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Zusammenfassung

Pulsweitenmodulierte Stromrichter transformieren elektrische Leistung zwischen verschiedenen Spannungs-
und Stromebenen, um verschiedene Anwendungen zu versorgen. Im Vergleich zu herkömmlichen Transfor-
matoren verwenden sie Transistoren und andere Halbleiterbauelemente, die die Eingangsspannung abrupt
ein- und ausschalten, um am Ausgang des Stromrichters die gewünschte zeitgemittelte Spannung oder den
gewünschten zeitgemittelten Strom zu erzeugen. Die so generierte gepulste Spannung wird üblicherwei-
se durch aktive oder passive Filter gefiltert, um hochfrequente Signalanteile zu unterdrücken und die Aus-
gangsspannung zu glätten. Die numerische Simulation dieser Stromrichter ist aufwändig, da konventionelle
Zeitschrittverfahren sehr kleine Zeitschritte benötigen, um die durch die Schaltvorgänge ausgelösten schar-
fen Transienten vernünftig darzustellen. Wenn das Schaltverhalten der Transistoren als ideal angenommen
wird, ist es häufig sogar nötig, algorithmisch die zeitliche Position eines solchen Schaltvorgangs zu erkennen,
da sonst ein Absturz des Zeitschrittalgorithmus die Folge sein könnte.

In dieser Dissertation wird ein effizienter Multiraten-Ansatz entwickelt. Die Idee besteht darin, die Lösung
der gewöhnlichen Differentialgleichungen oder differential-algebraischen Gleichungen, die den Stromrichter
beschreiben, in sich langsam verändernde Anteile (Einhüllende) und schnell verändernde periodische Antei-
le (Welligkeit) zu zerlegen. Dafür werden die Differentialgleichungen in einem ersten Schritt umgeformt in
sogenannte Multiraten Partielle Differentialgleichungen (MPDEs). Diese erlauben es, verschiedene Lösungs-
komponenten explizit verschiedenen Zeitskalen zuzuordnen. Um die MPDEs zu lösen, werden zwei Methoden
angewandt. Zunächst wird ein Galerkin Ansatz verwendet, um entlang der schnellen Zeitskala zu lösen. Drei
verschiedene Typen von Basisfunktionen werden angesetzt: PWM Basisfunktionen, PWM Eigenfunktionen
und B-spline Basisfunktionen. Als Nächstes wird auf das noch übrig gebliebene Differentialgleichungssys-
tem ein konventionelles Zeitschrittverfahren angewandt, um es entlang der langsamen Zeitskala zu lösen.
Dabei wird das Schaltverhalten der Transistoren als ideal angenommen, sodass diese sich durch ideale ge-
pulste Spannungsquellen ersetzen lassen. Die Lösungskomponenten entlang der schnellen Zeitskala, also die
Welligkeit der Lösung, wird mithilfe von Basisfunktionen dargestellt. Durch die Schaltvorgänge entstehen in
manchen Lösungskomponenten C0 stetige Stellen, die schon in der Konstruktion der Basisfunktionen berück-
sichtigt werden.

Der MPDE Ansatz wird auf verschiedene Testbeispiele angewandt, um die Genauigkeit und Effizienz nume-
risch zu überprüfen. Bisher lässt sich der Ansatz für einphasige DC-DC und DC-AC Stromrichter verwenden.
Falls nichtlineare Bauelemente in den Stromrichtern oder den angeschlossenen Geräten vorkommen, erhöht
sich der Rechenaufwand des Verfahrens. Für nichtlineare Bauelemente, z.B. nichtlineare Spulen, wird eine
Vereinfachung vorgeschlagen, die weiterhin eine effiziente Simulation zulässt. Zur Generation der gepulsten
Eingangsspannung erlaubt der MPDE Ansatz eine Pulsweitenmodulation (PWM) mit konstanter Schaltfre-
quenz und variablem Tastverhältnis. Als Trägersignal lassen sich Sägezahn- und Dreieckssignal einsetzen.
Natürliche und digitale Abtastung werden unterstützt. Neben Schaltungen wird das Verfahren auch auf ein
Feld-Netzwerk Modell angewandt.
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Abstract

Pulse-width modulated power converters are devices which transform voltages and currents between differ-
ent levels to meet the requirements of the appliances. In contrast to conventional transformers, they use
transistors and other semiconductor components to abruptly switch on and off the input voltage source to
generate an output voltage or current which, averaged in time, equals the desired values. The so-generated
pulsed signal is usually filtered by an active or passive filter to suppress the high-frequency components and
thus smoothen the output. The numerical simulation of these devices is computationally expensive since
with conventional time discretization very small time steps are necessary to properly represent the steep
transients induced by the abrupt switching of the semiconductor devices. If the semiconductor behavior
is idealized, a switch event detection is often necessary to prevent a failure of the time integration algo-
rithm.

In this dissertation a multirate approach is developed to efficiently tackle these problems. The idea is to split
the solution of the ordinary differential or differential-algebraic equations describing the power converters
into slowly varying parts and fast varying parts. The output of the converter is represented as a sum of
fast periodically varying ripples and a slowly varying envelope. The differential equations are, in a first
step, reformulated into so-called multirate partial differential equations (MPDEs), which allow to explicitly
split the solution by associating the different components to different artificial time scales. The MPDEs are
solved using a combination of two methods. First, a Galerkin approach is applied to solve along the fast
time scale. Three different types of basis functions, namely PWM basis functions, PWM eigenfunctions and
B-spline basis functions, are employed. Second, a conventional time integration algorithm is used on the
remaining differential equation system. It is assumed that the semiconductor switching behavior can be
idealized as such that it can be represented by an ideal pulsed voltage source. The solution components
along the fast varying time scale, i.e. the ripples, are represented by basis functions, which are specifically
designed for this purpose. Since in some of the solution components the ripples are only continuous and
not smooth, the basis functions take these points of C0 continuity at the proper position into account by
construction.

The MPDE approach is applied to different examples to demonstrate its accuracy and efficiency. It is appli-
cable to single-phase DC-DC and DC-AC power converters. If the power converter or the application consists
of nonlinear elements the computational effort increases. For nonlinear elements, e.g. nonlinear induc-
tors, a simplification is proposed which keeps the simulation efficient. To generate the pulsed excitation, a
pulse-width modulation (PWM) with constant switching frequency and varying duty cycle is applicable. It is
generated by either sawtooth or triangle carriers. Both natural or regular sampling are supported. Besides
circuit simulation the method is also applied to a field-circuit coupled model.
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d1 Reference signal 1
d2 Reference signal 2
ddel,1 Delayed reference signal 1
ddel,2 Delayed reference signal 2

Basis functions

Symbol Description

w vector of basis functions
wpwm vector of PWM basis functions
wpwm,i i-th PWM basis function
weig vector of PWM eigenfunctions
weig,i i-th PWM eigenfunction
Pi,p i-th B-spline basis function of degree p

Other quantities

Symbol Description

L2 Space of square integrable functions
C0 Space of continuous functions
C1 Space of continuous functions with one continuous derivative
I Identity matrix
λ Eigenvalue
v Eigenvector
ε Error
Np + 1 Total number of basis functions
Ns Size of original equation systems

xxi





1 Introduction and motivation

Switch-mode power converters are found in a variety of applications [68] from everyday life to industrial
appliances. Examples are mobile phone chargers, computer power supplies, electric cars, industrial welding,
utility systems and more. These power converters transform electric power, i.e. voltage, current and/or
frequency, between different levels to ensure compatibility between devices. They use power electronic
switches, e.g. modern transistors, to periodically cut off and switch on the input voltage. Thereby the aver-
age output voltage is controlled which, after filtering the high-frequency components, supplies the applica-
tion.

To control the transistor switching and provide the desired output voltage, a technique called pulse-
width modulation (PWM) is often utilized. In such cases the power converters are also called PWM power
converters. A typical PWM signal is depicted in Fig. 1.1. Important quantities are the switching frequency
fs, its corresponding switching period Ts = 1

fs
and the duty cycle D as further elaborated in Section 2.6. An

exemplary power converter, namely a DC-DC buck converter (step-down converter) is depicted in Fig. 1.2.
The insulated-gate bipolar transistor (IGBT), DC voltage source V0 and the PWM signal generate the pulsed
voltage vi(t). The diode acts as a valve to allow current flow while the transistor is in opened state. The
rest of the circuit consists of the inductor L, the inductor resistance RL and the capacitor C which together
with the resistive load R form a low-pass filter circuit. It suppresses high-frequency components. Fig. 1.3
depicts the voltage at the capacitor/load and the current through the inductor for a sample excitation vi(t)
with constant duty cycle and switching frequencies of fs = 500Hz and fs = 5000Hz. Usually the power
converters are equipped with a control scheme to ensure the stability of the output voltage or power for
instance when a load change occurs. A comprehensive introduction into power converters can be found in
[68, 118].

To design, test and layout power converters, filters and control systems, numerical simulations are em-
ployed. Following [41], power converters and connected appliances are commonly considered in simulations
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Figure 1.1: Typical PWM signal.
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Figure 1.2: Circuit of a DC-DC buck converter. Figure adapted from [80] ©2019 IEEE.

on one of the following fidelity levels:

• Simulation of the entire system including the transistor switching behavior. This is necessary, e.g.
for the design of snubber circuits (circuit to protect the semiconductors from electrical stresses) [68,
Chapter 27]. It is the most computationally expensive approach since the switching behavior of the
semiconductors is simulated in detail.

• Neglecting the switching behavior of the transistors, i.e. replacing the transistor output by an ideal
pulsed signal. This reduces the computational effort for solving and thus enables to focus on a more
complex simulation of the application. This allows for instance to utilize coupled simulations in which
the power converter circuit is coupled to a field model of the application, e.g. a finite element (FE)
model of a motor, see [39].

• The power converter circuitry is completely neglected and the application is directly excited by a PWM
signal, e.g. as in [37, 55, 94].

Commonly, time integration algorithms are applied for the simulation. Numerical challenges arise due to
widely separated characteristic time constants leading to different dynamics in the solution components.
This is denoted as “multirate” behavior. These time constants can range from microseconds (e.g. PWM
switching time intervals) over milliseconds (e.g. time constants in power electronic circuitry) up to seconds
(e.g. for the start-up of an electrical machine). For illustration consider again the already introduced example
of the buck converter. Its solution depicted in Fig. 1.3 consists of fast varying ripples which are modulated
onto a slowly varying transient. The transient originates from the initially uncharged filter circuit. With a
conventional time discretization, e.g. using implicit Runge-Kutta (IRK) methods or backward differentiation
formulas (BDFs), very small time steps are necessary to resolve the solution. The switching frequency in
modern converters starts in the low kilohertz range and reaches up into the megahertz range [68]. The
higher the switching frequency is, the smaller the ripples become and the more there are in the same time
interval. Higher switching frequency therefore leads to higher number of necessary time steps. Even when
the power converter is in steady state, i.e. there is no slow transient behavior any more, the time integration
algorithm still takes as many steps as before to properly resolve the fast periodic ripples. This leads to
prohibitively long simulation times, especially if a field-circuit coupling is applied. In power electronics
literature often equivalent circuit models are applied, e.g. to represent an inverter-cable-motor system [92].
This technique offers an approximation to the behavior of the electrical elements, which may be sufficient
in certain applications. However it is insufficient if one is interested in the detailed physical phenomena
taking place inside these components, e.g. eddy-current losses in electrical machines [55, 94], influence of
geometric uncertainties in electric machines [6] or electromagnetic interference with other electric devices
[67]. An accurate physical representation is only provided by field models. Consider as another illustrative
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Figure 1.3: Exemplary solution of the buck converter depicted in Fig. 1.2. (a) Switching frequency fs =
500Hz. (b) Switching frequency fs = 5000Hz. Figures adapted from [80] ©2019 IEEE.

example an inductive power transfer system as utilized in modern electric cars to charge the battery [117].
The equivalent model presented in [117] represents the coils for power transfer when they are perfectly
aligned. However the effect of metallic objects lying between the car and the coil embedded in the ground
or a misalignment of the system cannot be taken into account. A field-circuit coupling may be applied to
take into account the power converter circuitry and possible field models of inductors, electric machines or
other devices. In cases where a monolithic (strong) coupling between circuit and field models is sought,
the resulting system of differential equations describing the problem may become very large. As a result, a
time-domain solution using conventional time integration schemes takes even longer than when using only
circuit models.

To this end, the aim of this thesis is to develop a time-domain multirate method based on the concept of
multirate partial differential equations (MPDEs) specifically for power converter simulation and evaluate its
efficiency and accuracy. Before defining the research goals in detail, the following section gives an overview
of related works in the area of multirate modeling.

1.1 Related works

With no claim to completeness, this section provides an overview over the most commonly used multirate
methods.

Envelope-following methods One of the first methods to calculate the envelope of a highly oscillating
solution has been proposed by Petzold et al. [83]. The method can be applied to ordinary differential equa-
tions (ODEs). Its idea is to calculate one cycle of the oscillating solution in detail by very fine time stepping
and then calculate the secant between the beginning and the end point of the cycle. This secant is used to es-
timate the solution a few cycles further without the need to calculate the cycles in detail. At the new solution
point, another detailed simulation is necessary to reestimate the secant and proceed further. A disadvantage
of this method is that the high-frequent oscillation is neglected and only the envelope is calculated. In [59,
120] the method is applied to simulate a power converter with constant switching frequency and duty cy-
cle. An extension of the method to varying switching times which allows to simulate power converters with
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closed-loop control schemes (using state variables as input) has been proposed in [52]. Wang et al. [119]
extended the concept further to be applicable when using PWM and/or pulse-frequency modulation (PFM)
with varying switching frequencies.

Multirate time integration methods Another possibility to efficiently deal with multirate behavior is to split
the differential equations into several subsystems according to their activity. For example in highly integrated
electrical circuits with many elements some parts of the circuit might be latent while others are active at the
same time [40]. The resulting subsystems of equations are coupled with each other using coupling variables.
Each subsystem is solved by an appropriate method and time step. First works on this approach which split
the circuits according to the activity of the solution and which use different time steps for the subsystems
have been proposed by Andrus [1] who bases it upon Runge-Kutta formulas. The theory on multirate Runge-
Kutta methods has been analyzed by Kvaerno [61]. Gear et al. [38] and Skelboe [108] use linear multistep
methods and Günther et al. [40] developed a multirate Rosenbrock-Wanner method. Savcenco et al. [103]
propose a multirate second-order Rosenbrock method with adaptivity in each solution component. Multirate
time integration has eventually been extended to simple examples of differential-algebraic equations (DAEs)
in [3, 111, 112]. For a more comprehensive review, see for example [57]. A slightly different approach
proposed by Biesiadecki et al. [4] splits the differential equations according to the activity of the right-hand
side. Instead of differently large time steps, Engstler and Lubich [25, 26] propose a Richardson extrapolation
of different orders. The slow and fast varying components are automatically detected during the process of
building the extrapolation tableau and the increasing of the extrapolation order is stopped as soon as the
desired accuracy is reached for a solution component.

In the field of power electronics, similar methods have been developed. Most of the time, the coupling
between the resulting differential equations differs. For instance Kato et al. [54] propose a method in which
the slow subsystem uses a macro time step which is an integer multiple of the micro time step employed in the
slow subsystem. The coupling variables are synchronized between the subsystems in certain time intervals
at which both systems of equations are solved together. In between the time instants of synchronization, the
fast subsystem predicts the solution of the slow subsystem through extrapolation. Fung et al. [35] propose to
split the circuit into subcircuits by using transmission line models for the coupling. Deml et al. [21] split the
circuit at reactive electrical components, i.e. capacitors and inductors. The coupling is established through
averaging fast variables and extrapolation of slow variables. Pekarek et al. [77] propose a method, which also
splits the differential equations into active and latent parts. The coupling is established by a synchronization
of the coupling variables in certain time intervals. The slow and fast subsystem can be solved by different
time integration methods. Between the time instants of synchronization, the fast subsystem calculates the
solution of the slow subsystem by using a backward Euler step and interpolation. The solution of the fast
subsystem within the slow subsystem is calculated using averaging. Kato et al. [53] propose an automatic
approach which splits the circuits at series inductors and parallel capacitors and replaces them with current
and voltage sources by using a forward Euler difference formula.

Multirate partial differential equations Another general concept to deal with multirate problems are the
MPDEs [10, 97], which are the basis of this work. The idea is to split the solution into several solution
components which vary with different rates in time. These solution components are associated to different
artificial time scales. As a result the ODEs or DAEs describing the problem to be solved can be reformu-
lated into partial differential equations (PDEs) (or partial differential-algebraic equations (PDAEs)) which
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are called multirate PDEs (or PDAEs), abbreviated by MPDEs1. These MPDEs can then be solved with well
known methods for PDEs. This concept has been studied mainly for problems in radio-frequency engineer-
ing, in which the solution is oscillatory and consists of widely separated frequencies. Brachtendorf et al.
[10] solve the MPDEs in a high-frequency setting with multiple fundamental frequencies using a harmonic
balance approach for all time scales. The resulting method is called multitone harmonic balance and is ca-
pable of simulating the steady state of a problem, i.e., a quasi-periodicity of the solution is assumed. Also
for quasi-periodic solutions, Pulch et al. [90] proposed a method of characteristics to solve the MPDEs with
two time scales. In [8] a combination of two methods, namely a finite difference and a harmonic balance
method is presented. A combination of finite difference methods to solve along both time scales seems to
offer the possibility of parallelization [85, 86]. To calculate the initial transient response of an oscillator,
in [9, 72] a harmonic balance method is applied to the fast time scale which leads to a system of DAEs,
i.e., an initial value problem (IVP). These may be solved by conventional time discretization methods with
relatively large time steps since the fast variations are already taken into account by the harmonic balance
method. Roychowdhury et al. [97, 98, 100] proposed different combinations of solution methods to solve
MPDEs and presented different application examples. They categorize the methods into frequency-domain
(e.g. harmonic balance on both time scales), mixed frequency-time domain (e.g. combination of harmonic
balance and finite difference method) and time-domain methods (e.g. finite different method and backward
Euler time integration). If the solution consists of a periodic component modulated onto an envelope the
solution is termed envelope-modulated. The problem can be solved by mixed frequency-time domain or time
domain methods. The difficulty in choosing the initial values for the IVPs resulting from envelope-modulated
MPDE methods has been recognized and analyzed in [99] where an approximative solution of the problem
has been proposed. The stability of different combinations of time-domain methods has been analyzed in
[66]. Finally in [96] the simulation of problems with closely spaced frequencies is addressed, while former
literature only focused on widely separate frequencies and time scales. The use of a Galerkin approach and
different basis functions than in harmonic balance has been proposed in [5, 7, 56]. While Knorr and Bittner
et al.[5, 56] focus on adaptive wavelet basis functions, Brachtendorf et al. [7] propose the use of cubic and
exponential splines. These basis functions have superior approximation properties compared to harmonic
balance basis functions when steep transients shall be approximated. The simulation of varying frequency
problems, e.g. voltage-controlled oscillators is not possible with the MPDEs [70]. For this purpose the concept
of MPDEs has been extended in such a way, that the fast time scale may be warped. This is realized by using
a so-called warping function. The resulting equations are called warped MPDEs (WaMPDEs). To find the
warping function (and its derivative, the local frequency function), additional conditions have to be added to
the WaMPDEs. Different of these conditions have been proposed in [49, 70, 71, 87–89]. A survey presenting
different solution methods and additional conditions may be found in [91].

Combinations of multirate methods and field-circuit coupled problems Combinations of the aforemen-
tioned multirate methods have also been proposed. For instance Oliveira et al. [74–76] suggest to use a
combination of MPDEs and multirate methods which split the systems of equations into subsystems accord-
ing to their activity. In [75] the MPDEs with two time scales are semi-discretized by a fixed-step backward
Euler method along the slow time scale. The remaining boundary value problems are solved using shooting
and a multirate time integration scheme. In [74], even three time scale MPDEs are used to describe hetero-
geneous radio-frequency circuits. The solution is found by a combination of finite differences and a multirate
Runge-Kutta scheme [61]. In [76] the two time scale MPDEs are solved using harmonic balance and a back-
ward Euler finite difference scheme. The number of basis functions in harmonic balance is chosen differently

1In literature also the term multirate partial differential-algebraic equations (MPDAEs) is used. We only use the term MPDEs in
the remainder of this work and mean with it both partial differential or differential-algebraic equations arising from ODEs or DAEs.
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for each solution component to take into account different activities.

In field-circuit coupled problems often a splitting in subsystems with different activity is possible. If
both the field and circuit part describe the same physical phenomenon, the corresponding characteristic
time constants are similar. The aforementioned methods may be applied in such a case. If the simulation
takes into account different physical phenomena, these phenomena may exhibit different characteristic time
constants (e.g. electro-thermal coupling). This leads to different rates of variations in the unknowns. A
weak coupling to cope with the phenomenon in machine simulation is proposed in [2, 19, 39, 105]. The
circuit and the machine model, whose time constants can be highly different, are simulated separately and
coupled (iteratively) by a temporary lumped-parameter model. This increases the numerical efficiency of the
circuit simulation but comes with the drawback that high-frequency effects within the machine model are
not resolved.

The first mention of a power converter, namely a DC-DC buck converter, solved using MPDEs can be
found in [95, 101], where a reduced-order model based on MPDEs is proposed for radio-frequency circuits
and the buck converter is used as a demonstration example. A similar example has been presented in [97],
where a combination of so-called hierarchical shooting and either FDTD or shooting is employed to solve the
arising MPDEs. Also in [74–76] a simple buck converter is part of the examples. However a more detailed
investigation and application ofMPDEs with focus specifically on power electronic problems has to the author’s
knowledge not been pursued.

1.2 Research goals

As already mentioned, the aim of this work is to develop a multirate method based on the concept of MPDEs.
The idea is to split the solution into fast varying and slowly varying components. The fast varying components
are the ripples of the power converter solution. The slowly varying components are slow transient processes,
e.g. at converter start-up or to control an inverter’s (DC-AC converter) sine output frequency. These solution
components are associated with two artificial time scales. The resulting MPDEs are solved using a combina-
tion of a Ritz-Galerkin approach and a time integration algorithm. The research goals can be summarized as
follows:

1. Investigation of suitable basis functions for the solution expansion in the Galerkin approach. The basis
functions shall take the known C0 continuity in the power converter current ripple into account by
construction, e.g. as suggested by Gyselinck et al. [41].

2. Simulation of different power converter types, namely DC-DC and DC-AC power converters with dif-
ferent types of PWMs (different carriers and sampling techniques). For DC-AC power converters it is
investigated if WaMPDEs offer a possible solution to model the varying duty cycle.

3. Efficient modeling of weak nonlinearities, e.g. as they occur in inductors, in the power converter circuits.

4. Simulation of field-circuit coupled problems. The arising large equation systems which are even further
enlarged by the Galerkin approach need to be dealt with.

5. Investigation of the accuracy and the efficiency of the approach for different numerical examples.
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1.3 Structure of this treatise

The structure of the thesis is as follows. Chapter 2 briefly introduces the mathematical tools and concepts from
electrical engineering which are necessary to understand the remainder of this work. The main Chapter 3
discusses the methodological aspects. It introduces the concept of MPDEs and describes their discretization.
Suitable basis functions are presented. Furthermore, a reasonable choice of initial values is discussed as well
as the extension to different PWMs. In the end, the suitability of WaMPDEs for the simulation of DC-AC
power converters is analyzed. Chapter 4 presents different numerical examples and their simulation using
the MPDE approach. Accuracy and efficiency of the approach is analyzed by comparing it with conventional
time discretization. Finally, Chapter 5 summarizes the main achievements of the thesis and proposes steps
for future research.
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2 Fundamentals

This chapter reviews the tools andmethods frommathematics and electrical engineering which are important
throughout this thesis. It provides the basic knowledge to better understand the following chapters. For a
more detailed introduction to the particular topics, the interested reader is referred to the literature specified
in each section.

2.1 The MAXWELL equations

In this section, the Maxwell equations and their simplifications are discussed. The information is mainly a
summary from standard literature, for instance [51, 62, 69], to which the interested reader is referred for
more details.

Electromagnetic phenomena on a macroscopic level are described by the Maxwell Equations [65].
These date back to the 19th century. James Clerk Maxwell was the physicist who combined the state of the
art knowledge at that time into a feasible set of partial differential equations today known as the Maxwell
equations. As such, he laid the foundation of what is known as classical electrodynamics. The following
vectorial quantities describe electromagnetic fields depending on the position r ∈ R3 and the time t ∈ R:
The electric field or electric field strength e(r, t) ∈ R3, the electric displacement or electric flux density
d(r, t) ∈ R3, the magnetic field or magnetic field strength h(r, t) ∈ R3, and the magnetic induction or mag-
netic flux density b(r, t) ∈ R3. Furthermore, there are the electric charge density ρ(r, t) ∈ R and the electric
current density j(r, t) ∈ R3. TheMaxwell equations relating these field quantities are, in their integral form,
given by

∫

∂S

e(r, t) · dl = − d

dt

∫

S

b(r, t) · dS (2.1)

∫

∂S

h(r, t) · dl =

∫

S

∂d(r, t)

∂t
· dS +

∫

S

j(r, t) · dS (2.2)

∫

∂V

d(r, t) · dS =

∫

V

ρ(r, t)dV (2.3)

∫

∂V

b(r, t) · dS = 0, (2.4)

where V is an arbitrary simply connected volume with ∂V being its boundary surface and S denotes an
arbitrary simply connected surface with ∂S being its boundary contour. The vector dS denotes an infinites-
imally small surface element with orientation, which in case of a volume is by convention always directed
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outwards of the volume and is perpendicular to the surface. The vector dl denotes an infinitesimally small
curve with orientation parallel to the surface contour. We assume that the volumes and surfaces are constant,
i.e. independent of time.

Equation (2.1) is the Faraday law. It states that the electric field strength e integrated along the closed
curve ∂S equals the time derivative of the magnetic flux defined by

Φ =

∫

S

b(r, t) · dS. (2.5)

The integral of the electric field strength along a path l (in this case l = ∂S) is called electric voltage

v(t) =

∫

l

e(r, t) · dl. (2.6)

The Faraday law is also called induction law because it describes the induction of an electric voltage when
the magnetic flux density changes in time.

Equation (2.2) is the Ampère-Maxwell law. It states that the magnetic field strength along the contour
of a surface results from either electric currents, i.e.

i(t) =

∫

S

j(r, t) · dS, (2.7)

flowing through the surface, or a temporal change of the electric flux density through the surface (displace-
ment currents). The displacement currents were contributed by Maxwell. They are not part of the original
Ampère law.

Finally, equations (2.3) and (2.4) are the electric and magnetic Gauss laws, respectively. The electric
Gauss law states that the electric flux density d flowing through the surface of a volume equals the electric
charge

q(t) =

∫

V

ρ(r, t)dV. (2.8)

Consequently the electric flux density is divergence free if there is no charge inside the considered volume.
The electric charge is conserved as long as the divergence of the electric flux density is constant. The mag-
netic Gauss law states that there are no magnetic charges and thus the magnetic flux density is divergence
free.

The field quantities b and h, and d and e are related by material parameters, which can, in the linear
case, be written as

b = µ0h + m, (2.9)

d = ε0e + p, (2.10)

where µ0 and ε0 are the vacuum permeability and vacuum permittivity, respectively, and m and p are called
magnetization and polarization. Magnetization and polarization are associated to the reaction of the mate-
rial’s magnetic and electric dipoles, respectively, onto externally applied fields.

In diamagnetic and paramagnetic materials the magnetization is linearly related to the applied field and
can be written as m = µ0χm(r)h with χm(r) the magnetic susceptibility. Similarly in dielectric materials the
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polarization can be written as p = ε0χe(r)e with χe(r) the electric susceptibility. Inserting this into (2.9) and
(2.10) leads to

b = (1 + χm(r))︸ ︷︷ ︸
µr(r)

µ0h = µr(r)µ0h, (2.11)

d = (1 + χe(r))︸ ︷︷ ︸
εr(r)

ε0h = εr(r)ε0e, (2.12)

where µr(r) and εr(r) are called relative permeability and relative permittivity, respectively. They are either
positive real-valued scalar functions of position (isotropic material) or positive definite real-valued 3× 3 ma-
trix functions of position (anisotropic material). For some types of materials (e.g. ferromagnetic materials,
electrets), the magnetization m and polarization p depend nonlinearly on the field quantities h, b, e, d
and can also be non-zero without externally applied fields. Furthermore, their magnetization or polariza-
tion might depend not only on the currently applied fields but also on the fields applied to it in the past
(hysteresis). Note that there are also materials in which the polarization and magnetization depend on fre-
quency. Those are called dispersive materials. In all these cases the relations (2.11) and (2.12) become more
complicated.

There is an additional relation between the electric field and the current density

j = js + je + jc = js + σ(r)e + jc, (2.13)

which states that the overall current density consists of imprinted electric currents js, currents je = σ(r)e
induced in a conductive material by the electric field, and convection currents jc as a result of free moving
charges. The conductivity σ(r) depends on the material and is either a positive scalar function of position
(isotropicmaterial) or a symmetric positive semi-definite 3×3matrix function of position.

Besides the integral form, the Maxwell equations can also be written in differential form, using the

nabla operator ∇ =
[

∂
∂x

∂
∂y

∂
∂z

]>
, as

∇× e(r, t) = − ∂b(r, t)

∂t
(2.14)

∇× h(r, t) =
∂d(r, t)

∂t
+ j(r, t) (2.15)

∇ · d(r, t) = ρ(r, t) (2.16)

∇ · b(r, t) = 0 (2.17)

which is equivalent to (2.1)-(2.4). To switch between both forms, the theorems of Stokes and Gauss are
applied. These are given by

∫

S

(∇× F) · dS =

∫

∂S

F · dl, and (2.18)

∫

V

∇ · FdV =

∫

∂V

F · dS, (2.19)

respectively, where F is any vector field.

