memory access, the adversary can gain information about the accessed memory
pages of an enclave [412, 389].

More formally, trace t = {c1,p1},...,{Cn, Pn} is an ordered list of side-channel obser-
vation pairs that capture every memory access that a victim enclave makes. In each
observation pair, c; is the part of the memory address that determines the cache line, the
accessed address gets mapped to and p; is the part of the address that determines the
accessed memory page. On current Intel CPUs the cache line size is 64 Byte, thus, the
last six bits of an address are oblivious to the adversary.

4.3.1.3 Design Goals

General statements about which memory accesses of a program could leak sensitive
information are hard to make in practice. All memory accesses must be assumed to
potentially leak information if the adversary can associate them with relevant data
elements or structures. For the adversary it is sufficient to distinguish two memory
locations to learn one bit of information. Those memory locations could be two different
data structures, e. g., two variables, or different elements within the same data structure,
e.g., different entries in a table. To protect all possible programs, the data structures of a
program as well as the elements within data structures need to be randomized.

The goal of our work is to provide a protection mechanism against side-channel
attacks that can be applied to arbitrary enclave programs without developer assistance. In

4.3 DR.SGX

particular, the developer must not be required to follow any rules or guidelines for
programming applications or add annotations to the source code. While annotating
“critical” data in general helps improving the performance of most solutions, it is also
error-prone: especially in non-cryptographic applications, it is not always obvious which
accesses to data objects might leak sensitive information. This is crucial as most software
developers are not security experts and cannot comprehensively identify data that could
leak information.

The goal of DR.SGX is to provide a trade-off between security and cost in the design
space that extends from unprotected processes over to SGX enclaves without protection
against side-channel leakage, and to enclaves with DR.SGX to ORAM solutions. By de-
fault, SGX enclaves impose low performance overhead in order to process data in isolation
while not protecting against side-channel leakage. ORAM can provide comprehensive
protect against side-channel attacks, when implemented correctly. However, schemes
implementing ORAM for all memory access of an enclave, such as Obfuscuro [11], cause
very high performance overhead (Obfuscuro reports an average overhead of 83 x and a
maximum overhead of up to 220 x). DR.SGX provides a flexible and adjustable solution,
which allows to find a trade-off between security and performance. In the extreme case,
i.e.,, when re-randomizing the enclave memory after every memory access, DR.SGX
effectively implements ORAM. However, in the best case, DR.SGX’s overhead is less than
5 x while providing protection for enclaves without predictable accesses to sensitive data
structure (see Section 4.3.5 for a detailed evaluation of DR.SGX's security properties). For
most enclaves, a configuration between those two extremes can be chosen. A synopsis of
our evaluation results for different configuration is discussed in Section 4.3.4, detailed
evaluation results are provided in our conference publication [72] as well as our technical
report [66].

4.3.2 DR.SGX Concept and Design

The core idea of our DR.SGX concept is to break the link between side-channel obser-
vations made by an adversary and the sensitive information processed by the victim.
Side-channel attacks inherently rely on the correlation between an observable effect and
the data the adversary aims to extract. Our defense obfuscates the link between memory
locations and data elements. Data elements are located at randomized memory locations,
hence, the adversary cannot deduce which data element was accessed from an observed
memory access location. The adversary no longer learns which data element was accessed;
the adversary only learns that some data element was accessed.

DR.SGX splits enclave memory into small blocks that are randomly reordered, resulting
in an unpredictable memory layout from the adversary’s perspective. Figure 29 illustrates
the concept on the example of an S-box from an Advanced Encryption Standard (AES)
implementation. By default, the S-box (FSb) is stored as an array in consecutive memory at
a predictable location, shown on the left as initial memory layout Ly in Figure 29. Through
a cache side channel an adversary can observe which part of the S-box is accessed. Since
the accesses to the S-box depend on the secret key, the adversary can use this information
to recover the key. However, the adversary cannot observe accesses to individual bytes

97

98

TEE ATTACKS AND DEFENSES

static const unsigned char FSb[256] = {
0x63, 0x7C, 0x77, Ox7B, OxF2, Ox6B, Ox6F, 0xC5,
0x30, 0x01, Ox67, Ox2B, OXFE, 0xD7, OxAB, 0x76, A

int mbedtls aes setkey enc(...) {
. ((uint32 t) FSb[(RK[3] >> 8) & OxFF]) ...
}

FSb19;. 255
FSbo_ :

FSbyyg. . 101
FSbyg. 255

FSbygy. 255

Initial memory L, L,
layout (L,)

Figure 29: DR.SGX’s memory block randomization splits large memory structures such as arrays
into small blocks and reorders them. During the run time of an enclave its memory
layout is re-randomized using the permutation function 7t. Each memory block is the
size of a cache line (64 Byte), i. e., the finest granularity observable by the adversary.

of the S-box. The adversary can only make observations at the granularity of cache
lines (64 Byte). DR.SGX divides all data memory of an enclave into blocks of cache line
size, illustrated by the blocks forming L in Figure 29. These blocks are reordered by a
permutation function 7y, resulting in a randomized memory layout L. Throughout the
run time of an enclave, the memory layout is constantly re-randomized: by applying a
permutation function 71; on L1 a new and different memory layout L is created. As a
result, the memory locations and thus the cache lines corresponding to the S-box are
frequently changing, hindering the adversary’s ability to link observed (cache or page)
accesses to the S-box.

4.3.2.1 Requirements and Challenges

Below, we describe the main challenges we had to tackle in order to implement our idea
of semantic-agnostic data randomization.

Semantic Gap. Providing side-channel protection through data randomization without
developer assistance (e. g., code annotations) is a challenging task due to the semantic
gap that is inherent to memory-unsafe programming languages such as C and C++.

4.3 DR.SGX

Currently, C and C++ are the only programming languages officially supported in the
Software Developer Kit (SDK) provided by Intel for the development of SGX enclaves.

Re-randomization. Randomizing the memory layout of a program once to prevent an
adversary from learning which data are accessed is not sufficient. The adversary can
determine the relation of memory locations and data objects based on various information.
For instance, the initialization of data structures can reveal data locations. In the example
in Figure 29, the S-box is initialized during the creation of the enclave, however, other
AES implementations initialize the S-box at run time which allows the adversary to learn
the locations of all parts of the S-box array after the initial randomization of the memory
layout. Similarly, access frequency can reveal the randomized location of data elements:
if a particular object is accessed a predictable number of times the adversary can identify
the object by finding the memory location that was accessed the expected numbers
of times (frequency analysis). To thwart the adversary in recovering the randomized
memory location of data objects, their locations need to be changed throughout the run
time, such that the adversary cannot link data accesses to data objects.

(Re-)randomization under Adversary’s Observation.

All memory-related actions of the attacked enclave can be observed by the adver-
sary, including those required during initial data randomization and during the re-
randomization of the memory layout. The initial (un-randomized) memory layout is
known to the adversary, i.e., the adversary can monitor memory events while data
is copied to its randomized locations. Similarly, if the adversary managed to recover
information about the randomized memory layout L, the adversary could link the
re-randomization operations used to transfer data from L,, to L,,1, and thus, also gain
knowledge about the new layout L, 1. Therefore, the randomization has to be done in
such a way that its effects are not observable by the adversary.

4.3.2.2 DR.SGX Design

Our solution, a compiler-based tool called DR.SGX, addresses the design goals and
challenges described above by randomizing all enclave data at fine granularity and
re-randomizing the data continuously throughout the run time of the enclave.

Figure 30 shows the system view of DR.SGX. The Trusted Computing Base (TCB) of
an SGX enclave includes the CPU package and an isolated section of the Random Access
Memory (RAM). However, the CPU caches, TLB and the page tables are observable by
the adversary. The data cache of the CPU can be used to observe memory access patterns
of an enclave. On the other hand, the paging mechanism can be exploited in different
ways to learn about memory reads and writes by an enclave, e. g., by observing cache
conflicts in the TLB, the adversary learns which memory pages were used. Additionally,
the adversary has control over the page tables allowing the adversary to learn which
memory pages an enclave accessed.

However, an SGX enclave also includes components that cannot be attacked through
software side channels. The CPU’s registers and accesses to them cannot be observed by

99

100 TEE ATTACKS AND DEFENSES

Page Tables
p Jy
Enclave | Funcly | Funcl, | | Funcl, |
3
3
)
| FuncM, | FuncM, | | FuncM, |
CPU Package unsigned char FSb[256] =
FSbo_63 FSbizg 191
FSb1g; oss
Tt

FSbyg; 255

FSb1ys 191
Execution Unit -
<
:

RNG AES
Registers
Permutation Buffer
Stack
. J
AES: Advanced Encryption Standard TLB: Translation Look-aside Buffer

RNG: Random Number Generator

Figure 30: DR.SGX system design. The main memory of an enclave is not directly accessible by
the adversary; however, the adversary can observe memory access indirectly through
cache and paging side channels. The CPU’s internal state stored in registers and/or
special function units (e. g., the AES engine) are not observable by the adversary.

the advelrseury.8 Also, the execution unit and special function units, such as the Random
Number Generator (RNG) or the AES engine, are secure when operating over registers.
DR.SGX combines these parts and function units of SGX that are secure against side
channels, to obfuscate main memory accesses to the adversary.

8 The LazyFP [363] attack cannot be used on SGX enclaves since the register state is cleaned by the processor
before exiting an enclave.

4.3 DR.SGX

DR.SGX performs randomization at granularity of cache lines, the finest granularity at
which the adversary can distinguish memory accesses (Section 4.3.1). Figure 30 shows
how DR.SGX uses a random permutation function 7 to reorder the program’s data
in memory. Since the adversary cannot identify individual elements within a single
cache line, accesses to the first array element (FSb[0]) and the 64th element (FSb[63])
are indistinguishable for the adversary. The randomization is based on secret values
which are generated and only accessible inside the enclave. They are only processed
by the hardware AES engine of the CPU. The CPU’s AES engine holds all state and
intermediate results in registers, which are not observable by the adversary, hence, the
adversary cannot learn about 7 through cache or paging side channels.

DR.SGX randomizes global variables and the heap. The stack cannot be easily ran-
domized since the hardware expects it to be contiguous. Thus, variables on the stack
larger than a cache line are moved to the heap and replaced by a pointer on the stack.
The remaining variables are protected using multiple different memory layouts: for every
function n variants are created (Funcl;, Funcly, ..., FuncM, in Figure 30), all with different
stack memory layouts. This approach is similar to the one proposed by Crane et al.
[113]. The parameter n can be chosen by the enclave developer, Crane et al. [113] suggest
n = 10 different variants. On every invocation of a function, one of its n variants is
chosen randomly.

The size of the memory region (heap) for the enclave’s data is a parameter of the
permutation function 7t (see Section 4.3.3).

Memory Access Instrumentation. DR.SGX performs randomization on cache line gran-
ularity for two reasons: (a) randomizing at finer granularity provides no security advan-
tages, and (b) randomizing in a data-structures-aware fashion is impractical due to the
semantic gap. Our randomization requires that all memory accesses are instrumented,
which we ensure using an automated compiler pass. The program code determines the
memory location (i. e., address) of the data in the original, un-randomized layout. Then,
before the access is performed, the randomized location of that address is calculated,
using the permutation function 7. The data is then accessed in its new, randomized
location.

As we will elaborate in later sections, the cost of performing the randomization calcu-
lation for every memory access is significant. We overcome this problem by implementing
a “permutation buffer”. The permutation buffer, similar to an address translation cache,
holds the randomized locations of recently used data. Hence, for data locations stored
in the permutation buffer, the function 7 does not need to be recalculated. However,
accesses to the permutation buffer itself must be protected from leaking information.
Therefore, the buffer is accessed in an oblivious way.

Initial Randomization. The initial randomization of the enclave’s data needs to be
done in a way that cannot be observed by the adversary, to keep the adversary from
learning the randomization function 7t or the new memory layout. In particular, if the
adversary can observe a read operation from the un-randomized initial memory layout
and a subsequent write operation to a randomized address, the adversary can link data
structures to the randomized memory locations.

101

102

TEE ATTACKS AND DEFENSES

A general approach to break this linkage is to load a set of data into CPU registers
(register operations cannot be tracked by the adversary) and write the data in a random
order to their new locations. This approach, however, is limited in the amount of the
data that can be loaded into registers at once, enabling the adversary to learn partial
information about the randomized memory layout.

DR.SGX uses a randomization method which hides fine-grained (cache-line granularity)
memory locations from the adversary. Specifically, we use non-temporal writes [208] that
evade the CPU’s caches; therefore, the adversary cannot observe which memory addresses
are written during the initial randomization. Although the non-temporal writes prevent
accesses to the new memory layout L; from being cached, the adversary can still observe
the written memory locations through the more coarse-grained paging side-channel (i. e.,
the adversary’s trace contains a page event p; and no cache event c; for the non-temporal
write). This allows the adversary to know, for each memory block read from the previous
memory layout Ly, to which memory page it was written in L;. However, multiple cache
lines are written to each page: assuming 4 kB pages, 64 cache-line-sized memory blocks
will be written to the same page. To hide this access pattern the initial randomization
of DR.SGX accesses all memory pages of Ly for each memory block that is moved, see
Section 4.3.5.

DR.SGX continuously re-randomizes the memory layout. Starting from the initial
memory layout Ly a random permutation function 717 is applied to derive the first
randomized layout Ly = 77 (Lo). After a configurable window w the memory layout is
re-randomized, applying 7, to derive L, = 7, (Ly).

Similar to the initial randomization, the adversary (by observing reads from L, and
writes to Ly +1) could link those two operations to learn the relation between those
memory layouts. Again, DR.SGX uses non-temporal writes to hide this information. In
Section 4.3.5 we explain how a small number of re-randomization rounds hides the
location of the element from the adversary completely.

4.3.3 DR.SGX Implementation

The key components of our DR.SGX implementation comprise (i) the instrumentation of
memory access operations, (ii) our permutation function, (iii) the initial randomization
procedure, (iv) our stack data randomization implementation, (v) the permutation buffer,
and (vi) our re-randomization procedure.

All these components are integrated into an enclave using automated compiler-based
instrumentation. Our implementation of DR.SGX extends the LLVM compiler [256]
to instrument an enclave’s code in the Intermediate Representation (IR). Furthermore,
additional function blocks (e. g., the permutation function) are inserted into an enclave in
the compilation process.

We will explain each of DR.SGX’s key components shortly below. The details of
our implementation are provided in our DR.SGX conference publication [72] and our
technical report [66].

4.3 DR.SGX

Memory Access Instrumentation. DR.SGX transforms the linear (virtual) memory layout
of an SGX enclave into a randomized layout. Therefore, all memory accesses need to be
translated to access data at their new randomized memory locations rather than the orig-
inal memory addresses in the linear memory layout. Our implementation instruments all
memory access operations to calculate from the linear memory addresses the randomized
locations based on the permutation function 7. By instrumenting memory operations at
the IR in the LLVM compiler DR.SGX is agnostic to the accessed data structures.

Random Permutation. DR.SGX’s randomization function needs to fulfill two require-
ments. It must be (1) collision free, i. e., the randomized location of two different data
elements must be different. And (2) the randomization must be based on a non-secret
algorithm. It should be only dependent on a small secret that can be generated inside the
enclave and store in a register at all time.

Our DR.SGX implementation is based on the FFX Format-Preserving Encryption
scheme [45]. It allows to generate random permutations of the memory layout (fulfilling
the first requirement), using a symmetric cryptographic algorithm (fulfilling the second
requirement). We utilize AES New Instructions (AES-NI), benefiting from its performance
as well as its side-channel resilience.

Initial Randomization. DR.SGX’s initial randomization, utilizing DR.SGX’s random
permutation functionality, is crucial since an enclave’s initial memory layout Ly is known
to the adversary. During initial randomization, the memory is copied in blocks b, each
the size of one cache line, from Ly to the first randomized layout L;. To prevent leaking
information about L; the transfer must be implemented in a side-channel resilient way:.
The adversary must not learn the position of any block in the new memory layout
L;. Blocks are written to L1 using non-temporal write operations. Non-temporal write
operations bypass the CPU’s caches, hence, causing no effect in the cache observable by
the adversary. To prevent leakage through the page-based memory management, DR.SGX
accesses all memory pages of L; for every block written to L.

Stack Randomization. Our DR.SGX implementation moves large data objects, i. e., objects
lager than a single cache line, from the stack to the heap where they are subject to
DR.SGX’s fine-grained (re-)randomization. All remaining data objects are randomly
reordered on the stack, similar to the code randomization methods proposed by Crane
et al. [113]. In particular, for every function n versions with different stack layouts are
created at compile time. During run time, one of these n versions is selected randomly
whenever a function is called.

Permutation Buffer. DR.SGX randomizes memory in blocks b that are the size of a
cache line, i. e., the finest granularity observable by the adversary. Hence, for all memory
accesses to the same block b the permutation function must be calculated only once. To
improve performance, in particular of sequential memory accesses, our implementation
buffers these calculations in a permutation buffer. However, the usage of the permutation
buffer itself might leak sensitive information, such as secret dependent access patterns.
Therefore, all accesses to the permutation buffer are implemented in an oblivious way.

Re-randomization. DR.SGX frequently re-randomizes an enclave’s memory layout. Simi-
lar to the initial randomization the old layout L, is copied to a new memory layout Ly

103

104

TEE ATTACKS AND DEFENSES

in blocks of cache line size. Again, non-temporal write operations are used to prevent
leakage through cache side channels. However, in favor of performance, leakage through
the page-based memory management is not prevented. We analyze the security of this
implementation choice in Section 4.3.5.

4.3.4 Performance Evaluation

We evaluated the memory overhead as well as the run-time overhead of DR.SGX on
an Intel i7-6700 processor (3.40 GHz) with 128 MB Enclave Page Cache (EPC), running
Ubuntu 14.04.4. A detailed evaluation is provided in our conference publication [72] and
our technical report [66].

Memory Overhead. DR.SGX provides protection for data stored on the heap as well as
the stack. Heap randomization requires the enclave to allocate two times the heap size
(only) during re-randomizing, i. e., when coping all data from the current memory layout
L,, to the next layout L,,; 1. DR.SGX’s stack randomization introduces n version of every
function, increasing the enclave’s code size by a factor of n.

Run-time Overhead. We evaluated DR.SGX’s run-time overhead using the benchmark
suite Nbench [79], which we adapted to work in an SGX enclave.

DR.SGX’s overhead is dependent on different configurable factors. The heap size h
directly impacts the cost of the re-randomization operations, which copies the entire heap
from the current memory layout L,, to the new layout L, 1. The second factor is the
frequency f at which re-randomization is performed, i. e., more frequent re-randomization
leads to larger performance overhead.

For heap sizes h = 4 MB, and re-randomization frequencies f between once every
300000 memory access operations and once every 10000000 memory access operations,
DR.SGX'’s geometric mean overhead ranges from 5.45 x to 12.21 x.

Without re-randomization, i.e., when applying only the initial randomization and
stack randomization, the geometric mean of DR.SGX'’s run-time overhead is 4.36 x.

4.3.5 Security Analysis

Subsequently we analyze the security of DR.SGX'’s protection of data on the heap, which
uses our novel semantic-agnostic randomization approach. Our stack protection follows
a previously evaluated approach [113], therefore we do not provide an explicit analysis
of its security properties. However, it is important to note that DR.SGX replaces large
stack allocations with heap allocations, i.e., all large data structures process in an enclave
protected with DR.SGX benefit from the frequent re-randomization applied to the heap
memory.

4.3.5.1 Assumptions and Model

As detailed in our adversary model (cf. Section 4.3.1.2) the goal of the adversary is
to extract secret data from an enclave protected with DR.SGX by observing memory

4.3 DR.SGX

accesses patterns through one or multiple side channels. In particular, we assume that
the adversary can extract a perfect trace of all cache events and page faults. This over-
approximates the adversary’s capabilities, in practice all known attacks exhibit significant
noise in the cache channel [68, 340, 277, 174].

DR.SGX is focused on data-driven side-channel attacks, which we model as follows. The
target enclave contains secret data s of arbitrary length, e. g., cryptographic keys, medical
data, or intellectual property. The enclave contains a data structure d that is processed
depending on s. In particular, d consist of n elements e; ... e,, that are accesses during the
processing of s, the access pattern to the elements e; is dependent on s. Example of such
data structures include look-up tables, e. g., S-boxes as used in cryptographic algorithms
such as AES, hash tables, or in-memory databases. In our model, the elements e; of d are
of the size of a cache line, i. e., the finest granularity at which the adversary can observer
access patterns. Hence, smaller elements of d are indistinguishable for the adversary.
Logical elements of d that are larger than a single e; can be observer by the adversary
by combining all observation for e; ...e;i; elements that fall into the logical element
(assuming the logical element is k times the size of a cache line and aligned).

The target enclave makes | access to potentially different elements of d, depending
on s. The adversary aims to learn this access pattern. However, not all accesses to d and
its elements eg ...e, must be dependent on s. Predictable accesses to d, e.g., during
initialization, can be filtered out by the adversary.

Attack Trace Positioning. We assume the adversary can identify the “attack position” in
the side-channel trace, i. e., the position in the trace that corresponds to secrete dependent
data accesses during the enclave’s execution. The adversary can analyze the enclave, for
instance, by executing it without DR.SGX'’s protection or by inspecting its source code, to
learn at which point secret dependent accesses take place. When executing the protected
enclave, the adversary can count the number of accesses of the enclave to be expected
before the secret dependent access occurs,® assuming deterministic enclave’s execution.

4.3.5.2 Inferring Secret Enclave Data

We distinguish two types of enclaves for our analysis, which we discuss separately:
(1) enclaves that do not have predictable accesses to the data structure d, and (2) enclaves
implementing a predictable access to d (e. g., an initialization of d).

Enclaves without Predictable Accesses. DR.SGX provides strong protection for enclaves
without accesses to a data structure d that are predictable for the adversary, i.e., not
secret dependent. The initial randomization performed by DR.SGX is done in such a
way that the adversary cannot learn the randomized layout of d. In particular, from
the initial memory layout Ly that is known to the adversary DR.SGX transfers all data
(including d) to a new randomize layout L;. This is done in blocks of cache line size,
using non-temporal write operations. The read operations from L, are observable by
the adversary as cache events, however, they do not reveal any secret information as

Compared to the number of memory accesses observed by the unprotected enclave, the adversary has to
consider the additional memory access of DR.SGX.

105

106

10

TEE ATTACKS AND DEFENSES

all memory of Ly is accessed sequentially. The non-temporal write operations to the
new randomized location Ly do not lead to cache events observable by the adversary.
To prevent leakage through a page fault side channel, DR.SGX sequentially accesses all
memory pages of L for every written block in a fixed sequential order, i. e., the adversary
does not learn to which page in Ly a block is written. Since the adversary cannot observe
the positions to which any block is copied in L1, the memory layout of L is completely
unknown to the adversary. Since no predicable accesses to d occur, the adversary cannot
learn the randomized layout of d, and thus, induce no information for observed memory
accesses.

Enclaves with Predictable Accesses. Enclaves that perform predictable accesses to the
data structure d, e. g., initialize d by setting all elements e; ... ey to an initial value, will
reveal the randomized layout L,, at the time the predictable access is performed. More
precisely, the permuted memory location of each accessed e; is learned by the adversary.

The following permutation rounds Ly, 1,L,2,... of DR.SGX will re-permute the
elements location. The adversary traces the relocation of all elements e; to learn the
memory layout Ly when the secret dependent access takes place.*

During the re-randomization, DR.SGX reads blocks b (each the size of a cache line)
sequentially from the old layout L,, and writes them to the new layout L,, 7. When
writing a block b to L,, 1, non-temporal writes are used, hence, no cache events result
from the write operation. The adversary can only learn from the page-fault side channel
which memory page a block was copied to. Within this page, a block b can be placed
at 4kB/64 Byte = 64 different offsets. Hence, the adversary’s certainty regarding the
location of a known block b in L;, being 1 is reduced to 6]—4 in L.

With each subsequent re-randomization of DR.SGX, the adversary’s uncertainty in-
creases rapidly. Given a limited heap size, the probability that a block b can be in every
memory page with equal likeliness rises quickly. We show in our conference publication
that with high probability a block’s location is equally likely in any memory page after
four re-randomization rounds for a 2 MB heap [72].

Hence, the security of DR.SGX depends on the number of re-randomization rounds
performed between the predictable access to d that is observable by the adversary and
the secret dependent access to d.

4.3.6 Conclusion

In this section we introduced semantic-agnostic data randomization as a new defensive
approach against side-channel attacks on SGX. Our design and implementation of
DR.SGX allows the instrumentation of enclave code such that all data locations in enclave
memory are permuted at cache-line granularity and re-randomized at run time. Unlike
previous defenses, our solution allows non-expert developers to harden their enclaves
against various data-driven attack strategies with an adjustable security-performance
trade-off.

The adversary does not need to learn the entire memory layout L, knowing the position of d’s elements
e1...en (or a subset of them) is suffices.

4.4 RELATED WORK

4.4 RELATED WORK

In this section, we review works related to both, our side-channel attack (Section 4.1)
and our two defenses (Section 4.2 and Section 4.3). First, in Section 4.4.1, we discuss
side-channel attacks and compare them to our own attack and explain how they relate to
our defense DR.SGX. Afterwards, in Section 4.4.2, we explain different defense strate-
gies against side-channel attacks and discuss their effectiveness against our attack and
compare them with our own defense DR.SGX.

HardIDX is not focused on defeating side-channel attacks targeting enclave’s Random
Access Memory (RAM) accesses, its main objective is to use enclave-external storage in
an oblivious way for databases. We discuss alternative approaches for scenarios where a
database is outsourced, e. g., to the cloud, in Section 4.4.2. More general approaches to
secure applications using Trusted Execution Environments (TEEs) and different concrete
applications are discussed in Section 5.3.

4.4.1 Side-Channel Attacks

In the past, many side-channel attacks have been developed targeting various systems and
platforms. In this section, we focus on side-channel attacks that target TEEs, specifically
Intel Software Guard Extensions (SGX), and that are closes to the settings considered in
this chapter. We cover both, cache-based side channels leaking information from SGX
enclaves as well as attacks exploiting leakage through the dynamic memory management
of SGX. While the latter type only emerged due to the adversary model of SGX, i.e., an
untrusted Operating System (OS) is responsible for managing an enclave’s memory, the
basic concepts of cache-based side-channel attacks have been developed before SGX was
introduced; we first discuss selected cache-based side-channel attacks not targeting SGX
enclaves.

Cache-based Side-Channel Attacks. The first cache-based side-channel attack [308]
demonstrated information leakage via L1 cache. It was successfully applied to reveal
Rivest-Shamir-Adleman (RSA) keys of OpenSSL implementation through monitoring
accesses to a table with precomputed multipliers, which are used by the algorithm
throughout the exponentiation.

Osvik et al. [294] formalized two cache-based side-channel attack techniques,
Evict+Time and Prime+Probe, which have been used to attack various cryptographic
implementations [284, 381], have been applied to Last Level Cache (LLC) and have been
used to build cross-core side channels [210, 250]. Furthermore, these attack techniques
were shown to be applicable to mobile and embedded platforms [54, 407, 361, 360]. In the
context of cross-core attacks, new and more complex attack techniques were developed,
such as Flush+Reload [414], Evict+Reload [180], and Flush+Flush [181]. These attacks
typically target cryptographic libraries and require tens of thousands of repetitions, while
our attack concentrates on non-cryptographic applications and our attack technique
requires much fewer execution traces.

107

108

TEE ATTACKS AND DEFENSES

Uhsadel et al. [387] study the use of Hardware Performance Counters (HPCs) for
side-channel attacks. They use HPCs to observe the behavior of their victim directly, e. g.,
record cache hit/miss events of the victim. This approach is not suitable for SGX enclaves
because enclaves do not update HPCs due to Intel’s Anti Side-Channel Interference
(ASCI). In contrast, we use HPCs (called Performance-Monitoring Counters (PMCs) in
Intel CPUs) to record cache events of the adversary’s Prime+Probe code.

Fine-grained Cache Leakage. Yarom et al. [415], Moghimi et al. [278] have investigated the
possibility of leaking information through side channels with granularity smaller than
one cache line.

According to Intel, accesses within the same cache line with different offsets may
have deviating access times [205]. This is due to cache-bank conflicts, which occur in
case of concurrent accesses to different cache banks, resulting in some of the conflicting
requests being delayed. This was exploited by CacheBleed [415], an attack that success-
fully recovered 60 % of an RSA key’s exponent bits (which is sufficient to recover the
remaining bits efficiently by other means [185]) after observing 16 000 decryptions. We
investigated applicability of the CacheBleed attack to SGX enclaves and confirmed that
the CacheBleed attack is not applicable to processors with SGX support due to updates
in cache architecture of CPUs supporting SGX.

Mem]Jam [278] uses read-after-write false dependencies to introduce latency when a
victim program reads data with a specific page offset. By measuring the run time of
the victim program, a high number of times, while jamming different page offsets, the
adversary can infer which offsets are read more often by the victim. This attack can
leak information with a four-byte granularity but requires an extremely high number
of runs (50 million runs for an attack against a simple and deterministic SGX enclave).
However, with DR.SGX, the page offsets of data change between different runs, making
the correlation of timing information for different runs exponentially more involved.
Moreover, the accesses due to DR.SGX’s own code generate a significant amount of noise.
Finally, the code of DR.SGX itself was designed to not be vulnerable to MemJam attacks,
e.g., by randomizing the permutation buffer layout (details of our permutation buffer
randomization are provided in our conference publication [72]).

SGX Side-Channel Attacks. Since SGX's introduction, it has been hypothesized that
side-channel attacks could be mounted against SGX enclaves, e.g., by Costan and De-
vadas [109]. Xu et al. [412] demonstrated page-fault side-channel attacks on SGX, where
an untrusted OS extracts secrete information from protected applications by tracking
memory accesses at the granularity of memory pages. Van Bulck et al. [389] advance
the memory-paging-based side-channel attack by Xu et al. [412] by changing the way
an untrusted OS observes an enclave’s usage of memory page to circumvent defenses,
which are based on the premise that an attack will cause exceptions (i. e., page faults)
as a side-effect [353, 354]. They use of memory page attributes, in particular the “dirty”
and the “accessed” bits, and monitoring of the caching behavior of an enclave’s page
tables to learn which pages were used by an enclave. DR.SGX can thwart paging-based
side-channel attacks even if they do not interrupt the enclave execution since DR.SGX
does not aim to prevent the adversary from making observations (or detect an ongoing

4.4 RELATED WORK

attack), DR.SGX rather prevents the adversary from gaining (useful) information from
observations the adversary can make.

Gyselinck et al. [183] show that the x86 segmentation unit can be used to leak infor-
mation about an enclave’s execution, as well. It allows an adversary to monitor memory
accesses at page granularity, similar to previous attacks [354], without changing the page
tables. DR.SGX’s defense is agnostic to the monitoring method used by the adversary;
hence, it provides the same protection against these attacks as for previous attacks with
page-granularity leakage. Additionally, for the first one MB of enclave memory, this
attack allows to extract information, in particular control-flow information as well as
instruction size, at the granularity of single bytes. However, this fine-grained information
leakage was addressed by a microcode update from Intel.

TLBleed monitors the Translation Look-aside Buffer (TLB) to learn memory accesses of
enclaves [176]. While this approach, similar to our attack, does not require the frequent
interruption of the attacked enclave, it reveals only course-grain, i. e., page-granularity,
information. DR.SGX thwarts this attack as it randomizes the entire enclave memory, thus
the adversary only learns the access patterns to random memory locations, regardless of
the side-channel used to monitor memory accesses.

Lee et al. [239] use branch shadowing, i. e., indirectly monitoring the Branch Target
Buffer (BTB), to infer the control flow of an enclave. Similarly, BranchScope uses the
directional branch predictor to infer the control flow of enclaves [143]. These approaches
require the victim enclave to be interrupted at a high frequency, which enables effective
detection methods discussed below [353, 96] (cf. Section 4.4.2).

Cache-based SGX Side-Channel Attacks. Multiple cache-based side-channel attacks targeting
SGX enclaves have been developed in parallel to our attack (presented in Section 4.1).
Below we elaborate on the difference between these attacks and ours.

Schwarz et al. [340] study a scenario, where an unprivileged attacker process (hiding
in an enclave) is spying on the L3-cache utilization of another process (or enclave). The
main difference to our work is that their attack monitors L3 (cross Central Processing
Unit (CPU) core), while our attack works on L1 (on the same CPU core), i. e., our attack
techniques are largely different.

Moghimi et al. [277], Gotzfried et al. [174] target Advanced Encryption Standard (AES),
and isolate the victim and attacker code on a single CPU core, such that they share the
L1 cache.

CacheZoom [277] attacks an AES implementation through L1 cache by interrupting the
victim, and thus increasing the temporal resolution of the attack. Enclave exits introduce
noise in a subset of cache lines rendering them unobservable. Additionally, the interrupts
make the attack easily detectable [353, 96]. Dall et al. [119] use a side-channel attack
such as CacheZoom, i.e., a high-resolution Prime+Probe attack, to extract partial key
information from SGX quoting enclave.

The attack by Gotzfried et al. [174] aims at extracting the secrete encryption key from
an AES implementation in an SGX enclave. The attack leaks information through the
L1 cache, i.e., requiring the victim and attack code to execute on the same CPU core.
Similar to our attack, they run the victim uninterrupted to avoid disturbance due to
enclave exits. However, their attack assumes synchronization (collaboration) between the

109

110

TEE ATTACKS AND DEFENSES

victim and the adversary — an assumption which typically does not hold in practice. In
particular, they assume that (1) the victim and attacker code run as a single process in
two separate threads; (2) victim and attacker code have a shared memory, which they
used to communicate and exchange data, e. g., the adversary provides cipher texts that
need to be decrypted by the victim; (3) the victim synchronizes with the adversary by
indicating to the adversary when the last round of AES decryption is performed. This
allows the adversary to prime the cache immediately before the last decryption round is
executed and probe it directly after it has finished.

Compared to these parallel works, the main benefit of our attack is that it requires
no interrupts or synchrony assumptions, which makes it harder to detect and easier to
deploy in practice.

Hahnel et al. [184] present a side-channel attacks against SGX enclaves aiming to
improve temporal resolution of the side channel by frequently interrupting the enclave.
They develop techniques to interrupt enclaves during the execution of instructions with
memory operations, i.e., allowing them in observe each memory access of an enclave
through cache monitoring. The increased temporal resolution allows side-channel attacks
on a single execution of the victim enclave. Weiser et al. [405] show that the adversary’s
strong capabilities in the context of SGX, i.e., the adversary’s capabilities to perform
precise, low-noise side-channel attacks, enable new attack scenarios where just a single
execution of the victim enclave is monitored. This endangers algorithms that are typically
executed only once, for instance key generation algorithms, and were therefore considered
unaffected by side-channel attacks in the past. However, such attacks are detectable by
defenses such as T-SGX [353] or Déja Vu [96] (cf. Section 4.4.2), while our attack was
designed to circumvent these defense mechanisms. Apart from that, they use techniques
similar to our attack (cf. Section 4.1) to minimize noise in the cache side channel.

SGX-Step is a framework that allows single-step execution of SGX enclaves [388], i.e.,
it allows the OS to schedule interrupts such that an enclave can execute one instruction
before being interrupted and control is transferred back to the OS. This single-step
execution of enclaves enables maximal temporal resolution for side-channel attacks,
including cache-base and paging-based side-channel attacks.

DR.SGX is designed to thwart such side-channel attacks against SGX enclaves regard-
less of the attack technique used. We discuss its effectiveness and security properties in
Section 4.3.5.

Speculative Execution Attacks. The Foreshadow attack allows, to extract the memory content
of SGX enclaves using the processor’s speculative execution unit to bypass the enclave
memory’s access control restrictions [390]. In combination with a side channel, e. g., cache
side channels, the speculative execution unit can leak the enclave memory content to an
adversary. SgxPectre also uses speculative execution to extract information from enclaves,
however, it relies on the existence of vulnerable code gadgets in the enclave’s binary [95].
These attacks can circumvent all knows side-channel defenses for SGX, however, Intel
released microcode updates to mitigate these attacks [209], thus, up-to-date processors
are not vulnerable to Foreshadow or SgxPectre.

11

4.4 RELATED WORK

4.4.2 Side-Channel Countermeasures

In this section, we discuss countermeasures against side-channel attacks proposed in
related work. We elaborate on their applicability to protect SGX enclaves, discuss their
effectiveness against our attack and compare them against our defense DR.SGX. Most of
the discussed approached (except for Oblivious RAM (ORAM)) do not aim to protect
against information leakage due to the usage of external resources, i. e., they are orthogonal
to HardIDX.

Cache Disabling. The most straightforward countermeasure against cache-based side
channels is to disable caching entirely [6]. This approach, however, defeats the main
purpose of a cache, i.e., performance optimizations, resulting in severe performance
degradation. Even more fine-grained approaches, for instance disabling caches only
when security critical code is scheduled for execution, can be prohibitively expensive
for many use cases. In the context of SGX, it would mean to disable caching during
enclave execution. However, SGX enclaves may need to process large data-sets (e.g.,
human DNA) or perform expensive computation (e.g., cryptographic computations),
or run large applications, e. g., the Haven library OS allows to load an entire Database
Management System (DBMS) into an enclave [41]. Furthermore, disabling the cache
cannot be enforced by an SGX enclave as the configuration of the system’s caching
behavior is controlled by the untrusted OS.

Architectural Changes to Cache Organization. Another approach to mitigate cache-
based side channels is to introduce countermeasures through a redesign of the cache
hardware. Respective techniques largely fall into two categories, the first one relies on
access randomization within cache memory [399, 400, 218, 251], and the second one uses
cache partitioning, so that security sensitive code never shares caches with untrusted
processes [296, 297, 398, 399, 134].

Hardware approaches can also co-exist with software defenses. For instance, the
Sanctum [110] architecture, which provides protected enclave execution for RISC-V
platforms, applies cache partitioning for the LLC, while flushing the per-core L1 cache
upon enclave exit."*

However, hardware changes can only be incorporated by hardware manufacturers,
which is hard to achieve in practice. In particular, Intel SGX does not incorporate protec-
tions against side-channel attacks at the architectural level.

DR.SGX works on current processors and protects not only from cache-based side
channels. It also protects against other side channels (e. g., based on page faults).

Obfuscation Techniques. ORAM [168, 169, 364, 379, 325, 170, 408] refers to schemes
that hide the memory access patterns of a trusted client to an untrusted (encrypted)
memory. It masks memory access patterns of the client by continuously shuffling and
re-encrypting data as they are accessed in memory. ORAM assumes a server-client
models where the trusted client accesses data from the untrusted server, typically via
network. However, the scheme can also be applied to other scenarios, e.g., a trusted

Flushing is sufficient to ensure that L1 is never shared between an enclave and any other code on systems
such as Sanctum that do not support Simultaneous Multithreading (SMT) (or hyper-threading).

111

112

TEE ATTACKS AND DEFENSES

CPU accessing untrusted memory such as Dynamic Random Access Memory (DRAM)
or disk storage. ORAM requires the client to store state information that is updated
throughout the execution. Oblivious execution architectures [258, 249, 250] attempt to
hide all observable effects of program execution, including memory accesses (to code and
data) and timing information. Implementing ORAM for every enclave memory access is
extremely expensive. Obfuscuro [11] implements both ORAM and oblivious execution,
with performance overhead of 83 x on average and up to 220 x in some cases. DR.SGX’s
performance overhead is at least one order of magnitude lower than Obfuscuro.

Sinha et al. [356] propose a compiler-based tool to protect code written in their custom
language from paging-based side-channel attacks. In contrast, DR.SGX works with
existing code in C/C++. Additionally, it mitigates cache-based side-channel attacks.

Raccoon [323] is a system that provides oblivious data access only for developer-
annotated enclave data, thus reducing overhead. Memory accesses are hidden by either
using ORAM or by streaming over the entire data structure. In contrast, DR.SGX does
not rely on developers to identify and annotate potentially sensitive data.

ZeroTrace [337] is an oblivious data structure framework for SGX that runs on top of a
software memory controller. ZeroTrace is designed to hide memory access to resources
outside of an enclave, e.g., to the hard disk drive. Importantly, it is not designed to
make all memory accesses of an enclave to main memory oblivious, unlike DR.SGX.
Thus, it does not protect against cache-based side-channel attacks, for instance our
attack presented in Section 4.1. Furthermore, ZeroTrace requires the developer to use the
memory controller interface for all access that should be protected. DR.SGX does not
require similar developer assistance.

Using ORAM to hide access patterns of searchable encryption schemes, is not straight-
forward, as has been shown by Naveed [281], and requires special ORAM techniques,
such as TWORAM [154].

Shinde et al. [354] propose a compiler-based approach to hide memory page access
pattern, i. e., making enclaves page-fault oblivious, by ensuring that the same memory
accesses occur for all inputs. Their approach causes an overhead of 700 x on average
(and 7000 x in the worst case) without developer’s assistance while supporting only a
subset of C/C++. DR.SGX, in contrast, is agnostic to the programming constructs used in
an enclave to be protected, provides better performance without developer assistance,
and provides protecting against all side-channel attacks aiming to leak information from
memory accesses.

Other obfuscation techniques perform periodic scrubbing and flushes of shared
caches [418] or add noise to memory accesses [296, 294] to interfere with the signal
observable by the adversary. These techniques, however, introduce a significant overhead
and are less effective on systems supporting SMT, where two threads or processes can be
executed simultaneously, not in a time-sharing fashion. In this case, the attacker process
running in parallel with the victim can still observe memory access patterns between
scrubbing and flushing rounds. Furthermore, an adversary may collect multiple execution
traces and process them to filter out the injected noise.

4.4 RELATED WORK

In response to the Foreshadow [390] attack, Intel provided microcode updates for
SGX-enabled CPUs that cause a L1 cache flush on each enclave exit [209]. To be effective,
SMT must be disabled on the target system, resulting in performance degradation.

Application Hardening. Application-level hardening techniques modify application
code to protect secrets from side-channel leakage. As a countermeasure, Brickell et al.
[75] proposed a technique called scatter-gather, that interleaves the multipliers of a cryp-
tographic algorithm in memory and ensures that always the same cache lines of the
pre-computed table are accessed irrespective of the accessed multiplier. Such solutions
can be classified into two categories: (i) Side-channel free implementations (e. g., for cryp-
tographic algorithms, such as AES and RSA [75, 231]) and (ii) automated transformation
tools that can be applied to existing programs [106, 102, 113]. Side-channel free imple-
mentations, such as scatter-gather, are application-specific and require significant manual
effort and expert knowledge about side-channel attacks (all application developers cannot
be expected to be security experts). While side-channel resilient frameworks exist, e. g,
data-oblivious machine learning algorithms [291], genome sequencing algorithms [263]
and a side-channel resilient MapReduce framework [290] for SGX, they do not represent
a general solution. These defenses are tailored to specific enclaves and algorithms. On
the other hand, approaches that rely on automated compiler transformations are either
probabilistic [106], i. e., making attacks harder but not impossible, or target only a specific
type of side-channel attacks, such as execution-time-based attack [102, 113].

Randomization. Address Space Layout Randomization (ASLR) [305] is a common de-
fensive technique against memory corruption attacks such as Return-Oriented Program-
ming (ROP) [328]. ASLR hides the locations of memory regions (code and data) by
randomizing their offsets at load time. More fine-grained solutions randomize exclusively
code (not data) at function [220], block [402, 122], or instruction [298, 191] level.

Seo et al. [341] proposed the SGX-Shield framework that enables code randomization
for SGX enclaves. While the primary goal of SGX-Shield is to protect enclaves from
exploitable software bugs, the authors mention that randomization imposes additional
burden to side-channel attacks, and in particular, it provides reasonable protection against
page-fault side-channel attacks, as it forces an adversary to brute force 27 times in order
to identify a single address value. However, this argumentation does not directly apply
to our attack, because SGX-Shield concentrates on randomization of code, it does not
randomize data. Hence, SGX-Shield cannot hide data access patterns leveraged in our
attack. More generally, randomization of data segments is challenging due to dynamic
data allocations, large data objects (e. g., tables) that need to be split up and randomized,
and pointer arithmetic, which is typically used to access parts of large data objects (e. g.,
base-pointer relative offsets are often used to access table entries).

These challenges, among others, have been overcome by DR.SGX.

Software Diversity. Crane et al. [113] apply dynamic software diversity, an effective
countermeasure against code reuse attacks and reverse engineering, to defend against
cache-based side-channel attacks. Their approach is to create multiple copies of a pro-
gram’s code and choose one of them at the time of execution. We apply this technique
to protect stack data in DR.SGX. However, the solution by Crane et al. is specifically

113

114

TEE ATTACKS AND DEFENSES

targeting the protection of cryptographic algorithms. In contrast, DR.SGX can protect
non-cryptographic algorithms, as well.

