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Abstract

Human locomotion requires a complex interplay of the mechanical, sensor, neural and motor systems of

motor control. Still, cyclic locomotion tasks such as walking and running can be described by simple me-

chanical concepts, as identified by biomechanical Template models. This dissertation asks how the complex

motor control system produces simple patterns of human locomotion and aims to identify mechanisms

of motor control to bridge the gap between the sophisticated body morphology and the low-dimensional

structure of locomotion. Inspired by previous research, this work hypothesises that networks of the motor

and sensor systems can provide structural solutions to simplify motor control. Three studies investigate the

role of these networks for generating elementary behaviours of locomotion. Two works evaluate the motor

network during steady-state locomotion and the response to unforeseen balance perturbations, while one

study addresses sensor networks in dynamic hopping motions.

The first study, a meta-analysis, reviews the specific role of biarticular muscles for multi-joint coordination.

The framework of locomotor subfunctions helps to categorise the diverse literature from biomechanics, bi-

ology and robotics. Conceptual models indicate that biarticular muscles can sense and act in global leg

coordinates (leg length and orientation) instead of joint coordinates if the leg design approximates the

human anatomy. Evidence from human experiments shows benefits for coordinating the segmented leg,

improving motion economy and controlling angular momentum. While many of these principles provide

the potential to enhance robotic system designs, these concepts await further exploitation in robotic hard-

ware.

While the main body of experimental studies focused on steady-state motions, only a limited amount

of research comprised unforeseen perturbation scenarios to study biarticular muscles. To fill this gap of

knowledge, the second work investigates the role of biarticular muscles to realign the upper-body after

postural balance perturbations. A new device is used to produce specific, impulse-like pitch perturbations

with only minimal effects on the centre of mass dynamics. Subjects respond with intense reflex activity

in biarticular thigh muscles, while monoarticular muscles respond only moderately. This study provides

strong evidence that biarticular muscles are preferably used to realign the upper-body.

The final study investigates the function of blended reflex pathways to generate steady-state hopping

patterns. A neuromechanical simulation model predicts pathway-specific activation patterns resulting in

different motion characteristics: performance, efficiency and safety. These results indicate that elementary

compositions in the sensor network can produce task-relevant behaviours. Novel sensor-motor maps visu-

alise the solution space of the predicted hopping patterns to evaluate the specific feedback contributions

for generating a repulsive leg function. These maps are compact, united and consistent over changes in

body morphology and environment, which suggests a simple learning problem.

In summary, this thesis investigates peripheral networks of motor control, namely networks of muscle and

sensory mechanoreceptors, and their function for simplifying the control task of the neural system. The

main contribution of this work is the identification of the supporting role of these networks that allows the
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neural system to exploit the fundamental dynamics of locomotion. These results stimulate future research

on human experiments and robotic demonstrators to validate the conceptual theory presented here.
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Abstract

Die menschliche Fortbewegung erfordert ein komplexes Zusammenspiel von mechanischen, sensorischen,

neuronalen und motorischen Systemen der motorischen Kontrolle. Trotz dieser Komplexität, lassen sich

zyklische Bewegungen wie Gehen und Laufen durch einfache mechanische Konzepte abbilden, die in

biomechanischen Templatemodellen beschreiben werden. Diese Dissertation untersucht, wie die kom-

plizierten Prozesse der motorischen Kontrolle simple Bewegungsmuster zur menschlichen Fortbewegung

erzeugen. Dafür werden Mechanismen der motorischen Kontrolle untersucht, um die Lücke zwischen der

komplexen Körpermorphologie und der niedrigdimensionalen Struktur der Fortbewegung zu schließen.

Basierend auf vorheriger Forschung wird in dieser Arbeit die Hypothese aufgestellt, dass Netzwerke der

motorischen und sensorischen Systeme strukturelle Lösungen liefern, die dazu beitragen können das mo-

torische Kontrollproblem zu vereinfachen.

Drei Studien untersuchen die Rolle dieser Netzwerke in der Erzeugung elementarer Bewegungsmuster.

Zwei Arbeiten evaluieren das motorische Netzwerk bei stationären Bewegungen und unvorhergesehenen

Gleichgewichtsstörungen. Die dritte Studie untersucht Sensornetzwerke in dynamischen Sprungbewegun-

gen.

Die erste Studie, eine Metaanalyse, führt die Forschung zur spezifischen Rolle von zweigelenkigen Muskeln

in der Koordination mehrerer Segmente zusammen. Das Konzept der locomotor subfunctions hilft die Liter-

atur aus Biomechanik, Biologie und Robotik zu kategorisieren. Templatemodelle deuten darauf hin, dass

zweigelenkige Muskeln bei einer menschen-ähnlichen Beingeometrie in globalen Beinkoordinaten (Bein-

länge und -ausrichtung) agieren, anstatt auf einzelne Gelenke zu wirken. Zweigelenkige Muskeln verein-

fachen die Koordination des segmentierten Beins, erzeugen effizientere Bewegungen und regulieren den

Drehimpuls der Segemente, wie Experimente zeigen. Viele dieser Prinzipien offenbaren Verbesserungspo-

tentiale für die Anwendung in robotischen Systemen, jedoch werden diese Konzepte bis dato nur selten

genutzt.

Während der Großteil der experimentellen Studien stationäre Bewegungen untersucht, befassen sich nur

wenige Studien mit unvorhergesehenen Störungen, um zweigelenkige Muskeln zu erforschen. Um diese

Lücke zu schließen, untersucht die zweite Studie dieser Arbeit die Reaktion zweigelenkiger Muskeln auf

Störungen der Oberkörperbalance. Mit Hilfe eines neuen Systems werden starke und impulsartige Störun-

gen der Oberkörperhaltung mit minimalen Auswirkungen auf die Schwerpunktdynamik erzeugt. Alle

Probanden reagieren mit intensiven Reflexen in den zweigelenkigen Oberschenkelmuskeln, während ein-

gelenkige Muskeln nur mäßige Reaktionen zeigen. Diese Studie liefert starke Belege für die wichtige Rolle

von zweigelenkigen Oberschenkelmuskeln zur Kontrolle der Oberkörperhaltung.

Die letzte Studie untersucht die Funktion gemischter Reflexsignale zur Erzeugung von stationären Hüpfbe-

wegungen. Ein neuromechanisches Simulationsmodell erzeugt signalspezifische Aktivierungsmuster, die

zu unterschiedlich ausgeprägten Bewegungsformen in Bezug auf Leistung, Effizienz und Sicherheit führen.

Diese Ergebnisse deuten darauf hin, dass elementare Verschaltungen von Rezeptoren aufgabenrelevantes

ix



Verhalten hervorrufen können. Neuartige sensor-motor maps visualisieren den Lösungsraum der gener-

ierten Sprungmuster, um die Beiträge der verschiedenen Reflexsignale zur Erzeugung einer abdrückenden

Beinfunktion zu bewerten. Diese Karten sind kompakt, einheitlich und konsistent in Bezug auf Änderungen

der Körpermorphologie und -umgebung, was das Erlernen einer solchen Topologie stark vereinfacht.

Zusammenfassend untersucht diese Dissertation periphere Netzwerke der motorischen Kontrolle, nämlich

Netzwerke von Muskeln und Mechanorezeptoren, und deren Funktion zur Vereinfachung der Kontrollauf-

gabe des neuronalen Systems. Der Hauptbeitrag dieser Arbeit ist die Identifizierung der unterstützenden

Rolle solcher Netzwerke, die es dem neuronalen System ermöglichen, die grundlegende Templatedynamik

der Fortbewegung auszunutzen. Diese Ergebnisse regt zukünftige Forschung durch menschlichen Exper-

imente und robotische Demonstratoren an, um das hier vorgestellte konzeptionelle Verständnis zu vali-

dieren.
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1 Introduction

Motivation

Humans can to perform a variety of movements to interact with the environment. In sports, for instance,

these may range from an artistic performance of rhythmic gymnastics over a precise throw of darts to

highly dynamic long jump with an impulse-like force generation. These are just some examples in which a

wide set of skills are required to execute the desired motion task successfully. To enable such remarkable

performance, the human body, as well as itsmotor control1 system, must be flexible and adaptable to meet

the changing requirements of the task or the environment. This requires coordinating more than a hundred

joints or degrees of freedom (DoF) in the human body. More than 250 muscles are controlled by millions of

neurons in the spinal cord and the brain, which in turn, receive afferent signals from thousands and more

receptors (Prochazka and Ellaway, 2012). While these numbers testify the vast complexity of the human

body, they also motivate to ask how such complex systems collaborate successfully to execute the desired

movement.

In light of this complex interplay and the multitude of involved components, it seems even more fasci-

nating that highly simplified biomechanical template models can describe fundamental behaviour during

locomotion (Full and Koditschek, 1999). For instance, the behaviour of the leg during walking and run-

ning can be represented by the spring-loaded inverted pendulum (SLIP) model, which consists of a point

mass that is supported by a force-generating leg spring (Blickhan, 1989; Geyer et al., 2006). While some

of these simplifications may only apply for confined or cyclic movements, they indicate that, during cyclic

locomotion, the complex body is coordinated in line with simple motion patterns or concepts.

This thesis asks about the processes that produce these simple behaviours in a highly complex system

and aims to identify mechanisms in the regulation of cyclic human locomotion. This knowledge will help

to progress in multiple research disciplines or technological developments and can have a considerable

impact on our society. For example, a detailed understanding of the human motor control system and

its organisation can be used as biologically-inspired templates for improving hardware designs or control

approaches in robotic systems or assistive devices, e.g. leg prosthetics or exoskeletons. Moreover, in-depth

knowledge about the processes and mechanisms involved could lead to improve diagnostics and more

efficient therapies in the medical sciences.

The motor control loop

In order to build a common understanding and terminology, this section will present a brief overview of

the involved systems and their function in the movement regulation.

1All processes that are involved in regulating the movement are called motor control.
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An appropriate motion execution is the result of a complex interplay of different systems in the motor

control loop (Figure 1.1), which continuously interact with each other (Pearson et al., 2006; Nishikawa

et al., 2007; Montúfar et al., 2015).

Sensor Motor

Reflex

pathway

Feed

forward

Body

mechanics

Cognition

Neural

processing

Neural
system

Mechanics

Figure 1.1: Simplified visualization of the motor control loop: Body mechanics interact with the environ-

ment (Mechanics). Receptors in the body sense different stimuli and generate a neural signal

(Sensor), which is then processed in the spinal cord or higher centers (neural system). Reflexes

or feed forward signals can contribute to generate motor commands which produce muscular

contractions (Motor) exerting forces on the body mechancis.

The body mechanics interact with the environment by exerting forces on the ground, objects or fluids
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(Winter, 2009). Receptors sense states about the environment or the generated behaviour and the body,

and communicate these states in the form of electrical signals to the central nervous system (Prochazka and

Yakovenko, 2001). Here, many regions in the brain and spinal cord contribute to the processing in order

to compute motor commands. This computation can include feedback signals, central pattern generator

(CPG) (Grillner, 1975; Ijspeert, 2008; Kiehn, 2016) or feed forward commands, e.g. by internal or forward

models (Francis and Wonham, 1976; Wolpert et al., 1995). Finally, muscle fibres contract in response to

these motor commands and generate forces that act on bones to drive joints.

Problem statement

Based on this foundation, this section presents current challenges in the research of motor control.

Motor control is more than neural control

Because themechanical, sensor, neural andmotor systems are inevitably coupled, humanmotor control can

not just be understood as a control problem that needs to be solved by the neural system alone (Nishikawa

et al., 2007). Given sufficient resources, artificial neural networks alone can theoretically approximate any

function (Hornik, 1991; Leshno et al., 1993). Therefore, it seems likely that the neural system (in the brain

and spinal cord) is theoretically able to learn arbitrary movements, concerning the constraints of the body

and the environment. It should be noted, however, that this strategy would require enormous resources of

computation or attention, due to the high redundancy of the system (Henneman et al., 1965; Bernstein,

1967), uncertainty of the environment or sensor noise. In biology, this would reduce the ‘fitness’ of survival

of the living organism2. Consequently, a major question of motor control is not, if the neural control system

is capable of generating appropriate motor commands – it certainly is3. Rather, the question should be, to

what extent can control be simplified and out-sourced to other structures, which do not require effortful

computations or attention of the neural control system (Montúfar et al., 2015). This perspective helps to

identify contributions of embodied systems. For example, one could ask for the simplest possible neural

control topology to achieve the desired movement in a simulation model (Full and Koditschek, 1999;

Brown and Loeb, 2000; Pearson et al., 2006). A comparison of e.g. muscle models with different levels of

complexity, like in Haeufle et al. (2010) and Haeufle et al. (2012), could help to identify the contributions

of muscular properties for the execution of movements and reductions of neural control effort (Haeufle

et al., 2014).

Isolated approaches may not permit to identify rules of integration

In order to better understand the complex interplay in the motor control loop, we need to understand

how different systems generate behaviour and what rules are used to integrate these in the collective

behaviour. All parts take advantage of each other and contribute to the emergent behaviour. Therefore, the

systems of the motor control loop should be studied in isolation and combination to identify mechanisms

2The existence of dense, local clusters in the network topology of the brain suggests that an economical brain function was

indeed the result of an evolutionary optimisation (Bassett and Bullmore, 2006; Achard and Bullmore, 2007).
3The case of Mr. Ian Waterman or ‘IW’, who suffered from a total deafferentation, showed that even in the absence of

proprioception, basic locomotion is possible (Cole and Cole, 1995).
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of individual components while also reflecting these in the aggregate function4 (Chiel and Beer, 1997;

Dickinson et al., 2000; Ting et al., 2015). Approaches which decompose muscular activity, e.g. into muscle

synergies (d’Avella et al., 2003; Tresch and Jarc, 2009), will most likely not be able to identify synthesising

rules of individual functions because these approaches are limited to study the outcome of the neural

system. Without specific intervention or active manipulation, they do not permit to discriminate between

contributions of e.g. sensor or neural systems. Purely computational approaches of machine learning (black

box models) will also not result in a deeper understanding of the specific interplay of mechanical, sensor,

neural and motor systems in humans. While these approaches are useful to replicate neural functions, they

lack the ability to identify contributions of control embodiment (if not combined with robotic systems or

white-box models).

Research has identified a detailed understanding of specific mechanisms, but rules of integration remain

open (Dickinson et al., 2000; Sartori et al., 2017; Frigon, 2017). Such synthesis should be evaluated in

a wide range of behaviours and motion tasks (Frigon, 2017) and might also redefine individual functions

(Dickinson et al., 2000). In this context, combined methodologies from different fields are required to

meet the specific constraints and limitations of the individual systems at different levels: computational

methods, experimental studies and robotic demonstrators (Kalveram and Seyfarth, 2009; Frigon, 2017).

White-box models in simulation or hardware can replicate different functionalities of individual systems,

including control embodiment (Pfeifer and Bongard, 2007). They can be build based upon experimental

observations or theoretical considerations and test specific hypotheses regarding different levels of abstrac-

tion (see template – anchor concept, Full and Koditschek, 1999; Pearson et al., 2006).

Sensor and motor network topologies are poorly understood

In the motor control loop (Figure 1.1), sensor andmotor systems embody the interface of the bodymechan-

ics and the neural system. By this, receptors and muscles (or motor units) establish a translation of states

of the mechanical system (expressed as e.g. forces, kinematics, body properties like stiffness or inertia)

and the neural system (expressed as electrochemical signals). In both systems, a high level of redundancy

is found. For example, up to 500 muscle spindles can contribute to sense the state of one mammalian

muscle (Prochazka and Ellaway, 2012) and multiple muscles can act on a single joint. Thereby, recep-

tors and muscles form structural network topologies. Research has identified a detailed understanding of

the individual units and their properties, like muscle spindle transfer functions or force-length and force-

velocity relationships of the muscle (Prochazka and Gorassini, 1998; Hosoda et al., 2017; Siebert and

Rode, 2014). However, little is known about the composition of multiple units and their contribution to

the collective function of the network. Depending on the specific properties of the receptors and muscles,

translations between the mechanical and neural systems are subject to limitations in e.g. dynamic response

behaviour or bandwidth. Such constraints can challenge or support the control system (Chiel and Beer,

1997; Nishikawa et al., 2007). It remains open how specific topologies of these interfacing networks (and

their constraints) affect the control of movements.

4This approach has been called neuromechanics to express the close relation of the mechanical and neural control system

(Nishikawa et al., 2007; Ting et al., 2015).
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Research approach

This section presents the global research approach that is used throughout this thesis to address the men-

tioned challenges and gaps of knowledge.

This thesis covers individual systems and their interplay that compose the aggregate function to meet the

complex structure of the motor control loop. The motor control problem is thus interpreted as a composi-

tion of multiple puzzle pieces that need to be composed to create a bigger picture. For this, interdisciplinary

methods from different research field are required (Nishikawa et al., 2007; Frigon, 2017), e.g. frommotion

science, neuroscience, psychology, and robotics.

Within this global framework, contributions of the two interfacing systems in the human motor control

loop, namely motor and sensor systems, are highlighted to fill the mentioned research gap. This the-

sis aims at investigating the structural topology of motor and sensor networks and their contribution to

simplifying neural control in cyclic locomotion. The fundamental research question is, if these network

topologies enable the translation of low-dimensional (biomechanical) locomotion templates into a neural

representation, such that the neural system can control the motion task more efficiently. For this, two rel-

evant examples are chosen to study the capabilities of these networks to generate task-specific and cyclic

locomotion: (1) muscle group arrangements in the human leg and (2) compositions of sensor pathways.

In order to satisfy the specific requirements of these network topologies, the following perspectives are

taken.

Macro-perspective: Composition of muscular functions in the human leg architecture

This macro-perspective aims at investigating how different muscle groups in the leg can contribute to

generating a global leg behaviour. This is non-trivial because of the redundant and asymmetric human

leg architecture. Despite – or because of – this complex network of muscles, the integrative leg function

generates simple behaviours during cyclic locomotion (Geyer et al., 2006; Ivanenko et al., 2007). Is this

observation a result of the neural system or, at least partially, from an advantageous arrangement of the

motor system? This perspective evaluates the global leg architecture concerning its capability to provide a

well-suited structural solution that allows the neural system to make use of the fundamental structure of

locomotion, as identified by biomechanical template models.

Micro-perspective: Composition of sensory functions in a neuro-mechanical template model

This micro-perspective targets to identify how sensor networks of different receptors generate task-specific

motion characteristics at a small scale – if a single muscle drives a single joint. For this, a neuro-mechanical

template model for hopping is used. In order to study if the sensor network in a parsimony reflex model

is sufficient to access the simple template structure of the hopping motion (Blickhan, 1989; McMahon

and Cheng, 1990), different sensory signals are blended. The aim here is to work out the fundamental

mechanisms of sensory blending and the dynamic interactions of the neural and mechanical systems (Full

and Koditschek, 1999; Pearson et al., 2006; Nishikawa et al., 2007).
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Thesis Overview

The previously mentioned research approach is represented by three articles that spread over three chap-

ters, one per article. At the date of the thesis submission, two of the three articles are published in peer-

reviewed journals while one article is submitted and currently under review.

The individual articles cover different systems in the motor control loop (Figure 1.2): (1) motor networks,

(2) reactive control and (3) sensor networks. For these, research methodologies of meta-analysis, human

experiment and computer simulations are used. In the following, each article will briefly be introduced.

Feed

forward

Cognition

Neural

processing

Mechanics

Reactive
control

perturbation

experiment

???

Sensor
networks

sensory blending

simulation

Motor
networks

muscle functions

meta analysis

IIII

II

Neural
system

Figure 1.2: Thesis contributions (Articles I to III) in the motor control loop: muscle networks in the hu-

man leg during cyclic locomotion (I), reflex responses after unforeseen perturbations (II) and

blending of different sensory pathways in sensor network (III).

Article I: Biarticular muscles in Light of Template Models, Experiments and Robotics: A review

The first article of this thesis presents a broad perspective on the functions of motor networks in the human

leg architecture. While many studies exist that focus on a particular muscle function, it remains open how

individual muscle contributions are integrated into the global leg behaviour. Reviewing research from the
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fields of biomechanics, biology and robotics provides an interdisciplinary overview of state of the art and

lay the foundation for the following chapters.

Within the complex network of muscles, joint impedance and torques are a superposition of multiple (an-

tagonistic) muscles. Also, biarticular muscles act on more than one joint. Previous research indicates that

biarticular muscles and their arrangement might play a key role in multi-joint coordination and subse-

quently the global leg behaviour (Hof, 2001; Dean and Kuo, 2008; Lakatos et al., 2014; Sharbafi et al.,

2016; Sharbafi et al., 2017; Sarmadi et al., 2019). Therefore, this article hypothesises that biarticular

structures contribute to simplify neural control.

In order to integrate research from different fields, gaits and methods, the framework of locomotor sub-

functions is used (Seyfarth, Grimmer, et al., 2013; Sharbafi and Seyfarth, 2017). This approach allows

categorising the contribution of different muscles on the global limb function of (1) the stance leg, (2) the

swing leg and (3) the balanced upper body for generating appropriate behaviour in cyclic locomotion. In

this framework, an overview of template models is given to understand the fundamental requirements of

bipedal locomotion better. Based on this, evidence from human experiments is reviewed to identify specific

contributions of biarticular muscle function. Conceptual and experimental insights are then reflected and

validated in light of robotic applications and demonstrators.

This meta-analysis provides a macro perspective on the function of motor networks in the leg architecture

and integrates contributions and constraints from the mechanical, sensor and neural systems. This chapter

identifies topics of high research activity and aims at combining these results in a bigger picture.

Article II: Biarticular muscles are Most Responsive to Upper-body Pitch Perturbations in Hu-

man Standing

Article I identified gaps of knowledge and provided new hypotheses on the function of biarticular muscles

(Chapter 2). Conceptual models suggest that biarticular muscles are preferably used to control angular

momentum, e.g. for balancing the upper body (Hof, 2001; Lakatos et al., 2014; Sarmadi et al., 2019).

However, experimental evidence for such kind of function is still missing, especially in the context of

sudden and unforeseen perturbations.

Article II (Chapter 3) addresses this gap of knowledge by investigating the role of biarticular muscles for

regulating upper-body balance after perturbations of angular momentum in human. Applying a new type

of perturbation (for the first time) allows for exerting specific and impulse-like torque perturbations to

the subject’s upper body. First, the efficacy of the perturbation device is validated. Then, contributions

of major mono- and biarticular leg muscles are identified by evaluating reactions of muscular activity in

response to the perturbation. Finally, these results are reflected in the light of neural control strategies of

reactive and anticipatory muscle recruitment.

Article III: Sensor-motor Maps for Describing Linear Reflex Composition in Hopping

The final article investigates the capabilities of sensor network topologies to generate specific motion tasks

through changes in sensor pathway composition. A novel approach, called sensor-motor maps, is developed

to relate elementary units of proprioception in the human body (Golgi tendon organs, muscle spindles) to

specific characteristics of the generated motion.
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In order to identify individual and combined (blended) contributions, the model of Geyer et al. (2003)

is extended by a simple model of sensory integration. The neuromechanical template model generates a

simple repetitive hopping motion to focus on the reflex contribution stemming from monosynaptic trans-

missions. Different characteristics of hopping are evaluated to assess the functional contribution of the

sensor network: (1) ability to generate cyclic and steady-state hopping patterns (stability), (2) ability to

produce dynamic and highly energetic hopping motions (performance) and (3) ability to create motions

with low costs of transport (efficiency). Further, variations of the body morphology and the environment

are considered to investigate the robustness of the system.

This article uses a holistic approach that integrates the mechanical, sensor, neural and motor systems in

the motor control system (as motivated in this thesis). This approach allows to decompose fundamental

logics of sensory blending in the sensor network and evaluates these results for generating goal-directed

behaviours in the stance leg.
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Abstract

Leg morphology is an important outcome of evolution. A remarkable morphological leg feature is the

existence of biarticular muscles that span adjacent joints. Diverse studies from different fields of research

suggest a less coherent understanding of the muscles’ functionality in cyclic, sagittal plane locomotion.

We structured this review of biarticular muscle function by reflecting biomechanical template models,

human experiments and robotic system designs. Within these approaches, we surveyed the contribution

of biarticular muscles to the locomotor subfunctions (stance, balance, and swing).

While mono- and biarticular muscles do not show physiological differences, the reviewed studies provide

evidence for complementary and locomotor subfunction-specific contributions of mono- and biarticular

muscles. In stance, biarticular muscles coordinate joint movements, improve economy (e.g. by transfer-

ring energy), and secure the zig-zag-configuration of the leg against joint overextension. These commonly-

known functions are extended by an explicit role of biarticular muscles in controlling the angular momen-

tum for balance and swing.

Human-like leg arrangement and intrinsic (compliant) properties of biarticular structures improve the

controllability and energy efficiency of legged robots and assistive devices.

Future interdisciplinary research on biarticular muscles should address their role for sensing and control

as well as non-cyclic and/or non-sagittal motions, and non-static moment arms.

Introduction

Animals can easily perform a variety of movements. They coordinate their complex musculoskeletal system

in a way that allows a simple description of the movement dynamics with template models (Full and

Koditschek, 1999). For example, during running and walking, the dynamics of the human body – with

all its segments and muscles – can be described with a leg-spring supporting the body mass (Blickhan,

1989; McMahon and Cheng, 1990; Geyer et al., 2006). These conceptual models suggest that the neural

system controls the segmented leg in simplified coordinates like leg length and leg angle rather than

individual joint angles (Ivanenko et al., 2007; Bosco and Poppele, 2001; Auyang et al., 2009). The leg

architecture and the muscle function could contribute to the simple behaviour of the complex leg. In

the human leg, multiple muscles drive a single joint, and single muscles can act on more than one joint.

Current biomechanical analyses like inverse dynamics as well as typical robotic designs focus on single

joint dynamics (e.g. Winter, 2009). Single-joint analyses neglect inter-joint couplings and their potential

in simplifying the realisation of coordinated multi-segment motions (Kuo, 2001).

The specific functions of biarticular muscles (muscles spanning two joints) has spurred the interest of

researchers since centuries. Pioneers like DaVinci (1452-1519) exploited the ability of strings spanning

multiple joints to transfer energy to move robots. Borelli (1608-1679) linked biarticular muscles to balance

(drawing of a standing man with explicit biarticular muscle). The well-known Lombard’s paradox refers

to the ability of a biarticular muscle to extend a joint that it anatomically flexes. The muscle extends the

joint through the action of a co-contracted biarticular antagonist (Lombard, 1903; Kuo, 2001). Biarticular

muscles are believed to play an important role in efficient (Junius et al., 2017) and robust (Dean and Kuo,

2008) locomotion. However, in spite of the long history of research, the contribution of biarticular muscles

for realising locomotion is still not well understood.
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The lacking understanding of biarticular muscle functions prevents exploitation of potential benefits of

biarticular muscles e.g. in the design of assistive devices. We provide a new functional perspective to the

state-of-the-art in biarticular actuation by splitting locomotion into different subfunctions. Based on this

scheme, we review relevant conceptual models and existing literature to derive functions of biarticular

muscles.

