
AVA I L A B I L I T Y B Y D E S I G N :
P R A C T I C A L D E N I A L - O F - S E RV I C E - R E S I L I E N T

D I S T R I B U T E D W I R E L E S S N E T W O R K S

Vom Fachbereich Informatik
der Technischen Universität Darmstadt

genehmigte

dissertation

zur Erlangung des akademischen Grades
Doktor-Ingenieur (Dr.-Ing.)

von

milan stute

Erstreferent: Prof. Dr.-Ing. Matthias Hollick
Korreferent: Prof. Guevara Noubir, Ph. D.

Darmstadt 2020

Hochschulkennziffer D17

Milan Stute, Availability by Design: Practical Denial-of-Service-Resilient
Distributed Wireless Networks, Dissertation, Technische Universität Darm-
stadt, 2020.

Fachgebiet Sichere Mobile Netze
Fachbereich Informatik
Technische Universität Darmstadt
Jahr der Veröffentlichung: 2020

Tag der mündlichen Prüfung: 14. Februar 2020

URN: urn:nbn:de:tuda-tuprints-114573

Veröffentlicht unter CC BY-SA 4.0 International
(Namensnennung – Weitergabe unter gleichen Bedingungen)
https://creativecommons.org/licenses/by-sa/4.0/deed.de

Licensed under CC BY-SA 4.0 International (Attribution – ShareAlike)
https://creativecommons.org/licenses/by-sa/4.0/deed.en

https://nbn-resolving.org/urn:nbn:de:tuda-tuprints-114573
https://creativecommons.org/licenses/by-sa/4.0/deed.de
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Do or do not. There is no try.
—Yoda

A B S T R A C T

Distributed wireless networks (DWNs) where devices communicate
directly without relying on Internet infrastructure are on the rise,
driving new applications and paradigms such as multimedia, authen-
tication, payment, Internet of things (IoT), vehicular communication,
and emergency response. However, the increased societal reliance on
technology and the resulting “always-on” expectations of the users
increase the risk of denial-of-service (DoS) attacks as they can lever-
age disruption in new ways beyond extortions (ransomware) that are
common in today’s Internet ecosystem. These new risks extend to
our physical world, directly impacting our daily lives, e. g., by be-
ing locked out of a smart home or by disrupting vehicular collision
avoidance systems. As a research community, we need to protect those
new applications that—as we find—can be mapped to a total of three
distinct networking scopes: neighbor, island, and archipelago. In this
thesis, we advance the field in each of these scopes. First, we analyze
two proprietary neighbor communication protocols, Apple Wireless
Direct Link (AWDL) and Apple AirDrop, that are deployed on more
than 1.4 billion devices worldwide. During the process, we uncover
several security and privacy vulnerabilities ranging from design flaws
to implementation bugs leading to a machine-in-the-middle (MitM)
attack on AirDrop, a DoS attack on AWDL preventing communication,
and DoS attacks enabling crashing of neighboring devices. In addition,
we found privacy leaks that enable user identification and long-term
tracking. All attacks can be mounted using low-cost off-the-shelf hard-
ware. In total, we disclose eight distinct vulnerabilities that we mitigate
in collaboration with Apple. Second, we design and implement a new
island communication protocol tailored to IoT scenarios, which pro-
vides provable protections against previously neglected risks such as
wormhole- and replay-supported greyhole attacks. We support our
analytical findings with testbed experiments. Third, we propose an
archipelago-scope communication framework for emergencies that
achieves resiliency against flooding and Sybil attacks. We evaluate
our design using an original expert knowledge-based simulation that
models human mobility during the aftermath of the 2013 Typhoon
Haiyan in the Philippines. Finally, and to nourish future research, we
provide a guide for analyzing Apple’s wireless ecosystem and publish
several software artifacts, including an AWDL Wireshark dissector,
open AWDL and AirDrop implementations, a prototype of our IoT
communication protocol, and our natural disaster mobility model.

v

Z U S A M M E N FA S S U N G

Verteilte drahtlose Netzwerke, in denen Geräte direkt und ohne Ver-
bindung zum Internet kommunizieren, ermöglichen neue Anwendun-
gen und Paradigmen, wie z.B. Multimedia, Internet der Dinge (IoT),
Verkehrsvernetzung und Notfallkommunikation. Die zunehmende
Abhängigkeit der Gesellschaft von Technologie und die daraus re-
sultierende Erwartung an deren Verfügbarkeit erhöhen jedoch das
Risiko von Denial-of-Service-Angriffen (DoS). Diese können Störungen
auf neue Weise nutzen, die über Erpressungsmethoden hinausgehen.
So können sich DoS-Angriffe direkt auf die physische Welt und das
tägliche Leben auswirken, z.B. durch Aussperren aus einem Smart
Home oder Stören der Kollisionsvermeidungssysteme in Fahrzeugen.
Daher werden Schutzmechanismen für diese neuen Anwendungen
benötigt, die auf insgesamt drei Netzwerkbereiche abgebildet werden
können: Nachbarschaft, Insel und Archipel. Diese Arbeit enthält Bei-
träge zu jedem dieser Bereiche. Zunächst werden zwei proprietäre
Nachbarschaftsprotokolle, Apple Wireless Direct Link (AWDL) und
Apple AirDrop, analysiert, die weltweit auf mehr als 1,4 Milliarden
Geräten eingesetzt werden. Dabei werden mehrere Sicherheits- und
Privatheitsprobleme aufdeckt, die von Design- bis hin zu Implemen-
tierungsfehlern reichen und so die Manipulation von über AirDrop
ausgetauschten Daten, die Verhinderung von AWDL-Kommunikation
und das Abstürzen benachbarter Geräte ermöglichen. Darüber hin-
aus erlauben verschiedene Privatheitsprobleme die Identifizierung
von Benutzern und Verfolgung von Geräten. Alle Angriffe können
mit kostengünstiger Hardware durchgeführt werden. Die insgesamt
acht offengelegten Sicherheitslücken wurden in Zusammenarbeit mit
Apple geschlossen. Zweitens wird ein neues, auf IoT-Szenarien zuge-
schnittenes Protokoll in Inseln entworfen und implementiert, das be-
weisbaren Schutz vor bisher vernachlässigten Risiken wie Wurmloch-
und „Replay“-gestützten DoS-Angriffen bietet. Die analytischen Ergeb-
nisse werden durch Testbed-Experimente untermauert. Drittens wird
ein Framework für Notfallkommunikation in Archipelen vorgestellt,
das resilient gegen Fluten- und Sybil-Angriffe ist. Das Design wird
anhand eines neu entwickelten und auf Expertenwissen basierenden
Mobilitätsmodell evaluiert, das die Ereignisse nach dem Taifun Haiyan
2013 auf den Philippinen abbildet. Abschließend – und um zukünf-
tige Forschung zu fördern – werden ein Leitfaden zur Analyse des
drahtlosen Ökosystems von Apple und mehrere Software-Artefakte
veröffentlicht, darunter ein AWDL-Protokolldissektor für Wireshark,
quelloffene AWDL- und AirDrop-Implementierungen, ein Prototyp
des IoT-Protokolls und das Mobilitätsmodell für Naturkatastrophen.

vi

A C K N O W L E D G M E N T S

This thesis would not have been possible without the support of several peo-
ple. To this end, I first and foremost express my gratitude to my advisor
Prof. Matthias Hollick for encouraging me and offering me the opportunity
to pursue a Ph. D. I particularly appreciate his support for my family plans
and for leaving me a considerable amount of freedom that—among other
things—taught me resilience against setbacks. Second, I thank Prof. Gue-
vara Noubir for hosting my research visit in Boston and for accepting my
request to act as the second advisor for my thesis.

I thank my colleagues for providing a pleasant and productive working
atmosphere, in particular, Flor Àlvarez and Jiska Classen for giving feedback
on my thesis, Lars Almon for his hardware support and maintenance of the
mesh testbed, and Doris Müller for taking a lot of paperwork off my hands
and handling the administrative peculiarities of the university. I thank my
students for working with dedication and for taking on often risky projects.
Especially, I thank David Kreitschmann for bootstrapping the research on
Apple’s wireless ecosystem. Further, I thank Susan Roden and Anne Salajka
for thoroughly proofreading my thesis.

I thank my friends for taking off my mind of this thesis, be it cooking
or climbing sessions. I thank my parents for their never-ending love and
support. I thank my son Samuel for challenging me, teaching me patience,
and—most importantly—continuously making me smile. Finally, I thank
my wife Dina for always supporting me, for traveling the world with me
from near and far, and generally for her unconventional ideas and out-of-
the-box thinking that make life so much more exciting and enjoyable.

My research has been partially funded by the LOEWE initiative within
the NICER1 project and the German Federal Ministry of Education and Re-
search (BMBF) and the State of Hesse within the CRISP and ATHENE2

research centers. Also, I thank the Font Awesome3 team for providing free
high-quality vector graphics that allowed me to create a unified look for Fig-
ures 1, 4, 22, 27 and 46 in this thesis.

1 https://www.nicer.tu-darmstadt.de

2 https://www.athene-center.de

3 https://fontawesome.com

vii

https://www.nicer.tu-darmstadt.de
https://www.athene-center.de
https://fontawesome.com

C O N T E N T S

list of publications xix
collaborations and my contribution xxiii

i prelude

1 introduction 3

1.1 Motivation . 3

1.2 Challenges and Goals . 4

1.2.1 Neighbor Communication 5

1.2.2 Island Communication 6

1.2.3 Archipelago Communication 7

1.3 Contributions . 8

1.3.1 Dissection of Apple’s Wireless Ecosystem 8

1.3.2 Security and Privacy Analysis of Apple Wireless
Direct Link and AirDrop 9

1.3.3 Secure Island Communication Protocol 10

1.3.4 Secure Archipelago Communication Framework 10

1.4 Outline . 11

2 background and related work 13

2.1 Definitions . 13

2.1.1 Security . 13

2.1.2 Availability . 13

2.1.3 Resiliency . 14

2.1.4 Dependability . 14

2.2 Denial-of-Service Attacks 14

2.2.1 Dropping . 14

2.2.2 Flooding . 15

2.2.3 Jamming . 15

2.2.4 Replaying . 15

2.2.5 Spoofing . 16

2.2.6 Pseudospoofing (Sybil Attack) 16

2.2.7 Wormholing . 16

2.2.8 Blackholing . 17

2.3 Wireless Neighbor Communication Technologies . . . 17

2.3.1 Wi-Fi Ad Hoc . 17

2.3.2 Wi-Fi Peer-to-Peer 18

2.3.3 Apple Wireless Direct Link 18

2.3.4 Neighbor Awareness Networking 19

2.3.5 Bluetooth Low Energy 19

2.4 Security in Wireless Multihop Networks 20

2.4.1 Security in Mobile Ad Hoc Networks 20

2.4.2 Security in Disruption-Tolerant Networks . . . 21

3 emergency scenario 23

ix

x contents

3.1 Natural Disasters and Response 23

3.1.1 2013 Typhoon Haiyan 23

3.2 Human Mobility Model 25

3.2.1 Roles . 25

3.2.2 Activities . 25

3.2.3 Characteristics . 26

ii neighbor communication

4 a hacker’s guide to apple’s wireless ecosystem 31

4.1 Vantage Points . 31

4.2 Binary Analysis . 32

4.2.1 Binary Landscape 32

4.2.2 Binary Selection 33

4.2.3 Interesting Functions and Code Segments . . . 33

4.2.4 Leaked Source Code 34

4.2.5 Dissecting Structures 34

4.3 System Logging . 34

4.3.1 Console . 35

4.3.2 CoreCapture . 35

4.3.3 Broadcom ioctl Interface 36

4.4 Network Interfaces . 36

4.4.1 Wireshark . 37

4.4.2 Bluetooth Explorer and Packet Logger 38

4.4.3 InternalBlue . 38

4.4.4 Machine-in-the-Middle Proxy 38

4.4.5 Custom Prototypes 38

4.5 Keychains . 39

4.5.1 Login and iCloud Keychains 39

4.5.2 Security Framework 39

4.5.3 Accessing Keys of Apple Services 40

4.6 Discussion and Summary 40

5 apple wireless direct link 43

5.1 Frame Format . 43

5.1.1 Action Frames . 43

5.1.2 Data Frames . 46

5.1.3 Addressing for Higher-Layer Protocols 47

5.2 Operation . 47

5.2.1 Activation . 48

5.2.2 Election . 48

5.2.3 Synchronization 50

5.2.4 Data Transfer . 52

5.2.5 Service Discovery 53

5.3 Re-Implementation . 54

5.3.1 Architecture . 54

5.3.2 Supported Platforms and Future Work 56

5.4 Experimental Evaluation 57

contents xi

5.4.1 Test Setup . 57

5.4.2 Master Election 57

5.4.3 Synchronization-to-Master Accuracy 58

5.4.4 Channel Activity 60

5.4.5 Throughput and Channel Hopping 61

5.5 Discussion and Summary 63

5.5.1 Robustness . 63

5.5.2 Complexity and Overhead 64

5.5.3 Energy Efficiency 65

5.5.4 Security . 65

5.5.5 Summary . 66

6 apple airdrop 67

6.1 Discoverability User Setting 67

6.2 Protocol Workflow and User Interactions 67

6.3 (Un)authenticated Connections 69

6.4 Re-Implementation . 70

6.5 Discussion and Summary 71

7 dos attacks and mitigations for awdl and airdrop 73

7.1 DoS Desynchronization Attack on AWDL 73

7.1.1 Modeling Channel Sequence Overlap 74

7.1.2 Desynchronizing Two Targets 75

7.1.3 Experimental Evaluation 77

7.1.4 Mitigation . 77

7.1.5 Comparison to Reactive Jamming 78

7.2 DoS-Supported Machine-in-the-Middle Attack on AirDrop 78

7.2.1 Ambiguous Receiver Authentication State . . . 78

7.2.2 Protocol Flow under Attack 79

7.2.3 Proof-of-Concept 82

7.2.4 Mitigation . 82

7.2.5 Previous Attacks on AirDrop 83

7.3 DoS Blackout Attacks on AWDL 84

7.3.1 AirDrop BLE Advertisements 84

7.3.2 Brute Force Analysis 85

7.3.3 Jailbreaking BLE Advertisements 87

7.3.4 Target Response Time 88

7.3.5 Crashing AWDL Devices in Proximity 89

7.3.6 Mitigation . 89

7.4 Discussion and Summary 90

iii island and archipelago communication

8 dos-resilient island communication 93

8.1 Overview . 93

8.1.1 System Model . 93

8.1.2 Protocol Summary 94

8.1.3 Comparison to Castor’s Design 95

8.2 Packet Processing . 95

xii contents

8.2.1 Packet Generation 95

8.2.2 Packet Verification 99

8.2.3 Packet Forwarding 99

8.2.4 Packet Reception 102

8.2.5 Acknowledgment Handling 103

8.3 Overhead Analysis . 103

8.3.1 Benchmark Protocol 103

8.3.2 LIDOR Protocol 104

8.4 Convergence Analysis 105

8.4.1 Non-Convergence of Benchmark Protocol 106

8.4.2 Convergence of LIDOR Protocol 108

8.5 Implementation . 111

8.5.1 Reference Platforms 111

8.5.2 Cryptographic Primitives 112

8.5.3 Practical One-Hop Broadcast Authentication . . 113

8.6 Experimental Evaluation 113

8.6.1 Test Setup . 114

8.6.2 Summary . 115

8.6.3 Replay-Supported Greyhole Attack 115

8.6.4 Wormhole-Supported Greyhole Attack 117

8.7 Discussion and Summary 119

8.7.1 Convergence: Analysis vs. Experiments 119

8.7.2 Feasibility for Large-Scale IoT Deployments . . 119

8.7.3 Towards 100 % Reliability 119

8.7.4 Further Application Domains 120

8.7.5 Summary . 120

9 dos-resilient archipelago communication 121

9.1 Overview . 121

9.1.1 System Model . 122

9.2 Minimalistic Communication Protocol 123

9.2.1 Epidemic Routing 123

9.2.2 Authentic Immutable Messages 124

9.2.3 Authentic Acknowledgments 124

9.3 In-the-Field User Registration 125

9.3.1 Static Authorities 126

9.3.2 Mobile Authorities 127

9.3.3 Secure Identity Verification Methods 127

9.4 Local Buffer Management 130

9.4.1 Security Requirements and Design 130

9.4.2 Source-Based Elastic Buckets 131

9.4.3 Prioritization and Convergence 132

9.5 Local Priority Sets . 132

9.5.1 Secure Copies . 133

9.5.2 Priority Sets Overview 133

9.5.3 A Sybil-Secure Priority Set 134

9.5.4 Supporting Unregistered Users 135

contents xiii

9.6 Experimental Evaluation 136

9.6.1 Test Setup . 136

9.6.2 Flooding Attack 138

9.6.3 Sybil Attack . 139

9.6.4 2013 Typhoon Haiyan Scenario 142

9.7 Discussion and Summary 143

iv conclusions

10 conclusions 147

v appendix

a privacy issues in awdl 151

a.1 Protocol Fields with Sensitive Information 151

a.2 The Potential of Apple Device User Tracking 152

a.3 Experimental Vulnerability Analysis 152

a.4 Mitigation . 154

a.5 Related Work on User Tracking 155

b vulnerability disclosures 157

b.1 CVE-2018-4368 . 157

b.2 NO-CVE-2018-1 . 157

b.3 CVE-2019-8567 . 157

b.4 CVE-2019-8612 . 158

b.5 CVE-2019-8620 . 158

b.6 CVE-2019-8799 . 158

b.7 NO-CVE-2019-1 . 159

b.8 NO-CVE-2019-2 . 159

b.9 CVE-2017-13886 (Associated) 159

c software releases 161

c.1 AWDL Protocol Dissector for Wireshark 161

c.2 Open Wireless Link . 161

c.3 OpenDrop . 162

c.4 LIDOR Communication Protocol 162

c.5 Natural Disaster Mobility Model and Scenarios 162

bibliography 163

erklärung zur dissertationsschrift 185

L I S T O F F I G U R E S

Figure 1 Networking model used in this thesis 5

Figure 2 Spatial node distribution in different mobility
models . 27

Figure 3 Number of encounters per node 28

Figure 4 Vantage points for analysis and AirDrop service
components . 31

Figure 5 Screenshot of our AWDL Wireshark dissector . 37

Figure 6 AWDL action frame format 44

Figure 7 AWDL data frame format 46

Figure 8 Structure of AWs and mapping to channel se-
quence . 50

Figure 9 AWDL synchronization parameters format . . 51

Figure 10 AWDL channel sequence format 53

Figure 11 Architecture of our AWDL prototype and its
integration with the Linux networking stack . 55

Figure 12 AWDL demonstrator setup 56

Figure 13 Master selection and self metric over time . . . 58

Figure 14 Availability windows sequence number 59

Figure 15 Distribution of synchronization error 59

Figure 16 Activity in a full channel sequence period . . . 60

Figure 17 Advertised channel list in idle scenario 61

Figure 18 Activity within a single extended availability
window . 61

Figure 19 Throughput measurements 62

Figure 20 Time spent on channel switching, guard inter-
val, and resulting airtime 64

Figure 21 Typical AirDrop protocol workflow including
user interactions 68

Figure 22 Certificates and CAs involved in AirDrop . . . 70

Figure 23 AWDL synchronization depicting period, phase
offset, and the overlap function of two channel
sequences . 74

Figure 24 Sketch of the desynchronization attack 75

Figure 25 Phase offset between two targets before and
after mounting a desynchronization attack . . 76

Figure 26 Packet loss for different phase shifts 77

Figure 27 UI representation of an AirDrop receiver . . . 79

Figure 28 Protocol flow and user interaction of our MitM
attack on AirDrop 80

Figure 29 PoC of MitM attack on AirDrop 82

Figure 30 AirDrop BLE advertisement frame format . . . 84

xiv

Figure 31 Time until target activates AWDL after being
exposed to our brute force attack 88

Figure 32 PoC of blackout attack on iOS devices 89

Figure 33 Overview of LIDOR’s protocol workflow show-
ing which operations are made in which stage 97

Figure 34 LIDOR Merkle tree generation 98

Figure 35 Exemplary Merkle tree visualizing optimal flow
authenticator lengths 100

Figure 36 Corridor forwarding model used in our con-
vergence analysis 105

Figure 37 Picture of an APU node 114

Figure 38 Average packet delivery rate 116

Figure 39 Average end-to-end delay 116

Figure 40 Average per-packet overhead 116

Figure 41 Packet delivery rate per packet ID under a
replay-supported greyhole attack 116

Figure 42 Packet delivery rate per packet ID under a
wormhole-supported greyhole attack 116

Figure 43 Attacker selection per packet ID under a worm-
hole-supported greyhole attack 116

Figure 44 Path convergence without attack 117

Figure 45 Path convergence under wormhole-supported
greyhole attack 118

Figure 46 Illustration of our mobile distributed certificate
infrastructure 125

Figure 47 Performance during a flooding attack 137

Figure 48 Impact of Sybil attack on the pre-registered and
unregistered groups 140

Figure 49 Typhoon Haiyan scenario without and with
Sybil attack . 141

Figure 50 Discovered AWDL devices at one location dur-
ing one minute 153

Figure 51 Occurrences of persons’ names in device host-
names . 154

L I S T O F TA B L E S

Table 1 Overview of wireless neighbor communication
technologies . 18

Table 2 Resiliency of integrated multihop protocols to
different DoS attacks 20

Table 3 DTN attacks addressed in previous works . . . 22

Table 4 Natural disasters since 2010 24

xv

Table 5 Largest kernel extensions in macOS 10.14.6 . . 33

Table 6 Apple’s Continuity services and employed wire-
less technologies 40

Table 7 Tags used in AWDL 45

Table 8 A subset of AWDL states and corresponding
channel lists . 63

Table 9 Symbols used for the BLE brute force attack . 85

Table 10 Symbols and notations for LIDOR 96

Table 11 Computation time of several cryptographic al-
gorithms on various platforms 113

Table 12 Attack resiliency of RESCUE 123

Table 13 Comparison of identity verification methods . 129

Table 14 All priority sets used in RESCUE 133

Table 15 Simulation settings for the ONE 136

L I S T O F P R O G R A M S

Program 1 C pseudo code of our BLE brute force attack . 87

Program 2 Calculation of the minimal flow authenticator
length . 101

Program 3 Message insertion with SEB 132

A C R O N Y M S

ACK acknowledgment

AF action frame

AP access point

ARP Address Resolution Protocol

AW availability window

AWDL Apple Wireless Direct Link

BLE Bluetooth Low Energy

BSSID basic service set identifier

CRL certificate revocation list

xvi

Acronyms xvii

DCF distributed coordination function

DD direct delivery

DNS Domain Name System

DNS-SD DNS service discovery

DoS denial-of-service

DRO disaster response organization

DRT disaster response team

DTN disruption-tolerant networking

DWN distributed wireless network

EAW extended availability window

EU European Union

EW extension window

FCS frame check sequence

FIFO first-in first-out

GO group owner

IBSS independent basic service set

IDR international disaster response

IoT Internet of things

MAC medium access control

MANET mobile ad hoc network

mDNS multicast DNS

MIF master indication frame

MitM machine-in-the-middle

MR message rank

MSG message

NAN Neighbor Awareness Networking

NDP Neighbor Discovery Protocol

NFC near-field communication

OS operating system

OSOCC on-site operations coordination center

OUI organizational unique identifier

xviii Acronyms

PDR packet delivery rate

PKI public-key infrastructure

PKT packet

POI point of interest

PS priority set

PSF periodic synchronization frame

RDC reception/departure center

RSSI received signal strength indication

RTT round-trip time

RWP random waypoint

SEB source-based elastic buckets

SRO search and rescue operation

SSHWS Saffir–Simpson hurricane wind scale

TLV type-length-value

TTL time-to-live

TU time unit

UN United Nations

USRT urban search and rescue team

UUID universally unique identifier

L I S T O F P U B L I C AT I O N S

During the course of writing this thesis, I co-authored several papers
and articles that I list below.

journal and magazine articles

[1] Milan Stute, David Kreitschmann, and Matthias Hollick. “Re-
verse Engineering and Evaluating the Apple Wireless Direct
Link Protocol.” In: ACM GetMobile 23.1 (Mar. 2019). Part of
this thesis. doi: 10.1145/3351422.3351432 (cit. on p. xxiii).

conference and workshop papers

[2] Lars Baumgärtner, Stefan Kohlbrecher, Juliane Euler, Tobias Rit-
ter, Milan Stute, Christian Meurisch, Max Muhlhäuser, Matthias
Hollick, Oskar von Stryk, and Bernd Freisleben. “Emergency
Communication in Challenged Environments via Unmanned
Ground and Aerial Vehicles.” In: IEEE Global Humanitarian
Technology Conference (GHTC). Oct. 2017. doi: 10.1109/GHTC.
2017.8239244.

[3] Florian Kohnhäuser, Milan Stute, Lars Baumgärtner, Lars Al-
mon, Stefan Katzenbeisser, Matthias Hollick, and Bernd Freis-
leben. “SEDCOS: A Secure Device-to-Device Communication
System for Disaster Scenarios.” In: IEEE Conference on Local
Computer Networks (LCN). Part of this thesis. Extended in [16].
Oct. 2017. doi: 10.1109/LCN.2017.47 (cit. on pp. xxi, xxiv).

[4] Jeremy Lakeman, Matthew Lloyd, Romana Challans, Angus
Wallace, Paul Gardner-Stephen, Milan Schmittner, and Matthias
Hollick. “A Practical and Secure Social Media Facility for
Internet-Deprived Populations.” In: IEEE Global Humanitarian
Technology Conference (GHTC). Oct. 2017. doi: 10.1109/GHTC.
2017.8239236.

[5] Christian Meurisch, Julien Gedeon, Artur Gogel, The An Binh
Nguyen, Fabian Kaup, Florian Kohnhäuser, Lars Baumgärtner,
Milan Schmittner, and Max Muehlhäuser. “Temporal Coverage
Analysis of Router-Based Cloudlets Using Human Mobility
Patterns.” In: IEEE Global Communications Conference (GLOBE-
COM). Dec. 2017. doi: 10.1109/GLOCOM.2017.8255035.

[6] Milan Schmittner, Arash Asadi, and Matthias Hollick. “SE-
MUD: Secure Multi-hop Device-to-Device Communication for
5G Public Safety Networks.” In: IFIP Networking Conference

xix

https://doi.org/10.1145/3351422.3351432
https://doi.org/10.1109/GHTC.2017.8239244
https://doi.org/10.1109/GHTC.2017.8239244
https://doi.org/10.1109/LCN.2017.47
https://doi.org/10.1109/GHTC.2017.8239236
https://doi.org/10.1109/GHTC.2017.8239236
https://doi.org/10.1109/GLOCOM.2017.8255035

xx list of publications

and Workshops. Part of this thesis. Extended in [15]. June 2017.
doi: 10.23919/IFIPNetworking.2017.8264846 (cit. on pp. xxi,
xxiv).

[7] Milan Schmittner and Matthias Hollick. “Xcastor: Secure and
Scalable Group Communication in Ad hoc Networks.” In: IEEE
International Symposium on A World of Wireless, Mobile and Mul-
timedia Networks (WoWMoM). June 2016. doi: 10.1109/WoWMoM.
2016.7523512.

[8] Daniel Steinmetzer, Milan Stute, and Matthias Hollick. “TPy: A
Lightweight Framework for Agile Distributed Network Experi-
ments.” In: International Workshop on Wireless Network Testbeds,
Experimental Evaluation & Characterization (WiNTECH). ACM,
Nov. 2018. doi: 10.1145/3267204.3267214.

[9] Milan Stute, David Kreitschmann, and Matthias Hollick. “One
Billion Apples’ Secret Sauce: Recipe for the Apple Wireless
Direct Link Ad hoc Protocol.” In: ACM Conference on Mobile
Computing and Networking (MobiCom). Best Community Paper
Award. Part of this thesis. Oct. 2018. doi: 10.1145/3241539.
3241566 (cit. on p. xxiii).

[10] Milan Stute, Max Maass, Tom Schons, and Matthias Hollick.
“Reverse Engineering Human Mobility in Large-scale Natu-
ral Disasters.” In: ACM International Conference on Modelling,
Analysis and Simulation of Wireless and Mobile Systems (MSWiM).
Part of this thesis. Nov. 2017. doi: 10.1145/3127540.3127542
(cit. on p. xxiii).

[11] Milan Stute, Sashank Narain, Alex Mariotto, Alexander Hein-
rich, David Kreitschmann, Guevara Noubir, and Matthias Hol-
lick. “A Billion Open Interfaces for Eve and Mallory: MitM,
DoS, and Tracking Attacks on iOS and macOS Through Ap-
ple Wireless Direct Link.” In: USENIX Security Symposium.
Part of this thesis. Aug. 2019. url: https : / / www . usenix .

org/conference/usenixsecurity19/presentation/stute (re-
trieved Dec. 9, 2019) (cit. on pp. xxiii, xxiv).

posters and demonstrators

[12] Christian Meurisch, The An Binh Nguyen, Julien Gedeon, Flo-
rian Konhäuser, Milan Schmittner, Stefan Niemczyk, Stefan
Wullkotte, and Max Mühlhauser. “Upgrading Wireless Home
Routers as Emergency Cloudlet and Secure DTN Communi-
cation Bridge.” In: IEEE International Conference on Computer
Communication and Networks (ICCCN). July 2017. doi: 10.1109/
ICCCN.2017.8038485.

https://doi.org/10.23919/IFIPNetworking.2017.8264846
https://doi.org/10.1109/WoWMoM.2016.7523512
https://doi.org/10.1109/WoWMoM.2016.7523512
https://doi.org/10.1145/3267204.3267214
https://doi.org/10.1145/3241539.3241566
https://doi.org/10.1145/3241539.3241566
https://doi.org/10.1145/3127540.3127542
https://www.usenix.org/conference/usenixsecurity19/presentation/stute
https://www.usenix.org/conference/usenixsecurity19/presentation/stute
https://doi.org/10.1109/ICCCN.2017.8038485
https://doi.org/10.1109/ICCCN.2017.8038485

list of publications xxi

[13] Milan Schmittner. “DoS-resistant Buffer Management for De-
lay/Disruption-Tolerant Networks.” In: Cybersecurity and Pri-
vacy Summer School (CySeP). June 2017. url: https://people.
kth.se/~papadim/cysep/poster.html (retrieved Dec. 9, 2019).

[14] Milan Stute, David Kreitschmann, and Matthias Hollick. “Demo:
Linux Goes Apple Picking: Cross-Platform Ad hoc Communi-
cation with Apple Wireless Direct Link.” In: ACM Conference
on Mobile Computing and Networking (MobiCom). Best Demo
Award. Part of this thesis. Oct. 2018. doi: 10.1145/3241539.
3267716 (cit. on p. xxiii).

under peer review

[15] Milan Stute, Pranay Agarwal, Abhinav Kumar, Arash Asadi,
and Matthias Hollick. “LIDOR: A Lightweight DoS-Resilient
Communication Protocol for Safety-Critical IoT Systems.” In:
IEEE Internet of Things Journal (IoT-J) (submitted). Part of this
thesis. Extended from [6] (cit. on pp. xx, xxiii, xxiv).

[16] Milan Stute, Florian Kohnhäuser, Lars Baumgärtner, Lars Al-
mon, Stefan Katzenbeisser, Matthias Hollick, and Bernd Freisle-
ben. “RESCUE: A Resilient and Secure Device-to-Device Com-
munication Framework for Emergencies.” In: IEEE Transactions
on Dependable and Secure Computing (TDSC) (submitted). Part
of this thesis. Extended from [3] (cit. on pp. xix, xxiii, xxiv).

https://people.kth.se/~papadim/cysep/poster.html
https://people.kth.se/~papadim/cysep/poster.html
https://doi.org/10.1145/3241539.3267716
https://doi.org/10.1145/3241539.3267716

C O L L A B O R AT I O N S A N D M Y C O N T R I B U T I O N

Exploring and solving complex research problems is a process most
effectively tackled as a team. Ideas evolve by discussing them with
others. Crossing topic boundaries is accelerated by involving field ex-
perts. The results presented in this thesis have benefited from the same
synergies.4 I am happy to have worked with many bright colleagues
and dedicated students—thank you Lars Almon, Pranay Argawal,
Arash Asadi, Lars Baumgärtner, Bernd Freisleben, Alexander Heinrich,
Matthias Hollick,5 Stefan Katzenbeißer, Florian Kohnhäuser, David
Kreitschmann, Abhinav Kumar, Max Maass, Alex Mariotto, Sashank
Narain, Guevara Noubir, and Tom Schons.

When research is collaborative, it becomes hard to break down
contributions and assign credit to an individual author. For all papers
that form this thesis, each author was involved in discussing ideas,
debating results, and finalizing the presentation in varying degrees. In
the following, I detail the contributions of my co-authors and myself
per chapter. In addition, I follow the regulations of the Department
of Computer Science at Technische Universität Darmstadt and give
an account of the parts that include verbatim or revised fragments
of previous publications that form this thesis as indicated in the
preceding list of publications.6

Chapters 1 and 2 collate the contributions, background, and related
work sections of the core papers that form this thesis [15, 16, 9, 11].

Chapter 3 is based on joint work with Tom Schons and Max
Maass [10]. Tom created the presented disaster mobility model during
his master thesis under the co-supervision of Max and myself. In par-
ticular, Tom conducted the interviews and implemented the mobility
model and scenarios (Appendix C.5). I ran the evaluation.

Chapter 4 distills my personal experience from reverse engineering
and supervising student reverse engineering projects. While the chap-
ter has not been published in this current form, Sections 4.2 to 4.4 are
revisions of previous publications [9, 11].

Chapter 5 is based on three joint publications with David Kre-
itschmann [14, 9, 1]. David conducted a large part of the reverse
engineering work on AWDL during his master thesis under my su-
pervision. I augmented his analysis with more details and conducted
the experimental evaluation. David wrote the first version of the Wire-
shark dissector (Appendix C.1) which I refactored, extended with

4 For that reason, I will use the pronoun “we” in the presentation of the technical parts
of this thesis.

5 My advisor, Matthias Hollick, is a co-author on all of my papers for discussing,
guiding, and providing feedback for each project.

6 References in this chapter refer to my list of publications given on pages xix to xxi.

xxiii

xxiv collaborations and my contribution

additional fields, and prepared for publication. I am the sole author
of the AWDL implementation (Appendix C.2).

Chapter 6 describes and discusses Apple’s AirDrop protocol and
is based on [11, Section 3]. Insights about the protocol were gathered
by Alexander Heinrich during a lab project under my supervision. I
completed the analysis, including details such as the requirements for
authenticated connections (Section 6.3). Alexander also wrote the first
version of OpenDrop (Appendix C.3), which I refactored, extended,
and prepared for publication.

Chapter 7 contains a security analysis of AWDL and AirDrop and
is based on joint work with my students David, Alexander, and Alex
Mariotto as well as Guevara Noubir and Sashank Narain of North-
eastern University, Boston [11]. David mentioned some attack ideas
such as desynchronization and tracking via broadcast medium access
control (MAC) addresses in his master thesis. Alex provided an initial
feasibility study of the desynchronization attack (Section 7.1) in his
master thesis. Guevara guided the project and provided ideas such as
conducting a supporting user survey that would strengthen the final
results. Sashank was responsible for designing and carrying out the
survey and summarizing related work on user tracking in Appendix A.
I conducted all analyses, implemented all proofs of concept (PoCs),
and conducted all experimental evaluations.

Chapter 8 is based on joint work with Arash Asadi as well as
Abhinav Kumar and Pranay Argawal of IIT Hyderabad, which is
currently under review [15]. Arash and I published an initial version
of the protocol [6]. I was responsible for designing, implementing
(Appendix C.4), and evaluating the protocol. Arash provided the ap-
plication scenario. We involved Abhinav and Pranay for an extension
of the paper. They contributed the overhead and convergence analysis
(Sections 8.3 and 8.4). In addition, I conducted testbed experiments
(Section 8.6) that replace the simulation-based evaluation of the origi-
nal paper.

Chapter 9 is based on joint work with Florian Kohnhäuser, Lars
Baumgärtner, Lars Almon, Stefan Katzenbeißer, and Bernd Freisleben,
which is awaiting review feedback [16]. We jointly discussed the
features of the framework, designed the base protocol (Section 9.2),
and published an initial version [3]. Florian provided the design for
the mobile certification authorities (Section 9.3). I designed the buffer
management with its Sybil-secure extension (Sections 9.4 and 9.5)
as well as implemented the protocol and conducted the evaluation
(Section 9.6).

Part I

P R E L U D E

1
I N T R O D U C T I O N

Distributed wireless network (DWN) services are becoming more
prevalent and are being increasingly deployed using infrastructure-less
architectures. Big tech companies such as Apple and Google are mov-
ing from cloud-based solutions to distributed services using wireless
technologies for commercial applications, including crowd-sourced
location tracking [73], file sharing [10, 72], and proximity-based au-
thentication procedures [9]. The reasons for this shift can be partially Distributed wireless

networks (DWNs)
enable novel
commercial and
humanitarian
applications and help
to scale to billions of
IoT devices.

attributed to the Snowden revelations [74], which have increased soci-
etal privacy consciousness and, thus, rendered “off-the-grid” solutions
more attractive. Other factors also contribute to this paradigm shift: in
light of 5G and the Internet of things (IoT) [33], networks have to deal
with tens of billions of devices.1 To enable scaling and to reduce the
load in their core networks, operators want to move traffic towards the
networks’ edges. Also, some applications such as vehicular communi-
cation require extremely low latencies and, thus, simply cannot use
today’s infrastructure-based communication such as cellular networks.
Finally, DWNs can substitute for infrastructure-based communication
in the aftermath of natural disasters such as floods, hurricanes, or
earthquakes, which are expected to occur more frequently around the
globe due to climate change [135]. During disasters, panic reactions
and physical damage often lead to inoperable local communication
infrastructures [99], impairing disaster response operations. As a solu-
tion, ubiquitous mobile devices such as smartphones can form backup
networks in which devices forward messages for one another [123,
128].

1.1 motivation

The increased general reliance of society on technology and the result-
ing “always-on” expectations of the users nourish denial-of-service
(DoS) attacks as they use disruption for leverage [49]. The paradigm
shift from cloud-based to DWN applications requires reevaluating
existing and detecting emerging security threats to design systems for
availability. In particular, the pervasiveness of these novel applications Societal reliance on

technology make
disruptions through
DoS attacks a real
threat.

and their integration in our physical world enable new attack vectors
and render attacks on availability even more severe.

Today, DoS attacks are the most prevalent form of attacks against
Internet services [187]. Such attacks exploit vulnerable Internet pro-

1 Predictions vary strongly and range from 20.4 billion by the year 2020 [67], over 22.3
billion by 2024 [56], to 41.6 billion by 2025 [98].

3

4 introduction

tocols and services such as NTP to launch amplification attacks [44].
Mitigations for DoS attacks are typically based on detection and fil-
tering and require respective infrastructure [200]. While DoS attacks
on Internet services typically result in inconvenience and financial
losses for the target, results can be much more devastating in DWN
applications. Due to the pervasiveness of these applications, their non-
functioning has a direct impact on human lives, which might make
them more attractive targets in the future. Consider a smart home: aIn DWN

applications, DoS
attacks not only

profoundly impact
our everyday life but

may endanger
human lives.

single malicious device could prevent somebody from opening a gate
or door by merely jamming the wireless unlock procedure. Such DoS
attacks may enable new kinds of ransomware that require payment
for users to re-enter their house or apartment. In a vehicular setting,
collision avoidance systems, where vehicles broadcast their presence
and current speed, require multihop communication [194]. If messages
were not forwarded, human lives were put at risk. Finally, if an at-
tacker has the resources to cause a large-scale blackout of the cellular
communication infrastructure, they might also have the capabilities to
disrupt an emergency backup network.

Due to existing as well as new threats coming from DoS on var-
ious wireless applications, we believe that a systematic look at the
communication protocols involved is crucial.

1.2 challenges and goals

In this thesis, we address DoS attacks in different applications by
considering and working with the generic network model shown in
Figure 1. The model consists of several nodes that can be any kind of
wirelessly connected devices such as smartphones, vehicles, or other
IoT appliances. Further, the model defines three communication scopes.Our network model

comprises three
scopes: neighbor,

island, and
archipelago.

The first scope extends to the neighbors of a node, i. e., communica-
tion with other nodes that are within the physical communication
range with one another. The second scope encompasses an island,
i. e., a group of nodes indirectly connected via multiple hops. Rout-
ing protocols enable communication within islands. Finally, the third
scope adds space-time paths that are created when nodes move from
one island to another. Such an archipelago is considered in disruption-
tolerant networking (DTN) settings and deploys store-carry-forward
schemes. Note that with each scope, communication range but also
delay increases and, therefore, render the scope usable or unusable
for a specific application.

This model can be used to describe a wide range of networks
and applications. For example, Apple AirDrop [10] allows sharingSmartphone-based

emergency
communication is

the running example
in this thesis.

files between two directly connected devices and, as such, only uses
the neighbor scope. Typical IoT applications use mesh networking
to interconnect devices [31] and, thus, additionally, use the island
scope. Smartphone-based backup networks use the neighbor scope

1.2 challenges and goals 5

Archipelago

Island

Neighbor

(Chapter 3)
Chapter 9

Chapter 8

(Chapter 4)
Chapters 5–7

Figure 1: Networking model comprising three scopes used in this thesis. We
list the chapters that are (partially) concerned with the particular
scope.

for device-to-device communication, can make use of island commu-
nication within groups of nodes, and use the archipelago scope to
extend communication range to a metropolitan area or a district. As
emergency communication uses all three scopes, we adopt this use
case as a running example for this thesis.

The ultimate goal of this thesis is providing practical and comprehen-
sive protections against DoS attacks for DWN protocols for all networks
that fall into this model. We approach this problem by (1) analyzing
and improving existing protocols and (2) designing new protocols.
Securing each scope poses its unique challenges. We discuss them in
the following.

1.2.1 Neighbor Communication

Neighbor communication provides the basic building block for mul-
tihop protocols on the island and archipelago scopes. To conduct Experimenting with

DWNs require an
accessible neighbor
communication
technology.

practical experiments on modern mobile devices, e. g., for smartphone-
based emergency networks, we need a high-throughput, accessible,
and reliable technology. Many existing technologies enable direct wire-
less communication between two devices. However, most of them are
impractical or cannot be used on modern mobile devices. And we

6 introduction

found that those that work well are proprietary and have not been
openly scrutinized for security.

practical neighbor communication Standardized wireless
neighbor communication technologies such as Wi-Fi ad hoc, Wi-Fi
Peer-to-Peer, or Bluetooth Low Energy (BLE), so far, have been unsuc-
cessful in providing a practical high-throughput communication link
between neighboring mobile devices. The problems of these technolo-Wi-Fi ad hoc,

Peer-to-Peer, and
BLE have distinct

shortcomings.

gies include low energy efficiency, low reliability, and low throughput.
Around 2014, Apple introduced Apple Wireless Direct Link (AWDL),
a proprietary undocumented Wi-Fi-based ad hoc protocol that today
drives numerous services within Apple’s ecosystem, such as AirDrop.
While we found that these services worked surprisingly well in terms
of reliability and performance during an initial assessment, the proto-
col is currently only available on Apple’s platforms covering over 1.4
billion devices.

unknown denial-of-service protection scope The main
problem with analyzing proprietary protocols such as AWDL is that
they are typically closed-source. In such cases, assessing the DoSAnalyzing

closed-source
proprietary protocols

is a key challenge
addressed in this

thesis.

protection scope is non-trivial and requires several steps. In particular,
we (1) need a methodology and tools to open such a closed ecosystem,
(2) understand the protocols at hand, and finally (3) conduct a security
analysis.

1.2.2 Island Communication

In the past two decades, the mobile ad hoc network (MANET) and
mesh network communities have intensively investigated island com-
munication. While there have been numerous routing protocol pro-MANET routing has

been studied
extensively in the
past years, but no

practical and secure
protocol has been

proposed.

posals for these types of networks, only a few of them are currently
deployed in practice (e. g., OLSR [43]). And none of them offer decent
protection against DoS attacks. Many research projects have attempted
to retro-fit security on existing protocols or designed new protocols
from scratch. We have found that these proposals often consider a weak
attacker model or lack analytical proof of their security properties,
which means that they miss protections against certain well-known
DoS attacks. Also, we have found that those proposals typically have
only been evaluated in a simulator. The lack of a practical implementa-
tion might also be one of the reasons why these protocols have never
been adopted.

limited denial-of-service protection scope Many early
secure MANET routing protocols share a fundamental flaw: while they
have security measures to protect the route discovery (i. e., control
plane), they are susceptible to dropping attacks in the data plane.

1.2 challenges and goals 7

Dropping can be especially devastating if an attacker launches a
blackhole attack, where they attract traffic towards themselves (e. g., Protocols that

integrate both
control and data
plane security offer
the best protection
against DoS attacks.

by mounting a wormhole attack) only to drop it afterward. This flaw
has been acknowledged by the research community so that more
recent and sophisticated proposals integrate control and data plane to
prevent dropping attacks even on the data plane. Most of them rely on
an (end-to-end) feedback mechanism to ensure that messages arrive
at the destination. However, there are many different types of such
dropping attacks, some of which have remained unaddressed.

practical evaluation on real hardware Related works
proposing new secure integrated routing protocols typically rely on
simulation-driven experiments to assess their performance. While Simulation is the

prevalent form of
evaluation for
MANET protocols.

simulations allow evaluating complex scenarios with different types of
mobility, simulators typically do not capture the impact of processing
overhead on the nodes, which might be non-negligible for secure
protocols that employ cryptographic operations. Therefore, to assert
the practicality and applicability of such proposals, we believe that it
is essential to evaluate those protocols on real hardware.

1.2.3 Archipelago Communication

Communication in the archipelago scope leverages DTN techniques.
Due to its cooperative, distributed, and resource-constrained nature,
DTN communication is particularly susceptible to DoS attacks [195].
Also, the performance of DTN communication and, in extension, that
of any security mechanism is highly dependent on node mobility.

limited denial-of-service protection scope Existing DTN
security solutions focus on single attacks such as flooding [120, 152]
or route manipulation [118, 119]. Furthermore, Sybil attacks, where an Some DoS attacks

have not been
addressed in the
archipelago scope.

adversary operates under multiple identities, have not been addressed
in previous DTN research. To summarize, while there exist solutions
to some problems, so far, there is no approach comprehensively miti-
gating different DoS attacks.

practical evaluation with realistic mobility The deter-
mining factor of the performance for inter-island communication is
node mobility because moving nodes create space-time paths between
islands. This can be simply explained: if none of the nodes moves As mobility greatly

affects DTN
performance, we
need realistic
mobility models for
evaluation.

while the network is partitioned into islands, then communication
between islands can never occur. Also, if there are fast nodes that move
frequently and fast between islands, then communication delay is low.
Communication delay is a crucial factor for the usability of a network,
e. g., days-old emergency messages might be useless. Therefore, the
evaluation of any system that attempts to solve a particular purpose

8 introduction

needs to use a realistic mobility model that reflects the use case. For
the emergency use case, there currently exist no realistic mobility
models for disasters on the scale of archipelago communications.

1.3 contributions

To tackle these challenges and achieve our goals, we make the follow-
ing main contributions: (1) we dissect the AWDL ad hoc protocol, aWe analyze existing

and design new
protocols.

state-of-the-art high-performance neighbor communication protocol,
(2) we conduct a security and privacy analysis on AWDL and the
related Apple AirDrop protocol, (3) we design a DoS-resilient protocol
for island-scope communication, and (4) we design a DoS-resilient
framework for archipelago-scope communication.

1.3.1 Dissection of Apple’s Wireless Ecosystem

AWDL is designed as a successor to the less popular Wi-Fi ad hoc
mode and Wi-Fi Peer-to-Peer [42] and solves many practical issues
such as energy consumption and concurrent communication with an
infrastructure Wi-Fi network. As such, it is currently the only practi-We study AWDL as

it solves many
problems of existing

neighbor
communication

protocols.

cal2 high-throughput wireless neighbor communication protocol. We
conduct a comprehensive investigation on AWDL through binary and
runtime analysis and present its frame format and operation. In short,
AWDL is based on the IEEE 802.11 standard and makes use of vendor-
specific extensions that allow custom protocol implementations. Each
AWDL node periodically emits custom action frames containing a
sequence of availability windows (AWs) indicating its readiness to
communicate with other AWDL nodes. An elected master node syn-AWDL implements a

channel hopping
mechanism as a

Wi-Fi overlay.

chronizes these sequences. Within these AWs, nodes can communicate
with their neighbors using a dedicated data frame format. Outside
the AWs, nodes can tune their Wi-Fi radio to a different channel to
communicate with an access point, or turn it off to save energy. We
summarize our main contributions:

• We provide insights into the macOS operating system (OS) andWe release a
Wireshark dissector
and an open AWDL

implementation.

its Wi-Fi driver architecture and debugging facilities to help
future reverse engineering endeavors (Chapter 4).

• We present the AWDL frame format and operation in detail
(Sections 5.1 and 5.2).

2 Neighbor Awareness Networking (NAN) is the unofficial standardized successor
of AWDL but is currently only available in a few Android phones. We detected
NAN-related code in the Wi-Fi driver of macOS 10.15 beta (which was removed in
the release version). Therefore, we assume that Apple will also adopt NAN in one of
its next major OS releases, possibly using an AWDL co-existence mode for backward
compatibility.

1.3 contributions 9

• We conduct an experimental analysis of AWDL to assess election
behavior, synchronization accuracy, throughput, and channel
hopping strategies (Section 5.4).

• We publish an AWDL protocol dissector for Wireshark (Ap-
pendix C.1).

• We re-implement AWDL in C for Linux-based systems and make
the code available as open-source software (Appendix C.2).

1.3.2 Security and Privacy Analysis of Apple Wireless Direct Link and
AirDrop

We conduct the first security analysis of AWDL and its integration
with BLE, starting with the reverse engineering of protocols and
code supported by analyzing patents. Our analysis reveals several We conduct a

comprehensive
security and privacy
analysis of AWDL.

security and privacy vulnerabilities ranging from design flaws to im-
plementation bugs enabling different kinds of attacks. We present a
machine-in-the-middle (MitM) attack enabling stealthy modification
of files transmitted via AirDrop, a DoS attack preventing commu-
nication between devices, privacy leaks allowing user identification
and long-term tracking undermining medium access control (MAC)
address randomization, and targeted DoS and blackout DoS attacks
(i. e., enabling simultaneous crashing of all neighboring devices). The We discover a

protocol-level DoS
attack,
implementation bugs,
and new MitM
attack on AirDrop.

flaws span AirDrop’s BLE discovery mechanism, AWDL synchroniza-
tion, UI design, and Wi-Fi driver implementation. We demonstrate
that the attacks can be stealthy, low-cost, and launched by devices
not connected to the target Wi-Fi network. We implement proofs of
concept (PoCs) and demonstrate that the attacks can be mounted using
a low-cost (20 US$) micro:bit device and an off-the-shelf Wi-Fi card.
Specifically, these are our contributions:

• We reverse engineer the AirDrop protocol and its integration
with AWDL and the BLE stack (Chapter 6).

• We re-implement AirDrop in Python and make the code available
as open-source software (Appendix C.3). We reverse engineer

AirDrop and
implement an open
version of the
protocol that we
make publicly
available.

• We discover security and privacy vulnerabilities in AWDL and
AirDrop and present four novel network-based attacks on iOS
and macOS. These attacks include (1) a DoS attack on AWDL
effectively preventing communication (Section 7.1), (2) a DoS–
supported MitM attack which intercepts and modifies files trans-
mitted via AirDrop (Section 7.2), (3) two blackout DoS attacks
on Apple’s AWDL implementations which allow crashing Apple
devices in proximity (Section 7.3), and (4) a long-term device
tracking attack that may reveal personal information such as the
name of the device owner (Appendix A).

• We propose practical mitigations for all attacks and share them
with Apple. We list all vulnerabilities and fixes in Appendix B.

10 introduction

1.3.3 Secure Island Communication Protocol

We propose LIDOR, a lightweight DoS-resilient multihop protocol that
secures island communication. While LIDOR provides authenticated
and (optionally) confidential communication, more importantly, it uses
an end-to-end feedback mechanism to quickly detect and locally repair
broken paths, thus, comprehensively mitigating different variants
of DoS attacks. LIDOR’s path selection provably converges even inLIDOR provably

converges under a
wormhole-supported

greyhole attack.

the presence of hard-to-detect wormhole-supported greyhole attacks.
By leveraging symmetric-key cryptographic primitives, we ensure
efficient operation of LIDOR even on embedded devices leading to
low end-to-end delivery delays. We validate our proposal by running
testbed experiments. The following are our main contributions:

• We present LIDOR, the first multihop communication protocol
that comprehensively protects against all well-known variants of
blackhole and greyhole attacks (Section 8.2).

• We analytically prove that LIDOR’s communication overhead is
lower than Castor [64], which is—as we found—the most secure
and comprehensive multihop solution in the state-of-the-art
(Section 8.3).

• We provide analytical proof that LIDOR converges even in the
presence of a wormhole-supported greyhole attack (Section 8.4).We implement a

LIDOR prototype
and conduct testbed

experiments.

• We implement a LIDOR prototype in C++ using lightweight
symmetric cryptographic primitives and make it available as
open-source software (Appendix C.4).

• We conduct experiments in our testbed to validate our analytical
findings. In particular, we show that LIDOR does not incur
additional overhead under attack and significantly increases
delivery rates under attack compared to the Castor protocol
(Section 8.6).

1.3.4 Secure Archipelago Communication Framework

We present RESCUE, a resilient and secure device-to-device commu-
nication framework for emergency scenarios, which provides compre-
hensive attack protection. RESCUE’s basic communication protocolRESCUE features a

minimalistic
communication

protocol to thwart
several well-known

DoS attacks.

relies on epidemic routing, authenticated and immutable messages,
and an effective acknowledgment processing. This way, common at-
tacks, such as message or routing manipulation, blackholing, or imper-
sonation, are already prevented. Yet, as in today’s Internet infrastruc-
ture [204], the key challenge is to defend against DoS attacks originat-
ing from individuals as well as multiple identities (Sybil attack) that flood
the network. For this purpose, RESCUE pursues a twofold mitigation
technique. First, certificates are used to cryptographically bind users
to network identifiers, which hinders the adversary from assuming
multiple identities. Since traditional static certificate infrastructures

1.4 outline 11

may be unavailable in the disaster area—and more generally—in dis-
aster scenarios, we propose a novel distributed approach that enables
new users to obtain certificates from mobile authorities also during a
disaster. Second, RESCUE applies a novel buffer management scheme We use mobile

certificate authorities
to bootstrap nodes
post-disaster.

that substantially increases message delivery rates, i. e., availability, in
the presence of flooding attacks, both from individuals and multiple
identities. As our solution relies on node-local decisions rather than a
(complex) distributed protocol, it provides a minimal surface to attacks
and causes no network overhead by design. In addition, instead of identi-
fying and excluding misbehaving users from the network, our scheme
provides a fair allocation of available resources to all users. Hence,
RESCUE does not suffer from false positives, where a valid user is
mistakenly excluded from the emergency communication system. In
particular, we make the following contributions:

• We conceive a mobile distributed certificate infrastructure tai-
lored to disaster scenarios that hinders an adversary from as-
suming multiple identities to perform Sybil attacks (Section 9.3).

