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Abstract—For human agent cooperation, reasoning about the
partner is necessary to enable an efficient interaction. To provide
helpful information, it is important not only to account for
environmental uncertainties or dangers but also to maintain a
sophisticated understanding of each other’s mental state, a theory
of mind. Sharing every piece of information is not a good idea,
as some may be irrelevant at time or already known, leading to
distraction and annoyance. Instead, an agent will have to estimate
the novelty and relevance of information for the receiver, to trade
off the cost of communication against potential benefits.

We propose the concept of theory of mind based communica-
tion as principled formulation to ground an agents cooperative
communication on an understanding of the receiver’s mental
states to support her awareness and action selection. Therefore
we formulate the problem of whether, when and what information
to share as a sequential decision process with the human belief
as central source of uncertainty. The agent’s communication
decision is obtained online during interaction by combining a
second level Bayesian inference of human belief with planning
under uncertainty, evaluating the influence of communication
on the human belief and her future decisions. We discuss the
resulting behavior on an illustrative communication scenario with
different uncertain state aspects that an observing agent can
communicate to the actor.

Index Terms—Human agent interaction, Communication, The-
ory of Mind, Human Belief, POMDP, Planning under Uncertainty

I. INTRODUCTION

With the improvement of manipulation and processing capa-
bilities of technical systems like robots, the interaction with a
human becomes an interesting focus. However many technical
systems are used like tools, they wait for human commands
to execute or provide measurements that the human can
read and interpret. However, this interpretation of interaction
implies limits on the achievable support especially in more
complex situations. Inter-dependencies become important and
interaction factors known from human human cooperation,
like trust or awareness for situation and partner, have to be
considered. An intelligent cooperative system will have to take
into account both, the human’s action but also her mental state
to support her efficiently in achieving her goals.

Communication is a key element of cooperation, that allows
for sophisticated teaming. It is used to exchange information,
about perceived external objects as well as internal states as
plans, to coordinate individual behaviors towards a common
goal. Sharing information supports other’s awareness of the
current situation which is needed for a good decision making.
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Fig. 1. Human is unaware about the plank’s asymmetry. Artificial agent infers
it from her behavior, anticipates the final result and decides to provide the
missing information.

But information exchange requires perception and processing
resources including attention mechanisms for both partners.
Receiving too much information might overload and distract
from other important aspects. Therefore, it is usually not
advisable to share all available information with the partner
but rather reason about its relevance to decide when and
what to communicate. This does not only depend on the state
of the environment, but importantly on the partner’s current
knowledge, awareness and goals. If one understands a partner’s
behavior, one can reason about her knowledge to detect a
lack of awareness for the current situation and to support
her with the right information. Figure 1 illustrates an example
for the complexity of communication in cooperation. Humans
create a sophisticated model of other’s mental processing,
a Theory of Mind (ToM). They infer goals and beliefs to
explain their behavior [1]. This capability of understanding
others supports communicative decisions, by estimating the
relevance that specific information possesses for a partner
[2]. An autonomous agent that wants to assist a human
partner effectively, will need a similar understanding of human
mental reasoning to improve the cooperative performance
while avoiding information overload and annoyance. This is
especially important due to the open or implicit delegation
setting where the agent itself has to take initiative to support
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the human partner when it is necessary, providing “over help”
[3].

In this paper, we will introduce the concept of theory
of mind based communication. We formulate a cooperative
problem of what and when to communicate as the optimization
of a cooperative reward in a decision theoretic framework as
a POMDP where we include environment state as well as the
human belief with respect to multiple task relevant aspects.
The belief is inferred online using the observation of human
perception and action and used to evaluate the potential effects
of communication on subsequent human decisions based on
this belief. This results in an informed communication decision
to provide support to a human when detecting a lack of
relevant information while avoiding unnecessary disturbances.

a) Related Work: Many different research streams have
tackled the issue of communication planning and human state
estimation. Classical signaling games [4] consider Information
transmission in semi-cooperative settings, where equilibria
are strongly dependent on the knowledge and alignment of
individual utilities. Multi agent systems that target explicit co-
operation usually use a joint policy that is globally optimized.
This can include decisions when to communicate about own
states or goals to synchronize [5] or in which situations to best
request such information [6] if dealing with conflicting space
constraints. When different aspects or types of information
are available it is necessary to also select what observation
to communicate by explicitly comparing the impact on the
joint policy [7]. Additionally, it is possible to include learned
human preferences for certain information into the selection
[8]. Respecting overlapping perception, Foerster et al. [9] use
the definition of common knowledge between all agents to
optimize for joint policies that favor actions which implicitly
reveal parts of each agent’s private knowledge to the group.
Rabinowitz et al [12] trained an ensemble of neural networks
to predict aspects of policy and reward of different types
of interaction partners. The networks were first trained with
supervision, and afterwards able to generate accurate results
after observation of few action examples.