Attack Detection. Previous works [306, 100] suggested to use system-level monitoring
of HPCs to detect cache performance anomalies as a signature of ongoing cache-based
attacks. However, this method is not applicable in the context of SGX’s adversary model,
since an adversary has sufficient privileges to disable any monitoring at system level.

T-SGX [353] and Déja Vu [96], propose detection methods for side-channel attacks
that are based on frequent interruption of the victim enclave. A prime example of such
privileged attacks is the deterministic side channel based on page-faults [412]. Here, the OS
incurs page faults during enclave execution and learns the execution flow or data access
patterns of the enclave from the requested pages. T-SGX and Déja Vu suggest using a
hardware implementation of transactional memory in Intel processors called Transactional
Synchronization Extensions (TSX), to notify an enclave about exceptions, e. g., page faults,
without interference by the system software.

T-SGX [353] modifies the enclave code such, that any interruption is detected and
execution is terminated. However, this approach requires, in order to be effective, that
the enclave cannot be restarted after the attack attempt was detected. To achieve this,
T-SGX requires one-time tokens provided by an external party over a secure channel.
If the adversary targets the cryptographic protocol used in the establishment of that
secure channel, this condition cannot be enforced (the adversary can initiate and replay
the protocol). Once the adversary has extracted a valid token, the adversary can misuse
it to run the victim enclave arbitrarily often, i.e., extract information despite the self-
termination of the enclave.

Déja Vu [96] extends enclave programs with execution time checks in order to detect
delays caused by interruption of the enclave. SGX does not provide a reliable, fine-grained
time source to enclaves, therefore, Déja Vu uses a “counting thread” as a timer. The timer
thread guards itself from being interrupted through the use of TSX, similar to T-SGX.
While cache eviction might slow down the victim, leading to a detectable delay, the timer
thread can be slowed down as well, without interrupting it. The authors acknowledge
that the timer thread can run on a CPU core clocked at the lowest frequency setting while
the victim runs on a CPU core set to maximum frequency. This can lead to a discrepancy
of factor two or more, while, based on our experiments, L1 cache eviction due to constant
priming slows down the victim only by 27 %.

These defenses do not prevent our attack presented in Section 4.1 and other attacks
that work without interrupting the victim enclave [340, 174]. DR.SGX, in contrast, is
applicable to all side-channel attacks that leak memory access patterns.

Cloak [182] uses TSX to perform atomic memory operations that hide sensitive memory
accesses. Before sensitive memory is accessed, all cache lines are touched (primed) by
the enclave, and thus the adversary learns nothing about the enclave’s sensitive accesses
because the adversary cannot distinguish cache lines that were primed from those that
were actually used by the enclave. Cloak relies on the developer to annotate sensitive
data structures that should be protected from side-channel attacks and requires TSX,
which is not supported in all SGX processors. DR.SGX does not require similar developer
assistance and works on all SGX processors. Volp et al. [394] use a concept called delayed

4.4 RELATED WORK

preemption [386], which can be implemented in hardware or in software using a trusted
hypervisor, to allow an enclave to execute uninterrupted or to be informed in case an
interrupt occurred during execution. By priming (i.e., pre-loading) the TLB, enclaves
can execute without requiring the OS to load memory on-demand during execution.
Therefore, a benign OS does not need to interrupt an enclave’s execution, and thus, any
interrupt occurring during the enclave’s execution indicates an attack. This defense is
not effective against our attack, which does not cause interrupts of the enclave. DR.SGX
provides a software-only defense that can be used on deployed systems without changing
the hardware or requiring assistance from privileged software layers. Furthermore,
DR.SGX provides protection against all side-channel attacks extracting memory access
patterns, also those that do not interrupt enclave execution.

Cooperative Privileged Software. HyperRace [94] and Verys [292] aim to prevent same-
core side-channel attack, i. e., side-channel attacks that rely on SMT to run the victim
enclave and the attacker code in parallel on the same physical CPU core and exploit
core-exclusive resources such as the L1 cache. The idea of these solution is that an enclave
occupies both SMT execution units of a CPU core by running two threads in parallel.
Since the untrusted OS is responsible to schedule both enclave threads on the same
CPU core, the enclave threads have to verify that they are indeed co-located. HyperRace
uses contrived data races on a shared variable between the two enclave threats while
Verys measures cache access timings to check co-location. These defenses would be
effective against our attack, which utilizes SMT to monitor an enclave’s memory access
patterns. However, HyperRace and Verys, thwart only side-channel attacks that rely on
CPU core co-location while DR.SGX provides a general approach to counter all types of
side-channel attacks aiming to leak memory access patterns.

Database Protection Approaches. A number of approaches have been developed that
specifically aim at protecting (outsourced) databases from leaking information. They
use different techniques and approaches, such as searchable and property-preserving
encryption or TEEs, to achieve this goal.

Searchable Encryption. Range queries are supported only by a small subset of all searchable
encryption schemes proposed in related work [58, 396, 352, 257, 128, 144]. All existing
schemes supporting range searches have in common that they leak the access pattern,
including our solution HardIDX. However, all other schemes, except the one by Shen
et al. [352], leak the search pattern or the order of stored database entries. HardIDX
does not leak either of them, and is significantly more efficient, i.e., HardIDX is the
first scheme with polylogarithmic search time that leaks only the access pattern. A
detailed comparison of the different schemes’ complexities is provided in our conference
publication [149] and journal article [151]. Other schemes focus on other problems, such
as multi-dimensional range queries [385, 410] or query executions by multiple parties
without the need for these parties to share an encryption key [99].

Encrypted Databases. Encrypted databases [314] rely on property-preserving encryption [10,
56, 57, 219], which enables the database engine to use the same internal index structures as
for plain-text data, to achieve low run-time overhead. While this approach enables efficient
operations, including range queries, Naveed et al. [282], and follow-up works [136, 179],

115

116

TEE ATTACKS AND DEFENSES

showed practical attacks against property-preserving encryption schemes, which can
recover plain-text data with high probability in many cases.

Other approaches enabling range queries include an extension of the OXT protocol [87]
by Faber et al. [144], as well as different approaches presented by Demertzis et al. [128].

TEE-protected Databases. Maheshwari et al. [260] proposed a Trusted Database System
(TDB) that uses a TEE to isolate an entire database when operated in a hostile envi-
ronment, leading to a very large Trusted Computing Base (TCB) of this solution. TDB
encrypts all data and metadata of the database when stored in untrusted memory, how-
ever, it is not concerned with information leakages, e. g., due to access patterns to external
resources or side channels.

CryptSQLite [397], STANIite [336] and EnclaveDB [318] protect databases using SGX,
STANlite aims to increase the performance of SGX-protected databases [336], in particular,
in the face of limited enclave memory. Also, ShieldStore [222] aims to overcome the
restrictions SGX’s limited enclave memory poses in the context of key-value stores. These
approaches, unlike HardIDX, are not concerned with access pattern leakage or side
channels. StealthDB is a DBMS using SGX enclaves to execute queries in isolation [177].
StealthDB leaks information about the order of data elements that are accessed when
serving search queries.

Cheng et al. [99] propose an SGX-based scheme for performing search over encrypted
data, which does not leak access patterns. However, their scheme’s complexity is linear
in the size of the search tree while HardIDX achieves logarithmic complexity.

Practical Oblivious Search and Update Platform (POSUP) leverages ORAM to prevent
information leakage [192], however, it only supports keyword searches. Mishra et al.
[276] propose Oblix, a protected search index using enclaves [276]. Oblix uses ORAM to
hide accesses to data stored outside of enclaves, while protecting the internal processing
of data against leakage at memory-page granularity. Oblix goes beyond HardIDX as it
supports updates of the search index, i. e., insertion and deletion of data, and hides the
size of the search result.

TRUSTED EXECUTION ENVIRONMENT
APPLICATIONS AND USE CASES
SCENARIOS

Trusted Execution Environments (TEEs) enable the protected processing of overly sen-
sitive data, such as personal data or corporate secrets. The cloud is an natural usage
scenario for TEEs as secret data needs to be protected when outsourced to untrusted
infrastructure. When data-processing is outsourced control over the data is given to the
cloud provider, which cannot always be fully trusted. On one hand, the attack surface in
the cloud is enlarged, e.g., due to the risk of insider attacks of malicious cloud admin-
istrators or malicious co-tenants. On the other hand, legal requirements, such as data
protection regulation [142], prohibit the unrestricted usage of cloud computing for many
use cases.

TEEs allow protected computing in hostile environments, and thus, enable new appli-
cations in the context of cloud computing. In Section 5.1 we present VoiceGuard [71], a
solution that demonstrates how Intel’s Software Guard Extensions (SGX) can be used
to protect sensitive user input data as well as Intellectual Property (IP), i. e., machine
learning models, for speech recognition systems.

Scenarios and use cases where two mutually distrusting parties provide sensitive
inputs for a joint computation are quite common. In our conference publication “Secure
Multiparty Computation from SGX” [315] we demonstrate how to utilize SGX's isolated
execution in combination with its Remote Attestation (RA) functionality in order to
construct a general secure execution framework for multiple mutually distrusting input
parties.

While enclave-like, i. e., unprivileged, TEEs enable many novel applications, they do
not fulfill the requirements for all usage scenarios. For some security solutions, the TEE
is required to have extended privileges to control untrusted software. In Section 5.2
we present a policy enforcement mechanism for smart mobile devices, for instance
smartphones, allowing their use in restricted spaces, such as federal offices or companies,
according to constrains defined by the host [64]. Our enforcement mechanism relies on
ARM TrustZone’s capabilities to inspect and modify a devices entire memory in order to
assert device-usage policies.

117

118

TEE APPLICATIONS

5.1 VOICEGUARD

Voice User Interfaces (Uls) are becoming common-place, e. g., through the integration of
smart assistants, such as Amazon Alexa, Apple’s Siri, Google assistant and Microsoft’s
Cortana, in various appliance, for instance smartphones, cars and smart-home devices.
The user’s voice input is used for speaker authentication and to control these systems via
Automated Speech Recognition (ASR). For these services, the user’s voice data is sent
to the cloud for processing, posing a significant risk, as voice data is highly sensitive. It
contains the spoken words and other ambient sounds that might reveal information not
meant to be revealed to outsiders. Past incidents have shown that the service providers
attain user data, e. g., to improve their machine learning models [187, 124]. Furthermore,
voice data contain biometric information of the speaker, which allow the identification
of the speaker and can be abused to impersonate the speaker, i.e., create fake audio
recordings of a person with arbitrary content.

Hence, the user’s voice input data must be protected. The naive approach, i.e., per-
forming speech recognition on the user’s device, is not practical since the algorithms and
models used to process the data are high value Intellectual Property (IP) of the service
providers. Therefore, they are unwilling to impart their IP to users” devices without
protection guarantees.*

This situation calls for a solution that protects both the user’s inputs as well as the IP
of the service provider. Cryptographic approaches, such as Secure Multiparty Compu-
tation (SMC) or Fully Homomorphic Encryption (FHE), induce high computation and
communication cost rendering them impractical. TEEs enable the protected processing of
the user’s input data without revealing it to the cloud provider, and, at the same time,
they enable the protection of the service provider’s IP.

Goals and Contributions. Our goal is an efficient speech recognition framework that
used TEEs to provide real-time processing of voice data. It must protect both, user voice
inputs as well as the algorithms and models used to process these data. Furthermore,
the solution should support user-specific models that adapt to each user’s specific
characteristics such as varying pronunciations, accents, and dialects.

Our privacy-preserving speech recognition framework, called VoiceGuard, makes the
following main contributions:

* We present the design of VoiceGuard, our TEE-based ASR framework protecting
both, the user’s voice input data as well as the speech recognition model. Voice-
Guard’s design can be easily extended to support user-specific models, using
techniques such as feature transformation, i-vectors or model transformations.

* We implement VoiceGuard using Intel’s Software Guard Extensions (SGX) and the
Kaldi ASR toolkit [316].

1 In this work we focus on cloud-based solutions. Given the availability of Trusted Execution Environments

(TEEs) similar schemes apply for other systems as well; Bayerl et al. [42] present a speech recognition
solution for user devices based on SANCTUARY (see Section 5.3).

5.1 VOICEGUARD

* We evaluate VoiceGuard’s performance based on the Resource Management and WS]
speech recognition tasks, demonstrating its capability to perform real-time speech
recognition.

5.1.1 Model and Assumptions

In this section we consider a setting where three parties collaborate to perform secure
and private speech processing;:

(1) The user U provides the voice data to be processed. U is concerned about the
privacy of the provided data. The other parties should not be able to identify U based
on biometric characteristics in the input data. Additionally, U does not want to reveal
the content of the input data to the other parties, i.e., they should not be able to access
the voice data or the processing results. Lastly, U does not want to be traceable across
multiple sessions.

(2) The vendor V provides the software required for speech processing together with
corresponding models. This data constitutes V’s IP; hence, it must be kept confidential
from the other parties.

(3) The service provider SP carries out the actual computations based on U’s and V’s
inputs. 8P could be an independent third party, e. g., a cloud service provider. Without
loss of generality, SP could also be under the control of U or V.

Adversary Model. The adversary ADV’s goal is to extract sensitive information, i.e., the

intellectual property of V, the input of U, or data that allows ADYV to identify or track U.

We assume that ADYV is in control of §P’s infrastructure, in particular, all computer
systems involved in performing the speech processing task. ADV has full control over
the software in §P’s infrastructure, including privileged software such as the Operating
System (OS) or a hypervisor.

We assume that §P’s infrastructure allows isolated processing of data in a TEE. We
assume that ADV cannot directly access the code and data processed inside a TEE. ADV
cannot perform invasive hardware attacks such as extracting keys from the Central
Processing Unit (CPU). We also consider physical side-channel attacks, for instance
differential power analysis [224], out of scope. Further, we assume that the developer
of the speech processing software incorporates appropriate defense mechanisms in the
software executing insider the TEE in order to protect it against side-channel attacks
leveraging micro-architectural effects [353, 96, 66].2

5.1.2 VoiceGuard Design

Our architecture VoiceGuard enables privacy-preserving and efficient speech processing
on untrusted systems. VoiceGuard supports different deployment scenarios, i.e., the
service provider 8P is not necessarily a third party, e. g., SP could also be the user U or
the vendor V. Common to all scenarios is the basic setup, i. e., at least two input parties

Our evaluation is performed without such protection mechanisms, such as DR.SGX presented in Section 4.3,
and thus does not reflect their impact on the performance results.

119

120

TEE APPLICATIONS

; User U Service Provider SP Vendor V
9)
2
& @ provision
= w @ code vetting Encl|® "y w
< Code
i i
! Q) create :
£ : M :
9 ']
g i i
2 i " - |
E E @ attest o(M, PK) P @ attest o(M, PK) E
. | <€ > |
i i
i i

@ send Epy (Kq() ‘© send Epy (Kvy)

> KU KV
® EKu (input)

J

SR-Engine

III. Operation
@ é

) @) EK? ((output)

SGX Enclave

Figure 31: VoiceGuard architecture. User U establishes a secure channel with the SGX enclave
hosted at service provider SP and sends sensitive voice data as well as user-specific
adaptation data 6. Similarly, vendor V sends the sensitive models AM and LM through
a secure channel. SP securely processes U’s voice data using V’s models within an SGX
enclave.

provide sensitive data while the computing platform is not trusted by at least one of the
input parties.

For the sake of simplicity, we explain our solution based on the speech recognition
scenario visualized in Figure 31, where the service provider SP is an untrusted third
party, e.g., a cloud service provider. §P’s infrastructure provides TEEs, which guarantee
isolated execution. In this work we use Intel’s SGX as a TEE instance. The vendor V’s
private input consists of speech recognition models. The user U’s private input is the
voice data. In this example, the output is sensitive as well and should only be made
available to U.3

VoiceGuard works in three phases: (I) preparation, (II) initialization, and (III) operation.
In the first phase, user U and vendor V need to agree on the code to be executed in a TEE,

3 The output could also be provided to one or multiple other parties.

5.1 VOICEGUARD 121

called enclave in the context of SGX, (“Encl. Code” in Figure 31). In the second phase,
the enclave code is instantiated. U and V use Remote Attestation (RA) to establish secure
channels with the enclave through which they provision their respective encryption keys
to the enclave. In the third phase, the enclave is ready to perform speech processing.
Using the keys transmitted in the previous phase, U and V provide their encrypted inputs
to the enclave. The result of the operation phase is encrypted with U’s key. Hence, only
U can decrypt it and learn the output. Next, we describe the individual phases in detail:

Preparation Phase. First, U and V need to agree on the code to be run inside the SGX
enclave. While SGX protects enclaves against accesses from the outside, enclaves are
nevertheless allowed to output data without any restriction. Therefore, U and V want
to make sure that the enclave code only outputs non-sensitive data. The code typically
comes from V, i.e., V provisions the enclave code, @ in Figure 31. Thus, V can easily
ensure that no sensitive data will leave the enclave. The code itself is not necessarily
confidential and is often open source. However, U has to carefully analyze the enclave
code in a vetting process @ to verify that it does not contain functions that will leak U’s
sensitive data. The vetting process could also be outsourced to a trusted third party, e. g.,
a government institution.

Additionally, V provisions its acoustic model AM and language model LM to SP. Both
are encrypted with the V’s key Ky, hence, SP cannot access V’s intellectual property. At
this stage, the models are not yet loaded inside an enclave. The models are written to
untrusted storage, e. g., the hard disk.

Initialization Phase. The SGX enclave is created from the code provisioned by V earlier,
step (3. The creation process is measured by the SGX-enabled CPU, i.e., a cryptographic
hash of the initial memory content of the enclave is created and stored securely. If the
enclave code is manipulated before or during the creation process, the measurement
will produce a different result and the manipulation will be detected through RA. After
the creation is finished, the code is isolated from all accesses and cannot be changed
anymore.

The first operation performed by the enclave is the enclave initialization, during
which the enclave generates a key pair for asymmetric cryptography operations such
as Rivest-Shamir—Adleman (RSA) [327],4 with the public key PK shown in white in
Figure 31.

Next, U and V need to establish a secure channel with the enclave by provisioning their
keys Ky and Ky, respectively, to the enclave. We will describe this process for U. The
process for V is identical. VoiceGuard uses a public key cryptography protocol similar
to Transport Layer Security (TLS) [131], which is widely used to secure web sites. The
enclave sends its public key PK to U. However, U needs assurance that the received PK
comes indeed from the correct enclave, i. e., the authenticity of PK must be established.
This is done using the RA feature of SGX, which generates a digital signature (M, PK)
that binds PK to the measurement M of the enclave, @) in Figure 31. In particular, the
public key PK, which was generated inside the enclave, and the measurement of the initial

4 This process leverages the hardware Random Number Generator (RNG) of the CPU and can therefore not
be influenced from outside the enclave.

122

TEE APPLICATIONS

enclave memory content are signed with the platform attestation key. This signature can
be verified using Intel’s Public Key Infrastructure (PKI) for SGX.

U verifies the signature and checks that M matches the measurement of the enclave
agreed on with V, i.e., that the enclave has not been altered before or during creation.
If both checks were successful, U can be sure that PK belongs to the key pair generated
by the correct enclave and that information encrypted with PK can only be decrypted
inside that enclave. In step 5, U encrypts Ky with PK and sends the result Epg(Ky() to
the enclave.

At the end of the initialization, the enclave shares a symmetric key with the user U
(Kq, the violet key in Figure 31) and with the vendor V (Ky, the blue key in Figure 31).

Operation Phase. U sends encrypted inputs Ex, (input), i.e., audio samples, to SP. The
input is encrypted with U’s key, hence, it can only be accessed by the enclave ®. If
applicable, U also sends user-specific adaptation parameters 0 (e. g., i-vectors), which are
also encrypted with Ky, to the enclave.

Inside the enclave, U’s input is decrypted and passed to the speech recognition engine
(“SR-Engine” in Figure 31). The SR-Engine has two additional inputs, the Acoustic
Model (AM), typically a Deep Neural Network (DNN), and the Language Model (LM),
typically a decoding graph. AM is provided by V and already stored encrypted at SP.
When AM is used, it is loaded into the enclave and decrypted using V’s key Kvy. Similarly,
any adaptation parameters 6 and the LM are loaded by the enclave, decrypted, and
passed to the SR-Engine.

On-demand loading of AM or LM could leak sensitive information about their structure
by observing access patterns. This can be prevented by storing this data in a randomized
order, i. e., preventing an observer from learning useful information from observed access
patterns, similar to the techniques presented in Section 4.2.

The result of the speech processing is encrypted with Ky and sent back to U).
Additionally, the SR-Engine may produce updated adaptation parameters 0, which are
then encrypted with Ky and sent back to U.°

Once in the operation phase, the system can be queried repetitively by U, thereby
avoiding repeated preparation and initialization costs.

5.1.3 Implementation and Evaluation

We implemented and evaluated VoiceGuard on an Intel Core i7-7700 CPU (3.60 GHz)
with 128 MB Enclave Page Cache (EPC). We encapsulated Kaldi [316] in an SGX enclave,
supported by the Graphene library OS [384]. We evaluated VoiceGuard’s run-time over-
head compared to unprotected, i. e., outside of an enclave, executed Kaldi instance on
the same platform, using two representative corpora: DARPA Resource Management
(RM) [317] and Wall Street Journal (WS]J) [155].

Our experiments show that VoiceGuard’s overhead for recognizing text from audio
data ranges between 39 % and 49 % for the RM data set. For the larger WS] data set

5 The result could also be sent to a different party, even a third party.
6 U can decrypt 8 and re-encrypt it to make individual requests from the same user unlinkable.

5.1 VOICEGUARD

VoiceGuard introduces overhead between 98 % and 104 %. Although the processing
time — in the worst case — doubles, the performance of VoiceGuard nevertheless enables
privacy-preserving speech processing in real time.

More evaluation details for VoiceGuard are provided in our conference publication [71].

5.1.4 Conclusion

VoiceGuard is a novel architecture for efficient privacy-preserving speech recognition. It
can be deployed either on-premises, in the cloud or on the user devices, and supports
user-specific models. We demonstrated the feasibility of using SGX enclaves for machine
learning tasks. We showed that practical performance can be achieved when considering
SGX’s memory limitations when selecting and configuring existing speech recognition
frameworks. VoiceGuard is applicable for speech recognition in real time, as shown in the
evaluation of our prototype implementation. VoiceGuard’s generic architecture allows
its use for other tasks than speech recognition, for instance speaker verification or voice
biometrics, including emotion recognition and medical speech processing.

123

124

TEE APPLICATIONS

5.2 REGULATING ARM TrusTZONE DEVICES IN RE-
STRICTED SPACES

Smart personal devices, such as smartphones, come with a wide array of peripheral
sensors and interfaces that enable their extensive misuse in various environments. They
can be misused to exfiltrate sensitive information, e.g., from government institutions
or enterprises. Similarly, smart devices can be used to gain unfair advantages, e.g., by
smuggling unauthorized information into examination halls.

Such misuse is typically prohibited, either explicitly, e. g., by laws and regulations, or
implicitly, e. g., by social norms. However, the enforcement of these usage policies is an
open problem. Currently the threats of misuse are countered by ad-hoc methods. For
instance, personal smart device must not be brought into some federal offices, which is
enforced by physical checks before entering. In companies personal devices often are
not permitted to connect to the company network and employees are forbidden to store
corporate data on their personal devices. And in examination settings smart devices
typically have to be turned off and stored away.

These traditional solutions are particularly unpractical when smart functionalities get
integrated into everyday items, e.g., clothes or medical devices. For instance, asking
an individual to refrain the usage of prescription glasses with smart features (or other
assistive health devices) is impractical. Therefore, a solution is needed that allows the
targeted regulation of smart devices” functionalities.

Goals and Contributions. The goal of this work is to develop methods to regulate the
usage of smart devices in restricted spaces. Our solution should selectively allow /prohibit
the use of smart device functionalities based on a policy defined by a restricted space’s
host. It must enable the host to retrieve a proof that its usage policies is enforced on the
device, and that it was enabled for as long as the device was within the restricted space.
The size and complexity of the policy-enforcement mechanism on the guest device must
be minimized and protected by strong isolation mechanisms. At the same time, the guest
must be able to validate the policies enforced by the host. Furthermore, the gust must be
able to disarm and revert the host’s policies after leaving the restricted space.
This work makes the following main contributions:

* We provide a novel method, which allows hosts to verify that a guest device
complies with its policy. Leveraging ARM TrustZone a guest device provides
unforgeable cryptographic verification tokens ensuring to the host the correct state of
the guest device.

* We use host-initiate remote memory operations as a generic method to regulate guest
device, i. e., to enforce policies on guest devices.

* We consider potential malicious hosts and developed a vetting service allowing
guests to check that a host’s policy does not violate the guest’s security or privacy.

¢ We present a prototype implementation and evaluation of our solution showing
that our solution allows fine-grained policy enforcement relying only on a small

5.2 REGULATING ARM TRUSTZONE DEVICES IN RESTRICTED SPACES

policy-enforcement code base executing in the devices TrustZone Trusted Execution
Environment (TEE).

5.2.1 System Model, Assumptions and Requirements
In this section we introduce the term restricted spaces followed by our adversary model.

5.2.1.1 Restricted Spaces

The increasing capabilities of mobile devices, in particular smartphones, and their ubig-
uitous connectivity pose an increasing risk of misuse in various environments, which we
refer to as restricted spaces. In enterprises or government institutions, smart devices can be
misused to ex-filtrate sensitive data, either by a malicious device owner or unwittingly
by the device’s owner, e.g., when the device is infected with malware. Also, smart
device can be misused to infiltrate unauthorized information [21] or to collude with
accomplices [273], e. g., to cheat in tests or exams. Furthermore, social conventions might
prohibit the use of certain functionalities of smart devices, e.g., recording of video or
audio during private conversations. All locations where such retrenchments are relevant
represent restricted spaces.

5.2.1.2 Adversary Model

The adversary ADV’s goal is to operate a device D in a restricted space without complying
to the policies of the host (. ADYV is in control of all software on a guest §’s device Dg
except for software and data explicitly protected, i.e., the software and data in device’s
TEE. Hence, H does not trust software of a guest device Dg. The software of Dg is,
among other things, responsible for configuring and driving peripherals. However, H{ can
establish trust in a Dg’s (privileged) software after explicitly checking it, i. e., inspecting
the state of Dg.

The software and data protected in the TEE are trusted by all parties, i. e., the host H{
as well as the device owner G. The TEE has exclusive access to cryptographic credential
allowing it to uniquely authenticate itself. Similarly, } possesses cryptographic credential
allowing it to authenticate. J{ can use a TEE to protect its cryptographic credentials
as well. We assume that H is immune to attacks. Different entities, i.e., D and H, can
authenticate each other via a trusted third party, e. g., a Public Key Infrastructure (PKI)

The device owner G does not trust H and will not allow H to make arbitrary changes
to D G.

Software attacks on Dg that cannot be detected by J{ via state inspection, e. g., publicly
unknown attacks, such as zero-day exploits, are considered out of scope. Denial-of-
Service (DoS) attacks are not prevented, however, they can be detected by 7, i.e., ADV
can interrupt the communication of Dg with H’s policy server at any point in time. ADV
cannot use physical attacks to compromise the isolation guarantees of the TEE.

We consider covert uses of smart devices in restricted spaces an orthogonal problem.
Hence, guests stealthily smuggling devices into the restricted space without check-in are
assumed to be covered by traditional physical security methods.

125

126

TEE APPLICATIONS

5.2.1.3 Requirements

To enforce rules and policies for restricted spaces all devices Dg have to be checked-in
when entering a restricted space. Further, a dedicated check-out process is needed to
restore D’s state when leaving the restricted space. 71, i. e., the entity in control of the
policies relevant in a restricted space, has to operate a policy server that can deploy the
policies to Dg and is responsible for validating the correct enforcement of these rules.

Furthermore, each guest device Dg has to be equipped with a TEE. All software
running inside the TEE is trusted, i.e., it is part of D’s Trusted Computing Base (TCB).
This means the integrity and confidentiality of code and data inside the TEE must be
preserved. All software that is not protected by the TEE — also dubbed outside of the
TEE — is assumed to be untrusted, i. e., potentially compromised.

Check-in. When entering a restricted space G has to perform the check-in procedure for
all its devices by connecting each Dg to H’s policy server, which performs the following
operations:

Authentication. First, }{, more precisely, H’s policy server, and each guest device Dg have
to mutually authenticate via a standard cryptographic scheme, e.g., using Transport
Layer Security (TLS) [131].

G’s authentication secret has to be protected on Dg, i. e., it must be only accessible from
the Dg’s TEE. The policy server must be able establish a secure channel to Dg’s TEE,
protected from all potentially malicious software present on Dg outside of the TEE.

Furthermore, H must be able to ensure that the secure channel is established with the
correct guest device to prevent relay attacks, such as the cuckoo attack [300].

Examination of Guest State. In the second step, H needs to obtain the current state of Dg.
The state is defined by the current memory and register content of software and data
outside of the TEE.

However, the current state of Dg can be highly sensitive as the memory might contain
personal data, cryptographic secrets, etc. Hence, Dg has to ensure that it protects itself
from a malicious host, i. e., validate the legitimacy of the policy server’s request.

JH’s policy server has to inspects the received state to validate that Dg is in a benign
state and can be trusted as a whole. Furthermore, the policy server has to extracts relevant
information about Dg’s configuration, e. g., software versions and available peripherals.
Additionally, H can store the receive memory snapshot for it to be restored at check-out.

If (’s policy server is unable to validate the state of Dg or detects that Dg is com-
promised, the check-in has to be considered failed. In this case, J{ has to be notified,
allowing it to resort to traditional measures, such as locking Dg away.

Policy Deployment. H’s goal is to ensure that each Dg is in a state that conforms with its
policies. In particular, }{ needs to enforce that particular peripherals of a smart device,
for instance cameras, microphones or cellular network modem, are deactivated. The TEE
on Dg has to enforce the restrictions on the peripheral devices.

Continuous Validation. After the modifications, which are necessary to comply with H’s
policies, have been applied the continues compliance of Dg must be verified, i.e., that
the modifications are not reverted or circumvented. For this, the TEE service that applied

5.2 REGULATING ARM TRUSTZONE DEVICES IN RESTRICTED SPACES

JH’s rules has to generate a verification token that is provided to . The token captures
the state of Dg when JH’s policies are enforced, i.e., it provides Remote Attestation (RA)
functionality.

Enabling J{ to request a new token at any point in time, allows the host to validate
that Dg is still in the state that enforces H’s policies. To prevent replay attacks the token
needs to include a fresh nonce for each request from .

Check-out. After check-out, Dg should be able to function completely unrestricted. The
check-out process needs to accomplish two objectives.

Guest State Validation. H needs to validate that Dg still is policy compliant. To ensure this
JH has to request a fresh verification token from Dg.

Guest State Restoration. Finally, Dg should be restored to a state that lifts all restrictions.
To achieve this Dg either has to be brought to a defined, unrestricted state, e.g., by
rebooting the device, or by returning to the state initially captured during check-in.
Alternatively, the changes that were applied during check-in have to be reverted explicitly,
i.e., by applying the “inverse” operations of those that were performed during check-in
to enforce policy-compliance.

5.2.2 Design

Subsequently we describe the design of our solution to restrict smart device D in restricted
spaces. Our design is focused on D equipped with ARM’s TrustZone security architecture,
which is described in detail in Section 2.3.1. However, other security architectures fulfilling
the necessary requirements can be used as well.

Our solution for regulating D in restricted spaces uses a primitive, which we denote
remote memory operations. We will introduce this concept in Section 5.2.2.1.

Afterwards we introduce our design for regulating ARM TrustZone device in restricted
spaces in Section 5.2.2.2. It uses ARM TrustZone’s capabilities and the remote read /write
primitive to enable the remote enforcement of a restricted space’s policies and the
validation of the enforcement. Our design is based on a validation and enforcement
service running in the TrustZone secure world, which has the privileges to inspect and
manipulate the memory of a device’s normal-world memory, i. e., enables remote memory
operations. According to our adversary model this service is trusted by Dg’s owner G as
well as the host 3 (cf. Section 5.2.1.2).

5.2.2.1 Remote Memory Operations

Our remote memory operation primitive allows a remote entity to perform read and write
operations on a device D with the assurance that these operations were executed correctly,
even if D’s software is compromised. The primitive is based on a trusted proxy, which
receives requests for read or write operations from the remote entity and performs them
locally. Our trusted proxy service utilizes ARM’s TrustZone to ensure the correctness of
these operations, i. e., the integrity and authenticity of remote memory operations.

127

128

TEE APPLICATIONS

To prevent the misuse of remote memory operations all requests from remote entities
are authenticated and integrity protected. Once a request is received by the proxy service,
its origin is validated. If it comes from an untrusted entity, it is discarded. Similarly, if
the integrity of the request cannot be validated it is discarded.

The proxy service uses ARM TrustZone’s privileges to perform the requested memory
operations. The proxy service’s secure-world code has the permission to access both, the
secure-world memory as well as the normal-world memory. Hence, the proxy service
has access to D’s entire memory. For read operations, the request contains the memory
address to be read. The proxy service reads the content of the memory address, creates
an integrity proof for the read value, authenticates it, and sends it back to the requesting
entity.” For write operations the request contains the target memory address and the
value to be written. The proxy service will write the value to the specified memory
location. The remote entity can validate the correct execution of a write operation by
performing a subsequent read operation.

The proxy service can enforce arbitrary access policies such as allowing and denying
access to particular memory regions. For instance, it can restrict remote entities to access
normal-world memory only.

Integrity and authenticity of remote requests as well as the responses can be assured
either via asymmetric cryptography primitives or via symmetric cryptographic primitives,
given a pre-established shared key.

5.2.2.2 Regulating Devices in Restricted Spaces

Subsequently we explain the individual steps for our solution and show that they fulfill
the requirements described in Section 5.2.1.3.

Check-in. During check-in the host J{ wants to validate that a guest device Dg is benign
and enforces H’s policies. Our design accomplishes this in four steps.

Authentication. First, H and Dg’s secure world, i. e., its TEE, have to mutually authenticate.
Each Dg is equipped with a private/public key pair, which is only accessible to the secure
world. The public key’s authenticity is certified by the device manufacturer M, allowing
H to validate it. Similarly, H possesses an asymmetric key pair, with a certificate singed
by a trusted entity assuring the authenticity of H’s public key. Additionally, } has to
ensure that the secure channel is established with the TEE of Dg, i.e., that it is not subject
to a cuckoo attack [300]. This can be achieved by employing the methods proposed by
Zhang et al. [420] during the channel establishment.

Our design uses these authenticated keys to establish a secure channel between J and
Dg’s secure world, providing authenticity and integrity for all subsequent interaction.

Obtaining and Inspecting Guest State. After the mutual authentication H needs to (1) val-
idate Dg state with the goal to gain trust that Dg will comply with its policies, and
(2) learn the concrete configuration of Dg.

First, }{ uses our remote memory operation primitive (cf. Section 5.2.2.1) to retrieve a
memory snapshot of Dg. In particular, the memory of the normal-world kernel is copied

7 If required the resulting message’s confidentiality can be protected, as well.

5.2 REGULATING ARM TRUSTZONE DEVICES IN RESTRICTED SPACES

and sent to the host. H analyses the received memory image of the normal-world kernel to
detect if the kernel is compromised or if the kernel contains known vulnerabilities. I can,
for instance, compare each kernel code page against a whitelist, e. g., reference code pages
from approved Android distributions [248, 345]. Additionally, }{ can make sure that the
kernel’s data structures satisfy invariants that usually hold in uncompromised kernels [39]
to detect Rootkits, which often modify crucial kernel data structures [310, 38, 312]. H can
also utilize in-depth memory snapshot analysis for rootkit detection that was developed
in prior works [310, 39, 81, 116, 194]. Furthermore, J{ can check that appropriate security
mechanisms are active on Dg, e. g., virus scanners or kernel protection mechanism such
as (fine-grained) kernel address space randomization [162]. If is satisfied with Dg’s
state, i.e., if H considers Dg secure and trusted, H{ analyzes the kernel image to identify
installed peripherals.

Policy Enforcement. The host H of a restricted space defines a set of policies that all §
(with their devices Dg) need to comply to. In order to enforce these policies H remotely
reconfigures all Dg entering the restricted space. In the previous step J{ receive an image
of Dg’s Operating System (OS) kernel and analyzed it to learn which peripherals are
available on Dg. J{ composes a list of memory modifications that are necessary to disable
all peripherals that are not allowed to be available in its restricted space, e. g., the camera.

The usage of any peripheral device requires software routines that interact with it,
i.e., a device driver. These drivers are typically well isolated as software modules with a
defined interface to the kernel. To interact with the peripheral device (parts of) the driver
needs to execute with kernel privileges. Therefore, all drivers are contained in the kernel
image received by the host.

The host compiles a list of memory changes that will enforce its policies on Dg by
modifying the kernel such that functionalities, which are not permitted in the restricted
space, are unavailable. Specifically, the drivers of peripheral devices are disabled. This
can be achieved either by overwriting the kernel’s references (i. e., pointers) to the driver
and its functions, or by replacing the driver functions with dummy functions. By using
dummy functions, complex policies can be implemented. The dummy driver can return
synthetic data or an error code to completely disable a peripheral device, or implement
a subset of the peripheral’s functionalities, e. g., enabling only voice calls for a cellular
network modem while disabling data connections.

The list of all memory modifications is sent to Dg. Using our remote memory operation
primitive, the changes are applied to Dg’s kernel. It makes sure that the kernel memory
has not been changed in meanwhile, i. e., all memory to be modified contains the data
assumed by the host when defining the memory modifications. If the modifications are
applied successfully, H obtains a cryptographic hash, called verification token, covering
all modified memory locations. Thus, 3 gets assurance that its policies are applied on
Dg. If the memory modifications are unsuccessful, H resorts to traditional measures,
such as physically locking Dg away.

Policy Enforcement Persistence. Continuous checks are necessary to ensure that H{’s memory
modification, which are necessary to comply to the restricted space’s policies, are not
reverted. J{ can — at any point in time while Dg is in the restricted space — request a

129

130

TEE APPLICATIONS

fresh verification token, i.e., a cryptographic hash of all memory locations that have been
modified in order to enforce H’s policies. To prevent reply attacks each request contains
a unique nonce, which gets included in the verification token.

Because all modifications of J{ are applied to Dg’s Random Access Memory (RAM),
which is non-volatile memory, a shutdown and reboot of the device will revert them.
While this will be detected by 7, the guest § might wish to shutdown Dg for benign
reasons, for instance saving energy. We developed a solution that allows the suspension of
Dg while preserving H’s memory modifications. The details of our solution are described
in our conference publication [64]

Check-out. During check-out, H{ needs to validate that Dg was not maliciously modified,
e.g., to revert the memory modification H sent during check-in. H requests a new
verification token from Dg, which is compared against the verification token received
during check-in (modulo the fresh nonce). If the validation token does not match H’s
expectation, i. e., the state has changes since the check-in process, J{ has to take additional
measures, e. g., undertake a thorough inspection of Dg.

Additionally, Dg must be restored to an unrestricted state. This can be achieved by
restarting Dg, i. e., resetting Dg’s non-volatile RAM to a defined state. Alternatively, H
can use our remote memory operation primitive to revert all memory changes it issued
to Dg. Using the memory image received during check-in, H can determine the original
content of all memory locations that were modified to enforce H{’s policies.

5.2.3 Implementation and Evaluation

We implemented and evaluated the different components of our solution on an i.MX53
Quick Start Board from Freescale. The 1.MX53 is a TrustZone-enabled development board
equipped with a 1 GHz ARM Cortex A8 processor and 1 GB DDR3 RAM, which we used
to implement and evaluate the secure-world components of our solution. In particular, we
implemented and evaluated secure authenticated channel establishment, remote memory
operations, verification token generation as well as our device suspension mechanism as
described in our conference publication [64].

We further implemented a simple rootkit detection mechanism, which analyzes a
kernel memory image for modified system-call handler functions, as a proof-of-concept
for the host. Our evaluation shows that our remote memory operation primitive needs
approximately 54 s to copy and authenticate all memory required for our rootkit detection,
with the authentication via Keyed-Hash Message Authentication Code (HMAC) being
the dominating factor.

To validate the feasibility of our kernel data modification approach and to evaluate
its performance we developed a proof-of-concept implementation on a Samsung Galaxy
Nexus smart phone. It is equipped with a Texas Instruments OMAP 4460 chipset (dual-
core ARM Cortex-Ag processor at 1.2 GHz) and 1GB of RAM and runs Android 4.3
based on the Linux kernel version 3.0.72. This platform provides more peripheral devices
compared to the i.MX53 development board enabling more extensive evaluation of our
approach. Our remote memory operation primitive is emulated by a kernel module

5.2 REGULATING ARM TRUSTZONE DEVICES IN RESTRICTED SPACES

in the (normal world) OS as the secure world is not accessible on this smart phone.
We implemented our approach for the Camera, WiFi, 3G modem (Voice and Data),
Microphone, and Bluetooth, and show that all these peripheral devices can be successfully
disabled by using our dummy driver approach.

Additionally, we implemented and evaluated a vetting service to verify the security of
memory modifications needed to disable each of these peripherals.

We provide more details regarding our implementation and evaluation results in our
conference publication [64].

5.2.4 Conclusion

Our policy enforcement mechanism, that we presented in this section, allows hosts
to manage guest devices via remote memory operations. The host can analyze and
regulate ARM TrustZone-enabled devices to enforce policies on such devices. Our solution
requires only a minimal and simple trusted primitive on regulated devices. Utilizing
ARM TrustZone, the host receives strong guarantees of guests” policy-compliance, while
our vetting service allows guests to identify potential malicious policies by the host.

131

132

TEE APPLICATIONS

5.3 RELATED WORK

In the following, we discuss works related to the trusted computing application pre-
sented in this chapter, which are based on Intel’s Software Guard Extensions (SGX) and
ARM TrustZone respectively. We first present solutions that aim at similar goals as our
applications, i. e., privacy-preserving machine learning (in particular speech processing),
mobile device management and (remote) memory operations. Afterwards we elaborate
on selected applications that use the same Trusted Execution Environment (TEE) plat-
forms as our solutions, i.e., Intel’s SGX and ARM TrustZone, for different applications
scenarios.

5.3.1 Privacy-preserving Machine Learning

In Secure Multiparty Computation (SMC), two or more parties execute an interactive
cryptographic protocol to compute a function over private input data without revealing
their inputs to each other or a third party. Using SMC privacy-preserving machine
learning training [279], as well as classification [330, 254, 326, 92, 215], can be achieved.

Homomorphic Encryption (HE) enables processing of encrypted data, such that the
decryption of the result is equal to the result of performing the same processing on the
plain-text data. Microsoft’s CryptoNets [135] was the first secure evaluation framework
for neuronal networks based on HE, and was improved later with CryptoDL [188].
Despite these improvements, the reported evaluation results indicate that HE-based
solutions are not suitable for real-time speech recognition tasks.

Pathak et al. [302] presented privacy-preserving speech processing, e. g., speech recog-
nition and speaker verification, using SMC and HE techniques. The reported performance
results (e. g., requiring more than 3 h computation time to recognize a single word from a
10 vocabulary for 1 s of audio) show the impracticality of this approach. Treiber et al. [380]
improve the performance of speaker verification using SMC. However, solutions relying
on cryptographic techniques incur significant overhead with regard to communication
and computation cost.

Glackin et al. [163] proposed an approach that allows searching for keywords in
encrypted outsourced speech documents. It utilizes searchable encryption on the server-
side to deliver data corresponding to the phones of a keyword, which were extracted
from the input audio by the trusted client beforehand.

Ohrimenko et al. [291] customized several machine learning algorithms, including
neural networks, to run protected in an Intel SGX enclave. The algorithms were adapted
in order to prevent cache-based side-channel attacks, allowing multiple parties to securely
share their data, e. g., for joint training or evaluation of machine learning models. Chandra
et al. [91] protect data analytics algorithms using SGX with high efficiency allowing real-
time data processing. To thwart leakage through side channels, their approach introduces
noise to memory traces observed by the adversary by accessing dummy data, rather
than hiding memory access patterns. Chiron [198] proposes privacy-preserving machine
learning as a service using SGX enclaves where the training algorithm is provided by
one party and the (training) data by another party. Because the parties are mutually

5.3 RELATED WORK

distrusting the data-providing party cannot validate the algorithm executing in the
enclave to ensure that it does not leak its data. Chiron solves this problem by providing
two-way isolation.

