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Abstract
Over the course of the last decade, the framework of reinforcement learning has developed into
a promising tool for learning a large variety of task. The idea of reinforcement learning is, at
its core, very simple yet effective. The learning agent is left to explore the world by performing
actions based on its observations of the state of the world, and in turn receives a feedback, called
reward, assessing the quality of its behavior. However, learning soon becomes challenging and
even impractical as the complexity of the environment and of the task increase. In particular,
learning without any pre-defined behavior (1) in the presence of rarely emitted or sparse rewards,
(2) maintaining stability even with limited data, and (3) with possibly multiple conflicting ob-
jectives are some of the most prominent issues that the agent has to face. Consider the simple
problem of a robot that needs to learn a parameterized controller in order to reach a certain
point based solely on the raw sensory observation, e.g., internal reading of joints position and
camera images of the surrounding environment, and on the binary reward “success” / “failure”.
Without any prior knowledge of the world’s dynamics, or any hint on how to behave, the robot
will start acting randomly. Such exploration strategy will be (1) very unlikely to bring the robot
closer to the goal, and thus to experience the “success” feedback, and (2) likely generate useless
trajectories and, subsequently, learning will be unstable. Furthermore, (3) there are many dif-
ferent ways the robot can reach the goal. For instance, the robot can quickly accelerate and then
suddenly stop at the desired point, or it can slowly and smoothly navigate to the goal. These
behaviors are clearly opposite, but the binary feedback does not provide any hint on which is
more desirable.

It should be clear that even simple problems such as a reaching task can turn non-trivial for
reinforcement learning. One possible solution is to pre-engineer the task, e.g., hand-crafting the
initial exploration behavior with imitation learning, shaping the reward based on the distance
from the goal, or adding auxiliary rewards based on speed and safety. Following this solution,
in recent years a lot of effort has been directed towards scaling reinforcement learning to solve
complex real-world problems, such as robotic tasks with many degrees of freedom, videogames,
and board games like Chess, Go, and Shogi. These advances, however, were possible largely
thanks to experts prior knowledge and engineering, such as pre-initialized parameterized agent
behaviors and reward shaping, and often required a prohibitive amount of data. This large
amount of required prior knowledge and pre-structuring is arguably in stark contrast to the goal
of developing autonomous learning.

In this thesis we will present methods to increase the autonomy of reinforcement learning al-
gorithms, i.e., learning without expert pre-engineering, by addressing the issues discussed above.
The key points of our research address (1) techniques to deal with multiple conflicting reward
functions, (2) methods to enhance exploration in the presence of sparse rewards, and (3) tech-
niques to enable more stable and safer learning. Progress in each of these aspects will lift
reinforcement learning to a higher level of autonomy.

First, we will address the presence of conflicting objective from a multi-objective optimization
perspective. In this scenario, the standard concept of optimality is replaced by Pareto optimality,
a concept for representing compromises among the objectives. Subsequently, the goal is to find
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the Pareto frontier, a set of solutions representing different compromises among the objectives.
Despite recent advances in multi-objective optimization, achieving an accurate representation
of the Pareto frontier is still an important challenge. Common practical approaches rely on
experts to manually set priority or thresholds on the objectives. These methods require prior
knowledge and are not able to learn the whole Pareto frontier but just a portion of it, possibly
missing interesting solutions. On the contrary, we propose a manifold-based method which learn
a continuous approximation of the frontier without the need of any prior knowledge.

We will then consider learning in the presence of sparse rewards and present novel exploration
strategies. Classical exploration techniques in reinforcement learning mostly revolve around
the immediate reward, that is, how to choose an action to balance between exploitation and
exploration for the current state. These methods, however, perform extremely poorly if only
sparse rewards are provided. State-of-the-art exploration strategies, thus, rely either on local
exploration along the current solution together with sensible initialization, or on handcrafted
strategies based on heuristics. These approaches, however, either require prior knowledge or
have poor guarantees of convergence, and often falls in local optima. On the contrary, we
propose an approach that plans exploration actions far into the future based on what we call
long-term visitation value. Intuitively, this value assesses the number of unvisited states that the
agent can visit in the future by performing that action.

Finally, we address the problem of stabilizing learning when little data is available. Even
assuming efficient exploration strategies, dense rewards, and the presence of only one objective,
reinforcement learning can exhibit unstable behavior. Interestingly, the most successful algo-
rithms, namely actor-critic methods, are also the most sensible to this issue. These methods
typically separate the problem of learning the value of a given state from the problem of learning
the optimal action to execute in such a state. The former is fullfilled by the so-called critic, while
the latter by the so-called actor. In this scenario, the instability is due the interplay between
these two components, especially when nonlinear approximators, such as neural networks, are
employed. To avoid such issues, we propose to regularize the learning objective of the actor by
penalizing the error of the critic. This improves stability by avoiding large steps in the actor
update whenever the critic is highly inaccurate.

Altogether, the individual contributions of this thesis allow reinforcement learning to rely less
on expert pre-engineering. The proposed methods can be applied to a large variety of common
algorithms, and are evaluated on a wide array of tasks. Results on both standard and novel
benchmarks confirm their effectiveness.
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Zusammenfassung
Im Laufe des letzten Jahrzehnts hat sich Reinforcement Learning zu einem vielversprechenden
Instrument für das Erlernen einer Vielzahl von Aufgaben entwickelt. Die Idee des Reinforcement
Learning ist in ihrer Essenz sehr einfach, jedoch zugleich effektiv. Der lernende Agenten erkun-
det die Welt durch seine Aktionen, welche auf Beobachtungen des Umgebungszustands basieren.
Dabei erhält er Belohnungen, welche die Zielgerichtetheit des Verhaltens bewerten. Jedoch wird
das Lernen mit zuzunehmender Komplexität der Umgebung beziehungsweise Aufgabe schnell an-
spruchsvoll oder sogar unmöglich. Insbesondere zählen das Lernen ohne vorgegebenes Verhalten,
(1) das Fehlen von informativen Belohnungen, (2) das Erhalten der Stabilität trotz begrenzter
Daten, und (3) sich möglicherweise widersprechenden Ziele zu den bekanntesten Problemen die
der Agent lösen muss.

Betrachten wir die Aufgabe dass ein Roboter einen parametrisierten Regler lernen soll wel-
cher es ihm ermöglicht nur mithilfe von rohen Sensormessungen, wie beispielsweise Messungen
der Gelenkwinkel des Roboters oder Kamerabilder der Umgebung, sowie den binären Belohnun-
gen “Erfolg” / “Misserfolg” einen Punkt im Raum zu erreichen. Ohne vorheriges Wissen über
die Dynamik der Umgebung oder einen Hinweis wie er sich zu verhalten hat, wird der Robo-
ter mit zufälligen Aktionen beginnen. Eine solche Erkundungsstrategie wird den Roboter aller
Wahrscheinlichkeit nach nicht näher an das Ziel bringen beziehungsweise dazu führen dass er
die Rückmeldung “Erfolg” erhält. Darüber hinaus hat die rein zufällige Exploration die Tendenz
unsichere Trajektorien zu generieren, wodurch das Lernen instabil wird. Zudem gibt es viele
verschiedene Wege auf denen der Roboter das Ziel erreichen kann. Zum Beispiel kann der Robo-
ter schnell beschleunigen und dann plötzlich am Zielpunkt stoppen, oder es kann langsam und
gleichmäßig zum Ziel fahren. Ein binäres Feedback allein ist nicht ausreichend um festzulegen
welche diese offensichtlich gegensätzlichen Verhaltensweisen erwünscht ist.

Selbst einfache Aufgaben wie das erreichen eines Punkts im Raum können im Kontext des
Reinforcement Learning zu einer Herausforderung werden. Eine mögliche Lösung ist das Pro-
blem vorzubearbeiten wie zum Beispiel vordefiniertes Explorationsverhalten mittels Imitation
Learning, das Belohnungssignal proportional zu dem Abstand vom Ziel zu formulieren, oder eine
zusätzliche Belohnung für Geschwindigkeit und Sicherheit einzuführen. Diesem Ansatz folgend
wurde in den letzten Jahren ein großer Aufwand betrieben um Reinforcement Learning skalier-
bar zu machen, wodurch die Lösung von komplexen Problemen in der realen Welt ermöglicht
wird. Beispiele hierfür sind Roboter-basierte Probleme mit vielen Freiheitsgraden oder Spiele wie
Schach, Go und Shogi. Diese Fortschritte wurden jedoch weitgehend durch Vorwissen in Form
von bereits initialisierten Verhalten oder einem bewusst hilfreich definiertem Belohnungssignal
ermöglicht und benötigen zudem oft eine unerschwinglich große Menge an Daten. Das benötigte
Vorwissen sowie das Vorstrukturieren der Aufgabe stellen stehen jedoch im starken Kontrast zu
dem übergeordneten Ziel des selbständigen Lernens.

In dieser Arbeit werden wir Methoden präsentieren welche die Selbständigkeit von Reinforce-
ment Learning Algorithmen verbessern indem wir die oben beschriebenen Probleme adressieren,
das heißt Lernen ohne Vorbearbeitung durch Experten. Die zentralen Punkte unserer Forschung
sind Methoden um (1) mit mehreren konkurrierenden Belohnungssignalen umzugehen, (2) die
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Erkundung der Umgehung in Abwesenheit von informativen Belohnungssignalen zu verbessern,
und (3) ein stabileres und sichereres Lernen zu ermöglichen. Ein Fortschritt in jeder der drei
genannten Aspekte wird die Lernmethoden des Reinforcement Learning auf eine höhere Ebene
der Selbständigkeit heben.

Als erstes werden wir uns dem Problem der konkurrierenden Ziele aus Sicht eines darauf aus-
gelegten Optimierungsverfahrens widmen. In diesem Szenario wird das Standardkonzept der Op-
timalität durch die sogenannte Pareto-Optimalität, ein Konzept welches Kompromisse zwischen
verschiedenen Zielen darstellt, ersetzt. Es wird danach gestrebt die sogenannte Pareto-Grenze,
eine Menge an Lösungen welche Kompromisse zwischen den einzelnen Zielen repräsentiert, zu fin-
den. Trotz kürzlicher Fortschritte im Bereich der Mehrzieloptimierung, ist die genaue Erfassung
der Pareto-Grenze immer noch eine Herausforderung. In der Praxis verlassen sich die meisten
Ansätze darauf dass Experten die Priorität order Schwellenwerte für die Erfüllung der indivi-
duellen Ziele manuell festlegen. Diese Ansätze benötigen fachspezifisches Wissen und sind nur
in der Lage einen Ausschnitt der Pareto-Grenze zu lernen, wodurch sie aller Voraussicht nach
interessante Lösungen übersehen. Im Gegensatz dazu, stellen wir einen auf Mannigfaltigkeiten
basierenden Ansatz vor, der eine kontinuierliche Approximation der Pareto-Grenze lernt ohne
dabei Wissen vorauszusetzen.

Im Anschluss befassen wir uns mit neuen Explorationstrategien sowie dem Lernen mit sel-
tenen Belohnungen. Typische Explorationstrategien im Bereich des Reinforcement Learning
fokussieren sich auf die instantane Belohnung im gegenwärtigen Zeitschritt, was gleichbedeu-
tend mit der Frage nach einer Balance zwischen Erkundung aus Ausschöpfung des bisherigen
Kenntnisstands ist. Diese Methoden versagen jedoch im Fall von seltenen Belohnungen bezie-
hungsweise einem uninformativen Belohnungssignal. Zum gegenwärtigen Stand der Forschung
verlassen sich Explorationstrategien daher entweder auf eine lokale Erkundung entlang des der-
zeitigen Verhaltensmusters mit sinnvoller Initialisierung, oder auf problemspezifische Heuristiken.
Diese Vorgehensweisen setzen jedoch entweder Wissen oder haben schlechte Konvergenzgaran-
tien und finden oft nur lokale Optima. Dem entgegen, schlagen wir eine Methode vor welche die
Explorationsverhalten basierend auf dem sogenannten long-term visitation value weit in die Zu-
kunft plant. Der long-term Visitation Value schätzt die Zahl der noch nicht entdeckten Zustände
ab welche der Agent durch ausführen der gegebenen Aktion besuchen kann.

Abschließend adressieren wir das Problem der Stabilisierung des Lernvorgangs für den Fall
dass nur wenige Daten zur Verfügung stehen. Selbst unter der Annahme von effizienten Explo-
rationstrategien, eines informativen Belohnungssignals sowie eines einzigen wohldefinierten Ziels
können Reinforcement Learning Algorithmen zu instabilem Verhalten führen. Interessanterweise
sind die erfolgreichsten Algorithmen, besonders jene mit sogenannter Actor-Critic Architektur,
auch diejenigen welche am empfindlichsten für das genannte Problem sind. Diese Architektur
separiert das Lernen des Werts eines Zustands vom Lernen der optimalen Aktion gegeben eines
Zustands. Ersteres geschieht durch den Critic, wohingegen der Actor für die zweite Aufgabe
zuständig ist. In dieser Zusammensetzung entsteht die Instabilität durch das Wechselspiel der
beiden Komponenten, insbesondere wenn dabei nichtlineare Funktionsapproximatoren wie bei-
spielsweise künstliche neuronale Netzwerke verwendet werden. Um solche Probleme zu vermeiden,
frühen wir eine Regularisierung des Lernziels für den Actor ein welches den Schätzfehler des Cri-
tic bestraft. Dies führt zu einer Stabilisierung des Lernvorgangs durch die Vermeidung von großen
Veränderungen des Actor wenn der Critic sehr ungenau ist.
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Insgesamt erlauben die einzelnen Beiträge dieser Arbeit den Reinforcement Learning Algo-
rithmen sich weniger auf Expertenwissen beziehungsweise die Vorbearbeitung des Problems zu
verlassen. Die vorgestellten Methoden sind auf eine große Vielfalt von Algorithmen anwendbar
und wurden auf einem weiten Spektrum an Problemen evaluiert. Ihre Effektivität wird durch
die dargelegten Ergebnisse auf bekannten sowie neuartigen Leistungsvergleichen bestätigt.
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Notation
The following tables give an overview of the notation and list most of the symbols used throughout
the thesis. Symbols that only pertain to a specific section are defined where they are used.

Notation Description
x scalar
{x[i]}i=1...N set of N elements x1 through xN
x = [x1, x2, . . . , xN ] vector of N elements
xi i-th element of the vector x
x1:N series of N vectors x1 through xN

X matrix
XT transpose of a matrix
p(x) probability density
Ep(x)[f(x)] expectation of f(x) over p(x)
∇xf(x) partial derivative of f(x) w.r.t. x

Symbols Description
I identity matrix
s state
a action
c context
r reward
R reward function
P transition function
γ discount factor
π policy
µπ steady-state distribution under policy π
J expected return of policy π
ϱ high-level policy
J expected return of high-level policy ϱ
θ policy parameters
ω high-level policy parameters
ω critic parameters
ϕ features
F Pareto frontier
S Pareto optimality indicator function
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1 Introduction
Over the course of the last decade, the framework of reinforcement learning has developed into
a promising tool for learning a large variety of task. A lot of effort has been directed towards
scaling reinforcement learning to solve high-dimensional problems, such as robotic tasks with
many degrees of freedom [Kober and Peters, 2012, Kormushev et al., 2013, Deisenroth et al.,
2013, Parisi et al., 2015], videogames [Mnih et al., 2015, Vinyals et al., 2019], and board games
likes Chess, Go and Shogi [Silver et al., 2017b]. Prominent algorithms include policy search
[Peters and Schaal, 2008a, Kalakrishnan et al., 2012, Theodorou et al., 2010, Levine and Koltun,
2013], trajectory optimization [Kolter et al., 2008, Tassa et al., 2012] and actor-critic methods
[Lillicrap et al., 2016, Schulman et al., 2015, 2016]. These advances, however, have been possible
largely thanks to experts prior knowledge and engineering, such as pre-structured parameterized
agent behavior policies and reward shaping. In particular, the design of task-specific exploration
strategies and auxiliary rewards is frequently needed, especially if the task to be solved includes
different conflicting objectives, or if the reward is sparse, i.e., it is rarely emitted. Furthermore,
a prohibitive amount of data is often required, and without it the learning could be slower or
more prone to unstable behavior. For instance, with little data it is often necessary to reduce
the learning rate or to use larger batches, which may not always be possible due to limited
computational resources. This large amount of required prior-knowledge, engineering, and pre-
structuring, as well as data inefficiency and instability, are arguably in stark contrast to the goal
of developing autonomous learning.

Motivated by the ambition of lifting the autonomy of artificial agents, we devoted our research
to make reinforcement learning less dependent on human pre-engineering, by addressing the
issues discussed above. The key points of our research address (1) techniques to deal with
multiple conflicting reward functions, (2) methods to enhance exploration in the presence of
sparse rewards, and (3) techniques to enable more stable and safer agent updates.

In the following sections of this chapter, we introduce these three topics which constitute
the main body of the thesis. We start by motivating our work with a real-world robotic case
study. The task, namely the robot tetherball game, highlights the benefits of using reinforce-
ment learning rather than relying on human programming. At the same time, it underlines
the need of classical reinforcement learning for human expertise in order to perform efficiently.
Subsequently, we contrast the state-of-the-art to the desired properties of fully autonomous re-
inforcement learning in the context of multi-objective optimization, exploration strategies with
sparse rewards, and algorithm stability. For each topic, we introduce the thesis contributions
and the methods which will be then discussed deeply in Chapters 2, 3, and 4.

Altogether, the individual contributions of this thesis allow reinforcement learning to rely less
on expert pre-engineering. The proposed methods can be applied to a large variety of common
algorithms, and are evaluated on a wide array of tasks. Results on both standard and novel
benchmarks confirm their effectiveness.
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Figure 1.1: In robot tetherball, a pole with a ball hanging from the top is placed between two robotic
arms. The goal of the robots is to repeatedly hit the ball in one direction without giving the opponent
the chance to unwind it.

1.1 A Real-World Case Study: The Robot Tetherball Game

In the robot tetherball game, shown in Figure 1.1, two robots – the players – are set up facing
each other and a pole is centered between them. A ball is attached to the top of the pole using
a rope. The goal of the robots is to hit the ball such that the rope winds around the pole as
often as possible in one direction, and without giving the opponent the chance to unwind it. In
[Parisi et al., 2015], we used this platform to conduct a systematic evaluation of learned skills
against manually programmed solutions, and to study the limitation of current reinforcement
learning algorithms. More specifically, we aimed to answer the following questions. (1) Who
would win between a player trained with reinforcement learning and one manually programmed?
(2) How much engineering does reinforcement learning need to be efficiently applied to a real
robotic task? (3) What are the limitations of current reinforcement learning algorithms?

To answer these questions, we manually programmed one player and trained the second in-
dependently. The former, i.e., the hand-crafted player, is aware of its dynamics and uses a
mechanical model of tetherball to predict the ball trajectory. It computes an interception point
and plans a stroke movement to hit the ball. The latter, i.e., learned player, instead, knows noth-
ing about its dynamics and the environment, and is trained solely on sampled trajectories. We
formulated the game as a contextual episodic Markov Decision Process [Deisenroth et al., 2013]
and used Dynamic Motor Primitives [Ijspeert et al., 2002] to represent the player trajectories.
This allowed us to employ reinforcement learning algorithms to train the trajectory generation
of the second player. For a complete description of both players, we refer to Appendix A.

As evaluation, we let the real robots play full matches against each other and compare them
according to the ball hit rate and the overall score. A match is started by the referee throwing
the ball randomly to one of the robots and ends when none of the robots is able to hit the ball
anymore. The score of a match is determined by how often the ball winds around the pole for
each player, i.e., by the number of misses of the opponent. The two robots played a total of 25
games and results are reported in Table 1.1. The hand-crafted player won six of the 25 games,
while the learned player won the remaining 19 games. Throughout the games, the hand-crafted
player scored eight times, while the learned player scored 38 times. The better performance of
the learned player is due to its ability to learn to compensate for errors arising in the model
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Table 1.1: Tetherball match results for the real robots. The learned player defeats the hand-crafted
one and achieves better overall hit rate, averaged over 25 matches.