In many applications it is reasonable to use simplified formulations of the Maxwell equations to obtain
more easily solvable equations. In the following the magnetoquasistatic approximation is focused on. For
other simplifications the interested reader is referred to [22, 45].
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2.1.1 Magnetoquasistatic approximation

The magnetoquasistatic (MQS) formulation of the Maxwell equations is useful in applications in which the
derivative of the electric displacement

∥∥∂d
∂t

∥∥ is much smaller than the current density ‖j‖, i.e.
∥∥∂d
∂t

∥∥ � ‖j‖,
and thus can be neglected [104]. To obtain equations which can be solved reasonably simple one writes the
magnetic flux density b and electric field strength e in terms of potentials a(r, t) and φ(r, t) (so called A-φ
formulation) [18] such that

b = ∇× a (2.20)

e = −∂a
∂t
−∇φ. (2.21)

These fulfill equations (2.14) and (2.17). The gauge freedom allows to define the modified magnetic vector
potential (MVP) [24]

a? = a +

∫
∇φdt, (2.22)

which leads to e = −∂a?

∂t . Inserting this and (2.20) into (2.15) yields (assuming zero convection currents)

∇×
(
µ−1∇× a?

)
= −σ∂a

?

∂t
+ js, (2.23)

which possesses a unique solution in conducting domains (σ > 0). In non-conducting domains (σ = 0) an
additional gauge condition, e.g. the Coulomb gauge (∇·a? = 0), has to be applied.

Since in this work only 2D magnetoquasistatic simulations with in-plane magnetic flux and current den-
sity perpendicular to that plane are employed, we assume a? =

[
0 0 az

]>. Furthermore, we utilize
only linear isotropic material, which means that µ is a scalar function of position. From (2.23) we obtain

−∇ · (ν∇az) = −σ∂az

∂t
+ js,z, (2.24)

where ν = µ−1 and js,z denotes the z-component of the current density js. For the solution of this parabolic-
elliptic PDE on a given domainΩ, boundary and initial conditions have to be specified. Dirichlet and Neumann
boundary conditions are the most basic types. Consider the domain Ω as given in Fig. 2.1. Part of its boundary
denoted by ΓN ⊂ ∂Ω is a Neumann boundary, the other ΓD ⊂ ∂Ω is a Dirichlet boundary. The following listing
explains both conditions and their effect on the magnetic flux density b.

1. Dirichlet boundary conditions: The unknown solution, in 2D magnetoquasistatics the MVP az, is given
as a function on the boundary, i.e.

az(r, t) = γD(r), r ∈ ΓD. (2.25)

It controls the normal component of the magnetic flux density, i.e.

b(r, t) · n(r) = ∇ ·






0
0

γD(r)


× n(r)


 , r ∈ ΓD, (2.26)

where n(r) is the normal vector on the surface of Ω. A special case is γD(r) = 0 in which the Dirichlet
boundary condition is called homogeneous. It forces the normal component of the magnetic flux density
to zero such that there is only a tangential component.
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ΓD

ΓN

y
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z

ΓD ∩ ΓN = Ø

−jz
jz

b

b

Figure 2.1: Exemplary 2D computation domain with Dirichlet and Neumann boundary.

2. Neumann boundary condition: The derivative of the unknown solution az is given as a function, i.e.

ν∇az(r, t) · n(r) = γN(r), r ∈ ΓN. (2.27)

It controls the tangential component of the magnetic field strength, i.e.

h(r, t)× n(r) =




0
0

γN(r)


 , r ∈ ΓN. (2.28)

Again, a special case is γN(r) = 0, which is called homogeneous Neumann boundary condition. It
forces the tangential component of the magnetic flux density to zero such that there is only a normal
component.

2.2 Electric circuits

Electric circuits are a connection of different electrical devices with each other. In contrast to field models, the
focus is on the interaction between multiple lumped electric elements. The electrical phenomena governing
these devices are described in a single or multiple equations, which take the physics of theMaxwell equations
into account, often in a simplified form. As a result the detailed processes inside the individual elements are
not considered. The most basic elements in a circuit are resistors, inductors, capacitors and voltage and
current sources. In layouts of electrical circuits they may be represented by symbols as given in Fig. 2.2. The
depicted elements have two ports. Each element forms a branch and is connected through numbered nodes to
the other elements. There are also elements with more than two ports, e.g. transistors, operational amplifiers
and others. The quantities of interest in electric circuits are the voltage v(t), which can be measured between
two nodes, and the current i(t) flowing through the elements (branches). Fig. 2.3 shows a simple example
of a low-pass filter, i.e. a circuit, which allows low-frequent signals to pass from the voltage source vi to the
load R and which blocks high-frequent signals.
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R vR

iR

(a)

L vL

iL

(b)

C vC

iC

(c)

vV

iV

(d)

iI

(e)

Figure 2.2: Representation of the basic electrical elements: (a) resistor, (b) inductor, (c) capacitor, and (d)
voltage and (e) current source.

Before we take a closer look at the behavior of the single elements, let us focus on the properties of
the entire electric circuit on a macroscopic level, i.e. the distribution of voltages and currents in the net-
work. Those are provided by the two Kirchhoff laws. To obtain the first law of Kirchhoff, we apply the
divergence to the Ampère law (2.15) and obtain

0 = ∇ · ∂d
∂t

+∇ · j, (2.29)

where the vector identity ∇ · (∇× h) = 0 was used. Inserting (2.16) into this equation yields the continuity
equation

∇ · j = −∂ρ
∂t
, (2.30)

or in integral form ∫

∂V

j · dS = −
∫

V

∂ρ

∂t
dV. (2.31)

It states that if the charge inside a volume does not change, then the amount of current flowing in and out
must be the same. In other words, for instance, if a current only flows into a volume, the charge inside the
volume increases. In Fig. 2.4a, one node of a circuit is shown to which different branches are connected. We
define a volume V around this node which surface consists of different subsurfaces Sk. These subsurfaces are
intersected by the currents ik. Inside the volume V one assumes that no charges can be stored. Consequently

R vRCvC

L

vL

iL

vi

Figure 2.3: Simple circuit example.
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S2
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V

(a)

S

l1
l2

l3

l4
l5

l6

v1

v2

v3

v4v5

v6

(b)

Figure 2.4: (a) Circuit branches connected to a node. (b) Circuit branches connected to each other forming
a loop. The branches can consist of any electrical element which is a two-port.

the right-hand side of (2.31) vanishes and the left-hand side integral becomes

∫

∂V

j · dS =

∫

S1

j · dS +

∫

S2

j · dS + . . .+

∫

SNb

j · dS =

Nb∑

k=1

∫

Sk

j · dS

︸ ︷︷ ︸
=ik

=

Nb∑

k=1

ik = 0, (2.32)

where Nb is the number of branches connected to the node. This is the first Kirchhoff law and states that
the sum of all currents flowing to a node must be zero. For the second Kirchhoff law consider the loop
depicted in Fig. 2.4b. A loop is a set of Nl branches with length lk, k ∈ 1, . . . , Nl connected to nodes as such
that they form a closed curve. The branches define the contour of the surface S. Assuming no magnetic flux
is flowing through this surface S, the Faraday law (2.1) becomes

∫

∂S

e · dl =

Nl∑

k=1

∫

lk

e · dl

︸ ︷︷ ︸
=vk

=

Nl∑

k=1

vk = 0. (2.33)

This is the second Kirchhoff law and states that the sum of voltages across branches in a loop is always
zero.

The behavior of the individual electrical elements, i.e. the relation between voltage across the element
and current through the element, are determined from theMaxwell equations. For resistors, capacitors and
inductors they are given in the following enumeration:

1. Resistors are devices consisting of conductive material with a high conductivity. Consequently they
dissipate electrical energy as heat (Joule heating). The relation between voltage and current in a
resistor is given by

v(t) = R i(t). (2.34)
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Fig. 2.5a shows the simplest case of a resistor. It consists of two perfect electric conductor (PEC) ports
between which a conductive material with conductivity σ is present. Its resistance R is calculated by

R =
v(t)

i(t)
=

∫
l

e(r, t) · dl
∫
S

je(r, t) · dS =

∫
l

e(r, t) · dl
∫
S

σ e(r, t) · dS =
l

σS
, (2.35)

where l is the distance between the resistor ports and S is the cross-section area of the ports as depicted
in Fig. 2.5a.

2. Capacitors are devices which store energy in form of electric charges. A capacitor is characterized by its
capacitance C, which defines the amount of electrical charges q(t) the capacitor stores when a voltage
v(t) is applied to it. The relation is given by

q(t) = C v(t). (2.36)

The simplest capacitor model is depicted in Fig. 2.5b. It consists of two PEC ports. The volume between
the ports is filled with dielectric material with permittivity ε. The capacitance of this capacitor is sought
by

C =
q(t)

v(t)
=

∫
V

ρ(r, t)dV
∫
l

e(r, t) · dl =

∫
∂V

d(r, t) · dS
∫
l

e(r, t) · dl =

∫
∂V

ε e(r, t) · dS
∫
l

e(r, t) · dl =
εS

l
, (2.37)

where the electric Gauss law (2.3) is applied. l is the distance between the capacitor ports and S is
the cross-section area of the ports as depicted in Fig. 2.5b. The change of electrical charges inside the
capacitor is associated to the current flowing through the capacitor

i(t) =
d

dt
q(t). (2.38)

This can be obtained from the continuity equation (2.30). Differentiating (2.36) with respect to t and
inserting (2.38) leads to

d

dt
v(t) =

1

C
i(t), (2.39)

which describes the relation between current and voltage of a capacitor.

3. Inductors are devices which store energy in form of magnetic fields. An inductor is characterized by its
inductance L which relates the magnetic flux through the inductor to the current, i.e.

Φ(t) = L i(t). (2.40)

In Fig. 2.6 a solenoidal inductor is depicted. To calculate its inductance, the expression

L =
Φ(t)

i(t)
=

∫
S

b(r, t) · dS

i(t)
=

∫
S

µh(r, t) · dS

i(t)
(2.41)

needs to be solved. This is accomplished by calculating the magnetic field strength h generated by the
current i(t) and inserting into the above expression. The magnetic field strength is implicitly given by
the Ampère law. If the iron core of the inductor in Fig. 2.6 is removed, its inductance can be estimated
by

L ≈ µ0N
2
t S

l
, (2.42)
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e σ

port (PEC)

i(t)

v(t)

(a)

S l

e ε

port (PEC)

i(t)

v(t)

V

(b)

Figure 2.5: (a) Simple resistor model consisting of two perfectly conducting ports. The volume in between is
filled with conductivematerial. (b) Simple capacitor model consisting of two perfectly conducting
ports (PEC). The volume in between is filled with dielectric material.

where Nt is the number of turns of copper wire, l is the longitudinal length of the wounded coil and S
is the cross-section area as depicted in Fig. 2.6. Using the relation

v(t) =
d

dt
Φ(t), (2.43)

which can be derived from Faraday’s law (2.1), the final constitutive equation is

v(t) = L
d

dt
i(t). (2.44)

For ideal resistors, capacitors and inductors, the characteristic quantities R, C and L are constant. In reality
these elements are often nonlinear or suffer from parasitic effects which might need to be taken into account.
In those casesR,C andLmay be functions of time, frequency, voltage and/or current. Note that in those cases
the chain rule of differentiation has to be applied in equations (2.38) and (2.43).

To complete the enumeration of electrical elements displayed in Fig. 2.2, ideal voltage and current
sources are power sources which provide as much power as the circuit needs and are not limited in their power
output. As a consequence, a voltage source provides a given voltage and as much current as a circuit needs
and a current source provides a given current and as much voltage as a circuit needs.

The elements depicted in Fig. 2.2 are only the most common ones. As already mentioned, there are other
devices like transistors, diodes, operational amplifiers and many more, whose relation between voltages and
currents is often nonlinear.
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b

S

Figure 2.6: Inductor consisting of an iron core and two layers of copper wire. The magnetic flux density b
inside the iron core is decisive for the inductance.

To calculate the voltages and currents throughout the electric circuit, the Kirchhoff laws and constitu-
tive equations of the elements are used to obtain a system of equations in which the unknowns are the voltages
and/or currents. To automate this process on a computer, different methods have been developed. Among
those are the modified nodal analysis (MNA) [46] and the sparse tableau approach (STA) [42]. Where neces-
sary the MNA is employed in this work. It uses graph theory to obtain so called incidence matrices, which are
necessary to construct the final systems of equations. For more information on the arising DAEs the interested
reader is referred to, for instance, [27, 29, 30].

2.3 Discretization using finite element methods

The finite element method (FEM) is a common approach to discretize theMaxwell equations and thus enable
a numerical solution on the computer. Its idea is to use a set of basis functions to approximate the solution. In
classical FEM one usually utilizes so-called Whitney elements of lowest order. A weak formulation of the PDEs
in question is derived to accommodate the smoothness of the basis functions employed for the approximation.
This process is briefly described in the following. In a first step the necessary function spaces are defined and
the concept of weak derivatives is explained. In the second part the weak formulation is derived. As example
equation the magnetostatic form of (2.24) is used, i.e, the time dependency is neglected, leading to the
elliptic problem

−∇ · (ν∇az(r)) = js,z(r). (2.45)

The presented information follows [11, 31, 93].
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2.3.1 Introduction to Hilbert spaces

Let Ω be an open, bounded, convex subset of R2 with Lipschitz continuous boundary ∂Ω. The space of
square-integrable functions L2(Ω) is defined by

L2(Ω) =



u(r)

∣∣∣∣∣∣

∫

Ω

|u(r)|2 dΩ <∞



 . (2.46)

Equipped with the scalar product

(u,w)L2(Ω) =

∫

Ω

u(r)w(r)dΩ, (2.47)

and the norm
‖u‖L2(Ω) =

√
(u, u)L2(Ω), (2.48)

it forms a Hilbert space [11, Chapter 2.§1].

To understandweak derivatives, letC∞0 (Ω) be the space of infinitely continuously differentiable functions
which vanish on the boundary. Furthermore, define a differential operator Dα for any w(r) ∈ C∞0 (Ω) such
that

Dαw =
∂|α|w

∂rα1
1 ∂rα2

2

, (2.49)

where α = (α1, α2), αk ∈ N ∀k = 1, 2 is a multi-index, |α| = α1 + α2, and r1, r2 are the components of
the vector r. A function u ∈ L2(Ω) possesses the weak derivative ϕ in L2(Ω), if the equation [11, Chapter
2.§1]

(w,ϕ)L2(Ω) = (−1)|α|(∂αw, u)L2(Ω) ∀w ∈ C∞0 (Ω) (2.50)

holds. Often the weak derivative is also denoted by ϕ = Dαu.

The L2(Ω) space contains functions which are discontinuous. For some quantities more regularity is
required. Therefore one defines another Hilbert space, denoted by H1(Ω), which contains all functions u in
L2(Ω) whose weak derivatives are also in L2(Ω). The space is thus given by

H1(Ω) :=
{
u ∈ L2(Ω)

∣∣ Dαu ∈ L2(Ω), |α| ≤ 1
}

(2.51)

and equipped with the scalar product [11, Chapter 2.§1]

(u,w)H1(Ω) =
∑

|α|≤1

(∂αu, ∂αw)L2(Ω) (2.52)

and the corresponding norm

‖u‖H1(Ω) =
√

(u, u)H1(Ω). (2.53)

For more information on Hilbert spaces for the parabolic problem (2.24) (without neglecting the time depen-
dency), the reader is referred to [31, Chapter 7.1].
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2.3.2 Weak formulation

The weak formulation of equation (2.45) is derived by multiplying it with test functions w ∈W , whereW is
a function space, and integrating over the computation domain Ω, i.e.

∫

Ω

−∇ · (ν∇az)w dΩ =

∫

Ω

js,zw dΩ. (2.54)

Using the vector identityw∇·(ν∇az) = ∇·(w ν∇az)−ν∇az·∇w on the left-hand side leads to

−
∫

Ω

∇ · (w ν∇az)dΩ +

∫

Ω

ν∇az · ∇w dΩ =

∫

Ω

js,zw dΩ. (2.55)

This can be rewritten, using the theorem of Gauss (2.19) on the first term, such that

−
∫

∂Ω

w ν∇az · ndΓ +

∫

Ω

ν∇az · ∇w dΩ =

∫

Ω

js,zw dΩ, (2.56)

where n is the normal unit vector perpendicular to the surface ∂Ω. To obtain (2.56) from (2.54) it is also
possible to apply the Green formula [93, Chapter 1.3]. Defining the bilinear form

a(u,w) =

∫

Ω

ν∇u · ∇w dΩ = (ν∇u,∇w)L2(Ω), (2.57)

equation (2.56) can be written as

a(az, w) = (js,z, w)L2(Ω) + (ν∇az · n, w)L2(∂Ω) , (2.58)

where the second term on the right-hand side is the boundary term.

To solve this problem on the domain depicted in Fig. 2.1, the Dirichlet and Neumann boundary conditions
(2.25) and (2.27), respectively, have to be incorporated. This is achieved by taking the Neumann boundary
into account through the boundary term in (2.58) and the Dirichlet boundary through a proper modification
of the spaces. Consequently, the Neumann boundary condition is called natural boundary condition, while
the Dirichlet boundary condition is called essential boundary condition. To implement non-homogeneous
Dirichlet boundary conditions the solution az is written as az = ãz + ug, where ug ∈ H1(Ω) is an arbitrary
but fixed function which fulfills the Dirichlet boundary condition, i.e. ug|ΓD

= γD. The resulting problem can
now be written as follows:

Find ãz ∈W =
{
w ∈ H1(Ω)

∣∣∣w|ΓD
= 0
}
such that

a(ãz, w) = (js,z, w)L2(Ω) + (γN, w)L2(ΓN) − a(ug, w), ∀w ∈W. (2.59)

Note that since w vanishes on the Dirichlet boundary, the boundary term is only evaluated on the Neumann
part of the boundary. The final solution is given by az = ãz +ug. As one can see, the test functions w are from
the same space in which ãz is sought. The resulting method, after discretization, is called a Ritz-Galerkin
method. If the spaces of solution and test functions are different, one speaks of a Petrov-Galerkin method.
Existence and uniqueness of the solution of (2.59) is provided by the Lax-Milgram theorem, see e.g. [93,
Chapter 5.1.1] for more details.
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2.3.3 Ritz-Galerkin approach

To solve (2.59) numerically on a computer, it needs to be discretized. LetWh be a finite dimensional subspace
of W . The subscript denotes a mesh parameter h > 0 but small. It can be the element size in case finite
elements are used, or the inverse of the polynomial degree, in case a spectral method is used [93, Chapter
5.2]. From this subspace we expect that

lim
h→0

inf
wh∈Wh

‖w − wh‖ = 0 ∀w ∈W, (2.60)

holds, meaning that for smaller h, the quality of approximation of functions inW by functions inWh improves.
In a next step a basis wk, k = 0, . . . , Np of the space Wh is chosen and the unknown ãz from (2.59) is
represented by a sum of these basis functions weighted with coefficients such that

ãz(r) ≈
Np∑

k=0

ãz,kwk(r), (2.61)

where ãz,k are the coefficients. The same holds for the already known Dirichlet boundary conditions, i.e.

ug(r) ≈
Np∑

k=0

ug,k wk(r). (2.62)

Inserting the solution expansion into (2.59) and writing the equations for each of the test functions wk, a
system of linear equations arises

Np∑

k=0

ãz,k

∫

Ω

ν∇wk · ∇wl dΩ

︸ ︷︷ ︸
Klk

=

∫

Ω

js,zwl dΩ

︸ ︷︷ ︸
js,z,l

+

∫

∂Ω

γNwl dΓ

︸ ︷︷ ︸
γN,l

−
Np∑

k=0

ug,k

∫

Ω

ν∇wk · ∇wl dΩ

︸ ︷︷ ︸
Klk

, (2.63)

where Klk is the entry in row l and column k of the matrix K, js,z,l and γN,l are the l-th entry of the col-
umn vectors js,z and γN, respectively, and ãz,k and ug,k are the k-th entry of the column vector ãz and ug,
respectively. With these abbreviations the equation system is

Kãz = js,z + γN −Kug. (2.64)

The matrix K is in analogy with mechanics often called stiffness matrix.

If the magnetoquasistatic problem (2.24) is considered, there exists an additional term in the final system
of equations leading to the IVP

M
dãz(t)

dt
+ Kãz(t) = js,z + γN −Kug

ãz(0) = ã(0)
z , (2.65)

where
Mlk =

∫

Ω

σ wk wl dΩ, (2.66)

are the entries of the conductivity matrix and ã
(0)
z is the initial value. The coefficients ãz are functions of time

such that the solution az is now a function of time as well and given by

az(r, t) =

Np∑

k=0

(ãz,k(t) + ug,k)wk(r) (2.67)
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Figure 2.7: Exemplary mesh with elements and nodes.

2.3.4 Classical finite element basis functions

The computation domain in classical 2D FEM is usually discretized by a triangular mesh [102]. Each triangle
is called an element and is defined by three nodes. The k-th node of the mesh is associated with a so-called
nodal basis function wk, which is maximum at this particular node and decays linearly (in case of lowest order
basis functions) towards the neighboring nodes in each element. An exemplary mesh with a few elements
and nodes is depicted in Fig. 2.7. The nodal basis functions wk are given by

wk(r) =

{
ς1,k,l r1 + ς2,k,l r2 + ς3,k,l for all r ∈ Ωl ∧ node k is a vertex of Ωl

0 otherwise,
(2.68)

where ς1,k,l, ς2,k,l, ς3,k,l are coefficients and r1, r2 correspond to the x, y coordinate, respectively. On each
triangle Ωl the ς1,k,l, ς2,k,l, ς3,k,l are found by stipulating that

wk(r) =

{
1 for r = rk where rk is a vertex of Ωl

0 for r = rm where rm is a vertex of Ωl ∧ m 6= k,
(2.69)

where rk denotes the position of node k in the computational domain according to Fig. 2.7. This means
that the basis functions are 1 at their respective nodes and decay linearly towards the neighboring nodes,
where they finally become zero. Due to the resulting shape of the basis functions, they are also called hat
functions.

For easing the construction of the matrices in (2.65), usually a mapping of each of the triangles to-
wards a reference triangle is established. For more information on this, the interested reader is referred to
[69].
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2.4 Coupling of field and circuit models

In many applications the simulation using only a field or a circuit model may not be sufficient to obtain
the required results. The reason for this is twofold. First, circuit models simplify the electrical elements to
enable a very simple description by only a few or one parameter. This can be disadvantageous if a higher
model accuracy is required, but advantageous because the computational effort is relatively small. Secondly,
field models are accurate in terms of modeling the physical phenomena, but also very expensive in terms of
computational effort. Therefore a mixture of both is often desirable. To establish a field-circuit coupling it
is necessary to connect the degrees of freedom of the field model, e.g. the MVP a in case of magnetostatic
or -quasistatic problems, with the voltages and currents which are associated with an electrical element in
the circuit model. The electrical element is characterized by the voltage vstr and the current istr. For the
coupling, the concept of winding functions [106] is utilized. Depending on the type of conductor which is
used in the field model, i.e. stranded conductor or solid conductor, the winding function model differs. A
stranded conductor consists of many thin conducting wires (diameter below skin depth) which are isolated
from each other while a solid conductor is made of a massive block of conducting material. Therefore a
solid conductor is prone to eddy current losses, while in a stranded conductor they are small or often even
neglected. In the following the focus lies on the stranded-conductor model which is commonly employed for
coils.

The essential assumption of (current-oriented) stranded-conductor models is that on the cross-section
of each wire the current density is constant [106]. This way in a 2D field model, assuming there is only one
coil, it can be expressed as

js,z(r, t) = χstr,z(r) istr(t), (2.70)

where χstr,z is the winding function distributing the current istr across the conductors in the computation
domain, i.e. r ∈ Ω. It has to fulfill the condition

∫

Ω

χstr,z(r)dΩ = Nt, (2.71)

where Ω is the 2D computation domain and Nt is the number of turns of the coil.

To obtain the voltage drop along the conductors, the magnetic flux linkage is needed. It is given by

Φ(t) =

∫

Ω

χstr,z(r) az(r, t) lz dΩ, (2.72)

where lz is the length of the field model in z-direction. According to the Faraday law (2.1) the voltage drop
along the stranded conductor consists of an induced voltage, i.e. dΦ(t)

dt . Additionally there is also a resistive
voltage drop due to the non-zero conductivity of the stranded conductors leading to

vstr(t) = Rstristr(t) +
dΦ(t)

dt
, (2.73)

where Rstr is the resistance of the stranded conductor. It can be calculated by

Rstr =

∫

Ω

(χstr,z(r))2 lz
σstrγstr

dΩ. (2.74)
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where σstr is the conductivity of the conductormaterial and γstr ∈ (0, 1] is called fill factor. It defines howmuch
conducting material compared to isolating material is used, considering the cross-section of the stranded
conductor. If the factor is 1 it only contains conducting material, if near 0, the material is mostly made of
isolating material.

The discretization of the continuous formulation towards a discrete field model is straight-forward and
similar as in (2.63). The discretized winding function is a vector Xstr ∈ R(Np+1)×1, where the l-th element
is given by

Xstr,l =

∫

Ω

χstr,z(r)wl(r)dΩ. (2.75)

The discrete counterpart to (2.70) is consequently

js,z(t) = Xstristr(t). (2.76)

Similarly, the magnetic flux linkage (2.72) becomes

Φ(t) ≈ X>str az(t) lz, (2.77)

where az(t) is the discrete vector of the MVP. Those in combination with (2.73) give voltage and current
necessary for the coupling with a circuit. For more information on field-circuit coupling the reader is referred
to [18, 20, 106] and the references therein. They also treat the coupling for solid conductors which has not
been discussed here.

2.5 Ordinary differential and differential-algebraic equations

Natural phenomena, which are deterministic, can often be described by ordinary differential equations
(ODEs) or differential-algebraic equations (DAEs). For instance the movement of a pendulum in angular
coordinates is modeled using a simple ODE. However, in cartesian coordinates the equations of the pendu-
lum become a rather complicated DAE, see [43, page 463]. Another example are electrical circuits, or field
models which are semi-discretized in space. The resulting equations describe the phenomena depending only
on time and not on space.

In this section ODEs and DAEs are introduced. The explanations start with ODEs and the existence and
uniqueness of solutions thereof. Subsequently the difference to DAEs is highlighted and the index concept
to characterize DAEs is mentioned. The section is concluded by explaining two discretization techniques to
numerically solve ODEs and DAEs. The summarized information follows commonly known literature [12, 17,
43, 64].

The equation system given by
d

dt
xd = f(xd, t) (2.78)

is called a first-order system of ODEs, where xd(t) ∈ RNd is the unknown solution vector, f(xd, t) ∈ RNd

is a vector function and t ∈ R is the time. The Jacobian matrix of f(xd, t) is denoted by ∂f
∂xd

and shall be
non-singular. The term “first-order” denotes that only the first derivative of the solution is present. To solve
these ODEs, initial values have to be specified, often denoted by t(0) and x

(0)
d = xd(t(0)). The set of equations

(2.78) with initial values, called initial value problem (IVP), has a unique solution if f is Lipschitz-continuous
[64, Chapter V.2]. Weakened conditions are provided by Carathéodory, under which a solution even exists if
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f is only continuous for almost all t [33, Chapter 1]. In the case of ideal pulsed excitations as in the following
Section 2.6, the problem can also be regarded as a sequence of IVPs, where for each IVP the function f is
Lipschitz-continuous again. Besides existence and uniqueness of the solution another important property
of the IVP is stability. The notion of stability deals with the error in the solution of (2.78) resulting from
small perturbations in the initial values and/or the right-hand side f . If the error remains bounded for any
t > t(0), the IVP is called Lyapunov stable [64, Chapter V.2]. If the function f is linearly dependent on the
solution, i.e. for instance if f(xd, t) = Bxd + c(t), and c(t) is sufficiently simple, then an analytic solution is
possible [17].

Adding additional algebraic constraints to (2.78) leads to amodified system of equations

d

dt
xd = f(xd,xa, t), (2.79)

0 = g(xd,xa), (2.80)

where xa(t) ∈ RNa are additional variables and g ∈ RNa is the constraint function. The system (2.79), (2.80)
is called differential-algebraic, since not only a differential but also an algebraic part is present. The DAEs in
this form are also called semi-explicit [12, Chapter 1.2].

The difficulty solving DAEs is generally higher than when solving ODEs. The theory on existence and
uniqueness of solutions is more involved [12, Chapter 2]. The same holds for the stability properties [60].
Additionally the choice of initial values is not trivial anymore, since they need to satisfy the constraints (2.80).
To characterize the DAEs the concept of DAE index is used. There are a number of these index concepts, e.g.
differentiability index, tractability index, perturbation index, see [28] for more details. In the following the
differentiability index is shortly explained on the DAEs (2.79), (2.80). Differentiating the constraint term
(2.80) leads to [12, Chapter 2.2]

∂g

∂xd

dxd

dt
+

∂g

∂xa

dxa

dt
=

dg

dt
. (2.81)

If the Jacobian matrix ∂g
∂xa

is non-singular, then this is a differential equation determining the additional
variables xa(t) and in connection with (2.79) leads to a system of ODEs. This way, the system of DAEs was
reduced to a system of ODEs (index reduction). The differentiability index denotes the number of differ-
entiations which are necessary to reduce the DAEs (2.79), (2.80) to ODEs. If the Jacobian matrix ∂g

∂xa
is

non-singular, the index is 1, otherwise the index is 2 or higher. In the remainder of this work only DAEs of
index 1 are considered.