Previously, legged locomotion has been analysed from many perspectives (e.g. external and interal work:

Donelan et al. 2002; Saibene and Minetti 2003, potential and kinetic energetics: Cavagna et al. 1976, or

by detailed building blocks of neural control: Song and Geyer 2015). Motion related approaches included

the decomposition of motion into body posture, leg alignment and energy balance (Raibert, 1986), or

into body support and propulsion (Liu et al., 2008; Hamner et al., 2010). Here, we follow the concept

of locomotor subfunctions comprising stance, balance and swing (Sharbafi et al., 2017a). The main idea

of this concept is to consider the main limbs and their functional contribution during locomotion (stance

leg, swing leg and trunk) individually. This approach stresses the leg’s function-specific kinematics (e.g.

distal end of limb) rather than that of the individual joint or muscle, following the idea of simplified leg

coordinates (leg length and leg orientation).

We focused on studies that modelled, investigated or replicated fundamental and cyclic tasks of human

legged locomotion with a confined range of motion of lower-limb joints. Since the sagittal plane contains

the majority of leg muscle action in these tasks, other planes and associated biarticular functions (see e.g.

Cleather, 2018) are not considered.

In this review, we first define the framework of the locomotor subfunctions. This perspective is used to

examine important conceptual models, followed by experimental studies on biarticular muscle function.

Then, we review how hardware designs exploit biarticular structures in legged robots and assistive devices.

Finally, we integrate model predictions, human experiments and robotic applications into an overall picture

of biarticular muscle function during cyclic locomotion and identify opportunities for future research.

Concepts and models of locomotion

Locomotor subfunctions

Template models (Full and Koditschek, 1999) can help to describe how the dynamics of the movement

could be organised. These models have been used to resemble different features of legged locomotion

at different levels of the human body (muscles, joints, segments). For instance, the behaviour of the leg

during walking or running can be represented by the spring-loaded inverted pendulum, called SLIP model,

that is universal for animals with different numbers of legs, humans and a variety of gaits (Blickhan and

Full, 1993; Gan et al., 2018a; Gan et al., 2018b). This indicates a global organisation of movement with

functional requirements that are independent of the anatomical structure of the body. Agreeing with this,

observations of animals and humans showed that individual joints are coordinated together to generate a

desired behaviour of the limb or the whole body (Bosco and Poppele, 2001; Auyang et al., 2009; Ivanenko

et al., 2007). Legged locomotion can thus be considered as a composition of locomotor subfunctions that

resembles the global organisation of the corresponding limb to fulfil the functional requirement of the

performed task. Previously, we proposed a set of three locomotor subfunctions, namely stance, balance

and swing subfunction (Sharbafi and Seyfarth, 2017a):
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• Stance subfunction. During ground contact, the stance leg exerts axial leg forces on the ground (at

center of pressure, CoP) to counteract gravity and to redirect the movement of the body center of

mass (CoM).

• Balance subfunction. This subfunction represents a rotational body alignment to keep the upper

body aligned vertically with respect to gravity.

• Swing subfunction. This subfunction controls the swing leg motion to prepare for the next ground

contact. It comprises a rotational leg alignment adjusting the leg angle of attack and an axial leg

length change, e.g. for foot clearance during forward swing.

Analysing separated locomotor subfunctions allows for the investigation of each individual subfunction at

different levels (Sharbafi et al., 2017a) and their interaction (Sarmadi et al., 2019). These may involve

experimental or computational approaches ranging from simplistic mechanical templates to complex neu-

romechanical models. With this approach, we aim to provide an integrative view on the upper body and

limb functions which addresses the motion-dependent requirements of sensing, controlling and actuating

all involved joints and corresponding biarticular muscles.

Locomotor subfunctions can be combined to create complex movements. This requires a certain degree of

modularity to generate suitable combinations that coexist without disturbing or prohibiting each other. In

the current approach, some features of locomotion are simplified. Additional subfunctions could be iden-

tified in the future to extend or potentially revise the current composition of three locomotor subfunctions.

Biomechanical template models

In this review, we mainly deal with cyclic motions like walking, running, or hopping. A range of computa-

tional template models (Full and Koditschek, 1999) that drastically reduce the complexity of the physical

systems have been devised to understand fundamental mechanisms of bipedal locomotion. Most tem-

plate models of locomotion contain, in a more or less abstract way, a combination of different locomotor

subfunctions that in an interplay enable cyclic locomotion. However, a single model often emphasises a

specific mechanism or function that particularly influences one or two locomotor subfunctions. According

to these priorities, we arranged a number of utilised template models within the spectrum of locomotor

subfunctions (Figure 2.1). These template models have been used to analyse a variety of fundamental

mechanisms of bipedal locomotion.

To investigate e.g. different gait patterns, gait stability or energy fluctuations, templates realised the specific

subfunctions differently. For example, the stance subfunction has been described by rigid massless legs

(Figure 2.1A), compliant springs (Figure 2.1B), viscoelastic elements (Figure 2.1D), or time-dependent

functions of length and force (Figure 2.1J). The F-SLIP model (Figure 2.1C) included a foot to investigate

leg lengthening and the foot rollover.

In templates, the balance subfunction was realised by torques about the hip (Figure 2.1D, F, G, H) or

the ankle (Figure 2.1E). Point mass models are reduced to investigating whole-body stability, i.e. CoM

dynamics relative to the CoP. The balance subfunction for templates incorporating a trunk segment with

finite moment of inertia (Figure 2.1F, G) is more complex, because they simultaneously require upper body

stability.

In most templates, the swing phase of the massless leg is reduced to defining an angle of attack (Fig-

ure 2.1B). This neglects the leg dynamics. Other models consider motion dynamics (e.g. leg retraction

Seyfarth et al., 2003; Andrada et al., 2013, or capture point, Figure 2.1H) to define the leg placement.
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Figure 2.1: Selection of template models in the spectrum of locomotor subfunctions: A inverted pendu-

lum (IP) model (Garcia et al., 1998) and linear IP model (Kajita et al., 2001), B spring-loaded in-

verted pendulum (SLIP) model (Blickhan, 1989; McMahon and Cheng, 1990; Geyer et al., 2006;

Andrada et al., 2013), C SLIP model with foot (F-SLIP) (Maykranz and Seyfarth, 2014), D hip-

actuated-SLIP (Hip-SLIP)with damped leg (Shen and Seipel, 2012), E ankle-actuated-IPmodel for

standing (Winter, 1995), F SLIP with compliant hip and trunk (Gomes and Ruina, 2011; Rummel

and Seyfarth, 2010), e.g. force-modulated compliant hip (FMCH) model (Sharbafi and Seyfarth,

2015), G virtual pivot point (VPP) model (Maus et al., 2010), H linearised hip-actuated-IP model

with capture point (Pratt et al., 2006), I swing pendulum model (Rashty et al., 2014; Knuesel et

al., 2005; Lim and Park, 2019) and J optimised leg function (Srinivasan and Ruina, 2006). Point

masses neglect moment of inertia. Torques τ applied to the hip of a point mass are equivalent

to models with upper bodies of infinite moment of inertia. Ellipsoid upper bodies have finite

moment of inertia. Note that some references refer to slightly modified or extended versions

of the shown models.
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Few investigations using templates aimed at analysing the dynamics of the swing leg by representing the

swing leg as a simple mechanical pendulum (Figure 2.1I).

Templates are useful to understand locomotion on a global level and this article will show their application

in robotic systems (e.g. by virtual model control). However, in nature, legs are segmented and driven by

mono- and biarticular muscles. Thus, the muscle’s mechanical function is strongly influenced by the leg

architecture. This coupling also affects the neural coordination of the muscles. Since the mentioned

template models abstracted this level of complexity, they are not suitable to study the neuromechanical

realisation of animal or human locomotion. To address questions concerning specific biarticular muscle

functions or their neural control, the templatemodels must be extended to segmented legs and (abstracted)

muscles while preserving the derived concepts.

Biarticular structures in the segmented leg

This section focuses on the relation between selected template and segmentedmodels with abstracted mus-

cles (Figure 2.2). Compared to template-level analysis, segmented models resemble reality more closely.

For example, compared to hip torques in a template model (e.g. Figure 2.1H) which generate ground re-

action force (GRF) perpendicular to the leg axis in the sagittal plane (rotary forces), monoarticular hip

muscles in a segmented leg generate static forces aligned with the shank segment (Hof, 2001). Thus, the

direction of force generation with respect to leg axis depends on knee flexion. Nonetheless, the function

of monoarticular hip muscles in the template model can be represented even in a segmented leg structure.

This requires biarticular thigh muscles with appropriate muscle moment arms resulting in substantial ro-

tary forces (Hof, 2001). For hip to knee muscle moment arm ratios of 2:1 and equal thigh and shank

segment lengths, biarticular muscles generate GRF equal to hip torques in template models (Figure 2.2B,

Hosoda et al. 2017). With this leg architecture, the muscle-tendon length is proportional to the angle

between the leg and the upper body (Lakatos et al., 2014; Sarmadi et al., 2019).

Similarly, the gastrocnemius (GAS) muscle-tendon length is proportional to the angle between the leg and

the ground for ankle-to-knee muscle moment arm ratios of 2:1 (Hof, 2001; Lakatos et al., 2014). For flat

foot contacts with the ground, GAS force generation mainly results in a horizontal force on the upper body

(Hosoda et al., 2017). This leg architecture was exploited to generate stable running with reduced control

effort in a simulation model of a 7-link (trunk, thighs, shanks, feet) robot (Lakatos et al., 2014).

With a similar leg architecture, the segmented model in Figure 2.2C predicted that biarticular muscles

can be used to reconstruct the segment motions of the swing leg during human walking (Sharbafi et al.,

2017b). Additionally, biarticular springs (with an optimal hip-to-knee moment arm ratio of 3:1) allowed

for a greater working range of walking speeds to a comparable subset of monoarticular muscles (Dean and

Kuo, 2008). How these theoretical muscle moment arms relate to in vivo muscle moment arms will be

discussed in the next section.

These concepts suggest a relevant role of biarticular muscles to translate the fundamental mechanisms of

legged locomotion – as predicted by the template models – into the segmented and complex leg physiology.

By supporting the organism to benefit from these mechanisms (that reflect the underlying structure of

locomotion) might be a crucial contribution of biarticular muscles. However, this theory demands further

validation because simulation models and hardware demonstrators at this level of complexity are rare.
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Figure 2.2: Biarticular structures bridge the gap between concepts (templates) and implementations

(leg designs). Template models (with a telescopic leg structure) can be approximated with the

use of biarticular muscles in the segmented leg (see text). Template models focus on funda-

mental mechanisms while segmented models can be used to study specific muscle functions.

Equivalent template (left side) and segmented models (right side) for stance (A), balance (B)

and swing subfunctions (C). Note that, approximations are best for muscle moment arms ratios

of 2:1 (hip to knee and ankle to knee) and equal segment lengths (Hosoda et al., 2017).

Evidence of biarticular muscle function in bipedal locomotion

Muscle architecture and muscle properties

This section will discuss functional muscular adaptations like muscle architecture and selected properties.

Even molecular muscle mechanics help to simplify control (e.g. Tomalka et al., 2017; Heidlauf et al.,

2017; Rode et al., 2009). A more exhaustive discussion of such specific muscle properties can be found in

(Hosoda et al., 2017; Siebert and Rode, 2014).

The muscle’s architecture and properties determine its ability to generate force and control the fibre length

with respect to tendon stretch (Biewener and Roberts, 2000). For example, short pinnate fascicles and long

tendons are highly suitable for elastic recoil and economic force generation, while longer contractile fibres

with short tendons allow for higher work generation and better controllability of the joint impedance, e.g.

when facing perturbations (Biewener and Roberts, 2000; Carroll and Biewener, 2009).
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In animals, biarticular muscles were found to cover a wide range of functions. Biarticular muscles damp

impact-related oscillations in horse (Wilson et al., 2001), allow for energy transfer in turkey, wallaby and

goat distal hindlimbs or generate positive work in dog and goat forelimbs (Biewener, 2016). In contrast

to the human leg, where biarticular muscles flex and extend adjacent joints, the biarticular iliotibialis

lateralis pars postacetabularis in the guinea fowl extends both, hip and knee joints and undergoes a stretch-

shortening cycle during stance (Carr et al., 2011a; Carr et al., 2011b). Due to the diverse nature of

biarticular muscle function in animal locomotion, we focus our analysis of muscle properties on the human

leg.

To check for specialised biarticular muscle designs, we visualised data of human leg muscles (Figure 2.3A)

stemming from Rajagopal et al. (2016). Figure 2.3B shows that the muscle-tendon-complex (MTC) of

biarticular muscles is generally longer than that of monoarticular muscles. This result is explained by the

definition of bi- or multiarticular muscles as they span more than one joint or segment. The additional

length of the MTC must thereby stem from longer tendinous structures and/or longer contractile fibres.

The contraction dynamics and function of muscles depends on their fibre-tendon length ratio (Seyfarth

et al., 2000; Mörl et al., 2016). Major muscles undergoing stretch-shortening cycles during walking, e.g.

during ankle push-off (stance subfunction, e.g. soleus (SOL), vastus (VAS), gastrocnemius (GAS)) or swing

leg acceleration (swing subfunction, e.g. rectus femoris (RF), semitendinosus (ST), biceps femoris long

head (BFlh)), mainly use longer tendons (Figure 2.3B), supporting principles of energy storage and return

to reduce the energy requirement of walking (Simonsen et al., 1985; Roberts, 2002; Ishikawa et al., 2007;

Grimmer et al., 2014; Grimmer and Seyfarth, 2014). In addition, due to the serial arrangement of fibres

and tendons, these muscles must be able to make use of the tendon’s recoil (Biewener and Roberts, 2000).

In accordance with this requirement, these muscles show high force capabilities (Figure 2.3C) and highly

pennated muscle fibres (Figure 2.3D) generating high output forces to load the relatively long tendons

(Figure 2.3E).

Muscles with longer fibres relative to tendon length (Figure 2.3E: sartorius (SAR), gracilis (GRA)) were

associated with leg rotation in the transversal plane and thus steering (Cleather, 2018) and might relate

to leg joint stability. Their long contractile fibres and short tendons allow a more direct control of the

muscular impedance (Biewener and Roberts, 2000). Typically, steering does not involve powerful stretch-

shortening cycles of these muscles. This is reflected in their limited output force, as found by a small

force-generating capacity (Figure 2.3C) and small pennation angles (Figure 2.3D).

These results show that mono- and biarticular muscles share similar properties (Figure 2.3; Kuo, 2001).

The muscle’s specific characteristics may be more a result of a continuous adaptation to the organism’s

lifestyle and its environment (Du Brul, 1962; Lovejoy, 1988).

Moment arms of biarticular muscles are important for understanding their functional contribution to gen-

erate torques at the joints they span (Cleather et al., 2015; Sharbafi et al., 2017b; Young et al., 2019).

As discussed in the previous section, appropriate biarticular moment arms translated fundamental mecha-

nisms of template models to more elaborate leg designs. To check if these assumptions reflect the human

physiology, we visualised data from in-vivo and in-vitro studies that investigated human muscle moment

arms in the sagittal plane. Since muscle moment arms depend on joint angles, results vary due to a wide

range of studied joint angles (Figure 2.4). The biarticular GAS moment arm at the ankle was found to be

in ranges of 3 cm to 7 cm while its knee arm was in ranges of 1 cm to 4 cm. For biarticular thigh muscles,

hip moment arms seem to be greater than knee moment arms (Figure 2.4 and Cleather et al. 2015). The

results presented here seem to roughly agree with previously postulated (Winter, 2009) moment arm ratios

of GAS (ankle to knee ratio: 2:1), HAM (hip to knee ratio: 2:1) and RF (hip to knee ratio: 4:3).
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Figure 2.3: Overview of major mono- (orange) and biarticular (cyan) muscle architectures and proper-

ties. Figures were generated based on data from Rajagopal et al. (2016). A Arrangement of

anterior (top panel) and posterior (bottom panel) muscles groups. B Mean and standard de-

viation (SD) of tendon and muscle fibre lengths. C Mean and SD force capacity of muscles. D

Mean and SD pennation angles of muscles fibres. E Mean and SD distribution of muscles fi-

bres and tendon lengths in the MTC. Muscle abbreviations: soleus (SOL), vastus lateralis (VASL),

gastrocnemius medial head (GASM), vastus medialis (VASM), semimembranosus (SM), rectus

femoris (RF), vastus intermedius (VASI), gastrocnemius lateral head (GASL), psoas major (PS),

biceps femoris long head (BFlh), tibialis anterior (TA), gluteus maximus (GLU), iliacus (IL), semi-

tendinosus (ST), biceps femoris short head (BFsh), tensor fasciae latae (TFL), gracilis (GRA) and

sartorius (SAR). Note that for TFL no variances of optimal fiber length, tendon slack length, and

pennation angle were reported in Rajagopal et al. (2016).
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Only a limited number of studies quantified the hip moment arms. In addition, moment arms can undergo

substantial changes, e.g. during a normal stride, as shown by a hindlimb model of the rat (Young et al.,

2019). Even though such changes might be less pronounced for humans – as they use more extended leg

configurations during locomotion – the provided overview should only be used as a guideline. In order to

draw reliable conclusions further studies are needed.

Biarticular muscles in human locomotion

In this section, we will review evidence from experimental studies that investigated the role of biarticular

muscles in human locomotion. We categorise the existing works by locomotor subfunctions and their task-

and function-specific context.

Stance

In animals and humans, withstanding or overcoming gravitation is a major requirement for locomotion.

During ground contact, leg joints (hip, knee and ankle) are often synchronised such that they undergo a

flexion/ extension when the leg is shortened/ extended, respectively (Cleland, 1867; Fenn, 1938; Ivanenko

et al., 2007). Due to the zig-zag configuration of the leg, biarticular leg muscles are then simultaneously

pulled at one joint and released at the other joint. The length of the biarticular muscle tendon complex

has been found to remain almost constant for both extremes of the full leg length range of motion (Cle-

land, 1867). Other studies have found that the MTC of the GAS does stretch during the stance phase of

walking, but that the stretch appeared in the tendon, allowing the fascicles to operate almost isometrically

(Fukunaga et al., 2001; Ishikawa et al., 2005; Lichtwark et al., 2007; Farris and Sawicki, 2012). This

held even over a range of ground inclines or speeds, when higher work generation is required (Lichtwark

and Wilson, 2006). Such isometric contraction of the biarticular fascicles is beneficial for multiple rea-

sons. An isometric contraction delivers a higher force compared to a shortening contraction due to the

force-velocity relationship of muscle force production (Hill, 1938). Moreover, the tensed biarticular MTC

is able to transmit forces to neighbouring joints, while generating almost no mechanical work (product of

force and contraction velocity). This is advantageous because such a close to isometric contraction (al-

most zero velocity) requires less metabolic cost compared to quicker contractions (Minetti and Alexander,

1997). Two monoarticular muscles substituting the biarticular muscle would have to undergo shortening/

lengthening contractions, respectively, to achieve a similar mechanical outcome at a higher cost (Elftman,

1939; Elftman, 1940; Wells, 1988).

If a biarticular muscle is co-contracted with an adjacent monoarticular muscle, the monoarticular muscle

can act on a joint that it does not span. For example, a hip extension (e.g. by gluteus maximus (GLU)) can

be transferred via a ligamentous action (Cleland, 1867) of the RF to a knee extension. By such coupling

more powerful muscle groups (with greater muscle volume) can contribute to the net torque of an adjacent

joint (Morrison, 1970; Gregoire et al., 1984; Prilutsky and Zatsiorsky, 1994). Researchers concluded that

such joint coupling is an effective strategy to reduce distal mass of the legs and minimise the mechanical

delay of the system in response to neural commands (Elftman, 1939; Morrison, 1970; Gregoire et al.,

1984; Schenau, 1989; Prilutsky and Zatsiorsky, 1994).

During push-off in jumping, the major leg joints extend in a temporal sequence from the hip to the ankle

enabling an energy flow from proximal to distal joints (Gregoire et al., 1984; Schenau, 1989). It was

found that the biarticular joint coupling enabled a more efficient execution of the push-off (Schenau,
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Figure 2.4: Range of sagittal muscle moment arms for human mono- (orange) and biarticular (cyan) leg

muscles. Darker colour bars shows overlaying results from multiple studies. Note that work-

ing ranges and methods of assessment vary between studies. Numbers in parentheses denote

the number of studies that are shown for that muscle. Black lines connect both joint moment

arms of the same biarticular muscle. Data for visualisation stems from: Németh and Ohlsén

(1985), Visser et al. (1990), and Arnold et al. (2000) (hip), Wretenberg et al. (1996), Buford et

al. (1997), Spoor and Van Leeuwen (1992), Maganaris et al. (2006), Herzog and Read (1993),

Visser et al. (1990), and Arnold et al. (2000) (knee) andMaganaris et al. (1998), Maganaris et al.

(2000), Maganaris (2004a), Maganaris (2004b), Maganaris (2003), Fath et al. (2010), Karamani-

dis et al. (2011), Hashizume et al. (2012), Rugg et al. (1990), Klein et al. (1996), and Sheehan

(2012) (ankle). Used muscle abbrevations are gluteus maximus (GLU), biceps femoris long head

(BFlh), semimembranosus (SM), semitendinosus (ST), psoas major (PS), rectus femoris (RF), gra-

cilis (GRA), sartorius (SAR), biceps femoris long head (BFlh), gastrocnemius (GAS), tensor fasciae

latae (TFL), vastus (VAS), soleus (SOL) and tibialis anterior (TA). BF denotes knee moment arms

of biceps femoris long head (BFlh) and biceps femoris short head (BFsh). For HAMmuscle group

and GAS, also see Cleather et al. (2015).

1989). Prilutsky and Zatsiorsky (1994) also showed that such energy flow can be effective vice-versa

(from distal to proximal joints) to dissipate energy in the powerful proximal muscles, e.g. during landing

or load response.
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During quick knee extensions at the end of stance in hopping, the biarticular GAS transformed rotational

kinetic energy of thigh and shank to a translational push-off motion (Ingen Schenau et al., 1987; Schenau,

1989). This not only improved the legs push-off performance but also prevented knee overextension (Ingen

Schenau et al., 1987; Schenau, 1989). During hopping, such energy transfer (from knee to ankle) could

contribute up to 25 percent to the peak power output at the ankle (Bobbert et al., 1986a; Bobbert et al.,

1986b).

Balance

While the term balance usually refers to the task of maintaining stability of the whole body, here, we

consider the postural control of the upper body to focus on the involvement of biarticular thigh muscles

for generating stabilising hip torques (Horak and Nashner, 1986; Winter, 1995).

The ability of biarticular muscles to mainly contribute to rotary leg forces (Hof, 2001) can be especially

useful for controlling angular momentum and thus postural balance. In this context, a study investigated

the reaction of subjects who stood on one leg to maintain their posture while being exerted to external

(anterior and posterior) forces on the unloaded leg (Hosoda et al., 2017). In response to the introduced

joint torques, subjects dominantly (and consistently) recruited biarticular thigh muscles in both legs, while

activity of electromyographic data (EMG) in monoarticular muscles changed inconsistently (Hosoda et al.,

2017).

Further experiments studied the relation of biarticular muscle function and appropriate combinations of

hip and knee joint torques (and associated GRF adaptations). Doorenbosch and Ingen Schenau (1995)

reported high correlations (0.935 ± 0.027SD) between the isometric muscular activity of RF and HAM

muscles and the net joint torque of hip and knee. For a desired combination of hip flexion and knee ex-

tension torque, increasing RF and decreasing HAM activation was observed. Both antagonistic biarticular

thigh muscles were recruited in a reciprocal way, depending on the torque requirements of the tasks (Fu-

jiwara and Basmajian, 1975; Wells and Evans, 1987; Ingen Schenau et al., 1992; Doorenbosch and Ingen

Schenau, 1995). Similar patterns for GRF manipulations were also observed in cycling (Gregor et al.,

1991) or load lifting tasks (Toussaint et al., 1992; Prilutsky et al., 1998).

To also shed more light on reactive control strategies to unexpected and immediate perturbations, we

recently applied impulse-like pitch perturbations to the upper-body during standing (Schumacher et al.,

2019). In line with the studies above, biarticular thigh muscles had the strongest increase in muscular

activity of all measured muscles (monoarticular hip muscles showed only moderate to no reactions). These

results provide further evidence that RF and HAM actively control the required net hip to knee torques

coordinating the posture of the upper body (Schumacher et al., 2019).

Swing

In bipedal locomotion, the swing leg performs a forward motion while being unloaded. The swing phase

requires suitable swing leg length and orientation trajectories to achieve ground clearance (avoiding obsta-

cles) and a proper foot placement for the next stance phase. Since only inertia is to be overcome, required

joint torques are rather small compared to the stance subfunction (Piazza and Delp, 1996). However, an

important requirement lies in the proper coordination and synchronisation of different joints.
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RF and HAM experience stretch-shortening cycles facilitating energy store-and-release mechanisms dur-

ing walking, running and sprinting (Nilsson et al., 1985; Simonsen et al., 1985). In late stance, RF length

increased (also loading the tendon) due to hip extension. Together with a concentric contraction, this

energy was released and helped to initialise the forward swing of the leg. For HAM, the stretch-shortening

cycle appeared during the forward swing and subsequent retraction of the leg. While the elastic energy

storage serves to improve the horizontal propulsion, previously mentioned template models revealed ben-

efits of such leg retraction strategy (here by HAM) on running stability (Seyfarth et al., 2003; Poggensee

et al., 2014). Both biarticular thigh muscles exchanged energy between stance and swing phases (Simon-

sen et al., 1985). However, only data from two subjects was assessed, revealing the demand for further

experimental support of these mechanisms.

Prilutsky et al. (1998) investigated the role of biarticular thigh muscles during the swing phase of walking

and running at different speeds. Phase-specific contributions of RF and HAM for specific hip and knee

torque combinations were found. Similar to balancing the upper body, RF and HAM of the swing leg

showed reciprocal EMG patterns in line with the net hip to knee torque requirement. Muscle activation

of the RF was significantly higher during the early half of the swing phase, when hip flexion and knee

extension torque occur simultaneously, compared to the second half. For HAM, the opposite was reported.

These patterns occurred in both walking and running gaits. Authors also found high correlations for the

EMG difference of RF and HAM with the net hip to knee torque (between 0.923 and 0.959 for different

speeds). However, since only four subjects participated in the study, and a total of only three swing phases

each were used for the analysis, more quantitative data should confirm these results.

Biarticular sensors

In addition to generating appropriate joint torques throughout the segmental chain (Prilutsky and Zat-

siorsky, 1994; Jacobs and Macpherson, 1996; Prilutsky et al., 1998), biarticular muscles might also play

an important role for sensing limb posture in global coordinates, e.g. limb orientation and length (Bosco

et al., 1996; Verschueren et al., 1998; Sharbafi et al., 2016; Poppele et al., 2002; Ivanenko et al., 2007).