These approaches rely on prior coordination and the com-
mitment to an explicit joint policy. However, we can not
assume that humans and artificial agents synchronize their
strategies beforehand, nor that every human will follow the
exact same strategy. Instead, the human agent cooperation
setting resembles an ad hoc cooperation, requiring a flexible
and fast adapting agent behavior [10]. Communication in ad
hoc settings is analyzed in [11], coordinating actions of a new
agent with an existing team through inferring the type of each
team member to include this into decision making.

Regarding the inference of different mental states of a
(human) partner, many specific methods are proposed. Work
in language understanding benefits from inference of intention
using speech context [13]. Generally, intentions are useful for
short-term assistance, e.g. with a robot [14]. For long-term
assistance, inverse reinforcement learning [15] has proven to
be of interest, as it infers the goal respectively reward function
from human behavior. This information can also be used

to integrate interaction effects of own actions into behavior
selection [16] or perform optimal cooperation through an
explicitly shared reward function [17]. Knowing the goal, [18]
estimates a human’s understanding of environmental dynamics
at the start of a demanding control task. Afterwards the human
control action can be compensated for detected biases.

All of these aspects (and some more) can be described
jointly in the human’s belief state. Inspired by the theory
of mind, Baker et al. [19] introduce a generative model for
human action selection based on belief and fit an inverted
model retrospectively to an observed human action sequence
to explain her behavior. Poeppel et al. [20] use a number
of probabilistic human models with different complexities to
explain similar behavior traces. Each model made assumptions
about which parts of the human belief (goal, environment
layout) were known or uncertain. Our previous work [21]
focused on doing Bayesian belief inference in interactive
settings where it is important to estimate a human belief online
from only few actions.

In the following, we formulate the problem of sharing
appropriate information to a cooperation partner. We combine
planning ideas from multi agent approaches with model based
inference of the human belief online to evaluate the effect of
explicit communication on joint performance.

II. PROBLEM FORMULATION

We consider the general cooperative situation that a human
acts to reach a certain goal within an uncertain environment
and a cooperative artificial agent supports the human in her
task. Here, we focus on informative communication actions
of the agent. An approach that explicitly models an agent’s
task actions within a human’s belief can be found in previous
work [21]. Information exchange is directed from agent to the
human without additional strategic inference processes on the
underlying agent intentions (as is done e.g. in [22]).

We interpret the human as a goal directed agent in a
first Partially Observable Markov Decision Process (POMDP).
At each discrete time step she decides for an action ag
changing the environmental state s to a next state s’ ac-
cording to the transition function T'(s,a,s’) = p(s'|s,a).
The human does not know the environmental state s but
perceives limited information as observation oy generated
according to the observation function O (s,0m) = p(og]|s).
The human wants to achieve the goal encoded in the reward
Ry (s,ap,s’) that she receives each time step, by choosing
her actions ay to maximize the cumulated expected future
reward E[ZZ;"; R(s™,a%;, s™™1)]. Since the human does not
know the true environmental state s, she has to reason about it
based on past observations and actions. This is formulated as
probability distribution over the unknown current state, called
the human belief by (s). Besides the environmental state, the
human can also be uncertain about transition function 7,
observation function Oy or reward Ry. By parameterizing
these uncertainties we can extend the state to include these
parameters which shifts all uncertainty to the extended state
and allows for a simpler formulation.
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Fig. 2. Directed graphical model for the artificial agent’s decision problem
regarding communication actions ar. Filled nodes are observable.

The artificial agent faces a second POMDP. The agent
observes the human acting in the environment and selects
one of several communication actions ag to share parts of its
knowledge with the human, leading to an additional human
observation. These communication actions may describe dif-
ferent state aspects e.g. regarding different objects or different
ways of communicating (implicit or explicit, reliable or noisy).
A cost of communication Reomm(s,ar) < 0 is necessary to
represent the corresponding disturbance. The artificial agent is
fully cooperative in the sense of [17], meaning it receives the
same reward as the human while considering the communica-
tion cost: Ri(s,am,ar,s’) = Ru(s,amy,s’) + Reomm(S, ar).
The optimal action is computed by optimizing the expected
cumulative reward

Tena
ay = argmaxE[Z RRr(s™,ay,ag,s™)] (1)
ay T=t

As the cumulated future return mainly depends on the human
behavior, it is necessary to predict the human decisions as
well as the effect of the agent’s action, which are connected
through the human belief. The agent state sg consists of the
environmental state, the human belief and the current human
action, sg = (s,by,an). However, for the artificial agent,
the human belief is unknown and has to be inferred from
observation og.