To find consistent initial values of the index-1 system (2.79), (2.80) the following procedure is ap-
plied

1. The differential variables are fixed to the desired initial values x(0)
d at t(0).

2. The algebraic variables are calculated solving (2.80) by a Newton-Raphson scheme, yielding x
(0)
a .

3. The initial slope is calculated by inserting t(0), x(0)
d , x(0)

a into (2.79) and evaluating which leads to
dxd(t)

dt

∣∣∣
t=t(0)
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2.5.1 Discretization using backward differentiation formulas and Runge-Kutta methods

The DAEs (2.79), (2.80) can often be written as

A
dx

dt
= c(t)−B(x, t)x(t), (2.82)

which means that differential and algebraic variables are summarized in the same vector x and the informa-
tion about which variables are differential and which are algebraic is incorporated in the mass matrix A. If
A is singular, (2.82) are DAEs, otherwise ODEs.

To solve these ODEs or DAEs there are a number of numerical methods. One distinguishes generally be-
tween explicit and implicit methods. Although the explicit methods are computationally less expensive than
implicit ones, the focus here lies on implicit methods only, since they provide the necessary numerical stabil-
ity for the differential equations at hand. What is more, explicit methods cannot be applied in case of DAEs
due to the algebraic equations. In the following the class of backward differentiation formulas (BDFs) and
implicit Runge-Kutta (IRK) methods are discussed briefly. Furthermore, the notion of stiffness of ODEs and
DAEs and the stability of the discussed time integration schemes are summarized.

The idea of the BDFs is to replace the derivative from (2.82) at time instant t(n) by finite difference (FD)
formulas

dx

dt

∣∣∣∣
t=t(n)

≈ 1

h

mfd∑

i=0

αfd
i x(n−i), (2.83)

where αfd
i are coefficients and x(n−i) = x(t(n−i)). Inserting this into the differential equations (2.82) yields

A
1

h

mfd∑

i=0

αfd
i x(n−i) = c

(
t(n)
)
−B

(
x(n), t(n)

)
x(n), (2.84)

which uses the solution at mfd past time instants to offer the solution at the current time instant t(n). For
the simple backward difference formula with mfd = 1, αfd

0 = 1, αfd
1 = −1, the resulting method is called

backward Euler or BDF1. For mfd > 1 the coefficients αfd
i are found by requiring optimal consistency order

[64, Chapter VIII.6]. To solve the nonlinear equations (2.84) in each step, usually a Newton-Raphson scheme
is applied. Due to the fact that BDFs use the solution at several distinct time instants, they belong to the class
of linear multi-step methods. For more information the interested reader is referred to [64, Chapter VII.1] or
[12, Chapter 3.1].

Opposed to the BDFs, the IRK methods are one-step methods. To obtain the same accuracy as BDFs,
they typically need more evaluations of the right-hand side of (2.82). Applying an IRK method to (2.82)
yields

x(n) = x(n−1) + h

mirk∑

l=1

αirk
l kl, (2.85)

0 = c
(
t(n−1) + βirk

i h
)
−B

(
x(n−1) + h

mirk∑

j=1

γirk
ij kj , t

(n−1) + βirk
i h

)(
x(n−1) + h

mirk∑

j=1

γirk
ij kj

)
−Aki,

(2.86)

for all 1 ≤ i ≤ mirk, where h is the step size, αirk
i , βirk

i , γirk
ij are coefficients and mirk is called the number

of stages of the IRK method. Similarly as for the BDFs, to solve the nonlinear equations (2.86) in each step,
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a Newton-Raphson scheme is applied. For a compact notation of the scheme, the Butcher tableau can be
utilized. For more information see [64, Chapter III.1] and [12, Chapter 4].

To determine stability of the time integration schemes, they are (theoretically) applied to the scalar
Dahlquist test equation [43]

dx

dt
= λx(t), (2.87)

where λ ∈ C is a parameter to control the stiffness. The solution of this equation is given by

x(t) = eλt . (2.88)

This means that if λ contains an imaginary part, there will be a harmonic (sinusoidal) solution component
and the real part of λ determines whether the solution is undamped (Re(λ) = 0), damped (Re(λ) < 0) or
amplified (Re(λ) > 0). The amplified case is typically not interesting since without an excitation no physically
existing system will amplify itself. Discretizing (2.87), the solution at time steps t(n), t(n+1), . . . can be written
as

x(n+1) = Ψ(λh)x(n) (2.89)

where Ψ(λh) is called increment function [64, Chapter VIII.4], λ is the parameter from (2.87) and h is the
step size. Each time integration scheme has its individual increment function. The stability region S of a time
integration scheme is defined by [64, Chapter VIII.5]

S :=
{
z ∈ C

∣∣∣ |Ψ(z)| ≤ 1
}
, (2.90)

where z = λh. This is the region, where the time integration scheme does not artificially amplify the mag-
nitude of the solution. A method is called A-stable if the stability region contains the negative complex
half-plane, i.e. {

z ∈ C
∣∣∣ Re(z) ≤ 0

}
⊂ S. (2.91)

It is called A(α)-stable if
{
z ∈ C

∣∣∣ − α < π − arg(z) < α, 0 < α <
π

2

}
⊂ S. (2.92)

The BDFs (2.84) for mfd ≤ 2 are A-stable. For 2 < mfd ≤ 6 they are only A(α)-stable [64, Chapter VIII.5].
The stability regions for mfd = 3 and mfd = 5 are exemplary depicted in Fig. 2.8. Concerning the IRK
methods, it is possible to construct methods which are A-stable, see [43, Chapter IV.5]. The advantage of
A-stable methods is that the step size h is not restricted by stability concerns. There are differential equations,
in which this is of particular importance. Those differential equations are called stiff. With explicit schemes
which only exhibit a very limited stability region, it is hardly possible to solve these equations efficiently since
the step size must often be chosen excessively small to guarantee a convergence of the solution even if the
accuracy of the solution does not require such a small step size.

2.6 Pulse-width modulation and pulsed excitation

The term pulse-width modulation (PWM) is often used when speaking about power converters. Essentially a
PWM signal is a pulsed signal as depicted in Fig. 2.9, whose pulse lengths are modulated in a specific way. In
power converters this technique is applied to control the output voltage or current of the converter. The aim
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Figure 2.8: Stability region of BDF methods for (a)mfd = 3 and (b)mfd = 5. If z lies in the area outside the
green line, there is no numerical instability.

of the PWM signal is that its time-averaged value is the same or at least closely related to a reference signal.
This section introduces a few of the different concepts to generate PWM signals. It follows the information
given in [47, 68, 118].

The exemplary PWM signal depicted in Fig. 2.9 is ideal meaning that the rise and fall times of the signal
are zero and thus the steepness of the rising flank and falling flank are infinite. This is unlike in reality,
when generating the PWM signal with a circuit using transistors. However, also in reality the steepness
of the flanks is usually very high and thus the rise and fall times can often be neglected [118, Chapter
2.1]

There are four important quantities of PWM signals. First, the switching frequency fs, which is the inverse
of the switching period Ts of one pulse (on and off time). The switching period is often also referred to as
switching cycle or switching interval. One distinguishes between constant and varying switching-frequency
PWM. In the following only constant switching-frequency PWM is considered. Second, the duty cycle D
which is the relation between the on-time 4ton and the switching period, i.e. D = 4ton

Ts
. The third and

fourth quantity are given by the amplitude modulation ratio (or index) and the frequency modulation ratio
(or index) [68, Chapter 8.2.1]. Given a reference signal d(t), the corresponding PWM signal is generated by
comparing the reference to a carrier s(t). The result is mathematically given by

c(t) = sgn(d(t)− s(t)), (2.93)

where sgn is the sign function. The amplitude modulation index is the ratio between the maximum values of
the usually sinusoidal reference signal and the carrier signal, i.e.

ma =
max
t
|d(t)|

max
t
|s(t)| . (2.94)

If 0 ≤ ma ≤ 1 the amplitude of the fundamental frequency component of the output signal c(t) is proportional
to ma. If ma > 1 one speaks of overmodulation. The frequency modulation index is given by the ratio of the
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Figure 2.10: The three different carriers mainly used in PWM generation.

reference signal frequency fac and the carrier frequency

mf =
fac

fs
. (2.95)

The frequency modulation index has an influence on the harmonics of the output signal, while the amplitude
modulation index only has an influence in the case ma > 1.

Themost commonly applied carriers are listed in the following [118, Chapter 2.1]:

• The sawtooth carrier is depicted in Fig. 2.10a. It leads to a PWM signal in which the rising flank is
always at fixed time instants. In this case, always at the beginning of a switching interval. The falling
flank, in contrast, is modulated with respect to the reference signal.

• The inverted sawtooth carrier is depicted in Fig. 2.10b. Since the sawtooth is inverted, the rising flank
of the PWM signal is now modulated while the falling flank is at fixed time instants, namely the end of
the switching interval.

• The triangle carrier is depicted in Fig. 2.10c. In this case both, the rising and falling flank of the PWM
signal are modulated.

All three carriers are different with regard to their harmonic properties and are therefore used in different ap-
plications. Formore information the interested reader is referred to [118, Chapter 2.2].

The generation of a PWM signal as given by (2.93) requires that the reference signal d(t) is continuously
given for any time instant. Although this is true for an analog application with analog circuitry, it is unpractical
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Figure 2.11: Regular versus natural sampling and its effect on the generated PWM signal. For natural sam-
pling the switching occurs at the intersection of d(t) and s(t). For regular sampling, the value
d(0) is held constant throughout the interval and thus the switching occurs at a different time.

when considering digital applications. The reason for this is that in digital applications the signals are sampled
in certain time intervals and thus are only given as a set of discrete values and not as continuous functions.
Besides the technical problems in reality, using (2.93) in combination with a control system in a computer
simulation can cause extremely small time steps and thus excessively long simulation durations. To overcome
this problem, the reference signal is sampled before using (2.93) and held constant until the next sample
is taken. Usually the samples are taken at the beginning or end of a switching period or at the position of
the peak or valley of the carrier signal. The resulting PWM signal is called regularly sampled opposed to
the analog variant without sampling, which is referred to as natural sampling. Another sampling technique
called “Direct PWM” is mentioned in [47, Chapter 3.1].

In Fig. 2.11 the resulting PWM signal when using regular sampling and natural sampling is depicted.
The reference signal in this example is sampled at the beginning of the switching interval. The carrier is a
sawtooth.
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3 Efficient power converter simulation using multirate
partial differential equations

The conventional time discretization of power converters with idealized pulse-width modulation (PWM) ex-
citation is computationally expensive since small time steps are necessary to resolve the ripples in the power
converter output (solution) or the discontinuities in the excitation with the desired accuracy. If the solver
features adaptive time stepping a switch event detection is often necessary [114]. The switch event detec-
tion recognizes when the excitation abruptly changes its state and restarts the solver at this position with
the updated excitation. As initial value the result of the last step is used. The switch event detection lim-
its the applicability of high-order multi-step solvers since they require a certain number of known solutions
at past time instances. These are not necessarily available if the switching periods are small. Moreover if
switch events do not occur at the beginning or end of time steps, according to [114], many tools for elec-
tromagnetic transient simulation either perform the switch event at the end of a time step or use linear
interpolation to calculate the approximate position of the switch event. This reduces the order of the overall
time stepping to linear or quadratic even if higher order methods are used between the switch events. If no
switch event detection is available, the adaptive time stepping may take smaller and smaller time steps until
the solver aborts the calculation because the time steps become too small to be numerically resolved on a
computer.

This chapter proposes a multirate approach for a more efficient simulation of switch-mode power con-
verters. It is based on the concept of multirate partial differential equations (MPDEs) [10, 97]. These allow to
associate different solution components with different time scales. Consider the example of the buck converter
circuit as depicted in Fig. 3.1. This converter belongs to the class of DC-DC converters generating an output
voltage smaller than the input voltage. The excitation, capacitor voltage and inductor current are shown in
Fig. 3.2. The capacitor voltage and inductor current can be split into fast varying periodic ripples which are
modulated onto a slowly varying transient. Using the MPDEs these two components can be associated to a
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Figure 3.1: Example of a simplified buck converter circuit. Figure based on [80] ©2019 IEEE.
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Figure 3.2: Solution and excitation of the simplified buck converter at a switching frequency of fs = 2000Hz.

slowly varying and a fast varying time scale. TheMPDEs are solved using twomethods to solve along both time
scales. By taking advantage of periodicities, an efficient simulation is accomplished.

The structure of this chapter is as follows: In the first Section 3.1 the MPDEs are introduced. The relation
between those equations and the original problem described by ordinary differential equations (ODEs) or
differential-algebraic equations (DAEs) is established. To provide a well-posed problem, different possibilities
of boundary conditions are discussed. In the second Section 3.2 the MPDEs are semi-discretized by a Galerkin
approach to resolve the fast varying periodic ripples. It describes how to handle different carriers used to
generate the PWM excitation as well as the treatment of nonlinearities in the differential equations describing
the power converters. The subsequent Section 3.3 introduces three different types of basis functions which
are used for the solution expansion in the Galerkin approach. After the semi-discretization of the MPDEs
the remaining differential equations are solved using a conventional time integration method as described
in Section 3.4. The proper choice of the multivariate right-hand side, the choice of initial values for the
differential equations and the complexity of the MPDE approach are discussed in this section. The chapter
is concluded by a proposal on how to deal with regular sampling PWM, since the method inherently only
supports natural sampling PWM (Section 3.5). Furthermore an advanced concept of MPDEs, the so-called
warped MPDEs (WaMPDEs), is presented in Section 3.6. Its applicability to problems with varying duty cycle
is discussed. Finally the chapter is briefly summarized.

3.1 Multirate partial differential equations

The concept of MPDEs is a recent development. It was first introduced by Brachtendorf et al. [10] in 1996,
who employed it in the simulation of high-frequency circuits in which more than one fundamental frequency
is present. For a comprehensive review of the existing literature see Chapter 1.

We start with a system of ODEs or DAEs. This system can, e.g. represent a circuit, a field-model or a
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field-circuit coupled model and is given by

A(x)
d

dt
x(t) + B(x)x(t) = c(t), (3.1)

t ∈ Υ = (0, T ), (3.2)

x(0) = x(0), (3.3)

where A(x) ∈ RNs×Ns is a possibly singular matrix, B(x) ∈ RNs×Ns is a regular matrix, x(t) and c(t) are
the unknown solution vector and the excitation, respectively, and the second and third line specifies simula-
tion interval and the initial conditions, which completes (3.1) - (3.3) to an initial value problem (IVP). We
assume in the remainder of this work that in case of DAEs the specified initial conditions (3.3) are consis-
tent.

To obtain the MPDEs, which correspond to (3.1), new artificial time scales t1, . . . , tm are introduced. As
a result, the excitation and solution vector are not depending on t any more but on the new artificial time
scales t1, . . . , tm. These multivariate excitation and solution are denoted by ĉ(t1, . . . , tm) and x̂(t1, . . . , tm),
respectively. The MPDEs can now be written as [10]

A(x̂)

(
∂x̂(t1, . . . , tm)

∂t1
+ . . .+

∂x̂(t1, . . . , tm)

∂tm

)
+ B(x̂) x̂(t1, . . . , tm) = ĉ(t1, . . . , tm), (3.4)

(t1, t2, . . . , tm) ∈ Υ̂ = (0, T1)× (0, T2)× . . .× (0, Tm).
(3.5)

As one can see, opposed to (3.1) - (3.3), no initial or boundary conditions are specified yet. Since (3.4) is a
partial differential equation, a combination of both initial and boundary conditions can be applied, leading
to different types of problems. This will be discussed in the section after the next.

3.1.1 Relation between MPDEs and ODEs/DAEs

Up to now, the relation between the solution and excitation of the original ODEs/DAEs (3.1) and the MPDEs
(3.4) is unclear. It is established in the following theorem and proof.

Theorem 1 (adapted from [10, 97]). Let x(t) ∈ C1(Υ) and c(t) ∈ C0(Υ) be a solution and excitation of the
ODEs/DAEs (3.1), respectively. Then the multivariate solution and excitation given by

x̂(t+ α̂1, t+ α̂2, . . . , t+ α̂m) = x(t), (3.6)

ĉ(t+ α̂1, t+ α̂2, . . . , t+ α̂m) = c(t), (3.7)

satisfy the MPDEs (3.4) for any fixed constants α̂1, α̂2, . . . , α̂m ∈ R.

Proof. see Appendix 6.1

This theorem is the foundation of this work. It allows to choose any right-hand side ĉ of the MPDEs as
long as it fulfills relation (3.7) and guarantees that a solution of the original ODEs/DAEs x can be extracted
from theMPDE solution x̂ by using (3.6). At first glance the solution process for the MPDEs is computationally
more expensive than that of the ODEs/DAEs, since the computational domain is multi-dimensional whereas
that of the ODEs/DAEs is one-dimensional in time. However there are choices of the right-hand side ĉ,
which, together with carefully chosen solution methods, lead to a highly efficient solution process. This
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Figure 3.3: Example of a multivariate solution of a buck converter (specifically the voltage at the capacitor).
It depends on the two time scales t1 and t2. The solution of the original problem is marked as a
black curve. Figure adapted from [80] ©2019 IEEE.

is detailed for the case of PWM power converters in the following sections. Fig. 3.3 shows an example of a
multivariate solution of the buck converter. The solution depends on two time scales. The solution of the ODEs
describing the problem ismarked as a black curve. In this case it is extracted along a diagonal through the two-
dimensional time domain. This corresponds to α̂1 and α̂2 set to zero in Theorem 1.

If the solution and excitation provide less smoothness than stated in Theorem 1, a piecewise analysis
is possible. In case of switching excitation, the simulation interval Υ is divided into subintervals. In each
subinterval the solution is calculated using the solution at the end of the last subinterval as initial value.
The right-hand side on each subinterval is constant. Within the subintervals the solution and excitation thus
satisfy the conditions of Theorem 1.

3.1.2 Boundary conditions

Boundary conditions need to be imposed in order to solve the MPDEs (3.4). In the literature the resulting
problem is classified into the following two classes depending on the boundary condition [97]:

1. The boundary conditions are chosen as such that a periodicity occurs in each time scale. The solution
satisfies

x̂(t1 + T1, . . . , tm + Tm) = x̂(t1, . . . , tm), (3.8)

where T1, . . . , Tm > 0 are the time intervals of periodicity for each of the time scales t1, . . . , tm. The
resulting problem, i.e, the MPDEs (3.4) with the boundary conditions (3.8), is called boundary value
problem (BVP). The solution of the MPDEs is called periodic while the extracted solution of the original
ODEs/DAEs is called quasi-periodic.
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2. A mixture of boundary and initial conditions are specified, i.e. the solution satisfies the conditions

x̂(t1, t2 + T2, . . . , tm + Tm) = x̂(t1, t2, . . . , tm)

x̂(0, t2, . . . , tm) = x̂(0)(t2, . . . , tm),
(3.9)

where T2, . . . , Tm > 0 are, again, the time intervals of periodicity for each of the time scales t2, . . . , tm
and x̂(0)(t2, . . . , tm) is the function defining the initial condition. The resulting problem, i.e, the MPDEs
(3.4) with the boundary conditions (3.9), is called mixed initial boundary value problem (IBVP). The
solution along the slow time scale t1 is called the envelope. For this reason the solutions are also called
envelope-modulated.

Now that the key relation between MPDEs and ODEs/DAEs is established and boundary conditions are spec-
ified, the system of MPDEs (3.4) is properly defined.

3.2 Semi-discretization using a Galerkin approach

The main idea of the MPDE approach [78, 80–82] is to represent the fast periodically varying ripples by basis
functions, which are periodic on the switching interval. This is accomplished by a Ritz-Galerkin approach, i.e.
the test functions are the same as the trial functions, see Section 2.3. Due to the ideal switching excitation,
some solution components contain a finite number of points of C0 continuity which the basis functions take
into account by construction. The resulting system of ODEs/DAEs after the Galerkin approach are solved using
a conventional time integration algorithm. Since we split our solution into slowly and fast varying parts,
two artificial time scales are associated with the corresponding components. The slowly varying solution
components are associated to the slow time scale t1 and the fast varying solution components are associated
to the fast time scale t2. We start from a system of Ns ODEs/DAEs given by

A(x)
dx(t)

dt
+ B(x)x(t) = c(t),

x(0) = x(0) (3.10)

Before continuing let usmake an assumption on the solution of these differential equations:

Assumption 1. The solution of the ODEs/DAEs (3.10) is at least continuous, i.e. x ∈ C0(Υ).

If this assumption is not fulfilled, the employed basis functions in the Galerkin approach are too smooth
to properly represent the solution components. For two time scales the MPDEs according to Section 3.1 read

A(x̂)

(
∂x̂(t1, t2)

∂t1
+
∂x̂(t1, t2)

∂t2

)
+ B(x̂) x̂(t1, t2) = ĉ(t1, t2). (3.11)

As boundary conditions we use

x̂(t1, t2) = x̂(t1, t2 + Ts), (3.12)

x̂(0, t2) = x̂(0)(t2), (3.13)

leading to an IBVP.

The representation of the ripples in the solution is accomplished by using Np + 1 basis functions. These
are denoted by wk(τ,D),∀k = 0, . . . , Np where τ is called relative time and D is a parameter associated to
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Figure 3.4: (a) Exemplary current ripple when using sawtooth carrier. There are points of C0 continuity in
the solution at t(i) where τ(t(i)) = 0 and τ(t(i)) = D. (b) Exemplary current ripple when using
triangle carrier. In contrast to (a), the points of C0 continuity in the solution are at t(i) where
τ(t(i)) = D1 and τ(t(i)) = D2 and thus both are inside the switching interval.

the position of the point of C0 continuity. The basis functions are periodic on the switching interval and only
defined in the interval [0, 1). The mapping to the entire computation domain is accomplished by defining the
relative time τ as [41]

τ(t) :=
t

Ts
mod 1, (3.14)

where mod is the modulo operator and Ts is the switching period. This mapping enforces the periodicity
and has the desired side effect of producing points of C0 continuity in the solution at t(i) where τ(t(i)) = 0.
The first mention of time-domain basis functions specifically developed for the representation of the ripples
in the power converter output can be found in [41]. Therein the basis functions are constructed for use with
a sawtooth carrier, i.e. one point of C0 continuity is always at the beginning of the switching interval, and
the other one is varying its position inside the switching interval and is at t(i) where τ(t(i)) ∈ (0, 1). This
position is supplied to the basis functions by means of the parameter D, which is chosen to be equivalent to
the duty cycle of the exciting PWM signal. Fig. 3.4a shows an exemplary current ripple and corresponding
PWM excitation to illustrate this.

If a triangle carrier is used to generate a PWM signal, the situation is different. There are still two points
of C0 continuity in the ripples, but both now vary their position inside the switching interval depending on
the duty cycle. This is illustrated in Fig. 3.4b. To cope with this difference we use the same basis functions
as before, but shift them in time and supply them with a modified duty cycle such that both points of C0

continuity are at the proper position. According to the Galerkin approach, the MPDE solution is expanded
into basis functions and coefficients, which yields

x̂hj (t1, t2) =

Np∑

k=0

yj,k(t1)wk

(
τ
(
t2 − d1(t1)Ts

)
, d2(t1)− d1(t1)

)
, (3.15)

where yj,k(t1) are the coefficients, wk are the basis functions depending on the relative time and the duty
cycle and the superscript h denotes an approximation in time. Since the basis functions represent the fast
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varying ripples, they depend on the fast time scale t2. Additionally they depend through the functions d1(t1)
and d2(t1) on the reference signal d(t1) introduced in Section 2.6. The variations in the reference signal are
much slower than those of the ripples, therefore it depends on the slow time scale t1. How the functions d1(t1)
and d2(t1) are associated to the reference signal d(t1) to obtain the desired representation of the ripples for
sawtooth and triangle carrier is discussed in the following subsection. The slowly varying envelope which
cannot be represented by the basis functions is stored in the coefficients. As a result they depend on the slow
time scale t1. Summarizing the basis functions and coefficients into the vectors

w =




w0

w1
...

wNp


 , yj =




yj,0
yj,1
...

yj,Np


 , (3.16)

the solution expansion can be written as vector product

x̂hj (t1, t2) = w>
(
τ
(
t2 − d1(t1)Ts

)
, d2(t1)− d1(t1)

)
yj(t1). (3.17)

A Ritz-Galerkin approach is applied to the MPDEs (3.11) along the fast time scale t2, i.e. the equations are
multiplied with test functions wl and integrated on the interval [0, Ts] which corresponds to one switching
interval. This weakening approach yields

Ts∫

0

A(x̂h)
∂x̂h

∂t1
wl dt2 +

Ts∫

0

A(x̂h)
∂x̂h

∂t2
wl dt2 +

Ts∫

0

B(x̂h) x̂hwl dt2 =

Ts∫

0

ĉwl dt2, ∀l = 0, . . . , Np, (3.18)

where the time scale dependency of the solution, right-hand side and basis functions have been omitted for
the sake of readability. Integrating the second term by parts leads to

Ts∫

0

A(x̂h)
∂x̂h

∂t2
wl dt2 = −

Ts∫

0

A(x̂h) x̂h
∂wl
∂t2

dt2 +
(
A(x̂h) x̂hwl

)∣∣∣
t2=Ts

t2=0︸ ︷︷ ︸
=0

. (3.19)

The boundary term vanishes since the basis functions are periodic on [0, Ts] with respect to t2. Inserting back
into the equations (3.18) gives

Ts∫

0

A(x̂h)
∂x̂h

∂t1
wl dt2 −

Ts∫

0

A(x̂h) x̂h
∂wl
∂t2

dt2 +

Ts∫

0

B(x̂h) x̂hwl dt2 =

Ts∫

0

ĉwl dt2, ∀l = 0, . . . , Np. (3.20)

Let us rewrite the integrals step by step by starting with inserting the solution expansion (3.15) into the
remaining partial derivatives of x̂(t1, t2). This leads to

∂x̂hj (t1, t2)

∂t1
=−

∂w>
(
τ(t2 − d1Ts), d2 − d1

)

∂ τ

d d1(t1)

dt1
yj

+
∂w>

(
τ(t2 − d1Ts), d2 − d1

)

∂ (d2 − d1)

(
d d2(t1)

dt1
− d d1(t1)

dt1

)
yj + w>

dyj(t1)

dt1
. (3.21)
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In a next step we substitute t2 by τ in the left-hand side of equations (3.20). To obtain the new limits of the
integrals we take advantage of the periodicity of the basis functions. Utilizing ∂τ

∂t2
= 1

Ts
, which holds almost

everywhere, and inserting (3.21) into (3.20) finally gives

− d d1(t1)

dt1

1∫

0

A(x̂h)




∂w>(τ,d2−d1)
∂ τ y1
...

∂w>(τ,d2−d1)
∂ τ yNs


Tswl dτ

+

(
d d2(t1)

dt1
− d d1(t1)

dt1

) 1∫

0

A(x̂h)




∂w>(τ,d2−d1)
∂ (d2−d1) y1

...
∂w>(τ,d2−d1)
∂ (d2−d1) yNs


Tswl dτ +

1∫

0

A(x̂h)




w> dy1(t1)
dt1
...

w> dyNs (t1)
dt1


Tswl dτ

−
1∫

0

A(x̂h)




w>(τ, d2 − d1)y1
...

w>(τ, d2 − d1)yNs


 ∂wl
∂τ

∂τ

∂t2︸︷︷︸
= 1
Ts

Ts dτ +

1∫

0

B(x̂h)




w>(τ, d2 − d1)y1(t1)
...

w>(τ, d2 − d1)yNs(t1)


Tswl dτ

=

Ts∫

0

ĉ(t1, t2)wl dt2, ∀l = 0, . . . , Np, (3.22)

where x̂h = x̂h(t1, Tsτ). To rewrite this equation system into a more readable form, let us for the sake of
illustration only consider the third term of the left-hand side, i.e.

Zl =

1∫

0

A(x̂h)




w> dy1(t1)
dt1
...

w> dyNs (t1)
dt1


Tswl dτ. (3.23)

Assembling all the Zl and ordering them leads to

Z = Ts




1∫
0

A1,1w0w0 dτ . . .
1∫
0

A1,1w0wNp dτ
1∫
0

A1,2w0w0 dτ . . .

...
. . .

...
...

1∫
0

A1,1wNpw0 dτ . . .
1∫
0

A1,1wNpwNp dτ
1∫
0

A1,2wNpw0 dτ . . .

1∫
0

A2,1w0w0 dτ . . .
1∫
0

A2,1w0wNp dτ
1∫
0

A2,2w0w0 dτ . . .

...
...

...
. . .




︸ ︷︷ ︸
A(x̂h,t1)

d

dt1




y1,0(t1)
...

y1,Np(t1)
y2,0(t1)

...