Potential implementations could involve force feedback, e.g. by the respective Golgi tendon organs (Proc-

hazka et al., 1997; Prilutsky et al., 1998) or by cutaneous receptors in the foot sole, sensing the leg force

(Duysens et al., 1996; Prilutsky et al., 1998; Sharbafi and Seyfarth, 2015; Sarmadi et al., 2019). In this

context, Lacquaniti and Soechting (1986a), Lacquaniti and Soechting (1986b), and Soechting and Lac-

quaniti (1988) found that, following torque perturbations at the arm, the effective net torque of the elbow

and shoulder was a better predictor for the observed muscle responses than single joint angular veloci-

ties (and individual stretch reflexes). Similar results were also found in the leg (Fujiwara and Basmajian,

1975; Wells and Evans, 1987; Doorenbosch and Ingen Schenau, 1995). As the length of HAM and RF

remains almost constant when the leg length shortens or extends (Cleland, 1867; Fenn, 1938), these mus-

cles predominantly undergo a change in length when e.g. the trunk orientation changes with respect to

the leg orientation. Thus, length feedback pathways of biarticular muscles could sense the orientation of

the limb axis directly. By this, biarticular muscles provide a simple solution of postural proprioception,

complementing vestibular sensation and other sources in postural equilibrium tasks.

The sensing of leg length and orientation (Bosco et al., 1996; Poppele et al., 2002; Ivanenko et al., 2007)

by biarticular muscles could simplify control and coordination of joints (Lakatos et al., 2014; Sharbafi

et al., 2016; Lakatos et al., 2016). In this context, a parallel and independent control of axial and perpen-

dicular leg forces by mono- and biarticular have been suggested from studying the perturbation response

of standing cats (Lacquaniti and Maioli, 1994; Jacobs and Macpherson, 1996). However, more research is

25



required to identify specific biarticular reflex pathways and the corresponding involvement in generating

appropriate movements, also in the context of muscle synergies (Torres-Oviedo and Ting, 2010; Chvatal

et al., 2011).

Applications in robotic devices

In this section, we review the application of biarticular elements (e.g. actuators or springs) in the design of

legged robotic systems. For this, we will present how compliant biarticular structures were used to improve

the controllability of these systems, before we review different hardware designs and control concepts in

the light of the locomotor subfunctions.

Control embodiment via compliance and biarticular mechanism

The morphology and biomechanics of humans and animals have great impact on locomotion control

(Pfeifer et al., 2007). This was formulated in the control embodiment1 concept, in which the mechanical

structure is considered to be an important contributor for generating appropriate movements and solving

control challenges (Pfeifer et al., 2007).

In the context of locomotion, robotic systems utilised biarticular structures with compliant properties of

muscles or tendons (Endo et al., 2006; Iida et al., 2008; Hosoda et al., 2010; Radkhah et al., 2011;

Ogawa et al., 2011; Nakanishi et al., 2013; Lakatos et al., 2016). Such designs are inspired by biological

bodies (Ferris et al., 1998; Seyfarth et al., 2006). Both of these qualities, biarticular arrangement and

inherent compliant properties, can be considered tools for control embodiment. They can improve the

controllability of the robot, enable energy management and improve robustness against the uncertainty

of the environment, e.g. changing terrains (Nakata et al., 2012; Liu et al., 2015). Additionally, passive

mechanical structures instantaneously interact with the environment and can thus respond to external

perturbation without a control delay. Examples of these benefits can be found in bipedal and quadruped

robots, where biarticular springs helped to generate stable gaits even when a simple open loop control

(without sensory feedback) was used (Iida et al., 2008; Iida et al., 2009; Ogawa et al., 2011; Spröwitz

et al., 2013).

As discussed previously, the length of the biarticular spring – given appropriate moment arm ratios –

corresponds to rotational changes of the whole leg with respect to the adjacent segment. For instance, the

length of a biarticular thigh spring (similar to HAM or RF) can be proportional to the angle between the leg

and the upper body (Lakatos et al., 2014; Sarmadi et al., 2019). By this, a biarticular spring could be used

to directly react to perturbations on the upper-body posture. Results of Schumacher et al. (2019) support

the beneficial contribution of biarticular structures to recover from upper-body perturbations in human-

like leg designs. In another example of a simple swing leg model, the (rest) length of biarticular thigh

springs was found to linearly correlate with the target swing leg angle (Sharbafi et al., 2017b). However,

in all these applications, biarticular moment arm ratios are an important factor determining the functional

contribution of the biarticular actuator or spring, as shown in the CARL robot (Nejadfard et al., 2018b).

Proper design of moment arm ratios and spring properties (e.g. spring stiffness or rest length) can thus be

used as design parameters to determine the desired limb behaviour and incorporate a bio-inspired control

1Instead of intelligence embodiment, introduced in Pfeifer and Bongard (2007), we use the term control embodiment focusing

on locomotion control.
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embodiment strategy in robotic systems (Blickhan et al., 2006; Lakatos et al., 2014; Lakatos et al., 2016;

Sharbafi et al., 2016; Nejadfard et al., 2018b).

Biarticular structures in legged robots

Several robotic systems investigated the effect of biarticular actuation (Figure 2.5) to counteract gravity

(stance subfunction) in dynamic motions by evaluating the motion performance, e.g. the hopping height.

In the study of Hosoda et al. (2010), biarticular pneumatic artificial muscle (PAM) were used to trans-

mit joint torques along multiple segments and coordinate multiple joints in vertical jumping. Further, a

hopping robot (Babic, 2009; Babic et al., 2009) was used to test the results of a computational study that

predicted improvements in hopping performance due to GAS muscle energy transfer from knee to ankle

(Bobbert et al., 1986a). The hopping robot confirmed that hopping height increased due to an additional

energy-storage and release in the added GAS as well as improved energy transfer from proximal to distal

joints. With an appropriate timing and magnitude of GAS actuation, hopping height increased by 18 %
(Babic et al., 2009). For CARL, energy transfer of biarticular actuators improved the overall jumping ef-

ficiency of the robotic leg (Nejadfard et al., 2018a). Similar effects were also reported in the BioBiped

robot and free falling experiments (Scholz et al., 2012; Sharbafi et al., 2016). In another study, a three

segmented mono-pedal hopping robot with a point foot used electromagnetic linear actuators to mimic

compliant mono- and biarticular muscles (Nakata et al., 2012). In this system, biarticular thigh muscles

tuned the stiffness ellipse2 at the foot during stance and consequently, controlled the motion direction of

the robot in the flight phase.

The mechanism of a proximal-to-distal energy transfer with biarticular muscles was further tested in a

human-sized robotic leg that used all major monoarticular (except the knee flexor) and biarticular RF and

GAS actuators to perform squatting movements (Klein et al., 2008). It was found that, if force genera-

tion of GAS precedes SOL contribution, the total ankle power increased, compared to simultaneous force

generation.

Biarticular actuation was used to improve the postural balance function in robots, e.g. by PAM in the

Pneumat-BS (Ogawa et al., 2011) and the Pneumat-BB (Narioka et al., 2013) or by serial elastic actuator

(SEA) in the BioBiped (Sharbafi et al., 2016). In standing and squatting experiments of the BioBiped3 robot,

the cross-talk between axial and perpendicular terms of GRF was reduced when hip-to-knee moment arm

ratios approached values of 2:1 (Sharbafi et al., 2016). By this, VAS and biarticular thigh muscles could

respectively control GRFmagnitude and directionwithminimum interference. This agrees well with results

from simulations and experiments (see previous sections for details) and further suggests that the two

subfunctions of stance and balance could be assigned to different muscle groups.

Inspired by simulation results (Sharbafi et al., 2017b), a simulation model of the BioBiped robot used

biarticular thigh actuators to generate an appropriate leg swing motion for forward hopping (Sharbafi

et al., 2014; Sharbafi et al., 2016). For this, a pre-tension of the elastic element in the SEA (during late

stance) resulted in a passive response of the spring realising the leg swing motion (Sharbafi et al., 2016).

Further, simulation results of a running robot (Lakatos et al., 2014) and successful implementation of a

simple controller exploiting biarticular SEA in a humanoid robot achieving dynamic walking (Lakatos et

al., 2016) indicate that for an appropriate design of biarticular actuators, balance and swing subfunctions

could be decoupled from the stance control.

2The stiffness matrix is calculated at the end effector of a manipulator. By calculating the eigenvalues and eigenvectors of

the stiffness matrix, the stiffness ellipse illustrates the compliance in different directions at the end effector. In biped robots,

calculating the stiffness ellipse during stance can determine the movement direction.
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Figure 2.5: Selection of simple and complex legged robots utilising biarticular actuation in the spectrum

of locomotor subfunctions. A biarticular legged robot (Babic, 2009; Babic et al., 2009), B Bio-

Biped (Sharbafi et al., 2016), C Pneumat-BS (Ogawa et al., 2011), D Pneumat-BB (Narioka et al.,

2013), E C-Runner humanoid running machine (Loeffl et al., 2016; Lakatos et al., 2016) F CARL

robot (Schütz et al., 2017) and G Jena Walker II (Seyfarth et al., 2009). Note that some of

the shown robots also cover multiple subfunctions, but were arranged according to the main

functional contribution of biarticular actuation. Photos in the courtesy of: Jan Babic (A), Koh

Hosoda (C & D), Patrick Vonwirth (F) as well as under CC BY 3.0 from DLR (E) and Sharbafi et al.

2016 (B & G).

By such muscle-specific task allocation, control approaches could be simplified to setting properties of

compliant elements (e.g. spring stiffness or rest length) to a specific value for each gait condition. An
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example of this can be found in the Jena Walker robot (Iida et al., 2008; Iida et al., 2009). Combining

oscillatory feed-forward actuation at the hip for propulsion (push-off and leg swing), a monoarticular

spring (like tibialis anterior (TA)) and multiple biarticular springs (similar to RF, HAM and GAS) generated

stable walking and running patterns. By this, stance and swing subfunctions were nicely coordinated using

passive biarticular springs while the TA spring was mainly used for foot clearance (Iida et al., 2008; Iida

et al., 2009). To further coordinate or synchronise different subfunctions, e.g. when facing perturbations,

sensory feedback pathways can be used. In that context, leg force feedback could coordinate subfunctions

of stance (VAS) and balance (RF and HAM) and improve the robustness against perturbations in simulation

(Sarmadi et al., 2019).

Biarticular structures in assistive devices

Recently3, biarticular structures were used in the design of assistive devices for impaired (Eilenberg, 2017;

Eilenberg et al., 2018) and non-impaired people (Quinlivan et al., 2017; Schmidt et al., 2017).

In walking experiments of unilateral amputees, Eilenberg et al. (2018) emulated the healthy human GAS

behaviour by combining a powered ankle-foot prosthesis and a robotic knee orthosis. In this study, neu-

romuscular models of matched non-amputees were used to model the lower limb biarticular muscle. It

was hypothesised that by biarticular coupling with an artificial GAS, the active push-off of the prosthesis

could be used to reduce the work in the affected-side hip and knee during leg swing initiation. Compared

to a monoarticular operation (without knee orthosis contribution), reductions in biological knee flexion

moment impulse of the affected-side as well as reduced positive work of the hip during late-stance knee

flexion were found. This resulted in decreased metabolic power during walking in some subjects (4 out of

6), although non-significant over all subjects (Eilenberg et al., 2018).

For assisting non-impaired people, the application of biarticular structures in exosuits becamemore popular,

due to the soft and flexible design of muscle-like, tension-based actuation principles (Quinlivan et al., 2017;

Schmidt et al., 2017). Since actuators can also span multiple joints in these systems, simulation models

were used to identify an optimal actuator arrangement in the exosuit. Sharbafi et al. (2018) extended

the neuromuscular walking model of Geyer and Herr (2010) by a virtual HAM-like actuator with FMCH-

based control. While parameters of the original simulation model remained unchanged, simulation results

predicted reductions of GLU and HAM muscle activity (due to changed feedback contributions) and 12 %
metabolic costs (Sharbafi et al., 2018). In the simulation study of Van den Bogert (2003), exotendons – long

elastic strings that span different leg joints – were added to an inverse model of walking. By optimising

for the most efficient arrangements of exotendons in the leg model, it was found that required biological

joint torques and powers for generating the same walking patterns can be reduced by up to 71 % and 74 %,

respectively. However, in real experiments, when such a passive exoskeleton was applied in conjunction

with a human subject, energy expenditure of the subjects increased compared to normal walking without

an exoskeleton (Van Dijk et al., 2011).

In Malcolm et al. (2018), a biarticular knee-ankle-foot exoskeleton with a serial arrangement of a PAM

and a passive spring reduced the metabolic cost of walking more than a weight-matched monoarticular

exoskeleton (to a similar level when not wearing the exoskeleton). Using an exoskeleton, metabolic re-

ductions of up to 23 % compared to walking with the unpowered system were reported in Quinlivan et al.

(2017). Here, a multiarticular actuator simultaneously assisted hip flexion and ankle plantarflexion that

3Here, we mainly consider relevant studies since 2017. Please refer to earlier works in the review of Junius et al. (2017).
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reduced the biological ankle and hip torque during push-off (Quinlivan et al., 2017). Next to the direct en-

ergy support, it is likely that the multiarticular nature allowed for an advantageous internal energy transfer

between joints (Quinlivan et al., 2017). The Myosuit aimed at assisting anti-gravitational muscles at the

hip and knee by a biarticular arrangement of actuators for sit-to-stand movements (Schmidt et al., 2017).

This system supported up to 26 % and 35 % of the biological hip and knee torques, respectively (Schmidt

et al., 2017). This shows that biarticular arrangements in an exoskeleton effectively supported propulsion

(Quinlivan et al., 2017) as well as gravity compensation (Schmidt et al., 2017). Such biarticular struc-

tures might, however, be used in different leg arrangements (e.g. hip flexion and ankle plantarflexion in

Quinlivan et al. 2017, hip and knee extension in Schmidt et al. 2017, hip flexion and knee extension in Jin

et al. 2016) and different control strategies targeting different mechanisms of assistance (Grimmer et al.,

2019a).

In rigid exoskeleton designs, biarticular actuation improved the efficiency of the exoskeleton. In the

WalkON suit (Choi et al., 2017), the generated end-effector force per motor torque increased in some

situations (Choi et al., 2016). In another study, Zhao et al. (2017) demonstrated that support of mono-

and biarticular muscles could reduce human metabolic cost (by 10 %). This was achieved by emulating

muscle-like actuation at the hip and knee joint (mimicking monoarticular hip and biarticular thigh mus-

cles) using the FMCH control method in the LOPES II exoskeleton (Meuleman et al., 2015). However,

these results should be used with caution since only two subjects participated in this pilot study (Zhao

et al., 2017). Despite these studies, biarticular actuation principles were less common in rigid exoskeleton

designs.

Some of the recent developments indicate potential benefits of incorporating biarticular designs in pros-

thetic and exoskeleton designs. However, for real-world applications and the range of subject populations,

technological difficulties remain to be solved, such as human-machine interfaces, durability of hardware

designs and flexible control concepts (Grimmer et al., 2019b). Biarticular actuation might be one useful

approach to tackle some of these challenges by synchronous joint coordination and improved controllabil-

ity.

Discussion

In this paper, we integrate model predictions, human experiments and robotic applications into a struc-

tured, locomotor subfunction-specific picture of biarticular muscle function. By this, we extend the con-

ventional single joint-focused approach and advocate a generalised and more function-specific multi-joint

perspective.

Concepts

The existence of biomechanical template models (Full and Koditschek, 1999) as observed in different

animals and during different gaits and speeds (Blickhan and Full, 1993; Gan et al., 2018a; Gan et al.,

2018b) indicates a basic structure of locomotion. However, these mechanical concepts need to be reflected

in the segmented human leg. Templates workwith generalised coordinates (e.g. leg length and orientation)

and in a low-dimensional parameter space. These generalised coordinates can be assessed by a sensible

arrangement of mono- and biarticlar muscles. This might support the control of the complex human

leg (including all its degrees of freedom (DoF) and muscles) in a global, simplified manner (Bosco and

Poppele, 2001; Ivanenko et al., 2007; Auyang et al., 2009). While such behaviour might also be generated
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by the neural control system in an arbitrary leg architecture, the specific arrangement of biarticular and

monoarticular muscles provides a structural solution that can reduce the control effort of the motor control

system (Soest and Bobbert, 1993; Pfeifer et al., 2007; Sharbafi et al., 2016) and make leg function more

robust (Seyfarth et al., 2001). For a well-designed system, control can be sloppy and allow for a wider

range of movements. For example, biarticular springs enlarged the stability region and robustness against

spring stiffness adjustments during passive walking as predicted in the model of Dean and Kuo (2008).

Evidence

In the presented studies, biarticular muscles were found to support locomotion by a variety of features,

depending on the functional requirements of the specific locomotor subfunctions stance, balance, and

swing.

In stance, muscular joint-coupling was found to synchronise neighbouring joints and distribute the energy

flow along segments that enables efficient (see also review by Junius et al., 2017) and robust movement

execution (Seyfarth et al., 2001). Further, almost isometric biarticular muscle operation was found, e.g.

during leg extension, which resulted in more efficient torque generation than that of two monoarticular

muscles. Additionally, biarticular muscles contribute to fine-tuning and proper coordination of balance and

swing. For instance, multiple studies suggested a net torque based control scheme (net hip minus knee

torque, extension torques defined positive) of biarticular thigh muscles (Doorenbosch and Ingen Schenau,

1995; Prilutsky et al., 1998) that allowed for the manipulation of GRF direction and control of angular

momentum (Dean and Kuo, 2008; Hosoda et al., 2010; Sharbafi et al., 2017b; Sharbafi and Seyfarth,

2017b).

The multitude of biarticular features points to the idea that mono- and biarticular muscles fulfil different,

subfunction-specific tasks. During stance, monoarticular muscles mainly power the motion. Simultane-

ously, by mechanically coupling adjacent joints, biarticular muscles coordinate joint movements, transfer

energy, and secure the zig-zag-configuration of the leg against joint overextension. In balance and swing,

the contribution of mono- and biarticular muscles changes. Here, biarticular muscles power dominantly

rotational motions and monoarticular muscles fine-tune the required torques since torque generation from

biarticular muscles is defined by their moment arms. In some cases, biarticular muscles also synchronise

or coordinate individual locomotor subfunctions. For instance, during late stance of human walking, RF

and GAS transition between stance and swing (Nilsson et al., 1985; Simonsen et al., 1985; Ingen Schenau

et al., 1987; Schenau, 1989; Prilutsky et al., 1998; Lipfert et al., 2014). Moreover, GAS switches in this

contribution from balance to stance when the heel lifts off the ground. When the whole foot is in contact

with the ground, GAS contributes to the balance subfunction (by rotary forces, Hof 2001). However, in

forefoot stance, GAS supports stance because it can only contribute to axial forces.

The specific function of biarticular muscles is strongly coupled to their muscle moment arms (Winter, 2009;

Cleather et al., 2015). The overview of relevant sagittal muscle moment arms (Figure 2.4) revealed that

GAS follows the suggested moment arm ratio of 2:1 (Winter, 2009). For biarticular thigh muscles, moment

arms were greater at the hip than at the knee (Cleather et al., 2015). However, only a small number of

studies investigated muscle moment arms at the hip, and study results vary due to different methods and

techniques. It is therefore hard to draw clear conclusions; more research is required. For several other

properties of human leg muscles, we could not find evidence for physiological differences between mono-

and biarticular muscles. Only, theMTC length of biarticular muscles was longer compared tomonoarticular

muscles. This was expected as biarticular muscles span more than one joint.
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Generally, experimental studies supported predictions from conceptual template models. Even though

some of these results should be used with caution due to a small number of subjects, reported evidence

was very consistent across different study designs (methods) and motions (tasks). While evidence involved

unperturbed tasks like standing, walking, running, cycling or load lifting, further research is needed to

identify e.g. control strategies of biarticular muscles (predictive and reactive control). Here, studies on

non-continuous motion tasks like gait transitions or external perturbations (like in Schumacher et al. 2019)

are of particular value.

Applications

Several legged robots utilise biarticular structures to generate performant, robust or efficient motions. The

main motivation for this is to outsource the control effort to mechanical components (control embodiment,

Pfeifer et al. 2007). This is accomplished by (1) smart morphological leg arrangement and/or by (2) facil-

itating intrinsic (compliant) properties that allow a certain flexibility in joint behaviour but also inherently

react to external perturbations. Depending on the application, passive structures, e.g. springs or dampers,

or active elements, e.g. SEA or PAM, realise biarticularity. Often, engineers use the structural compliance

or muscle moment arms as design parameters to generate a desired leg behaviour (Blickhan et al., 2006;

Lakatos et al., 2014; Lakatos et al., 2016; Sharbafi et al., 2016; Bidgoly et al., 2017; Nejadfard et al.,

2018b). In assistive devices, like prostheses or exoskeletons, walking economy of the wearer or efficiency

of the device could be improved (Quinlivan et al., 2017; Zhao et al., 2017; Eilenberg et al., 2018; Malcolm

et al., 2018).

Currently, most robotic designs including industrial applications utilise a single actuator per DoF, instead

of redundant actuation systems, in which e.g. multiple muscle-like actuators can act on a single joint. This

prevents most robotic systems to take advantage of the features of biarticular actuation. However, addi-

tional actuators might also create further design challenges, like motor redundancy or undesired coupling

behaviour due to fixed geometrical constraints. Both of these issues can be resolved by smart design which

may be inspired from biology. In this context, abstraction and categorisation as applied in this review may

be useful approaches. By this, engineers can learn from template models and animals to improve artifi-

cial system designs without suffering from complexity and unwanted coupling. Some of the potentially

beneficial concepts of biarticularity to be further exploited in robotic designs, are as follows:

• energy transport within a segment chain,

• improved distribution of leg inertia,

• inter-joint coordination and synchronisation,

• operation of biarticular actuator with reduced power demands,

• resolving kinematic singularities.

Many of these advantages have been introduced several decades ago (Cleland, 1867; Lombard, 1903;

Fenn, 1938; Elftman, 1939; Elftman, 1966; Morrison, 1970; Fujiwara and Basmajian, 1975; Gregoire et al.,

1984; Wells, 1988). Potential implementations may enable simplified swing leg control for foot placement

(as predicted in Sharbafi et al. 2014; Sharbafi et al. 2016) or reactive balance control (Schumacher et al.,

2019). Still, some of the features of biarticular actuators are still unexploited in robotics and await their

proof-of-concept in hardware systems.
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Conclusion

We structured this review of biarticular muscle function in two dimensions: locomotor sub-functions

(stance, balance and swing) and methodological approaches (theoretical concepts, experimental evidence

and robotic applications). Templates revealed the general organisation of locomotion in different species.

Based on this understanding, we interpreted tangible experimental studies on biarticular muscles. Fi-

nally, robotic designs transferred these mechanisms into the physical world and validated these insights

and concepts. By this approach, we integrated and combined knowledge from biomechanics, biology and

robotics in a unified locomotor sub-function specific perspective. For instance, the global leg function

can be described by a simple leg spring (Blickhan, 1989; McMahon and Cheng, 1990). By coordinating

individual joints in the leg, biarticular muscles contribute to the generation of such global leg behaviour

in human experiments (Gregoire et al., 1984; Schenau, 1989) and robotic systems (Babic et al., 2009;

Hosoda et al., 2010). This example shows the benefit of incorporating all three domains of the research

trilogy (Kalveram and Seyfarth, 2009): (1) conceptual modelling, (2) human experiments and (3) robotic

applications. Combining the expertises of biology, biomechanics and robotics seems promising to generate

a deeper understanding of the structures and patterns involved in generating locomotion.
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Abstract

Balancing the upper body is pivotal for upright and efficient gait. While models have identified potentially

useful characteristics of biarticular thigh muscles for postural control of the upper body, experimental

evidence for their specific role is lacking. Based on theoretical findings, we hypothesised that biarticular

muscle activity would increase strongly in response to upper-body perturbations. To test this hypothesis,

we used a novel Angular Momentum Perturbator (AMP) that, in contrast to existing methods, perturbs

the upper-body posture with only minimal effect on center of mass (CoM) excursions. The impulse-like

AMP torques applied to the trunk of subjects resulted in upper-body pitch deflections of up to 17° with

only small CoM excursions below 2 cm. Biarticular thigh muscles (biceps femoris long head and rectus

femoris) showed the strongest increase in muscular activity (mid- and long-latency reflexes, starting 100 ms
after perturbation onset) of all eight measured leg muscles which highlights the importance of biarticular

muscles for restoring upper-body balance. These insights could be used for improving technological aids

like rehabilitation or assistive devices, and the effectiveness of physical training for fall prevention e.g. for

elderly people.

Introduction

Dealing with typical perturbations (e.g. pushing, stumbling or walking on uneven ground) comprises coor-

dinating multiple joints (Engelhart et al., 2015). For this, biarticular muscles (that span two joints) might

play a key role. In contrast to monoarticular muscles (spanning one joint), biarticular muscles contribute

strongly to the leg force that acts perpendicular to the leg axis (Hof, 2001). This seems to make biarticular

muscles especially suitable for postural control because the perpendicular component of leg force regulates

the angular momentum.

In accordance with this, in static experiments humans mainly used biarticular thigh muscles to control

the direction of the ground reaction force (GRF) (Ingen Schenau et al., 1995; Doorenbosch and Ingen

Schenau, 1995; Fujiwara and Basmajian, 1975; Wells and Evans, 1987). This ability might also be ex-

ploited to achieve stable walking by directing the GRF towards a point above the center of mass (CoM)

(Maus et al., 2010; Maus et al., 2008; Gruben and Boehm, 2012; Müller et al., 2017). Further, humans re-

sponded quickly with hamstring activity to a perturbation of angular momentum in a stumbling experiment

(Pijnappels et al., 2005). Simulations and robotic demonstrators revealed the potential of biarticular struc-

tures (e.g. springs or muscles) to stabilise the trunk during walking and generate appropriate leg swing

motions (Lakatos et al., 2014; Lakatos et al., 2016; Sharbafi et al., 2017; Dean and Kuo, 2008). However,

experimental evidence for the actual use of biarticular muscles for upper-body balance in humans is still

missing. Based on their ability to generate appropriate combinations of required hip and knee torques

(Doorenbosch and Ingen Schenau, 1995; Fujiwara and Basmajian, 1975; Wells and Evans, 1987; Prilutsky

et al., 1998a), we hypothesised that biarticular thigh muscles would react strongly to a perturbation of

upper body angular momentum during quiet standing.

Perturbing a system and investigating its response is a standard method to analyse the system’s dynamics

(Mergner, 2010). To study human balance strategies, unexpected and specific mechanical perturbations

such as surface translations (Figure 3.1a) have frequently been used to study the human balance response

to slipping (Nashner, 1977; Horak and Nashner, 1986; Mergner, 2010; Welch and Ting, 2009). Recently,

research groups have also applied pulls and pushes at the hip or at the shoulder (Rietdyk et al., 1999; Misi-

aszek et al., 2000; Vashista et al., 2014; Fujimoto et al., 2015; Vlutters et al., 2016; Olenšek et al., 2016;
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Wu et al., 2017) to resemble other common perturbation scenarios (Figure 3.1b). By generating a hori-

zontal force, these systems perturb balance of the body as a whole (Tang et al., 1998). Pushes/ pulls and

surface movement perturbations require corrections of angular momentum, i.e. keeping the CoM within

the base of support and restoring the upright upper-body orientation. Thus, such perturbations necessitate

a complex response of the neuro-musculoskeletal system, which might involve multiple response mecha-

nisms. This might complicate or hamper the interpretation of the role of biarticular muscles for upper-body

balance.