Player Hit rate Matches won Total score
Hand-crafted 71% 6/25 8
Learned 85% 19/25 38

of both the robot and the environment. The first error is due to the highly non-linear forward
dynamics caused by springs in the joints. Furthermore, lacking a full inverse dynamics model,
the hand-crafted player is also sensitive to errors in the tracking of the planned trajectory. The
second error depends on the inaccurate tracking of the ball, for which we used a kinect.

From a more practical perspective, mathematically describing tetherball requires a complex
mechanical model [Abdulsamad et al., 2014]. Even after disregarding effects like friction, air
drag and changes in string tension, the underlying equations are still highly nonlinear. Deriving
the model, thus, is time consuming and requires a large amount of prior knowledge. The learned
player, instead, did not need any prior knowledge of this kind, therefore making reinforcement
learning more appealing for solving complex tasks.

However, the learned player is not truly autonomous, as it needed other kind of prior knowl-
edge. First, its learning components required the tuning of open parameters. This process,
despite being far less time intensive than building a mathematical model for a given task, still
requires expertise. Second, bootstrapping the learning by demonstrating initial trajectories with
imitation learning was essential to make the learning process feasible. Imitation learning, in fact,
provided an initial exploration which helped avoiding dangerous trajectories and ensuring stable
updates. Third, the reward function was designed with four components and shaping auxiliary
rewards was of critical importance. The first component is the intuitive binary reward “success”
/ “failure” for hitting / missing the ball. The second is the minimum distance between the player
paddle and the ball during a trajectory. This component is needed due to the sparsity of the first
one. The third and the fourth are penalties for high-acceleration trajectories and for collisions
with the base the robot is standing on. These components are crucial for safety, which can be
considered as a separate conflicting objective.

This investigation shows that reinforcement learning is a powerful tool, allowing to solve real
tasks even with no knowledge about the environment and its dynamics. However, it is far from
being truly autonomous, as it still relies on expertise and pre-engingeering of its components.
More specifically, we identified three main challenges, namely learning (1) with additional con-
flicting objectives, (2) with sparse rewards, and (3) preventing unstable behaviors. In the next
sections, we discuss these three challenges from a more general perspective.

1.2 Manifold-Based Reinforcement Learning for Conflicting Objectives

Many real-world control applications, from economics to robotics, are characterized by the pres-
ence of multiple conflicting objectives. For example, in the robot tetherball game alongside
hitting the ball we want to ensure safety by avoiding high-acceleration trajectories. This would
teach the player low-speed smooth trajectories. However, at the same time we want to maximize
the chances of winning, thus hitting the ball at high speed would make it harder for the opponent
to hit back. In between these two opposite strategies, there are many compromise solutions. The
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Figure 1.2: Generic scheme of manifold learning for multi-objective op-
timization. First, we define a parameterized function (top-left), e.g.,
a Gaussian distribution, to produce different agent manifolds (top-
middle). Each agent is characterized by its parameter vector, e.g., the
robot PD controller gains, and is evaluated through the objective func-
tions. Then, the resulting objective vectors map into an approximate
frontier (top-right). The goal is to learn the manifold parameters such
that the Pareto frontier is generated. For this, we need to assess the
quality of approximate frontiers. That is, considering for instance the
two frontiers on the left, we need to answer the following question: is
“frontier 1” better than “frontier 2” with respect to Pareto optimality?

set of these compromises is called Pareto frontier and to learn it is the aim of multi-objective
optimization. Providing the Pareto frontier is, in fact, often beneficial. First, it encapsulates
all the trade-offs among the objectives and gives better insight into the problem, thus helping
the a posteriori selection of the most favorable solution. Second, the agent trained by manually
tuning a priori the reward function may not meet our expected behavior. For instance, due
to the different magnitude of the rewards, small changes in the the preference vector over the
rewards may produce largely different solutions.

Despite recent advances in multi-objective optimization, achieving an accurate representation
of the Pareto frontier is still an important challenge. Given the vector of rewards – one for each
objective – classical approaches scalarize it, i.e., transform it into a scalar value, for instance
by weighted sum. Subsequently, several optimization procedures are repeat on varying the
scalarization, in the hope of finding diverse solutions. These approaches are not only highly
inefficient, but depending on the scalarization used either lack guarantees of Pareto-optimality
or cannot identify some portion of the Pareto frontier.

To address these limitations, we propose a manifold-based approach [Parisi et al., 2017a]. The
idea, shown in Figure 1.2, is to optimize the parameters of a function defining a manifold in the
agent parameters space, so that the corresponding image in the objectives space corresponds to
the true Pareto frontier. Subsequently, the learning of the manifold is carried by episodic rein-
forcement learning, which enables importance sampling for improved sample efficiency. Beside
the episodic formulation of multi-objective problems and the integration of importance sam-
pling, the contributions of this work include the proposal of two novel indicator functions to
asses the quality of approximate Pareto frontiers with respect to Pareto optimality, and the
successful application to several bechmark problems, including the simulated robot tetherball
and a many-objective problem (i.e., with more than three objectives).
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1.3 Long-Term Visitation Value for Exploration with Sparse Rewards

The performance of reinforcement learning strongly depends on the quality of the reward signal.
In particular, frequently emitted or “dense” rewards are desirable, as they provide feedback
for any action performed by the agent. Instead, infrequent or “sparse” rewards yield little
help. Since improving the agent relies on getting feedback via rewards, the agent cannot be
improved until a reward is obtained. In situations where this occurs very rarely, the agent
can barely learn. Therefore, many algorithms rely on well-shaped reward functions to guide
the agent towards good solutions. For example, in the robot tetherall game, the simple binary
reward “success” / “failure” for hitting / missing the ball was not sufficient to learn the task, and
auxiliary hand-crafter rewards had to be designed, such as a penalty proportional to the quadratic
distance between the paddle and the ball, and a penalty on collision. From the perspective of
autonomous learning this reward engineering is unacceptable. First, it is easy to misspecify the
reward function and cause unexpected behavior, e.g., excessively penalizing for collisions may
prevent the robot from moving at all. Second, reward engineering requires expertise, and the
resulting reward function may not transfer to different tasks or systems.

Current state-of-the-art exploration techniques for environment with sparse reward mostly use
bootstrapping [Osband et al., 2019], or revolve around heuristics to supply an auxiliary “intrin-
sic” reward even when the environment does not provide one [Pathak et al., 2017, Houthooft
et al., 2016, Bellemare et al., 2016]. However, these methods add the auxiliary reward after
the action choice which makes exploration sample inefficient for long horizon decision making.

Figure 1.3: The deep gridworld environment.

Furthermore, they are sensitive to so-called
“distractor” rewards. These are low-value
easily-reachable rewards that attract the
agent to poor local optima. Consider the en-
vironment depicted in Figure 1.3. The agent
navigates in a grid by moving “left”, “right”,
“up”, or “down”. A treasure of value 2 lies at
the end of the blue corridor, while two trea-
sures of value 1 serve as distractors next to
the corridor entrance. The corridor is filled
with puddles, each giving a penalty of -0.01.

The exploration ends when the agent collects any of the treasures. In this environment, only
three states give positive reward, and two of them are poor local optima corresponding to the
distractors. Furthermore, the puddles discourage the agent from going through the corridor and,
thus, from reaching the highest reward.

In this thesis, we show that exploration strategies based on heuristic or bootstrapping perform
poorly, not always finding the highest reward. In contrast to these approaches, we propose a
novel principled method to perform long-term exploration, i.e., exploration that prefers actions
allowing the agent to visit states in the future which have not been visited before. To this
aim, we present the long-term state-action visitation value. Intuitively, this value expresses how
much exploration we can expect on (discount weighted) average in future states if we choose
a candidate action in the current state. Evaluated on a wide array of domains, our approach
outpeforms state-of-the-art methods.
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1.4 Regularized Actor-Critic Methods for Improved Stability
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Countour lines denote the magnitude of the re-
ward against the actor parameters. The blue and
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dated over time using reinforcement learning and
just few samples per update. The white dot de-
notes the initial parameters.

Even assuming efficient exploration strategies, dense rewards, and the presence of only one
objective, reinforcement learning can exhibit unstable behavior, especially when little data is
available. Figure1.4 shows how the agent updates can be unstable even when the reward is
quadratic. The red line denotes the update path followed by classical reinforcement learning
algorithm deterministic policy gradient. Updates such as these are undesirable because take
“detours” resulting in a loss of performance and, in the case of real systems, possibly in un-
safe behaviors. Instead, update paths such as the the blue one are more appealing, as they
straightforwardly learn the best agent parameters.

Interestingly, the most successful algorithms in reinforcement learning literature, namely actor-
critic methods, are also the most sensible to instability and usually require expert hand-tuning.
These methods separate the problem of learning the value of a given state from the problem of
learning the optimal action to execute in such a state. The component in charge of learning the
state value is called critic, while learning the optimal actions is fullfilled by the so-called actor.
One of the reasons behind these methods instability is the interplay between the actor and critic
during learning, e.g., a wrong step taken by one of them might adversely affect the other and
can destabilize the learning [Dai et al., 2018]. Nonetheless, most of the existing methods have
focused on stabilizing either the actor or the critic separately. For example, some recent works
improve the stability of the critic by using a slowly-changing critic [Lillicrap et al., 2016, Mnih
et al., 2015, Hessel et al., 2018], a low-variance critic [Munos et al., 2016, Gruslys et al., 2018],
or two separate critics to reduce their bias [van Hasselt, 2010, Fujimoto et al., 2018]. Others
have proposed to stabilize the actor instead, e.g., by constraining its update using entropy or
the Kullback-Leibler divergence [Peters et al., 2010, Schulman et al., 2015, Akrour et al., 2016,
Achiam et al., 2017, Nachum et al., 2018, Haarnoja et al., 2018].

In contrast to these approaches that focus on stabilizing either the actor or the critic, we focus
on stabilizing the interaction between them. We propose to regularize the learning objective of
the actor by penalizing the error of the critic. This improves stability by avoiding large steps
in the actor update whenever the critic is highly inaccurate. The resulting method can be used
as a plug-and-play method to improve stability of any actor-critic method together with other
critic-stabilizing methods. For example, its application to deterministic policy gradient resulted
in the blue path of Figure 1.4. Through evaluations on benchmark tasks, we show that our
method is complementary to existing actor-critic methods, improving not only their stability
but also their final performance and data efficiency.
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Chapter 1: Introduction

Chapter 2:

Conflicting Objectives

Handcraft objective function
to select a-priori a compromise
between the objectives.

Find the Pareto frontier of all
compromises, then choose the
policy a-posteriori.

Chapter 3:

Exploration with Sparse Rewards

Handcrafted or random explo-
ration, possibly causing slow or
premature convergence.

Long-term deep exploration, to
avoid local optima and to deal
with sparse rewards.

Chapter 4:

Unstable Actor-Critic Methods

Separate constraints over the two
components.

Consider the interplay between
the two, and avoid large steps in
the actor update whenever the
critic is inaccurate.

Chapter 5: Conclusion

Figure 1.5: Outline of the thesis. Chapters 2-4 can be read independently of the other chapters,and
the notation needed for each of them is always introduced. In the outline, each box summarizes a
challenge (title), common methods to address it (top half), and our proposed method (bottom half).

1.5 Contributions and Structure of the Thesis

In the next chapters, we addresses the topics discussed in Sections 1.2-1.4. The outline of the
thesis is summarized in Figure 1.5, and the contributions in respect of each topic are theoretical,
algorithmic, and empirical.

In Chapter 2 we consider learning in the presence of conflicting objectives, introducing the
framework of multi-objective optimization and extending it to reinforcement learning.

• Theoretical contribution: Formalization of desirable properties for approximate frontiers,
and of novel indicator fuctions to assess their quality.

• Algorithmic contribution: Manifold-based algorithm capable of learning an approximation
of the Pareto frontier in a single run and to take advantage of importance sampling.

• Empirical contribution: Evaluation on three benchmark tasks against state-of-the-art,
including the simulated robot tetherball and a many-objecive domain.

In Chapter 3 we then address the problem of learning in the presence of sparse rewards and
distractor rewards.

• Theoretical contribution: Novel value functions for long-term exploration.
• Algorithmic contribution: Off-policy actor-critic algorithm capable of learning with sparse

reward and in the presence of distractor rewards.
• Empirical contribution: Evaluation on several benchmark domains against state-of-the-

art. Some domains are novel as well.
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Next, in Chapter 4 we discuss actor-critic methods and their instability. We introduce the
components of these methods, identify the most prominent causes for unstable behaviors and
present an approach to stabilize them.

• Theoretical contribution: Formalization of TD(λ)-regularization for actor-critic methods,
showing relationship with existing reinforcement learning methods.

• Algorithmic contribution: Modification of common actor-critic methods using TD-
regularization.

• Empirical contribution: Evaluation on several benchmark continuous tasks against state-
of-the-art.

In the final chapter of this thesis, we summarize our findings and discuss future avenues of
research. Some of these research ideas are directly linked to extending the methods presented in
this thesis, while others have a more general scope.
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2 Multi-objective Reinforcement Learning
Many real-world applications are characterized by multiple conflicting objectives. In such prob-
lems optimality is replaced by Pareto optimality and the goal is to find the Pareto frontier, a set
of solutions representing different compromises among the objectives. Despite recent advances
in multi-objective optimization, achieving an accurate representation of the Pareto frontier is
still an important challenge. Building on recent advances in reinforcement learning (RL) and
multi-objective policy search, we present two novel manifold-based algorithms to solve multi-
objective Markov decision processes. These algorithms combine episodic exploration strategies
and importance sampling to efficiently learn a manifold in the policy parameter space such that
its image in the objective space accurately approximates the Pareto frontier. We show that
episode-based approaches and importance sampling can lead to significantly better results in the
context of multi-objective reinforcement learning (MORL). Evaluated on three multi-objective
problems, our algorithms outperform state-of-the-art methods both in terms of quality of the
learned Pareto frontier and sample efficiency.
Source code can be found at https://github.com/sparisi/mips/tree/loopless/Algs/MORL

2.1 Introduction

Many real-world problems are characterized by the presence of multiple conflicting objectives,
such as economic systems [Shelton, 2001], medical treatment [Lizotte et al., 2012], control of
robots [Nojima et al., 2003, Ahmadzadeh et al., 2014], water reservoirs [Castelletti et al., 2013]
and elevators [Crites and Barto, 1998]. These applications can be modeled as MORL problems,
where the standard notion of optimality is replaced by Pareto optimality, a concept for repre-
senting compromises among the objectives. Despite the increasing interest in multi-objective
problems and recent advances in RL, MORL is still a relatively young field of research.

MORL approaches can be classified in two main categories [Vamplew et al., 2011] based on the
number of policies they learn: single policy and multiple policy. While the majority of MORL
approaches belong to the former category, in this chapter we focus on the latter and aim to learn
a set of policies representing the best compromises among the objectives, namely the Pareto
frontier. Providing an accurate and uniform representation of the complete Pareto frontier is
often beneficial. It encapsulates all the trade-offs among the objectives and gives better insight
into the problem, thus helping the a posteriori selection of the most favorable solution.

Following the same line of thoughts of RL, initially MORL researchers have focused on the
development of value function-based approaches, where the attention was posed on the recovery
of the optimal value function (for more details, we refer to the survey in [Roijers et al., 2013]).
Recently1, policy search approaches have also been extended to multi-objective problems [Parisi
et al., 2014, Pirotta et al., 2015]. However, the majority of MORL approaches perform exploration
in the action space [Sutton et al., 1999]. This strategy, commonly known as step-based, requires a
different exploration noise at each time step and many studies [Deisenroth et al., 2013, Rückstiess
et al., 2010] have shown that it is subject to several limitations, primarily due to the high
1 The first seminal work dates back to 2001 [Shelton, 2001].
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variance in the policy update. Furthermore, common algorithms involve the solution of several
(independent) single-objective problems in order to approximate the Pareto frontier [Parisi et al.,
2014, Gabor et al., 1998, Athan and Papalambros, 1996, Van Moffaert et al., 2012]. This approach
implies an inefficient use of the samples, as each optimization is usually carried out on-policy,
and most of MORL state-of-the-art approaches are inapplicable to large problems, especially in
the presence of several objectives.

In this chapter, we address these limitations and present the first manifold-based episodic
algorithms in MORL literature. First, these algorithms follow an episodic exploration strategy
(also known as parameter-based or black-box) in order to reduce the variance during the policy
update. Second, they perform a manifold-based policy search and directly learn a manifold in
the policy parameter space to generate infinitely many Pareto-optimal solutions in a single run.
By employing Pareto-optimal indicator functions, the algorithms are guaranteed to accurately
and uniformly approximate the Pareto frontier. Finally, we show how to incorporate importance
sampling in order to further reduce the sample complexity and to extend these algorithms to the
off-policy paradigm. To the best of our knowledge, our algorithms are the first ones to tackle all
these issues at once.

The remainder of the chapter is organized as follows. In Section 2.2, we introduce the multi-
objective problem and discuss related work in MORL literature. Section 2.3 includes the main
contributions of this chapter: an episodic manifold-based reformulation of the multi-objective
problem, two policy search algorithms and two Pareto-optimal indicator functions to solve it, and
an extension to importance sampling for reusing past samples. Section 2.4 provides a thorough
empirical evaluation of the proposed algorithms on three problems, namely a water reservoir
control task, a linear-quadratic regulator and a simulated robot tetherball game. Finally, in
Section 2.5 we discuss the results of this study and propose possible avenues of investigation for
future research.

2.2 Preliminaries

In this section, we provide the mathematical framework and the terminology as used in this
chapter. Moreover, we present a categorization of the multi-objective approaches presented in
MORL literature and we briefly discuss their advantages and drawbacks.

2.2.1 Problem Statement and Notation

Multi-objective Markov decision processes (MOMDPs) are an extension of MDPs in which sev-
eral pairs of reward functions and discount factors are defined, one for each objective. Formally,
a MOMDP is described by a tuple ⟨S,A,P (s′|s, a) ,R (s, a) ,γ, µ⟩: S ⊆ Rds is a continu-
ous state space, A ⊆ Rda is a continuous action space, P (s′|s, a) is a Markovian transition
model and P (s′|s, a) (s′|s, a) defines the transition density between state s and s′ under action
a, R (s, a) = [R1(s, a) . . .Rdr(s, a)]

T and γ = [γ1 . . . γdr ]
T are vectors of reward functions

Ri(s, a) : S × A → R and discount factors γi ∈ [0, 1), respectively, and µ is the initial state
distribution.

The policy followed by the agent is described by a conditional distribution π(a|s) specifying
the probability of taking action a in state s. In MOMDPs, a policy π is associated to dr expected
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returns Jπ =
[
Jπ
1 , . . . , J

π
dr

]
∈ F , where F ⊆ Rdr is the policy performance space. Using the

trajectory-based definition, the i-th expected return is

Jπ
i = Eτ∼p(·|π)[Ri(τ )] ,

where τ = {st, at}Tτt=1 ∈ T is a trajectory (episode) of length Tτ (possibly infinite) drawn from
the distribution p(τ |π), with return Ri(τ ) =

∑Tτ
t=1 γ

t−1
i Ri(st, at). Since it is not common to

have multiple discount factors (the problem becomes NP-complete [Feinberg, 2000]), we consider
a unique value γ for all the objectives.