Offline Model Guard (OMG) adapts the concept of VoiceGuard to enable protected
speech recognition on user devices [42]. OMG leverages SANCTUARY (cf. Section 3.2)
to isolate the speech recognition process on the user’s device in order to protect the
Intellectual Property (IP) of the model provider.

5.3.2 Mobile Device Management

Trends such as Bring Your Own Device (BYOD) have spawned a number of research
projects as well as commercial solutions for Mobile Device Management (MDM), i.e.,
solutions enabling multiple persona [333, 272, 52] or enforcing access control policies on
smart devices [401, 357, 77, 189].

Most of these solutions either require the smart device to run software that includes ad-
ditional policy enforcement mechanisms, for instance, ASM [189] extends Android [172]
with a set of security hooks to insert additional security policy checks, which can be
installed via an app. Other approaches rely on virtualization of the guest device’s soft-
ware [22, 112, 393, 118], i. e., a trusted hypervisor provides isolation for individual Virtual
Machines (VMs) for each persona.

While these approaches allow more complex policies one main benefit of our solution
(cf. Section 5.2) lies in its simplified design and minimized complexity. Security-enhanced
Operating Systems (OSs) and virtualization solutions require large and complex trusted
policy-enforcement code to be executed on guest devices, in contrast, the Trusted Com-
puting Base (TCB) of our solution is just a few thousand lines of code. Additionally, our
solution provides security guarantees that are rooted in trusted hardware, and our policy
enforcement engine is hardware-protected by ARM TrustZone. This enables our solution
to provide the host with guarantees that the policy was enforce while the guest was in
the restricted space, using our verification token concept (cf. Section 5.2.2).

Samsung Knox [36] and Sprobes [156] leverage TrustZone to increase the trustworthi-
ness of the normal-world software by providing real-time protection against kernel-level
rootkits. Operations of the normal-world OS kernel that manipulate critical kernel data
are outsourced to the secure world, where additional checks are performed before ap-
plying the changes in order to prevent rootkits. Knox’s real-time kernel protection is
orthogonal to our solution; however, our solution can benefit from the additional security
Knox and similar systems can provide.

TrUbi [108] provides a framework to enforce usage restriction, e. g., disable the use of
network functionalities or the microphone, on Android devices using Mandatory Access
Control (MAC), leveraging ASM [189]. This approach entrusts the enforcement of the
restriction policies to the Android kernel resulting in a large and complex TCB. Our work
aims to provide strong security for the TCB by protecting it with ARM TrustZone while
reducing the size and complexity of the TCB by limiting it to minimal functionalities, i.e.,
remote memory operations.

133

134

TEE APPLICATIONS

Ditio [275] utilizes a hybrid architecture using hardware virtualization and ARM
TrustZone to provide auditing for sensor usage on mobile and smart home devices. In
contrast to our solution, Ditio does not enforce any sensor usage policies, it rather records
sensor activities to allow detection of devices” misbehavior after the fact. To be able to
record all sensor activities, Ditio relies on a trusted hypervisor that virtualized all sensors
and logs their activities, occupying the hardware virtualization feature and preventing its
usage for other purposes. Furthermore, the hypervisor incurs additional memory and
computational cost, also during normal operation of the device.

SeCloak [240] uses TrustZone to control the on/off state of peripheral devices on ARM
devices by assigning them to and controlling them from the secure world. In order to
minimize the TCB, SeCloak emulates the devices such that normal-world driver can be
used to operate them while giving the secure world ultimately control over the device.
Our solution allows more fine-grain control over peripherals, e. g., restricting a cellular
modem’s use for data transfer while allowing voice calls.

Vijeev et al. [391] consider restricted spaces for drones and propose a policy enforce-
ment scheme for drones. Their scheme aims at controlling the usage of data rather than
the generation of data, i.e., instead of controlling whether a peripheral device is allowed
to be used their scheme controls how (by which software module) the generated data
is used. While this enables new usage scenarios it also increases the TCB as it requires
trusted information-flow and policy enforcement mechanisms on the device.

5.3.3 (Remote) Memory Operations

TrustDump [370] utilizes TrustZone to reliably acquire memory pages from the normal
world. Solutions such as Android LiME [186] and others [373, 366] enable memory
acquisition independent of ARM TrustZone. While these solutions provide remote read
operations, similar to our solutions, they do not provide the means to enforce policies.
TrustDump, for example, focuses on memory introspection to detect malware.

The Ninja framework for malware analysis uses ARM TrustZone to transparently
trace the execution of software on ARM devices [285]. The goal of Ninja is to record the
behavior of software executed in the normal world, while our work allows to modify the
normal-world software using remote memory operations.

SATIN proposes a TrustZone-based asynchronous introspection mechanism for multi-
core ARM systems [395], which prevents that an adversary controlling the normal world
can evade detection from the secure world be utilizing the asynchronous execution
of the secure world on one CPU core while the other CPU core continue executing
adversary-controlled normal-world code.

Hardware Interfaces. Remote memory operations are used, for instance, in data centers
where Remote Direct Memory Access (RDMA) interfaces are used to bypass the perfor-
mance overhead of general purpose network protocols such as TCP/IP in distributed
systems [271, 377]. While these interfaces have been repurposed, e. g., for kernel malware
detection [311] and remote repair [55], they rely on a PCl-based co-processor on a device
via which another device can remotely transfer and modify memory pages.

5.3 RELATED WORK

On personal devices, the IEEE 1394 (Firewire) interface allows a connected peripheral
device to directly access memory. However, this interface is typically not available on
smart devices. Hardware debugging and testing interfaces, such as the widely used
Joint Test Action Group (JTAG) interface [213], also allow read/write access to a device’s
memory as well as Central Processing Unit (CPU) registers. However, JTAG is not easily
accessible on consumer devices and might be disabled by the device manufacturer.

5.3.4 TEE Applications

ARM TrustZone. Microsoft’s TLR [335] and Nokia’s ObC [234] utilize TrustZone to
protect user app in isolated executions environments, such that an adversary with high
privileges, i.e., an adversary that has compromised the OS kernel, cannot manipulate
these protected apps or extract sensitive data from them. Liu et al. [253] use TrustZone
to ensure the trustworthiness of sensor readings from peripheral devices. Various mo-
bile payment systems, for instance Samsung Pay [334], rely on TrustZone to secure
payment processes. Further applications of TrustZone include mobile data billing [320],
attesting mobile advertisements [242], and implementing the TPM-2.0 specification in
firmware [321].

Intel SGX. Using TEEs, in particular Intel SGX, to enable SMC has been suggested in
different works [227, 238], including our own work [315]. This general concept enables
the use of TEEs for various use cases and applications.

VC3 adapts the MapReduce computing paradigm for distributed computing to Intel
SGX [339]. Mapper and Reducer nodes are isolated in SGX enclaves. However, VC3 does
not prevent the leakage of sensitive information from the (encrypted) data flows between
mapper and reducer enclaves.

Haven allows the isolation of unmodified applications inside an SGX enclave [41]. It
utilizes a library OS to provide proxy system calls from the application to the untrusted
OS outside the enclave. The authors show that Haven can be used to isolate an entire
Database Management System (DBMS) in an enclave. However, Haven does not consider
information leakage due to side channels or access patterns to external resources. Fur-
thermore, SGX’s memory limitation impacts the performance of Haven for large and
complex applications.

135

SECURITY SERVICE: REMOTE
ATTESTATION

Security services provide the functional building blocks that are required to build secure
systems. In this chapter, the focus is on Remote Attestation (RA), a security service
that enables one entity, called verifier, to check the integrity of another (remote) entity’s
internal state, called prover (see Section 2.3.2 for details).

RA is particularly relevant for small embedded systems, which often do not have the
resource for sophisticated, and therefore complex, defense mechanisms. The security
of embedded devices is a timely and important issue, due to the proliferation of these
devices into numerous and diverse settings. One contributing factor is the constantly
increasing integration and introduction of such devices into many spheres of everyday
life, including: automotive, avionics, factory automation, household, medical, and public
utilities. At the same time, growing presence of computerized components in previously
non-electronic (mechanical or simply analog) objects and tasks represents an attractive
set of new and exciting attack surfaces for nefarious individuals and organizations.

While RA has been studied extensively in the past, this work sheds light on new
aspects of RA and develops new concepts for attestation in collaborative systems.

Most attestation schemes naturally focus on the scenario where the verifier is trusted
and the prover is not. The opposite setting — where the prover is benign, and the verifier
is malicious — has been side-stepped. The prover can be affected by attack scenarios
such as verifier impersonation, Denial-of-Service (DoS) and replay attacks, all of which
result in unauthorized invocation of attestation functionality on the prover. We argue that
protection of the prover from these attacks must be treated as an important component
of any RA method. Section 6.1 addresses the issue of prover security.

Another restriction of previous Remote Attestation schemes is their limitation to single
device scenarios, i. e., they are concerned with the verification of a single prover device.
SEDA presents the first attestation scheme for device swarms (Section 6.2), allowing the
efficient attestation of systems composed of multiple — possibly collaborating — devices.

However, with SEDA all devices attest to a single external verifier. DIAT enables
devices within autonomous collaborative networks to interact with each other securely
and efficiently, relying on a minimal Trusted Computing Base (TCB) (Section 6.3). It
presents a novel approach that allows to verify the correctness of data exchanged by
collaborating devices, rather than verifying the correctness of entire device, by attesting
the correct generation and processing of critical data using control-flow attestation.

137

138

SECURITY SERVICE: REMOTE ATTESTATION

6.1 REMOTE ATTESTATION FOR LOw-END EMBEDDED DE-
VICES: THE PROVER’S PERSPECTIVE

The research community recognized the danger posed by insecure embedded devices
and responded with the development of countermeasures. Remote Attestation (RA) is
one particularly important countermeasure for embedded device, which have limited
resources to implement defense mechanism that are common in personal computers
or servers. However, all attestation approaches proposed before the publication of our
paper [65] involve an interactive protocol between a trusted verifier and a potentially
compromised prover. Although putting the focus on this setting is both natural and
sensible, it has overshadowed another important issue — attacks on the prover that can
be launched through the attestation protocol itself. As we will elaborate in this section,
attacks that misuse the RA service by maliciously invoking attestation functionality on a
prover device pose a real threat. Therefore, any comprehensive attestation method must
include means to prevent or resist them. Attacks leveraging verifier impersonation (e. g.,
via replay, reorder, or delay of attestation requests) are particularly dangerous, since they
are not trivially prevented and amount to an effective Denial-of-Service (DoS) attack.
Such attacks can exhaust energy (deplete batteries) and prevent the targeted device from
performing its primary — possibly critical — tasks, such as control, sensing, or actuation.

Goals and Contributions. To goal of this work is to extend RA in order to secure it
against strong adversaries that misuse a prover device’s attestation capabilities to launch
DoS attacks on the prover.

We identify and analyze DoS attacks leveraging RA to target low-end embedded prover
devices. First, we extend attestation protocols with well-known cryptographic techniques
to secure them against a simple external adversary. Then, we investigate a more sophisti-
cated roaming adversary that can temporarily compromise the prover device to overcome
our first extensions. The roaming adversary compromises the prover and manipulates it in
a way that is undetectable by standard attestation methods. These attacks are particularly
dangerous since the roaming adversary can remain stealthy by erasing all traces of its
presence. We demonstrate how the roaming adversary can be mitigated by extended at-
testation techniques for low-end embedded systems with minimal hardware assumptions.
We provide two implementations, a base version implemented through limited hardware
extensions, and an advanced version that does not require hardware component beyond
what is commonly available in low-end Microcontroller Units (MCUs). We believe that
countermeasures developed in this work represent a significant improvement and an
advantage over previously established attestation techniques.

6.1.1 System and Adversary Model

As introduced in Section 2.3.2, an attestation protocol is an interaction between a prover
(PRV) and a verifier (VRT). VRT needs to determine whether PRV is in a known good
(and therefore trusted) state. VRT invokes the attestation protocol by sending a request
(attreq) to PRV. We assume that PRV has a trust anchor responsible for measuring PRV’s

6.1 PROVER’S PERSPECTIVE ON REMOTE ATTESTATION

state and sending the result back to VRJ. Further, we assume PRV and VRJ share a key
(Kattest), which is exclusively accessible by PRV’s trust anchor and is used to authenticate
the attestation result.

6.1.1.1 Attestation as Denial-of-Service

RA techniques typically assume that VRT is trusted while PRV is not trusted and must
be verified. However, a prover has no assurance whether it is interacting with a real
verifier. Without authentication of the attestation request attreq, an adversary can trivially
impersonate the verifier by sending bogus attestation requests to a prover. Since PRV has
no means to distinguish whether an attestation request is genuine or not, PRV invokes
its local attestation functionality in any case. Executing the attestation routine results
in a waste of energy (by depleting batteries) and takes PRV away from performing its
primary tasks, such as control, sensing, or actuation.

If an adversary impersonates VRJ and initiates the attestation routine of PRV, the
following operations have to be performed by PRV, incurring non-negligible cost. PRV
has to generate an attestation response reflecting PRV’s state, this typically involves
computing a Message Authentication Code (MAC) over the prover’s entire writable
memory. There are two common approaches to implement a MAC: (1) a CBC-based func-
tion with a block cipher (such as Advanced Encryption Standard (AES)) or (2) a keyed
hash function (such as SHA1-Keyed-Hash Message Authentication Code (HMAC) [237]).
To illustrate MAC costs, Table 10 shows the time for computing a SHA1-HMAC on
variable input sizes, using the Intel Siskiyou Peak embedded processor as the hard-
ware platform [324]. Computing a SHA1-Hash over its 512kB of Random Access
Memory (RAM) takes ~ 754ms. The RAM is processed in blocks of 64 Byte, i.e.,
(512kB/64 Byte) = 8192 blocks. Processing each block takes ~ 0.092 ms (cf. Table 10),
plus an additional fixed cost for the initialization and finalization of the hash computation
results in overall cost of (512kB/64 Byte) - 0.092 ms + 0.340 ms ~ 754 ms.

Even worse, current low-end device attestation techniques assume that the attestation
routine runs without interruption [139, 368]. Thus, gratuitous (malicious) invocation
of attestation can be detrimental to the execution of prover’s main — possibly critical —
functions. Our real-time complaint security architecture TYTAN (cf. Section 3.1) does
not fundamentally address this problem, as it (1) relies on a managing software, e. g., an
Operating System (OS), which is not available on all low-end embedded systems, and
(2) the prover device is still affected by the attestation request, e. g., leading to increased
energy consumption.

The core reason for the ease of DoS attacks based on RA is that the prover’s workload
is significantly higher than that of the verifier. This asymmetry is not limited to the sheer
amount of work performed by each party; it also occurs due to the fact that the verifier is
generally much more powerful than the prover, which might be a low-end MCU.

139

140

SECURITY SERVICE: REMOTE ATTESTATION

SHA1-HMAC [237] AES-128 (CBC)

per block

Fix per block Key exp. Enc Dec

0.340ms 0.092ms 0.074ms 0.288ms 0.570ms

Speck 64/128 (CBC) ECC (secp160r1)
per block
Key exp. Enc Dec Sign Verity

0.016ms 0.017ms 0.015ms 183.464ms 170.907 ms

Table 10: Performance of cryptographic primitives on Intel Siskiyou Peak at 24 MHz.

6.1.1.2 Adversaries

We define two types of adversaries envisaged in the context of verifier impersonation and
DoS attacks on the prover by misusing RA. Neither type is capable of physical attacks,
and we assume the prover’s Trusted Computing Base (TCB) to be immune against attacks.

External Adversary Advex:. We first consider an external adversary (Advext) that can
control all communication between PRV and VRT. Advext can drop, insert and delay
messages, following the well-known Dolev-Yao model [133]. However, being strictly
external, Advext cannot directly manipulate any internal state of PRV.

Roaming Adversary Adv,oam. A stronger and more sophisticated adversary is the
roaming adversary (Advroam). It can, in addition to Advext’s capabilities, infect PRV
with malware and later cover its tracks by erasing its malware. Similar to Advext, we
assume that Advyoqm’s primary goal is to perform a DoS attack on PRV. Advroam
operates in three phases:

¢ Phase I: Adv;oam eavesdrops on and collect genuine attestation request sent from
VRT to PRV.

¢ Phase II: Advyoam compromises PRV (e.g., via malware), changes local state, and
leaves PRV, i.e., erases all traces of its presence.

* Phase III: Advroam replays previously recorded attestation requests.

Note that, in Phase II, Advy,qm only changes dynamic data on PRV. This is not detectable
by subsequent attestations, which only cover the code and static data of PRV. Additionally,
Advroaqm can extract other information from PRV, e.g., an authentication key Kagtest-

In the following section we discuss mitigation techniques against these adversaries.
In the process, we also identify the requirements these mitigation techniques pose on
underlying attestation protocols and the prover device’s hardware features.

6.1 PROVER’S PERSPECTIVE ON REMOTE ATTESTATION

6.1.2 Mitigating Advext

We start with mitigation strategies to fend off Adveyt. Preventing attacks by an external
adversary requires (1) authentication for attestation requests, and (2) countermeasures
against replay (and related) attacks.

6.1.2.1 Authenticating Verifier Requests

It is quite evident that, in order to mitigate bogus attestation requests (or, equivalently,
verifier impersonation attacks), a verifier must authenticate itself to the prover. The
authentication, in a remote scenario, can be done via either public or symmetric key
cryptography. With the former, VRJ signs its attestation request and the prover validates
the request’s authenticity with the verifier’s public key. PRV needs assurance about the
authenticity of VRJ’s public key, e.g., it can be stored in the prover’s non-malleable
memory. With symmetric cryptography, VRJ and PRV are assumed to share a secret key.
The verifier appends a MAC to the attestation request and the prover validates the MAC
by recomputing the same on its side, thus authenticating the request.

As can be expected, public key cryptography is expensive for low-end MCUs. Table 10
lists the cost of different cryptographic primitives that can be used for authentication. It
shows that even relatively efficient Elliptic Curve Cryptography (ECC) incurs significant
computational cost for the prover (170 ms). Thus, with the use of ECC, simply authenti-
cating verifier’s attestation request can occupy the prover devices such that an adversary
can misuse requests with invalid signatures to launch a DoS attack. This leads to the
paradoxical situation where a mechanism meant to prevent DoS attacks itself can result
in a DoS attack. Consequently, we conclude that the use of public key cryptography is
not suitable in this context.

Using symmetric cryptography to secure authenticated attestation requests yields
significantly better performance: a SHA1-based HMAC can be validated in 0.432ms.
Assuming an authentication request concatenated with the key is small enough to
fit into a single SHA1-HMAC block, the required computation time is 0.340 ms +
0.092ms = 0.432ms. Standard block ciphers such as AES perform slightly better, re-
quiring 0.074 ms + 0.288 ms = 0.362ms for key expansion and the encryption of one
block. Using lightweight block ciphers such as Speck [43] further reduces the cost by a
factor of ten: 0.016 ms 4 0.017 ms = 0.033 ms. If key expansion is done in advance, the
performance of the block ciphers can be further improved. Messages are assumed to fit
into one block for each cryptographic primitive: ECC: 160 bit, AES: 256 bit, Speck: 64 bit,
and HMAC: 512 bit.

Requirements. The use of symmetric cryptography to compute a MAC imposes the
requirement to protect the authentication key in an access-restricted hardware-protected
key storage (e.g., in Read-Only Memory (ROM)). This requirement exists already for
recent attestation architectures such as SMART [139], SPM [368] and TrustLite [226].
They have the same requirements for the prover to be able to compute an authenticated
response, i.e., a challenge-based MAC over the prover’s memory.

141

142

SECURITY SERVICE: REMOTE ATTESTATION

6.1.2.2 Handling Replay, Reorder & Delay

Unfortunately, mere authentication of attestation requests is not sufficient to mitigate
DoS attacks. Advext can simply eavesdrop on and record genuine attestation requests
and later replay them. Alternatively, Advey¢ can intercept and arbitrarily delay or reorder
genuine requests. There are several standard ways to detect replay, reordering and delay
attacks:

* Nonces: If each attestation request includes a nonce (i. e., a unique value) provided
by the verifier, the prover can keep a complete nonce history of previously received
(and authenticated) attestation requests. This allows PRV to detect replayed request,
i.e., requests with a previously seen nonce.

¢ Counters: If each attestation request includes a monotonically increasing counter,
the prover accepts a new request only if its counter is strictly greater than the last
counter value received and processed. The new counter then replaces the previous
one. Requests bearing out-of-order or duplicate counters are rejected.

* Timestamps: Assuming synchronized clocks between both parties and sufficiently
inter-spaced genuine attestation requests, allows the prover to detect replayed,
reordered and delayed messages. The verifier includes an up-to-date timestamp in
the attestation request and the prover only accepts request with a timestamp close
to the current time.

Using nonces is problematic for two reasons: (1) It poses high demands on the availabil-
ity of non-volatile memory on the device to store a complete nonce history. (2) Nonces
protect only against replayed requests, while reordered or delayed requests cannot be
detected. Therefore, we consider nonces not suitable for our scenario, and rule them out
for the remainder of this work.

For the counter-based approach the prover is required to maintain a sequence number,
which also has to be stored in non-volatile memory. However, only the latest counter
value has to be stores, hence, only a small and fixed amount of memory is required.
Under the assumption that non-volatile memory is already available on the prover’s
platform — a feature available on many MCUs — no new architectural features are
required compared to those identified by ElDefrawy et al. [139] for RA, thus enabling
secure Remote Attestation (RA) in the untrusted-verifier model at minimal cost. On the
other hand, a counter does not protect against delayed request attacks.

Timestamps offer the best security, under aforementioned assumptions on the adver-
sary’s capabilities. They protect against attacks leveraging replay, reorder or delayed
requests. However, the major requirement imposed by timestamps is availability of a
reliable real-time clock on the prover — a feature not previously identified as necessary
for attestation.

Table 11 summarizes security features attainable with each approach.

Requirements. To protect against replay and reorder attacks, non-volatile memory is
required. Many MCUs provide non-volatile memory, thus, minimal additional cost

6.1 PROVER’S PERSPECTIVE ON REMOTE ATTESTATION 143

Feature:
Attack: | Nonces | Counter | Timestamps|
Replay v v v
Reorder - v v
Delay - - v

Table 11: Summary of DoS attack mitigation features.

is imposed by this protection mechanisms. Detection of delayed requests requires a
synchronized real-time clock on the prover.

6.1.3 Mitigating Advroam

The countermeasures discussed above that are based on counters and real-time clocks
can easily be defeated by Advrqm, as we will explain below. We then develop mitigation
techniques that can protect against Advyoam.

* Advyoam and Counters: We assume an attestation mechanism that is secure against
replay and reorder attack from an exteranl adversary (Advext), i.e., (1) each at-
testation request contains a monotonically increasing counter, and (2) the prover
stores the counter from the last genuine attestation request in non-volatile memory.
Without loss of generality, we assume that the adversary wants to replay a single
attestation request. In Phase I, Adv;,qm records one genuine attestation request
attreq(i) where 1 denotes the counter. In Phase II, Adv,,qm modifies the counter
stored by the prover from i to i — 1. It then leaves the prover, and after waiting
arbitrary length of time, replays attreq(i). After checking its stored (modified) last
counter, the prover accepts attreq(i) as fresh and performs attestation. The prover’s
counter is changed to 1.

* Advyoam and Timestamps: We assume an attestation mechanism that protects re-
play, reorder and delay attacks from an external adversary (Advext), i.e., (1) each
attestation request is timestamped by the verifier, (2) the prover has a clock, and
(3) prover’s and verifier’s clocks are synchronized. Again, we also assume that,
in Phase I (see Section 6.1.1.2), Advyoqm records one genuine attestation request
attreq(ti) where t; denotes the timestamp. In Phase II, Adv;,qm re-sets the prover’s
clock to time t; — . It then leaves the prover, and after waiting for o time units,
replays attreq(ti). After consulting its (modified) clock, the prover accepts it as
timely and performs attestation. The prover’s clock remains behind.

Although the DoS attack succeeds in both cases, there are two subtle differences: First,
Advroqm is more constrained with timestamps since it is bound to & wait time before
replay in Phase III. Second, resetting the prover’s clock in Phase II leaves some evidence
of the attack since the prover’s clock remains behind. In contrast, resetting the counter
allows Adv;oam to bring the prover back to its expected state. This means that the DoS
attack is undetectable after the fact.

144

SECURITY SERVICE: REMOTE ATTESTATION

Protecting Key, Counters & Clocks. In Phase II, Adv;,qm compromises the prover. At
this time, it controls the prover device and can take actions to prepare for the actual DoS
attack in subsequent Phase III. For example, Adv;oqm could extract PRV’s Kagtest, Which
would allow it to generate authentic attreq-s. Hence, Kattest must be protected from read
access. Only the trusted attestation code Codeagtest must be allowed to read Kattest (se€
Figure 32). Note that this is impossible in software-based attestation (see Section 6.4.1).
Similarly, Kattest must be write-protected; otherwise, Adv;,qm could overwrite it with any
key it chooses and achieve the same result. The counter in the last authentic (processed)
attreq as well as PRV’s local clock state must made immutable for Adv;oqm, in order to
prevent replay, delay and reorder attacks described in Section 6.1.2.2. At the same time,
the stored counter value must be updated with every new attestation request. Hence, the
counter must be writable only by the prover’s TCB, i. e., Codeattest-

Requirements. In summary, to protect against Advroam, Kattest must be kept confidential
and non-malleable, i. e., read-only and readable only by Codeattest- The counter and the
clock must be write-protected, they do not require confidentiality. The required protec-
tions can be achieved with minimal hardware security mechanisms already available
in existing attestation architectures. In particular, low-end device attestation techniques,
such as SMART [139] or TrustLite [226], already rely on hardware features and extensions
to protect Codeagtest and Kartest against software attacks. These existing mechanisms can
be used to protect a counter as well as a clock, as described in the next section.

6.1.4 Implementation

We now describe our prototype implementations of our proposed countermeasures.
First, we describe the concept of Execution-Aware Memory Access Control (EA-MAC),
a hardware protection mechanism used by multiple attestation solutions [139, 226, 62].
Then, we describe how we can utilize this mechanism to extend previous attestation
techniques to protect against Advroqm.

6.1.4.1 Execution-Aware Memory Access Control

Execution-Aware Memory Access Control (EA-MAC) is a primitive that allows to restrict
access to critical components of the system (i. e., Kattest, the counter and the clock). It
has been used in several prior proposals [139, 226], and by our embedded security
architecture TYTAN (cf. Section 3.1). The core idea of EA-MAC is to allow or denial
read and write access to memory depending on currently executing code, i.e., memory
locations are only accessible for selected software components (see Section 2.1.1 for a more
detailed description). For example, access to Kagtest is limited such that only Codeagtest
can read it. Hence, even in the case that all code (except Codeattest) is compromised,
Kattest remains protected. To protect Codepttest itself from being maliciously modified it
has to be non-malleable, e.g., in SMART [139] it resides in ROM. TrustLite [226] and
TYTAN [62] use secure boot and EA-MAC-based isolation to maintain the integrity of
Codenttest-

6.1 PROVER’S PERSPECTIVE ON REMOTE ATTESTATION

The basic operation of EA-MAC is approximately the same in all attestation architec-
tures: The Central Processing Unit (CPU) allows a particular memory access based on
the memory location of the currently executing code. The currently executing code’s
memory location can be retrieved from the value of the Program Counter (PC). However,
the individual implementations differ in some aspects. For instance, SMART [139] has
a single memory element (Kattest), Which is protected by a hard-wired EA-MAC. In
contrast, TrustLite [226] allows flexible configuration of protected memory regions and
associated access policies at run time by software. An extended Memory Protection
Unit (MPU), called Execution-Aware Memory Protection Unit (EA-MPU), specifies which
code region has access to which data region. Notably, the EA-MPU can control access
to arbitrary memory regions, i.e., access to memory-mapped configuration registers of
peripheral devices can be controlled, as well.

6.1.4.2 Implementation Details

The prototype implementation of our Adv;oqm countermeasures is based on three com-
ponents: ROM, EA-MAC and secure boot. We developed two versions of our prototype as
shown in Figure 32. The basic version (Figure 32a) utilizes a real-time clock in hardware.
Our more advanced version (Figure 32b) requires no new hardware features at the cost
of a more complex software implementation. Both versions are based on the TrustLite
attestation architecture. However, the same countermeasures are easily adaptable to
other attestation techniques, such as SMART [139] as well as our security architecture
TYTAN [62].

As discussed earlier, to mitigate Advroqm, three components must be protected: Kagtest,
the counter, and the real-time clock.

Secure Boot. Protection of critical system components is realized by setting appropriate
memory access rules in the EA-MPU. However, if the adversary controls the privileged
systems software, such as the OS, it could change these rules and disable protection.
For this reason, the system is started via secure boot, i.e., at boot time it verifies that
correct software is loaded. This initial software sets up memory protection rules in
the EA-MPU and locks it, by setting the EA-MPU configuration immutable, to prevent
further changes, even from privileged software This can be done by the EA-MPU itself,
via memory-mapped configuration registers. Setting the EA-MPUs configuration registers
as read-only, protects EA-MPU rules from being changed, as shown in Figure 32a.

Keys & Counters. The secret attestation key Kaiest must be both read- and write-
protected. By storing Katest in ROM, it is inherently write-protected. If it is stored
in writable memory (e.g., RAM or Flash), it must be write-protected by a dedicated
EA-MPU rule. In both cases, an EA-MPU rule is required to ensure that only Codeagtest
can read Kagtest- Hence, Advyoqm controlling all software (except Codeagtest) can neither
read nor write Kattest. At the same time, Advyoqm cannot modify Codeattest, Which is
write-protected (in ROM). To protect Codeattest against run-time attacks, known mitigation
techniques, e. g., limiting code entry points, and using Control-Flow Integrity (CFI) [123],
can be utilized. Similarly, ctr is protected by an EA-MPU rule that makes it writable only
by Codeattest-

145

146 SECURITY SERVICE: REMOTE ATTESTATION

Address Space Address Space
[IDT
RAM/ | RAM/ K ttest
Flash Flash | Counterg
Clockysg
Secure Boot
- 2 Secure Boot
ROM | OCCA test B]
< ¢ ROM Codepgtest
KAttest = ke
<'C k9] COdeCIock
o8
% 8
[ppew
I/0 | I/0 |
Map Map
- HW-enforces read-only IDT: Interrupt Descriptor Table
- EA-MAC protected LSB/MSB: Least/Most Significant Bits
(a) Base Version (b) Advanced Version

Figure 32: (a) Base version of Adv;¢qm mitigation; Kattest and ctr are only accessible by Codeagtest-
Access control is enforced by an EA-MPU that is set up at system start by a secure
boot mechanism. (b) Advanced version for a common low-end MCU clock design;
Clocky s is a short-term counter, which issues an interrupt when it wraps around @.
The immutable interrupt handling engine ensures that Codec|ock serves the interrupt @;
Codecjock maintains a software counter (Clockpysg) such that Clockysg + Clock| gg form
a real-time clock (3).

Real-Time Clock. A real-time clock is needed if protection against delay attacks is re-
quired. Recall that a counter is sufficient to mitigate replay and reorder attacks. Obviously,
the clock must be write-protected to prevent Adv,oqm from setting it to an earlier value.
In the simplest case, the clock counter is sufficiently large in size, i. e., in terms of number
of bits, to prevent that it wraps around within the expected lifetime of the prover. Our
base version, as shown in Figure 32a, can be used if such a clock counter is available. We
evaluate the expected lifetime of prover device dependent on the clock counter’s size in
Section 6.1.5.

If a sufficiently large clock counter is not available then our second, more advanced
version can be used. Figure 32b shows a platform with a short-term counter (Clock sg)
which issues an interrupt when it wraps around. The interrupt is handled by the trusted
and integrity-protected Codecjock. This code maintains higher-order bits of the clock
in writable memory (Clockmsg). Again, the hardware counter must be read-only and
Clockmsg memory must be protected with an EA-MPU rule to ensure that it is exclusively
writable by Codecjock. Additionally, the system’s configuration of interrupt handling must

6.1 PROVER’S PERSPECTIVE ON REMOTE ATTESTATION

be protected. For example, if Adv,qm manipulates the Interrupt Descriptor Table (IDT),
it could prevent Codecjock being invoked upon a wrap-around of Clock sg, thus effectively
stopping the real-time clock. To prevent this, IDT’s configuration can be locked down
similar to the EA-MPU’s configuration, by setting the memory region containing the
IDT read-only during secure boot. Further, depending on the underlying MCU platform,
disabling the timer interrupt must be prevented, and the location of the IDT itself must
be immutable.

6.1.5 Evaluation

In this section, we evaluate the costs of our prototype implementations associated with
our proposed countermeasures. The cost for protecting Kattest and ctr is the same in all
variants, i. e., for each one EA-MPU policy must be configured, hence, one additional
configuration slot in the EA-MPU is required. This is independent of the storage location
of Kattest, 1. €., whether Kagtest is stored in ROM or in mutable memory such as RAM or
Flash. In both cases the cost is identical: Both, setting Kattest read protection (in ROM) as
well as making Kattest read /write protection in RAM or Flash requires a single EA-MPU
rule.

Clock Implementations. We evaluated our two variants for implementing a real-time
clock. The first variant depends on a dedicated counter register that does not wrap
around within the lifetime of the prover. For example, a 64 bit register incremented
every clock cycle wraps around after 24 372.6 years on a 24 MHz CPU. Table 12 shows
the hardware cost for a counter register of this size as well as combinational logic for
incrementing it. By reducing the clock frequency, the register size of the clock counter
register can be decreased while preventing a wrap-around of the counter with realistic
assumptions on the lifetime of a device. For example, given a 32 bit register, the wrap-
around time is approximately 3 min at 24 MHz. By dividing the clock by 22° = 1048576
(i.e., incrementing it every one millionth cycle), a wraparound will occur only after
6years while keeping clock resolution at 42 ms.

Our second implementation is based on a clock design present in Intel Siskiyou Peak
and other popular low-end MCUs, e. g., Texas Instruments MSP430 [161]. Reusing the ex-
isting clock induces no additional hardware cost. However, to protect our implementation
for short-term counters incurs cost due two factors. (1) Protecting interrupt handling, and
(2) storage of the software-maintained fraction of the current clock value (Clockmsg). Ta-
ble 12 shows the cost of this “software clock” (SW-clock), which consists of two EA-MPU
protection rules: The first EA-MPU rule is required to set the IDT immutable; the second
EA-MPU rule enforces protection of the memory location where the high-order bits of
the clock value, Clockysg in Figure 32b, are stored.

Overhead. We compare our implementations against a base-line system that supports
attestation without protection against Advext or Advyoam. The base-line system requires
an EA-MPU with at least two rules: The first rule is needed to protect the EA-MPU itself
from modifications at run time. The second rule protects Kagtest- The total cost of the
base-line system is 5528 + 278 + (116 - 2) = 6038 registers and 14361 +417 + (182 -2) =

147

148

SECURITY SERVICE: REMOTE ATTESTATION

Siskiyou Peak EA-MPU (TrustLite) Attest-Key

EA-MPU rules 1
Register 5528 278 + (116 - #r) 0
Look-Up Table (LUT) 14361 417 4 (182 - #r) 0

Counter 64bit clock 32bit clock SW-clock

EA-MPU rules 1 0 0 0
Register 0 64 32 0
Look-Up Table (LUT) 0 64 32 0

Table 12: Hardware cost per component (#r is the number of protection rules configurable in
EA-MPU).

15142 LUTs; see Table 12 columns “Siskiyou Peak” and “EA-MPU”. For the 64 bit clock
implementation, one additional EA-MPU rule is needed, plus the cost of the clock
itself: 116 + 64 = 180registers and 182+ 64 = 246 LUTs, i.e., 2.98% and 1.62% of the
overall cost, respectively. For the 32bit clock with a frequency divider, the cost is
116 + 32 = 148 registers and 182 + 32 = 214 LUTs, which means an overhead of 2.45%
and 1.41%, respectively.

The SW-clock implementation requires three new EA-MPU rules: 116 - 3 = 348 registers
and 182 -3 = 546 LUTs, which is 5.76% and 3.61% of the overall cost, respectively.

6.1.6 Conclusion

Prior attestation methods assume a trusted verifier and an untrusted prover. We have
shown that verifier impersonation and prover-bound DoS attacks pose serious threats,
which have been largely overlooked by prior work. And we formulated a new roaming
adversary model, which can defeat classical replay attack mitigation approaches. We
developed and evaluated techniques to protect the prover from attacks by this powerful
adversary and showed that desired protection can be achieved with low additional
hardware cost.

6.2 SEDA: SCALABLE EMBEDDED DEVICE ATTESTATION

6.2 SEDA: SCALABLE EMBEDDED DEVICE ATTESTATION

Traditionally, Remote Attestation (RA) is a protocol between two entities, a verifier and a
prover. The latter demonstrates that it is in a known and trustworthy state by sending a
status report of its current software configuration. However, this peer-to-peer relation
between single prover and single verifier limits RA’s scalability and thus its applicability
to many new use cases and scenarios, for instance in the Internet of Things (IoT).

Inspired by nature, such large systems of connected and collaborative devices, such
as robots, are often referred to as swarms [114, 190, 331]. Using traditional, peer-to-
peer RA schemes naively, i.e., attesting each device of the swarm individually, does
not scale to these systems. Furthermore, swarms with dynamic typologies, e. g., robot
swarms, or limited connectivity, i. e., swarms where only neighboring devices can directly
communicate with each other, impede the adaption of traditional attestation schemes to
these systems.

Goals and Contributions. Our goal is the design of an efficient and secure multi-prover
RA scheme. It must support dynamic topology of the swarm'’s devices and ensure that
compromised devices cannot evade detection during attestation, i. e., devices of the swarm
must be accurately accounted (e. g., honest device must not be counted more than once).
Furthermore, the computation and communication cost in large-scale swarms should be
minimized while distributing the protocol’s workload among all swarm devices.

We present Scalable Embedded Device attestation (SEDA), which to the best of our
knowledge, is the first multi-prover attestation scheme. It enables efficient attestation of
large-scale swarms of connected devices and opened a new line of research inspiring
many follow-up works adapting and extending the core idea of SEDA [16, 199, 201, 82].

* We present the first security model for collective attestation of device swarms.
* We design SEDA, the first protocol for multi-prover RA.

* We provide two instances of SEDA for state-of-the-art low-end embedded systems
security architectures (SMART [139] and TrustLite [226]). We show how these
architectures can be adapted to SEDA with minimal hardware cost.

¢ In our evaluation we assess the performance of our SEDA instances and show that
SEDA scales significantly better than attesting each individual device of a swarm
separately.

6.2.1 System Model and Preliminaries
This section introduces the assumptions and objectives of SEDA.

6.2.1.1 System Model and Assumptions

A swarm § is a set of s heterogeneous embedded devices Dj, i. e., devices with possibly
different hardware and software configurations. Each device in 8 can be attested via

149

150

SECURITY SERVICE: REMOTE ATTESTATION

RA based on a low-end embedded system security architecture [139, 147, 226], i.e., all
devices need to satisfy the minimal requirements for secure RA.

Within the swarm devices can communicate with their direct neighbors [114, 190, 331]
and the entire swarm is connected, e. g., via a mashed network. Furthermore, § might be
dynamic in terms of membership, i. e., devices can join and leave §, and topology, i.e.,
device mobility within the swarm leading to changing neighborship relations.

All devices are initialized and deployed by a swarm operator OP. OP is trusted and the
initialization and deployment process cannot be manipulated by an adversary.

Swarm Attestation Protocol Objectives and Requirements. Swarm attestation should
provide a verifier VRTF assurance about the swarm’s state, i.e., whether the software
integrity of all devices, and thus, the integrity of the overall swarm, is given or not. VRF
may be a remote entity and may have no pre-established relations with any device of the
swarm. Due to the swarm’s dynamics, the topology of 8 might be unknown to VRYF.

Swarm attestation provides an external verifier VRF information allowing VRF to
reliably learn whether the swarm is in a correct software state. The correctness of the
swarm is given if all devices of the swarm, i.e., all devices deployed by OP, are in a
correct software state. The correct software state is defined by OP and unavailable devices
are considered incorrect. In particular, non-responding devices are not operating correctly,
and thus, must be assumed to be invalid or compromised.’

A secure swarm attestation scheme must fulfill the following requirements:

SA-R1 Verifiable integrity: Remote verifiability of the integrity of a swarm § as a whole.
SA-R2 Efficiency: Higher efficiency than attesting each device D; in § individually.

SA-R3 Swarm configuration agnostic: Configuration details of 8 must be oblivious to VRF
(e.g., device types, deployed software versions, and network topology).

SA-R4 Parallelism: Support for multiple parallel or overlapping attestation protocol
instances.

SA-R5 Integrity measurements independence: Independence of the underlying integrity
measurement mechanism used to capture the state of devices in 8.

The first requirement expresses the core objective of swarm attestation. The second
requirement is essential for scalability in large swarms. The third requirement allows
swarm attestation to be used in scenarios were no previous relation exists between
§ and VRT. Further, requirement SA-R3 is needed in scenarios where the swarm’s
configuration or details of the swarm’s devices should not be disclosed to VRJ. For
example, in smart factories, the maintenance may be outsourced, and maintenance
staff may need to check overall trustworthiness of the production system while the
exact setup remains secret [268, 255, 421]. The fourth requirement enables application
scenarios where multiple verifiers need to independently verify system integrity without
coordination. And the fifth requirement is needed for extensibility and portability, i.e., to

1 Unavailable devices are assumed to be detected by a time-out mechanism at a lower network layer.

6.2 SEDA: SCALABLE EMBEDDED DEVICE ATTESTATION

support a wide range of single-device attestation mechanisms and to be able to adapt to
sophisticated attestation schemes, e. g., those that allow detection of code-reuse attacks.

Device Requirements. To fulfill the first three requirements listed above, the swarm'’s
devices D must provide mechanisms to be remotely verified, to verify other D;, and to
aggregate results securely. This implies that all D; have to fulfill the requirements listed
below. This includes the requirements imposed by single device attestation solutions [139,

1471

D-R1 Integrity measurement: D; must provide a mechanism to measure and report its
software state in an authentic way.

D-R2 Integrity reporting: D; must provide means to send an aggregated integrity mea-
surement report to VRJ.

D-R3 Secure storage and processing: D; must be able store and process data, for instance
cryptographic secrets, as part of the swarm attestation protocol.

Subsequently we provide the design and prototype implementation of our swarm at-
testation protocol SEDA. We show that SEDA fulfills all requirements SA-R1 to SA-R5,
and show how to utilize two embedded security architectures — SMART [139] and
TrustLite [226] — to implement SEDA and fulfill requirements D-R1 to D-R3.

6.2.1.2 Adversary Model

Our adversary model for SEDA is based on the same assumptions common in the
attestation literature [217, 342, 346, 139]. In particular, the adversary ADV can compromise
and manipulate the software of any device Dj, i.e., prover, in 8. Further, ADV can
eavesdrop on, manipulate, and inject any message between devices, as well as any
message between VRJF and any device D;.

The adversary ADYV cannot physically tamper with any device D; and the Trusted
Computing Base (TCB) of any devices is ever compromised by ADV. We consider
Denial-of-Service (DoS) attacks out of scope. ADYV typically aims to remain stealthy — an
adversary that does not mind being detected has no incentive to overcome the attestation
scheme in the first place. Nevertheless, we discuss different approaches to mitigate or
detect both, physical attacks as well as DoS attacks in Section 6.2.7 and Section 6.2.5,
respectively.

6.2.2 SEDA Protocol

Our swarm attestation protocol SEDA works in two phases. In the first phase, the swarm
is prepared (or modified), e. g., by introducing devices into the swarm. The first phase is
performed off-line, it is executed once for each device D; that gets integrated into the
swarm, i.e., each device is initialized and registered. For a swarm 8 where the devices do
not change over time, this initial phase is executed only once before § gets operational. In
the second, on-line phase, the actual attestation of the swarm is performed. This phase is

151

152

SECURITY SERVICE: REMOTE ATTESTATION

Operator

Verifier

== Temporary communication link Swarm 8
=— Authentic communication link = Spanning tree

(b) Phase II: Swarm attestation

Figure 33: SEDA swarm attestation in 8-device swarm.

executed repeatedly, i. e., whenever an attestation request from a verifier VRJ arrives, all
device D; of § are attested. The attestation reports of the individual D; are accumulated
and the resulting swarm attestation report is sent to VRTF.

Figure 33a shows phase I of the SEDA protocol. A new device Dg is integrated into the
existing swarm 8 consists of seven devices Dy, ..., D7. The operator OP initializes the
new device Dg. Then, Dg executes the join protocol with its neighboring devices D5 and
Ds.