For the first time, we propose to exert a pure torque, or force couple, on the upper body. Applying a pure

torque without a translational (horizontal force) component entails that the whole-body CoM position is

only minimally influenced and reduces artefacts of cross-talk between different balance strategies. For this

purpose, we use an Angular Momentum Perturbator (AMP) (Lemus et al., 2017). This system opens a

new category in the framework of Shirota et al. (2017) and enables a specifically targeted perturbation

(Figure 3.1c), making it a suitable tool to study upper-body balance response strategies while maintaining

a natural leg axis alignment. The system is portable – the subject can move freely without being bound to

a treadmill or a frame construction – and is capable of generating powerful torque bursts.

In this study, we contribute to the ongoing research of human motor control during non-stepping balance

recovery by examining the muscular response of major leg muscles for two major perturbation directions:

(1) positive torque perturbations resulting in a forward upper-body pitch and (2) negative torque pertur-

bations resulting in a backward pitch. Compared to other commonly used perturbation types, the AMP

produced perturbations with a distinct upper-body pitch and only a small shift in CoM position, allowing

us to assess the contribution of different leg muscles (using electromyographic data (EMG)) for restoring

the upper-body balance in near-absence of whole-body balance corrections.

Methods

Angular Momentum Perturbator (AMP)

The AMP is worn like a backpack and contains a control moment gyroscope, an actuator that exerts torques

by manipulating the angular momentum of an internal flywheel. This flywheel is mounted to a motorised

gimbal frame (Figure 3.1d), which enables the flywheel to be reoriented with respect to the wearer.

For the present study, we modified the AMP prototype described previously (Lemus et al., 2017) to reduce

its mass. After replacing the gimbal motor and transmission, the system weighed 16 kg and was capable of

exerting a maximum torque of 53 Nm.

The AMP exerts torques on the wearer (τττAMP) by changing the direction or magnitude of the angular

momentum of the flywheel (H), described in detail by e.g. Schaub et al. (1998). Changing the direction by

rotating the gimbal or rotating the trunk produces gyroscopic torques proportional to the angular velocities

of the gimbal (γγγ̇) and trunk of the wearer (ωωω=[ωx,ωy,ωz], using the frame definitions of Figure 3.1d). When

exploiting this gyroscopic effect, the gimbal motor applies a torque (τττg) in the gimbal axis to modulate γγγ̇;

however, in doing so, this changes the magnitude of H and is experienced by the wearer as an opposite

reaction torque in the same axis. The total torque is thus the sum of these components:

τττAMP(t) =−Ḣ(t) =−(γγγ̇(t)+ωωω(t))×H(t)⏞ ⏟⏟ ⏞
gyroscopic effect

− τττg(t)⏞ ⏟⏟ ⏞
gimbal motor

. (3.1)
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Figure 3.1: Exemplary perturbation types: Schematic visualisation of center ofmass (CoM), leg, and upper-

body kinematics (transparent: before perturbation, solid: after perturbation). (a) Back and

forth surface translations result in a whole-body balance perturbation by producing first an

acceleration followed by a deceleration. (b) Force pushes or pulls can result in irregular body

postures with small upper body perturbations. (c) Torque perturbation: the generated torque

on the upper body (curved red arrow) is equivalent to a force pair (straight red arrows) with

zero net horizontal force. This type of perturbation results mainly in rotational acceleration of

the upper body. Minimal CoM excursions occur due to themuscular coupling of the upper body

to the leg. (d) The Angular Momentum Perturbator (AMP) creates external torques by rotat-

ing a spinning flywheel (angular momentum H, purple arrow) around a perpendicular gimbal

axis (here: longitudinal, angular velocity γ̇ , green arrow, initial gimbal position γ0). The cre-

ated torque τAMP is exerted in the direction perpendicular to both, the rotation of the spinning

flywheel and the gimbal axis, and rotates together with the gimbal (red arrow).

By design, the gyroscopic torque is generally much larger than the gimbal torques (τττg) to allow the use

of a relatively small gimbal motor and reduce power requirements. Since this gyroscopic torque depends

not only on the controlled gimbal velocity (γγγ̇), but also on the angular velocity of the wearer ωωω, it is in

general only partially controllable. However, in the present study, since ωωω is relatively small (especially

during quiet standing), the uncontrolled gyroscopic torques were typically at least one order of magnitude

smaller than those due to γγγ̇ and were mostly considered negligible.

When generating controlled gyroscopic torques by rotating the gimbal, the direction of τττAMP simultane-

ously changes with the gimbal angle (γγγ). In a human-fixed frame (unit vectors (êx, êy,eẑ) attached to frame
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(x,y,z), Figure 3.1d), the total perturbation torque τττAMP consists of components in all three directions:

τττAMP(t) =−τt(t) cos(γ(t))êx⏞ ⏟⏟ ⏞
pitch component

−τt(t) sin(γ(t))êy⏞ ⏟⏟ ⏞
roll component

+(ωt(t)H(t)− τg(t)) êz⏞ ⏟⏟ ⏞
yaw component

(3.2)

≈−γ̇(t)H cos(γ(t))êx − γ̇(t)H sin(γ(t))êy +(ωx(t)H cos(γ(t))− τg(t)) êz ,

where τt(t) = (γ̇(t)+ωz(t))H(t) ≈ γ̇(t)H(t) and ωt(t) = ωx(t)cos(γ(t))+ωy(t)sin(γ(t)) ≈ ωx(t)cos(γ(t)). All

non-bold variables indicate the signed scalar magnitudes of the vector quantities defined previously, and

the magnitude of the flywheel angular momentumwas approximately constant throughout all experiments

(H(t)≈H).

To generate a torque of a specific magnitude and direction requires inversion of Equation 3.2 to produce a

reference gimbal motion, described in general by Berry et al. (2016). For discrete open-loop perturbations,

this inversion is simplified, and, for a given initial gimbal angle (γ0) and desired torque profile, the final

angle (γf) can be computed in advance. To produce a torque primarily in the sagittal plane (around the

x-axis) and limit the component in the frontal plane (around the y-axis), the range of gimbal rotation was

constrained and γ0 was chosen such that γ ≈0 when the magnitude of τττAMP was maximal (Figure 3.1d).

The perturbation torque τττAMP was selected to be a symmetric trapezoidal profile (Figure 3.2 inset), consist-

ing of a peak torque of 60 Nm with a rise time, hold time, and fall time each of 100 ms. This shape reflects

the finite ability of the gimbal motor to accelerate or decelerate rotation of the gimbal structure to produce

the gyroscopic effect. A gimbal motor torque (τg) of approximately 12 Nm was necessary to generate the

desired perturbations. Because the roll (frontal) torque components alternated sign throughout the per-

turbation, all perturbations were repeated with the gimbal inverted (rotated by 180°) to also generate the

opposite pattern (of roll torque component) with similar pitch torque component for comparison.

Experimental Protocol

The experimental protocol consisted of three successive sets of measurements involving different settings.

In the first setting, the subjects were asked to stand still for 60 s with arms crossed over the chest and

without wearing the perturbator (‘Unloaded Standing’). In the second setting, they repeated the same

task but wore a safety harness and the AMP with spinning flywheel, but no active torque perturbations

(‘Loaded Standing’). In the final setting of standing, a series of 48 trials were executed involving 40 trials

of active torque perturbation of the AMP (‘Perturbation Trials’) and 8 trials which lacked a perturbation

(‘Control Trials’). The 40 Perturbation Trials consisted of 4 conditions with 10 repetitions each: positive and

negative torque directions with both original (γ0 = 0°) and inverted (γ0 = 180°) initial gimbal orientations.

Conditions of positive and negative torque direction (inducing forward and backward upper-body pitch,

respectively) were chosen to investigate a potential direction dependency. Since the AMP generates a

complex perturbation that acts in multiple planes (mainly sagittal but also in the frontal plane), the initial

gimbal position was altered to investigate potential side effects of the roll torque component. Due to

relatively long gimbal re-positioning times before every trial (to reach the initial gimbal position), a blocked

protocol was preferred over a fully randomised protocol (‘Block 1’ with original and ‘Block 2’ with inverted

gimbal position). This was done to reduce the measurement time and subject fatigue. Within the two

blocks, both the direction and timing of the active perturbations were randomised. Subject were given

time to rest in between measurements. For referencing, subjects conducted ten additional walking trials

(distance approx. 7 m) at preferred walking speeds (1.20± 0.14m/s, Mean±SD) without any additional

loads.
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To prevent fall-related injury during the perturbations, a safety harness was used at all times when the

AMP was worn. The harness was attached to the Rysen body weight support system (Motekforce Link,

Amsterdam, The Netherlands), which is capable of actively detecting and arresting falling motions of the

subject (Plooij et al., 2018). To avoid vertical unloading forces during the measurements, the Rysen system

was lowered and locked in a position where the harness straps were slack during both quiet and perturbed

standing, but could still prevent falls if balance could not be successfully recovered.

Data collection and processing

Subjects

Seventeen healthy adult subjects (two female) participated in the study. All subjects volunteered to partic-

ipate in the study in summer 2018 and gave written informed consent in advance of the experiment. The

experimental protocol was approved by and performed in accordance with the relevant guidelines and reg-

ulations of the Human Research Ethics Committee of the Delft University of Technology (Project ID: 350).
Before the experiment, all participants gave their consent and filled in the revised Waterloo Footedness

Questionnaire (Elias et al., 1998), which was used to assess limb dominance regarding stabilisation tasks.

We collected EMG, kinetic, and kinematic data of the subject. All measurement devices including the data

logging of the AMP were synchronised by a manual trigger signal. Before processing the data, one female

subject was excluded from the data analysis due to repetitive stepping responses during the experiments. A

further five (male) subjects were excluded due to missing EMG data or missing marker data that impeded

a calculation of the CoM. Only the data of the remaining eleven subjects (one female), of age 34±14 years

(Mean±SD), weight 74.8±12.5kg, and height 1.81±0.08m, were considered for further analysis.

Measured data

Sixteen surface EMG electrodes (Trigno, Delsys Inc., Natick, USA) were used to record at 2000 Hz the

electrical activity of relevant leg muscles. The set of electrodes were placed on the following muscles of

each leg: tibialis anterior (TA), soleus (SOL), gastrocnemius (GAS), vastus lateralis (VL), rectus femoris

(RF), hamstrings (HAM), tensor fasciae latae (TFL) and gluteus maximus (GLU) (see Appendix Figure A.1).

To ensure a good electrical connectivity, the skin was prepared following the SENIAM recommendations

(Hermens et al., 1999). After attachment, electrode locations were checked for voluntary muscle signals

and low noise values. The raw EMG was band-pass-filtered with cut-off frequencies of 20 Hz (high-pass)

and 450 Hz (low-pass), further rectified and low-pass filtered at 50 Hz. For each muscle and subject, the

filtered EMG signals were normalised by the mean filtered background activity recorded during unloaded

level walking (WEMG), and expressed as a percentage of WEMG (see Appendix Table A.3).

Individual GRF of both legs were measured at a frequency of 1000 Hz (3rd-order analogue Butterworth low-

pass filter with 500 Hz cut-off frequency) using two force plates (9260AA3, Kistler Holding AG, Winterthur,

Switzerland), each for a single leg. These were combined to compute the whole-body center of pressure

(CoP).

An inertial measurement unit (IMU) (MPU-9250, InvenSense, San Jose, USA) within the AMP and a mo-

tion capture system (Qualisys, Gothenburg, Sweden) were used to collect kinematic data (200 Hz) of the
subject and the AMP. Nineteen reflective markers were placed at relevant body locations (see Appendix
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Figure A.1): the tragion (TRA), 7th cervial vertebrae (C7), acromion (ACR), greater trochanter (GTR), lat-

eral femoral condyle (LFC), fibulare (FIB), lateral melleoius (LM), calcaneus (CAL), 1st metatarsal head

(MT1), and 5th metatarsal head (MT5). The CoM of the AMP was estimated by suspending the AMP from

a single attachment point, and measuring the point of intersection of the vertical axis as the attachment

point was changed. Four addition markers were placed on the rigid and static frame of the AMP such that

their mean position resembled the CoM of the AMP. All kinematic data was upsampled to 1000 Hz by linear

interpolation and filtered using a zero-lag 4th-order low-pass filter with a cut-off frequency of 6 Hz.

Computing Outcome measures

Since the unintended roll torque components created only slight opposing asymmetric behaviours with

similar magnitude in both conditions of initial gimbal positions (‘Block 1’ vs. ‘Block 2’, see Appendix

Figures A.9 to A.14), both sets were merged for comprehensibility reasons. Outcome measures, such as

mean and SD of kinematic and kinetic data, were calculated from both blocks together.

Mean muscle stimulation of ‘Unloaded Standing’ and ‘Loaded Standing’ was calculated for a 20 s period

of quiet standing. The mean signal of the preceding 500 ms prior to perturbation onset (quiet standing)

was used as ‘Pre-Perturbation’ activation. From this signal, the mean of each muscle and subject of the

last 10 trials per block (‘Block 1’ and ‘Block 2’) was compared against the condition of ‘Loaded Standing’

to evaluate muscle activity changes due to anticipation.

In order to account for temporal variability of the muscular activity for all ‘Perturbation Trials’, three time

intervals were chosen to evaluate the appearance of medium-latency response (RI1: from 100 ms to 150 ms)
and long-latency responses (RI2: from 170 ms to 250 ms, RI3: from 270 ms to 350 ms) that involve contribu-
tions from supra-spinal centres or poly-synaptic reflex responses (Horak and Macpherson, 1996; Hof and

Duysens, 2018; Torres-Oviedo and Ting, 2007). The relative reflex response of each muscle was defined as

the difference between the mean EMG in the response intervals and corresponding mean EMG in the ‘Pre-

Perturbation’ interval of the same trial, each expressed as a percentage of WEMG. As adaptation processes

of EMG responses have been found to settle after about 5 trials (Keshner et al., 1987), we considered only

the last 5 of the 10 trials per condition, in order to reduce the effects of adaptation processes. We used

the Grubbs’ test (with a significance level of α = 0.05) to identify and remove unphysiological EMG values

(outliers), stemming from e.g. physical collisions of the hip belt and hip muscle electrodes. To evaluate the

muscular reflexes, we first computed the mean relative reflex response of all analysed trials per subjects

(last 5 of the 10 trials per condition, combining ‘Block 1’ and ‘Block 2’) before performing the statistical

analysis. Outcome measures of pooled data are reported by grand means and SD of the averaged subject

data. Data analysis was done using Matlab 2016b (The MathWorks Inc., Natick, USA).

Statistical analysis

We compared different joint angles and activity levels between ‘Unloaded Standing’ and ‘Loaded Standing’

as well as ‘Loaded Standing’ and ‘Pre-Perturbation’ conditions. First we evaluated the normality of the

residuals by the Shapiro–Wilk test. If they were normally distributed we applied a paired two-sided t-test.

In other cases we tested for differences with the non-parametric two-sided Wilcoxon signed-rank test. All

comparisons were performed using a 5 % significance level.
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For comparisons of the relative reflex response, a repeated measures analysis of variance (rmANOVA)

with between (‘Direction’, ‘Side’ and ‘Muscles’) and within subject factors (‘Response Intervals’) was per-

formed. Shapiro–Wilk tests confirmed normality of the data. If Mauchly’s test for sphericity revealed that

homogeneity of the data was not given, the Greenhouse-Geisser correction was used. Comparisons were

performed using a 5 % significance level. If the rmANOVA showed significant interaction effects, post-

hoc tests were computed with the Tukey’s Honest Significant Difference procedure to adjust for multiple

comparisons.

Results

We perturbed upper-body posture during quiet standing by applying external torques – instead of forces –

created by a new type of perturbation device, the AMP. This was done to specifically investigate the role

of biarticular leg muscles used to control upper-body balance.

The outcome measures of both conditions of initial gimbal positions (‘Block 1’ and ‘Block 2’) were merged

before computing statistics. The results will thus be presented for both main perturbation directions:

positive torque perturbation (τAMP > 0) with forward upper-body pitch and negative torque perturbation

(τAMP < 0) with backward upper-body pitch. In the following, we will focus on the results of the left leg

(the dominant leg for stabilisation of all subjects) as leg behaviour (see Appendix Figures A.12 to A.14

and Table A.2) and response characteristics (‘Side’ main effect of rmANOVA: F(1,314) = 0.18, p = 0.676)
were similar for both sides.

AMP produced dynamic and reproducible torque perturbations

To verify that the AMP generated appropriate perturbation profiles, the calculated gyroscopic torque (based

on measured gimbal angular velocity γ̇) was compared to the desired profile (Figure 3.2 insets). For both

perturbation directions, the AMP was able to generate repeatable perturbations that closely resembled the

shape of the desired profile. The rise and fall dynamics were tracked accurately, but the realised peak

torque (53 Nm) fell lower than the target of 60 Nm. For both perturbation directions, the small standard

deviation (SD) of the measured profile confirms a consistent perturbation generation over multiple trials

(Figure 3.2 insets).

Torque perturbations resulted in specific upper-body pitch perturbations

In order to study the resulting posture of the subjects, we evaluated upper-body pitch (sagittal-plane rota-

tion), whole-body CoM and CoP (top panels in Figure 3.2a). Following the positive torque perturbation,

the upper-body segment pitched forward with a peak rotation of 15° to 17° with respect to the initial posture

before perturbation onset. The peak pitch was reached after 300 ms to 400 ms after perturbation onset, and

about 1000 ms to 1500 ms were needed to recover the initial posture. This response was accompanied by a

backwards movement of the hip joint (see Appendix Figure A.4). In contrast to the substantial upper-body

rotation, the CoM moved forward by only about 1 cm to 2 cm. The CoM progression started after 400 ms.
The mean CoP moved anterior by 4 cm to reach its peak after 500 ms. The subjects’ mechanical response

within the first 1000 ms consisted of a distinct early upper-body pitch, mainly due to hip flexion within first

500 ms (see Appendix Figure A.2), followed by a delayed, but subtle CoM forward sway.
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Figure 3.2: AMP generated (a) positive and (b) negative torque perturbations resulting in forward and

backward pitch of the upper body, respectively. Change in upper-body pitch angle of one

subject (mean and standard deviation from the last 5 trials × 2 gimbal configurations) with

respect to the initial upper-body posture (top left). The inset shows the desired (grey, 100 ms
rise, hold and fall time) and actual pitch perturbation torque profile (orange/green: mean and

SD). Change in sagittal CoM (grey: mean and SD) and CoP position (black: mean and SD) of

the same subject with respect to the initial positions (top right). Exemplary EMG of the same

subject (bottom panel): filtered and normalised signals of all trials (grey) and one individual

response of mono- (yellow) and biarticular muscles (red).
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For negative torque perturbations, the resultant backwards pitch of the upper body (top panels in Fig-

ure 3.2b) was smaller (approx. −12°) compared to the forward perturbations and appeared at similar

timing (300 ms to 400 ms after perturbation onset). During upper-body pitch, the hip joint moved forward

(see Appendix Figure A.4). Again delayed, the CoM moved posterior to a peak of about −2 cm from the

initial position. A distinct CoP pattern was measured: for the time of backward acceleration of the upper

body, the CoP moved forward before quickly moving backwards to around −5 cm. In the backwards con-

dition, the upper-body rotation was not achieved through hip extension (remained in initial posture), but

by knee bending such that upper body and thigh segments pivoted together around the knee joint (see

Appendix Figure A.2).

Influence of AMP weight, noise, and vibrations

Next, we tested the extent to which the weight, noise, and vibrations of the AMP influenced the initial

posture and the EMG. Wearing the AMP led to a more bent hip (−6.2°, t(10) = −5.528, p < 0.001) and

more extended knee (2.1°, t(10) = 3.652, p = 0.002) while no difference was found for the ankle joint (see

Appendix Table A.1). By comparing EMG data of the two conditions of quiet standing ‘Unloaded Standing’

and ‘Loaded Standing’ changes of muscle stimulation were identified (Figure 3.3). The additional weight,

noise, and vibration of the rotating flywheel of the AMP resulted in significant reductions of muscular

activity in GLU (unloaded: 78±28%WEMG, loaded: 57±24%WEMG, Z = −2.934, p = 0.003) and HAM

(unloaded: 108±75%WEMG, loaded: 62±34%WEMG, Z =−2.490, p = 0.013) of the left leg – reflecting

the reduced demand of muscle generated hip extension torque to maintain similar upper-body postures –

as well as VL of the right leg (see Appendix Table A.2). No other significant differences were found.

Prestimulation of monoarticular hip muscles to prepare for perturbations

We compared the muscular activity in the ‘Loaded Standing’ and the ‘Pre-Perturbation’ activation to assess

if subjects increased muscular activity in anticipation of perturbation, despite the random timing and di-

rection (Figure 3.3). Significant changes of the monoarticular hip muscles GLU of the left leg (increased

by: 8± 13%WEMG, Z = 2.134, p = 0.033). From all other muscles, only TFL in the right leg showed a

significant reduction (see Appendix Table A.2).

Biarticular thigh muscles were major contributors to recover upper-body balance

We next tested which muscles showed the highest response activity to identify the most reactive muscles.

For both perturbations, early EMG responses within the first 100 ms after the perturbation were not found.

In the analysed response intervals, both perturbation directions evoked different muscular responses (‘Di-

rection’ main effect: F(1,314) = 173.8, p < 0.001).

For positive torque perturbation with forward upper-body pitch, we found the highest muscle activity

levels for the biarticular thigh muscle HAM, the biarticular ankle muscle GAS and the monoarticular ankle

muscle SOL. HAM response activity started already in the mid-latency response window (RI1) and lasted

until RI3 with up to 366±271%WEMG. GAS (up to 128±61%WEMG) and SOL (up to 101±35%WEMG)

responded later in RI2 or RI3. By this, HAM was found to increase its activity (in RI1 and RI2) by more

than double of its mean activity during walking (Figure 3.4a) which was significantly higher than in all

other muscles (see Appendix Table A.4).
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Figure 3.3: Influence of AMP artefacts and prestimulation activity. Boxplots of muscular activity of the

left leg in ‘Unloaded Standing’ (UL), ‘Loaded Standing’ (L) and the mean ‘Pre-Perturbation’

activation of the last 10 trials per block (‘Block 1’ and ‘Block 2’) for all 11 subjects. Reported

EMGs (WEMG) are the mean intervals of the filtered EMG signals normalised by the muscle’s

mean activity during walking (see Methods). Results are presented with significant (∗p < 0.05)
comparisons of the paired t-test or two-sided Wilcoxon signed-rank test.

In negative perturbations, the biarticular thigh muscle RF, the monoarticular ankle flexor TA and the

monoarticular knee extensor VL were found to have the highest EMG amplitude with respect to their mean

activity during normal walking. RF activity was high in all response intervals (up to 866±341%WEMG).

RF, TA (up to 706±435%WEMG) and VL (up to 582±178%WEMG) reached the highest response in RI2.

TFL activity with a maximum of 428± 257%WEMG in RI2 increased by half of the RF increase. Since

‘Pre-Perturbation’ activity was similar for TFL, RF and VL, RF was also the muscle with the strongest and

earliest increase in activity (Figure 3.4b). Compared to all othermuscles, RF reflex activity was significantly

stronger than in all other muscles (see Appendix Table A.4). From a lower activity (24±9%WEMG) before

the perturbation onset, TA increased by 678±433%WEMG in RI2, but only showed low increase in RI1.

Summarising these results, biarticular thigh muscles (HAM and RF) were found to have the highest activity

in the earliest response interval (RI1), the highest overall amplitude with respect to their mean activity

during walking and the highest increase compared to unperturbed standing (significantly higher than all

other measured muscles). Ankle joint muscles like GAS, SOL or TA contributed moderately with delayed

increase, mainly in RI2 and RI3. In contrast to biarticular thigh muscles, monoarticular hip muscles GLU

and TFL increased only slightly or moderately in response to the evoked upper-body pitch deflection.

Discussion

Previous research identified beneficial features of biarticular muscles that could potentially contribute to

recover balance after postural perturbations (Junius et al., 2017; Sharbafi et al., 2016; Doorenbosch and

Ingen Schenau, 1995; Wells and Evans, 1987). Experimental evidence that highlights the specific con-

tribution of biarticular muscles to upper-body balance is however missing. To fill this gap of knowledge,

this study examined the muscular response of major leg muscles for recovering from artificial torque per-

turbations to the upper body. For the first time, an Angular Momentum Perturbator (AMP) was used to
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Figure 3.4: Reflex activity of mono- (yellow) and biarticular muscles (red) for (a) positive and (b) neg-

ative torque perturbations in different response intervals. Grand mean and SD of averaged

relative reflex responses of the left leg (last 5 trials per condition × 2 gimbal configurations)

for all 11 subjects. Relative reflex activity in each response interval is computed with respect to

‘Pre-Perturbation’ and normalised by the muscle’s mean activity during walking (see Methods).

directly apply reproducible torques to the upper body during quiet standing without a translational (e.g.

horizontal foreward/ backward force) component of other typical perturbations like pushes or pulls. By

analysing the mechanical response of the subjects and EMG of major leg muscles, we found that

1. Biarticular thigh muscles HAM and RF showed the strongest increase in activity in response to upper-

body balance perturbations of all measured leg muscles;

2. AMP torques resulted in nearly isolated upper-body postural alignment perturbations.

Biarticular muscles and upper-body balance

In our study, biarticular thigh muscles showed the strongest reflex responses. Perturbing the upper-body

challenged the motor control system to re-erect the upper-body. The positive perturbation created forward

54



upper-body pitch (about 17°). Restoring the original body posture requires hip extension torques. These

would cause knee overextension which must be counteracted by knee flexion torques. The biarticular HAM

muscle group delivers simultaneous hip extension and knee flexion torques. This might explain our finding

that the HAM showed the strongest EMG increase of all measured muscles. The negative perturbation led

to backwards upper-body pitch (about −12°). Conversely, to re-erect the upper-body, hip flexion and knee

extension torques are required. The biarticular RF muscle group delivers simultaneous hip flexion and

knee extension torques. Correspondingly, the strongest EMG response was found for the biarticular RF.

Our results confirmed our hypothesis of a strong involvement of biarticular thigh muscles for restoring

upper-body balance. This result agrees well with the previously suggested torque-based (net hip minus

knee torque; extension torques are positive) control scheme of biarticular muscles for joint coordination

in tasks involving opposing changes in hip and knee torques. For example, high HAM and RF activity

was found during GRF direction manipulations in isometric and isokinetic conditions (Wells and Evans,

1987; Doorenbosch and Ingen Schenau, 1995), load-lifting (Toussaint et al., 1992; Prilutsky et al., 1998b),

cycling (Ingen Schenau et al., 1992) as well as in the swing leg during walking and running (Prilutsky et al.,

1998a). In contrast to these studies involving planned movements, our experiment targeted perturbation

recovery. Studies in this area involving surface translations and force pushes/ pulls (Nashner, 1977; Horak

and Nashner, 1986; Mergner, 2010; Welch and Ting, 2009; Rietdyk et al., 1999; Misiaszek et al., 2000;

Vashista et al., 2014; Fujimoto et al., 2015; Vlutters et al., 2016; Olenšek et al., 2016; Wu et al., 2017)

show that, among other muscles, biarticular muscles react to compensate for these perturbations. Our

experiments refined these findings by providing evidence for a strong reactive involvement of biarticular

thigh muscles to compensate torque perturbations applied at the upper body. This can most clearly be

observed for the positive torque perturbation.