• We design a fair buffer management scheme that mitigates the
effect of flooding attacks by individuals (Section 9.4). Using a novel buffer

management scheme
in combination with
priority sets,
RESCUE is resilient
to flooding and Sybil
attacks.

• We extend our buffer management scheme with priority sets
that increase resiliency against Sybil attacks, guarantee at least
the performance of direct message delivery, and support unreg-
istered users without a certificate (Section 9.5).

• We design and implement a realistic disaster mobility model
based on recent disasters, which we make available as open-
source software (Chapter 3 and Appendix C.5).

• We evaluate RESCUE using large-scale network simulations
with our realistic disaster model, demonstrating that RESCUE
maintains excellent delivery rates even under attack (Section 9.6).

1.4 outline

The rest of this thesis is structured as follows. Chapter 2 provides defi-
nitions, gives background information on wireless technologies and
DoS attacks, and discusses related work. We introduce the emergency
scenario, including an original mobility model in Chapter 3. In Part ii, We structure this

thesis by scopes of
the networking
model.

we explain Apple’s wireless ecosystem from a system’s perspective
and provide insights into our reverse engineering process in Chapter 4.
Chapters 5 and 6 explain AWDL and AirDrop in detail. In Chapter 7,
we conduct a security analysis of these protocols. We design novel
protocols in Part iii. Chapter 8 presents LIDOR, a lightweight, secure
multihop protocol for IoT, and Chapter 9 introduces RESCUE, a se-
cure DTN-based protocol for emergency communication. Finally, we
conclude this thesis in Chapter 10 of Part iv.

2
B A C K G R O U N D A N D R E L AT E D W O R K

This chapter introduces terminology, explains fundamental denial-of-
service (DoS) attacks, compares existing wireless neighbor commu-
nication technologies, and, finally, discusses related work on secure
wireless multihop networks that together form distributed wireless
networks (DWNs).

2.1 definitions

This section differentiates the closely related terms security, availability,
resiliency, and dependability in the context of wireless networks to set
the scope for this thesis.

2.1.1 Security

We consider security as a network’s property [27] or “system condition
that results from the establishment and maintenance of measures to
protect the system” [164]. In particular, security is a measure to impede
or thwart malicious attacks by employing countermeasures. Security In this thesis, we

consider
confidentiality and
integrity, but focus
on availability.

comprises the classic CIA triad with the three goals: confidentiality, in-
tegrity, and availability. While we consider confidentiality (preventing
disclosure of data to unauthorized entities [101]) and integrity (pre-
venting data modification by unauthorized entities [101]) throughout
this thesis, our primary focus lies on availability.

2.1.2 Availability

Availability means that network services are usable by an entity upon
request [164]. In the context of this thesis, we explicitly consider sur-
vivable networks, i. e., those that are available on demand even under
attack [62]. Availability can be measured by a metric that indicates the We consider

networks that are
usable even when
under attack.

probability that a system is “in a state to perform a required function
at a given instant of time or at any instant of time within a given
time interval” [176]. In the context of networks and communications,
availability is commonly measured as the packet delivery rate (PDR)
or, conversely, as the packet loss.

13

14 background and related work

2.1.3 Resiliency

In the broad sense, resiliency describes the ability of a system to “an-
ticipate and adapt to the potential for surprise and failure” [85]. MoreA resilient system

successfully
accommodates

unforeseen events.

technically and applied to the networking context, “anticipating and
adapting” means possibly providing degraded service when under
attack, but recovering autonomously, quickly, and fully from it. In the
same context, “surprises” can be translated into new and unexpected
attacks [114]. We leverage resiliency as a design concept when propos-
ing new protocols in Chapters 8 and 9 to reduce the attack surface
and to absorb and mitigate DoS attacks.

2.1.4 Dependability

Dependability is a complex system’s property that encompasses many
aspects, such as reliability, availability, and security. The traditionalThe definition of

dependability is
extremely broad and
exceeds the scope of

this thesis.

definition is “the ability to deliver service that can justifiably be
trusted” [18]. However, more recent works have put resiliency in
the dependability context as well [114]. While dependability captures
many desirable aspects, its definition is too broad for the scope of this
thesis, where we are concerned with security (in particular availability)
and resiliency.

2.2 denial-of-service attacks

In this work, we consider DoS attacks that target the availability of a
communication network [103, 195]. As individual nodes are also part
of the network, attacks that consume a node’s resources are within
scope. Generally, DoS attacks either try to starve resources directlyWe consider two

types of DoS attacks:
starving resources

and impairing
protocol operation.

(jamming and flooding) or impair network operation on the protocol
level (dropping, spoofing, replaying, and blackholing). Some attacks
listed below (spoofing, pseudospoofing, replaying, and wormholing)
can also be used outside the DoS context. However, they can all be
used to achieve or amplify the impact of DoS. In the following, we
explain each attack, its goal, and existing mitigations.

2.2.1 Dropping

Dropping is a simple DoS attack but can have a substantial impact
on the performance and availability of a network. In essence, if aThe arguably

simplest form of
network attacks is to

drop packets.

malicious router decides not to forward packets, and there are no
alternative paths between some source and destination, that router can
completely break communication. Dropping is most effective when
combined with an attack that attracts traffic towards the attacker,
thereby creating a blackhole [103]. Typical mitigations to dropping
involve end-to-end feedback mechanisms that allow nodes to detect

2.2 denial-of-service attacks 15

whether a packet transmission was successful or not. If a transmission
fails, the sender can try a different path. As a proactive measure, multi-
path forwarding can be employed to send each packet via multiple
paths. In that case, an attacker would need to compromise all used
paths at the same time. However, adding redundancy comes at the
cost of increased bandwidth usage.

2.2.2 Flooding

During flooding attacks [38], an adversary sends an excessive number
of packets into the network. Their goal is to exhaust network resources.
In particular, a flooding attack can attempt (1) to saturate communica-
tion links and paths, (2) to fill up node-local packet queues and buffers,
or (3) to combine both methods. As a result, legitimate traffic might By flooding packets,

an attacker can
starve buffer
capacity or network
bandwidth.

be dropped or might experience a low quality of service. Defending
against flooding attacks is not trivial. If packets are not authenticated,
source blacklisting is not an option because packets cannot be at-
tributed to a particular node. But even if packets are authenticated,
setting good policies such as rate limits [153] is a difficult task. The
limits must be neither too strict (impairs legitimate communication)
nor too soft (gives attacker too much leverage) as network dynamics
and requirements might change over time [41].

2.2.3 Jamming

A jammer tries to impede wireless communications by sending out
strong radio signals that interfere with valid transmissions and pre-
vent the receiver from successfully decoding a frame [25]. Jamming Jamming can locally

prevent any wireless
communication.

can target an entire frequency band to block all communication or
can target individual frames selectively. The latter is called a reactive
jammer and decides whether or not to jam based on the first few
bits of a frame [71, 121, 162]. Jamming attacks can only affect a net-
work locally, i. e., at the neighbor scope, as the attacker is constrained
by transmission power. However, this might be sufficient to cause
network-wide disruptions, e. g., by partitioning a network or forcing
packets over an adversary-chosen path [143].

2.2.4 Replaying

An attacker may attempt to repeat a past transaction again by sending
previously-recorded packets [1]. Whether such a replay attack can An attacker can

inject old state if
messages are not
properly protected
with nonces.

successfully disrupt network operation depends on the protocol. For
example, replaying route responses might re-instantiate a stale route.
Cryptographic end-to-end protocols employ nonces to protect against
replay attacks. Nonces are unique values that are only used once and
are used as an input to the calculation of cryptographic primitives

16 background and related work

such as ciphers. Good choices for nonces are sequence numbers or
values drawn at random from a large enough space to avoid reuse.
Within the network, nodes can try to keep track of seen nonces and
drop duplicate packets.

2.2.5 Spoofing

We define spoofing as sending messages that do not conform to a
particular protocol definition, e. g., for an Address Resolution Protocol
(ARP) spoofing attack [156]. Spoofing can mean that an attacker setsSending messages

outside the protocol
definition is called

spoofing.

disallowed values in specific header fields, e. g., setting a high time-
to-live (TTL) value to increase the lifetime of its messages. Also, an
attacker might impersonate another node by using a spoofed source
address. Typically, spoofing can be prevented by using cryptographic
primitives to protect message integrity, such as digital signatures, hash-
based integrity checks, or more advanced authenticated encryption
schemes [102]. While this works end-to-end, intermediate nodes are
unable to verify the integrity and authenticity of a packet as they do
not possess the required end-to-end key material. Another problem
is mutable header fields that cannot have end-to-end protection and
give an attacker potential leverage, e. g., by modifying hop counts.

2.2.6 Pseudospoofing (Sybil Attack)

An attacker can use a large number of spoofed identities to win
consensus schemes employed in different security protocols, use them
to avoid detection, or circumvent blacklisting mechanisms [47]. SuchA Sybil attacker

operates under many
identities to evade

detection.

pseudospoofing is also called a Sybil attack [54], which we will use
throughout this thesis. Sybil attacks are especially problematic in
settings where users are unable to authenticate each other, e. g., in
peer-to-peer networks. Generally, systems that employ a public-key
infrastructure (PKI) are immune to such attacks because it will be hard
for the attacker to acquire multiple valid identities as long as they are
unable to compromise a certificate authority (CA).

2.2.7 Wormholing

The attacker uses a fast out-of-band channel between distant parts of
the network (the “wormhole”) to make valid nodes believe that they
are neighbors [89]. Its effect varies depending on the target protocol.
For example, wormholing can break neighbor discovery protocols. InA fast out-of-band

channel is called a
wormhole.

routing protocols that rely on performance-based distance metrics
such as hop count or round-trip time, wormholes can deliver route
discovery messages faster and, therefore, are likely to win in route
selection. This way, the attacker attracts traffic towards themselves,
which allows them to perform traffic analysis or mount a dropping at-

2.3 wireless neighbor communication technologies 17

tack. We consider rushing [91] and tunneling attacks as weaker variants
of wormholing, so we do not explicitly consider them in this thesis.
Mitigations for wormholes include packet leashes [90].

2.2.8 Blackholing

In analogy to the space object, a blackhole attack tries to attract and
drop network traffic [84, 92]. Blackholing targets routing services and Blackhole attacks

attract and
subsequently drop
packets.

combines routing manipulation attacks on the control plane (e. g., via
spoofing or replaying) to attract traffic with packet dropping to disrupt
communication on the data plane [83]. Consequently, there exist sev-
eral flavors of blackhole attacks that depend on the supporting control
plane attack. A more stealthy variant of a blackhole is called greyhole
and uses selective packet dropping to evade detection. Mitigations for
blackhole and greyhole attacks include the same measures that can
mitigate routing manipulation and dropping attacks.

2.3 wireless neighbor communication technologies

Wireless neighbor communication technologies are the basic build-
ing block that enables DWNs, in particular, multihop networks, as
they create the link between adjacent nodes. Over the past decades, Several Wi-Fi-based

neighbor
communication
technologies have
evolved over time.

technologies based on the IEEE 802.11 (“Wi-Fi”) standard [95] evolved
because the “limitations of IBSS mode [. . .] led the Wi-Fi Alliance1 to
define Wi-Fi Direct. Further, due to concerns regarding Wi-Fi Direct,
Apple Wireless Direct Link (AWDL) was developed by Apple and
eventually adopted by the Wi-Fi Alliance as the basis for Neighbor
Awareness Networking (NAN)” [42]. In the following, we discuss
these technologies as well as Bluetooth Low Energy and provide an
overview in Table 1.

2.3.1 Wi-Fi Ad Hoc

The IEEE 802.11 independent basic service set (IBSS) mode, commonly
known as “Wi-Fi ad hoc,” creates a wireless network without special
controller roles. An IBSS is created by sending beacon frames with an For practical reasons,

Wi-Fi ad hoc never
became widely
adopted.

SSID and basic service set identifier (BSSID) on a particular channel.
Other nodes joining the network will send out beacons themselves
using the same information. The mode is robust to nodes leaving the
network as all nodes broadcast beacons. The nodes do not require
any further synchronization. However, IBSS has never become widely

1 The Wi-Fi Alliance is a vendor association that holds the Wi-Fi trademark for
IEEE 802.11-based technologies and certifies products using the specification. Al-
though the Wi-Fi Alliance does not formally create the standard, their certification
has relevance in the market. The alliance also creates own standards based on
IEEE 802.11, such as Wi-Fi Direct and Wi-Fi Aware.

18 background and related work

technology comment

Wi-Fi ad hoc [95] never became widely deployed, mostly due to a lack
of efficient power-saving mechanisms that are crucial
for mobile devices.

Wi-Fi P2P [60] assigns the role of an access point to one node, which
creates a single point of failure and drains that node’s
battery quickly.

Apple Wireless
Direct Link [174]

is a proprietary protocol and achieves “concurrent”
neighbor connections and a connection with an AP
by employing channel hopping as an overlay to
IEEE 802.11.

Neighbor Awareness
Networking [61]

has a proper specification with a design that is based
on AWDL but is currently only available on selected
Android devices.

Bluetooth LE [32] is energy efficient but features low data rates com-
pared to Wi-Fi-based technologies.

Table 1: Overview of wireless neighbor communication technologies.

adopted, mostly due to a lack of power-saving mechanisms, which
are crucial for mobile devices [39]. IBSS is not supported on Android.
Microsoft announced it might not be available in future versions of
Windows [133]. On Apple’s operating systems (OSs), encryption is not
supported, and iOS only allows joining existing IBSS networks but not
to create new ones.

2.3.2 Wi-Fi Peer-to-Peer

Wi-Fi Peer-to-Peer (P2P) [60], also known under its certification name
Wi-Fi Direct, connects multiple devices directly without an infras-
tructure network. During operation, one node assumes the role of a
group owner (GO) and essentially acts as an access point (AP). It isWhen the owner

leaves, the remaining
nodes need to

re-establish a Wi-Fi
P2P group.

not possible to migrate the role of the GO to another device: if the
GO leaves the network, a new network must be created. Wi-Fi P2P
connections are established by listening on one channel and sending
probe requests on all channels, which delays the connection process in
practice. Experiments show that establishing a connection takes from
four to more than ten seconds [39]. Discovering devices thus drains
the battery of mobile devices very fast.

2.3.3 Apple Wireless Direct Link

Apple Wireless Direct Link (AWDL) is a proprietary IEEE 802.11 ex-
tension which is deployed in Apple products [173, 174]. At its core,
AWDL uses a channel hopping mechanism to enable “simultaneous”
communication with an AP and other AWDL nodes on different chan-

2.3 wireless neighbor communication technologies 19

nels. This channel hopping is implemented as a sequence of so-called AWDL is a
proprietary protocol
by Apple that
implements a
channel hopping
overlay.

availability windows (AWs). For each AW, a node indicates if it is
available for direct communication and, if so, on which channel it
will be. To allow nodes to meet and exchange data on the same chan-
nel, they need to align their sequences in the time domain. AWDL
nodes elect a common master and use its time reference to achieve
synchronization. In Chapter 5, we reverse engineer the protocol, derive
a specification, and evaluate its performance.

2.3.4 Neighbor Awareness Networking

Neighbor Awareness Networking (NAN) [61], also known as Wi-Fi
Aware, extends IEEE 802.11 with proximity service discovery. NAN
is designed to be energy efficient, allowing continuous operation
on battery-powered devices [40]. NAN depends on beacon frames NAN is the

standardized
successor to AWDL
but is not yet widely
available.

sent from an elected master. These synchronize the timing of all
devices in an area. During a short discovery window the master sets,
devices can turn their radio on, exchange service and connection
information (e. g., parameters for Wi-Fi P2P), and turn their radio
off again. In fact, we found that NAN employs similar concepts as
AWDL, but strongly differs in specification and implementation. While
standardization makes NAN a great candidate for cross-platform
neighbor communication technology, there are still only a few devices
that support it. Android 8 introduced an NAN API [5] which requires
an NAN-enabled Wi-Fi firmware from the device vendors [5] (e. g.,
Google Pixel 2), which limits use on the Android platform. Further,
we found that mobile Apple devices do not support NAN as of iOS
13.

2.3.5 Bluetooth Low Energy

Bluetooth [32] is a separate standard with different PHY and medium
access control (MAC) layers. Bluetooth operates in the same 2.4 GHz
band as Wi-Fi and is often integrated into the Wi-Fi chip to share
the same antennas. Bluetooth Low Energy (BLE) is incompatible with Bluetooth is suitable

for low-bandwidth
applications.

classic Bluetooth and is optimized for low energy consumption and,
therefore, offers limited bandwidth. The usable maximum BLE 4.2
data rate is 394 kbit/s [53]. It is commonly implemented in small
battery-powered devices such as smartwatches and fitness trackers,
but it is not designed for large data transfers. Also, BLE provides the
basis for Bluetooth Mesh [2, 31], a flooding-based multihop protocol
designed for Internet of things (IoT) devices.

20 background and related work

blackhole w/ greyhole w/

protocol s
p

o
o

f
i
n

g

s
y

b
i
l

r
e

p
l

a
y

i
n

g

w
o

r
m

h
o

l
e

s
p

o
o

f
i
n

g

s
y

b
i
l

r
e

p
l

a
y

i
n

g

w
o

r
m

h
o

l
e

j
a

m
m

i
n

g

f
l

o
o

d
i
n

g

BTFR [193] ✓ ✓ ✓ ✓

2ACK [122] ✓ — — — — — —

Sprout [57] ✓ ✓* — ✓ ✓* — ✓*

ODSBR [19] ✓ — — ✓ — — ✓*

Castor [64] ✓ ✓ — ✓ ✓ ✓ — — ✓* ✓

SEMUD [160] ✓ ✓ ✓ ✓ ✓ ✓ ✓ — ✓* —

LIDOR [171] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓* —

Table 2: Resiliency of integrated multihop protocols to different DoS attacks.
We differentiate between resilient (✓), limited resilient (✓*), not
resilient (—), and unknown (blank).

2.4 security in wireless multihop networks

Wireless multihop networks present the basis for island and archipelago
communication in DWNs. Therefore, we discuss related work on miti-
gating DoS attacks in wireless multihop networks. In particular, we
focus on mobile ad hoc networks (MANETs) for island communication
and disruption-tolerant networking (DTN) for archipelago communi-
cation.

2.4.1 Security in Mobile Ad Hoc Networks

Initial works on MANET routing protocols [88, 92, 144, 158, 199] only
secure the control plane of the network layer and, therefore, cannot
comprehensively protect against (selective) dropping attacks on the
data plane. Similarly, protocols only protecting the data plane [21,Integrated routing

approaches offer the
best security as they

protect both the
control and data

plane.

145], can only detect packet loss but not react on it. Therefore, the
best approach against blackhole and greyhole attacks is an integrated
approach that protects both the control and data plane. We provide
a summary of such integrated approaches in Table 2. As we are
interested in a comprehensive DoS resiliency, we briefly point out the
strengths and drawbacks of each approach in the following. We base
our comparison on the adversary model presented in Section 8.1.1.

2ACK [122] selectively acknowledges data packets and is thus vul-
nerable to all types of greyhole attacks. In addition, the protocol is
vulnerable to colluding attackers. ODSBR [19] uses authentic end-to-
end acknowledgments for data packets and resorts to path probing
to identify broken links. The latter makes the protocol vulnerable to
Sybil and wormhole attacks, where a large number of fictitious links

2.4 security in wireless multihop networks 21

are created, and all have to be explicitly identified. Sprout [57] uses
path probing to evaluate the quality of entire paths instead of links.
Since the protocol relies on source routing, the source needs to be
able to identify all other nodes. In addition, Sprout was shown to
perform worse than Castor under the wormhole attack. BTFR [193] is
similar to Sprout in design featuring source routing and end-to-end
acknowledgments. Castor [64] has an elegant design to use end-to-end Our LIDOR protocol

shares fundamental
design aspects with
Castor to provide
strong protection
against DoS attacks.

acknowledgments and achieves higher resiliency against sophisticated
attacks such as blackholes and wormholes by incorporating an implicit
and independent route discovery. SEMUD [160] is our work based on
Castor, which adds protection against replay attacks and reduces Cas-
tor’s overhead. Finally, LIDOR [171] extends SEMUD and introduces
provably convergent path selection, effectively making the protocol
resilient to wormhole-supported greyhole attacks. We present LIDOR
in Chapter 8.

None of the above protocols propose new anti-jamming techniques,
yet, some mention them as a requirement [19]. However, even without
explicit protection against jamming, most secure routing protocols
will implicitly avoid locally jammed areas as they are considered
unreliable [57, 64, 160, 171]. Of all approaches, Castor [64] is the
only one that proposes a rate-limiting mechanism to thwart flooding
attacks. Since SEMUD [160] and LIDOR [171] are both based on Castor,
adopting a similar mechanism would be straightforward, but is not
discussed in this thesis.

2.4.2 Security in Disruption-Tolerant Networks

Since our communication framework can withstand a variety of at-
tacks (see Table 12), it supports and complements several existing
secure opportunistic communication systems [35, 87, 189]. We review
related work on DTN attacks as well as possible countermeasures and
compare them with our solution presented in Chapter 9. In addition,
Table 3 shows attacks addressed in related works.

flooding attack mitigation Flooding DoS attacks on unau-
thenticated DTNs were discussed in the literature, but contrary to Contrary to the

findings in previous
work, we observe
that flooding attacks
have a severe impact
on unauthenticated
DTNs.

previous findings [38], we show in Chapter 9 that authentication is
essential for reliable operation. In authenticated networks, one pro-
posal [120] enforces rate limits that are hard-coded in certificates, using
a distributed protocol. Nodes exceeding their rate limit are blacklisted
and excluded from the network. Our initial work, SEDCOS [107], im-
plements flooding protection implicitly via a fair buffer management
strategy. In Chapter 9, we extend this scheme as part of RESCUE.

sybil attack mitigation Previous works try to identify Sybil
identities and then take appropriate actions to exclude them from

22 background and related work

work f
l

o
o

d
i
n

g

r
e

p
l

a
y

i
n

g

s
p

o
o

f
i
n

g

s
y

b
i
l

d
r

o
p

p
i
n

g

w
o

r
m

h
o

l
i
n

g

b
l

a
c

k
h

o
l

i
n

g

Encounter-Based Routing [141] — — — — ✓ — ✓

Encounter Tickets [117] — — — — ✓ — ✓

Claim-Carry-and-Check [120] ✓ ✓* ✓* — — — —

Trust-Based Spreading [177] ✓ ✓* ✓* ✓ — — —

SEDCOS [107] ✓ ✓* ✓ — ✓ — ✓

RESCUE [171] ✓ ✓* ✓ ✓ ✓ — ✓

Table 3: DTN attacks addressed in previous works. An attack is addressed
(✓), implicitly addressed (✓*), or not addressed (—).

the network. One approach exploits the users’ social networks [197,Previous works
attempt to detect

Sybil identities.
198]. However, this requires communication between peers, which is
feasible for online peer-to-peer systems but not for DTN scenarios.
In [155], Sybil identities are detected at direct neighbor nodes. This
approach is suitable for proximity services, but not for DTNs, where
Sybil nodes might be multiple hops away. In [177], nodes bootstrap
trust relationships randomly and then collaboratively filter bogus
messages. In contrast to the above works, our proposal in Chapter 9

does not identify attackers but accepts their presence and uses a design
that absorbs their impact.

secure dtn routing Encounter-based routing in DTNs is used
to intelligently select forwarding nodes based on their contact history,
which works well, assuming recurring mobility patterns. At the sameSigned encounter

tickets prevent route
manipulation attacks

at the cost of
increased overhead.

time, it makes the network susceptible to blackhole attacks, where an
attacker lies about past encounters to appear as a reliable forwarder.
Previous works have proposed to use signed encounter tickets that
are exchanged upon contact [117, 141]. Unfortunately, exchanging and
verifying these tickets introduces communication and computational
overhead. In Chapter 9, we use epidemic routing to thwart all routing
attacks and mitigate the problems of increased message replicas using
effective buffer management.

3
E M E R G E N C Y S C E N A R I O

Emergency communication is an application scenario for distributed
wireless networks (DWNs) that we use as a running example in this
thesis. During severe natural disasters, communication infrastructure Disaster response

efforts can be
supported by
smartphone-based
backup networks.

is often destroyed or overloaded. To restore communication locally,
smartphones and other ubiquitous mobile devices can leverage their
built-in wireless neighbor communication technologies to form backup
networks. Networking performance is highly dependent on node, and
therefore, user mobility. To allow for realistic evaluations of new
communication protocols, we have designed a realistic mobility model
based on expert knowledge [175] that we summarize in this chapter.
In the following, we give a brief introduction to natural disasters and
response and present our mobility model.1 Readers already familiar
with the scenario may directly skip to the core contributions of this
thesis on neighbor, island, and archipelago communication in Parts ii
and iii.

3.1 natural disasters and response

Around the globe, we observe a continuous increase in natural dis-
aster occurrences [115]. When a disaster strikes, the communication
infrastructure is often destroyed or unavailable in the immediate af-
termath, which hinders effective disaster relief work [70, 99]. From We interview IDR

experts to derive a
mobility model.

several recent natural disasters (Table 4), we chose to re-create human
mobility of the 2013 Typhoon Haiyan as media coverage and response
was high, and communication infrastructure was dysfunctional dur-
ing the first days. Based on the information gathered for this and
other specific disasters, we extract recurring behavioral patterns of
the various entities involved in disaster relief work. To this end, we
define roles and role-specific activities. The information presented in
this section was gathered from 126 IDR experts within 71 disaster
response organizations (DROs) who provided reports and guidelines.
Also, we conducted on-site and remote interviews with 15 of those
experts.

3.1.1 2013 Typhoon Haiyan

Typhoon Haiyan lasted from November 3 to 11, 2013, and was one
of the strongest tropical cyclones ever recorded [81]. Even though Ty-

1 The information provided in this chapter is highly condensed. For more details about
our methodology and the model itself, we refer to the respective publication [175].

23

24 emergency scenario

disaster year fatalities area (km
2)

Hurricane Maria 2017 64 10 063

Nepal earthquake 2015 9 000 3 610

Cyclone Pam 2015 24 12 190

Ludian earthquake 2014 617 1 487

Typhoon Haiyan 2013 6 300 71 503

Christchurch earthquake 2011 185 1 426

East Africa drought 2011 260 000 2 346 466

Tropical storm Washi 2011 1 292 104 530

Tohoku earthquake 2011 15 894 83 955

Haiti earthquake 2010 316 000 27 750

Table 4: Selected natural disasters since 2010, including fatality count and
affected area [75, 136]. We focus on Typhoon Haiyan in this chapter.

phoon Haiyan had devastating effects on large portions of Southeast
Asia, for this work, we will focus on the aftermath of November 8

when Typhoon Haiyan hit the Philippines at 04:40 local time. Haiyan
was the deadliest and most damaging Philippine typhoon on record.
It left more than one million houses partially or completely damaged,
killing at least 6 300 people and leaving many injured and home-
less [139]. Typhoon Haiyan was ranked as a category five typhoon,Typhoon Haiyan

caused catastrophic
damage and

destroyed parts of the
local power and
communication
infrastructure.

the highest category by the definition of the Saffir–Simpson hurricane
wind scale (SSHWS), implying that “catastrophic damage will occur”
and “most of the area will be uninhabitable for weeks or months.”
After the storm had passed, widespread damage became visible with
power lines cut off, roads blocked by fallen debris, and trees and
buildings collapsed under the strong winds [97]. A 2013 preliminary
estimate [139] calculated the total damage related to typhoon Haiyan
to be around 2.86 billion US$.

Right after the disaster had hit the Philippines, many officials con-
cluded that even though early warnings had been issued to the popu-
lation of potentially affected areas, only a few people evacuated. TheOnly a fraction of

the affected
population evacuated

in time.

low evacuation rate was likely related to the high number of smaller
typhoons the Philippines experience every year, which led to the pop-
ulation underestimating the severity of the coming typhoon. Warnings
were broadcast on TV and radio but went largely unheeded. The ty-
phoon was accompanied by the biggest storm surge ever experienced
within the Philippines, reportedly reaching between four to six meters
in height [167]. As a result, the typhoon brought fast-rising tides and
surge water, which led to many additional fatalities [113].

3.2 human mobility model 25

Using an extended version of this report [175] together with ad-
ditional information gathered from operational reports and expert
interviews, we derive a human mobility model for natural disasters.

3.2 human mobility model

Generic mobility models such as random waypoint (RWP) have been
used to study the performance of mobile wireless networks such as
disruption-tolerant networkings (DTNs). However, these models do We need a realistic

mobility model to
assess the
performance of
DWNs in the
emergency context.

not capture the non-randomness of human mobility (as presented
before) and, therefore, produce questionable results when trying to
understand network performance in realistic scenarios. Based on ex-
pert knowledge, from which we derived roles, activities, and scenario
specifics, we implement a mobility model and make it freely avail-
able (Appendix C.5). Based on simulation results, we present the
characteristics of this model.

3.2.1 Roles

We identified the main stakeholders in natural disaster-struck areas We differentiate
between local
population and
IDR-related staff.

and defined the following seven roles with distinct behavioral patterns:
(1) the healthy local population, (2) the injured local population, (3) dis-
aster response teams (DRTs) from DROs, (4) dedicated urban search
and rescue teams (USRTs), (5) scientists (e. g., storm chasers and ty-
phoon experts), (6) United Nations (UN) officials, and (7) government
officials.

3.2.2 Activities

To create a model, we further need to define activities that regularly
occur in disaster areas attributable to specific roles. In the following,
we provide a detailed yet non-exhaustive description of activities that
we identified during the interviews with IDR experts. We implement
all of those activities in our model.

everyone In the evening, everyone goes to their respective base
camp, home, or shelter to sleep. Those arriving via the airport (e. g., All roles follow a

day-night cycle.DROs), on the day of arrival, first go to the reception/departure center
(RDC) for registration, then visit the on-site operations coordination
center (OSOCC), and finally set up the base camp or sleeping place.

dros and drts After arriving and registering at the airport, they Some roles have
different activities
during the day.

go to the OSOCC or the town hall for a situation briefing and then start
to help the affected population with one of the following activities:
(1) collect dead bodies and organize burials; (2) patrol the main streets
of the city and clean streets from debris, such that supplies can be

26 emergency scenario

delivered; or (3) go to food and water distribution centers to serve the
locals until the end of the day. Besides that, they regularly visit the
UN hotel, the OSOCC site, the base camp, or town hall to meet with
officials and other DROs.

un and government officials Officials regularly (at least
daily) visit the OSOCC, the town hall or base camp, for a situation
briefing and meet other officials and DROs. During the day, theyOfficials meet and

coordinate at central
locations.

perform reconnaissance missions to get a situation overview, such as
infrastructural damage. This information is used to provide help. Also,
they organize the disaster relief efforts with other officials and DROs,
such as setting up food and water distribution spots and organizing
burials.

scientists Within the first two to three days, they collect scientificScientists might
leave the site once

they completed their
job.

evidence from the disaster site before the cleaning of the rubble and
debris starts. Upon completing their job, they either depart via the
airport or volunteer to help the DROs.

usrt After arriving and registering at the airport, they go to the
OSOCC for a situation briefing and search and rescue operation (SRO)
planning. When starting an SRO, USRTs go to the chosen location inSearch-and-rescue

missions
systematically move

through an area.

the morning and then search every house in that street. When done,
they repeat with the next street in the direct neighborhood. Usually,
SROs are stopped after one week as the chances to find survivors
diminish, and USRTs fly back home.

healthy local population According to eyewitnesses, most
locals stay at home or try to find friends and family members within
the immediate surroundings after the disaster has struck. Later onLocals mostly occupy

themselves with
helping in their
neighborhood or

move to a food and
water distribution

point.

the first day, they stay in the proximity of their homes to assess the
damage and to help their neighbors. Then, they start to look for food
and water, for example, at distribution centers where they will return
daily. The rest of the day, they either volunteer for cleaning operations
(we model this by slowly roaming around the city), or as replacement
of security personnel to patrol the area.

injured local population The injured either head to the clos-The injured either
stay at home or a

hospital.
est hospital or stay at home if they are unable to move. Upon arrival,
they stay at the hospital if the hospital’s capacity is not exhausted and,
otherwise, leave to find another one.

3.2.3 Characteristics

We want to visually validate our natural disaster (ND) and compare
it with two other widely-used models: the random waypoint (RWP)

3.2 human mobility model 27

(a) RWP (b) Map-based RWP (c) Natural Disaster

OSOCC
Airport
Town Hall
Hospital
Base Camp
Food/Water
Burial Site

(d) Reference map

Figure 2: Spatial node distribution in different mobility models averaged over seven days. We
sample the node counts from a grid of 10 × 10 m squares. Circle sizes and colors (dark to
bright) scale logarithmically with node count to highlight hot spots.

mobility model [29] and a map-based RWP model (Map) [16] where We implement a
mobility model based
on this expert
knowledge in a
simulator.

waypoint selection is still random, but node movement is confined to a
street grid. For the following evaluation, we rely on the ONE simulator
v1.6.0 [104]. We average the experimental results over ten indepen-
dently seeded runs. The model’s source code and our experiment data
set are available online (Appendix C.5)

We are interested in the spatial node distribution and encounters
that occur during a disaster since they both affect the applicability of a We want to

characterize the
mobility patterns of
our model.

DTN. Node hot spots can function as communication hubs where mes-
sages are quickly exchanged, while nodes that have many encounters
can act as “data mules” and transport messages over larger distances.

spatial node distribution We visualize the spatial node dis-
tribution of the three mobility models using a scatter-plot heatmap
in Figure 2. In Figure 2a, we identify the typical non-uniform center- The RWP mobility

model yields
unrealistic node
distributions as
expected.

weighted distribution [29] of the RWP model. From a practical perspec-
tive, this means that nodes are moving across inaccessible areas, for
example, a bay. In contrast, Map and ND (Figures 2b and 2c) essentially
“redraw” the underlying street grid. Here, the nodes’ movements are
confined to streets and paths and are thus no longer moving across wa-
ter. However, node distribution in Map across streets appears generally Our model has

frequently visited
POIs.

uniform. There are only minor hot spots at street intersections, which
we expect since movement trajectories cross there. In general, nodes
are located with similar probabilities at any point in the map. Figure 2c
shows that ND exhibits characteristic hot spots that are mappable to
certain point of interests (POIs) in the street map (Figure 2d), where
many nodes stay for a longer period. Most prevalent are the locations
of the OSOCC and the base camp as DRTs and officials frequent them.
Also, we identify other hot spots at the city hall and the food and
water distribution points. Unfortunately, the ONE does not support

28 emergency scenario

0 100 200 300 400 500
Node ID

0

1000

2000

3000

4000

En
co

un
te

rs

Sc
ie

nt
is

ts

In
ju

re
d

P.

H
ea

lt
hy

P.

U
SR

Ts

G
ov

t.
O

ff
.

U
N

O
ff

.

D
R

O
s

ND
Map
RWP

Figure 3: Number of encounters per node over one week.

removing nodes from a running simulation. As a workaround, inactive
nodes, i. e., those that have not yet arrived and those that have already
left, stay at the airport. The hot spots around the airport can, therefore,
be considered an artifact.

encounters An encounter is a transmission opportunity that oc-
curs if two nodes move in each other’s transmission range. DTNsAn encounter is an

event where two
nodes move into

transmission range
of one another.

performance highly depends on the number of encounters a node
makes while moving around. For example: if a node encounters the
destination of any currently carried message, it can directly deliver
it. The advantage of direct delivery is that it prevents the replication
overhead to intermediate nodes in the form of radio transmissions and
storage consumption. So, in a scenario where communicating parties
are generally physically close to one another, or at least meet regu-
larly, a DTN deployment could exclusively rely on direct deliveries.
Therefore, assessing the encounter characteristics of the underlyingThe encounter

frequency is highly
dependent on the

nodes’ roles.

mobility model is essential to understand which protocols are suitable
for a natural disaster scenario. In Figure 3, we observe that in ND,
the local population groups (healthy and injured) make significantly
fewer contacts than the other groups. Especially the injured encounter
very few other nodes. On the other hand, DRO teams and govern-
ment and UN officials make significantly more contacts due to regular
meetings at the OSOCC, in the town hall, and the base camps. In the
RWP and Map models, the number of encounters solely depends on
the average velocity of the user role. For example, injured as well asNode in RWP

experience generally
few encounters as
their movement is

not confined to the
street grid.

heavily equipped USRTs move slower than the other groups. The low
node density can explain the generally low number of encounters of
RWP in combination with the low transmission range: as the nodes
freely move around the large area, nodes only infrequently move into
each other’s transmission range.

Part II

N E I G H B O R C O M M U N I C AT I O N

4
A H A C K E R ’ S G U I D E T O A P P L E ’ S W I R E L E S S
E C O S Y S T E M

The goal of this chapter is to provide a structured way to conduct
reverse engineering1 of Apple wireless protocols while using practical
examples from our analysis of Apple Wireless Direct Link (AWDL)
and AirDrop. First, we show useful vantage points and present ser- We provide

actionable advice on
how to approach
reverse engineering.

vices in Apple’s wireless ecosystem. We explain the binary analysis
methodology and share our insights on dynamic analysis. Then, we
explain how to access security key material of Apple services and,
finally, discuss the applicability of our methodology to other protocols
in Apple’s ecosystem. All services that we analyzed in this thesis are
available on both macOS and iOS. Since we found macOS to be much
more open and accessible than iOS, we used macOS as the platform
that we analyzed.

4.1 vantage points

We approach protocol analysis from different vantage points that we
depict in Figure 4. Static (1) binary analysis is extremely hard to con- Multiple vantage

points allow us to
change perspective.

duct as each protocol is implemented across multiple components
(frameworks and daemons). Therefore, during the initial stages, it is
useful to monitor the (2) system as a whole to identify key components

1 A hacker is a curious individual who wants to understand the technical details of
a (potentially proprietary and closed-source) system to achieve interoperability or
conduct a security analysis.

Security

sharingdSharing

bluetoothd

IOBluetooth
Family

IO80211
Family

Keychain

Wireless
Proximity

wirelessproxd

Network InterfacesPersistent Data

mDNSResponder

Foundation
(NetService)

CoreBluetooth

System

Binary

Figure 4: Vantage points that we used during our analysis. We provide
a simplified view of components and their interactions such as
daemons (), frameworks (), and drivers () that are used by
AWDL and AirDrop.

31

32 a hacker’s guide to apple’s wireless ecosystem

that can thoroughly be examined subsequently. Also, data transmitted
via (3) network interfaces is easily accessible using monitoring tools and
is tremendously useful for dynamic analysis. We found that the abil-
ity to retrieve and use (4) persistent data, especially from the system’s
keychain, is essential for building prototypes and, thus, validating find-
ings. Finally, any available (5) documentation (not shown in Figure 4)
such as patents [184, 185] or Apple’s iOS security white paper [12] can
be helpful for an initial assessment and understanding some design
elements of the service. Having those multiple vantage points at hand
enables us to harness more information, to change perspective if we
get stuck (e. g., when encountering encrypted traffic), and to resume
analysis at a later point (e. g., after extracting the decryption keys). We
elaborate on the four vantage points in Figure 4 in the following.

4.2 binary analysis

We analyzed numerous binaries related to AWDL to find those parts
that implement the protocol finally. We first illustrate our selection
process and then discuss the two-part Wi-Fi driver, which implements
most of the AWDL protocol stack. We focus our analysis on macOS and
assume that the architecture is, in principle, similar to that of iOS as
the two operating systems (OSs) share a large common codebase [11].

4.2.1 Binary Landscape

Understanding and navigating the binary landscape of macOS is
important to find and relate components of interest.

frameworks and daemons Apple excessively uses frameworks
and daemons in its OSs. Consequently, numerous dependencies result
in a complex binary selection process.

Frameworks offer an API to their corresponding singleton daemons
and can be used by other daemons and processes. Daemons and their
respective frameworks typically have a similar name (e. g., sharingd
and Sharing) or share a derived prefix (e. g., searchpartyd, SPFinder,
and SPOwner). We list the locations in the file system in the following.
/System/Library/Frameworks contains frameworks with public documen-A single service

implementation can
be scattered across

multiple daemons
and frameworks.

tation2 such as Security. /System/Library/PrivateFrameworks contains
other frameworks such as Sharing. /usr/libexec and /usr/sbin contain
most daemons such as sharingd, however, some are also shipped in
their respective framework. /usr/lib and /usr/lib/system contain low-
level libraries such as CoreCrypto.

drivers The Wi-Fi driver is a kernel extension and, therefore,
resides in /System/Library/Extensions. The driver is split up into a

2 https://developer.apple.com/documentation

https://developer.apple.com/documentation

4.2 binary analysis 33

kernel extension size (kb)

com.apple.iokit.IO80211Family 1012

com.apple.filesystems.apfs 1032

com.apple.driver.DspFuncLib 1284

com.apple.driver.AppleIntelBDWGraphicsFramebuffer 1624

com.apple.driver.AirPort.BrcmNIC 7920

Table 5: Largest kernel extensions in macOS 10.14.6 loaded on a MacBook
Pro 13" (Late 2015) according to the output of kextstat.

generic component (IO80211Family) and chip-specific plugins (such
as AirportBrcmNIC).

4.2.2 Binary Selection

The purpose of the initial selection process is to identify binaries that
may contain relevant code and, thus, sets the scope for the analysis
project. To start this process, we can use the system’s logging facility Finding all relevant

binaries involves
crawling through
dependencies.

(see Section 4.3.1) to monitor for processes that become active when
starting a certain system function (e. g., AirDrop). If we identify at
least one daemon process, we can crawl through its dependencies
recursively by running otool -L to find related frameworks and li-
braries.

We show part of the discovered dependencies and interactions
found for AWDL and AirDrop in Figure 4. While there are user- AWDL and AirDrop

are implemented in
different parts of the
system.

facing binaries such as the sharingd daemon which implements the
AirDrop protocol, the most relevant binaries regarding AWDL reside
in the kernel, in particular, the generic Wi-Fi driver IO80211Family

and the device-specific plugin AirportBrcmNIC. Each of them includes
hundreds of AWDL-related functions, suggesting that the bulk of the
protocol stack is implemented here. We found that IO80211Family

takes care of most of the AWDL frame parsing and creation as well
as maintaining the AWDL state machine. The device-specific driver
handles time-critical functions such as synchronization.

4.2.3 Interesting Functions and Code Segments

Due to the size of most binaries that we analyzed, such as the Wi-Fi
driver (see Table 5), it is infeasible to analyze the entire program.
Instead, it makes sense to identify functions of interest, e. g., those We look for function

names and debug
strings to identify
interesting code
segments.

that implement parts of AWDL. Fortunately, Apple does not strip
symbol names from (most of) their binaries, such that the symbol table
provides useful information and, e. g., lists function names including
“awdl.” Some of those symbols additionally contain “parse” in their

34 a hacker’s guide to apple’s wireless ecosystem

name (e. g., parseAwdlSyncTreeTLV), which helped us understand the
calculation of some type-length-value (TLV) fields. Furthermore, de-
bug log statements give hints about the purpose of a code segment
inside a function. Therefore, we can search for debugging strings
(using strings) and their cross-references to find details such as the
misalignment threshold in Section 5.2.3.

4.2.4 Leaked Source Code

As one source of information, we used the leaked source code of a
dated Broadcom Wi-Fi driver [36]. While leaked code is often not
available, we can opportunistically use it to advance our analysis. We
found several references to AWDL in the source code, but none of the
core functionality. We suspect that Broadcom uses a modular firmware
concept with one central repository for a wide range of features.
Individual features such as AWDL are made available selectively to
their customers, such as Apple. More important than the references toWe found several

AWDL-related C
structs in leaked

driver source code.

AWDL are some C structs found in the source code. These include key
structures such as the Synchronization Parameters TLV and Channel
Sequence TLV (more in Section 5.1). The leaked code also contains the
source code for the wl utility, which provides debugging features for
the driver and is further discussed in Section 4.3.

4.2.5 Dissecting Structures

To understand the driver’s functions, we needed to reconstruct the
underlying data structures. The leaked source code shows that most
of the AWDL-related functions use an awdl_info struct as a first
parameter. The wlc_dump_awdl function prints internal data in a read-
able format and, thus, was an ideal target to reconstruct the internal
structures from individual bcm_bprintf statements as shown below:

1 bcm_bprintf(a2, "AWDL master home channel = %d\n",

2 awdl_info->master_home_channel);

4.3 system logging

The complete protocol operation is difficult to comprehend with binary
analysis alone. We complemented our static analysis with a dynamic
approach to understand, e. g., the semantics of synchronization and
election in AWDL. In this section, we discuss dedicated macOS log-macOS comes with

several powerful
logging facilities.

ging and debugging facilities that helped during our analyses. In
particular, we used the Console application, the ioctl interface, Broad-
com’s leaked wl utility, as well as Apple’s undocumented CoreCapture
framework.

4.3 system logging 35

4.3.1 Console

The Console aggregates all system and application logs since macOS 10.12

and includes debug messages from the kernel. Alternatively, one can
use the log command-line tool to access the same information.

filtering for interesting output It is possible to filter log-
ging output, e. g., by process or subsystem. The predicate-based filtering
is described in detail on the man page of log. For example, we can use

1 log stream --predicate "process == ’sharingd’ AND

2 category == ’AirDrop’"

to get information about AirDrop, e. g., it involves AWDL and Bonjour.

1 sharingd: [com.apple.sharing:AirDrop] Bonjour discovered

2 e275c6497b6c over awdl0 in 12793 ms

increasing log level While the --level debug flag will in-
crease the log verbosity of processes that make use of os_log, some
components use other means. To receive verbose output from the Wi-Fi There are several

ways to increase the
logging verbosity.

driver, we increased the log level using custom boot arguments, which
we found by searching for references to the PE_parse_boot_arg func-
tion in the Wi-Fi driver. We found that the following boot arguments
maximize the driver’s debug output:

1 nvram boot-args="debug=0x10000 \

2 awdl_log_flags=0xffffffffffffffff \

3 awdl_log_flags_verbose=0xffffffffffffffff \

4 awdl_log_flags_config=1 wlan.debug.enable=0xff"

With the increased log level, log shows additional information such as
state transitions (“low power” mode), the access point (AP) channel
that the device is connected to (100), and the current channel sequence:

1 kernel: (IO80211Family) com.apple.p2p: AWDL ON: [infra(100) 72%],

2 (6/44/44) [44 0 0 0 0 0 0 0 6 44 44 0 0 0 0 0] Low Power

4.3.2 CoreCapture

CoreCapture is Apple’s primary logging and tracing framework for
Wi-Fi on iOS and macOS. CoreCapture combines raw protocol traces
with traditional log entries and provides snapshots of the device and
driver state. CoreCapture is undocumented but was referenced in a Apple’s

CoreCapture is a
dedicated Wi-Fi
logging and
debugging
framework.

dumpPacket function that we found in the driver. Since the framework
outputs (among other logs and memory dumps) numerous PCAP trace
files with a custom header format, David Kreitschmann wrote a Wire-
shark dissector for CoreCapture that is available online (Appendix C.1).
In addition, David published a manual for CoreCapture [109].

36 a hacker’s guide to apple’s wireless ecosystem

4.3.3 Broadcom ioctl Interface

ioctl system calls are a standard way to communicate with devices
on Unix-based systems. Apple uses ioctls to configure wireless in-
terfaces such as associating with an AP or creating an independent
basic service set (IBSS). Apple provides the header files with the re-
quest format, the available request types, and the data structures for
macOS 10.5. These old header files can be brought up to date using
information from the binary analysis. The apple80211VirtualRequest

method contains calls to all handler functions. Out of the available
72 request IDs, 40 relate to AWDL. These requests can set several
parameters in the driver. Especially useful is the card-specific ioctl.
It allows wrapping a Broadcom-specific ioctl inside an Apple ioctl,
providing us with a direct interface with the Broadcom driver.

The Broadcom wl utility found in the leaked source code (Sec-
tion 4.2.4) uses those ioctls to provide several methods to access
private information about AWDL operations, which are directly re-
lated to the structures found during binary analysis. Although theWe can access

AWDL state
information at
runtime using

ioctl.

AWDL-specific driver code was missing in the leaked source code, the
wl source code contains AWDL related commands and structures. The
tool was adapted for macOS by Matthias Schulz using the vendor-
specific ioctl command in Apple’s ioctl interface. In essence, wl facili-
tates querying the current AWDL driver status using commands such
as dump awdl_advertisers, which shows information about neighbor-
ing nodes, including received signal strength indication (RSSI).

Note that it is no longer possible to send Broadcom-specific ioctl

commands since Apple fixed our reported vulnerability. It enabled
any local user to issue ioctls (Appendix B.9). The driver now checks
for a private entitlement security permissions [7] (com.apple.driver
.AirPort.Broadcom.ioctl-access) which requires a binary signed
with an Apple private key. We were able to restore ioctl access
and, thus, circumvent Apple’s check. This involved overwriting the
respective permission-checking function in the driver using a kernel
extension patching framework [188] and disabling System Integrity
Protection [6] on macOS.

4.4 network interfaces

Monitoring the Wi-Fi and Bluetooth network interfaces are a quick way
to gather information about a particular service. For example, we can
identify known protocols, whether encryption is used, or determine
whether we are dealing with an undocumented protocol. In addition,Traffic analysis

provides a quick look
at the protocol stack
used by a particular

service.

we can learn the active wireless communication channels, the timings
of packet transmissions, generally monitor the dynamics of a protocol.
In the following, we discuss those tools that we have found to be
particularly useful for this purpose.

4.4 network interfaces 37

Figure 5: Screenshot of our AWDL Wireshark dissector.

4.4.1 Wireshark

Wireshark3 is an open-source network protocol analyzer and supports
many standardized but also proprietary protocols. While Wireshark
identifies known protocols from network traces, it is also possible to
implement custom dissectors. We found that writing such a custom Writing custom

dissectors while
reverse engineering
has many benefits.

dissector in parallel to the reverse engineering process serves multiple
purposes: (1) We iteratively document and validate our findings. (2) It
helps to deduce the semantics of certain fields that become apparent
in longer time series traces such as monotonically increasing counter
or timing fields. (3) It can be used to evaluate experiments such as
those in Chapters 5 and 7 by exporting time series data via tshark.
And (4) at the end of the project, we can directly publish the code
to allow reuse by others, which is what we did with our Wireshark
dissector for AWDL (Appendix C.1). We show a screenshot of the final
dissector in Figure 5.

3 https://www.wireshark.org

https://www.wireshark.org

38 a hacker’s guide to apple’s wireless ecosystem

4.4.2 Bluetooth Explorer and Packet Logger

Apple ships two Bluetooth debugging tools in the Additional Tools for
Xcode package.4 The Bluetooth Explorer displays nearby Bluetooth Low
Energy (BLE) devices and their advertisements in real-time. Apple
devices use these advertisements excessively to announce the availabil-
ity of services such as AirDrop [129]. PacketLogger, on the other hand,
creates network traces for Bluetooth HCI commands. Wireshark sup-
ports PacketLogger-recorded .pklg files, which allow for convenient
analysis of Bluetooth traces.

4.4.3 InternalBlue

The InternalBlue experimentation framework [127] allows accessing
the lower layers of the Bluetooth protocol stack and, thereby, exceeds
the capabilities of Packet Logger. InternalBlue operates by patchingInternalBlue can

access the lower
layers of the

Bluetooth protocol
stack.

the firmware of the Bluetooth chip and runs on Linux, Android,
and jailbroken iOS devices. While we have not used InternalBlue in
this thesis, we list it here as it could support analyzing proprietary
Bluetooth extensions.

4.4.4 Machine-in-the-Middle Proxy

Encrypted traffic can prohibit us from examining the interesting parts
of the protocols. While we could instrument the daemon process
and extract packets before transmission (which requires identifying
functions that perform those operations), it can be easier to employ
machine-in-the-middle (MitM) proxy tools to open the end-to-end
encryption, such as of HTTPS [45]. Unfortunately, a MitM proxy isHTTPS MitM

proxies are not
always successful.

not always successful in intercepting a connection with self-signed
certificates, e. g., when certificate pinning is used, so it can be helpful
to extract private keys and certificates from the system’s keychain.

4.4.5 Custom Prototypes

In an advanced stage of the process, we have collected sufficient
information to re-implement (part of) the protocol and, thus, are
able to interact with the target devices actively. In particular, a custom
prototype enables us (1) to validate the correctness of our findings, e. g.,Custom prototypes

support the reverse
engineering and

security analyses by
interacting with

target devices.

if other devices start interacting with our prototype, we can conclude
that the frame format is correct, (2) to find out more details about
the protocol, e. g., we could determine in which availability windows
(AWs) nodes would transmit unicast and multicast frames (Section 5.2),
and (3) to conduct protocol fuzzing as part of the security analysis, e. g.,

4 https://developer.apple.com/download/more/?=additional%20tools%20xcode

https://developer.apple.com/download/more/?=additional%20tools%20xcode

4.5 keychains 39

we found two parsing-related vulnerabilities in AWDL (Section 7.3).
The repository links to our AWDL and AirDrop implementations can
be found in Appendices C.2 and C.3, respectively.

4.5 keychains

Access to private keys and other secure data that is used by a particular
service or protocol is highly useful to make educated assumptions
about what security mechanisms might be employed. In addition,
extracting key material is important to build and test prototypes that
prove or disprove working hypotheses, e. g., verifying the requirements
for an authenticated AirDrop connection (Section 6.3).

4.5.1 Login and iCloud Keychains

In macOS 10.14, there are two types of keychains known as login and
iCloud keychain, respectively. The former is only stored locally on
the computer. Also, we believe that Apple is going to deprecate this
keychain soon as Apple has made efforts to unify their macOS and
iOS codebases [11] and has been moving keychain items for AirDrop
from the login to the iCloud keychain. The iCloud keychain was first macOS currently

still uses two
different keychains.

introduced in iOS and has since been ported to macOS as well. This
keychain provides more features such as protection classes, optional
synchronization between devices, and improved access control [12].
The Keychain Access application is a GUI for displaying and working
with either keychain. However, we have found that not all keychain
items (e. g., those used by some system services) are displayed.

4.5.2 Security Framework

Fortunately, Apple provides a documented API for accessing key-
chains via the Security framework, which additionally is open-source.5

For our purposes, the SecItemCopyMatching function6 is particularly
interesting as it allows retrieving items such as keys from the keychain.
The function requires some query parameters to narrow down the
items it should return. To get the relevant query parameters of a target The public Security

framework API is
used to access
private keys and
certificates stored in
the keychain.

program, we can either statically analyze the binary by searching
for references to SecItemCopyMatching or monitor the process and
extract the parameters at runtime using a debugger. In the case of
AirDrop, the query consists of three keys: kSecClass, kSecReturnRef,
and kSecValuePersistentRef. The value of the latter is a serialized
object containing all information required to locate a particular item
in the keychain.