Phase II is shown in Figure 33b. VRJ initiates an attestation of § by sending an attesta-
tion request to D7. The swarm'’s devices execute the attdev protocol with their neighboring
devices such that each device Dy, ..., Dg is attested exactly once, by constructing a span-
ning tree. Within the spanning tree parents attest their children. The accumulated results
are collected by D and reported to VRF.

6.2.2.1 Phase I: Device Initialization and Registration

In SEDA’s off-line phase devices are first initialized. Afterwards, devices in 8 register
with their neighboring devices using the join protocol.

Device Initialization. Each device D; in a swarm § is initialized by the operator OP
in order to be prepared to participate in the swarm attestation protocol (see below
Section 6.2.2.2). Therefore, OP installs a software configuration c; (represented by a hash

6.2 SEDA: SCALABLE EMBEDDED DEVICE ATTESTATION

digest of dev;’s software binaries) and a code certificate cert(ci) on D;. cert(c;) is signed
by OP guaranteeing that c; is a valid software configuration of D;. Furthermore, D; is
initialized with a signing key pair (ski, pk;).> An identity certificate cert(pk;), also signed
by OP, binds pk; to D; and authenticates pk;, i. e., guarantees that pk; belongs to D;.

To be able to validate the certificates of other devices in 8, each D; is initialized with
the operator’s public key pko.

Finally, the list of active session identifiers Q; of a new device D; is initialized as an
empty list.

Device Registration. When a device D; initially joins a swarm 8 or changes its positions
within §, i.e.,, when D; becomes new neighboring devices, it executes the join protocol
with each new neighbor device Dj. In Figure 33a Dg joins swarm & and runs the
registration protocol with its neighbors D5 and D7. Through the join protocol, D; learns

each of its neighbors’ expected configuration c; by receiving D;’s code certificate cert(c;).

Dj verifies the received certificates using pkop and if verification succeeds, D; stores c;
for later validation of Dj’s attestation reports. If verification of cert(cj) fails, D; does not
accept Dj as a neighbor.3

Additionally, D; establishes a shared key, called attestation key kij, with each if its
neighbors Dj as part of the join protocol, resulting in a set of attestation keys X; containing
a shared key per neighbor device Dj. Key establishment can be done using standard

authenticated key agreement protocol based on devices” ski, skj, cert(pk;), and cert(pk;).

Alternatively, shared keys between neighbor devices can be established using techniques
such as key pre-distribution [80]. SEDA can be used with any key establishment protocol
that provides integrity of key agreement and secrecy of generated keys.

6.2.2.2 Phase II: Swarm Attestation

SEDA'’s online phase involves three protocols: attest, attdev and clear. attest executes
between the verifier VRF and an arbitrary device D7 € §, called initiator. The attest
protocol initiates the attestation of 8 and is initiated by VRJ.

The attdev protocol is executed between neighboring devices in §. Starting from the
initiator Dj, all devices of § are attested recursively using attdev. All attestation results
are accumulated and eventually received by D7, which reports the result to VRJ as part
of attest.

The clear protocol is executed at the end of a swarm attestation session to remove all
temporary data from all D; € §

Swarm Attestation. VRTJ starts attestation of § by sending an attestation request attest
(containing a random challenge) to the initiator device D7. VRT can randomly select any
device in 8 as initiator D1. VRJ might also chose D7 depending its preference, e. g., the
closed D; € 8 based its location. VRJ can be either remote (e. g., connected via Internet)
or within direct communication range of one or more swarm devices.

2 Device certificates are issued and managed by OP using its own Public Key Infrastructure (PKI).
If D;’s software is updated after it joins §, D; must communicate its new code certificate to all its neighbors,
otherwise the new configuration will not be accepted in a subsequent attestation.

153

154

SECURITY SERVICE: REMOTE ATTESTATION

attest operates as follows: The verifier VRJ starts the protocol by sending an attestation
request including a nonce N to Dj. N prevents replay attacks on the communication
between VRI and D7. When receiving an attestation request D1 creates a new attestation
session by generating a new global session identifier q. D7 then executes attdev with
all its neighbors, including q. All neighbor devices recursively execute attdev with their
neighbors. q is included in all subsequent executions of attdev to identify the current
swarm attestation protocol instance and to build a spanning tree to prevent circular
attestation among the swarm’s devices. When a device Dj receives the attestation results
for all neighbors, it initiated attdev with, it accumulates the results and reports back to
the device that initiated attdev with Dj. This way, D¢ eventually receives the accumulated
attestation reports of all other devices in 8. D7 accumulates all received reports into
(B,T), with 3 being the number of successfully attested devices and T being the total
number of attested devices. It computes a signature o over (3, T) and its own software
configuration cj. As the result of the swarm attestation, D; sends its device identity
certificate cert(pk;), code certificate cert(c), (B, 1), cj, and o to VRF. Using OP’s public
key pkoo, cert(pky) and cert(cq), VRF authenticates pk; and c1, and verifies o. Attestation
succeeds if o is correct and (3,) show that all D; € 8 are in a software state matching
their corresponding code certificates cert(c;).

If VRT does not receive a response from Dy (e.g., due to a connection time-out) swarm
attestation fails.

After receiving responses from all its neighbors and responding to VRTF, Dy starts the
clear protocol to finish the current protocol session by delete q from all devices in 8.

Single Device Attestation. SEDA uses the attdev protocol to perform attestation between
the individual devices of 8. As described above, each swarm attestation instance has
a global session identifier q that is generated by the initiator device Dj. q is used to
construct a spanning tree over all devices of the swarm. Each device D; maintains a list
of active sessions by storing each q it receives in a list Q;. Furthermore, by distributing
q in § a spanning tree T is created: when Dj receives a new ¢ from another device D;
it accepts D; as its parent in T. Dj sends q to all its remaining neighbors D; (D; # Dj)
to expand T further, eventually covering all D € 8. However, the construction of T can
be adjusted, e.g., by setting a maximum number of children each device may have,
limiting the fan out of T and leading to a growth in height. This is a way to optimize
SEDA'’s performance (cf. Section 6.2.4). It allows the transformation of different network
topologies into balanced spanning trees. In particular, the spanning tree T is constructed
from the communication graph of §, i.e., two devices can be neighbors in T if they are
neighbors in the communication graph.

Within T each device attests all its children, i. e., a parent device D; sends an attestation
request to each Dy that is its child in T. The attestation request contains a nonce Nj) and
the session identifier q. Once a device Dj receives the attestation reports (including the
attestation information accumulated by each child) from all its children this information
is accumulated, resulting in a report for the subtree T; with root Dj. D; then sends the
accumulated attestation for T; along with the attestation report for itself to its parent D;.

To authenticate the attestation report from a child Dy and ensure the report’s integrity,
Dj uses the attestation key k;i, which was established in the join protocol. To validate

6.2 SEDA: SCALABLE EMBEDDED DEVICE ATTESTATION

Dy’s attestation report Dj uses the reference software configuration ¢, which Dj learned
during the join protocol.

The result of the attdev protocol between D; and its child Dj is, (i) whether attestation of
D; was successful, i. e., D;’s current software configuration matches its reference software
configuration c¢j, (ii) the number of device Tj in the subtree T; rooted at D; (excluding
Dj), and (iii) the number of devices 3; in Tj that have been successfully attested (again,
excluding Dj). D; accumulates the results it received from all its children Dj,,...,Dj . T;
is the sum of 7j,,..., T, plus the number of D;’s children n: t; = 15, +--- + 715, +n. B
is the number of successfully attested devices reported by D;’s children f;,,..., 3;, plus
the number m of successfully attested children Dj,,...,Dj : Bi = Bj, +---+ Bj, +m.

If q is already in the list Q; of active session identifiers, D; responds with 3; <~ L and
Tj < L. When D; does not response to D; in an attdev protocol instance D; considers the
attestation of Dj failed, and D; sets 3 = 0 and T = —1 to prevent double-counting.

Figure 33b shows a sample swarm with eight devices: Dy, ..., Dg. The spanning tree is
denoted by violet lines between devices. The root is D1, which is selected by VRTF to be
the initiator.

Clear. When an attestation session is finished all corresponding temporary data are re-
moved from all device in 8. Therefore, the clear protocol is executed between neighboring
devices, i.e., D; sends the q of the finished session to Dj, authenticated with ki;. When
received, D; removes q from its list Q; of active session identifiers and runs clear protocol
with each child in the previously constructed spanning tree.

6.2.3 Prototype and Implementation

In this section we discuss our implementations of SEDA based on two different security
architectures for low-end embedded systems, SMART [139] and TrustLite [226]. These
security architectures have different security properties and provide different functional
capabilities, while relying on minimal hardware assumptions.

SMART-based Implementation. The SMART architecture provides the minimal set of
functionalities to enable RA for low-end embedded devices [139, 147].

SMART requires two main components that enable secure RA: (1) Read-Only Memory
(ROM) to protect the integrity of the attestation routine and the attestation key k,# and
(2) a Memory Protection Unit (MPU) that controls access to k, stored in ROM, to ensure
confidentiality for k, i.e., only the trusted and immutable attestation routine can access k.

Our first SEDA implementation extends the functionality of SMART. The ROM contains
all protocol routines of SEDA, i. e., join, attdev, attest and clear. Furthermore, the device’s
singing key sk is stored in ROM. Similar to the original SMART design, access to the
device key (sk) is controlled by the MPU, it is accessible only to SEDA’s routines.

The MPU of SMART has been extended to enforce three additional access rules. During
join protocol shared keys with all neighboring devices are established and stored in X.
Both, the integrity and confidentiality of X is guaranteed via access control enforced

4 One-time programmable ROM allows initializing each device with a distinct device-specific key during
device initialization.

155

156 SECURITY SERVICE: REMOTE ATTESTATION

SMART Device
Task 2 Processor
Task 1 Program Counter (PC)
Device OS
RAM cert(c)

cert(pk)
Q
X
sk

clear

ay

B Memory Protection Unit (MPU)

L a5
Access

ay
ag | ay | ag | a5 r
ag
ROM H attdev
a

a aq as ag ™w

attest a; | ag | a5 | ag r

a

Bl -

join ™w

_aO

Figure 34: SEDA implementation based on SMART [139]

by the MPU. Similarly, the list of active session identifiers Q must be protected by an
additional MPU rule.

Figure 34 shows the memory layout and the MPU access rules for our SMART-based
SEDA implementation. In particular, the first MPU rule ensures that sk is only readable
by join and attest, the only protocols in SEDA using sk. The second MPU rule allows
the join protocol to read and write X, i.e., join can add shared keys with neighboring
devices to K. Rule number three grants attest, attdev and clear the right to read the shared
attestation keys from X. Finally, the fourth rule enables attest, attdev and clear to manage
the set of active sessions Q. All accesses to the protected memory regions (sk, X, and Q)
are denied.

All other SEDA related data that need to be stored on a device are public information
(cert(c) and cert(pk)) and, thus, do not need to be protected.

TrustLite-based Implementation. TrustLite [226] is a security architecture for embedded
systems, based on Intel’s Siskiyou Peak research platform [324]. It enables execution
of arbitrary code, (e.g., attest and attdev) isolated from the rest of the system. Such
isolated code chunks are called trustlets. Similar to SMART, an extended MPU ensures
that data can be accessed only by code of trustlets that own that data. Data access
permissions depend on the currently executing code — therefore TrustLite’s MPU is called
Execution-Aware Memory Protection Unit (EA-MPU). Additionally, the EA-MPU can be
used to control access to hardware components, such as peripherals (cf. Section 2.1.1).
Authenticity and confidentiality of both code and data of trustlets are ensured via secure
boot.

TrustLite can be seen as a generalization of SMART. The main difference is that in
TrustLite the EA-MPU’s memory access control rules can be configured dynamically,
as required by trustlets. In contrast, memory access control rules of SMART’s MPU are

6.2 SEDA: SCALABLE EMBEDDED DEVICE ATTESTATION

TrustLite Device

Task 2 Processor
Task 1
as Program Counter (PC)
Device OS
cert(c)
cert(pk)
ag) v
RAM A Q on-awa O
27 % otectio A
6
a clear # | Code |Memory| Access
5
a attdev 1 |ag|a|a] ag r
4
a attest 2 |ay|ag|a|a ™w
3
a join 3 la|azg|ag| ay r
ra
ROM | a sk 4 [ag | ag| ag | ay rw
1 @
secureBoot 5 a3 ag| ay| ag rw

L aO

Figure 35: SEDA implementation based on TrustLite [226]

static. Also, TrustLite supports interrupt handling for trustlets, while security-critical
code in ROM of SMART must not be interrupted during execution.

We implemented SEDA on TrustLite as trustlets, i. e., join, attest, attdev, and clear are
each implemented as individual trustlets. Integrity of these trustlets is ensured by the
secure boot component secureBoot.

The EA-MPU controls access to ROM and Random Access Memory (RAM) such that
only the SEDA trustlets can access secret data. Figure 35 shows the memory layout and
the EA-MPU access rules for our TrustLite-based SEDA implementation. Since the SEDA
protocols are not stored in ROM, their integrity must be ensured via secure boot. In
particular, the first rule enables the secure boot code to read and verify the integrity of
the SEDA protocol implementations join, attest, attdev, and clear. The second rule grants
join and attest read access to the device key sk. The set of attestation keys K can only be
written by join (rule 3) and read by attest, attdev and clear (rule 4). Finally, the fifth rule
enables attest, attdev and clear to manage the set of active sessions Q.

6.2.4 Performance Evaluation

We evaluated computation, memory, communication, and energy costs of SEDA based
on our two implementations described in Section 6.2.3.

For the evaluation, we assume that the swarm is static throughout protocol execution.

However, in Section 6.2.6 we sketch out a protocol extension to handle highly dynamic
swarms. Our evaluation results do not include the join protocol, as it is not part of the
actual attestation process and is executed rarely, perhaps only once per device. However,
the performance of join can be estimated based on the measurement results for the attest

157

158

SECURITY SERVICE: REMOTE ATTESTATION

protocol. For both protocols the asymmetric cryptography operations contribute the
major part of the computational cost.

Computation Cost. The dominating factor of SEDA’s computational cost is the use of
cryptography operations, such as Keyed-Hash Message Authentication Codes (HMACs),
for the communication as well as for measuring a device’s configuration.

The initiator device D7 communicates directly with the verifier VRTF. This communica-
tion is secured via a digital signature, which D1 has to compute. Additionally, D needs
to verify the messages it receives from its children in SEDA’s spanning tree T, with h;
being the number D1’s children in T. Per child, two messages have to be verified, hence
2-hy HMACs have to be calculated by D;. Finally, D1 needs to measure its own software
configuration by calculating an HMAC over relevant memory locations.

All other devices of the swarm (D; € 8,D; # D) need to verify the messages of their
children. D; receives and verifies messages from its h; children in spanning tree T, two
messages each, hence D; has to calculate 2 - h; HMACs. Additionally, Dj has to calculate
two more HMACs for the messages it sends to it parent.

Communication Cost. Our implementation of SEDA uses HMACs based on Secure Hash
Algorithm 1 (SHA1) and ECDSA signature scheme with (s, = 320, i.e., 20 Byte and
40 Byte respectively. Nonces are 20 Byte, the values for 3 and T are stored in 64 bit
counters, i.e., 8 Byte each, and certificates are 20 Byte + 40 Byte = 60 Byte. Therefore,
D has to send 176 Byte + h; - 48 Byte and receive 20 Byte + h; - 56 Byte, with h; being
the number D1’s of children in SEDA’s spanning tree T. All other devices of the swarm
(D5 € 8,Dj # D1) have to send 68 Byte + h; - 56 Byte and receive 56 Byte + h; - 68 Byte
(h; is the number of Dj’s children in T).

Memory Cost. Each swarm device D; € 8 has to store (1) the global identifier q of
all concurrent swarm attestation protocol instances, (2) its device key, i. e., signing key
pair (ski, pk;), (3) its identity certificate (cert(pk;)), (4) the code certificate for is current
software configuration cert(ci), and (5) the set of attestation keys X is has established
with its neighbors via the join protocol.

Each qis 8 Byte, i.e., for s sessions D; needs to store s - 8 Byte. The device key is 80 Byte
(320 bit for each sk; and pk;). Both, identity certificate and configuration certificate are
each 60 Byte. Each key in X is 20 Byte, i.e., with g; neighboring devices D; needs to
store g; - 20 Byte.

Hence, in total, D; has to store s - 8 Byte + 200 Byte + g; - 20 Byte, for s concurrent
sessions and g; neighboring devices.

Typical low-end embedded devices such as the TI MSP430, as targeted by SEDA,
provide non-volatile Flash memory in the order of 1 MB or more. For scenarios where
each device has twelve or less neighbors, 512kB of non-volatile memory is already
sufficient to store all data needed

Run-time. To increase efficiency, SEDA is designed to balance parallelism and dependen-
cies among the swarm’s devices. Our SEDA design allows all devices at the same height
in the spanning tree T to operate in parallel. However, the root D; of each subtree needs
to collect, verify and accumulate the results of all its child devices D;, which leads to a
delay linear in the number of child devices Dj. In particular, devices at height | can only

6.2 SEDA: SCALABLE EMBEDDED DEVICE ATTESTATION

proceed after receiving input from all their child devices at height 1 — 1. Thus, the overall
run time of SEDA is linear in the height of the spanning tree T, and therefore logarithmic
in the size of 8.

The worst-case run time t for SEDA, given each device that is not a leave in T has
sufficient neighboring devices to have c¢ children, is when all child devices D; answer at
the same time and D; can therefore only start its processing after receiving all answers:

t <196ty + teign + A - tomg + -84 -ty + d -4 - tmac

with ti being the time required to transmit one byte of data, tsg, time needed to
compute a signature sign, tymg time to generate 20 random bytes using a Pseudorandom
Number Generator (PRNG) function, and tmac time required to compute a Message
Authentication Code (MAC) or verify a MAC, i.e., for mac and vermac respectively.

Our simulation-based evaluation shows that SEDA performs very well even for large
swarms with up to 100 000 devices. A detailed evaluation for different network topologies
is provided in our conference publication [34], in which we also provide an evaluation of
SEDA'’s energy cost for each swarm device.

6.2.5 Security Analysis

A swarm attestation scheme is secure if a verifier VRJ accepts an attestation report as
valid only if all device D1, ...,Dy € § are in a software configuration admissible by the
swarm operator OP. Admissible software configurations are authenticated by OP via
configuration certificated cert(c), which are signed by OP.

The adversary ADV can modify the software of arbitrary devices of the swarm
(Dapvy C 8), i.e., compromise Dy. Furthermore, ADV can eavesdrop on, delete, and
modify any message sent between devices in the swarm as well as messages sent between
Dy € Dgpy (a=1,...,m;m = |D4pyl, with |[D4py| number of adversary-controlled
devices) and VRTF.

The adversary ADV succeeds when it can manipulate at least one device while the
verifier VRJ accepts the resulting attestation report as valid.

The adversary can attack the system in four different ways: (1) Compromise the soft-
ware of the initiator device D1, which interacts with VRT. (2) Compromise the software of
any other device of the swarm Dj € §, D # Dj. (3) Manipulate communication between
D; and VRT. Or (4) manipulate the communication between the swarm’s devices.

These four cases, and the combination thereof represent all possibilities for ADV to
tamper with the swarm attestation. Preventing communication or a device’s participation
in SEDA’s protocols does not facilitate ADV as these actions will be detected by SEDA.

Case 1: ADV compromises the initiator device D1, i.e., modifies the software configu-
ration of D; to a different software configuration cj. According to SEDA’s adversary
model (Section 6.2.1.2), the code performing integrity measurements on D7 and the
code of attest belong to D1’s TCB, hence, ADV cannot tamper with them. Therefore,
D1’s measured configuration c{ will differ from the reference software configuration
¢y in cert(cq). The measured configuration cj is signed by D; with its device key sk,

159

160

SECURITY SERVICE: REMOTE ATTESTATION

which is only available to the device’s TCB, i.e., inaccessible for ADV. Thus, ADV has
three options: (a) ADYV has to change the configuration measurement in the attestation
report to a valid measurement, i. e., manipulate the communication between D; and VRT.
(b) ADV has to generate a forged configuration certificate cert(cj) without knowledge
of OF’s secret signing key skgp. Or (c) ADV has to find a software configuration that
operates as intended by ADYV and leads to the same measurement as the correct software
configuration, i. e., find a second pre-image for the hash function used to measure the
devices’ software configurations. Therefore, ADV can only succeed if the used signature
scheme or the used measurement function is insecure, or if ADV can manipulate the
communication between D1 and VR, discussed below (Case 3).

Case 2: ADV compromises, without loss of generality, one device D; € §,D; # Dy,
i.e., modifies the software configuration of Dj to a different software configuration ;.
Assuming D; € § is Dj’s parent in the spanning tree that is built during swarm attestation,
i.e., Dj sends its attestation report to D; and D; verifies the report. According to SEDA’s
adversary model (Section 6.2.1.2), the code performing integrity measurements on D; and
the code of attest belong to D;’s TCB, hence, ADV cannot tamper with them. Therefore,
Dj’s measured configuration c; will differ from the reference software configuration
¢j in cert(c;). To prevent detection, ADV has three options: (a) ADV has to change
the configuration measurement in the attestation report to a valid measurement, i.e.,
manipulate the communicated data between D; and Dj. (b) ADV has to generate a forged
configuration certificate cert(c;) without knowledge of OP’s secret signing key skoz. Or
(c) ADV has to find a software configuration that operates as intended by ADV and
leads to the same measurement as the correct software configuration, i. e., find a second
pre-image for the hash function used to measure devices” software configurations. This
means, ADV can only succeed if the used signature scheme or the used measurement
function are insecure, or when ADV can manipulate the communication between the

swarm’s devices, discussed below (Case 4).

Case 3: ADV manipulates communication between D1’s and VRTF. All information of the
swarm attestation protocol is authenticated and integrity protected, using secrets only
available to D1’s TCB, in particular, the attestation report is signed with D1’s device key
ski. Therefore, VRT can validate the authenticity and integrity of all information received
preventing ADYV from modifying or inserting any messages that will be accepted by VRF
if the used signature scheme is secure. ADV cannot inject old messages with a valid
signature as each swarm attestation session is started with new nonce N allowing VRF
to detect replayed messages. To validate messages, VRJ needs knowledge of D1’s public
key pky, which is authenticated by OP through the provided certificate cert(pky). Thus,
ADYV can only convince VRIJ to accept a wrong, adversary chosen public key pk4pv if
the used signature scheme is insecure and ADYV can create a valid certificate cert(pkapv)
without knowledge of OP’s secret signing key sko.

Case 4: ADV manipulates the communication between devices of the swarm 8. Without
loss of generality, we assume ADV’s goal is to manipulate the communication between
D; and Dj, where D; sends a message to Dj. All information of the swarm attestation
protocol are authenticated and integrity protected, using secrets only available to D;’s

6.2 SEDA: SCALABLE EMBEDDED DEVICE ATTESTATION

and D;’s TCB, using Keyed-Hash Message Authentication Code (HMAC) with the shared
attestation key ki;. Hence, D; can validate the authenticity and integrity of all information
received from D; preventing ADV from modifying or inserting any messages that will
be accepted by D; if the used HMAC scheme is secure. ADV cannot inject old messages
with a valid HMAC as each interaction request belonging to a new swarm attestation
session is started with new nonce N allowing Dj to detect replayed messages.

The shared attestation key ki; is established between D; and Dj as part of the join
protocol. ADV can get knowledge to the shared key or convince D; or Dj to accept
another key, known to the ADYV, only if the used key establishment protocol is insecure.

6.2.6 Protocol Extensions

In this section we discuss possible variants and extensions of SEDA. In particular, we
discuss options to strengths SEDA against attacks that go beyond the scope of the
adversary model (cf. Section 6.2.1.2), which we considered so far in this work.

Identifying Compromised Devices. In many applications it may be beneficial, and in
some it might be even necessary, to identify devices that have been compromised. SEDA
can be easily extended to report the identifiers of devices that were detected to have
an invalid software configuration, i.e., their software integrity could not be verified.
Whenever a device D; detects that one of its child devices D; reported a software
configuration c! that does not match the certified software configuration cert(c;), D;
includes the identifier of D; to its report. Di’s parent will pass the identifier on and
include the identifiers of other compromised devices, until eventually, VRT receives a
complete list of identifiers of all devices that could not be attested successfully. However,
this approach increases message complexity of the reports, as the message size will
depend on the number of compromised devices found. Hence, this approach is best
suited for applications where the number of compromised devices is expected to be low.

Devices with Different Priorities. In different applications the criticality, e. g., relevance
for the correct overall operation of the system, of some devices might be higher than that
of others. For example, in Wireless Sensor Networks (WSNs) the cluster head is crucial
for the operation of the overall system. Hence, its correctness, i. e., software integrity,
is more important than that of individual sensor nodes. SEDA can account for the
different criticality of individual swarm devices by assigning weights to the attestation
results of nodes. Attestations of high-priority devices are factored in the overall result by
incrementing the counters 3 and T with a weighted factor.

Random Sampling. SEDA’s performance can be improved by attesting only a randomly
sampled statistically representative subset 8’ C § rather than attesting all devices of a
swarm 8. This approach is particularly suitable for very large swarms where already a
relatively small subset 8’ is sufficient to detect compromised devices with high probability,
i.e., that the verifier VRF gets assurance that all devices in the swarm are running
authentic software with high probability.

Random sampling can be integrated in SEDA as follows: VRJ sends in the attest
protocol, along with its attestation request and nonce N, the desired sample set size

161

162

SECURITY SERVICE: REMOTE ATTESTATION

z. In the attdev protocol, all devices will — during the construction of the spanning
tree — broadcast z along with the global session identifier q. Using a global deterministic
function, which takes g, z and the size of the swarm s = [§] as inputs, each device learns
whether it is part of 8’. Also, the parent device D; of each device D; learns whether
Dj € 8',i.e., if Dj needs to provide an attestation report. If a D; € 8’ does not provide
an attestation report to its parent D;, D; is accounted as a failed attestation. Finally, all
attestation results of devices in 8’ are accumulated. VRTF receives an accumulated report
containing the total number of attested devices in 8’ () and the number of successfully
attested device (7).

As a result, VRF is assured that — with a certain confidence level and confidence
interval depending on the size of 8’ — the attestation result of 8’ reflects the state of
8. For instance, attesting only approximately 9 % of all devices in swarms with more
than 100000 devices is sufficient to achieve a confidence level of 95 % and a confidence
interval of 1 %.

Software Updates. SEDA can be used to verify whether a software update has been
correctly deployed. Specifically, when new software is installed on a device Dj, leading
to a new software configuration of the device c}, also a new configuration certificate
cert(c}) is installed on the device. Afterwards, D; sends the cert(c}) authenticated with
the keys in X to all its neighbors. The neighboring devices store the updated software
configuration c}, after successfully verifying the certificate cert(c}). If the verification fails
they retain the configuration c;, which they had stored before. To prove the successful
update of Dyi’s software, D; can attest itself to all its neighbor devices Dj; using their
shared attestation keys kij, similar to the attestation performed as part of the attdev
protocol. D; can also attest itself to an external verifier VRF, using its secret key sk;,
similar to the attestation of the initiator device in the attest protocol.

The adversary ADV might want to install an older software version, which might
contain exploitable security vulnerabilities, using a roll-back attack. In a roll-back attack
the adversary ADYV installs an older software version for which ADV possesses a still
valid configuration certificate. However, outdated software version, due to a roll-back
attack can be detected by VRJF when attesting the swarm.

Highly Dynamic Swarms. SEDA can be used with highly dynamic swarmes, i. e., swarms
where the topology is changing frequently, even while the swarm attestation protocol is
executing. For this, SEDA needs to create a spanning tree across virtual neighbors. After a
parent-child relation between two devices has been established the topology changes and
the two devices lose their direct connection to each other. Using an appropriate routing
mechanism ensures that messages between child and parent devices are still delivered,
allowing the SEDA protocol to continue. However, this approach naturally increases
SEDA’s communication overhead since messages must be sent over multiple hops.

Denial-of-Service (DoS) Attack Mitigation. DoS attacks are hard to mitigate in general.
The design of SEDA uses preferably symmetric cryptography, which is less resource
consuming and therefore less appealing for DoS attacks. However, SEDA’s sub-protocols
join and attest require asymmetric cryptography, which could be misused by ADV to
launch a DoS attack. For instance, a compromised device D; could repeatedly invoke the

6.2 SEDA: SCALABLE EMBEDDED DEVICE ATTESTATION

join protocol on a neighboring device Dj, forcing D; to validate the identity certificate
D; sends, even if D; sends an invalid certificate. This would waste Dj’s resources,
since verifying public key certificates is computational expensive, in particular for small
embedded devices as shown in our evaluation (cf. Section 6.2.4).

Such DoS attacks can be mitigated either by limiting the rate at which join requests are
accepted and processed, or processing join request with low priority. With our real-time
capable security architecture for embedded systems TYTAN (cf Section 3.1), certain
events (e. g., join requests) can be handled with low priority. This allows system resources
to be preferentially allocated to more critical tasks, while assuring that only otherwise idle
Central Processing Unit (CPU) cycles are dedicated to processing (potentially malicious)
join requests.

6.2.7 Physical Attacks

There are many settings and use cases for swarms in which physical attacks are either
impossible or unlikely, and therefore it is reasonable to have an adversary model that
excludes physical attacks (cf. Section 6.2.1.2). Examples for such scenarios include avionics,
maritime traffic, or satellites, where the devices are typically out of reach for the adversary
ADV or have a secure perimeter, e. g., security measures as found in airports. In other
scenarios, however, it might be unrealistic to assure physical security for all devices of a
swarm. For instance, devices operating in public areas or even in hostile environments,
e. g., military drones and robots or traffic infrastructure such as traffic lights, vehicles etc.

With advanced physical attacks, an adversary ADV might be able to compromise a
device’s TCB and extract all its secrets, such as the device’s signing key. In SEDA, the
aggregation of attestation results is performed by the individual devices of the swarm,
hence, a device with a compromised TCB can evade its own detection, and additionally, it
can manipulate the attestation information about other devices, in particular, it can forge
all information regarding any of its descendants in SEDA’s spanning tree. Furthermore,
using secret information, in particular keys, extracted from a compromised device, ADV
can create clones of the compromised device placing them across the swarm, i. e., allowing
ADYV to effectively control many (fake) devices in the swarm.

To address these risks, we sketch out different mitigation techniques, considering an
extended adversary model, which assumes an adversary that can capture and physically
attack device to extract keys or modify a device’s TCB.

PUF-based Attestation. Physical Unclonable Functions (PUFs) are (believed to be)
tamper-resistant primitives that can be integrated into attestation protocols to miti-
gate physical attacks. PUFs are based on the variations inherently present in different
hardware components of a computing device, such as memory. PUFs can be used for
device identification and authentication, or as a seed for random number generation.
Uniqueness of components, upon which PUFs are constructed, comes from variations in
the manufacturing processes, which are assumed not to be controllable by the adversary
ADYV, and thus are not cloneable. Therefore, an on-board PUF can thwart a physical
attack that aims to clone a compromised device. Also, since components used for PUFs,

163

164

SECURITY SERVICE: REMOTE ATTESTATION

such as on-chip Static Random Access Memory (SRAM), are anyhow part of the device
(regardless of their use as PUFs) additional costs of PUFs are minimal. Several approaches
to PUF-based attestation have been proposed [348, 230]. However, all PUF-based attesta-
tion schemes impose additional requirements on the device. Furthermore, recent work
on PUF security demonstrated that conjectured security of certain PUF families, such
as Arbiter PUFs, does not hold in practice [261], specifically, their unpredictability and
uncloneability properties.

Double Verification. Assuming that the adversary ADV can compromise and control
only a single device of the entire swarm double verification secures SEDA’s attestation and
aggregation. With double verification the integrity of each device D; has to be validated
by two other devices. In particular, the parent device verifies D;’s integrity (as in the
standard SEDA scheme), and additionally, the grandparent in the spanning tree will
verify D;’s integrity. This idea was also used by Jadia and Mathuria [211] with the goal
to make hop-by-hop aggregation secure against single compromised nodes.

For double verification, SEDA’s join protocol is extended such that each device D;
shares a symmetric key k; with every direct neighbor (one-hop) as well as every two-hop
neighbor. Hence, a single fully compromised device is unable to forge the attestation
responses of its child devices. This approach remains secure even if more than one device
is compromised as long as no two compromised devices are neighbors. However, the
double verification approach induces extra computation and communication cost.

Absence Detection. The core idea of absence detection is that the devices of the swarm
monitor each other with the goal to notice events that could indicate a physical attack.
Prior literature on WSN security introduced the assumption that ADV has to take a
device out of the swarm for a certain amount of time to perform a physical attack [104],
e.g., to disassemble the device in order to extract its secrets. Thus, the absence of a device
could indicate that this device is the target of a physical attack. There might be other
reasons why a device is absent from the swarm, e.g., a faulty device might become
inoperative. However, correct devices should never be absent, as SEDA assumes the
swarm to be always connected (cf. Section 6.2.1). Therefore, by periodically verifying
that a device is present an adversary ADYV cannot perform a physical attack without
being noticed, if the period for checking is shorter than the minimum time ADYV needs
to perform its attack.

For static swarms, each device D; can detect the presence of its neighbor devices D;
by running a periodic check, i. e., requesting a heartbeat signal from its neighbors Dj. If
no heartbeat signal is received from a device D; it is considered absent. Using SEDA’s
shared attestation keys the device can authenticate each other preventing ADV from
impersonating one device with another one. When D; detects that one of its neighbors
Dj; has disappeared the entire swarm is informed by broadcasting a message identifying
Dj as absent, and thus, potentially compromised device.

However, detecting absent devices in dynamic swarm is hard since the swarm’s
topology can change unpredictably, i. e., neighboring devices might disappear due to a
topology change. With knowledge about the minimal time ADV needs to disconnect a

6.2 SEDA: SCALABLE EMBEDDED DEVICE ATTESTATION

victim device from the swarm and a loosely synchronized clock among all devices of the
swarm SEDA can be extended in two ways to address this problem.>

The first option is to execute SEDA’s attestation periodically within the swarm, i.e.,
one of the swarm devices will be selected as initiator D1. The initiator is chosen determin-
istically by all devices, e.g., in a round-robin fashion. Absent devices are then detected by
using the previously described SEDA extension, which identifies devices that could not
be attested correctly. Attestation for non-responding devices is considered unsuccessful,
hence, all absent devices will be included in the accumulated report received by D1. The
result, i. e., the list of devices that could not be attested, will be announced by D1 to the
entire network.®

As a second option, all devices of the swarm can periodically announce their presence
to the network, by sending out an authenticated timestamp. The announcements are
broadcasted within the network, i. e., each device forwards previously unseen announce-
ments to its neighbors, leading to an unfavorable message complexity of O(s), s = [§]. All
devices maintain a list of received announcements and compare it against a master list
of all devices in the swarm. Devices that did not announce themselves are considered
absent, and thus, potentially compromised.

Implications. Absent detection requires knowledge about the swarm’s devices, i. e., which
devices are expected to be present. Thus, introducing new devices into the swarm requires
that all devices have to learn about the new device. The join protocol needs to be extended
to distribute the information about a new swarm member to all devices in the swarm.

6.2.8 Conclusion

In this section we presented SEDA, the first efficient attestation protocol for large groups
of connected devices, or swarms. SEDA facilitates the highly scalable attestation of
swarms with dynamic topology, consisting of heterogeneous devices. SEDA’s advantages
include: (1) reduction of the attestation protocol run time with (2) constant cost for the
verifier, and (3) low and uniformly distributed cost for the swarm’s devices. We showed
SEDA'’s feasibility for low-end embedded systems by implementing it on SMART [139]
and TrustLite [226], two security architectures for embedded devices.

We discussed different variants and extensions of SEDA, showing that it can be
used, e.g., to identify compromised devices in the swarm, can be transformed into a
probabilistic verification scheme, and can even be secured against strong adversaries
compromising individual swarm devices via physical attacks.

These approaches are discussed in more detail in our conference publication [34] and were further developed
in follow-up work DARPA [199].

In case the initiator device Dy is compromised the final announcement might be forged. To detect a
compromised initiator the heartbeat frequency must be at least double the minimum time assumed for a
physical attack. This ensures that a potential compromised initiator is detected by the previous or subsequent
round of self-attestation.

165

166

SECURITY SERVICE: REMOTE ATTESTATION

6.3 DIAT: DATA INTEGRITY ATTESTATION FOR RESILIENT
COLLABORATION OF AUTONOMOUS SYSTEMS

Embedded systems have been omnipresent for many years mostly performing simple
tasks in isolation. However, emerging applications such as Internet of Things (IoT) (e. g.,
smart cities/homes/factories) and autonomous systems (e. g., cars, drones, or robots)
require embedded systems to be highly connected and carry out autonomous as well as
collaborative tasks. In autonomous collaborative systems no central entity coordinates
actions of the individual (autonomous) devices. The involved devices interact with
each other and coordinate their actions by exchanging information, such as sensor data,
status information, and commands. The correct and secure functioning of an autonomous
collaborative system strongly relies on the integrity of the devices involved in its operation.
In particular, it must be ensured that exchanged data (sensor, commands, status) is correct
and has not been maliciously modified on the originating device before it is sent to another
device.

Remote Attestation (RA) is a powerful security service for verifying the integrity of
remote device’s software state. However, conventional RA solutions are either static or
not scalable, and therefore, they are not suitable for autonomous collaborative systems.

Static attestation approaches provide a proof that the software initially loaded by a
prover device is unmodified [346, 236, 139]. Control-flow attestation [3, 129, 416, 130], in
contrast, enables a verifier to detect run-time attacks, such as code reuse attacks [328].
However, the strong assumption on the verifier’s capability to distinguish correct and
incorrect control flows of the prover limits the applicability of control-flow attestation
for autonomous systems. Existing control-flow attestation solutions assume a powerful
verifier that has a complete, and therefore very large, database of all valid execution paths
that the verifier can quickly search to decide whether a reported execution path is valid.
This is, with regard to storage and computation cost, very expensive for autonomous
systems where each embedded device must be able to act as both verifier and prover.

Enforcement techniques for control-flow correctness, such as Control-Flow Integrity
(CFI) [1, 2], do not provide information about the executed control-flow path to collabo-
rating devices; they enforce static reaction policies, typically fail-stop, when a control-flow
deviation is detected [1]. In contrast, control-flow attestation enables the verifier device to
determine the appropriate reaction in case of an attack, i. e., allowing for more considered,
contextual reactions policies.

The other limitation of previous attestation solutions, in particular for control-flow
attestation schemes, lies in their limited scalability, i. e., they only allow the attestation of
individual devices [346, 236, 139, 3, 129, 416, 130]. This problem was first addressed by
SEDA (cf. Section 6.2). Following collective attestation schemes for networks of connected
devices extended SEDA for different scenarios and assumptions [16, 199]. However, these
schemes mainly assume a central verifier, which is not available in autonomous networks
where the verifiers are distributed. Furthermore, these existing collective attestation
schemes are not designed for control-flow attestation schemes.

63 DIAT: DATA INTEGRITY ATTESTATION

Goals and Contributions. The goal of this work is the design of the first efficient and
secure collective run-time attestation scheme for autonomous collaborative systems of
embedded devices. Our scheme, called DIAT, ensures on-device data integrity against
malicious manipulation. In the context of Data-Flow Integrity (DFI), the term data
integrity is used to describe that all operations on data and variables obey a program’s
Data-Flow Graph (DFG). In contrast, in this work we focus on data that has been explicitly
selected to be guarded and monitored. This data inherits its integrity guarantees from
the integrity of the software modules that processed it. We provide a more detailed
comparison to related work on data integrity in Section 6.4.

DIAT achieves efficiency by decomposing each device’s embedded software into small
interacting software modules and attest the control flow of those modules that are relevant
for data exchanged in a given interaction between devices of an autonomous system.”
DIAT’s control-flow attestation guarantees that the data is only processed following a
benign execution path, i. e., not altered maliciously.

In summary, DIAT provides end-to-end data integrity protection for collaborative
autonomous networks combining the following contributions:

* Data integrity attestation. DIAT enables secure device interaction by ensuring the
integrity of data shared between devices (e.g., sensor readings). This is done
by linking data with an attestation report reflecting the correct generation and
processing of the data (given our adversary model Section 6.3.1).

* Modular attestation. DIAT provides the design and implementation of modular
attestation: The prover devices’ software is decomposed into simple interacting
modules and only those modules that process data of interest are attested. Modular
decomposition reduces the attestation overhead for both, prover and verifier.

* Novel execution-path representation. DIAT’s compact execution-path representation

allows control-flow attestation of complex software programs with linear overhead.

* Implementation and evaluation. We demonstrate DIAT’s effectiveness and efficiency
with our implementation and evaluation of DIAT on collaborating autonomous
drones. Our proof-of-concept implementation is based on the widely used Pixhawk
PX4 flight controller [270].

6.3.1 Model and Assumptions

We consider collaborative autonomous systems, i. e., networks of connected entities (devices
D;, i €{1,...,n}) that interact with each other to perform one or more tasks. In such a

network, typically no central entity is needed to coordinate actions of individual devices.

However, a central entity may be used for maintenance reasons. The devices D; within
the network are mutually distrusting. Redundancy in the network allows the overall

7 For example, consider two drones that are interacting by exchanging their location information (e. g., GPS
coordinates). The software modules to be attested are those responsible for determining and possibly
processing (altering) a drone’s GPS coordinates.

167

168

SECURITY SERVICE: REMOTE ATTESTATION

——

Collaborative system @8 Device 1 Module <«> Communication link

Figure 36: Abstract view of a collaborative autonomous system.

system to tolerate the misbehavior of individual D; that can be due to faults or by
attacks on devices. Redundancy is achieved, for instance, when the network is formed of
homogeneous devices, so that one device D; can easily be replaced by another device D;
in the network. In this work, for brevity, we assume homogeneous networks. The focus of
this work is on how to detect the misbehavior of a device D in a collaborative autonomous
system. How to react to an infected D is a complementary problem and depends on the
underlying security policy.

Devices. Each individual D; is self-contained and autonomous and can perform basic
tasks by itself. Further, in order to coordinate their actions while performing more
complex tasks, D; exchange information, such as sensor data, status information, and
commands. The software stack of embedded devices is less complex than that of typical
desktop or server systems. However, this does not preclude devices with embedded
Operating Systems (OSs) that run multiple tasks in parallel. Figure 36 illustrates the
software model we assume in this work. Individual tasks or software modules M;(i €
{1,...,k}) of a device are strongly isolated from all other software components, including
OS and other privileged software, utilizing a lightweight embedded hardware security
architecture (see Section 6.3.6). The communication between software modules takes
place over a well-defined interface which allows tracking of data-flow between modules
M;. All modules’ software has to fulfill the requirements posed by the run-time attestation
scheme that is part of DIAT. Modules” code must be instrumented such that all control-
flow events are captured completely and correctly.® Our implementation on a popular
flight controller for drones shows that our assumptions are realistic for the class of
devices that DIAT is designed for.

Communication. Devices D; are connected through wireless network technology, such
as WiFi, Bluetooth or some custom solution, where each device D; can be uniquely
addressed. Communication does not need to be direct, i. e., devices D; could, for example,
form a meshed network to distribute messages.

DIAT can be combined with hardware-based run-time attestation solution, such as LiteHAX [130], removing
the requirement for code instrumentation.

63 DIAT: DATA INTEGRITY ATTESTATION

6.3.1.1 Adversary Model

We assume the adversary ADV has compromised and gained control over a subset of
devices in a collaborative system. ADV’s goal is to manipulate collaborative tasks by
sending manipulated data to other, un-compromised autonomous devices.

We assume a stealthy adversary that aims to undermine the correct behavior of
autonomous devices while evade detection. Therefore, Denial-of-Service (DoS) attacks,
e. g., jamming the network communication between devices or trying to destroy devices
(e.g., one device physically attacking/crashing into another device in case of drones or
vehicles), are out of the scope of this work.

As common in RA literature, we consider software-only attacks. However, unlike
conventional attestation schemes, we assume that ADV can manipulate code, e. g., while
stored on persistent storage, as well as launch run-time attacks. Run-time attacks can be
divided into: (1) control-data attacks, which introduce non-existing edges to a software’s
execution path that are not part of its Control-Flow Graph (CFG), e. g., Return-Oriented
Programming (ROP) attacks [328]; and (2) non-control data attacks. Non-control data
attacks can be split into two sub-classes. (2a) Attacks that do not add new edges but have
an observable effect on the control flow of execution, for instance an unexpected number
of loop iterations; and (2b) attacks that do not change a software’s executed control flow
at all, e. g., by changing of variables used in the generation of data. We excluded attacks
that do not change the control flow as they are subject to active research and no general
detection policy is known at the time of writing. If an appropriate policy is developed in
the future, DIAT can be adapted to utilize it to also cover such attacks.