The positive and the negative perturbation generated different responses that might be related to joint

range-of-motion constraints. While the positive perturbation lead to strong hip flexion (about 16°) and only

small knee extension (about 2°, see Appendix Figure A.2), the negative perturbation generated moderate

hip extension (about 6°) and strong knee flexion (about 14°, see Appendix Figure A.2). From a straight

configuration as reference, the range of motion of the hip is approximately 120° flexion and only 10° hip
extension (Roach and Miles, 1991). The knee constraint is even more strict with approximately 140°
flexion and 2° extension (Roach and Miles, 1991). While our positive perturbation induced mainly upper

body forward pitch, the negative perturbation resulted in a backwards pitch of the upper body and the

thigh segments together. Thus, the asymmetric perturbation responses reflect the joint range-of-motion

constraints.

The observed asymmetric perturbation responses induced different torque requirements. In the case of

the positive perturbation, biarticular HAM activity seems to be sufficient to re-erect the upper body. For

negative perturbations, in addition to pronounced RF activity we observed increases in activity of monoar-

ticular knee extensors (VL) and to a lesser extent of the functionally monoarticular hip flexor muscles

(TFL). It seems that despite its ability to provide for simultaneous knee extension and hip flexion torques,

RF may not be able to meet the torque requirement at these joints. RF has approximately half of the

physiological cross-sectional area and thus half the force capacity of HAM (Rajagopal et al., 2016). In

addition, it has a lower lever arm at the hip than HAM (Visser et al., 1990; Cleather et al., 2015), which

may explain the increase in activity of the functionally monoarticular hip flexor TFL. The different capacity

of the biarticular HAM and RF muscles to generate joint torques may stem from an adaptation towards

their daily use, reflecting a dominating use of HAM in walking and running due to a forward lean of the

upper body (Grimmer and Seyfarth, 2014). For less intense negative torque perturbations, we expect to

see disproportionally less pronounced knee flexion (reducing the kinematic difference between positive
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and negative perturbations) and reduced activity of monoarticular muscles. RF torques might then be

sufficient to re-erect the upper body.

During perturbations in both directions, different mechanisms led to opposing CoM and CoP patterns. In

positive perturbations, the upper body pitched forward about the hip. During this early response, extension

hip torques were generated by increased HAM activity. The hip coupling to the leg (and subsequently to the

ground) resulted in a delayed acceleration of the CoM in anterior direction (after 400 ms). The CoP travel

is due to ankle extension torques provided by the SOL to counteract the forward movement of the CoM.

During the backward perturbation, the upper body rotated backwards by extensive bending at the knee

joint. This induced a pronounced eccentric stretch of the pre-activated SOL resulting in an instantaneous

increase in muscle force (Loeb et al., 1999). This explains the initial anterior CoP travel (within the first

300 ms to 400 ms). This, however, is a critical condition for balance, because both the required hip flexion

(to realign the upper body) and the ankle extension accelerate the CoM backwards (Winter, 1995). To

counter this, immediate deactivation of the SOL and activation of the TA would be required which we

also observed in the EMG responses (RI3 in Figure 3.4b). Further proof of these interpretations requires

modelling and simulation of the neuro-muscle-skeletal system.

Reported EMG signals might contain cross-talk from other muscle groups. For example, the RF might have

been contaminated by activity from the vastus intermedius (Nene et al., 1999). Using needle electrodes

might be a more reliable alternative. However, due to their invasive nature, the intramuscular electrodes

require technical expertise, usually more time for preparing the subject and can create discomfort (Mead-

ows, 1970; Strommen and Daube, 2001), which in turn might influence the behaviour of the subject. By

following the SENIAM recommendations (Hermens et al., 1999) for skin preparation and electrode place-

ment, and by utilising appropriate surface electrodes (Farina et al., 2002; De Luca et al., 2012), we aimed

at reducing the influence of cross-talk to a minimum.

Our experiments show that the biarticular thigh muscles strongly relate to postural upper-body control in

standing. We speculate that these muscles could also play a key role for upper-body balance in walking.

During walking, GRFs intersect in a point above the CoM which helps to stabilise the angular momentum

of the whole body similar to a physical pendulum (Maus et al., 2010; Gruben and Boehm, 2012). How-

ever, upper body stability is not achieved in this way, because the resulting forces acting on the upper body

intersect below the CoM of the upper body (Müller et al., 2017). Here, biarticular muscles can help to reg-

ulate the angular momentum of the upper body by applying torques via the stance leg (Hof, 2001; Gregor

et al., 1991; Toussaint et al., 1992; Sarmadi et al., 2019; Lakatos et al., 2014; Jacobs and Macpherson,

1996; Lacquaniti and Maioli, 1994) or the swing leg (Prilutsky et al., 1998a; Sharbafi et al., 2017; Dean

and Kuo, 2008). The stabilising function of biarticular structures for the upper body during walking was

demonstrated in a dynamically walking robot (Lakatos et al., 2016). Further perturbation experiments

will target the role of biarticular muscles for upper-body balance in walking.

Anticipatory and reactive control strategies

When mechanical perturbations are applied, humans use different strategies to prepare or counteract the

effect of the perturbation (MacKinnon and Winter, 1993; Mergner, 2010; Ritzmann et al., 2018). For

instance, when a perturbation is expected or predicted, activity of antagonistic muscles can be increased

simultaneously (co-contraction) in order to build up joint impedance before the perturbation onset (Ruit

et al., 2018). This zero-delay mechanism is governed by feed-forward commands of supra-spinal centres

and usually called ‘prestimulation’ (Loeb et al., 1999; Jacobs et al., 2008). Especially when knowledge
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about the perturbation (e.g. intensity, timing or direction) is rare, joint impedance can help to preserve the

body posture (Mugge et al., 2010).

In our experiment, an anticipatory co-contraction was not found. Only the monoarticular hip extensor

GLU of the left leg showed an increased activity level in anticipation of the perturbation. In the right leg,

the hip flexor TFL reduced its prestimulation. Explanations of this could be the influence of feed-forward

commands (Loeb et al., 1999), e.g. limb dominance, or an unbalanced loading of both legs caused by the

natural (lateral) sway (Winter, 1995) that was also present in our study (see Appendix Figure A.7). It is

also likely that subjects adapted their prestimulation throughout the progress of the experiment. However,

the results of Welch and Ting (2014), which found only modest changes of prestimulation in response to

surface translations and only one to two trials with converging behaviour towards a preferred prestimu-

lation activity, suggest that the influence of training-induced adaptation or habituation on prestimulation

activity should be small.

Reactive responses (‘reflexes’) can (with a certain delay) respond to the perturbation by processing sen-

sory feedback with only minimal or no prior knowledge (Mergner, 2010; Horak, 2006; Johansson and

Magnusson, 1991). We found that the temporal organisation of observed muscular responses remained

(with only some exceptions) similar throughout the three response intervals. However, muscular responses

were only found after a delay of 100 ms after the perturbation onset. Similar delays were found for surface

translations (Horak and Nashner, 1986; Welch and Ting, 2009), while other (more sudden) upper-body

perturbations resulted in shorter delays of e.g. 30 ms to 80 ms (Cresswell et al., 1994; Carlson et al., 1981).

Since we measured an initial change of upper-body pitch 50 ms after onset, RI1 responses can be consid-

ered medium-latency while RI2 and RI3 denote long-latency responses (Hof and Duysens, 2018). Previous

studies (Safavynia and Ting, 2013; Soechting and Lacquaniti, 1988) suggest that short-latency responses

(not observed in our experiment) are induced by joint errors (e.g. stretch reflexes) and long-latency re-

sponses are the result of a task-level feedback. While these long-latency responses have been found to

undergo modulations of task- and context-specific constraints (Horak and Macpherson, 1996; Kurtzer et

al., 2008; Shemmell et al., 2010; Martelli et al., 2013; Peterka, 2002; Horak, 2006; Nashner et al., 1982;

Fitzpatrick et al., 1994), they also reflect the inter-segmental coupling of joints (Gielen et al., 1988; Lac-

quaniti and Soechting, 1986b; Lacquaniti and Soechting, 1986a; Koshland et al., 1991). For instance,

perturbations to one joint can evoke responses in muscles that only act on unperturbed joints (Nashner,

1977; Koshland et al., 1991). Such patterns were associated with pre-defined coordination patterns (e.g.

muscle synergies) that are triggered by a certain stimulus and generate purposeful responses in the con-

text of spartio-temporal or task-specific constraints (Safavynia and Ting, 2013; Kurtzer et al., 2008; Ting,

2007) also reflecting the requirements of everyday activities, such as controlling inertial effects of e.g.

accelerated, neighbouring segments (Gielen et al., 1988; Koshland et al., 1991). While reactive and antic-

ipatory control strategies are usually combined (Horak and Nashner, 1986; Park et al., 2004; Allum et al.,

1998; Forssberg and Hirschfeld, 1994; Welch and Ting, 2014), our results show that biarticular muscles

mainly follow a reactive control strategy.

Such long-latency responses can also undergo adaptation processes (Safavynia and Ting, 2013). While the

additional loading (the weight of the AMP) resembled a task that all subjects faced previously (e.g. when

wearing a heavy backpack), pure torque perturbations are rare during activities of daily living. It is thus

unlikely that subjects were familiar with the type of perturbation, resulting in adaptation or habituation

effects from updating an internal model of the AMP and the applied torques. Prior information about the

perturbation, learning, or training has been found to guide the selection of long-latency responses towards

a strategy that also reduces muscular activity (Horak and Nashner, 1986; Welch and Ting, 2014; Horak,

1996; Keshner et al., 1987). Also, previous studies found a wide variety of adaptation processes, ranging

from approximately 5 trials (Keshner et al., 1987) to more than 50 trials (Horak, 1996), so it is difficult
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to conclude that adaptation had ceased during the 10 trials per condition in our experiment. However, to

reduce influences of learning on the reflex responses (Welch and Ting, 2014), we considered only the last 5
of the 10 trials per condition. Still, we cannot exclude further training or learning of subjects. Nevertheless,

given also other factors, such as an accelerated rate of fatigue during load carriage, the number of discarded

trials must be kept small for practicality.

Gyroscopic perturbation generation

The AMP is an example of ‘reactionless actuation’, in which torques are exerted by exchanging angular

momentum with the actuator itself, rather than by exerting forces against the ground or an inertially-

fixed object (e.g. an immobile robot transmitting forces via linkages or cables). This principle has both

theoretical and practical benefits for perturbation experiments.

Specificity of a perturbation is difficult to achieve. Force-controlled systems are generally preferred over

position-controlled systems due to their absence of kinematic constraints and more natural responses

(Vlugt et al., 2003; Maaswinkel et al., 2016). While it is, in principle, possible to generate a pure torque

with a pair of opposing forces, it is, in practice, difficult to synchronise these forces and track the location

of the CoM in real-time. Reactionless actuation is attractive because both synchronisation and alignment

of the equivalent force couple happens inherently.

A practical benefit of reactionless actuation is that, since there is no necessity to exert forces against an

inertially-fixed environment, the actuator can be entirely self-contained and even take the form of a wear-

able backpack, as in the AMP. This enables the AMP to be portable and suitable for overground exper-

iments, and to be combined with other systems (e.g. treadmills, other perturbators) and measurement

apparatus (e.g. motion capture, force plates) with minimal interference. To study other balance mecha-

nisms in the future, wearable reactionless actuators might be placed on other parts of the body to perturb

specific limbs. For various other (assistive) applications, such actuators have already been described for

placement on the arms (Jarc et al., 2006; Muller and Popovic, 2018), legs (Odajima, 2009; Jabeen et al.,

2019), and distributed across the body (Duda et al., 2015).

The gyroscopic torque vector rotates along with the gimbal creating – together with the desired pitch per-

turbation – roll torque components in the frontal plane (Equation 3.2). While the gimbal initial angle and

total rotation were chosen to reduce the magnitude of this roll component, it was nevertheless present. In

additional conditions in which the gimbal was rotated by 180°, the same pitch perturbations were produced

but with the opposite roll components. From this, it was established that a lateral trunk lean did occur (up

to 8°, see Appendix Figure A.9), and that the load shifted from one leg to the other, but that this did not

appear with asymmetric magnitudes or dependent of the side of dominance (see Appendix Figures A.10

and A.11).

The frontal balancing of the upper body is mainly achieved by an (un-)loading mechanism of hip ab-

ductors (MacKinnon and Winter, 1993; Winter et al., 1996) in which the torque generated by gravity is

compensated by hip abductor activity to regulate angular momentum and ensure frontal upper-body bal-

ance (Jansen et al., 2014; John et al., 2012; Neptune and McGowan, 2016). Since the AMP also generated

roll torque components, it is likely that also frontal balance control strategies were used. This would prob-

ably result in altered hip muscle activities (depending on the corresponding perturbation torque) as found

by previous multidirectional perturbation studies when applying surface transitions (Moore et al., 1988;

Henry et al., 1998; Torres-Oviedo and Ting, 2010; Gruneberg et al., 2005; Torres-Oviedo and Ting, 2007)

and rotations (Gruneberg et al., 2005; Carpenter et al., 1999). Given that each leg individually controls the
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CoP (MacKinnon and Winter, 1993), cross-talk from the contralateral leg to ipsilateral ankle joint muscles

should be small. For the hip, however, neuronal coupling of both legs – next to their mechanical interac-

tion – e.g. by interneurons is very likely. Still, muscular responses did not appear to differ (see Appendix

Figures A.12 to A.14) allowing us to merge both conditions of inverted roll but similar pitch perturbations.

To generate a rotation of the gimbal wrt. to the body frame of the subjects, a peak gimbal torque of 12 Nm
was necessary. This torque created an angular acceleration (Equation 3.2) that resulted in upper-body yaw

rotations of 3° to 5° (see Appendix Figure A.8). This could especially influence GLU and TFL activity, as

both muscles also function to generate a leg rotation in the transversal plane (wrt. to the pelvis). However,

since the observed upper-body yaw was small compared to our main perturbation direction, such influence

is expected to be small. A future version of the AMPmay use instead two or more smaller actuators to allow

both the magnitude and direction of the torque vector to be controlled simultaneously, thereby eliminating

torques in unintended directions (Brown and Peck, 2008) and allowing multi-directional perturbation

studies (Ting, 2007; Torres-Oviedo and Ting, 2007).

A drawback of the selected actuation principle is that the mass of the actuator is borne by the test subject

and cannot be placed externally. The prototype AMP in this study weighed 16 kg, or 15 % to 29 % of the

participant’s body weight. Other studies of standing with similar backpack load showed tendencies of

increasing activity for anterior and reductions for posterior muscles groups. In particular, non-significant

increases of VL, RF and reduced HAM activity as well as increased CoP sway were found (Al-Khabbaz

et al., 2008; Schiffman et al., 2006). In our study, significant reductions in muscle activity were only

seen in GLU, HAM of the left leg and VL of the right leg. Still, we cannot exclude other influences of

e.g. modulation of muscular stiffness or related effects on balance. Also, an increased hip flexion (by 6.2°),
more extended knee (by 2.1°) and increased CoP sway were found (see Appendix Table A.1 and Figure A.7).

The additional weight makes the balance control more challenging (Schiffman et al., 2006). When being

perturbed, it is likely that the added moment of inertia of the AMP helped subjects to maintain the initial

upper-body posture. The influence of muscle fatigue should be small, since subjects had sufficient time to

rest. Additionally, also the generated vibrations or the noise could result in changed muscle activity, e.g.

by stimulating muscle-spindle proprioception (Roden-Reynolds et al., 2015; Kavounoudias et al., 1999) or

psychological factors like attention or anxiety (Lacour et al., 2008; Woollacott and Shumway-Cook, 2002;

Adkin et al., 2000; Adkin et al., 2002).

In future generations of the AMP it will be possible to reduce the mass substantially by (i) using lightweight

components, (ii) scaling down themaximum possible perturbationmagnitude, (iii) increasing the diameter

of the flywheel, or (iv) rotating the flywheel faster. Lightweight reactionless actuators that are wearable

(Jarc et al., 2006; Duda et al., 2015; Muller and Popovic, 2018; De Panisse et al., 2018) or handheld

(Yano et al., 2003; Gagne et al., 2012) have been recently developed, and the technology has even been

demonstrated on the sub-gram scale (Chang et al., 2010). However, for the same perturbation magnitude,

we estimate that it is currently feasible to construct a AMP weighing approximately half the one used in

this study.

Conclusion

This study investigated the specific role of biarticular muscles in dealing with upper-body pitch pertur-

bations in human standing. Our main finding was that biarticular thigh muscles (hamstring and rectus

femoris) showed the strongest response of all measured major leg muscles. Our results indicate a reactive

control for biarticular thigh muscles in line with a previously suggested torque control strategy considering

the difference between hip and knee torques. To the knowledge of the authors, this was the first study
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on human subjects providing experimental evidence that biarticular muscles play a key role in reactive

upper-body balance control.

In order to focus on upper-body balance while reducing method-dependent artefacts (arising e.g. from

inter-segmental couplings or global perturbations), a new type of perturbation was applied by the Angu-

lar Momentum Perturbator (AMP). Complementing existing perturbation devices, the generated torque

perturbation at the trunk provides a new methodology for studying human response strategies.

Future research will involve applyingmechanical and neuromechanical models (Winter, 1995; Barin, 1989;

Welch and Ting, 2009; Rajagopal et al., 2016; Afschrift et al., 2018) and/or data-driven approaches (Xue

et al., 2016) to increase our understanding of underlying control mechanisms as well as classification of

user intention, e.g. for controlling wearable robotic devices like the AMP.

A deeper understanding of postural balance control of the upper body and involved muscle responses will

facilitate the design of robotic systems for assistance or rehabilitation and improve the effectiveness of

physical training for fall prevention e.g. for elderly people.

Data availability

Processed datasets of the AMP, kinematic, kinetic, electromyographic and anthropometric data that were

used in this study are available in the 4TU.ResearchData repository (Schumacher et al., 2019).
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Abstract

In human and animal motor control several sensory organs contribute to a network of sensory pathways

modulating themotion depending on the task and the phase of execution to generate daily motor tasks such

as locomotion. To better understand the individual and joint contribution of reflex pathways in locomotor

tasks, we developed a neuromuscular model that describes hoppingmovements. In this model, we consider

the influence of proprioceptive length (LFB), velocity (VFB) and force feedback (FFB) pathways of a leg

extensor muscle on hopping stability, performance and efficiency (metabolic effort). Therefore, we explore

the space describing the blending of the monosynaptic reflex pathway gains. We call this reflex parameter

space a sensor-motor map. The sensor-motor maps are used to visualize the functional contribution of

sensory pathways in multisensory integration. We further evaluate the robustness of these sensor-motor

maps to changes in tendon elasticity, body mass, segment length and ground compliance.

The model predicted that different reflex pathway compositions selectively optimize specific hopping char-

acteristics (e.g. performance and efficiency). Both FFB and LFB were pathways that enable hopping. FFB

resulted in the largest hopping heights, LFB enhanced hopping efficiency and VFB had the ability to disable

hopping. For the tested case, the topology of the sensor-motor maps as well as the location of functionally

optimal compositions were invariant to changes in system designs (tendon elasticity, body mass, segment

length) or environmental parameters (ground compliance).

Our results indicate that different feedback pathway compositions may serve different functional roles. The

topology of the sensor-motor map was predicted to be robust against changes in the mechanical system

design indicating that the reflex system can use different morphological designs, which does not apply

for most robotic systems (for which the control often follows a specific design). Consequently, variations

in body mechanics are permitted with consistent compositions of sensory feedback pathways. Given the

variability in human body morphology, such variations are highly relevant for human motor control.

Introduction

The redundancy of the musculoskeletal and neural systems poses a major challenge in human locomotion

research. For instance, the motor control system may utilize different strategies for performing specific

motions with redundancy in the body’s physiology (e.g. many involved muscles), kinematics (e.g. redun-

dant motion trajectories) (Bernstein, 1967), and neuromuscular control (e.g. recruitment of motor units)

(Henneman et al., 1965) including neural networks in the spinal cord that contribute substantially to con-

trolling rhythmic and repetitive motions. To date, it is unknown how the neuromuscular system explores

and exploits the redundancy and how the different levels are organized and interconnected to achieve

functionally relevant activation patterns (Donelan and Pearson, 2004a). Proprioceptive feedback and cen-

tral pattern generator (CPG) presumably generate appropriate motor control commands depending on the

tasks and the phase of the motion (Dietz, 1992; Taube et al., 2012).

Similarly, computational approaches aiming at mimicking human activation patterns and motion trajecto-

ries must address the ‘redundancy problem’ in motor control. Most commonly, these approaches reduce the

degrees of freedom by specific neuromuscular structures or hierarchies (e.g. specific combinations of CPG,

sensory pathways etc.) that follow certain control policies or rules. For instance, Song and Geyer (2015)

used multiple ‘spinal modules’ (decentralized feedback control) coordinated by a supra-spinal layer to pre-

dict several gaits and generate robust behavior even after perturbations (Song and Geyer, 2017). Other
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studies used combinations of CPG and proprioceptive feedback (modifying the central patterns) to gener-

ate appropriate activation patterns (Taga, 1998; Ogihara and Yamazaki, 2001; Hase et al., 2003; Paul et

al., 2005). Moreover, muscle synergies (groups of synchronized co-contracting muscles during a motion)

are used to reduce the dimensionality and thus the redundancy of the neuromuscular system (D’Avella

et al., 2003; Bizzi et al., 2008). For instance, Ting et al. (2012) used a neuronal network for generating a

muscle synergy driven balancing task based on center of mass (CoM) kinematics.

In contrast to previous studies with a detailed representation of the neural networks (including their hier-

archies), this study focused on integrating multiple sensory pathways at the elementary sensor-motor-level

(Loeb, 1995) to determine how individual reflex pathways of muscle force (FFB), fiber length (LFB) and

velocity (VFB) can support – in isolation and in combination – the repulsive leg function (Sharbafi and

Seyfarth, 2017) during the stance phase of hopping (Haeufle et al., 2012). By blending individual sensory

pathways, we investigated the capacity of the neuromuscular feedback system to generate goal-directed

motions. We visualized and evaluated the space in which the monosynaptic reflex system can operate to

generate functional motions (for generating stable, performant or efficient hopping). We call these reflex

parameter spaces sensor-motor maps and suggest that studying their topology can be used to explore the

redundancy of multisensory integration. This approach differs from previous approaches because the gen-

eral concept of such sensor-motor maps only relies on a few primitive assumptions on the neuromuscular

structure. The topologies of these sensor-motor maps reflect the task-specific contributions of the sensory

pathways that are moderated by the mechanical interaction of the locomotor system with the environment.

Our overall goal was to identify enabling and disabling pathways for individual locomotor functions. We

expected that several different pathways may generate stable hopping, but that pathway-specific features

determine hopping performance and efficiency.

To show the general validity of our approach we varied parameters of the environment (ground compli-

ance) and the body morphology: compliance (tendon elasticity), geometry (segment lengths) and inertia

(body mass). Furthermore, we explored the sensitivity of the model to variations of feedback and model

parameters.

Material & Methods

To focus on the integration of different sensory pathways, we considered a highly simplified muscle-driven

model allowing the evaluation of motion execution with respect to stability, performance and efficiency.

Therefore, we used the hopping model by Geyer et al. (2003) with idealized sensory receptors and mo-

torneurons capturing the basic neural control principles with the least possible system complexity (Full

and Koditschek, 1999; Brown and Loeb, 2000; Pearson et al., 2006). We chose the signals of three muscle

receptors (muscle force of Golgi tendon organs, fibre length and fibre velocity of muscle spindles) to focus

on local proprioceptive circuits.

Mechanical hopping model

The model of Geyer et al. (2003) consists of a point mass m (center of mass, CoM) and two massless

segments (length lS) representing the thigh and shank (Figure 4.1). The leg length during flight (lf) is held

constant until the vertical CoM height equals the flight leg length (touch-down). During stance, a muscle-

tendon-complex (MTC) modelling the knee extensors counteracts the gravitational force (gravitational

constant g). TheMTC consists of a contractile element (CE) and a serial elastic element (SE) (Equations 4.1
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and 4.2). Take-off occurs when the leg force vanishes or when the vertical displacement of the point mass

exceeds the flight leg length.

dlleg

ls

COM

ls
lf

m

CE

SE

y

t

m

Figure 4.1: Vertical hopping model (Geyer et al., 2003) comprising a point mass (m), two massless leg

segments and a leg extensor muscle-tendon-complex (MTC), consisting of a contractile element

(CE) and a serial elastic element (SE). During flight phase, the leg flight length (lf) stays constant.
In stance, the MTC generates a pulling force that acts on the lever arm (d) which creates an

extension torque. Figure inspired by Geyer et al. (2003).

lMTC = lCE+ lSE (4.1)

FMTC = FCE = FSE (4.2)

The length of the MTC is defined by a reference length (lMTC,ref), a corresponding reference knee angle

(ϕref) and the knee lever arm (d): lMTC = lMTC,ref − d ∗ (ϕ − ϕref). The force of the CE is calculated as

FCE = Fmax ∗ fl ∗ fv ∗ACT using the maximum isometric force (Fmax), force-length-relationship (f l), force-

velocity-relationship (f v) and activation state of the contractile element (ACT, Equation 4.11). The force-

length-relationship and force-velocity-relationship are implemented by non-linear approximations (Geyer

et al., 2003):

fl(lCE) = exp

(︄
c
⃓⃓⃓⃓
lCE− lopt

lopt w

⃓⃓⃓⃓3)︄
(4.3)

fv(vCE) =

{︄
N +(N −1) vmax−vCE

7.56KvCE−vmax
vCE ≥ 0

vmax−vCE
vmax+KvCE

vCE < 0
(4.4)

These equations use a width (w) and a curvature constant (c) of the force-length-curve as well as opti-

mum length of the CE (lopt), eccentric force enhancement (N), maximum shortening velocity (vmax) and

a second curvature constant (K). The force-length-relationship values can range from 0 to 1. The force-

velocity-relationship values can range from 0 to 1 for concentric contractions and from 1 to 1.5 for eccentric
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contractions (because of the eccentric force enhancement N). To define the serial elastic element in the

MTC a progressive force-length dependency (Equation 4.5) was used (van Ingen Schenau, 1984). There-

fore, the reference strain (εref) determines the relation of the force acting on the serial element and its

corresponding stretch in relation to its rest length (lrest) (Equation 4.6).

fSE(ε) =

{︄
(ε/εref)

2 ε > 0
0 ε ≤ 0

(4.5)

ε =

(︃
lSE
lrest

)︃
−1 (4.6)

Extension of the neuromuscular model

To consider fused feedback pathways, we extended the neuromuscular feedback model by a linear combi-

nation of muscle force (FFB), fibre length (LFB) and fibre velocity feedback (VFB) pathways (Figure 4.2).

All three afferent pathway signals are multiplied by a blending factor λi weighting the individual pathways

resulting in the summation signal S(t) (Equation 4.7) where Gi, Fmax, Loff and Voff denote the individual

gains, maximum isometric force and offsets of length and velocity pathways, respectively. By restricting

the sum of all blending factors (Equation 4.8), one weight can always be calculated from the other two

(Seyfarth et al., 2001).