Unlike in single-objective MDPs, in MOMDPs a single policy dominating all others usually
does not exist. When conflicting objectives are considered, no policy can simultaneously maxi-
mize all of them. For this reason, in multi-objective optimization a different dominance concept
based on Pareto optimality is used. A policy π strongly dominates a policy π′ (denoted by
π ≻ π′) if it outperforms π′ on all objectives, i.e.,

π ≻ π′ ⇐⇒ ∀i ∈ {1 . . . dr} , Jπ
i > Jπ′

i .

Similarly, policy π weakly dominates policy π′ (which is denoted by π ≽ π′) if it is not worse on
all objectives, i.e.,

∀i ∈ {1, . . . , dr} , Jπ
i ≥ Jπ′

i ∧ ∃i ∈ {1, . . . , dr} , Jπ
i = Jπ′

i .

If there is no policy π′ such that π′ ≻ π, then the policy π is Pareto-optimal. We can also speak
of locally Pareto-optimal policies, for which the definition is the same as above, except that we
restrict the dominance to a neighborhood of π.

Our goal is to determine the set of all Pareto-optimal policies Π∗ =
{
π | @π′, π′ ≻ π

}
, which

maps to the so-called Pareto frontier F =
{
Jπ∗ | π∗ ∈ Π∗

}
2. More specifically, in this chapter

we consider parametric policies π ∈ Θθ ≡ {πθ | θ ∈ θ ⊆ Rdθ}, where θ is the policy parameters
space. For simplicity, we use θ in place of πθ to denote the dependence on the current policy,
e.g., J(θ) instead of Jπθ .

2.2.2 Related Work

MORL approaches can be divided into two categories based on the number of policies they
learn [Vamplew et al., 2011]. Single-policy methods aim to find the best policy satisfying a
preference among the objectives. The majority of MORL approaches belong to this category
and differ for the way in which preferences are expressed. They are easy to implement, but
require a priori decision about the type of the solution and suffer from instability, as small
changes on the preferences may result in significant variation in the solution [Vamplew et al.,
2011]. The most straightforward and common single-policy approach is the scalarization where
a function is applied to the reward vector in order to produce a scalar signal. Usually, a linear
combination (weighted sum) of the rewards is performed and the weights are used to express
the preferences over multiple objective [Castelletti et al., 2002, Natarajan and Tadepalli, 2005,
2 As done in [Harada et al., 2006], we suppose that locally Pareto-optimal solutions that are not Pareto-

optimal do not exist.
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Van Moffaert et al., 2012]. Less common is the use of non linear mapping [Tesauro et al.,
2007]. Although scalarization approaches are simple and intuitive, they may fail in obtaining
MOO desiderata, e.g., a uniform distribution of the weights may not produce accurate and
evenly distributed points on the Pareto frontier [Das and Dennis, 1997]. On the other hand,
several issues of the scalarization are alleviated in RL due to the fact that the Pareto frontier is
convex when stochastic policies are considered [Vamplew et al., 2009, Roijers et al., 2013]. For
example, the convex hull of stochastic policies, each one being optimal w.r.t. a different linear
scalarization, represents a viable approximation of the Pareto frontier3. Different single-policy
approaches are based on thresholds and lexicographic ordering [Gabor et al., 1998] or different
kinds of preferences over the objective space [Mannor and Shimkin, 2001, 2004].

Multiple-policy approaches, on the contrary, aim at learning multiple policies in order to ap-
proximate the Pareto frontier. Building the exact frontier is generally impractical in real-world
problems, thus, the goal is to build an approximation of the frontier containing solutions that
are accurate, evenly distributed and have a range similar to the true frontier [Zitzler et al.,
2003]. Whenever possible, multiple-policy methods are preferred, as they permit a posteriori
selection of the solution and encapsulate all the trade-offs among the multiple objectives. In
addition, a graphical representation of the frontier can give better insights into the relationships
among the objectives that can be useful for understanding the problem and the choice of the
solution. However, all these benefits come at a higher computational cost, that can prevent
learning in online scenarios. The most common approach to approximate the Pareto frontier
is to perform multiple runs of a single-policy algorithm by varying the preferences among the
objectives [Castelletti et al., 2002, Van Moffaert et al., 2012]. It is a simple approach but suf-
fers from the disadvantages of the single-policy method used. Besides this, few other examples
of multiple-policy algorithms can be found in literature. Barrett and Narayanan [Barrett and
Narayanan, 2008] proposed an algorithm that learns all the deterministic policies that define the
convex hull of the Pareto frontier in a single learning process. Recent studies have focused on
the extension of fitted Q-iteration to the multi-objective scenario. While Lizotte et al. [Lizotte
et al., 2010, 2012] have focused on a linear approximation of the value function, Castelletti et
al. [Castelletti et al., 2012] proposed an algorithm to learn the control policy for all the linear
combination of preferences among the objectives in a single run. Finally, Wang and Sebag [Wang
and Sebag, 2013] proposed a Monte-Carlo Tree Search algorithm able to learn solutions lying in
the concave region of the frontier.

Nevertheless, classic approaches discussed above exploit only deterministic policies resulting
in scattered Pareto frontiers, while stochastic policies give a continuous range of compromises
among objectives [Roijers et al., 2013, Parisi et al., 2014]. Shelton [Shelton, 2001, Section 4.2.1]
was the pioneer both for the use of stochastic mixture policies and policy search in MORL,
proposing a gradient-based algorithm to learn mixtures of Pareto-optimal policies. To the best
of our knowledge, only the studies in [Parisi et al., 2014, Pirotta et al., 2015] followed the
work of Shelton in combining policy search and multiple policy concepts. The former presented
two MORL algorithms, called Radial (RA) and Pareto-Following (PFA) that, starting from
an initial policy, perform gradient-based policy search procedures aimed to find a set of non-
dominated policies. These algorithms, however, rely on several optimization procedures and
are therefore sample inefficient. Differently, the algorithm provided by [Pirotta et al., 2015]
learns a function defining a manifold in the policy parameters space. At each step the function is

3 In episodic tasks, we can even exploit deterministic optimal policies by constructing mixture policies, i.e.,
policies stochastically choosing between deterministic policies at the beginning of each episode.
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Figure 2.1: Transformation map from the high-level distribution ϱ to approximate frontiers in the
objective space F . A high-level parameter vector ωi maps to a manifold in the policy parameter
space θ. Subsequently, the manifold maps to an approximate frontier Fi, with each vector θ[j]
mapping to a return vector J(θ[j]).

optimized performing a single gradient ascent w.r.t. a indicator function that assesses the Pareto
optimality of the manifold. Although interesting and promising, this approach is subject to many
limitations. First, by following a gradient-based optimization, the indicator function must be
differentiable. Therefore, common indicator functions in MORL, e.g., the hypervolume [Vamplew
et al., 2011], cannot be employed. Second, the definition of the manifold parametrization is a
non-trivial task and might require deep knowledge about the MOMDP.

Furthermore, all these approaches perform exploration in the action space. As already dis-
cussed, this strategy is subject to several limitations [Deisenroth et al., 2013, Rückstiess et al.,
2010]. First, it causes a large variance in the parameter update estimate due to the per-step
randomization. Second, in many real world applications (e.g., robotics) random exploration in
every time step might be dangerous and can lead to uncontrolled or undesired behaviors of the
agent.

2.3 Manifold-based Episodic Policy Search

In order to overcome limitations of state-of-the-art approaches, we present two novel algorithms
that combine manifold-based policy search approach with episodic exploration strategies. By
employing an episodic approach, our algorithms are more effective and efficient than step-based
ones, since they reduce the variance during the policy update [Zhao et al., 2012]. Furthermore,
by following a manifold-based approach, they are able to efficiently generate infinitely many
Pareto-optimal solutions in a single run, without the need of several optimization procedures.
Note that the most related approach in MOO is an evolutionary algorithm defined in [Igel et al.,
2007].

2.3.1 The Episodic Multi-objective Reinforcement Learning Problem

In single-objective episodic RL, exploration is performed directly in the parameter space. The
policy parameters θ are sampled at the beginning of each episode from a (high-level) parametric
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distribution ϱ : ω → θ. Instead of directly finding the policy parameters maximizing J(θ),
methods following this approach aim to solve the problem defined by

max
ω∈Ω
J (ω) ≡ max

ω∈Ω

∫
θ

ϱ(θ|ω)J(θ)dθ. (2.1)

The above problem can be solved using several techniques, including gradient-based [Wierstra
et al., 2014] or distribution-matching methods [Deisenroth et al., 2013]. However, these tech-
niques cannot be directly applied to MORL problems since the function J(θ) is a vector. As
a consequence, the max operator in Equation (2.1) is no longer well defined. Nonetheless, we
can extend the definition of Pareto optimality by applying a indicator function S : F → R
(also called metric or indicator in MORL literature) that assesses the Pareto optimality of a
return vector J(θ). Assuming that the manifold in the policy parameter space mapping to the
Pareto frontierF∗ can be approximated by the parametric distribution ϱ(θ|ω), the episode-based
problem we aim to solve is given by

max
ω∈Ω
JS(ω) ≡ max

ω∈Ω

∫
θ

ϱ(θ|ω)S (J(θ)) dθ. (2.2)

Figure 2.1 shows a graphical representation of the mapping between high-level distribution and
the policy performance space. The above problem can be solved by any episodic RL approach and
there is no constraint on the indicator function S since it does not depend on the optimization
variable ω.

2.3.2 Learning the Manifold by Policy Search

The algorithms we present to solve Problem (2.2), namely Multi-Objective eREPS (MO-eREPS)
and Multi-Objective Natural Evolution Strategy (MO-NES), are novel adaptations of state-of-
the-art policy search algorithms. The algorithms have been chosen according to their recent
successes in RL literature and their sample-efficiency.

MO-eREPS is an extension of Relative Entropy Policy Search [Peters et al., 2010], recently
successfully applied on complex real-world tasks [Parisi et al., 2015]. The algorithm aims to
solve Problem (2.2) while keeping a sufficient level of statistical information w.r.t. a reference
distribution ϱ̄. The level of statistical information is measured using the Kullback-Leibler (KL)
divergence and the resulting constraint can be formalized as

max
ω∈Ω

∫
θ

ϱ(θ|ω)S (J(θ)) dθ,

s.t. KL(ϱ(·|ω)|ϱ̄) ≤ ϵ, ϵ > 0.

This constrained optimization problem can be solved in closed form by the method of Lagrangian
multipliers and the solution is given by

ϱ ∝ ϱ̄ exp
(
S (J(θ))

η

)
,
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Figure 2.2: Example of hypervolume and refer-
ence points for a 2-objective problem. The utopia
point Ju optimizes both objectives at the same
time. The antiutopia Jau represents an arbitrary
low quality solution and it is used as reference
for computing the hypervolume (gray area). The
contribution of each solution to the hypervolume
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Figure 2.3: Example of non-dominance sorting.
Node labels denote the ranking (the lower, the
better). Non-dominated solutions (black circles)
get the highest ranking of zero. After removing
them, a new sub-frontier is identified (blue dia-
monds) and its solutions are given a dominance
count of one. Finally, the last solution (green
square) gets the lowest rank of two.

where η is the Lagrangian multiplier. The distribution ϱ(θ|ω) is subsequently obtained by a
weighted maximum likelihood estimate of samples θ[i] and weights δ[i] = exp(S(J(θ[i]))/η). The
resulting algorithm implements an iterative schema where at each iteration the optimization is
solved w.r.t. the distribution recovered at the previous iteration (i.e., ϱ̄k = ϱk−1(·|ω)).

MO-NES is the multi-objective counterpart of Natural Evolution Strategy [Wierstra et al.,
2014]. It exploits natural gradient ascent for solving Problem (2.2), i.e., it updates the high-level
distribution by

ωk+1 = ωk + α∇̃ωJ (ω)|ω=ωk
,

where ∇̃ωJ (ω) = F−1
ω ∇ωJ (ω) is the natural gradient and Fω is the Fisher Information

Matrix (FIM) [Amari and Douglas, 1998]

∇ωJ (ω) =

∫
θ

ϱ(θ|ω)∇ω ln ϱ(θ|ω)S (J(θ)) dθ,

Fω =

∫
θ

ϱ(θ|ω)∇ω ln ϱ(θ|ω)∇ω ln ϱ(θ|ω)Tdθ.

Both terms can be approximated using samples {θ[i],S(J(θ[i]))}i=1...N . However, for some
classes of distributions ϱ, the FIM can be computed exactly [Sun et al., 2009], making the
algorithm particularly sample efficient.

It is worth noting that the most similar approach to MO-NES defined in MOO literature
exploits covariance matrix adaptation evolution strategy (CMA-ES) to perform the optimiza-
tion [Igel et al., 2007]. However, natural gradient has proved to be more effective and efficient
in many real-world problems, overcoming the issues of CMA-ES approach. For a complete
comparison of these techniques we refer the reader to [Wierstra et al., 2014].
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2.3.3 Indicator Functions for Pareto Optimality

The choice of the indicator function is crucial as it has to encourage the learning of a distribution
that generates policies around the true manifold rather than on a local region of it. We call this
property consistency. Intuitively, a consistent indicator function must be maximized by the
true Pareto frontier and must induce a partial ordering over the frontiers, i.e., if the solutions
of a manifold F2 are all dominated by the ones of a manifold F1, then the indicator function
score associate to F1 must be better than F2 one. Formally, let F be the set of all (dr − 1)-
dimensional manifolds associated to a MOMDP with dr objectives, θk ∈ θ be the manifold in
the policy parameters space mapping to Fk ∈ F and ωk ∈ Ω be the high level distribution
parameters mapping to θk. Let F∗ be the real Pareto frontier and JS(ω) be the manifold
performance measure defined in Problem 2.2. An indicator function S is consistent if

∀ωk ̸= ωh, JS(ωh) > JS(ωk) ⇐⇒ Fh ≡ F∗ and (a)
∀θh, θk, ∀θi ∈ θk, ∃θj ∈ θh, πθj ≽ πθi =⇒ JS(ωh) > JS(ωk). (b)

Several Pareto optimality indicator functions have been provided in literature, especially in the
field of genetic algorithms. Here, we present and discuss the consistency of two indicator functions
built on hypervolume [Beume et al., 2007] and non-dominance [Deb et al., 2000]. The former,
denoted by Shv(J(θ)), ranks a solution according to its contribution to the hypervolume of the
approximate frontier (the higher, the better). As shown in Figure 2.2, the hypervolume hv of a
frontier is defined as the volume of the portion of the objective space dominated by the frontier
w.r.t. a reference point [Vamplew et al., 2011]. Formally, it can be defined as the Lebesgue
measure (i.e., the volume) of the union of the hypercuboids in the objective space [Coello et al.,
2007]

hvr(D) = lebesgue

 ⋃
J(θ)∈nondom(D)

{
J(θ[i])

∣∣∣ J(θ) ≺ J(θ[i]) ≺ R, i = 1 . . . N
} ,

whereD is a dataset of pointsD = {J(θ[i])}i=1...N , R is a reference point and nondom(D) is the
set of all non-dominated points in D. The hypervolume-based indicator of a sample J(θ[j]) ∈ D
is defined by

Shv

(
J(θ[j])

)
= hvr(D)− hvr

(
D \ J(θ[j])

)
− Υ

(
J(θ[j])

)
,

where Υ (J(θ[j])) ≥ 0 is a penalization that is positive when J(θ[j]) is dominated in D and
zero otherwise. This penalization is necessary in order to obtain a consistent indicator function.
It has been shown that the Pareto frontier achieves the highest hypervolume and that adding
a non-dominated point to a set of points results in the growth of the hypervolume of such a
set [Zitzler et al., 2007]. However, as the hypervolume contribution of dominated solution is
zero, it is possible to add infinite dominated solutions and still achieve the same performance
JS . This behavior might bias the learning in favor of broad distributions ϱ that generate as
many solutions as possible — including the true Pareto frontier — without truly converging to
one that generates only Pareto-optimal solutions. By penalizing dominated solutions, this issue
is solved.
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The second indicator function ranks a solution according to its non-dominance count nd (the
lower, the better). The non-dominance count is computed iteratively as follows. First, the
sub-frontier F̃0 = nondom(D) is identified. Solutions belonging to it are given a dominance
count of zero and are filtered out from D. Subsequently, the new sub-frontier is identified, i.e.,
F̃1 = nondom(D \ F̃0), and its solutions are given a dominance count of one. The procedure
ends when all sub-frontiers are identified and all solutions are assigned a dominance count.

F̃0 = nondom (D) ,

F̃i = nondom

(
D \

i−1⋃
j=1

F̃j

)
,

nd
(
J(θ[i])

)
= j, J(θ[i]) ∈ F̃j .

An example is shown in Figure 2.3. Solutions with the same dominance count are additionally
ranked according to a crowding distance cd, in order to achieve spread frontiers. The non-
dominance-based indicator function of a sample J(θ[j]) ∈ D is defined by

Snd

(
J(θ[j])

)
= −nd

(
J(θ[j])

)
+ cd

(
J(θ[j])

)
,

cd
(
J(θ[j])

)
∝

∑
J(θ[i])∈F̃ [j]

dist
(
Jn(θ

[j]),Jn(θ
[i])
)
,

Jn(θ
[j]) =

J(θ[j])−min{F̃ [j]}
max{F̃ [j]} −min{F̃ [j]}

.

where dist is the Euclidean distance operator and F̃ [j] is the sub-frontier where a solution J(θ[j])
belongs to. Solutions are normalized (denoted by Jn) as the magnitude of the objectives can
introduce bias. Additionally, the crowding distance is normalized to sum to unity in order to
ensure that cd(J(θ[j])) ∈ [0, 1]. However, this indicator function is not consistent, as observ-
able from a simple counter-example: assume 2-objective frontiers, where F1 = {(2, 1), (1, 2)}
dominates F2 = {(1, 0), (0, 1)}. All solutions have the same dominance count of 1 and the
same crowding distance of 0.5 and, therefore, the same performance measure JS , thus violating
condition (b). Nonetheless, given its large usage in the evolutionary algorithms field, in the
evaluation section we investigate this indicator function as well.

2.3.4 Sample Reuse by Importance Sampling

Pareto-optimal policies can show similar behaviors and visit similar areas of the state-action
space. Thus, reusing past samples is crucial for increasing the sample efficiency of a MORL
algorithm and its applicability to large problems, especially in real-world tasks where sample
parsimony is an important feature (e.g., in robotics). Furthermore, in real-world problems
collecting samples of optimal policies might be dangerous (e.g., in the presence of stochastic
environments or stochastic policies). Therefore, the possibility of using an off-policy paradigm
may be decisive in the choice of the learning algorithm. However, it is not straightforward to
reuse past samples in common multiple-policy MORL approaches. When several optimization
procedures are performed, it can be questioned if samples collected from parallel runs should
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Algorithm 1: Episodic Multi-objective Policy Search with Sample Reuse
1 Initialize ϱ(θ|ω),M, k ← 1
2 Repeat until terminal condition is reached
3 Collect i = 1 . . . nk samples
4 Draw policy parameters θ[k,i] ∼ ϱ(·|ωk)

5 Evaluate policy parameters J(θ[k,i])← Eτ∼p(·|θ[k,i])[R(τ )]

6 Reuse past samples and compose dataset Dθ ←
{
θ[m,i]

}
i=1...nk, m=k−M...k

7 Scalarize returns and compose dataset DS←
{
S
(
J(θ[m,i])

)}
i=1...nk, m=k−M...k

8 Compute importance sampling weights w[m,i] ← ϱ(θ[m,i] | ωk)∑k
j=k−M αjϱ(θ[m,i] | ωj)

9 Update distribution ϱ by MO-eREPS or MO-NES
10 k ← k + 1

be reused. If not, sample redundancy persists, as procedures with similar preferences over the
objectives may collect similar samples. On the other hand, reusing samples from procedures with
different preferences might not help the learning at all. On the contrary, following a manifold-
based approach, our algorithms perform a single optimization procedure and are not affected by
this issue. In this section, we show how to extend MO-eREPS and MO-NES to the off-policy
paradigm by incorporating importance sampling (IS) [Owen and Zhou, 2000].