5 https://opensource.apple.com/source/Security/

6 https://developer.apple.com/documentation/security/

1398306-secitemcopymatching

https://opensource.apple.com/source/Security/
https://developer.apple.com/documentation/security/1398306-secitemcopymatching
https://developer.apple.com/documentation/security/1398306-secitemcopymatching

40 a hacker’s guide to apple’s wireless ecosystem

service daemon ble awdl infra

AirDrop sharingd ✓ ✓ ✗

Wi-Fi Password Sharing ✓ ✗ ✗

Instant Hotspot ✓ ✗ ✗

Auto Unlock sharingd ✓ ✓ ✗

AirPlay and AirPlay 2 ✗ ✓ ✓

Handoff useractivityd ✓ ✓ ✓

Universal Clipboard useractivityd ✓ ✓ ✓

iPhone Cellular Calls ✓ ✗ ✓

Find My Offline searchpartyd ✓ ✗ ✓

Table 6: Selection of Apple’s Continuity services, the main daemons that
implement them, and employed wireless technologies. A blank field
indicates ‘unknown.’

4.5.3 Accessing Keys of Apple Services

As a security measure, programs not signed by Apple will not get any
results even when using the correct query parameters as Apple usesWe can extract key

material from Apple
services by disabling

some security
mechanisms.

code signing to implement access control to keychain items. To circum-
vent this measure, we (1) need to set the correct keychain-access-group
entitlement (com.apple.sharing.appleidauthentication in case of
AirDrop or simply the * wildcard) during code signing and (2) disable
Apple Mobile File Integrity (AMFI) which prevents program with
restricted entitlements from starting by setting the following as a boot
argument: amfi_get_out_of_my_way=1.

4.6 discussion and summary

Apart from AWDL and AirDrop, we have also successfully applied
the vantage points presented in the chapter to other services7 within
Apple’s wireless ecosystem. In the following, we give a brief outlook
on our current work-in-progress projects. We present the initial results
of identifying the key binaries and wireless technologies used within
other Apple protocols in Table 6. In particular, we want to highlightWe have started to

apply our
methodologies to

other Apple
protocols.

that Auto Unlock [105] (providing automatic macOS login when an
Apple Watch is nearby) uses the sharingd daemon process to bootstrap
the unlock procedure. However, it implements a custom distance
bounding protocol in the Wi-Fi driver where we could make use of
the logging facilities such as CoreCapture. Another example is our
ongoing work on the privacy-preserving Find My service introduced
in iOS 13 and macOS 10.15 that implements a crowd-sourced location

7 https://www.apple.com/macos/continuity/

https://www.apple.com/macos/continuity/

4.6 discussion and summary 41

tracking system. By monitoring the Bluetooth interface, we were able
to determine the address randomization interval. Also, we know that
the searchpartyuseragent daemon connects to Apple servers, so we
can make use of an HTTPS MitM proxy to intercept the messages. Our
systematic approach on how to apply novel and existing methods and
tools has proven effective. We believe and hope that others will benefit
from our experience.

5
A P P L E W I R E L E S S D I R E C T L I N K

Apple Wireless Direct Link (AWDL) is a proprietary protocol deployed
in Apple’s main product families such as Mac, iPhone, iPad, Apple
Watch, and Apple TV—effectively all recent Apple devices containing
a Wi-Fi chip. Apple does not advertise the protocol but only vaguely AWDL has a key role

in many of Apple’s
wireless services.

refers to it as a “peer-to-peer Wi-Fi” technology [12, 13]. Yet, it em-
powers popular applications such as AirDrop that transparently use
AWDL without the user noticing.

AWDL is based on the IEEE 802.11 standard and makes use of
vendor-specific extensions that allow custom protocol implementa-
tions. Each AWDL node periodically emits custom action frames Synchronized

channel hopping
enables “concurrent”
infrastructure and
direct neighbor
connection.

containing a sequence of availability windows (AWs) indicating its
readiness to communicate with other AWDL nodes. An elected master
node synchronizes these sequences. Within these AWs, nodes can
communicate with their neighbors using a dedicated data frame for-
mat. Outside the AWs, nodes can tune their Wi-Fi radio to a different
channel to communicate with an access point, or turn it off to save
energy.

In this chapter, we present the results of analyzing and re-imple-
menting this protocol using the methods described in Chapter 4. We
first present the frame format and explain the operation in detail.
Then, we introduce our implementation and conduct an experimental
evaluation of the protocol. Finally, we discuss our findings.

5.1 frame format

We discovered two general frame types used by AWDL: action and data AWDL introduces
two custom frame
types.

frames that enable coordination and direct data transfer, respectively.
We elaborate on the format of these frame types in the following. Our
Wireshark dissector contains more details (Appendix C.1).

5.1.1 Action Frames

AWDL uses IEEE 802.11 vendor-specific action frames (AFs), which
generally allow vendors with an organizational unique identifier
(OUI) to augment IEEE 802.11 frames with arbitrary payloads [95].
The AWDL vendor-specific extension consists of a fixed-sized header
and multiple variable-length tags, as shown in Figure 6. A tag has a
type-length-value (TLV) structure that consists of a 1-byte type field,
followed by a 2-byte length field that indicates the length of the subse-
quent value byte string. The fixed header includes the AWDL-specific

43

44 apple wireless direct link

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Type/subtype (Action) Duration (0)

Destination address

Source address

BSSID (00:25:00:ff:94:73)

Sequence/fragment number

Category (127) OUI (00:17:f2)

IEEE 802.11

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Type (8) Version (1.0) Subtype (0 or 3) Reserved (0)

PHY transmission time TTx,PHY (in µs)

Target transmission time TTx,Target (in µs)

Tag: synchronization parameters

...

Tag: see Table 7 for all types

AWDL

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Figure 6: AWDL action frame format.

basic service set identifier (BSSID), OUI, version, and subtype. TheTwo timestamps in
the header

compensate for the
transmission delay.

timestamp TTx,Target indicates when the frame was created and, there-
fore, at which time the included information was up-to-date; while
TTx,PHY is the time when the frame was queued for transmission. Their
difference approximates the sender’s transmission delay and is used
for synchronization purposes. There are two AWDL AF subtypes:
periodic synchronization frames (PSFs) and master indication frames
(MIFs). These frame types have the same fixed header and differ only
in the included set of tags. We show the frame format, excluding the
frame check sequence (FCS) at the end of the frame in Figure 6. We
first explain the purpose of the subtypes and then discuss tags used
in AWDL.

periodic synchronization frame The PSF (subtype 0) allows
for neighbor discovery and synchronization that we further explain in
Section 5.2.3. We found the name in a patent [184]. If all participating
devices support the 5 GHz band, the PSF is the only frame type also
seen on the 2.4 GHz band. PSFs transmissions are scheduled at a fixed
time interval that is unaligned to AWs.

master indication frame The MIF (subtype 3) has multiple
purposes, such as election (Section 5.2.2) and service discovery (Sec-
tion 5.2.5). It includes more tags and is sent by all devices in the
network regularly. Also, MIFs transmissions are aligned to AWs, as
we show in Section 5.4.4.

5.1 frame format 45

name type psf mif purpose

Synchronization parameters 4 ✓ ✓
Election and
synchronization
(Sections 5.2.2
and 5.2.3)

Channel sequence 18 ✓ ✓

Election parameters 5 ✓ ✓

Election parameters v2 24 ✓ ✓

Synchronization tree 20 ✓ ✓

Data path state 12 ✓ ✓
Data transfer
(Section 5.2.4)HT capabilities 7 ✓

VHT capabilities 17 ✓

Service parameters 6 ✓ ✓ Service
discovery
(Section 5.2.5)

Service response 2 ✓+

Arpa (reverse DNS) 16 ✓

Version 21 ✓ ✓ Compatibility

Table 7: Tags used in AWDL. We give the name and type value of a tag
grouped by purpose, indicate whether it is included in PSFs or MIFs
(✓) and whether it may be present multiple times (+).

tags Tags contain the actual control information. The different
types are attributable to one of the following purposes: election and
synchronization, data transfer, and service discovery. In addition, the ver-
sion tag provides a 1-byte version number that presumably supersedes
the version field in the fixed header (see Figure 6). We summarize all There are at least 24

different tag
types—but only
some of them are
used in practice.

tags in Table 7 and discuss them briefly in the following. We found
the names in function names and debugging strings during binary
analysis. We discuss only some tags in detail in this paper and refer to
our Wireshark dissector for the full specification. We omit some type
values found in the binaries (e. g., 1, 3, and 8) as the anaylzed AWDL
versions did not use them and, thus, appear to be deprecated.

The election and synchronization processes handle the cooperation of
the devices. The respective tags determine, e. g., which node takes
the master role and which channels are to be used. Curiously, the Some tags contain

redundant
information.

synchronization parameters tag includes its own channel sequence, so
the separate channel sequence tag appears to be redundant. However,
it was always transmitted on current operating system (OS) versions.
The data transfer components are used to negotiate the parameters for
direct connections between devices. For example, the HT/VHT capa-
bilities tags include supported PHY rates and are similar to the ones
introduced in the IEEE 802.11n and 11ac amendments [95]. In the data We are unable to

understand every
design decision.

path state tag, each peer announces the BSSID of the Wi-Fi network
that it is currently connected to and the real medium access control
(MAC) address of the Wi-Fi chip. We believe that this information
could be used to offload an AWDL connection to an infrastructure

46 apple wireless direct link

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Type/subtype (Data) (as in Figure 6)IEEE 802.11
{︂

DSAP (0xaa) SSAP (0xaa) Ctrl. (0x03) OUI

(00:17:f2) Protocol ID (0x0800)
LLC

{︄
Magic bytes (0x0304) Sequence number

Reserved (0) EtherType (0x86dd)
AWDL

{︄

IPv6 header and payload

Figure 7: AWDL data frame format.

network if both peers are connected to the same network. However,
this would require additional reachability tests due to network poli-
cies such as client isolation, and we did not observe such behavior
in practice. The service discovery components offload multicast DNS
(mDNS) and DNS-SD functionality to the AFs. For example, the Arpa
tag contains the hostname and a service response tag that can be a
PTR, SRV, or TXT resource record. The version tag includes the AWDLThere are four major

AWDL versions. version (half a byte for major and minor version number each) as well
as a device class ID. We found that v4.0 is used in macOS 10.15 and
iOS 13; v3.x in macOS 10.13 and iOS 11; and v2.x in macOS 10.12 and
iOS 10 (and potentially prior iOS versions). AWDL v1.x is used in
macOS 10.11, which does not support the version tag. The device class
seems to indicate the OS type of the node, e. g., macOS (1), iOS or
watchOS (2), or tvOS (8).

5.1.2 Data Frames

AWDL uses IEEE 802.11 data frames for data transmission. The To-DS
and From-DS flags in the IEEE 802.11 header are set to zero, similar to
independent basic service set (IBSS). Consequently, these frames use
direct addressing, and the three address fields contain the destination,
source, and BSSID. We depict the AWDL data frame format in Figure 7.
The BSSID in AWDL frames is always 00:25:00:ff:94:73, which
belongs to the OUI 00:25:00 that is assigned to Apple [96]. The LLCAWDL adds a

vendor-specific
header to

IEEE 802.11 frames.

header contains a different Apple OUI (00:17:f2) and a protocol ID
in the SNAP part. These headers are part of the IEEE 802 standard
[94] and allow vendors to implement custom protocols on higher
layers. The actual AWDL data header essentially consists of a sequence
number and the EtherType of the transported protocol. We identified
IPv6 as the only protocol used with AWDL.

5.2 operation 47

5.1.3 Addressing for Higher-Layer Protocols

AWDL is used in conjunction with higher-layer protocols. Therefore,
it needs some way to address AWDL nodes via a network layer
protocol. This is especially important because AWDL implements IPv6 addresses of

neighbors are derived
from their MAC
addresses which
makes NDP
expendable.

privacy-enhancing MAC randomization, i. e., instead of using the Wi-
Fi chip’s fixed MAC address, it generates a random address every
time the interface is activated. In IPv6, address resolution is usually
achieved via the Neighbor Discovery Protocol (NDP). Apple, how-
ever, does not use NDP for AWDL, but instead generates link-local
IPv6 addresses from the source address field contained in the AFs
(Figure 6) using the method described in RFC 4291 [82, Appendix A].
This method constructs a link-local IPv6 address based on the MAC
address of the network interface. In particular, given a 48-bit MAC Deriving an IPv6

address from a MAC
address is a
standardized method.

address o0:1:o2:o3:o4:o5, the corresponding link-local IPv6 address
is constructed as:

1 fe:80::o0^0x02:o1:o2:ff:fe:o3:o4:o5

where ^ is the XOR operator. Nodes use this standardized method to
add their neighbors to the neighbor table immediately after receiving
the first AF without the need or overhead of an additional address
resolution protocol such as NDP or Address Resolution Protocol
(ARP).

5.2 operation

Based on our analysis, we formulate hypotheses regarding the goals
and decisions of AWDL’s design: (1) leverage existing hardware (Wi-Fi
chip), thus building the protocol on top of IEEE 802.11; (2) conserve
energy, especially on mobile devices, hence synchronizing and putting
the Wi-Fi chip into a power-saving mode during idle times; (3) allow
seamless operation of direct and infrastructure-based communication,
so enable synchronized channel hopping without disconnecting from
an AP; and (4) enable fast service discovery, thus offloading DNS-SD
to Wi-Fi frames. Commodity Wi-Fi chips usually have a single RF
chain and are, therefore, restricted to a single wireless channel at
any given time. For using multiple channels, an adapter needs to
switch channels and cannot use the regular wireless connection for
short periods of time. This is expected behavior for roaming (scan for
available networks while being connected to a network) and power
saving features (switch off the radio). As the periods are short, devices
need a method for discovery and coordination when to meet on
which channel. In the following, we explain the five AWDL phases
(1) activation, (2) master election, (3) synchronization, (4) data transfer,
and (5) service discovery.

48 apple wireless direct link

5.2.1 Activation

Apple uses AWDL as an on-demand communication technology. This
means that AWDL is inactive by default, but applications can (tem-
porarily) request activation. There are several possible triggers. ForAn external trigger

activates AWDL. example: AirDrop uses Bluetooth Low Energy (BLE) for activation by
sending truncated hashes of the user’s contact information (which
we discuss in detail in Chapter 6). AirPlay receivers (Apple TV) con-
stantly announce their presence via AWDL. And third-party applica-
tion may activate the interface indirectly by advertising services via
the NSNetService API [13].

5.2.2 Election

Apple uses three social channels (6 in the 2.4 GHz band and 44 or 149

in the 5 GHz band, depending on the country) for all communication.
A node starting its AWDL interface monitors the social channels for
some time to discover other nodes in range. If AWDL AFs are received,Nodes from a cluster

with a single master. the node can adopt an existing master, thus, joining an existing cluster.
If no frames are received, it assumes the master role itself. In the
following, we explain the master election process and the tree-based
synchronization structure. In particular, we focus on the mechanisms
that make AWDL robust to master nodes leaving or joining the cluster.

role of the master node AWDL relies on roughly synchronous
clocks of all participating nodes in a cluster to enable data transfer.
To achieve this, it is paramount that there is exactly one node in the
cluster that has the responsibility of emitting a “clock signal.” This is
the one and, as far as we know, only role of the master node. All other
nodes in the cluster are called slaves and should adopt this signal. InThe master node

emits a clock signal. a simple scenario with only two nodes, one node will be the master
and another a slave. In larger scenarios, slave nodes might be more
than one hop away from the master node. In such cases, intermediate
slave nodes will take the role of non-election masters, which have the
responsibility to repeat the master’s clock signal. The synchronization
tree tag includes the intermediate master nodes. In particular, each
node announces the path to the root, which we call top master. In any
case, there is only one top master in a cluster.

master metric Who wins the election is decided based on a
metric field which is included in the election parameters (v2) tag. The
node that announces the largest metric value will become the master
of that cluster. Apple’s patent [185] claims that these metrics couldEach node tries to

synchronize before
competing in the

master election.

be based on, e. g., available energy resources, CPU load, or signal
strength. In practice, however, the metric is just chosen at random. A
node that activates its AWDL interface initially sets its metric field to

5.2 operation 49

60 and listens on the social channels for an existing master for two
seconds and tries to synchronize. Then, it draws a random number
from a predefined range and sets this as its metric. We have found
that this range depends on the AWDL version, e. g., 405 to 436 in v2.x
and 505 to 536 in v3.x. We assume that this is done for backward
compatibility. It guarantees that the master node is running the most
up-to-date version, and future protocol extensions can be supported.

merging clusters with different masters When two al-
ready established AWDL clusters with different master nodes move
into proximity of one another, they need to merge such that nodes in
the different clusters will be able to discover each other. In AWDL, the Clusters can merge

seamlessly.process is straightforward as all nodes advertise their current master
metric in the election parameters tag. If two nodes with different mas-
ters discover each other, they receive the top master metric of the other
cluster and can immediately adopt the master with the higher metric.
The remaining nodes in the “losing” cluster then follow as soon as the
first node advertises the new master metric.

loop prevention When creating such an election tree hierarchy
with multiple levels of sub-masters, loops may occur. To prevent loops
and limit the maximum depth of the election tree, each AF contains a
list of all nodes up to the top master in the synchronization tree tag.
Each node can then make sure that it does not adopt a non-election
master if it is already in that node’s path. However, it is unclear
whether Apple actively uses this feature because (1) we observed in
network traces that the synchronization tree often contains invalid
node addresses such as 00:00:00:00:00:00 and (2) our AWDL imple-
mentation does not use this tag despite being able to communicate
with Apple devices.

re-election A master leaving the network simply stops sending
AFs. There is no sign-off message. Therefore, a missing master can
only be detected by other devices after a certain no-master timeout that
is fixed to 96 AWs (≈ 1.5 s). Another node will then take the place of AWDL is robust to

masters joining or
leaving the cluster.

the old master. As this node was already in sync with the old master,
other slave nodes do not need to re-synchronize but simply adopt the
new master. In other words, AWDL is robust to master churn, i. e., a
leaving master does not interrupt communication, and a new master
is seamlessly adopted.

the role of rssi The received signal strength indication (RSSI)
values of received AFs are used to filter out possibly unstable or
asymmetric connections. In particular, AWDL nodes drop frames Two RSSI thresholds

prevent “master
flapping.”

when the RSSI is below a so-called edge sync threshold set to -65 dBm
(or -78 if AirPlay is used). Frames from the current master node are

50 apple wireless direct link

44 44 4444 0 0 00 …6

0 1 2 3 4 5 6 7 …8

Presence mode

Fill channel (step)

Channel number entries in channel list (length c)

Channel
sequence

Tx event

Current sequence
number (i)

Tx counter (TU)

16 TU

Sequence
number

EW EWAW EW

Extended availability window

Time

Figure 8: Structure of AWs and mapping to channel sequence.

accepted with a lower RSSI. These frames receive a grace slave sync
threshold of 5 dBm. Lowering the threshold for the master frames
allows for a certain variance in the RSSI. We assume that this was
done to reduce “master flapping,” where a node frequently adopts
a new master because it regularly ignores frames until the no-master
timeout occurs.

5.2.3 Synchronization

Synchronization is tightly coupled with the election process since
nodes always try to synchronize with their elected master. In the fol-Synchronized nodes

can meet on the same
the channel to
communicate.

lowing, we describe how AWDL structures time and how nodes align
their time reference with that of their master so that they can commu-
nicate when they are on the same channel. We introduce the concept of
AWs, i. e., short fixed-length time slots during which communication
is possible. These windows have a static length, but can be extended
using extension windows (EWs). Finally, we show how the start of an
AW is determined using fields from the synchronization parameters
tag. We visualize the key concepts and variables in Figure 8.

availability window AWs indicate the times during which a
device will be available for communication. These windows must
be synchronous in a cluster such that every node starts an AW at
the same time. Timing in AWDL is based on time units (TUs) where
1TU = 1024µs [95, page 141]. In the AWDL implementation, an AW
is always set to be 16 TUs long. The length of an AW and all other
values presented in this section are contained in the synchronization
parameters tag shown in Figure 9. In theory, different configurations
are possible, but we found that only fixed values are used.

5.2 operation 51

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Type (4) Length Tx channel

Tx counter tAW Master channel Guard time (0)

AW period (16) AF period (110 or 440)

Flags AW extension length (16)

AW common length (16) Remaining AW

Extension Min. (3) Multicast Max. (3) Unicast Max. (3) AF Max. (3)

Master MAC address

Presence mode (4) Reserved (0)

Sequence number i AP beacon alignment

Channel sequence (as in Figure 10)

Figure 9: AWDL synchronization parameters format.

presence mode and extension windows For reduced power
consumption, a peer can indicate that it is not listening in every AW. A
presence mode p of 4, which is the only value used in Apple’s AWDL
implementation, means that a peer is only listening for every fourth
window. If a node is transmitting or receiving data, it may extend its The AWDL protocol

allows for complex
AW
configurations—but
only a fixed one is
used in practice.

time spent on the channel. This is called an EW. A presence mode of 4

leaves space for three EWs of 16 TUs. Also, AWDL allows configuring
different numbers of unicast, multicast, and AF EWs, but these fields
are currently always set to 3 and, thus, align with the presence mode.
Figure 9 shows the parameters transmitted in the synchronization
parameters tag. Given the static configuration, the effective smallest
time unit in use is four consecutive AWs/EWs. For the remainder of
this paper, we use the term extended availability window (EAW) to
refer to such a 64 TU time slot.

calculating the start of an availability window Each
slave node needs to synchronize its clock to that of its master node.
For achieving this, the master node announces the start of the next AW.
When transmitting an AF, the master includes the number of TUs to
the next EAW tAW as well as the sequence number of the current AW
or EW i. We mark these values in red in Figure 8. In each AF, the

master indicates its
current AW
sequence number
and start of the next
AW.

As the driver sets these values when creating the frame, some time
passes until the frame is finally transmitted via the Wi-Fi interface.
AWDL tries to compensate for this transmitter delay by including two
additional timestamps in the fixed header of each AF: the PHY and
target transmission times TTx,PHY and TTx,Target, respectively. Ideally,
TTx,Target is set when the frame is created, and TTx,PHY just before the
frame is transmitted via the interface. In the macOS driver, both times-
tamps are set in the Wi-Fi driver and, therefore, do not account for
delays induced by the distributed coordination function (DCF) that

52 apple wireless direct link

controls medium access [95]. In the leaked Broadcom source reposi-
tory [37], we found a configuration constant (D11AC_TXC_AWDL_PHYTT)
for the D11 real-time core [163] indicating that the D11 core is capable
of setting TTx,PHY just before transmission. However, we did not verify
whether macOS makes use of this mechanism.

In any case, a device receiving an AF from its master at time TRx

can approximate the start of the next AW TAW as follows:

TAW = tAW · 1024− (TTx,PHY − TTx,Target) + tair + TRx. (1)

However, AWDL ignores the airtime tair since it is in the order of
sub-µs in a typical close-range Wi-Fi scenario, and the accepted syn-
chronization error is 3 ms.1 We experimentally evaluate the achievable
accuracy in Section 5.4.

5.2.4 Data Transfer

Apple exposes a dedicated awdl0 network interface to the system that
enables transmitting Ethernet frames to other AWDL nodes. AWDL
uses a vendor-specific frame format header when transmitting those
frames over the air. When sending to a particular neighbor, a nodeBefore sending a data

frame, AWDL needs
to make sure that the

receiver is listening
on the same channel.

needs to calculate the AWs during which both nodes are tuned to
the same channel and only transmit frames during those AWs. Also,
AWDL adapts its channel sequence according to the current outgoing
traffic load. In this section, we explain the AWDL channel sequence
announcement that builds upon the synchronized AWs and indicates
whether a node is available for communication and, if so, to which
channel its radio is tuned to. In particular, we explain the AWDL
channel encoding and channel-to-AW mapping.

channel encoding AWDL announces its channel sequence re-
dundantly as part of the synchronization parameters tag as well as in
the dedicated Channel Sequence tag. The latter appears to be used inAWDL uses three

different channel
encodings.

recent versions of AWDL as the contained channels use the IEEE 802.11

operating class encoding that supports channels with bandwidths above
40 MHz, thus enabling communication with devices supporting VHT
data rates. In contrast, the legacy encoding used in the synchronization
parameters tag only supports channels with a maximum bandwidth
of 40 MHz. We have found a third encoding during binary analysis
that simply uses the channel number and is exclusively used by the
Apple Watch, which only supports the 2.4 GHz band.

mapping the channel sequence to availability windows

The channel sequence maps channel numbers to AW sequence num-

1 In the function awdl_recv_action_frame, a misalign metric is increased if the differ-
ence between a projection from a previous calculation and a new calculation of TAW
is larger than 3 ms.

5.2 operation 53

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Length c (15) Encoding Duplicate count step

Fill channel (0xffff) Channel list (c entires)

. . .

Figure 10: AWDL channel sequence format.

bers. Figure 10 shows a channel sequence tag with a fixed number
of c+ 1 = 16 channel entries. While the number of entries is fixed,
the sequence is expandable with the step field similar to the presence
mode in the synchronization parameters, so that one channel entry
can span multiple AWs and EWs.2 Setting step to 1 means that the The channel

sequence aligns with
the EAW sequence.

channel will be active for one additional AW. However, Apple always
sets this field to 3, meaning that the channel will be active for four
AWs or one EAW. Thus, the channel sequence aligns fully to the pres-
ence mode in the synchronization parameters tag. Given an encoded
channel sequence and an AW sequence number i, an AWDL node
can calculate the currently active channel C for any peer based on the
following calculation:

C = i mod ((c+ 1) · (step+ 1)) (2)

As Apple uses fixed values for c and step, the announced channel
sequence covers (15+ 1) · (3+ 1) = 64 AWs which takes about one
second (64AW · 16TU/AW = 1048576µs ≈ 1 s) and is repeated peri-
odically.

5.2.5 Service Discovery

Apple relies on DNS service discovery (DNS-SD) [76], also known as
Bonjour, to discover services. Curiously, Apple decided to support two There are two

options for service
discovery in AWDL.

different ways to integrate DNS-SD with AWDL: piggybacking service
announcements on AFs and using the IPv6 data path to send mDNS
frames, both of which we explain in the following.

piggybacking onto action frames AWDL nodes can piggy-
back DNS-SD responses such as SRV, PTR, or TXT records directly
onto its AFs in type 2 tags (Table 7). While this approach violates Piggybacking

violates the ISO/OSI
layer model.

the ISO/OSI layer model, it has the advantage that service changes
are immediately visible to nearby peers. It appears that piggyback-
ing is optional as our AWDL implementation (Section 5.3) does not
implement type 2 tags while still being compatible with Apple de-
vices. Instead, our implementation exclusively relies on the IPv6 data
transport for service discovery.

2 Note that the extension with step works only with the fill channel field set to 0xffff,
which was the case in all our captured frames.

54 apple wireless direct link

using ipv6 data transfer DNS-SD is also supported by send-
ing mDNS directly over AWDL’s IPv6 network interface. While this
approach appears to be the most straightforward way to implement
service discovery, there is a caveat. AWDL uses dedicated multicast
EAWs. Recall that data frames need to be scheduled on a particularAWDL uses

dedicated AWs for
transmitting

multicast frames.

AW and that mDNS frames are multicast, so that a sender cannot
calculate a common AW with a single receiver. In fact, we have found
that Apple schedules multicast frames onto two fixed EAWs: 1 and
10. These EAW are set in all channel sequences, which makes sure
that nearby nodes receive all service announcements. From an imple-
mentation perspective, this mandates the use of different transmission
queues for multicast and unicast frames, which is what we use in our
AWDL implementation.

5.3 re-implementation

We present our AWDL prototype called Open Wireless Link (OWL). We
implement our prototype in plain C for performance reasons and to
facilitate porting the code to other platforms. In the following, we
present a high-level architecture and discuss supported platforms as
well as future work.

5.3.1 Architecture

We designed OWL to provide a similar system integration as Apple’s
implementation. In particular, we wanted to expose a dedicated net-We mimic the

system integration of
Apple’s

implementation.

work interface and maintain the neighbor table based on the reception
of AFs (see Section 5.1.3). We depict the resulting architecture and
integration of our AWDL daemon in Figure 11. At its core, the daemon
uses an event loop (libev3) that (1) listens on the Wi-Fi interface for
new IEEE 802.11 frames using libpcap,4 (2) updates neighbor infor-
mation, (3) periodically schedules the transmission of AFs that carry
information used for peer discovery, synchronization, and election
procedures, (4) listens on a virtual Ethernet interface for new traffic
from the host system, and (5) schedules data frame transmissions in
the correct AWs.

When a new Wi-Fi frame is received on the monitoring interface, we
check whether the frame is an AWDL action or data frame. Regular
IEEE 802.11 frames are dropped by a BPF filter so that the card only
forwards frames with the AWDL-specific BSSID 00:25:00:ff:94:73. If
we receive an AF, we derive the link-local IPv6 address from the source
Ethernet address and add both to the system’s neighbor table. Based
on the included tag fields, we run the election and synchronization
mechanisms, as described in Section 5.2. If we receive a data frame,

3 http://libev.schmorp.de

4 https://github.com/the-tcpdump-group/libpcap

http://libev.schmorp.de
https://github.com/the-tcpdump-group/libpcap

5.3 re-implementation 55

K
ernelspace

A
W

D
L daem

on (U
serspace)

query

via netlink
U

serspace

receive
AWDL

convert to
Ethernet

receive
Ethernet

convert to
AWDL data

data

K
ernelspace

socket nl80211, cfg80211

mac80211 Wi-Fi driver

Wi-Fi device

period. create
AWDL action

parse
TLVs

update
neighbors

action

election

synchronization

function triggered
by event loop

virtual interface (awdl0)

IPv6 stack
IPv6

neighbor table

Legend
IPv6-capable program,

e.g., ping, netcat, or avahi

action

control flow
data flow

Tx timer

data
unicast

m
ulticast

initialize

set channel and
m

onitor m
ode

Figure 11: Architecture of our AWDL prototype and its integration with the
Linux networking stack.

56 apple wireless direct link

A
PU

iPhone

M
acBook Pro

Serial

Po
w

er

ICMPv6

Netcat (TCP)

Figure 12: AWDL demonstrator setup consisting of a Linux-based APU
board, an iPhone 8, and a MacBook Pro. The terminal on the
MacBook’s screen shows a working TCP-over-AWDL connection
between the APU board and the MacBook.

we strip the AWDL data header, replace it with a regular Ethernet
header, and forward the frame to the virtual awdl0 interface. We do
the inverse for Ethernet frames that we receive from awdl0 and add
the AWDL sequence number from an internal counter. Unicast and
multicast frames are put in their respective queues, and a timer takes
care of sending the frames out on the correct EAW. In addition, the
daemon periodically emits AWDL action frames that it builds from its
internal synchronization and election state.

5.3.2 Supported Platforms and Future Work

OWL currently runs on Linux and macOS. On macOS, it can act as
a drop-in replacement for Apple’s own AWDL implementation. OnOWL currently

supports Linux and
macOS.

Linux, we require a Wi-Fi card that supports active monitor mode
and frame injection, such as a Qualcomm Atheros AR928X. Figure 12

shows a hardware setup that demonstrates cross-platform communi-
cation between Linux and Apple devices.

Since our prototype is written in C, it should be possible to port
the code to other OSs. However, we have the following dependencies
that each target platform needs to provide: (1) a Wi-Fi card supportingWith a few hardware

and platform
requirements,
Android and

Windows could be
supported in the

future.

active monitor mode with frame injection to be able to receive and
send IEEE 802.11 frames, (2) a means to change the Wi-Fi channel
such as nl80211, (3) access to the system’s IPv6 neighbor table, and
(4) a facility to create virtual network interfaces such as TUN/TAP. In
principle, this should allow implementations on Windows or Android.

5.4 experimental evaluation 57

On the latter, monitor mode and frame injection can be enabled using
the Nexmon framework [163].

Our prototype currently lacks a channel-switching mechanism that
would be required to follow nodes to a different channel. However,
since AWDL devices usually meet on one social channel (6, 44, or 149),
our prototype still works by continually listening on a fixed channel.

5.4 experimental evaluation

We analyze the runtime behavior of AWDL in different scenarios to
(1) validate our findings of the previous sections and (2) assess the
performance of the protocol. First, we describe our test setup. Then,
we look at the master election and synchronization accuracy in an idle
scenario without data transmissions. We further analyze the channel
hopping behavior and throughput performance.

5.4.1 Test Setup

Our test setup consists of one monitoring device and several Apple
devices. Our monitor device is an APU board [149] equipped with two
Qualcomm Atheros QCA9882 Wi-Fi cards to support simultaneous
sniffing on two different channels that are tuned to AWDL’s primary
(44) and secondary (6) channel. Both Wi-Fi cards support hardware We record frames on

all AWDL channels
simultaneously.

timestamping, which mitigates variable delays in the receiver’s OS
stack. As each Wi-Fi chip has its own clock, the timestamps in both
recorded traces are misaligned. Therefore, we start each experiment
with a calibration phase: we tune both chips to a common channel
and let them record multiple frames. Post-experiment, we calculate
the timestamp difference of frames that were received by both cards
on the common channel. We use the median difference to correct the
clock offset and align both traces. All the following experiments were
conducted inside a Faraday tent to minimize interference. Our test
devices include an iPhone 8 (iOS 11.2.2), an iPad Pro 10.5" (iOS 11.0.3),
an iMac (Late 2012, macOS 10.12.6), and a MacBook Pro (Late 2015,
macOS 10.12.6).

5.4.2 Master Election

In our first experiment, we analyze the master election process. We
observe an AWDL cluster in an idle state, meaning that no data
transmission takes place, and the only observed frames are AFs. We We monitor the

dynamics of the
election process.

use a setup consisting of an iPhone, iPad, iMac, and MacBook. We
activate the AWDL interface by selecting the sharing panel in one
device that causes a BLE scan and activates the AWDL interface
of other devices in range (on iOS, this only works if the device is

58 apple wireless direct link

iMac

iPhone

MacBook

iPad

C
ur

re
nt

m
as

te
r

iMac
iPhone
MacBook
iPad

50 100 150 200 250 300
Time [s]

0

200

400

Se
lf

m
et

ri
c v3

v2
Initial

v3
v2
Initial

Figure 13: Master selection (top) and self metric (bottom) over time. The grey
shaded areas show the value ranges used in the different versions
of AWDL.

unlocked). To get more interesting results, we let the different devices
join approximately 30 s after one another.

Figure 13 shows the currently selected master of each node. First,
the iMac creates the AWDL cluster and consequently selects itself
as the master. As soon as the iPhone joins, it takes over the master
role, and the iMac adopts it. The MacBook runs the same version as
the iMac and, thus, after having discovered the AWDL cluster, it also
adopts the iPhone as the master node. The iPad briefly adopts the
existing master, but then immediately takes over this role as it selects
a higher self metric than the iPhone: Figure 13 also shows the current
self metric of each node over time. We show the initial value of 60 and
the implemented ranges for the different versions of AWDL. Finally,
all nodes successively leave the cluster (Wi-Fi turned off) until only
the MacBook remains. Since the iMac and the MacBook run an older
version of AWDL, they are only selected as master if none of the newer
versions are present in the cluster.

We expected most of these results. What is interesting, however, is
that an already existing master node can be “overtaken” by another
node running the same version of AWDL. This indicates that Apple’s
AWDL implementation is rather simplistic. Each node keeps the initial
self metric only for a short time and then selects a higher random
value from the version-dependent range irrespective of whether it has
found an existing master or not.

5.4.3 Synchronization-to-Master Accuracy

We want to evaluate how well AWDL’s master election and synchro-
nization mechanism work. To this end, we monitor the PSF and MIF
exchanges between several different nodes. We run another idle ex-

5.4 experimental evaluation 59

0 200 400 600 800 1000 1200
Time [s]

0

25000

50000
A

va
ila

bi
lit

y
w

in
do

w
iMac
iPad
iPhone

Figure 14: AW sequence number. Shows the sequence number wrap after
approximately 18 min (≈ 216AW · 16 TU

AW · 1024
µs
TU).

−4 −2 0 2
Synchronization error [TU]

0.0

0.2

0.4

R
el

at
iv

e
fr

eq
ue

nc
y

µ = −0.45, σ = 0.98
Target region

Figure 15: Distribution of synchronization error ξ.

periment over a longer period (20 min) with three nodes. Figure 14

shows the AW sequence number each node advertises. While Fig-
ure 14 indicates that synchronization works in principle (all nodes
follow the same AW sequence number incline), we can see that the AW
sequence number steps are not perfectly aligned. We are interested in
the magnitude of this synchronization offset. We adapt Equation (1) to AWDL accepts a

synchronization
error of 3TU which
it manages to
achieve.

compute the synchronization error ξ between a slave S and its master
M. Assuming a constant airtime tair and given two AFs from S and M

with a sequence number in the same EAW recorded at the sniffer at
time TM

Rx and TS
Rx, respectively, we calculate ξ as

ξ = TM
AW − TS

AW

=
(︂
tMAW · 1024−

(︂
TM

Tx,PHY − TM
Tx,Target

)︂
+ tair + TM

Rx

)︂
−(︂

tSAW · 1024−
(︂
TS

Tx,PHY − TS
Tx,Target

)︂
+ tair + TS

Rx

)︂
=
(︂
tMAW − tSAW

)︂
· 1024−

(︂
tMTx − tSTx

)︂
+ TM

Rx − TS
Rx,

∀iS, iM with ⌊ iS
p
⌋ = ⌊ iM

p
⌋.

(3)

In Figure 15, we can see that the synchronization error approximates
a Gaussian distribution with a mean value of -0.45 TU and a standard
deviation of 0.98 TU. Figure 15 also shows that the target maximum
synchronization error of 3 TUs is met in more than 99 % of all cases.

While the results are within the target region, the relatively large
synchronization error leads to the conclusion that only a fraction of

60 apple wireless direct link

0.0

0.1

R
el

.F
re

q. iMac PSF
MIF

0.0

0.1

R
el

.F
re

q. iPhone PSF
MIF

0.0

0.1

R
el

.F
re

q. MacBook PSF
MIF

0 10 20 30 40 50 60
Sent in normalized AW

0.0

0.1

R
el

.F
re

q. iPad PSF
MIF

Figure 16: Activity in a full channel sequence period.

each EAW can reliably be used for communication, and the 3 TUs
should be used as a guard interval. Assuming a guard interval on
either side of the EAW, this means that only 1 − 2·3TU

64TU ≈ 90.6%
of the interval can be used for communication. We believe that theA guard interval

would help to
mitigate the

synchronization
error.

main source of synchronization error lies in the calculation of the
transmission delay tTx. Equation (1) assumes that TTx,PHY is set exactly
at the moment when the frame is being transmitted via the Wi-Fi radio
after the frame has already been enqueued and additional DCF back-
offs have expired. However, we have found that in macOS, TTx,PHY is
set in the driver right after the AF is created and before the DCF has
been run, even though the Wi-Fi firmware appears to be able to set
TTx,PHY closer to the actual transmission using the D11 real-time core.

5.4.4 Channel Activity

We want to find out when AFs are usually transmitted. For this, we
consider the idle scenario from Section 5.4.2 again. Figure 16 shows
when frames (MIF and PSF) are transmitted during an EAW by the
different nodes. Each bin represents a single AW (16 TU). We notice
that MIFs are mostly sent at the beginning of the first and second half
of the entire sequence. We confirm this by looking at the advertised
channel list: Figure 17 shows the relative frequency of the different
channel numbers in the advertised channel list. We can see that slot 9

is always reserved for channel 6.
We also notice that there is a distinct difference in the sending

behavior of MIFs and PSFs. While MIF transmissions adhere to thePSF and MIF
transmissions follow

different schedules.
advertised channel sequence, PSFs are sent at arbitrary times. This

5.4 experimental evaluation 61

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Index in channel list

0.0

0.5

1.0

R
el

at
iv

e
fr

eq
ue

nc
y

Channel
44
6

Figure 17: Advertised channel list in idle scenario.

0 10 20 30 40 50 60
TX counter [TU]

0.000

0.025

0.050

R
el

at
iv

e
fr

eq
ue

nc
y

PSF
MIF

Figure 18: Activity within a single EAW.

is due to the AF period in the synchronization parameters tag (see
Figure 9) that is either set to 110 or 440 TU and does not align with the
64 AWs that cover one channel sequence. We believe that this design
decision was made to accelerate the bootstrapping of new nodes that
have not yet synchronized to a master node. We find supporting
evidence as all nodes send PSFs, no matter if they are master or not,
which will increase the chance that a new node will find an existing
AWDL cluster.

Figure 18 shows the transmission times within a single EAW at TU
resolution. We can see that MIFs are primarily sent during the middle
of one EAW. While it might increase contention on the MAC layer,
sending in the middle of an EAW increases the chance that a node
receives a transmission even if they are not perfectly synchronized.

5.4.5 Throughput and Channel Hopping

We know that AWDL makes use of the highest possible PHY data
rates for unicast frames if both participants support them, and if the
signal strength is high enough. We want to evaluate the impact of
AWDL’s channel hopping on the throughput of a TCP connection.
Unfortunately, Apple drops packets for regular TCP and UDP servers We wrote an

AWDL-TCP proxy
to use iperf via
AWDL.

that directly bind to the awdl0 interface. This meant that running
measurement software such as iperf was not immediately possible.
As a solution, we built an AWDL–TCP proxy via the NSNetService

API [13] that whitelists the advertised port. In essence, the proxy

62 apple wireless direct link

0 200 400 600 800
Throughput [Mbit/s]

(1) AWDL

(2) AP (iMac)

(3) IBSS

(4) AP (APU)

(5) AP(44)+AWDL

(6) AP(36)+AWDL

Ex
pe

ri
m

en
t

773

546

270

159

758

259

300

685

Connection
AP
AWDL
IBSS

Figure 19: Throughput measurements.

server advertises a service via DNS-SD and listens for incoming TCP
connections. The proxy client component connects to it. Both proxy
endpoints also allow TCP connections via the loopback interface such
that regular TCP services can connect to the loopback interface with-
out modification, and forward the TCP traffic via the NSNetService

connection. The proxy tool is available at [168].

tcp throughput We evaluate the TCP throughput performance
of AWDL compared with an access point (AP) connection and IEEE 802.11

IBSS mode. We measure the throughput using a custom AWDL–TCP
proxy and iperf using the MacBook and iMac. We repeat each of the
following 10-second experiments 50 times and show the results in
Figure 19. The error bars indicate the standard deviation.

In (1), the iMac acts as an AP, and the MacBook connects as a client,
while (2) shows the throughput when using an AWDL connection
between the same devices. Evidently, (1) and (2) result in similarWe compare AWDL

to other Wi-Fi modes
of operation.

throughput, demonstrating that bandwidth is only limited by the
hardware capabilities of the communicating nodes. (3) shows the
performance of IBSS which performs 10–12 % worse than (1) and (2):
we observed that the MCS selection mechanism for IBSS on macOS is
erratic and does not always choose the maximum supported values
even when the signal-to-noise ratio is high.

Next, the APU operates as an AP. The APU’s Wi-Fi card supports
a maximum PHY data rate of 866.7 Mbit/s (MCS 9, two streams, 80

MHz bandwidth) while iMac and MacBook both support three streams.
Thus, we first measure the maximum achievable throughput usingChannel hopping

reduces overall
throughput by about

13%.

only the APU AP (4) and see that, indeed, the maximum bandwidth
is reduced by approximately 30 %. Finally, we are interested in the
impact of AWDL’s channel hopping on the throughput of concurrent
connections. In (5) and (6), the MacBook creates one connection each
to the APU (acting as an AP) and to the iMac (via AWDL). In (5), the
AP operates on AWDL’s primary channel 44. Here, the cumulative

5.5 discussion and summary 63

state airtime channel list (c = 16)

Low Power 25.0 % p s p p

Idle 37.5 % p p p s p p

Data+Infra
50.0 % p p p p i i i i s p p p i i i i

75.0 % p p p p p p i i s p p p p p i i

Data 100.0 % p p p p p p p p s p p p p p p p

Table 8: A subset of AWDL states and corresponding channel lists where
p and s are the primary (44) and secondary (6) AWDL channels,
respectively, and i is the channel of the AP.

throughput is similar to (4), while the bandwidth between the two
connections is uniformly distributed. When (6) the AP operates on a
different channel (36), the cumulative throughput drops by about 13 %.
This confirms the intuition that channel switching reduces throughput.

channel hopping We found that AWDL adopts its channel se-
quence according to the traffic volume on the interface. When there is Channel allocation

dynamically adjusts
to network load.

no traffic (such as in the idle scenario), AWDL allocates at least 25 % of
the channel sequence to the social channels (see slots 1, 9, 10, and 11

in Figure 16). As the load increases, AWDL may allocate all EAWs for
itself. We depict the various channel allocation states in Table 8.5 The
table shows that (1) at least 25 % of the time is allocated for AWDL
(low power state), (2) there is always a switch to channel 6 in slot 9

possibly for backward compatibility, and (3) at least 25 % of the time
is reserved for the AP connection if the node is connected to an AP.
In our throughput experiment, either the data or the data+infra (50 %)
state was active.

5.5 discussion and summary

In this section, we discuss AWDL’s robustness, complexity and over-
head, energy efficiency, and conduct an initial security assessment of
AWDL and its OS integration.

5.5.1 Robustness

We found that compared with its direct competitor Wi-Fi Direct,
AWDL is extremely robust to nodes joining and leaving the clus-
ter. The group owner (GO) in Wi-Fi Direct is the equivalent of the AWDL achieves

robustness by giving
the master limited
responsibilities.

master node in AWDL. However, GO essentially acts as an AP and,
therefore, has more responsibilities such as relaying data between two

5 We found string references for 25 states in total (including a real-time mode and
different combinations) during binary analysis, which we will not further discuss in
this dissertation.

64 apple wireless direct link

EW EWAW EW

Extended availability window (EAW)

Channel switch Guard interval ActivitySleep

Figure 20: Time spent on channel switching, guard interval, and resulting air-
time that can be used for communication when using AWs/EWs
vs. EAWs.

non-GO nodes. In AWDL, the master’s only purpose is to emit the
clock signal for synchronization. Once synchronized, a cluster could
survive without a master for some time, assuming that the clocks do
not drift apart quickly. Also, active connections between any pair of
nodes will not be disturbed by a leaving master and a new node seam-
lessly taking over. In contrast, Wi-Fi Direct requires a complete group
re-establishment when the GO leaves, which disrupts any ongoing
communication.

5.5.2 Complexity and Overhead

AWDL has a complex protocol definition that supports various config-
urations using AWs and EWs. We were surprised to see that Apple
settled for a static and rather simple configuration, making the com-
plex concepts obsolete. In addition, we found redundant information
that bloats the size of the AWDL AFs.

(extended) availability windows AWDL, as implemented in
current OSs, allows for highly configurable operation configurations
(see synchronization parameters in Figure 9). However, all current
implementations use a fixed channel sequence length of 16 and do
not differentiate between AWs and EWs but exclusively use the longer
EAWs (compare Figure 8). The reason why Apple prefers EAWsUsing only EAWs

might mitigate
practical limitations

of the Wi-Fi driver.

might have to do with the time that is required to perform a channel
switch operation in the Wi-Fi chip. We found that a channel switch
operation takes at least 8 ms (≈ 8 TU) using dump chanswitch of the
wl utility. In combination with a guard interval that is necessary to
cope with the accepted synchronization error of 3 TU, this would
leave only 2 TU airtime for communication, assuming that the EWs
are reserved for an energy-conserving sleep state. When using EAWs,
the temporal efficiency increases from about 12.5 % to more than
78 % while sacrificing opportunities to save energy. We visualize this
difference in Figure 20.

5.5 discussion and summary 65

redundancy AWDL AFs contain redundant information such as
the current master address that is announced in the synchronization
parameters, election parameters, and election parameters v2 tags. Also,
the service response tag often encodes the same information multiple
times, such that the service instance string and device name can
be seen three times in a frame when AirDrop is active. We assume
that Apple added features incrementally but kept old fields to retain
backward compatibility.

5.5.3 Energy Efficiency

Our working hypothesis was that energy efficiency was one of the
primary design goals of AWDL. The insights obtained from our ex-
perimental analysis do not support this hypothesis. We have found
that even in the so-called low power state, AWDL is active for at least
25 % of the time during which the Wi-Fi chip is active. We suspect
that Apple sacrificed energy efficiency for more reliable operation: the
exclusive use of long EAWs makes the system more robust against
synchronization error.

5.5.4 Security

AWDL does not offer any encryption and, thus, traffic remains un-
protected. However, Apple employs a default filter on sockets that
prevents unaware processes from listening on the AWDL interface
accidentally.

open awdl connection We have found that AWDL connections
do not feature any security mechanism. All action and data frames
are sent in plain text and without authentication. AWDL delegates Apple leaves security

to the upper layers.security functions to the transport and application layer, e. g., AirDrop
uses TLS 1.2 (Chapter 6). The approach appears to be an informed
decision to implement application-dependent policies: a device might
be trusted for sending an image file via AirDrop, but not for remote-
controlling a Keynote presentation.

default socket filter While an AWDL connection can be con-
sidered insecure, Apple made sure that AWDL-unaware services are
not advertised via the awdl0 interface that would otherwise be ac-
cessible by unauthenticated nearby adversaries. Developers need to There is an opt-in

mechanism for using
AWDL.

explicitly use a dedicated API (i. e., NSNetService) to opt-in for the use
of AWDL, which we did to implement our TCP proxy. Alternatively,
programs can set an XNU-specific SO_RECV_ANYIF6 socket option to
make the socket listen on the awdl0 interface. Also, the awdl0 interface
is activated only on demand and deactivated once no more traffic is

6 https://opensource.apple.com/source/xnu/xnu-4570.41.2/bsd/sys/socket.h

https://opensource.apple.com/source/xnu/xnu-4570.41.2/bsd/sys/socket.h

66 apple wireless direct link

registered, thus, minimizing the time window for an attack. This could
be considered an “accidental” security mechanism because the main
reason for the timeout has likely to do with energy conservation.

5.5.5 Summary

We reconstructed the frame format and the operation of AWDL, a
complex undocumented protocol, and complemented our findings
with a Wireshark dissector and an open-source AWDL implementation.
We believe that public knowledge of this wide-spread proprietary
protocol is vital to allow independent security audits, to stimulate
innovation and research below the application layer, and to enable
high-throughput cross-platform communication on the neighbor scope.
Also, we experimentally evaluated AWDL and showed that the mean
synchronization accuracy is about -0.45 ms. The maximum achievable
throughput is only limited by the devices’ supported PHY data rates if
the nodes are not actively using an infrastructure network. If channel
switching is required, the cumulative throughput of two concurrent
connections drops by about 13 %.

6
A P P L E A I R D R O P

AirDrop is a system service that allows iOS and macOS users to ex-
change files between devices using Apple Wireless Direct Link (AWDL)
as transport. In this chapter, we present the protocol based on a re-
verse engineering analysis using the methods described in Chapter 4.
In particular, we discuss the different discoverability settings from a
user perspective. Then, we describe the technical protocol flow and
explain the difference between authenticated and unauthenticated con-
nections. Finally, we briefly present our open-source implementation
(Appendix C.3) and summarize our findings. The analysis is based
on macOS 10.13 and iOS 12. However, our implementation continues
to interoperate with macOS 10.15 and iOS 13, suggesting that our
findings are still up-to-date.

6.1 discoverability user setting

When opening the sharing pane on an iOS device (see top left screen-
shot in Figure 21), nearby devices appear in the user interface de-
pending on their discoverability setting [10]. In particular, devices can
be discovered (1) by everybody or (2) by contacts only. Alternatively,
(3) the receiving off setting disables any AirDrop connection requests.
AirDrop requires Wi-Fi and Bluetooth to be enabled. By default, Wi-Fi AirDrop supports an

everybody and a
contacts only mode.

and Bluetooth are enabled, and AirDrop is set to contacts only. In ad-
dition, we found that devices need to be unlocked to be discovered.
Based on a user study that we present in Appendix A, we found
that 80 % of the participants enable AirDrop (59.4 % in contacts only
and 20.6 % in everybody mode) while the other 20 % disabled it. In the
remainder of this thesis, we assume that a target device has AirDrop
enabled and is unlocked.

6.2 protocol workflow and user interactions

The AirDrop protocol consists of three main phases (discovery, authen-
tication, and data transfer), which we reverse engineered by employ-
ing a machine-in-the-middle (MitM) HTTPS proxy and analyzing the
sharingd daemon and Sharing framework on macOS 10.14.5 where
AirDrop is implemented. In the following, we describe each protocol AirDrop’s protocol

stack involves BLE,
AWDL, Bonjour,
TLS and HTTP.

phase in detail and visualize the complete protocol flow, including
user interactions in Figure 21.

The sender initiates the discovery procedure and transfers the data
while the receiver responds to requests. We walk through the indi-

67

68 apple airdrop

regularly
perform
BLE scans

if in everyone
mode or contact
hash matches,
activate AWDL

(1b) AWDL synchronization

(1a) BLE advertisement
with short contact hashes

HTTP POST /Discover
with sender’s record data

HTTP POST /Ask
with sender’s record data

HTTP POST /Upload
with file

Establish TLS connection with
client and server certificates

All subsequent
communication
uses AWDL

HTTP 200 OK

with receiver’s record data

For every service
discovered, start
HTTPS discovery

Select receiver

Prompt to
decide whether
to accept file

Establish TLS connection with
client and server certificates

Receiver appears
in sharing pane
(with contact
photo if record
data is valid)

HTTP 200 OK

Start file transfer
if accepted (200)

TLS teardown

TLS teardown

HTTP 200 OK

if record data is
valid, include
own record data
in response

(1c) Ask for service AirDrop

Service available at

instance 1fa518393a98 PTR

Instance 1fa518393a98 is at

Janes-iPhone.local:8770 SRV

IP address of Janes-iPhone.local

is fe80::90b6:7ff:fecc:46 AAAA

Service discovery
via mDNS

Sender Receiver

Open sharing
pane

(2) AUTHENTICATION

(1) DISCOVERY

(3) DATA TRANSFER

Figure 21: Typical AirDrop protocol workflow including user interactions.

6.3 (un)authenticated connections 69

vidual phases of discovery, authentication, and data transfer. (1a) The
sender emits Bluetooth Low Energy (BLE) advertisements, including
its hashed contact identifiers (see Section 7.3.1 for details), while the
prospective AirDrop receiver regularly scans for BLE advertisements.
(1b) The receiver compares the sender’s contact hashes with contact
identifiers in its address book if set to contacts-only mode. If there is
at least one match or if the receiver is in everyone mode, the receiver
activates its AWDL interface. (1c) Using multicast DNS (mDNS) and
DNS service discovery (DNS-SD), the sender starts to look for AirDrop
service instances via the AWDL interface. (2) For each discovered ser-
vice, the sender establishes an HTTPS connection with the receiver and
performs a full authentication handshake (Discover). If authentication
is successful, the receiver appears as an icon in the sender’s UI. (3)
When the user selects a receiver, AirDrop sends a request contain-
ing metadata and a thumbnail of the file (Ask). The receiver decides
whether they want to accept it. If so, the sender continues to transfer
the actual file (Upload).