︸ ︷︷ ︸
y(t1)

, (3.24)

whereAi,j , i, j ∈ {1, . . . , Ns} is the i-th element in column j of the matrixA(x̂h). Each element of this matrix
is multiplied by the product of the basis functions. By introducing the matrix

J̃ (τ, d1, d2) = Tsw(τ, d2 − d1)w>(τ, d2 − d1), (3.25)

and using the Kronecker product denoted by ⊗, the matrix A can be written as

A(x̂h, t1) =

1∫

0

A(x̂h)⊗ J̃ (τ, d1(t1), d2(t1))dτ (3.26)
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For the other terms present in (3.22), we define additionally thematrices Q̃ and Ũ as

Q̃(τ, d1, d2) = −∂w(τ, d2 − d1)

∂τ
w>(τ, d2 − d1) (3.27)

and

Ũ(τ, d1, d2) = Tsw(τ, d2 − d1)
∂w>(τ, d2 − d1)

∂(d2 − d1)
. (3.28)

With their help the equations (3.22) can finally be summarized into

A(x̂h, t1)
dy(t1)

dt1
+ B(x̂h, t1)y(t1) = C(t1), (3.29)

where y(t1) =
[
y1,0(t1), . . . , y1,Np(t1), y2,0(t1), . . .

]>, A as in (3.26) and

B(x̂h, t1) =

1∫

0

(
Ts

d d1(t1)

dt1
A(x̂h)⊗ Q̃>(τ, d1(t1), d2(t1))

+

(
d d2(t1)

dt1
− d d1(t1)

dt1

)
A(x̂h)⊗ Ũ(τ, d1(t1), d2(t1))

+ A(x̂h)⊗ Q̃(τ, d1(t1), d2(t1)) + B(x̂h)⊗ J̃ (τ, d1(t1), d2(t1))

)
dτ, (3.30)

C(t1) =

Ts∫

0

ĉ(t1, t2)⊗w(τ(t2)− d1(t1), d2(t1)− d1(t1))dt2. (3.31)

In the remainder of this work, the matrices A and B are often independent of the solution, i.e. the problem
is linear. In this case the problem is written using the matrices

J (d1, d2) =

1∫

0

J̃ (τ, d1, d2)dτ, (3.32)

Q(d1, d2) =

1∫

0

Q̃(τ, d1, d2)dτ, (3.33)

U(d1, d2) =

1∫

0

Ũ(τ, d1, d2)dτ, (3.34)

such that

A(t1) = A⊗J (d1(t1), d2(t1)), (3.35)

B(t1) = −Ts
d d1(t1)

dt1
A⊗Q(d1(t1), d2(t1)) +

(
d d2(t1)

dt1
− d d1(t1)

dt1

)
A⊗ U(d1(t1), d2(t1))

+ A⊗Q(d1(t1), d2(t1)) + B⊗J (d1(t1), d2(t1)), (3.36)

C(t1) =

Ts∫

0

ĉ(t1, t2)⊗w(τ(t2)− d1(t1), d2(t1)− d1(t1))dt2. (3.37)
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Note that the matrix Q is skew symmetric, i.e. Q> = −Q, which was used in (3.36) to avoid using the
transposed. The relation can be derived by applying integration by parts on (3.33) and using the fact that
the basis functions are periodic.

3.2.1 Sawtooth and triangle carrier

It was already mentioned that in case of using a sawtooth carrier for the generation of the PWM, the points
of C0 continuity in the inductor current ripple, see Section 2.6, are located at the beginning of each switching
interval, i.e at t(i) where τ(t(i)) = 0, and the other one inside the switching interval at t(i) where τ(t(i)) ∈
(0, 1). The basis functions are constructed for that, a shift is not necessary, i.e. the function d1(t1) = 0. As a
result, the function d2(t1) = d(t1) and thus is identical to the reference signal.

If a triangle carrier is used, both switching instants vary their position in the switching interval, i.e.
they are at t(i) where τ(t(i)) ∈ (0, 1). To calculate d1 and d2 as functions of the reference signal d(t), consider
the time instants at which the equation

s(t) = d(t) (3.38)

is satisfied. These are the time instants where the triangle carrier denoted by s(t) intersects the refer-
ence signal d(t). For illustration we only consider the first switching cycle. The switching instants are
given by D1Ts and D2Ts, see Fig. 3.4b. The triangle carrier s(t) in the first switching cycle is given by

s(t) =

{
2fst ∀t ∈ [0, 0.5Ts)
2(1− fst) ∀t ∈ [0.5Ts, Ts]

, (3.39)

where fs = 1/Ts is the switching frequency. Inserting the switching instants D1Ts and D2Ts into (3.38) and
solving the resulting equations for D1 and D2 gives

D1 = 0.5d(D1Ts), (3.40)

D2 = 1− 0.5d(D2Ts). (3.41)

The functions d1(t1) and d2(t1) are chosen according to this condition as

d1(t1) = 0.5d(t1), (3.42)

d2(t1) = 1− 0.5d(t1). (3.43)

To verify that this choice actually leads to the desired behavior of the basis functions, the switching instants
D1Ts and D2Ts are inserted into the basis functions from (3.15). As we are interested in the behavior of
the reconstructed solution, the time scales t1 and t2 are equated, i.e. t = t1 = t2. For t = D1Ts this
yields

wk

(
τ
(
D1Ts − d1(D1Ts)Ts

)
, d2(D1Ts)− d1(D1Ts)

)
(3.44)

(3.42)
= wk

(
τ
(
D1Ts − 0.5d(D1Ts)Ts

)
, d2(D1Ts)− d1(D1Ts)

)
(3.45)

(3.40)
= wk

(
τ
(
D1Ts −D1Ts︸ ︷︷ ︸

0

)
, d2(D1Ts)− d1(D1Ts)

)
, (3.46)
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and for t = D2Ts it leads to

wk

(
τ
(
D2Ts − d1(D2Ts)Ts

)
, d2(D2Ts)− d1(D2Ts)

)
(3.47)

(3.43)
= wk

(
τ
(
D2Ts − d1(D2Ts)Ts

)
, 1− 0.5d(D2Ts)− d1(D2Ts)

)
(3.48)

(3.41)
= wk

(
τ
(
D2Ts − d1(D2Ts)Ts

)
, D2 − d1(D2Ts)

)
(3.49)

= wk

(
D2 − d1(D2Ts), D2 − d1(D2Ts)

)
, (3.50)

which is exactly what we desire: The points of C0 continuity of the basis functions lie at both desired time
instants because the basis functions are properly shifted and the duty cycle is properly set. Note that (3.42)
and (3.43) are valid for all switching cycles, i.e. in the entire simulation interval.

3.2.2 Evaluation of nonlinearities

In the general case in which the matrices A and B depend on the solution, i.e. the problem is nonlinear, the
integrals in (3.26) and (3.30) need to be re-evaluated for each y and t1. In a numerical setting, this can be ac-
complished using a quadrature rule, e.g. Gaussian quadrature [44]. The integrals are approximated as a sum
of weights and function values. For instance for the mass matrix (3.26) this yields

A(x̂h, t1) =

1∫

0

A(x̂h)⊗ J̃ (τ, d1(t1), d2(t1))dτ (3.51)

≈
Ngk−1∑

i=0

αgk
i A

(
x̂h
(
t1, Tsτ

(i)
))
⊗ J̃ (τ (i), d1(t1), d2(t1)), (3.52)

whereNgk is the number of quadrature points, αgk
i are the weights and τ (i) ∈ [0, 1) are the actual quadrature

points. Since the solution x̂h contains a point of C0 continuity along τ , the quadrature points and weights
have to be chosen accordingly for instance by splitting the integral in (3.51) into two parts at the point of C0

continuity. Each part is approximated separately by Gaussian quadrature and the sum of both is the resulting
approximation to the entire integral. For the system matrix (3.30) the evaluation is analog. Note that this
evaluation can be computationally expensive for three reasons:

1. the matrices A(x̂h), B(x̂h) have to be evaluated Ngk times for the different τ (i);

2. the basis functions have to be evaluated for the different τ (i). This can be cheap depending on the type
of basis function but might also require a rebuild of the entire basis;

3. the Kronecker product has to be evaluated.

A simplification of the evaluation of nonlinearities can be achieved by using the fact, that the ripples are
often small in amplitude compared to the envelope. This is especially true if the switching frequency is high.
Therefore it is reasonable to assume that the nonlinearities will mainly be influenced by the amplitude of the
envelope and the influence of the ripples is neglectable. One possible simplification thus is to approximate
the nonlinearity by only using the envelope to evaluate. This small signal approach has been proposed in
[78, 81] and is described in the following. Let

xenv = fenv(y) (3.53)
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be the envelope which is extracted from the vector of coefficients by the function fenv : RNs(Np+1) →
RNs .

The mass matrix (3.26) using the envelope instead of the full solution simplifies to

A(y, t1) =

1∫

0

A(fenv(y))⊗ J̃ (τ, d1(t1), d2(t1))dτ (3.54)

(3.53)
=

1∫

0

A(xenv)⊗ J̃ (τ, d1(t1), d2(t1))dτ (3.55)

= A(xenv)⊗
1∫

0

J̃ (τ, d1(t1), d2(t1))dτ (3.56)

(3.32)
= A(xenv)⊗J (d1(t1), d2(t1)) (3.57)

Compared with (3.52), this is considerably more efficient from a computational point of view since only one
evaluation ofA is necessary instead ofNgk evaluations in case of Gauss quadrature.

3.3 Basis functions

For the solution expansion (3.15) there are many possible choices of basis functions. Which choice is op-
timal depends on the application. Aspects which have to be considered are for instance properties of the
solution like symmetries or smoothness, but also computational aspects like the structure of the arising ma-
trices in the equation systems or the computational cost to calculate them. In the following, three types of
basis functions are presented, which are all suitable for use with the MPDE approach. The basis functions
are:

1. the PWM basis functions originally proposed in [41];

2. the improved PWM eigenfunctions which are obtained from the PWM basis functions through a basis
transformation [79];

3. the B-spline basis functions, see e.g. [82, 84].

3.3.1 PWM basis functions

The PWM basis functions were originally proposed in [41]. They are a spectral basis [15], i.e. the basis
functions are global polynomials which support the entire interval [0, 1]. The zero-th basis function is given
by

wpwm,0(τ,D) = 1, ∀τ ∈ [0, 1], (3.58)

where D ∈ (0, 1) is the duty cycle. The basis functions of higher order are built by integrating and orthonor-
malizing starting from the linear function

wpwm,1(τ,D) =

{ √
3 2τ−D

D if 0 ≤ τ < D
√

3 1+D−2τ
1−D if D ≤ τ ≤ 1

, (3.59)
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Figure 3.5: PWM basis functions wpwm,k(τ,D) for Np = 4, i.e. k ∈ {0, 1, 2, 3, 4}. Figure adapted from [79].

which is essentially a scaled and translated hat function. The integration of the basis functions yields

wint,k(τ,D) =

∫ τ

D
wk−1(τ ′, D) dτ ′ . (3.60)

The basis functions are successively orthonormalized, first by orthogonalizing, i.e.

worth,k(τ,D) = wint,k(τ,D)−
k−1∑

l=0

wpwm,l(τ,D)

1∫

0

wpwm,l(τ,D)wint,k(τ,D)dτ , ∀ k ≥ 2, (3.61)

and normalizing

wpwm,k(τ,D) =
worth,k(τ,D)√

1∫
0

worth,k(τ,D)worth,k(τ,D)dτ

. (3.62)

This corresponds to a Gram-Schmidt orthonormalization procedure [115]. The resulting PWM basis func-
tions are depicted in Fig. 3.5. Their periodicity is ensured by the orthogonalization process, specifically the
orthogonalization against the constant basis function.

The PWM basis functions can also be calculated analytically. This is advantageous because the coeffi-
cients of the polynomials can be calculated before using them so that only an evaluation of the polynomial
is necessary instead of recalculating the basis functions according to the described orthonormalization pro-
cess.

Note that with increasing number of PWM basis functions Np, the degree of the polynomial functions
rises. Numerically this may lead to instabilities, if the number of basis functions is too high. Practical experi-
ments have shown that Np should be less or equal 12 to avoid these problems. The observed instabilities are
machine and implementation dependent and might vary.

For an efficient solution of (3.29) the structure of the matrices J and Q is of interest. In case of the
PWM basis functions, the matrix J is Ts times the identity matrix. This comes from the orthonormality of
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the basis functions, i.e.

1∫

0

wpwm,k(τ,D)wpwm,l(τ,D)dτ =

{
1 for k = l
0 otherwise

. (3.63)

The matrixQ in contrast is a full matrix with around 75% of zero entries. The structure is depicted in Fig. 3.6.
To avoid confusion in the following sections, the matrices J andQ will be marked with a subscript denoting
the type of basis functions. For PWM basis functions we call them Jpwm and Qpwm. Note that the PWM
basis functions are only used for applications with constant duty cycle in this work. Therefore the matrix
U is not considered even though the PWM basis functions could be used with varying duty cycle. Their
suitability for varying duty cycle applications with regard to the efficiency needs to be determined in future
works.

The numerical properties of the PWM basis functions have first been studied in [41] numerically. Ana-
lytically for a duty cycle of D = 0.5 they have been analyzed in [80]. The following theorem establishes the
symmetry conditions the PWM basis functions adhere to.

Theorem 2 ([80]©2019 IEEE). The symmetry of the PWM basis functions defined by (3.59)-(3.62) with duty
cycle D = 0.5 is given by

−wpwm,k(τ) = wpwm,k(τ + 0.5), ∀ k = 1, . . . , Np, and ∀ τ ∈ (0, 0.5).

Proof. see Appendix 6.2.1.

The symmetry of the PWM basis functions gives us an insight into what problems they are suited for, i.e.
which solutions they can actually represent. This is summarized in

Remark 1 ([80]©2019 IEEE). The PWM basis functions are suited to approximate the solutions of linear ODEs
with 2-level pulsed excitation. The solution of these ODEs are given by piecewise exponential functions which
fulfill the symmetry condition stated in Theorem 2.

Proof. see Appendix 6.2.2.
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Figure 3.7: Projection cht (τ) of the 3-level pulsed excitation ct(τ) onto the space spanned by wpwm,k(τ) with
Np = 10. Figure adapted from [80] ©2019 IEEE.

Now that we know what the PWM basis functions are suited for it is also important to establish what
their limitations are. This is proposed in the following remark along with an example for a case in which they
are provably not suited.

Remark 2 ([80] ©2019 IEEE). The PWM basis functions may not be suited to represent the solution of linear
or nonlinear ODEs with arbitrary excitations. A counter example is an ODE with a 3-level pulsed excitation (see
Fig. 3.7), for which it can be shown that the approximation fails.

Proof. see Appendix 6.2.3.

The projection of the 3-level pulsed excitation ct(τ) in Fig. 3.7 is accomplished by applying a Galerkin
approach, see Section 2.3, to the equation cht (τ) = ct(τ). The projected solution cht is sought by expand-
ing it into basis functions and coefficients. Solving the resulting equation system for the coefficients and
reconstructing the solution leads to the cht (τ) as displayed in the figure.

3.3.2 PWM eigenfunctions

When using the PWM basis functions, the entire system (3.29) has to be solved at once. A parallel time-
domain solution is only feasible per time step, i.e. one may use iterative or (sparse) direct solvers for the
linear equation systems that exploit some level of parallelism. However, a parallel solution on the entire
simulation interval is not feasible since the degrees of freedom are coupled. To decouple the equations in
case of linear differential equations, a basis transformation is applied. This has been proposed in [79] and is
presented in this section. The resulting basis functions are called PWM eigenfunctions. They lead to diagonal
matrices J and Q such that the degrees of freedom in (3.29) are decoupled. The Np + 1 equation systems
with size Ns can thus be solved in parallel.
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The transformed PWMbasis functions are a linear combination of the PWMbasis functions, i.e.

weig,k(τ) =

Np∑

l=0

vk,l wpwm,l(τ), ∀ k = 0, . . . , Np, (3.64)

where the coefficients vk,l are yet unknown. The functions weig,k(τ) are eigenfunctions of the derivative
operator, i.e.

d

dτ
weig,k(τ) = λkweig,k(τ). (3.65)

A Galerkin approach is applied to enforce (3.65) in a weak sense which, after integration by parts and using
the periodicity of the basis functions, gives

−
1∫

0

weig,k(τ)
dwpwm,m(τ)

dτ
dτ = λk

1∫

0

weig,k(τ)wpwm,m(τ)dτ, ∀m = 0, . . . , Np. (3.66)

Inserting (3.64) leads to the (generalized) eigenvalue problem

TsQpwmvk = λkJpwmvk, (3.67)

where vk = [vk,0, vk,1, . . . , vk,Np ]>. Thanks to the orthonormality of the PWMbasis functions, thematrixJpwm

is Ts times the identity matrix. Therefore vk and λk are the eigenvectors and eigenvalues of the matrixQpwm,
respectively. The matrixQpwm is real-valued and skew symmetric, see Section 3.2. As a result its eigenvectors
vk are orthonormal and the eigenvalues are purely imaginary, see Appendix 6.5.1. The PWM eigenfunctions
consist of pairs of conjugate complex basis functions. They are depicted in Fig. 3.8.

Since the PWM eigenfunctions are complex-valued, the application of the Galerkin approach in (3.18)
has to be modified. Instead of utilizing the L2 scalar product for real-valued functions as defined in (2.47),
the L2 scalar product for complex-valued functions has to be applied. It reads

(u,w)L2(Ω) =

∫

Ω

u(r)w(r)dΩ, (3.68)

where the bar denotes the complex conjugate. The matrices Jeig and Qeig when using the PWM eigenfunc-
tions are derived in the following. The matrix Qeig is given by

(Qeig)m,k = −
1∫

0

dweig,m

dτ
weig,k dτ = −

1∫

0

∑

l

vm,l
dwpwm,l

dτ
weig,k dτ (3.69)

= −
∑

l

vm,l

1∫

0

dwpwm,l

dτ
weig,k dτ (3.66)

=
∑

l

vm,l λk

1∫

0

wpwm,l weig,k dτ (3.70)

=
∑

l

vm,l λk
∑

j

vk,j

1∫

0

wpwm,l wpwm,j dτ

︸ ︷︷ ︸
=

 1 for l = j
0 otherwise

=
∑

l

vm,l λk vk,l. (3.71)
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Figure 3.8: PWM eigenfunctions weig,k(τ) for Np = 4 and thus k = {0, 1, 2, 3, 4}. (top) real part. (bottom)
imaginary part. Figures adapted from [79].

Introducing a diagonalmatrixλwith the eigenvalues λk on its diagonal, and thematrixV =
[
v0,v1, . . . ,vNp

]
,

the expression can be written as

(Qeig)m,k =
∑

l

vm,l λk vk,l =
∑

l

(V)l,m (V)l,k (λ)k,k, (3.72)

which finally leads to
Qeig = VH Vλ = λ, (3.73)

where the superscript H denotes the complex conjugate transposed. Since the eigenvectors are orthonormal,
the product ofVH andV is the identity matrix such that only λ remains in the above expression. The matrix
Jeig is given by

Jeig = Ts

1∫

0

weig w
>
eig dτ = Ts

1∫

0

V>wpwm (V>wpwm)> dτ (3.74)

= Ts

1∫

0

VHwpwm w>pwmV dτ = Ts V
H

1∫

0

wpwm w>pwm dτ

︸ ︷︷ ︸
identity matrix

V = Ts V
H V = TsI, (3.75)

(3.76)

where I is the identity matrix. In analogy to “harmonic balance method”, the resulting MPDE approach with
PWM eigenfunctions is called “multirate PWM balance method”.
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3.3.3 B-spline basis functions

The next type of basis which is considered are B-splines. They provide local support, i.e. the time interval
[0, 1] is divided into elements and the basis functions are non-zero on one or more of these elements and
zero everywhere else. B-splines allow to approximate the solution by piecewise high-order polynomials. The
regularity across element boundaries can be controlled, which allows to capture the point of C0 continuity
in the current ripple. As it turns out they also lead to advantageous properties of the arising matrices in the
MPDE approach with varying duty cycle. Those have been proposed in [82]. The remainder of this subsection
follows the information of this paper. For additional background on B-splines, the interested reader is referred
to [84].

3.3.3.1 Introduction to B-splines

B-splines are built recursively starting from zero-th order basis functions. The time interval is divided into
elements by defining a knot vector Ξ = {ξ0, . . . , ξm} sorted in ascending order ξi ≤ ξi+1, i = 0, . . . ,m − 1,
which delimits the elements. The zero-th order (p = 0) basis functions are piecewise constant and are given
by

Pi,0(ξ) =

{
1 for ξi ≤ ξ < ξi+1

0 otherwise
. (3.77)

The basis functions of higher order are calculated using the Cox-DeBoor recurrence formula [84]

Pi,p(ξ) =
ξ − ξi
ξi+p − ξi

Pi,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Pi+1,p−1(ξ). (3.78)

The B-splines are determined by the knot vector Ξ and the degree p of the polynomials. In the following the
knot vector is assumed to be open (also called nonperiodic or clamped). This means that the first and last
knots appear p+ 1 times. Consequently, the knot vector takes the form

Ξ = {ξ0, . . . , ξp︸ ︷︷ ︸
p+1

, ξp+1, . . . , ξm−p−1, ξm−p, . . . , ξm︸ ︷︷ ︸
p+1

}, (3.79)

with ξ0 = . . . = ξp and ξm−p = . . . = ξm. This ensures that the B-splines at the boundary are P0,p(ξ0) = 1
and Pm−p−1,p(ξm) = 1, wherem− p is the total number of basis functions. The remaining B-splines are zero
at ξ = ξ0 and ξ = ξm.

The regularity of the basis functions across the knots is determined by knot multiplicities. A regularity
rj across the knot ξj , j = p+1, . . . ,m−p−1 means that the reconstructed solution, i.e. a linear combination
of all the basis functions, across this knot will be C rj continuous. The knot multiplicity is denoted by sj . A
multiplicity of sj = 1 means that the knot appears once in the knot vector and is not repeated. To obtain aC rj

continuity, the knot multiplicity of the corresponding knot is given by sj = p − rj . Therefore the maximum
regularity across a knot without repetition is rj,max = p − 1. A C0 continuity, for instance, is obtained by a
multiplicity of sj,co = p− 0 = p.
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Figure 3.9: B-spline basis functions with degree p = 2 and refinement factor K = 1 (α1 = 0.5, β1 = 0.5).
Figure adapted from [82].

3.3.3.2 Choice of knot vector

The basis functions should be able to represent the point of C0 continuity in the inductor current ripple by
construction. As a result, the knot vector needs to take this into account by appropriate knot multiplicities.
The simplest knot vector fulfilling this purpose is given by

Ξp = {0, . . . , 0︸ ︷︷ ︸
p+1

, D, . . . ,D︸ ︷︷ ︸
p

, 1, . . . , 1︸ ︷︷ ︸
p+1

}, (3.80)

where D ∈ (0, 1) is the duty cycle which determines the position of the C0 continuity. The basis functions
shall be defined in terms of the relative time which has been accounted for by defining the knot vector from
0 to 1. If additional knot refinement similar to h-refinement in finite element method (FEM) is desired, the
knot vector becomes

Ξp,K = {0, . . . , 0︸ ︷︷ ︸
p+1

, α1D, . . . , αKD,D, . . . ,D︸ ︷︷ ︸
p

, β1(1−D) +D, . . . , βK(1−D) +D, 1, . . . , 1︸ ︷︷ ︸
p+1

}, (3.81)

where 0 < α1 < . . . < αK < 1, 0 < β1 < . . . < βK < 1 and K is the number of knots additionally inserted
before and after the point of C0 continuity. A refinement of K = 0 means that no refinement is desired,
i.e. the knot vector is given by (3.80). The B-splines form a set of 2(p + K) + 1 functions depending on the
relative time τ and on the duty cycle D as given by

{P0,p(τ,D), . . . , P2p+2K,p(τ,D)} (3.82)

The basis functions are depicted in Fig. 3.9 for K = 1 (α1 = 0.5, β1 = 0.5) and p = 2. The periodicity of the
basis functions can be enforced in two ways:

• An additional constant basis function P2p+2K+1,p(ξ,D) = 1 ∀ξ ∈ [0, 1] is added to the set (3.82). The
basis functions at the boundaries, i.e. P0,p(ξ,D) and P2p+2K,p(ξ,D) are removed from the set. This
leads to

{1, P1,p(τ,D), . . . , P2p+2K−1,p(τ,D)}. (3.83)
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• The equation system after the Galerkin approach (3.29) is modified as such that it ensures periodic
boundary conditions. The coefficients associated with the basis functions P0,p(ξ,D) and P2p+2K,p(ξ,D)
are equal. This process is detailed in Appendix 6.6.

Using the B-spline basis functions (3.82) the resulting matrices (3.32)-(3.34) are denoted by Jbspl, Qbspl

and Ubspl. They are sparsely populated and banded, though the banded structure is slightly impaired in case
of using the additional constant basis function to ensure the periodicity as described above. The matrices
have properties which are advantageous in simulations with varying duty cycle. It can be shown that the
entries of these matrices depend linearly on the duty cycle or are even independent of it. This enables a
cheap calculation on a computer. Even though for a low order basis like hat functions (p = 1) this is rather
obvious, it is more involved in the case of higher order B-splines due to their non-local support. Hence this
property is summarized in the following theorem.

Theorem 3 ([82]). Using the B-spline basis functions (3.82), only the matrixJbspl from (3.32) depends linearly
on the duty cycle, i.e. Jbspl(D) =

Jbspl(D0)−Jbspl(D1)
D0−D1

(D−D0) +Jbspl(D0), with D0, D1 ∈ (0, 1) and D0 6= D1,
and the matrices Qbspl,Ubspl from (3.33), (3.34), respectively, are independent of the duty cycle.

Proof. see Appendix 6.3.

In the following, when knot refinement is used (K ≥ 1), we employ homogeneous refinement, i.e.

αl = βl =
l

1 +K
∀ l = 1, . . . ,K. (3.84)

3.4 Time discretization

After the semi-discretization using the Galerkin approach, the remaining ODEs/DAEs are solved using con-
ventional time integration algorithms as for example implicit Runge-Kutta (IRK) methods and backward dif-
ferentiation formulas (BDFs) as described in Subsection 2.5.1. To obtain an efficient approach three questions
need to be answered:

1. How do we choose the right-hand side of the MPDEs, i.e. ĉ(t1, t2)?

2. What are reasonable initial values to the ODEs/DAEs (3.29)?

3. What stability properties does the time integration algorithm need to provide?

These questions are answered in the following subsections, concluded by a discussion on the complexity of
the MPDE approach.

3.4.1 Choice of the right-hand side and efficiency of the approach

Theorem 1 states that the solution x(t) of the original ODEs/DAEs (3.1) can be extracted from the solution
x̂(t1, t2) of the corresponding MPDEs (3.4). This is accomplished by x(t) = x̂(t, t), as long as the right-hand
sides satisfy the relation c(t) = ĉ(t, t) (without loss of generality, we assumed α̂1 = 0, α̂2 = 0). As a result,
there are infinitely many possibilities to choose the right-hand side, which all fulfill the relation c(t) = ĉ(t, t).
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Nevertheless only a few of the choices lead to an efficient approach. Consider for illustration the pulsed
excitation

c(t) = fpro sgn
(
d(t)− s(t)

)
, (3.85)

where fpro ∈ RNs is a vector which assigns the scalar excitation to the proper component of the vectorial
function c(t). The functions d(t) and s(t) are the reference signal and a carrier as described in Section 2.6.
One of the obvious choices for the multivariate right-hand side would be

ĉ(t1, t2) = fpro sgn
(
d(t1)− s(t1)

)
. (3.86)

Inserting this into the right-hand side after the Galerkin approach (3.31) leads to

C(t1) =

Ts∫

0

ĉ(t1, t2)⊗w
(
τ
(
t2 − d1(t1)Ts

)
, d2(t1)− d1(t1)

)
dt2 (3.87)

=

Ts∫

0

fpro sgn
(
d(t1)− s(t1)

)
⊗w

(
τ
(
t2 − d1(t1)Ts

)
, d2(t1)− d1(t1)

)
dt2 (3.88)

= fpro sgn
(
d(t1)− s(t1)

)
⊗

Ts∫

0

w
(
τ
(
t2 − d1(t1)Ts

)
, d2(t1)− d1(t1)

)
dt2. (3.89)

The dynamic of c(t) is completely transferred to the right-hand side C(t1) of the ODEs/DAEs (3.29). As
a result the number of time steps to find the solution of (3.29) will be similar to the one for the original
ODEs/DAEs (3.1). In addition the size of the equation systems after the Galerkin approach is enlarged such
that the time to solution will be even higher than that of the original problem. This is therefore not a practical
choice of the right-hand side.

Another possible choice is
ĉ(t1, t2) = fpro sgn

(
d(t2)− s(t2)

)
. (3.90)

In this case the entire dynamic is captured by the Galerkin approach, which leads to

C(t1) = constant. (3.91)

However this choice conflicts with the fact that the reference signal d(t) is usually not periodic on each
switching interval. Furthermore it is a slowly varying quantity and thus should be associated with time scale
t1. This leads us to the reasonable choice for the right-hand side given by

ĉ(t1, t2) = fpro sgn
(
d(t1)− s(t2)

)
, (3.92)

which ensures, on the one hand, that the fast varying changes induced by the pulses are captured by the
Galerkin approach and the basis functions, and on the other hand, that the slow variations due to the duty cy-
cle are still resolved by the time discretization algorithm. This will, consequently take much less time steps for
the solution compared to the original problem and thus leads to an efficient method.