IS is a technique for estimating the expectation Ep[f(x)] w.r.t. a distribution p by using
samples drawn from another distribution g. Several unbiased IS estimators have been presented
in the literature [Owen and Zhou, 2000]. In this chapter, we focus on multiple IS, where N
samples are observed from M distributions {gm}Mm=1, each one providing nm samples such that∑M

m=1 nm = N . Let xmi ∼ gm, i = 1 . . . nm, m = 1 . . .M , and wm(x) be a partition of unity
0 ≤ wm(x) ≤

∑M
m=1wm(x) = 1. Under mild assumptions on the distributions4, an unbiased

multiple IS estimator is

Ep[f(x)] ≈
M∑

m=1

1

nm

nm∑
i=1

wm(xmi)
f(xmi)p(xmi)

gm(xmi)
.

This estimator generalizes stratified sampling but can also be reduced to the case of mixture IS
when the mixture distributions are independent. Among the several heuristics for wm defined
in literature, we exploit the balance heuristic [Owen and Zhou, 2000]

wm(x) =
nmgm(x)∑M
j=1 njgj(x)

.

In RL, IS has already been successfully applied for the estimation of the expected return both
in step-based [Precup et al., 2000, Degris et al., 2012] and episodic settings [Daniel et al., 2012,

4 Assume that gm(x) > 0 where wm(x)f(x)p(x) ̸= 0.
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Zhao et al., 2013]. In our case, we want to solve Problem 2.2 having access to N samples θ[m,i]

drawn from multiple distributions ϱ(·|ωm). The multiple IS estimate of the integral is

Eϱ(·|ω)[S (J(θ))] ≈
1

N

M∑
m=1

nm∑
i=1

S
(
J(θ[m,i])

) ϱ(θ[m,i] | ω)∑M
j=1 αjϱ(θ[m,i] | ωj)︸ ︷︷ ︸

w[m,i]

, (2.3)

where αj = nj/N and S is some indicator function as described in Section 2.3.3. This estimator
is equivalent to mixture sampling with mixture responsibilities αm and independent distribu-
tions. Algorithm 1 summarizes the complete algorithmic procedure. Note that the proposed IS
extension can be directly used even in single-objective episodic algorithms, where S (J(θ)) is the
scalar expected return J(θ).

2.4 Evaluation

The proposed algorithms, indicator functions and sample reuse were evaluated on three domains
and compared against some state-of-the-art MORL algorithms. The quality of the approximate
frontiers is evaluated by its hypervolume. For its computation, we consider the normalized
frontier, i.e., each point J(θ[i]) is normalized in the interval [0, 1]dr by

Jn(θ
[i]) =

J(θ[i])− Jau

Ju − Jau
,

where Ju and Jau are the utopia and anti-utopia points, respectively. As shown in Figure 2.2, the
former represents an ideal solution that simultaneously maximizes all the objectives, the latter
an undesirable solution. For 2-objective problems, the hypervolume is exactly computed. For
problems involving more objectives, given its high computational complexity, the hypervolume
is approximated with a Monte-Carlo estimate as the percentage of points dominated by the
frontier in the cube defined by the utopia and antiutopia points. For the estimation, one million
points were used. Furthermore, we compare the sample complexity of each algorithm, meant
as the total number of episodes collected during learning before convergence, and the number
of Pareto-solutions returned. To this aim, the algorithms are executed for a fixed amount of
iterations and are evaluated at each iteration. Tables report the number of iterations after which
the hypervolume trend is constant.

First, a water reservoir control task is chosen to evaluate the two proposed indicator func-
tions and the effects of IS on MO-eREPS and MO-NES. This task has already been used in
literature [Castelletti et al., 2013, Parisi et al., 2014, Pirotta et al., 2015] and, although not
highly complex, it is helpful to assess the indicator functions performance and to show how the
proposed IS can effectively reduce the sample complexity. The algorithms are then compared
with state-of-the-art competitors, namely a weighted sum approach with episodic REPS (WS-
eREPS, it consists of episodic REPS to solve several single-objective optimization on varying the
weights that linearly combine the immediate rewards), S-Metric Selection Evolutionary Multi-
objective Algorithm (SMS-EMOA) [Beume et al., 2007], Pareto-Following (PFA) and Radial
(RA) Algorithms [Parisi et al., 2014] and Pareto Manifold Gradient Algorithm (PMGA) [Pirotta
et al., 2015]. Afterwards, the algorithms are evaluated in the presence of many objectives on a
linear-quadratic regulator and on the more complex task of tetherball robot hitting game.
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Figure 2.4: MO-NES iterations on the 2-objective
water reservoir problem using Shv. At each
iteration, the algorithm generates more non-
dominated solutions and moves the approximate
frontier closer to the reference one.
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Figure 2.5: Hypervolume trend on the 2-objective
water reservoir problem. Shaded area denotes half
of standard deviation (results are averaged over
ten trials). Using IS, MO-eREPS attains a higher
hypervolume using less episodes.

We recall that, by learning a manifold in the policy parameters space, MO-eREPS and MO-
NES can generate an infinite number of solutions. However, for the evaluation, a finite number
of solutions was drawn and dominated ones were filtered out and, therefore, their frontier are
discretized. For the computation of the hypervolume-based indicator function, a constant penalty
of Υ = 0.1 was applied to dominated solutions. For each case study, domains are first presented
and then results (averaged over ten trials) are reported and discussed. For the details of the
algorithms setup, e.g., the learning rates, we refer the reader to the Appendix.

2.4.1 Water Reservoir Control

In this task, originally presented by Castelletti et al. [Castelletti et al., 2012], an agent has to
control the amount of water to be released from a reservoir while pursuing three conflicting ob-
jectives, i.e., preventing flooding along the lake shores and satisfying both water and electricity
demands. Below, we present results related to both the 2-objective scenario (in which only flood-
ing and water demand are considered) and the 3-objective one. The environment is stochastic,
as the initial state is drawn from a discrete set and a random inflow determines the transition
function P (s′|s, a), i.e.,

s′ = s+ ξ −max(a,min(a, a)),

where s ∈ R represents the water volume stored in the reservoir, a ∈ R is the amount of water
released by the agent and ξ ∼ N (40, 100) is the stochastic water inflow. The constrains a and
a are the minimum and the maximum releases associated to storage s defined by the relations
a = s and a = max(s− 100, 0). The reward functions are

R1(s, a, s
′) = −max(h′ − h, 0),

R2(s, a, s
′) = −max(ρ− ρ, 0),

R3(s, a, s
′) = −max(e− e′, 0),
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Table 2.1: Comparison of proposed indicator functions S on the 2-objective water reservoir problem
(margins denote standard deviation over ten trials). The hypervolume-based one attains the best
results, both in terms of quality of the frontier and sample efficiency.

S Hypervolume #Episodes (103)

MO-eREPS
nd 0.3972± 0.0165 414± 110

hv 0.4124± 0.0098 133± 32

MO-NES
nd 0.4048± 0.0110 278± 67

hv 0.4114± 0.0048 82± 12

Table 2.2: Effects of using importance sampling on the 2-objective water reservoir problem. IS
successfully improves the algorithms performance and substantially reduces the samples required for
learning.

IS Hypervolume #Episodes (103)

MO-eREPS
3 0.4179± 0.0124 42± 6
7 0.4124± 0.0098 133± 32

MO-NES
3 0.4199± 0.0117 45± 4
7 0.4114± 0.0048 82± 12

where h′ = s′/S is the reservoir level, S = 1 is the reservoir surface, h = 50 is the flooding
threshold, ρ = max(a,min(a, a)) is the release from the reservoir, ρ = 50 is the water demand,
e = 4.36 is the electricity demand and e′ is the electricity production

e′ = ψ g η γH2O ρ h
′,

where ψ = 10−6/3.6 is a dimensional conversion coefficient, g = 9.81 the gravitational accelera-
tion, η = 1 the turbine efficiency and γH2O = 1, 000 the water density. R1 denotes the negative
of the cost due to the flooding excess level, R2 is the negative of the deficit in water supply and
R3 is the negative of the deficit in hydro-power production. The discount factor is set to 1 for
all the objectives and the initial state is drawn from a finite set. As the problem is continuous
we exploit a Gaussian policy

πθ(a|s) = N
(
µ+ ν(s)Tκ, σ2

)
,

νi(s) = exp
(
−||s− ci||

2
2

bi

)
,

where θ = {µ, κ, σ} and ν : S → Rdθ are radial basis functions with centers ci and bandwidths
bi. We used four basis functions uniformly placed in the interval [−20, 190] with bandwidths
bi of 60, for a total of six parameters to learn, i.e., |θ| = 6. The sampling distribution is also
Gaussian

ϱ(θ|ω) = N (µ,ΛTΛ),
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Figure 2.6: Visual comparison for the 2-objective water reservoir problem. The frontiers returned by
MO-eREPS and MO-NES are comparable to the ones of state-of-the-art algorithms. In this example,
WS-eREPS and RA attains the worst results, as their solutions are dominated by competitors’ frontiers.

Table 2.3: Numerical comparison for 2-objective water reservoir (margins denote standard deviation
over ten trials). The SDP reference frontier has a hypervolume of 0.4955. PMGA attains the best
results, followed by MO-NES and MO-eREPS.

Algorithm Hypervolume #Episodes (103) #Solutions
MO-eREPS 0.4179± 0.0124 42± 6 ∞
MO-NES 0.4199± 0.0117 45± 4 ∞
PMGA 0.4263± 0.0069 16± 1 ∞
PFA 0.4132± 0.0083 28± 5 51± 11

RA 0.3300± 0.0034 59± 3 16± 3

WS-eREPS 0.3713± 0.0062 37± 2 17± 4

SMS-EMOA 0.3994± 0.0151 150± 35 14± 2

where Λ is an upper triangular matrix. The high-level parameters to be learned are ω = {µ,Λ},
with |ω| = 27. For this distribution, the FIM can be computed in closed form [Sun et al., 2009].
Being episode-based, WS-eREPS performs its searches over the same distribution.

For learning, given the stochasticity of the policy and of the environment, MO-eREPS and
MO-NES collect 100 episodes of 100 steps for estimating the quality of a sample θ[i]. For
the evaluation, each solution is evaluated over 1,000 episodes of 100 steps. As reference frontier,
solutions returned by Stochastic Dynamic Programming (SDP) have been used [Castelletti et al.,
2012].

Evaluation of Proposed Indicator Functions

Our first concern is to evaluate the indicator functions S. To this aim, we compare the frontier
returned by MO-eREPS and MO-NES without IS using both the hypervolume-based (hv) and
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Table 2.4: Numerical comparison for 3-objective water reservoir. The SDP reference frontier has a
hypervolume of 0.7192. As we increase the complexity of the problem, PMGA is outperformed by both
MO-NES and MO-eREPS in terms of hypervolume. Furthermore, its sample complexity (although
still the best along with MO-NES) increases substantially compared to the 2-objective case.

Algorithm Hypervolume #Episodes (103) #Solutions
MO-eREPS 0.6763± 0.0066 72± 32 ∞
MO-NES 0.6779± 0.0021 62± 12 ∞
PMGA 0.6701± 0.0036 62± 8 ∞
PFA 0.6521± 0.0029 343± 13 595± 32

RA 0.6510± 0.0047 626± 36 137± 25

WS-eREPS 0.6139± 0.0003 187± 9 86± 10

SMS-EMOA 0.6534± 0.0007 507± 57 355± 14

the non-dominance-based (nd) indicator function on the 2-objective case. At each iteration, the
algorithms collect 50 new samples to perform a policy update. An example of learning process
with Shv is shown in Figure 2.4. Table 2.1 shows no significant differences in hypervolume
between the two indicator functions. However, the hypervolume-based indicator function attains
greater sample efficiency and lower hypervolume variance. This behavior is not unexpected,
considering that Snd is not consistent, unlike Shv. Therefore, for the remainder of the evaluation
we use the hypervolume-based indicator function.

Evaluation of Importance Sampling

The next setup aims to evaluate IS. IS-aided algorithms collect only ten samples at each iteration
and reuse samples collected by the last four policies for a total of 50 samples per policy update.
Table 2.2 shows numerical results, while Figure 2.5 shows the hypervolume trend for MO-eREPS.
From the results, we can assert that IS effectively increases the algorithms performance in terms
of sample efficiency without affecting the quality of the approximate frontier.

Comparison of State-of-the-art Methods

Finally, we compare MO-eREPS and MO-NES with state-of-the-art algorithms in MORL on
both the 2- and 3-objective scenario. For the latter, IS is performed similarly as described
above, with the difference that 50 new samples are collected at each iteration, for a total of 250
samples exploited for a policy update.

Figure 2.6 shows the frontiers returned by all the algorithms for the 2-objective case, while
Tables 2.3 and 2.4 shows numerical results for both scenarios. For the 2-objective case, PMGA
performs slightly better than MO-eREPS and MO-NES in terms of hypervolume, but its sample
efficiency is substantially lower. However, for the 3-objective scenario, MO-REPS and MO-NES
attain the best results. Their hypervolume is the highest and MO-NES sample complexity is on
par with PMGA. Furthermore, MO-eREPS and MO-NES sample complexity scale better with
the number of objectives than PMGA. For the formers, in fact, the number of collected samples
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Table 2.5: Numerical results for the LQR (margins denote standard deviation over ten trials). Only
MO-NES and MO-eREPS were able to scale well to a higher number of objectives, returning frontiers
with the highest hypervolume without consuming the fixed samples budget.

Algorithm Hypervolume #Episodes (103) #Solutions
MO-eREPS 0.3511± 0.0043 620± 75 ∞
MO-NES 0.3585± 0.0057 540 ± 90 ∞
PMGA 0.3391± 0.0044 1, 000 ∞
PFA 0.1687± 0.0033 1, 000 3, 581± 298

RA 0.2778± 0.0029 1, 000 1, 069± 73

WS-eREPS 0.2517± 0.0063 1, 000 3, 089± 156

SMS-EMOA 0.3023± 0.0050 1, 000 1, 713± 149

increased by a factor of ∼1.5 (e.g., from 45, 000 to 62, 000), while for the latter of ∼3.8 (from
16, 000 to 62, 000). This behavior might be due to both the use of episodic exploration and
IS. We recall that extending IS to competing algorithms is not straightforward. PFA, RA and
WS-eREPS perform several policy searches, while PMGA and SMS-EMOA do not rely on any
sampling distribution and IS, as proposed in this chapter, cannot be applied.

The qualities shown by MO-eREPS and MO-NES, sample efficiency above all, suggest that
they might be particularly suited for many-objectives problems. We empirically investigate this
aspect in the next domain.

2.4.2 Linear-Quadratic Regulator

The next evaluation focuses on the performance of the algorithms in the presence of several
objectives, i.e., in many-objectives problems. To this aim, we solve a linear-quadratic regulator
(LQR) problem with five objectives, a particularly interesting case of study as the objective
functions Ji(θ) can be expressed in closed form. The single-objective LQR problem is defined
by the following dynamics [Peters and Schaal, 2008b]

s′ = As+Ba,

R (s, a) (s, a) = −sTQs− aTRa,

where s and a are ds-dimensional column vectors, A,B,Q,R ∈ Rds×ds , Q is a symmetric
semidefinite matrix and R is a symmetric positive definite matrix. Dynamics are not coupled,
i.e., A and B are identity matrices. The low-level policy is Gaussian π(s, a) = N (Ks, I), where
K ∈ Rds×ds is diagonal and I is the identity matrix. The policy parameters are θ = {Kii}i=1...5.

The LQR can be easily extended to account for multiple conflicting objectives [Parisi et al.,
2014]. The i-th objective represents the problem of minimizing both the distance from the origin
w.r.t. the i-th axis and the cost of the action over the other axes, i.e.,

Ri(s, a) = −s2i −
∑
j ̸=i

a2j .

28



Figure 2.7: In the tetherball robot game one player has to hit a ball hanging from a pole without
giving the opponent the chance to unwind it.

Since the maximization of the i-th objective requires to have null action on the other axes,
objectives are conflicting. As this reward formulation violates the positiveness of matrix Ri, we
change it by adding a sufficiently small ξ-perturbation

Ri(s, a) = −(1− ξ)

s2i +∑
i≠j

a2j

− ξ
∑

j ̸=i

s2j + a2i

 .

In our experiments we set γ = 0.9, ξ = 0.1 and the initial state to s0 = [10, 10, 10, 10, 10]T.
The high number of objectives substantially increases the complexity of the problem compared

to the water reservoir control task. Therefore, we give each algorithm a learning budget of one
million samples and end the learning when the budget is consumed or when the hypervolume
trend becomes constant. Given the stochasticity of the policy π, during learning solutions are
evaluated over 150 episodes of 50 steps. For the evaluation, the closed form J(θ) is used.
For episodic algorithms, a Gaussian sampling distribution is used, i.e., ϱ(θ|ω) = N (µ,ΛTΛ)
(|ω| = 20, Λ is an upper-triangular matrix). At each iteration MO-eREPS and MO-NES collect
200 samples and reuse the previous 800.

As shown in Table 2.5, MO-NES and MO-eREPS attain the best results, outperforming state-
of-the-art competitors. In particular, they converged without consuming the whole samples
budget, proving once more to be sample efficient. PMGA achieves the third-highest hypervol-
ume, while the remaining algorithms perform substantially worse. The reason is that PFA, RA
and WS-eREPS implement inefficient approaches, requiring to solve several independent policy
searches. For the same reason, even if PFA and WS-eREPS return more solutions than SMS-
EMOA, their hypervolume is lower as they consume the samples budget before completing the
optimization procedures.

2.4.3 Simulated Robot Tetherball

The last case study is a robot tetherball hitting game [Parisi et al., 2015], an episodic RL domain
shown in Figure 2.7. This problem differs from the previous ones as the number of policy
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Table 2.6: Numerical results for the tetherball hitting game (margins denote standard deviation over
ten trials). MO-eREPS hypervolume is by far the highest and its sample complexity is remarkably
low, especially compared to RA, PFA and WS-eREPS.

Algorithm Hypervolume #Episodes (103) #Solutions
MO-eREPS 0.7983± 0.0146 1.6± 0.3 ∞
MO-NES 0.5879± 0.0125 1.3± 0.4 ∞
RA 0.6001± 0.097 9.8± 3 25± 5

PFA 0.6302± 0.0697 18± 2.2 22± 9

WS-eREPS 0.6869± 0.0192 10± 4 26± 3

SMS-EMOA 0.6205± 0.0799 2.7± 0.8 17± 6

parameters θ is substantially higher. In the original work, the robot has only one objective —
hitting the ball to score — and the ball trajectory was determined by different opponent strokes.
Here, we simplify the task by fixing the opponent stroke and we consider two conflicting goals.
The first requires the robot to produce safe smooth movements by minimizing the jerk of the
trajectory (i.e., avoiding jumps in the joints acceleration). The second considers the strength of
the agent stroke and rewards the robot for producing fast (but potentially harmful) movements
by maximizing the speed of the ball after a hit. Formally

R1(τ ) = rscore + rdistance + rjerk,

R2(τ ) = rscore + rdistance + rspeed,

rscore =

{
0 if the agent hits the ball back to the opponent
−10 otherwise

,

rdistance = λ1 (exp(−fdistance(τ ))− 1) ,

rspeed = λ2 (exp(−fspeed(τ ))− 1) ,

rjerk = λ3 (exp(−fjerk(τ ))− 1) ,

where fdistance is the minimum distance between the ball and the paddle during the episode, fjerk

the total jerk along the trajectory and fspeed the velocity of the ball after being hit. The scale
factors λi are to transform costs into rewards and to scale the objectives magnitude.