Next, we discuss the client and server TLS certificates and explain
their usage in combination with the sender’s and receiver’s record
data to establish authenticated connections.

6.3 (un)authenticated connections

AirDrop always tries to establish what we call an authenticated connec-
tion. An authenticated connection can only be established between
users with an Apple ID and that have each other in their address
books. Authentication involves multiple certificates and CAs that we Client and server

have to prove that
they are each others’
contacts.

depict in Figure 22. In order to authenticate, a device needs to prove
that it “owns” a certain contact identifier ci such as email address or
phone number associated with its Apple ID, while the verifying device
checks whether it has ci in its address book. When establishing a TLS
connection, AirDrop uses a device-specific Apple-signed certificate
σUUID containing a universally unique identifier (UUID). The UUID
does not correspond to any contact identifiers, so AirDrop uses an
Apple-signed Apple ID validation record (VR) containing the UUID and
all contact identifiers c1, . . . , cn that are registered with the user’s
Apple ID in a hashed form. The validation record and the certificate Authentication

involves
Apple-signed TLS
certificates and
Apple ID validation
records.

σUUID are retrieved from Apple when the user logs in to their iCloud
account on their device for the first time and is then used in any
subsequent AirDrop connection. Formally, VR is a tuple:

VR = (UUID, SHA-256 (c1) , . . . , SHA-256 (cn)) . (4)

The signed validation record VRσ additionally includes a signature
and a certificate chain (Figure 22):

VRσ = (VR, sign (σVR, VR) ,σVR,σAAI2) , (5)

70 apple airdrop

Apple Root CA σRA

Apple Application
Integration CA σAAI

Apple Application
Integration 2 CA σAAI2

com.apple.idms.appleid.
prd.<UUID> σUUID

Apple ID Validation
Record <X> σVR

Signed by

Apple owns private key
User owns private key

Protects TLS connection Signs validation record

Figure 22: Certificates and CAs involved in AirDrop. Boxes contain the cer-
tificates’ common names.

where sign (σ,X) is the signature of σ over X. When authenticating, a
node computes SHA-256 over each normalized1 contact identifier in
its address book, compares them with the hashes contained in the pre-
sented VRσ, and verifies that the UUID matches the certificate of the
current TLS connection. The latter effectively prevents a replay attack
where an attacker would use VRσ with a different TLS certificate.

As AirDrop is supposed to work with non-contacts as well, AirDrop
transparently treats a connection as unauthenticated if the sender or
receiver fails to provide an Apple-signed TLS certificate or matching
validation record. Consequently, AirDrop establishes unauthenticatedAuthentication

“failures” are masked
transparently to

support
non-contacts.

connections with devices that use a self-signed certificate and provide
no validation record. AirDrop’s authentication mechanism appears to
be cryptographically well-designed. However, we show in Section 7.2
how to downgrade an authenticated connection to an unauthenticated
one by mounting a denial-of-service (DoS) attack and launch a MitM
attack on the data transfer.

6.4 re-implementation

We implement an AirDrop protocol prototype in the Python program-
ming language that we call OpenDrop (Appendix C.3). In its current
version, OpenDrop supports the announcement and discovery of
AirDrop services via mDNS/DNS-SD and implements the complete
HTTPS authentication and data transfer. When running on Linux,We re-implement the

AirDrop protocol in
Python.

we require our AWDL implementation (Appendix C.2). On macOS,
OpenDrop can also directly use Apple’s AWDL implementation.

OpenDrop exposes a command-line interface that allows finding
other devices to send files to as well as receive files from other devices.
The command stores the results in a temporary file, so that a subse-
quent send command can use it. A typical workflow for sending files
looks like this:

1 Phone numbers are hashed in a normalized form, e. g., the phone number string
+49 123 4567890 would be hashed as 491234567890.

6.5 discussion and summary 71

1 $ opendrop find

2 Looking for receivers. Press Ctrl+C to stop ...

3 Found index 0 ID eccb2f2dcfe7 name John’s iPhone

4 Found index 1 ID e63138ac6ba8 name Jane’s MacBook Pro

5 ^C

6 $ opendrop send -r 0 -f /path/to/some/file

7 Asking receiver to accept ...

8 Receiver accepted

9 Uploading file ...

10 Uploading has been successful

Our prototype is not complete. In particular, OpenDrop currently
does not send out BLE beacons during discovery and does not per-
form proper authentication, i. e., it does not verify that UUID in the
certificate matches the one in the validation record.

6.5 discussion and summary

AirDrop was the second protocol within Apple’s wireless ecosystem
that we reverse-engineered. Compared to AWDL, the process was
much easier for several reasons. (1) AirDrop uses a standardized Analyzing AirDrop

has been more
straightforward
compared to
investigating
AWDL.

protocol stack such as mDNS and HTTPS, so analyzing traces with
Wireshark was possible out of the box. (2) We already knew which bi-
naries contained the implementation from our AWDL analysis. (3) The
AirDrop HTTPS protocol uses requests and responses, making the
flow easy to follow, whereas AWDL’s synchronization and channel
hopping are much more complex.

From a security perspective, we think that AirDrop is generally
well and cleverly designed. Tying a TLS certificate to a validation
record provides authentication without requiring an active Internet
connection. However, in Chapter 7, we show that subtle weaknesses
in the BLE discovery mechanism and UI design can be exploited to
mount DoS and even MitM attacks.

7
D O S AT TA C K S A N D M I T I G AT I O N S F O R AW D L A N D
A I R D R O P

We have analyzed and re-implemented Apple Wireless Direct Link
(AWDL) and AirDrop in the two previous chapters. With a deep under-
standing of those two protocols, we can conduct a security analysis. In
this chapter, we present three denial-of-service (DoS) attack vectors. In We present three

different DoS attacks
vectors targeting
AWDL and
AirDrop.

particular, we found (1) a DoS attack aiming at the election mechanism
of AWDL to deliberately desynchronize the targets’ channel sequences
effectively preventing communication, (2) a machine-in-the-middle
(MitM) attack which intercepts and modifies files transmitted via Air-
Drop, effectively allowing for planting malicious files, and (3) two
DoS attacks on Apple’s AWDL implementations in the Wi-Fi driver
that allow crashing Apple devices in proximity by injecting specially
crafted action frame (AF). In addition, we found several privacy is-
sues in AWDL that allow for long-term device tracking, works despite
medium access control (MAC) address randomization, and may even
reveal personal information such as the name of the device owner
(over 75 % of experiment cases). The results of the privacy analysis are
presented in Appendix A, which includes a user study that we refer-
ence throughout this chapter. We responsibly disclosed our findings
and proposed mitigations to Apple, which have responded by issuing
several updates for its operating systems (OSs). Appendix B provides
a complete list.

7.1 dos desynchronization attack on awdl

AWDL does not employ any security mechanisms. Instead, Apple
decided to leave security mechanisms to the upper layers. Thus, while
end-to-end confidentiality and integrity can be achieved using a secure
transport protocol such as TLS, AWDL frames remain vulnerable to
forgery, which renders any upper layer using AWDL susceptible to
attacks on availability. In this section, we present a novel DoS attack AWDL frames can

be forged as there is
no authentication or
integrity protection.

that targets AWDL’s synchronization mechanism to prevent two nodes
from communication with each other. In the following, we first recap
the synchronization procedure and describe a novel desynchronization
attack aiming at minimizing the channel sequence overlap of two
targets. Next, we evaluate the attack’s performance and present an
effective mitigation method. Finally, we compare this attack to reactive
jamming.

73

74 dos attacks and mitigations for awdl and airdrop

00 0

φs2 os1

44 44 4444 00 00 44 44 4444 0 0 00 6 44 44 044 0 00

0 0 044 000 00 0 0 044 0 0 00 6 44 0 044 0 00

ττ τ

time t

1

Figure 23: AWDL synchronization depicting period, phase offset, and the
overlap function of two channel sequences.

7.1.1 Modeling Channel Sequence Overlap

We briefly explain the purpose of synchronized channel sequences
(details in Section 5.2) and then derive the channel sequence overlap.

At its core, AWDL uses a channel hopping mechanism to enable
“simultaneous” communication with an access point (AP) and other
AWDL nodes on different channels. This channel hopping is imple-
mented as a sequence of so-called extended availability windows
(EAWs). For each EAW, a node indicates if it is available for direct
communication and, if so, on which channel it will be. Each node
announces its own sequence s consisting of 16 EAWs regularly. We call
the length of such a full 16-EAW sequence a period τ. Each EAW has a
length of 64 TU, so τ ≈ 1 s. Figure 23 depicts these and the following
concepts.

To allow nodes to meet and exchange data on the same channel,
they need to align their sequences in the time domain. AWDL nodes
elect a common master and use its AFs as a time reference to achieve
synchronization. In each AF, the master node includes the current
AW/EW sequence number i (0 to 216 − 1) and the time until the next
EAW starts based on its local clock tAW. When receiving an AF from
its master at time TRx, a slave node approximates TAW, the start of the
next EAW i+ 4 in local time as (simplification of Equation (1)):

TAW ≈ tAW + TRx (6)

and corrects its clock accordingly. The phase ϕ denotes the effective
clock offset between two nodes.

A node transmits data frames to another AWDL node during EAWs,
where the channels of both nodes are the same. We denote the overlap
as the communication opportunities normalized over one period: an
overlap of one means that two nodes are on the same AWDL channel
during all 16 EAWs, while zero means that they are never on the same
channel. Formally, we define the overlap O as the integral over the
overlap function o of two sequences s1 and s2 taking into account

7.1 dos desynchronization attack on awdl 75

s2

s1

44 44 4444 0044 44 4444 0 0 00 6 44 44 044 0 00

0 0 044 000 0 044 0 0 00 6 44 0 044 0 00

ττ

(a) In normal operation, two channel sequences result in non-zero overlap, allowing
two nodes to communicate. In this example, they can communicate during four
out of 16 EAWs.

s2

s1

44440 0 00 44 44 4444 0 0 00 6 44 44 044 0 00

0 0 044 000 0 044 0 0 00 6 44 0 044 0 00

ττ

φ = τ/4

τ

(b) A phase shift of a quarter period (ϕ = τ/4) results in zero overlap preventing the
two nodes from communicating with each other.

Figure 24: Sketch of the desynchronization attack.

the phase where s(t) is the τ-periodic continuation of a sequence, i. e.,
s(t+nτ) = s(t), ∀n ∈N. Then,

o(s1, s2,ϕ, t) =

⎧⎨⎩1 if s1(t) = s2(t−ϕ) ̸= 0

0 otherwise
(7)

and

O(s1, s2,ϕ) =
∫︂τ
t=0

o(s1, s2,ϕ, t) . (8)

7.1.2 Desynchronizing Two Targets

We exploit AWDL’s synchronization mechanism to reduce the channel
overlap by inducing an artificial phase offset between two targets. In The attack involves

three steps.order to succeed, the attacker needs to (1) get recognized as the master
by both targets, (2) communicate with each target separately in order
to (3) induce a phase shift that results in zero (or at least minimal)
channel overlap. Figure 24 depicts the non-zero overlap in normal
operation and the zero overlap as the result of the desynchronization
attack. We describe the three steps in the following.

(1) winning the master election The master election in
AWDL is based on a numeric comparison of two values that are
transmitted in the election parameters tag. The first value is called The attacker needs to

become the master.metric, and each node draws one randomly upon initialization. The
numeric range of the metric is bounded and depends on the AWDL
version that runs on the node. The second value is called counter and

76 dos attacks and mitigations for awdl and airdrop

0 5 10 15 20 25 30
Time [s]

0

2

4

Ph
as

e
of

fs
et

[π
/

16
]

John–Jane
Attack Start

Figure 25: Phase offset between two targets before and after mounting a
desynchronization attack that induces a phase shift of ϕ = τ/4.

is initialized to a random value and increases linearly over time while
the node is elected as a master. Given the metric and counter values
of two nodes A and B as (mA, cA) and (mB, cB), respectively, then, A
wins the master election if

cA > cB ∨ (cA = cB ∧mA > mB) (9)

and loses otherwise. To consistently win the election, the attacker sets
c and m to their maximum values.

(2) unicasting action frames The attacker needs to send
different synchronization parameters to each target without the other
one noticing. We have found that while AFs are typically sent to theAWDL nodes accept

unicast AFs. broadcast MAC address ff:ff:ff:ff:ff:ff, AWDL nodes also accept
unicast AFs. Therefore, the attacker can unicast their AFs to make sure
that only the intended target receives them.

(3) inducing the phase shift To desynchronize two targets,
the attacker needs to send incompatible synchronization parameters
that will result in a controllable offset. We explain how the attacker
calculates the relevant parameters i and tAW for both targets. Let us
assume that the attack starts at time Ts. An AF sent to the first target
at some time TTx with t =

⌊︂
TTx−Ts
1024

⌋︂
(in TU) will include the following

parameters:

i =

(︃⌊︃
t mod 64

16

⌋︃
+ 4

⌊︃
t

64

⌋︃)︃
mod 216 and, (10)

tAW = 64− t mod 64 . (11)

For the second target, the attacker will calculate tϕ =
⌊︂
TTx−Ts−ϕ

1024

⌋︂
and compute iϕ, tϕAW analogously to Equations (10) and (11) while
replacing t with tϕ. We verify the correctness of these calculations ex-
perimentally and show the resulting phase offset between two targets
for a target phase ϕ = τ/4 in Figure 25.

7.1 dos desynchronization attack on awdl 77

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Phase shift φ [π/16]

0.0

0.5

1.0

Overlap (inverse)
Packet loss

Figure 26: Packet loss for different phase shifts.

7.1.3 Experimental Evaluation

We evaluate the impact of our desynchronization attack by measuring
the packet loss via the ping program. In particular, we use an APU We modify our

AWDL
implementation to
carry out the
desynchronization
attack.

board [149] equipped with a Qualcomm Atheros AR928X Wi-Fi card to
act as an attacker that runs a modified version of OWL (Appendix C.2)
to inject AWDL AFs. The ICMP echo requests are sent from a MacBook
Pro (Late 2015, macOS 10.13) to an iPhone 8 (iOS 12). The attacker
induces different phase shifts spanning one period. The sender emits
100 ICMP echo requests per experiment, which we repeat ten times
and plot the resulting packet loss in Figure 26. The error bars indicate
the standard deviation. In addition, we include the inverse channel
overlap (Equation (8)) which is calculated for two identical sequences
which we have observed were the most common ones during our
experiment, i. e., s1 = s2 = 44, 44, 44, 0, 0, 0, 0, 0, 6, 44, 44, 0, 0, 0, 0, 0.

At ϕ = 0, there is no attack, while at ϕ = 16, the targets are desyn-
chronized by a full period. Due to the periodicity of the channel
sequence, neither impairs communication reliability. The other results A phase offset of a

quarter or
three-quarter period
maximizes packet
loss.

indicate that the desynchronization attack significantly degrades com-
munication between the targets, peaking at phase shifts where the
targets are off by a quarter (ϕ = 4) and three-quarter period (ϕ = 12),
which is where the channel overlap has its minima (and the inverse
overlap its maxima). With these settings, the packet loss is almost
100 %. Surprisingly, some phase shifts (e. g., ϕ = 6, 7, 9, 10, 15) result in
less packet loss than the overlap predicts. We suspect the reason to be
retransmissions on the MAC layer (up to 7 times in Wi-Fi [95]) that,
at the cost of longer latency, increase the chance that a frame will be
received in a subsequent EAW.

7.1.4 Mitigation

Devices can mitigate our desynchronization attack by discarding uni-
cast AFs. Not accepting unicast frames is an extremely effective and Ignoring unicast

AFs is an effective
counter measure.

practical countermeasure because it will cause all nodes in range to
process the same information exclusively. While this does not pre-

78 dos attacks and mitigations for awdl and airdrop

vent an attacker from winning the master election and, thus, sending
invalid synchronization parameters, as all nodes process the same
frames, it becomes much harder to create a deterministic offset be-
tween two targets. A more sophisticated attacker could employ attacks
on the PHY layer (e. g., using directional antennæ) to achieve a similar
effect as that of unicasting. However, such attacks are much more dif-
ficult to carry out in practice. In reaction to our report, Apple issued
updates for all of its OSs to prevent desynchronization (Appendix B.4)

7.1.5 Comparison to Reactive Jamming

At first glance, our desynchronization attack achieves a similar effect as
a reactive jammer [71, 121, 162]. However, the desynchronization attack
can be more attractive for two reasons. First, desynchronization needsDesynchronization

allows the attacker to
intercept frames from

its targets which is
much harder for a

jammer.

less energy than a jamming attack in principle. The desynchronization
attacker only needs to emit one frame every 1.5 s to maintain their
position as a master node because AWDL nodes elect a new master if
they have not received an AF for more than 1.5 s from their current one.
In contrast, a reactive jammer needs to emit a jamming signal for every
packet that the target sends. Second, it allows intercepting frames from
its targets, which enables mounting more sophisticated MitM attacks,
as presented in Section 7.2. In contrast, a normal jammer kills the
frame in transit, disallowing anyone (even the attacker themselves)
to decode the frame [162]. There exist more sophisticated receiver
designs that cancel out the jammer’s signal, but this typically requires
special hardware [71]. Our desynchronization attack only requires
a system with an off-the-shelf Wi-Fi chip and, thus, could even be
implemented in a smartphone [163].

7.2 dos-supported machine-in-the-middle attack on air-
drop

This section describes a MitM attack on the popular AirDrop service,
which allows iOS and macOS devices to exchange files directly via
AWDL. First, we assess the security of AirDrop and find that poor UIDoS is the first step

in mounting a MitM
attack.

design choices enable an attacker to masquerade as a valid receiver.
Then, we describe a complete MitM attack on AirDrop that prevents
any sender from discovering a valid receiver using a DoS attack and
subsequently can intercept and modify any AirDrop file transmission.
Finally, we discuss possible mitigations for the attack.

7.2.1 Ambiguous Receiver Authentication State

We have observed that AirDrop employs two different kinds of connec-
tions that we term authenticated and unauthenticated (see Section 6.3).
Further, the user can set its device to be discoverable by contacts only

7.2 dos-supported machine-in-the-middle attack on airdrop 79

authentic
(a) Sender has

John’s contact
photo

authentic
(b) Sender does not

have John’s con-
tact photo

unauthentic
(c) Sender does not

have John as a
contact

unauthentic
(d) Attacker spoofs

John’s identity

Figure 27: UI representation of an AirDrop receiver.

or everyone. Counter-intuitively, the discoverability setting only applies
to the receiver side. In particular, while a receiver in contacts-only mode
will only accept files from authenticated senders, a sender will see all
discoverable receivers irrespective of whether they are authentic or
not. This ambiguity has profound implications for security because The AirDrop UI does

not clearly
distinguish between
authenticated and
unauthenticated
receivers.

it is up to the user of the sending device to decide whether a con-
nection is authenticated or not, which can be non-trivial. The only
visual cue to differentiate between an authenticated and unauthenti-
cated connection is that an authenticated connection will show the
receiver’s name and photo from the sender’s address book. Neither
provides sufficient evidence to decide whether a receiver is authentic
unambiguously. First, if no contact photo is available (users augment
only 27 % of their contacts with a photo according to our survey in
Appendix A), the icon contains the receiver’s initials in a grey circle
which is similar to that of an unauthenticated receiver (a grey circle
with a head’s silhouette). Second, the name that is displayed under- The attacker controls

the display name.neath unauthenticated receivers is the receiver’s device name. Based
on our results in Appendix A, a device name contains the user’s given
name in the majority of the cases (more than 70 % according to our
experimental evaluation), which the attacker can exploit to create a
trustworthy-looking device name. Unless users are sensitive to such
subtle UI changes, an attacker can easily trick them into sending files
via an unauthenticated connection. Figure 27 compares the different
receiver icons, including a spoofed identity by the attacker. We want to
highlight the similarity between an authenticated identity (Figure 27b)
and a spoofed identity (Figure 27d).

7.2.2 Protocol Flow under Attack

Our MitM attack on AirDrop is carried out in three phases. First, we
break the discovery process to put ourselves in a privileged position.
Second, we wait until the target receiver becomes discoverable by ev-
eryone, effectively forcing the user to downgrade the connection. Third,
we relay and manipulate the actual data transfer to plant arbitrary

80 dos attacks and mitigations for awdl and airdrop

HTTPS POST /Discover

Jane selects “John” as the
receiver. Attacker forwards
request with original
thumbnail and device name
“Jane”; forwards response
as is.

(2) AUTHENTICATION

(1) DISCOVERY

TCP RSTTCP RST

DoS. Attacker prevents
Jane from discovering John
by mounting a continous
TCP reset attack.

Only while John is not discov-
erable by everyone, the attacker
periodically tries to
authenticate to John.

HTTPS POST /Discover

HTTPS OK 200

without device name

When John already is or becomes
discoverable by everyone, the at-
tacker successfully authenticates to
John.

HTTPS POST /Discover

HTTPS OK 200

with device name “John’s iPhone”

Attacker advertises
AirDrop service as in (1)

HTTPS POST /Discover

HTTPS OK 200

with device name “John”

The attacker immediately starts
advertising a service using “John”
as its computer name.
Jane authenticates and displays the
attacker’s identity “John” in the
sharing pane.

(3) DATA TRANSFER HTTPS POST /Ask
with device name “Jane’s iPhone”

HTTPS OK 200

HTTPS POST /Ask
with device name “Jane”

HTTPS OK 200

HTTPS POST /Upload
HTTPS POST /Upload

HTTPS OK 200
HTTPS OK 200

Attacker receives original file and
forwards a modified copy to John

Sender “Jane” Receiver “John”Attacker

 (as in Figure 21)

Figure 28: Protocol flow and user interaction of our MitM attack on AirDrop.

7.2 dos-supported machine-in-the-middle attack on airdrop 81

files at the receiver. We illustrate the attack in Figure 28 and explain
each phase in more detail below.

(1) breaking discovery via dos The most crucial part of the
attack is preventing the sender from discovering the receiver such
that it appears as an icon in the sharing pane. In particular, we need The DoS attack

disturbs AirDrop’s
discovery handshake.

to prevent that the discovery handshake via HTTPS completes suc-
cessfully. In principle, such a DoS attack could be carried out via
our desynchronization attack (Section 7.1). However, we found that
it could not reliably prevent the short HTTPS discovery requests and
responses from being received. This is because AirDrop senders in-
crease the channel allocation when starting the discovery process, thus,
increasing the overlap with the receiver even when desynchronized.
As an alternative, we used the well-known TCP reset attack, which
sends TCP segments with an RST flag to the targets that, in turn,
immediately drops the connection. For this attack, the attacker sends
out an RST reply for every TCP segment that is not addressed to itself
and effectively prevents any reconnection attempts from the sender to
the receiver.

(2) downgrading an authenticated connection For a
complete MitM attack, we need to authenticate with the receiver.
Otherwise, it will deny any ask or upload requests. If the receiver is The DoS attack

forces the receiver to
set their device in
everyone mode.

discoverable by everyone, this is trivial, since it accepts all authenti-
cation attempts, even those with a self-signed certificate which the
attacker can easily generate (see Section 6.3). The receiver indicates a
successful authentication attempt from a non-contact by including its
device name in the discover response. However, we have found that
in most cases (59.4 % in our survey), users set their device to contacts
only. In such cases, we leverage the ongoing DoS attack to force the
receiver to try the everyone setting.

(3) relaying and modifying data transfer We can check
when a receiver is discoverable by everyone by periodically sending
discovery requests. Once the receiver becomes discoverable, we adver-
tise our own AirDrop identity via mDNS and wait until the sender
tries to perform the authentication handshake via HTTPS for discov-
ery which we let succeed. We relay the sender’s ask request to the The remainder of the

MitM attack is
straightforward.

receiver, including the original file thumbnail, to make the request
appear valid. After the receiver accepts the transmission request, we
relay the answer back to the sender, which—in turn—starts to send
the actual file. We can now decide whether to relay a modified version
of the file or send an entirely new one, possibly containing malware
to the receiver.

82 dos attacks and mitigations for awdl and airdrop

Figure 29: PoC of MitM attack on AirDrop (still image of video [170]).

7.2.3 Proof-of-Concept

Our proof of concept (PoC) of the MitM attack consists of two compo-
nents. First, we modify OWL (Appendix C.2) to overhear data frames
not addressed to us and set an arbitrary source MAC address, which
is required to mount a TCP reset attack. Second, we modify OpenDropWe provide a video

PoC of the complete
MitM attack on

AirDrop.

(Appendix C.3) to probe the discoverability status of the receiver target
and finally implement the MitM attack as depicted in Figure 28. Using
these implementations, we record a video of the attack [170]. A still
image is shown in Figure 29.

7.2.4 Mitigation

We discuss possible mitigation strategies. We examine them according
to implementation complexity, starting with the mitigation requiring
the least number of changes to existing AirDrop implementations.

provide stronger visual cues One of the core problems of
the current design of AirDrop is that a user might have a hard time
to differentiate between authenticated and unauthenticated receivers
(see Section 7.2.1 and Figure 27). Currently, the only cues to decideApple has

implemented
stronger visual cues

to assist users in
differentiating

between contacts and
non-contacts.

whether a receiver is authenticated are the display of a contact photo
and contact name. We have shown that the former is not commonly
available (users augment 27.4 % of their contacts with photos), and the
latter can be spoofed. Therefore, we propose to provide stronger visual
cues that unambiguously tell the user if a receiver is authenticated
or not. This is already customary in web browsers where HTTPS-
protected websites are augmented with a green (lock) symbol telling
the user that the website they are visiting is authentic. Based on
our report, Apple has reworked the sharing pane UI in iOS 13 that

7.2 dos-supported machine-in-the-middle attack on airdrop 83

now groups authenticated and unauthenticated receivers, respectively
(Appendix B.8).

reset discoverability setting after a timeout Users might
set the discoverability of their device to everyone for convenience or if
they used it for one occasion and then forgot to reset it. In either case, Resetting to

contacts-only mode
automatically would
prevent users from
unsolicited requests.

we believe that the everyone setting should only be used when it is re-
quired, i. e., if one wants to receive a file from a non-contact. To protect
negligent users, we propose to use a timeout, after which the discov-
erability setting is reset to contacts only. Alternatively, one could reset
the setting the next time the device is locked. This would also prevent
past cases where people would receive inappropriate photographs
from strangers in public places [26, 80], because, in contacts-only mode,
devices will transparently reject all requests from unauthenticated
senders.

introduce secure airdrop mode for non-contacts Our
last proposal involves deprecating unauthenticated connections and
instead establish authentication with a non-contact via an out-of-
band (OOB) channel. AirDrop could transmit one-time cookies with Abandoning

unauthenticated
connections would
greatly improve
security but sacrifice
usability.

similar functionality as the validation record (see Section 6.3) during the
initial HTTPS authentication handshake (see Section 6.2). The one-time
cookies could be validated via an OOB channel such as NFC or via
QR codes. After one transfer (or after a specific timeout), each device
deletes its one-time cookie. By committing to the one-time cookie
in the TLS handshake, a MitM attack on the OOB channel would be
fruitless because the attacker could not establish a TLS connection with
the same key. Unfortunately, such a mode would require one more
manual step by both parties and, therefore, would impair usability.

7.2.5 Previous Attacks on AirDrop

Other attacks on AirDrop have been presented before. An imper-
sonation attack [20] exploits DNS service discovery (DNS-SD) via
multicast DNS (mDNS) to redirect file transmissions to an attacker
for unauthenticated connections. In particular, the attack uses forged
SRV and AAAA responses to redirect an AirDrop ID to the attacker.
This attack only affects unauthenticated connections, while our attack Previous attacks on

AirDrop targeted
DNS-SD.

also targets authenticated connections via a downgrade attack and
we present a complete MitM attack that allows an attacker to send
malicious files to the receiver stealthily. Finally, [20] proposes a con-
flict detection mechanism for mDNS to prevent their attack, which is
based on the assumption that “disrupting two parties’ communication
through a Wi-Fi direct link or a local network is difficult for the adver-
sary without access to the routing infrastructure of the network.” In
this work, we show that it is indeed practical to mount a DoS on the

84 dos attacks and mitigations for awdl and airdrop

0 1 2 3

Length (2) Type (0x01) Flags (0x1b) Length (23)

Type (0xff) Apple (0x4c00) Subtype (0x05)

Length (18) Zero bytes

. . . 0x00 . . .
. . . 0x01 Contact identifier 1

Contact identifier 2 Contact identifier 3

Contact identifier 4 0x00

Figure 30: AirDrop BLE advertisement frame format showing semantics
and values of individual bytes highlighting the hashed contact
identifiers.

link layer since AWDL does not employ any security mechanisms. An
earlier work [55] targeted a vulnerability in AirDrop’s implementation
that allowed the attacker to install files in arbitrary directories on the
target’s system. Apple fixed this bug in 2015.

7.3 dos blackout attacks on awdl

We discovered two implementation bugs that allowed use to crash
Apple devices by sending corrupted AWDL AFs. To demonstrate the
seriousness of these vulnerabilities in practice, we require the targets’
AWDL interface to be active, which is typically not the case since an
application has to request activation explicitly (Section 5.2.1). There-We need to activate

nearby AWDL
devices to make the

attack practical.

fore, we exploit the Bluetooth Low Energy (BLE) discovery mechanism
integrated with AirDrop (see Chapter 6) to activate all AWDL devices
in proximity. In particular, devices in everyone mode will enable AWDL
immediately after receiving any AirDrop BLE advertisement. To also
target devices in the default contacts-only mode, we analyze the practi-
cality of brute-forcing the truncated contact hashes in AirDrop’s BLE
advertisements. Then, we build a PoC leveraging a low-cost (20 US$)
BBC micro:bit device and experimentally confirm that the attack is
feasible in practice with a target response time of about one second for
devices that have 100 contact identifiers in their address book. Finally,
we introduce the actual vulnerabilities and discuss their mitigation.

7.3.1 AirDrop BLE Advertisements

We show the actual BLE advertisement frames [32, Vol. 3, Pt. C, Sec. 11]
of AirDrop, including four contact identifier hashes in Figure 30. TheLimited space in the

BLE advertisements
required Apple to

truncate the contact
identifier hashes.

advertisements are broadcast as non-connectable undirected adver-
tising (ADV_NONCONN_IND). The frames use manufacturer-specific data
fields that have fixed values except for the contact hashes. In fact, we
found that the contact hashes are the first two bytes of the SHA-256

7.3 dos blackout attacks on awdl 85

symbol description

S Contact hash search space

C Contacts in the target’s address book

w Target’s BLE scan window

i Target’s BLE scan interval

iPHY Attacker’s BLE PHY injection interval

r Effective contact hash brute force rate

n Tried hash values per scan window

p (pj) Hit probability after one (or j) scans

Table 9: Symbols used for the BLE brute force attack.

digest of the sender’s contact identifiers that are also included in the
validation record (see Section 6.3). If the sender has less than four
identifiers, the remaining contact hash fields are set to zero. Due to the
short length, it appears feasible to use brute force to try all possible
values.1

7.3.2 Brute Force Analysis

We assume that the attacker does not know the target’s contacts and,
thus, attempts to enable the target’s AWDL interface using brute force.
As the target has at least one contact identifier (the address book We first determine

the feasibility of
brute-forcing
analytically.

contains at least the user’s own Apple ID), the attacker needs to try
S = 216 = 65 536 hashes in the worst case. Thus, the challenge for
the attacker is to quickly send a large number of BLE advertisements
while the target is conducting a BLE scan. In the following, we analyze
how fast the attacker can deplete the search space and how successful
they would be. We start investigating the results for a single BLE scan
window and then extend our analysis to multiple scan intervals. We
use the symbols described in Table 9 in the following.

one scan window Let the attacker inject BLE advertisement
frames at the physical layer with an interval of iPHY. Further, consider
that the attacker has a single radio and that BLE uses three advertise-
ment channels [32]. Also, recall that an AirDrop BLE frame has room
for four contact hashes. Then, we calculate the attacker’s effective
brute force rate r as:

r =
4

3 · iPHY
. (12)

1 Note that the sender still has to provide the complete hash during the HTTPS
handshake before the receiver accepts the data on an authenticated connection.

86 dos attacks and mitigations for awdl and airdrop

Now, we can compute the number of hash values n that the attacker
can inject per scan window w [32] as:

n = w · r . (13)

Let X be a random variable, and let P(X = k) denote the probability
that the target “sees” k out of C known contact hashes during one
scan window. Since the attacker moves through the search spaceThe attacker needs to

send advertisements
while the target is

scanning.

sequentially, we can formulate the problem using the urn model in
drawing without replacement mode which results in a hypergeometric
distribution. We get:

P(X = k) =

(︁
n
k

)︁(︁
S−n
C−k

)︁(︁
S
C

)︁ . (14)

In particular, the attacker only requires one hit to activate the target’s
AWDL interface whose probability we call p:

p = P(X ⩾ 1) = 1− P(X = 0)

= 1−

(︁
n
0

)︁(︁
S−n
C−0

)︁(︁
S
C

)︁ = 1−

(︁
S−n

C

)︁(︁
S
C

)︁ . (15)

Using the Stirling’s approximation
(︁
n
k

)︁
≈ nk

k! for k ≪ n, we can
simplify Equation (15) as:

p ≈ 1−

(S−n)C

C!
SC

C!

= 1−
(S −n)C

SC

= 1−

(︃
S −n

S

)︃C

= 1−
(︂
1−

n

S

)︂C

. (16)

multiple scan intervals BLE devices perform scans regularly
at a fixed interval i [32]. Let Y be a random variable indicating that theWe assume that the

attack does not know
when the target’s

scan window starts.

attacker has at least one hit (Y = 1) or none (Y = 0) during one scan.
We assume that the attacker does not know when the target’s scan
window starts and, therefore, that Y is independent and identically
distributed between scans.2 Let j indicate the target’s jth scan since
the attacker started their brute force attack. Then, the probability that
the attacker had k hits after j scans is given by a binomial distribution:

P(Y = k) =

(︃
j

k

)︃
pk(1− p)j−k . (17)

Again, the attacker needs at least one hit whose probability we denote
as pj (note that p1 = p):

pj = P(Y ⩾ 1) = 1− P(Y = 0) = 1− (1− p)j . (18)

2 If the attacker knew the start of each scan window, they could follow a better strategy
by only sending advertisements while the target is performing a scan. This way, they
would deterministically succeed after they had gone through S once.

7.3 dos blackout attacks on awdl 87

1 uint8_t *le_adv = airdrop_init_template()

2 for (uint16_t h = 0; /* loop */; h += 4)

3 {

4 airdrop_set_hashes(le_adv, h, h+1, h+2, h+3);

5 for (uint16_t chan = 37; chan < 40; chan++)

6 {

7 le_adv_tx(le_adv, chan);

8 sleep(0.625 /* in milliseconds */);

9 }

10 }

Program 1: C pseudo code of our BLE brute force attack.

With Equation (16), we get:

pj ≈ 1−
(︂
1−

n

S

)︂jC
. (19)

We know that j depends on the time since the attack started and the
target’s BLE scan interval i (the target performs one BLE scan of length
w per interval). Let t denote the attack duration, then j ⩽ ⌊t/i⌋. Finally,
we denote the success probability at time t as

p(t) ≈ 1−
(︂
1−

wr

S

)︂tC/i
. (20)

7.3.3 Jailbreaking BLE Advertisements

The Bluetooth standard imposes a minimum advertisement interval3

of 100 ms for non-connectable undirected advertising [32, Vol. 6, Pt. B,
Sec. 4.4.2.2], which we found is usually enforced in the BLE firmware.
By complying with the standard, the attacker would need at least The send interval of

BLE advertisements
in off-the-shelf
devices is restricted.

216 = 27 minutes to iterate through the entire search space once. If
the attacker had access to the BLE physical layer to control and sched-
ule individual transmissions, they could circumvent the standard’s
restrictions and, thus, iterate through the search space much faster. To
this end, we extend an open-source BLE firmware [34] for the Nordic
nRF51822 [142] chipset to implement our brute force attack. In princi-
ple, our attack implementation is very simple and shown in Program 1.
We use a send interval of iPHY = 0.625ms resulting in r = 2133.3 s-1

which allows the attack to iterate through S in only 216/f = 30.72 s.
By using three BLE radios (one for each advertisement channel), we
could reduce this time to 10.24 s. However, we show that using one
radio is sufficient in practice.

3 The BLE advertisement interval accounts for a frame transmission on each of the
three advertisement channels.

88 dos attacks and mitigations for awdl and airdrop

10 100 1000 Everyone
Contact Identifiers

10−2

10−1

100

101

102

R
es

po
ns

e
Ti

m
e

[s
]

Experiment
Analysis

Figure 31: Time until target activates AWDL after being exposed to our brute
force attack.

7.3.4 Target Response Time

We measure the target response time, i. e., the time it takes for a target
to turn on its AWDL interface when being exposed to our attack. InWe measure the time

until our brute force
attack is successful.

particular, we measure the response time for a contacts-only receiver
that has 10, 100, and 1000 contact identifiers in their address book. Also,
we include reference measurements for a receiver in everyone mode
under the same attack.

setup For the experiment, we use a Wi-Fi sniffer (Broadcom BCM-
4360) to receive AWDL AFs and a 20 US$ micro:bit device [132] to
inject BLE advertisements. To get the response times, we start a bruteHardware as cheap

as 20 US$ is
sufficient to

implement the attack.

force attack and measure the time until we receive the first AF from
the target. We then stop the attack and wait until the target stops
sending AFs which means that the AWDL interface has turned off.
Then, we start over to collect 50 measurements per setting.

results We show the results for an iPhone 8 (iOS 12) in Figure 31.
The plot also includes the analytical response time distribution based
on Equation (20), assuming a BLE scan window w and interval i of
30 ms and 300 ms, respectively.4 We can make several observations.In a realistic setting,

our brute force attack
activates nearby

AWDL devices in
about one second.

(1) Our analytical model does not capture our experimental results
precisely but approximates them within an order of magnitude which
is sufficient for our purposes. (2) The median response time of targets
with only 10 contact identifiers in their address book is 10 seconds
and decreases to about 1 second when more contacts are available. We
found that a user has more than 136 contacts on average based on a
user study that we describe in Appendix A.2. (3) This means that the

4 https://lists.apple.com/archives/bluetooth-dev/2014/Sep/msg00001.html

https://lists.apple.com/archives/bluetooth-dev/2014/Sep/msg00001.html

7.3 dos blackout attacks on awdl 89

Figure 32: PoC of blackout attack on iOS devices (still image of video [169]).

brute force attack is feasible for scenarios where the target will be in
the attacker’s communication range for a few seconds.

7.3.5 Crashing AWDL Devices in Proximity

During our AWDL analysis and building an AWDL prototype, we
found two implementation flaws in Apple’s OSs that allow an attacker
to crash devices in proximity.

These flaws can be exploited by sending corrupt AFs. In particular, Implementation
flaws in AWDL
enable us to crash
nearby devices.

we can trigger kernel panics by setting invalid values in the synchro-
nization parameters (affecting macOS 10.12) and the channel sequence
(affecting macOS 10.14, iOS 12, watchOS 12, and tvOS 5), respectively.
To showcase our findings, we provide a video of our PoC which ex-
ploits the second vulnerability on iOS devices [169] with a still image
shown in Figure 32. The video demonstrates how an attacker mounts
a targeted DoS attack that crashes a single device and a blackout DoS
attack that crashes all devices in range of the attacker at the same time.

While not critical by themselves, the mere existence of these vulner-
abilities creates a new class of threats to Wi-Fi devices as an attacker
can exploit them without any authentication towards the target, i. e., they
do not have to be on the same network. In light of the complexity that
AWDL adds to existing Wi-Fi implementations and past discovered
issues in standardized Wi-Fi procedures [15, 28], we think that a deter-
mined attacker can find vulnerabilities in AWDL that eventually lead
to remote code execution.

7.3.6 Mitigation

Apple has responded to our responsible disclosure and released a
two-step mitigation to the problem. First, Apple implemented a rate-

90 dos attacks and mitigations for awdl and airdrop

limiting mechanism (Appendix B.7) that throttles the contact hash
matching process and, thus, makes our brute force attack less effective
to activate nearby AWDL devices. Second, Apple has fixed a parsingApple did not patch

all vulnerabilities. problem we exploited in our PoC and affected all Apple OSs (Ap-
pendix B.1). Another reported vulnerability affecting only macOS 10.12

(Appendix B.2) remains unpatched.

7.4 discussion and summary

The deployment of open Wi-Fi interfaces enables new types of ap-
plications for mobile devices. They allow devices in proximity to
communicate with each other without being connected to the same
Wi-Fi network. On the downside, this also opens new opportunitiesDeploying open

wireless interfaces
exposes users to new

risks.

for an attacker as they no longer have to provide any kind of authen-
tication (e. g., access to a secure Wi-Fi network). In this chapter, we
investigate the first protocol of this kind, i. e., Apple’s proprietary
AWDL. In particular, we find three distinct protocol-level vulnerabili-
ties that allow for DoS, user tracking, and MitM attacks. In addition,
we discovered two implementation bugs in Apple’s OSs that cause
DoS. Given the complexity of the protocol and implementations, we
conjecture that more severe vulnerabilities will be found in the future.
We have shared our findings with Apple, and they closed the vulner-
abilities in several OS updates (see Appendix B for details). Finally,
our findings have implications for the non-Apple world: Neighbor
Awareness Networking (NAN), commonly known as Wi-Fi Aware, is a
new standard supported by Android which draws on AWDL’s design
and, thus, might be vulnerable to the similar attacks as presented in
this work. This is pending further investigation.

Part III

I S L A N D A N D A R C H I P E L A G O
C O M M U N I C AT I O N

8
D O S - R E S I L I E N T I S L A N D C O M M U N I C AT I O N

Internet of things (IoT) devices penetrate different aspects of our life,
including critical services such as health monitoring, emergency com-
munciation, and autonomous driving. Such safety-critical IoT systems
often consist of a large number of devices and need to withstand a
vast range of known denial-of-service (DoS) attacks to ensure reliable
operation while offering low-latency information dissemination. As LIDOR provides

comprehensive
security guarantees
while maintaining
low communication
latency.

the first solution to jointly achieve these goals, we propose LIDOR, a
secure and lightweight multihop communication protocol designed to
withstand all known variants of packet dropping attacks. Specifically,
LIDOR relies on an end-to-end feedback mechanism to detect and
react on unreliable paths and draws solely on efficient symmetric-key
cryptographic mechanisms to protect packets in transit. We show the
overhead of LIDOR analytically and provide the proof-of-convergence
for LIDOR that makes LIDOR resilient even to strong and hard-to-
detect wormhole-supported greyhole attacks. In addition, we evaluate
the performance via testbed experiments. The results indicate that
LIDOR improves reliability under DoS attacks by up to 91 % and
reduces network overhead by 32 % compared to the state-of-the-art
Castor protocol [64] that is our benchmark.

8.1 overview

In this section, we first provide the system model and a high-level
overview of the LIDOR protocol. Next, we describe the protocol in
detail, and, finally, highlight differences from the benchmark protocol.

8.1.1 System Model

Our security assumptions consist of a trust model and an adversary
model. We further require each node to perform certain basic crypto-
graphic operations. We elaborate on them in the following.

trust model LIDOR constitutes an end-to-end communication
protocol. Hence source and destination nodes need to trust each other
and be able to share a cryptographic key. The key establishment can be We require

established
end-to-end trust
relationships
between nodes that
want to
communicate.

mediated by a trusted third party that certifies public keys, via secure
device pairing methods, or manually by the user. In the IoT scenario,
the device manufacturer could pre-deploy certified keys such that
devices from the same manufacturer could perform key derivation
without an active third party. In an emergency scenario, we could use

93

94 dos-resilient island communication

the certificate infrastructure proposed in Chapter 9. However, we do
not assume trust relationships between relay nodes. Thereby, LIDOR
is resilient to individual nodes that the adversary compromises, e. g.,
in case that certain device models expose vulnerabilities.

adversary model We consider the DoS attacks presented in Sec-
tion 2.2. We consider an insider adversary, i. e., an entity controlling
a portion of authenticated nodes within the network. They can con-
sequently take part in normal network operations and can mount,
e. g., jamming, spoofing, and dropping attacks. We refrain from dis-A mitigation for

flooding attacks has
been previously

proposed and can be
directly integrated in

LIDOR.

cussing flooding attacks in this chapter as Castor [64], our benchmark
protocol, has a mitigation against this attack that LIDOR can use as
well. However, the adversary cannot break cryptographic primitives,
and we assume that there is at least one adversary-free path between
any source-destination pair that wishes to communicate. Without this
restriction, an adversary in a favorable position could partition the
network and completely prevent communication. In order to remove
this restriction, nodes could attempt to detect non-functioning flows
and switch to an archipelago-scope protocol. This would, however,
sacrifice latency, and we leave such a mechanism as an open research
topic.

node capabilities We require that each node (1) has access toWe need to find
suitable candidate
functions for some

cryptographic
primitives.

a pseudo-random number generator rng, (2) can compute a cryp-
tographic hash function hash (·), (3) has access to a stream cipher
prf (K,n) which takes a key K and some nonce n as inputs, and (4) can
compute authentication tags tag (K, ·) based on a shared key K. We
discuss practical candidate functions in Section 8.5.2.

8.1.2 Protocol Summary

LIDOR leverages established concepts [64, 160, 161] to provide DoS-
resilient communication. At its core, LIDOR (1) uses an acknowledg-LIDOR builds on

acknowledgments,
node-local routing

decisions, and
isolated flow state.

ment-based feedback mechanism to rate the reliability of neighbors
and effectively detect faulty links, (2) lets intermediate nodes indi-
vidually decide whether to conduct path exploration (broadcast) or
exploitation (unicast) to react to changes in reliability quickly, and
(3) separates the state of different flows to prevent adversarial state
pollution. With its generic design, LIDOR is agnostic to the cause
of disruptions but will detect the existence of failures and react to
them. Thereby, LIDOR comprehensively thwarts any type of dropping
attack. Further, LIDOR solely relies on lightweight symmetric crypto-We only use

lightweight
cryptographic

primitives.

graphic primitives that can be efficiently calculated on computationally
constrained nodes. In particular, we rely on a Merkle tree-based com-
mitment scheme. All packet IDs are committed to when constructing
the tree. Then, the destination reveals the secret only after receiving it

8.2 packet processing 95

in the form of an acknowledgment. Since all intermediate nodes can
verify the secret, they can be sure that the destination has received the
packet if they receive the acknowledgment.

8.1.3 Comparison to Castor’s Design

Before we describe our LIDOR protocol in detail, we discuss the
distinct differences to Castor [64], which we will refer to as our bench-
mark protocol for the remainder of this chapter. In particular, LIDOR
differs from the benchmark in the following key points.

• We employ an effective construction and in-network compression
of the Merkle tree. Especially with the in-network compression, Compared to our

benchmark Castor,
LIDOR reduces
bandwidth overhead
and protects against
replay and
wormhole-supported
greyhole attacks.

we can reduce the average packet overhead from a logarithmic to
a constant factor (with respect to the tree size) in a static setting.
We provide the proofs in the overhead analysis in Section 8.3.

• We provide proper protection against replay attacks. In partic-
ular, we keep a list of seen packet identifiers that survives the
acknowledgment timeout in the form of a space-efficient bit
vector, as described in Section 8.2.2.

• We design a reliability metric that will converge even in the
presence of a strong wormhole-supported greyhole attack. We
provide a proof for non-convergence of the benchmark and
a proof of convergence for LIDOR in Section 8.4 for a static
network topology.

8.2 packet processing

Next, we elaborate on the protocol workflow of LIDOR. The main LIDOR nodes
process packets in
five steps.

processing steps are (1) packet generation, (2) packet verification,
(3) packet forwarding, (4) packet reception, and (5) acknowledgment
handling. We depict the various stages in Figure 33 and summarize
the symbol notations in Table 10.

8.2.1 Packet Generation

LIDOR establishes flows for end-to-end communication, similar to
Castor [64]. The cryptographic material securing each flow is drawn
from a Merkle tree, an accepted cryptographic tool for secure multi-
hop communication [64, 88, 160, 161]. We first introduce the packet
format and then discuss the peculiarities of Merkle tree usage and
construction.

packet format The LIDOR packet (PKT) in Equation (21) con- There are only two
types of packets:
PKTs and ACKs.

tains source s and destination d identifiers, a flow identifier H, which
is the root of a Merkle tree of height l, the kth PKT identifier bk,

96 dos-resilient island communication

symbol notation

s source node

d destination node

H flow identifier (root of the Merkle tree)

l height of Merkle tree

n nonce

bk kth packet identifier

Ks,d key

m packet digest

σ authentication tag

fk flow authenticator for the kth packet

ak ACK authenticator (preimage of bk)

TACK ACK timeout

OB
k(O

L
k) overhead for the kth packet for the benchmark (LIDOR) protocol

OB(OL) total overhead from all the packets of the flow for benchmark (LIDOR) protocol

∆O difference between total overhead in benchmark and LIDOR protocol

η number of hash values required

tk sending time of the kth packet

λn number of packets for which nonce is re-transmitted

pn probability of retransmission of nonce

µH
x,j average reliability estimator for the jth neighbor of the node x for the flow H

µa,H
x,j (µf,H

H,j) reliability estimator for the jth neighbor of the node x for the flow H for all ACKs
(first ACK)

αa,H
x,j (αf,H

x,j) counts all ACKs (first ACK) received successfully from the jth neighbor of the node
x for the flow H

βa,H
x,j (βf,H

x,j) counts all ACKs (first ACK) not received from the jth neighbor of the node x for
the flow H

δ reliability estimator adaptivity parameter controlling the decay of α and β

ϵ suitable threshold on reliability

BM
x successive broadcast of M packets by the node x

BM successive broadcast of M packets by all the nodes in the network

U
y
x unicast of a packet from the node x to the node y

∆M the reliability estimator of a node after M packets transmitted successfully

Mmin(Mmax) Minimum (maximum) number of packets required to achieve convergence

A number of attacker nodes in a relay layer

N number of non-attacker nodes in a relay layer

Gν minimum number of broadcasts required in terms of Γ and Υ

I number of hops

ξI number of packets unicast for I hops

Table 10: Symbols and notations for LIDOR.

8.2 packet processing 97

(a) The source (1) generates a packet and
(3) forwards it to its most reliable
neighbor. If reliability is low, it prob-
abilistically broadcasts to all neigh-
bors to explore new paths.

(b) Receiving nodes (2) discard dupli-
cates and verify that the packet be-
longs to a certain flow. Then, they (3)
make forwarding decisions the same
way the source node does.

(c) The destination (4) verifies the au-
thenticity of the received packet and
replies with an acknowledgment on
the reverse path.

(d) All receiving nodes (5) verify its au-
thenticity and update the reliability
rating of their respective neighbors.
Neighbors that do not return an ac-
knowledgment receive a penalty.

Figure 33: Overview of LIDOR’s protocol workflow showing which opera-
tions are made in which stage: (1) packet generation, (2) packet
verification, (3) packet forwarding, (4) packet reception, and (5)
acknowledgment handling. Attacker nodes are marked in red and
drop all packets in this example.

and an authentication tag σ. A nonce n is included until the first
acknowledgment (ACK) of the flow is received. The user payload P

may be encrypted using the stream cipher prf (Ksd,hash (n||k)). σ is
computed over all fields except the flow authenticator fk and length l ′.
Additional metadata (packet type, length of hash values, and length
of the entire packet) is excluded for brevity.

PKT =
(︂
s,d,H,bk, fl

′<l
k ,n,P,σ

)︂
(21)

purpose of merkle tree LIDOR utilizes Merkle hash trees for
packet labeling, flow authentication, and proof of packet reception.
In particular, the idea is to use the input values for the tree’s leaf The Merkle tree is a

key building block of
LIDOR’s design.

nodes as packet identifiers bk and to commit to them with the root
H that is used as a flow identifier. The packet identifiers, in turn, are
computed from a secret ak as bk = hash (ak). Since PKTs are end-to-
end authenticated, the destination node will only reveal the preimage
ak of the packet identifier bk for authentic packets in the form of an
ACK (Section 8.2.4). Upon reception of ak, intermediate nodes can
deduce that the destination must have received an authentic packet
with bk.

nonce-seeded merkle tree construction We construct the
LIDOR Merkle tree as follows. (1) We use a unique and random nonce

98 dos-resilient island communication

H = hash (hash (. . .) ||xl)

hash (hash (b1) ||x1)

hash (b1)

b1 = hash (a1)

a1

x1

·

·

xl

·

·

·

·

bw

aw

prf (Ksd,n)

Figure 34: LIDOR Merkle tree generation. The leaf seeds ak are drawn from
a stream cipher prf (·, ·) that, in turn, is seeded by a secret key Ksd

and a public nonce n. The intermediate tree nodes x1, . . . , xl are
the elements of the flow authenticator fk.

n and use it together with Ksd to seed a cryptographically secure
pseudo-random number generator prf (·, ·), e. g., a stream cipher. (2)
We “chop” the output of prf (Ksd,n) into w blocks1 of size |hash (·) |
to create ak for k = 1, . . . ,w and construct the Merkle tree as shown
in Figure 34. Our unique approach of seeding the Merkle tree withThe Merkle tree is

seeded by a shared
key and a nonce.

a nonce n enables the source to share all secret values ak with the
destination by just communicating n. Together with the shared key
Ksd, the destination can repeat the Merkle tree construction process
and retrieve all ak. Without (1), the source would need to communicate
all ak individually in a confidential manner, which would waste
bandwidth as done in [64].

When creating the Merkle tree from n and Ksd, we need to assert
that we never reuse n for any source-destination pair. Otherwise, re-
play attacks are possible. Reasonable candidates for n are timestampsNonces need

sufficient entropy to
mitigate the birthday

attack.

or randomly chosen values drawn, e. g., from a system-provided rng

function. The drawback of choosing timestamps as nonces is the addi-
tional attack vector on time synchronization services such as NTP [125]
or GPS [147]. When choosing n purely at random, n must be large
enough to avoid nonce reuse due to the well-known birthday attack [69].
We choose to implement the second option with a random 192-bit
nonce.

In the optimal case, the tree size w is chosen such that it is equal
to the number of packets a source node wishes to transmit for a
certain flow. If this number is known a priori, LIDOR can use w as
an optimization. In all other cases, LIDOR has to rely on a defaultThe choice of the tree

size has a profound
impact on efficiency.

tree size. However, choosing the default tree size incurs a trade-off. (1)
The length of the flow authenticator included in every packet grows

1 Note that due to the nature of a binary tree, w must be a power of 2.

8.2 packet processing 99

logarithmically with the tree size. However, (2) very small trees cause
frequent flow restarts, i. e., whenever all bk have been used, a new
tree must be created, and the route exploration process restarts. In
Section 8.2.3, we propose a countermeasure for (1) in the form of
an in-network compression mechanism that can reduce the average
overhead of the flow authenticator to a constant factor.