Each device D; of the network is equipped with a lightweight hardware security archi-
tecture, which protects its Trusted Computing Base (TCB). The TCB includes the software
components responsible for control-flow monitoring and data-flow monitoring as well
as the security architecture’s trusted components, e. g., when using TYTAN the System-
on-Chip (SoC) hardware and TYTAN's security services. All other software, including
an optional OS, is assumed to be potentially compromised and therefore untrusted. The
hardware security architecture further ensures isolation between D’s software modules
M;. Hardware attacks are considered out of scope in this work. Embedded security
architectures are highly integrated into the SoC designs and not easily attacked [416].

We assume that D’s sensors and actuators are trusted and report benign readings and
perform actions as instructed.? This excludes false data injection attacks such as spoofed
GPS signals. However, the software and drivers controlling the sensors and actuators
might be controlled by ADV.

6.3.1.2 Objectives and Requirements

The main goal of DIAT is to enable efficient and secure interaction/collaboration of
embedded devices D; in an autonomous system. This concerns several objectives as
follows:

Misreading sensors and misbehavior of actuators due to faults are an orthogonal problem and can be
handled by fault tolerant designs.

169

170

SECURITY SERVICE: REMOTE ATTESTATION

O1 Code integrity on devices: Unintentional /malicious alternation of the code running on
a device D; can be detected.

O2 Data integrity on devices: Unintentional /malicious alternation of the data on a device
D; (before being sent out to other devices Dj) can be detected. This means data can
only be modified in a non-malicious way. This is necessary because D; do not only
exchange raw data, such as sensor readings; most data are processed before sent out.
For instance, when sending position information, the receiver expects coordinates
instead of a set of timestamps sent out by the GPS satellites and received by the GPS
driver module Mgps.

O3 Data integrity and authenticity during transportation: Malicious alternation of the data
when traversing from one device D; to another device D; must be detected.

Attestation schemes are used to ensure the code and data integrity on devices Dj,
i.e., any manipulation can be detected by the verifying device. To capture the run-time
behavior of the code, DIAT adopts the idea of control-flow attestation [3]. However, in
the context of autonomous embedded systems the attestation scheme must have the
following properties:

P1 Attestation efficiency: Attestation is applied only to the critical code, i. e., those modules
Mc(c € {1,...,1}) that process data of interest. Attesting the entire software on a
device D; would also allow making statements about the correctness of the data
being processed. However, this naive approach induces a huge overhead as the code
responsible for the processing of a specific piece of data is usually only a small subset
of the entire software stack.

P2 Attestation latency: The attestation should not cause delays beyond the bounds defined
by the autonomous system’s functional requirements. More concretely, the generation
of an attestation report on the prover side must not delay the sending of data, while
the verification on the verifier side must not delay the processing/usage of the
received data.

To meet the above-mentioned objectives, each device D; must fulfill the following re-
quirements:

D-R1 Isolation architecture: The software modules/components M;(i € {1,...,k}) are
isolated from each other. Additionally, functional modules are isolated from priv-
ileged software components. Therefore, the (optional) OS is not part of DIAT’s
TCB.

D-R2 Data-flow monitoring: Software components/modules M (c € {1,...,1}) that access
the data of interest ds can be identified.

D-R3 Control-flow monitoring: The control flow of individual modules M; must be cap-
tured when required.

63 DIAT: DATA INTEGRITY ATTESTATION

Obstacle] t,
P 4 v A
. 4
/—\ _ /\ , |
/—\ _- /\ , 4 |
/ d Cd - ’ 4 I
PRe 7/ |
-7 ,7]
- 7 |

Figure 37: Example of collaborative drones. Each drone is an independent device D;. Drones D
and D; coordinate their actions to avoid the obstacle without colliding.

D-R4 Device key: Each device D; is equipped with a platform key-pair (ski/pk;). D’s
secret key sk and other cryptographic parameters are protected by the hardware
security architecture. It is exclusively accessible by D’s TCB. Hence, the adversary
ADV cannot forge the attestation reports generated by D’s TCB or extract D’s
secret keys sk.

D-R5 Attestor: In a Remote Attestation (RA) protocol, the component(s) involved in
measuring, attesting, and verifying a system’s state are protected as part of the
TCB.

Examples of lightweight security architecture that provide run-time isolation, secure
storage, and secure boot (integrity) in order to protect DIAT’s TCB have been developed
by academia (e. g., TrustLite [226] and our real-time capable security architecture TYTAN
described in Section 3.1) as well as industry (e. g., ARM TrustZone-M [30]). We discuss
how these solutions can be adopted by DIAT in Section 6.3.6.

The following requirements are imposed on the communication between the individual
devices Dj:

C-R1 Secure channel: The integrity and authenticity of data d sent over the network
between the devices must be ensured. To enable the establishment of a secure
channel each device must be equipped with a platform key-pair.

C-R2 Infrastructure: A Public Key Infrastructure (PKI) must be in place.

Use-case Example. We will now introduce an example use case of autonomous systems
to illustrate our concept, which is simplified for the sake of clear illustration. The principle
remains valid also for larger and more complex systems.

Consider a set of autonomously flying drones that collaborate to perform a distributed
ground search, e.g., as part of a search and rescue mission. Each drone has a set of
sensors, for instance cameras, which allow it to monitor a certain area at a time. In order

171

172

SECURITY SERVICE: REMOTE ATTESTATION

to cover more ground in a short time frame, multiple drones fly in formation. When
the drones operate in close proximity, they have to coordinate with each other to avoid
collisions. Figure 37 shows a scenario where a drone has to evade an obstacle.

The three drones (D7, D, and D3) are flying in line abreast. Each drone is an au-
tonomous entity that can operate on its own. In particular, each drone is equipped with
sensors that enable it to position itself (e. g., GPS), measure its movement (accelerometer,
gyroscope, etc.), and sense its environment (e. g., via ultrasonic, infrared, Lidar). Note
that those sensors are common in Commercial Off-The-Shelf (COTS) systems and even
customer grade drones are equipped with such sensors. Finally, the drones are wirelessly
connected to each other and can coordinate their actions.

During the drones” mission, D7 detects an obstacle through a front-facing distance
sensor. D1 has three options for reacting to this situation: (1) it could abort its mission,
i.e., stop or fly back; or it could circumnavigate by either (2) moving to the left, or
(3) to the right. Dy by itself does not have sufficient information to be able to decide in
which direction to move, as the obstacle could expand in both directions. By exchanging
information with other drones D can learn that no obstacle has been detected in front of
D,. As a consequence, D decides to evade the obstacle by moving to the right. Albeit
this would prevent D¢ from colliding with the obstacle it would lead to a collision with
D;. Note that, Dy is also aware of D;’s position through position sharing among the
drones. Therefore, in order to avoid collision, D1 has to coordinate with D;. In particular,
D requests D, to move to the right, as well, in order to make space for Dj.

The result of the interaction between D7 and D; is shown in Figure 37. The gray drones
show their positions after they have coordinated their actions, where all three drones can
pass by the obstacle safely.

6.3.2 DIAT Design

The core idea of DIAT is to enable autonomous devices D; to trust the information they
need to exchange in order to perform collaborative tasks within a network. This is done
by means of a remote run-time attestation scheme that allows devices D; to provide an
authentic integrity proof of the data they exchange. Whenever information is exchanged,
the sender Ds augments the data with a proof that this data has been generated and
processed correctly. The receiver Dy can then verify this integrity proof, and thus, gain
trust in the correctness of the received data.

Static (binary) attestation allows the verifier VRJ to detect manipulations of the static
code and data, e.g., due to a malware infection. However, static attestation cannot
capture the run-time behavior of the code, and hence, cannot detect run-time attacks
that leverage state-of-the-art code-reuse techniques, such as ROP [328]. To detect this
class of attacks, previous works have taken the first steps towards run-time attestation
schemes by means of control-flow attestation that records the execution path of the code
running on the prover [3, 129]. Unfortunately, control-flow attestation schemes pose a
significant overhead on both the prover PRV and the verifier VRF making it impractical
for resource-constrained embedded systems. DIAT significantly reduces the overhead of

63 DIAT: DATA INTEGRITY ATTESTATION

control-flow attestation and makes it applicable to collaborative systems of embedded
devices.

6.3.2.1 Challenges

The main challenge of DIAT is to enable secure and efficient data integrity and control-
flow attestation. Efficiency plays an important role given that collaborating devices are
resource constrained embedded devices that must act simultaneously as both verifier
and prover. As mentioned before, run-time attestation incurs significant overhead on the
involved entities since: (a) as provers they need to continuously monitor the execution of
their software, and (b) as verifiers, they need to know the benign execution paths and
verify them at run-time.

The main contributions of DIAT tackle these challenges, enabling control-flow attesta-
tion for autonomous systems. In particular, (1) DIAT minimizes the size of the code to be
attested using modular attestation, (2) it minimizes the attestation duration using data-flow
monitoring, and (3) it compresses attestation reports using Multiset Hash (MSH) functions
to represent execution path compactly.

6.3.2.2 Architecture

Figure 38 shows the abstract view of a device D using DIAT. To enable data integrity
attestation, all modules M¢(c € {1,...,1}) that process data of interest, i. e., sensitive data
ds, are attested while they are processing ds. This reduces (1) the code to be attested
to only those modules M. that process ds, and (2) the attestation time, i.e., modules
M, are only attested during the time frame in which they are processing the data. As
shown in Figure 38, the data-flow monitor DFMonitor traces the flow of data within
D; and activates attestation for each module M. that processes the data of interest. In
Figure 38, data flows first from the sensor that created the data initially into module
M1, further into module M; and finally into module M5 from where it is sent out.
DFMonitor traces this flow of data and activates the control-flow monitor CFMonitor for
the corresponding modules M. (shown by the closed switches between CFMonitor and
DFMonitor for the involved modules). We refer to data of interest as sensitive data ds and
to software modules involved in the processing of sensitive data as critical tasks or critical
modules M (c € {1,...,1}) C M;(1 € {1,...,k}), which is a subset of all modules M; of a
device Dj.

The decision which data should be considered sensitive is application-dependent. In
the scenario considered in this work (cf. Section 6.3.1) the location information exchanged
between devices D; is sensitive. However, for different operations or functionalities other
data must be considered sensitive. This means it is not possible to determine a priori
which modules M; are critical modules M, hence, the identification of critical modules
must be done dynamically at run time.

The control-flow information of critical modules M, is recorded using an MSH function
that captures the number of executions for every branch taken at run time. The details of
our control-flow recording scheme are presented in our conference publication [4]. Using
this execution path representation, the verifier learns, for instance, how many times a

173

174

SECURITY SERVICE: REMOTE ATTESTATION

(Entity A
— Module M;] ———Module M, Module M; Module M, Module M;
Control-flow Control-flow
monitor monitor monitor

M

Q .

= Data-flow monitor

Isolation Comm.
H .

_ J

O Basic block — Control flow =» Data flow

Figure 38: DIAT system architecture. Closed switches symbolize activation of control-flow moni-
toring. Data read from a sensor are passed through modules My, M, and M5 as shown
by the double-lined arrows. For those modules, the control-flow monitoring is activated
while modules M3 and M4 are not monitored (symbolized by the open switches).

loop has been iterated through. This enables the detection of some classes of data-only
attacks, e. g., those which increase the number of iterations of a loop (see Section 6.3.5).
However, unlike previous control-flow attestation schemes [3], the verification overhead
is significantly reduced, as the verifier VRJ does not need to maintain and search a
database, which includes all valid execution paths of software modules M;. Subsequently,
we explain each of our three building blocks in detail: (1) modular attestation, (2) data-
flow monitoring, and (3) execution path representation.

Modular Attestation. The software on each D; is decomposed into multiple small inter-
acting software modules M; (i € {1,...,k}) or tasks. Modular attestation is enabled by
the fact that these M; are isolated, i. e., the control-flow path recorded for a module M;
does indeed represent the behavior of M; and independent of all other modules Mj. The
module isolation is enforced by the underlying hardware security architecture, such as
TYTAN [62] (cf. Section 3.1). We discuss DIAT’s requirements on the hardware security
architecture and possible instances of such architectures in Section 6.3.6. The isolation
ensures that a module Mi’s memory content as well as its execution cannot be influenced
by other modules M; (i # j) or privileged software such as the OS.

DIAT does not impose strict requirements on the granularity of the software’s modu-
larization. Modules M are identified and delimitated using static analysis based on both,
data and control-flow dependencies. DIAT does not require programmer’s assistance

63 DIAT: DATA INTEGRITY ATTESTATION

such as code annotations. Non-optimal module’s, i. e., modules that could be further
partitioned into sub-modules, lead to a decreased performance of DIAT, however DIAT’s
security is not affected. Many avionic and automotive systems (including flight con-
trollers for drones) already have modular designs [270], which is highly important for
these systems to be able to fulfill their safety requirements. Modular software design
is a well-investigated topic in software engineering [14, 178, 13]. The cost of modular
transformation is highly application dependent and may not be formulated in general
statements. DIAT targets complex software with a modular design. For instance, the PX4
Autopilot software used in our DIAT prototype implementation (cf. Section 6.3.3) has
such a modular software design where all modules communicate through a well-defined
messaging system. Hence, no additional effort was required to transform the software
in order to use DIAT. Small embedded software, e.g., controllers for sensors, may be
monolithic. However, they are not the focus of DIAT.

Data-Flow Monitoring. Identifying the modules M; involved in generating particular
data is accomplished via coarse-grained data-flow monitoring. As modules M; are
isolated, they cannot directly communicate with each other (e.g., by accessing each
other’s memory). Communication occurs through a well-defined interface controlled
and monitored by a component referred to as DFMonitor. This enables DIAT to trace the
data-flow between modules M; and identify critical modules M. for particular sensitive
data ds dynamically at run time. Services for communication between tasks or modules
M; are common in most system architectures. Therefore, DIAT does not incur a system
redesign. The communication service is just slightly extended to trace the flow of data.
DFMonitor is described in more detail in Section 6.3.3.

Execution Path Representation. Existing control-flow attestation schemes [3, 129] induce
a high overhead on the verifier, because the verifier must store and repeatedly search a
very large database of all possible execution paths. The size of this database grows expo-
nentially with the number of control-flow events in the code. To tackle this problem, we
designed a novel execution path representation that is based on MSH functions [101]. Our
representation provides an under-approximation of executed paths, i. e., the execution
path cannot precisely be reconstructed on by the verifier. Nevertheless, the information
contained in it is sufficient to detect all control-flow deviations, i. e., detect if a control-
flow edge was executed that is not contained in the CFG. Furthermore, Data-oriented
Programming (DOP) attacks that lead to the execution of valid but unexpected control-
flow edges (e. g., number of loop iterations does not match the verifier’s expectations) can
be detected. We elaborate on DIAT’s capabilities to detect DOP attacks in Section 6.3.5.
Ultimately the verification policy applied by the verifier determines which attacks will be
detected.

Summary. DIAT provides integrity guarantees for sensitive data ds by linking exchanged
data with a run-time attestation report of all software modules M. that processed ds.
For all sensitive data dg ; DIAT identifies and monitors all software components M, that
process a particular piece of sensitive data after it is initially received, e. g., from a sensor
(sensor inputs are considered benign). If all modules M, that accessed a piece of data
ds; processed it only in benign ways, the integrity of ds; is preserved. Unauthorized

175

176

SECURITY SERVICE: REMOTE ATTESTATION

data modifications, i. e., by non-monitored software components or external entities, are
prevented by module isolation and secure channels.

6.3.3 Implementation

We implemented DIAT for our use case of autonomously drones that collaboratively
perform a distributed search, as describe in Section 6.3.1.2. The drones are controlled by
an embedded system hardware platform, called PixHawk: an open-source flight controller
used in many commercial drones. It is based on an ARM processor.

The PixHawk platform supports different autopilot software implementations.’® We
used the autopilot software maintained by the developers of PixHawk, called PX4, which is
widely used in academic and industrial projects and is designed for resource-constrained
autonomous aircrafts.

Our DIAT implementation leverages the software design of PX4 that consists of
two layers, the flight stack and the middleware. The flight stack is designed as a set of
software modules Mg, providing the functionalities needed to control the aircraft. The
middleware supports and composes the flight stack’s software modules Mg, e.g., by
providing communication capabilities between modules and to external entities.

PX4 was extended with two main components, a data-flow monitor DFMonitor and a
control-flow monitor CFMonitor.

DFMonitor. In PX4 all communication between software modules M; is handled by a
message broker. We extended the message broker to keep track of the data-flow of
sensitive data ds between modules M;. DFMonitor is responsible for enabling the control-
flow monitoring for software modules M. whenever they process sensitive data d.

CFMonitor. For each software module M; the control-flow can be tracked by DIAT. We
instrumented all branch instructions of PX4 software modules, such that each branch
taken can be recorded by the CFMonitor — when monitoring is active for a module
M;. When active CFMonitor records all taken (indirect) branches of a module Mj in an
MSH-value.

Before sensitive data ds is send to the verifier VRF d is extended with the MSH-
values of all modules M¢(c € {1,...,1}) that processed it. The resulting message, i.e., d
including its integrity report that contains MSH(M7), ..., MSH(My), is authenticated and
integrity protected using a digital signature.

A detailed description of our DIAT implementation, elaborating on all technical
challenges we tackled, is provided in our conference publication [4].

6.3.4 Performance Evaluation

We evaluated DIAT based on our implementation outlined in Section 6.3.3. The indi-
vidual aspects of DIAT were evaluated separately, i.e., the performance of MSH and
the attestation cost per software module. Additionally, we evaluated the characteristics

10 An autopilot is a software that is responsible for controlling an aircraft and keeping it stable.

11

63 DIAT: DATA INTEGRITY ATTESTATION

of DIAT in our use-case scenario (cf. Section 6.3.1.2) and simulated large networks of
collaborating devices to show DIAT’s performance for different network typologies.

Our evaluation shows that DIAT can significantly reduce the size and complexity
of control-flow attestation between devices. It can reduce the amount of software com-
ponents that need to be recorded and attested in our use-case scenario by 95 %. The
MSH representation of the control-flow information, additionally, reduces the attestation
report’s size, making it linear in the size of edges in the software’s CFG. Compared to
the attestation reports of previous control-flow attestation schemes [3, 129] this amounts
to a reduction in size of approximately 98 %.

A detailed discussion of DIAT’s performance evaluation as well as our measurements
are provided in our conference publication [4].

6.3.5 Security Analysis

DIAT ensures the integrity of data exchanged in a collaborative autonomous system.
In this section, we will show that DIAT fulfills all security requirements identified in
Section 6.3.1.2. An adversary aiming to violate DIAT’s security guarantees can manipulate
sensitive data in three different phases: (1) while the data is generated or initially sensed
by the platform’s hardware, (2) while the data is processed on the platform, and (3) when
the data is transferred to the verifier.

6.3.5.1 Off-Device Security

DIAT relies on the correctness of the initial data d, spurious sensor data constitute an
orthogonal problem. While sensitive data ds is transferred to the verifier VRF, d is
protected by cryptographic means, i.e., ds is digitally signed using a key only accessible
to the prover PRV’s TCB. Hence, the adversary ADV cannot manipulate d; without being
detected as ADV cannot generate a valid signature for altered ds. This means that DIAT
fulfills the security requirement for data integrity and authentication during transportation,
as identified in Section 6.3.1.2.

6.3.5.2 On-Device Security

To ensure data integrity on the platform itself, DIAT has to counter a number of attack
vectors and strategies. ADYV can target (1) DFMonitor or CFMonitor, (2) a module M; that
is not processing sensitive data ds, and (3) a module M, that is processing ds.** (4) The
adversary can aim to exploit dynamic data dependencies and try to inject “untrusted”
data into the processing of sensitive data ds.

Control-flow and Data-flow Monitor. CFMonitor and DFMonitor constitute DIAT’s TCB,
which is assumed to be immune to attacks, as described in Section 6.3.1.1. DIAT’s platform
security architecture (Section 6.3.6) ensures the isolation of CFMonitor and DFMonitor as
well as their initial integrity by means of secure boot.

For sake of clarity we concentrate on an adversary targeting a single module, extending the security
arguments to multiple modules is straight forward.

177

178

SECURITY SERVICE: REMOTE ATTESTATION

Non-critical Modules. Software modules M; that are not relevant for the integrity of
sensitive data ds are, by definition, non-critical modules. Therefore, any compromise
of a non-critical module does not give ADV any advantage towards compromising the
integrity of ds.

Critical Modules. Software modules M, that can influence the integrity of ds are consid-
ered critical modules. They can be subjected to a number of attacks:

Code Integrity. ADV can manipulate the code of M, either before the module is loaded or
at run time. Manipulation of M. before load-time is detected by static attestation that is
performed for every module when it is loaded. At run time, M.’s code is protected by
the isolation that is enforced by the used security architecture. Therefore, ADV can only
manipulate the code from within M, i. e., by techniques such as code injection. However,
these attacks are prevented by Data Execution Prevention (DEP), which eliminates the
possibility to insert new code as well as the option to alter or overwrite existing code.
Hence, the code integrity of DIAT’s modules is ensured and the requirement for code
integrity on device is fulfilled.

Module Data Integrity. The integrity of a module M;’s data is crucial for the correct
operation of Mj, i.e., that M; is processing sensitive input data ds correctly.

Different types of run-time attacks modify different data and have different effects on
the control flow as described in Section 6.3.1.1. Control-data attacks, such as ROP [328],
directly influence the control flow of a module’s code and introduce new control-flow
edges in the executed control-flow path. DIAT’s CFMonitor captures all control-flow
transitions executed in all M¢(c € {1,...,1}) while processing sensitive data ds. This
information is provided to VRJ that can easily check whether all executed transitions —
independent of the order in which they were executed — are legitimate, by checking if
they are contained in M.’s CFG.

Non-control data attacks do not introduce control-flow edges outside of the CFG in a
module’s execution path. The class of non-control-data attacks can be divided into two
sub-classes, (a) attacks that influence a module’s execution path [98, 196], and (b) attacks
that leave the execution path completely unchanged.

Existing DOP attacks, which fall into the first sub-class, are often target-specific and aim
to achieve the execution of program functionality that is restricted, i. e., functionality that
should not be available in the given execution context [98]. DIAT can detect these types of
attacks, given sufficient context information on the verifier side. In particular, DIAT’s MSH
representation does reveal to VRJ whether a restricted control-flow path was executed in
a module M.. More general are DOP attacks that provide the adversary full control over a
target program’s operation, i. e., DOP attacks achieving Turing-completeness [196]. These
attacks combine multiple instruction sequences, called data-oriented gadgets, which
are chained together using a dispatcher gadget. The dispatcher gadget is a loop (or
loop-like construction) that has to be iterated through repetitively. This unexpected count
of iterations can be detected by VRTF in DIAT’s control-flow report, despite the loss of
order information due to its constant size MSH representation.

DOP attacks from the second sub-class neither execute an unexpected path in M.’s
CFG nor execute transitions (e. g., of loops) atypically often. These types of attacks, e. g.,

63 DIAT: DATA INTEGRITY ATTESTATION

attacks that modify the values of variables that are used in calculations, are currently
not detectable with DIAT. In general, Data-oriented Programming attacks are subject to
active research and no generic detection policy for these attacks existed at the time of
this work’s writing. However, DIAT can be adapted and extended with new detection
policies on the verifier side when they are developed in the future.

Data Dependencies. The integrity of sensitive data ds is dependent on the operation
applied to it, i.e., the correct operation of the modules M.(c € {1,...,1}) processing
it, as well as other data involved in its processing. An adversary ADV could aim at
manipulating data that is eventually integrated into ds. In general, DIAT uses dynamic
control-flow tracing to determine which modules M; provide input to the processing of
ds and considers those input data d; sensitive as well.

In particular, if some module M. processes sensitive data ds and receives or requests in-
put data dj, this input is considered sensitive. Therefore, other modules M;(j € {1, ..., 0})
providing such input data d; have to be monitored as well. If M; produce the input
data d; “on-demand”, their monitoring can be activated before the sensitive data d; is
produced, i.e., the integrity of d; can be verified. However, for data dy that has been
produced at an earlier point in time no information about the correct creation of d, is
available. DIAT addresses this problem by ensuring that all inputs dy, for generating d
are generated on-demand, i. e., DIAT provides transitive verifiable data generation and
processing.

In our prototype implementation, modules My, that produce data on-demand would
publish their results for use by other modules M;. In case that a critical module M,
requires such data, the buffer of already published results is flushed, afterwards the
producing module My, is monitored while it is generating new data dy,. The M. can
then use the new results dy,, which were generated while the producing module M}, was
monitored, i. e., the correctness of results is verifiable.

DIAT’s transitive verifiability of data integrity fulfills the requirement for data integrity
on device (cf. Section 6.3.1.2).

6.3.6 Discussion

DIAT’s relies on a platform security architecture providing (1) secure storage, (2) support
for secure boot, (3) isolation of software modules, and (4) secure Inter-Process Commu-
nication (IPC). These requirements are rather general and can be fulfilled by different
security architectures. In this section, we detail on two security architectures and show
that they fulfill DIAT’s requirements. First, we discuss TYTAN, our security architec-
ture for embedded real-time systems introduced in Section 3.1. Secondly, we show that
TrustZone-M [30], an industry solution that is available in COTS devices, fulfills DIAT’s
requirements, as well.

6.3.6.1 TYyTAN

Our security architecture TYTAN is described in detail in Section 3.1.
TyTAN fulfills DIAT’s requirements on the security architecture as follows:

179

180

SECURITY SERVICE: REMOTE ATTESTATION

e Secure storage: TYTAN provides a security service known as sealing, which allows
secure storage of data.

 Secure boot: TYTAN provides secure boot as part of its architecture.

e Software module isolation: Providing isolation of software modules is a main objective
of TYTAN, it utilizes an Execution-Aware Memory Protection Unit (EA-MPU) to
implement the isolation.

* Secure IPC: TYTAN provides a mechanism for secure IPC.

TyTAN Performance. TYTAN imposes minimal overhead on a system’s performance,
as we showed in our evaluation in Section 3.1.6. We evaluated TYTAN's overhead with
regard to different system tasks, in particular, creating a secure task, measuring a task,
and saving and restoring the context of a task. TYTAN incurs overhead when creating a
new task, however, when the system is running, the only overhead of TYTAN originates
from the secure context switch between isolated modules. Our evaluation shows that the
overhead for secure context switches is minimal, i.e., one additional jump instruction
plus erasing the module’s content from the Central Processing Unit (CPU) registers.

6.3.6.2 TrustZone-M

The Armv8-M Security Extensions provide a security architecture commonly referred
to as TrustZone-M [30]. It provides similar functionalities as the original TrustZone,
i.e., partitioning a platform into two logical sub-systems — one for legacy software and
a second sub-system for security critical functionalities (cf. Section 2.3.1). The postfix
M — for Microcontroller — designates the target platform: processors from ARM'’s series
of processors designed for deeply embedded systems, named Cortex-M. TrustZone-M is
available starting from the 8-th generation of ARM Cortex-M processors Armv8-M.

With TrustZone, the SoC is divided in two worlds, called secure state or non-secure state
in the context of TrustZone-M. System resources, e. g., memory sections, can be assigned
to these worlds; the secure state has exclusive access to resources assigned to it.

TrustZone-M-enabled processors, additionally, distinguish two privilege levels, avail-
able in both, secure state and in non-secure state. The unprivileged thread mode runs
application code. The privileged handler mode is responsible for exception handling and
resource management.

The system always starts in secure state; hence, the secure state software has control
over the platform before non-secure software is loaded. This enables it to setup pro-
tection mechanism, for instance configuring memory partitioning, before non-secure
software gets executed. To isolate the internal state of the secure and non-secure software,
TrustZone-M provides mechanism such as register and exception banking.

* Secure storage: From the platform key storage encryption keys for each software
module can be derived and made only accessible to the corresponding software
modules (e. g., per secure IPC). The platform key is only accessible to the trusted
secure state (i.e., TCB). This enables software modules to securely store data.

63 DIAT: DATA INTEGRITY ATTESTATION

* Secure boot: TrustZone-M provides secure boot for the secure state software, i.e.,
ensuring its initial integrity. The platform starts in the secure state; thus, the secure
state software cannot be manipulated by non-secure state software initially. Before
non-secure state software is loaded the isolation mechanism can be enabled to
preserve the secure state software’s integrity.

* Software module isolation: Isolation for software modules can be enforced by config-
uring the memory access control policy (stored in and enforced by the Memory
Protection Unit (MPU)). To enable isolation between different software modules
a small trusted management software, which it protected in the secure state, can
update the access control policy on every context switch, similar to a typical OS
enforcing process isolation.

* Secure IPC: Secure communication can be realized in two ways. (1) Shared secure
memory between software modules can be configured by a small trusted man-
agement software, similar to the configuration of memory isolation for software
modules (see above). (2) DIAT’s DFMonitor, which is part of the TCB, can act as a
secure IPC broker.

6.3.7 Conclusion

In this section we presented DIAT, a novel attestation approach that shifts focus from
device integrity to data integrity. DIAT enables efficient run-time attestation and thus
enables the mutual attestation of resource constrained embedded devices, in scenarios
where devices need to act as both, prover and verifier. This is achieved by combining
three new building blocks: (1) data integrity attestation, (2) modular attestation, and
(3) MSH-based representation of execution paths. By composing these building blocks,
DIAT allows the detection of compromised data shared between collaborating devices,
which is highly relevant to enable reliable cooperation of devices. We demonstrated
DIAT’s applicability for a real-world use case for collaborative drones. We implemented
and evaluated DIAT on a state-of-the-art flight controller for drones, i. e., an embedded
system with strict real-time requirements, and demonstrated its applicability for these
types of systems.

181

182

SECURITY SERVICE: REMOTE ATTESTATION

6.4 RELATED WORK

Remote Attestation (RA) is a security service that has been extensively studied in the
past, which led to a large variety of solutions that are related to the solutions presented
in this work. Integrity enforcement is an alternative approach investigated in literature
(cf. Section 6.4.2).

6.4.1 Attestation

The goal of RA is to ensure the integrity of a remote device, or in the case of collective
attestation to verify the integrity of a set of devices. Depending on the information
collected and integrated into an attestation report, the verifier can verify a device’s
integrity with respect to different types of attacks. Static attestation allows the verifier
to detect manipulation of a device’s static memory content, in particular its program
code. Run-time attestation provides the verifier information about a device’s run-time
behavior.

6.4.1.1 Static Attestation

The concept of static attestation allows a verifier to verify the software configuration of a
prover system, i. e., the load-time software configuration of a platform or its components,
based on a status report generated in an authentic and integer way on the prover device.
Existing approaches can be divided into three categories based on the mechanisms
and components used for authenticating attestation reports, discussed individually
below. Software-based attestation does not use cryptographic secrets to authenticate
attestation report, in secure hardware-based approaches the authentication secret is
managed by dedicated hardware modules, and in hybrid approaches hardware-protected,
trusted software has access to the prover’s authentication secret and is responsible for
authenticating attestation reports.

All solutions that describe verifier authentication [65] and were presented before our
work have in common that a malicious verifier is not considered. Following works devel-
oped new approaches to tackle this problem, e. g., by using non-interactive attestation
schemes [200, 83, 86].

Software-Based Attestation. Many software-based attestation techniques have been
proposed in the past. One early example is Pioneer [343]. It computes a checksum of
a prover device’s memory using a function with side-effects in its computation, e.g.,
including status registers in the calculation, such that any emulation of this function incurs
an additional timing overhead (delay) that is sufficient to detect manipulations. Also,
Kennell and Jamieson [217] as well as Gardner et al. [153] rely on architectural side effects
to ensure the integrity of the measurement method. Attestation that relies on time-based
checksums has also been adapted to embedded devices in [344, 342, 221, 243, 244, 346].
However, some basic assumptions that underlie these techniques are uncertain [349]

6.4 RELATED WORK

and several attacks'® on software-based attestation schemes have been demonstrated,
e.g., Castelluccia et al. [88], Kovah et al. [236].

In general, all current software-only techniques rely on strong assumptions about
adversarial capabilities, such as the adversary being passive while the attestation pro-
tocol is executed and optimality of the attestation algorithm and its implementation.
While applicable to very specific settings, e. g., attestation of computer peripherals, this
general approach is not viable for attestation performed over a network as the required
preconditions are hard to achieve in practice [32]. Gligor and Woo [165] aim to over-
come the constrains of previous software-based attestation approaches. They formalize
software-based attestation for an abstract computer model ((WRAM — Word Random
Access Machine) and show that in this model an optimal measurement function can be
constructed. While they show that an adversary limited to the resources of the prover
device, which complies to the cWRAM model, cannot manipulate the measurement
without increasing the execution time, the authenticity of the prover device cannot be
guaranteed limiting this approach to local verification settings. Gligor [164] shows how
to maintain trust in a system using software-based attestation [165].

Secure Hardware-based Attestation. Trusted Platform Modules (TPMs) [382] are present
in many modern commercial systems, from servers to laptops. A TPM can store an
integrity checksum computed over the memory at boot time in protected memory called
Platform Configuration Registers (PCRs). The stored checksum can be sent to a remote
verifier for validation. TPMs can also protect data against a compromised Operating
System (OS), e. g., protect encryption keys from misuse. The Root of Trust (RoT) is the
TPM plus the Basic Input Output System (BIOS) that performs the first measurement of
software upon boot. Several concrete architectures have been proposed that rely on a
TPM as a foundation [307, 221].

Datta et al. [121] present a logic for secure systems. They use it to describe attestation
protocols standardized by the Trusted Computing Group (TCG), without providing a
definition of attestation [121] and relying on the presence of a secure TPM device.

Dynamic Root of Trust for Measurement (DRTM) is an extended mechanism added to
the TPM specifications in version 1.2 [382]. It has been implemented by major vendors,
e.g., Intel Trusted Execution Technology (TXT) [204] and AMD Secure Virtual Machine
(SVM) [9]. Basically, Dynamic RoT is a way to perform attestation dynamically, i.e.,
after boot. This is accomplished by allowing a specific Central Processing Unit (CPU)
instruction to reset the state of some PCR, isolate a memory region, hash and atomically
execute its content. Flicker [264] is an architecture that establishes DRTM on commodity
computers. It takes advantage of Intel TXT and AMD SVM by executing a piece of
application logic (PAL) on the prover. This architecture was extended by TrustVisor [266].
It provides a dynamic root of trust for PALs using a minimal hypervisor. TrustVisor
significantly improves performance of the DRTM primitive. There are several other
proposals that deal with establishment of trust on remote systems [217, 301, 265, 413].
Underlying platforms range from Web servers to embedded systems.

12 For example, vulnerabilities to Time-Of-Check-Time-Of-Use (TOCTOU) attacks identified by Kovah et al.

[236].

183

184

SECURITY SERVICE: REMOTE ATTESTATION

Hybrid Techniques. SPM is a hardware-based mechanism for process isolation [368]. It
relies on a special vault module, bootstrapped from a static RoT. This vault bootstraps
SPM-protected programs, which gain exclusive control over the protection of their own
memory sections. Another proposal from 2011 is SMART [139] — a hardware/software-
co-design-based scheme for establishing a dynamic RoT in embedded devices. Its focus
is on low-end Microcontroller Units (MCUs) that lack sophisticated features, such as
specialized memory management or TPMs. SMART requires no additional hardware —
only a few small changes to the MCUs. SPM and SMART share some key features, such
as the use of program counters to restrict access to secret key storage, and code entry
point enforcement. However, unlike SMART, SPM does not provide a dynamic RoT. It
also involves a larger Trusted Computing Base (TCB) and is generally oriented towards
higher-end embedded systems with a Memory Management Unit (MMU) or a Memory
Protection Unit (MPU). Furthermore, SPM requires the addition of custom instructions
to the core.

A refinement of SMART was presented in [147], where more precise specification of
minimal architectural features needed to support attestation were derived.

Another follow-on is the TrustLite architecture for embedded systems [226]. It enables
running arbitrary code, called trustlets, isolated from the rest of the system. An Execution-
Aware Memory Protection Unit (EA-MPU) ensures that the data of a trustlet can be
accessed only by the code of the trustlet to which the data belongs. Furthermore, EA-MPU
can be used to control access to hardware components such as peripherals. Authenticity
and confidentiality of the code and data of trustlets is ensured by means of secure boot.
The main difference to SMART is that the memory access control rules of the EA-MPU
in TrustLite can be programmed as required by trustlets. In contrast, memory access
control rules of SMART are static. Also, TrustLite supports interrupt handling for trustlets,
while the security-critical code in Read-Only Memory (ROM) of SMART must not be
interrupted during execution.

Attestation Formalization. ElDefrawy and Tsudik [138] discuss the set of requirements
RA schemes need to fulfill in order to be secure. Furthermore, they propose the use
of computer-aided proving in order to achieve strong security, safety and robustness
guarantees for RA implementations.

VRASED provides the first formally verified implementation of a minimal RA archi-
tecture [127]. It proves soundness and security for a hybrid RA architecture combining
software and hardware, similar to SMART [139]. Furthermore, VRASED provides a
proof for an extended version of SMART supporting verifier authentication following the
protocol introduced in Section 6.1. PURE extends VRASED with three provably secure
services that leverage RA, providing provably secure software update, memory-erasure,
and system-wide resets [309].

RA-related Works. ERASMUS addresses the same problem as discussed in Section 6.1,
i.e., preventing the misuse of RA for Denial-of-Service (DoS) attacks against prover
devices, using a different approach [85, 86]. Additionally, ERASMUS is concerned with
the problem of capturing mobile adversaries, i. e., an adversary that leaves a prover device
without leaving a trace, potentially before a device’s software state is measured in a

6.4 RELATED WORK

RA protocol. The concept of Quality-of-Attestation is introduced to capture the timing
aspects of RA. ERASMUS splits RA into two independent phases. (1) The measurement
phase, during which the software state is captured. This phase is executed periodically
(potentially at a high frequency to capture mobile adversary with high probability) and
does not involve interaction with a verifier. (2) The collection phase, in which the verifier
requests already created measurement reports. However, since not expensive operation,
i.e., measurement of the software state, is triggered in the collection phase, a malicious
verifier cannot disrupt the prover device.

Most attestation solutions assume temporal consistency of the memory while it is
measured, e. g., by setting the memory immutable or by exclusively executing the mea-
surement function uninterruptible. Temporal consistency is important, e. g., to counter
self-relocating malware and mobile adversaries. However, this requirement easily contra-
dicts with real-time requirements. Carpent et al. [83, 84] investigate different strategies
when to lock and release memory during measurements and the resulting security and
availability grantees. The different approaches were extensively evaluated by Carpent
et al. [84]. Additionally, they investigated additional strategies for temporal consistency,
e. g., monitoring the consistency rather than enforcing the consistency of memory:.

TYTAN (cf. Section 3.1.4.3) prohibits tasks to run while they are measured, preventing
self-modifying malware from relocating itself during the measurement process. Addition-
ally, secure tasks are isolated preventing any other entity from modifying the memory of
the measured tasks, hence, TYTAN provides temporal consistency for its secure tasks.

Kohnhéduser and Katzenbeisser [228] propose a secure software update scheme for
networks of devices that relies on hardware security features available in low-end
embedded devices, such as execute-only memory. In their scheme, devices mutually
attest each other to validate the correct deployment of updates. In order to enforce the
correctness of the overall network, devices that are found to be incorrect, e. g., if they
have not correctly installed a software update or cannot provide an appropriate proof via
RA, are excluded from the network. In particular, devices only interact with neighboring
devices after verifying that they are in the correct state.

6.4.1.2 Run-time Attestation

Several schemes for control-flow attestation have been proposed [3, 129, 416, 130]: C-
FLAT [3] enables a prover to attest the exact control-flow path of an executed program to
a remote verifier. However, C-FLAT is not scalable and poses high verification overhead
on the verifier. Hence, it cannot be simply combined with existing collective attestation
techniques. To improve the performance of C-FLAT on the prover, LO-FAT [129] was
developed. LO-FAT leverages hardware assistance to track control-flow events and
performs hash calculations parallel to program execution. Moreover, LO-FAT supports
control-flow attestation of legacy code since binary instrumentation is not required.
Control-flow attestation schemes such as C-FLAT and LO-FAT induce high verification
cost, and therefore, they are not applicable to autonomous systems. DIAT can leverage
hardware assistance as described by LO-FAT to further reduce the overhead on the prover
in an autonomous system.

185

186

SECURITY SERVICE: REMOTE ATTESTATION

ScaRR (Scalable Runtime Remote Attestation for Complex Systems) pursues the goal
to make control-flow attestation applicable to complex systems, for instance in cloud
environments [378]. To prevent state explosion, ScaRR divides control-flow traces into
sub-traces, similar to C-FLAT, to handle, for instance, loops as dedicated sub-traces [3].
ScaRR introduces so-called checkpoints that mark the beginning/end of a sub-graph
in a program, e. g., at loop entries/exits, exception handling methods, or start/end of
threads. However, ScaRR needs to trace the entire software execution of a prover and
report all sub-traces to the verifier. DIAT, in contrast, decomposes the prover’s software
into isolated software modules, hence only the traces of a subset of modules need to be
reported to the verifier, actually reducing the overall amount of software to be measured
for an informative attestation.

Koutroumpouchos et al. [235] describe an approach to build a lightweight control-flow
attestation system by minimizing the scope of software on a system to be attested, called
CFPA (Control-Flow Property-based Attestation). The proposed approach follows the
same idea as DIAT and limits attestation to “critical” modules, thus reducing the overall
cost. However, CFPA, unlike DIAT, does not allow the dynamic information-flow tracing
between modules on the prover device, therefore, entire services have to be encapsulated
into single modules. Furthermore, CFPA does not provide strong isolation between
different software modules and does not provide isolation of software modules from
privileged software, such as the OS, leading to a large and complex TCB comprising the
system’s entire privileged software components. CFPA performs run-time attestation
of software modules periodically, DIAT, in contrast, attests modules while they process
critical data, allowing DIAT to avoid TOCTOU problem:s.

IoTA presents a framework for run-time integrity verification of connected (cyber-
physical) systems [103]. It aims to pose minimal requirements on resource-constrained
edge devices, therefore, it neglects lightweight hardware-based security architectures,
such as TYTAN (cf. Section 3.1), and relies on a trusted software layer to provide
measurements and protect secret information.

OAT introduces the notion of “Operation Execution Integrity” (OEI) [372], addressing
the path explosion problem of control-flow attestation. OAT’s idea is to limit the attesta-
tion to individual operations of a prover device, i.e., tasks with defined entry and exit
functions, thus minimizing the size and complexity of the software to be attested. While
the core idea is similar to DIAT, which also attests tasks individually, OAT assumes a
different setting in which the prover device is executing individual operations that are
recorded and reported to the verifier. DIAT, in contrast, focuses on the data generated
and processed by a prover device, which can be generated by a single task in a single
operation or jointly by multiple tasks. In OAT, all tasks processing a critical data element
must be considered as a single operation leading to large and complex operations for
many realistic use cases. OAT considers prover devices without an OS and without
multi-threading, i. e., a system without concurrent software execution. Interrupts, when
occurring during an attested operation, are handled as separate operations that need to be
attested as well. DIAT isolates all tasks protecting their integrity from all other, potential
malicious software on the system. Hence, DIAT supports interruption of tasks, including

6.4 RELATED WORK

task scheduling by an OS as well as multi-threading systems, making it applicable to
much wider range of system and use cases.

6.4.1.3 Collective Attestation

Park et al. [299] proposes multi-prover attestation for homogeneous systems. Their
idea is that the verifier does not verify each individual attestation report, but just
compares integrity measurements of multiple provers. In contrast, our attestation scheme
supports a large number of provers running the same or different software and distributes
verification of attestation reports over the whole swarm.

Following the development of SEDA, various swarm attestation schemes have been
developed that improve and extend the basic concept of SEDA [16, 34, 199, 201, 82].

SANA uses an aggregate signature scheme to minimize the verification overhead on
swarm devices [16]. Furthermore, swarm devices that are not attested, i.e., not act as
prover, are not required to be equipped with a trust anchor in SANA.

DARPA extends SEDA to operate in a stronger adversary model considering physical
attacks [199]. It is based on absence detection via periodic heart beats, unveiling devices

that have been offline and therefore potentially physically compromised (cf. Section 6.2.7).