Figure 2 shows the causal interdependencies of both
POMDPs as probabilistic graphical model from the artificial
agent’s perspective.

For action selection, the agents should evaluate their ex-
pected future reward depending on their behavior. This can
be described through an action value function @Q(b, a) which
assigns each action to its expected future return, given current
belief,

Tena

Q(v',a") = E[>_ R(s",a",s"")]. 2)
T=t

Calculating optimal solutions for a POMDP, respectively the
exact evaluation of the action value function @, is intractable

besides for small problems. Instead, approximative methods
are proposed to estimate the action value function, for example
tree based online algorithms that can flexibly cope with larger
POMDPs [23]. Starting with the current belief, a finite search
tree is expanded over possible future actions and observations,
until a certain depth in time or number of nodes is reached.
In the following, we present the human model used to under-
stand the human behavior and infer the human belief which is
subsequently used for planning the effects of communication.

III. HUMAN MODEL AND INFERENCE OF HUMAN BELIEF

For the inference of the hidden mental states of the hu-
man, we need a model for her cognitive processing, percep-
tion and decision making. Based on the human trajectories
(apr,01)%t, we can invert this model to estimate her belief.

a) Human Model: When the human interacts with its
environment, she perceives observations oy containing infor-
mation about the environmental state. According to a Bayesian
update, the new human belief becomes

p(slomr) ~ plor|s)p(s), 3)

with the observation likelihood p(og|s).

To decide for her next action, the human will evaluate her
current belief by according to the action value function (2). To
allow for suboptimal or noisy decisions, we assume a softmax
action selection policy by the human,

plam|br) = softmax(Qp (by,am))
~ exp(TQu (bu,an)), “4)

where 7 characterizes the degree of rationality of action
selection. A human action will lead to the transition of en-
vironmental state, T'(s, ap, "), which the human will account
for. Hence the human belief will be updated to

p(s'|lay) = ZT(S,CLH,S’)p(S). (5)

b) Belief representation and inference: Inferring the hu-
man’s belief is a second level inference since the belief itself
is the result of the human’s state inference. Inferring a general
probability distribution over continuous probabilities becomes
intractable even for small state spaces. As a further restriction,
we need the human belief during the interaction to decide for
the agent’s action online. Therefore, we approximate the full
inference through a parametrized distribution for the second
order belief as proposed in prior work [21].

The human belief by (s) assigns a probability to each possi-
ble state s. For the agent’s belief about the belief we consider
a Dirichlet distribution by ~ Dir(by|a), and the approximate
inference of human belief is achieved by calculating the
parameters « of the Dirichlet distribution. This parametrized
distribution is flexible enough to describe relevant second order
belief configurations. Further, in most practical application, the
environmental state contains several independent aspects, like
positions of different agents and objects, or states of objects,
s = (81...8;). To avoid the combinatorial increase in the
total number of states, these can be assumed to factorize as



we proposed in [21], as long as correlations effects e.g. intro-
duced through relative perception are negligible. Otherwise,
additional forward backward propagations should be applied.

The human action serves as sparse feedback for the agent’s
belief estimation since it is directly caused by the human
belief. When observing a human action a, the human belief
estimate has to be updated to respect her action decision, (4),

p(bulam) ~ plan|bm)p(bm). (6)

For the human observation and her respect for state transition,
we can directly use equations (3) and (5) to update the agent
belief. For all these updates, we sample the human belief and
use moment matching to rematch the new belief estimate to a
Dirichlet distribution.

IV. COMMUNICATION DECISIONS

The inferred human belief should serve as the basis, to
decide in a principled manner for possible information actions.
A communication of the artificial agent will influence the
human belief and, via the human decision making, effect
her action, the environmental state and the common reward.
Therefore, the agent has the possibility to improve the joint
performance with appropriate communication decisions.

In a cooperative setting with communication cost, informa-
tion sharing is only beneficial, if the human belief is incorrect
or uncertain. However, it further depends on the relevance of
information aspects for the current situation, i.e. the human’s
situation awareness, since parts of the state might be irrelevant
for the current action evaluation. The agent should estimate the
potential impact of different information actions on the human
decisions.

a) Costs and effects of communication: The artificial
agent can choose among several communication actions ar €
Ag = {ag,a1,...ax}, including to not communicate (ag) or
to inform the human about specific aspects of the state, e.g.
different positions or object states. The cost for communica-
tion, Reomm (S, ar) < 0 (zero in the case of no communication)
is used to respect the time delay of task completion due to the
human’s information processing.