3.4.2 Choice of initial values

Just as there are infinitelymany choices of right-hand sides for theMPDE approachwhich all lead to a solution,
there are infinitely many possibilities to choose the initial values for the resulting ODEs/MPDEs (3.29). The
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Dahlquist test equation
dx(t)

dt
= −λx(t) + c(t), x(0) = 0, (3.93)

with pulsed excitation (switching frequency Ts = 2000Hz, constant duty cycleD = 0.7)

c(t) =

{
1000 for τ(t) ≤ D
0 otherwise

(3.94)

and λ = 800 shall serve as example to derive an understanding of what “good” and “bad” initial values are.
Applying the MPDE approach leads to the system of ODEs

J (0, D)
dy(t1)

dt1
= −λJ (0, D)y(t1)−Q(0, D)y(t1) + C(t1), y(0) = y(0), (3.95)

with J , Q and C as in (3.32), (3.33) and (3.31), respectively. For simplicity we write J , Q and C and omit
the arguments in the remainder of this subsection.

The (numerical) solution of the Dahlquist equation (3.93) is depicted in Fig. 3.10a. The time integration
algorithm, namely ode5r (Octave, odepkg [116]), is instructed to provide very good accuracy (abstol =
10−12, reltol = 10−10) such that the reference solution (conventional time discretization) xref(t) can be ex-
pected to be reasonably accurate. The same settings are used in the following for theMPDE approach. The ini-
tial conditions for theMPDE approach equation system (3.95), i.e, y(0) = y(0), must satisfy

x(0) = x̂h(0, 0) =

Np∑

k=0

yk(0)wk
(
0, D

)
= w>

(
0, D

)
y(0). (3.96)

The simplest possible choice is
y(0) = 0. (3.97)

To setup (3.95), B-spline basis functions (p = 2,K = 0) are employed. Their periodicity is ensured by enforc-
ing periodic boundary conditions in the system of equations (3.95) (see Appendix 6.6). The solution of (3.95)
after reconstruction using (3.15) is shown in Fig. 3.10a. The absolute L2 error between the MPDE solution
and the reference solution is calculated in the middle of each switching interval as

εabs(t) =
∥∥∥xref(t)− x̂h(t, t)

∥∥∥
L2([t−Ts/2,t+Ts/2])

. (3.98)

It is depicted in Fig. 3.10b. As one can see the MPDE solution is not correct in the beginning and converges
towards the proper solution when approaching steady state. If a different set of initial values are provided,
e.g.

y(0) = (Q + λJ )−1 C(0)− αs, (3.99)

where αs is chosen such that the initial conditions x(0) = x̂(0, 0) are satisfied, the situation is different. The
result is depicted in Fig. 3.10a and Fig. 3.10b as well. They show that the solution accuracy is much better
from the beginning and that the error is almost constant throughout the simulation interval. Let us have
a glance at the coefficients y(t1). They are pictured in Fig. 3.12 for y(0) = 0 as initial values. Oscillations
are visible which diminish towards reaching steady state. If the other initial values (3.99) are utilized, see
Fig. 3.13, there are no oscillations visible. The solution without oscillations can be calculated more efficiently
than the one with oscillations since the time integration algorithm does not need to resolve the oscillations.
How the expression (3.99) is found becomes clear later in this subsection.
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Note that Theorem 1 holds independently of the initial values as long as x(0) = x̂(0, 0) is fulfilled.
Therefore when increasing discretization accuracy either by using higher number of basis functions or by
using finer time steps, we expect the accuracy of the solution to improve even with “wrong” initial values.
This is demonstrated by improving the B-spline discretization accuracy. Using the setting p = 2, K = 10, the
overall error becomes smaller but the initial values y(0) = 0 still lead to worse accuracy than the others. This is
shown in Figs. 3.11a and 3.11b, which depict the solution and the error, respectively.

To understand where the observed phenomena come from, let us in a first step rewrite the equation sys-
tem (3.95) arising from theMPDE approach by solving it for the derivative. This leads to

dy(t1)

dt1
=
(
−λI−J −1 Q)︸ ︷︷ ︸

Z

y(t1) + J −1 C(t1), (3.100)

where I is the identity matrix. The matrix Q is skew-symmetric by construction, see Section 3.2. The matrix
J is real symmetric positive definite (cf. “mass matrix” [93, p. 148]). Consequently the matrix J −1 Q has
eigenvalues which are purely imaginary or zero and the eigenvectors are linear independent, see Appendix
6.5.2. As a result the matrix Z has linear independent eigenvalues as well. The analytical solution for (3.100)
is given by [32]

y(t1) = η0 eλZ,0t1 vZ,0 + η1 eλZ,1t1 vZ,1 + . . .

+ ηNp eλZ,Np t1 vZ,Np − Z−1J −1C, (3.101)

where η0, . . . , ηNp ∈ R are constants depending on the initial values, λZ,0, . . . , λZ,Np ∈ C are the eigen-
values and vZ,0, . . . ,vZ,Np ∈ CNp×1 are the eigenvectors of Z. The properties of the solution thus de-
pend on the eigenvalues and eigenvectors of Z. Since the matrices I and J −1 Q are commutative, i.e.

IJ −1 Q = J −1 Q I, (3.102)

the eigenvalues of Z can be written as [110, p. 57]

λZ,k = −λ− λIQ,k ∀k = {0, . . . , Np}, (3.103)

where λ is the parameter from the Dahlquist equation (3.93) and λIQ,k are the eigenvalues of the ma-
trix J −1 Q. The eigenvalues of Z are thus influenced by a part which stems from the original problem,
i.e. the Dahlquist equation, and a part which stems from the semi-discretization with the Galerkin ap-
proach.

As already mentioned the matrix J −1 Q has eigenvalues which are purely imaginary or zero. Addi-
tionally since it is a real matrix, the imaginary eigenvalues and eigenvectors come in pairs of complex con-
jugates [109, p. 338]. Note that for the PWM eigenfunctions from Subsection 3.3.2 the matrix Qeig is
skew-hermitian, and thus the aforementioned properties are not directly valid. However it is a diagonal ma-
trix, whose eigenvalues are equal to its diagonal entries. Those are the eigenvalues of the matrixQpwm of the
original PWM basis functions. As a result the following analysis is valid for the PWM eigenfunctions as well.
Let {0, . . . , 0, λIQ,M , . . . , λIQ,Np} be the eigenvalues and {vIQ,0,vIQ,1, . . . ,vIQ,Np} be the corresponding eigen-
vectors of J −1 Q. The purely imaginary eigenvalues lead to oscillating components in the solution (3.101)
which are unphysical in the sense that they do not come from the eigenvalues of the original Dahlquist equa-
tion (3.93). The ηM , . . . , ηNp in (3.101) may be chosen as such that the oscillating components due to the
imaginary eigenvalues and their complex conjugate counterparts cancel each other out. The remaining terms

53



0 1 2 3 4 5 6

0

2

4

6

8

10

time t (ms)

so
lu
tio

n
x
(t
)

reference
Initial value y(0) = 0

Initial value y(0) = (Q+ λJ )−1 C(0)− αs

(a)

0 1 2 3 4 5 6

10−1

100

time t (ms)

ab
so
lu
te
L
2
er
ro
r
ε a

b
s
(t
)

Initial value y(0) = 0

Initial value y(0) = (Q+ λJ )−1 C(0)− αs

(b)

Figure 3.10: (a) Solution of the Dahlquist equation using the MPDE approach with B-splines (p = 2, K = 0)
and two different initial values. Using y(0) = 0, solving the equation systems takes 781 time
steps. Using y(0) = (Q+λJ )−1 C(0)−αs the solution takes only 82 time steps. The calculation
of the reference solution takes 170 time steps. (b) Absolute L2 error calculated according to
(3.98) in the middle of each switching interval. Dots mark the position of actual calculation,
the lines are linear interpolations.
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Figure 3.11: (a) Solution of the Dahlquist equation using the MPDE approach with B-splines (p = 2,K = 10)
and two different initial values y(0) = 0 and y(0) = (Q + λJ )−1 C(0) − αs. (b) Absolute L2

error calculated according to (3.98) in the middle of each switching interval. Dots mark the
position of actual calculation, the lines are linear interpolations.
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Figure 3.12: Coefficients y(t1) for B-splines (p = 2, K = 0) when using y(0) = 0.

involving η0, . . . , ηM−1 correspond to the zero eigenvalue components and do not cause unphysical oscilla-
tions. They can thus be setup as such that the initial condition (3.96) is fulfilled. In practice, we setup the
initial values as follows: Calculate

y? = −Z−1J −1C(0). (3.104)

When the simulation is started with this choice of initial values, the differential equation system (3.100) is
directly in steady state. This means that the η0, . . . , ηNp from (3.101) are implicitly given as such that no
oscillations occur. However this choice does not yet fulfill the initial conditions (3.96). Thus we modify y? as
such that the initial conditions are satisfied. This is achieved by changing the components corresponding to
the zero eigenvalues bymeans of η0, . . . , ηM−1. The initial values y are now given by

y(0) = y(0) = y? − η?0vZ,0 − . . .− η?M−1vZ,M−1. (3.105)

In case of M > 1 (M depends on the basis functions and boundary conditions along the fast time scale
t2), there must be additional conditions to uniquely define η?0, . . . , η

?
M−1. How these conditions look like in

general is not clear and a topic for future research. The initial values (3.99) earlier used in the illustrative
example are the special case of (3.105) when using B-splines as basis functions. The obtained knowledge is
also applicable to systems of ODEs and might be applicable to DAEs.

In case of linear problems with varying duty cycle the initial values can be found similarly as in the case
of constant duty cycle, however the mathematical analysis as discussed so far is not applicable any more for
the entire simulation interval. In essence the duty cycle is frozen at its initial point to calculate the initial
values. Oscillations might still arise during the simulation.

The choice of initial values in case of nonlinear problems is more complicated. The analysis applied in
linear problems is not directly applicable. An algorithm for finding an approximation to reasonable initial
values has been presented in [99]. It assumes that the solution of the original equation system can be split
into an envelope, which can be represented by a linear function, and a rest. This knowledge is used to
calculate the ripple. The coefficients y(0) can be found by projecting them into the solution space spanned by
the basis functions using a Galerkin approach (small signal approach on top of the envelope). However this
approach only offers an approximation which may lead to some dynamic in the slowly varying coefficients. It
should be noted that for some nonlinear problems it is still possible to find the initial values in a more optimal
way. In Chapter 4 reasonable choices are discussed for specific examples.
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Figure 3.13: Coefficients y(t1) for B-splines (p = 2, K = 0) when using y(0) = (Q + λJ )−1 C(0)− αs.

3.4.3 Stability of time integration

We found in the previous subsection that the eigenvalues of the original equation system (3.93) are trans-
ferred to the equation system after the semi-discretization (3.100) according to (3.103). The imaginary
part of the eigenvalues is modified by the purely imaginary eigenvalues of the matrices resulting from the
Galerkin approach. As a result, the stability requirement towards the time integration algorithm may be
more strict. Consider, e.g. an equation system with only real eigenvalues. This would be solvable by any
A(α)-stable solver with α > 0, see Section 2.5. However the equation system after the semi-discretization
(3.100) has complex eigenvalues with a non-zero imaginary part and as a result the solver needs to be A-
stable.

3.4.4 Complexity and efficiency of the MPDE approach

As in many numerical methods, in the MPDE approach there is a trade-off between the efficiency, i.e. the time
to solve the problem, and accuracy of the calculated solution. The approach offers two parameters for this
purpose. The first parameter is the number of basis functions Np. Increasing this parameter leads to better
approximation of the basis functions, however the size of the equation systems isNp +1 times larger than the
original equations. This leads to higher computational effort. The second parameter is the desired accuracy
which is provided to the time integration algorithm. Requiring higher accuracy leads to higher number of
time steps and thus higher computational effort. Both parameters need to be balanced with each other.
Setting a small number of basis functions but requiring high accuracy from the time integration algorithm is
not useful since the overall accuracy of the solution is then limited by the small number of basis functions.
The same holds the other way around.

It is difficult to theoretically predict the efficiency of the MPDE approach in a practical implementation
since many aspects need to be considered, e.g. code efficiency and computational overhead on a computer.
However the complexity can be estimated under simplified assumptions. The time integration algorithm
usually needs to solve one or more (nonlinear) equation systems per step. This depends on the adaptivity
of the algorithm and the nonlinearity of the problem. We assume for simplicity that in each time step the
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same number of equation systems has to be solved and that this is the main computational effort. This means
that the computational effort for evaluating the matrices in (3.1) and assembling the matrices in (3.29) by
integration and Kronecker product is neglected. Let Nts be the number of time steps which are necessary to
solve (3.1). The complexity of solving the nonlinear equations shall be estimated by O(Nk

s ) where Ns is the
size of the equation system and k depends on the solver. Considering all time steps, the overall complexity
to solve the original problem is consequently given by

NtsO(Nk
s ). (3.106)

For the MPDE approach, the number of time steps is denoted by N̂ts, the size of the equation system (3.29)
is given by Ns(Np + 1). As a result, the overall complexity is

N̂tsO
(

(Ns(Np + 1))k
)
. (3.107)

Comparing both complexities and assuming that the same solver is used for both problems yields that the
MPDE approach is more efficient than the conventional time discretization of the original problem if the
condition

(Np + 1)k <
Nts

N̂ts

(3.108)

is satisfied. Consequently to achieve an efficient simulation, the number of time steps in the MPDE approach
must be considerably smaller than that of the conventional time discretization of the original problem. This is
often fulfilled. If LU decomposition and forward/backward substitution is used in each step and the matrices
are full, the parameter k = 3. If the matrices are sparse, the number is usually smaller. There are also methods
for solving linear equation systems which can reach linear complexity, meaning that k = 1, e.g. Algebraic
Multigrid Methods, see [16]. They would be optimal since a relatively high number of basis functions could
be used, while still achieving an efficient solution method. Future research must determine if those methods
are suitable to solve the equation systems arising in the MPDE approach.

3.5 Natural sampling versus regular sampling

The difference between regular sampling and natural sampling was already discussed in Section 2.6. As can
be seen in Fig. 2.11, when natural sampling is used, the switch in the excitation occurs at the point where
the reference signal d(t) and the carrier s(t) intersect, i.e. at position t = t?nat. When using regular sampling,
in contrast, the reference signal is sampled at the beginning of the period, i.e. at t = 0 and held constant
throughout the entire cycle. This leads to a different position of the switching instant, namely t = t?reg. To
accomplish this in the MPDE approach, a naive idea would be to use a sampled version of the reference signal
d(t), i.e. a curve d?(t) which is piecewise constant throughout each switching cycle, for the MPDE approach.
Consequently the function d?(t) would be discontinuous. This would lead to high computational effort along
the slow time scale since the duty cycle is assumed to be slowly varying. To avoid this, a “delayed” reference
signal ddel(t) is introduced. We require it to fulfill the relation (first switching cycle)

ddel(t
?
reg) = d(0), (3.109)

such that the switching instant occurs at the correct position. The sawtooth carrier is given by

s(t) =
1

Ts
t mod 1, (3.110)
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which means that the switching instant in regular sampling t = t?reg can be calculated by equating (3.109)
and (3.110) and solving for t, i.e.

t = Ts ddel(t). (3.111)

A function satisfying the condition (3.109) is naturally given by

ddel(t) = d
(
t− Ts ddel(t)

)
. (3.112)

This equation can simply be added as an additional equation into (3.29). The time integration algorithm takes
care of solving it. For illustration we only considered the first switching cycle. A generalization is possible by
adding multiples of Ts to the time variable. Relation (3.112) holds for the entire simulation interval. If the
known reference signal also depends on the state variables, i.e. d(x, t), which is often the case if a control
system is used to adjust the output voltage or current of a power converter, then the situation becomes more
complicated. Equation (3.112) becomes

ddel(x, t) = d
(
x
(
t− Ts ddel(x, t)

)
, t− Ts ddel(x, t)

)
, (3.113)

which requires the state variables to be available at an earlier time instant. This can either be tackled by
solvers for delay differential equations, or, more easily, with an approximation, which allows us to stay in the
well-known area of ODEs/DAEs. A first order approximation of the delayed reference signal ddel(x, t) is given
by

ddel(x, t) = d
(
x
(
t− Tsddel(x, t)

)
, t− Tsddel(x, t)

)

= d(x, t)− ddel(x, t)Ts
d d(x(t), t)

dt
+O

(
(ddel(x, t)Ts)

2
)

≈ d(x, t)− ddel(x, t)Ts
d d(x(t), t)

dt
. (3.114)

This equation is an ODE which can be added to the equation system (3.29) to calculate the necessary ddel(x, t)
from the known reference signal d(x, t). The regular sampling with a triangle carrier is achieved analogously.
Corresponding to the functions d1(x, t) and d2(x, t), there will be delayed functions ddel,1(x, t) and ddel,2(x, t)
and an equation (3.114) for each of them, respectively.

3.6 Suitability of warped MPDEs

WaMPDEs are an advanced concept of MPDEs, which can be used when working with frequency modulation.
If the frequency of a signal changes, e.g. in a voltage-controlled oscillator, the approach using MPDEs is
inefficient [70]. To deal with this problem, in addition to introducing the artificial time scales, some of the
time scales are warped, i.e., they are scaled with a function depending on another time scale. This is the
origin of the term “warped MPDEs”. The concept was introduced in [70] for the first time. The warped
MPDEs corresponding to the original ODEs/DAEs (3.1) are given by

A(x̂)

(
∂x̂

∂t1
+ ω2(t1)

∂x̂

∂t2
+ . . .+ ωm(t1)

∂x̂

∂tm

)
+ B(x̂) x̂ = ĉ, (3.115)

where x̂ = x̂(t1, . . . , tm) is the solution and ĉ = ĉ(t1, . . . , tm) is the excitation. The functions ω2(t), . . . , ωm(t)
are called local frequency functions. The relation between the solution and excitation of (3.115) and (3.1)
is given by
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Theorem 4 (adapted from [71]). Let a solution and excitation of the ODEs/DAEs (3.1) be given by x(t) ∈ C1(Υ)
and c(t) ∈ C0(Υ). Then the multivariate solution x̂(t1, . . . , tm) and excitation ĉ(t1, . . . , tm) given by

x̂
(
t, θ2(t), . . . , θm(t)

)
= x(t), (3.116)

ĉ
(
t, θ2(t), . . . , θm(t)

)
= c(t), (3.117)

satisfy the WaMPDEs (3.115). The functions θ2(t), . . . , θm(t) ∈ C1(Υ) are called warping functions.

Proof. see Appendix 6.4.

The functions θi(t) and ωi(t) are related by

ωi(t) =
dθi(t)

dt
, ∀i = 2, . . . ,m. (3.118)

Since time cannot run backwards, the derivative of θmust be positive, i.e, ω(t) > 0 ∀ t. A generalization of the
relation (3.116), (3.117) similar to (3.6), (3.7), where shifts α̂1, . . . , α̂m are included is not mentioned in the
literature. Note that if the solution, excitation or warping functions provide less smoothness than stated in
Theorem 4, a piecewise analysis is possible similar as described in Subsection 3.1.1.

During this research project the question arose if the concept of WaMPDEs is suitable to model a vary-
ing duty cycle. This would be a replacement for supplying the basis functions with a duty cycle by using
the warping function θ. As discussed in the following this does not yield an efficient simulation method.
However the concept may be applied in another context, which is briefly described in the end of this sec-
tion.

For simplicity we assume that the considered problem is linear. This is sufficient to demonstrate the
difficulties with WaMPDEs. We start from the linear system of ODEs

A
d

dt
x(t) + Bx(t) = c(t). (3.119)

The corresponding WaMPDEs are given by [70]

A

(
∂x̂(t1, t2)

∂t1
+ ω(t1)

∂x̂(t1, t2)

∂t2

)
+ Bx̂(t1, t2) = ĉ(t1, t2), (3.120)

where ω(t1) is the local frequency function. The relation between the WaMPDEs and the original ODEs is
given by

x̂(t, θ(t)) = x(t), (3.121)

ĉ(t, θ(t)) = c(t), (3.122)

where θ(t) is the warping function. Similarly as before the solution is now split into basis functions and
coefficients

x̂hj (t1, t2) =

Np∑

k=0

yj,k(t1)wk
(
τ(t2), d0

)
, (3.123)

however, the duty cycle is fixed at a constant value d0 ∈ (0, 1).
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Figure 3.14: Reference and actual pulse. The warping function θ(t) maps the time between them.

Applying the Galerkin approach analogously to Section 3.2 yields

Aω
dy

dt1
+ Bω(t1)y(t1) = Cω(t1) , (3.124)

where

Aω = A⊗J (0, d0), (3.125)

Bω(t1) = B⊗J (0, d0) + ω(t1)A⊗Q(0, d0), (3.126)

Cω(t1) =

Ts∫

0

ĉ(t1, t2)⊗w(τ(t2), d0) dt2 . (3.127)

Since the duty cycle is assumed to be constant, there is no term involving the derivative of it or the matrix
U . The task of varying the duty cycle is realized through the local frequency function ω(t1). It has the ability
to stretch and compress the fast time scale t2 and is used to shift the position of the C0 continuity to fit the
actual switching instant. Consequently the next step is to find an appropriate warping function θ(t) and setup
the right-hand side ĉ(t1, t2) of the MPDEs. The original problem is excited by a PWM generated ideal pulsed
excitation denoted by vi, i.e

c(t) = fprovi(t, d(t)), (3.128)

with fpro ∈ RNs a vector, which assigns the excitation to the equations from the system (3.1) that are actually
excited and vi(t, d(t)) is generated as described in Section 2.6 using natural sampling and sawtooth carrier.
Since the basis functions wk from (3.123) are constructed for the duty cycle d0, the right-hand side of the
MPDEs must be chosen with the same duty cycle, i.e.

ĉ(t1, t2) = fprov̂i(t2), (3.129)

where v̂i(t2) = vi(t2, d0).

The warping function needs to satisfy (3.122) for all t ∈ Υ, i.e. in the entire simulation interval. This
is accomplished when the warping function θ(t) maps the time as such that the switching instants of the
excitations coincide.
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Figure 3.15: Exemplary θ(t) and ω(t) for linear interpolation of the warping function (Ts = 0.5ms, d(t) =
0.40625 sin(100πt) + 0.5, d0 = 0.5). Since the warping function is global in C0, the frequency
function ω(t) is discontinuous.

For illustration let us assume that in the n-th switching cycle the switching occurs at the time instant ta,
i.e. the duty cycle is d(ta) = da. The corresponding ideal right-hand side pulse for the corresponding period
[(n− 1)Ts, nTs] is depicted in Fig. 3.14. The excitation v̂i(t) leads to a “reference” pulse also depicted in the
figure. To map the switching instants onto each other, i.e. to map the points of C0 continuity of the ripples
in the solution onto each other, the warping function must fulfill the conditions

θ ((n− 1)Ts) = (n− 1)Ts

θ ((n− 1)Ts + daTs) = (n− 1)Ts + d0Ts

θ(nTs) = nTs.

Then for the interval [(n−1)Ts, nTs], the relation (3.122) is fulfilled. The simplest warping function possible is
built by connecting the points by linear interpolation leading to the exemplary warping function as depicted
in Fig. 3.15. The corresponding frequency function ω(t) is depicted as well. Since the smoothness of the
frequency function ω(t) has a direct impact on the regularity of the warped MPDE solution and thus on the
convergence of the Galerkin approach, it is advantageous to use higher-order interpolation. An exemplary
θ(t) in this case is shown in Fig. 3.16 for four cycles. Its derivative ω(t) is depicted in the same figure and
still continuous. Looking at the figures it already becomes clear that this kind of modeling will not lead
to an efficient simulation. As can be seen the variations in ω(t) are fast. The time rates are in the same
range as Ts and as a result the variations along the slow time scale t1 will be equally strong as along the fast
time scale t2. This becomes apparent when looking at the system (3.124). The function ω(t1) has a direct
influence on the slow time scale t1 and as a result the time integration algorithm will have to cope with fast
variations coming from it. Numerical results which support this statement are discussed in Subsection 4.4.3.

Nevertheless there is an application in which the WaMPDEs may be useful. There are applications in
which not only the duty cycle of a PWM excitation but also the switching frequency 1/Ts is varying. If the
change of the switching frequency is much slower than the switching frequency itself, the warping function
may be used. Since it stretches and compresses the entire time scale, the switching frequency would change
with it. This is a possible topic for future research.
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Figure 3.16: Exemplary θ(t) and ω(t) for piecewise cubic interpolation of the warping function (Ts = 0.5ms,
d(t) = 0.40625 sin(100πt) + 0.5, d0 = 0.5). Since the warping function is global in C1, the
frequency function ω(t) is still continuous.

3.7 Conclusion

In this chapter the methodological aspects of the developed method have been discussed. In a first step,
the concept of MPDEs has been introduced and their relation to the differential equations describing the
original problem has been derived. Subsequently the MPDEs have been solved by a combination of a Galerkin
approach and a conventional time discretization. Since the fast varying periodic ripples are already resolved
by the Galerkin approach, the time integration algorithm needs considerably less time steps than for the
original differential equation systems. This comes at the price of larger equation systems. Three types of
basis functions have been presented which are suited in the application of the MPDE approach to PWM
power converters. Furthermore, a technique for dealing with regular sampling has been proposed and the
suitability of the concept of WaMPDEs as an alternative to model varying duty cycle has been evaluated. It
was found that it is unsuited for that purpose. However it might be used if the switching frequency is slowly
varying during the simulation.
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4 Numerical applications and results

This chapter presents the numerical applications which are used to demonstrate the efficiency and accu-
racy of the proposed multirate partial differential equation (MPDE) approach. A simple buck converter
(DC-DC converter) and two different inverters (DC-AC converters) are used as test examples. The excita-
tion is idealized, i.e. no transistors or any other highly nonlinear semiconductor components are present
in the circuit. The MPDE approach is first applied to the buck converter with linear and nonlinear induc-
tor. Subsequently the inductor is replaced by a field model such that a field-circuit coupled problem arises.
As DC-AC applications, an inverter with RLC filter and an inverter with LCL filter and control scheme are
employed.

In the course of this chapter, the accuracy of the MPDE approach is determined by comparing quantities
of interest in the circuit, i.e. certain voltages and currents, to a reference solution. The relative L2 error
between both is used as a measure of accuracy. It is defined by

εx =

∥∥xref(t)− xh(t)
∥∥
L2(Υ)

‖xref(t)‖L2(Υ)

, (4.1)

where x represents the actual quantity of interest, the superscript h denotes an approximation, the subscript
ref denotes the reference solution and Υ is the simulation time interval. The continuous norms are discretized
by using numerical quadrature, namely the mid-point rule, which is of quadratic order [44]. This results in

εx ≈

√
Nε∑
k=1

|Υk|
∣∣xref(t(k))− xh(t(k))

∣∣2

√
Nε∑
k=1

|Υk|
∣∣xref(t(k))

∣∣2
, (4.2)

where the entire simulation interval Υ is split into Nε non-overlapping subintervals Υk, and t(k) are the
mid-points of these subintervals Υk.

The simulations are partly run in Octave [23] and partly in MATLAB. Mainly two different solvers for
differential equations are applied, namely ode5r (Octave, odepkg [116]) and ode15s (MATLAB). ode5r im-
plements an implicit Runge-Kutta (IRK) of order 5 with 3 stages. The function is a wrapper to the original
FORTRAN code “Radau5” by Hairer et al. [43]. ode15s implements a modified version of the backward
differentiation formulas (BDFs) up to order 5 [107]. Both algorithms support dense output, which allows to
extract the solution at arbitrary time instants in the simulation interval. The order of accuracy at the addi-
tional time points is the same as that of the actual time steps chosen by the time integration algorithm. The
solvers use adaptive time stepping to control the accuracy given user-specified relative and absolute toler-
ances. How the solvers deal with both tolerances is different. The internally estimated solution error needed
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Figure 4.1: (a) Buck converter and (b) simplified buck converter in continuous conduction mode with ideal-
ized excitation. Figures based on [80] ©2019 IEEE.

for the adaptivity in ode5r is given by [43]

‖err‖ =

√√√√ 1

N

N∑

i=1

(
erri
sci

)2

, (4.3)

where the estimated error of the i-th solution component is denoted by erri, N is the size of the equation
system and sci is given by

sci = abstol + max
i=1,...,N

(∣∣∣y(0)
i

∣∣∣ ,
∣∣∣y(1)
i

∣∣∣
)

reltol. (4.4)

It depends on the absolute and relative tolerance and the i-th solution component of the current and previous
step, i.e.

∣∣∣y(1)
i

∣∣∣ and
∣∣∣y(0)
i

∣∣∣, respectively. The step size of the following step is calculated using the estimated
error. A detailed discussion can be found in [43, p. 124]. In this work the error estimation (4.3) is modified
to use a maximum norm

‖err‖ = max
i=1,...,N

∣∣∣∣
erri
sci

∣∣∣∣ . (4.5)

The reason for changing the estimation is that for linear problems in the MPDE approach, most of the variables
stay constant if the initial values are chosen wisely. As such the error of these solution components is very
small or even zero. Therefore the original estimate masks the error if new basis functions are added which
do not strongly contribute to the error. The result is that the time integration algorithm takes less time
steps than is actually necessary to provide the desired accuracy of the reconstructed solution of the MPDE
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approach. For ode15s the applied norm to calculate if the current step size is acceptable is specified by using
the “NormControl” option. In our simulations, this is set to “on” [107].

Both solvers react differently to switching events in the excitation. The MATLAB solver ode15s aborts
at switching events while ode5r simply goes down to finer time steps to guarantee the desired accuracy. To
avoid the failure of the MATLAB solver, a switch event detection is implemented. It uses the solver’s event
function feature to stop the time integration algorithm if a switch event is detected. The solver is subsequently
restarted with the updated excitation value. In the end, the solutions on the subintervals are concatenated.
To calculate consistent initial values at the beginning of each subinterval the procedure discussed at the end
of Section 2.5 is employed. The initial differential variables for the new time interval are set to the end value
of the differential variables of the last time interval.