Optimal tuning Blending

CE

SE

l
CE

v
CE

F
CE

G
L

G
V

G
F

λ
L

λ
V

λ
F

+
++

G

PreStimACT(t)

++

1/Fmax

+-

+-

V
off

L
off

ECC
STIM(t)

Delay

Gain

S(t)

Figure 4.2: Neuromuscular reflex model which fuses Ia afferent signals (lCE, vCE and offsets Loff,Voff) and

normalized Ib afferent (FCE) pathways: All three sensory signals are gained (GL, GV, GF ≥ 0)
and weighted (λi). The resulting summation signal S(t) is then delayed (∆S) and gained (G ≥ 0).
This signal is then added to a constant pre-stimulation value to mimic a positive excitatoric post-

synaptic potential at the α -motoneuron. The stimulation signal ST IM(t) is confined to values

between 0 and 1 and delayed by the excitation-contraction-coupling (ECC) resulting in the ac-

tivation signal ACT (t) of the CE.
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S(t) = λF ∗GF ∗FCE/Fmax

+λL ∗GL ∗ (lCE−Loff)

+λV ∗GV ∗ (vCE−Voff)

(4.7)

λF+λL+λV = 1, 0 ≤ λF, L, V ≤ 1 (4.8)

This normalizes the blending of individual contributions and reduces the dimensionality by projection onto

a two-dimensional space (of independent blending factors). Triangles visualize all possible (projected)

feedback compositions (Figure 4.3). The corners of the triangle represent the isolated individual feedback

pathways (purely FFB, LFB or VFB). Every point within the triangle represents a blending of the individual

feedback pathways and refers to two-dimensional Cartesian coordinates (space V , x and y between 0 and

1). The projection to the blending factors (space W) is described by: f : V →W (Equation 4.9). Hence, the

larger the distance of a point to a corner (e.g. VFB) the smaller is the contribution of that specific feedback

pathway in the blended signal S(t). Individual feedback pathways in isolation (corners) are parameterized

by optimization.

f =

{︄
x → λL 0 ≤ x ≤ 1
y → λF 0 ≤ y ≤ 1

(4.9)

After blending, the proprioceptive signal (S(t)) is delayed by ∆S, gained by G and added to the stimulation

bias (PreStim) (Equation 4.10). Then, this signal is confined to values between 0 and 1 and input into

the excitation-contraction-coupling (ECC) (Equation 4.11) described by a first-order differential equation

resulting in the activation signal ACT(t) (Geyer et al., 2003; Haeufle et al., 2012).

ST IM(t) =

{︄
PreStim t < ∆S

PreStim+G∗S(t −∆S) t ≥ ∆S

(4.10)

τ
dACT (t)

dt
= ST IM(t)−ACT (t) (4.11)

Model parameter and optimization

Model parameters

Parameters of the mechanical model (Table 4.1) were taken from Geyer et al. (2003). The initial position

of the point mass was set to 1.05 m and its initial velocity to 0 m/s.

Optimization of feedback parameters

To identify feedback parameters of the extended neuromuscular model (optimal tuning part in Figure 4.2),

a pattern search optimization algorithm was used (Torczon, 1997). The pattern search algorithm was

implemented to search for parameters sets that result in stable hopping patterns (more than n = 50 steps,

first criterion). As second optimization criterion, the maximum height of the body mass hmax = ymax,apex

for steady-state hopping (n = 49 step) was chosen. Simulations were checked for steady-state motion.

Optimizations of all individual feedback pathways (in isolation) were done for ‘stiff tendon’ and ‘rigid
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Figure 4.3: Schematic explanation of sensory pathway blending through parameter reduction (Equa-

tion 4.8). Corners of the triangle represent a full contribution of one single feedback (e.g. 0 %
VFB, 0 % FFB, 100 % LFB). Every point within the triangle (coordinates x and y) represents a
unique combination of the three feedback pathways. Arrows (thick) and contour lines (thin)

explain the blending of feedback pathways. The larger the distance of a point to a corner (e.g.

LFB) the smaller the contribution of that feedback pathway in the blended signal. Exemplary,

the middle point describes an equal composition of all feedback pathways (1/3 VFB, 1/3 FFB,
1/3 LFB). Optimal tuning of the individual feedback pathways is done by optimization for full

contribution of only one sensory reflex (corners). These optimal reflex pathways are used for all

compositions. The blue circles (S1(FFB) to S7(FFB, LFB, VFB)) denote the specific compositions

of feedback pathways used for the sensitivity analysis.

ground’ and repeated five times each with random starting points to avoid finding local maxima. The

limits of parameter values were 0.1 ≤ GF ≤ 3 (FFB), 0.1 ≤ GL ≤ 200 and 0 ≤ Loff ≤ 3 (LFB) as well as

0.1 ≤ GV ≤ 3 and −1 ≤ Voff ≤ 0 (VFB) aligned to results from Geyer et al. (2003). The best performing

solution was used for further simulation and analysis.

Simulation and optimization environment

Simulations and optimizations were implemented in Matlab Simulink (release 2016b, Mathworks, Nat-

ick, Massachusetts, USA). For the simulations, the variable-step solver ‘ode45’ with relative and absolute

tolerances of 10−8 was used. Optimization was done using the ‘Global Optimization Toolbox’ (Version

3.4.1).

Tendon elasticity changes

To change the SE elasticity, three configurations for the reference strain were used: (1) ‘stiff tendon’

(εstiff = 0.01), (2) ‘moderate tendon’ (εmoderate = 0.03), and (3) ‘compliant tendon’ (εcompliant = 0.05). For

equal forces, smaller reference strain values indicated less associated stretch and thus a stiffer length-force

dependency of the SE. These SE elasticity levels are in a range used by other simulation studies (Pandy
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Table 4.1: Parameters of the hopping model taken from Geyer et al. (2003).

parameter value unit

body mass m 80 kg
gravitational constant g 9.81 m/s2

initial body mass height y0 1.05 m
flight leg length lf 0.99 m
segment length lS 0.5 m
knee lever arm d 0.04 m
MTC reference length lMTC,ref 0.5 m
reference knee angle ϕref 110 °

maximum isometric force Fmax 22000 m
optimum length of CE lopt 0.1 m
curvature constant of f l c 0.05
width w 0.4
maximum shortening velocity vmax −12 m/s
eccentric force enhancement N 1.5
curvature constant of f v K 5
SE rest length lSE,rest 0.4 m
‘stiff’ reference strain of SE εstiff 0.01
‘moderate’ reference strain of SE εmoderate 0.03
‘compliant’ reference strain of SE εcompliant 0.05
‘heavy’ body mass mheavy 96 kg
‘moderate’ body mass mmoderate 80 kg
‘light’ body mass mlight 64 kg
‘long’ segment length lS,long 0.6 m
‘moderate’ segment length lS,moderate 0.5 m
‘short’ segment length lS,short 0.4 m
‘stiff’ ground stiffness kstiff 9999 kN/m
‘moderate’ ground stiffness kmoderate 500 kN/m
‘compliant’ ground stiffness kcompliant 100 kN/m
excitation-contraction time constant τ 0.01 s
feedback signal time delay ∆S 0.015 s

et al., 1990; Bobbert, 2001; Nagano et al., 2004).

Body mass changes

The body mass of the model (m) was varied to 80 % and 120 % of the original body mass (80 kg): (1) ‘light
mass’ (mlight = 64kg), (2) ‘moderate mass’ (mmoderate = 80kg), and (3) ‘heavy mass’ (mheavy = 96kg).

Segment length changes

The leg geometry was altered by changing the length of both segments (lS) to 80 % and 120 % of the original

segment length (0.5 m): (1) ‘short segments’ (lS,short = 0.4m), (2) ‘moderate segments’ (lS,moderate = 0.5m),

and (3) ‘long segments’ (lS,long = 0.6m). To keep the take-off conditions and energy level of the system

consistent for all segment length configurations, the initial body mass height (y0 = 2∗ lS+0.05m) and the

flight leg length (lf = 2∗ lS−0.01m) were adjusted accordingly.
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Ground compliance changes

To modulate the vertical ground stiffness, the model was slightly adapted. During stance, a linear spring

constant (kground) and the leg force or vertical ground reaction force (Fleg) define the foot position (yFP):

yFP(Fleg) =

{︄
yCoM− lf during flight

− Fleg
kground

during stance
(4.12)

The foot position during stance can only reach values ≤ 0 because the take-off condition is met for van-

ishing leg force (Fleg < 0). To change the ground compliance, three configurations for the spring constant

were chosen: (1) ‘compliant ground’ (kcompliant = 100kN/m), (2) ‘moderate ground’ (kmoderate = 500kN/m),

and (3) ‘stiff ground’ (kstiff = 9999kN/m). These ground stiffness values are in a range used by other com-

putational or experimental studies (Farley et al. 1998: 20 kN/m to 35.000 kN/m, Moritz and Farley 2004:

27 kN/m to 411 kN/m, Krogt et al. 2009: 75 kN/m to 3.100 kN/m).

Sensitivity analysis

To evaluate the performance of the model for different parameter settings, we analyzed its parametric

sensitivity. We randomly altered feedback parameters (GF, GL, Loff, GV, Voff, PreStim, ∆S) as well as model

parameters (εref, lS, m). Physiological parameters were normally distributed (lS: µ = 0.5m,σ2 = 0.02m; m:

µ = 80kg,σ2 = 5kg) whereas other parameters were uniformly distributed (1 ≤ GF ≤ 5; 100 ≤ GL ≤ 160;
0.06m ≤ Loff ≤ 0.1m; 1 ≤ GV ≤ 5; −1m/s ≤ Voff ≤ 0m/s; 0.01 ≤ PreStim ≤ 0.2; 0.01s ≤ ∆S ≤ 0.05s; 0.01 ≤
εref ≤ 0.05). For the sensitivity analysis, the ground stiffness remained unchanged (no compliance). Be-

cause parametric influences differ depending on the feedback blending, we considered seven reflex path-

way compositions for our sensitivity analysis. Figure 4.3 shows the location of these seven compositions

(S1(FFB) to S7(FFB, LFB, VFB)). For each composition, n = 1000 simulations with randomized parameters

were performed. Maximum hopping height (∆hmax) and hopping efficiency (η) were calculated as perfor-

mance measures. The sensitivity of these variables was further tested with SPSS 24.0 (IBM Corporation,

Armonk, New York, USA). Spearman’s rho correlation coefficients (r) with significance values (two-sided

test) and standardized regression coefficients (β) were calculated for simulations that resulted in stable

hopping. Correlations were considered to be moderate for 0.5 ≤ r < 0.7 (−0.5 ≥ r > −0.7) or high for

r ≥ 0.7 (r ≤−0.7) if p-values were significant (p < 0.01).

Performance metrics

Depending on the force generated during stance, the predicted motion will result in continuous and stable

hopping or in a bound motion (leg remains in contact to the ground) where the model lands but does not

lift off. In case of hopping, the blending compositions were evaluated by calculating the following metrics.

Stability criterion

To determine if the extended neuromuscular reflex model will result in stable hopping or bound motion,

we examined the number of steps to fall, and simulations resulting in at least 50 steps were considered

stable.

Hopping metrics

The following criteria were used to evaluate the performance of the hopping model with respect to en-

ergetics and motion dynamics for the last step (n = 49) of the simulation. Simulations were checked for

steady-state motion.
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1. The model generates a motion performance or a mechanical output during hopping defined as the

steady-state vertical hopping height of the body mass (∆hmax = yapex − lf) at the instance of apex

(vy,apex = 0). During flight, the system energy is equivalent to the potential energy at the apex:

Esystem = mghmax.

2. To describe the hopping motion we calculated the hopping frequency ( fhop) and the effective stiffness

of the leg kleg = Fleg,max/∆lleg,max.

3. Because the tendon and muscle share the same force (Equation 4.2), knowledge about the relative

work generation (and length deflection) of the CE and the MTC is of interest. Hence, we calculated

the maximum amount of work generated by the CE (WCE,max) relative to its equivalent of the whole

MTC (WMTC,max) that was then simplified to the ratio of the maximum deflection of both elements

with respect to the elements’ rest lengths:

α =
WCE,max

WMTC,max
=

FMTC,max ∗∆lCE,max

FMTC,max ∗∆lMTC,max
=

∆lCE,max

∆lMTC,max
(4.13)

This factor describes the maximum amount of work produced in the muscular element relative to

the overall maximum contribution of the MTC.

4. To evaluate the metabolic effort of the CE, we used the velocity-dependent metabolic cost model

by Minetti and Alexander (1997) and Robertson and Sawicki (2014) favoring eccentric contractions

with reduced metabolic effort (Equation 4.15). This is scaled by the activation signal during ground

contact (ACT (t)), maximum isometric Force (Fmax) and maximum shortening velocity (vmax) to cal-

culate the metabolic rate (Meff(t)) (Krishnaswamy et al., 2011; Robertson and Sawicki, 2014):

Meff(t) = Φ(vCE)∗ACT (t)∗ | Fmax ∗ vmax | (4.14)

Φ(vCE) =

{︄
0.23−0.16∗ e(−8∗ vCE

vmax
) vCE ≥ 0

0.01+0.11∗ vCE
vmax

+0.06∗ e(−23∗ vCE
vmax

) vCE < 0
(4.15)

We derived the averaged metabolic effort (Meff) per hopping cycle by an integration of the metabolic

rate (Meff(t)) during ground contact and a normalisation with the body mass (m) and the contact

time (Tcontact) (Robertson and Sawicki, 2014):

Meff =
∫︂ Tcontact

0
Meff(t)dt/(m∗Tcontact) (4.16)

5. Hopping efficiencywas quantified as the ratio of hopping height (∆hmax) (output) to averagedmetabolic

effort of the CE (input): η = ∆hmax

Meff
.
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Results

Individual hopping patterns

The optimization of the individual feedback pathways (with εstiff = 0.01) resulted in neuromuscular model

parameters that produced a maximum hopping height for stable hopping patterns (Table 4.2). For these

feedback parameters, FFB was the best performing optimization with a hopping height of 0.126 m. The

maximum hopping height of LFB was 0.063 m. VFB did not produce a high performance with a maximum

hopping height of 0.002 m just above the flight leg length. The predicted leg forces and activation signals

are shown in Figure 4.4. The activation profile and subsequently the leg force profiles of FFB showed an

increasing amplification. Compared to leg forces of FFB, LFB produced higher peak leg forces but shorter

contact times. The rise of the LFB activation signal was delayed to the instance of touch-down by about

50 ms. Here, the length offset Loff suppressed the early activation signal (also reported by Geyer et al.

2003). VFB produced half the leg force and half the contact time compared to FFB and LFB reflected in

the small hopping height (0.002 m). While FFB and LFB showed delayed increase in the leg force (more

than 50 ms after touch-down), the VFB caused an almost instantaneous response in the activation signal

resulting in high (eccentric) force generation and thus high energy losses during leg compression. The

CE remained less stretched and started to shorten before reaching optimal fibre length ( fl < 0.2) limiting

positive (concentric) muscle work during leg extension.

Table 4.2: Optimization results of individual feedback parameters: for y0 = 1.05m, G = 1, PreStim = 0.01,
εstiff = 0.01 and rigid ground.

parameter Force feedback

(FFB)

Length feedback

(LFB)

Velocity feedback

(VFB)

individual gain GF = 2.6 GL = 130 GV = 2.9
individual offset - Loff = 0.08 Voff =−0.6

maximum hopping height ∆hmax 0.126 m 0.063 m 0.002 m

Sensor-motor maps

The following section describes the results of the blended feedback pathways and the sensor-motor maps

for different motion characteristics (e.g. hopping stability, performance and efficiency).

Hopping stability

The blended feedback pathways produced both stable and unstable motions (Figure 4.5A). Motions of

stable hopping (more than 50 hops) were found for compositions of FFB and LFB with small proportions

of VFB. Here, a balanced composition of FFB and LFB resulted in greater stability (with respect to higher

VFB proportion) compared to predominant FFB. A thin envelope of transitions (between 1 and 49 steps)

was observed representing a distinct margin of stable and unstable areas.

Hopping performance

The performance map (Figure 4.5B) shows the maximum hopping height (∆hmax) for all feedback compo-

sitions of steady-state motions where only stable predictions were considered. The contours show greater
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Figure 4.4: Leg forces and activation signals during one stance phase for optimized feedback parameters

of individual pathways (y0 = 1.05m, G = 1, PreStim = 0.01, εstiff = 0.01, rigid ground): (A) force

feedback (GF = 2.6), (B) length feedback (GL = 130, Loff = 0.08) and (C) velocity feedback (GV =
2.9, Voff = −0.6). Maximum hopping heights are ∆hmax = 0.126m (FFB), ∆hmax = 0.063m (LFB)

and ∆hmax = 0.002m (VFB).

hopping heights for smaller proportions of VFB. In areas close to unstable solutions, the maximum hopping

height (maximum vertical displacement of CoM) was just above the leg length leading to smooth transi-

tions from unstable (no hopping) to slight hopping patterns. Thus, the energy level of the system (Esystem)

gradually increased when VFB was reduced. Compared to LFB, high proportions of FFB performed better,

and higher hopping heights occurred closer to pure FFB. A composition of FFB and LFB (but not VFB)

produced maximum performance (see red point in Figure 4.5B). Although compared to individual contri-

butions (e.g. pure FFB or LFB) hopping performance was amplified by blending multiple sensory pathways,

the pathway-specific feature enabling motion performance (Geyer et al., 2003) was found for dominant

FFB.

Hopping efficiency

To identify feedback compositions resulting in hopping patterns that required less metabolic resources than

others, the energetic relation of output and input: η = ∆hmax

Meff
was used. In the topology of the efficiency

map (Figure 4.5C), efficient motions were predicted in areas with dominant LFB and only small propor-

tions of VFB (below 0.2), and a small band of efficient hopping patterns evolved. The spectrum of this

band ranged from small proportions of FFB to pure LFB and gradually spread towards pure LFB. The most

efficient feedback blending was found for a combination of small FFB, dominant LFB and no proportion

of VFB (see maximum). Because VFB resulted in lower hopping heights (Figure 4.5B), VFB also reduced

the hopping efficiency (η). Moreover, only moderate hopping heights led to most efficient hopping (Fig-

ure 4.5C). For the used metabolic model, hopping efficiency increased if the amount of positive work used

for propulsion (and consequently hopping height) was reduced. Higher proportions of LFB led to lower

force (and also work) production during late stance caused by a reduced activation signal in late stance

due to the length offset (Figure 4.4B). In areas of higher hopping heights (dominant FFB and minor VFB),

the metabolic model predicted a high metabolic effort leading to low efficiency values. As observed for

hopping performance, the most efficient hopping pattern was found for a fusion of sensory pathways.

80



performance map

FFB

LFBVFB

0.01

0.05

0.10

0.15

0.20

H
o

p
p

in
g

 h
e

ig
h

t 
Δ

h
m

a
x
 [
m

]

B

0.15 m
CE

FFB

LFBVFB

A

stabilty map

CE

0

10

20

30

40

50

S
te

p
s
 t
o

 F
a

ll

efficiency map

0

0.02

0.04

0.06

0.08

0.1

H
o

p
p

in
g

 e
ff
ic

ie
n

c
y
 η

 [
(m

 k
g

)/
W

]

FFB

LFBVFB

CE

0.08

C

Figure 4.5: Sensor-motor maps: Influence of blended feedback pathways on hopping stability, perfor-

mance and efficiency (y0 = 1.05m, G = 1, PreStim = 0.01, εmoderate = 0.03, rigid ground). Global

maxima are visualized by red points. Every point within the triangle represents a unique com-

bination of the three feedback pathways. The larger the distance of a point to a corner (e.g.

LFB) the smaller the contribution of that feedback pathway in the blended signal (see Figure 4.3

for explanation of triangles). (A) stability map: steps to fall (max = 50), (B) performance map:

maximum hopping height (∆hmax) and (C) efficiency map: hopping efficiency (η).

Hopping motion

To evaluate and compare the predicted hopping motions with human hopping data (where possible), we

calculated biomechanical parameters of the motions. Hopping frequencies ranged from 1.5 Hz to 3.0 Hz
(Figure 4.6A). Higher frequencies were found for higher VFB and hence in areas of smaller hopping heights

(Figure 4.5B). The effective leg stiffness of our hopping model ranged from 15 kN/m to 30 kN/m (Fig-

ure 4.6B). This parameter depended mostly on the relation of VFB and LFB but was slightly influenced by

increases in FFB (see vertical contour lines). Thus, the model produced motions of the best performing

and most efficient compositions at small hopping frequencies (around 1.5 Hz) and low leg stiffness (around

15 kN/m).
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Figure 4.6: Predicted hopping motions: Influence of blended feedback pathways on hopping frequency

and leg stiffness (y0 = 1.05m, G = 1, PreStim = 0.01, εmoderate = 0.03, rigid ground). Every point

within the triangle represents a unique combination of the three feedback pathways. The larger

the distance of a point to a corner (e.g. LFB) the smaller the contribution of that feedback path-

way in the blended signal (see Figure 4.3 for explanation of triangles). (A) hopping frequency

( fhop) and (B) leg stiffness (kleg).

Robustness of sensor-motor maps

To explore the robustness of the sensor-motor maps, the effects of parameter variations of the model config-

uration (tendon elasticity εref, body mass m, segment lengths lS) and the environment (ground compliance

kground) were analyzed. Moreover, we investigated the parametric sensitivity of the model to variations of

feedback and model parameters.

Tendon elasticity changes

The three performance maps of altered elasticity of the serial elastic element showed only slight differences

(Figure 4.7A). For all three tendon elasticity configurations, the size and location of stable hopping patterns

were consistent, and smooth transitions from unstable to stable hopping patterns (with only small hopping

heights) were predicted. While the topology of the performance maps remained similar (compared to the

‘moderate tendon’), the level of the predicted hopping height changed. The greatest hopping heights were

found for a more compliant tendon and gradually decreased for stiffer configurations. Maximum hopping

heights for each configuration ranged from 0.18 m (‘compliant tendon’) to 0.15 m (‘moderate tendon’) to

0.13 m (‘stiff tendon’) andwere found for consistent feedback compositions. For the stiffest elasticity (εstiff =
0.01), a secondmargin of stable solutions for high proportions of the VFB evolved. However, these feedback

compositions resulted in hopping patterns just above the leg length (see also Figure 4.4C).

Body mass changes

For all body mass configurations, performance map regions of stable hopping emerging for FFB and LFB

remained similar (Figure 4.7B). A reduction of the body mass was predicted to result in higher maximum

hopping height while the blending location of the most performant hopping patterns did not change. For

the light mass, stable hopping patterns were found for dominant VFB.

Segment length changes

The sensor-motor map topology remained similar for changes in the leg geometry (Figure 4.7C). Only for
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Figure 4.7: Influence of parameter variations on performance maps: Maximum hopping height (∆hmax)

for blended feedback signals (y0 = 1.05m, G = 1,PreStim = 0.01). Global maxima are visualized

by red points. Every point within the triangle represents a unique combination of the three

feedback pathways. The larger the distance of a point to a corner (e.g. LFB) the smaller the

contribution of that feedback pathway in the blended signal (see Figure 4.3 for explanation of

triangles). (A) tendon elasticity changes: ‘compliant tendon’ (εcompliant = 0.05), ‘moderate ten-

don’ (εmoderate = 0.03), ‘stiff tendon’ (εstiff = 0.01); (B) body mass changes: ‘light mass’ (mlight =
64 kg), ‘moderate mass’ (mmoderate = 80 kg), ‘heavy mass’ (mheavy = 96 kg); (C) segment length

changes: ‘short segments’ (lS,short = 0.4 m), ‘moderate segments’ (lS,moderate = 0.5 m), ‘long seg-
ments’ (lS,long = 0.6 m); and (D) ground compliance changes: ‘compliant ground’ (kcompliant =
100 kN/m), ‘moderate ground’ (kmoderate = 500 kN/m), ‘stiff ground’ (kstiff = 9999 kN/m).
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short segment lengths, VFB resulted in stable hopping patterns (with small hopping heights). Motions

with the highest performance were found for a consistent sensory pathway blending, and the performance

level increased with decreasing segment lengths.

Ground compliance changes

Similar to the other parameter variations, changes in ground stiffness only minimally influenced regions

of stable solutions (Figure 4.7D). Steady-state hopping heights decreased with increasing proportions of

VFB (for all three ground configurations). Thus, maximum hopping heights were found for no proportions

of VFB and dominant FFB, and decreased with decreasing ground compliance. The location of the max-

ima was consistent for different ground compliance and changes in the other parameter variations. The

topology of the performance maps remained similar.

Sensitivity of the model

We evaluated the sensitivity of specific model and feedback parameters to predicted hopping performance

(∆hmax) and hopping efficiency (η) for seven feedback compositions (S1(FFB) to S7(FFB, LFB, VFB), Fig-
ure 4.3). Correlation coefficients (r), p-values and the standardized regression coefficients (β) are shown

in Table 4.3. While pure VFB (S3) did not generate any stable hopping pattern, for FFB (S1) and LFB (S2)

958 out of 1000 simulations resulted in stable hopping. For both individual feedback pathways, hopping

height was moderately influenced by the feedback signal time delay (∆S): β = 0.637 (r = 0.585, p < 0.01,
FFB) and β = 0.531 (r = 0.521, p < 0.01, LFB). Also, moderate correlations between hopping efficiency and

reference strain (εref) were found for FFB (β = 0.628, r = 0.643, p < 0.01) and LFB (β = 0.431, r = 0.494,
p < 0.01). For all feedback compositions, the model was most sensitive to the feedback signal time delay

and the reference strain of the serial elastic element. Other feedback parameters such as gains (Gi), offsets

(Loff, Voff), the pre-stimulation bias (PreStim) or the model parameters segment length (lS) and the body

mass (m) did not result in moderate or high correlations.

Muscle-tendon interaction

To further explore the robustness of the sensor-motor maps we investigated the muscle-tendon interaction

because the elasticity of the SE also influenced the interplay of the CE and the SE. The muscle interaction

maps in Figure 4.8 show the calculated index α for each tendon configuration describing the relation of

maximum work generated by the CE to the whole MTC. While values of α were mostly determined by

the relation of VFB and LFB (see vertical contours), the map topologies were only slightly influenced by

changes in serial elasticity. α values decreased with increasing tendon compliance, and α values at the

location of maximum hopping heights ranged from 0.9 (‘stiff tendon’) to 0.75 (‘moderate tendon’) to 0.57

(‘compliant tendon’). The related work loops show the detailed interplay of CE and SE for simulations

that predicted the highest hopping heights (red points). At touch-down, the MTC was stretched by a low

force. The MTC generated forces (feedback response) while being stretched (eccentric contraction) which

led to negative work loops. During leg extension, the MTC shortened during force generation (concentric

contraction) and produced a positive work loop. More compliant tendon resulted in slightly higher MTC

deflections and less lengthening of the CE. Because maximum MTC forces did not change with different

elasticity, a stiffer configuration caused less deflection and reduced the energy recoil. The energy stored

in the SE decreased from 728 J (‘compliant tendon’) to 437 J (‘moderate tendon’). For a maximal hopping

height of 0.13 m, the ‘stiff tendon’ stored the least amount of energy with 142 J.
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Table 4.3: Results of the sensitivity analysis. For each specific composition, n depicts the number of stable

simulations (max(n) = 1000). Correlations r (Spearman-Rho) and standardized regression coeffi-

cients β (in parentheses) of predictors on themaximumhopping height (∆hmax) and the hopping

efficiency (η). Composition S3 (pure VFB) did not result in any stable hopping simulations (n= 0).
High (r ≥ 0.7 or r ≤−0.7) and very significant (p< 0.01) correlations are highlighted. (y0 = 1.05m,
G = 1, PreStim = 0.01, εstiff = 0.03, rigid ground).