The communication action ap generates an additional ob-
servation for the human oy, leading to a human belief update
as in (3) according to the observation likelihood p(og|s, ar).
In the following, we consider that the agent’s communication
actions transmit distinct state aspects with action ap = a;
sharing information about the ith aspect s;. For our example,
we assume a reliable information transmission, i.e. the obser-
vation likelihood is p(og|s,ar = a;, (om); = s;) =~ 1. For
practical applications with specific communication modes, the
communication likelihood can be taken from communication
models (e.g. [24]).

b) Planning: To optimize the cumulated expected re-
ward, the artificial agent needs to plan the future effects of
communication actions ag on its state s, which includes the
human mental states.

A transition of agent state sp concatenates several pro-
cesses, namely the communication influence on human belief,

the human decision, the environmental state transition and the
human receiving and processing a new observation,

p(S;ﬂSR,CLR) zp(s’,b}{,a}ﬂs,bH,aH,aR)
= > pWylam, ba—,0y) ployls)
——

OIH,bH,

belief update
p(s'ls, dy) play|br—) pbu—lar, bu) (1)

state trans.

human perception

human decision comm. effect

where by _ is the intermediate human belief after communica-
tion. This transition function is central for planning the effects
of communication and to evaluate the agent’s action value to
compute the best action according to (1).

V. EXAMPLE AND DISCUSSION

To illustrate our method, we consider an example scenario,
that includes the possibility for cooperative communication
with uncertainty. It has similarities to the examples used
in [19], [20], [25] but includes communication options for
different state aspects. One agent, the “human”, moves in a
grid world to reach some goal position, shown in Fig. 3 bottom
left. She has three available actions, move forward, turn left
and turn right (transition with certainty if next position is
accessible). Some of the grid cells are inaccessible (“walls”,
black) and one location is a “door” that can be closed or open
(grey). The episode ends when the human reaches the goal
located at one of two possible positions (g1, or g2). Every
movement leads to a reward of Ry = —1. The human has
limited perception, observing only local information. She can
perceive the accessibility of the cells in front, to the left and
to the right (blue triangle) with a certainty of 90% for each.
She does know the overall wall configuration (map) but can
be uncertain about her location and orientation as well as
door state and goal position, leading to a state space of 352
(22 position x4 directions x2 goal positionsx2 door states).
We factor the state into three groups, combined position and
orientation, the door state, and the goal location.

A second, artificial agent, the “speaker” can observe the
entire situation, og = (s,amy,0x), leaving the human belief
as uncertain state aspect. Each time step, the speaker has
the option to reliably share one aspect of the state to the
human at a constant communication cost, R.,,, = —1.5 for all
ar # ay. It optimizes the assistive reward function to trade-
off communication cost against and human reward. For both
agents we implement a rational POMDP strategy, combining
belief update with greedy action selection based on a depth
2 planning tree together with an MDP based leaf evaluation.
The speaker uses a sample size of 100 for the human belief
inference.

To demonstrate certain behaviors we will discuss concrete
scenarios for the above setting. We vary the prior human
belief and also the initial speaker belief of human belief
to generate different illustrative situations. As alternative,
standard approaches consider communication when the human
deviates from a nominal trajectory, either with a warning,
by proposing the next action, or by sharing every available



t =0 t=1
—— by(cl)
1.0 . L
=== Elby(cl ¥
[brr(el)] i
- 208 bu(g1) §
- = Elbu(g1)] ¥
0. 3
-~ <4< e e :
o 04 Y t
A
\
0.2 s ===
5 92
P 3

—— No comm
Door

—141 —— Goal

—— Pos + dir

0 1 2 3 0 1 2 3
Time step
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right: Speaker’s action values.

information. As another option, a ToM equipped speaker could
always communicate when a false or uncertain human belief
is detected independently of its impact (similar to [21]).

a) What to communicate: Let’s first consider a case,
where the human starts in location | = (1,0, north) with
goal location g; (I; = (0,2)) and door closed (see Fig. 3
bottom left). The human goal location prior is correct, however
she does have a false belief for the door state (beliefs it
to be open) and is uncertain about its position between 3
options, (1,0, north), (2,0, north), (2,2, south). The speaker
has a uniform belief for human goal and door belief and is
ignorant about the human belief for the 3 starting positions.