4.1 Buck converter circuit

Let us consider the buck converter as depicted in Fig. 4.1a [41]. It consists of a DC voltage source with
voltage V0, an insulated-gate bipolar transistor (IGBT) and a diode connected to a filter circuit consisting
of an inductor L and its resistance RL, a capacitor C and a load R. In general the load can also consist of
capacitive, inductive or other electrical elements. If the buck converter is run in continuous conduction mode,
i.e. if the current through the coil is always positive (iL > 0), then the diode can be neglected. By additionally
assuming idealized switching behaviour of the transistor, the circuit can be simplified as depicted in Fig. 4.1b.
The pulsed voltage is given by

vi(t) =

{
V0 for τ(t) ∈ [0, D]
0 otherwise

, (4.6)

where τ(t) is the relative time and D is the duty cycle. The circuit is characterized by two state variables,
namely iL and vC. Using the Kirchhoff laws, see Section 2.2, the buck converter can be described by the
system of ordinary differential equations (ODEs)

[
L 0
0 C

]
d

dt

[
iL
vC

]
+

[
RL 1
−1 1/R

][
iL
vC

]
=

[
vi(t)

0

]
, (4.7)

The following parameter values are employed:

• V0 = 100V;

• fs = 500Hz;

• D = 0.7;

• L = 1mH, RL = 10mΩ;

• C = 100µF;

• R = 0.8 Ω.

As initial conditions vC(0) = 0V and iL(0) = 0A are applied.

For this simple system of ODEs (4.7), it is possible to analytically calculate the reference solution in
closed form. For that purpose the simulation interval is split into subintervals 4t(k), k ∈ N as such that on
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Figure 4.2: Division of simulation interval into subintervals for the calculation of the closed form solution.

each subinterval the excitation is constant, i.e. either V0 or 0. This is depicted in Fig. 4.2. The solution on
subinterval 4t(k) is calculated by [78]

iL(t) =
1

2(R+RL)ζ1
e

(
ζ1(t+t

(k))+ζ2(t
(k)−t)

2CLR

)(
2Vinζ1 e

(
−ζ1(t+t

(k))+ζ2(t−t
(k))

2CLR

)
+ e

(
− tζ1
CLR

)
ζ3 + e

(
− t

(k)ζ1
CLR

)
ζ4

)
,

and

vC(t) =
1

2(R+RL)ζ1
e

(
ζ1(t+t

(k))+ζ2(t
(k)−t)

2CLR

)(
2RVinζ1 e

(
−ζ1(t+t

(k))+ζ2(t−t
(k))

2CLR

)
+ e

(
− tζ1
CLR

)
ζ5 + e

(
− t

(k)ζ1
CLR

)
ζ6

)
,

where

ζ1 =
√
C2R2R2

L − 2CLR (2R+RL) + L2,

ζ2 = CRRL + L,

ζ3 = ζ1

(
iL(t(k)) (R+RL)− Vin

)
+ CR

(
RRLiL(t(k)) + 2vC(t(k)) (R+RL)− 2RVin +R2

LiL(t(k))−RLVin

)

+ L
(
Vin − iL(t(k)) (R+RL)

)
,

ζ4 = ζ1

(
iL(t(k)) (R+RL)− Vin

)
+ CR

(
−RRLiL(t(k))− 2vC(t(k)) (R+RL) + 2RVin

+R2
L

(
−iL(t(k))

)
+RLVin

)
+ LiL(t(k)) (R+RL)− LVin,

ζ5 = L
(
−2R2iL(t(k)) +R

(
−2RLiL(t(k)) + Vin + vC(t(k))

)
+RLvC(t(k))

)

− (ζ1 − CRRL)
(
RVin − vC(t(k)) (R+RL)

)
,

ζ6 =
(
− (ζ1 + CRRL)

(
RVin − vC(t(k))(R+RL)

)
+ LR

(
2iL(t(k)) (R+RL)− Vin

)
− LvC(t(k)) (R+RL)

)
.

As can be seen the solution of the current subinterval depends on the solution at the end of the prior interval.
The excitation Vin has to be chosen as either V0 or 0 according to the excitation on the respective subinterval.
The solutions of the buck converter for switching frequencies of fs = 500Hz and fs = 5000Hz are depicted
in Fig. 4.3. They consist of fast varying ripples and a slowly varying envelope. If the switchinig frequency
increases, the amplitude of the ripples decreases.

The accuracy and efficiency of the MPDE approach is analyzed on the simplified buck converter example.
The calculations were performed on an Intel Core i5-5200U with 2.2GHz and 16 GB RAM. Most parts of the

68



0 2 4 6 8 10

0

50

100

time (ms)

vi (V)
iL (A)
vC (V)

(a)

0 2 4 6 8 10

0

50

100

time (ms)

iL (A)
vC (V)

(b)

Figure 4.3: Solution of the buck converter for different switching frequencies fs (switching cycles Ts) and
fixed duty cycle D = 0.7. (a) fs = 500Hz, i.e. Ts = 2ms. (b) fs = 5000Hz, i.e. Ts = 0.2ms.
Figures adapted from [80] ©2019 IEEE.

following results are also presented in [78, 80], although the timings differ slightly since another computer
was utilized for the calculations. As basis functions the FE nodal functions, the PWM basis functions and the
B-splines are used.

The FE nodal functions are B-splines of order 1. The nodes (knots) in the relative time interval [0, 1] are
chosen equidistant as such that the jumps in the excitation at t(i) where τ(t(i)) = D fall exactly onto a node.
The corresponding knot vector is given by (differently than in Subsection 3.3.3)

Ξfe = [0, 0, 1, 2, . . . , (Np,fe − 2), (Np,fe − 1), (Np,fe − 1)] /(Np,fe − 1), (4.8)

withNp,fe ∈ {11, 21, 31, 41, . . .} forD = 0.7. The FE nodal functions are given bywfe,1(τ) = P0,1(τ),wfe,2(τ) =
P1,1(τ), . . . , wfe,Np,fe

(τ) = PNp,fe−1,1(τ). To ensure periodicity, an additional constant basis functionwfe,0(τ) =
1 is used and the coefficients corresponding to the first and last basis functions wfe,1(τ) and wfe,Np,fe

(τ) are
set to zero (zero Dirichlet boundary conditions). The resulting basis is exemplary shown for Np,fe = 5 in
Fig. 4.4. If the jump in the excitation does not coincide with a node, it was observed that the convergence
order is diminished from quadratic to linear.

For the B-splines, the original knot vector as described in Subsection 3.3.3 is used. To ensure peri-
odicity, the same approach as for the FE nodal functions is employed (see also Subsection 3.3.3). The
number of B-spline basis functions Np,bspl takes the functions at the boundary into account. Only the de-
gree is used as refinement variable, namely p ∈ {2, . . . , 10}. No additional knots are added, meaning
K = 0.

In case of the PWM basis functions any number of basis functions Np,pwm can be chosen since the
duty cycle is already taken into account by construction. However as the PWM basis functions are poly-
nomials, they become numerically unstable for high Np,pwm such that the number is restricted to Np,pwm ∈
{1, . . . , 12}.

The multivariate right-hand side of the MPDEs (3.11) is chosen according to Subsection 3.4.1, i.e.
v̂i(t1, t2) = vi(t2). This leads to constant right-hand side of the semi-discretized system of equations (3.29),
i.e.

C(t1) = constant. (4.9)
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Figure 4.4: FE nodal basis wfe,k(τ) with k ∈ {0, 2, 3, 4} for Np,fe = 5. Figure adapted from [80]©2019 IEEE.

The initial values of (3.29) are found as laid out in Subsection 3.4.2. Since the buck converter is a linear prob-
lem, the equation system (3.29) is linear as well. The steady-state solution is given by

y? = B−1C. (4.10)

Applying the procedure from Subsection 3.4.2 leads for all three bases to the initial values

yj,k(0) =





y?j,k for k = 1, . . . , Np and j = 1, . . . , Ns

xj(0)−
Np∑
l=1

y?j,lwl(0, D) for k = 0 and j = 1, . . . , Ns.
(4.11)

To reconstruct the solution after solving (3.29), the solution expansion (3.15) is used. The time integra-
tion algorithm uses less time steps than for the original equations (4.7) therefore the dense output feature
is utilized to obtain a reasonably-fine sampled solution. A 3D representation of the multivariate capacitor
voltage is shown in Fig. 4.5. The fast periodic ripples evolve along the fast time scale t2 while the smooth,
slowly varying envelope evolves along time scale t1.

Convergence The accuracy of the method for the different basis functions is analyzed with respect to the
number of basis function Np. As a measure of quality the error (4.2) is considered, specifically, the error of
the voltage at the capacitor εv. The results for the current through the inductor are similar. The simulations
are conducted in Octave using ode5r as time integrator. The simulation interval is Υ = [0, 10]ms. The
solution is calculated for 500 samples per switching period Ts (using dense output). The absolute tolerance
of the time integrator is fixed at abstol = 10−10. According to the error estimation (4.4) and (4.5), the
error is then mainly controlled by the relative tolerance reltol. It is set as such that it does not diminish the
accuracy of the solution for the highest number of basis functions considered. A value of reltol = 10−6 is
employed. To ensure that this value is reasonable, the solutions for reltol = 10−6 and reltol = 10−8 are
compared. For the highest number of basis functions, i.e. Np,pwm = 12 (PWM basis functions), Np,fe = 131
(FE nodal functions) and Np,bspl = 21 (B-spline basis functions), the absolute error between the solutions
is several orders of magnitude smaller than the obtained error εv of the capacitor voltage. The relative
tolerance reltol = 10−6 is therefore deemed adequate for the calculations in this section. Fig. 4.6 shows
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Figure 4.7: Error εv of the capacitor voltage versus the computation time, i.e. the time for solving the equa-
tion system (3.29).

the convergence of the MPDE approach for the different basis functions and with respect to the number of
basis functions Np. As one can see the method converges with all basis functions. The FE nodal functions
converge approximately quadratic which is in agreement with mathematical theory [13]. The PWM basis
functions exhibit exponential convergence which is also to be expected for a spectral basis [15]. It is not
yet fully understood where the areas of stagnation come from. Every second basis function which is added
does not contribute to the solution. However if another basis function is added, both contribute again. As
a result no basis function may be removed. A possible explanation might be the symmetry conditions that
the basis functions fulfill. These prohibit that an additional basis function contributes to the solution until
another basis function, which fulfills a different symmetry condition, is added. The symmetry conditions are
analyzed in Appendix 6.2.1. The convergence of the B-splines with degree elevation is exponential, which
also concurs with the mathematical theory [14].

Efficiency To assess the efficiency of the MPDE approach, the method is compared to conventional time
discretization of the original ODEs (4.7). The time integrator ode5r is suited to integrate ODEs with pulsed
right-hand side without failure at abrupt switches of the excitation. It takes very small time steps to approxi-
mate the transients. The accuracy of the time integrator for the solution of (4.7) is controlled by the relative
tolerance setting, while for the MPDE approach the relative tolerance is fixed again (at reltol = 10−6) and the
number of basis functions Np is varied to obtain different accuracies. Fig. 4.7 shows the error εv versus the
computation time. Using the PWM basis functions the MPDE approach yields excellent accuracy at an almost
constant computation time, which is much smaller than the one of the conventional simulation. The same
holds for the B-splines, although the approach takes slightly more computation time than for the PWM basis
functions. With FE nodal functions however, the approach becomes inferior to conventional time discretiza-
tion for around Np,fe = 91 basis functions. To better understand these effects, two additional quantities are
considered.
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Figure 4.8: Error εv of the capacitor voltage versus the number of function evaluations.

In Fig. 4.8 the error εv is plotted versus the number of function evaluations, where function evaluations
are the evaluations of the function provided to the time integrator. In this case it is the right-hand side of the
reordered system of equations (3.29), i.e.

A d

dt1
y(t1) = C −B y(t1). (4.12)

The number of function evaluations for the conventional time discretization increases to reach a higher accu-
racy since more time steps are necessary. For the MPDE approach, in contrast, it even decreases with higher
accuracy. As more and more basis functions are added to reach higher accuracy, there is more information
already taken into account a-priori through the choice of the initial values. Therefore less time steps are
necessary and thus less function evaluations. Finally, Fig. 4.9 shows the error versus the average time per
function evaluation, which is calculated by dividing the simulation time by the number of function evalua-
tions. For the conventional time discretization it is constant since the size of the equation systems does not
change and thus always the same time is required to solve the linear equation systems arising inside the time
integration algorithm. For the MPDE approach, in contrast, the time per function evaluation rises with higher
number of basis functions (i.e. higher accuracy) since the equation systems become larger with higher Np.
For the PWM and B-spline basis functions a relatively small number of basis functions is sufficient to reach
the desired accuracy compared to the FE nodal functions. Consequently, for the FE nodal functions the aver-
age time per function evaluation becomes comparably large which diminishes the efficiency. Both the effects
observed in Figs. 4.8 and 4.9 determince the overall efficiency depicted in Fig. 4.7.

Note that the computational time for reconstructing the solution using (3.15) is not included in the
abovementioned results. If the samples per period are known a-priori, the basis functions can be evaluated
a-priori, which reduces the computational cost. For the 500 samples per switching period, the computational
time is considerably less than 1ms and is therefore neglected.

In summary, if too many basis functions are necessary to reach a desired accuracy, the computational
effort of solving the arising equation systems diminishes the effect of smaller number of time steps and the
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Figure 4.9: Error εv of the capacitor voltage versus the average time per function evaluation.

MPDE approach is not efficient any more. The time integrator tolerance is as well as the number of basis
functions an important parameter of the MPDE approach. If less accuracy is desired, it is sufficient to use
a higher relative tolerance without impairing the solution accuracy. An algorithm to automatically choose
a good combination is not yet available. However an a-priori estimator can be designed by comparing the
solutions for different numbers of basis functions and tolerances and adapt both parameters to reach a desired
accuracy while optimizing the efficiency.

Note that the efficiency of the MPDE approach also increases with respect to conventional time discretiza-
tion if a larger simulation interval is considered. As soon as the buck converter is in steady state, no further
time steps are necessary to solve (3.29) since there is no more variation in the envelope y. A conventional
time discretization always needs a relatively constant amount of computational effort to solve each switch-
ing period and takes longer corresponding to the computation interval. The same holds for increasing the
switching frequency, which the MPDE approach is invariant to, while the conventional time discretization
takes more effort.

4.2 Buck converter with nonlinear inductor

The results presented in the first part of this subsection follow the ones published in [81]. They are also
partly presented in [78]. The simplified buck converter depicted in Fig. 4.1b is utilized as test example.
Differently than before the inductor is now nonlinear and its characteristic is shown in Fig. 4.10. The index-1
differential-algebraic equations (DAEs) describing this problem are given by




0 0 1
0 C 0
0 0 0


 d
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RL 1 0
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 =



vi(t)

0
0


 , (4.13)
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Figure 4.10: Characteristic of the nonlinear inductor. Figure adapted from [81] ©2018 IEEE.

where Lc,coil is the nonlinear inductance [50] according to Fig. 4.10 and the other quantities are as in Sec-
tion 4.1.

The aim of this section is to assess the efficiency and accuracy of the MPDE approach when the simplified
evaluation of the nonlinearity described in Subsection 3.2.2 is employed. The implementation is carried out
in Octave. For solving the differential equation systems we employ ode5r. The calculations are carried out
on an Intel Core i7-3820 with 3.60GHz and 16GB RAM.

All results are compared to a reference solution, which is calculated using a very fine solver tolerance
(abstol = reltol = 10−12) to solve the DAEs (4.13). As before, the relative L2 error (4.2) is used to determine
the accuracy of the MPDE approach compared to the reference solution. For all calculations the simulation
interval is given by Υ = [0, 10]ms. The switching frequency fs is variable between 500Hz and 100 kHz. As
basis functions the PWM basis functions from Subsection 3.3.1 are employed.

Fig. 4.11 shows an exemplary comparison between the reference solution and the MPDE approach so-
lution. For the MPDE approach, the integrals in (3.29) are evaluated using either Gauss-Kronrod quadrature
(denoted as “original approach”) or the simplification described in Subsection 3.2.2 (denoted as “simplified
approach”). When using Np,pwm = 4 basis functions and abstol = reltol = 10−6 there is a clearly distinguish-
able error between the reference solution and the simplified approach solution at fs = 1 kHz. The original
approach solution fits well to the reference solution. The simplification adopted in the simplified approach
results in a correct representation of the envelope. However the shape of the ripples is similar as in the linear
case. Fig. 4.12b depicts the error εv of the original and the simplified approach towards the reference solution
and depending on the frequency. As expected, the higher the frequency, the smaller the error. This results
from the decreasing magnitude of the ripples compared to the envelope when increasing the frequency. The
accuracy of the original approach is better than that of the simplified approach since the simplified evaluation
of the integrals introduces an error. However the computational time for solving using the original approach is
also considerably higher than that when using the simplified approach as shown in Fig. 4.12a. Consequently
if the higher accuracy is not required, the simplified approach should be used.

The efficiency of the simplified approach is summarized in Table 4.1. It shows the obtained error
and approximate speedup depending on the frequency. For increasing switching frequency the conven-
tional time discretization takes longer and longer to solve since more ripples have to be resolved. In con-
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Figure 4.12: (a) Computational time to solution for the original and simplified MPDE approach depending
on the switching frequency. (b) Error of the original and simplified MPDE approach using PWM
basis functions with respect to the frequency. Figures adapted from [81] ©2018 IEEE.

Table 4.1: MPDE approach speedup for Np,pwm = 4 and different frequencies in comparison to conventional
time discretization [81] ©2018 IEEE.

fs (kHz) approx. speedup approx. error
10 60 8× 10−4

50 400 3× 10−5

100 1000 7× 10−6
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Table 4.2: Average number of Newton iterations per time step for the conventional time discretization and
the MPDE approach.

Average number of Newton iterations per time step
Number of time steps per switching cycle conventional time disc. MPDE approach

5 4.24 6
10 3.54 4.18
50 3 2.69
100 2.97 2.43

trast, the time for solving using the simplified approach (or also the original approach) is constant (see
Fig. 4.12a) since the envelope does not change. Consequently the speedup increases if a higher frequency is
employed.

In the second part of this section we investigate for the original approach, i.e. the MPDE approach with
full nonlinear evaluation of the integrals, the number of Newton iterations which are necessary to solve the
arising systems of equations. A fixed-time-step integration is applied in this case. The Octave solver odebwe
from the “odepkg” is utilized. It implements a backward Euler time integration scheme and uses the Newton-
Raphson algorithm without damping to solve the nonlinear systems of equations. Note that it also offers a
simple adaptive-time-step integration based on Richardson extrapolation. However in this case we examine
the influence of different fixed time step sizes onto the number of Newton iterations which are necessary
to solve the problems. We employ B-splines (p = 2, K = 2), see Subsection 3.3.3. The Newton tolerance
NewtonTol is set to 10−4. The switching frequency of the buck converter is set to fs = 500Hz. For this
frequency the deformation of the ripples due to the nonlinearity is more apparent, see Fig. 4.13. Table 4.2
shows the average number of Newton iterations per time step for the conventional time discretization and
the MPDE approach. For increasing number of time steps, the average number of Newton iterations per step
decreases since the variations in the solution from step to step become smaller (thanks to the continuity of
the solution). Furthermore if more time steps are employed, the solution accuracy increases and the MPDE
approach reaches the steady state earlier in this example. Due to this fact, the MPDE approach needs less
Newton iterations than the conventional time discretization for large number of time steps. For low number
of time steps the conventional time discretization needs less Newton iterations.

4.3 Buck converter with field-circuit coupling

Often the simulation using circuits cannot in detail represent the electromagnetic effects which exist in various
electrical elements. An example are eddy current losses which can easily be taken into account in a field
model but hardly accurate in a circuit model. The disadvantage of field models is the often very high number
of degrees of freedom which greatly increase the size of the equation systems. This leads to unacceptably
long simulation times with conventional time discretization methods. In the MPDE approach the size of the
equation systems is further increased by applying the Galerkin approach. Even though the number of time
steps necessary to calculate the solution is less than in conventional methods, the total computational time
is still relatively high. To allow for a cheaper solution of the equation system, a possibility is to decouple
the arising equation systems. The PWM eigenfunctions introduced in Subsection 3.3.2 were developed for
this purpose. The following numerical tests and results in this section have been published in [79]. As
test example the simplified buck converter in Fig. 4.1b is used again. The lumped inductor is replaced by
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Figure 4.13: Current through the inductor at fs = 500Hz.

a 2D finite element model of a pot inductor. This is shown in Fig. 4.14. The model parameters are given
by

• V0 = 24V;
• fs = 1000Hz;
• D = 0.7;
• L ≈ 65mH, RL = 800mΩ;
• C = 10µF;
• R = 30 Ω.

The pot inductor is modeled using 2D finite elements. Its core consists of ferrite material with a conduc-
tivity of σfe = 250S/m. According to Section 2.3 and Section 2.4 the discretized magnetoquasistatic problem
is described by the equations

M
dãz(t)

dt
+ Kãz(t) = XstriL(t), (4.14)

where it is taken into account that the model uses zero Dirichlet boundary conditions and the coupling to
the circuit is established through the winding function. For the field-circuit coupling an additional variable
is introduced, namely the magnetic flux linkage Φ(t) = lzX

>
strãz(t), where lz is the length of the model

in z-direction. Coupling the equations describing the field part and the circuit part monolithically into one
equation system yields the index-1 DAE [2]

M
dãz

dt
−XstriL + Kãz = 0,

lzX
>
strãz − Φ = 0,

dΦ

dt
+RLiL + vC = vi(t).

C
dvC

dt
− iL +

1

R
vC = 0, (4.15)

This system contains a total of 11053 (11050 field model + 2 circuit model + 1 coupling) degrees of freedom
(DOFs) for the example in Fig. 4.14. As initial conditions we consider an uncharged circuit/field model, which
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Figure 4.14: Simplified buck converter with coupled field model of the inductor. The pot inductor model is
axisymmetric around the z-axis. The equipotential lines of the magnetic vector potential are
depicted in the field model part. Image adapted from [79].

means vC(0) = 0, iL(0) = 0 and ãz(0) = 0. Initial conditions for the corresponding equation system after
semi-discretization in the MPDE approach (3.29) are chosen similar to (4.10) and (4.11) in the Section 4.1.
The same holds for the multivariate right-hand side of the MPDEs (3.11), i.e. v̂i(t1, t2) = vi(t2). The MATLAB
solver ode15s is used to calculate the results. The simulation interval is Υ = [0, 10]ms. All calculations
are performed on an Intel Xeon E5-2687W with 3.10GHz and 256GB RAM. For the MPDE approach the
PWM eigenfunctions are utilized (multirate PWM balance method). As parameters a relative and absolute
tolerance of 10−8 is used for the reference solution while for the MPDE approach a tolerance of 10−7 is
employed.

The resulting current through the inductor is shown in Fig. 4.15a and the Joule losses in the core material
are shown in Fig. 4.15b. As one can see both the reference solution and the one calculated with the multirate
PWM balance method fit well. The same holds for the Joule losses calculated by

Peddy(t) =

∫

Ω
e(r, t) · σ(r)e(r, t)dΩ =

(
ed(t)H

)
Med(t), (4.16)

where the superscript H denotes the complex conjugate transposed (hermitian) and ed(t) = − d
dt ãz is the

discrete line-integrated electric field.

The accuracy and efficiency of the multirate PWM balance method is quantified by comparing it to con-
ventional time discretization and additionally to the MPDE approach with the original PWM basis functions.
For this purpose the numerical time to solution for all three methods is measured. The accuracy of the con-
ventional time discretization is controlled by varying the relative and absolute tolerance abstol = reltol ∈
[10−6, 10−1]. For the MPDE approach with PWM basis functions and PWM eigenfunctions the absolute and
relative tolerance are fixed at abstol = reltol = 10−7. The number of basis functions is varied in the interval
Np ∈ {1, . . . , 10}. The accuracy is determined by calculating the relative L2 error of the capacitor voltage
according to (4.2).
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Figure 4.15: (a) Solution of the buck converter with field-circuit coupling calculated using conventional time
discretization and the MPDE approach with Np,eig = 4 PWM eigenfunctions. The relative L2

error of the current through the coil εi is approximately 3×10−5. (b) Core material joule losses
induced by the eddy currents. Figures adapted from [79].

Fig. 4.16 shows the error of the different methods over the time for solving the problems, i.e. the time
that ode15s needs to solve the differential equations. In case of the conventional time discretization, i.e.
solving the original equations (4.15), the time which is needed for solving consists of two parts: First, the
time to calculate consistent initial values and slopes for the restart of the solver after a switch event. This
depends on the number of switching cycles and the length of the simulation interval. Since both are fixed in
this numerical example, the time is constant at approximately 16 s. Second, the actual time that the solver
needs to calculate the solution in the entire simulation interval. This one depends on the desired tolerance
setting. Fig. 4.16 shows the total time which is the sum of both contributions. As one can see the multirate
PWM balance method is considerably faster than the conventional time discretization. The equation systems
in case of using PWM eigenfunctions are complex-valued and decoupled which allows for a parallel solution.
The Np + 1 decoupled equation systems which need to be solved have the same size as the equation system
describing the original problem (4.15). However the number of time steps necessary to solve (3.29) is much
smaller and as a result less time is needed to calculate the solution. In practice one would use the same
number of processor cores for the calculations as there are systems of equations, i.e. Np + 1. The overhead
between processors is not taken into account since it is highly implementation and machine dependent. The
system of equations which takes the longest to solve determines the computation time. In this numerical
example this is the system of equation corresponding to the zero-th basis function. Fig. 4.17 shows the
coefficients, i.e. the solution of (3.29) when using the PWM eigenfunctions. As one can see all coefficients
but one are constant. In contrast to the multirate PWM balance method, the MPDE approach with the original
PWM basis functions is even less efficient than conventional time discretization. The reason for this is that
the already large equation system (4.15) is further enlarged by the Galerkin approach. It is Np + 1 times
larger and cannot be decoupled. Even though almost the same number of time steps is necessary as for the
multirate PWM balance method, the approach is much less efficient. The computational effort necessary
for solving the enlarged equation systems is so high that it diminishes the efficiency. The stagnation which
one can observe for Np > 7, i.e. at an error of approximately ε < 10−6, is due to the chosen accuracy of
the time integration algorithm. Additionally one notices that adding another PWM basis function does not
always contribute to a better accuracy. Actually only every second added basis function improves the error.
This has also been observed in [41, 80]. The convergence properties of the PWM basis functions transfer to
the PWM eigenfunctions since they are obtained by a basis transformation. Consequently the error for the
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Figure 4.16: Capacitor voltage error εv over the time to solution. The multirate PWM balance method, i.e.
the MPDE approach with PWM eigenfunctions, is considerably faster than conventional time
discretization. The MPDE approach with the original PWM basis functions is even slower than
conventional time discretization. Figure adapted from [79].

multirate PWM balance method is only plotted for the numbers of basis functions for which all basis functions
contribute to the accuracy. These are given byNp,eig = {1, 2, 4, 6, 8, 10}. Since the decoupled equation systems
in the multirate PWM balance method can be solved in parallel, the time to solution for different numbers of
basis functions is almost constant. The total computational effort increases nevertheless since more parallel
computations are necessary. The slight decrease in computation time for Np,eig > 1 results from choosing the
initial values according to (4.10) and (4.11). Thereby more a-priori information is taken into account when
a higher number of PWM eigenfunctions is employed which leads to less time steps.

4.4 Inverter with RCL filter

Let us shift the focus to applications with varying duty cycle. The inverter circuit with RLC filter depicted
in Fig. 4.18 has served as a numerical example in the paper [82]. This section mainly follows the informa-
tion presented therein. Three additional subsections shortly present further information on using a triangle
carrier and regular sampling and the suitability of the concept of warped MPDEs (WaMPDEs) for inverter
simulation.

The numerical efficiency and accuracy of the MPDE approach with B-spline basis functions is tested on
the inverter example. For this purpose the MPDE approach is compared to two different simulation meth-
ods:

1. A conventional time discretization in MATLAB. Switch event detection is implemented by using the
event function feature.
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Figure 4.18: Circuit of an inverter with RLC filter. Figure based on [82].
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Figure 4.19: Excerpt of the PWM excitation with varying duty cycle and sawtooth carrier. One switching
instant is inside the switching interval, the other always at the beginning/end of the switching
interval.

2. A conventional time discretization in Simulink using the commercial software PLECS.

As time integrator we employ ode15s in all three cases for the sake of fair comparison of the results. The maxi-
mumorder of the time integration algorithm is fixed to 2. The reason for this is twofold:

1. to ensure stability of the time integration algorithm since the differential equations posess complex
eigenvalues, see Subsection 3.4.3.

2. the statistical quantities provided by the time integrator are only comparable if the maximum order is
equal for all three methods.

The ODEs describing the inverter circuit are given by
[
L 0
0 C

]
d

dt

[
iL
vC

]
+

[
RL 1
−1 1/R

][
iL
vC

]
=

[
vi(t, d(t))

0

]
, (4.17)

where L = 4mH is the inductance of the coil, C = 10µF is the capacitance of the capacitor, RL = 10mΩ is
the coil resistance, and R = 20 Ω is the load resistance. These are fixed parameters. The quantities iL, vC

and vi are the current through the inductor, the voltage at the capacitor, and the PWM voltage excitation,
respectively. The excitation for the inverter may be written as

vi(t, d(t)) = v̄i sgn(d(t)− s(t)). (4.18)

It is generated using a sawtooth carrier s(t) = t
Ts

mod 1 and natural sampling PWM. sgn(t) is the sign function
and v̄i = 350V is the peak excitation voltage. An excerpt of the excitation is depicted in Fig. 4.19. It operates
at a switching frequency of fs = 1/Ts = 5 kHz.