8.2.2 Packet Verification

During packet verification, a node filters out the PKTs that either have
already been forwarded (i. e., duplicates) or contain an invalid flow
authenticator. Also, it computes the minimal authenticator length for
the next-hop node.

duplicate detection Duplicate detection consists of two steps.
First, a node calculates a packet digest m using a collision-resistant
hash function of the incoming PKT (excluding the variable-length
field fk). This serves to identify unique PKT copies that might have
the same packet identifier bk. If the node has already seen the pair Detecting duplicates

is important for both
efficiency and
security.

(m,bk), the PKT is dropped. For preventing replay attacks, each node
keeps a per-flow state to memorize which PKTs have already been
acknowledged for preventing replay attacks. A very low-complexity
and space-efficient implementation of such a data structure is a zero-
initialized bit vector. Setting bit k in the bit vector signifies that the
kth PKT of a certain flow is acknowledged and, thus, future copies
of bk can be ignored and are not forwarded again. Specifically, a
node checks whether PKT k of the indicated flow has already been
acknowledged (kth bit set) and, if yes, discards it. We demonstrate the
effectiveness of our replay protection mechanism in Section 8.6.

flow authentication The Merkle tree assures that all bk can
be authenticated to a single value, i. e., the root H that serves as a A relay node makes

sure that a received
PKT belongs to the
indicated flow before
forwarding it.

flow identifier. Intermediate nodes can validate that bk belongs to H

by traversing the tree from bk to the root H ′ using intermediate tree
nodes fk and checking that H ′ = H. The flow authentication procedure
has been described in [64] and assures that only PKTs belonging to
the flow will be forwarded.

8.2.3 Packet Forwarding

We describe the forwarding decision that is based on a reliability
metric. We further discuss the in-network Merkle tree compression to
reduce network overhead and explain the purpose of the PKT timer.

reliability metric In contrast to the per-destination routing
state used in classic MANET protocols [43, 150], LIDOR keeps the

100 dos-resilient island communication

H

·

·

b1

•

b2

•

·

b3

·

b4

l ′ = 2 H

◦

◦

b1

◦

b2

◦

·

b3

·

b4

l ′ = 0

H

◦

◦

b1

◦

b2

◦

·

b3

•

b4

l ′ = 1 H

◦

◦

b1

◦

b2

◦

◦

b3

◦

b4

l ′ = 0

Figure 35: Exemplary Merkle tree (w = 4) visualizing optimal flow authenti-
cator lengths l ′ for different PKT identifiers bk. Bullets (•) indicate
tree nodes that have to be included in PKT k. Circles (◦) are known
tree nodes sent in previous PKTs. Dots (·) are unknown nodes
but are not required to authenticate bk. Thick lines indicate the
verification path.

forwarding state per flow. In addition, LIDOR nodes maintain separate
per-neighbor reliability estimators for every encountered flow. The
reliability estimator µH

x,j ∈ [0, 1] of a node x for its neighbor j for
the flow H is computed as a running average of the PKT delivery
rate (i. e., the number of valid ACKs returned from a neighbor). ItLIDOR adopts the

reliability estimator
from previous works

but applies it in a
way that achieves

provable
convergence.

has been shown in [64, 146] that this approach provides lightweight
protection against any accidental and deliberate packet loss, including
hard-to-detect selective packet dropping, i. e., greyhole attacks. In
short, the metric is a running average of successfully delivered PKTs
via a particular neighbor. In Section 8.4, we discuss the calculation
of the reliability estimator in detail. We further prove that previous
approaches [64] are not secure, i. e., they might not converge towards
an attacker-free path if attackers are present in the network. Also, we
prove that LIDOR’s approach converges.

forwarding decision A node makes a probabilistic forwarding
decision that is based on its reliability estimators. The intuition isShould two

neighbors be equally
reliable, we choose

the one that achieved
the lowest RTT.

that we use broadcast for route exploration if no reliable path exists,
and otherwise unicast for route exploitation to keep using a working
path. A node unicasts a PKT with probability µH

x to the most reliable
neighbor where µH

x = maxj µH
x,j, i. e., the reliability estimator of the

most reliable neighbor. Should two or more neighbors have the same
reliability estimator, we use the average round-trip time (RTT) to break
the tie. Otherwise, the PKT is broadcast to all neighbors.

8.2 packet processing 101

Input: k, l,h
1 l ′ ← 0

2 while l ′ < l do
3 kleft ← (k⊕ (1≪ l))∧ (−1≪ l)

4 kright ← kleft + (1≪ l) − 1

5 for k ′ ∈
[︂
kleft,kright

]︂
do

6 if h has acknowledged k ′ then
7 return l ′

8 end if
9 end for

10 l ′ ← l ′ + 1

11 end while
12 return l

Program 2: Calculation of the minimal flow authenticator length.

in-network merkle tree compression The size of the flow
authenticator fk has a significant impact on the protocol overhead.
fk grows linearly with the tree height l. In previous works [64, 88,
100], all sibling nodes in the tree from the leaf to the root (tree nodes Transmitting all

intermediate Merkle
tree nodes for
authentication
creates a significant
overhead.

x1, . . . , xl in Figure 34) are included in each packet. For large trees,
this naïve approach generates significant overhead. For instance, a tree
of height l = 8 allowing to send 28 = 256 PKTs under a single flow
requires the header to include eight hash values in fk. In absolute
terms, this results in 8× 16 = 128 bytes overhead per PKT when using
a collision-resistant hash function with a 16-byte output.

LIDOR employs a more efficient method. LIDOR nodes incremen- We require nodes to
cache parts of the
tree to reduce
redundancy.

tally construct the Merkle tree as they receive new bk and fk values
(note that intermediate nodes cannot construct the entire tree from
n since they do not possess Ksd). Starting from the second received
PKT, l ′ (with l ′ < l) new tree nodes are required to authenticate the
flow. The idea is visualized in Figure 35. In a stable network, the
lower-bound average of l ′ is constant with (2l − 1)/2l < 1, which leads
to an eight-fold overhead reduction compared to sending the full
authenticator length as in the above example.

In order to devise a practical distributed algorithm to calculate l ′,
nodes need to keep track of the current Merkle tree state of their neigh-
bors. LIDOR nodes do this by leveraging the ACKs received from their We devise an

algorithm that
calculates which tree
nodes have to be
included in a given
PKT.

neighbors: when receiving ak from neighbor h, a node knows that h
has the kth leaf of the Merkle tree, as well as the authenticated path
from this leaf to the root. Otherwise, h would have been unable to
authenticate and forward the kth PKT in the first place. To determine
minimal l ′, i. e., the shortest possible flow authenticator length for
which the next-hop node will still be able to authenticate bk, we use
Program 2. Note that the algorithm is robust against (adversarial)

102 dos-resilient island communication

packet dropping as it always includes the full flow authenticator if the
neighbor has not acknowledged a packet of that flow. When broadcast-
ing a PKT, we need to make sure that all neighbors can authenticate
bk. Therefore, we set l ′ to the maximum among all neighbors, i. e.,
l ′ = maxh l ′h with l ′h being the minimal flow authenticator length for
neighbor h.

This scheme assures that (1) a node can always authenticate any
PKT received from another correct node; and (2) the transmitted flow
authenticator does not convey redundant information, i. e., it is exactly
as long as it needs to be for minimal PKT overhead. Note that our
scheme is agnostic to packet loss and packet reordering.

In the rare case that a node loses state and is unable to authenticate
the flow because fk is too short, it may “bounce” the PKT back to
the sender with a unicast to request for a retransmission with the
complete fk. The receiving node then removes the flag and returns theA node can request a

full flow
authenticator if it

lost state.

complete fk of length l to the requester. This retransmission may only
be done once per neighbor and PKT to prevent DoS attacks where an
attacker would effectively circumvent the duplicate check.

awaiting response When forwarding a PKT, a node starts a
timer for each new bk that expires after a timeout TACK. In additionIf no ACK is

returned, the
reliability estimator

of that neighbor
decreases.

to starting the timer, the tuple (m,bk,H) together with the forward-
ing decision is added to a collection of previously seen PKTs. This
tuple serves the purpose of authenticating ACKs (as described in Sec-
tion 8.2.5), and it is discarded after the PKT timer expires. If the timer
expires and no ACK has been received, the reliability estimator for the
next-hop node decreases. To avoid premature false positives (timer
expires before ACK was returned) or late true positives (lost ACK
is detected too late), we employ an adaptive TCP-inspired timeout
calculation for TACK following the same approach as in [161].

8.2.4 Packet Reception

In addition to packet verification, the destination node checks the
PKT’s authentication tag σ. PKTs with an invalid σ are discarded. ForThe destination node

verifies that the PKT
payload is authentic

and, if yes, generates
an acknowledgment.

the first PKT of a flow, the destination locally computes the full Merkle
tree using the nonce n as described in Section 8.2.1. For every received
PKT, the destination selects ak from the Merkle tree. It then generates
the appropriate acknowledgment (ACK), as shown in Equation (22),
which consists of the packet digest m and the ACK authenticator ak.
The ACK is then returned to the sender.

ACK = (m,ak) (22)

8.3 overhead analysis 103

8.2.5 Acknowledgment Handling

ACKs act as secure proofs of delivery and allow for updating the
neighbor reliability estimators. Upon ACK reception, a node calculates
bk = hash (ak) and checks whether the ACK belongs to a valid PKT,
i. e., whether any PKT with m and bk has been forwarded before. If not,
the ACK is dropped. Otherwise, and if the sending node matches the When receiving a

valid ACK, we
increase the
reliability of the
sending node.

previous forwarding decision, the reliability estimator for the sending
node is increased. The ACK is then forwarded to the neighbors from
which the node received copies of the corresponding PKT. If a node
receives multiple ACKs, only the first one is forwarded. In addition,
a valid ACK updates the bit vector used for duplicate detection and
neighbor Merkle tree state, as described in Section 8.2.2.

8.3 overhead analysis

In this section, we present a comparative analysis between the over-
head of the benchmark and LIDOR protocol for a converged scenario.
For this analysis, we consider the number of hash values in the flow We compute the

overhead for the case
that LIDOR has
converged.

authenticator fk as the protocol overhead. The overhead is added for
each hop. In the converged scenario, a stabilized path exists between
the source and the destination. Thus, all the nodes in the stabilized
path will unicast the packet to their most reliable neighbor. This im-
plies that the recipient of consecutive packets from a node remains the
same.

Let I denote the number of hops between the source and destination
nodes. Let l be the height of Merkle Tree. Therefore, the number
of packets transmitted for a flow of Merkle tree is given by 2l. Let
|hash (·) | denote the size of one hash value in bytes.

8.3.1 Benchmark Protocol

In the benchmark protocol, the source transmits all the hash values
for each packet. The total number of hash values required for authen- The per-packet

overhead scales
linearly with the tree
height.

ticating the packet is the same as the height of the Merkle tree, l. Let
OB

k denote the overhead for the kth packet of the flow. Then,

OB
k =

I∑︂
i=1

l|hash (·) |+ |ek| ,

= I(l|hash (·) |+ |ek|) ,

104 dos-resilient island communication

where |ek| denotes the size of the hash value of an encrypted ACK
ek in bytes as used in [64]. Let OB denote the total overhead of the
benchmark protocol. Then,

OB =

2l∑︂
k=1

OB
k = (2lI)(l|hash (·) |+ |ek|) . (23)

8.3.2 LIDOR Protocol

In LIDOR, the first packet of the flow carries a nonce that is used by
the destination node to re-construct the Merkle tree. The intermediaryThe packet contains

a nonce which the
destination uses to

reconstruct the
Merkle tree and

generate the ACKs.

nodes require l hash values of the Merkle tree to verify that the packet
belongs to the same flow. Thus, the overhead for the first packet,
denoted by OL

1 , is given by

OL
1 = Il|hash (·) |+ I|n| , (24)

where |n| is the size of the nonce in bytes. The number of hash values
required for authentication may reduce if the recipient of the current
packet had previously received one or more packets belonging to the
same flow. Since the network is converged, which implies each node
sends all the packets to the same node, it can save upon the number
of hash values required for transmission, as shown in Program 2.

Let η denote the number of hash values required to be transmittedIn LIDOR, we need
to transmit 2l − 1

tree nodes for a
single flow.

when all the packets are sent to the same node, where η is a non-
negative integer in the range [0, l]. Then,

2l∑︂
k=1

η = 2l − 1 . (25)

This implies that the total number of hash values to be transmitted
when all the packets are sent to the same node is given by 2l − 1.

The nonce is retransmitted in future packets if tk + tRTT > tk+1

where tk is the sending time of the kth packet, and tRTT denotes the
RTT. The best case is if the nonce is transmitted only for the firstSubsequent packets

carry a nonce until
the first ACK of the

flow is received.

packet. Whereas, the worst case is if the nonce is transmitted for each
packet of the flow. Therefore, we assume that the nonce is transmitted
for 2 ⩽ k ⩽ λn packets, where λn(⩽ 2l − 1). Thus, the probability of
retransmission of nonce, denoted by pn, is given by

pn =
λn

2l − 1
.

Then, OL
k for 2 ⩽ k ⩽ 2l − 1 is given by

OL
k = I(η|hash (·) |+ pn|n|) . (26)

8.4 convergence analysis 105

s d

x1

…

xN

xN+1

…

xN+A

y1

…

yN

yN+1

…

yN+A

…

…

…

…

…

…

1 2 … IHop

Non-
attackers

Attackers

Figure 36: Corridor forwarding model used in our convergence analysis.
There are I− 1 relay layers connecting the source and destination.
Each layer consists of N non-attackers and A attackers.

Let OL denote the overhead of LIDOR protocol for a flow. Then, from
Equations (24) to (26), we have

OL =

⎡⎣ 2l∑︂
i=1

η

⎤⎦ I|hash (·) |+ (1+ (2l − 1)pn)I|n| ,

= I((2l − 1)|hash (·) |+ (1+ (2l − 1)pn)|n|) . (27)

Let ∆O denote the difference of the benchmark and LIDOR protocol.
From Equations (23) and (27), ∆O is given by

∆O = I|hash (·) |
(︁
2l(l− 1) + 1

)︁
+(︁

2l(|ek|) −
(︁
1+ (2l − 1)pn

)︁
|n|
)︁

.

8.4 convergence analysis

In this section, we present the lower and upper bounds on the number
of packets required to achieve convergence in the benchmark and
LIDOR protocol under a greyhole attack.2 We assume reliable wireless For our convergence

analysis, we assume
a lossless wireless
channel.

transmissions, i. e., there is no loss on the channel. The network con-
sists of attacker and non-attacker nodes. Unlike a non-attacker node,
the attacker node drops the packet if the packet has been unicast to
it. However, both non-attacker and attacker nodes forward the packet
and relay the ACK in case of a broadcast.

Let s and d be the source and destination nodes, respectively. Let µH
s

denote the maximum reliability value among all the one-hop neighbors
of s for the flow H. We say that a path has converged when (1) the In a converged path,

nodes will unicast
only to non-attacker
relays.

reliability of a non-attacker node is maximum, i. e., µH
s corresponds

to a non-attacker node, (2) µH
s does not decrease, and (3) µH

s ⩾ 1− ϵ,

2 Note that LIDOR and the benchmark are resilient to blackhole attacks. An attacker
that drops all packets would effectively remove itself from the network.

106 dos-resilient island communication

where ϵ(≈ 0) is a suitable threshold on the reliability of the network.
Let BM

x denote the successive broadcast of M packets by the node x,
and let BM denote the successive broadcast of M packets by all the
nodes. Let Uy

x denote the unicast of a packet from the node x to the
node y in the system.

In the following analysis, we use a generic corridor [111] forwarding
network model as depicted in Figure 36.

8.4.1 Non-Convergence of Benchmark Protocol

In this section, we present the convergence analysis for the benchmark
protocol. In the benchmark protocol, each node computes a reliability
estimator for a flow H for the jth neighbor. Let µH

x,j denote the reliabil-
ity estimator computed by the node x for its jth neighbor for the flow
H. Then,

µH
x = max

j
µH
x,j .

Whereas, µH
x,j is given byThe benchmark

protocol maintains
two reliability

estimators to give
preference to paths

with a low RTT.

µH
x,j =

µa,H
x,j + µf,H

x,j

2
, (28)

where µa,H
x,j and µf,H

x,j denote the reliability estimators that count the
reception of all ACKs and the first ACKs, respectively for the jth
neighbor of the node x and flow H. µa,H

x,j is updated for all neighbors
that respond with an ACK, while µa,H

x,j only increases for the neighbor
that is the first to respond with an ACK for an individual PKT. Then,
µa,H
x,j is computed as

µa,H
x,j =

αa,H
x,j

αa,H
x,j +βa,H

x,j

, (29)

where αa,H
x,j and βa,H

x,j count successful and unsuccessful packet deliv-
ery attempts,3 respectively for the jth neighbor of the node x and flow
H. The αa,H

x,j and βa,H
x,j update for each unsuccessful transmission as

αa,H
x,j ← δαa,H

x,j ,

βa,H
x,j ← δβa,H

x,j + 1 . (30)

Whereas, αa,H
x,j and βa,H

x,j update for each successful delivery asTwo estimators
count the number of

successful and
unsuccessful

deliveries using a
decay factor δ.

αa,H
x,j ← δαa,H

x,j + 1 ,

βa,H
x,j ← δβa,H

x,j . (31)

3 A successful delivery is counted when receiving a valid ACK before TACK expired.
An unsuccessful delivery is counted when no ACK is received or it arrives too late.

8.4 convergence analysis 107

The parameter δ is a decay factor and controls the adaptivity to
changes with 0 < δ < 1. Similarly, µf,H

x,j can be computed as

µf,H
x,j =

αf,H
x,j

αf,H
x,j +βf,H

x,j

. (32)

The αf,H
x,j and βf,H

x,j update in the same manner as αa,H
x,j and βa,H

x,j

for both successful and unsuccessful transmission. Initially, αa,H
x,j = We compute the

reliability of the
neighbors ∆M after
M successful
deliveries.

αf,H
x,j = 0 ∀x, j and βa,H

x,j = βa,H
x,j = 1 ∀x, j. Let M denote the number

of broadcast packets by the source node. If we assume that all the
packets are received successfully, the reliability of the neighbors of
the source increase for all the packets. Let ∆M denote the reliability
of the neighbors after the transmission of M packets. Then, using
Equations (29) and (31), ∆M is given by

∆M =

(︄∑︁M−1
i=0 δi∑︁M
i=0 δ

i

)︄
. (33)

Let us consider that the nodes x1 and x2 connect s and d via two
hops. Let x1 be a non-attacker node and x2 be an attacker node, i. e.,
A = N = 1 and I = 2 in Figure 36. Consider B1, Ux2

s , B1 as a packet
transmission scenario. We assume that x2 provides the first ACK for
both broadcasts. Then, using Equations (28) to (33), we have

µH
s,x1

=
1

2
∆2 ,

µH
s,x2

=
δ2 + 1

δ3 + δ2 + δ+ 1
=

1

1+ δ
.

Clearly, µH
s,x1

< µH
s,x2

. Therefore, if s selects to unicast, it will unicast
only to x2. Consider the case when s broadcast after N− 1 successive
B1, U

y
s transmissions, and x2 always provides the first ACK. Then,

µH
s,x1

and µH
s,x2

after the Nth broadcast, We show that the
benchmark protocol
does not converge by
a negative example.µH

s,x1
=

1

2
∆N ,

µH
s,x2

=

∑︁N−1
i=0 δ2i∑︁2N−1
i=0 δi

=
1

1+ δ
. (34)

Let Z denote the difference of µH
s,x1

and µH
s,x2

. Using Equation (34), we
have

Z =
1

2
∆N −

1

1+ δ
,

=
1− δN

2(1− δN+1)
−

1

1+ δ
,

=
(δ− 1)(1+ δN)

2(1+ δ)(1− δN+1)
. (35)

108 dos-resilient island communication

Since δ < 1, Z < 0 for any N, µH
s,x1

< µH
s,x2

is implied. Thus, there is a
possibility that the network gets stuck in the loop of B1, Ux2

s when x2
only provides the first ACK. This implies that there exists a possibility
that s never converges to the non-attacker neighbor, i. e., x1. Next, we
describe the convergence in the LIDOR protocol wherein each node
will converge to a non-attacker neighbor.

8.4.2 Convergence of LIDOR Protocol

LIDOR does not differentiate between µa,H
x,j and µf,H

x,j , i. e., µH
x,j =

µa,H
x,j = µf,H

x,j and updates µH
x,j for all received ACKs. However, the

procedures of updating µa,H
x,j and selecting whether to broadcast or

unicast a packet are the same as in the benchmark. In the case that twoWe modify the
reliability update

mechanism to
achieve convergence.

or more neighbors have the same reliability value, an RTT estimation
from past transmissions similar to TCP is used to break the tie. In
the following, we present the convergence analysis with and without
attackers.

no attackers In this scenario, we assume that all nodes are non-
attackers. Initially, s broadcast the packet to all its neighbors. SinceWe first show that

LIDOR converges in
a scenario where no

attackers are present.

there is no loss, the reliability will increase for all the neighbors of
s. After the broadcast of a few packets, s will unicast to the node
with least RTT. Let x be the neighbor of s that has the lowest RTT.
Thus, once s unicasts to x, the reliability of x becomes more than the
reliability of any other neighbor of s. Since the reliability of x can only
increase, s will unicast to x with high probability and hence converge
to x. This implies the node which connects s and d in the least number
of hops and has the lowest RTT will be chosen as a unicast forwarder.

Considering BM−1
s and Ux

s , we have µH
s = ∆M. Then, from the

definition of convergence, we have

µH
s = ∆M ⩾ 1− ϵ, (36)

Substituting Equation (33) into Equation (36), we haveWe calculate the
minimum number of

packets to achieve
convergence as a

lower bound.

(︄∑︁M−1
i=0 δi∑︁M
i=0 δ

i

)︄
⩾ 1− ϵ ,

δM ⩽ ϵ
1− δM+1

1− δ
,

M ⩾
1

ln(δ)

[︃
ln

(︃
ϵ

ϵδ+ 1− δ

)︃]︃
.

Let Mmin denote the minimum number of packets to attain conver-
gence for the source node in the absence of attackers. Then,

Mmin =
1

ln(δ)

[︃
ln

(︃
ϵ

ϵδ+ 1− δ

)︃]︃
. (37)

8.4 convergence analysis 109

attackers with one relay layer In this scenario, we consider
that s and d have one layer of relay nodes between them, i. e., s and d

are connected in two hops via relay nodes. The layer of relay nodes We first prove
convergence for a
network with a
single relay layer.

consists of N non-attacker and A attacker nodes (see Figure 36. Let
xi denote the ith non-attacker node for i ∈ {1, 2, . . . ,N}. Similarly,
let xi denote the ith attacker node for i ∈ {N+ 1,N+ 2, . . . ,N+A}.
The reliability increases on the unicast for each xi for i ∈ {1, 2, . . . ,N}

whereas the reliability decreases on the unicast for each xi for i ∈ {N+

1,N+2, . . . ,N+A}. Therefore, once xi for i ∈ {N+1,N+2, . . . ,N+A}

receives a unicast, its reliability decreases and hence it will not receive
any unicast in the future. Intuitively, after dropping any packet, the
attacker will no longer be among the most reliable neighbors and,
therefore, a unicast candidate.

We consider that s has transmitted M(> A) packets. Considering
all possible combinations of broadcast and unicast, the reliability of
the most reliable non-attacker node lies between [∆M−A,∆M]. The We consider the

worst-case scenario,
where the source
tries to unicast to
each attacker.

reliability of ∆M corresponds to the best case path wherein the most
reliable node has received the first unicast. It also corresponds to the
sequence of M broadcasts, which is less probable. The reliability of
∆M−A corresponds to the worst-case path which contains one unicast
to each of the A attacker nodes. Then, the upper bound on the number
of packets required for convergence is computed by considering the
worst-case reliability of the non-attacker node, i. e., ∆M−A. Therefore,
from the definition of convergence, we have

∆M−A ⩾ 1− ϵ . (38)

From Equation (33), we have

∆M−A =

(︄∑︁M−A−1
i=0 δi∑︁M−A
i=0 δi

)︄
. (39)

Let Mmax denote the number of packets required for convergence in
the worst case. Substituting Equation (39) into Equation (38), we have∑︁M−A−1

i=0 δi∑︁M−A
i=0 δi

⩾ 1− ϵ ,

δM ⩽
ϵδA

ϵδ+ (1− δ)
,

Mmax =
1

ln(δ)

[︃
ln

(︃
ϵδA

ϵδ+ (1− δ)

)︃]︃
. (40)

The lower bound on the number of packets required for convergence
is obtained by considering the best case reliability, i. e., ∆M. Therefore,
the lower bound on the number of packets required for convergence,

110 dos-resilient island communication

denoted by Mmin, is given by Equation (37). From Equations (37)
and (40), we have

Mmax −Mmin =
1

ln(δ)

(︁
ln(ϵδA) − ln(ϵ))

)︁
,

=
1

ln(δ)
ln(δA) = A .

Thus, Mmax = Mmin +A. Since there are A attacker nodes to whichAfter at most A
unicast

transmissions, the
source will choose a

non-attacker node.

unicast can happen only once, the convergence gets delayed by A

packets if s happens to choose the worst-case path, i. e., s unicasts to
each attacker node.

attackers with multiple relay layers In this section, we
present the analysis for the network containing N non-attacker and
A attacker nodes for I− 1 layers of relay nodes between s and d. Let
us consider a network with I = 3. Let xi and yi, where i ∈ {1, . . . ,N},
denote the ith non-attacker node in the first and second layer of
relay nodes, respectively. Let xi and yi , where i ∈ {N+ 1, . . . ,N+A},We extend the

analysis to network
consisting of

multiple relay layers
each consisting of the

same number of
attacker and

non-attacker nodes.

denote the ith attacker node in the first and second layer of relay
nodes, respectively. The µH

s,xi
for any non-attacker node (i. e., i ∈

{1, . . . ,N}) decreases if xi unicast to any attacker node yj where j ∈
{N + 1, . . . ,N + A}. Therefore, each non-attacker node can have A

unsuccessful unicast attempts. Therefore, the worst-case path for the
network with I = 3 consists of A iterative cycles of successive broadcast
followed by a unicast to each attacker node by the source node and an
unsuccessful attempt of each non-attacker node being unicast by the
source node. A unicast to each attacker node and a series of successive
follows the end of the iterative cycle. Let us consider N = 2 and
A = 3. The worst-case path for this network is BMmin , Ux3

s , Ux4
s , Ux5

s ,In the worst case, the
number of packets to
achieve convergence

increases as the
number of possible

paths.

Ux1
s U

y3
x1

, Ux2
s U

y3
x2

, BG1 ,Ux3
s , Ux4

s , Ux5
s , Ux1

s U
y4
x1

, Ux2
s U

y4
x2

, BG2 , Ux3
s , Ux4

s ,
Ux5

s , Ux1
s U

y5
x1

, Ux2
s U

y5
x2

, BG3 , Ux3
s , Ux4

s , Ux5
s .

The µH
s,xi
∀i decreases and becomes equal before BGν

s , where ν =

{1, 2, 3}. Gν represents the minimum number of broadcasts to be per-
formed by all the nodes such that µH

s,xi
⩾ 1− ϵ ∀i. Then, G1 is given

by

G1 =
1

ln(δ)
ln

(︄
ϵ

1−δ

δMmin+1
(︁
1+ ϵδ

1−δ

)︁
+ 1

)︄
. (41)

Whereas, Gν for any ν > 1 is given by

Γν =

ν−1∑︂
m=1

(︂
δ(

∑︁ν−1
l=ν−m Gl)+m

)︂
,

Υν = δMmin+ν+(
∑︁ν−1

l=1 Gl)
(︃
1+

ϵδ

1− δ

)︃
+ 1+ Γν ,

Gν =
1

ln(δ)
ln

(︃ ϵ
1−δ

Υν

)︃
. (42)

8.5 implementation 111

Then, using Equations (41) and (42), the upper bound on the number
of packets required for convergence for a network with I = 3 hops is
given by

Mmax = Mmin + (A+ 1)(A) +NA+

(︄
A∑︂

ν=1

Gν

)︄
.

For a network with I hops, the following holds in general. (1) The
number of unsuccessful unicast attempts for each non-attacker nodes is
given by the number of unicast packets for the network with I− 1 hops.
(2) The number of unicast transmissions by the source node to each
attacker node is one additional the number of unicast transmissions in
the network with I− 1 hops. (3) The number of successive broadcasts
is given by the number of unicast for the network with I− 1 hops.

Let ξI denote the number of unicast packets in the network with I

hops. Then, ξ2 = A, ξ3 = A(A+ 1) +NA, and ξI = (N+A)ξI−1 +A.
On solving further, we obtain

ξI = (N+A)I−1ξ2 +

(︄
I−2∑︂
i=0

(N+A)

)︄
A ,

= (N+A)I−1A+

(︄
I−2∑︂
i=0

(N+A)

)︄
A ,

=

(︄
I−1∑︂
i=0

(N+A)i

)︄
A ,

=

(︃
(N+A)I − 1

N+A− 1

)︃
A . (43)

Then, using Equations (41) to (43), the upper bound on the number of
packets required for a network with I hops is given by

Mmax = Mmin + ξI +

⎛⎝ξI−1∑︂
ν=1

Gν

⎞⎠ . (44)

8.5 implementation

We choose the Click modular router [106] for LIDOR implementation
to allow for a realistic evaluation on both real hardware and simulation.
In this section, we discuss suitable candidate functions for LIDOR’s We implement

LIDOR in the Click
modular router.

cryptographic primitives and devise a practical link-local broadcast
authentication scheme based on symmetric cryptography.

8.5.1 Reference Platforms

We evaluate LIDOR on heterogeneous platforms with different CPU
architectures, processing capabilities, memory configurations (256 MB

112 dos-resilient island communication

to 16 GB RAM), and operating systems (OSs) (Debian Linux, Android
6, macOS 10.11). In particular, these are:

• ALIX [148] (32-bit single-core 500 MHz AMD Geode LX, 256 MB
RAM, Debian Linux),Click can be run a

different UNIX-like
platforms.

• APU [149] (64-bit dual-core 1 GHz AMD T40E, 4 GB RAM, De-
bian Linux),

• LG Nexus 5 (32-bit quad-core 2.3 GHz Snapdragon 800, 2 GB
RAM, rooted Android 6), and

• MacBook Pro (early 2015, 64-bit dual-core 2.9 GHz Intel Core i5,
16 GB RAM, macOS 10.11).

8.5.2 Cryptographic Primitives

The choice of efficient cryptographic primitives is imperative for any
practical communication protocol. In LIDOR, cryptographic opera-
tions consume the longest processing time during packet forwarding
and constitute the major portion of the communication overhead.
Our implementation relies on primitives provided by the lightweight,We choose

cryptographic
primitives based on

computation time
and output size.

cross-platform libsodium (v1.0.11) [50]. Table 11 shows a performance
comparison between different candidate algorithms on our reference
platforms. The table also gives an intuition on why public-key cryp-
tography is unsuitable to be used on a per-PKT basis: the cumulated
forwarding delay would be unacceptably large. We select LIDOR’s
cryptographic primitives as follows.

• hash (·) is implemented as Blake2b with an output size of 16

bytes. Note that the hash function used to construct the Merkle
tree does not need to be collision-resistant but only preimage
and second-preimage resistant.4 Hence, a 128-bit security marginThe selected

cryptographic
primitives are

provided by
libsodium.

is sufficiently large. Blake2b is optimized for 64-bit architectures
and performs better than, for example, SHA-2.

• prf (Ksd,n) is implemented as XSalsa20/20, a stream cipher
using 256-bit keys and 192-bit nonces.

• tag (Ksd, ·) is implemented as SipHash-2-4 [17], which gener-
ates small 8-byte authentication tags for short-input (order of
kilobytes) packets using a shared secret Ksd. In contrast, general-
purpose message authentication codes such as HMAC-SHA2 are
computationally more expensive and create larger tags (8 vs. 32

bytes).

4 Collision resistance: given hash (·), it is hard to find x and x ′ such that hash (x) =

hash (x ′). Preimage resistance: given y, it is hard to find x such that hash (x) = y.
Second-preimage resistance: given x, it is hard to find x ′ ̸= x such that hash (x) =

hash (x ′).

8.6 experimental evaluation 113

function algorithm alix apu nexus macbook

hash (·) SHA-256 184 36 18 6

Blake2b 167 8 29 3

prf (·, ·) XSalsa20/20 97 12 12 5

tag (·, ·)
SipHash-2-4 66 4 8 1

HMAC-SHA-512 417 35 92 6

Ed25519 (verify) 8761 1479 815 168

Table 11: Computation time in µs of several cryptographic algorithms on
various platforms for 1024-byte strings averaged over 10000 runs.
Ed25519 is a state-of-the-art elliptic-curve signature scheme and
included as a reference.

8.5.3 Practical One-Hop Broadcast Authentication

LIDOR requires neighbor-to-neighbor communication to be authenti-
cated to prevent blackmailing and Sybil attacks. Cryptographic meth- When broadcasting,

PKTs still need to be
authenticated.

ods to authenticate broadcast communication are either based on
digital signatures or on TESLA [151], which is based on symmetric-
key cryptography and delayed key disclosure to achieve asymmetry.
We deem both approaches impractical. Digital signatures are com-
putationally expensive, and TESLA requires time synchronization
between all nodes and introduces authentication delay, which would
impede LIDOR’s reactiveness to path changes. The small output size
of SipHash enables us to implement a one-hop broadcast authentica-
tion scheme based on symmetric-key cryptography without TESLA’s
deficiencies: a forwarding node computes authentication tags for each
neighbor h ∈ F (excluding the sender) and appends all of them to the
PKT. A receiving node then tries to authenticate every tag. If any of Instead of relying on

digital signatures,
we append a list of
short and efficient
symmetric-key
authentication tags.

them succeeds, the PKT is processed, and otherwise discarded. The
expected number of SipHash calculations at a receiving node is |F|/2,
and the communication overhead is |F|× |tag (·, ·) |. We argue that this
scheme is practical since (1) the number of neighbors is typically low
compared to the total number of nodes in the network (which is what
TESLA was designed for), so the communication and computational
overhead for transmitting and verifying all tags remains low on aver-
age; and (2) broadcasts are used for route exploration, which rarely
occurs in converged communication flows.

8.6 experimental evaluation

Previous works [64, 160] have already shown that LIDOR’s approach
successfully thwarts several blackhole and greyhole attack variants.
Therefore, we focus on two specific variants that have not been ad-

114 dos-resilient island communication

APU 2
(mounted below)Raspberry Pi

(controller)

PoE
splitter

RS-232 serial connection

Wired
backbone
network

A
ntenna (W

i-Fi)

LAN switch

Figure 37: Picture of an wall-mounted APU node in an office environment.
A Raspberry Pi acts as a controller and has a serial connection
to the APU that can be used for power-cycling. The entire node
is powered over Ethernet (PoE) via the wired backbone network,
which is also used to orchestrate the experiments.

dressed so far. In this section, we first describe our experiment andWe focus on attacks
that the benchmark

has not addressed.
testbed setup and then evaluate the impact of a replay-supported and
a wormhole-supported greyhole attack.

8.6.1 Test Setup

Our testbed consists of 10 APU-based nodes [149] that are distributedWe use a 10-node
testbed with Wi-Fi
ad hoc for neighbor

communication.

in an office environment. Figure 37 depicts the architecture of a testbed
node, and Figure 44 shows the network layout. For each of the follow-
ing experiments, we use Wi-Fi ad hoc on channel 14 in the 2.4 GHz
band to minimize interference with production networks. Before each
experiment, we synchronize all nodes to a local NTP server via the
nodes’ Ethernet interfaces and bind the synchronization error to 0.1 ms
resulting in a maximum error in the end-to-end delay measurements
of 0.2 ms. In addition, each node filters its neighbors by received signal
strength indication (RSSI) with a threshold of -70 dBm to avoid spuri-
ous links. We select source and destination nodes to be at a maximum
distance such that the shortest path between them consists of five
hops. In all experiments, the source injects 128-byte packets at a rateWe select a single

source-destination
pair that has the

maximum distance.

of 10 packets per second for an entire flow of 256 packets. We repeat
each experiment 100 times. For the wormhole scenario, the attacker
nodes use their wired Ethernet interface as a direct connection to
tunnel traffic between the nodes. We use the TPy framework [166] to
orchestrate our experiments.

8.6 experimental evaluation 115

8.6.2 Summary

We present a summary of our experiment results comparing the per-
formance of LIDOR to the benchmark in three scenarios: (1) without We evaluate delivery

rate, delay, and
overhead in three
different scenarios.

attackers present, (2) with two attackers mounting a replay-supported
greyhole attack, and (3) with two attackers mounting a wormhole–
supported greyhole attack where the wormhole endpoints are direct
neighbors to the source and destination, respectively. We show the
packet delivery rate (PDR) in Figure 38, the end-to-end delay in Fig-
ure 39, and the overhead Figure 40. The figures show the mean and
standard deviation over the different runs.

In short, we see that LIDOR and the benchmark both achieve perfect
PDRs in the benign case (Figure 38). When under attack, LIDOR’s Compared to the

benchmark, LIDOR
achieves a slightly
better end-to-end
delay but greatly
improves attack
resiliency.

reliability reduces only by 3.5% for both attacks, while the bench-
mark breaks down to 5.2 % and 64.1 %, respectively. Thereby, LIDOR
achieves improvements over the benchmark of 91 % and 32 %, respec-
tively. In Figure 39, we see that the end-to-end delay is similar for the
benchmark (1.3 ms) and LIDOR (1.2 ms) under no attack, which is to
be expected since they are both based on the same implementation.
Under attack, the end-to-end delay increases. The reason is that the
attacker nodes are placed in a favorable position and would allow
faster delivery if they would be used as a next hop. Furthermore, The reduction in

overhead matches
our analytical result.

Figure 40 shows the network-wide overhead of a single packet. We see
that LIDOR reduces this network overhead by 35 % compared to the
benchmark, which is in line with our overhead analysis in Section 8.3.
In addition, LIDOR’s mean overhead does not increase under attack.
For the benchmark, the mean overhead decreases under attack as the
packets are dropped early and do not traverse the entire path from
source to destination. In the following sections, we investigate the
results of the two attack scenarios in more detail.

8.6.3 Replay-Supported Greyhole Attack

In this section, we expose nodes to greyhole attackers that concurrently
replay expired PKTs and ACKs to reinforce their appearance as reliable
forwarders. We first sketch the attacker’s behavior, which is disrupting A replay attacker

records valid
PKT–ACK pairs and
sends them out again
when the ACK
timeout has expired.

the communication between s and d. First, the attacker overhears and
records any valid PKT–ACK pair of some flow H between s and d.
Then, the attacker replays (i. e., broadcasts) PKT and ACK shortly
after one another at an interval of Trep (after an initial delay of Trep).
The attacker chooses Trep such that it is larger than the ACK timeout,
i. e., Trep > TACK. To ensure this, the attacker conservatively sets Trep

to 200 ms for each pair. We limit the rate of replayed pairs to 10 per
second to avoid DoS by flooding.

Figure 38 shows the severe impact of missing replay protection:
the benchmark’s reliability drops to about 5.2 %, which renders the

116 dos-resilient island communication

None ReplayWormhole
Attack

0.0

0.5

1.0

D
el

iv
er

y
ra

te
Benchmark
LIDOR

Figure 38: Average packet delivery
rate in different scenar-
ios.

None ReplayWormhole
Attack

0.0

2.5

5.0

7.5

D
el

ay
[m

s]

Benchmark
LIDOR

Figure 39: Average end-to-end delay
in different scenarios.

None ReplayWormhole
Attack

0.0

0.5

1.0

1.5

O
ve

rh
ea

d
[K

iB
]

Benchmark
LIDOR

Figure 40: Average per-packet over-
head in different scenar-
ios.

0 100 200
Packet identifier

0.0

0.5

1.0

Pa
ck

et
de

liv
er

y
ra

te
Benchmark
LIDOR

Figure 41: Packet delivery rate per
packet ID under a re-
play-supported greyhole
attack.

0 100 200
Packet identifier

0.0

0.5

1.0

Pa
ck

et
de

liv
er

y
ra

te

Benchmark
LIDOR

Figure 42: Packet delivery rate per
packet ID under a worm-
hole-supported greyhole
attack.

0 100 200
Packet identifier

0.0

0.5

1.0

U
ni

ca
st

s
to

at
ta

ck
er

s

Benchmark
LIDOR

Figure 43: Attacker selection per
packet ID under a worm-
hole-supported greyhole
attack.

8.6 experimental evaluation 117

(a) Benchmark, k ∈ [0, 256[(b) LIDOR, k ∈ [0, 256[

Figure 44: Path convergence without attack. See Figure 45 for description.

protocol unusable. On the other hand, LIDOR performs exceptionally LIDOR ignores
replayed PKTs and
ACKs and, thus,
does not suffer from
reliability
degradation.

well. There is a small drop in the mean reliability that is due to LIDOR
having to route around the greyhole attackers. Once the protocol has
found a reliable path, it keeps using it. This can be seen in Figure 42,
where only the first few packets of each flow are less likely to be
delivered.

8.6.4 Wormhole-Supported Greyhole Attack

We investigate the impact of a wormhole-supported greyhole attack
on both protocols. In Figure 38, we have already seen that the PDR
of LIDOR slightly drops. In fact, only the first packets of each flow The first packets of

each flow are “lost”
as the protocol first
has be find a viable
path.

are dropped as LIDOR first needs to find a valid path; i. e., it needs
to converge. The PDR per packet ID is shown in Figure 42, where we
see that after about 100 packets, the loss rate becomes zero. To verify
that this is, in fact, due to the attackers being selected, we depict the
relative frequency that an attacker was selected as the sole forwarder
(unicast) for a given packet ID in Figure 43. The figure confirms that
attackers are no longer selected as forwarders after about 100 packets.
The benchmark protocol does not perform as well. We see that while
attacker selection decreases and, thus, PDR increases within a flow
(Figures 42 and 43), the benchmark does not completely reject the
wormhole attacker as a viable forwarder. For an even more detailed LIDOR manages to

completely avoid
attacker nodes after
sending 100 packets.

analysis, we show the network graph, including forwarding decisions
and the resulting path selection for different portions of a flow in
Figure 45. The figure shows the average of all 100 experiment runs.
For comparison, Figure 44 shows the path selection without an attack.
Figures 45a and 45b show that both protocols are “fooled” by the fast
link that the wormhole offers for the first packets, i. e., a path including
the wormhole has the lowest RTT. While the benchmark prefers a non-
adversarial path, it still uses the wormhole in a significant number of
cases (Figure 45e). In contrast, LIDOR completely avoids the attackers
for packets in the second half of the flow (Figure 45f).

118 dos-resilient island communication

(a) Benchmark, k ∈ [0, 32[(b) LIDOR, k ∈ [0, 32[

(c) Benchmark, k ∈ [32, 128[(d) LIDOR, k ∈ [32, 128[

(e) Benchmark, k ∈ [128, 256[(f) LIDOR, k ∈ [128, 256[

Figure 45: Path convergence under wormhole-supported greyhole attack.
Showing unicast transmissions. Flow from bottom right to top
left. Red nodes are attackers. Edge thickness indicates link usage
frequency.

8.7 discussion and summary 119

8.7 discussion and summary

In this section, we elaborate on our analytical and experimental results,
conjecture the applicability in large-scale IoT deployments, discuss the
possibility for 100 % reliable communication, and highlight possible
other application domains.

8.7.1 Convergence: Analysis vs. Experiments

Our analysis in this work shows that LIDOR converges under attack
while the benchmark protocol does not. Our experiments confirm that We validate our

convergence analysis
with experimental
results.

LIDOR indeed converges. However, they do not necessarily show that
the benchmark does not converge either. In fact, the benchmark seems
to be able to slowly approach a converged state (see Figure 42). Note
that the non-convergent cases for the benchmark are statistically rare,
which explains the effect. However rare in our experiment setup, these
occurrences might be more prevalent in other scenarios.

8.7.2 Feasibility for Large-Scale IoT Deployments

While LIDOR is not able to exceed the theoretical limits of scalability
in wireless multihop networks [77], we employ measures to keep
the network overhead as low as possible. In particular, we show that LIDOR combines

algorithmic and
implementation
optimizations to
become practically
efficient, yet, is still
constrained by the
theoretical scalability
limits of wireless
networks.

LIDOR’s overhead is generally lower than the benchmark, which is
due to our in-network Merkle tree compression mechanism. Also,
LIDOR’s overhead does not increase under attack, meaning that at-
tacks do not impede scalability. Finally, we show the feasibility of
a comprehensively DoS-resilient communication protocol in the IoT
context by implementing LIDOR in a computationally efficient manner.
Despite per-packet cryptographic operations, we achieve end-to-end
delays in the order of 1 ms (slightly increased to 2.5 ms during an
attack) in our 5-hop testbed, which confirms that the computational
overhead is negligible.

8.7.3 Towards 100% Reliability

While LIDOR already performs exceptionally under attack, we are
aware that we still encounter a certain amount of packet loss. By
design, LIDOR tries to be resilient to all causes of packet loss but does
not employ measures to compensate for loss once it occurred. We are LIDOR does not

prevent all packet
loss but could be
extended with
compensation
mechanisms to create
a reliable transport.

aware that some applications might require a 100 %-reliable transport.
We could increase reliability by introducing redundancy in the form of
packet transmissions reactively. Thanks to the end-to-end feedback, the
source knows if the destination received a specific packet and could
issue a retransmission (using a new packet ID) to the destination.
Such a mechanism could be implemented as a LIDOR-aware transport

120 dos-resilient island communication

overlay that receives feedback from the network layer and takes care
of end-to-end retransmissions.

8.7.4 Further Application Domains

While we focus on a static IoT in this chapter, LIDOR’s adaptivity toAssessing LIDOR’s
performance in new

contexts requires
new experiments and

analytical models.

any kind of packet dropping allows for applications in more dynamic
scenarios, including public safety [160] or highly-dynamic UAV-based
networks [24]. However, an experimental evaluation for these types of
networks is still missing. Also, our analytical results will not hold for
dynamic scenarios.

8.7.5 Summary

The provisioning of robust and secure communication is crucial for
safety-critical IoT applications. In this chapter, we have proposed
LIDOR, a multihop communication protocol with an efficient end-
to-end acknowledgment-based feedback mechanism tailored to IoT
scenarios. To the best of our knowledge, LIDOR is the first protocolLIDOR significantly

improves resiliency
against two specific
attacks compared to
the state-of-the-art.

of its kind with proven convergence in the presence of greyhole DoS
attacks. We have performed extensive experiments on our premises.
These experiments have confirmed the resiliency of LIDOR against
replay and wormhole attacks. Specifically, LIDOR outperforms the
benchmark protocol by 91 % under replay attack and 32 % under
wormhole attack in terms of PDR and reduces overhead by 35 % in
the benign scenario and does not increase significantly under attack. The
current proof-of-convergence is valid for a particular packet drop-
ping strategy, i. e., the attacker always drops unicast packets to cause
maximum harm, which is, to the best of our knowledge, the most so-
phisticated strategy in place [64, 160, 161]. Our experiments indicatedWe make our

prototype available
as open-source

software.

that LIDOR converges even in a wormhole-supported greyhole attack.
For reproducibility, we make the source code of our implementation
publicly available (Appendix C.4).

9
D O S - R E S I L I E N T A R C H I P E L A G O C O M M U N I C AT I O N

During disasters, existing telecommunication infrastructures are often
congested or even destroyed. Local networked islands (see Chapter 8)
can be formed to partially restore communication. In order to restore
communication across islands and thereby close the gap between those
partitions, disruption-tolerant networking (DTN) principles can be
used to leverage node mobility, i. e., nodes that move from one island
to another, to create space-time paths. Unfortunately, such distributed
and resource-constrained networks are particularly susceptible to a
wide range of denial-of-service (DoS) attacks. In this chapter, we
present RESCUE, a resilient and secure archipelago communication
framework for emergency scenarios that provides comprehensive pro-
tection against common attacks. RESCUE features a minimalistic DTN
protocol that, by design, is secure against attacks such as spoofing,
dropping, or blackholing. To further protect against message flooding
and Sybil attacks, we present a twofold mitigation technique. First, a RESCUE is resilient

to flooding attacks by
Sybil adversaries.

mobile and distributed certificate infrastructure particularly tailored
to the emergency use case hinders the adversarial use of multiple
identities. Second, a message buffer management scheme significantly
increases resiliency against flooding attacks, even if they originate
from multiple identities, without introducing additional overhead.
Finally, we demonstrate the effectiveness of RESCUE via large-scale
simulations in a synthetic as well as a real natural disaster scenario.
Our simulation results show that RESCUE achieves competitive mes-
sage delivery rates, even under flooding and Sybil attacks. In the
following, we first give an overview of the system and then present its
components in detail. Finally, we evaluate the protocol via simulation
and discuss the results.

9.1 overview

We present RESCUE, a resilient and secure device-to-device commu-
nication framework for emergency scenarios which provides com-
prehensive attack protection. RESCUE’s minimalistic communication A minimalistic

communication
protocol greatly
reduces the attack
surface.

protocol (Section 9.2) relies on epidemic routing, authenticated and
immutable messages, and an effective acknowledgment processing.
This way, common attacks, such as message or routing manipulation,
blackholing, or impersonation, are already prevented. Yet, as in today’s
Internet infrastructure [204], the key challenge is to defend against
DoS attacks originating from individuals as well as multiple identities
(Sybil attack) that flood the network. For this purpose, RESCUE pur-

121

122 dos-resilient archipelago communication

sues a twofold mitigation technique. First, certificates are used to
cryptographically bind users to network identifiers, which hinders the
adversary from assuming multiple identities. Since traditional static
certificate infrastructures may be unavailable in the disaster area, we
propose a novel decentralized approach that enables new users to
obtain certificates from mobile authorities during the disaster (Sec-
tion 9.3). Second, RESCUE applies a novel buffer management schemeMobile authorities

enable users to join
the network

post-disaster.

(Section 9.4) that substantially increases message delivery rates, i. e.,
availability, in the presence of flooding attacks, both from individ-
uals and multiple identities (Section 9.5). As our solution relies on
node-local decisions rather than a (complex) distributed protocol, it
provides a minimal surface to attacks and adds no network overhead by
design. In addition, instead of identifying and excluding misbehav-
ing users from the network, our scheme provides a fair allocation of
available resources to all users. Hence, RESCUE does not suffer from
false positives, where a valid user is mistakenly excluded from the
emergency communication system.

9.1.1 System Model

communication model We support a wide range of commu-
nication models that are reasonable during emergencies, including
one-to-one (contact with friends or family), many-to-many (within task
forces or departments), or one-to-many (emergency notification broad-
casts). Due to the inherent delay of DTN-based communication andWe propose a

framework that
accommodates

different
communication

models.

our focus on emergency communication, we consider mainly small
messages, such as text and distress messages (including additional
information, such as GPS location of the sender), serving a similar
purpose as the classic 112 or 911 emergency call. Compared to rich
media (images, voice, video), the information in text messages is more
compact and, therefore, more suitable for DTN communication.

adversary model We consider an adversary who can mount
network attacks and compromise network entities. Specifically, they
can eavesdrop, manipulate, forge, or drop messages. Furthermore, the
adversary can assume a limited number of entities, either by com-
promising or stealing devices or by registering multiple times in our
system. Unlike the classic Dolev–Yao adversary model, our adversary
controls only a part of the communication channel and a fraction of
all network entities. Moreover, they cannot break cryptographic primi-
tives or tamper with the root authority (see Section 9.3.1). In Table 12,
we summarize well-known attacks (see Section 2.2) that the adversary
can mount, and list RESCUE’s countermeasures to prevent them.

node capabilities We require that a RESCUE node has (1) a
neighbor communication interface, e. g., Wi-Fi or Bluetooth, (2) has

9.2 minimalistic communication protocol 123

attack countermeasure section

Route spoofing }︄
Epidemic routing 9.2.1Message dropping

Blackholing

Message spoofing }︂
Authentic immutable messages 9.2.2

Impersonation

ACK flooding ACKs only for known messages 9.2.3

Sybil attack
{︂ User registration 9.3.3

Priority sets 9.5.3

Message flooding Source-based elastic buckets 9.4.2

TTL spoofing Source-based elastic buckets 9.4.2

Table 12: Attack resiliency of RESCUE.

a buffer to store messages, (3) can create and validate digital signa-
tures, and (4) has access to a monotonic clock, i. e., a clock that never
decreases (otherwise our prioritization scheme in Section 9.4.3 might
prefer an old message over a new one from the same node).

9.2 minimalistic communication protocol

This section describes RESCUE’s communication protocol, i. e., its
routing protocol, message format, and acknowledgment processing.
By employing a simple routing mechanism and a minimalistic frame
format, RESCUE is immune to a large set of common attacks on DTN
protocols (see Table 12).

9.2.1 Epidemic Routing

Instead of relying on infrastructure, DTN-enabled devices exchange
messages directly using Wi-Fi or Bluetooth. DTNs exploit user mobility Epidemic routing is

immune to route
spoofing attacks.

to increase coverage. To this end, devices act as “data mules” that
store their messages as well as messages from other users, carry them,
and finally forward them to the destination upon contact. We use
epidemic routing [203] because there are no routing control messages,
thus, mitigating all types of routing manipulation attacks. In addition,
message dropping attacks have no effect, since messages are replicated
to all available neighbors. Carried messages are stored in the node’s
buffer that we protect against flooding and Sybil attacks, as detailed in
Sections 9.4 and 9.5, respectively.

When two devices discover each other via Bluetooth or Wi-Fi beacon Prioritization is
important to use
short contact times
effectively.

frames, they initiate an authenticated handshake. As part of the hand-
shake, both devices first exchange metadata about carried messages
and then start transferring messages that the other device is missing.

124 dos-resilient archipelago communication

However, due to limited buffer capacity and short contact times (e. g.,
two cars passing each other), not all messages might be exchanged.
A message prioritization scheme (Section 9.4.3) determines which
messages are exchanged first upon contact.

9.2.2 Authentic Immutable Messages

Each user possesses a unique signature key pair generated during ini-
tialization. The public signature key serves as a unique addressable
network identifier. When emitting a message, the source signs the mes-A node’s public key

also acts as its
network identifier.

sage content with its private signature key and appends the signature
σs, source network identifier s, and, if available, the identity certifi-
cate C to the message. Identity certificates can be cached and only
transmitted on demand to reduce overhead. Devices verify messages
at each hop by checking the message signature and, if available, the
source’s identity certificate. Devices discard messages if a check fails
so that corrupted messages do not propagate in the network. In addi-
tion, a message (MSG) contains the destination network identifier d,
the creation timestamp t, the message lifetime ∆t, and an optionally
encrypted payload P, resulting in the tuple:

MSG = (s,d, t,∆t,P,σs,C) . (45)

We further define the message ID m as a hash over all message fields:
m = hash (s,d, t,∆t,P). The signature σs is then calculated on m. WeHaving only

immutable fields
prevents all types of

message spoofing.

note that all header fields are immutable, i. e., they are not changed
in transit, which would be required for time-to-live (TTL) fields. Im-
mutable fields allow the signature to protect the entire message and,
thus, they prevent all types of spoofing such as message modification
and impersonation attacks. Assuming that the clocks of all valid nodes
are roughly synchronized, the TTL of MSG can be locally computed
by each node with:

TTL = t+∆t− tnow, (46)

where tnow is the current time. Nodes regularly remove expired mes-
sages (negative TTL) from their buffers.