SCAPI improves on the idea of physical absents detection in swarms of networked
devices [229]. SCAPI periodically updates a system wide session key such that only
devices that received all session key updates can obtain the latest key. A device that had
been taken out by an adversary to perform a physical attack will miss the distribution
of at least one session key rendering it incapable of obtaining any of the subsequent
distributed session keys. Hence, physically compromised devices cannot participate
in the network’s operation as they do not have the current session key. Furthermore,
physically compromised devices can be identified by SCAPI during attestation because
the successful completion of the attestation protocol requires each prover device to have
the current session key.

SlimloT adapts the idea of SCAPI and regularly updates a shared key (epoch key)
among uncompromised devices to exclude compromised devices from the swarm [18]. In
addition to detecting absent devices (which are considered physically attacked) SlimloT
additionally performs periodic software attestation, resulting in a list of non-compromised
devices. New epoch keys are derived from a hash-chain managed by a verifier device
and distributed to all non-compromised devices.

Carpent et al. [82] present lightweight swarm attestation schemes (in two variants)
that extend SEDA with regard to verifier authentication as well as timing behavior of
the attestation schemes. The first variant, called LISA-«, works asynchronously and
makes minimal assumption on the underlying security architecture. The synchronous
variant, called LISA-s, reduces communication overhead by aggregating attestation
reports. However, LISA-s increases the protocol complexity, which translates to more
complex implementation and increased code size for the trust anchor of the system.
Additionally, the authors introduce a “QoSA: Quality of Swarm Attestation” metric to
allow comparison of swarm attestation schemes.

187

188

SECURITY SERVICE: REMOTE ATTESTATION

MTRA describes a hierarchical attestation scheme, where devices equipped with TPMs
serve as a proxy-verifier for devices without TPM [375]. SEDA does not restrict the roles
of device in the network, unlike MTRA that only allows devices equipped with TPM
to serve as proxy-verifiers. This allows SEDA to dynamically create a spanning tree
determining the attestation relations between devices. Furthermore, SEDA requires only
minimal security architectures for the swarm devices.

SHeL A (Scalable Heterogeneous Layered Attestation) is based on the assumption that
all swarm devices can be attested by proxy-verifiers [319], which are more powerful
compared to the swarm devices. The proxy-verifiers use single-device attestation proto-
cols to attest each swarm device individually, the results of the different proxy-verifiers
are synchronized between them to compose an attestation report reflecting the state of
all swarm devices, which is provided to the central verifier. Compared to SEDA, this
approach is limited in scalability due to its static two-layer hierarchy.

WISE divides the devices of a swarm into clusters, with the goal to attest devices
that have a higher probability of being compromised more often, while other devices
are attested less frequent leading to lower overall cost [17]. The verifier uses a Hidden
Markov Model (HMM) to learn, based on past attestation results, which clusters need
to be attested at what time. WISE uses swarm attestation within each sub-swarms or
clusters of devices utilizing the scalability of the concept introduced in SEDA.

VL et al. [392] propose a swarm attestation scheme where each device in the swarm
is verified by multiple other devices, called set-verifiers, with the goal to tolerate faulty
devices. The set-verifier either use consensus to decide on the state of the prover device
or all set-verifier report to the initiator device, i.e., the device initially approached by the
external swarm verifier, which will make a decision based on the reports received from
all set-verifiers, e. g., via majority vote. To improve scalability of the approach the authors
propose to partition the swarm into sub-swarms for which a leader device collects all
attestation results and forwards them to the initiator device. While fault tolerance was not
a design goal of SEDA its concept can easily be adapted to tolerate faulty devices, i.e., the
swarm verifier approaches different initiator device to run SEDA’s attestation protocol.
Each initiator device will initiate the creation of a new spanning tree, thus with high
probability (assuming a well-connected network topology) a faulty device will not be the
root of the same sub-tree in different spanning trees. This adaption of SEDA does not rely
on a fault-free initiator device or sub-swarm leaders. This approach, furthermore, works
in an on-demand fashion, i. e., only if the attestation fails due to potentially faulty device
the swarm verifier has to repeat the attestation with another initiator device. Hence, the
overhead due to redundant verification occurs only in case a faulty device exists.

DADS (Decentralized Attestation for Device Swarms) aims to provide a decentralized
swarm attestation solution [404], building on top of SEDA. When a compromised device
is detected during an attestation session, it is excluded from the swarm. A device (proxy-
verifier) that detects the compromise replaces the compromised device in the attestation
tree, i. e., it inherits the compromised device’s children, which implies the assumption
that all children of the compromised are reachable by the proxy-verifier device.

De Oliveira Nunes et al. [126] aim to systematize the different collaborative RA works
that followed SEDA. The authors present the first step towards formalization of collabora-

6.4 RELATED WORK

tive RA, by providing a model for analyzing RA requirements (efficiency, soundness, and
security). They design a collaborative RA protocol, called SAP (Synchronous Attestation
Protocol), that adheres to the proposed model. SAP requires a swarm-wide protected
synchronized clock on all devices. Unlike SEDA, SAP assumes a static swarm topology
with a pre-established attestation tree, i. e., parent-child relation between all devices of
the swarm are fixed. Unlike existing collaborative attestation techniques, DIAT allows
efficient control-flow attestation in autonomous collaborative systems, enabling every
collaborating devices to verify the integrity of all exchanged data.

6.4.2 Integrity Enforcement

An orthogonal approach to attestation is the enforcement of a device software’s integrity
on the device itself. Similar to attestation, the properties for which integrity is enforce,
can be different, ranging from load-time integrity of code and static data in case of secure
boot, enforcing programs’ correct control-flow with Control-Flow Integrity (CFI), or the
enforcement of data integrity with Data-Flow Integrity (DFI).

6.4.2.1 Secure Boot

With secure boot, integrity of a device’s configuration is verified by the device itself rather
than by an external entity [23] (cf. Section 2.2.1). Secure boot ensures that only a known
and trustworthy software can be loaded on a device. The RoT is a small bootloader,
which computes a hash of the content loaded into memory, and compares this to a signed
hash stored in secure ROM. Hence, secure boot is limited to verifying software integrity
of a device at load time. Attestation, in contrast, enables integrity verification of a system
at any point in time.

6.4.2.2 Control-flow Integrity

CFI is a defense mechanism against run-time attacks. Modern run-time attacks do
not inject or modify the code of a system. Instead, they reuse the existing code by
hijacking the control flow of a program in order to cause unintended, malicious program
behavior [328]. These attacks have been demonstrated on various platforms and devices,
including embedded architectures such as ARM [232], SPARC [76] and Atmel AVR [146].

CFI’s goal is to prevent that a program’s control flow deviates from the developer-
intended control flow. The integrity of the program flow is ensured by validating for
each control-flow decision if the executed path lies within the program’s Control-Flow
Graph (CEG) [1, 2]. In particular, for each indirect branch instruction the branch target is
checked against a set of valid targets and the branch is only executed if the check passed,
otherwise the program is stopped.

CFI requires that the code of the program is modified, by instrumenting it with
additional control-flow checks on each indirect branch. Furthermore, CFI relies on the
assumption that the code on the device is immutable, i. e., an adversary cannot manipulate
the CFI checks. This is usually achieved by assuming that the binary from which the
program is loaded is untampered and that the code section in memory is write-protected.

189

190

SECURITY SERVICE: REMOTE ATTESTATION

6.4.2.3 Data Integrity

Data-Flow Integrity (DFI) [89] is a concept to prevent run-time attacks by preserving the
integrity of data through additional run-time checks on data operations, i. e., DFI ensures
that a program’s data-flow complies with the program’s Data-Flow Graph (DFG).

Noorman et al. [288] propose a system architecture and programming model that
enforces data-flow between protected modules on distributed embedded devices. Their
approach uses attestation to provision secret data to modules. These secrets are later used
to authenticate the interaction of the modules. Unlike DIAT, they do not consider run-
time attacks on the software modules. Also, their approach statically defines legitimate
data-flows at compile-time, while DIAT dynamically tracks data-flows.

Memory safety is another approach that can ensure the integrity of a program’s data
at run time, e. g., by enforcing memory safety in programming languages [214, 283], by
exploiting dynamic tainting [107, 97] or applying bound checking [332, 216].

Unfortunately, these solutions have large overhead, rely on special languages, strug-
gle with high false positives rate, or are incapable of detecting all types of run-time
attacks. More importantly, such enforcement techniques are not applicable to safety-
critical real-time systems. DIAT provides integrity guarantees for data generated by a
device’s software by augmenting data with relevant control-flow information about their
generation. It enables the detection of a large spectrum of run-time attacks. DIAT achieves
this with low overhead for both, prover and verifier devices. Because DIAT follows the
attestation paradigm integrity violations can be handled more prudent, allowing its
application in safety critical systems.

DISCUSSION AND CONCLUSION

Connected systems are on the rise due to their promises to save cost while providing
additional and improved functionalities. However, their connectivity opens these systems
up to a wide variety of attacks, primarily remote attack via network.

To counter these threats, industry and academia have developed various security
solutions. These solutions follow different strategies, for instance preventing attacks
by isolating security critical system components from access by untrusted entities. In
particular, Trusted Execution Environments (TEEs) allow the separation of a computing
device’s code and data into isolated entities that are protected from each other. However,
providing comprehensive isolation is a challenging task, as has been demonstrated,
for instance, by many side-channel attacks that emerged after the release of Intel TEE
solution, called Software Guard Extensions (SGX). Other strategies aim to detect attacked
and compromised devices. In particular, Remote Attestation (RA) is a security service
that enables a remote verifier to validate the state of a potential compromised prover
device.

The main objectives of this dissertation are the advancement of TEE functionalities, by
developing new security architectures as well as extending and enhancing existing TEE
solutions, and the advancement of RA schemes, by making them applicable to connected
large-scale systems.

Subsequently, we briefly summarize the main results of this dissertation in Section 7.1
and discuss future research directions in Section 7.2.

7.1 SUMMARY OF DISSERTATION

In Chapter 3, we introduce two novel security architectures. TYTAN provides Trusted
Execution Environments (TEEs) for low-end embedded systems while ensuring that the
system’s real-time guarantees are not violated by the TEE’s security mechanism [62]. It
enables isolated execution of mutually distrusting tasks, secure communication between
tasks, and provides security services such as Remote Attestation (RA) and secure stor-
age. SANCTUARY enables strongly isolated use-space enclaves, i. e., TEE instances, on
TrustZone-enabled systems [73]. Unlike TrustZone, SANCTUARY can tolerate potentially
malicious enclaves by isolating each enclave instance on a temporarily exempted CPU
core and using strong hardware-based physical memory partitioning.

In Chapter 4, we investigate information leakage of TEEs. We focus on Intel’s Software
Guard Extensions (SGX) and develop a novel cache side-channel attack that can extract
sensitive information from SGX enclaves [68]. We leverage the adversary’s amplified
capabilities, i. e., control over all system resources, in the context of SGX, and show that
highly sensitive information can be extracted from enclaves due to their lack of side-

191

192

DISCUSSION AND CONCLUSION

channel protection. With HardIDX, we present an efficient SGX-protected database index
that allows secure outsourcing of databases, e. g., to untrusted cloud providers [149, 151].
HardIDX prevents information leakage through observable accesses patterns to the
encrypted database stored in untrusted memory that occur while processing search
queries. DR.SGX is an automated side-channel defense mechanism for SGX enclaves [72].
It uses our novel concept, called semantic-agnostic randomization, to obfuscate the
location of all data in enclave memory, and thus, rendering an adversary’s observations
of memory access patterns through any side channel worthless.

In Chapter 5, we present two TEE-based applications. VoiceGuard uses SGX to enable
privacy-preserving speech recognition [71]. While our mechanism to remotely enforce us-
age policies on smart devices, such as smartphones, utilizes ARM TrustZone [64]. Device
usage policies can be enforced through selective control of smart device’s peripherals
such as camera or cellular network modem, while asserting the device owner’s security
and privacy.

In Chapter 6, we advance RA to become applicable to new scenarios and use cases
that go beyond the typical setting, i. e., settings with a single prover device and a trusted
verifier, that most attestation schemes assume. We show how to prevent malicious
entities from misusing RA protocols to launch Denial-of-Service (DoS) attacks on prover
devices [65]. With SEDA, we present the first swarm attestation protocol, which allows the
efficient attestation of large groups of devices [34]. While DIAT presents a new paradigm
in RA. Instead of attesting the integrity of devices, DIAT focuses on the integrity of data
exchanged between collaborating devices [4]. This novel approach enables the efficient
use of sophisticated attestation methods, such as run-time attestation, in setting were
resource-constrained devices need to act as both, prover and verifier.

7.2 FUTURE RESEARCH DIRECTIONS

Trusted Execution Environments (TEEs) promise the strengthening system’s security. The
compromise of most parts of the system should not endanger the security of the TEE.
However, various incidents, for instance the side-channel attack against Software Guard
Extensions (SGX) enclaves presented in this work [68] and by others [412, 389, 340, 277,
174, 176], or the Foreshadow attack [390], have proven that it is challenging to build
comprehensive security solutions that are completely immune to attacks.

Future systems, such as connected cars, will have much longer lifetimes than typical
computing devices today. For these long-living systems, we need sustainable security
solutions that can preserve their security guarantees throughout the systems’ entire
lifetime that can easily exceed 15 years. This calls for a new approach to system security
because it is unrealistic to attempt to build a system that will be completely immune to
all attacks for 15 year or longer. Such systems would need to resist all existing attacks as
well as all new attack techniques developed in the future for as long as the system is in
use. Thus, rather than trying to prevent system compromise we need to design systems
that can tolerate compromise. For this, we need to make sure that a compromised
system can be detected reliably by others, to prevent it from having adverse impact

7.2 FUTURE RESEARCH DIRECTIONS 193

on other connected devices. Additionally, we need methods to handle compromised
devices. In particular, we need methods to recover and heal compromised systems. We
need solutions that allow the benign owner to regain control over a system after an
adversary has compromised a system and gained control over the system. However, just
regaining control is not sufficient as the adversary could attack the system again, hence,
we additionally need methods for systems to be able to self-adapt to previously unknown
threats.

ABOUT THE AUTHOR

Ferdinand Brasser is research assistant at the Technische Universitdt Darmstadt and the
Intel Collaborative Research Institute for Collaborative Autonomous Resilient Systems
(ICRI-CARS), Germany. In 2013, he received his M.Sc. in IT-Security from TU Darmstadt,
Germany. His research has mainly focused on Trusted Execution Environment (TEE)
technologies and Remote Attestation (RA) protocols. He advanced RA to be applicable in
large connected systems. Furthermore, he developed new TEE architectures for mobile
and embedded systems. He researched side-channel leakage in TEEs by developing
side-channel attacks as well as defenses, and showed applications of TEEs.

AWARDS

e Finalist Applied Research Challenge CSAW Europe 2017

* Best Paper Award for “HardIDX: Practical and Secure Index with SGX” at DBSec
2016 [149]

ACADEMIC ACTIVITIES

¢ Student/Shadow Program Committee Member for ACM ASIA Conference on
Computer and Communications Security (AsiaCCS) 2017

* Program Committee Member for ACM Workshop on Cyber-Physical Systems
Security & Privacy (CPS-SPC) 2019

¢ Program Committee Member for 4th Workshop on System Software for Trusted
Execution (SysTEX) 2019

* Reviewer for Security & Privacy Magazine — Special Issue: Hardware-Assisted
Security 2019

PEER-REVIEWED PUBLICATIONS
1. Franz Ferdinand Brasser, Sven Bugiel, Atanas Filyanov, Ahmad-Reza Sadeghi,

and Steffen Schulz. Softer Smartcards: Usable Cryptographic Tokens with Secure
Execution. In Proceedings of Financial Cryptography and Data Security (FC), 2012. [74]

195

196

ABO

10.

11.

12.

UT THE AUTHOR

. F. Ferdinand Brasser, Mihai Bucicoiu, and Ahmad-Reza Sadeghi. Swap and Play:
Live Updating Hypervisors and Its Application to Xen. In Proceedings of ACM
Workshop on Cloud Computing Security (CCSW), 2014. [61]

. Ferdinand Brasser, Patrick Koeberl, Brahim El Mahjoub, Ahmad-Reza Sadeghi, and
Christian Wachsmann. TyTAN: Tiny Trust Anchor for Tiny Devices. In Proceedings
of IEEE/ACM Design Automation Conference (DAC), 2015. [62]

N. Asokan, Ferdinand Brasser, Ahmad Ibrahim, Ahmad-Reza Sadeghi, Matthias
Schunter, Gene Tsudik, and Christian Wachsmann. SEDA: Scalable Embedded
Device Attestation. In Proceedings of ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2015. [34]

. Ferdinand Brasser, Kasper Rasmussen, Ahmad-Reza Sadeghi, and Gene Tsudik.
Remote Attestation for Low-End Embedded Devices: the Prover’s Perspective. In
Proceedings of IEEE/ACM Design Automation Conference (DAC), 2016. [65]

Ferdinand Brasser, Vinod Ganapathy, Liviu Iftode, Daeyoung Kim, Christopher
Liebchen, and Ahmad-Reza Sadeghi. Regulating ARM TrustZone Devices in Re-
stricted Spaces. In Proceedings of International Conference on Mobile Systems, Applica-
tions, and Services (MobiSys), 2016. [64]

Luis Garcia, Ferdinand Brasser, Mehmet H. Cintuglu, Ahmad-Reza Sadeghi, Osama
Mohammed, and Saman A. Zonouz. Hey, My Malware Knows Physics! Attacking
PLCs with Physical Model Aware Rootkit. In Proceedings of Annual Network and
Distributed System Security Symposium (NDSS), 2017. [152]

Bernardo Portela, Manuel Barbosa, Guillaume Scerri, Bogdan Warinschi, Raad
Bahmani, Ferdinand Brasser, and Ahmad-Reza Sadeghi. Secure Multiparty Com-
putation from SGX. In Proceedings of Financial Cryptography and Data Security (FC),

2017. [315]

Benny Fuhry, Raad Bahmani, Ferdinand Brasser, Florian Hahn, Florian Kerschbaum,
and Ahmad-Reza Sadeghi. HardIDX: Practical and Secure Index with SGX. In Pro-
ceedings of Conference on Data and Applications Security and Privacy (DBSec), 2017. [149]

Ferdinand Brasser, Lucas Davi, David Gens, Christopher Liebchen, and Ahmad-
Reza Sadeghi. CAn’t Touch This: Software-only Mitigation against Rowhammer
Attacks targeting Kernel Memory. In Proceedings of USENIX Security Symposium
(USENIX Security), 2017. [67]

Ferdinand Brasser, Urs Miiller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan
Capkun, and Ahmad-Reza Sadeghi. Software Grand Exposure: SGX Cache Attacks
Are Practical. In Proceedings of USENIX Workshop on Offensive Technologies (WOOT),
2017. [68]

Benny Fuhry, Raad Bahmani, Ferdinand Brasser, Florian Hahn, Florian Kerschbaum,
and Ahmad-Reza Sadeghi. HardIDX: Practical and Secure Index with SGX in a
Malicious Environmen. Journal of Computer Security, 26(5), 2018. [151]

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

ABOUT THE AUTHOR

Hamid Reza Ghaeini, Daniele Antonioli, Ferdinand Brasser, Ahmad-Reza Sadeghi,
and Nils Ole Tippenhauer. State-Aware Anomaly Detection for Industrial Control
Systems. In Proceedings of ACM SIGAPP Symposium on Applied Computing (SAC),
2018. [159]

Ferdinand Brasser, Tommaso Frassetto, Korbinian Riedhammer, Ahmad-Reza
Sadeghi, Thomas Schneider, and Christian Weinert. VoiceGuard: Secure and Private
Speech Processing. In Proceedings of Interspeech, 2018. [71]

Andreas Schaad, Bjoern Grohmann, Oliver Winzenried, Ferdinand Brasser, and
Ahmad-Reza Sadeghi. Towards a Cloud-based System for Software Protection and
Licensing. In Proceedings of International Joint Conference on e-Business and Telecommu-
nications (SECRYPT), 2018. [338]

Tigist Abera, Raad Bahmani, Ferdinand Brasser, Ahmad Ibrahim, Ahmad-Reza
Sadeghi, and Matthias Schunter. DIAT: Data Integrity Attestation for Resilient Col-
laboration of Autonomous Systems. In Proceedings of Annual Network and Distributed
System Security Symposium (NDSS), 2019. [4]

Ferdinand Brasser, David Gens, Patrick Jauernig, Ahmad-Reza Sadeghi, and Em-
manuel Stapf. SANCTUARY: ARMing TrustZone with User-space Enclaves. In
Proceedings of Annual Network and Distributed System Security Symposium (NDSS),

2019. [73]

Samuel Weiser, Mario Werner, Ferdinand Brasser, Maja Malenko, Stefan Mangard,
and Ahmad-Reza Sadeghi. TIMBER-V: Tag-Isolated Memory Bringing Fine-grained
Enclaves to RISC-V. In Proceedings of Annual Network and Distributed System Security
Symposium (NDSS), 2019. [406]

Carsten Bock, Ferdinand Brasser, David Gens, Christopher Liebchen, and Ahmad-
Reza Sadeghi. RIP-RH: Preventing Rowhammer-based Inter-Process Attacks. In
Proceedings of ACM ASIA Conference on Computer and Communications Security (ASIA-
CCS), 2019. [53]

Andrew Paverd, Marcus Volp, Ferdinand Brasser, Matthias Schunter, N. Asokan,
Ahmad-Reza Sadeghi, Paulo Esteves-Verissimo, Andreas Steininger, and Thorsten
Holz. Sustainable Security & Safety: Challenges and Opportunities. In Proceedings of
4th International Workshop on Security and Dependability of Critical Embedded Real-Time
Systems (CERTS), 2019. [304]

Hamid Reza Ghaeini, Matthew Chan, Raad Bahmani, Ferdinand Brasser, Luis Gar-
cia, Jianying Zhou, Ahmad-Reza Sadeghi, Nils Ole Tippenhauer, and Saman Zonouz.
PAtt: Physics-based Attestation of Control Systems. In Proceedings of 22nd Interna-
tional Symposium on Research in Attacks, Intrusions and Defenses (RAID), 2019. [160]

Ferdinand Brasser, Srdjan Capkun, Alexandra Dmitrienko, Tommaso Frassetto,
Kari Kostiainen, and Ahmad-Reza Sadeghi. DR.SGX: Automated and Adjustable

197

198

ABOUT THE AUTHOR

23.

Side-Channel Protection for SGX using Data Location Randomization. In Proceedings
of Annual Computer Security Applications Conference (ACSAC), 2019. [72]

Sridhar Adepu, Ferdinand Brasser, Luis Garcia, Michael Rodler, Lucas Davi, Ahmad-
Reza Sadeghi, and Saman Zonouz. Control Behavior Integrity for Distributed Cyber-
Physical Systems. In Proceedings of IEEE/ACM Conference on Cyber-Physical Systems
(ICCPS), 2020. [8]

SPECIAL SESSTION PAPERS

1.

Ferdinand Brasser, Lucas Davi, Abhijitt Dhavlle, Tommaso Frassetto, Sai Manoj
Pudukotai Dinakarrao, Setareh Rafatirad, Ahmad-Reza Sadeghi, Avesta Sasan,
Hossein Sayadi, Shaza Zeitouni, and Houman Homayoun. Special Session: Ad-
vances and Throwbacks in Hardware-assisted Security. In Proceedings of International
Conference on Compilers, Architecture and Synthesis for Embedded Systems (CASES),
2018. [70]

TECHNICAL REPORTS

. Ferdinand Brasser, Lucas Davi, David Gens, Christopher Liebchen, and Ahmad-

Reza Sadeghi. CAn’t Touch This: Practical and Generic Software-only Defenses
Against Rowhammer Attacks. arXiv:1611.083960v2, 2016. [63]

Ferdinand Brasser, Urs Miiller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan
Capkun, and Ahmad-Reza Sadeghi. Software Grand Exposure: SGX Cache Attacks
Are Practical. arXiv:1702.07521, 2017. [69]

. Benny Fuhry, Raad Bahmani, Ferdinand Brasser, Florian Hahn, Florian Ker-

schbaum, and Ahmad-Reza Sadeghi. HardIDX: Practical and Secure Index with
SGX. arXiv:1703.04583, 2017. [150]

Ferdinand Brasser, Srdjan Capkun, Alexandra Dmitrienko, Tommaso Frassetto, Kari
Kostiainen, Urs Miiller, and Ahmad-Reza Sadeghi. DR.SGX: Hardening SGX En-
claves against Cache Attacks with Data Location Randomization. arXiv:1709.09917,
2017. [66]

Sridhar Adepu, Ferdinand Brasser, Luis Garcia, Michael Rodler, Lucas Davi, Ahmad-
Reza Sadeghi, and Saman Zonouz. Control Behavior Integrity for Distributed
Cyber-Physical Systems. arXiv:1812.08310, 2018. [7]

Andrew Paverd, Marcus Volp, Ferdinand Brasser, Matthias Schunter, N. Asokan,
Ahmad-Reza Sadeghi, Paulo Esteves-Verissimo, Andreas Steininger, and Thorsten
Holz. Sustainable Security & Safety: Challenges and Opportunities. http://
www.icri-cars.org/icri-cars/vision/, 2018. [303]

http://www.icri-cars.org/icri-cars/vision/
http://www.icri-cars.org/icri-cars/vision/

ABOUT THE AUTHOR 199

7. Tigist Abera, Ferdinand Brasser, Lachlan J. Gunn, David Koisser, and Ahmad-
Reza Sadeghi. SADAN: Scalable Adversary Detection in Autonomous Networks.
arXiv:1910.051903, 2019. [5]

BIBLIOGRAPHY

[1]

[2]

[3]

(6]

[7]

8]

[9]

[10]

Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. Control-flow Integrity.
In ACM SIGSAC Conference on Computer and Communications Security (CCS), 2005.

Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. Control-flow Integrity
Principles, Implementations, and Applications. ACM Transactions on Information
and System Security, 13(1), 2009.

Tigist Abera, N. Asokan, Lucas Davi, Jan-Erik Ekberg, Thomas Nyman, Andrew
Paverd, Ahmad-Reza Sadeghi, and Gene Tsudik. C-FLAT: Control-Flow Attestation
for Embedded Systems Software. In ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2016.

Tigist Abera, Raad Bahmani, Ferdinand Brasser, Ahmad Ibrahim, Ahmad-Reza
Sadeghi, and Matthias Schunter. DIAT: Data Integrity Attestation for Resilient
Collaboration of Autonomous Systems. In Annual Network and Distributed System
Security Symposium (NDSS), 2019.

Tigist Abera, Ferdinand Brasser, Lachlan J. Gunn, David Koisser, and Ahmad-
Reza Sadeghi. SADAN: Scalable Adversary Detection in Autonomous Networks.
https://arxiv.org/abs/1910.05190, 2019.

Onur Aciigmez, Billy Bob Brumley, and Philipp Grabher. New Results on Instruc-
tion Cache Attacks. In Conference on Cryptographic Hardware and Embedded Systems
(CHES), 2010.

Sridhar Adepu, Ferdinand Brasser, Luis Garcia, Michael Rodler, Lucas Davi,
Ahmad-Reza Sadeghi, and Saman Zonouz. Control Behavior Integrity for Dis-
tributed Cyber-Physical Systems. https://arxiv.org/abs/1812.08310, 2018.

Sridhar Adepu, Ferdinand Brasser, Luis Garcia, Michael Rodler, Lucas Davi,
Ahmad-Reza Sadeghi, and Saman Zonouz. Control Behavior Integrity for Dis-
tributed Cyber-Physical Systems. In IEEE/ACM Conference on Cyber-Physical Systems
(ICCPS), 2020.

Advanced Micro Devices (AMD). AMD64 Architecture Programmer’s Manual.
http://developer.amd.com/wordpress/media/2012/10/24593_APM_v2.pdf, 2012.

Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. Order
Preserving Encryption for Numeric Data. In International Conference on Management
of Data (SIGMOD), 2004.

201

https://arxiv.org/abs/1910.05190
https://arxiv.org/abs/1812.08310
http://developer.amd.com/wordpress/media/2012/10/24593_APM_v2.pdf

202

BIBLIOGRAPHY

[11] Adil Ahmad, Byunggill Joe, Yuan Xiao, Yinqgian Zhang, Insik Shin, and Byoungy-
oung Lee. Obfuscuro: A Commodity Obfuscation Engine on Intel SGX. In Annual
Network and Distributed System Security Symposium (NDSS), 2019.

[12] Al Danial. cloc — Count Lines of Code. https://github.com/AlDanial/cloc, 2020.

[13] Turky N. Al-Otaiby, Mohsen AlSherif, and Walter P. Bond. Toward Software
Requirements Modularization Using Hierarchical Clustering Techniques. In Annual
Southeast Regional Conference (ACM SE), 2005.

[14] Eduardo Almentero, Julio Cesar Sampaio do Prado, and Carlos Lucena. Towards
Software Modularization from Requirements. In ACM SIGAPP Symposium On
Applied Computing (SAC), 2014.

[15] Amazon Web Services, Inc. FreeRTOS — Real-time operating system for microcon-
trollers. https://www.freertos.org/, 2020.

[16] Moreno Ambrosin, Mauro Conti, Ahmad Ibrahim, Gregory Neven, Ahmad-Reza
Sadeghi, and Matthias Schunter. SANA: Secure and Scalable Aggregate Network
Attestation. In ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2016.

[17] Mahmoud Ammar, Mahdi Washha, and Bruno Crispo. WISE: Lightweight Intelli-
gent Swarm Attestation Scheme for IoT (The Verifier’s Perspective). In International
Conference on Wireless and Mobile Computing, Networking and Communications (WiMob),
2018.

[18] Mahmoud Ammar, Mahdi Washha, Gowri Ramachandran, and Bruno Crispo.
SlimloT: Scalable Lightweight Attestation Protocol for the Internet of Things. In
IEEE Conference on Dependable and Secure Computing (DSC), 2018.

[19] Mahmoud Ammar, Bruno Crispo, Bart Jacobs, Danny Hughes, and Wilfried Daniels.
SuV-The Security MicroVisor: A Formally-Verified Software-Based Security Ar-
chitecture for the Internet of Things. IEEE Transactions on Dependable and Secure
Computing, 16(5), 2019.

[20] Ittai Anati, Shay Gueron, Simon P. Johnson, and Vincent R. Scarlata. Innovative
Technology for CPU Based Attestation and Sealing. In Workshop on Hardware and
Architectural Support for Security and Privacy (HASP), 2013.

[21] Nick Anderson and Valerie Strauss. Cheating concerns force delay in SAT
scores for South Koreans and Chinese. https://www.washingtonpost.com/
local/education/cheating-concerns-force-delay-in-sat-scores-for-
south-koreans-and-chinese/2014/10/30/8e64bd9%e-6056-11e4-9f3a-
7€28799e0549_story.html, October 2014.

[22] Jeremy Andrus, Christoffer Dall, Alexander Van’t Hof, Oren Laadan, and Jason
Nieh. Cells: A Virtual Mobile Smartphone Architecture. In ACM Symposium on
Operating System Principles (SOSP), 2011.

https://github.com/AlDanial/cloc
https://www.freertos.org/
https://www.washingtonpost.com/local/education/cheating-concerns-force-delay-in-sat-scores-for-south-koreans-and-chinese/2014/10/30/8e64bd9e-6056-11e4-9f3a-7e28799e0549_story.html
https://www.washingtonpost.com/local/education/cheating-concerns-force-delay-in-sat-scores-for-south-koreans-and-chinese/2014/10/30/8e64bd9e-6056-11e4-9f3a-7e28799e0549_story.html
https://www.washingtonpost.com/local/education/cheating-concerns-force-delay-in-sat-scores-for-south-koreans-and-chinese/2014/10/30/8e64bd9e-6056-11e4-9f3a-7e28799e0549_story.html
https://www.washingtonpost.com/local/education/cheating-concerns-force-delay-in-sat-scores-for-south-koreans-and-chinese/2014/10/30/8e64bd9e-6056-11e4-9f3a-7e28799e0549_story.html

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

BIBLIOGRAPHY

William A. Arbaugh, David]J. Farbert, and Jonathan M. Smith. A Secure and
Reliable Bootstrap Architecture. In IEEE Symposium on Security and Privacy (IEEE
S&P), 1997.

ARM Limited. ARM Security Technology: Building a Secure System using Trust-
Zone Technology. http://infocenter.arm.com/help/topic/com.arm.doc.prd29-
genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf, 2008.

ARM Limited. ARM Security Technology — Building a Secure System using Trust-
Zone Technology. http://infocenter.arm.com/help/topic/com.arm.doc.prd29-
genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf, 2009.

ARM Limited. CoreLink TrustZone Address Space Controller TZC-
380. http://infocenter.arm.com/help/topic/com.arm.doc.ddi®431c/
DDIO431C_tzasc_tzc380_rOpl_trm.pdf, 2010.

ARM Limited. ARM CoreLink TZC-400 TrustZone Address Space
Controller. http://infocenter.arm.com/help/topic/com.arm.doc.ddi®504c/
DDIO504C_tzc400_rOpl_trm.pdf, 2013.

ARM Limited. GlobalPlatform based Trusted Execution Environment
and TrustZone Ready. https://community.arm.com/cfs-file/__key/
telligent-evolution- components-attachments/01-2142-00-00-00-00-51-36/
GlobalPlatform-based-Trusted-Execution-Environment-and-TrustZone-R.pdf,
2013.

ARM Limited. ARM Architecture Reference Manual. http://silver.arm.com/
download/ARM_and_AMBA_Architecture/AR150-DA-70000- rOp0-00bet9/
DDIO487A_h_armv8_arm.pdf, 2015.

ARM Limited. TrustZone Technology for ARMvV8-M Ar-
chitecture. https://static.docs.arm.com/100690/0200/
armv8m_trustzone_technology_100690_0200.pdf, 2017.

ARM Limited. Isolation using virtualization in the Se-
cure world. https://developer.arm.com/-/media/Files/pdf/

Isolation_using_virtualization_in_the_Secure_World_Whitepaper.pdf, 2018.

Frederik Armknecht, Ahmad-Reza Sadeghi, Steffen Schulz, and Christian Wachs-
mann. A Security Framework for the Analysis and Design of Software Attestation.
In ACM SIGSAC Conference on Computer and Communications Security (CCS), 2013.

Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,
Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’Keeffe, Mark L. Still-
well, David Goltzsche, Dave Eyers, Riidiger Kapitza, Peter Pietzuch, and Christof
Fetzer. SCONE: Secure Linux Containers with Intel SGX. In USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2016.

203

http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0431c/DDI0431C_tzasc_tzc380_r0p1_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0431c/DDI0431C_tzasc_tzc380_r0p1_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0504c/DDI0504C_tzc400_r0p1_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0504c/DDI0504C_tzc400_r0p1_trm.pdf
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-00-51-36/GlobalPlatform-based-Trusted-Execution-Environment-and-TrustZone-R.pdf
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-00-51-36/GlobalPlatform-based-Trusted-Execution-Environment-and-TrustZone-R.pdf
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-00-51-36/GlobalPlatform-based-Trusted-Execution-Environment-and-TrustZone-R.pdf
http://silver.arm.com/download/ARM_and_AMBA_Architecture/AR150-DA-70000-r0p0-00bet9/DDI0487A_h_armv8_arm.pdf
http://silver.arm.com/download/ARM_and_AMBA_Architecture/AR150-DA-70000-r0p0-00bet9/DDI0487A_h_armv8_arm.pdf
http://silver.arm.com/download/ARM_and_AMBA_Architecture/AR150-DA-70000-r0p0-00bet9/DDI0487A_h_armv8_arm.pdf
https://static.docs.arm.com/100690/0200/armv8m_trustzone_technology_100690_0200.pdf
https://static.docs.arm.com/100690/0200/armv8m_trustzone_technology_100690_0200.pdf
https://developer.arm.com/-/media/Files/pdf/Isolation_using_virtualization_in_the_Secure_World_Whitepaper.pdf
https://developer.arm.com/-/media/Files/pdf/Isolation_using_virtualization_in_the_Secure_World_Whitepaper.pdf

204

BIBLIOGRAPHY

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

N. Asokan, Ferdinand Brasser, Ahmad Ibrahim, Ahmad-Reza Sadeghi, Matthias
Schunter, Gene Tsudik, and Christian Wachsmann. SEDA: Scalable Embedded
Device Attestation. In ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2015.

Ahmed Azab, Kirk Swidowski, Rohan Bhutkar, Jia Ma, Wenbo Shen, Ruowen Wang,
and Peng Ning. SKEE: A lightweight Secure Kernel-level Execution Environment
for ARM. In Annual Network and Distributed System Security Symposium (NDSS),
2016.

Ahmed M. Azab, Peng Ning, Jitesh Shah, Quan Chen, Rohan Bhutkar, Guruprasad
Ganesh, Jia Ma, and Wenbo Shen. Hypervision Across Worlds: Real-time Kernel
Protection from the ARM TrustZone Secure World. In ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2014.

Sumit Bajaj and Radu Sion. TrustedDB: A Trusted Hardware-Based Database
with Privacy and Data Confidentiality. IEEE Transactions on Knowledge and Data
Engineering, 26(3), 2014.

Arati Baliga, Pandurang Kamat, and Liviu Iftode. Lurking in the Shadows: Identi-
tying Systemic Threats to Kernel Data. In IEEE Symposium on Security and Privacy
(IEEE S&P), 2007.

Arati Baliga, Vinod Ganapathy, and Liviu Iftode. Detecting Kernel-Level Rootk-
its Using Data Structure Invariants. IEEE Transactions on Dependable and Secure
Computing, 8(5), September 2011.

Elaine Barker and John Kelsey. Recommendation for Random Number Gener-
ation Using Deterministic Random Bit Generators. https://doi.org/10.6028/
NIST.SP.800-90Arl, 2015.

Andrew Baumann, Marcus Peinado, and Galen Hunt. Shielding Applications from
an Untrusted Cloud with Haven. In USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2014.

Sebastian P. Bayerl, Tommaso Frassetto, Patrick Jauernig, Korbinian Riedhammer,
Ahmad-Reza Sadeghi, Thomas Schneider, Emmanuel Stapf, and Christian Weinert.
Offline Model Guard: Secure and Private ML on Mobile Devices. In Conference on
Design, Automation & Test in Europe (DATE), 2020.

Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks,
and Louis Wingers. The SIMON and SPECK Families of Lightweight Block Ciphers.
Cryptology ePrint Archive, Report 2013/404, 2013. http://eprint.iacr.org/
2013/404 . pdf.

Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. Deterministic and Effi-
ciently Searchable Encryption. In International Cryptology Conference (CRYPTO),
2007.

https://doi.org/10.6028/NIST.SP.800-90Ar1
https://doi.org/10.6028/NIST.SP.800-90Ar1
http://eprint.iacr.org/2013/404.pdf
http://eprint.iacr.org/2013/404.pdf

BIBLIOGRAPHY

[45] Mihir Bellare, Phillip Rogaway, and Terence Spies. The FFX Mode of Operation for
Format-Preserving Encryption. http://csrc.nist.gov/groups/ST/toolkit/BCM/
documents/proposedmodes/ffx/ffx-spec.pdf, 2010.

[46] Gal Beniamini. Full TrustZone exploit for MSMS8974. http://bits-
please.blogspot.de/2015/08/full-trustzone-exploit-for-msm8974.html,
2015.

[47] Gal Beniamini. QSEE privilege escalation vulnerability and exploit.
http://bits-please.blogspot.com/2016/05/qsee-privilege-escalation-
vulnerability.html, 2016.

[48] Gal Beniamini. Lifting the (Hyper) Visor: Bypassing Samsung’s Real-Time Kernel
Protection. https://googleprojectzero.blogspot.de/2017/02/1ifting-hyper-
visor-bypassing-samsungs.html, 2017.

[49] Gal Beniamini. Trust Issues: Exploiting TrustZone TEEs. https://
googleprojectzero.blogspot.com/2017/07/trust-issues-exploiting-
trustzone-tees.html, 2017.

[50] Daniel J. Bernstein, Tanja Lange, and Peter Schwabe. The Security Impact of a New
Cryptographic Library. In International Conference on Cryptology and Information
Security in Latin America (LATINCRYPT), 2012.

[51] Sarani Bhattacharya and Debdeep Mukhopadhyay. Who watches the watchmen?:
Utilizing Performance Monitors for Compromising keys of RSA on Intel Platforms.
In Conference on Cryptographic Hardware and Embedded Systems (CHES), 2015.

[52] Blackberry. Enterprise Mobility Management - EMM. http://us.blackberry.com/
enterprise/solutions/emm.html, 2016.

[53] Carsten Bock, Ferdinand Brasser, David Gens, Christopher Liebchen, and Ahmad-
Reza Sadeghi. RIP-RH: Preventing Rowhammer-based Inter-Process Attacks. In
ACM ASIA Conference on Computer and Communications Security (ASIACCS), 2019.

[54] Andrey Bogdanov, Thomas Eisenbarth, Christof Paar, and Malte Wienecke. Dif-
ferential Cache-Collision Timing Attacks on AES with Applications to Embedded
CPUs. In The Cryptographers” Track at the RSA Conference on Topics in Cryptology
(CT-RSA), 2010.

[55] Aniruddha Bohra, Iulian Neamtiu, and Florin Sultan. Remote Repair of Operating
System State Using Backdoors. In International Conference on Autonomic Computing
(ICAC), 2004.

[56] Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O’Neill. Order-
Preserving Symmetric Encryption. In International Conference on the Theory and
Applications of Cryptographic Techniques (EUROCRYPT), 2009.

205

http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ffx/ffx-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ffx/ffx-spec.pdf
http://bits-please.blogspot.de/2015/08/full-trustzone-exploit-for-msm8974.html
http://bits-please.blogspot.de/2015/08/full-trustzone-exploit-for-msm8974.html
http://bits-please.blogspot.com/2016/05/qsee-privilege-escalation-vulnerability.html
http://bits-please.blogspot.com/2016/05/qsee-privilege-escalation-vulnerability.html
https://googleprojectzero.blogspot.de/2017/02/lifting-hyper-visor-bypassing-samsungs.html
https://googleprojectzero.blogspot.de/2017/02/lifting-hyper-visor-bypassing-samsungs.html
https://googleprojectzero.blogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html
https://googleprojectzero.blogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html
https://googleprojectzero.blogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html
http://us.blackberry.com/enterprise/solutions/emm.html
http://us.blackberry.com/enterprise/solutions/emm.html

206

BIBLIOGRAPHY

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Alexandra Boldyreva, Nathan Chenette, and Adam O’Neill. Order-Preserving
Encryption Revisited: Improved Security Analysis and Alternative Solutions. In
International Cryptology Conference (CRYPTO), 2011.

Dan Boneh and Brent Waters. Conjunctive, Subset, and Range Queries on Encrypted
Data. In Conference on Theory of Cryptography (TCC), 2007.

Dan Boneh, Amit Sahai, and Brent Waters. Functional Encryption: Definitions and
Challenges. In Conference on Theory of Cryptography (TCC), 2011.

Kjell Braden, Stephen Crane, Lucas Davi, Michael Franz, Per Larsen, Christopher
Liebchen, and Ahmad-Reza Sadeghi. Leakage-Resilient Layout Randomization
for Mobile Devices. In Annual Network and Distributed System Security Symposium
(NDSS), 2016.

F. Ferdinand Brasser, Mihai Bucicoiu, and Ahmad-Reza Sadeghi. Swap and Play:
Live Updating Hypervisors and Its Application to Xen. In ACM Workshop on Cloud
Computing Security (CCSW), 2014.

Ferdinand Brasser, Patrick Koeberl, Brahim El Mahjoub, Ahmad-Reza Sadeghi, and
Christian Wachsmann. TyTAN: Tiny Trust Anchor for Tiny Devices. In IEEE/ACM
Design Automation Conference (DAC), 2015.

Ferdinand Brasser, Lucas Davi, David Gens, Christopher Liebchen, and Ahmad-
Reza Sadeghi. CAn’t Touch This: Practical and Generic Software-only Defenses
Against Rowhammer Attacks. https://arxiv.org/abs/1611.08396, 2016.

Ferdinand Brasser, Vinod Ganapathy, Liviu Iftode, Daeyoung Kim, Christopher
Liebchen, and Ahmad-Reza Sadeghi. Regulating ARM TrustZone Devices in
Restricted Spaces. In International Conference on Mobile Systems, Applications, and
Services (MobiSys), 2016.

Ferdinand Brasser, Kasper Rasmussen, Ahmad-Reza Sadeghi, and Gene Tsudik.
Remote Attestation for Low-End Embedded Devices: the Prover’s Perspective. In
IEEE/ACM Design Automation Conference (DAC), 2016.

Ferdinand Brasser, Srdjan Capkun, Alexandra Dmitrienko, Tommaso Frassetto,
Kari Kostiainen, Urs Miiller, and Ahmad-Reza Sadeghi. DR.SGX: Hardening SGX
Enclaves against Cache Attacks with Data Location Randomization. https://
arxiv.org/abs/1709.09917, 2017.