Actions a are the accelerations applied to the joints at each time step. The low-level policy
π(s, a) are Dynamic Motor Primitives (DMPs) by Ijspeert et al. [Ijspeert et al., 2002], one for
each joint. DMPs offer a compact representation of the acceleration profile by a second order
dynamical system, i.e., a = f(ν(s), θ), where f is a non-linear forcing function and ν(s) are
basis functions. A single vector θ encodes an entire trajectory and by learning the parameters
θ the robot performs strokes with different shape and speed. For our experiments, we used five
radial basis functions, resulting in a total of 30 parameters θ. As the experiments are performed
in simulation, the environment is deterministic and each sample θ[i] is evaluated over one single
trajectory.

The high-level sampling distribution for MO-eREPS is a Gaussian mixture model with eight
components, i.e., ϱ(θ|ω) =

∑8
j=1 pjN (µj ,Σj), with ω = {pj ,µj ,Σj}j=1...8 and |ω| = 7, 448.
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Figure 2.8: Different approximations of the Pareto frontier for the tetherball hitting game. MO-
eREPS outperforms all other algorithms, returning a uniform and spread frontier with the highest
hypervolume. As in the water reservoir domain, RA and WS-eREPS solutions are dominated by
competitors frontiers.

MO-NES uses the same Gaussian of the previous experiments (|ω| = 495), as the computation
of the FIM for the mixture model requires a high number of samples. For the initialization of
both distributions, eight different trajectories have been sampled in simulation: for MO-eREPS,
each one has been used to initialize a component of the mixture model, while for MO-NES
their mean and covariance has been used to initialize the single Gaussian. For updating the
distribution, at each iteration both algorithms collect 20 new samples and reuse the last 180. As
DMPs perform exploration in the policy parameters space rather than in the action space, PFA,
RA, WS-eREPS and SMS-EMOA learned policies are high-level distributions as well. Since these
algorithms perform several optimization procedures and naturally learn many distributions, they
exploit the same single Gaussian as MO-NES, as a mixture model would be redundant. On the
contrary, being purely step-based, PMGA is not applicable to this domain.

Table 2.6 and Figure 2.8 show numerical and graphical results. MO-eREPS attains the best
results, with the highest hypervolume and the second-lowest sample complexity. However, MO-
NES does not perform as well as previous experiments, although it still attains the lowest sample
complexity. The reason of such behavior lies in the different sampling distribution used. Ex-
ploiting a mixture model, MO-eREPS is able to approximate more accurately the true manifold
in the policy parameters space. At the same time, having less parameters to learn, MO-NES
converges earlier than MO-eREPS. We stress once more the effectiveness of the hypervolume
indicator function Shv in driving the manifold to generate only Pareto-optimal solutions. As
shown in Figure 2.9, the high-level distribution initially produces only medium and low quality
policies, with solutions far from the Pareto frontier. After learning with MO-eREPS and Shv, it
indeed generates only high quality policies, with solutions in the proximity of the Pareto frontier.
It is worth noting that only ∼15% of these solutions are non-dominated, due to the stochasticity
of the sampling distribution. However, all dominated solutions are very close to the approxi-
mate frontier. If we slightly relax Pareto-optimality condition and consider a neighborhood of
the approximate frontier (e.g., with a 5% tolerance on the objectives), then more than ∼ 60%
solutions are non-dominated.
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Figure 2.9: Sample solutions drawn by the high-level distribution learned by MO-eREPS. Before
learning, the manifold generates random policies, including extremely poor ones. After learning, it
generates only solutions in the proximity of the Pareto frontier, denoting once again the effectiveness
of the hypervolume-based indicator function.

Concerning the other algorithms, we underline the very high sample complexity of PFA, RA
and WS-eREPS and the high hypervolume variance of PFA and SMS-EMOA. The former is
due to the algorithms inefficient approach, as multiple optimization procedures are performed
without reusing past samples. The latter is caused by SMS-EMOA intrinsic stochastic nature
(e.g., mutation and crossover) and PFA high sensibility to the learning parameters (e.g., learning
rates).

2.5 Conclusion

In this chapter, we presented two novel manifold-based MORL algorithms that combine episodic
approaches and importance sampling to solve MOMDPs. Unlike the majority of state-of-the-art
approaches, our algorithms perform a manifold-based policy search and directly learn a manifold
in the policy parameter space to generate infinitely many Pareto-optimal solutions in a single run.
We also proposed and evaluated an off-policy extension by including importance sampling in the
learning process, in order to further reduce the sample complexity, and two Pareto optimality
indicator functions to assess the quality of an approximate frontier.

Evaluated on several domains, our algorithms outperformed state-of-the-art competitors both
in terms of quality of the learned Pareto frontier and sample efficiency. In particular, they
proved to perform well in the presence of many objectives and high-dimensional parameter
spaces. Furthermore, since they do not require any pre-parameterization of the manifold and
can exploit any Pareto optimality indicator function, our algorithms provide a versatile approach
for solving MOMDPs.

In some domains MO-eREPS attained the best results, while in other experiments we have
seen that MO-NES performs better. We experienced that MO-NES effectiveness comes from
the ability of computing the Fisher information matrix in closed-form (at least for Gaussians).
However, the closed-form is known only for few distribution families and therefore MO-NES
might not be suitable for many problems.
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These properties (above all the sample efficiency) open the way to the use of the proposed
algorithms on real-world applications. It would be interesting to evaluate the performance of our
algorithms on high-dimensional robotic domains. However, such problems often require to learn
the optimal policy for different contexts. We therefore believe that the integration of contextual
learning with multi-objective optimization is a relevant topic in MORL both from a theoretical
and a practical perspective.

33



34



3 Long-Term Visitation Value for Deep
Exploration in Sparse Reward Reinforcement
Learning

Reinforcement learning with sparse rewards is still an open challenge. Classic methods rely on
getting feedback via extrinsic rewards to train the agent, and in situations where this occurs very
rarely the agent learns slowly or cannot learn at all. Similarly, if the agent receives also rewards
that create suboptimal modes of the objective function, it will likely prematurely stop explor-
ing. More recent methods add auxiliary intrinsic rewards to encourage exploration. However,
auxiliary rewards lead to a non-stationary target for the Q-function. In this paper, we present
a novel approach that (1) plans exploration actions far into the future by using a long-term
visitation count, and (2) decouples exploration and exploitation by learning a separate function
assessing the exploration value of the actions. Contrary to existing methods which use models
of reward and dynamics, our approach is off-policy and model-free. We further propose new tab-
ular environments for benchmarking exploration in reinforcement learning. Empirical results on
classic and novel benchmarks show that the proposed approach outperforms existing methods in
environments with sparse rewards, especially in the presence of rewards that create suboptimal
modes of the objective function. Results also suggest that our approach scales gracefully with
the size of the environment.
Source code is available at https://github.com/sparisi/visit-value-explore

3.1 Introduction

Reinforcement learning (RL) is a process where an agent learns how to behave in an environment
by trial and error. The agent performs actions and, in turn, the environment may provide a
reward, i.e., a feedback assessing the quality of the action. The goal of RL is then to learn a
policy, i.e., a function producing a sequence of actions yielding the maximum cumulative reward.
Despite its simplicity, RL achieved impressive results, such as learning to play Atari videogames
from pixels [Mnih et al., 2013, Schulman et al., 2017], or beating world-class champions at Chess,
Go and Shogi [Silver et al., 2017b]. However, a high-quality reward signal is typically necessary
to learn the optimal policy, and without it RL algorithms may perform poorly even in small
environments [Osband et al., 2019].
Characteristics of high-quality rewards. One important factor that defines the quality of the
reward signal is the frequency at which rewards are emitted. Frequently emitted rewards are
called “dense”, in contrast to infrequent emissions which are called “sparse”. Since improving
the policy relies on getting feedback via rewards, the policy cannot be improved until a reward
is obtained. In situations where this occurs very rarely, the agent learns slowly or cannot learn
at all. Furthermore, reinforcement signals should encourage the agent to find the best actions
to solve the given task. However, the environment may also provide distracting rewards, i.e.,
rewards that create suboptimal modes of the objective function. In this case, the agent should
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Figure 3.1: A simple problem where naive exploration performs poorly. The agent starts in the second
leftmost cell and is rewared only for finding a treasure. It can move up / down / left / right, and if it
tries to move out of the chain or if it finds a treasure its position resets. Selecting the action randomly
at each step takes on average 4N attempts to find the rightmost and most valuable reward, where
N is the number of cells to the right of the agent. As no reward is given in any intermediate cell,
ϵ-greedy exploration is likely to converge to the local optimum represented by the leftmost reward if
ϵ decays too quickly.

be able to extensively explore the environment without prematurely converge to locally optimal
solutions caused by distracting rewards.
Reward engineering. In the presence of sparse distracting rewards, efficiently exploring the
environment to learn the optimal policy is challenging. Therefore, many RL algorithms rely
on well-shaped reward functions such as quadratic costs. For example, in a collect-and-deliver
task, we could design an additional reward function that rewards proximity to the items to be
collected. These well-shaped functions help to guide the agent towards good solutions and avoid
bad local optima. However, from the perspective of autonomous learning, this so-called reward
engineering is unacceptable for three reasons. First, the commonly utilized reward functions
heavily restrict the solution space and may prevent the agent from learning optimal behavior
(especially if no solution to the task is known). Second, it is easy to misspecify the reward
function and cause unexpected behavior. For instance, by getting excessively high rewards for
proximity to the items the agent may never learn to deliver them. Third, reward engineering
requires manual tuning of the reward function and the manual addition of constraints. This
process requires expertise and the resulting reward function and constraints may not transfer to
different tasks or environments.

In this paper, we address the problem of reinforcement learning with sparse rewards without
relying on reward engineering, or requiring prior knowledge about the environment or the task to
solve. In particular, we highlight the problem of learning in the presence of rewards that create
suboptimal modes of the objective function, which we call “distractors”.
The exploration-exploitation dilemma. Learning when rewards are sparse and possibly distract-
ing challenges classic RL algorithms. Initially, the agent has no knowledge about the environment
and needs to explore it in search for feedback. As it gathers rewards, the agent develops a better
understanding of the environment and can estimate which actions are “good”, i.e., yield pos-
itive feedback, and which are not. Then, at any point, it needs to decide whether it should
explore the environment in search for better rewards by executing new actions, or exploit its
current knowledge and execute known good actions. This “exploration-exploitation dilemma” is
frequently addressed naively by dithering [Mnih et al., 2013, Lillicrap et al., 2016]. In continuous
action spaces Gaussian noise is added to the action, while in discrete spaces actions are chosen
ϵ-greedily, i.e., optimally with probability 1−ϵ and randomly with probability ϵ. Typically, the
initial noise and ϵ are large and then decay over time. These approaches work in environments
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where random sequences of actions are likely to cause positive rewards. However, if rewards are
sparse or are given only for specific sequences of actions, it is very unlikely that the agent will
receive any feedback. In this case, the worst-case sample complexity for learning the optimal pol-
icy with dithering exploration is exponential in the number of states and actions [Kakade, 2003,
Szepesvari, 2010, Osband et al., 2016b]. Furthermore, if distractor rewards are easily reachable,
the agent may prematurely converge to local optima. An example of this problem is depicted in
Figure 3.1.
Deep exploration. Well-performing exploration strategies should be able to solve long-horizon
problems with sparse and possibly distracting rewards in large state-action spaces while remain-
ing computationally tractable. This can be achieved if the agent takes several coherent actions
to explore unknown states instead of just locally choosing the most promising actions. These
behaviors are usually referred as “deep exploration” and “myopic exploration”, respectively [Os-
band et al., 2016a]. RL literature has a long history of algorithms for deep exploration, even
though the term “deep” became popular only in recent years. The first algorithms to guarantee
full exploration of tabular environments date back to Kearns and Singh [2002] and Brafman and
Tennenholtz [2002]. These algorithms learn a model of the environment, i.e., the transition and
reward functions, and plan actions accordingly to a state-action visitation count in order to favor
less visited states. Since then, other model-based [Jaksch et al., 2010, Hester and Stone, 2013]
as well as model-free algorithms [Strehl et al., 2006, Bellemare et al., 2016, Jin et al., 2018, Dong
et al., 2019] have been proposed. However, despite their strong guarantees, these algorithms
either require to learn the complete model of the environment, rely on optimistic initialization,
or have impractically high sample complexity.

In continuous environments, intrinsic motivation and bootstrapping are the most prominent
approaches. The former defines an additional intrinsic reward added to the environment extrinsic
reward. If the extrinsic reward is sparse, the intrinsic reward can fill the gaps between the sparse
signals, possibly giving the agent quality feedback at every timestep. This approach can be used
in conjunction with any RL algorithm by just providing the modified reward signal. However, the
quality of exploration strongly depends on the intrinsic reward, which may not scale gracefully
with the extrinsic reward and therefore needs hand-tuning. Furthermore, combining exploration
and exploitation by summing intrinsic and extrinsic reward can result in undesired behavior due
to the non-stationarity of the augmented reward function. Moreover, convergence is harder to
guarantee [Kolter and Ng, 2009], and in general, there is no agreement on the definition of the best
intrinsic reward [Houthooft et al., 2016, Pathak et al., 2017]. Bootstrapping, instead, is used
to estimate the actions value posterior distribution over the environment, which then drives
exploration. Because actions are selected with regard to the level of uncertainty associated
with their value estimates, bootstrapping incentivizes experimentation with actions of highly
uncertain value and, thus, induces exploration [Osband et al., 2019]. However, these methods
rely on approximated posteriors and usually lack guarantees of convergence, unless either the
environment model is learned or a time-dependent policy is used [Osband et al., 2019].
Deep exploration via long-term visitation value. In this paper, we present a novel approach that
(1) plans exploration actions far into the future by using a long-term visitation count, and (2)
decouples exploration and exploitation by learning a separate function assessing the exploration
value of the actions. Contrary to existing methods which use models of reward and dynamics,
our approach is off-policy and model-free.

We further comprehensively benchmark our approach against existing algorithms on several
environments, stressing the challenges of learning with sparse and distracting rewards. Empirical
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results show that the proposed approach outperforms existing algorithms, and suggest that it
scales gracefully with the size of the environment.

3.2 Preliminaries

We start with a description of the RL framework, providing the reader with the notation used in
the remainder of the paper. Subsequently, we review the most prominent exploration strategies
in literature, discuss their shortcomings, and identify open challenges.

3.2.1 Reinforcement Learning and Markov Decision Processes

We consider RL in an environment governed by a Markov Decision Process (MDP). An MDP
is described by the tuple ⟨S,A,P,R, µ1⟩, where S is the state space, A is the action space,
P (s′|s, a) defines a Markovian transition probability density between the current s and the next
state s′ under action a, R (s, a) is the reward function, and µ1 is initial distribution for state
s1. The state and action spaces could be finite, i.e., |S| = ds and |A| = da, or continuous,
i.e., S ⊆ Rds and A ⊆ Rda . The former case is often called tabular MDP, as a table can
be used to store and query all state-action pairs if the size of the state-action space is not
too large. If the model of the environment is known, these MDPs can be solved exactly with
dynamic programming. The latter, instead, requires function approximation and algorithms
typically guarantee convergence to local optima. In the remainder of the paper, we will consider
only tabular MDPs, and will consider only model-free RL, i.e., the model of the environment is
neither known nor learned.

Given an MDP, the goal of RL is to learn to act. Formally, we want to find a policy π(a|s)
to take an appropriate action a when the agent is in state s. By following such a policy starting
at initial state s1, we obtain a sequence of states, actions and rewards (st, at, rt)t=1...H , where
rt = R(st, at) is the reward at time t, and H is the total timesteps also called horizon, which
can possibly be infinite. We refer to such sequences as trajectories or episodes.

Our goal is to find a policy that maximizes the expected return

Q∗(s, a) := max
π

Eµπ(s)π(a|s)[Q
π(s, a)] , (3.1)

where Qπ(st, at) := E∏H
i=t π(ai+1|si+1)P(si+1|si,ai)

[
H∑
i=t

γi−tri

]
, (3.2)

where µπ(s) is the (discounted) state distribution under π, i.e., the probability of visiting state
s under π, and γ ∈ [0, 1) is the discount factor which assigns weights to rewards at different
timesteps. Qπ(s, a) is the action-state value function (or Q-function) which is the expected
return obtained by executing a in state s and then following π afterwards. In tabular MDPs, the
Q-function can be stored in a table, commonly referred as Q-table, and in stationary infinite-
horizon MDPs the greedy policy π∗(a|s) = arg maxaQ

∗(s, a) is always optimal [Puterman,
1994]. However, the Q-function of the current policy is initially unknown and has to be learned.
Q-learning. For tabular MDPs, Q-learning by Watkins and Dayan [1992] was one of the most
important breakthroughs in RL, and it is still at the core of recent successfull algorithms. At
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each training step i, the agent chooses an action according to a behavior policy β(a|s), i.e.,
at ∼ β(·|st), and then updates the Q-table according to

Qπ
i+1(st, at) = Qπ

i (st, at) + ηδ(st, at, st+1) (3.3)

δ(st, at, st+1) =

{
rt + γmaxaQ

π
i (st+1, a)−Qπ

i (st, at) if st is non-terminal
rt −Qπ

i (st, at) otherwise
(3.4)

where η is the learning rate and δ(s, a, s′) is the temporal difference (TD) error. The blue term
is often referred to as TD target. This approach is called off-policy because the policy β(s, a)
used to explore the environment is different from the target greedy policy π(a|s).
The behavior policy and the “exploration-exploitation dilemma”. As discussed in Section 4.1,
an important challenge in designing the behavior policy is to account the exploration-exploitation
dilemma. Exploration is a long-term endeavour where the agent tries to maximize the possibility
of finding better rewards in states not yet visited. On the contrary, exploitation maximizes
the expected rewards according to the current knowledge of the environment. Typically, in
continuous action spaces Gaussian noise is added to the action, while in discrete spaces actions
are chosen ϵ-greedily, i.e., optimally with probability 1− ϵ and randomly with probability ϵ.
In this case, the exploration-exploitation dilemma is simply addressed by having larger noise
and ϵ at the beginning, and then decaying them over time. This naive dithering exploration is
extremely inefficient in MDPs with sparse rewards, especially if some of them are “distractors”,
i.e., rewards that create suboptimal modes of the objective function. In the the remainder of this
section, we review more sophisticatd approaches addressing exploration with sparse rewards. We
first show theoretically grounded ideas for tabular or small MDP settings which are generally
computationally intractable for large MDPs. We then give an overview of methods which try to
apply similar principles to large domains by making approximations.