9.2.3 Authentic Acknowledgments

RESCUE uses acknowledgments (ACKs) for one-to-one communication.
Previous work [203] has shown that epidemic routing greatly benefits
from ACKs since they free up buffer capacity for other messages.
Upon receiving a message, the destination creates an ACK as a reply
and forwards it with the same mechanism used for relaying regular
messages. The ACK contains only the message ID m and a signature
from the destination σd:

ACK = (m,σd) . (47)

9.3 in-the-field user registration 125

Root
authority

(RA)

Red Cross
Headquater authority

United Nations
Headquater authority

negotiate terms

negotiate ter
ms

issue certificate

revoke certificate

National authority

District
authority 1

Citizen
national

authority

High authorization level Low authorization level

negotiate terms

District authority 2

MA: yes ()
Auth. level:
 2 ()
Issuer:
 District authority 1
Affiliation: UN
Role: Team leader
Network identifier:
 0x1234567890

in-the-field

issuance

in-the-field
revocation

Post-registered citizen

Unregistered citizen

issue identity certificate

Mobile
authority

identity
certificate

Figure 46: Illustration of our mobile distributed certificate infrastructure. The
authorization level decreases from left to right. Registered users
have a higher authorization level than unregistered users. Citizens
are depicted in a box with a separate authorization level.

Upon receiving and verifying an ACK, intermediate nodes can safely
remove the acknowledged message payload from their buffers. The
ACK is stored until the corresponding message has expired. Attack- Nodes accept ACKs

only for known
messages.

ers cannot forge ACKs, since they are cryptographically signed and,
hence, cannot purge valid undelivered messages from the network.
Since ACKs are small, they present a potential attack vector: by cre-
ating a large number of bogus ACKs, an attacker can exhaust the
computational resources of the receiving nodes, because they have to
verify each signature, leading to DoS. To solve this problem, nodes in
RESCUE only accept and process ACKs for messages they currently
carry. This stops the spreading of bogus ACKs at the first valid node.

9.3 in-the-field user registration

To establish trust relationships, we deploy so-called identity certificates
that bind important properties in the emergency context (e. g., user
role or affiliation) to the network identifier of users. In this section, we Our certificate

infrastructure
enables both
pre-disaster and
in-the-field user
registrations.

first describe our backbone certificate infrastructure. Next, we extend
the backbone infrastructure by mobile authorities, enabling their opera-
tion during disasters in the field, where the backbone infrastructure
might be unavailable. Finally, we propose multiple user identity ver-
ification methods that hamper fake registrations with the certificate
infrastructure. This way, an adversary is prevented from obtaining
multiple identities, i. e., certified network identifiers, that could be
used to perform distributed DoS attacks. Figure 46 illustrates our
certificate infrastructure.

126 dos-resilient archipelago communication

9.3.1 Static Authorities

The backbone certificate infrastructure consists of multiple hierarchi-
cally organized static certificate authorities (CAs). The root of these
CAs constitutes a dedicated authority named root authority (RA) that
serves as a trust anchor, and its certificate is pre-deployed on all
RESCUE-enabled devices. Before the actual disaster, the RA estab-Each organization

can have its own CA. lishes relationships with organizations or governments that want to
participate as authorities in the certificate infrastructure. All authorities
initially undergo a rigorous audit, since their authenticity and trust-
worthiness are crucial to the overall security, and negotiate user roles as
well as pre-configured user groups that the authority introduces to the
network. For instance, in Figure 46, the United Nations (UN) added
the user roles team leader and official and arranged a pre-configured
user group United Nations, so users can specifically address all UN
members when sending a message. Organizations manage their own
certificate infrastructure and, therefore, maintain one or multiple, po-
tentially hierarchically organized, CAs. On the lowest hierarchical CA
level, CAs issue identity certificates to staff members. Furthermore,
the overall infrastructure contains at least one authority, e. g., from the
national government, that issues identity certificates to regular users,
i. e., citizens.

Identity certificates bind the public signing keys of users, which
function as their unique network identifiers (see Section 9.2), to user
properties. Important properties in the emergency setting are the af-
filiation (e. g., UN, red cross), user role (e. g., citizen, physician), and
authorization level, which indicate a user’s permission level and trust-
worthiness. Figure 46 exemplifies the identity certificate of a UN team
leader, and depicts the authorization level of entities by their position
on the x-axis as well as stars in the certificate.

We further consider certificate revocation, since an adversary may
obtain identity certificates, compromise user devices, or even infiltrate
authorities. RESCUE implements certificate revocation via certificate
revocation lists (CRLs) that authorities broadcast in the network. WeA revoked certificate

deprives the owner of
any role and

privileges.

distinguish between two different entities: authorities and users. An
authority A can revoke an entity E if A has a higher authorization level
than E, and there is a certificate chain (i. e., a chain of trust) between
A and E. Upon the revocation of an authority, all certificates issued
by the authority are regarded as invalid, depriving it of its power. In
case a user identity certificate is revoked, the certificate is considered
invalid, and the respective user loses his or her role, authorization
level, and any message transmission privileges (see Section 9.5).

9.3 in-the-field user registration 127

9.3.2 Mobile Authorities

In a disaster area, infrastructure-based communication is mostly un-
available and, thus, users rarely have a connection to the static au-
thorities in the backbone infrastructure. This is not an issue when
established user properties are retrieved since identity certificates can
be verified and transmitted between users on demand (see Section 9.2).
Nevertheless, operations that inevitably involve CAs, such as issuing
new certificates or revoking existing certificates, cannot be performed
when static authorities are unavailable.

Therefore, we propose that specially privileged users employ their
mobile devices to serve as mobile authorities (MAs) during a disaster.
Since it is easier for an adversary to compromise MAs than static Mobile authorities

can issue and revoke
certificates in the
field.

authorities, MAs have restricted capabilities. In detail, they can only
issue identity certificates for citizens, but not for specific user groups
like red cross staff members. We argue that this is not a restriction
since professional emergency workers typically set up their systems
before the disaster or outside the disaster area, where a connection to
static authorities is available. Additionally, MAs are allowed to revoke
identity certificates. An MA M can revoke a user U, if U is a citizen,
or if U has a lower authorization level than M and both belong to the
same affiliation (Figure 46).

Since malicious MAs can seriously harm the network, only privi-
leged and trustworthy users with devices that satisfy certain security
requirements are permitted to become MAs. In the initialization phase, MA devices should

be resistant to
physical attacks.

each organization negotiates the maximum permitted number of MAs
they introduce to the network, and then carefully selects those users
qualifying to become MAs. MA users have a high social trust level
and protect their devices using security mechanisms like a trusted
execution environment, full disk encryption, and strong passwords.
These mechanisms have shown to significantly increase the effort for
physical attacks [165], giving MA users enough time to report and
revoke stolen MA devices.

9.3.3 Secure Identity Verification Methods

In the following, we present methods that enable static and mobile
authorities to identify registering entities based on hard-to-forge iden-
tification tokens. The methods hinder individuals from registering re-
peatedly and obtaining multiple identity certificates. Our goal is to Secure identity

verification methods
make it harder for an
attacker to register
under multiple
identities.

increase the cost for fake registrations, such that bypassing our sub-
sequently presented flooding and Sybil mitigations (see Sections 9.4
and 9.5) becomes uneconomical for an adversary. We assume that
organizations and governments are already able to supply each staff
member with exactly one identity certificate, e. g., by handing out
pre-configured devices. Therefore, we focus on fake registrations of

128 dos-resilient archipelago communication

users with the authorization level citizen. Citizens that employ stronger
authentication methods during registration with CAs are considered
more trustworthy, indicated by a higher authorization level in their
identity certificate. Messages from users with high authorization levels
are transmitted preferentially (see Section 9.4) to encourage citizens to
(1) obtain identity certificates and (2) use strong identification methods
during registration. Typically, as summarized in Table 13, the strongerThe strength of the

identity verification
method can be used

to derive the
authorization level.

the identity proof is, the more restrictive (i. e., less applicable) and
time-consuming the verification process gets, resulting in limited prac-
tical usability. Authorities maintain a shared database that stores all
registered users and their identification token to prevent an individual
from registering at multiple authorities. Since MAs are located in
the disaster area and thus cannot access this database, MAs inform
each other about users that registered during the disaster by using
the proposed communication system. Since communication during a
disaster is typically delayed, an adversary might be able to register
with the same identification token at multiple MAs, namely those that
have not yet exchanged information about registered users. When,
however, the affected MAs eventually communicate and find out that
the same identification token is used multiple times, the corresponding
certificate is immediately revoked by them.

identification via physical presence This method consti-
tutes a fallback solution only used by MAs during a disaster if all
other verification methods are inapplicable. It does not rely on anRegistration via

physical presence is a
fallback solution and

provides only poor
identity verification.

identification token but instead requires a user to physically approach
an authority during registration and thus expend physical effort. MAs
assert the physical proximity of users by employing short-range com-
munication channels (e. g., QR codes, near-field communication (NFC),
or Bluetooth) to transmit identity certificates. Furthermore, MAs man-
ually confirm the issuance of each identity certificate to prevent an
adversary from obtaining multiple certificates at once. The method has
a weak identification strength since an attacker can simply approach
different MAs or, with some delay, the same MA repeatedly. Also,
usability is poor, since users cannot register remotely.

identification via sim The SIM card is used as an identification
token by requiring the user to enter a nonce that is sent via a call
or SMS to the user’s device during registration. Authorities preventSIM-based

registration is only
possible if

infrastructure is
(still) available.

multi-registrations by allowing each phone number to belong only
to one network identifier. The approach provides excellent usability
and applicability since it requires the user to take a minimum effort,
and SIM cards are available in many mobile devices. Nevertheless,
an adversary can create fake users by using anonymous prepaid SIM
cards. Also, since the approach requires a functioning cellular network,
it is unsuitable for registering new users during a disaster.

9.3 in-the-field user registration 129

method strength usability applicability

available

in crisis

Physical
Presence

• •• ••••• ✓

SIM ••• ••••• •••• ✗

Remote
Attestation

•••• ••••• ••• (✓)

eID ••••• ••• •• (✓)

Table 13: Comparison of identity verification methods. Ratings scale from
poor (•) to excellent (•••••). “(✓)” indicates the lack of an off-the-
shelf implementation for evaluation.

identification via remote attestation This method em-
ploys the mobile device itself as an identification token, as authorities
perform a remote attestation [4] with devices of registering users.
This way, authorities obtain an attestation report that is signed with a
device-unique secret attestation key and a certificate that testifies the
validity of the attestation key. Authorities prevent multi-registrations
by storing the public attestation key, requiring the adversary to possess
one device per fake user. To date, applicability is good, as recent Sam-
sung [157], Windows [131], and Android [4] devices provide remote
attestation capabilities. Additionally, remote attestation will become
increasingly widespread with upcoming technologies [178, 196], and
MAs could act as verifiers and thus identify new users during a disas-
ter. In practice, though, remote attestation without backbone access is
not yet implemented.

identification via eids This method uses national electronic ID
cards, which often provide identification capabilities, as identification
tokens. As an example, the eIDAS regulation defines electronic identifi-
cation services in the entire European Union (EU) [58]. eIDAS specifies National electronic

ID cards provide a
strong proof of
identity.

the restricted identification (RI) protocol, e. g., implemented in the
German identity card since 2010. RI allows a service provider (SP)
terminal to recognize an eID chip based on a chip-unique pseudonym.
By using mobile devices as local terminals [191], authorities can act as
SP terminals and securely identify eID cards of registering users. The
approach provides a strong proof of identity as it is hard to forge eID
cards or to obtain multiple valid eID cards, including their PIN. Since
MAs can, in principle, act as SP terminals, the approach is applicable
during a disaster. As a downside, users must initially activate their
eID cards and have them at hand.

130 dos-resilient archipelago communication

9.4 local buffer management

Within the buffer, a node stores unacknowledged and unexpired mes-Buffer management
decides which

messages to keep and
which ones to drop.

sages. If there are many such messages, a node might not have the
resources to store them all: at some point, it needs to decide which
messages to keep and which ones to drop. Given a set of messages
and a buffer with a node-defined capacity C, the buffer management has
to decide which messages to store in the buffer without exceeding its
capacity to enforce:∑︂

MSG

|MSG| ⩽ C. (48)

Besides this hard constraint, buffer management can have multiple op-
timization goals, e. g., throughput maximization, delay minimization,
or delivery reliability. In this work, we are concerned with security, inWe optimize buffer

management for DoS
resiliency.

particular, resiliency against DoS attacks. To this end, we first motivate
the need for security mechanisms in the buffer management, define
security requirements, and then present a novel secure buffer manage-
ment strategy which achieves protection against flooding attacks.

9.4.1 Security Requirements and Design

Poor buffer management schemes can expose a network to flooding
attacks. For example, malicious nodes can exploit trivial schemes such
as first-in first-out (FIFO) queues to replace valid messages with bogus
ones [116]. Our buffer management scheme has the following goals:
(1) be fair, i. e., ensure that a single attacker can occupy at most 1/nFIFO is does not

perform well as a
buffer management

strategy.

of available buffer space; (2) maximize buffer utilization to increase
message redundancy and, thus, the delivery rate; and (3) prevent
that a single MA compromise can compromise the entire network
(such Sybil attacks are discussed in Section 9.5). To reach these goals,
we apply a locality principle [64] to allow nodes to decide locally
and independently which messages to store. Hence, nodes do not
need to trust and verify third-party information, which keeps the
attack surface small. Furthermore, bandwidth efficiency increases,
since control messages need not be exchanged. The locality principle
requires us to reverse the role of making the replication decision.
Classically, the carrying node decides whether or not to replicate a
message to another node based on some utility function, e.ġ., [22].
However, since nodes should make all decisions themselves, they
should also decide which messages to accept or drop. Therefore, upon
contact, the receiving node selects the messages that it wants to receive.

9.4 local buffer management 131

9.4.2 Source-Based Elastic Buckets

We now present our novel buffer management strategy source-based
elastic buckets (SEB) that, by design, prevents valid messages from
being purged from the network during flooding attacks. The basic SEB isolates

messages from
different sources.

idea is that all messages from a source s are placed in an isolated
bucket B(s). Since RESCUE ensures message authenticity through
digital signatures, an adversary cannot forge messages in a way that
they occupy buckets of valid users. SEB is fair in the sense that each
bucket B(s) has a guaranteed capacity of Cn = C/n, with n being the
number of currently allocated buckets (number of source nodes that a
respective node currently carries messages from). The occupancy of a
single source bucket O(s) is a non-negative number and is subject to∑︂

s

O(s) ⩽
∑︂
s

Cn = C. (49)

We further define the surplus S(s) as the (possibly negative) difference
between the occupancy and the guaranteed capacity:

S(s) = Cn −O(s). (50)

If s does not exhaust its guaranteed capacity (S(s) > 0), because it
has not sent “enough” messages, S(s) is provided to other buckets
requiring it, which means that their surplus can become negative.
However, when s sends more messages at a later point, overdrawn With elastic quotas,

a node can get more
than its guaranteed
capacity to prevent
resource
underutilization.

buckets (S(s) < 0) are emptied first. These elastic quotas allow full ex-
ploitation of the local buffer capacity while maintaining strict message
separation of different sources. Program 3 shows SEB’s message inser-
tion procedure: the underlying idea is that SEB inserts a new message
in the corresponding source bucket and then drops messages from the
bucket with the smallest surplus1 until the total occupancy meets C

(see Equation (48)). When a bucket becomes empty, SEB deallocates it
and shares the freed capacity among the remaining buckets.

SEB’s robustness relies on the fact that messages are source-authen-
ticated, and on the high costs of registering multiple identities in Isolated buckets

effectively mitigate
TTL spoofing attacks.

RESCUE. Without the latter costs, an attacker could assume multiple
identities, flood the network with messages and, thus, hijack a dispro-
portional amount of buffer capacity. In addition, SEB mitigates TTL
spoofing attacks where an attacker sets excessively high values for
∆t to maximize the lifetime of its messages: by separating messages
of different sources, an attacker would only be able to replace own
messages.

1 Ties are broken at random. In order to assert that the buffer converges to a stable state,
tie-breaking needs to be consistent, i. e., the same tie needs to be broken consistently
at a single node. We implement this by comparing the salted hashes of node IDs,
while the salt is drawn at random once by each node. A tie is then broken by the
smaller hash value.

132 dos-resilient archipelago communication

Input: MSG, buckets, C
1 s← source of MSG
2 if not buckets contains B(s) then
3 insert empty B(s) in buckets;
4 end if
5 B(s)← bucket from buckets for s;
6 insert MSG in B(s);
7 while

∑︁
iO(i) > C do

8 B̂← bucket from buckets for arg mins ′S(s ′);
9 MSGˆ ← message with the lowest rank in B̂;

10 drop MSGˆ ;
11 if B̂ is empty then
12 drop B̂ from buckets;
13 end if
14 end while

Program 3: Message insertion with SEB.

9.4.3 Prioritization and Convergence

Within each bucket, SEB uses message rank (MR) for prioritization. MR
prioritizes (1) acknowledgments, (2) messages with the largest TTL,
and (3) messages with the smallest payload size. Carrying messagesMessage rank

generates a
deterministic and

reproducible message
ordering.

with a large TTL increases the probability that they will be deliv-
ered before expiration (we confirm this in Section 9.6), while small
messages take less time for transmission, and help to prevent buffer
fragmentation. Upon device contact, messages exchanged first have a
higher chance of actually being transmitted to the next hop and even-
tually reaching their destination. A sending node transfers messages
in its buffer to a receiving node d in the following order: (1) messages
destined for d, (2) own messages, (3) messages from other registered
users, (4) all other messages. MR sorts messages in each category. MR
only relies on fields in the message header. Since they are immutable,
MR calculates the same ordering independent of the order in which
messages were received, which means that the buffers of two nodes
will converge to a stable state if the contact duration is long enough.
This is a problem that has not been properly addressed by the re-
search community, which is reflected by the fact that the most popular
network simulator for DTN research, ONE [104], only implements
non-converging random and FIFO-based dropping strategies.

9.5 local priority sets

Until now, we have assumed that MAs behave correctly and cannot
be compromised by an adversary. We recognize that this is a strong
assumption, since MA devices may be stolen or infected with mal-

9.5 local priority sets 133

level contained nodes purpose section

0 Local (own) DD lower bound 9.5.1

1 Social network/by MA Sybil protection 9.5.3

2 Other registered Flooding protection 9.4.2

3 Unregistered Best effort 9.5.4

Table 14: All priority sets used in RESCUE.

ware. However, if we lift our assumption on secure MAs, our buffer We extend SEB to
provide protection
against a Sybil
attacker that has
compromised an
MA.

management presented in Section 9.4 is vulnerable to Sybil attacks.
This is because an adversary that gets hold of an MA can generate as
many certificates as it wants. Since SEB allocates buffer resources fairly
among all nodes, a Sybil attacker would receive an unfair amount of
buffer space. In this section, we secure RESCUE even against such
Sybil attackers by leveraging the concept of secure message copies using
priority sets where nodes prioritize messages originating from a certain
set of other nodes in the network. In the following, we first introduce
the concept of secure copies, explain the workings of priority sets, and
discuss Sybil-secure fill strategies. Finally, we explain how priority
sets also help to securely support unregistered users.

9.5.1 Secure Copies

In direct delivery (DD) forwarding, nodes do not carry messages for
others, but only deliver them when they encounter the destination.
In other words, the hop count of each delivered message is precisely
one. This diminishes the advantage of having “data mules.” However,
DD has a desirable security property: it is inherently immune to flooding
attacks even from Sybil attackers since it simply does not carry messages
for other nodes. In other words, DD ensures that there is always We leverage the fact

that direct delivery
forwarding is
inherently immune
to Sybil attacks.

one copy of every message in the network, namely in the buffer
of the source node. We call this a secure copy, i. e., a message copy
that an attacker cannot remove or replace. In the case of DD, the
number of secure copies per message is exactly one. Though this is
a straightforward strategy, other buffer management schemes fail to
achieve this guarantee. For example, when using FIFO, own messages
might be replaced by more recently received messages of other nodes.
In the following, we increase the number of secure copies to improve
delivery reliability.

9.5.2 Priority Sets Overview

We adopt the concept of secure copies to solve the problem of Sybil
attacks while still accepting messages from other nodes using priority
sets (PSs). PS includes the identities of other nodes that a node is

134 dos-resilient archipelago communication

willing to prioritize messages for. How a node determines the contentWe extend SEB with
priority sets that

group buckets of a
particular set of

source nodes.

of a PS is crucial for the security of the system. Making individual
local decisions makes it hard for an attacker to appear in all PS, thus
preventing that their messages fill the buffers of all other nodes. By
using PS, each node essentially gains several secure relays that prioritize
messages for it, effectively increasing the number of secure copies. Next,
we show how PS integrates with SEB (Section 9.4), and discuss how
PS can be used to protect against Sybil attacks in Section 9.5.3. To
integrate PS in SEB, we need to ensure that buckets of nodes in a PS
are emptied last. We generalize this approach by allowing an arbitrary
number of PS levels l. For the remainder of this work, we denote Sl as
the priority set at level l. The set with the numerically lowest level has
the highest priority. We adapt line 8 in Program 3 to first select the PS
with the largest l that is not empty. We then choose the bucket with
the smallest surplus from only this set:
8a: l̂← arg maxl {Sl, |Sl| > 0};

8b: B̂← B
(︂

arg mins∈Sl̂
S(s)

)︂
;

To achieve the performance of DD (at least one secure copy per mes-
sage), S0 only includes the local node, such that messages of the local
node are removed last. We explain more PS levels in the following
sections, and we summarize all PS levels used in RESCUE in Table 14.

9.5.3 A Sybil-Secure Priority Set

How to select the nodes that are to be put in S1 is key to achieving
protection against Sybil attacks. The selection strategy needs to ensureWe discuss options

for a Sybil-secure
priority set.

that the nodes residing within each set are (preferably) different for
each node, and it is hard for the Sybil attacker to become a member of
many of those sets. In the following, we discuss two PS fill strategies
that are secure against Sybil attacks and can be practically used in
emergency scenarios. The members of this set are selected either (1) by
exploiting social relationships between the nodes, e. g., by leveraging
phone numbers in the address book of the users’ smartphones or (2) by
letting the MA assign the set during registration. We now present both
approaches in detail.

pre-registration : social networks Social networks have
been used to detect Sybil identities effectively [198]. While the particu-
lar method [198] is unpractical in DTNs (it needs to perform online
verifications), we borrow the idea of using social networks as a defense
against Sybil attacks. We exploit the user’s social network to prioritizeWe rely on the user’s

address book to fill
S1.

messages from direct neighbors in the user’s social graph, e. g., those
nodes that are in the local node’s address book. Since the attacker
has no control over uncompromised devices, they cannot forcibly add
themselves to others’ address books. Thus, they will not be able to

9.5 local priority sets 135

appear in S1 of legitimate nodes. This option is only available for users
that have registered with an authority before the disaster, e. g., using
their SIM card (Table 13), and have resolved the phone number to
the RESCUE public key via a central server similar to secure messag-
ing applications (e. g., Signal). For all users that registered during a
disaster with an MA, a different method is required.

post-registration : ma-assigned We assume that most users
will only register post-disaster and, thus, cannot use social contacts to
fill their PS. However, we can leverage the trustworthiness of MAs by
letting MAs suggest identities for the priority set during registration.
We propose that the suggested identities are those that recently regis- The MA suggests

identities for S1
during registration.

tered with the MA. Since an attacker is not able to manipulate the PS
of nodes that registered with the MA before being compromised, only
nodes that registered after an MA compromise may be affected by PS
manipulations.2 The latter may experience decreased service quality
since their identities will not appear in the PS of other nodes. This
effectively reduces the number of secure copies for their messages to
one, which is the same for other unregistered users. Other than that,
they are not affected negatively by registering with a compromised
MA.

For both strategies, we need to determine the size of S1 (the number of
contacts in the users’ address books or the size of the MA-suggested
list) that will effectively thwart Sybil attackers. In Section 9.6, we
empirically show that already a small size is sufficient to withstand
Sybil attacks.

9.5.4 Supporting Unregistered Users

Apart from Sybil attacks, PS enables us to solve another remaining
problem: supporting unregistered nodes without compromising the
security of registered users. To this end, we introduce another PS All unregistered

nodes are assigned to
the lowest priority
set.

with a priority level higher than the one used in Section 9.5.3. This
essentially assigns all remaining buffer capacity to unregistered nodes.
These nodes will consequently receive the lowest quality-of-service
level since their messages will be dropped first. However, we show
later that in case the network is not fully congested (i. e., not during a
flooding attack), unregistered users receive a quality-of-service level
similar to that of registered users. Even when the network is under
a flooding attack, the performance never drops below the DD lower
bound.

2 Using this method, an adversary may be present in S1 of legitimate nodes by reg-
istering at an MA during disasters. However, the adversary may only register a
few identities this way, since it is hard to register multiple times at an MA (see
Section 9.3.3).

136 dos-resilient archipelago communication

Scenario Synthetic 2013 Typhoon Haiyan

Mobility Map RWP (Helsinki) Natural Disaster

Speed 90 % ped., 10 % car 100 % pedestrian

Duration 12 h (+5 h cooldown) 168 h = 7 days

Dimensions 4500 × 3400 m2
5000 × 7000 m2

Total Nodes 1000 500 (7 roles)

Unregistered — 40 (injured citizens)

Post-registered 800 200 (healthy citizens)

Pre-registered 200 260 (all others)

Message Rate Rn 0.1 s−1 (10 s interval) 0.1 s−1 (10 s interval)

Message Size 25 KB 25 KB

Message Lifetime 5 h 12 h

Buffer Capacity 5 MB 20 MB

Buffer Management FIFO, MR, SEB, PS

Routing Epidemic, DD

Radio Link Bluetooth (2 Mbit/s at 10 m range)

Table 15: Simulation settings for the ONE.

9.6 experimental evaluation

In this section, we evaluate the behavior of our security mechanisms in
large networks using simulation. We first describe our evaluation sce-
nario and present the performance results of RESCUE under flooding
and Sybil attacks. Finally, we repeat the experiments under an accurate
non-synthetic mobility model for large-scale natural disasters.

9.6.1 Test Setup

We consider two scenarios as detailed in Table 15: (1) A synthetic
scenario to isolate the effect of two distinct attacks on the network
(Sections 9.6.2 and 9.6.3) and (2) the Typhoon Haiyan scenario to assess
performance under more realistic conditions (Section 9.6.4). In both
scenarios, we consider three different node classes: pre-registered, post-
registered, and unregistered. All post-registered nodes are unregisteredWe use a synthetic

and a realistic
disaster scenario in

our evaluation.

at the start of the simulation and become registered until the end
of the simulation linearly over time. All nodes listed as unregistered
in Table 15 remain unregistered. For simplicity, we only evaluate
two authorization levels (Section 9.3): registered and unregistered. In
the Typhoon Haiyan scenario, we have additional roles such as injured
and healthy citizens, urban search and rescue team (USRT), and UN
officials, which all have distinct mobility patterns (see Chapter 3). We

9.6 experimental evaluation 137

0 1 2 3 4
Delivery delay [h]

0.0

0.5

1.0

D
el

iv
er

y
ra

te SEB
MR
FIFO

(a) Rϵ = 0 (no attack)

0 1 2 3 4 5
Delivery delay [h]

0.0

0.5

D
el

iv
er

y
ra

te

SEB
MR
FIFO

(b) Rϵ = 1Rn

0 1 2 3 4 5
Delivery delay [h]

0.0

0.5

D
el

iv
er

y
ra

te

SEB
MR
FIFO

(c) Rϵ = 2Rn

Delivery rate over the delivery delay for different attacker injection rates Rϵ (first row) and
individual user groups at Rϵ = 1Rn (second row).

0 1 2 3 4 5
Delivery delay [h]

0.0

0.5

1.0

D
el

iv
er

y
ra

te SEB
MR
FIFO

(d) pre-registered (ped.)

0 1 2 3 4 5
Delivery delay [h]

0.0

0.5

1.0

D
el

iv
er

y
ra

te SEB
MR
FIFO

(e) post-registered

0 1 2 3 4 5
Delivery delay [h]

0.0

0.5

D
el

iv
er

y
ra

te

SEB
MR
FIFO

(f) unregistered

0.0 0.2 0.4
Time [h]

0

2

4

M
es

sa
ge

co
pi

es

(h) MR

0.0 0.5 1.0
Time [h]

0

500

M
es

sa
ge

co
pi

es

(g) SEB

0 2 4
Time [h]

0

50

M
es

sa
ge

co
pi

es

(i) FIFO

Message copies over time of the pre-registered (pedestrian) node group at Rϵ = 1Rn for simula-
tion run 1. The center line shows the median, the shaded areas the 10th, 30th, 70th, and 90th
percentiles.

Figure 47: Performance during a flooding attack showing delivered messages, delivery delay, and
message copies over time.

138 dos-resilient archipelago communication

use epidemic routing and compare six different buffer management
strategies:

• FIFO which uses a first-in-first-out queue for prioritization and
as a drop strategy,We compare six

different buffer
management

strategies.

• MR which uses message rank instead of a FIFO queue,
• SEB which employs our source-based elastic buckets and uses

all priority set levels except for S1,
• PS which uses all priority set levels,
• PSo which only uses the priority sets S0 and S1, and
• DD which uses direct delivery and effectively only uses S0.

We evaluate the latter two only for the Sybil attack scenarios. We
choose a small buffer capacity to exaggerate the effect of the different
buffer management strategies. The message size is fixed to avoid frag-
mentation effects in the buffers. We chose the simulation parameters
in the Typhoon Haiyan scenario following [175] for comparison reasons.
We use the ONE simulator v1.6.0 [104] for our experiments and, unless
stated otherwise, show the average over ten runs with different seeds.

9.6.2 Flooding Attack

We first evaluate the resiliency of different buffer management strate-
gies against a small number (5 %) of flooding attackers injecting bogus
messages at a high rate in the synthetic scenario. The attackers maxi-We express the

message injection
rate as an aggregate

over all attackers.

mize the message lifetime of their messages. They address their mes-
sages to nonexistent destinations so that acknowledgments are never
returned, and they set the message lifetime to a value that is larger
than the simulation time to keep their messages persistent unless the
buffer management drops them. Valid users choose the destination
randomly among all other valid users. Figure 47 shows the overall
delivery rate and delay for different attacker injection rates Rϵ as a
function of the valid users’ injection rate Rn. Note that Rϵ and Rn are
aggregate rates, e. g., Rϵ = 1Rn means that all attackers inject as many
messages as all valid users combined. To better understand the results,
Figure 47 differentiates between registered and unregistered users,
and includes the network-wide copies per message during the attack.
We make multiple observations.

importance of acknowledgments In a benign setting, ACKsACKs are important
to remove stale

messages from the
buffers.

help to keep buffers clean (SEB and MR). Once a message is delivered
(Figure 47a), the number of copies in the network reduces about as
quickly as they increased (Figure 47g) yielding perfect (i. e., 100 %)
delivery rates.

fifo vs . mr Using FIFO as a buffer management strategy does
not yield satisfactory results even in a benign scenario because buffer

9.6 experimental evaluation 139

states do not converge: FIFO always accepts an incoming message even
if it has previously been dropped. The performance further decreases
as the attackers’ injection rate increases (Figure 47c). On the other Our message

prioritization
mechanism alone
improves delivery
rates in a benign
scenario.

hand, prioritizing messages by deadline is a very effective metric to
achieve 100 % message delivery in less than 1 hour (MR in Figure 47a).
However, at the same time, this is tremendously susceptible to flooding
attacks, as it uses the TTL for prioritization that the attacker manipu-
lates by setting an arbitrarily large message lifetime, thus, reducing
the message delivery rate to about 5 % (Figure 47c). This occurs since
the attacker removes virtually all valid message copies in the network
quickly (Figure 47h).

seb mitigates flooding attacks for all registered users

SEB uses MR as a secondary metric within each bucket. Therefore,
SEB achieves the same delivery rate as standalone MR under no attack
(plots in Figure 47a overlap), but maintains a high delivery rate of
more than 90 % even under the flooding attack (Figure 47c). In fact,
as we vary the flooding injection rate, performance only decreases for
unregistered users (Figure 47f), while all other groups (Figures 47d
and 47e) remain unaffected. Since SEB’s delivery rate did not change
from Rϵ = 1Rn to 2Rn, we abstain from studying results when further
increasing Rϵ.

9.6.3 Sybil Attack

In our next experiment, we evaluate the impact of a Sybil attacker on
RESCUE, again in the synthetic scenario. The Sybil attacker is a single
node (physical position) that can generate an unlimited number of reg-
istered identities, e. g., by compromising an MA. To cause maximum
harm, the attacker executes a flooding attack as in Section 9.6.2 but
uses a new identity for each injected message. We compare the results With the PSo buffer

management
strategy, we isolate
the effect of the
Sybil-secure priority
set S1.

of DD, SEB, and PS. To isolate the effect of our Sybil-secure priority
set, we include an additional strategy PSo which only uses S0 and
S1 (i. e., this strategy does not relay messages for unregistered nodes
and registered nodes that are not in the Sybil-secure priority set). We
omit the results for FIFO and MR since they already performed poorly
under a non-Sybil attack. We set the Sybil-secure priority set size |S1|

to 10. For the pre-registered nodes, the sets are generated from a fixed-
degree random graph, while the sets of the post-registered nodes are
determined by the |S1| most recently post-registered nodes. For space
reasons, Figure 48 shows only the results for the pre-registered and
unregistered group.

sybil attacker replaces all non-secure copies In Fig-
ure 48a, we can see that the delivery rate for SEB significantly de-
creases under a Sybil attack compared to Figure 47d. With PS, the

140 dos-resilient archipelago communication

0 1 2 3 4 5
Delivery delay [h]

0.0

0.5

1.0

D
el

iv
er

y
ra

te

PSo
PS
SEB
DD

(a) Delivered messages of the pre-regis-
tered pedestrian group.

0 2 4
Time [h]

0.0

2.5

5.0

7.5

M
es

sa
ge

co
pi

es
(b) Message copies for PS of the pre-

registered pedestrian group.

0 1 2 3 4 5
Delivery delay [h]

0.0

0.2

0.4

0.6

D
el

iv
er

y
ra

te

PSo
PS
SEB
DD

(c) Delivered messages of the unregis-
tered group.

0 2 4
Time [h]

0.0

2.5

5.0

7.5

M
es

sa
ge

co
pi

es

(d) Message copies for PS of the unreg-
istered group.

Figure 48: Impact of Sybil attack (Rϵ = 1Rn) on the pre-registered and
unregistered groups. Plots show the delivered messages over the
delivery delay and message lifetime.

9.6 experimental evaluation 141

In
ju

re
d

7

H
ea

lt
hy

7

H
ea

lt
hy

3

Sc
ie

nt
is

t3

G
ov

t.
3

U
N

3

U
SR

Ts
3

D
R

O
s

3

Receiver

Injured 7

Healthy 7

Healthy 3

Scientist 3

Govt. 3

UN 3

USRTs 3

DROs 3

Se
nd

er

0.18 0.31 0.22 0.29 0.33 0.33 0.32 0.28

0.40 0.58 0.56 0.59 0.64 0.63 0.58 0.58

0.46 0.69 0.63 0.62 0.70 0.71 0.69 0.72

0.52 0.73 0.59 0.69 0.75 0.77 0.80 0.75

0.57 0.80 0.75 0.79 0.88 0.88 0.89 0.92

0.58 0.81 0.75 0.75 0.89 0.90 0.90 0.93

0.51 0.74 0.63 0.75 0.81 0.81 0.96 0.94

0.54 0.75 0.68 0.75 0.82 0.82 0.94 0.98

(a) No attack.

In
ju

re
d

7

H
ea

lt
hy

7

H
ea

lt
hy

3

Sc
ie

nt
is

t3

G
ov

t.
3

U
N

3

U
SR

Ts
3

D
R

O
s

3

Receiver

Injured 7

Healthy 7

Healthy 3

Scientist 3

Govt. 3

UN 3

USRTs 3

DROs 3

Se
nd

er

0.01 0.04 0.03 0.06 0.07 0.07 0.03 0.03

0.04 0.19 0.17 0.19 0.15 0.15 0.07 0.09

0.07 0.31 0.27 0.25 0.29 0.29 0.17 0.20

0.11 0.29 0.21 0.35 0.39 0.38 0.38 0.33

0.16 0.38 0.35 0.43 0.68 0.66 0.59 0.63

0.16 0.38 0.34 0.40 0.67 0.70 0.61 0.68

0.12 0.33 0.28 0.44 0.59 0.59 0.84 0.81

0.13 0.36 0.32 0.42 0.61 0.62 0.82 0.86

(b) Under attack and |S1| = 10.

In
ju

re
d

7

H
ea

lt
hy

7

H
ea

lt
hy

3

Sc
ie

nt
is

t3

G
ov

t.
3

U
N

3

U
SR

Ts
3

D
R

O
s

3

Receiver

Injured 7

Healthy 7

Healthy 3

Scientist 3

Govt. 3

UN 3

USRTs 3

DROs 3

Se
nd

er

0.01 0.04 0.03 0.06 0.07 0.07 0.03 0.03

0.04 0.19 0.17 0.18 0.15 0.15 0.07 0.09

0.11 0.40 0.36 0.33 0.40 0.41 0.26 0.30

0.17 0.39 0.29 0.43 0.50 0.50 0.54 0.47

0.20 0.48 0.45 0.54 0.72 0.71 0.69 0.72

0.21 0.48 0.43 0.50 0.73 0.74 0.71 0.76

0.18 0.44 0.36 0.53 0.62 0.64 0.87 0.85

0.19 0.46 0.41 0.52 0.65 0.66 0.85 0.89

(c) Under attack and |S1| = 20.

In
ju

re
d

7

H
ea

lt
hy

7

H
ea

lt
hy

3

Sc
ie

nt
is

t3

G
ov

t.
3

U
N

3

U
SR

Ts
3

D
R

O
s

3

Receiver

Injured 7

Healthy 7

Healthy 3

Scientist 3

Govt. 3

UN 3

USRTs 3

DROs 3

Se
nd

er

0.01 0.04 0.03 0.06 0.07 0.07 0.03 0.03

0.04 0.19 0.17 0.19 0.15 0.15 0.07 0.09

0.17 0.48 0.45 0.41 0.49 0.51 0.36 0.41

0.26 0.54 0.42 0.53 0.64 0.63 0.69 0.63

0.29 0.61 0.57 0.64 0.78 0.78 0.81 0.84

0.31 0.60 0.55 0.60 0.79 0.80 0.81 0.86

0.26 0.57 0.46 0.64 0.69 0.70 0.92 0.89

0.27 0.59 0.52 0.62 0.71 0.72 0.90 0.94

(d) Under attack and |S1| = 50.

Figure 49: Typhoon Haiyan scenario without (Rϵ = 0) and with Sybil attack (Rϵ = 1Rn). Matrices
show the average message delivery rates between roles using PS.

142 dos-resilient archipelago communication

situation improves enormously. The secure copies in S1 work as in-
tended, so that there is a small number (⩽ |Sl|) of message copies
that propagate through the network. Conversely, this experiment alsoOnly S0 and S1 are

secure against Sybil
attacks.

shows that all |Sl| with l > 1 are completely vulnerable to a Sybil
attack: the attacker effectively replaces all non-secure copies, which is
confirmed by the almost identical performance of PSo and PS (overlap
in Figure 48a). This behavior demonstrates the resiliency aspect of
RESCUE: even under a strong attack, RESCUE continues to operate
considerably well but with reduced performance.

direct delivery defines the lower bound performance

In Figure 48c, we show the performance that unregistered users ex-
perience. We see that the performance is significantly lower than for
registered users. However, all of our buffer management strategies
perform better than DD, asserting our claim of achieving a lower
bound performance. SEB performs slightly better as it can take ad-We verify our claim

of achieving a lower
bound performance.

vantage of the epidemic flooding at the beginning of the simulation
when the attacker’s messages have not yet fully saturated the network.
PS performs better because some of the unregistered nodes become
registered while their messages traverse the network and, thus, are
prioritized by other nodes. Figure 48d shows the average message
copies that increase towards the end of the message lifetime.

9.6.4 2013 Typhoon Haiyan Scenario

To evaluate how RESCUE would perform in a disaster scenario, we
repeat our experiments under an accurate human mobility model for
large-scale natural disasters (Chapter 3). This model features seven
different node roles (e. g., citizens and professional disaster response
teams (DRTs)), various points-of-interest (e. g., base camps), and time-
of-day dependent activities. Depending on the group, we consider that
users are registered (✓) or unregistered (✗). We evaluate RESCUE in
the Typhoon Haiyan scenario (city of Tacloban) with a total of 500 nodes.
We show the inter-group message delivery rates for PS in Figure 49.
For space reasons, we only show the results for no attacker (Figure 49a)
and for the Sybil attack with a flooding rate of Rϵ = 1Rn but with
different values for |S1| (Figures 49b to 49d). The Sybil attack is the
same as in Section 9.6.3, with the difference that the attacker node
is chosen randomly from the disaster response organization (DRO)
group since this group is the best-connected one due to high contact
rates.

impact of mobility model In comparison to our synthetic sce-We do not achieve
perfect delivery rates

in a realistic
scenario.

nario, the most striking difference is that we do not achieve perfect
delivery rates when no attackers are present (compare Figure 47a and
Figure 49a). The underlying mobility causes these differences, e. g.,

9.7 discussion and summary 143

some nodes (injured citizens) do not move at all. Also, the synthetic
scenario features fast-moving cars and a higher node density. Since
cars might not be usable due to blocked roads, we focus on pedestri-
ans only. Still, PS achieves significantly better results than FIFO. This
suggests that PS can even apply to benign settings.

effectively no service for unregistered citizens Unreg-
istered users (✗) are almost completely denied service under attack
and experience a delivery rate of 19 % at best (Figures 49b to 49d).
Those citizens already receive reduced service in a benign scenario Direct delivery does

not achieve usable
delivery rates in a
realistic scenario.

(Figure 49a). The direct-delivery performance that is achieved under
attack does not suffice to maintain a reasonable delivery rate. This
discrepancy emphasizes the importance of user registration, especially
under a Sybil attack.

impact of the sybil-secure priority set size Under attack,
delivery rates drop significantly for all groups (Figure 49b). While Well-connected

groups achieve
decent delivery rates
even only with S0
and S1.

well-connected registered groups can still achieve inter-group delivery
rates above 90 %, unregistered groups are effectively cut off from
communication. The situation for registered nodes improves when we
increase |S1| from 10 up to 50 (Figures 49c and 49d): at |S1| = 50, the
delivery rate is only 3–12 % lower than in a benign setting. However,
as expected, increasing |S1| does not affect unregistered users.

delivery asymmetries We detect asymmetries in the delivery
rates between certain group pairs in Figure 49a, such as the registered
DROs and the unregistered injured citizens (0.54 vs. 0.28). Our PS
levels can explain these asymmetries: registered users can use more se-
cure relays than unregistered ones. These asymmetries might influence
the design of applications building on RESCUE.

9.7 discussion and summary

We presented RESCUE, a communication framework for resilient and
secure disruption-tolerant emergency communication on mobile de-
vices. RESCUE is the first secure emergency communication solution
that allows users to join the network during disasters when infras-
tructure networks are unavailable by deploying mobile authorities in
the field. In addition, we are the first to present a buffer management In comparison to

related proposals,
RESCUE allows
users to join the
network
post-disaster.

approach to mitigate flooding attacks even in the presence of Sybil
attackers. In particular, our solution uses a minimalistic communi-
cation protocol and implements flooding mitigation via source-based
elastic buckets that prevent attackers from purging valid messages. We
also leverage the concept of secure copies to implement priority sets to
offer protection against Sybil attacks. We have evaluated our solution
in a synthetic scenario and have shown that, under flooding attacks,

144 dos-resilient archipelago communication

RESCUE maintains a delivery rate of 100 % for all registered users,
while unregistered users experience a drop of up to 20 %. In the pres-
ence of a Sybil attacker, RESCUE maintains a delivery rate close to
100 % for all registered users, while unregistered users can still deliver
more than 60 % of their messages. Finally, we confirmed that RESCUERegistered users are

well-protected
against Sybil attacks,

while unregistered
ones are not.

performed reasonably well in a realistic natural disaster scenario.
Under a Sybil attack, we showed that the priority set size could be
increased to improve the delivery rates, which means that registered
users such as professional responder teams can continue to operate.
Unregistered users’ experiences will, however, suffer drastically under
such an attack.

Part IV

C O N C L U S I O N S

10
C O N C L U S I O N S

In this thesis, we have investigated how to build distributed wireless
networks (DWNs) to be resilient against denial-of-service (DoS) attacks.
We have used two different perspectives: analyzing and improving
existing protocols in Chapters 4 to 7 and designing novel ones in
Chapters 8 and 9.

While designing the two new protocols, we found that the lack Today’s mobile
devices to not offer a
high-throughput
cross-platform
neighbor-scope
communication
technology.

of an openly accessible neighbor scope communication technology
impeded practical evaluation of, e. g., emergency communication sys-
tems on smartphones, which typically use rooted Android devices
with Wi-Fi ad hoc [3]. For this reason, we decided to investigate the
best-performing protocol, which was a proprietary protocol called
Apple Wireless Direct Link (AWDL). We wanted to understand how
it worked and, therefore, started reverse-engineering the protocol.
During this lengthy process, we learned a lot about the internals of We started

reverse-engineering
AWDL initially to
enable cross-platform
neighbor-scope
communication.

macOS and complex interactions of its various components. Our newly
gained insights put us in a unique position of being able to conduct a
partial security analysis of a large proprietary ecosystem. In addition,
our efforts resulted in several code artifacts that we shared with the
community: an AWDL Wireshark dissector and open AWDL as well
as AirDrop implementations (Appendix C).

When we started this project, AWDL was the only widely available
(> 1.4 billion devices) high-throughput neighbor communication tech-
nology. Meanwhile, the Wi-Fi Alliance published the specification of
Neighbor Awareness Networking (NAN), AWDL’s unofficial succes-
sor. While NAN is still not widely available on end-user devices (only AWDL is currently

available on more
than 1.4 billion
end-user devices.

on selected Android devices), the results of our security analysis on
AWDL are at least partially transferable. As the core design concepts
of both protocols are identical, our desynchronization attack on AWDL
will likely affect NAN as well. Interestingly, we found that the Wi-Fi
Alliance discusses the possibility of desynchronization [61, Section
7.5]. However, they do not propose countermeasures arguing that a
jamming attack would have the same effect. In our security analysis,
however, we were able to show that a protocol-level DoS attack such as
desynchronization makes it much easier to launch more sophisticated
attacks on higher layers, such as the machine-in-the-middle (MitM) on
AirDrop. Consequently, applications relying on open wireless inter- DoS attacks can

enable MitM attacks
on a wireless link.

faces (AWDL or NAN) might be at risk if developers do not consider
the possibility of DoS-supported MitM attacks. Even in the academic
security community, the possibility of a MitM attack on a wireless link
seems to be underrated [20]. Yet, we are happy that our findings made

147

148 conclusions

a real-world impact as Apple has fixed all vulnerabilities (including
several privacy leaks) that we reported to them (Appendix B).

Such neighbor communication is the basic building block for mul-
tihop communication protocols. In the second part of the thesis, we
investigated the latter and proposed two novel DoS-resilient protocols
for island and archipelago scope applications.

Current networking stacks for the Internet of things (IoT), such as
Bluetooth Mesh [31], implement flooding-based protocols. While such
protocols incur very little complexity and can provide high resiliency
against DoS attacks, plain flooding with simple duplicate detection
does not scale well as each packet will be forwarded by every node
in the network once. This appears especially problematic in light ofState-of-the-art IoT

networks rely on
simple flooding,

which does not scale.

an estimated IoT device count in the order of ten billion within the
next years that are supposed to interconnect in the island scope. For
such island networks, we showed that integrated routing protocols
could achieve similar resiliency against attacks while being much more
bandwidth-efficient. In particular, we proposed a protocol that draws
only on efficient symmetric-key cryptographic primitives and uses a
secure end-to-end acknowledgment scheme to route around packet
dropping attackers. We implemented an open-source prototype of
the protocol, which we used to conduct real-world experiments. The
results support our analytical proof that LIDOR is, in fact, resilient to
a strong wormhole-supported greyhole attack.

While our lead application scenario throughout this thesis is an
emergency scenario, our protocols and proposals are mostly applica-
tion-agnostic, except for our archipelago communication framework
RESCUE, which employs some components that are specific to the
emergency scenario. With RESCUE, we have conceived a frameworkOur emergency

communication
framework is the first

of its kind to
withstand flooding
by a Sybil attacker.

for the emergency context, which is the first of its kind that with-
stands flooding by a Sybil adversary. To achieve this, we proposed
to use a novel buffer management scheme that—based on node-local
decisions—prevents an attacker from replacing valid messages with
their own. We used a mobility model based on actual past disasters to
show that RESCUE remains resilient in practice.

We evaluated all protocols via real-world experiments or using
simulations with realistic mobility. With promising results on the indi-We leave a composite

system using the
individual protocols

presented in this
thesis as future work.

vidual scopes, we think that it is possible to conceive a novel composite
system that combines the investigated and proposed protocols in this
work for safety-critical applications. For example, we can imagine a
DoS-resilient smartphone-based emergency communication system
that uses AWDL for neighbor communication and seemlessly switches
between island and archipelago communication protocols depending
on the context.

Part V

A P P E N D I X

A
P R I VA C Y I S S U E S I N AW D L

During our security analysis of AWDL, we discovered several privacy
issues that easily allow for user tracking. We report these results in AWDL is vulnerable

to user tracking.this chapter as they are relevant for our security analysis in Chapter 7.
First, we discuss protocol fields that enable tracking. Then, we perform
an experimental vulnerability assessment at different locations and
compare the results with a user study spanning 500 participants. We
propose possible mitigations and, finally, summarize related work on
user tracking.

a.1 protocol fields with sensitive information

AWDL implements medium access control (MAC) randomization for
the IEEE 802.11 header. Yet, AWDL-specific fields contain long-term
device identifiers that disclose sensitive information about the user,
undermining MAC randomization. In particular, AWDL includes the The device hostname

is transmitted in the
clear and often
includes the user’s
name.

following sensitive fields in the action frames (AFs), which devices
broadcast in the clear multiple times per second when the AWDL
interface is active. We indicate the name and type of the tag, which
includes this field in parentheses (see Table 7).

• The hostname may include parts of the user’s name, e. g., “Janes-
iPhone,” which is the default when setting up a new device.
(Arpa tag, type 16.)

• The real MAC address of the device and the basic service set iden-
tifier (BSSID) of the Wi-Fi network that the device is currently
connected to. (Data path state tag, type 12.)

• The device class differentiates between devices running macOS,
iOS/watchOS, and tvOS. In combination with the protocol ver-
sion, this can be used to infer the operating system (OS) version,
e. g., AWDL v2 is used in macOS 10.12 while AWDL v3 is used
in macOS 10.13 and 10.14. The attacker could exploit the OS in-
formation during reconnaissance to mount attacks on vulnerable
driver implementations. (Version tag, type 21.)

Targets need to broadcast AFs to make these vulnerabilities exploitable,
which an attacker can practically enforce by mounting the attack
presented in Section 7.3.

151

152 privacy issues in awdl

a.2 the potential of apple device user tracking

The hostname set by default during Apple iOS and macOS device
installation includes the user’s name [8]. Due to its frame structure,
the AWDL protocol aids an adversary in mapping a hostname with
the MAC address of the device. This enables them to track users evenWe run an iOS and

macOS user study to
assess the the risk of

device and user
tracking.

if users change this hostname on their device. The combination also
enables more sophisticated threats. For example, a person’s name
can be combined with information from public databases (e. g., US
census [183]) to infer their home and work locations, while the MAC
address can be used to track them in real time. To assess what per-
centage of device hostnames contain parts of the owner’s name, we
conducted a survey of 500 Apple device users on Amazon Mechan-
ical Turk. This survey contained questions1 relevant to the attacksWe asked 500 users

to participate in our
study via Amazon

Mechanical Turk.

demonstrated in this thesis, and we report the statistics in the relevant
sections. In particular, in the context of tracking, we asked the sur-
veyors if it was easy for other users to find their device because their
hostname contained parts of their real name. We report the results of
this question, along with the results of an experimental evaluation in
the next section.

a.3 experimental vulnerability analysis

To demonstrate the feasibility of user tracking using AWDL, we collect
the number of discovered devices and check whether that device’s
hostname includes a person’s name in four different locations within
the US. We selected the locations to reflect static as well as dynamicWe collect data in in

an airport, a library,
a metro train, and a

food court.

environments. In particular, we recorded at a departure gate of an
airport, in the reading section of a public library, in a moving metro
train, and in the food court of a university.

determining whether a hostname contains a person’s
name We use two databases to determine whether a hostname
contains a person’s name: the 2010 US Census [180] containing 162 253

family names, and the 1918–2017 baby names from the US Social
Security Administration [181] containing 96 743 given names. WhenWe use two US

databases containing
given and family

names to assess
whether discovered

devices contain a
person’s name.

detecting a new AWDL node, we check string segments separated by
hyphens against these two databases.2 Note that when one segment
matches the given name database, it is not matched again as a family
name because it is more likely that an Apple device will include a
person’s given name [8].

1 The survey questionnaire is available at https://goo.gl/forms/0okC4UphTQBnQ0FB3
2 If a segment ends with the letter “s,” we also check the segment without a trailing “s.”

Also, we ignore segments containing common device names such as “iPhone” and
“Mac.” For example, for the hostname “Johns-iPhone,” we try to match the strings
“Johns” and “John” to our name databases.

https://goo.gl/forms/0okC4UphTQBnQ0FB3

A.3 experimental vulnerability analysis 153

Airport Library Metro University
Location

0

50

100
C

ou
nt

Advertisements
Brute Force
Static
None

Figure 50: Discovered AWDL devices at one location during one minute.

ethical statement To preserve user privacy and to prevent
storage of any sensitive user information, we fully automated the
name matching procedure. In particular, we only stored salted hashes We do not store

identifiable
information about
discovered devices.

of the discovered hostnames (to differentiate between devices) together
with two bits indicating whether the hostname contained a given or a
family name. The salt was generated randomly, kept in memory only,
and discarded after the completion of each experiment.

setup We do the measurements (1) without an attack (passive), (2)
with static Bluetooth Low Energy (BLE) advertisements containing
only the “zero” contact hash, and (3) with our BLE brute force ap-
proach. With (2), only devices in the everyone mode should respond, We also count the

number of devices
that are in everyone
and contacts-only
only mode.

with (3) we also capture those that are in contacts-only mode. We run
each setting for 60 seconds and repeat it ten times per location. To
avoid statistical bias, we cycle through the (1) to (3) settings back to
back in each iteration and use a cooldown time of 40 seconds between
them. The cooldown ensures that all devices in proximity have turned
off their AWDL interfaces again.

experimental results Figure 50 shows the number of discov-
ered AWDL devices in the different locations. By using the brute force
approach, we can discover about twice as many devices compared
to sending only regular advertisements. This means that in our ex- The BLE brute force

is effective in
enabling
contacts-only
devices.

periments, approximately 50 % of the Apple devices are in AirDrop’s
everyone mode. Our survey complements our experimental results by
indicating that 20 % of Apple device users have AirDrop turned off
and, thus, are not trackable via AWDL. It is interesting to note that we
pick up AWDL devices even when not sending any advertisements.
This can happen if a device (not controlled by us) sends out adver-
tisements itself, for example, when a user opens the AirDrop sharing
pane, which presumably occurred regularly at the university location. More than 75% of

the discovered device
names contain a
person’s name.