Ferdinand Brasser, Lucas Davi, David Gens, Christopher Liebchen, and Ahmad-
Reza Sadeghi. CAn’t Touch This: Software-only Mitigation against Rowhammer
Attacks targeting Kernel Memory. In USENIX Security Symposium, 2017.

Ferdinand Brasser, Urs Miiller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan
Capkun, and Ahmad-Reza Sadeghi. Software Grand Exposure: SGX Cache Attacks
Are Practical. In USENIX Workshop on Offensive Technologies (WOOT), 2017.

https://arxiv.org/abs/1611.08396
https://arxiv.org/abs/1709.09917
https://arxiv.org/abs/1709.09917

BIBLIOGRAPHY

[69] Ferdinand Brasser, Urs Miiller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan
Capkun, and Ahmad-Reza Sadeghi. Software Grand Exposure: SGX Cache Attacks
Are Practical. https://arxiv.org/abs/1702.07521, 2017.

[70] Ferdinand Brasser, Lucas Davi, Abhijjitt Dhavlle, Tommaso Frassetto, Sai Manoj
Pudukotai Dinakarrao, Setareh Rafatirad, Ahmad-Reza Sadeghi, Avesta Sasan,
Hossein Sayadi, Shaza Zeitouni, and Houman Homayoun. Special Session: Ad-
vances and Throwbacks in Hardware-assisted Security. In International Conference
on Compilers, Architecture and Synthesis for Embedded Systems (CASES), 2018.

[71] Ferdinand Brasser, Tommaso Frassetto, Korbinian Riedhammer, Ahmad-Reza
Sadeghi, Thomas Schneider, and Christian Weinert. VoiceGuard: Secure and
Private Speech Processing. In Interspeech, 2018.

[72] Ferdinand Brasser, Srdjan Capkun, Alexandra Dmitrienko, Tommaso Frassetto,
Kari Kostiainen, and Ahmad-Reza Sadeghi. DR.SGX: Automated and Adjustable
Side-Channel Protection for SGX using Data Location Randomization. In Annual
Computer Security Applications Conference (ACSAC), 2019.

[73] Ferdinand Brasser, David Gens, Patrick Jauernig, Ahmad-Reza Sadeghi, and Em-
manuel Stapf. SANCTUARY: ARMing TrustZone with User-space Enclaves. In
Annual Network and Distributed System Security Symposium (NDSS), 2019.

[74] Franz Ferdinand Brasser, Sven Bugiel, Atanas Filyanov, Ahmad-Reza Sadeghi,
and Steffen Schulz. Softer Smartcards: Usable Cryptographic Tokens with Secure
Execution. In Financial Cryptography and Data Security (FC), 2012.

[75] Ernie Brickell, Gary Graunke, and Jean-Pierre Seifert. Mitigating cache/timing
attacks in AES and RSA software implementations. In RSA Conference 2006, session
DEV-203, 2006.

[76] Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage. When Good
Instructions Go Bad: Generalizing Return-oriented Programming to RISC. In ACM
SIGSAC Conference on Computer and Communications Security (CCS), 2008.

[77] Sven Bugiel, Stephen Heuser, and Ahmad-Reza Sadeghi. Flexible and Fine-grained
Mandatory Access Control on Android for Diverse Security and Privacy Policies.
In USENIX Security Symposium, 2013.

[78] John Butler. Fundamentals of Forensic DNA Typing. Academic Press, 2009.

[79] BYTE Magazine and Uwe F. Mayer. BYTEmark benchmark (nbench), port
to linux, 1995-2011. Original address http://www.tux.org/~mayer/linux/
bmark.html, now archived at https://web.archive.org/web/20151215162836/
http://www.tux.org/~mayer/linux/bmark.html.

[80] Seyit A. Camtepe and Biilent Yener. Key Distribution Mechanisms for Wireless
Sensor Networks: a Survey. Technical report, Rensselaer Polytechnic Institute, 2005.

207

https://arxiv.org/abs/1702.07521
http://www.tux.org/~mayer/linux/bmark.html
http://www.tux.org/~mayer/linux/bmark.html
https://web.archive.org/web/20151215162836/http://www.tux.org/~mayer/linux/bmark.html
https://web.archive.org/web/20151215162836/http://www.tux.org/~mayer/linux/bmark.html

208

BIBLIOGRAPHY

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

Martim Carbone, Weidong Cui, Long Lu, Wenke Lee, Marcus Peinado, and Xuxian
Jiang. Mapping Kernel Objects to Enable Systematic Integrity Checking. In ACM
SIGSAC Conference on Computer and Communications Security (CCS), 2009.

Xavier Carpent, Karim ElDefrawy, Norrathep Rattanavipanon, and Gene Tsudik.
Lightweight Swarm Attestation: A Tale of Two LISA-s. In ACM ASIA Conference on
Computer and Communications Security (ASIACCS), 2017.

Xavier Carpent, Karim ElDefrawy, Norrathep Rattanavipanon, Ahmad-Reza
Sadeghi, and Gene Tsudik. Reconciling Remote Attestation and Safety-critical
Operation on Simple IoT Devices. In IEEE/ACM Design Automation Conference
(DAC), 2018.

Xavier Carpent, Karim ElDefrawy, Norrathep Rattanavipanon, and Gene Tsudik.
Temporal Consistency of Integrity-Ensuring Computations and Applications to Em-
bedded Systems Security. In ACM ASIA Conference on Computer and Communications
Security (ASIACCS), 2018.

Xavier Carpent, Norrathep Rattanavipanon, and Gene Tsudik. ERASMUS: Efficient
Remote Attestation via Self-Measurement for Unattended Settings. In Conference
on Design, Automation & Test in Europe (DATE), 2018.

Xavier Carpent, Norrathep Rattanavipanon, and Gene Tsudik. Remote Attestation
via Self-Measurement. ACM Transactions on Design Automation of Electronic Systems,
24(1), 2018.

David Cash, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel-Catalin
Rosu, and Michael Steiner. Highly-Scalable Searchable Symmetric Encryption with
Support for Boolean Queries. In International Cryptology Conference (CRYPTO), 2013.

Claude Castelluccia, Aurélien Francillon, Daniele Perito, and Claudio Soriente.
On the Difficulty of Software-Based Attestation of Embedded Devices. In ACM
SIGSAC Conference on Computer and Communications Security (CCS), 2009.

Miguel Castro, Manuel Costa, and Tim Harris. Securing Software by Enforcing Data-
flow Integrity. In USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 2006.

David Champagne and Ruby B. Lee. Scalable Architectural Support for Trusted
Software. In International Symposium on High-Performance Computer Architecture
(HPCA), 2010.

Swarup Chandra, Vishal Karande, Zhigiang Lin, Latifur Khan, Murat Kantarcioglu,
and Bhavani Thuraisingham. Securing Data Analytics on SGX with Randomization.
In European Symposium on Research in Computer Security (ESORICS), 2017.

Nishanth Chandran, Divya Gupta, Aseem Rastogi, Rahul Sharma, and Shardul Tri-
pathi. EzPC: Programmable, Efficient, and Scalable Secure Two-Party Computation.

BIBLIOGRAPHY

Cryptology ePrint Archive. Report 2017/1109, 2017. https://eprint.iacr.org/
2017/1109. pdf.

[93] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav
Shacham, and Stefan Savage. Comprehensive Experimental Analyses of Auto-
motive Attack Surfaces. In USENIX Security Symposium, 2011.

[94] Guoxing Chen, Wenhao Wang, Tianyu Chen, Sanchuan Chen, Yingian Zhang,
XiaoFeng Wang, Ten-Hwang Lai, and Dongdai Lin. Racing in Hyperspace: Closing
Hyper-Threading Side Channels on SGX with Contrived Data Races. In IEEE
Symposium on Security and Privacy (IEEE S&P), 2018.

[95] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yingian Zhang, Zhiqgiang Lin, and
Ten H. Lai. SgxPectre: Stealing Intel Secrets from SGX Enclaves Via Speculative
Execution. In IEEE European Symposium on Security and Privacy (EuroS&P), 2019.

[96] Sanchuan Chen, Xiaokuan Zhang, Michael K. Reiter, and Yingian Zhang. Detecting
Privileged Side-Channel Attacks in Shielded Execution with Déja Vu. In ACM
ASIA Conference on Computer and Communications Security (ASIACCS), 2017.

[97] Shuo Chen, Jun Xu, Nithin Nakka, Zbigniew Kalbarczyk, and Ravishankar K.
Iyer. Defeating Memory Corruption Attacks via Pointer Taintedness Detection. In
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), 2005.

[98] Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and Ravishankar K. Iyer. Non-
control-data Attacks Are Realistic Threats. In USENIX Security Symposium, 2005.

[99] Ke Cheng, Yulong Shen, Yongzhi Wang, Liangmin Wang, Jianfeng Ma, Xionghong
Jiang, and Cuicui Su. Strongly Secure and Efficient Range Queries in Cloud
Databases under Multiple Keys. In Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM), 2019.

[100] Marco Chiappetta, Erkay Savas, and Cemal Yilmaz. Real Time Detection of Cache-
based Side-channel Attacks Using Hardware Performance Counters. Applied Soft
Computing, 49, 2016.

[101] Dwaine Clarke, Srinivas Devadas, Marten van Dijk, Blaise Gassend, and G. Edward
Suh. Incremental Multiset Hash Functions and Their Application to Memory
Integrity Checking. In Advances in Cryptology - ASIACRYPT, 2003.

[102] Jeroen V. Cleemput, Bart Coppens, and Bjorn De Sutter. Compiler Mitigations for
Time Attacks on Modern x86 Processors. ACM Transactions on Architecture and Code
Optimization, 8(4), 2012.

[103] John Clemens, Raj Pal, and Branden Sherrell. Runtime State Verification on
Resource-Constrained Platforms. In IEEE Military Communications Conference (MIL-
COM), 2018.

209

https://eprint.iacr.org/2017/1109.pdf
https://eprint.iacr.org/2017/1109.pdf

210

BIBLIOGRAPHY

[104] Mauro Conti, Roberto Di Pietro, Luigi Vincenzo Mancini, and Alessandro Mei.
Emergent Properties: Detection of the Node-capture Attack in Mobile Wireless
Sensor Networks. In ACM Conference on Security & Privacy in Wireless and Mobile
Networks (WiSec), 2008.

[105] David Cooper, Stefan Santesson, Stephen Farrell, Sharon Boeyen, Russell Housley,
and William Tim Polk. Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile. RFC 5280, Internet Engineering Task
Force (IETF), 2008. URL http://www.rfc-editor.org/rfc/rfc5280.txt.

[106] Bart Coppens, Ingrid Verbauwhede, Koen De Bosschere, and Bjorn De Sutter. Prac-
tical Mitigations for Timing-Based Side-Channel Attacks on Modern x86 Processors.
In IEEE Symposium on Security and Privacy (IEEE S&P), 2009.

[107] Manuel Costa, Jon Crowcroft, Miguel Castro, and Antony Rowstron. Can
we contain Internet worms? https://www.microsoft.com/en-us/research/
publication/can-we-contain-internet-worms/, 2004.

[108] Miguel B. Costa, Nuno O. Duarte, Nuno Santos, and Paulo Ferreira. TrUbi: A
System for Dynamically Constraining Mobile Devices Within Restrictive Usage
Scenarios. In International Symposium on Mobile Ad Hoc Networking and Computing
(Mobihoc), 2017.

[109] Victor Costan and Srinivas Devadas. Intel SGX Explained. Cryptology ePrint
Archive. Report 2016/086, 2016. https://eprint.iacr.org/2016/086.pdf.

[110] Victor Costan, Ilia A. Lebedev, and Srinivas Devadas. Sanctum: Minimal Hardware
Extensions for Strong Software Isolation. In USENIX Security Symposium, 2016.

[111] Andrei Costin, Jonas Zaddach, Aurélien Francillon, and Davide Balzarotti. A
Large-Scale Analysis of the Security of Embedded Firmwares. In USENIX Security
Symposium, 2014.

[112] Landon P. Cox and Peter M. Chen. Pocket Hypervisors: Opportunities and Chal-
lenges. In Workshop on Mobile Computing Systems and Applications (HotMobile),
2007.

[113] Stephen Crane, Andrei Homescu, Stefan Brunthaler, Per Larsen, and Michael Franz.
Thwarting Cache Side-Channel Attacks Through Dynamic Software Diversity. In
Annual Network and Distributed System Security Symposium (NDSS), 2015.

[114] Erol Sahin. Swarm Robotics: From Sources of Inspiration to Domains of Application.
In Swarm Robotics, 2005.

[115] Ang Cui and Salvatore J. Stolfo. A Quantitative Analysis of the Insecurity of
Embedded Network Devices: Results of a Wide-area Scan. In Annual Computer
Security Applications Conference (ACSAC), 2010.

http://www.rfc-editor.org/rfc/rfc5280.txt
https://www.microsoft.com/en-us/research/publication/can-we-contain-internet-worms/
https://www.microsoft.com/en-us/research/publication/can-we-contain-internet-worms/
https://eprint.iacr.org/2016/086.pdf

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

BIBLIOGRAPHY

Weidong Cui, Marcus Peinado, Zhilei Xu, and Ellick Chan. Tracking Rootkit Foot-
prints with a Practical Memory Analysis System. In USENIX Security Symposium,
2012.

Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. Searchable
Symmetric Encryption: Improved Definitions and Efficient Constructions. In ACM
SIGSAC Conference on Computer and Communications Security (CCS), 2006.

Christoffer Dall and Jason Nieh. KVM/ARM: The Design and Implementation of
the Linux ARM Hypervisor. In International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2014.

Fergus Dall, Gabrielle De Micheli, Thomas Eisenbarth, Daniel Genkin, Nadia
Heninger, Ahmad Moghimi, and Yuval Yarom. CacheQuote: Efficiently Recovering
Long-term Secrets of SGX EPID via Cache Attacks. Transactions on Cryptographic
Hardware and Embedded Systems, 2018.

Wilfried Daniels, Danny Hughes, Mahmoud Ammar, Bruno Crispo, Nelson
Matthys, and Wouter Joosen. SpV - the Security Microvisor: A Virtualisation-
based Security Middleware for the Internet of Things. In ACM/IFIP/USENIX
Middleware Conference: Industrial Track (Middleware), 2017.

Anupam Datta, Jason Franklin, Deepak Garg, and Dilsun Kaynar. A Logic of
Secure Systems and its Application to Trusted Computing. In IEEE Symposium on
Security and Privacy (IEEE S&P), 2009.

Lucas Davi, Alexandra Dmitrienko, Stefan Niirnberger, and Ahmad-Reza Sadeghi.
Gadge Me if You Can: Secure and Efficient Ad-hoc Instruction-level Randomization
for x86 and ARM. In ACM ASIA Conference on Computer and Communications Security
(ASIACCS), 2013.

Lucas Davi, Matthias Hanreich, Debayan Paul, Ahmad-Reza Sadeghi, Patrick
Koeberl, Dean Sullivan, Orlando Arias, and Yier Jin. HAFIX: Hardware-assisted
Flow Integrity Extension. In IEEE/ACM Design Automation Conference (DAC), 2015.

Matt Day, Giles Turner, and Natalia Drozdiak. Amazon Workers Are Listening to
What You Tell Alexa. https://www.bloomberg.com/news/articles/2019-04-10/
is-anyone-listening-to-you-on-alexa-a-global-team-reviews-audio, 2019.

Ruan de Clercq, Frank Piessens, Dries Schellekens, and Ingrid Verbauwhede. Secure
Interrupts on Low-End Microcontrollers. In Application-specific Systems, Architectures
and Processors (ASAP), 2014.

Ivan De Oliveira Nunes, Ghada Dessouky, Ahmad Ibrahim, Norrathep Rat-
tanavipanon, Ahmad-Reza Sadeghi, and Gene Tsudik. Towards Systematic Design
of Collective Remote Attestation Protocols. In IEEE International Conference on
Distributed Computing Systems (ICDCS), 2019.

211

https://www.bloomberg.com/news/articles/2019-04-10/is-anyone-listening-to-you-on-alexa-a-global-team-reviews-audio
https://www.bloomberg.com/news/articles/2019-04-10/is-anyone-listening-to-you-on-alexa-a-global-team-reviews-audio

212

BIBLIOGRAPHY

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

Ivan De Oliveira Nunes, Karim ElDefrawy, Norrathep Rattanavipanon, Michael
Steiner, and Gene Tsudik. VRASED: A Verified Hardware/Software Co-Design for
Remote Attestation. In USENIX Security Symposium, 2019.

Ioannis Demertzis, Stavros Papadopoulos, Odysseas Papapetrou, Antonios Deli-
giannakis, and Minos Garofalakis. Practical Private Range Search Revisited. In
International Conference on Management of Data (SIGMOD), 2016.

Ghada Dessouky, Shaza Zeitouni, Thomas Nyman, Andrew Paverd, Lucas Davi,
Patrick Koeberl, N. Asokan, and Ahmad-Reza Sadeghi. LO-FAT: Low-Overhead
Control Flow ATtestation in Hardware. In IEEE/ACM Design Automation Conference
(DAC), 2017.

Ghada Dessouky, Tigist Abera, Ahmad Ibrahim, and Ahmad-Reza Sadeghi. Lite-
HAX: Lightweight Hardware-Assisted Attestation of Program Execution. In Inter-
national Conference On Computer Aided Design (ICCAD), 2018.

Tim Dierks and Eric Rescorla. The Transport Layer Security (TLS) Protocol Version
1.2. RFC 5246, Internet Engineering Task Force (IETF), 2008. URL http://www.rfc-
editor.org/rfc/rfc5246.txt.

Daniel Dinu, Archanaa Santhana Krishnan, and Patrick Schaumont. SIA: Secure
Intermittent Architecture for Off-the-Shelf Resource-Constrained Microcontrollers.
In IEEE International Symposium on Hardware Oriented Security and Trust (HOST),
2019.

Danny Dolev and Andrew C. Yao. On the Security of Public Key Protocols. In
Symposium on Foundations of Computer Science (SFCS), 1981.

Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-Ghazaleh, and Dmitry
Ponomarev. Non-Monopolizable Caches: Low-Complexity Mitigation of Cache
Side Channel Attacks. ACM Transactions on Architecture and Code Optimization, 8(4),
2012.

Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter, Michael Naehrig,
and John Wernsing. CryptoNets: Applying Neural Networks to Encrypted Data
with High Throughput and Accuracy. In International Conference on Machine Learning
(ICML), 2016.

E. Betiil Durak, Thomas M. DuBuisson, and David Cash. What Else is Revealed
by Order-Revealing Encryption? In ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2016.

Jan-Erik Ekberg, Kari Kostiainen, and N. Asokan. The Untapped Potential of
Trusted Execution Environments on Mobile Devices. IEEE Security & Privacy, 12(4),
2014.

http://www.rfc-editor.org/rfc/rfc5246.txt
http://www.rfc-editor.org/rfc/rfc5246.txt

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

BIBLIOGRAPHY

Karim ElDefrawy and Gene Tsudik. Opinion: Advancing Remote Attestation via
Computer-aided Formal Verification of Designs and Synthesis of Executables. In
ACM Conference on Security & Privacy in Wireless and Mobile Networks (WiSec), 2019.

Karim ElDefrawy, Aurelien Francillon, Daniele Perito, and Gene Tsudik. SMART:
Secure and Minimal Architecture for (Establishing a Dynamic) Root of Trust. In
Annual Network and Distributed System Security Symposium (NDSS), 2012.

Karim ElDefrawy, Norrathep Rattanavipanon, and Gene Tsudik. HYDRA: Hybrid
Design for Remote Attestation (Using a Formally Verified Microkernel). In ACM
Conference on Security & Privacy in Wireless and Mobile Networks (WiSec), 2017.

Karim ElDefrawy, Norrathep Rattanavipanon, and Gene Tsudik. Fusing Hybrid
Remote Attestation with a Formally Verified Microkernel: Lessons Learned. In
IEEE/IFIP International Conference on Dependable Systems and Networks Workshops
(DSN-W), 2017.

European Parliament, Council of the European Union. Regulation (EU) 2016/679
of the European Parliament and of the Council of 27 April 2016 on the protection
of natural persons with regard to the processing of personal data and on the
free movement of such data, and repealing Directive 95/46/EC (General Data
Protection Regulation). http://data.europa.eu/eli/req/2016/679/0j, 2016.

Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE, and Dmitry Pono-
marev. BranchScope: A New Side-Channel Attack on Directional Branch Predictor.
In International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2018.

Sky Faber, Stanislaw Jarecki, Hugo Krawczyk, Quan Nguyen, Marcel Rosu, and
Michael Steiner. Rich Queries on Encrypted Data: Beyond Exact Matches. In
European Symposium on Research in Computer Security (ESORICS), 2015.

Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan]. Parno.
Komodo: Using Verification to Disentangle Secure-enclave Hardware from Software.
In ACM Symposium on Operating System Principles (SOSP), 2017.

Aurélien Francillon and Claude Castelluccia. Code Injection Attacks on Harvard-
architecture Devices. In ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2008.

Aurélien Francillon, Quan Nguyen, Kasper B. Rasmussen, and Gene Tsudik. A
Minimalist Approach to Remote Attestation. In Conference on Design, Automation &
Test in Europe (DATE), 2014.

Jessie Frazelle. Open Source Firmware. Communications of the ACM, 62(10), 2019.

Benny Fuhry, Raad Bahmani, Ferdinand Brasser, Florian Hahn, Florian Kerschbaum,
and Ahmad-Reza Sadeghi. HardIDX: Practical and Secure Index with SGX. In
Conference on Data and Applications Security and Privacy (DBSec), 2017.

213

http://data.europa.eu/eli/reg/2016/679/oj

214

BIBLIOGRAPHY

[150] Benny Fuhry, Raad Bahmani, Ferdinand Brasser, Florian Hahn, Florian Kerschbaum,
and Ahmad-Reza Sadeghi. HardIDX: Practical and Secure Index with SGX.
https://arxiv.org/abs/1703.04583, 2017.

[151] Benny Fuhry, Raad Bahmani, Ferdinand Brasser, Florian Hahn, Florian Kerschbaum,
and Ahmad-Reza Sadeghi. HardIDX: Practical and Secure Index with SGX in a
Malicious Environment. Journal of Computer Security, 26(5), 2018.

[152] Luis Garcia, Ferdinand Brasser, Mehmet H. Cintuglu, Ahmad-Reza Sadeghi, Osama
Mohammed, and Saman A. Zonouz. Hey, My Malware Knows Physics! Attacking
PLCs with Physical Model Aware Rootkit. In Annual Network and Distributed System
Security Symposium (NDSS), 2017.

[153] Ryan W. Gardner, Sujata Garera, and Aviel D. Rubin. Detecting Code Alteration
by Creating a Temporary Memory Bottleneck. IEEE Transactions on Information
Forensics and Security, 2009.

[154] Sanjam Garg, Payman Mohassel, and Charalampos Papamanthou. TWORAM: Effi-
cient Oblivious RAM in Two Rounds with Applications to Searchable Encryption.
In International Cryptology Conference (CRYPTO), 2016.

[155] John Garofalo, David Graff, Doug Paul, and David S. Pallett. CSR-LII (WSJo,1)
Complete. Linguistic Data Consortium, Philadelphia, USA, 2007.

[156] Xinyang Ge, Hayawardh Vijayakumar, and Trent Jaeger. SPROBES: Enforcing
Kernel Code Integrity on the TrustZone Architecture. In Mobile Security Technologies
(MOST), 2014.

[157] Craig Gentry. Fully Homomorphic Encryption Using Ideal Lattices. In ACM
Symposium on Theory of Computing (STOC), 2009.

[158] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic Evaluation of the
AES Circuit. In International Cryptology Conference (CRYPTO), 2012.

[159] Hamid Reza Ghaeini, Daniele Antonioli, Ferdinand Brasser, Ahmad-Reza Sadeghi,
and Nils Ole Tippenhauer. State-Aware Anomaly Detection for Industrial Control
Systems. In ACM SIGAPP Symposium On Applied Computing (SAC), 2018.

[160] Hamid Reza Ghaeini, Matthew Chan, Raad Bahmani, Ferdinand Brasser, Luis
Garcia, Jianying Zhou, Ahmad-Reza Sadeghi, Nils Ole Tippenhauer, and Saman
Zonouz. PAtt: Physics-based Attestation of Control Systems. In International
Symposium on Research in Attacks, Intrusions and Defenses (RAID), 2019.

[161] Girard, Olivier. openMSP430. http://opencores.org/project, openmsp430, 2009.

[162] Cristiano Giuffrida, Anton Kuijsten, and Andrew S. Tanenbaum. Enhanced Operat-
ing System Security Through Efficient and Fine-grained Address Space Random-
ization. In USENIX Security Symposium, 2012.

https://arxiv.org/abs/1703.04583
http://opencores.org/project,openmsp430

BIBLIOGRAPHY

[163] Cornelius Glackin, Gérard Chollet, Nazim Dugan, Nigel Cannings, Julie Wall,
Shahzaib Tahir, Indranil Ghosh Ray, and Muttukrishnan Rajarajan. Privacy Pre-
serving Encrypted Phonetic Search of Speech Data. In International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2017.

[164] Virgil Gligor. Establishing and Maintaining Root of Trust on Commodity Com-
puter Systems. In ACM ASIA Conference on Computer and Communications Security
(ASIACCS), 2019.

[165] Virgil Gligor and Maverick S. L. Woo. Establishing Software Root of Trust Uncon-
ditionally. In Annual Network and Distributed System Security Symposium (NDSS),
2019.

[166] GlobalPlatform, Inc. TEE Management Framework (Version 1.0). https://
www.globalplatform.org/specificationform.asp?fid=7866, 2016.

[167] GlobalPlatform, Inc. Introduction to Trusted Execution Environments.
https://globalplatform.org/wp-content/uploads/2018/05/Introduction-
to-Trusted-Execution-Environment-15May2018.pdf, 2018.

[168] Oded Goldreich. Towards a Theory of Software Protection and Simulation by
Oblivious RAMs. In ACM Symposium on Theory of Computing (STOC), 1987.

[169] Oded Goldreich and Rafail Ostrovsky. Software Protection and Simulation on
Oblivious RAMs. Journal of the ACM, 1996.

[170] Michael T. Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and Roberto Tamas-
sia. Privacy-Preserving Group Data Access via Stateless Oblivious RAM Simulation.
In ACM Symposium on Discrete Algorithms (SODA), 2012.

[171] Google. Zircon. https://fuchsia.dev/fuchsia-src/zircon, 2018.
[172] Google. Android. https://www.android.com/, 2019.

[173] Johannes Gotzfried, Tilo Miiller, Ruan de Clercq, Pieter Maene, Felix C. Freiling,
and Ingrid Verbauwhede. Soteria: Offline Software Protection within Low-cost
Embedded Devices. In Annual Computer Security Applications Conference (ACSAC),
2015.

[174] Johannes Gotzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Miiller. Cache
Attacks on Intel SGX. In European Workshop on System Security (EuroSec), 2017.

[175] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Translation Leak-
aside Buffer: Defeating Cache Side-channel Protections with TLB Attacks. In
USENIX Security Symposium, 2018.

[176] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Translation Leak-
aside Buffer: Defeating Cache Side-channel Protections with TLB Attacks. In
USENIX Security Symposium, 2018.

215

https://www.globalplatform.org/specificationform.asp?fid=7866
https://www.globalplatform.org/specificationform.asp?fid=7866
https://globalplatform.org/wp-content/uploads/2018/05/Introduction-to-Trusted-Execution-Environment-15May2018.pdf
https://globalplatform.org/wp-content/uploads/2018/05/Introduction-to-Trusted-Execution-Environment-15May2018.pdf
https://fuchsia.dev/fuchsia-src/zircon
https://www.android.com/

216

BIBLIOGRAPHY

[177] Alexey Gribov, Dhinakaran Vinayagamurthy, and Sergey Gorbunov. StealthDB: a
Scalable Encrypted Database with Full SQL Query Support. Proceedings on Privacy
Enhancing Technologies, 2019.

[178] William G. Griswold, Macneil Shonle, Kevin Sullivan, Yuanyuan Song, Nishit
Tewari, Yuanfang Cai, and Hridesh Rajan. Modular Software Design with Cross-
cutting Interfaces. IEEE Software, 23, 2006.

[179] Paul Grubbs, Kevin Sekniqi, Vincent Bindschaedler, Muhammad Naveed, and
Thomas Ristenpart. Leakage-Abuse Attacks against Order-Revealing Encryption.
Cryptology ePrint Archive. Report 2016/895, 2016. https://eprint.iacr.org/
2016/895.pdf.

[180] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache Template Attacks:
Automating Attacks on Inclusive Last-Level Caches. In USENIX Security Symposium,
2015.

[181] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard.
Flush+Flush: A Fast and Stealthy Cache Attack. In Conference on Detection of
Intrusions and Malware and Vulnerability Assessment (DIMVA), 2016.

[182] Daniel Gruss, Julian Lettner, Felix Schuster, Olya Ohrimenko, Istvan Haller, and
Manuel Costa. Strong and Efficient Cache Side-Channel Protection using Hardware
Transactional Memory. In USENIX Security Symposium, 2017.

[183] Jago Gyselinck, Jo Van Bulck, Frank Piessens, and Raoul Strackx. Off-Limits:
Abusing Legacy x86 Memory Segmentation to Spy on Enclaved Execution. In
Engineering Secure Software and Systems (ESSo0S), 2018.

[184] Marcus Hahnel, Weidong Cui, and Marcus Peinado. High-Resolution Side Channels
for Untrusted Operating Systems. In USENIX Annual Technical Conference (ATC),
2017.

[185] Nadia Heninger and Hovav Shacham. Reconstructing RSA Private Keys from
Random Key Bits. In International Cryptology Conference (CRYPTO), 2009.

[186] Andri Puspo Heriyanto. Procedures And Tools For Acquisition And Analysis Of
Volatile Memory On Android Smartphones. In Australian Digital Forensics Conference
(ADF), 2013.

[187] Alex Hern. Apple contractors ‘regularly hear confidential details” on Siri recordings.
https://www.theguardian.com/technology/2019/jul/26/apple-contractors-
regularly-hear-confidential-details-on-siri-recordings, 2019.

[188] Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi. CryptoDL: Deep Neural
Networks over Encrypted Data. https://arxiv.org/abs/1711.05189, 2017.

[189] Stephan Heuser, Adwait Nadkarni, William Enck, and Ahmad-Reza Sadeghi. ASM:
A Programmable Interface for Extending Android Security. In USENIX Security
Symposium, 2014.

https://eprint.iacr.org/2016/895.pdf
https://eprint.iacr.org/2016/895.pdf
https://www.theguardian.com/technology/2019/jul/26/apple-contractors-regularly-hear-confidential-details-on-siri-recordings
https://www.theguardian.com/technology/2019/jul/26/apple-contractors-regularly-hear-confidential-details-on-siri-recordings
https://arxiv.org/abs/1711.05189

BIBLIOGRAPHY

[190] Fiona Higgins, Allan Tomlinson, and Keith M. Martin. Threats to the Swarm:
Security Considerations for Swarm Robotics. International Journal on Advances in
Security, pages 288-297, 2009.

[191] Jason D. Hiser, Anh Nguyen-Tuong, Michele Co, Matthew Hall, and Jack W.
Davidson. ILR: Where’d My Gadgets Go? In IEEE Symposium on Security and
Privacy (IEEE S&P), 2012.

[192] Thang Hoang, Muslum Ozgur Ozmen, Yeongjin Jang, and Attila Yavuz. Hardware-
Supported ORAM in Effect: Practical Oblivious Search and Update on Very Large
Dataset. Proceedings on Privacy Enhancing Technologies, 2019.

[193] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade, and Juan
Del Cuvillo. Using Innovative Instructions to Create Trustworthy Software Solu-
tions. In Workshop on Hardware and Architectural Support for Security and Privacy
(HASP), 2013.

[194] Owen S. Hofmann, Alan M. Dunn, Sangman Kim, Indrajit Roy, and Emmett Witchel.
Ensuring Operating System Kernel Integrity with OSck. In International Conference
on Architectural Support for Programming Languages and Operating Systems (ASPLOS),
2011.

[195] George Hotz. Towelroot Android Root Exploit. https://towelroot.com/, 2014.

[196] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek Saxena,
and Zhenkai Liang. Data-Oriented Programming: On the Expressiveness of Non-
control Data Attacks. In IEEE Symposium on Security and Privacy (IEEE S&P),
2016.

[197] Zhichao Hua, Jinyu Gu, Yubin Xia, Haibo Chen, Binyu Zang, and Haibing Guan.
vTZ: Virtualizing ARM TrustZone. In USENIX Security Symposium, 2017.

[198] Tyler Hunt, Congzheng Song, Reza Shokri, Vitaly Shmatikov, and Emmett Witchel.
Chiron: Privacy-preserving Machine Learning as a Service. https://arxiv.org/
abs/1803.05961, 2018.

[199] Ahmad Ibrahim, Ahmad-Reza Sadeghi, and Gene Tsudik. DARPA: Device Attesta-
tion Resilient against Physical Attacks. In ACM Conference on Security & Privacy in
Wireless and Mobile Networks (WiSec), 2016.

[200] Ahmad Ibrahim, Ahmad-Reza Sadeghi, and Shaza Zeitouni. SeED: Secure Non-
interactive Attestation for Embedded Devices. In ACM Conference on Security &
Privacy in Wireless and Mobile Networks (WiSec), 2017.

[201] Ahmad Ibrahim, Ahmad-Reza Sadeghi, and Gene Tsudik. US-AID: Unattended
Scalable Attestation of IoT Devices. In IEEE International Symposium on Reliable
Distributed Systems (SRDS), 2018.

217

https://towelroot.com/
https://arxiv.org/abs/1803.05961
https://arxiv.org/abs/1803.05961

218

BIBLIOGRAPHY

[202] Alberto Garcia Illera and Javier Vazquez Vidal. Lights Off! The Darkness of the
Smart Meters. In Blackhat Europe, 2014.

[203] Intel Corporation. = An Overview of Cache. https://web.archive.org/
web/20070211091515/http://download.intel.com/design/intarch/papers/
cache6.pdf, 1997.

[204] Intel Corporation. Intel Trusted Execution Technology (Intel TXT) — Software
Development Guide. https://www.intel.com/content/dam/www/public/us/en/
documents/guides/intel-txt-software-development-guide.pdf, 2009.

[205] Intel Corporation. Intel 64 and IA-32 Architectures Optimization Reference
Manual. http://www.intel.com/content/dam/www/public/us/en/documents/
manuals/64-ia-32-architectures-optimization-manual.pdf, 2012.

[206] Intel Corporation. Intel Software Guard Extensions Programming Ref-
erence. https://software.intel.com/sites/default/files/managed/48/88/
329298-002.pdf, 2014.

[207] Intel Corporation. Intel(R) Software Guard Extensions for Linux* OS. https://
github.com/intel/linux-sgx/, 2017.

[208] Intel Corporation. Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual. http://www-ssl.intel.com/content/www/us/en/processors/
architectures-software-developer-manuals.html, 2017.

[209] Intel Corporation. Deep Dive: Intel Analysis of Li Terminal Fault.
https://software.intel.com/security-software-guidance/insights/deep-
dive-intel-analysis-11l-terminal-fault, 2018.

[210] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. SSA: A Shared Cache Attack
That Works across Cores and Defies VM Sandboxing — and Its Application to AES.
In IEEE Symposium on Security and Privacy (IEEE S&P), 2015.

[211] Pawan Jadia and Anish Mathuria. Efficient Secure Aggregation in Sensor Networks.
In Efficient Secure Aggregation in Sensor Networks (HiPC), 2004.

[212] Hassaan Janjua, Mahmoud Ammar, Bruno Crispo, and Danny Hughes. Towards a
Standards-compliant Pure-software Trusted Execution Environment for Resource-
constrained Embedded Devices. In System Software for Trusted Execution (SysTEX),
2019.

[213] Joint Test Action Group (JTAG). 1149.1-2013 - IEEE Standard for Test Access
Port and Boundary-scan Architecture. http://standards.ieee.org/findstds/
standard/1149.1-2013.html, 2013.

[214] Richard W. M. Jones and Paul H. J. Kelly. Backwards-Compatible Array Bounds
Checking for C with Very Low Overhead. In Automated and Algorithmic Debugging
(AADEBUG), 1997.

https://web.archive.org/web/20070211091515/http://download.intel.com/design/intarch/papers/cache6.pdf
https://web.archive.org/web/20070211091515/http://download.intel.com/design/intarch/papers/cache6.pdf
https://web.archive.org/web/20070211091515/http://download.intel.com/design/intarch/papers/cache6.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/guides/intel-txt-software-development-guide.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/guides/intel-txt-software-development-guide.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://github.com/intel/linux-sgx/
https://github.com/intel/linux-sgx/
http://www-ssl.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www-ssl.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-l1-terminal-fault
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-l1-terminal-fault
http://standards.ieee.org/findstds/standard/1149.1-2013.html
http://standards.ieee.org/findstds/standard/1149.1-2013.html

BIBLIOGRAPHY

[215] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. GAZELLE:
A Low Latency Framework for Secure Neural Network Inference. In USENIX
Security Symposium, 2018.

[216] Samuel C. Kendall. Bcc: run-time checking for C programs. In USENIX Summer
Conference, 1983.

[217] Rick Kennell and Leah H. Jamieson. Establishing the Genuinity of Remote Com-
puter Systems. In USENIX Security Symposium, 2003.

[218] Georgios Keramidas, Alexandros Antonopoulos, Dimitrios N. Serpanos, and Ste-
fanos Kaxiras. Non deterministic caches: a simple and effective defense against
side channel attacks. Design Automation for Embedded Systems, 12(3), 2008.

[219] Florian Kerschbaum and Axel Schropfer. Optimal Average-Complexity Ideal-
Security Order-Preserving Encryption. In ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2014.

[220] Chongkyung Kil, Jinsuk Jun, Christopher Bookholt, Jun Xu, and Peng Ning. Ad-
dress Space Layout Permutation (ASLP): Towards Fine-Grained Randomization of
Commodity Software. In Annual Computer Security Applications Conference (ACSAC),
2006.

[221] Chongkyung Kil, Emre C. Sezer, Ahmed M. Azab, Peng Ning, and Xiaolan Zhang.
Remote Attestation to Dynamic System Properties: Towards Providing Complete
System Integrity Evidence. In IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 2009.

[222] Taehoon Kim, Joongun Park, Jaewook Woo, Seungheun Jeon, and Jaehyuk Huh.
ShieldStore: Shielded In-memory Key-value Storage with SGX. In European Confer-
ence on Computer Systems (EuroSys), 2019.

[223] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray, Thomas Sewell,
Rafal Kolanski, and Gernot Heiser. Comprehensive Formal Verification of an OS
Microkernel. ACM Transactions on Computer Systems, 32(1), 2014.

[224] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis. In
International Cryptology Conference (CRYPTO), 1999.

[225] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. Spectre Attacks: Exploiting Speculative Execution. In IEEE
Symposium on Security and Privacy (IEEE S&P), 2019.

[226] Patrick Koeberl, Steffen Schulz, Ahmad-Reza Sadeghi, and Vijay Varadharajan.
TrustLite: A Security Architecture for Tiny Embedded Devices. In European Confer-
ence on Computer Systems (EuroSys), 2014.

219

220

BIBLIOGRAPHY

[227] Patrick Koeberl, Vinay Phegade, Anand Rajan, Thomas Schneider, Steffen Schulz,
and Maria Zhdanova. Time to Rethink: Trust Brokerage Using Trusted Execu-
tion Environments. In International Conference on Trust and Trustworthy Computing
(TRUST), 2015.

[228] Florian Kohnhéduser and Stefan Katzenbeisser. Secure Code Updates for Mesh
Networked Commodity Low-End Embedded Devices. In European Symposium on
Research in Computer Security (ESORICS), 2016.

[229] Florian Kohnhéauser, Niklas Biischer, Sebastian Gabmeyer, and Stefan Katzenbeisser.
SCAPI: A Scalable Attestation Protocol to Detect Software and Physical Attacks. In
ACM Conference on Security & Privacy in Wireless and Mobile Networks (WiSec), 2017.

[230] Joonho Kong, Farinaz Koushanfar, Praveen K. Pendyala, Ahmad-Reza Sadeghi, and
Christian Wachsmann. PUFatt: Embedded Platform Attestation Based on Novel
Processor-Based PUFs. In IEEE/ACM Design Automation Conference (DAC), 2014.

[231] Robert Konighofer. A Fast and Cache-Timing Resistant Implementation of the AES.
In The Cryptographers” Track at the RSA Conference on Topics in Cryptology (CT-RSA),
2008.

[232] Tim Kornau. Return Oriented Programming for the ARM Architec-
ture. https://static.googleusercontent.com/media/www.zynamics.com/de/
/downloads/kornau-tim- -diplomarbeit- - rop.pdf, 2009.

[233] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi Kohno,
Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav
Shacham, and Stefan Savage. Experimental Security Analysis of a Modern Auto-
mobile. In IEEE Symposium on Security and Privacy (IEEE S&P), 2010.

[234] Kari Kostiainen, Jan-Erik Ekberg, N. Asokan, and Aarne Rantala. On-board Cre-
dentials with Open Provisioning. In ACM ASIA Conference on Computer and Commu-
nications Security (ASIACCS), 2009.

[235] Nikos Koutroumpouchos, Christoforos Ntantogian, Sofia Menesidou, Kaitai Liang,
Panagiotis Gouvas, Christos Xenakis, and Thanassis Giannetsos. Secure Edge
Computing with Lightweight Control-Flow Property-based Attestation. In IEEE
Conference on Network Softwarization (NetSoft), 2019.

[236] Xeno Kovah, Corey Kallenberg, Chris Weathers, Amy Herzog, Matthew Albin, and
John Butterworth. New Results for Timing-Based Attestation. In IEEE Symposium
on Security and Privacy (IEEE S&P), 2011.

[237] Hugo Krawczyk, Mihir Bellare, and Ran Canetti. HMAC: Keyed-Hashing for Mes-
sage Authentication. RFC 2104, Internet Engineering Task Force (IETF), February
1997. URL https://tools.ietf.org/html/rfc2104.

https://static.googleusercontent.com/media/www.zynamics.com/de//downloads/kornau-tim--diplomarbeit--rop.pdf
https://static.googleusercontent.com/media/www.zynamics.com/de//downloads/kornau-tim--diplomarbeit--rop.pdf
https://tools.ietf.org/html/rfc2104

BIBLIOGRAPHY

[238] Kubilay Ahmet Kiiciik, Andrew Paverd, Andrew Martin, N. Asokan, Andrew
Simpson, and Robin Ankele. Exploring the Use of Intel SGX for Secure Many-Party
Applications. In System Software for Trusted Execution (SysTEX), 2016.

[239] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus
Peinado. Inferring Fine-grained Control Flow Inside SGX Enclaves with Branch
Shadowing. In USENIX Security Symposium, 2017.

[240] Matthew Lentz, Rijurekha Sen, Peter Druschel, and Bobby Bhattacharjee. SeCloak:
ARM Trustzone-based Mobile Peripheral Control. In International Conference on
Mobile Systems, Applications, and Services (MobiSys), 2018.

[241] Matej Lexa and Giorgio Valle. PRIMEX: Rapid identification of oligonucleotide
matches in whole genomes. Bioinformatics, 2003. https://www.researchgate.net/
publication/233734306_mex-099tar.

[242] Wenhao Li, Haibo Li, Haibo Chen, and Yubin Xia. AdAttester: Secure Online
Mobile Advertisement Attestation Using TrustZone. In International Conference on
Mobile Systems, Applications, and Services (MobiSys), 2015.

[243] Yanlin Li, Jonathan M. McCune, and Adrian Perrig. SBAP: Software-Based Attesta-
tion for Peripherals. In International Conference on Trust and Trustworthy Computing
(TRUST), 2010.

[244] Yanlin Li, Jonathan M. McCune, and Adrian Perrig. VIPER: Verifying the In-
tegrity of PERipherals Firmware. In ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2011.

[245] Linaro. Open Portable Trusted Execution Environment. https://www.op-tee.org/,
2018.

[246] Linaro. OP-TEE documentation — Pager. https://optee.readthedocs.io/en/
latest/architecture/core.html#pager, 2019.

[247] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. Meltdown: Reading Kernel Memory from User Space.
In USENIX Security Symposium, 2018.

[248] Lionel Litty, H. Andrés Lagar-Cavilla, and David Lie. Hypervisor Support for
Identifying Covertly Executing Binaries. In USENIX Security Symposium, 2008.