3.2.2 Related Work

Since finding high value states is crucial for successful RL, a large body of work has been devoted
to efficient exploration in the past years. We begin by discussing an optimal solution to explo-
ration, then continue with confidence-bound-based approaches. Then, we discuss methods based
on intrinsic motivation, and describe posterior optimality value-distribution-based methods. We
conclude by stating the main differences between our approach and these methods.
Optimal solution to exploration. In this paper, we consider model-free RL, i.e., the agent does
not know the MDP dynamics. It is well-known that in model-free RL the optimal solution to
exploration can be found by a Bayesian approach. First, assign an initial (possibly uninforma-
tive) prior distribution over possible unknown MDPs. Then, at each time step the posterior
belief distribution over possible MDPs can be computed using the Bayes’ theorem based on the
current prior distribution, executed action and made observation. The action that optimally
explores is then found by planning over possible future posterior distributions, e.g., using tree
search, sufficiently far forward. Unfortunately, optimal exploration is intractable even for very
small tasks [Szepesvari, 2010, Strens, 2000, Poupart et al., 2006]. The worst-case computational
effort is exponential with respect to the planning horizon in tabular MDPs, and can be even
more challenging with continuous state-action spaces.
Optimism. In tabular MDPs, many of the provably efficient algorithms are based on optimism

39



in the face of uncertainty (OFU) [Lai and Robbins, 1985]. In OFU, the agent acts greedily
with respect to an optimistic action value estimate composed of the value estimate and a bonus
term that is proportional to the uncertainty of the value estimate. After executing an optimistic
action, the agent then either experiences a high reward learning that the value of the action was
indeed high, or the agent experiences a low reward and learns that the action was not optimal.
After visiting a state-action pair, the exploration bonus is reduced. This approach is superior to
naive approaches in that it avoids actions where low value and low information gain are possible.
Under the assumption that the agent can visit every state-action pair infinitely many times, the
overestimation will decrease and almost optimal behavior can be obtained [Kakade, 2003]. Most
algorithms are optimal up to a polynomial amount of states, actions, or horizon length. RL lit-
erature provides many variations of these algorithms which use bounds with varying efficacy or
different simplifying assumptions, such as [Kearns and Singh, 2002, Brafman and Tennenholtz,
2002, Kakade, 2003, Auer and Ortner, 2007, Jaksch et al., 2010, Dann and Brunskill, 2015].
Upper confidence bound. Perhaps the best well-known OFU algorithm is the upper confidence
bound (UCB) algorithm [Auer et al., 2002]. UCB chooses actions based on a bound computed
from visitation counts: the lower the count, the higher the bonus. Recently, Jin et al. [2018]
proved that episodic Q-learning with UCB exploration converges to a regret proportional to the
square root of states, actions, and timesteps, and square root of the cube of the episode length.
Dong et al. [2019] gave a similar proof for infinite horizon MDPs with sample complexity pro-
portional to the number of states and actions. In our experiments, we compare our approach to
Q-learning with UCB exploration as defined by Auer et al. [2002].
Intrinsic motivation. The previously discussed algorithms are often computationally intractable,
or their guarantees no longer apply in continuous state-action spaces, or when the state-action
spaces are too large. Nevertheless, these provably efficient algorithms provided inspiration for
more practical algorithms. Commonly, exploration is conducted by adding a bonus reward,
also called auxiliary reward, to interesting states. This is often referred to as intrinsic moti-
vation [Ryan and Deci, 2000]. For example, the bonus can be similar to the UCB [Strehl and
Littman, 2008, Bellemare et al., 2016], thus encouraging actions of high uncertainty or of low
visitation count.
Other forms of bonus are based on the prediction error of some quantity. For example, the agent
may learn a model of the dynamics and try to predict the next state [Stadie et al., 2015, Houthooft
et al., 2016, Pathak et al., 2017, Schmidhuber, 1991, 2006]. By giving a bonus proportional to
the prediction error, the agent is incentivized to explore unpredictable states. Unfortunately, in
the presence of noise, unpredictable states are not necessarily interesting states. Recent work
addresses this issue by training an ensemble of models [Pathak et al., 2019] or predicting the
outputs of a neural network [Burda et al., 2019].

As we will discuss in Section 3.3.2, our approach has similarities with the use of auxiliary
reward. However, the use of auxiliary rewards can be inefficient for long-horizon exploration.
Our approach addresses this issue by using a decoupled long-horizon exploration policy and, as
the experiments in Section 3.4 show, it outperforms auxiliary-reward-based approaches [Strehl
and Littman, 2008].
Thompson sampling. Another principled well-known technique for exploration is Thompson
sampling [Thompson, 1933]. Thompson sampling samples actions from a posterior distribution
which specifies the probability for each action to be optimal. Similarly to UCB-based meth-
ods, Thompson sampling is guaranteed to converge to an optimal policy in multi-armed bandit
problems [Kaufmann et al., 2012, Agrawal and Goyal, 2013], and has shown strong empirical
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performance [Scott, 2010, Chapelle and Li, 2011]. For a discussion of known shortcomings of
Thompson sampling, we refer to [Russo and Van Roy, 2014, Russo et al., 2017, 2018].
Inspired by these successes, recent approaches have tried to follow the principle of Thompson
sampling in Q-learning [Osband et al., 2013, 2019, D’Eramo et al., 2019]. These approaches
(implicitly) assume that an empirical distribution over Q-functions – an ensemble of randomized
Q-functions – is similar to the distribution over action optimalities used in Thompson sampling.
Actions are therefore sampled from such ensemble. Since the Q-functions in the ensemble be-
come similar when updated with new samples, there is a conceptual similarity with the action
optimality distribution used in Thompson sampling for which variance also decreases with new
samples. While there are no general proofs for the randomized Q-function approaches, Osband
et al. [2019] proved a bound on the Bayesian regret of an algorithm based on randomized Q-
functions in a tabular time-inhomogeneous MDP with a transition kernel drawn from a Dirichlet
prior, providing a starting point for more general proofs.
Other exploration methods approximating a distribution over action optimalities include for ex-
ample the work of Fortunato et al. [2017] and Plappert et al. [2018], who apply noise to the
parameters of the model. This may be interpreted as approximately inferring a posterior dis-
tribution [Gal and Ghahramani, 2016], although this is not without contention [Osband, 2016].
Osband et al. [2016a] more directly approximates the posterior over Q-functions through boot-
strapping [Efron, 1982]. The lack of a proper prior is an issue when rewards are sparse, as it
causes the uncertainty of the posterior to vanish quickly. Osband et al. [2019] and Osband et al.
[2018] try to address this by enforcing a prior via regularization or by adding randomly initialized
but fixed neural network on top of each ensemble member.
Methods based on posterior distributions have yielded high performance in some tasks. However,
because of the strong approximations needed to model posterior optimality distributions instead
of maintaining visitation counts or explicit uncertainty estimates, these approaches may often
have problems in assessing the state uncertainty correctly. In our experiments, the proposed
approach outperforms state-of-the-art methods based on approximate posterior distributions,
namely the algorithms proposed by Osband et al. [2016a, 2019] and D’Eramo et al. [2019].

Above, we discussed state-of-the-art exploration methods that (1) use confidence bounds or
a distribution over action optimalities to take exploration into account in a principled way,
(2) modify the reward by adding an intrinsic reward signal to encourage exploration, and (3)
approximate a posterior distribution over value functions. The main challenge that pertains to
all these methods is that they do not take long-term exploration into account explicitly. Contrary
to this, similarly to how value iteration propagates state values, we propose an approach that uses
dynamic programming to explicitly propagate visitation information backwards in time. This
allows our approach to efficiently find the most promising parts of the state space that have not
been visited before, and avoid getting stuck in suboptimal regions that at first appear promising.

3.3 Long-Term Visitation Value for Deep Exploration

In this section, we present our novel off-policy method for improving exploration 1with sparse
and distracting rewards. We start by motivating our approach with a toy example, showing
the limitation of current count-based algorithms and the need for “long-term visitation counts”.
Subsequently, we formally define the proposed method, and show how it solves the toy example.

41



3.3.1 Example of the Limitations of Existing Immediate Count Methods

3

2

1

1 2 3

Figure 3.2: Toy problem domain.

Consider the toy problem of an agent moving in a grid, shown
in Figure 3.2. Reward is 0 everywhere except in (1, 1) and
(3, 1), where it is 1 and 2, respectively. The reward is given
for executing an action in the state, i.e., on transitions from
reward states. The agent initial position is fixed in (1, 1)
and the episode ends when a reward is collected or after five
steps. Any action in the prison cells (2, 2) has only an ar-
bitrarily small probability of success. If it fails, the agent
stays in (2, 2). In practice, the prison cell almost completely
prevents any further exploration. Despite its simplicity, this
domain highlights two important challenges for exploration in
RL with sparse rewards. First, there is a locally optimal pol-

icy collecting the lesser reward, which acts as distractor. Second, the prison state is particularly
dangerous as it severely hinders exploration.

Assume that the agent has already explored the environment for four episodes performing the
following actions: (1) left, down, left, down, down (reward 1 collected); (2) up, down, right (fail),
right (fail), right (fail); (3) right, left, right, down, down (fail); (4) right, down, left (fail), up
(fail), right (fail). The resulting state-action visitation count is shown in Figure 3.3a. Given this
data, we initialize Qπ(s, a) to zero, train it with Q-learning with γ = 0.99 until convergence, and
then derive three greedy policies. The first simply maximizes Qπ(s, a). The second maximizes
the behavior Qβ(s, a) based on UCB1 [Auer et al., 2002], defined as

Qβ(s, a) = Qπ(s, a) + κ

√
2 log

∑
aj
n(st, aj)

n(st, a)
, (3.5)

where n(s, a) is the state-action count, and κ is a scaling coefficient1. The third maximizes an
augmented Q-function Q+(s, a) trained by adding the intrinsic reward based on the immediate
count [Strehl and Littman, 2008], i.e.,

r+t = rt + α n(st, at)
−1/2, (3.6)

where α is a scaling coefficient set to α = 0.1 as in [Strehl and Littman, 2008, Bellemare et al.,
2016]. Figure 3.3a shows the state-action count after the above trajectories, and Figures 3.3b,
3.3c, and 3.3d depict the respective Q-functions (colormap) and policies (arrows). Given the
state-action count, consider what the agent has done and knows so far.

a) It has executed all actions at least once in (1,3) and (2,2) (the prison cell),
b) It still did not execute “up” in (1,2),
c) It visited (1,3) once and experienced the reward of 1, and
d) It still did not execute “up” and “right” in (2,1).

1 In classic UCB, the reward is usually bounded in [0, 1] and no coefficient is needed. This is not usually
the case for MDPs, where Q-values can be larger/smaller than 1/0. We thus need to scale the square
root with κ = (rmax− rmin)/(1− γ), which upper-bounds the difference between the largest and smallest
possible Q-value.
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Figure 3.3: Toy example (part 1). Visitation count ((a)) and behavior policies ((b), (c), (d)) for the
toy problem below. Cells are divided into four triangles, each one representing the count ((a)) or
the behavior Q-value ((b), (c), (d)) for the actions “up / down / left / right” in that cell. Arrows
denote the action with the highest Q-value. None of the behavior policies exhibits long-term deep
exploration. In (1,3) both UCB1 ((c)) and the augmented Q-table ((d)) myopically select the action
with the smallest immediate count. The latter also acts badly in (1,2) and (2,3). There, it selects
“left” which has count one, instead of “up” which has count zero.

In terms of exploration, the best decisions would be to select actions not executed yet, such as
“up” in (1,2). But what should the agent do in states where it has already executed all actions
at least once? Ideally, it should select actions driving it to unvisited states, or to states where it
has not executed all actions yet. However, none of the policies above exhibits such behavior.

a) The greedy policy (Figure 3.3b), as expected, points to the only reward collected so far.

b) The UCB1 policy (Figure 3.3c) yields Q-values of much larger magnitude. Most of the
actions have been executed few times, thus their UCB is larger than their Q-value. The
policy correctly selects unexecuted actions in (1,2) and (2,3), but fails (1,3). There it also
selects the least executed actions (‘up” and “left”) which, however, have already been exe-
cuted once. The agent should know that these actions do not bring it anywhere (the agent
hits the environment boundaries and does not move) and should avoid them. However, it
selects them because the policy Qβ(s, a) is based on the immediate visitation count. Only
when the count will be equal for all actions, the policy will select a random action. This
behavior is clearly myopic and extremely inefficient.

c) The policy learned using the auxiliary bonus (Figure 3.3d) is even worse, as it acts badly
not only in (1,3), but also in (1,2) and (2,3). There, it chooses “left”, which was already
selected once, instead of “up” (or “right in (2,3)), which instead has not been selected yet.
The reason of such behavior is that this auxiliary reward requires optimistic initialization
[Strehl and Littman, 2008]. The agent, in fact, is positively rewarded for simply executing
any action, with value proportional to the visitation count. However, if the Q-function
is initialized to zero, the positive feedback will make the agent believe that the action
is good. This mechanism encourages the agent to execute the same action again and
hinders exploration. This problem is typical of all methods using an auxiliary reward
based on visitation count, unless optimistic initialization of the Q-table is used [Strehl and
Littman, 2008]. More recent methods use more sophisticated rewards [Jin et al., 2018,
Dong et al., 2019]. However, despite their strong theoretical convergence guarantees, for
large size problems these methods may require an impractical number of samples and are
often outperformed by standard algorithms.
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3.3.2 The Long-Term Visitation Value Approach

Despite its simplicity, the above toy problem highlights the limitations of current exploration
strategies based on the immediate count. More specifically, (1) considering the immediate count
may result in shallow exploration, and (2) directly augmenting the reward to train the Q-function,
i.e., coupling exploration and exploitation, can have undesired effects due to the non-stationarity
of the augmented reward function. To address these limitations, we propose an approach that (1)
plans exploration actions far into the future by using a long-term visitation count, and (2) decou-
ples exploration and exploitation by learning a separate function assessing the exploration value
of the actions. Contrary to existing methods which use models of reward and dynamics [Hester
and Stone, 2013], which can be hard to come by, our approach is off-policy and model-free.
Visitation value. The key idea of our approach is to train a visitation value function using
the temporal difference principle. The function, called W-function and denoted by W β(s, a),
approximates the cumulative sum of an intrinsic rewards rW based on the visitation count, i.e.,

W β(st, at) := E∏
i=t β(at+1|st+1)P(si+1|si,ai)

[
H∑
i=t

γi−t
w rWi

]
, (3.7)

where γw is the visitation count discount factor. The higher the discount, the more in the future
the visitation count will look. In practice, we estimate W β(s, a) using TD learning on the
samples produced using the behavior policy β. Therefore, we use the following update

W β
i+1(st, at) =W β

i (st, at) + ηδW (st, at, st+1), (3.8)

where η is the learning rate, and δW (st, at, st+1) is the W-function TD error, which depends on
the reward rW (can be either maximized or minimized). Subsequently, following the well-known
upper confidence bound (UCB) algorithm [Lai and Robbins, 1985], the behavior policy is greedy
with respect to the sum of the Q-function and an upper confidence bound, i.e.,

β(a|s) = arg max
a
{Qπ(s, a) + κUW (s, a)} , (3.9)

where UW (s, a) is an upper confidence bound based on W β(s, a), and κ is the same exploration
constant used by UCB1 in Eq. (3.5).

This proposed approach (1) considers long-term visitation count by employing the W-function,
which is trained to maximize the cumulative – not the immediate – count. Intuitively, the
W-function encourages the agent to explore state-actions which have not been visited before.
Given the current state s, in fact, W β(s, a) specifies how much exploration we can expect on
(discount-weighted) average in future states if we choose action a. Furthermore, since the Q-
function is still trained greedily with respect to the extrinsic reward as in Q-learning, while the
W-function is trained greedily on the intrinsic reward and favors less visited states, our approach
(2) effectively decouples exploration and exploitation. This allows us to more efficiently prevent
underestimation of the visitation count exploration term. Below, we propose two versions of this
approach based on two different rewards rW and upper bounds UW (s, a).
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W-function as long-term UCB. The visitation reward is the UCB of the state-action count at
the current time, i.e.,

rWt =


√

2 log
∑

aj
n(st,aj)

n(st,at)
if st is non-terminal

1
1−γw

√
2 log

∑
aj

n(st,aj)

n(st,at)
otherwise.

(3.10)

Notice how we distinguish between terminal and non-terminal states. As terminal state-action
pairs prevent exploration, we need to avoid them after the first visit. Therefore, we assume
that for terminal state-action pairs the agent gets the same visitation reward at each time step
forever. This W-function represents the discount-weighted average UCB along the trajectory,
i.e.,

W β
ucb(st, at) =

H∑
i=t

γi−t
w

√
2 log

∑
aj
n(si, aj)

n(si, ai)
, (3.11)

and its TD error is

δW (st, at, st+1) =

{
rWt + γw maxaW

β
ucb,i(st+1, a)−W β

ucb,i(st, at) if st is non-terminal
rWt −W

β
ucb,i(st, at) otherwise.

(3.12)

This TD error has two important consequences. First, the target of non-terminal states will be
higher than the one of terminal states despite the different visitation reward (Eq. (3.10)), given
proper initialization of W β

ucb. We will discuss this in more detail later in this section. Second,
since we can only update the W-function approximately based on a limited number of samples,
it is beneficial to overestimate its target with the max operator. While it is known that in
highly stochastic environments the overestimation can degrade the performance of value-based
algorithm [van Hasselt, 2010, D’Eramo et al., 2017], it has been shown that underestimation does
not perform well when the exploration is challenging [Tateo et al., 2017], and for a wide class of
environments, overestimation allows finding the optimal solution due to self-correction [Sutton
and Barto, 2018]. Assuming identical visitation over state-action pairs, the W-function becomes
the discounted immediate UCB, i.e.,

W β
ucb(st, at) =

1

1− γw

√
2 log

∑
aj
n(st, aj)

n(st, at)
, (3.13)

thus, we can use W β
ucb(s, a) directly in the behavior policy

β(at|st) = arg max
a

Qπ(st, a) + κ (1− γw)W β
ucb(st, a)︸ ︷︷ ︸

Uucb
W (s,a)

 , (3.14)
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In Section 3.3.3, we discuss how to initialize W β
ucb(s, a). Finally, notice that when γw = 0,

Eq. (3.13) is the classic UCB, and Eq. (3.14) is equivalent to the UCB1 policy in Eq. (3.5).
W-function as long-term count. This W-function approximates the total count over a path. Its
visitation reward and TD error are

rWt =

{
n(st, at) if st is non-terminal

1
1−γw

max(s,a) n(s, a) otherwise,
(3.15)

δW (st, at, st+1) =

{
rWt + γw minaW

β
n,i(st+1, a)−W β

n,i(st, at) if st is non-terminal
rWt −W

β
n,i(st, at) otherwise.

(3.16)

Similarly to the UCB-based reward discussed above, we distinguish between terminal and non-
terminal states. Since terminal states prevent any further exploration, we penalize them by using
an upper bound of the state-action count as visitation reward. Regarding the TD target, the min
operator now replaces the max operator of Eq. (3.12), because to encourage exploration we need
to prioritize low-count state-action pairs. This yields an optimistic estimate of the W-function,
because the lower the W-function the more optimistic the exploration is. Assuming identical
visitation over state-action pairs, the W-function becomes the discounted cumulative count, i.e.,

W β
n (st, at) =

1

1− γw
n(st, at). (3.17)

We then compute the pseudocount n̂(st, at) = (1− γw)W β
n (st, at) and use it in the UCB policy

β(at|st) = arg max
a

Q
π(st, a) + κ

√
2 log

∑
aj
n̂(st, aj)

n̂(st, a)︸ ︷︷ ︸
Un
W (s,a)

 . (3.18)

When the counts are zero, W β
n (s, a) = 0, thus we need to initialize it to zero. We discuss how to

avoid numerical problem in the square root in Section 3.3.3. Finally notice that when γw = 0,
Eq. (3.18) is equivalent to the UCB1 policy in Eq. (3.5).
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Figure 3.4: Toy example (part 2). Visitation count ((a)) and behavior policies derived from the
proposed W-functions ((b), (c)). Due to the low count, the exploration upper bound dominates the
greedy Q-value, and the proposed behavior policies successfully achieve long-term exploration. Both
policies prioritize unexecuted actions, and avoid terminal and prison states.