Finally, we found that among all discovered devices, more than 75 %
contain a person’s name in the hostname. Most devices contain only a
given name, which is the default for freshly set up Apple devices [8],

154 privacy issues in awdl

Given and Family

12.6 %

None 24.1 %

Only Family
2.3 % Only Given

61.0 %

Given and Family
None
Only Family
Only Given

Figure 51: Occurrences of persons’ names in device hostnames.

some contain a combination of a given and family name, and very
few contain only a family name. While we cannot verify that the
discovered names are the users’ real names, our survey confirms our
experimental results as 68 % answered that it was “easy” or “very
easy” for others to recognize their device because it contained their
name.

potential for large-scale attack In this analysis, we show
what kind of information a motivated attacker would be able to collect.
We used a single fixed physical location for each experiment and didA large scale

tracking attack
would be possible if

the attacker deployed
several low-cost

nodes in a target
area.

not attempt to track any user movement. However, given that we can
receive unique identifiers of Apple devices (Wi-Fi MAC address and
hostname), mounting a large-scale tracking attack should be trivial for
an adversary that can deploy multiple low-cost Wi-Fi and BLE nodes
throughout an area.

a.4 mitigation

We present a short-term solution and then propose two mitigation tech-
niques that remove stable device identifiers to prevent user tracking
via AWDL.

disable airdrop Before Apple addressed the problem, the only
way to thwart user tracking was to disable AirDrop completely. Dis-Disabling AWDL

triggers helps to
protect user privacy.

abling AirDrop prevents BLE advertisements from activating the
AWDL interface remotely. Apple has meanwhile implemented a rate-
limiting mechanism (Appendix B.7) that prohibits our brute force
attack and makes activating nearby AWDL devices much harder.

hide real mac address when not connected to an access

point When a device connects to an access point (AP), it uses its
real MAC address for communication, in which case AWDL does notApple has removed

the real MAC
address from AWDL

AFs.

disclose new information. However, the MAC address is occasionally
included in AFs even when the device is not connected to an AP.
This appears to be unintended behavior and should be fixed via a

A.5 related work on user tracking 155

software update, which Apple has done in response to our report
(Appendices B.3 and B.5).

randomize hostname for awdl Apple devices transmit their
hostname in AWDL AFs as well as the multicast DNS (mDNS) re-
sponses during service discovery that are used to find AirDrop in-
stances (see Chapter 6). As a countermeasure, we propose to use a We propse hostname

randomization in
analogy to MAC
address
randomization which
Apple has
implemented in
response to our
report.

randomized hostname with AWDL similar to MAC address random-
ization. If an application such as AirDrop needs the real hostname for
identification, it should only be transmitted via an encrypted and au-
thenticated channel such as TLS. AirDrop already transmits the device
name in the HTTPS handshake and uses this name in the UI, ignoring
the hostname from mDNS responses. Therefore, hostname randomiza-
tion would not require any changes to the AirDrop implementation,
which would retain backward compatibility.

Apple has picked up our idea and replaced the hostname in both
AWDL AFs and mDNS responses with a random universally unique
identifier (UUID) that rotates together with the MAC address (Ap-
pendix B.6).

a.5 related work on user tracking

Several related works have studied the topic of user tracking from
mobile devices. Some common attack vectors include using the GPS
sensor [65, 110, 126, 179, 192], cellular [14, 86, 112, 154], Wi-Fi [30,
79, 159, 201, 202], radio interface fingerprinting [93], and motion
sensors [51, 78, 134, 138, 140]. We believe that the above works are
orthogonal to our approach, and could be used in conjunction with
our approach to improve tracking performance.

Some device-specific identifiers have also been used for track-
ing, e. g., IMEI [68, 190], MAC addresses [46, 63, 124, 137], BLE ad-
dresses [48, 59, 108], and custom BLE advertisements [129]. While Device identifiers

such as MAC
addresses have been
previously used to
track mobile users.

IMEI-based tracking can be easily mitigated by protecting access to
this information, BLE is a dominant standard for fitness trackers and
smartphone communication, and their addresses must be exposed.
Tracking using BLE identifiers has been demonstrated to be easy.
However, our approach has the added benefit for an attacker that the
hostname is exposed. This allows inferring additional user informa-
tion such as home and work locations, family members, or movement
patterns, which are useful for more targeted tracking [66, 182]. Like
BLE addresses, MAC addresses are also essential as they form the
backbone of layer 2 network communication and must be exposed for
networking (e. g., Wi-Fi probe requests).

MAC address randomization has been proposed to prevent device
tracking through Wi-Fi probe requests [23, 52]. Today, both Apple
and Google implement MAC address randomization in their mobile

156 privacy issues in awdl

OSs. Randomization does improve user privacy; however, some worksMAC address
randomization is

used in industry to
preserve Wi-Fi user

privacy but has been
shown to still be

vulnerable to
tracking attacks.

have demonstrated that devices are still trackable. For example, a
study [186] uses probe request fingerprinting that has a 50 percent
success rate for tracking users for 20 minutes. Another work [130]
demonstrated that MAC randomization could be defeated through
timing attacks, where a signature based on inter-frame arrival times
of probe requests can be used to group frames coming from the same
device with distinct MAC addresses. Their framework could group
random MAC addresses of the same device up to 75% of cases for
about 500 devices. Our work advances the scalability, tracking time,
and accuracy of the prior works. We show that, owing to design and
implementation issues in the AWDL protocol, an adversary could track
millions of Apple device owners globally with 100 % accuracy until
Apple fixed the vulnerabilities in recent OS updates (Appendices B.3
and B.5 to B.7).

B
V U L N E R A B I L I T Y D I S C L O S U R E S

We list all vulnerabilities that we discovered during the course of
this thesis. We give a discription and the disclosure date for each
vulnerability and, if available, provide information about the update
releases. The web links to the advisories (HT...) can be accessed by
prefixing them with https://support.apple.com/en-us/.

b.1 cve-2018-4368

description An attacker may wirelessly crash devices in proxim-
ity by sending malformed AWDL frames.

disclosure August 27, 2018

mitigation The DoS attack was addressed with improved vali-
dation.

releases October 30, 2018 for iOS 12.1 (HT209192)
October 30, 2018 for macOS 10.14.1 (HT209193)
October 30, 2018 for tvOS 12.1 (HT209194)
October 30, 2018 for watchOS 5.1 (HT209195)

credits Milan Stute and Alex Mariotto

b.2 no-cve-2018-1

description An attacker may wirelessly crash devices in proxim-
ity by sending malformed AWDL frames.

disclosure August 14, 2018

affected macOS 10.12

comment Apple declined to patch old OS version.

b.3 cve-2019-8567

description An attacker may passively track a device by the
broadcast Wi-Fi MAC address.

disclosure December 17, 2018

mitigation The privacy issue was addressed by removing the
BSSID MAC address from AWDL frames.

releases March 25, 2019 for iOS 12.2 (HT209599)
March 25, 2019 for macOS 10.14.4 (HT209600)

credits David Kreitschmann and Milan Stute

157

https://support.apple.com/en-us/HT209192
https://support.apple.com/en-us/HT209193
https://support.apple.com/en-us/HT209194
https://support.apple.com/en-us/HT209195
https://support.apple.com/en-us/HT209599
https://support.apple.com/en-us/HT209600

158 vulnerability disclosures

b.4 cve-2019-8612

description An attacker may perform a DoS attack by desynchro-
nizing two AWDL targets.

disclosure December 17, 2018

mitigation A logic issue was addressed with improved state
management.

releases May 13, 2019 for iOS 12.3 (HT210118)
May 13, 2019 for macOS 10.14.5 (HT210119)
May 13, 2019 for tvOS 12.3 (HT210120)
May 13, 2019 for watchOS 5.2.1 (HT210122)

credits Milan Stute

b.5 cve-2019-8620

description An attacker may passively track a device by the
broadcast Wi-Fi MAC address.

disclosure December 17, 2018

mitigation The privacy issue was addressed by removing the
Wi-Fi chip’s MAC address from AWDL frames.

releases May 13, 2019 for iOS 12.3 (HT210118)
May 13, 2019 for macOS 10.14.5 (HT210119)
May 13, 2019 for tvOS 12.3 (HT210120)
May 13, 2019 for watchOS 5.2.1 (HT210122)

credits David Kreitschmann and Milan Stute

b.6 cve-2019-8799

description An attacker in physical proximity may be able to
passively observe device names in AWDL communi-
cations.

disclosure December 17, 2018

mitigation This issue was resolved by replacing device names
with a random identifier.

releases September 19, 2019 for iOS/iPadOS 13.1 (HT210603)
September 19, 2019 for watchOS 13 (HT210607)
September 24, 2019 for tvOS 13 (HT210604)
October 7, 2019 for macOS 10.15 (HT210634)

credits David Kreitschmann and Milan Stute

https://support.apple.com/en-us/HT210118
https://support.apple.com/en-us/HT210119
https://support.apple.com/en-us/HT210120
https://support.apple.com/en-us/HT210122
https://support.apple.com/en-us/HT210118
https://support.apple.com/en-us/HT210119
https://support.apple.com/en-us/HT210120
https://support.apple.com/en-us/HT210122
https://support.apple.com/en-us/HT210603
https://support.apple.com/en-us/HT210607
https://support.apple.com/en-us/HT210604
https://support.apple.com/en-us/HT210634

B.7 no-cve-2019-1 159

b.7 no-cve-2019-1

description An attacker may wirelessly activate AWDL interfaces
in proximity by sending BLE advertisements.

disclosure December 17, 2018

mitigation The brute force attack was addressed via rate-
limiting

releases March 25, 2019 for iOS 12.2 (HT209599)
March 25, 2019 for macOS 10.14.4 (HT209600)
March 25, 2019 for tvOS 12.2 (HT209601)
March 27, 2019 for watchOS 5.2 (HT209602)

credits Milan Stute

comment No CVE but mentioned in “additional recognition.”

b.8 no-cve-2019-2

description An AirDrop user may be tricked into sending files to
an attacker.

disclosure December 17, 2018

mitigation The sharing pane UI now differentiates between au-
thenticated and unauthenticated devices.

release September 19, 2019 for iOS/iPadOS 13.1 (HT210603)

credits Milan Stute

comment No CVE but mentioned in “additional recognition.”

b.9 cve-2017-13886 (associated)

description An unprivileged user may change Wi-Fi system pa-
rameters leading to denial of service.

disclosure July 19, 2017

mitigation Introduce gated ioctl commands using special enti-
tlement.

release December 6, 2017 for macOS 10.13.2 (HT208331)

credits David Kreitschmann and Matthias Schulz

comment Discovered by David during his master thesis under
my supervision. Part of our co-authored paper [174].

https://support.apple.com/en-us/HT209599
https://support.apple.com/en-us/HT209600
https://support.apple.com/en-us/HT209601
https://support.apple.com/en-us/HT209602
https://support.apple.com/en-us/HT210603
https://support.apple.com/en-us/HT208331

C
S O F T WA R E R E L E A S E S

This section lists all open-source software artifacts that have been
developed and published as part of this thesis. Instructions on how
to use the particular programs are included in the README files of
the respective source code repositories. All Apple-related projects
can also be found on the website of the Open Wireless Link project
https://owlink.org.

c.1 awdl protocol dissector for wireshark

We implemented a Wireshark dissector for Apple Wireless Direct Link
(AWDL). The dissector has been merged with the official Wireshark
project and is shipped since version 3.0. The original source code
repository is no longer maintained but contains David Kreitschmann’s
CoreCapture dissector, which is not part of the official Wireshark
project.

release notes https://www.wireshark.org/docs/relnotes/

wireshark-3.0.0.html

source code https://github.com/seemoo-lab/

wireshark-awdl

authors David Kreitschmann and Milan Stute

c.2 open wireless link

Open Wireless Link (OWL) is a an open implementation of the AWDL
protocol written in C. It currently runs on Linux and macOS and
requires a Wi-Fi card with support for monitor mode and frame
injection. OWL runs in userspace and makes use of Linux’s Netlink
API for Wi-Fi specific operations such as channel switching and to
integrate itself in the Linux networking stack by providing a virtual
network interface such that existing IPv6-capable programs can use
AWDL without modification.

source code https://github.com/seemoo-lab/owl

author Milan Stute

161

https://owlink.org
https://www.wireshark.org/docs/relnotes/wireshark-3.0.0.html
https://www.wireshark.org/docs/relnotes/wireshark-3.0.0.html
https://github.com/seemoo-lab/wireshark-awdl
https://github.com/seemoo-lab/wireshark-awdl
https://github.com/seemoo-lab/owl

162 software releases

c.3 opendrop

OpenDrop is a command-line tool written in Python that allows shar-
ing files between devices directly over Wi-Fi. It is protocol-compatible
with Apple AirDrop and allows to share files with Apple devices run-
ning iOS and macOS. To support communication with Apple devices,
OpenDrop needs to run over an AWDL-compatible link and, thus,
supports macOS and any platform that supports OWL.

binary release https://pypi.org/project/opendrop

source code https://github.com/seemoo-lab/opendrop

authors Alexander Heinrich and Milan Stute

c.4 lidor communication protocol

We implemented the LIDOR communication protocol for the Click
Modular Router [106]. The end-to-end communication protocol runs
on layer 2, is based on Castor [64] (hence the original project name),
and features advanced security properties such as resiliency against
advanced attacks, such as blackhole, greyhole, wormhole, and replay
attacks.

source code https://github.com/seemoo-lab/click-castor

author Milan Stute

c.5 natural disaster mobility model and scenarios

We developed and implemented a natural disaster mobility model
as a module for the ONE simulator [104]. The repository contains a
mobility model for natural disasters as well as two specific disaster
scenarios: 2013 Typhoon Haiyan (for the city of Tacloban) and 2010

Haiti earthquake (for the surroundings of Port au Prince).

source code https://github.com/seemoo-lab/

natural-disaster-mobility

experiment data doi:10.5281/zenodo.836815

authors Tom Schons and Milan Stute

https://pypi.org/project/opendrop
https://github.com/seemoo-lab/opendrop
https://github.com/seemoo-lab/click-castor
https://github.com/seemoo-lab/natural-disaster-mobility
https://github.com/seemoo-lab/natural-disaster-mobility
https://doi.org/10.5281/zenodo.836815

B I B L I O G R A P H Y

[1] Cédric Adjih, Daniele Raffo, and Paul Mühlethaler. “Attacks
Against OLSR: Distributed Key Management for Security.” In:
2nd OLSR Interop/Workshop. Aug. 2005. url: https://perso.
crans.org/~raffo/papers/attacks-olsr-dkm.pdf (retrieved
Dec. 9, 2019) (cit. on p. 15).

[2] Lars Almon, Flor Álvarez, Laurenz Kamp, and Matthias Hol-
lick. “The King is Dead Long Live the King! Towards System-
atic Performance Evaluation of Heterogeneous Bluetooth Mesh
Networks in Real World Environments.” In: IEEE Conference on
Local Computer Networks (LCN). Oct. 2019 (cit. on p. 19).

[3] Flor Álvarez, Lars Almon, Patrick Lieser, Tobias Meuser, Yan-
nick Dylla, Björn Richerzhagen, Matthias Hollick, and Ralf
Steinmetz. “Conducting a Large-scale Field Test of a Smart-
phone-based Communication Network for Emergency Response.”
In: ACM Workshop on Challenged Networks (CHANTS). Oct. 2018.
doi: 10.1145/3264844.3264845 (cit. on p. 147).

[4] Android Developers. SafetyNet Attestation API. url: https://
developer.android.com/training/safetynet/attestation

(retrieved Dec. 9, 2019) (cit. on p. 129).

[5] Android Developers. Wi-Fi Aware. url: https://source.andro
id.com/devices/tech/connect/wifi-aware (retrieved Dec. 9,
2019) (cit. on p. 19).

[6] Apple Inc. System Integrity Protection Guide. Sept. 16, 2015. url:
https://developer.apple.com/library/archive/documenta

tion/Security/Conceptual/System_Integrity_Protection_

Guide/Introduction/Introduction.html (retrieved Dec. 9,
2019) (cit. on p. 36).

[7] Apple Inc. About Entitlements. Mar. 27, 2017. url: https://d
eveloper.apple.com/library/archive/documentation/Misc

ellaneous/Reference/EntitlementKeyReference/Chapters/

AboutEntitlements.html (retrieved Dec. 9, 2019) (cit. on p. 36).

[8] Apple Inc. Change the Name of Your iPhone, iPad, or iPod Using
Your Computer. Oct. 7, 2019. url: https://support.apple.com/
en-us/HT201997 (retrieved Dec. 9, 2019) (cit. on pp. 152, 153).

[9] Apple Inc. How to Unlock Your Mac with Your Apple Watch. Oct.
2019. url: https://support.apple.com/en- us/HT206995
(retrieved Dec. 9, 2019) (cit. on p. 3).

163

https://perso.crans.org/~raffo/papers/attacks-olsr-dkm.pdf
https://perso.crans.org/~raffo/papers/attacks-olsr-dkm.pdf
https://doi.org/10.1145/3264844.3264845
https://developer.android.com/training/safetynet/attestation
https://developer.android.com/training/safetynet/attestation
https://source.android.com/devices/tech/connect/wifi-aware
https://source.android.com/devices/tech/connect/wifi-aware
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Miscellaneous/Reference/EntitlementKeyReference/Chapters/AboutEntitlements.html
https://developer.apple.com/library/archive/documentation/Miscellaneous/Reference/EntitlementKeyReference/Chapters/AboutEntitlements.html
https://developer.apple.com/library/archive/documentation/Miscellaneous/Reference/EntitlementKeyReference/Chapters/AboutEntitlements.html
https://developer.apple.com/library/archive/documentation/Miscellaneous/Reference/EntitlementKeyReference/Chapters/AboutEntitlements.html
https://support.apple.com/en-us/HT201997
https://support.apple.com/en-us/HT201997
https://support.apple.com/en-us/HT206995

164 bibliography

[10] Apple Inc. How to use AirDrop on your iPhone, iPad, or iPod touch.
Oct. 2019. url: https://support.apple.com/en-us/HT204144
(retrieved Dec. 9, 2019) (cit. on pp. 3, 4, 67).

[11] Apple Inc. “Introducing iPad Apps for Mac.” In: Apple World-
wide Developers Conference (WWDC). June 2019. url: https://
developer.apple.com/videos/play/wwdc2019/205/ (retrieved
Dec. 9, 2019) (cit. on pp. 32, 39).

[12] Apple Inc. iOS Security – iOS 12.3. May 2019. (Retrieved Dec. 9,
2019) (cit. on pp. 32, 39, 43).

[13] Apple Inc. NSNetService Class Documentation. url: https://
developer.apple.com/documentation/foundation/nsnetser

vice (retrieved Dec. 9, 2019) (cit. on pp. 43, 48, 61).

[14] Myrto Arapinis, Loretta Ilaria Mancini, Eike Ritter, and Mark
Dermot Ryan. “Analysis of Privacy in Mobile Telephony Sys-
tems.” In: International Journal of Information Security (Oct. 2017).
doi: 10.1007/s10207-016-0338-9 (cit. on p. 155).

[15] Nitay Artenstein. “Broadpwn: Remotely Compromising An-
droid and iOS via a Bug in Broadcom’s Wi-Fi Chipsets.”
In: Exodus Intelligence (July 26, 2017). url: https : / / blog .

exodusintel.com/2017/07/26/broadpwn/ (retrieved Dec. 9,
2019) (cit. on p. 89).

[16] Nils Aschenbruck and Matthias Schwamborn. “Synthetic Map-
Based Mobility Traces for the Performance Evaluation in Op-
portunistic Networks.” In: Proceedings of the Second International
Workshop on Mobile Opportunistic Networking (MobiOpp). Feb.
2010. doi: 10.1145/1755743.1755769 (cit. on p. 27).

[17] Jean Philippe Aumasson and Daniel J. Bernstein. “SipHash: A
Fast Short-Input PRF.” In: Progress in Cryptology (INDOCRYPT).
Springer Berlin Heidelberg, Dec. 2012. doi: 10.1007/978-3-
642-34931-7_28 (cit. on p. 112).

[18] Algirdas Avižienis, Jean Claude Laprie, Brian Randell, and
Carl Landwehr. “Basic Concepts and Taxonomy of Dependable
and Secure Computing.” In: IEEE Transactions on Dependable
and Secure Computing (TDSC) 1.1 (Jan. 2004), pp. 11–33. doi:
10.1109/TDSC.2004.2 (cit. on p. 14).

[19] Baruch Awerbuch, Reza Curtmola, David Holmer, Cristina
Nita-Rotaru, and Herbert Rubens. “ODSBR: An On-Demand
Secure Byzantine Resilient Routing Protocol for Wireless Ad
Hoc Networks.” In: ACM Transactions on Information and System
Security 10.4 (Jan. 2008), 6:1–6:35. doi: 10.1145/1284680.13418
92 (cit. on pp. 20, 21).

https://support.apple.com/en-us/HT204144
https://developer.apple.com/videos/play/wwdc2019/205/
https://developer.apple.com/videos/play/wwdc2019/205/
https://developer.apple.com/documentation/foundation/nsnetservice
https://developer.apple.com/documentation/foundation/nsnetservice
https://developer.apple.com/documentation/foundation/nsnetservice
https://doi.org/10.1007/s10207-016-0338-9
https://blog.exodusintel.com/2017/07/26/broadpwn/
https://blog.exodusintel.com/2017/07/26/broadpwn/
https://doi.org/10.1145/1755743.1755769
https://doi.org/10.1007/978-3-642-34931-7_28
https://doi.org/10.1007/978-3-642-34931-7_28
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1145/1284680.1341892
https://doi.org/10.1145/1284680.1341892

bibliography 165

[20] Xiaolong Bai, Luyi Xing, Nan Zhang, Xiaofeng Wang, Xiaojing
Liao, Tongxin Li, and Shi-Min Hu. “Staying Secure and Un-
prepared: Understanding and Mitigating the Security Risks of
Apple ZeroConf.” In: IEEE Symposium on Security and Privacy
(S&P). May 2016. doi: 10.1109/SP.2016.45 (cit. on pp. 83,
147).

[21] Kashyap Balakrishnan, Jing Deng, and Pramod K. Varshney.
“TWOAK: Preventing Selfishness in Mobile Ad Hoc Networks.”
In: IEEE Wireless Communications and Networking Conference. Mar.
2005. doi: 10.1109/WCNC.2005.1424848 (cit. on p. 20).

[22] Aruna Balasubramanian, Brian Levine, and Arun Venkatara-
mani. “DTN Routing as a Resource Allocation Problem.” In:
SIGCOMM Computer Communication Review 37.4 (Aug. 2007),
pp. 373–384. doi: 10.1145/1282427.1282422 (cit. on p. 130).

[23] Marco V. Barbera, Alessandro Epasto, Alessandro Mei, Vasile C.
Perta, and Julinda Stefa. “Signals from the Crowd: Uncovering
Social Relationships through Smartphone Probes.” In: ACM
Internet Measurement Conference (IMC). Oct. 2013. doi: 10.1145/
2504730.2504742 (cit. on p. 155).

[24] Lars Baumgärtner, Stefan Kohlbrecher, Juliane Euler, Tobias Rit-
ter, Milan Stute, Christian Meurisch, Max Muhlhäuser, Matthias
Hollick, Oskar von Stryk, and Bernd Freisleben. “Emergency
Communication in Challenged Environments via Unmanned
Ground and Aerial Vehicles.” In: IEEE Global Humanitarian
Technology Conference (GHTC). Oct. 2017. doi: 10.1109/GHTC.
2017.8239244 (cit. on p. 120).

[25] Emrah Bayraktaroglu, Christopher King, Xin Liu, Guevara
Noubir, Rajmohan Rajaraman, and Bishal Thapa. “Performance
of IEEE 802.11 Under Jamming.” In: Mobile Networks and Ap-
plications 18.5 (Oct. 2013), pp. 678–696. doi: 10.1007/s11036-
011-0340-4 (cit. on p. 15).

[26] Sarah Bell. “Police Investigate ‘First Cyber-Flashing’ Case.” In:
BBC News (Aug. 13, 2015). url: https://www.bbc.com/news/
technology-33889225 (retrieved Dec. 9, 2019) (cit. on p. 83).

[27] Steve M. Bellovin. “Security as a Systems Property.” In: IEEE
Security & Privacy 7.5 (Sept. 2009), pp. 88–88. doi: 10.1109/MSP.
2009.134 (cit. on p. 13).

[28] Gal Beniamini. “Over the Air: Exploiting Broadcom’s Wi-Fi
Stack (Part 2).” In: Google Project Zero (Apr. 11, 2017). url:
https://googleprojectzero.blogspot.com/2017/04/over-

air-exploiting-broadcoms-wi-fi_11.html (retrieved Dec. 9,
2019) (cit. on p. 89).

https://doi.org/10.1109/SP.2016.45
https://doi.org/10.1109/WCNC.2005.1424848
https://doi.org/10.1145/1282427.1282422
https://doi.org/10.1145/2504730.2504742
https://doi.org/10.1145/2504730.2504742
https://doi.org/10.1109/GHTC.2017.8239244
https://doi.org/10.1109/GHTC.2017.8239244
https://doi.org/10.1007/s11036-011-0340-4
https://doi.org/10.1007/s11036-011-0340-4
https://www.bbc.com/news/technology-33889225
https://www.bbc.com/news/technology-33889225
https://doi.org/10.1109/MSP.2009.134
https://doi.org/10.1109/MSP.2009.134
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_11.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_11.html

166 bibliography

[29] Christian Bettstetter, Giovanni Resta, and Paolo Santi. “The
Node Distribution of the Random Waypoint Mobility Model
for Wireless Ad Hoc Networks.” In: IEEE Transactions on Mobile
Computing (TMC) 2.3 (July 2003), pp. 257–269. doi: 10.1109/
TMC.2003.1233531 (cit. on p. 27).

[30] Laurent Bindschaedler, Murtuza Jadliwala, Igor Bilogrevic,
Imad Aad, Philip Ginzboorg, Valtteri Niemi, and Jean-Pierre
Hubaux. “Track Me If You Can: On the Effectiveness of Context-
based Identifier Changes in Deployed Mobile Networks.” In:
Network and Distributed System Security Symposium (NDSS). The
Internet Society, Feb. 2012. url: https://www.ndss-symposium.
org/ndss2012/track-me-if-you-can-effectiveness-conte

xt-based-identifier-changes-deployed-mobile-networks

(retrieved Dec. 9, 2019) (cit. on p. 155).

[31] Bluetooth SIG. Mesh Model Bluetooth Specification v1.0. July 2017.
url: https://www.bluetooth.com/specifications/mesh-
specifications/ (retrieved Dec. 9, 2019) (cit. on pp. 4, 19, 148).

[32] Bluetooth SIG. Bluetooth Core Specification v5.1. Tech. rep. Jan.
2019. url: https://www.bluetooth.com/specifications/
bluetooth-core-specification/ (retrieved Dec. 9, 2019) (cit.
on pp. 18, 19, 84–87).

[33] Bluetooth SIG. Bluetooth Market Update 2019. May 2019. url:
https://www.bluetooth.com/wp-content/uploads/2018/04/

2019-Bluetooth-Market-Update.pdf (cit. on p. 3).

[34] Paulo Borges. BLESSED. url: https://github.com/paulobor
ges/blessed (retrieved Dec. 9, 2019) (cit. on p. 87).

[35] Briar Project. Website. url: https://briarproject.org (re-
trieved Dec. 9, 2019) (cit. on p. 21).

[36] Broadcom. Leaked BCM4360 Driver Code. No longer available.
2015. url: https://github.com/kyuhsim/khsim_repository/
tree/72708c6709/FutureSys/FutureProj_20141222/hg_clon

e/D700_wl (cit. on p. 34).

[37] Broadcom. Leaked Asus RT-AC86U Driver Code. url: https://
github.com/blackfuel/asuswrt- rt- ac86u/tree/master/

release/src- rt- 5.02hnd (retrieved Dec. 9, 2019) (cit. on
p. 52).

[38] John Burgess, George Dean Bissias, Mark D. Corner, Brian
Neil Levine, and Brian Neil Levine. “Surviving Attacks on
Disruption-tolerant Networks Without Authentication.” In:
ACM International Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc). Sept. 2007. doi: 10.1145/1288107.1288
116 (cit. on pp. 15, 21).

https://doi.org/10.1109/TMC.2003.1233531
https://doi.org/10.1109/TMC.2003.1233531
https://www.ndss-symposium.org/ndss2012/track-me-if-you-can-effectiveness-context-based-identifier-changes-deployed-mobile-networks
https://www.ndss-symposium.org/ndss2012/track-me-if-you-can-effectiveness-context-based-identifier-changes-deployed-mobile-networks
https://www.ndss-symposium.org/ndss2012/track-me-if-you-can-effectiveness-context-based-identifier-changes-deployed-mobile-networks
https://www.bluetooth.com/specifications/mesh-specifications/
https://www.bluetooth.com/specifications/mesh-specifications/
https://www.bluetooth.com/specifications/bluetooth-core-specification/
https://www.bluetooth.com/specifications/bluetooth-core-specification/
https://www.bluetooth.com/wp-content/uploads/2018/04/2019-Bluetooth-Market-Update.pdf
https://www.bluetooth.com/wp-content/uploads/2018/04/2019-Bluetooth-Market-Update.pdf
https://github.com/pauloborges/blessed
https://github.com/pauloborges/blessed
https://briarproject.org
https://github.com/kyuhsim/khsim_repository/tree/72708c6709/FutureSys/FutureProj_20141222/hg_clone/D700_wl
https://github.com/kyuhsim/khsim_repository/tree/72708c6709/FutureSys/FutureProj_20141222/hg_clone/D700_wl
https://github.com/kyuhsim/khsim_repository/tree/72708c6709/FutureSys/FutureProj_20141222/hg_clone/D700_wl
https://github.com/blackfuel/asuswrt-rt-ac86u/tree/master/release/src-rt-5.02hnd
https://github.com/blackfuel/asuswrt-rt-ac86u/tree/master/release/src-rt-5.02hnd
https://github.com/blackfuel/asuswrt-rt-ac86u/tree/master/release/src-rt-5.02hnd
https://doi.org/10.1145/1288107.1288116
https://doi.org/10.1145/1288107.1288116

bibliography 167

[39] Daniel Camps-Mur, Andres Garcia-Saavedra, and Pablo Ser-
rano. “Device-to-Device Communications with Wi-Fi Direct:
Overview and Experimentation.” In: IEEE Wireless Communi-
cations 20.3 (July 2013), pp. 96–104. doi: 10.1109/MWC.2013.
6549288 (cit. on p. 18).

[40] Daniel Camps-Mur, Eduard Garcia Villegas, Elena López-Aguil-
era, Paulo Loureiro, Paul Lambert, and Ali Raissinia. “Enabling
Always On Service Discovery: WiFi Neighbor Awareness Net-
working.” In: IEEE Wireless Communications 22.2 (Apr. 2015),
pp. 118–125. doi: 10.1109/MWC.2015.7096294 (cit. on p. 19).

[41] Glenn Carl, George Kesidis, Richard R. Brooks, and Suresh
Rai. “Denial-of-Service Attack-Detection Techniques.” In: IEEE
Internet Computing 10.1 (Jan. 2006), pp. 82–89. doi: 10.1109/
MIC.2006.5 (cit. on p. 15).

[42] Stuart D. Cheshire. “Proximity Wi-Fi.” In: U.S. Patent Applica-
tion US 2018/0083858 A1 (Mar. 2018). url: https://patents.
google.com/patent/US20180083858A1 (cit. on pp. 8, 17).

[43] Thomas Heide Clausen and Philippe Jacquet. Optimized Link
State Routing Protocol (OLSR). RFC 3626. IETF, Oct. 2003. doi:
10.17487/RFC3626 (cit. on pp. 6, 99).

[44] Cloudflare. What is DDoS Mitigation? url: https://www.cl
oudflare.com/learning/ddos/ddos-mitigation/ (retrieved
Dec. 9, 2019) (cit. on p. 4).

[45] Aldo Cortesi, Maximilian Hils, and Thomas Kriechbaumer.
mitmproxy: a Free and Open Source Interactive HTTPS Proxy. url:
https://mitmproxy.org (retrieved Dec. 9, 2019) (cit. on p. 38).

[46] Mathieu Cunche. “I Know Your MAC Address: Targeted Track-
ing of Individual Using Wi-Fi.” In: Journal of Computer Virol-
ogy and Hacking Techniques 10.4 (Nov. 2013), pp. 219–227. doi:
10.1007/s11416-013-0196-1 (cit. on p. 155).

[47] Ernesto Damiani, De Capitani di Vimercati, Stefano Paraboschi,
Pierangela Samarati, and Fabio Violante. “A Reputation-based
Approach for Choosing Reliable Resources in Peer-to-peer Net-
works.” In: ACM Conference on Computer and Communications
Security (CCS). Nov. 2002. doi: 10.1145/586110.586138 (cit. on
p. 16).

[48] Aveek K. Das, Parth H. Pathak, Chen-Nee Chuah, and Prasant
Mohapatra. “Uncovering Privacy Leakage in BLE Network Traf-
fic of Wearable Fitness Trackers.” In: ACM Workshop on Mobile
Computing Systems and Applications (HotMobile). Feb. 2016. doi:
10.1145/2873587.2873594 (cit. on p. 155).

https://doi.org/10.1109/MWC.2013.6549288
https://doi.org/10.1109/MWC.2013.6549288
https://doi.org/10.1109/MWC.2015.7096294
https://doi.org/10.1109/MIC.2006.5
https://doi.org/10.1109/MIC.2006.5
https://patents.google.com/patent/US20180083858A1
https://patents.google.com/patent/US20180083858A1
https://doi.org/10.17487/RFC3626
https://www.cloudflare.com/learning/ddos/ddos-mitigation/
https://www.cloudflare.com/learning/ddos/ddos-mitigation/
https://mitmproxy.org
https://doi.org/10.1007/s11416-013-0196-1
https://doi.org/10.1145/586110.586138
https://doi.org/10.1145/2873587.2873594

168 bibliography

[49] Deloitte. Building Resilience to Denial-of-Service Attacks. 2018.
url: https://www2.deloitte.com/content/dam/Deloitte/
us/Documents/risk/us-building-resilience-to-denial-

of-service-attacks.pdf (retrieved Dec. 9, 2019) (cit. on p. 3).

[50] Frank Denis. Sodium. url: https://libsodium.org (retrieved
Dec. 9, 2019) (cit. on p. 112).

[51] Sanorita Dey, Nirupam Roy, Wenyuan Xu, Romit Roy Choud-
hury, and Srihari Nelakuditi. “AccelPrint: Imperfections of
Accelerometers Make Smartphones Trackable.” In: Network
and Distributed System Security Symposium (NDSS). The Inter-
net Society, Feb. 2014. doi: 10.14722/ndss.2014.23059 (cit. on
p. 155).

[52] Adriano Di Luzio, Alessandro Mei, and Julinda Stefa. “Mind
Your Probes: De-Anonymization of Large Crowds Through
Smartphone WiFi Probe Requests.” In: IEEE International Con-
ference on Computer Communications (INFOCOM). Apr. 2016.
doi: 10.1109/INFOCOM.2016.7524459 (cit. on p. 155).

[53] Craig Dooley and Duy Phan. “What’s New in Core Bluetooth.”
In: Apple Worldwide Developers Conference (WWDC). June 2017.
url: https://developer.apple.com/videos/play/wwdc2017/
712/ (retrieved Dec. 9, 2019) (cit. on p. 19).

[54] John R. Douceur. “The Sybil Attack.” In: Peer-to-Peer Systems.
Springer Berlin Heidelberg, 2002, pp. 251–260. doi: 10.1007/3-
540-45748-8_24 (cit. on p. 16).

[55] Mark Dowd. “MalwAirDrop: Compromising iDevices via Air-
Drop.” In: Ruxcon. Oct. 2015. url: https://2015.ruxcon.org.
au/assets/2015/slides/ruxcon-2016-dowd.pptx (retrieved
Dec. 9, 2019) (cit. on p. 84).

[56] Ericsson. Mobility Report. June 2019. url: https://www.erics
son.com/en/mobility-report/reports/june-2019 (retrieved
Dec. 9, 2019) (cit. on p. 3).

[57] Jakob Eriksson, Michalis Faloutsos, and Srikanth V. Krishna-
murthy. “Routing Amid Colluding Attackers.” In: IEEE Inter-
national Conference on Network Protocols (ICNP). Oct. 2007. doi:
10.1109/ICNP.2007.4375849 (cit. on pp. 20, 21).

[58] European Parliament and Council of the European Union.
Regulation (EU) No 910/2014. July 23, 2014. url: https : / /

eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%

3A32014R0910 (retrieved Dec. 9, 2019) (cit. on p. 129).

[59] Kassem Fawaz, Kyu-Han Kim, and Kang G. Shin. “Protecting
Privacy of BLE Device Users.” In: USENIX Security Symposium.
Aug. 2016. url: https://www.usenix.org/conference/us
enixsecurity16/technical- sessions/presentation/fawaz

(retrieved Dec. 9, 2019) (cit. on p. 155).

https://www2.deloitte.com/content/dam/Deloitte/us/Documents/risk/us-building-resilience-to-denial-of-service-attacks.pdf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/risk/us-building-resilience-to-denial-of-service-attacks.pdf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/risk/us-building-resilience-to-denial-of-service-attacks.pdf
https://libsodium.org
https://doi.org/10.14722/ndss.2014.23059
https://doi.org/10.1109/INFOCOM.2016.7524459
https://developer.apple.com/videos/play/wwdc2017/712/
https://developer.apple.com/videos/play/wwdc2017/712/
https://doi.org/10.1007/3-540-45748-8_24
https://doi.org/10.1007/3-540-45748-8_24
https://2015.ruxcon.org.au/assets/2015/slides/ruxcon-2016-dowd.pptx
https://2015.ruxcon.org.au/assets/2015/slides/ruxcon-2016-dowd.pptx
https://www.ericsson.com/en/mobility-report/reports/june-2019
https://www.ericsson.com/en/mobility-report/reports/june-2019
https://doi.org/10.1109/ICNP.2007.4375849
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32014R0910
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32014R0910
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32014R0910
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/fawaz
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/fawaz

bibliography 169

[60] Wi-Fi Alliance. Wi-Fi Peer-to-Peer (P2P) Technical Specification.
Tech. rep. July 2016. url: https://www.wi-fi.org/discover-
wi-fi/specifications (retrieved Dec. 9, 2019) (cit. on p. 18).

[61] Wi-Fi Alliance. Neighbor Awareness Networking Technical Specifi-
cation Version 2.0. Tech. rep. Oct. 2017. url: https://www.wi-
fi.org/discover-wi-fi/specifications (retrieved Dec. 9,
2019) (cit. on pp. 18, 19, 147).

[62] Howard Frank and Ivan T. Frisch. “Analysis and Design of
Survivable Networks.” In: IEEE Transactions on Communication
Technology 18.5 (Oct. 1970), pp. 501–519. doi: 10.1109/TCOM.
1970.1090419 (cit. on p. 13).

[63] Julien Freudiger. “How Talkative is Your Mobile Device? An Ex-
perimental Study of Wi-Fi Probe Requests.” In: ACM Conference
on Security and Privacy in Wireless and Mobile Networks (WiSec).
June 2015. doi: 10.1145/2766498.2766517 (cit. on p. 155).

[64] Wojciech Galuba, Panagiotis Papadimitratos, Marcin Poturalski,
Karl Aberer, Zoran Despotovic, and Wolfgang Kellerer. “Castor:
Scalable Secure Routing for Ad Hoc Networks.” In: IEEE In-
ternational Conference on Computer Communications (INFOCOM).
Mar. 2010. doi: 10.1109/INFCOM.2010.5462115 (cit. on pp. 10,
20, 21, 93–95, 98–101, 104, 113, 120, 130, 162).

[65] Sébastien Gambs, Marc-Olivier Killijian, and Miguel Núñez
Del Prado Cortez. “De-anonymization Attack on Geolocated
Data.” In: Journal of Computer and System Sciences 80 (Dec. 2014).
doi: 10.1016/j.jcss.2014.04.024 (cit. on p. 155).

[66] Sébastien Gambs, Marc-Olivier Killijian, and Miguel Núñez del
Prado Cortez. “Show Me How You Move and I Will Tell You
Who You Are.” In: ACM SIGSPATIAL International Workshop on
Security and Privacy in GIS and LBS. Nov. 2010. doi: 10.1145/
1868470.1868479 (cit. on p. 155).

[67] Gartner. “Gartner Says 8.4 Billion Connected “Things” Will Be
in Use in 2017, Up 31 Percent from 2016.” In: (Feb. 7, 2017).
url: https://www.gartner.com/en/newsroom/press- rel
eases/2017-02-07-gartner-says-8-billion-connected-

things-will-be-in-use-in-2017-up-31-percent-from-

2016 (retrieved Dec. 9, 2019) (cit. on p. 3).

[68] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao
Chen. “AndroidLeaks: Automatically Detecting Potential Pri-
vacy Leaks in Android Applications on a Large Scale.” In: Inter-
national Conference on Trust and Trustworthy Computing. Springer
Berlin Heidelberg, June 2012. doi: 10.1007/978-3-642-30921-
2_17 (cit. on p. 155).

https://www.wi-fi.org/discover-wi-fi/specifications
https://www.wi-fi.org/discover-wi-fi/specifications
https://www.wi-fi.org/discover-wi-fi/specifications
https://www.wi-fi.org/discover-wi-fi/specifications
https://doi.org/10.1109/TCOM.1970.1090419
https://doi.org/10.1109/TCOM.1970.1090419
https://doi.org/10.1145/2766498.2766517
https://doi.org/10.1109/INFCOM.2010.5462115
https://doi.org/10.1016/j.jcss.2014.04.024
https://doi.org/10.1145/1868470.1868479
https://doi.org/10.1145/1868470.1868479
https://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016
https://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016
https://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016
https://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016
https://doi.org/10.1007/978-3-642-30921-2_17
https://doi.org/10.1007/978-3-642-30921-2_17

170 bibliography

[69] Marc Girault, Robert Cohen, and Mireille Campana. “A Gen-
eralized Birthday Attack.” In: Advances in Cryptology (EURO-
CRYPT). Springer Berlin Heidelberg, 1988, pp. 129–156. isbn:
978-3-540-45961-3 (cit. on p. 98).

[70] Harry Goldstein. “Engineers Race to Restore Communications
after Haiti Quake.” In: IEEE Spectrum (Jan. 19, 2010). url: h
ttps://spectrum.ieee.org/tech-talk/telecom/internet/

engineers-race-to-restore-communications-after-haiti-

quake (retrieved Dec. 9, 2019) (cit. on p. 23).

[71] Shyamnath Gollakota, Haitham Hassanieh, Benjamin Ransford,
Dina Katabi, and Kevin Fu. “They Can Hear Your Heartbeats:
Non-Invasive Security for Implantable Medical Devices.” In:
41.4 (Oct. 2011), pp. 2–13. doi: 10.1145/2043164.2018438 (cit.
on pp. 15, 78).

[72] Google Developers. Nearby: A Platform for Discovering and Com-
municating with Nearby Devices. url: https : / / developers .

google.com/nearby (retrieved Dec. 9, 2019) (cit. on p. 3).

[73] Matthew Green. “How Does Apple (Privately) Find Your Of-
fline Devices?” In: (June 5, 2019). url: https://blog.cryp
tographyengineering.com/2019/06/05/how- does- apple-

privately-find-your-offline-devices/ (retrieved Dec. 9,
2019) (cit. on p. 3).

[74] Matthew Green. “Looking Back at the Snowden Revelations.”
In: (Sept. 24, 2019). url: https://blog.cryptographyengin
eering.com/2019/09/24/looking-back-at-the-snowden-

revelations/ (retrieved Dec. 9, 2019) (cit. on p. 3).

[75] Debarati Guha-Sapir. EM-DAT: The Emergency Events Database.
Université Catholique de Louvain, CRED. url: https://www.
emdat.be (retrieved Dec. 9, 2019) (cit. on p. 24).

[76] Arnt Gulbrandsen, Paul Vixie, and Levon Esibov. A DNS RR for
Specifying the Location of Services (DNS SRV). RFC 2782. IETF,
Feb. 2000. doi: 10.17487/RFC2782 (cit. on p. 53).

[77] Piyush Gupta and P. R. Kumar. “The Capacity of Wireless Net-
works.” In: IEEE Transactions on Information Theory 46.2 (Mar.
2000), pp. 388–404. doi: 10.1109/18.825799 (cit. on p. 119).

[78] Jun Han, Emmanuel Owusu, Le T. Nguyen, Adrian Perrig,
and Joy Zhang. “ACComplice: Location Inference Using Ac-
celerometers on Smartphones.” In: IEEE International Confer-
ence on Communication Systems and Networks (COMSNETS). Jan.
2012. doi: 10.1109/COMSNETS.2012.6151305 (cit. on p. 155).

[79] Xiuping Han, Zhi Wang, and Dan Pei. “Preventing Wi-Fi
Privacy Leakage: A User Behavioral Similarity Approach.”
In: IEEE International Conference on Communications (ICC). May
2018. doi: 10.1109/ICC.2018.8422764 (cit. on p. 155).

https://spectrum.ieee.org/tech-talk/telecom/internet/engineers-race-to-restore-communications-after-haiti-quake
https://spectrum.ieee.org/tech-talk/telecom/internet/engineers-race-to-restore-communications-after-haiti-quake
https://spectrum.ieee.org/tech-talk/telecom/internet/engineers-race-to-restore-communications-after-haiti-quake
https://spectrum.ieee.org/tech-talk/telecom/internet/engineers-race-to-restore-communications-after-haiti-quake
https://doi.org/10.1145/2043164.2018438
https://developers.google.com/nearby
https://developers.google.com/nearby
https://blog.cryptographyengineering.com/2019/06/05/how-does-apple-privately-find-your-offline-devices/
https://blog.cryptographyengineering.com/2019/06/05/how-does-apple-privately-find-your-offline-devices/
https://blog.cryptographyengineering.com/2019/06/05/how-does-apple-privately-find-your-offline-devices/
https://blog.cryptographyengineering.com/2019/09/24/looking-back-at-the-snowden-revelations/
https://blog.cryptographyengineering.com/2019/09/24/looking-back-at-the-snowden-revelations/
https://blog.cryptographyengineering.com/2019/09/24/looking-back-at-the-snowden-revelations/
https://www.emdat.be
https://www.emdat.be
https://doi.org/10.17487/RFC2782
https://doi.org/10.1109/18.825799
https://doi.org/10.1109/COMSNETS.2012.6151305
https://doi.org/10.1109/ICC.2018.8422764

bibliography 171

[80] Harry Harris. “Oakland-Maui Flight: Pepper Spray Emergency
Follows Disturbing Photo.” In: East Bay Times (Sept. 1, 2018).
url: https://www.eastbaytimes.com/2018/09/01/oakland-
maui- pepper- spray- disturbing- photo- delay/ (retrieved
Dec. 9, 2019) (cit. on p. 83).

[81] Richard Harris. “Why Typhoon Haiyan Caused So Much Dam-
age.” In: NPR (Nov. 11, 2013). url: https://www.npr.org/
2013/11/11/244572227/why- typhoon- haiyan- caused- so-

much-damage?t=1575975713507 (retrieved Dec. 9, 2019) (cit. on
p. 23).

[82] Robert M. Hinden and Stephen E. Deering. IP Version 6 Ad-
dressing Architecture. RFC 4291. IETF, Feb. 2006. doi: 10.17487/
RFC4291 (cit. on p. 47).

[83] Matthias Hollick, Cristina Nita-Rotaru, Panagiotis Papadim-
itratos, Adrian Perrig, and Stefan Schmid. “Toward a Taxon-
omy and Attacker Model for Secure Routing Protocols.” In:
SIGCOMM Computer Communication Review 47.1 (Jan. 2017),
pp. 43–48. doi: 10.1145/3041027.3041033 (cit. on p. 17).

[84] Matthias Hollick, Jens Schmitt, Christian Seipl, and Ralf Stein-
metz. “On the Effect of Node Misbehavior in Ad Hoc Net-
works.” In: IEEE International Conference on Communications
(ICC). June 2004. doi: 10.1109/ICC.2004.1313244 (cit. on
p. 17).

[85] Erik Hollnagel, David D. Woods, and Nancy Leveson. Resilience
Engineering: Concepts and Precepts. Ashgate Publishing, Ltd.,
2006. isbn: 0-7546-4641-6 (cit. on p. 14).

[86] Byeongdo Hong, Sangwook Bae, and Yongdae Kim. “GUTI Re-
allocation Demystified: Cellular Location Tracking with Chang-
ing Temporary Identifier.” In: Network and Distributed System
Security Symposium (NDSS). The Internet Society, Feb. 2018.
doi: 10.14722/ndss.2018.23349 (cit. on p. 155).

[87] Theus Hossmann, Paolo Carta, Dominik Schatzmann, Franck
Legendre, Per Gunningberg, and Christian Rohner. “Twitter in
Disaster Mode: Security Architecture.” In: ACM Special Work-
shop on Internet and Disasters. Dec. 2011. doi: 10.1145/2079360.
2079367 (cit. on p. 21).

[88] Yih-Chun Hu, David B. Johnson, and Adrian Perrig. “SEAD:
Secure Efficient Distance Vector Routing for Mobile Wireless
Ad Hoc Networks.” In: Ad Hoc Networks 1.1 (July 2003), pp. 175–
192. doi: 10.1016/S1570-8705(03)00019-2 (cit. on pp. 20, 95,
101).

[89] Yih-Chun Hu, Adrian Perrig, and David B. Johnson. Wormhole
Detection in Wireless Ad Hoc Networks. TR 01-384. Department
of Computer Science, Rice University, June 2002 (cit. on p. 16).

https://www.eastbaytimes.com/2018/09/01/oakland-maui-pepper-spray-disturbing-photo-delay/
https://www.eastbaytimes.com/2018/09/01/oakland-maui-pepper-spray-disturbing-photo-delay/
https://www.npr.org/2013/11/11/244572227/why-typhoon-haiyan-caused-so-much-damage?t=1575975713507
https://www.npr.org/2013/11/11/244572227/why-typhoon-haiyan-caused-so-much-damage?t=1575975713507
https://www.npr.org/2013/11/11/244572227/why-typhoon-haiyan-caused-so-much-damage?t=1575975713507
https://doi.org/10.17487/RFC4291
https://doi.org/10.17487/RFC4291
https://doi.org/10.1145/3041027.3041033
https://doi.org/10.1109/ICC.2004.1313244
https://doi.org/10.14722/ndss.2018.23349
https://doi.org/10.1145/2079360.2079367
https://doi.org/10.1145/2079360.2079367
https://doi.org/10.1016/S1570-8705(03)00019-2

172 bibliography

[90] Yih-Chun Hu, Adrian Perrig, and David B. Johnson. “Packet
Leashes: A Defense against Wormhole Attacks in Wireless Net-
works.” In: IEEE International Conference on Computer Commu-
nications (INFOCOM). Mar. 2003. doi: 10.1109/INFCOM.2003.
1209219 (cit. on p. 17).

[91] Yih-Chun Hu, Adrian Perrig, and David B. Johnson. “Rushing
Attacks and Defense in Wireless Ad Hoc Network Routing
Protocols.” In: ACM Workshop on Wireless Security (WiSe). Sept.
2003. doi: 10.1145/941311.941317 (cit. on p. 17).

[92] Yih-Chun Hu, Adrian Perrig, and David B. Johnson. “Ariadne:
A Secure On-demand Routing Protocol for Ad Hoc Networks.”
In: Wireless Networks 11.1 (Jan. 2005). doi: 10.1007/s11276-
004-4744-y (cit. on pp. 17, 20).

[93] Tien Dang Vo-Huu, Triet Dang Vo-Huu, and Guevara Noubir.
“Fingerprinting Wi-Fi Devices Using Software Defined Ra-
dios.” In: ACM Conference on Security and Privacy in Wireless
and Mobile Networks (WiSec). July 2016. doi: 10.1145/2939918.
2939936 (cit. on p. 155).

[94] IEEE Computer Society. Standard for Local and Metropolitan Area
Networks: Overview and Architecture. IEEE 802. June 2014. doi:
10.1109/IEEESTD.2014.6847097 (cit. on p. 46).

[95] IEEE Computer Society. Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specification. IEEE 802.11. Dec.
2016. doi: 10.1109/IEEESTD.2016.7786995 (cit. on pp. 17, 18,
43, 45, 50, 52, 77).

[96] IEEE Standards Association. Registration Authority. url: https:
//standards.ieee.org/products-services/regauth/index.

html (retrieved Dec. 9, 2019) (cit. on p. 46).

[97] International Charter on Space and Major Disasters. Typhoon
Haiyan in the Philippines. 2013. url: https://disasterscharte
r.org/web/guest/activations/-/article/typhoon-haiyan-

in-the-philippin-5 (retrieved Dec. 9, 2019) (cit. on p. 24).

[98] International Data Corporation. The Growth in Connected IoT
Devices Is Expected to Generate 79.4ZB of Data in 2025, According
to a New IDC Forecast. June 18, 2019. url: https://www.idc.
com/getdoc.jsp?containerId=prUS45213219 (retrieved Dec. 9,
2019) (cit. on p. 3).