[249] Chang Liu, Michael Hicks, and Elaine Shi. Memory Trace Oblivious Program
Execution. In IEEE Computer Security Foundations Symposium (CSF), 2013.

[250] Chang Liu, Austin Harris, Martin Maas, Michael Hicks, Mohit Tiwari, and Elaine
Shi. GhostRider: A Hardware-Software System for Memory Trace Oblivious Com-
putation. In International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), 2015.

221

https://www.researchgate.net/publication/233734306_mex-099tar
https://www.researchgate.net/publication/233734306_mex-099tar
https://www.op-tee.org/
https://optee.readthedocs.io/en/latest/architecture/core.html#pager
https://optee.readthedocs.io/en/latest/architecture/core.html#pager

222

BIBLIOGRAPHY

[251] Fangfei Liu and Ruby B. Lee. Random Fill Cache Architecture. In IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2014.

[252] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. Last-Level
Cache Side-Channel Attacks Are Practical. In IEEE Symposium on Security and
Privacy (IEEE S&P), 2015.

[253] He Liu, Stefan Saroiu, Alec Wolman, and Himanshu Raj. Software Abstractions
for Trusted Sensors. In International Conference on Mobile Systems, Applications, and
Services (MobiSys), 2012.

[254] Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. Oblivious Neural Network Predic-
tions via MiniONN transformations. In ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2017.

[255] Jing Liu, Yang Xiao, Shuhui Li, Wei Liang, and C. L. Philip Chen. Cyber Security
and Privacy Issues in Smart Grids. IEEE Communications Surveys Tutorials, pages
981—997, 2012.

[256] LLVM Foundation. The LLVM Compiler Infrastructure. https://1lvm.org, 2019.

[257] Yanbin Lu. Privacy-preserving Logarithmic-time Search on Encrypted Data in
Cloud. In Annual Network and Distributed System Security Symposium (NDSS), 2012.

[258] Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Krste Asanovic,
John Kubiatowicz, and Dawn Song. PHANTOM: Practical Oblivious Computation
in a Secure Processor. In ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2013.

[259] Pieter Maene, Johannes Gotzfried, Ruan de Clercq, Tilo Miiller, Felix C. Freiling,
and Ingrid Verbauwhede. Hardware-Based Trusted Computing Architectures for
Isolation and Attestation. IEEE Transactions on Computers, 67(3), 2018.

[260] Umesh Maheshwari, Radek Vingralek, and William Shapiro. How to Build a Trusted
Database System on Untrusted Storage. In USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2000.

[261] Ahmed Mahmoud, Ulrich Rithrmair, Mehrdad Majzoobi, and Farinaz Koushanfar.
Combined Modeling and Side Channel Attacks on Strong PUFs. Cryptology ePrint
Archive. Report 2013/632, 2013. https://eprint.iacr.org/2013/632.pdf.

[262] Maja Malenko and Marcel Baunach. Hardware/Software Co-designed Peripheral
Protection in Embedded Devices. In IEEE International Conference on Industrial Cyber
Physical Systems (ICPS), 2019.

[263] Avradip Mandal, John C. Mitchell, Hart Montgomery, and Arnab Roy. Data
Oblivious Genome Variants Search on Intel SGX. In Data Privacy Management,
Cryptocurrencies and Blockchain Technology (DPM), 2018.

https://llvm.org
https://eprint.iacr.org/2013/632.pdf

BIBLIOGRAPHY

[264] Jonathan M. McCune, Bryan J. Parno, Adrian Perrig, Michael K Reiter, and Hiroshi
Isozaki. Flicker: An Execution Infrastructure for TCB Minimization. In European
Conference on Computer Systems (EuroSys), 2008.

[265] Jonathan M. McCune, Bryan J. Parno, Adrian Perrig, Michael K. Reiter, and Arvind
Seshadri. How Low Can You Go? Recommendations for Hardware-Supported
Minimal TCB Code Execution. In International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2008.

[266] Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam Datta, Virgil
Gligor, and Adrian Perrig. TrustVisor: Efficient TCB Reduction and Attestation. In
IEEE Symposium on Security and Privacy (IEEE S&P), 2010.

[267] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday R. Savagaonkar. Innovative Instructions and
Software Model for Isolated Execution. In Workshop on Hardware and Architectural
Support for Security and Privacy (HASP), 2013.

[268] Carlo Maria Medaglia and Alexandru Serbanati. An Overview of Privacy and
Security Issues in the Internet of Things. In The Internet of Things, pages 389-395.
Springer, 2010.

[269] Mary Meeker. 2015 Internet Trends. https://www.kleinerperkins.com/
perspectives/2015-internet-trends, 2015.

[270] Lorenz Meier, Dominik Honegger, and Marc Pollefeys. PX4: A Node-Based Multi-
threaded Open Source Robotics Framework for Deeply Embedded Platforms. In
IEEE International Conference on Robotics and Automation (ICRA), 2015.

[271] Mellanox Technologies Inc. Introduction to InfiniBand. http://www.mellanox.com/
blog/2014/09/introduction-to-infiniband, September 2014.

[272] Microsoft. Microsoft Intune documentation. https://docs.microsoft.com/en-us/
intune/, 2019.

[273] Alex Migicovsky, Zakir Durumeric, Jeff Ringenberg, and J. Alex Halderman. Out-
smarting Proctors with Smartwatches: A Case Study on Wearable Computing
Security. In Financial Cryptography and Data Security (FC), 2014.

[274] Charlie Miller and Christopher Valasek. A Survey of Remote Automotive Attack
Surfaces. In Blackhat USA, 2014.

[275] Saeed Mirzamohammadi, Justin A. Chen, Ardalan Amiri Sani, Sharad Mehrotra,
and Gene Tsudik. Ditio: Trustworthy Auditing of Sensor Activities in Mobile & IoT
Devices. In ACM Conference on Embedded Networked Sensor Systems (SenSys), 2017.

[276] Pratyush Mishra, Rishabh Poddar, Jerry Chen, Alessandro Chiesa, and Raluca
Popa. Oblix: An Efficient Oblivious Search Index. In IEEE Symposium on Security
and Privacy (IEEE S&P), 2018.

223

https://www.kleinerperkins.com/perspectives/2015-internet-trends
https://www.kleinerperkins.com/perspectives/2015-internet-trends
http://www.mellanox.com/blog/2014/09/introduction-to-infiniband
http://www.mellanox.com/blog/2014/09/introduction-to-infiniband
https://docs.microsoft.com/en-us/intune/
https://docs.microsoft.com/en-us/intune/

224

BIBLIOGRAPHY

[277] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. CacheZoom: How SGX
Amplifies The Power of Cache Attacks. In Conference on Cryptographic Hardware and
Embedded Systems (CHES), 2017.

[278] Ahmad Moghimi, Thomas Eisenbarth, and Berk Sunar. MemJam: A False De-
pendency Attack Against Constant-Time Crypto Implementations in SGX. In The
Cryptographers’ Track at the RSA Conference on Topics in Cryptology (CT-RSA), 2018.

[279] Payman Mohassel and Yupeng Zhang. SecureML: A System for Scalable Privacy-
Preserving Machine Learning. In IEEE Symposium on Security and Privacy (IEEE
S&P), 2017.

[280] National Institute of Standards and Technology. Digital Signature Standard (DSS).
https://doi.org/10.6028/NIST.FIPS.186-5-draft, 2019.

[281] Muhammad Naveed. The Fallacy of Composition of Oblivious RAM and
Searchable Encryption. Cryptology ePrint Archive. Report 2015/668, 2015.
https://eprint.iacr.org/2015/668.pdf.

[282] Muhammad Naveed, Seny Kamara, and Charles V. Wright. Inference Attacks on
Property-Preserving Encrypted Databases. In ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2015.

[283] George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley
Weimer. CCured: Type-safe Retrofitting of Legacy Software. ACM Transactions on
Programming Languages and Systems, 277(3), 2005.

[284] Michael Neve, Jean-Pierre Seifert, and Zhenghong Wang. A Refined Look at
Bernstein’s AES Side-Channel Analysis. In ACM ASIA Conference on Computer and
Communications Security (ASIACCS), 2006.

[285] Zhenyu Ning and Fengwei Zhang. Ninja: Towards Transparent Tracing and De-
bugging on ARM. In USENIX Security Symposium, 2017.

[286] Job Noorman, Pieter Agten, Wilfried Daniels, Raoul Strackx, Anthony Van Her-
rewege, Christophe Huygens, Bart Preneel, Ingrid Verbauwhede, and Frank
Piessens. Sancus: Low-cost Trustworthy Extensible Networked Devices with a
Zero-software Trusted Computing Base. In USENIX Security Symposium, 2013.

[287] Job Noorman, Jo Van Bulck, Jan Tobias Miihlberg, Frank Piessens, Pieter Maene,
Bart Preneel, Ingrid Verbauwhede, Johannes Gotzfried, Tilo Miiller, and Felix
Freiling. Sancus 2.0: A Low-Cost Security Architecture for IoT Devices. ACM
Transactions on Privacy and Security, 20(3), 2017.

[288] Job Noorman, Jan Tobias Miihlberg, and Frank Piessens. Authentic Execution of
Distributed Event-Driven Applications with a Small TCB. In International Workshop
on Security and Trust Management (STM), 2017.

https://doi.org/10.6028/NIST.FIPS.186-5-draft
https://eprint.iacr.org/2015/668.pdf

BIBLIOGRAPHY

[289] NXP Semiconductors. AN4581 —i.MX Secure Boot on HABv4 Supported Devices.
https://www.nxp.com/docs/en/application-note/AN4581.pdf, 2020.

[290] Olga Ohrimenko, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Markulf
Kohlweiss, and Divya Sharma. Observing and Preventing Leakage in MapReduce.
In ACM SIGSAC Conference on Computer and Communications Security (CCS), 2015.

[291] Olga Ohrimenko, Felix Schuster, Cedric Fournet, Aasthaa Meht, Sebastian Nowozin,
Kapil Vaswani, and Manuel Costa. Oblivious Multi-Party Machine Learning on
Trusted Processors. In USENIX Security Symposium, 2016.

[292] Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark Silberstein, and Christof
Fetzer. Varys: Protecting SGX Enclaves from Practical Side-Channel Attacks. In
USENIX Annual Technical Conference (ATC), 2018.

[293] Oracle. Java Card - The Open Application Platform for Secure Ele-
ments. https://www.oracle.com/technetwork/java/javacard/overview/java-
card-data-sheet-19-01-07-5250140.pdf, 2019.

[2094] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks and Countermea-
sures: The Case of AES. In The Cryptographers” Track at the RSA Conference on Topics
in Cryptology (CT-RSA), 2006.

[295] Emmanuel Owusu, Jorge Guajardo, Jonathan M. McCune, Jim Newsome, Adrian
Perrig, and Amit Vasudevan. OASIS: On Achieving a Sanctuary for Integrity and
Secrecy on Untrusted Platforms. In ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2013.

[296] Daniel Page. Defending Against Cache Based Side-Channel Attacks. Information
Security Technical Report, 8(1), 2003.

[297] Daniel Page. Partitioned Cache Architecture as a Side-Channel Defence Mechanism.
Cryptology ePrint Archive. Report 2005/280, 2005. http://eprint.iacr.org/2005/
280.pdf.

[298] Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis. Smashing the
Gadgets: Hindering Return-Oriented Programming Using In-Place Code Random-
ization. In IEEE Symposium on Security and Privacy (IEEE S&P), 2012.

[299] Haemin Park, Dongwon Seo, Heejo Lee, and Adrian Perrig. SMATT: Smart Meter
Attestation Using Multiple Target Selection and Copy-Proof Memory. In Computer
Science and its Applications, 2012.

[300] Bryan J. Parno. Bootstrapping Trust in a “Trusted” Platform. In Workshop on Hot
Topics in Security (HotSec), 2008.

[301] Bryan J. Parno, Jonathan M. McCune, and Adrian Perrig. Bootstrapping Trust in
Commodity Computers. In IEEE Symposium on Security and Privacy (IEEE S&P),
2010.

225

https://www.nxp.com/docs/en/application-note/AN4581.pdf
https://www.oracle.com/technetwork/java/javacard/overview/java-card-data-sheet-19-01-07-5250140.pdf
https://www.oracle.com/technetwork/java/javacard/overview/java-card-data-sheet-19-01-07-5250140.pdf
http://eprint.iacr.org/2005/280.pdf
http://eprint.iacr.org/2005/280.pdf

226

BIBLIOGRAPHY

[302] Manas A. Pathak, Bhiksha Raj, Shantanu Rane, and Paris Smaragdis. Privacy-
Preserving Speech Processing: Cryptographic and String-Matching Frameworks
Show Promise. IEEE Signal Processing Magazine, 30(2), 2013.

[303] Andrew Paverd, Marcus Volp, Ferdinand Brasser, Matthias Schunter, N. Asokan,
Ahmad-Reza Sadeghi, Paulo Esteves-Verissimo, Andreas Steininger, and Thorsten
Holz. Sustainable Security & Safety: Challenges and Opportunities. https://
www.icri-cars.org/icri-cars/vision/, 2018.

[304] Andrew Paverd, Marcus Volp, Ferdinand Brasser, Matthias Schunter, N. Asokan,
Ahmad-Reza Sadeghi, Paulo Esteves-Verissimo, Andreas Steininger, and Thorsten
Holz. Sustainable Security & Safety: Challenges and Opportunities. In International
Workshop on Security and Dependability of Critical Embedded Real-Time Systems (CERTS),
2019.

[305] PaX Team. PaX address space layout randomization (ASLR). http://
pax.grsecurity.net/docs/aslr.txt, 2001.

[306] Mathias Payer. HexPADS: A Platform to Detect “Stealth” Attacks. In Engineering
Secure Software and Systems (ESS0S), 2016.

[307] Siani Pearson, Marco Casassa Mont, and Stephen Crane. Persistent and Dynamic
Trust: Analysis and the Related Impact of Trusted Platforms. In Trust Management,
2005.

[308] Colin Percival. Cache Missing for Fun and Profit. In The Technical BSD Conference
(BSDCan), 2005.

[309] Daniele Perito and Gene Tsudik. Secure Code Update for Embedded Devices via
Proofs of Secure Erasure. In European Symposium on Research in Computer Security
(ESORICS), 2010.

[310] Nick L. Petroni and Michael Hicks. Automated Detection of Persistent Kernel
Control-flow Attacks. In ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2007.

[311] Nick L. Petroni, Timothy Fraser, Jesus Molina, and William A. Arbaugh. Copilot
- a Coprocessor-based Kernel Runtime Integrity Monitor. In USENIX Security
Symposium, 2004.

[312] Nick L. Petroni, Timothy Fraser, AAron Walters, and William A. Arbaugh. An
Architecture for Specification-Based Detection of Semantic Integrity Violations in
Kernel Dynamic Data. In USENIX Security Symposium, 2006.

[313] Jonathan Pollet and Joe Cummins. Electricity for Free? The Dirty Underbelly of
SCADA and Smart Meters. In Blackhat USA, 2010.

[314] Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Balakr-
ishnan. CryptDB: Protecting Confidentiality with Encrypted Query Processing . In
ACM Symposium on Operating System Principles (SOSP), 2011.

https://www.icri-cars.org/icri-cars/vision/
https://www.icri-cars.org/icri-cars/vision/
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt

BIBLIOGRAPHY

[315] Bernardo Portela, Manuel Barbosa, Guillaume Scerri, Bogdan Warinschi, Raad
Bahmani, Ferdinand Brasser, and Ahmad-Reza Sadeghi. Secure Multiparty Com-
putation from SGX. In Financial Cryptography and Data Security (FC), 2017.

[316] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Burget, Ondrej Glembek,
Nagendra Goel, Mirko Hannemann, Petr Motlicek, Yanmin Qian, Petr Schwarz, Jan
Silovsky, Georg Stemmer, and Karel Vesely. The Kaldi Speech Recognition Toolkit.
In Workshop on Automatic Speech Recognition and Understanding (ASRU), 2011.

[317] Patti Price, William M. Fisher, Jared Bernstein, and David S. Pallett. Resource
Management RM1 2.0. Linguistic Data Consortium, Philadelphia, USA, 1993.

[318] Christian Priebe, Kapil Vaswani, and Manuel Costa. EnclaveDB: A Secure Database
Using SGX. In IEEE Symposium on Security and Privacy (IEEE S&P), 2018.

[319] Masoom Rabbani, Jo Vliegen, Jori Winderickx, Mauro Conti, and Nele Mentens.
SHeL A: Scalable Heterogeneous Layered Attestation. IEEE Internet of Things Journal,
6(6), 2019.

[320] Himanshu Raj, Stefan Saroiu, Alec Wolman, and Jitu Padhye. Splitting the Bill for
Mobile Data with SIMlets. In Workshop on Mobile Computing Systems and Applications
(HotMobile), 2013.

[321] Himanshu Raj, Stefan Saroiu, Alec Wolman, Ronald Aigner, Jeremiah Cox, Paul
England, Chris Fenner, Kinshuman Kinshumann, Jork Loeser, Dennis Mattoon,
Magnus Nystrom, David Robinson, Rob Spiger, Stefan Thom, and David Wooten.
fTPM: A Firmware-based TPM 2.0 Implementation. Technical Report MSR-TR-
2015-84, Microsoft Research, 2015.

[322] Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems, 3rd
Edition. McGraw-Hill, 3rd edition, 2002.

[323] Ashay Rane, Calvin Lin, and Mohit Tiwari. Raccoon: Closing Digital Side-channels
Through Obfuscated Execution. In USENIX Security Symposium, 2015.

[324] Justin Rattner. Extreme Scale Computing. Keynote at Annual International Sympo-
sium on Computer Architecture (ISCA), 2012.

[325] Ling Ren, Christopher W. Fletcher, Albert Kwon, Emil Stefanov, Elaine Shi, Marten
Van Dijk, and Srinivas Devadas. Constants Count: Practical Improvements to
Oblivious RAM. In USENIX Security Symposium, 2015.

[326] M. Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M. Songhori,
Thomas Schneider, and Farinaz Koushanfar. Chameleon: A Hybrid Secure Compu-
tation Framework for Machine Learning Applications. In ACM ASIA Conference on
Computer and Communications Security (ASIACCS), 2018.

[327] Ronald Linn Rivest, Adi Shamir, and Leonard Adleman. A Method for Obtaining
Digital Signatures and Public-key Cryptosystems. Communications of the ACM, 21

(2), 1978.

227

228

BIBLIOGRAPHY

[328] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. Return-Oriented
Programming: Systems, Languages, and Applications. ACM Transactions on Infor-
mation and System Security, 15(1), 2012.

[329] Dan Rosenberg. Reflections on Trusting TrustZone. In Blackhat USA, 2014.

[330] Bita Darvish Rouhani, M. Sadegh Riazi, and Farinaz Koushanfar. DeepSecure: Scal-
able Provably-Secure Deep Learning. In IEEE/ACM Design Automation Conference
(DAC), 2018.

[331] Michael Rubenstein, Alejandro Cornejo, and Radhika Nagpal. Programmable
Self-Assembly in a Thousand-Robot Swarm. Science, pages 378—380, 2014.

[332] Olatunji Ruwase and Monica S. Lam. A Practical Dynamic Buffer Overflow Detector.
In Annual Network and Distributed System Security Symposium (NDSS), 2004.

[333] Samsung. KNOX Workspace Supported MDMs. https://www.samsungknox.com/
en/products/knox-workspace/technical/knox-mdm-feature-1list, 2016.

[334] Samsung. Device-side Security: Samsung Pay, TrustZone, and the TEE. https://
developer.samsung.com/tech-insights/pay/device-side-security, 2016.

[335] Nuno Santos, Himanshu Raj, Stefan Saroiu, and Alec Wolman. Using ARM Trust-
zone to Build a Trusted Language Runtime for Mobile Applications. In International
Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), 2014.

[336] Vasily Sartakov, Nico Weichbrodt, Sebastian Krieter, Thomas Leich, and R. Kapitza.
STANIite — A Database Engine for Secure Data Processing at Rack-Scale Level. In
International Conference on Cloud Engineering (IC2E), 2018.

[337] Sajin Sasy, Sergey Gorbunov, and Christopher W. Fletcher. ZeroTrace : Oblivious
Memory Primitives from Intel SGX. In Annual Network and Distributed System
Security Symposium (NDSS), 2018.

[338] Andreas Schaad, Bjoern Grohmann, Oliver Winzenried, Ferdinand Brasser, and
Ahmad-Reza Sadeghi. Towards a Cloud-based System for Software Protection
and Licensing. In International Joint Conference on e-Business and Telecommunications
(SECRYPT), 2018.

[339] Felix Schuster, Manuel Costa, Cedric Fournet, Christos Gkantsidis, Marcus Peinado,
Gloria Mainar-Ruiz, and Mark Russinovich. VC3: Trustworthy Data Analytics in
the Cloud Using SGX. In IEEE Symposium on Security and Privacy (IEEE S&P), 2015.

[340] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan
Mangard. Malware Guard Extension: Using SGX to Conceal Cache Attacks. In Con-
ference on Detection of Intrusions and Malware and Vulnerability Assessment (DIMVA),
2017.

https://www.samsungknox.com/en/products/knox-workspace/technical/knox-mdm-feature-list
https://www.samsungknox.com/en/products/knox-workspace/technical/knox-mdm-feature-list
https://developer.samsung.com/tech-insights/pay/device-side-security
https://developer.samsung.com/tech-insights/pay/device-side-security

BIBLIOGRAPHY

[341] Jaebaek Seo, Byounyoung Lee, Seongmin Kim, Ming-Wei Shih, Insik Shin, Dongsu
Han, and Taesoo Kim. SGX-Shield: Enabling Address Space Layout Randomization
for SGX Programs. In Annual Network and Distributed System Security Symposium
(NDSS), 2017.

[342] Arvind Seshadri, Adrian Perrig, Leendert Van Doorn, and Pradeep Khosla. SWATT:
SoftWare-based ATTestation for Embedded Devices. In IEEE Symposium on Security
and Privacy (IEEE S&P), 2004.

[343] Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig, Leendert Van Doorn, and
Pradeep Khosla. Pioneer: Verifying Code Integrity and Enforcing Untampered
Code Execution on Legacy Systems. In ACM Symposium on Operating System
Principles (SOSP), 2005.

[344] Arvind Seshadri, Mark Luk, Adrian Perrig, Leendert Van Doorn, and Pradeep
Khosla. SCUBA: Secure Code Update By Attestation in Sensor Networks. In ACM
Conference on Security & Privacy in Wireless and Mobile Networks (WiSec), 2006.

[345] Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig. SecVisor: A Tiny
Hypervisor to Provide Lifetime Kernel Code Integrity for Commodity OSes. In
ACM Symposium on Operating System Principles (SOSP), 2007.

[346] Arvind Seshadri, Mark Luk, and Adrian Perrig. SAKE: Software Attestation for
Key Establishment in Sensor Networks. In Distributed Computing in Sensor System
(DCOSS), 2008.

[347] Hovav Shacham. The Geometry of Innocent Flesh on the Bone: Return-into-libc
without Function Calls (on the x86). In ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2007.

[348] Manali D. Shah, Shrenik N. Gala, and Narendra M. Shekokar. Lightweight Authen-
tication Protocol used in Wireless Sensor Network. In International Conference on
Circuits, Systems, Communication and Information Technology Applications (CSCITA),
2014.

[349] Umesh Shankar, Monica Chew, and J. D. Tygar. Side Effects Are Not Sufficient to
Authenticate Software. In USENIX Security Symposium, 2004.

[350] Di Shen. Exploiting TrustZone on Android. In Blackhat USA, 2015.
[351] Di Shen. Defeating Samsung KNOX with zero privilege. In Blackhat USA, 2017.

[352] Emily Shen, Elaine Shi, and Brent Waters. Predicate Privacy in Encryption Systems.
In Conference on Theory of Cryptography (TCC), 2009.

[353] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. T-SGX: Eradicating
Controlled-Channel Attacks Against Enclave Programs. In Annual Network and
Distributed System Security Symposium (NDSS), 2017.

229

230

BIBLIOGRAPHY

[354] Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, and Prateek Saxena.
Preventing Page Faults from Telling Your Secrets. In ACM ASIA Conference on
Computer and Communications Security (ASIACCS), 2016.

[355] Shweta Shinde, DL Tien, Shruti Tople, and Prateek Saxena. Panoply: Low-TCB
Linux Applications With SGX Enclaves. In Annual Network and Distributed System
Security Symposium (NDSS), 2017.

[356] Rohit Sinha, Sriram Rajamani, and Sanjit A. Seshia. A Compiler and Verifier for
Page Access Oblivious Computation. In Joint Meeting on Foundations of Software
Engineering (ESEC/FSE), 2017.

[357] Stephen Smalley and Robert Craig. Security Enhanced (SE) Android: Bringing
Flexible MAC to Android. In Annual Network and Distributed System Security
Symposium (NDSS), 2013.

[358] Dawn Xiaoding Song, Davi Wagner, and Adria Perrig. Practical Techniques for
Searches on Encrypted Data. In IEEE Symposium on Security and Privacy (IEEE S&P),
2000.

[359] Arnaud Soullie. Industrial Control Systems: Pentesting PLCs 101. In Blackhat
Europe, 2014.

[360] Raphael Spreitzer and Benoit Gérard. Towards More Practical Time-Driven Cache
Attacks. In Information Security Theory and Practice. Securing the Internet of Things
(WISTP), 2014.

[361] Raphael Spreitzer and Thomas Plos. Cache-Access Pattern Attack on Disaligned
AES T-Tables. In International Workshop on Constructive Side-Channel Analysis and
Secure Design (COSADE), 2013.

[362] John A. Stankovic and R. Rajkumar. Real-Time Operating Systems. Real-Time
Systems, 28(2-3), 2004.

[363] Julian Stecklina and Thomas Prescher. LazyFP: Leaking FPU Register State using
Microarchitectural Side-Channels. https://arxiv.org/abs/1806.07480, 2018.

[364] Emil Stefanov, Marten Van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren, Xi-
angyao Yu, and Srinivas Devadas. Path ORAM: An Extremely Simple Oblivious
RAM Protocol. In ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2013.

[365] Nick Stephens. Behind the PWN of a TrustZone. https://www.slideshare.net/
GeekPwnKeen/nick- stephenshow-does-someone-unlock-your-phone-with-nose,
2016.

[366] Andy Stevenson. Boot into Recovery Mode for Rooted and Un-rooted An-
droid devices. http://androidflagship.com/605-enter-recovery-mode-rooted-
un-rooted-android, 2014.

https://arxiv.org/abs/1806.07480
https://www.slideshare.net/GeekPwnKeen/nick-stephenshow-does-someone-unlock-your-phone-with-nose
https://www.slideshare.net/GeekPwnKeen/nick-stephenshow-does-someone-unlock-your-phone-with-nose
http://androidflagship.com/605-enter-recovery-mode-rooted-un-rooted-android
http://androidflagship.com/605-enter-recovery-mode-rooted-un-rooted-android

BIBLIOGRAPHY

[367] Raoul Strackx and Frank Piessens. Ariadne: A Minimal Approach to State Conti-
nuity. In USENIX Security Symposium, 2016.

[368] Raoul Strackx, Frank Piessens, and Bart Preneel. Efficient Isolation of Trusted Sub-
systems in Embedded Systems. In Security and Privacy in Communication Networks
(SecureComm), 2010.

[369] G. Edward Suh, Dwaine Clarke, Blaise Gassend, Marten van Dijk, and Srinivas
Devadas. AEGIS: Architecture for Tamper-evident and Tamper-resistant Processing.
In International Conference on Supercomputing (ICS), 2003.

[370] He Sun, Kun Sun, Yuewu Wang, Jiwu Jing, and Sushil Jajodia. TrustDump: Reliable
Memory Acquisition on Smartphones. In European Symposium on Research in
Computer Security (ESORICS), 2014.

[371] He Sun, Kun Sun, Yuewu Wang, Jiwu Jing, and Haining Wang. TrustICE: Hardware-
Assisted Isolated Computing Environments on Mobile Devices. In IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), 2015.

[372] Zhichuang Sun, Bo Feng, Long Lu, and Somesh Jha. OAT: Attesting Operation
Integrity of Embedded Devices. In IEEE Symposium on Security and Privacy (IEEE
S&P), 2020.

[373] Joe Sylve, Andrew Case, Lodovico Marziale, and Golden G. Richard. Acquisition
and analysis of volatile memory from android devices. Digital Investigation, 8(3),
2012.

[374] Benjamin Tan, Morteza Biglari-Abhari, and Zoran Salcic. An Automated Security-
Aware Approach for Design of Embedded Systems on MPSoC. ACM Transactions
on Embedded Computing Systems, 16(5s), 2017.

[375] Hailun Tan, Gene Tsudik, and Sanjay Jha. MTRA: Multiple-Tier Remote Attestation
in IoT Networks. In IEEE Conference on Communications and Network Security (CNS),
2017.

[376] Texas Instruments Incorporated. MSP Code Protection Features. https://
www.ti.com/lit/an/slaa685/s1aa685.pdf, 2015.

[377] The InfiniBand Trade Association. The InfiniBand Architecture Specification.
https://www.infinibandta.org/, 2014.

[378] Flavio Toffalini, Eleonora Losiouk, Andrea Biondo, Jianying Zhou, and Mauro
Conti. ScaRR: Scalable Runtime Remote Attestation for Complex Systems. In
International Symposium on Research in Attacks, Intrusions and Defenses (RAID), 2019.

[379] Shruti Tople, Hung Dang, Prateek Saxena, and Ee-Chien Chang. PermuteRam:
Optimizing Oblivious Computation for Efficiency. Cryptology ePrint Archive.
Report 2017/885, 2015. https://eprint.iacr.org/2017/885.pdf.

231

https://www.ti.com/lit/an/slaa685/slaa685.pdf
https://www.ti.com/lit/an/slaa685/slaa685.pdf
https://www.infinibandta.org/
https://eprint.iacr.org/2017/885.pdf

232

BIBLIOGRAPHY

[380] Amos Treiber, Andreas Nautsch, Jascha Kolberg, Thomas Schneider, and Christoph
Busch. Privacy-Preserving PLDA Speaker Verification using Outsourced Secure
Computation. Speech Communication, 114, 2019.

[381] Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient Cache Attacks on AES,
and Countermeasures. Journal of Cryptology, 23(1), 2010.

[382] Trusted Computing Group (TCG). TPM Main Specification Level 2 Version 1.2.
http://www.trustedcomputinggroup.org/resources/tpm_main_specification,
2007.

[383] Trusted Computing Group (TCG). Trusted platform module. http://
www . trustedcomputinggroup.org, 2011.

[384] Chia-che Tsai, Donald E. Porter, and Mona Vij. Graphene-SGX: A Practical Library
OS for Unmodified Applications on SGX. In USENIX Annual Technical Conference
(ATC), 2017.

[385] Theodoros Tzouramanis. Secure Range Query Processing over Untrustworthy
Cloud Services. In International Database Engineering & Applications Symposium
(IDEAS), 2017.

[386] Volkmar Uhlig, Joshua LeVasseur, Espen Skoglund, and Uwe Dannowski. To-
wards Scalable Multiprocessor Virtual Machines. In Virtual Machine Research And
Technology Symposium (VM), 2004.

[387] Leif Uhsadel, Andy Georges, and Ingrid Verbauwhede. Exploiting Hardware
Performance Counters. In Workshop on Fault Diagnosis and Tolerance in Cryptography
(FDTC), 2008.

[388] Jo Van Bulck, Frank Piessens, and Raoul Strackx. SGX-Step: A Practical Attack
Framework for Precise Enclave Execution Control. In System Software for Trusted
Execution (SysTEX), 2017.

[389] Jo Van Bulck, Nico Weichbrodt, Riidiger Kapitza, Frank Piessens, and Raoul Strackx.
Telling Your Secrets without Page Faults: Stealthy Page Table-Based Attacks on
Enclaved Execution. In USENIX Security Symposium, 2017.

[390] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-
Order Execution. In USENIX Security Symposium, 2018.

[391] Abhishek Vijeev, Vinod Ganapathy, and Chiranjib Bhattacharyya. Regulating
Drones in Restricted Spaces. In Workshop on Mobile Computing Systems and Applica-
tions (HotMobile), 2019.

[392] Shivraj VL, Meena Thakur, and Rajan Ma. A Novel Multi Verifier Device Attestation
Scheme for Swarm of Devices. In International Conference on Advanced Information
Networking and Applications Workshops (WAINA), 2018.

http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org
http://www.trustedcomputinggroup.org

BIBLIOGRAPHY

[393] VMware. Verizon Wireless and VMware Securely Mix the Professional and Personal
Mobile Experience with Dual Persona Android Devices, October 2011.

[394] Marcus Volp, Adam Lackorzynski, Jérémie Decouchant, Vincent Rahli, Francisco
Rocha, and Paulo Esteves-Verissimo. Avoiding Leakage and Synchronization
Attacks Through Enclave-Side Preemption Control. In System Software for Trusted
Execution (SysTEX), 2016.

[395] Shengye Wan, Jianhua Sun, Kun Sun, Ning Zhang, and Qi Li. SATIN: A Secure
and Trustworthy Asynchronous Introspection on Multi-Core ARM Processors. In
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), 2019.

[396] Boyang Wang, Yantian Hou, Ming Li, Haitao Wang, and Hui Li. Maple: Scalable
Multi-dimensional Range Search over Encrypted Cloud Data with Tree-based Index.
In ACM ASIA Conference on Computer and Communications Security (ASIACCS), 2014.

[397] Yongzhi Wang, Lingtong Liu, Cuicui Su, Jiawen Ma, Lei Wang, Yibo Yang, Yulong
Shen, Guangxia Li, Tao Zhang, and Xuewen Dong. CryptSQLite: Protecting Data
Confidentiality of SQLite with Intel SGX. In International Conference on Networking
and Network Applications (NaNA), 2017.

[398] Zhenghong Wang and Ruby B. Lee. Covert and Side Channels Due to Processor
Architecture. In Annual Computer Security Applications Conference (ACSAC), 2006.

[399] Zhenghong Wang and Ruby B. Lee. New Cache Designs for Thwarting Software
Cache-based Side Channel Attacks. In Annual International Symposium on Computer
Architecture (ISCA), 2007.

[400] Zhenghong Wang and Ruby B. Lee. A Novel Cache Architecture with Enhanced Per-
formance and Security. In IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2008.

[401] Xueqgiang Wangy, Kun Sun, Yuewu Wangand, and Jiwu Jing. DeepDroid: Dynam-
ically Enforcing Enterprise Policy on Android Devices. In Annual Network and
Distributed System Security Symposium (NDSS), 2015.

[402] Richard Wartell, Vishwath Mohan, Kevin W. Hamlen, and Zhiqgiang Lin. Binary
Stirring: Self-randomizing Instruction Addresses of Legacy x86 Binary Code. In
ACM SIGSAC Conference on Computer and Communications Security (CCS), 2012.

[403] Andrew Waterman and Krste Asanovic. The RISC-V Instruction Set Manual
Volume I: User-Level ISA. https://riscv.org/risc-v-isa/, 2017.

[404] Samuel Wedaj, Kolin Paul, and Vinay J. Ribeiro. DADS: Decentralized Attestation
for Device Swarms. ACM Transactions on Privacy and Security, 22(3), 2019.

[405] Samuel Weiser, Raphael Spreitzer, and Lukas Bodner. Single Trace Attack Against
RSA Key Generation in Intel SGX SSL. In ACM ASIA Conference on Computer and
Communications Security (ASIACCS), 2018.

233

https://riscv.org/risc-v-isa/

234

BIBLIOGRAPHY

[406] Samuel Weiser, Mario Werner, Ferdinand Brasser, Maja Malenko, Stefan Mangard,
and Ahmad-Reza Sadeghi. TIMBER-V: Tag-Isolated Memory Bringing Fine-grained
Enclaves to RISC-V. In Annual Network and Distributed System Security Symposium
(NDSS), 2019.

[407] Michael Weif3, Benedikt Heinz, and Frederic Stumpf. A Cache Timing Attack on
AES in Virtualization Environments. In Financial Cryptography and Data Security
(FC), 2012.

[408] Peter Williams and Radu Sion. Single Round Access Privacy on Outsourced Storage.
In ACM SIGSAC Conference on Computer and Communications Security (CCS), 2012.

[409] Johannes Winter. Trusted Computing Building Blocks for Embedded Linux-based
ARM TrustZone Platforms. In ACM Workshop on Scalable Trusted Computing (STC),
2008.

[410] Songrui Wu, Qi Li, Guoliang Li, Dong Yuan, Xingliang Yuan, and Cong Wang.
ServeDB: Secure, Verifiable, and Efficient Range Queries on Outsourced Database.
In International Conference on Data Engineering (ICDE), 2019.

[411] Lei Xu, Xingliang Yuan, Cong Wang, Qian Wang, and Chungen Xu. Hardening
Database Padding for Searchable Encryption. In Annual Joint Conference of the IEEE
Computer and Communications Societies INFOCOM), 2019.

[412] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-Channel Attacks:
Deterministic Side Channels for Untrusted Operating Systems. In IEEE Symposium
on Security and Privacy (IEEE S&P), 2015.

[413] Qiang Yan, Jin Han, Y Li, and RH Deng. A Software-Based Root-of-Trust Primitive
on Multicore Platforms. In ACM ASIA Conference on Computer and Communications
Security (ASIACCS), 2011.

[414] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: A High Resolution, Low
Noise, L3 Cache Side-channel Attack. In USENIX Security Symposium, 2014.

[415] Yuval Yarom, Daniel Genkin, and Nadia Heninger. CacheBleed: A timing attack on
OpenSSL constant time RSA. Cryptology ePrint Archive. Report 2016/224, 2016.
https://eprint.iacr.org/2016/224.pdf.

[416] Shaza Zeitouni, Ghada Dessouky, Orlando Arias, Dean Sullivan, Ahmad Ibrahim,
Yier Jin, and Ahmad-Reza Sadeghi. ATRIUM: Runtime Attestation Resilient Under
Memory Attacks. In International Conference On Computer Aided Design (ICCAD),
2017.

[417] Ning Zhang, He Sun, Kun Sun, Wenjing Lou, and Y. Thomas Hou. CacheKit: Evad-
ing Memory Introspection Using Cache Incoherence. In IEEE European Symposium
on Security and Privacy (EuroS&P), 2016.

https://eprint.iacr.org/2016/224.pdf

APPENDIX

[418] Yingian Zhang and Michael K. Reiter. Diippel: Retrofitting Commodity Operating
Systems to Mitigate Cache Side Channels in the Cloud. In ACM SIGSAC Conference
on Computer and Communications Security (CCS), 2013.

[419] Yingian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Cross-VM
Side Channels and Their Use to Extract Private Keys. In ACM SIGSAC Conference
on Computer and Communications Security (CCS), 2012.

[420] Zhangkai Zhang, Xuhua Ding, Gene Tsudik, Jinhua Cui, and Zhoujun Li. Presence
Attestation: The Missing Link in Dynamic Trust Bootstrapping. In ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2017.

[421] Kai Zhao and Lina Ge. A Survey on the Internet of Things Security. In International
Conference on Computational Intelligence and Security (CIS), 2013.

[422] Shijun Zhao, Qianying Zhang, Yu Qin, Wei Feng, and Dengguo Feng. SecTEE:

A Software-based Approach to Secure Enclave Architecture Using TEE. In ACM
SIGSAC Conference on Computer and Communications Security (CCS), 2019.

235

236

APPENDIX

LisT OF ACRONYMS

AES
AES-NI
AEX
AM
ASCI
ASLR
ASR
BIOS
BTB
BYOD
CA
CBC
CFI
CFG
CoT
COTS
CPI
CPU
CRL
CRT
CSME
DBMS
DEP
DFI
DFG
DMA
DNA
DNN
DOP
DoS
DRBG
DRAM

Advanced Encryption Standard
AES New Instructions
Asynchronous Enclave Exit
Acoustic Model

Anti Side-Channel Interference
Address Space Layout Randomization
Automated Speech Recognition
Basic Input Output System
Branch Target Buffer

Bring Your Own Device
Certification Authority

Cipher Block Chaining
Control-Flow Integrity
Control-Flow Graph

Chain of Trust

Commercial Off-The-Shelf
Combined Probability of Inclusion
Central Processing Unit
Certificate Revocation List

Chinese Remainder Theorem

Converged Security and Management Engine

Database Management System

Data Execution Prevention
Data-Flow Integrity

Data-Flow Graph

Direct Memory Access
Deoxyribonucleic Acid

Deep Neural Network
Data-oriented Programming
Denial-of-Service

Deterministic Random Bit Generator

Dynamic Random Access Memory

DRTM
EA-MAC
EA-MPU
ECC
ECU
FHE
ELF
EPC
FPGA
GCM
GPS
GPU
HE
HMAC
HMM
HPC
IDT
IEEE
MV
IPP
IoT

1P

1P

IPC

IR

ISA
ISR
JTAG
LA
LLC
LM
LoC
LOS
LUT

APPENDIX

Dynamic Root of Trust for Measurement
Execution-Aware Memory Access Control
Execution-Aware Memory Protection Unit
Elliptic Curve Cryptography

Electronic Control Unit

Fully Homomorphic Encryption
Executable Linking Format

Enclave Page Cache

Field Programmable Gate Array
Galois/Counter Mode

Global Positioning System

Graphics Processing Unit

Homomorphic Encryption

Keyed-Hash Message Authentication Code
Hidden Markov Model

Hardware Performance Counter
Interrupt Descriptor Table

Institute of Electrical and Electronics Engineers
Integrity Measurement Value

Integrated Performance Primitives
Internet of Things

Intellectual Property

Internet Protocol

Inter-Process Communication
Intermediate Representation

Instruction Set Architecture

Interrupt Service Routine

Joint Test Action Group

Legacy App

Last Level Cache

Language Model

Lines of Code

Legacy OS

Look-Up Table

237

APPENDIX

MAC Mandatory Access Control
MAC Message Authentication Code
MCU Microcontroller Unit

MDM Mobile Device Management
MitM Man-in-the-Middle

MMIO Memory-Mapped Input/Output
MMU Memory Management Unit
MPU Memory Protection Unit

MSH Multiset Hash

MSR Model-Specific Register

NoC Network-on-Chip

ORAM Oblivious RAM

oS Operating System

OTP One-Time-Programmable

PC Program Counter

PCI Peripheral Component Interconnect
PCM Performance Counter Monitor
PCR Platform Configuration Register
PKI Public Key Infrastructure

PMC Performance-Monitoring Counter
PoC Proof of Concept

PRNG Pseudorandom Number Generator
PUF Physical Unclonable Function
PvE Provisioning Enclave

QE Quoting Enclave

RA Remote Attestation

RAM Random Access Memory
RDMA Remote Direct Memory Access
RNG Random Number Generator
ROM Read-Only Memory

ROP Return-Oriented Programming
RoT Root of Trust

RSA Rivest-Shamir-Adleman

RTM Root of Trust for Measurement

RTOS
SA
SDK
SGX
SHA1
SL
SMC
SMC
SMM
SMT
SoC
SRAM
STR
SQL
SVM
TA
TCB
TCG
TCP
TEE
TF
TLB
TLS
TOCTOU
TOS
TPM
TSX
TXT
TZASC
UEFI
Ul
VM
VMM
WSN

Real-time Operating System
Sanctuary App

Software Developer Kit
Software Guard Extensions
Secure Hash Algorithm 1
Sanctuary Library

Secure Monitor Call

Secure Multiparty Computation
System Management Mode
Simultaneous Multithreading
System-on-Chip

Static Random Access Memory
Short Tandem Repeats
Structured Query Language
Secure Virtual Machine

Trusted App

Trusted Computing Base
Trusted Computing Group
Transmission Control Protocol
Trusted Execution Environment
Trusted Firmware

Translation Look-aside Buffer
Transport Layer Security
Time-Of-Check-Time-Of-Use
Trusted OS

Trusted Platform Module
Transactional Synchronization Extensions
Trusted Execution Technology
TrustZone Address Space Controller
Unified Extensible Firmware Interface
User Interface

Virtual Machine

Virtual Machine Monitor

Wireless Sensor Network

APPENDIX

239

Erklirung gemafs §9 der Promotionsordnung

Hiermit versichere ich, die vorliegende Dissertation selbststindig und nur unter Ver-
wendung der angegebenen Quellen und Hilfsmittel verfasst zu haben. Alle Stellen, die
aus Quellen entnommen wurden, sind als solche kenntlich gemacht. Diese Arbeit hat in
gleicher oder dhnlicher Form noch keiner Priifungsbehorde vorgelegen.

Darmstadt, Germany, April 2020

Franz Ferdinand Peter Brasser