Example of Long-Term Exploration with the W-function. Consider again the toy problem
presented in Section 3.3.1. Figure 3.4 shows the behavior policies of Eq. (3.14) and Eq. (3.18)
with γw = 0.99. The policies are identical and both drive the agent to unvisited states, or to
states where it has not executed all actions yet, successfully exhibiting long-term exploration.
The only difference is the magnitude of the state-action pair values (the colormap, especially in
unvisited states) due to their different initialization.

a) In (1,3), they both select “down” despite “up” and “left” having lower count. The agent,
in fact, knows that from (1,2) it can go “down” to (1,1) where it executed only one action.
Thus, it knows that there it can try new actions. On the other hand, the only thing it
knows about (2,3) is that it leads to the prison state, where the agent already executed
all actions. Thus, (1,2) has higher long-term exploration value than (2,3).

b) In (1,2) they both select “up”, overturning the greedy action “up” (Figure 3.3b). This
is an important aspect, because in order to explore the environment we always need to
prioritize unexecuted actions.

c) The same happens in (2,3), where actions with count zero are selected, rather than the
greedy ones.

d) None of the policies lead the agent to the prison state, because it has already been visited
and all actions have been executed in there.

e) They both do not select “right” in (2,2) because it has been executed one more time than
other actions. Nonetheless, the difference in the action value is minimal, as shown by the
action colormap (almost uniform).

3.3.3 W-function Initialization and Bounds

In UCB bandits, it is assumed that each arm/action will be executed once before actions are
executed twice. In order to enforce this, we need to make sure that the upper confidence bound
UW (s, a) is high enough so that an action cannot be executed twice before all other actions are
executed once. Below, we discuss how to initialize the W-functions and to set bounds in order
achieve the same behavior. For the sake of simplicity, below we drop subscripts and superscripts,
i.e., we write Q(s, a) in place of Qπ(s, a), W (s, a) in place of W β

ucb(s, a) in the first part, and
W (s, a) in place of W β

n (s, a) in the second part.
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W β
ucb initialization. To compute the initialization value we consider the worst-case scenario, that

is, in state s all actions a but ā have been executed. In this scenario, we want that W (s, ā) is
an upper bound of W (s, a). Following Eq. (3.14) and (3.12), we have

Qmax + κ(1− γw)W (s, ā) = Qmax + κ(1− γw)
(√

2 log(|A| − 1) + γw maxaW (s′, a)
)
,

(3.19)

where the blue term is the TD target for non-terminal states, and
√

2 log(|A| − 1) is the imme-
diate visitation reward for executing ā in the worst-case scenario (all other |A| − 1 actions have
been executed, and â has not been executed yet). In this scenario, W (s, ā) is an upper bound
of W (s, a) under the assumption of uniform count, i.e.,

∀(s, a) ̸= (s, ā), n(s, a) = n̄(s)⇒W (s, ā) ≥W (s, a). (3.20)

We can then write Eq. (3.19) as

Qmax + κ(1− γw)W (s, ā) = Qmax + κ(1− γw)
(√

2 log(|A| − 1) + γwW (s, ā)
)
. (3.21)

In order to guarantee to select ā, which has not been select yet, we need to initialize W (s, ā)
such that the following is satisfied

Qmin + κ(1− γw)W (s, ā) > Qmax + κ(1− γw)
(√

2 log(|A| − 1) + γwW (s, ā)
)
, (3.22)

where Qmin denotes the smallest possible Q-value. We get

W (s, ā) >
Qmax −Qmin
κ(1− γw)

+
√

2 log(|A| − 1) + γwW (s, ā)

W (s, ā) >
Qmax −Qmin
κ(1− γw)2

+

√
2 log(|A| − 1)

(1− γw)
. (3.23)

Initializing the W-function according to Eq. (3.23) guarantees to select ā.
W β

n upper bound. Since this W-function represents the discounted cumulative count, it is
initialized to zero. However, numerical problems may occur in the square root of Eq. (3.18)
because the pseudocount can be smaller than one or even zero. In these cases, the square root
of negative numbers and the division by zero are not defined. To address these issues, we add
+1 inside the logarithm and replace the square root with an upper bound when n̂(s, a) = 0.
Similarly to the previous section, the bound needs to be high enough so that an action cannot
be executed twice before all other actions are executed once. Following Eq. (3.18), we need to
ensure that

Qmin + κUW (s, ā) > Qmax + κUW (s, a),

UW (s, ā) >
Qmax −Qmin

κ
+ UW (s, a). (3.24)
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However, this time assuming uniform count does not guarantee a uniform pseudocount, i.e.,

∀(s, a) ̸= (s, ā), n(s, a) = n̄(s) ;W (s, ā) ≥W (s, a). (3.25)

Figure 3.5: [
Chainworld with uniform
count.]Chainworld with uniform count.

To illustrate this issue, consider the chain MDP
in Figure 3.5. The agent always starts in A and
can move “left”, “right”, and “down”. The episode
ends after eight steps, or when terminal state E
is reached. The goal of this example is to ex-
plore all states uniformly. In the first episode,
the agent follows the blue trajectory (A,D,E). In
the second episode, it follows the red trajectory
(A,C,D,D,C,B,B,B). In both trajectories, an
action with count zero was always selected first. At
the beginning of the third episode, all state-action
pairs have been executed once, except for “left” in

A, i.e., n(s, a) = 1 ∀(s, a) ̸= (A, left), n(A, left) = 0. Thus, we need to enforce the agent to
select it. However, the discounted cumulative count n̂(s, a) = (1− γw)W (s, a) is not uniform.
For example with γw = 0.9, n̂(A, right) = 3.8 and n̂(A, down) = 4.52.

More in general, the worst-case scenario we need to consider to satisfy Eq. (3.24) is the one
where (1) action ā has not been executed yet, (2) an action ȧ has been executed once and has the
smallest pseudocount, and (3) all other actions have been executed once and have the highest
pseudocount. In this scenario, to select ā we need to guarantee UW (s, ā) > UW (s, ȧ). Since
we assume that counts are uniform and no action action has been executed twice, the smallest
pseudocount is n̂(s, ȧ) = 1− γw, while the highest is n̂(s, a) = 1. Then, Eq. (3.24) becomes

UW (s, ā) >
Qmax −Qmin

κ
+ UW (s, ȧ)

UW (s, ā) >
Qmax −Qmin

κ
+

√
2 log ((1− γw) + |A| − 2)

1− γw
. (3.26)

Replacing the square root in Eq. (3.18) with the above upper bound when n(s, ā) = 0 guarantees
to select ā.
Example of Behavior Under Uniform Count. Consider our toy problem again. We distinguish
two cases: (1) all state-action pairs have been executed once except for “left” in (1,3), and (2)
the count is one everywhere. The Q-table is optimal for visited state-action pairs, thus the
greedy policy simply brings the agent to (3,1) where the highest reward lies. Figure 3.6 shows
baseline and proposed behavior policies in case (1). In case (2), all policies look like the greedy
one (Figure 3.6a).

a) The augmented reward policy (Figure 3.6b) has no interest in trying “left” in (1,3), and
its value is the lowest. The agent, in fact, cannot get the visitation bonus without first
executing the action. This shows once more that this passive way of exploration is highly
inefficient.
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Figure 3.6: Toy example (part 3). Behavior policies under uniform visitation count. In the top row,
reward states (1,1) and (3,1) are terminal. In the bottom row, they are not and the MDP has infinite
horizon. All state-action pairs been executed once, except for “left” in (1,3). Only the proposed
methods ((d), (e)) correctly indentify such state-action pair as the most interesting for exploration,
and propagate this information to other states thanks to TD learning. When the action is executed,
all policies converge to the greedy one ((a)).

b) UCB1 policy (Figure 3.6c) acts greedily everywhere except in (1,3), where it correctly se-
lects the unexecuted action. However, since UCB1 considers only the immediate visitation,
it has no way of propagating this information to other state-action pairs.

c) By contrast, for the proposed W-function policies (Figure 3.6d and 3.6e) the unexecuted
state-action pair is the most interesting, and the policy brings the agent there from any
state. Thanks to the separate W-function, we can propagate the value of unexceted actions
to other states, always prioritizing the exploration of new state-action pairs. Under uniform
count n(s, a) = 1 ∀(s, a), then the agent acts greedily with respect to the Q-function.

3.3.4 Final Remarks

In this section, we discuss the uniform count assumption used to derive the bounds, the differences
between the proposed W-functions and intrinsic motivation, the benefit of using the count-based
one, and potential issues in stochastic environments.
Uniform count assumption. In Section 3.3.3 we derived an initialization for W β

ucb and a bound
for W β

n to guarantee that an action is not executed twice before all other actions are executed
once. For that, we assumed the visitation count to be uniform for all state-action pairs. We
acknowledge that this assumption is not true in practice. First, it may be necessary to revisit
old states in order to visit new ones. Second, when an episode is over the state is reset and a
new episode starts. This is common practice also for infinite horizon MDPs, when usually the
environment is reset after some steps. Thus, the agent initial state will naturally have higher
visitation count. Nonetheless, in Section 3.4.2, we will empirically show that our approach allows
the agent to explore the environment as uniformly as possible.
W-function vs auxiliary rewards. Using an auxiliary reward such as an exploration bonus or an
intrinsic motivation signal has similarities with the proposed approach, especially with W β

ucb, but
the two methods are not equivalent. Consider augmenting the reward with the same visitation
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reward used to train the W-function, i.e., r+t = rt + α rWt . Using TD learning, the augmented
Q-function used for exploration can be rewritten as2

Q+(st, at) = rt + αrWt + γmax
a
Q+(st+1, a). (3.27)

Then consider the behavior policy derived from W β
ucb in Eq. (3.14), and decompose it as well

Qπ(st, at) + αW β
ucb(st, at) = rt + γmax

a
Qπ(st+1, a) + αrWt + αγw max

a
W β

ucb(st+1, a), (3.28)

where we considered α = κ(1− γw). The red terms are equivalent, but the blue terms are not
because of the max operator, since maxx{f(x) + g(x)} ̸= maxx{f(x)}+ maxx{g(x)}.

This explicit separation between exploitation (Q) and exploration (W ) has two important
consequences. First, it is easy to implement the proposed behavior policy for any off-policy
algorithm, as the exploration term is separated and independent from the Q-function estimates.
This implies that we can propagate the exploration value independently from the action-value
function estimate. With this choice we can select a discount factor γw which differs from the
MDP discount γ. By choosing a high exploration discount factor γw, we do long-term exploration
allowing us to find the optimal policy when exploration is crucial. By choosing a low exploration
discount factor γw, instead, we perform short-term exploration which may converge faster to a
greedy policy. In the evaluation in Section 3.4.2, we show experiments for which the discount
factors are the same, as well as experiments where they differ. Furthermore, we investigate the
effect of changing the W-function discount while keeping the Q-function discount fixed.
Second, auxiliary rewards are non-stationary, as the visitation count changes at every step.
This leads to a non-stationary target for the Q-function. With our approach, by decoupling
exploration and exploitation, we have stationary target for the Q-function while moving all the
non-stationarity to the W-function.
Benefits of zero-initialization. Because of its initialization (Eq. (3.23)), the proposed W β

ucb
gives an optimistic estimate which is needed for efficient exploration. By contrast, W β

n does
not require any kind of optimistic initialization. This can be crucial for continuous domains
where function approximation is necessary, and for which proper optimistic initialization is not
always feasible [Osband et al., 2019]. In the experiments of Section 3.4, we show that the two
W-functions attain almost equal results, making W β

n very promising for solving non-tabular
MDPs with sparse rewards. However, the evaluation in continuous domain is out of the scope of
this paper, and will be pursued in future work.
Terminal states and stochasticity. The visitation rewards for training the W-functions penalize
terminal state-action pairs (Eq. (3.10) and (3.15)). Consequently, once visited, the agent will
avoid visiting them again. One may think that this would lead to poor exploration in stochastic
environments, where the same state-action pair can lead to both terminal and non-terminal
states. In this scenario, trying the same action again in the future may yield better exploration
depending on the stochastic transition function. However, as we empirically show in Section
3.4.2, stochasticity in the transition function does not harm our approach.

2 For the sake of simplicity, we consider only non-terminal states.
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3.4 Evaluation

In this section, we evaluate the proposed method against state-of-the-art methods for exploration
in model-free RL on several domains. The experiments are designed to highlight the challenges
of learning with sparse rewards, and are split into two parts. In the first, we present the en-
vironments and we address (1) learning when only few states give a reward, (2) learning when
a sequence of correct actions is needed to receive a reward, (3) exploring efficiently when few
steps are allowed per training episode, (4) avoiding local optima and distracting rewards, and (5)
avoiding dangerous states that stop the agent preventing exploration. In the second, we further
investigate (6) the visitation count at convergence, (7) the empirical sample complexity, (8) the
impact of the visitation value hyperparameter γw, (9) the performance in the infinite horizon
scenario, and (10) with stochastic transition function.
To ensure reproducibility, the experiments are performed over fixed random seeds. For deter-
ministic MDPs, the seeds are 1, 2, . . . , 20. For stochastic MDPs, the seeds are 1, 2, . . . , 50.
Pseudocode and further details of the hyperparameters are given in Appendix C. Source code is
available at https://github.com/sparisi/visit-value-explore

Baseline Algorithms. The evaluated algorithms all use Q-learning [Watkins and Dayan, 1992]
and share the same hyperparameters, e.g., learning rate and discount factor. In most of the
experiments, we use infinite replay memory as presented by Osband et al. [2019]. In Appendix
C.6 we also present an evaluation without replay memory on some domains. The algorithms
all learn two separate Q-tables, a behavior one for exploration, and a target one for testing the
quality of the greedy policy. The difference among the algorithms is how the behavior policy
performs exploration. In this regard, we compare against the following exploration strategies:
random, ϵ-greedy, bootstrapped, count-based.
For bootstrapping, we evaluate the original version proposed by Osband et al. [2016a], as well as
the more recent versions of D’Eramo et al. [2019] and Osband et al. [2019]. These methods all
share the core idea, i.e., to use an ensemble of Q-tables, each initialized differently and trained
on different samples, to approximate a distribution over Q-values via bootstrapping. The dif-
ferences are the following. Osband et al. [2016a] select a random Q-table at the beginning of
each episodes, and use it until the episode is over. Osband et al. [2019] further regularize the
Q-tables using the squared ℓ2-norm to “prior tables” representing a prior over the Q-function.
D’Eramo et al. [2019] instead select the Q-table randomly within the ensemble at each step to
approximate Thompson sampling, but do not use any prior.
For count-based algorithms, we compare against UCB1 exploration [Auer et al., 2002] on the
immediate state-action count as in Eq. (3.5), and against augmenting the reward with the ex-
ploration bonus proposed by Strehl and Littman [2008] as in Eq. (3.6). Notice that Strehl and
Littman [2008] apply the exploration bonus to a model-based algorithm, but the same bonus has
since then been used by many model-free algorithms [Bellemare et al., 2016, Dong et al., 2019].
More recent methods use more sophisticated bonus to derive strong convergence guarantees [Jin
et al., 2018, Dong et al., 2019]. However, for large size problems these methods may require an
impractical number of samples and are often outperformed by standard algorithms.

3.4.1 Part 1: Discounted Return and States Discovered

We use the following environments: deep sea [Osband et al., 2018, 2019], taxi driver [Asadi
and Littman, 2017], and four novel benchmark gridworlds. All the environments have sparse
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discounted rewards, and each has peculiar characteristics making it challenging to solve.
Evaluation Criteria. For each environment, we evaluate the algorithms on varying two different
conditions: optimistic vs zero initialization of the behavior Q-tables, and short vs long horizon,
for a total of four scenarios. For each of them, we report the expected discounted return of
π(a|s), which is greedy over Qπ(s, a), and the number of visited states over training samples.
In all environments the initial state is fixed.

Optimistic initialization [Lai and Robbins, 1985] consists of initializing the Q-tables to a large
value. After visiting a state-action pair, either the agent experiences a high reward confirming
his belief about its quality, or the agent experiences a low reward and learns that the action was
not optimal and will not execute it again in that state. By initializing the Q-tables to the upper
bound rmax/(1 − γ) we are guaranteed to explore all the state-action pair even with just an
ϵ-greedy policy. However, this requires prior knowledge of the reward bounds, and in the case
of continuous states and function approximation the notion of an universally “optimistic prior”
does not carry over from the tabular setting [Osband et al., 2019]. Thus, it is important that an
algorithm is able to explore and to learn even with a simple zero or random initialization.

The length of the horizon is also an important factor for exploration. If the agent can perform a
limited number of actions during an episode, it has to carefully choose them in order to explore as
efficiently as possible. Prominent example in this regard are real-world tasks such as videogames,
where the player has limited time to fulfill the objective before the game is over, or robotics,
where the autonomy of the robot is limited by the hardware. Thus, an algorithm should be
able to explore and learn even when the training episode horizon is short. In the “short horizon”
scenario, we allow the agent to explore for a number of steps slightly higher than the ones needed
to find the highest reward. For example, if the highest reward is eight steps away from the initial
position, the “short horizon” is ten steps. The “long horizon” scenario is always twice as long.

Results are first presented in plots showing number of states discovered and discounted return
against training steps averaged over 20 seeds. Due to the large number of algorithms, confidence
intervals are not reported in plots. At the end of the section, a recap table summarizes the
results and reports the success of an algorithm, i.e., the number of seeds the algorithm learned
the optimal policy, and the percentage of states visited, both with 95% confidence interval.

Deep Sea

Figure 3.7: The deep sea.

In this environment (Figure 3.7), the agent (the ship) always
starts at the top-left corner of a gridworld of size N × N , and
has to descend through the grid to open a chest, located in the
bottom-right corner. At the beginning of the episode, either
a treasure or a bomb appear inside the chest, with a 50-50.
The outcome is known to the agent, as the state consists of the
ship position and a flag denoting if the bomb or the treaure has
appeared. At every step, the ship descends by one step, and
must chose to turn left or right. If it hits the left boundary, it
will descend without turning. For example, from the starting
position (1, 1), doing “left” will move the ship to (2, 1), while
doing “right” will move it to (2, 2). The episode ends when the

ship reaches the bottom of the grid, and thus the horizon is fixed to N . The reward is 1 if the
ship finds the treasure, -1 if it finds the bomb, and −0.01/N if the ship does “right” in any
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Figure 3.8: Deep sea results. Our method achieves the best results, followed by bootstrapping.

cell along the diagonal (denoted by sea waves). The optimal policy selects always “right” if the
treasure has appeared, otherwise “left” at the initial state and then can act randomly.

The challenge of this environment lies in having to select the same action (“right”) N times
in a row in order to receive either 1 or -1. Doing “left” even only once prevents the ship from
reaching the chest. At the same time, the agent is discouraged from doing “right”, since doing
so along the diagonal yields an immediate penalty. Consequently, an ϵ-greedy policy without
optimistic initialization would perform poorly, as the only short-term reward it receives would
discourage it from doing “right”. A random policy is also highly unlikely to reach the chest. In
particular, the probability such a policy reaches it in any given episode is (1/2)N . Thus, the
expected number of episodes before observing either the bomb or the treasure is 2N . Even for a
moderate value of N = 50, this is an impractical number of episodes [Osband et al., 2019].
Results. Figure 3.8 shows the results on a grid of depth N = 50. Since this domain has a fixed
horizon, the evaluation does not include the “short vs long horizon” comparison. With zero
initialization, only our algorithms and bootstrapping by Osband et al. [2016a] and Osband et al.
[2019] discover all states and converge to the optimal policy within steps limit. Both proposed
visitation-count-based (blue and orange) outperform the other two, converging twice or more
as faster. Bootstrapped exploration with random prior (green) comes second, reproducing the
results reported by Osband et al. [2018] and Osband et al. [2019]. Results with optimistic inizial-
ization are similar, with the main difference being that also approximate Thompson sampling by
D’Eramo et al. [2019] (purple) converges. Boostrapping by Osband et al. [2018] (green) matches
the performance of visitation-count-based with UCB (blue), and the two lines almost overlap.
For more details about the percentage of successful trials and the percentage of states discovered
by each algorithm with confidence intervals, we refer to Table 3.1.