[99] IRIN News. “Life-Saving Radio Begins Broadcasting in Typhoon-
Hit Tacloban.” In: (Nov. 15, 2013). url: http://www.irinnews.
org/report/99132/life-saving-radio-begins-broadcastin

g-typhoon-hit-tacloban (retrieved Dec. 9, 2019) (cit. on pp. 3,
23).

https://doi.org/10.1109/INFCOM.2003.1209219
https://doi.org/10.1109/INFCOM.2003.1209219
https://doi.org/10.1145/941311.941317
https://doi.org/10.1007/s11276-004-4744-y
https://doi.org/10.1007/s11276-004-4744-y
https://doi.org/10.1145/2939918.2939936
https://doi.org/10.1145/2939918.2939936
https://doi.org/10.1109/IEEESTD.2014.6847097
https://doi.org/10.1109/IEEESTD.2016.7786995
https://standards.ieee.org/products-services/regauth/index.html
https://standards.ieee.org/products-services/regauth/index.html
https://standards.ieee.org/products-services/regauth/index.html
https://disasterscharter.org/web/guest/activations/-/article/typhoon-haiyan-in-the-philippin-5
https://disasterscharter.org/web/guest/activations/-/article/typhoon-haiyan-in-the-philippin-5
https://disasterscharter.org/web/guest/activations/-/article/typhoon-haiyan-in-the-philippin-5
https://www.idc.com/getdoc.jsp?containerId=prUS45213219
https://www.idc.com/getdoc.jsp?containerId=prUS45213219
http://www.irinnews.org/report/99132/life-saving-radio-begins-broadcasting-typhoon-hit-tacloban
http://www.irinnews.org/report/99132/life-saving-radio-begins-broadcasting-typhoon-hit-tacloban
http://www.irinnews.org/report/99132/life-saving-radio-begins-broadcasting-typhoon-hit-tacloban

bibliography 173

[100] Md. Shariful Islam, Md. Abdul Hamid, and Choong Seon
Hong. “SHWMP: A Secure Hybrid Wireless Mesh Protocol
for IEEE 802.11s Wireless Mesh Networks.” In: Transactions on
Computational Science VI (2009), pp. 95–114. doi: 10.1007/978-
3-642-10649-1_6 (cit. on p. 101).

[101] ISO/IEC JTC 1 Information Technology. Information processing
systems – Open Systems Interconnection – Basic Reference Model –
Part 2: Security Architecture. ISO/IEC 7498-2. Feb. 1989 (cit. on
p. 13).

[102] ISO/IEC JTC 1/SC 27 Information Security, Cybersecurity and
Privacy Protection. Information technology — Security Techniques
— Authenticated Encryption. ISO/IEC 19772. Feb. 2009 (cit. on
p. 16).

[103] Bounpadith Kannhavong, Hidehisa Nakayama, Yoshiaki Nemoto,
Nei Kato, and Abbas Jamalipour. “A Survey of Routing Attacks
in Mobile Ad Hoc Networks.” In: IEEE Wireless Communications
14.5 (Oct. 2007), pp. 85–91. doi: 10.1109/MWC.2007.4396947
(cit. on p. 14).

[104] Ari Keränen, Jörg Ott, and Teemu Kärkkäinen. “The ONE
Simulator for DTN Protocol Evaluation.” In: ICST Conference
on Simulation Tools and Techniques (Simutools). Mar. 2009. doi:
10.4108/ICST.SIMUTOOLS2009.5674 (cit. on pp. 27, 132, 138,
162).

[105] Steffen Klee. “Understanding the Apple Auto Unlock Protocol.”
Bachelor thesis. Technische Universität Darmstadt, Nov. 2017

(cit. on p. 40).

[106] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M
Frans Kaashoek. “The Click Modular Router.” In: ACM Trans-
actions on Computer Systems (TOCS) 18.3 (Aug. 2000), pp. 263–
297. doi: 10.1145/354871.354874 (cit. on pp. 111, 162).

[107] Florian Kohnhäuser, Milan Stute, Lars Baumgärtner, Lars Al-
mon, Stefan Katzenbeisser, Matthias Hollick, and Bernd Freis-
leben. “SEDCOS: A Secure Device-to-Device Communication
System for Disaster Scenarios.” In: IEEE Conference on Local
Computer Networks (LCN). Part of this thesis. Extended in [172].
Oct. 2017. doi: 10.1109/LCN.2017.47 (cit. on pp. 21, 22, 180).

[108] Constantinos Kolias, Lucas Copi, Fengwei Zhang, and Angelos
Stavrou. “Breaking BLE Beacons For Fun But Mostly Profit.”
In: ACM European Workshop on Systems Security. Apr. 2017. doi:
10.1145/3065913.3065923 (cit. on p. 155).

[109] David Kreitschmann. “User Manual for the Apple CoreCapture
Framework.” In: CoRR abs/1808.07353 (July 2018). arXiv: 1808.
07353 (cit. on p. 35).

https://doi.org/10.1007/978-3-642-10649-1_6
https://doi.org/10.1007/978-3-642-10649-1_6
https://doi.org/10.1109/MWC.2007.4396947
https://doi.org/10.4108/ICST.SIMUTOOLS2009.5674
https://doi.org/10.1145/354871.354874
https://doi.org/10.1109/LCN.2017.47
https://doi.org/10.1145/3065913.3065923
https://arxiv.org/abs/1808.07353
https://arxiv.org/abs/1808.07353

174 bibliography

[110] John Krumm. “Inference Attacks on Location Tracks.” In: Inter-
national Conference on Pervasive Computing (PERVASIVE). Springer
Berlin Heidelberg, May 2007, pp. 127–143. isbn: 978-3-540-
72037-9 (cit. on p. 155).

[111] Alexander Kuehne, Anja Klein, Adrian Loch, and Matthias Hol-
lick. “Corridor-based Routing Using Opportunistic Forward-
ing in OFDMA Multihop Networks.” In: IEEE International
Symposium on Personal, Indoor and Mobile Radio Communications
(PIMRC). Sept. 2012. doi: 10.1109/PIMRC.2012.6362553 (cit.
on p. 106).

[112] Denis Foo Kune, John Kölndorfer, Nicholas Hopper, and Yong-
dae Kim. “Location Leaks Over the GSM Air Interface.” In: Net-
work and Distributed System Security Symposium (NDSS). The In-
ternet Society, Feb. 2012. url: https://www.ndss-symposium.
org/ndss2012/location- leaks- over- gsm- air- interface

(retrieved Dec. 9, 2019) (cit. on p. 155).

[113] Alfredo Mahar Francisco Lagmay et al. “Devastating storm
surges of Typhoon Haiyan.” In: International Journal of Disaster
Risk Reduction 11 (Mar. 2015), pp. 1–12. doi: 10.1016/j.ijdrr.
2014.10.006 (cit. on p. 24).

[114] Jean-Claude Laprie. “From Dependability to Resilience.” In:
IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). June 2008. url: http : / / 2008 . dsn . org /

fastabs/dsn08fastabs_laprie.pdf (retrieved Dec. 9, 2019)
(cit. on p. 14).

[115] Jennifer Leaning and Debarati Guha-Sapir. “Natural Disasters,
Armed Conflict, and Public Health.” In: New England Journal
of Medicine 369.19 (Nov. 2013), pp. 1836–1842. doi: 10.1056/
NEJMra1109877 (cit. on p. 23).

[116] Feng Cheng Lee, Weihan Goh, and Chai Kiat Yeo. “A Queuing
Mechanism to Alleviate Flooding Attacks in Probabilistic Delay
Tolerant Networks.” In: IEEE Advanced International Conference
on Telecommunications (AICT). May 2010. doi: 10.1109/AICT.
2010.78 (cit. on p. 130).

[117] Feng Li, Jie Wu, and Avinash Srinivasan. “Thwarting Black-
hole Attacks in Disruption-Tolerant Networks Using Encounter
Tickets.” In: IEEE International Conference on Computer Commu-
nications (INFOCOM). Apr. 2009. doi: 10.1109/INFCOM.2009.
5062170 (cit. on p. 22).

[118] Feng Li, Jie Wu, and Avinash Srinivasan. “Thwarting Black-
hole Attacks in Disruption-Tolerant Networks using Encounter
Tickets.” In: IEEE International Conference on Computer Commu-
nications (INFOCOM). Apr. 2009, pp. 2428–2436. doi: 10.1109/
INFCOM.2009.5062170 (cit. on p. 7).

https://doi.org/10.1109/PIMRC.2012.6362553
https://www.ndss-symposium.org/ndss2012/location-leaks-over-gsm-air-interface
https://www.ndss-symposium.org/ndss2012/location-leaks-over-gsm-air-interface
https://doi.org/10.1016/j.ijdrr.2014.10.006
https://doi.org/10.1016/j.ijdrr.2014.10.006
http://2008.dsn.org/fastabs/dsn08fastabs_laprie.pdf
http://2008.dsn.org/fastabs/dsn08fastabs_laprie.pdf
https://doi.org/10.1056/NEJMra1109877
https://doi.org/10.1056/NEJMra1109877
https://doi.org/10.1109/AICT.2010.78
https://doi.org/10.1109/AICT.2010.78
https://doi.org/10.1109/INFCOM.2009.5062170
https://doi.org/10.1109/INFCOM.2009.5062170
https://doi.org/10.1109/INFCOM.2009.5062170
https://doi.org/10.1109/INFCOM.2009.5062170

bibliography 175

[119] Qinghua Li and Guohong Cao. “Mitigating Routing Misbehav-
ior in Disruption Tolerant Networks.” In: IEEE Transactions on
Information Forensics and Security (TIFS) 7.2 (Apr. 2012), pp. 664–
675. doi: 10.1109/TIFS.2011.2173195 (cit. on p. 7).

[120] Qinghua Li, Wei Gao, Sencun Zhu, and Guohong Cao. “To Lie
or to Comply: Defending against Flood Attacks in Disruption
Tolerant Networks.” In: IEEE Transactions on Dependable and
Secure Computing (TDSC) 10.3 (May 2013), pp. 168–182. doi:
10.1109/TDSC.2012.84 (cit. on pp. 7, 21, 22).

[121] Guolong Lin and Guevara Noubir. “On Link Layer Denial of
Service in Data Wireless LANs.” In: Wireless Communications
and Mobile Computing 5.3 (May 2005), pp. 273–284. doi: 10.
1002/wcm.221 (cit. on pp. 15, 78).

[122] Kejun Liu, Jing Deng, Pramod K. Varshney, and Kashyap Bal-
akrishnan. “An Acknowledgment-Based Approach for the De-
tection of Routing Misbehavior in MANETs.” In: IEEE Transac-
tions on Mobile Computing (TMC) 6.5 (May 2007), pp. 536–550.
doi: 10.1109/TMC.2007.1036 (cit. on p. 20).

[123] Zongqing Lu, Guohong Cao, and Thomas La Porta. “Net-
working Smartphones for Disaster Recovery.” In: IEEE Inter-
national Conference on Pervasive Computing and Communications
(PerCom). Mar. 2016. doi: 10.1109/PERCOM.2016.7456503 (cit.
on p. 3).

[124] Adriano Di Luzio, Alessandro Mei, and Julinda Stefa. “Mind
Your Probes: De-anonymization of Large Crowds Through
Smartphone WiFi Probe Requests.” In: IEEE International Con-
ference on Computer Communications (INFOCOM). Apr. 2016.
doi: 10.1109/INFOCOM.2016.7524459 (cit. on p. 155).

[125] Aanchal Malhotra, Isaac E. Cohen, Erik Brakke, and Sharon
Goldberg. “Attacking the Network Time Protocol.” In: Network
and Distributed System Security Symposium (NDSS). The Internet
Society, Feb. 2016. doi: 10.14722/ndss.2016.23090 (cit. on
p. 98).

[126] Sathiamoorthy Manoharan. “On GPS Tracking of Mobile De-
vices.” In: IEEE International Conference on Networking and Ser-
vices (ICNS). Apr. 2009. doi: 10.1109/ICNS.2009.103 (cit. on
p. 155).

[127] Dennis Mantz, Jiska Classen, Matthias Schulz, and Matthias
Hollick. “InternalBlue – Bluetooth Binary Patching and Exper-
imentation Framework.” In: ACM International Conference on
Mobile Systems, Applications, and Services (MobiSys). June 2019,
pp. 79–90. doi: 10.1145/3307334.3326089 (cit. on p. 38).

https://doi.org/10.1109/TIFS.2011.2173195
https://doi.org/10.1109/TDSC.2012.84
https://doi.org/10.1002/wcm.221
https://doi.org/10.1002/wcm.221
https://doi.org/10.1109/TMC.2007.1036
https://doi.org/10.1109/PERCOM.2016.7456503
https://doi.org/10.1109/INFOCOM.2016.7524459
https://doi.org/10.14722/ndss.2016.23090
https://doi.org/10.1109/ICNS.2009.103
https://doi.org/10.1145/3307334.3326089

176 bibliography

[128] Abraham Martín-Campillo, Jon Crowcroft, Eiko Yoneki, and
Ramon Martí. “Evaluating Opportunistic Networks in Disaster
Scenarios.” In: Journal of Network and Computer Applications 36.2
(Mar. 2013), pp. 870–880. doi: 10.1016/j.jnca.2012.11.001
(cit. on p. 3).

[129] Jeremy Martin, Douglas Alpuche, Kristina Bodeman, Lamont
Brown, Ellis Fenske, Lucas Foppe, Travis Mayberry, Erik Rye,
Brandon Sipes, and Sam Teplov. “Handoff All Your Privacy –
A Review of Apple’s Bluetooth Low Energy Continuity Proto-
col.” In: Proceedings on Privacy Enhancing Technologies (PoPETS)
2019.4 (Oct. 2019), pp. 34–53. doi: 10.2478/popets-2019-0057
(cit. on pp. 38, 155).

[130] Célestin Matte, Mathieu Cunche, Franck Rousseau, and Mathy
Vanhoef. “Defeating MAC Address Randomization Through
Timing Attacks.” In: ACM Conference on Security and Privacy in
Wireless and Mobile Networks (WiSec). July 2016. doi: 10.1145/
2939918.2939930 (cit. on p. 156).

[131] Alan Meeus. “Windows 10 Mobile Security Guide.” In: (Oct. 13,
2017). url: https://docs.microsoft.com/en-us/windows/s
ecurity/threat-protection/windows-10-mobile-security-

guide (retrieved Dec. 9, 2019) (cit. on p. 129).

[132] Micro:bit Educational Foundation. Micro:bit website. url: https:
//microbit.org (retrieved Dec. 9, 2019) (cit. on p. 88).

[133] Microsoft. About the Wireless Ad Hoc API. May 2018. url: https:
//msdn.microsoft.com/en-us/library/windows/desktop/

ms705973%28v=vs.85%29.aspx (retrieved Dec. 9, 2019) (cit. on
p. 18).

[134] Arsalan Mosenia, Xiaoliang Dai, Prateek Mittal, and Niraj K.
Jha. “PinMe: Tracking a Smartphone User Around the World.”
In: IEEE Transactions on Multi-Scale Computing Systems 4.3 (July
2017), pp. 420–435. doi: 10.1109/TMSCS.2017.2751462 (cit. on
p. 155).

[135] Munich RE. TOPICS Geo Natural Catastrophes 2017. Mar. 2018.
url: https://www.munichre.com/topics-online/en/clim
ate-change-and-natural-disasters/natural-disasters/

topics-geo-2017.html (retrieved Dec. 9, 2019) (cit. on p. 3).

[136] Munich RE. NatCatSERVICE. url: https://www.munichre.
com/topics-online/en/climate-change-and-natural-disa

sters/natural-disasters/natural-catastrophies-natcat-

service-analysis-tool.html (retrieved Dec. 9, 2019) (cit. on
p. 24).

https://doi.org/10.1016/j.jnca.2012.11.001
https://doi.org/10.2478/popets-2019-0057
https://doi.org/10.1145/2939918.2939930
https://doi.org/10.1145/2939918.2939930
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-10-mobile-security-guide
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-10-mobile-security-guide
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-10-mobile-security-guide
https://microbit.org
https://microbit.org
https://msdn.microsoft.com/en-us/library/windows/desktop/ms705973%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms705973%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms705973%28v=vs.85%29.aspx
https://doi.org/10.1109/TMSCS.2017.2751462
https://www.munichre.com/topics-online/en/climate-change-and-natural-disasters/natural-disasters/topics-geo-2017.html
https://www.munichre.com/topics-online/en/climate-change-and-natural-disasters/natural-disasters/topics-geo-2017.html
https://www.munichre.com/topics-online/en/climate-change-and-natural-disasters/natural-disasters/topics-geo-2017.html
https://www.munichre.com/topics-online/en/climate-change-and-natural-disasters/natural-disasters/natural-catastrophies-natcat-service-analysis-tool.html
https://www.munichre.com/topics-online/en/climate-change-and-natural-disasters/natural-disasters/natural-catastrophies-natcat-service-analysis-tool.html
https://www.munichre.com/topics-online/en/climate-change-and-natural-disasters/natural-disasters/natural-catastrophies-natcat-service-analysis-tool.html
https://www.munichre.com/topics-online/en/climate-change-and-natural-disasters/natural-disasters/natural-catastrophies-natcat-service-analysis-tool.html

bibliography 177

[137] A. B. M. Musa and Jakob Eriksson. “Tracking Unmodified
Smartphones Using Wi-fi Monitors.” In: ACM Conference on
Embedded Network Sensor Systems (SenSys). Nov. 2012. doi: 10.
1145/2426656.2426685 (cit. on p. 155).

[138] Sashank Narain, Triet D. Vo-Huu, Kenneth Block, and Guevara
Noubir. “Inferring User Routes and Locations Using Zero-
Permission Mobile Sensors.” In: IEEE Symposium on Security
and Privacy (S&P). May 2016. doi: 10.1109/SP.2016.31 (cit. on
p. 155).

[139] National Disaster Risk Reduction and Management Council.
Final Report – Effects on Typhoon “Yolanda” (Haiyan). Nov. 2013.
url: http://www.ndrrmc.gov.ph/attachments/article/132
9/FINAL_REPORT_re_Effects_of_Typhoon_YOLANDA_(HAIYAN)
_06-09NOV2013.pdf (retrieved Dec. 9, 2019) (cit. on p. 24).

[140] Sarfraz Nawaz and Cecilia Mascolo. “Mining Users’ Significant
Driving Routes with Low-power Sensors.” In: ACM Conference
on Embedded Network Sensor Systems (SenSys). Nov. 2014. doi:
10.1145/2668332.2668348 (cit. on p. 155).

[141] Samuel C. Nelson, Mehedi Bakht, and Robin Kravets. “Encoun-
ter-Based Routing in DTNs.” In: IEEE International Conference
on Computer Communications (INFOCOM). Apr. 2009. doi: 10.
1109/INFCOM.2009.5061994 (cit. on p. 22).

[142] Nordic Semiconductor. nRF51822. url: https://www.nordi
csemi.com/eng/Products/Bluetooth-low-energy/nRF51822

(retrieved Dec. 9, 2019) (cit. on p. 87).

[143] Guevara Noubir and Guolong Lin. “Low-power DoS Attacks in
Data Wireless LANs and Countermeasures.” In: SIGMOBILE
Mobile Computing and Communications Review 7.3 (July 2003),
pp. 29–30. doi: 10.1145/961268.961277 (cit. on p. 15).

[144] Panagiotis Papadimitratos and Zygmunt J. Haas. “Secure Rout-
ing for Mobile Ad Hoc Networks.” In: Communication Networks
and Distributed Systems Modeling and Simulation Conference. SCS,
Jan. 2002. url: https://infoscience.epfl.ch/record/113679
(retrieved Dec. 9, 2019) (cit. on p. 20).

[145] Panagiotis Papadimitratos and Zygmunt J. Haas. “Secure Mes-
sage Transmission in Mobile Ad Hoc Networks.” In: Ad Hoc
Networks 1.1 (July 2003), pp. 193–209. doi: 10.1016/S1570-
8705(03)00018-0 (cit. on p. 20).

[146] Panagiotis Papadimitratos and Zygmunt J. Haas. “Secure Data
Communication in Mobile Ad Hoc Networks.” In: IEEE Journal
on Selected Areas in Communications (JSAC) 24.2 (Feb. 2006). doi:
10.1109/JSAC.2005.861392 (cit. on p. 100).

https://doi.org/10.1145/2426656.2426685
https://doi.org/10.1145/2426656.2426685
https://doi.org/10.1109/SP.2016.31
http://www.ndrrmc.gov.ph/attachments/article/1329/FINAL_REPORT_re_Effects_of_Typhoon_YOLANDA_(HAIYAN)_06-09NOV2013.pdf
http://www.ndrrmc.gov.ph/attachments/article/1329/FINAL_REPORT_re_Effects_of_Typhoon_YOLANDA_(HAIYAN)_06-09NOV2013.pdf
http://www.ndrrmc.gov.ph/attachments/article/1329/FINAL_REPORT_re_Effects_of_Typhoon_YOLANDA_(HAIYAN)_06-09NOV2013.pdf
https://doi.org/10.1145/2668332.2668348
https://doi.org/10.1109/INFCOM.2009.5061994
https://doi.org/10.1109/INFCOM.2009.5061994
https://www.nordicsemi.com/eng/Products/Bluetooth-low-energy/nRF51822
https://www.nordicsemi.com/eng/Products/Bluetooth-low-energy/nRF51822
https://doi.org/10.1145/961268.961277
https://infoscience.epfl.ch/record/113679
https://doi.org/10.1016/S1570-8705(03)00018-0
https://doi.org/10.1016/S1570-8705(03)00018-0
https://doi.org/10.1109/JSAC.2005.861392

178 bibliography

[147] Panagiotis Papadimitratos and Aleksandar Jovanovic. “GNSS-
based Positioning: Attacks and Countermeasures.” In: IEEE
Military Communications Conference (MILCOM). Nov. 2008. doi:
10.1109/MILCOM.2008.4753512 (cit. on p. 98).

[148] PC Engines. ALIX Platform. url: http://www.pcengines.ch/
alix.htm (retrieved Dec. 9, 2019) (cit. on p. 112).

[149] PC Engines. APU2 Platform. url: https://www.pcengines.ch/
apu2.htm (retrieved Dec. 9, 2019) (cit. on pp. 57, 77, 112, 114).

[150] Charles E. Perkins, Elizabeth M. Belding-Royer, and Samir R.
Das. Ad Hoc On-Demand Distance Vector (AODV) Routing. RFC
3561. IETF, July 2003. doi: 10.17487/RFC3561 (cit. on p. 99).

[151] Adrian Perrig, Ran Canetti, J. D. Tygar, and Dawn Song. “Ef-
ficient Authentication and Signing of Multicast Streams over
Lossy Channels.” In: IEEE Symposium on Security and Privacy
(S&P). May 2000. doi: 10.1109/SECPRI.2000.848446 (cit. on
p. 113).

[152] Thi Ngoc Diep Pham, Chai Kiat Yeo, Naoto Yanai, and Toru
Fujiwara. “Detecting Flooding Attack and Accommodating
Burst Traffic in Delay-Tolerant Networks.” In: IEEE Transactions
on Vehicular Technology 67.1 (Jan. 2018), pp. 795–808. doi: 10.
1109/TVT.2017.2748345 (cit. on p. 7).

[153] Yi Ping, Hou Yafei, Zhong Yiping, Zhang Shiyong, and Dai
Zhoulin. “Flooding Attack and Defence in Ad Hoc Networks.”
In: Journal of Systems Engineering and Electronics 17.2 (June 2006),
pp. 410–416. doi: 10.1016/S1004-4132(06)60070-4 (cit. on
p. 15).

[154] Zhiyun Qian, Zhaoguang Wang, Qiang Xu, Z. Morley Mao,
Ming Zhang, and Yi-Min Wang. “You Can Run, but You Can’t
Hide: Exposing Network Location for Targeted DoS Attacks in
Cellular Networks.” In: Network and Distributed System Security
Symposium (NDSS). The Internet Society, Feb. 2012. url: ht
tps://www.ndss-symposium.org/ndss2012/you-can-run-

you-cant-hide-exposing-network-location-targeted-dos-

attacks-cellular-networks (retrieved Dec. 9, 2019) (cit. on
p. 155).

[155] Daniele Quercia and Stephen Hailes. “Sybil Attacks Against
Mobile Users: Friends and Foes to the Rescue.” In: IEEE In-
ternational Conference on Computer Communications (INFOCOM).
Mar. 2010. doi: 10.1109/INFCOM.2010.5462218 (cit. on p. 22).

[156] Vivek Ramachandran and Sukumar Nandi. “Detecting ARP
Spoofing: An Active Technique.” In: Information Systems Secu-
rity. Springer Berlin Heidelberg, 2005, pp. 239–250. doi: 10.
1007/11593980_18 (cit. on p. 16).

https://doi.org/10.1109/MILCOM.2008.4753512
http://www.pcengines.ch/alix.htm
http://www.pcengines.ch/alix.htm
https://www.pcengines.ch/apu2.htm
https://www.pcengines.ch/apu2.htm
https://doi.org/10.17487/RFC3561
https://doi.org/10.1109/SECPRI.2000.848446
https://doi.org/10.1109/TVT.2017.2748345
https://doi.org/10.1109/TVT.2017.2748345
https://doi.org/10.1016/S1004-4132(06)60070-4
https://www.ndss-symposium.org/ndss2012/you-can-run-you-cant-hide-exposing-network-location-targeted-dos-attacks-cellular-networks
https://www.ndss-symposium.org/ndss2012/you-can-run-you-cant-hide-exposing-network-location-targeted-dos-attacks-cellular-networks
https://www.ndss-symposium.org/ndss2012/you-can-run-you-cant-hide-exposing-network-location-targeted-dos-attacks-cellular-networks
https://www.ndss-symposium.org/ndss2012/you-can-run-you-cant-hide-exposing-network-location-targeted-dos-attacks-cellular-networks
https://doi.org/10.1109/INFCOM.2010.5462218
https://doi.org/10.1007/11593980_18
https://doi.org/10.1007/11593980_18

bibliography 179

[157] Samsung Electronics Co. White Paper: An Overview of Samsung
KNOX. June 2013. url: https://image-us.samsung.com/S
amsungUS/samsungbusiness/solutions/topics/iot/081717/

Samsung_KNOX_whitepaper_June-0.pdf (retrieved Dec. 9, 2019)
(cit. on p. 129).

[158] Kimaya Sanzgiri, Bridget Dahill, Brian Neil Levine, Clay Shields,
and Elizabeth M. Belding-Royer. “A Secure Routing Protocol
for Ad Hoc Networks.” In: IEEE International Conference on
Network Protocols (ICNP). Nov. 2002. doi: 10.1109/ICNP.2002.
1181388 (cit. on p. 20).

[159] Piotr Sapiezynski, Arkadiusz Stopczynski, David Kofoed Wind,
Jure Leskovec, and Sune Lehmann. “Inferring Person-to-Person
Proximity Using WiFi Signals.” In: Interactive, Mobile, Wearable
and Ubiquitous Technologies 1.2 (June 2017). doi: 10.1145/30900
89 (cit. on p. 155).

[160] Milan Schmittner, Arash Asadi, and Matthias Hollick. “SE-
MUD: Secure Multi-hop Device-to-Device Communication for
5G Public Safety Networks.” In: IFIP Networking Conference and
Workshops. Part of this thesis. Extended in [171]. June 2017.
doi: 10.23919/IFIPNetworking.2017.8264846 (cit. on pp. 20,
21, 94, 95, 113, 120, 180).

[161] Milan Schmittner and Matthias Hollick. “Xcastor: Secure and
Scalable Group Communication in Ad hoc Networks.” In: IEEE
International Symposium on A World of Wireless, Mobile and Mul-
timedia Networks (WoWMoM). June 2016. doi: 10.1109/WoWMoM.
2016.7523512 (cit. on pp. 94, 95, 102, 120).

[162] Matthias Schulz, Francesco Gringoli, Daniel Steinmetzer, Mi-
chael Koch, and Matthias Hollick. “Massive Reactive Smart-
phone-based Jamming Using Arbitrary Waveforms and Adap-
tive Power Control.” In: ACM Conference on Security and Pri-
vacy in Wireless and Mobile Networks (WiSec). July 2017. doi:
10.1145/3098243.3098253 (cit. on pp. 15, 78).

[163] Matthias Schulz, Daniel Wegemer, and Matthias Hollick. “The
Nexmon Firmware Analysis and Modification Framework: Em-
powering Researchers to Enhance Wi-Fi Devices.” In: Computer
Communications 129 (Sept. 2018), pp. 269–285. doi: 10.1016/j.
comcom.2018.05.015 (cit. on pp. 52, 57, 78).

[164] Robert W. Shirey. Internet Security Glossary, Version 2. RFC 4949.
IETF, Aug. 2007. doi: 10.17487/RFC4949 (cit. on p. 13).

[165] Sergei Skorobogatov. “The Bumpy Road Towards iPhone 5c
NAND Mirroring.” In: CoRR abs/1609.04327 (Sept. 2016). arXiv:
1609.04327 (cit. on p. 127).

https://image-us.samsung.com/SamsungUS/samsungbusiness/solutions/topics/iot/081717/Samsung_KNOX_whitepaper_June-0.pdf
https://image-us.samsung.com/SamsungUS/samsungbusiness/solutions/topics/iot/081717/Samsung_KNOX_whitepaper_June-0.pdf
https://image-us.samsung.com/SamsungUS/samsungbusiness/solutions/topics/iot/081717/Samsung_KNOX_whitepaper_June-0.pdf
https://doi.org/10.1109/ICNP.2002.1181388
https://doi.org/10.1109/ICNP.2002.1181388
https://doi.org/10.1145/3090089
https://doi.org/10.1145/3090089
https://doi.org/10.23919/IFIPNetworking.2017.8264846
https://doi.org/10.1109/WoWMoM.2016.7523512
https://doi.org/10.1109/WoWMoM.2016.7523512
https://doi.org/10.1145/3098243.3098253
https://doi.org/10.1016/j.comcom.2018.05.015
https://doi.org/10.1016/j.comcom.2018.05.015
https://doi.org/10.17487/RFC4949
https://arxiv.org/abs/1609.04327

180 bibliography

[166] Daniel Steinmetzer, Milan Stute, and Matthias Hollick. “TPy: A
Lightweight Framework for Agile Distributed Network Experi-
ments.” In: International Workshop on Wireless Network Testbeds,
Experimental Evaluation & Characterization (WiNTECH). ACM,
Nov. 2018. doi: 10.1145/3267204.3267214 (cit. on p. 114).

[167] Hannah Strange. “Super Typhoon Haiyan smashes into Philip-
pines.” In: The Telegraph (Nov. 8, 2013). url: https://www.tele
graph.co.uk/news/worldnews/asia/philippines/10434846/

Super- Typhoon- Haiyan- smashes- into- Philippines.html

(retrieved Dec. 9, 2019) (cit. on p. 24).

[168] Milan Stute. proxAWDL: simple AWDL–TCP proxy. 2018. url:
https://github.com/seemoo-lab/proxawdl (retrieved Dec. 9,
2019) (cit. on p. 62).

[169] Milan Stute. Video of Proof-of-Concept Denial-of-Service Attack
Crashing iOS Devices. Oct. 27, 2018. url: https://youtu.be/
M5D9NeKapUo (retrieved Dec. 9, 2019) (cit. on p. 89).

[170] Milan Stute. Video of Proof-of-Concept Man-in-the-Middle Attack
on AirDrop. May 15, 2019. url: https://youtu.be/5T7Qatoh0V
o (retrieved Dec. 9, 2019) (cit. on p. 82).

[171] Milan Stute, Pranay Agarwal, Abhinav Kumar, Arash Asadi,
and Matthias Hollick. “LIDOR: A Lightweight DoS-Resilient
Communication Protocol for Safety-Critical IoT Systems.” In:
IEEE Internet of Things Journal (IoT-J) (submitted). Part of this
thesis. Extended from [160] (cit. on pp. 20–22, 179).

[172] Milan Stute, Florian Kohnhäuser, Lars Baumgärtner, Lars Al-
mon, Stefan Katzenbeisser, Matthias Hollick, and Bernd Freisle-
ben. “RESCUE: A Resilient and Secure Device-to-Device Com-
munication Framework for Emergencies.” In: IEEE Transactions
on Dependable and Secure Computing (TDSC) (submitted). Part
of this thesis. Extended from [107] (cit. on p. 173).

[173] Milan Stute, David Kreitschmann, and Matthias Hollick. “Demo:
Linux Goes Apple Picking: Cross-Platform Ad hoc Communi-
cation with Apple Wireless Direct Link.” In: ACM Conference
on Mobile Computing and Networking (MobiCom). Best Demo
Award. Part of this thesis. Oct. 2018. doi: 10.1145/3241539.
3267716 (cit. on p. 18).

[174] Milan Stute, David Kreitschmann, and Matthias Hollick. “One
Billion Apples’ Secret Sauce: Recipe for the Apple Wireless
Direct Link Ad hoc Protocol.” In: ACM Conference on Mobile
Computing and Networking (MobiCom). Best Community Paper
Award. Part of this thesis. Oct. 2018. doi: 10.1145/3241539.
3241566 (cit. on pp. 18, 159).

https://doi.org/10.1145/3267204.3267214
https://www.telegraph.co.uk/news/worldnews/asia/philippines/10434846/Super-Typhoon-Haiyan-smashes-into-Philippines.html
https://www.telegraph.co.uk/news/worldnews/asia/philippines/10434846/Super-Typhoon-Haiyan-smashes-into-Philippines.html
https://www.telegraph.co.uk/news/worldnews/asia/philippines/10434846/Super-Typhoon-Haiyan-smashes-into-Philippines.html
https://github.com/seemoo-lab/proxawdl
https://youtu.be/M5D9NeKapUo
https://youtu.be/M5D9NeKapUo
https://youtu.be/5T7Qatoh0Vo
https://youtu.be/5T7Qatoh0Vo
https://doi.org/10.1145/3241539.3267716
https://doi.org/10.1145/3241539.3267716
https://doi.org/10.1145/3241539.3241566
https://doi.org/10.1145/3241539.3241566

bibliography 181

[175] Milan Stute, Max Maass, Tom Schons, and Matthias Hollick.
“Reverse Engineering Human Mobility in Large-scale Natu-
ral Disasters.” In: ACM International Conference on Modelling,
Analysis and Simulation of Wireless and Mobile Systems (MSWiM).
Part of this thesis. Nov. 2017. doi: 10.1145/3127540.3127542
(cit. on pp. 23, 25, 138).

[176] Telecommunication Standardization Sector of International
Telecommunication Union. Definitions of Terms Related to Qual-
ity of Service. Recommendation ITU-T E.800. Sept. 2008. url:
https://www.itu.int/rec/T-REC-E.800-200809-I (retrieved
Dec. 9, 2019) (cit. on p. 13).

[177] Sacha Trifunovic, MacIej Kurant, Karin Anna Hummel, and
Franck Legendre. “Preventing Spam in Opportunistic Net-
works.” In: Computer Communications 41 (Mar. 2014), pp. 31–42.
doi: 10.1016/j.comcom.2013.12.003 (cit. on p. 22).

[178] Trusted Computing Group. TPM 2.0 Mobile Reference Architec-
ture Specification. Dec. 2014. url: https://www.trustedcompu
tinggroup.org/tpm-2-0-mobile-reference-architecture-

specification/ (cit. on p. 129).

[179] Galini Tsoukaneri, George Theodorakopoulos, Hugh Leather,
and Mahesh K. Marina. “On the Inference of User Paths from
Anonymized Mobility Data.” In: IEEE European Symposium on
Security and Privacy (EuroS&P). Mar. 2016. doi: 10.1109/EuroS
P.2016.25 (cit. on p. 155).

[180] United States Census Bureau. Frequently Occurring Surnames
from the 2010 Census. Dec. 27, 2016. url: https://www.census.
gov/topics/population/genealogy/data/2010_surnames.

html (retrieved Dec. 9, 2019) (cit. on p. 152).

[181] United States Social Security Administration. Popular Baby
Names: Beyond the Top 1000 Names. url: https://www.ssa.
gov/oact/babynames/limits.html (retrieved Dec. 9, 2019) (cit.
on p. 152).

[182] Jayakrishnan Unnikrishnan and Farid Movahedi Naini. “De-
anonymizing Private Data by Matching Statistics.” In: IEEE
Allerton Conference on Communication, Control, and Computing.
Oct. 2013. doi: 10 . 1109 / Allerton . 2013 . 6736722 (cit. on
p. 155).

[183] US Department of Commerce. US Census Bureau. url: https:
//www.census.gov (retrieved Dec. 9, 2019) (cit. on p. 152).

[184] Pierre B. Vandwalle, Tashbeeb Haque, Andreas Wolf, and Sara-
vanan Balasubramaniyan. “Method and Apparatus for Cooper-
ative Channel Switching.” In: U.S. Patent 9491593 (Nov. 2016).
url: http://www.google.com/patents/US9491593 (cit. on
pp. 32, 44).

https://doi.org/10.1145/3127540.3127542
https://www.itu.int/rec/T-REC-E.800-200809-I
https://doi.org/10.1016/j.comcom.2013.12.003
https://www.trustedcomputinggroup.org/tpm-2-0-mobile-reference-architecture-specification/
https://www.trustedcomputinggroup.org/tpm-2-0-mobile-reference-architecture-specification/
https://www.trustedcomputinggroup.org/tpm-2-0-mobile-reference-architecture-specification/
https://doi.org/10.1109/EuroSP.2016.25
https://doi.org/10.1109/EuroSP.2016.25
https://www.census.gov/topics/population/genealogy/data/2010_surnames.html
https://www.census.gov/topics/population/genealogy/data/2010_surnames.html
https://www.census.gov/topics/population/genealogy/data/2010_surnames.html
https://www.ssa.gov/oact/babynames/limits.html
https://www.ssa.gov/oact/babynames/limits.html
https://doi.org/10.1109/Allerton.2013.6736722
https://www.census.gov
https://www.census.gov
http://www.google.com/patents/US9491593

182 bibliography

[185] Pierre B. Vandwalle, Christiaan A. Hartman, Robert Stacey,
Peter N. Heerboth, and Tito Thomas. “Synchronization of De-
vices in a Peer-to-Peer Network Environment.” In: U.S. Patent
9473574 (Oct. 2016). url: http://www.google.com/patents/
US9473574 (cit. on pp. 32, 48).

[186] Mathy Vanhoef, Célestin Matte, Mathieu Cunche, Leonardo
S. Cardoso, and Frank Piessens. “Why MAC Address Ran-
domization Is Not Enough: An Analysis of Wi-Fi Network
Discovery Mechanisms.” In: ACM Asia Conference on Computer
and Communications Security (ASIACCS). May 2016. doi: 10.

1145/2897845.2897883 (cit. on p. 156).

[187] Verizon. Data Breach Investigations Report. 2019. url: https :

//enterprise.verizon.com/resources/reports/2019-data-

breach-investigations-report.pdf (retrieved Dec. 9, 2019)
(cit. on p. 3).

[188] vit9696. Lilu: Arbitrary Kext and Process Patching on macOS. url:
https://github.com/acidanthera/Lilu (retrieved Dec. 9,
2019) (cit. on p. 36).

[189] Stefan G. Weber, Yulian Kalev, Sebastian Ries, and Max Mühl-
häuser. “MundoMessage: Enabling Trustworthy Ubiquitous
Emergency Communication.” In: ACM International Conference
on Ubiquitous Information Management and Communication. Feb.
2011. doi: 10.1145/1968613.1968649 (cit. on p. 21).

[190] Te-En Wei, Albert B. Jeng, Hahn-Ming Lee, Chih-How Chen,
and Chin-Wei Tien. “Android Privacy.” In: IEEE Conference
on Machine Learning and Cybernetics. July 2012. doi: 10.1109/
ICMLC.2012.6359654 (cit. on p. 155).

[191] Alex Wiesmaier, Moritz Horsch, Johannes Braun, Franziskus
Kiefer, Detlef Hhnlein, Falko Strenzke, and Johannes Buch-
mann. “An Efficient Mobile PACE Implementation.” In: ACM
Symposium on Information, Computer and Communications Secu-
rity (ASIACCS). Mar. 2011. doi: 10.1145/1966913.1966936 (cit.
on p. 129).

[192] Hao Wu, Weiwei Sun, and Baihua Zheng. “Is Only One GPS
Position Sufficient to Locate You to the Road Network Ac-
curately?” In: ACM International Joint Conference on Pervasive
and Ubiquitous Computing (UbiComp). Sept. 2016. doi: 10.1145/
2971648.2971702 (cit. on p. 155).

[193] Yuan Xue and Klara Nahrstedt. “Providing Fault-Tolerant Ad
Hoc Routing Service in Adversarial Environments.” In: Wireless
Personal Communications 29.3 (June 2004), pp. 367–388. doi: 10.
1023/B:WIRE.0000047071.75971.cd (cit. on pp. 20, 21).

http://www.google.com/patents/US9473574
http://www.google.com/patents/US9473574
https://doi.org/10.1145/2897845.2897883
https://doi.org/10.1145/2897845.2897883
https://enterprise.verizon.com/resources/reports/2019-data-breach-investigations-report.pdf
https://enterprise.verizon.com/resources/reports/2019-data-breach-investigations-report.pdf
https://enterprise.verizon.com/resources/reports/2019-data-breach-investigations-report.pdf
https://github.com/acidanthera/Lilu
https://doi.org/10.1145/1968613.1968649
https://doi.org/10.1109/ICMLC.2012.6359654
https://doi.org/10.1109/ICMLC.2012.6359654
https://doi.org/10.1145/1966913.1966936
https://doi.org/10.1145/2971648.2971702
https://doi.org/10.1145/2971648.2971702
https://doi.org/10.1023/B:WIRE.0000047071.75971.cd
https://doi.org/10.1023/B:WIRE.0000047071.75971.cd

bibliography 183

[194] Fei Ye, Matthew Adams, and Sumit Roy. “V2V Wireless Com-
munication Protocol for Rear-End Collision Avoidance on High-
ways.” In: IEEE International Conference on Communications Work-
shops (ICC Workshops). May 2008. doi: 10.1109/ICCW.2008.77
(cit. on p. 4).

[195] Hu Yih-Chun and Adrian Perrig. “A Survey of Secure Wireless
Ad Hoc Routing.” In: IEEE Security & Privacy (S&P) 2.3 (May
2004), pp. 28–39. doi: 10.1109/MSP.2004.1 (cit. on pp. 7, 14).

[196] Joseph Yiu. ARMv8-M Architecture Technical Overview. No longer
available. 2015. url: https://community.arm.com/docs/DOC-
10896 (cit. on p. 129).

[197] Haifeng Yu, Phillip B. Gibbons, Michael Kaminsky, and Feng
Xiao. “SybilLimit: A Near-Optimal Social Network Defense
Against Sybil Attacks.” In: IEEE/ACM Transactions on Network-
ing (TON) 18.3 (June 2010), pp. 885–898. doi: 10.1109/TNET.
2009.2034047 (cit. on p. 22).

[198] Haifeng Yu, Michael Kaminsky, Phillip B. Gibbons, and Abra-
ham Flaxman. “SybilGuard: Defending Against Sybil Attacks
via Social Networks.” In: SIGCOMM Computer Communication
Review 36.4 (Aug. 2006), pp. 267–278. doi: 10.1145/1151659.
1159945 (cit. on pp. 22, 134).

[199] Manel Guerrero Zapata and Nadarajah Asokan. “Securing Ad
Hoc Routing Protocols.” In: ACM Workshop on Wireless Security
(WiSe). Sept. 2002. doi: 10.1145/570681.570682 (cit. on p. 20).

[200] Saman Taghavi Zargar, James Joshi, and David Tipper. “A
Survey of Defense Mechanisms Against Distributed Denial of
Service (DDoS) Flooding Attacks.” In: IEEE Communications
Surveys & Tutorials 15.4 (Mar. 2013), pp. 2046–2069. doi: 10.
1109/SURV.2013.031413.00127 (cit. on p. 4).

[201] Yunze Zeng, Parth H. Pathak, and Prasant Mohapatra. “Wi-
Who: Wifi-based Person Identification in Smart Spaces.” In:
ACM/IEEE International Conference on Information Processing in
Sensor Networks (IPSN). Apr. 2016. doi: 10.1109/IPSN.2016.
7460727 (cit. on p. 155).

[202] Jin Zhang, Bo Wei, Wen Hu, and Salil S. Kanhere. “WiFi-ID:
Human Identification Using WiFi Signal.” In: IEEE International
Conference on Distributed Computing in Sensor Systems (DCOSS).
May 2016. doi: 10.1109/DCOSS.2016.30 (cit. on p. 155).

[203] Xiaolan Zhang, Giovanni Neglia, Jim Kurose, and Don Towsley.
“Performance Modeling of Epidemic Routing.” In: Computer
Networks 51.10 (July 2007). doi: 10.1016/j.comnet.2006.11.
028 (cit. on pp. 123, 124).

https://doi.org/10.1109/ICCW.2008.77
https://doi.org/10.1109/MSP.2004.1
https://community.arm.com/docs/DOC-10896
https://community.arm.com/docs/DOC-10896
https://doi.org/10.1109/TNET.2009.2034047
https://doi.org/10.1109/TNET.2009.2034047
https://doi.org/10.1145/1151659.1159945
https://doi.org/10.1145/1151659.1159945
https://doi.org/10.1145/570681.570682
https://doi.org/10.1109/SURV.2013.031413.00127
https://doi.org/10.1109/SURV.2013.031413.00127
https://doi.org/10.1109/IPSN.2016.7460727
https://doi.org/10.1109/IPSN.2016.7460727
https://doi.org/10.1109/DCOSS.2016.30
https://doi.org/10.1016/j.comnet.2006.11.028
https://doi.org/10.1016/j.comnet.2006.11.028

184 bibliography

[204] Jing Zheng, Qi Li, Guofei Gu, Jiahao Cao, David KY Yau,
and Jianping Wu. “Realtime DDoS Defense Using COTS SDN
Switches via Adaptive Correlation Analysis.” In: IEEE Transac-
tions on Information Forensics and Security (TIFS) 13.7 (July 2018),
pp. 1838–1853. doi: 10.1109/TIFS.2018.2805600 (cit. on pp. 10,
121).

https://doi.org/10.1109/TIFS.2018.2805600

E R K L Ä R U N G Z U R D I S S E RTAT I O N S S C H R I F T

gemäß § 9 der Allgemeinen Bestimmungen der Promotionsordnung der
Technische Universität Darmstadt vom 12. Januar 1990 (ABI. 1990, S. 658)

in der Fassung der 8. Novelle vom 1. März 2018

Hiermit versichere ich, Milan Stute, die vorliegende Dissertations-
schrift ohne Hilfe Dritter und nur mit den angegebenen Quellen und
Hilfsmitteln angefertigt zu haben. Alle Stellen, die Quellen entnom-
men wurden, sind als solche kenntlich gemacht worden. Eigenzitate
aus vorausgehenden wissenschaftlichen Veröffentlichungen werden in
Anlehnung an die Hinweise des Promotionsausschusses Fachbereich
Informatik zum Thema „Eigenzitate in wissenschaftlichen Arbeiten“
(EZ-2014/10) in Kapitel „Collaborations and My Contribution“ auf Sei-
ten xxiii bis xxiv gelistet. Diese Arbeit hat in gleicher oder ähnlicher
Form noch keiner Prüfungsbehörde vorgelegen. In der abgegebenen
Dissertationsschrift stimmen die schriftliche und die elektronische
Fassung überein.

Darmstadt, 3. Januar 2020

Milan Stute

185

	Front Matter
	Cover
	Dedication
	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Programs
	Acronyms
	 List of Publications
	 Collaborations and My Contribution

	 Prelude
	1 Introduction
	1.1 Motivation
	1.2 Challenges and Goals
	1.2.1 Neighbor Communication
	1.2.2 Island Communication
	1.2.3 Archipelago Communication

	1.3 Contributions
	1.3.1 Dissection of Apple's Wireless Ecosystem
	1.3.2 Security and Privacy Analysis of Apple Wireless Direct Link and AirDrop
	1.3.3 Secure Island Communication Protocol
	1.3.4 Secure Archipelago Communication Framework

	1.4 Outline

	2 Background and Related Work
	2.1 Definitions
	2.1.1 Security
	2.1.2 Availability
	2.1.3 Resiliency
	2.1.4 Dependability

	2.2 Denial-of-Service Attacks
	2.2.1 Dropping
	2.2.2 Flooding
	2.2.3 Jamming
	2.2.4 Replaying
	2.2.5 Spoofing
	2.2.6 Pseudospoofing (Sybil Attack)
	2.2.7 Wormholing
	2.2.8 Blackholing

	2.3 Wireless Neighbor Communication Technologies
	2.3.1 Wi-Fi Ad Hoc
	2.3.2 Wi-Fi Peer-to-Peer
	2.3.3 Apple Wireless Direct Link
	2.3.4 Neighbor Awareness Networking
	2.3.5 Bluetooth Low Energy

	2.4 Security in Wireless Multihop Networks
	2.4.1 Security in Mobile Ad Hoc Networks
	2.4.2 Security in Disruption-Tolerant Networks

	3 Emergency Scenario
	3.1 Natural Disasters and Response
	3.1.1 2013 Typhoon Haiyan

	3.2 Human Mobility Model
	3.2.1 Roles
	3.2.2 Activities
	3.2.3 Characteristics

	 Neighbor Communication
	4 A Hacker's Guide to Apple's Wireless Ecosystem
	4.1 Vantage Points
	4.2 Binary Analysis
	4.2.1 Binary Landscape
	4.2.2 Binary Selection
	4.2.3 Interesting Functions and Code Segments
	4.2.4 Leaked Source Code
	4.2.5 Dissecting Structures

	4.3 System Logging
	4.3.1 Console
	4.3.2 CoreCapture
	4.3.3 Broadcom ioctl Interface

	4.4 Network Interfaces
	4.4.1 Wireshark
	4.4.2 Bluetooth Explorer and Packet Logger
	4.4.3 InternalBlue
	4.4.4 Machine-in-the-Middle Proxy
	4.4.5 Custom Prototypes

	4.5 Keychains
	4.5.1 Login and iCloud Keychains
	4.5.2 Security Framework
	4.5.3 Accessing Keys of Apple Services

	4.6 Discussion and Summary

	5 Apple Wireless Direct Link
	5.1 Frame Format
	5.1.1 Action Frames
	5.1.2 Data Frames
	5.1.3 Addressing for Higher-Layer Protocols

	5.2 Operation
	5.2.1 Activation
	5.2.2 Election
	5.2.3 Synchronization
	5.2.4 Data Transfer
	5.2.5 Service Discovery

	5.3 Re-Implementation
	5.3.1 Architecture
	5.3.2 Supported Platforms and Future Work

	5.4 Experimental Evaluation
	5.4.1 Test Setup
	5.4.2 Master Election
	5.4.3 Synchronization-to-Master Accuracy
	5.4.4 Channel Activity
	5.4.5 Throughput and Channel Hopping

	5.5 Discussion and Summary
	5.5.1 Robustness
	5.5.2 Complexity and Overhead
	5.5.3 Energy Efficiency
	5.5.4 Security
	5.5.5 Summary

	6 Apple AirDrop
	6.1 Discoverability User Setting
	6.2 Protocol Workflow and User Interactions
	6.3 (Un)authenticated Connections
	6.4 Re-Implementation
	6.5 Discussion and Summary

	7 DoS Attacks and Mitigations for AWDL and AirDrop
	7.1 DoS Desynchronization Attack on AWDL
	7.1.1 Modeling Channel Sequence Overlap
	7.1.2 Desynchronizing Two Targets
	7.1.3 Experimental Evaluation
	7.1.4 Mitigation
	7.1.5 Comparison to Reactive Jamming

	7.2 DoS-Supported Machine-in-the-Middle Attack on AirDrop
	7.2.1 Ambiguous Receiver Authentication State
	7.2.2 Protocol Flow under Attack
	7.2.3 Proof-of-Concept
	7.2.4 Mitigation
	7.2.5 Previous Attacks on AirDrop

	7.3 DoS Blackout Attacks on AWDL
	7.3.1 AirDrop BLE Advertisements
	7.3.2 Brute Force Analysis
	7.3.3 Jailbreaking BLE Advertisements
	7.3.4 Target Response Time
	7.3.5 Crashing AWDL Devices in Proximity
	7.3.6 Mitigation

	7.4 Discussion and Summary

	 Island and Archipelago Communication
	8 DoS-Resilient Island Communication
	8.1 Overview
	8.1.1 System Model
	8.1.2 Protocol Summary
	8.1.3 Comparison to Castor's Design

	8.2 Packet Processing
	8.2.1 Packet Generation
	8.2.2 Packet Verification
	8.2.3 Packet Forwarding
	8.2.4 Packet Reception
	8.2.5 Acknowledgment Handling

	8.3 Overhead Analysis
	8.3.1 Benchmark Protocol
	8.3.2 LIDOR Protocol

	8.4 Convergence Analysis
	8.4.1 Non-Convergence of Benchmark Protocol
	8.4.2 Convergence of LIDOR Protocol

	8.5 Implementation
	8.5.1 Reference Platforms
	8.5.2 Cryptographic Primitives
	8.5.3 Practical One-Hop Broadcast Authentication

	8.6 Experimental Evaluation
	8.6.1 Test Setup
	8.6.2 Summary
	8.6.3 Replay-Supported Greyhole Attack
	8.6.4 Wormhole-Supported Greyhole Attack

	8.7 Discussion and Summary
	8.7.1 Convergence: Analysis vs. Experiments
	8.7.2 Feasibility for Large-Scale IoT Deployments
	8.7.3 Towards 100% Reliability
	8.7.4 Further Application Domains
	8.7.5 Summary

	9 DoS-Resilient Archipelago Communication
	9.1 Overview
	9.1.1 System Model

	9.2 Minimalistic Communication Protocol
	9.2.1 Epidemic Routing
	9.2.2 Authentic Immutable Messages
	9.2.3 Authentic Acknowledgments

	9.3 In-the-Field User Registration
	9.3.1 Static Authorities
	9.3.2 Mobile Authorities
	9.3.3 Secure Identity Verification Methods

	9.4 Local Buffer Management
	9.4.1 Security Requirements and Design
	9.4.2 Source-Based Elastic Buckets
	9.4.3 Prioritization and Convergence

	9.5 Local Priority Sets
	9.5.1 Secure Copies
	9.5.2 Priority Sets Overview
	9.5.3 A Sybil-Secure Priority Set
	9.5.4 Supporting Unregistered Users

	9.6 Experimental Evaluation
	9.6.1 Test Setup
	9.6.2 Flooding Attack
	9.6.3 Sybil Attack
	9.6.4 2013 Typhoon Haiyan Scenario

	9.7 Discussion and Summary

	 Conclusions
	10 Conclusions

	 Appendix
	A Privacy Issues in AWDL
	A.1 Protocol Fields with Sensitive Information
	A.2 The Potential of Apple Device User Tracking
	A.3 Experimental Vulnerability Analysis
	A.4 Mitigation
	A.5 Related Work on User Tracking

	B Vulnerability Disclosures
	B.1 CVE-2018-4368
	B.2 NO-CVE-2018-1
	B.3 CVE-2019-8567
	B.4 CVE-2019-8612
	B.5 CVE-2019-8620
	B.6 CVE-2019-8799
	B.7 NO-CVE-2019-1
	B.8 NO-CVE-2019-2
	B.9 CVE-2017-13886 (Associated)

	C Software Releases
	C.1 AWDL Protocol Dissector for Wireshark
	C.2 Open Wireless Link
	C.3 OpenDrop
	C.4 LIDOR Communication Protocol
	C.5 Natural Disaster Mobility Model and Scenarios

	Back Matter
	 Bibliography
	 Erklärung zur Dissertationsschrift