Without speaker interaction, the human acts suboptimal due
to the false belief for the door aspect (green path in Fig. 3,
bottom left). After the human agent turns right, she perceives
an observation increasing the belief for state (1, 0) and (2, 0)
significantly. Since she has a high probability for the door to be
open, she again turns right to take the shorter path (although it
is blocked). When she reaches location (0, 0) the next behavior
depends on the ratio of prior door belief to perception certainty
and the length of the alternative path. When her probability
for a closed door is large enough, she turns and approaches
the goal on the longer but open path through (3, 0).

When the speaker observes the second right turn of the
human, after time step 1, it infers with high probability that the
human door belief is false (Fig. 3 top right) and the goal belief
is right. Consequently the speaker’s plan evaluation expects a
large positive effect (compared to the communication cost)
from communicating the door state, which will avoid that the
human tries to pass through the closed door, (3 bottom right).
The speaker will provide information about the door state to
the human, who then takes the possible path through the right
passage (blue trajectory in Fig. 3 bottom left).

In this scenario, the “what” of information is important. A

method without belief inference could also detect the human
unawareness due to the deviation from the optimal path (the
“when”). Warning or proposing the optimal next action how-
ever would be less explicit and less helpful in this situation,
since the human could not distinguish between door state
error and goal location error. The human’s behavior revealed
precise information about her belief. Informing the human
about the true door state gives her all necessary information to
act appropriate in this situation while it takes less effort than
sharing all available information.

b) When to (not) communicate: Our approach also pro-
vides benefits for the question when to communicate. There
are situations, where the human deviates from the optimal path
but it is not beneficial to intervene, or dangerous situations
where it makes sense to inform the human when she is still
on the track but might miss some important information for
the future.

Consider the human starting in location (1,0, west) know-
ing position and goal location [, = (0,2) but being unaware
about the closed door (see Fig. 4 bottom left). Since the human
is uncertain about the door state, she will move forward and
receive an observation about it. Although this behavior is
a deviation from the optimal MDP policy, interrupting the
human is not necessary because she already perceives the
observation that the door is closed (Fig. 4 top right). After
her first step, she will be aware of the situation and follow the
optimal path, without a need for any intervention.

Theory of mind based communication intrinsically tolerates
noisy human actions. A human may deviate from the optimal
path despite having all relevant information due to approxi-
mate planning or stochasticity in decision or action execution.
This is respected in the human policy formulation (4). The
speaker will only intervene, when a false or uncertain human
belief is estimated as likely cause of the deviation. On the
other hand, if the speaker is uncertain about a human belief
which might lead to a very bad human action (danger), it will
inform the human about this aspect although she is still on the
optimal path.

Although the speaker may know about a false human belief,
it can decide not to communicate the true state. This is the
case, if the state aspect is irrelevant for the current situation
(hence an unnecessary disturbance) or when communication
would lead to negative effects. Consider the human starting
again in location (1,0, north) but having the false belief about
the goal location to be at (3,5) instead of the true (0,2),
while she has no idea about the door, which is actually closed.
If the speaker would know about the false goal belief and
communicate the true goal state immediately, a rational human
would gather the door state first, which is worse then before
and not in the interest of the cooperative speaker.

c) Additional interesting communication strategies: In
this last scenario, one could argue for telling the human
that the door is closed. If the human would reason about
the speaker’s decision making, she could conclude that the
door state is relevant which implicitly tells her, that the goal
location should be (0, 2). To allow for such strategic reasoning,
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we could extend our method with an inference model of
the speaker’s belief in the human model. However this will
increase complexity and processing load for both agents with
a higher sensibility for misunderstandings.

When considering to not tell the human about a false
belief, one could also discuss “white lies” which means to
communicate a wrong state when it is more cost effective but
still has the same positive effect on the human behavior [26].
This would be possible by giving the speaker the choice to
communicate something in deviation to its own knowledge.
However such behavior can effect the human’s trust and
represents an ethical controversy.

VI. CONCLUSION

We presented a concept to decide for cooperative commu-
nication based on an understanding of the mental state of a
human partner. An uncertain setting is considered, where an
artificial agent assistively supports a human with information
constrained by a cost of communication. We infer the human
belief by observing human actions and observations. This
belief of human belief is part of our POMDP formulation for
the agent to evaluate the potential effects of communication
actions on the task progress. To our knowledge we described
for the first time a general approach to select communication
actions considering a human receiver’s external as well as
mental situation by combining inference of human belief
with decision making under uncertainty. We illustrated the
resulting behavior with an example scenario demonstrating the
principled communication trade off and discussed its benefits
compared to other communication strategies.

As we have shown, a theory of mind based modeling of a
human partner offers various opportunities for more efficient
and intuitive human agent interaction.
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