The multivariate excitation is setup as v̂i(t1, t2) = vi(t2, d(t1)) such that the slowly varying reference
signal d(t1) evolves along the slow time scale and the pulses evolve along the fast time scale. This is similar
as described in Subsection 3.4.1. When using B-spline basis functions the resulting multivariate right-hand
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Figure 4.20: Reference solution of the inverter obtained in PLECS. (top) voltage at the capacitor. (bottom)
current through the inductor. Figure adapted from [82].

side (3.31) turns out to be linearly dependent on the duty cycle. The proof is analog to the one in Appendix
6.3 for the matrix Jbspl. As reference signal we use the sinusoidal function

d(t1) = 0.5

(
v̄C,desired

v̄i
sin(2πfact1) + 1

)
, (4.19)

where fac = 50Hz is the desired AC output frequency. v̄C,desired = 325V is the desired output peak voltage of
the converter and corresponds to 230V effective voltage. The simulation time interval is given by Υ = [0, 4 1

fac
]

and vC(0) = 0, iL(0) = 0 are the initial conditions. Fig. 4.20 depicts an excerpt of the voltage at the capacitor
and the current through the coil. In Fig. 4.21 one can see a 3D representation of the multivariate solution.
The solution of the original ODEs is marked as a black curve.

The three different methods, i.e. MPDE approach, conventional time discretization in MATLAB, and the
simulation using PLECS, are compared by considering the relative L2 error as quantity. It is defined as in (4.2)
and denoted by εv for the capacitor voltage and εi for the inductor current. The reference solution is calculated
in PLECS using a very fine absolute and relative tolerance abstol = reltol = 10−12 and a maximum step size
of Ts/1000. Results for the MPDE approach with B-splines are obtained for three different discretization
settings:

1. Low order: p = 1 and K = 1 (corresponds to finite element (FE) nodal functions),

2. Medium order: p = 2 and K = 1,

3. High order: p = 3 and K = 3.
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Figure 4.21: Multivariate voltage at the capacitor of the inverter and univariate solution of the original ODEs
marked as a black curve. Figure adapted from [82].

Table 4.3: Accuracy of the MPDE approach and the simulation using conventional time discretization in MAT-
LAB and PLECS [82].

Simulation setting

low order medium order high order

MPDE
tolerance 10−3 10−4 10−7

error εv/εi 8.5× 10−3 / 2.5× 10−3 6.9× 10−4 / 6.2× 10−4 8.1× 10−7 / 1.1× 10−6

MATLAB
tolerance 10−2 10−4 10−7

error εv/εi 1.2× 10−3 / 2.5× 10−3 1.4× 10−4 / 1.7× 10−4 3.6× 10−6 / 8.3× 10−7

PLECS
tolerance 10−2 10−4 10−7

error εv/εi 6.5× 10−3 / 8.1× 10−3 3.3× 10−4 / 3.5× 10−4 3.0× 10−6 / 9.7× 10−7

The periodicity of the B-splines is ensured by enforcing periodic boundary conditions on the arising ODEs
after the semi-discretization, see Appendix 6.6. Fig. 4.22 depicts the MPDE approach errors εv and εi for
these three different settings. The time integrator tolerance is utilized as parameter and sweeped from 10−10

to 10−2. Relative tolerance is set to the same value as the absolute tolerance, i.e. abstol = reltol. 100
points per switching cycle are employed for evaluating the error (4.2). If the sampling of the reference
solution is different, linear interpolation on the reference solution is applied to obtain the corresponding
values.

The error as depicted in Fig. 4.22 decreases with smaller tolerance until stagnation. The reason for this
stagnation is that the approximation by basis functions bounds the accuracy. If a better B-spline discretiza-
tion is employed, the error at which the stagnation occurs becomes smaller and the stagnation region shifts
towards smaller tolerances. For each of the three B-spline settings we now fix the tolerance of the time inte-
grator as such that no computational effort is wasted while still obtaining the best possible accuracy. These
tolerances are marked by dots in Fig. 4.22. The corresponding errors of the solution are presented in Ta-
ble 4.3. The development of an algorithm which can automatically choose the number of basis functions
and an appropriate time integrator tolerance to obtain a desired accuracy and maximum efficiency is a topic
for future research. To quantify the efficiency of the different simulation approaches, statistical data on the
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Figure 4.22: Error of the MPDE approach for the inverter for the three different B-spline discretization set-
tings and different time integrator tolerances. (a) Error in the capacitor voltage εv. (b) Error
in the inductor current εi. Figures adapted from [82].

Table 4.4: Speedup of the MPDE approach compared to the conventional simulation using MATLAB and
PLECS in different simulation settings. For PLECS only the number of time steps is compared,
since the other quantities are not available [82].

Low order Medium order High order

MPDE MATLAB/
PLECS

Approx.
speedup

MPDE MATLAB/
PLECS

Approx.
speedup

MPDE MATLAB/
PLECS

Approx.
speedup

time steps 235 10533/
4254

45/
18

474 12662/
11158

27/
24

4515 66120/
72859

15/
16

failed steps 50 36 none 69 830 12 111 3873 35
LU decom. 95 2230 23 150 3572 24 727 11567 16
fun. eval. 557 21938 39 1050 27784 26 7572 140786 19

solution process are utilized. The time integrator provides different quantities like the number of time steps,
number of function evaluations and number of LU decompositions. To offer a basis for comparison, the time
integrator tolerance for the conventional methods in MATLAB and PLECS is set as such that the resulting solu-
tion error is approximately in the same order of magnitude as that of the MPDE approach. The corresponding
tolerance setting and actual errors are presented as well in Table 4.3.

The error of the conventional methods with respect to the time integrator tolerance is shown in Fig. 4.23.
In the MATLAB simulation the MaxStep option is utilized to ensure that no switch events are missed. This
explains why for high tolerance, i.e. abstol = reltol = 10−2, the accuracy of the solution is more accurate
than that of the PLECS simulation. This also has an effect on the number of time steps which are necessary to
solve the problem. The gathered statistical data are shown in Table 4.4 and support this (low order). For the
higher accuracy settings, the number of time steps in MATLAB and PLECS are almost the same. The reason
why for the simulation with PLECS only the number of time steps is provided is that the other quantities can
to our knowledge not be extracted from Simulink.

One can see in Table 4.4 that the MPDE approach is considerably faster than the conventional methods
with respect to the presented quantities. If the switching frequency of the excitation increases, the efficiency
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Figure 4.23: Error of the considered conventional time discretization with regard to the reference solution:
Solver in MATLAB with switch event detection and commercial software PLECS in Simulink.
Figure adapted from [82].

rises even further, see [81] or Subsection 4.2.

Note that the number of time steps does not directly imply a statement about the efficiency of the MPDE
approach in terms of computing time. One has to take into account that the equation systems in the MPDE
approach are Np + 1 times larger than the original ones and thus the linear equation solver will naturally
take more time for solving the equation systems in each time step. The efficiency of the time integrator
and its equation system solver are therefore the main bottleneck. However the MPDE approach will be very
efficient if the time for the function evaluation (assembling the original matrices) is the main computational
effort.

4.4.1 Triangle carrier PWM with natural sampling

Instead of a sawtooth carrier, we now employ a triangle carrier on the same example to numerically verify
that the proposed MPDE approach with two reference signals d1(t) and d2(t) according to Subsection 3.2.1
works. Similar as before the excitation may be written as

vi(t, d(t)) = v̄i sgn(d(t)− s(t)), (4.20)

where

s(t) =

{
2τ(t) τ(t) ≤ 0.5
2− 2τ(t) τ(t) > 0.5

(4.21)

is the triangle carrier. An excerpt of the resulting PWM excitation when using the reference signal (4.19)
as before is depicted in Fig. 4.24. The reference solution is calculated in MATLAB with ode15s and switch-
event detection using an absolute and relative tolerance of abstol = reltol = 10−10 and a maximum step size
of Ts/100. For the MPDE approach we use a high order B-spline discretization setting, i.e. p = 3, K = 3
and absolute and relative time integrator tolerance of abstol = reltol = 10−7. An excerpt of the resulting
capacitor voltage and the current through the inductor is depicted in Fig. 4.25. The agreement is excellent
with εv = 7.7×10−7 and εi = 1.0×10−6 and is similar to the accuracy found in Table 4.3 for the corresponding
setting (high order).
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Figure 4.24: Excerpt of the PWM excitation with varying duty cycle and triangle carrier. Both switching
instants lie inside the switching interval.
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Figure 4.25: Comparison of an excerpt of the MPDE approach and reference solution of the inverter using
triangle carrier PWM. The agreement is excellent. (top) voltage at the capacitor, error εv =
7.7× 10−7. (bottom) current through the inductor, error εi = 1.0× 10−6.
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4.4.2 Sawtooth carrier PWM with regular sampling

We now test the regular sampling. The reference signal d(t) is again (4.19). The regular sampling PWM
excitation can be written as

vi(t, d(t)) = v̄isgn

(
d

(⌊
t

Ts

⌋
Ts

)
− s(t)

)
, (4.22)

where b·c rounds down to the nearest natural number. This means that the reference signal is sampled at
the beginning of the switching cycle and held constant throughout the cycle. As carrier we use a sawtooth.
To model this in the MPDE approach the delayed reference signal ddel(t) as described in Section 3.5 is used.
It can be found by solving the equation (3.112). This can be implemented by adding it as an additional
equation to the MPDE approach equation system (3.29), which leads to a nonlinear problem. Here, we use
a fixed-point iteration instead, i.e.

d
(1)
del = d(t− Tsd

(0)
del)

d
(2)
del = d(t− Tsd

(1)
del) = d

(
t− Tsd

(
t− Tsd

(0)
del

))

...

, (4.23)

where we choose d(0)
del = d(t) as the initial value. We abort the iteration after the second step which leads to

the estimate ddel(t) ≈ d
(
t − Tsd

(
t − Tsd(t)

))
. Note that the condition fac <

1
2πfs needs to be satisfied such

that the iteration is convergent. This corresponds to the requirement that the reference signal coincides with
the carrier twice per cycle and not more often (in which case more than two switching instants would occur in
one switching cycle). Calculations are performed with the same settings as before. Fig. 4.26 shows an excerpt
of the MPDE approach and the reference solution. The agreement is very good with errors εv = 8.5×10−4 and
εi = 8.8×10−4. If higher accuracy is required, more fixed-point iterations may be used or the equation (3.112)
may be added as an additional equation into the system of equations. The PWM excitation generated with
regular sampling is depicted in Fig. 4.27 along with the excitation generated using natural sampling. Even
though the difference is hard to distinguish, the influence on the solution is significant. Running the MPDE
approach simulation with the original reference signal (4.19), i.e., ignoring the fact, that regular sampling
is used, leads to an error which is approximately 100 times larger than when using the delayed reference
signal as above.

4.4.3 Suitability of warped MPDEs for inverter simulation

Let us finally briefly focus on some results determined with the WaMPDEs as described in Section 3.6. For
this purpose we consider again the inverter in Fig. 4.18 and use the following parameters for the simula-
tion:

• Switching frequency fs = 2000Hz;

• Sine frequency fac = 50Hz;

• Simulation interval Υ = [0, 1
fac

];

• Duty cycle for which the basis functions are constructed: d0 = 0.5;

• Electrical elements: Rl = 10 mΩ, L = 10mH, C = 5µF, R = 25 Ω;

• Time integrator ode15s: Absolute and relative tolerance abstol = reltol = 10−5;
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Figure 4.26: Comparison of an excerpt of the MPDE approach and reference solution of the inverter using
sawtooth carrier and regular sampling PWM. The agreement is very good. (top) voltage at the
capacitor, error εv = 8.5× 10−4. (bottom) current through the inductor, error εi = 8.8× 10−4.
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Figure 4.27: Excerpt of the PWMexcitation (sawtooth carrier) generated using natural and regular sampling.
The switching instants are only slightly different. Nevertheless the difference has a large impact
on solution accuracy and has to be considered.
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Figure 4.28: Excerpt of the coefficients y(t1) for the medium order accuracy B-spline setting (p = 2,K = 1).
Zero Dirichlet coefficients are omitted for the sake of clarity. The coefficients are fast varying.

• Two different B-spline settings:

1. Medium order: p = 2, K = 1;

2. High order: p = 4, K = 4.

In Fig. 4.28 an excerpt of the coefficients y(t1) are shown for the medium order accuracy B-spline setting.
The coefficients vary quickly in the range of the switching frequency fs. The solver takes 9837 time steps
to calculate the solution. The reconstructed solution is compared to a reference solution acquired by con-
ventional time discretization (abstol = 10−8, reltol = 10−8, 38347 time steps). The relative error is around
εv = 9.0× 10−2 for the voltage across the capacitor and εi = 8.3× 10−2 for the current through the coil. An
excerpt of the reconstructed solution along with the reference solution is shown in Fig. 4.29. Improving the
B-spline settings leads to better results as expected, see Fig. 4.30. The error is smaller for both the voltage
εv = 3.6×10−2 and the current εi = 2.9×10−2. The number of time steps is 19232 and thus much higher than
before. Furthermore the size of the equation systems rises due to the higher number of basis functions. Thus
the computational effort increases drastically for only negligible accuracy gains. This makes the WaMPDE ap-
proach unsuited for simulation of power converter problems as such. However, if a variation of the switching
frequency is required, a combination of the WaMPDE approach and the MPDE approach may be reasonable.
This varying switching frequency occurs, e.g. as control strategy in some power converters to improve the re-
action time of the converter to varying power needs. Even fast variations in the frequency might be simulated,
if they do only occur occassionally. As just seen in the WaMPDE example, the time discretization algorithm is
responsible to cover these variations. However the frequency variations would not occur in every switching
period and thus the efficiency would only be slightly impaired.

4.5 Inverter with LCL filter

This section focuses on a more elaborate example, namely a DC-AC inverter with an LCL filter and a control
circuit as described in [73].
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Figure 4.29: Excerpt of the reconstructed solution for the medium order accuracy B-spline setting (p = 2,
K = 1). The stronger the warping of the time is, the more distortions arise in the solution.
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Figure 4.30: Excerpt of the reconstructed solution for the high order accuracy B-spline setting (p = 4, K =
4). The quality of the solution improves.
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Figure 4.31: DC-AC converter with LCL filter.

The inverter circuit is depicted in Fig. 4.31. It consists of a circuit part generating the pulsed excitation
and a filter circuit, in this case an LCL circuit. Furthermore the converter is connected to the power grid
which is simulated by the voltage source vg(t). The LCL filter has a strong resonance which is why already
in the generation of the pulsed excitation a control scheme must be employed to achieve a damping of this
resonance. What is more, the control scheme should be able to ensure a prescribed current flow i2,ref(t) into
the power grid. The inverter circuit is described by the following set of ODEs [73]

A
d

dt
x(t) + Bx(t) = c(t, d), (4.24)

where A is the identity matrix,

B =




0 − 1
Cp

1
Cp

1
L1p

R1p

L1p
0

− 1
L2p

0
R2p

L2p


 , (4.25)

x =



vC

i1
i2


 , (4.26)

and

c(t, d) =




0
1
L1p

vi(t, d)

− 1
L2p

vg(t)


 . (4.27)

The excitation vi depends on time and additionally on a variable dwhich sets the duty cycle, i.e.

vi(t, d) =

{
−V0 for d ≤ τ(t) ≤ 1− d
V0 otherwise

(4.28)

The reference signal is calculated during the simulation by the control scheme and can be described by a
scalar function of the form [73]

de
(
x, i2,ref , vg

)
= 0.5 +

(
T1 x(t) + T2 i2,ref(t) + T3 vg

)
(4.29)

where T1 ∈ R1×3 is a row vector and T2, T3 ∈ R are constants. The reference signal consequently depends
linearly on the instantaneous state variables x, the desired current i2,ref which should be fed into the power
grid and the grid voltage vg. The environment in which the PWM excitation is generated is digital, therefore
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a regular sampling is employed, i.e. the reference signal de(x, i2,ref , vg) is sampled once at the beginning
of each switching cycle and held constant throughout the cycle. For more information on how the control
scheme is designed the reader is referred to [73]. To model this in the MPDE approach, according to Sec-
tion 3.5, the regular sampling duty cycle ddel is calculated and since a triangle carrier is used two variables
ddel,1 and ddel,2 are introduced for the simulation, see Subsection 3.2.1. These variables denote the position
of the switching instants. Consequently the multivariate right-hand side of the MPDEs (3.11) is setup as

ĉ(t1, t2, ddel,1, ddel,2) =




0
1
L1p

v̂i(t1, t2, ddel,1, ddel,2)

− 1
L2p

vg(t1)


 (4.30)

with

v̂i(t1, t2, ddel,1, ddel,2) =

{
−V0 for ddel,1 ≤ τ(t2) ≤ ddel,2

V0 otherwise.
(4.31)

As one can see the switching from the excitation vi evolves along the fast time scale t2. The grid voltage vg

is a slowly varying quantity compared with the switching, therefore we choose to let it evolve along the slow
time scale t1. For the current i2,ref we assume the same. The equation system describing the problem after
the MPDE approach is given by

(A⊗J (ddel,1, ddel,2))
dy(t1)

dt1
+

(
B⊗J (ddel,1, ddel,2) + A⊗Q(ddel,1, ddel,2)

+
dddel,2

dt1
A⊗ U(ddel,1, ddel,2)

− dddel,1

dt1

(
A⊗ U(ddel,1, ddel,2) + TsA⊗Q(ddel,1, ddel,2)

))
y(t1)

= C(ddel,1, ddel,2, t1),

(4.32)

which is fed with the regular sampling variables ddel,1 and ddel,2. The variables d1, d2, ddel,1 and ddel,2 are
modeled as unknowns in the equation system and determined by additional equations (see Section 3.5)

d1 − 0.5de

(
eenv(y, d1, d2), i2,ref(t), vg(t)

)
= 0, (4.33)

d2 − 1 + 0.5de

(
eenv(y, d1, d2), i2,ref(t), vg(t)

)
= 0, (4.34)

dd1

dt1
=

1

ddel,1Ts
d1 −

1

Ts
, (4.35)

dd2

dt1
=

1

ddel,2Ts
d2 −

1

Ts
, (4.36)

where eenv(y, d1, d2) is a function evaluating the solution at the beginning of the switching cycle, i.e., at
t2 = nTs, n ∈ {0, 1, 2, . . .}. It is consequently given by

eenv(y, d1, d2) =

Np∑

k=0

yj,k(t1)wk

(
0 + τ

(
− d1(t1)Ts

)
, d2(t1)− d1(t1)

)
. (4.37)
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The equation system resulting from (4.32) – (4.36) is a system of DAEs. It can bewritten as

Alcl(xlcl)
dxlcl(t1)

dt1
+ Blcl(xlcl)xlcl(t1) = clcl(t1,xlcl), xlcl(0) = x

(0)
lcl (4.38)

where

xlcl =




y
d1

d2

ddel,1

ddel,2



∈ RNs(Np+1)+4 (4.39)

is the vector of unknowns, andAlcl,Blcl and clcl are set up from equations (4.32) – (4.36).

Simulations were performed on an Intel Core i5-5200U with 2.2GHz and 16 GB RAM. The following
model parameters are employed:

• Switching frequency fs = 16000Hz;

• Sine frequency fac = 50Hz;

• Simulation interval TI = [0, 4 1
fac

];

• Electrical elements: L1p = 900 × 10−6 H, R1p = 10−5 Ω, L2p = 930 × 10−6 H, R2p = 10−5 Ω, Cp =
10× 10−6 F;

• Grid voltage vg(t) = 325 cos(2πfact) (corresponds to 230V rms);

• Input DC voltage V0 = 400V;

• Desired output current i2,ref = (2 + 3S(t)) cos(2πfact), where S(t) = 1
1+e−a(t−c)

is the sigmoid function
with a = 10000, c = 2 1

fac
. As a result the current changes during the simulation.

To start the simulation directly in steady state a reasonable and efficient choice of initial values is given by
the steady state of the problem at time t1 = 0, i.e. the solution of the equation system

Blcl(x
(0)
lcl )x

(0)
lcl = clcl(0,x

(0)
lcl ). (4.40)

The results are compared to a reference solution calculated with conventional time discretization and
very fine tolerance (abstol = 10−10, reltol = 10−10). The MATLAB function ode15s is used for time discretiza-
tion. The simulation is started with zero initial values. After one sine period 1

fac
the simulation is in steady

state. From this moment on the results are used for comparison to the MPDE approach. To detect switch
events, the solver’s event function is used and the solver is restarted after each switch event. To avoid missing
switch events during the simulation the “MaxStep” and “InitialStep” options of the solver are both set to Ts

12 ,
which corresponds to a minimum/maximum duty cycle of around 8.33% / 91.66%. The relative error (4.2)
is employed as measure of solution quality. Figs. 4.33a, 4.34a, and 4.32a depict current through the coils
and voltage at the capacitor. Using the settings

• Tolerance abstol = reltol = 5× 10−4,

• B-splines p = 2, K = 2,
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Table 4.5: Error and statistical data of the MPDE approach and conventional time discretization. For con-
ventional time discretization the computational effort to reach steady state is included. The last
column denotes the speedup of the MPDE approach compared with time discretization in MATLAB
and Simulink.

MPDE MATLAB Simulink speedup
εvC 4.53× 10−4 1.4× 10−3 1× 10−3 /
εi1 7.9× 10−3 1.3× 10−2 2.8× 10−3 /
εi2 1.2× 10−2 1.6× 10−2 2.4× 10−2 /

time steps 263 47231 33236 180 resp. 126
failed steps 55 19713 n/a 358
fun. eval. 670 138688 n/a 207
LU decom. 104 37290 n/a 359

time to solution (approx.) 2s 76s 1.5s 38 resp. 0.75

for the MPDE approach, the error ε between the MPDE solution and the reference solution is in the order of
10−3 and listed in Table 4.5 for all three quantities (inductor currents and capacitor voltage). Furthermore
the statistics provided by the ode15s solver are shown. A zoom-in into the solutions is depicted in Figs. 4.32b,
4.33b, and 4.34b and shows that the agreement of the MPDE solution and the reference solution even in the
area of the changing load is reasonably good. Since the load change occurs in the slow time scale t1, the
coefficients y vary in this region.

To assess the efficiency of the approach, a conventional time discretization is used to obtain a solution
with an error in the same order of magnitude towards the reference solution as the MPDE approach. The
exact values are listed in Table 4.5 including statistics. In all quantities the MDPE approach is highly effi-
cient compared with conventional time discretization. It has to be noted that the actual time to solution is
dependent on the efficiency of the implementation and programming language. For validation we compared
the MPDE approach as implemented also with a Simulink simulation with the accuracy as given in Table 4.5.
Even though Simulink is highly optimized for the task and the MPDE approach is implemented in MATLAB
without focusing on efficiency of the implementation, the MPDE approach is still in the same range of time
to solution as Simulink.

The MPDE approach works well for this realistic problem, although

• the differential index of equation system (4.38) is not easy to analyze due to the controlled PWM
excitation. If the index is higher than 1, the solution becomes more challenging. Numerical difficulties
have been observed when time integrating (4.38) with finer time integrator tolerance than employed
in this example.

• the delayed reference signals ddel,1 and ddel,2 are calculated by a first order approximation as proposed
in Section 3.5 which introduces an error in the solution. This error has not been examined.

• it was assumed that the grid voltage and the reference current evolve along the slow time scale t1.
However it is unclear if this choice is justified.

96



0 1 2 3 4 5 6 7 8

·10−2

−400

−200

0

200

time (s)

v C
(V

)

(a)

3.8 3.85 3.9 3.95 4 4.05 4.1 4.15 4.2

·10−2

−320

−300

−280

−260

time (s)

v C
(V

)

reference solution
MPDE approach

(b)

Figure 4.32: (a) Voltage at the capacitor. The ripples are not visually distinguishable due to the high switch-
ing frequency. (b) Zoom-in into the region marked in (a).
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Figure 4.33: (a) Current through inductor 1. The ripples are not visually distinguishable due to the high
switching frequency. (b) Zoom-in into the region marked in (a).
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Figure 4.34: (a) Current through inductor 2. The ripples are not visually distinguishable due to the high
switching frequency. (b) Zoom-in into the region marked in (a).
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4.6 Conclusion

The MPDE approach has been numerically validated in this chapter. Its accuracy and efficiency has been
assessed. The results indicate that the MPDE approach is much more efficient than conventional time dis-
cretization while reaching a comparable accuracy. Since the MPDE approach approximates the fast variations
in the solution by basis functions, the subsequent time integration of the resulting differential equations takes
much less time steps than solving the original differential equations to reach the same accuracy. Furthermore
it is switching frequency independent. The MPDE approach enlarges the systems of equations which is a
disadvantage and leads to higher computational effort per time step. There are cases in which this disad-
vantage outweighs the advantage of less time steps. As a result the MPDE approach becomes inefficient
compared to conventional time discretization. These cases occur when either many basis functions are re-
quired to properly approximate the ripples or when the original equation systems are already very large,
e.g. for field-circuit coupled problems. For linear DC-DC converters this issue is remedied by using the PWM
eigenfunctions which allow for a decoupling of the equations. As a result, the approach may be parallelized.
The MPDE approach is also applicable to nonlinear problems. A challenge is the efficient reevaluation of the
integrals resulting from the MPDE approach in each time step. The proposed simplification of using only
the envelope to evaluate the nonlinearity leads to excellent results if the ripple is small compared to the
envelope.
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5 Conclusion and prospects for future research

In this work the concept of MPDEs for the simulation of PWM power converters has been investigated. In
a first step the ODEs or DAEs describing the circuit or field-circuit coupled model of the power converter
are reformulated into MPDEs. In this process the solution is split into components which vary with different
rates in time. These components are associated to different artificial time scales. The periodic ripples in
the power converter output are associated with a fast time scale while transient responses, e.g. the start-up
transient or the sinusoidal output voltage in inverters, are associated with a slow time scale. This is realized
by expanding the solution into a sum of basis functions depending on the fast time scale and coefficients
depending on the slow time scale. The switching inside the power converter transistors is idealized and
modeled by a pulsed voltage source which is taken into account on the right-hand side of the system of
equations. The MPDEs are solved using a combination of a Galerkin approach for the fast time scale and a
conventional time integration algorithm for the slow time scale. After solving, the solution of the original
ODEs/DAEs can be easily extracted, in the simplest case, by evaluating the 2D computation domain along a
diagonal line.

Applying the Galerkin approach to the fast time scale leads to a system of ODEs/DAEs which are Np + 1
times larger than the original system of differential equations, whereNp +1 is the total number of basis func-
tions which are employed in the solution expansion. It turns out that the subsequent time integration after
semi-discretization needs much less time steps than a time integration applied to the original ODEs/DAEs
describing the power converter. This is due to the fact that the fast varying ripples are already taken into ac-
count by the basis functions (through the Galerkin approach) and thus only a slowly varying smooth envelope
needs to be resolved by the time integration.

Nonlinearities, e.g. those which stem from material saturation in inductors, increase the computational
effort of the approach since in every time step along the slow time scale integrals with respect to the fast
time scale have to be solved. To circumvent this, one can neglect the fast periodically varying ripples in
the evaluation of the nonlinearity and use only the envelope for this purpose. Especially when the mag-
nitude of the ripples is small compared to the magnitude of the envelope this approach is valid and accu-
rate.

The basis functions used in the solution expansion of the Galerkin approach are periodic with period
corresponding to one switching cycle. They take the C0 continuity of the inductor current ripple into account
by construction. This procedure was first proposed by Gyselinck et al. [41]. For DC-AC power converters
the duty cycle of the PWM excitation varies slowly during the simulation. This is taken into account in the
basis functions. If a sawtooth carrier and natural sampling are used to generate the PWM excitation one
switching instant always lies at the beginning/end of a switching cycle while the other switching instant
varies inside the switching cycle to account for the proper duty cycle. When using PWM excitation with
triangle carrier and natural sampling, both switching instants lie inside the switching cycle and they both
vary with changing duty cycle. To take this into account and still be able to use the same basis functions,
the basis functions are appropriately shifted in time. The possibility to use PWM generated by a regular
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sampling (i.e. sampling the reference signal at the beginning of each switching cycle) is accounted for by
proposing a delayed reference signal. This delayed reference signal is calculated through a nonlinear equation
from the reference signal. In this case the MPDE approach system of equations is supplied with the delayed
reference signal instead of the original reference signal. Three different types of basis functions have been
investigated:

1. PWM basis functions proposed by Gyselinck et al. [41]: These basis functions are particularly well
suited for linear DC-DC power converter simulation since they are a spectral basis and need only a
small number of basis functions for excellent results.

2. PWM eigenfunctions: These basis functions are obtained through a basis transformation from the PWM
basis functions. They allow for a decoupling of the system of equations in the case of linear DC-DC power
converters. As a result, they are well suited for field-circuit coupled problems in which the systems of
equations are large.

3. B-spline basis functions: These basis functions are well suited in DC-AC power converter simulation
since the dependency of the arising matrices on the duty cycle is linear, which enables an efficient
evaluation and assembly of the matrices in the solution process. Degree elevation or a mixture of degree
elevation and h-refinement is suggested to keep the number of basis functions small while achieving
high accuracy. In case of degree elevation, the convergence is exponential. Classical FE nodal functions
are B-splines of degree 1. They are easy to implement but come with the drawback that many of them
are required to obtain an accurate solution.