S1(FFB) S2(LFB) S4(FFB, LFB) S5(LFB, VFB) S6(FFB,VFB) S7(FFB, LFB, VFB)

(n = 958) (n = 958) (n = 808) (n = 733) (n = 959) (n = 950)
∆hmax η ∆hmax η ∆hmax η ∆hmax η ∆hmax η ∆hmax η

GF
- 0.083** - 0.442** – – 0.115** 0.43 – – 0.037 - 0.084** 0.100** - 0.045

(- 0.111) (- 0.450) – – (0.127) (0.066) – – (0.120) (0.005) (0.154) (0.020)

GL
– – 0.016 - 0.031 - 0.022 - 0.011 0.040 0.110** – – 0.010 0.068*

– – (0.004) (- 0.052) (- 0.021) (- 0.008) (0.016) (0.052) – – (0.007) (0.057)

Loff
– – 0.198** 0.428** 0.350** 0.309** 0.097** 0.224** – – 0.138** 0.146**

– – (0.216) (0.396) (0.538) (0.447) (- 0.157) (0.104) – – (0.116) (0.117)

GV
– – – – – – 0.038 - 0.304** - 0.079* - 0.246** - 0.060 - 0.384**

– – – – – – (0.083) (- 0.314) (- 0.078) (- 0.234) (- 0.086) (- 0.414)

Voff
– – – – – – 0.021 0.224** 0.007 - 0.004 0.096** 0.050

– – – – – – (- 0.088) (- 0.014) (0.008) (0.009) (0.048) (0.002)

PreStim
- 0.483** - 0.190** 0.198** - 0.014 - 0.046 - 0.009 - 0.028 - 0.051 - 0.036 - 0.040 - 0.006 - 0.003

(- 0.530) (- 0.231) (- 0.028) (- 0.039) (- 0.049) (- 0.019) (0.0001) (- 0.005) (- 0.007) (- 0.030) (- 0.020) (- 0.023)

∆S
0.585** 0.442** 0.521** 0.325** 0.426** 0.233** 0.677** 0.569** 0.837** 0.707** 0.737** 0.523**

(0.637) (0.500) (0.531) (0.304) (0.624) (0.414) (0.740) (0.463) (0.843) (0.709) (0.731) (0.510)

εref
0.287** 0.643** 0.119** 0.494** 0.379** 0.670** 0.268** 0.528** 0.287** 0.504** 0.246** 0.510**

(0.338) (0.628) (0.084) (0.431) (0.429) (0.701) (0.238) (0.492) (0.306) (0.480) (0.264) (0.492)

lS
0.240 - 0.010 0.023 - 0.028 - 0.22 - 0.012 0.017 0.031 0.007 0.032 0.008 - 0.003

(0.029) (- 0.024) (0.026) (- 0.005) (- 0.008) (- 0.008) (0.018) (0.004) (- 0.018) (- 0.006) (0.001) (0.025)

m
- 0.304** - 0.014 - 0.246** - 0.123** - 0.313** - 0.196** - 0.225** - 0.092* - 0.233** - 0.140** - 0.303** - 0.105**

(- 0.411) (- 0.107) (- 0.263) (- 0.112) (- 0.360) (- 0.231) (- 0.298) (- 0.077) (- 0.272) (- 0.151) (- 0.313) (- 0.112)

*p < 0.05; **p < 0.01

Discussion

This simulation study investigated the composition of afferent feedback pathways for generating a repulsive

leg response in hopping. Therefore, a neuromuscular reflex model (Geyer et al., 2003) was extended by

blending length (LFB), force (FFB) and velocity feedback pathways (VFB) of one anti-gravitational leg

extensor muscle. Sensor-motor mapswere derived to evaluate the predictedmotion with respect to stability,

performance and efficiency. The topology of the sensor-motor maps was further evaluated for different

tendon elasticity, body mass, segment lengths and ground compliances. Below, we first highlight the key

insights gained by our hopping model, which will then be discussed in more detail.

1. Different feedback pathways had specific functional contributions: Both FFB and LFB pathways en-

abled hopping. FFB resulted in largest hopping heights, LFB enhanced hopping efficiency (ratio of

hopping height to metabolic effort), and VFB had the ability to disable hopping (also in combination

with FFB and LFB). These pathway-specific responses established sensor-motor maps with function-

selecting and -tuning pathways in hopping (Figure 4.5).
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Figure 4.8: Influence of serial elasticity on muscle interaction maps (left side): Maximum work ratio of

CE to whole MTC (α) for blended feedback pathways (y0 = 1.05m, G = 1,PreStim = 0.01, rigid
ground). Global maxima of hopping heights are visualized by red points. Every point within

the triangle represents a unique combination of the three feedback pathways. The larger the

distance of a point to a corner (e.g. LFB) the smaller the contribution of that feedback path-

way in the blended signal (see Figure 4.3 for explanation of triangles). (A) ‘compliant tendon’

(εcompliant = 0.05), (B) ‘moderate tendon’ (εmoderate = 0.03) and (C) ‘stiff tendon’ (εstiff = 0.01).
Influence of serial elasticity on individual work loops (right side): CE (red), SE (black) and

MTC (blue) for maximum hopping heights. Positive (energy generation) and negative (energy

dissipation) work loops are indicated by positive and negative signs.
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2. For the tested case, the topology of these sensor-motor maps as well as the location of functionally

optimal compositions was invariant to altered system designs (tendon elasticity, body mass, segment

lengths, Figure 4.7A-C) or environmental changes (ground compliance, Figure 4.7D). Thus, in our

model the neuromuscular feedback system relied on a consistent topology of feedback compositions.

Themodelling framework presented here can be used to establish relations to biomechanical (loco-)motion

concepts (e.g. preflex Loeb 1995; Brown and Loeb 2000) and template models (Full and Koditschek,

1999) and to explore the capacity and physiological limitations of the biological neuromuscular system

(Pearson et al., 2006), e.g. due to signal delays or muscle dynamics. Moreover, neuromuscular simulation

models can be validated, improved and used for different applications, for instance to derive model-based

experimental designs for investigating human or animal motor control. The results of our study should be

confirmed by experimental studies in biological systems.

Different feedback pathways have different functional contributions

We found pathway-specific features that resulted in different characteristics of the hopping motion. Firstly,

FFB was the dominant feedback pathway to produce high hopping heights and thus high hopping per-

formance. Previous studies reported that the combination of the muscle force-velocity-relationship and

positive force feedback (FFB) produced stable and high-performing motions (Prochazka et al., 1997a;

Prochazka et al., 1997b; Geyer et al., 2003; Haeufle et al., 2012). In contrast to a combination of the

force-length-relationship ( fl) and negative LFB (which would result in similar behavior compared to FFB

(Prochazka and Yakovenko, 2001)), negative LFB did not provide self-stabilizing behavior (Haeufle et al.,

2010). An elastic structure or the fl helps to achieve energy efficient and spring-like behavior, but does not

generate energetically stable hopping on its own (Haeufle et al., 2010). However, experimental evidence

for functional force feedback of ankle extensor activity to generate a repulsive leg function has been found

for walking cats (Donelan and Pearson, 2004b; Donelan and Pearson, 2004a) and humans (Grey et al.,

2007; Klint et al., 2010), but may be different for hopping motions.

Secondly, efficient hopping was found for areas of moderate hopping height in which LFB is dominant. This

occurred because the feedback suppression of the length offset (e.g. through fusimotor drive) reduced the

positive work production of the CE in late stance phase also reported by Geyer et al. (2003) resulting

in high metabolic effort. In our simulations, this suppression could be used to fine-tune the hopping

efficiency by determining the length-dependent activation of the CE during stretch-shortening cycle (SSC)

(Gollhofer, 2003). This influenced the force-lengthening characteristic of the MTC and thus the energy

recoil of the serial elastic element (with the used tendon elasticity). Raburn et al. (2011) suggested that

proprioceptive information is used to adjust a periodic bouncing motion pattern to achieve energetically

optimal patterns. If afferent pathways of muscle spindles are blocked by an ischemia blockage, the patterns

are less adapted (Raburn et al., 2011). It was argued, that the observed effect was most likely caused by

an update of the internal model for planning the motion. Nonetheless, implications of direct activation

pattern changes as considered in our model could not be ruled out (Dean, 2012). It seems reasonable that

reflex contribution directly influences the SSC (e.g. through generating ‘muscular stiffness’ (Nichols and

Houk, 1976; Gollhofer, 2003)) and thus the hopping efficiency (Komi, 2003).

Surprisingly, blending dominant VFB and other feedback pathways did not result in a higher performance,

but lead to substantial losses in hopping height resulting from an early rise of the activation signal. Next

to this extensive force generation (during leg compression) the CE remained less stretched during stance

(force-length-relationship below 0.2) leading to lower push-off forces and hopping performance. This
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shift of the CE operation point was also found in the simulation study by Robertson and Sawicki (2014)

where higher muscle stimulation frequencies (earlier stimulation onset) and magnitudes resulted in less

CE lengthening. In our model, this effect was stronger than the resultant performance increase associated

with an increased proportion of FFB. Thus, we found a function disabling behavior for compositions with

dominant VFB and small feedback signal time delays. These results indicate that VFB might function as the

primary regulator of the system energy in hopping complementing the previous suggestion that FFB might

be used to control the energy state of the system (Geyer et al., 2003). McDonagh and Duncan (2002)

provided evidence for the contribution of velocity-sensitive afferent signals in their experimental study

of landing motions. Increased electromyographic data (EMG) amplitudes of gastrocnemius and rectus

femoris muscles were found for increased ankle and knee joint velocities at touchdown (due to differ-

ent landing heights) during false floor landings compared to expected grounds (McDonagh and Duncan,

2002). For hopping, it might be necessary to delay or inhibit the VFB for example by presynaptic inhibition

to functionally enable FFB or LFB pathways. Such inhibition of VFB in hopping were indicated by results by

Voigt et al. (1998) who reported a negative correlation between peak stretch velocity and EMG amplitude

of the soleus muscle. However, the disabling function of the VFB may not be transferable to other motion

tasks such as walking. Because such feedback mechanisms are strongly task and phase dependent the con-

tribution of a feedback pathway may have opposite effects for different motion tasks, e.g. in walking and

standing (Pearson et al., 1993; Donelan and Pearson, 2004a). In a biological system this mechanism might

be superimposed or modulated by fusimotor action (Prochazka and Ellaway, 2012) or descending signals.

Thus, further research is warranted to identify the task-specific role of VFB in generating appropriate leg

extensor muscle activation in humans and animals.

Robustness of sensor-motor maps

Regions of stable and unstable hopping motions were only minimally influenced by the changes in ten-

don stiffness, body mass, segment lengths and ground compliance. Stable solutions for pure VFB were

found for ‘light mass’, ‘short segments’ or ‘stiff tendon’ and resulted in very low hopping performance. This

result is in agreement with previous studies where VFB produced stable hopping only in the absence of

serial compliance (Haeufle et al., 2012; Geyer et al., 2003). More compliance resulted – as expected – in

greater hopping heights and more efficient hopping patterns. Similar results were found in experimental

and computational studies (Anderson and Pandy, 1993; Kubo et al., 1999; Bobbert, 2001; Nagano et al.,

2004). While the level of hopping height was influenced by all altered configurations, the topology of

these maps was not affected. Interestingly, we found that for all parameter variations a consistent path-

way composition resulted in the maximum hopping performance suggesting a unified sensor-motor map

topology with consistent optimal solutions. Apart from this isolated observation, the (multidimensional)

sensitivity analysis also revealed only small to moderate dependencies of the predicted hopping height and

hopping efficiency for changes in tendon elasticity, body mass or segment lengths.

Our results indicate that sensor-motor maps are robust against these morphological changes. Previous

studies showed that the elastic leg function is highly determined by the interplay of the compliant ten-

domuscular system and the neuronal control system (Nichols and Houk, 1976; Lin and Crago, 2002;

Gollhofer, 2003; Taube et al., 2012; Robertson and Sawicki, 2014). In our simulations, a more compliant

tendon was able to store and release more energy during hopping agreeing with other studies (Anderson

and Pandy, 1993; Bobbert, 2001). Moreover, the model predicted decreasing α values with increasing ten-

don compliance (increased tendon lengthening) revealing a compensatory behavior of the CE by stiffening

(producing equal forces with less deflection). Such behavior was observed by experimental studies, where

changes in ground stiffness lead to adaptations of the leg stiffness, such that the total stiffness, consisting

88



of leg and ground, remains similar (Ferris and Farley, 1997; Moritz and Farley, 2004; Krogt et al., 2009). A

similar stiffness adaptation was found for hopping with a passive ankle joint orthesis acting in parallel to

the ankle (Ferris et al., 2006). For our model, this effect may be accomplished by the stabilizing function

of the non-linear muscle properties (Soest and Bobbert, 1993; Moritz and Farley, 2004; Krogt et al., 2009;

Haeufle et al., 2010) as the feedback pathway composition remained the same for all three conditions.

These ‘exploit mechanics’ or ‘preflex’ function (Loeb et al., 1999) may serve as a selector (functional filter)

to offer favorable solutions for the neural motor control system (sensor-motor maps) that allow to learn

its simple (Loeb, 1995) and consistent topology.

Integration of spinal reflexes and feed-forward control

Although we did not consider supra-spinal motor commands, we would like to reflect our results on their

functional integration with feed-forward commands. Our model suggests that the neuromuscular feedback

system alone could generate appropriate adjustments of the muscle activation to permit a fine-tuning of

hopping motions. In addition to our results, previous experimental studies revealed the importance of

pre-planned feed-forward commands in hopping and drop jumps. Descending commands may contribute

during the early contact phase (Zuur et al., 2010) and towards push-off (Taube et al., 2008). Accordingly,

the EMG activity of ankle extensor muscles (such as the soleus) was found to be pre-programmed and

adjusted dependent on the task (e.g jumping or landing) (Leukel et al., 2008b; Leukel et al., 2012) and

with respect to the timing of the touch-down (Santello and McDonagh, 1998; McDonagh and Duncan,

2002). Integrating feed-forward commands would certainly influence the results presented in this study.

For example, pre-planned motor commands could compensate the repressive behavior following dominant

VFB. Such descending commands could be superposed to our blended feedback signal (as PreStim in our

model) (Taube et al., 2012) or adapt and suppress the afferent gating (G in our model), for instance by

presynaptic inhibition (McDonagh and Duncan, 2002; Leukel et al., 2008b; Leukel et al., 2008a).

The motor control system is likely to rely more on afferent feedback in the case of misplanned motions (if

perturbations occur) or if knowledge about the environment is uncertain and planning is difficult (Donelan

and Pearson, 2004a). The contribution of afferent feedback pathways may increase under these conditions

(McDonagh and Duncan, 2002). A function specific fine-tuning of hopping motions with respect to dif-

ferent movement targets or cost functions (e.g. performance, efficiency), as found for our model, would

support the generation of appropriate activation patterns in such conditions. Therefore, supra-spinal cen-

ters might plan an appropriate blending of the afferents (setting of λi) before touch-down. For example,

in our model shifting from targeting hopping performance to hopping efficiency could be moderated by

fading from dominant FFB to dominant LFB (see Video in Supplementary Material1.). By comparing pre-

dicted and actual afferents (Wolpert et al., 1995; McDonagh and Duncan, 2002), the overall feedback

gain (in our model G) might increase if deviations and errors are detected. If so, the pre-setting of the

afferent blending permits a fast and function-oriented contribution (performance, efficiency) of feedback

responses. Another advantage would be the reduced control effort due to the low-dimensionality of the

blending (setting of λi). However, higher centers must be able to learn such feedback blending even in

the case of sensorial and mechanical perturbations. Thus, in order to be functionally useful, the solution

space of possible feedback compositions (as shown in the sensor-motor maps) must follow a simple and

consistent topology (Loeb, 1995). Indeed, we found compact and robust topologies that were invariant to

changes of morphological design or environmental parameters with respect to motion stability and optimal

compositions. Nonetheless, we can only derive hypotheses about a potential integration of our feedback

1The Video can be downloaded from the paper online resource: Link
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model and feed-forward commands. The discussion presented here warrants validation and support from

experimental studies.

Comparison of the model to human hopping

The neuromechanical hopping model (with a reference strain of εmoderate = 0.03, ‘moderate’ mass, ‘moder-

ate’ segment lengths and rigid ground) produced similar hopping motions as those of human hopping. A

high effective stiffness of the leg was found for high hopping frequencies. While similar results have been

reported in experimental studies (Farley et al., 1999; Riese et al., 2013), other studies reported higher leg

stiffness values ranging from 30 kN/m to 55 kN/m (Farley et al., 1991; Kuitunen et al., 2011; Hobara et al.,

2011). However, hopping frequency and leg stiffness were in reasonable ranges and changed accordingly

(Rapoport, S. et al., 2003). Moreover, our model predicted increasing hopping performance with increas-

ing tendon elasticity agreeing with results of experimental studies (Kubo, 2005; Fukashiro et al., 2006)

and other simulation studies (Anderson and Pandy, 1993; Bobbert, 2001; Nagano et al., 2004). Although

this study utilises a highly simplified model structure the model predicted the basic dynamics (e.g. hopping

frequency and leg stiffness) of human hopping. We thus consider this model a valid simplification for the

scope of this study.

Model limitations

We chose a rather simplistic model to integrate multiple sensory pathways at the elementary sensor-motor-

level to determine how individual reflex pathways of muscle force (FFB), fiber length (LFB) and velocity

(VFB) can support – in isolation and in combination – the repulsive leg function during the stance phase

of hopping. By blending individual sensory pathways, we investigated the capacity of the neuromuscular

feedback system to generate goal-directed motions. These simplifications may have influenced our results.

We selected a bouncing task (one dimensional hopping) as primary locomotor function. The functional

contribution of the different feedback pathways predicted for hopping will most likely be different for

other motion tasks. The hopping model of Geyer et al. (2003) utilized one anti-gravitational leg extensor

muscle representing all involved muscles during the stance phase of hopping. The foot segment and ankle

joint were neglected possibly influencing the overall leg stiffness of the model because the ankle joint

was found to be the main contributor for leg stiffness modulations at higher hopping frequencies (above

2.2 Hz) (Farley et al., 1998; Farley et al., 1999; Hobara et al., 2011). Nonetheless, the model of Geyer et al.

(2003) and our simulations generated biomechanically reasonable results. In addition, we simplified the

distributed mass of the human body to a point mass neglecting the effects of wobbling masses and their

influence on impact dynamics (Seyfarth et al., 1999; Schmitt and Günther, 2011). This helped to focus on

the muscle-tendon interaction and the functional contribution of different feedback pathways. The model

of the MTC did not consist of a parallel elastic element that could (additionally to the SE) store and release

energy in SSC (Anderson and Pandy, 1993; Lindstedt et al., 2002; Robertson and Sawicki, 2014) when

the CE is stretched beyond its optimal length (Soest and Bobbert, 1993). However, in our simulations,

the CE did not operate above its optimal length. Hence, we argue that it is tenable to neglect the parallel

elastic element in this particular case. In addition, jumping simulation models by Anderson and Pandy

(1993) and Seyfarth et al. (2000) showed only insignificant contribution of the parallel elastic elements.

Moreover, while in our study damping within the MTC was neglected, a damping element has also been

found to be negligible for hopping (Rapoport, S. et al., 2003).
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The used neuromuscular feedback model is a highly simplified representation of the complex biologi-

cal network. Sensory signals were handled as ideal, averaged and analogue physical quantities without

frequency modulation and sensory or signal noise. By using simple delays, offsets and gains, we only

considered a highly simplified neural processing of the monosynaptic feedback pathways. In particular,

no time-variant feedback gains (Pearson, 1995; Pearson et al., 1998) or other sensory signals such as

joint position and velocity, mechanoreceptors or cutaneous receptors were considered. Because we found

moderate correlations for the feedback time delay, feedback-specific delays (Prochazka et al., 1997a) will

certainly influence the performance and efficiency of the model. Possible causes of afferent gain changes

as discussed in Sreenivasa et al. (2015) were not investigated here. All these factors were simplified and

neglected for the sake of simplicity and comprehensibility (Full and Koditschek, 1999; Brown and Loeb,

2000; Pearson et al., 2006). For this study, it was important to separate and isolate the pathway and

task-specific effects in the frame of the mechanical structure and muscle mechanics. Previous studies of

similar model complexity (Kuo, 2002; Geyer et al., 2003; Haeufle et al., 2010; Haeufle et al., 2012) not

only demonstrated realistic motions but also elucidated the functional roles of the different contributors

of feedback, feed-forward or muscle properties.

Outlook and future directions

Based on the results of this study, the robustness of the system against mechanical or sensory perturbations

can be investigated. From a control point of view, combinations of multiple sensory pathways or informa-

tion channels about the system state will result in more robust and more precise estimations of the system

state (Donelan and Pearson, 2004a; Green and Angelaki, 2010). Comparing effect sizes resulting from

muscle properties (Haeufle et al., 2010), feedback blending and an integration of feed-forward controls

(Kuo, 2002; Haeufle et al., 2012) is of high interest. In a next step, we will expand our models to other

motions tasks (e.g. running and walking) and underlying locomotor subfunctions (Sharbafi and Seyfarth,

2017) such as swing and balancing (Seyfarth et al., 2012; Sharbafi et al., 2017). For these scenarios, other

feedback pathways, e.g. from vestibular organs or as suggested by Song and Geyer (2015), may be used

to examine the generalisability of the sensor-motor maps.

Moreover, wewould like to explore the use of this type of neuromuscular model as non-invasive distinguish-

ing tool for two purposes: (1) to further explore the mechanisms and interactions of mechanical, neuro-

muscular and sensory templates and (2) for a model-based design of experimental protocols and settings

(e.g. perturbation profiles). While computational modelling approaches help to investigate underlying

principles of locomotion, they could potentially help to predict the value and usefulness of experimental

settings. Such a model-based identification of experimental settings might improve future experimental

designs.

Conclusion

The novel sensor-motor maps provide a tool for analysing human (and animal) motor control strategies and

investigating how the biological neural control system recruits function-specific sensor-motor pathways.

The maps of muscle force, fibre length and velocity pathways are predicted to be robust with respect to

changes in body and environment mechanics (e.g. compliance).

In addition to central (or spinal) pattern generators, muscle-reflex based control circuits are able to gener-

ate adjustable cyclic motions by exploiting the musculoskeletal dynamics and gravity. We call these nmPG.
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Accordingly, the sensory feedback pathways (e.g. positive force feedback) operate as an antagonist system

to the mechanics of the body (muscles, segments) and gravity. The mechanical system is consequently not

only the target of (neuronal) control but at the same time an essential part of pattern generating networks.
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5 Thesis Conclusions

This chapter will discuss the main insights and implications of the presented articles, and put these into

a larger picture. Further, the limitations of this work are discussed and future research directions will be

delivered.

General discussion

Early mentions on the origins of locomotion go back to philosophers like Plato (428-348 BC) and Aristotle

(384-322 BC). After the recognition of electrical potentials in nerve and muscle by Galvani (1791), sci-

entists like Helmholtz, Pavlov and Sherrington (1906) shaped the early understanding of proprioceptive

signals in the generation of movements. Then, Bernstein (1967) was one of the first to formulate the

integration of feed forward and feedback signals to control the underdetermined1 body and generate ac-

tions for achieving the desired movement goal. To date, however, it remains open how the neuromuscular

system exploits this redundancy and how the different systems in the motor control loop (Figure 1.1) are

organised and interconnected to achieve cyclic motion patterns (Donelan et al., 2004).

Thus, this thesis investigated the contribution of motor and sensor networks to translate between the

structure of locomotion and the neural control system. In order to test this hypothesis, two examples of

cyclic locomotion were investigated using different perspectives and methodological approaches to reflect

the specific requirements of these systems.

In Chapter 2, a macro-perspective based on a meta-analysis examined functions of motor networks by

integrating research from conceptual models, human experiments and robotic applications. Based on

previous research, this chapter worked out beneficial features of biarticular muscles in the leg to simplify

multi-joint coordination in the stance leg, swing leg and upper-body balance. Further, Chapter 3 validated

one of these results in a human experiment by applying a novel perturbation type to study upper-body

balance. Finally, Chapter 4 addressed the composition of the sensor network from a micro-perspective.

Here, sensor-motormaps were developed to visualise and evaluate the capacities and limitations of blended

feedback pathways for generating a repulsive stance leg function. A neuromechanical template model

identified simple relations between sensor network topologies and task-specific motions.

Motor and sensor networks that were investigated in this thesis provided structural solutions to support

the neural system. This control embodiment2 was achieved by exploiting the fundamental dynamics of

locomotion. Network topologies of muscles and receptors translated the segmented leg structure into the

generalised coordinates of the template models (Chapters 2 and 3) and promoted goal-directedmovements

1Due to the redundancy at the anatomical, kinematic (Bernstein, 1967) or neurophysiological level (Henneman et al., 1965),

different movements can result in the same movement goal. Therefore, multiple motor solutions to one motor problem exist.
2While initially called intelligent embodiment (Pfeifer and Bongard, 2007), in this thesis, the term control embodiment is used

to emphasise the specific contribution to locomotion control.
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by elementary compositions of feedback pathways (Chapter 4). By this, these networks bridged the gap

between the simple structure of locomotion and the complex physical realisation of the human body.

Motor networks

Biarticular muscles mainly operate in global leg coordinates

The human leg architecture is complex due to its asymmetric and redundant muscle arrangement. How-

ever, this does not inevitably require complex neural control strategies. Indeed, Chapter 2 identified how

structures in the motor network could help to simplify coordination or control. Conceptual models sug-

gest that biarticular structures in the leg approximate fundamental mechanisms of legged locomotion into

the complex leg physiology (Lakatos et al., 2014; Sharbafi et al., 2017; Sarmadi et al., 2019). Given ap-

propriate segment lengths and muscle moment arms, biarticular muscles can sense and act in global leg

coordinates (leg orientation and length) instead of local joint coordinates (Chapter 2). These results agree

well with other studies, which suggest that the neural system controls the segmented leg in these global

coordinates (Bosco and Poppele, 2001; Ivanenko et al., 2007; Auyang et al., 2009). Proprioceptive circuits

might facilitate such limb-centred control strategies (Nichols et al., 2016). Biarticular muscles may thus be

able to approximate the global leg behaviour as described in biomechanical template models (Chapter 2).

This would be highly beneficial for the neural control system, since these template models showed that

already simple mechanisms could generate cyclic locomotion or improve the stability region of the motion

(Blickhan, 1989; Seyfarth et al., 2002; Seyfarth et al., 2003; Rummel et al., 2008; Maus et al., 2010; Riese

and Seyfarth, 2011; Ludwig et al., 2012). These results indicate that the neural control can use simple

logics or mechanisms through the translation of biarticular structures in the motor network. However,

more research is needed to support this theory (see Limitations & Outlook).

Contributions of biarticular muscles may simplify control strategies

Reviewing evidence from human experiments (in Chapter 2) showed that biarticular muscles coordinate

multi-joint movements, secure the zig-zag-configuration of the leg against joint overextension, improve

motion economy (e.g. by transferring energy), and contribute to control angular momentum, e.g. during

balance or swing leg motions. However, most of these results were based on unperturbed movements.