The MPDE approach has been applied to different examples to demonstrate its accuracy and efficiency,
namely a DC-DC buck converter with and without field-circuit coupling and two DC-AC inverter. The results
indicate that the accuracy of the MPDE approach is excellent and depends on two parameters. First, the
number of basis functions employed in the solution process. This number determines the discretization
accuracy in the fast time scale. Secondly, the number of time steps or the time integrator tolerance (using a
time discretization algorithmwith adaptive time steps). This determines the discretization accuracy along the
slow time scale. There is an optimal combination between both parameters which depends on the application
example. The overall solution accuracy is always limited by the worst discretization accuracy on either time
scale.

The efficiency of the MPDE approach also depends on different aspects. On the one hand, the number
of basis functions determines the size of the semi-discretized systems of equations. If these are larger and
cannot be decoupled, more time is spent in each time step along the slow time scale since a larger system
of equations needs to be solved. On the other hand, the time integration algorithm needs significantly less
time steps along the slow time scale compared with a conventional time discretization of the original system
of equations describing the power converter. Therefore if the advantage of much less time steps outweighs
the disadvantage of greater size of the equation systems, the approach is efficient. If a monolithic field-
circuit coupling is applied, the original ODEs/DAEs are already very large. In such a case the disadvantage of
further enlarging the systems of equations through the Galerkin approach is more significant. The solution is
challenging and has been tackled by using the PWM eigenfunctions to decouple the equation systems which
allows for a parallel solution. Another important aspect which determines the efficiency is the choice of initial
values for the ODEs/DAEs arising after the semi-discretization with the Galerkin approach. A reasonable
choice in case of linear problems has been proposed. In case of nonlinear problems, the choice is considerably
more difficult.

The accomplishments of this work have demonstrated that the MPDE approach applied to power con-
verter simulation is a promising alternative for conventional time discretization. To further enlarge the
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number of possible applications of the MPDE approach, the following steps for future research are sug-
gested:

• Investigation of dedicated solvers for the linear systems of equations arising in the MPDE approach with
linear complexity. This would highly contribute to the efficiency of the method, since at the moment this
is one of the main bottlenecks when the original systems of equations are large, e.g., with field-circuit
coupling. Algebraic multigrid methods might be useful here [113].

• Further investigation on optimized choices of initial values. For nonlinear problems this becomes con-
siderably more difficult than in the linear case. A particular approximation has been proposed in [99].

• Investigation of a combination of the MPDE approach with Parareal [36, 58, 63], for example to solve
the slowly varying envelope by parallel-in-time integration.

• An automatic choice of the optimal combination of time integrator tolerance and number of basis func-
tions.

• Investigation of examples in which additional time-variant electrical elements are present and how to
model them in the MPDE approach. The inverter with LCL filter, see Subsection 4.5 is such an example.

• Extension of the method to support other modulations, e.g. pulse-frequency modulation (PFM), or
mixtures of modulations. The concept of WaMPDEs may be useful for this purpose.

• Extension of the method for the simulation of multi-phase power converters.

• Determination of the suitability of the PWM basis functions and PWM eigenfunctions for varying duty
cycle applications.
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6 Appendix

6.1 Proof of theorem 1

The relation can easily be proven by applying the chain rule of differentiationwhich yields [10, 97]
[
A(x)

d

dt
x(t)

]∣∣∣∣
t=t0

(3.6)
=

[
A(x̂)

d

dt
x̂(t+ α̂1, . . . , t+ α̂m)

]∣∣∣∣
t=t0

(6.1)

=

[
A(x̂)

(
∂x̂(t1, . . . , tm)

∂t1
+ . . .+

∂x̂(t1, . . . , tm)

∂tm

)]∣∣∣∣
t1=t0+α̂1,...,tm=t0+α̂m

(6.2)

(3.4)
= ĉ(t0 + α̂1, . . . , t0 + α̂m)−B(x̂) x̂(t0 + α̂1, . . . , t0 + α̂m) (6.3)

(3.6),(3.7)
= c(t0)−B(x)x(t0) (6.4)

6.2 Proofs for PWM basis functions

The following proof and remarks in this section are taken from [80]1. For the sake of readability the PWM
basis functions are denoted by wi instead of wpwm,i.

6.2.1 Proof of theorem 2

The basis functions wi(τ) ∀ i ∈ N with duty cycle D = 0.5 are defined as follows: The zeroth and first basis
function are given piecewisely as

w0(τ) = 1 ∀ τ ∈ [0, 1], (6.5)

and

w1(τ) =

{
w1,a(τ) =

√
3(4τ − 1), ∀ τ ∈ [0, 0.5)

w1,b(τ) =
√

3(−4τ + 3), ∀ τ ∈ [0.5, 1]
, (6.6)

which essentially corresponds to a scaled and translated hat function. The subscript letter refers to the
interval in which the basis function is defined, i.e., if “a”, the polynomial in τ ∈ [0, 0.5) is considered, if “b”
the polynomial in τ ∈ [0.5, 1] is considered. If the subscript comprises only a number, the entire basis function
is addressed.

1©2019 IEEE. Reprinted, with permission, from [80]
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The symmetry of the basis function w1(τ) can be expressed as follows

−w1,a(τ) = w1,b(τ + 0.5) ∀ τ ∈ (0, 0.5)

−w1,a(τ) = w1,a(0.5− τ) ∀ τ ∈ (0, 0.5)

w1,a(τ) = w1,b(1− τ) ∀ τ ∈ (0, 0.5)

. (6.7)

The basis functions of higher order, i.e., i = 2, 3, 4, . . . are calculated by integrating the basis functions
of lower order

w?i,a(τ) =

∫ τ

0.5
wi−1,a(η) dη , (6.8)

w?i,b(τ) =

∫ τ

0.5
wi−1,b(η) dη , (6.9)

and orthogonalizing the integrated basis functions against the constant basis function w0(τ). The basis func-
tion wi,a therefore is

wi,a(τ) = w?i,a(τ)− w0(τ)√∫ 1
0 w0(η)w0(η)dη

︸ ︷︷ ︸
=1

∫ 1

0
w?i,a(η)w0(η)︸ ︷︷ ︸

=1

dη

= w?i,a(τ)−
∫ 1

0
w?i,a(η)dη

=

∫ τ

0.5
wi−1,a(η) dη −

∫ 1

0

∫ τ

0.5
wi−1(η) dη dτ

=

∫ τ

0.5
wi−1,a(η) dη −

∫ 0.5

0

∫ τ

0.5
wi−1,a(η) dη dτ

−
∫ 1

0.5

∫ τ

0.5
wi−1,b(η) dη dτ.

(6.10)

Similarly wi,b is given as

wi,b(τ) =

∫ τ

0.5
wi−1,b(η) dη −

∫ 0.5

0

∫ τ

0.5
wi−1,a(η) dη dτ

−
∫ 1

0.5

∫ τ

0.5
wi−1,b(η) dη dτ.

(6.11)

Note that orthonormalization of all basis functions against each other is possible and has been originally
proposed in [41]. However, it spans the same space as the basis functions without full orthonormalization
(6.10),(6.11), and is therefore neglected.

The symmetry properties of the basis functions as defined by (6.6)-(6.11) with duty cycle D = 0.5 are
examined in the following.

6.2.1.1 Induction hypothesis

The symmetry of the basis functions is given by

−wi,a(τ) = wi,b(τ + 0.5)
wi,a(τ) = wi,a(0.5− τ)
−wi,a(τ) = wi,b(1− τ)




∀ i = 2k, k ∈ N \ {0}
and ∀ τ ∈ (0, 0.5)

, (6.12)

106



i.e., for all basis functions with even index, and

−wi,a(τ) = wi,b(τ + 0.5)
−wi,a(τ) = wi,a(0.5− τ)
wi,a(τ) = wi,b(1− τ)




∀ i = 1+2k, k ∈ N\{0}
and ∀ τ ∈ (0, 0.5)

, (6.13)

i.e., for all basis functions with odd index.

6.2.1.2 Induction base

We calculate the basis functions w2(τ) and w3(τ) and their symmetry properties. The basis function w2(τ) is
obtained using (6.10),(6.11) and given by

w2,a(τ) =
√

3
(

2τ2 − τ
)
, (6.14)

and
w2,b(τ) =

√
3
(

2τ2 + 3τ − 1
)
. (6.15)

They fulfill the symmetry properties stated in (6.12).

The basis function w3(τ) is also obtained using (6.10), (6.11) and given by

w3,a(τ) =
√

3

(
2

3
τ3 − 0.5τ2 +

1

48

)
, (6.16)

and

w3,b(τ) =
√

3

(
−2

3
τ3 +

3

2
τ2 − τ +

3

16

)
. (6.17)

They fulfill the symmetry properties stated in (6.13).

6.2.1.3 Induction step

We calculate the basis functions wi(τ) and wi+1(τ), where i = 2k, k ∈ N \ {0, 1} and their symmetry proper-
ties.

Basis function wi(τ). The basis function wi(τ) is given by integration and orthogonalization against the
constant basis function w0(τ), i.e.,

wi,a(τ) =

∫ τ

0.5
wi−1,a(η) dη −

∫ 1

0

∫ τ

0.5
wi−1(η) dη dτ (6.18)

and

wi,b(τ) =

∫ τ

0.5
wi−1,b(η) dη −

∫ 1

0

∫ τ

0.5
wi−1(η) dη dτ (6.19)

The orthogonalization term yields using the symmetry properties (6.13) and substitution
∫ 1

0

∫ τ

0.5
wi−1(η) dη dτ =

∫ 0.5

0

∫ τ

0.5
wi−1,a(η) dη dτ

+

∫ 0

0.5

∫ τ

0.5
wi−1,a(η) dη dτ = 0.

(6.20)
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Therefore the expressions for the basis function wi(τ) (6.18) and (6.19) simplify to

wi,a(τ) =

∫ τ

0.5
wi−1,a(η) dη (6.21)

and

wi,b(τ) =

∫ τ

0.5
wi−1,b(η) dη. (6.22)

The symmetries are given by, using (6.13),

−wi,a(τ) = wi,b(τ + 0.5), (6.23)

and
wi,a(τ) = wi,a(0.5− τ), (6.24)

and thus fulfill the hypothesis (6.12).

Basis function wi+1(τ). The basis function wi+1(τ) is calculated by

wi+1,a(τ) =

∫ τ

0.5
wi,a(η) dη −

∫ 1

0

∫ τ

0.5
wi(η) dη dτ, (6.25)

and

wi+1,b(τ) =

∫ τ

0.5
wi,b(η) dη −

∫ 1

0

∫ τ

0.5
wi(η) dη dτ. (6.26)

The orthogonalization term is calculated using the symmetry properties (6.12) and substitution

∫ 1

0

∫ τ

0.5
wi(η) dη dτ = −0.5

∫ 0.5

0
wi,a(η) dη.

Therefore the expressions for the basis function wi+1(τ) (6.25) and (6.26) are

wi+1,a(τ) =

∫ τ

0.5
wi,a(η) dη + 0.5

∫ 0.5

0
wi,a(η) dη, (6.27)

and

wi+1,b(τ) =

∫ τ

0.5
wi,b(η) dη + 0.5

∫ 0.5

0
wi,a(η) dη. (6.28)

The symmetries are given by, using (6.12),

−wi+1,a(τ) = wi+1,b(τ + 0.5), (6.29)

and
−wi+1,a(τ) = wi+1,a(0.5− τ), (6.30)

and thus fulfill the hypothesis (6.13).
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6.2.2 Proof of remark 1

We calculate the solution of the linear ODE

A
d

dt
x(t) +Bx(t) = c(t) (6.31)

where A,B ∈ R are constants, x(t) ∈ R is the solution and c(t) ∈ R is the excitation. Generalization
to systems of ODEs is straightforward. Without loss of generality we assume A = 1. Rewriting leads to

d

dt
x(t) = c(t)−Bx(t). (6.32)

Therefore the homogeneous problem is given as

d

dt
x(t) = −Bx(t). (6.33)

The solution of the ODE (6.32) is given by

x(t) = α e−Bt +xp(t), (6.34)

where α ∈ R is a constant and xp(t) is a particular solution. In the following the time interval of one
period of a 2-level pulsed excitation c(t) with duty cycle D = 0.5 is considered. The excitation is given by

c(t) =

{
1 for 0 ≤ t < 0.5Ts

−1 for 0.5Ts ≤ t ≤ Ts
. (6.35)

Two cases are distinguished. Either 0 ≤ t < 0.5Ts or 0.5Ts ≤ t ≤ Ts. In the first case, the solution and con-
stants are denotedwith additional subscript “a”, in the second casewith additional subscript “b”.

The solution for the first interval is then given by

xa(t) = αa e−Bt +B−1, (6.36)

where the last term is a particular solution if the excitation is constantly 1.

The solution for the second interval is given by

xb(t) = αb e−Bt−B−1, (6.37)

where the last term is a particular solution if the excitation is constantly −1.

The following conditions require to be satisfied for each ripple of the solution:

xa(0) = xb(Ts) (6.38)

xa(0.5Ts) = xb(0.5Ts). (6.39)

Inserting these conditions into the solutions gives the two equations

αa e−B0 +B−1 = αb e−BTs −B−1 (6.40)

αa e−B0.5Ts +B−1 = αb e−B0.5Ts −B−1 (6.41)
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Substracting the second from the first equation leads to the relation

αa = −αb e−B0.5Ts (6.42)

The symmetry of the solution is, using the relation between the coefficients, given by

xa(t− 0.5Ts) = αa e−Bt eB0.5Ts +B−1

= −αb e−B0.5Ts e−Bt eB0.5Ts +B−1

= −αb e−Bt +B−1

= −xb(t).

(6.43)

The PWM basis functions are polynomials of degree up to Np, which span the polynomial space of dimension
Np + 1. Thus, a linear combination of them with duty cycle D = 0.5 can exactly represent any piecewise
polynomial with C0 continuity at τ = 0.5, maximum degreeNp and symmetry condition common to odd and
even indexed PWM basis functions (6.12), (6.13), i.e., −wi(τ) = wi(τ + 0.5). The solution of the linear ODE
fulfills this condition, see (6.43).

6.2.3 Proof of remark 2

The PWM basis functions above are built for a particular duty cycle D to represent piecewise exponential
solutions as generated in power converters by 2-level pulsed excitations. Let us show that they do not span
L2([0, 1]). Consider as example the 3-level function

ct(τ) =





1 for 0 ≤ τ < 0.25
0 for 0.25 ≤ τ < 0.75
−1 for 0.75 ≤ τ ≤ 1

. (6.44)

It is depicted in Fig. 3.7.

ct(τ) is L2-projected onto the space spanned by the basis functions wk(τ) ∀k ∈ N. The projection cht (τ)
(see Fig. 3.7) is a linear combination of the basis functions

cht (τ) = a0w0(τ) + a1w1(τ) + . . .+ aNp wNp(τ), (6.45)

where Np is the number of employed basis functions. The zeroth basis function and all basis functions with
odd index do not contribute to cht (τ) as

∫ 1

0
wk(τ) ct(τ) dτ = 0, k = 0, 1, 3, 5, . . . . (6.46)

Therefore the final solution exhibits the same symmetry properties as the basis functions with even index.
These are given by (6.12). We assume without loss of generality, that cht (τ) is given in terms of orthonormal-
ized basis functions. As they span the same space, the symmetry properties of cht (τ) do not change. The error
between cht (τ) and ct(τ) in the L2 sense can be estimated as follows, where, for simplicity, the τ dependency
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is omitted
∫ 1

0
(cht − ct)

2 dτ (6.12)
= 2

∫ 0.5

0
(cht − ct)

2 dτ (6.47)

=2

∫ 0.5

0
c2

t − 2ctc
h
t + (cht )2 dτ (6.48)

=2

∫ 0.25

0
c2

t − 2ctc
h
t + (cht )2 dτ (6.49)

+ 2

∫ 0.5

0.25
c2

t − 2ctc
h
t + (cht )2 dτ. (6.50)

Using ct(τ) = 0 ∀τ ∈ [0.25, 0.5] yields
∫ 1

0
(cht − ct)

2 dτ =2

∫ 0.25

0
c2

t − 2ctc
h
t + (cht )2 dτ + 2

∫ 0.5

0.25
(cht )2 dτ (6.51)

(6.12)
= 2

∫ 0.25

0
c2

t − 2ctc
h
t + (cht )2 + (cht )2 dτ (6.52)

=2
∥∥∥ct − cht

∥∥∥
2

L2([0,0.25])
(6.53)

+ 2
∥∥∥cht
∥∥∥

2

L2([0,0.25])
. (6.54)

Now the expression
∥∥cht
∥∥
L2([0,0.25])

is estimated using the orthonormality of the basis functions. The L2 scalar

product is denoted as 〈a(τ), b(τ)〉 =
∫ 0.25

0 a(τ) b(τ) dτ , where in the following we leave out the τ dependency
for simplicity

∥∥∥cht
∥∥∥

2

L2([0,0.25])
= 〈
∑

k

〈ct, wk〉wk,
∑

l

〈ct, wl〉wl〉 (6.55)

=
∑

k

∑

l

〈〈ct, wk〉wk, 〈ct, wl〉wl〉 (6.56)

Using the orthonormality of the basis yields
∥∥∥cht
∥∥∥

2

L2([0,0.25])
=
∑

k

〈〈ct, wk〉wk, 〈ct, wk〉wk〉 (6.57)

=
∑

k

〈〈ct, wk〉, 〈ct, wk〉〉 (6.58)

=
∑

k

〈ct, wk〉2 (6.59)

(6.60)

As 〈ct, wk〉2 is always positive independent of how many basis functions are used, the error
∥∥cht − ct

∥∥2

L2([0,1])

will always be greater than a fixed constant.

6.3 Proof of theorem 3

The following proof has been published in [82]. Let us split the set of basis functions (3.82) into three
parts: the basis functions {P0,p, . . . , Pp+K−1,p}, which depend on the knots in the interval [0, D]; the ba-
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sis functions {Pp+K+1,p, . . . , P2p+2K,p}, which depend on the knots in the interval [D, 1]; and the remain-
ing basis function {Pp+K,p}, which has a C0 continuity and depends on knots from the entire interval
[0, 1].

1. The basis functions {P0,p, . . . , Pp+K−1,p} are calculated using the Cox-DeBoor formula. This leads to
the recursion

Pi,p(ξ,D) =
ξ − γ1,iD

γ2,iD
Pi,p−1(ξ,D) +

γ3,iD − ξ
γ4,iD

Pi+1,p−1(ξ,D), (6.61)

where γ1,i, . . . , γ4,i are constants, which depend on the α1, . . . , αK from (3.81) and which are inde-
pendent of the duty cycle D. This recursion leads to polynomials Pi,p(ξ,D) which can be written as

Pi,p(ξ,D) = γ̄p,i
ξp

Dp
+ γ̄p−1,i

ξp−1

Dp−1
+ . . .+ γ̄0,i

ξ0

D0
, (6.62)

where γ̄0,i, . . . , γ̄p,i are constants.

2. To simplify the notation for the second part, the knot vector is redefined by shifting it such that

Ξ̂p,K = Ξp,K−D = {−D, . . . ,−D,α1D−D, . . . , αKD−D, 0, . . . , 0, β1(1−D), . . . , βK(1−D), D, . . . ,D}

As a result, the basis functions {Pp+K+1,p, . . . , P2p+2K,p} are shifted by −D but apart from that are the
same as with the original knot vector Ξp,K . Applying the Cox-DeBoor formula yields

P̂i,p(ξ,D) =
ξ − χ1,i (1−D)

χ2,i (1−D)
P̂i,p−1(ξ,D) +

χ3,i (1−D)− ξ
χ4,i (1−D)

P̂i+1,p−1(ξ,D), (6.63)

which corresponds to polynomials of the form

P̂i,p(ξ,D) = χ̄p,i
ξp

(1−D)p
+ χ̄p−1,i

ξp−1

(1−D)p−1
+ . . .+ χ̄0,i

ξ0

(1−D)0
, (6.64)

where χ̄0,i, . . . , χ̄p,i are constants.

3. Due to the knot repetition the single basis function Pp+K,p consists of two parts. This becomes obvious
in the corresponding Cox-DeBoor formula for this case is

Pp+K,p(ξ) =
ξ − ξp+K

ξ2p+K − ξp+K
Pp+K,p−1(ξ) +

ξ2p+K+1 − ξ
ξ2p+K+1 − ξp+K+1

Pp+K+1,p−1(ξ). (6.65)

The first term stems from the basis functions in the interval [0, D], i.e., all basis functions left of the C0

continuity. The second term stems from the basis functions in the interval [D, 1], i.e., all basis functions
right of the C0 continuity. As a result, the first and second term are polynomials of the form (6.62) and
(6.64), respectively.
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Inserting the polynomials (6.62) and (6.64) into the matrix (3.32) gives

(Jbspl)i,j(D) = Ts

D∫

0

Pi,p(ξ,D)Pj,p(ξ,D) dξ + Ts

1−D∫

0

P̂i,p(ξ,D)P̂j,p(ξ,D)dξ

= Ts

D∫

0

γ̄p,i
ξp

Dp
+ γ̄p−1,i

ξp−1

Dp−1
+ . . .+ γ̄0,i dξ

+ Ts

1−D∫

0

χ̄p,i
ξp

(1−D)p
+ γ̄p−1,i

ξp−1

(1−D)p−1
+ . . .+ γ̄0,i dξ

= Ts

[
γ̄p,i

ξp+1

Dp(p+ 1)
+ γ̄p−1,i

ξp

Dp−1p
+ . . .+ γ̄0,iξ

]∣∣∣∣
D

0

+ Ts

[
χ̄p,i

ξp+1

(1−D)p(p+ 1)
+ γ̄p−1,i

ξp

(1−D)p−1p
+ . . .+ γ̄0,iξ

]∣∣∣∣
1−D

0

= Ts

[
γ̄p,i

D

(p+ 1)
+ γ̄p−1,i

D

p
+ . . .+ γ̄0,iD

]

︸ ︷︷ ︸
(Jbspl)

0
i,j D

+ Ts

[
χ̄p,i

1−D
(p+ 1)

+ γ̄p−1,i
1−D
p

+ . . .+ γ̄0,i(1−D)

]

︸ ︷︷ ︸
(Jbspl)

1
i,j(1−D)

(6.66)

where (Jbspl)
0
i,j and (Jbspl)

1
i,j are constant. This prooves that the matrix depends linearly on the duty cycle.

For the matrices (3.33) and (3.34) the calculation is similar, however it leads to

(Qbspl)i,j =

D∫

0

∂Pi,p(ξ,D)

∂ξ
Pj,p(ξ,D) dξ

︸ ︷︷ ︸
(Qbspl)

0
i,j

+

1−D∫

0

∂P̂i,p(ξ,D)

∂ξ
P̂j,p(ξ,D)dξ

︸ ︷︷ ︸
(Qbspl)

1
i,j

(6.67)

and

(Ubspl)i,j =

D∫

0

Pi,p(ξ,D)
∂Pj,p(ξ,D)

∂D
dξ

︸ ︷︷ ︸
(Ubspl)

0
i,j

+

1−D∫

0

P̂i,p(ξ,D)
∂P̂j,p(ξ,D)

∂D
dξ

︸ ︷︷ ︸
(Ubspl)

1
i,j

. (6.68)

The (Qbspl)
0
i,j , (Qbspl)

1
i,j , (Ubspl)

0
i,j and (Ubspl)

1
i,j are constant. The matricesQbspl and Ubspl are independent

of the duty cycle D.
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6.4 Proof of theorem 4

Using the chain rule of differentiation yields [71]
[
A(x)

d

dt
x(t)

]∣∣∣∣
t=t0

(3.116)
=

[
A(x̂)

d

dt
x̂(t, θ2(t), . . . , θm(t))

]∣∣∣∣
t=t0

(6.69)

=

[
A(x̂)

(
∂x̂(t, θ2, . . . , θm)

∂t
+

dθ2(t)

dt

∂x̂(t, θ2, . . . , θm)

∂θ2
+ . . . (6.70)

+
dθm(t)

dt

∂x̂(t, θ2, . . . , θm)

∂θm

)]∣∣∣
t=t0,θ2=t0,...,θm=t0

(6.71)

which, substituting the variable t by t1, and the variables θ2, . . . , θm by t2, . . . , tm, leads to

=

[
A(x̂)

(
∂x̂(t1, t2, . . . , tm)

∂t1
+

dθ2(t1)

dt1︸ ︷︷ ︸
ω2(t1)

∂x̂(t1, t2, . . . , tm)

∂t2
+ . . . (6.72)

+
dθm(t1)

dt1︸ ︷︷ ︸
ωm(t1)

∂x̂(t1, t2, . . . , tm)

∂tm

)]∣∣∣∣∣
t1=t0,t2=t0,...,tm=t0

(6.73)

(3.115)
= ĉ(t0, t0, . . . , t0)−B(x̂) x̂(t0, t0, . . . , t0) (6.74)

(3.116),(3.117)
= c(t0)−B(x)x(t0) (6.75)

6.5 Other proofs

6.5.1 Eigenvalues of skew-symmetric matrices

The eigenvalues of a skew-symmetric matrix A, i.e., A> = −A, are purely imaginary [109, p. 506]. Given
the eigenvalue problem Ax = λx the equation system

[
0 A
−A 0

] [
x
ix

]
= iλ

[
x
ix

]
(6.76)

can be built. The block matrix in this equation system is symmetric, i.e.,

[
0 A
−A 0

]>
=

[
0 −A>

A> 0

]
=

[
0 A
−A 0

]
. (6.77)

Symmetric matrices have purely real eigenvalues [109, p. 510]. Therefore, according to equation (6.76) the
eigenvalues λ ofA are purely imaginary. Furthermore sinceA is a normalmatrix, i.e.,

A>A = −AA = A(−A) = AA>, (6.78)

the eigenvectors are orthonormal [48, p. 133].
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6.5.2 Eigenvalues of J −1 Q

The eigenvalues λ of the matrix J −1 Q are determined by the eigenvalue problem

J −1Qx = λx, (6.79)

where x is the eigenvector corresponding to the eigenvalue λ. Multiplying both sides with J leads to the
generalized eigenvalue problem

Qx = λJ x. (6.80)

If the matrix J is real symmetric positive definite, it can be diagonalized such that

J = UDU>, (6.81)

whereU−1 = U> are orthogonal matrices andD is the diagonal eigenvalue matrix [109, p. 334]. All entries
of D are positive (due to the positive definitiness of J ) [109, p. 252].

Inserting (6.81) into (6.80) leads to

Qx = λUDU>x (6.82)

U>Qx = λU>U︸ ︷︷ ︸
identity

DU>x︸ ︷︷ ︸
=:y

(6.83)

U>QUy = λDy. (6.84)

Using M = D
1
2 gives

U>QUy = λMMy︸︷︷︸
=:z

(6.85)

M−1U>QUM−1z = λz. (6.86)

(6.87)

If thematrixQ is skew-symmetric, then thematrixM−1U>QUM−1 is skew-symmetric as well since

(
M−1U>QUM−1

)>
= M−1U> Q>︸︷︷︸

−Q
UM−1 (6.88)

A skew-symmetric matrix has purely imaginary eigenvalues and orthonormal eigenvectors, see appendix
6.5.1. The original eigenvectors, calculated using x = UM−1z, are linearly independent since the matrices
U and M are invertible.

6.6 Implementation of periodic boundary conditions

The DOFs in the differential equation system (3.29) are associated to the solution x̂ through the solution
expansion (3.15). In case of PWM basis functions and PWM eigenfunctions the periodicity of the solution
along the time scale t2 is already enforced by construction. In case of B-spline basis functions these have to be
enforced bymodifying the equation systems. Using periodic boundary conditions is one possibility. To achieve
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this, the DOFs associated to the solution at τ = 0 and τ = 1 are equalized. For this purpose we follow the
process described in [34] and in a first step write the differential equation system as




AL,L AL,I AL,R

AI,L AI,I AI,R

AR,L AR,I AR,R


 d

dt1




yL
yI
yR


+




BL,L BL,I BL,R
BI,L BI,I BI,R
BR,L BR,I BR,R






yL
yI
yR


 =




CL
CI
CR


 , (6.89)

where yL corresponds to the DOFs associated with the solution at τ = 0, yR corresponds to the DOFs as-
sociated with the solution at τ = 1 and yI corresponds to the remaining DOFs. Enforcing periodicity by
yL = yR, we rewrite the equation system by adding the first equation to the last. Furthermore we replace
the first equation by an algebraic one enforcing yL = yR. This results in




0 0 0
AI,L AI,I AI,R

AR,L + AL,L AR,I + AL,I AR,R + AL,R


 d

dt1




yL
yI
yR


 (6.90)

+




1 0 −1
BI,L BI,I BI,R

BR,L + BL,L BR,I + BL,I BR,R + BL,R






yL
yI
yR


 =




0
CI

CR + CL


 , (6.91)

which is a system of DAEs, even if (6.89)were ODEs. The equation system can be further simplified to
[ AI,I AI,R + AI,L

AR,I + AL,I AR,R + AL,R + AR,L + AL,L

]
d

dt1

[
yI
yR

]
(6.92)

+

[ BI,I BI,R + BI,L
BR,I + BL,I BR,R + BL,R + BR,L + BL,L

] [
yI
yR

]
=

[ CI
CR + CL

]
, (6.93)

which is again a system of ODEs if the original equations (6.89) were ODEs.
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