Therefore, Chapter 3 examined muscle contributions to recover from upper-body balance perturbations in

standing to investigate also predictive and reactive control strategies. Since previous perturbation types did

not allow to study the upper-body posture in isolation, a new device, an Angular Momentum Perturbator

(AMP), was used to produce specific upper-body pitch perturbations. Biarticular thigh muscles showed

the strongest reflex responses of all tested leg muscles (Chapter 3). This study firstly provided strong

evidence that biarticular muscles are preferably used to realign the upper-body, indicating a higher efficacy

for controlling angular momentum, compared to monoarticular muscles. In this context, Lacquaniti and

Maioli (1994) and Jacobs and Macpherson (1996) suggested independent control strategies of axial and

perpendicular leg forces by mono- and biarticular muscles. By this, the motor network of mono- and

biarticular muscles would directly embody a structural solution of a simple but functional control strategy.

Sensor networks

Reflex pathways can exploit template-like locomotion

In Chapter 4, simple sensor networks were sufficient to generate appropriate motor commands to perform

steady-state hopping in a simulation model. Changed compositions of sensory signals stemming frommus-

cle spindles and Golgi tendon organs resulted in specific characteristics of the predicted hopping pattern.
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Both enabling and disabling behaviours were predicted, suggesting that different feedback compositions

serve different functional roles: muscle force feedback (FFB) resulted in performant movements, mus-

cle fibre length feedback (LFB) enhanced hopping efficiency and muscle fibre velocity feedback (VFB)

disabled hopping (safe landing). These simulation results indicate that already simple logics in the sen-

sor network (weighted summation) can be sufficient to generate task-relevant movements. This example

demonstrates that the requirement of bouncing gaits (Blickhan, 1989; Geyer et al., 2006), namely a com-

pliant leg behaviour, can be easily exploited by the neuromuscular system. In order to generate suitable

motor commands to drive anti-gravitational muscles, simple reflex signals from force or length feedback

can be recruited (Chapter 4). Simple or elementary connections in the neural network (as shown here)

would allow improving the efficiency of motor control and facilitate learning. In this context, however,

also other sources of activation like feed forward signals, e.g. from supra-spinal centres (Zuur et al., 2010)

or central pattern generator (CPG) (Ijspeert, 2008; Kiehn, 2016), can contribute to generating steady-

state behaviours reflecting the high level of control redundancy if mechanical, sensor and motor systems

are designed appropriately. In the centipede model of Yasui et al. (2019), combinations of feed forward

commands, local pattern generators and sensory feedback produced adaptive behaviours like gait changes

from walking to swimming and vice versa. Their model suggests that sensory feedback is used to coor-

dinate neural oscillators (Yasui et al., 2019). In the future, CPGs could also be integrated and evaluated

in the model of Chapter 4 to study the topology of the sensor-motor maps for an interplay of central and

peripheral control strategies. Based on results from Haeufle et al. (2012), it is expected that both feedback

and feed forward systems complement each other to generate more robust motor commands.

Simple behaviour may also require only simple control strategies

A simple neuromechanical model was used to capture fundamental control principles and the dynamic

interplay of the mechanical and neural system with matching complexity levels (Chapter 4). The hy-

pothesis of this approach, namely that mechanics and neural control can be represented by similar and

parsimony representations, is based on the existence of simple, biomechanical template models (Full and

Koditschek, 1999; Brown and Loeb, 2000; Pearson et al., 2006). This approach assumes that networks

of the neural control system match the low-dimensional representation of the motion task, as identified

by biomechanical template models (Geyer et al., 2006). Another basis for this hypothesis comes from the

long co-evolution of the periphery (motor, sensor and body mechanics) and the nervous system (Chiel and

Beer, 1997). Both, the body morphology as well as the nervous system3 undergo changes within the organ-

ism’s lifespan and at evolutionary time scales that result in an ‘ecological balance’ of frequently performed

motions (Pfeifer and Iida, 2004). For instance, changes in the vestibular organ from hominid fossils (of

early erect-walking hominids) compared to living primates (great apes) suggest changes of the sensory

apparatus favouring balancing for bipedal locomotion (Spoor et al., 1994). For fundamental locomotion

tasks like walking, running or hopping, these results further indicate that the mechanical and the neu-

ral system operate with matching complexity levels to distribute tasks between systems (Chiel and Beer,

1997; Pfeifer and Iida, 2004). However, more research is needed to validate this hypothesis. Recently,

the simulation study of Davoodi et al. (2019) demonstrated that simple template-like control mechanisms

could effectively be incorporated in more complex neuromuscular control, including adaptive feedback

strategies.

Simple sensor-motor connections may facilitate learning

Novel sensor-motor maps helped to predict the solution space and relate blendings of different feedback

pathways to the predicted leg behaviour. This approach helped to visualise the contribution of the sensor

network concerning its functional outcome to improve the comprehensibility of the complex interplay of

sensory integration. It was found that these mappings of the solution space were compact and united

3Due to learning processes, the nervous system is usually considered to be more plastic than the body morphology.
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(without multiple fragments) and showed smooth gradients (Chapter 4). Moreover, the topology of the

sensor-motor maps, as well as the location of functionally optimal compositions, were invariant to changes

in system designs and environmental parameters. This robustness might be a result of self-stabilising fea-

tures stemming from (1) the feedback signals directly, (2) the interplay of the compliant tendomuscular

system and the neuronal control system (Nichols and Houk, 1976; Lin and Crago, 2002; Robertson and

Sawicki, 2014) or (3) the control embodiment of muscle preflexes (Loeb et al., 1999). Previous studies

suggest that the preflex function of intrinsic muscle properties (Hill, 1938; Gordon et al., 1966; Rode et al.,

2009; Heidlauf et al., 2017; Tomalka et al., 2017) pre-filter suitable solutions for the neural control system

and thereby improve the robustness of the system to withstand perturbations (Krogt et al., 2009; Niiyama

et al., 2007; Haeufle et al., 2010; Davoodi et al., 2019) and reduce control effort (Yakovenko et al., 2004;

Paul, 2006; Haeufle et al., 2014). The observed consistency of the sensor-motor map topologies (Chap-

ter 4) further suggest a simple learning problem (Loeb, 1995). The study of Anand et al. (2019), which

used deep reinforcement learning to learn a walking controller in a complex simulation model, found faster

and more precise learning when muscle models and associated muscle properties were included instead of

simple torque generators. Another study, which used a neural network to learn a control policy of a robotic

system, found that muscle properties could reduce the dimensionality of the learning problem (Driess et

al., 2018). In future, machine learning approaches should be combined with parsimony neuromechanical

models to evaluate to what extent sensor-motor mappings facilitate learning of task-specific behaviours.

Limitations & Outlook

This thesis, however, has its limitations. Therefore, this section will discuss these issues and give sug-

gestions for future research. Please note that the specific shortcomings and limitations of the articles are

considered in the individual discussions (in Chapters 2 to 4).

Robotic systems should exploit biarticular structures and validate control embodiment

The previously discussed contribution of biarticular muscles for simplifying the control task by translating

between concepts of locomotion and human leg designs (Chapter 2) warrants further validation. Here,

robotic systems that incorporate the specific designs of the motor control systems can become testbeds

of the mentioned concepts and hypotheses (Brooks, 1991; Kalveram and Seyfarth, 2009; Floreano et al.,

2014). Depending on the investigated movement or locomotor subfunction, different technological chal-

lenges like actuator transparency, performance, bandwidth, friction or system inertia need to be considered

when designing a suitable system. Unfortunately, most of the robotic designs that are currently used in

research or industry use single-joint actuation principles that refrain these systems to be used for the vali-

dation of biarticular actuator functions. Therefore, only few robotic demonstrators like the BioBiped robot

(Sharbafi et al., 2016) or the C Runner (Lakatos et al., 2014; Lakatos et al., 2016) were used to investigate

these hypotheses in control embodiment (see Chapter 2).

Experiments should study muscular contributions in non-continous motions

As identified in Chapter 2, most computational, experimental and robotic studies that address biarticular

muscles considered steady-state behaviours, e.g. level ground walking or running with a constant speed.

However, in realistic environments, these situations are more an exception than the typical scenario (Dick-

inson et al., 2000). In real-world scenarios, humans, animals and robotics have to face mechanical or

sensory perturbation (Tokur et al., 2020). Moreover, movements are usually not uniform, but instead

involve accelerations and transitions of different movements, e.g. changes in direction, speed or motion

task. All these factors pose additional challenges to the motor control system. Despite of their frequent
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appearance in the activities of daily living, most of these situations are currently underrepresented in state

of the art about biarticular actuation (Chapter 2). Therefore, there is a high demand of research that also

considers non-continuous motion tasks to better understand the function of motor and sensor networks

in the motor control loop (Figure 1.1) and the changing interplay of the involved systems in response to

transitions or external perturbations. In this thesis, Chapter 3 provided a first step in this direction by in-

vestigating the contribution of reactive and anticipatory control strategies of the motor network. However,

this study only looked at non-stepping responses following upper-body balance perturbations. Also, per-

turbations of other motion tasks as well as movement transitions like sit-to-stand or gait initiation should

be considered in the future.

Sensor-motor maps should be applied in robotic and human experiments

Also, the topology of the predicted sensor-motor map, as developed in Chapter 4, remains to be validated

by human experiments or robotic demonstrators. Unfortunately, the specific separation of individual path-

ways is very challenging and requires the application of complex system identification and modelling tech-

niques (Kearney et al., 1997; Kiemel et al., 2006; Mugge et al., 2010). Also, sensory perturbations like

ischemic nerve blockade (Raburn et al., 2011) or local anaesthesia can only partially manipulate specific

reflex pathways. However, these methods are often not very specific, laborious and inconvenient for the

subjects. Subsequently, experimental protocols and measurement techniques need to be developed to iso-

late individual reflex pathways. In robotic demonstrators, the implementation and evaluation of the reflex

control are less complicated. In Zhao et al. (2020), an accurate simulation model of a two-segmented hop-

ping robot with comparable leg design and reflex pathways predicted similar behaviours of the individual

reflex pathways as in Chapter 4: positive FFB and LFB resulted in stable motions, while positive VFB led to

unstable behaviors4. Furthermore, FFB was found to generate the highest hopping performance. These re-

sults support simulations in Chapter 4 since the model of (Zhao et al., 2020) also considered realistic joint

damping, ground contact model and segment inertia. However, combinations of multiple feedback signals

remain to be validated. Potentially, comparison of simulated and demonstrated sensor-motor maps could

help to identify shortcomings of the simulation model as well as influences from hardware or real-world

conditions like friction and impacts.

Sensor-motor maps should be extended to other locomotor subfunctions

The here-presented neuromechanical template model investigated the stance subfunction in the framework

of locomotor subfunctions (Seyfarth, Grimmer, et al., 2013; Sharbafi and Seyfarth, 2017). Sensor-motor

maps can be extended to a wide spectrum of applications and should be used to study also other types of

locomotion and subfunctions (swing and balance) to investigate specific compositions of sensory pathways

in these behaviours. The sensor-motor map concept is open to integrate also other sensory stimuli. For

instance, compositions of mechanoreceptors in the hip joint capsule (measuring joint position) and the

vestibular organ could be mapped for the regulation of upper-body postures (Horak, 2006; Chiba et al.,

2016). Moreover, different subfunctions should be combined to investigate contributions from inter- and

intra-limb proprioceptive circuits (Nichols et al., 2016) and their robustness against mechanical perturba-

tions (Haeufle et al., 2012). An example of this is found in another study of the thesis author (Sarmadi

et al., 2019), where the neuromechanical template model from Chapter 4 is extended by an upper-body

that is balanced by two biarticular thigh muscles. By using leg force feedback, both subfunctions stance

and balance could be synchronised to improve the robustness of the model against ground level drops or

changes in angular momentum of the upper-body (Sarmadi et al., 2019). This example shows that this

approach is well-extendable to other motions or tasks.

4In line with Haeufle et al. (2010), Zhao et al. (2020) predicted unstable hopping for simplified muscle mechanics.

101



Integration of cognitive science to investigate more complex behaviour

This thesis addressed the functions of sensor and motor networks to translate between biomechanical

template models and neural control. Thereby, in Marr’s level of analysis (Marr, 1982), this thesis mainly

covered the projection of the algorithmic level into the physical implementation level (Table 5.1). For

instance, Chapter 2 discussed the role of biarticular muscles to bridge the gap between biomechanical

template models (algorithmic level) and the segmented human leg structure (implementation level).

Table 5.1: Marr’s level of analysis (Marr, 1982) and an example from human locomotion.

Marr’s level of analysis example description

computational level

”what is done?” / ”why?”

walk from current position to target position

in a certain amount of time and precision and

with minimum metabolic effort

motion task or function

and its constraints

algorithmic level

”how is this done?”

generate spring-like leg function, swing leg

motion and upright upper-body

‘structure’ of locomotion,

biomechanical templates

implementation level

”how is this realized?”

generate joint torques by controllingmuscles,

e.g. by reflex, CPG or supra-spinal control

physical representation

of the motor control loop

What remains to be the interest of future research is Marr’s computational level. How are motions in the

redundant system encoded at the computational level? Research produced different models and hypothe-

ses for this problem, like the optimal control hypothesis (Todorov, 2004), muscle synergies (d’Avella et al.,

2003; Tresch and Jarc, 2009), the equilibrium point hypothesis (Feldman, 1966), internal models (Francis

and Wonham, 1976; Wolpert et al., 1995) or the uncontrolled manifold hypothesis (Scholz and Schöner,

1999).

With respect to the results of this thesis, the higher regulation of cyclic movements could be realised by sim-

ple logics or rules, as suggested by control embodiment (Pfeifer and Bongard, 2007) and simple template

models. Similar to grammar in languages or algebra in math, these rules may organise the synthesis of mo-

tion goals and tasks and translate these into simple sets of appropriate motor commands (as observed e.g.

by muscle synergies). In this context, Chapter 4 showed that simple blendings of different sensory path-

ways could realise different movement characteristics (like performance, efficiency and safety). However,

these synthesising rules might be expressed in different modalities than that of conventional movement

analysis (e.g. metabolic effort, muscle stimulation, joint impedance or variability). In order to identify

suitable task representations, this line of research should be closely coupled to the cognitive sciences and

include influences from prior knowledge as well as probabilistic and uncertain processes (e.g. problems of

‘probabilistic inference’) to mimic realistic scenarios more closely (Dickinson et al., 2000; Ernst and Banks,

2002). Further research is needed to improve our understanding of the mechanisms of motor control such

that we can make sense of the tremendous motor control performance seen in e.g. rhythmic gymnastics,

darts or long jump.
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Experimental setup

In August and September 2018, we collected kinematic, kinetic and electromyographic (EMG) data in

the Delft Biorobotics Lab. All measurement devices including the data logging of the Angular Momentum

Perturbator (AMP) were synchronized by a 5V trigger signal.

The used marker and EMG electrode locations can be found in Figure A.1.
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Figure A.1: Location of EMG sensors and used marker model. EMG electrodes (black) and passive motion

capture markers: body markers (grey) and AMP (green).
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Mechanical analysis of all subjects

To evaluate the body posture after perturbations were applied, joint angles are shown in Figure A.2. The

resultant body postures of positive and negative torque perturbations showed slightly different response

behavior. The subjects’ mechanical response consisted of a distinct early trunk pitch (hip flexion, within first

500 ms) while other major leg joints, knee and ankle, were only slightly flexed or extended, respectively.

In the case of negative perturbations, subjects mainly bend their knees resulting in backwards motion of

the trunk and thigh instead of a clearly extended hip (only 5° to 10°).
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Figure A.2: Grand mean and SD of major sagittal joint angles of all eleven subjects. Hip (A, D), knee (B,

E) and ankle angles (D, F) of positive (left side) and negative torques (right side) are shown.

Increasing joint angle changes denote a joint extension.
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The following figures show the resultant motion of all subjects. Figures A.3 to A.6 show the mean changes

in trunk lean, hip joint position CoM position and CoP position of all subjects in ap-direction, respectively.

Observed response patterns were quite similar with some intra-subject variability. The applied torques

are equal to a force pair with equal magnitudes and opposing directions. In forward perturbations, the

shoulder and hip joints were accelerated forwards and backwards, respectively.
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Figure A.3: Change in mean trunk lean in ap-direction of all eleven subjects in positive (A) and negative

(B) direction. The single subject shown in the manuscript is colored black here.

110



Figure A.4 shows the resultant hip joint position of all subjects. In positive perturbations, the hip joint

moved posterior by about 5 cm, while, in negative perturbations, slightly less anterior movement was

observed.
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Figure A.4: Change in mean hip joint position in ap-direction of all eleven subjects in positive (A) and

negative (B) direction. The single subject shown in the manuscript is colored black here.
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The biggest difference was observed for the CoM trajectory in positive perturbations (Figure A.5). Here

one subject deviated from all other subjects by moving its CoM in posterior direction. This may have be

caused by the posterior position of the CoP (Figure A.6).
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Figure A.5: Change in mean CoM position in ap-direction of all eleven subjects in positive (A) and neg-

ative (B) direction. The single subject shown in the manuscript is colored black here.
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Influence of AMP weight, vibration and noise

To check to what extent the weight, vibration and noise of the AMPmay have influenced the initial posture,

mean joint angles in the ‘Unloaded Standing’ and ‘Loaded Standing’ conditions of all major joints are

shown in Table A.1. Subsequently, wearing the AMP resulted in a slightly more bend hip (−6.2°) and more

extended knee (2.1°).

Table A.1: Comparison of postural changes due to AMP weight, vibration and noise. Mean major joint

angles (in °) of all subjects of 20 s periods of quiet standing in the ‘Unloaded Standing’ and

‘Loaded Standing’ conditions. ∆φ denotes mean change. For normally distributed comparisons,

the paired two-sided t-test was used. In case of non-normal comparisons, the non-parametric

two-sided Wilcoxon signed-rank test was used. Significant values (p < 0.05) are highlighted by

bold text.

joints ‘Unloaded Standing’ ‘Loaded Standing’ ∆φ p-value

hip 183.6 177.4 -6.2 2.52E-04

knee 172.3 174.4 +2.1 0.002

ankle 102.4 102.9 +0.4 0.235

We further compared the CoP trajectory of both conditions of ‘Unloaded Standing’ and ‘Loaded Standing’

(Figure A.7). Here, for most subjects a slight increase in CoP sway can be observed, agreeing with results

from Al-Khabbaz et al. (2008) and Schiffman et al. (2006).
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Figure A.7: Change in CoP position of all eleven subjects during 20 s intervals of ‘Unloaded Standing’

and ‘Loaded Standing’ measurements. Bars denote the maximum range of CoP sway. For

each subject a different color is used.
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Influence of Gimbal torque

To further check the influence of the gimbal torque, the trunk yaw rotation (around the longitudinal axis

of the trunk) is shown in Figure A.8. Here, for different conditions of initial gimbal position, the change

in trunk yaw resulted in trajectories of opposing direction with a magnitude of 3° to 5°.
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Influence of roll torque component

In Figure A.9 the resultant trunk roll about the frontal plane for all four conditions is shown (positive and

negative torque perturbation, original and inverted gimbal position). For positive perturbation directions, a

maximum of 8° of trunk roll was foundwhile most subjects leaned by only 2° to 4°. In negative perturbation,

the trunk rolled up to 4°.
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Figure A.9: Change of mean trunk roll of all eleven subjects in different conditions of initial gimbal po-

sitions: positive (A) and negative perturbation (B). Solid and dashed lines denote the original

and inverted gimbal position, respectively.

Both conditions of original and inverted gimbal positions show trunk rolls with similar magnitudes but

opposing directions. For positive torques, higher magnitudes and delayed timings of peak deflections

occurred compared to negative torque perturbations.
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Also the corresponding leg loading as measured by the vertical GRF show changes in opposite directions

but with similar magnitudes for both conditions of inverted roll torque components, starting after about

50 ms to 100 ms (Figure A.10).
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Figure A.10: Change in mean leg loading (vertical GRF) of all eleven subjects in different conditions:

positive with original gimbal position (A), positive with inverted gimbal position (B), negative

with original gimbal position (C), negative with inverted gimbal position (D). Solid and dashed

lines denote the left and right leg, respectively.
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In positive perturbation direction, this change in leg loading had only slight impact on the CoP positions

(Figure A.11A,B). Both legs still resemble quite similar trajectories. Bigger differences between both legs

can be seen in the negative perturbations (Figure A.11C,D).
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Figure A.11: Change in mean CoP position in ap-direction of all eleven subjects in different conditions:

positive with original gimbal position (A), positive with inverted gimbal position (B), negative

with original gimbal position (C), negative with inverted gimbal position (D). Solid and dashed

lines denote the left and right leg, respectively.
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To further check influences of the roll torque component on the muscular response, muscular activity

levels of both legs of all conditions are compared. Figure A.12 to Figure A.14 denote the responses in the

corresponding response intervals RI1, RI2 and RI3.

Based on these results, only slight differences of muscular response amplitudes were observed for both

conditions of initial gimbal position.
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Figure A.12: Comparison of muscular activity levels in response interval RI1 (100−150 ms) of all condi-
tions and both legs: Boxplots (pooled data of all analyzed trials) of the normalized and mean

response amplitudes (WEMG) for positive torque perturbations (A) and negative torque per-

turbations (B), left (upper panels) and right leg (bottom panels) and original (left side) and

inverted gimbal position (right side). Results of mono- (yellow) and biarticular muscles (red)

are presented in a logarithmic scaling. Mean EMGs were normalized by the individuals mean

muscle stimulation during walking trials (see Methods).
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Figure A.13: Comparison of muscular activity levels in response interval RI2 (170−250 ms) of all condi-
tions and both legs: Boxplots (pooled data of all analyzed trials) of the normalized and mean

response amplitudes (WEMG) for positive torque perturbations (A) and negative torque per-

turbations (B), left (upper panels) and right leg (bottom panels) and original (left side) and

inverted gimbal position (right side). Results of mono- (yellow) and biarticular muscles (red)

are presented in a logarithmic scaling. Mean EMGs were normalized by the individuals mean

muscle stimulation during walking trials (see Methods).
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Figure A.14: Comparison of muscular activity levels in response interval RI3 (270−350 ms) of all condi-
tions and both legs: Boxplots (pooled data of all analyzed trials) of the normalized and mean

response amplitudes (WEMG) for positive torque perturbations (A) and negative torque per-

turbations (B), left (upper panels) and right leg (bottom panels) and original (left side) and

inverted gimbal position (right side). Results of mono- (yellow) and biarticular muscles (red)

are presented in a logarithmic scaling. Mean EMGs were normalized by the individuals mean

muscle stimulation during walking trials (see Methods).
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Comparison of muscular prestimulation of left and right leg

Table A.2 shows the calculated changes and significance levels from comparisons of ‘loaded Standing’ and

mean ‘Pre-Perturbation’ activations of both legs.

Table A.2: Comparison of left and right leg prestimulation. Mean and SD changes (∆ in WEMG) and p-

values of normalized and mean response amplitudes for comparisons of ‘Unloaded Standing’

(UL), ‘Loaded Standing’ (L) and the mean ‘Pre-Perturbation’ activation for all 10 trials (averaged
over last 5 trials per condition × 2 gimbal configurations) for all 11 subjects. For comparisons,

the paired two-sided t-test (for normal distribution) or the non-parametric two-sided Wilcoxon

signed-rank test (if assumption of normality was violated) was used. Significant values (p < 0.05)
are highlighted by bold text.

side muscle
‘L’ vs. ‘UL’ ‘PP’ vs. ‘L’

∆ WEMG p-values ∆ WEMG p-values

left

GLU -20 ±22 0.003 +8 ±13 0.033

HAM -46 ±57 0.013 -5 ±14 0.308

GAS +2 ±03 0.061 0 ±11 0.213

SOL +7 ±12 0.078 -2 ±07 0.345

TFL +7 ±12 0.155 +5 ±07 0.065

RF +10 ±36 0.790 -9 ±48 0.790

VL +1 ±07 0.730 0 ±28 0.213

TA 0 ±03 0.695 -1 ±08 0.182

right

GLU -7 ±35 0.051 -20 ±41 0.091

HAM -7 ±42 0.091 -5 ±30 0.930

GAS +1 ±16 0.862 +1 ±10 0.792

SOL +8 ±13 0.058 +2 ±07 0.354

TFL +19 ±30 0.061 -15 ±22 0.048

RF +8 ±31 0.790 -30 ±44 0.051

VL -10 ±13 0.027 -8 ±14 0.075

TA +1 ±03 0.364 -2 ±04 0.098
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Peak to mean ratios of background walking activity

Table A.3 provides ratios of the filtered background activity during unloaded level walking to convert the

mean background activity (WEMG, this study) to peak background activity (for comparisons with other

studies).

Table A.3: EMG Ratio of peak to mean background walking activity of all muscles averaged over 10

trials.

muscle left side right side

GLU 6.72 6.65

HAM 7.30 8.04

GAS 5.72 8.87

SOL 4.29 6.90

TFL 5.00 6.37

RF 5.32 5.23

VL 7.85 10.99

TA 7.29 6.14

Comparison ofmuscular reflex response of positive and negative perturbations

Table A.4 shows the comparisons (mean differences and significance levels) of the reflex responses of

all muscles. For positive perturbation, HAM responded with significantly higher activity levels than any

other muscle. In negative perturbations, anterior and posterior muscle groups were significantly different.

Additionally, RF stimulation was higher than all other muscles.
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Table A.4: Comparison of relative reflex responses for positive (upper panel) and negative (lower panel)

perturbations. Results from the rmANOVA post-hoc test of the interaction effect ‘Muscle’ x

‘Direction’ (F(7,314) = 65.2, p < 0.001). Mean differences (upper value, in WEMG) and p-values

(lower value) of comparisons between muscles per perturbation direction (over both legs and

all response intervals). Comparisons were done for the averaged relative reflex responses of the

left leg (last 5 trials per condition× 2 gimbal configurations) for all 11 subjects. Significant values
(p < 0.05) are highlighted by bold text.

positive
HAM GAS SOL GLU TFL TA VL RF

perturbation

HAM
- +117 +156 +190 +177 +184 +166 +193
- < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

GAS
- +39 +72 +60 +67 +49 +76
- 0.942 0.378 0.637 0.483 0.833 0.318

SOL
- +34 +21 +28 +10 +37
- 0.974 0.999 0.990 1.000 0.956

GLU
- −13 −5 −24 +3
- 0.999 1.000 0.997 1.000

TFL
- +7 −11 +16
- 1.000 1.000 0.999

TA
- −18 +9
- 0.999 1.000

VL
- +27
- 0.993

RF
-
-

negative
HAM GAS SOL GLU TFL TA VL RF

perturbation

HAM
-
-

GAS
−17 -

0.999 -

SOL
−11 +6 -

1.000 1.000 -

GLU
+1 +18 +12 -

1.000 0.999 1.000 -

TFL
+257 +274 +268 +256 -

< 0.001 < 0.001 < 0.001 < 0.001 -

TA
+325 +342 +337 +324 +69 -

< 0.001 < 0.001 < 0.001 < 0.001 0.452 -

VL
+385 +402 +396 +383 +128 +59 -

< 0.001 < 0.001 < 0.001 < 0.001 0.004 0.628 -

RF
+586 +603 +597 +585 +329 +261 +202 -

< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 -
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