This evaluation shows that the proposed exploration outperform state-of-the-art boostrapping
on domain with fixed horizon and no local optima. In the next sections, we investigate domains
with absorbing states, i.e., that can prematurely end the episode, and distractor reward. In
Section 3.4.2, we also present an empirical study on sample complexity on varying the deep sea
depth N . Furthermore in Section 3.4.2, we show the state visitation count at the end of the
learning for the deep sea and other domains, discussing why the proposed visitation-value-based
exploration achieves new state-of-the-art results.
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Figure 3.10: Results on the taxi domain averaged over 20 seeds. The proposed algorithms outperform
all others, being the only solving the task without optimistic initialization.

Multi-Passenger Taxi Driver

Figure 3.9: The taxi driver.

In this environment (Figure 3.9), the agent (the taxi) starts at the
top-left corner of a grid, and has to pick up the passengers and
drop them off at the destination (the flag). It can carry multiple
passengers at the same time. If one, two, or all three passengers
reach the destination, the agent is rewarded with 1, 3, or 15,
respectively. Everywhere else the reward is 0. The state consists
of the taxi position and three booleans denoting if a passenger
has been picked up or not. The agent can turn left, right, up, or
down. Black cells cannot be visited. The taxi ends its ride upon
visiting the destination, regardless of how many passengers it is

carrying. The optimal policy picks up all passengers and drops them off in 29 steps3.
This domain is challenging for two reasons. First, it admits many locally optimal policies,

depending on how many passengers reach the destination. Second, with a short horizon learning
to pick up and drop off all passengers is difficult and requires effective exploration.

Results. In this domain, the “short horizon” consists of 33 steps4, while the “long” of 66.
As shown in Figure 3.10, bootstrapped algorithms here perform significantly worse than before.
None of them, in fact, learned to pick all three passengers if Q-tables are initialized to zero,
and the “long horizon” does not help. In particular, random prior bootstrapping (green) clearly
converged prematurely due to the presence of local optima (the algorithm does not discover new
states after 750-1,000 steps). The proposed algorithms (blue and orange), instead, perform ex-
tremly well, quickly discovering all states and then learning the optimal policy. Other algorithms
learned to pick one or two passengers, and only the auxiliary visitation bonus (pink) learned to
pick all passengers in some seeds but only with long horizon. With optimistic initialization, most
3 The agent needs 28 steps to pick all passengers and reach the destination. However, it then needs to

execute an additional action to get the reward.
4 Our algorithms could learn also with a horizon of only 29 steps. However, with zero initialization other

algorithms performed extremely poorly. We thus decided to give the agent 33 steps.
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of the algorithms match the performance of our proposed ones. Among them, ϵ-greedy (gray)
and bonus-based exploration (pink) learn slowly. This is not surprising for the former, while for
the latter it may be due to the small bonus coefficient (see Eq. (3.6)) or to the issues discussed
in Section 3.3.1. Only random exploration (light green) still cannot learn to pick all passengers.
For more details about the percentage of successful trials and the percentage of states discovered
by each algorithm with confidence intervals, we refer to Table 3.1.

This evaluation shows that the proposed exploration outperforms existing algorithms in the
presence of local optima, and that its performance is not affected by the length of horizon. Next,
we investigate what happens when we combine the challenges of the deep sea and the taxi.

Deep Gridworld

Figure 3.11: The deep gridworld.

The first of the four gridworlds we propose is inspired by
the deep sea domain. In this environment (Figure 3.11),
the agent navigates in a 5 × 11 grid by moving “left”,
“right”, “up”, or “down”. All states can be visited, but
the blue corridor can be accessed only from its left side.
The agent can exit the corridor anytime by moving either
“up” or “down”. A treasure of value 2 lies at the end of

the corridor, while two treasures of value 1 serve as distractors next to the corridor entrance.
The corridor is filled with puddles, each giving a penalty of -0.01. The agent always starts next
to the entrance and the episode ends when the agent collects any of the treasures. The optimal
policy always does “right”.

The deep gridworld combines the challenges of both the deep sea and the taxi domains. Like
the former, to discover the highest reward the agent needs to execute the action “right” multiple
times in a row, receiving negative immediate rewards due to the puddles. However, doing a
different action does not preclude reaching the end of the corridor, because the agent can still
go back to the entrance and try again within the same episode. At the same time, the presence
of the two distractor treasures results in local optima, as in the taxi driver domain.
Results. Because it is possible to exit the corridor without ending the episode, we set a longer
horizon compared to the previous domains, i.e., 55 steps for the “short” scenario and 110 for the
“long” one. Results shown in Figure 3.12 confirm previous results. The proposed exploration
quickly discoves all states and learn to navigate through the corridor. By contrast, other algo-
rithms, including bootstrapping, get stuck in local optima and learn to collect one of the two
lesser treasures. Similarly to the taxi domain, with optimistic initialization all algorithms but
random exploration (light green) learn to navigate through the corridor.

This evaluation shows that distractor rewards are challenging for existing algorithms but not
for ours. Next, we increase the difficulty by adding more distractors and new special states.

Gridworlds

These environments (Figure 3.16, 3.17, and 3.18) share the same structure. The agent navigates
in a grid by moving “left”, “right”, “up”, or “down”. Black cells cannot be visited, while any
action in the prison has only an arbitrarily small probability of success. If it fails, the agent
does not move. In practice, the prison almost completely prevents any further exploration. The
reward is 0 everywhere except in treasure or penalty cells, and is given for executing an action
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Figure 3.12: Results on the deep gridworld averaged over 20 seeds. Once again, the proposed algo-
rithms are the only solving the task without optimistic initialization.

in the state, i.e., on transitions. Treasure cells (denoted by a money bag or a green number)
give a bonus reward of different magnitude and end the episode. Penalty cells (denoted by a red
number) give a penalty reward and end the episode. The agent also gets a small penalty of -0.01
at each step. The goal, thus, is to find the biggest treasure using as few steps as possible. The
initial position is fixed such that it is far from the biggest treasure and close to the smallest one.

Similarly to the deep gridworld, these domains are designed to highlight the difficulty of learn-
ing with many distractors (the smaller treasures) and, thus, of many local optima. The addition
of the constant penalty at each step further discourages exploration and makes the distractors
more appealing, since ending the episode will stop receiving penalties. Each domain has increas-
ing difficulty and introduces additional challenges, as we explain below.
The “toy” gridworld. We start with a simple 5 × 5 gridworld with one single reward of value
1, as shown in Figure 3.16. The focus of this domain is learning with sparse reward, without
distractors or additional difficulties. The optimal policy takes only nine steps to reach the trea-
sure, and the “short horizon” scenario ends after eleven steps.
The “prison” gridworld. Shown in Figure 3.17, this domain increases the value of the furthest
reward to 5, adds two distractors of value 1 and 2, and adds a prison cell. The first distractor is
close to the initial position, while the second is close to the goal reward. The prison cell is also
close to the goal. The optimal policy navigates around the first distractor, then right below the
prison, and finally up to the goal. The prison highlights the importance of seeking states with
low long-term visitation count, rather than low immediate count. As discussed in Section 3.3.1,
in fact, current count-based algorithms cannot deal with this kind of states efficiently.
The “wall” gridworld. Shown in Figure 3.18, the last gridworld is characterized by increased
grid size (50 × 50) and reward magnitude, and by the wall separating the grid into two areas.
The first area, where the agent starts, has six small rewards (both treasures and penalties). The
second area has two bigger treasures in the upper-right and bottom-right corners, of value 500
and 10,000, respectively. The optimal policy brings the agent beyond the wall and then to the
bottom right corner, where the highest reward lies. The wall significaly increases the difficulty,
due to the narrow passage which the agent needs to find in order to visit the second area of the
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Figure 3.13: Results on the toy gridworld averaged over 20 seeds. Bootstrapped and bonus-based
exploration perform well, but cannot match the proposed one (blue and orange line overlap).

grid. Learning is even harder when the horizon is short, as the agent cannot afford to lose time
randomly looking for new states. To increase the chance of success of all algorithms, we set the
“short horizon” to 330 steps, and 135 are needed to reach the reward of 10,000.
Results. The gridworld environments confirm previous results. Without distractors (toy grid-
world, Figure 3.13), bootstrapped algorithms (green and red) perform well, and so does using
the auxiliary visitation bonus (pink). Neither, however, match ours (blue and orange, almost
overlapping). Increasing the horizon helps the remainder algorithms, including random explo-
ration (light green), except for approximate Thompson sampling (purple). In the next gridworld,
however, the distractors and the prison cell substantially harm all algorithms except ours (Fig-
ure 3.14). Without optimistic initialization, in fact, existing algorithms cannot find the highest
reward even with long horizon, and all converge to local optima. This behavior was expected,
given the study of Section 3.3.1. Finally, the wall gridworld results emphasize even more the su-
periority of our algorithms (Figure 3.15). With zero initialization, in fact, every other algorithm
cannot go beyond the wall and find even the reward of 500. The results also stress that using
the UCB reward visitation value (blue) over the count reward (orange) performs slightly best.

This evaluation strenghtens the findings of previous experiments. First, it stresses how difficult
it is for existing algorithms to learn with distracting rewards and short horizon. Second, it
shows that our proposed approach overcomes these challenges. Next, we show how efficiently
the algorithms explore in terms of final visitation count and sample complexity.
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Figure 3.14: Distractors and the “prison” affect the performance of all algorithms but ours.
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Figure 3.15: The final gridworld emphasizes the better performance of the proposed algorithms,
especially the one using UCB reward. Return plot is in log scale.
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The Gridworlds Environments

Figure 3.16: The “toy” gridworld. Figure 3.17: The “prison” gridworld.
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Figure 3.18: The “wall” gridworld.
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Table 3.1: Results recap for the “zero initialization short horizon” scenarios. Only the proposed
exploration strategy is able to always discover all states and solve the task in all 20 seeds.

Algorithm Discovery (%) Success (%)
Ours (UCB Reward) 100± 0 100± 0
Ours (Count Reward) 100± 0 100± 0

Rand. Prior (Osband 2019) 99.90± 0.01 100± 0
Bootstr. (Osband 2016a) 99.77± 0.05 100± 0

Deep Sea Bootstr. (D’Eramo 2019) 63.25± 3.31 0± 0
UCB1 (Auer 2002) 55.72± 0.34 0± 0

Expl. Bonus (Strehl 2008) 85.65± 1.0 0± 0
ϵ-greedy 57.74± 1.11 0± 0
Random 58.59± 1.35 0± 0

Ours (UCB Reward) 100± 0 100± 0
Ours (Count Reward) 100± 0 100± 0

Rand. Prior (Osband 2019) 69.60± 2.96 13.07± 2.96
Bootstr. (Osband 2016a) 52.44± 7.55 18.77± 9.24

Taxi Bootstr. (D’Eramo 2019) 22.44± 1.81 1.9± 1.47
UCB1 (Auer 2002) 31.17± 0.70 1.53± 1.37

Expl. Bonus (Strehl 2008) 74.62± 2.24 17.6± 2.56
ϵ-greedy 29.64± 0.98 1.92± 1.49
Random 29.56± 0.98 1.92± 1.49

Ours (UCB Reward) 100± 0 100± 0
Ours (Count Reward) 100± 0 100± 0

Rand. Prior (Osband 2019) 75± 9.39 59.03± 4.2
Bootstr. (Osband 2016a) 60.82± 11.78 63.35± 6.89

Deep Gridworld Bootstr. (D’Eramo 2019) 63.73± 10.35 56.85± 0.06
UCB1 (Auer 2002) 92.18± 0.36 56.88± 0

Expl. Bonus (Strehl 2008) 95.45± 1.57 69.81± 8.84
ϵ-greedy 74.36± 4.42 56.88± 0
Random 92.45± 0.64 56.88± 0

Ours (UCB Reward) 100± 0 100± 0
Ours (Count Reward) 100± 0 100± 0

Rand. Prior (Osband 2019) 99.8± 0.39 100± 0
Bootstr. (Osband 2016a) 99.2± 0.72 100± 0

Gridworld (Toy) Bootstr. (D’Eramo 2019) 84.8± 4.33 40± 21.91
UCB1 (Auer 2002) 97.4± 0.99 50± 22.49

Expl. Bonus (Strehl 2008) 99.8± 0.39 100± 0
ϵ-greedy 97.4± 1.17 45± 22.25
Random 97.2± 1.15 45± 22.25

Ours (UCB Reward) 100± 0 100± 0
Ours (Count Reward) 100± 0 100± 0

Rand. Prior (Osband 2019) 72.39± 6.9 44.44± 14.69
Bootstr. (Osband 2016a) 64.35± 11.1 33.03± 8.54

Gridworld (Prison) Bootstr. (D’Eramo 2019) 54.78± 6.69 25.61± 8.39
UCB1 (Auer 2002) 80.78± 2.56 32.31± 4.11

Expl. Bonus (Strehl 2008) 85.87± 3 46.96± 12.35
ϵ-greedy 58.38± 5.27 22.84± 2.48
Random 76.96± 3.08 35.36± 10.37

Ours (UCB Reward) 100± 0 100± 0
Ours (Count Reward) 100± 0 100± 0

Rand. Prior (Osband 2019) 9.44± 3.14 0.14± 0.06
Bootstr. (Osband 2016a) 6.35± 2.74 0.23± 0.08

Gridworld (Wall) Bootstr. (D’Eramo 2019) 12.55± 4.45 0.18± 0.08
UCB1 (Auer 2002) 24.7± 4.45 0.46± 0.03

Expl. Bonus (Strehl 2008) 45.16± 2.29 0.52± 0.04
ϵ-greedy 38.15± 1.95 0.39± 0.08
Random 65.28± 0.45 0.59± 0
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Figure 3.19: Visitation count at the end of the learning. The seed is the same across all images.
Initial states naturally have higher count than other states. Recall that the upper portion of the deep
sea and some gridworlds cells cannot be visited. Only the proposed methods explore the environment
uniformly5. Other algorithms myopically focus on distractors.

3.4.2 Part 2: In-Depth Investigation

In this section, we present an in-depth analysis of issues associated with learning with sparse
rewards, explaining in more detail why our approach outperformed existing algorithms in the
previous evaluation. We start by reporting the visitation count at the end of the learning, showing
that our algorithms explore the environment uniformly. We continue with a study on the impact
of the visitation discount γw, showing how it affects the performance of the W-function. Next,
we present the empirical sample complexity analysis of all algorithms on the deep sea domain,
showing that our approach scales gracefully with the number of states. Finally, we evaluate
the algorithms in the infinite horizon setting and in stochastic MDPs, evaluating the accuracy
of the Q-function and the empirical sample complexity. Even in these scenarios, our approach
outperforms existing algorithms.

Visitation Count at the End of the Learning

In Section 3.3.3 and 3.3.4, we discussed that the proposed behavior policies guarantee that an
action is not executed twice before all other actions are executed once, under the uniform count
assumption. We also acknowledged that this assumption cannot hold in practice because of state
5 Figures show the count of UCB-based W-function. Count-based W-function performed very similarly.
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resets, or becuase the agent may need to revisit the same state to explore new ones. For example,
in the deep sea the agent needs to traverse diagonal states multiple times to visit every state.
Nonetheless, in this section we empirically show that our approach allows the agent to explore
the environment as uniformly as possible.

Figure 3.19 reports the state visitation count at the end of learning in the “short-horizon zero-
initialization” scenario for some domains. Only the proposed method (first column) uniformly
explores all states. Recall, in fact, that episodes reset after some steps or when terminal states
are reached. Thus initial states (which are fixed) are naturally visited more often. The count
in our method uniformly decreases proportionally to the distance from the initial states. This
denotes that at each episode, starting from the same state, the agent followed different paths,
exploring new regions of the environment uniformly.
Other algorithms suffer from distractors and local optima. In particular, UCB1 (third column)
explores very slowly. The reason is that the agent myopically selects actions based on the
immediate count, which makes exploration highly inefficient. By selecting the action with the
lowest immediate count, the agent does not take into account where the action will lead it,
i.e., if future states have already been visited or not. By contrast, our approach achieves deep
exploration by taking into account the long-term visitation count of future states.
The performance of bootrstrapping (second column) is peculiar. It immediately converges to
the first reward found in the gridworlds, barely exploring afterwards, but performs very well on
the deep sea. This hints that bootstrapping may be sensitive to any kind of reward, including
negative penalties. In the deep sea, in fact, diagonal states provide the only intermediate feedback
beside the final reward/penalty. Coincidentially, traversing the diagonal also leads to the only
positive reward. The agent may thus be guided by the reward received on the diagonal, even if
it is a negative penalty. This behavior can be explained by recalling that Osband et al. [2019]
regularize TD learning with the ℓ2-distance from a prior Q-table. The agent may therefore be
attracted to any state providing some kind of feedback in order to minimize the regularization.

Impact of Visitation Value Discount Factor γw

Here, we investigate the effect of the visitation discount factor γw on the “toy” gridworld (Fig-
ure 3.17). Figure 3.20 shows that the higher the discount, the better. As expected, with γw = 0
the algorithms behave very similarly to UCB1. In this case, in fact, the proposed approach
and UCB1 are equivalent. However, the learning curves are not exactly the same because the
W-function is updated with TD learning at every step.
The better exploration of our approach is also confirmed by Figure 3.21. The colormaps show
the count at the end of the learning, and the higher γw, the more uniform the exploration is.
With smaller γw, in fact, the agent rarely discovers states far from the initial position.

Empirical Sample Complexity on the Deep Sea

Here, we propose the same evaluation presented by Osband et al. [2018] to investigate the empiri-
cal sample complexity of the proposed algorithms, and to assess how they scale to large problems.
Figure 3.22 plots training steps to learn the optimal policy as function of the environment size
N . Only our approach (blue and orange) scales gracefully to large problem sizes. Results sug-
gest an empirical scaling of O(N2.5) for the visitation-value-based with count reward, and even
smaller for UCB reward. Bootstrapping attains an empirical complexity of O(N3), confirming
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Figure 3.20: Performance of the proposed algorithms on varying of γw on the “toy” gridworld (Figure
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Figure 3.21: Visitation count for W β
n at the end of the learning on the same random seed (out of

20). The higher the discount, the more uniform the count is. W β
ucb performed very similarly.

the findings of Osband et al. [2019]. However, in many cases (N = 23, 27, 33, 37, 43, 47, 51, 55)
there was one seed for which bootstrapping either did not learn within the steps limit (green
dashed line, empty dots) due to premature convergence, or learned after substantially more steps
than the average (red dots, large error bar). Missing algorithms (random, ϵ-greedy, UCB1, ap-
proximate Thompson sampling) performed extremely poorly, often not learning within 500,000
steps even for small N , and are thus not reported.

Infinite Horizon Stochastic Chainworld

This evaluation investigates how the algorithms perform in a stochastic MDP with infinite hori-
zon. In particular, we are interested in (1) the mean squared value error (MSVE) at each
timestep, (2) the sample complexity when varying the number of states, and (3) how behavior
policies explore and if they converge to the greedy policy.
Evaluation Criteria. The MSVE is computed between the true value function of the optimal
policy V ∗(s) and the learned value function of the current policy V πt(s), i.e.,

MSVE =
1

N

N∑
i=1

(V ∗(si)− V πt(s))2. (3.29)

The value function is computed according to the Bellman expectation equation in matrix form,
i.e., V π = (I − γPπ)−1Rπ, where I is the identity matrix, and Pπ and Rπ are the transition
and reward functions induced by the policy, respectively [Sutton and Barto, 2018]. This error
indicates how much the learned greedy policy πt deviates from the optimal policy.
Similarly, the sample complexity is defined as the number of timesteps t such that the non-
stationary policy πt at time t is not ε-optimal for current state st, i.e, V ∗(st) − V πt(st) > ε
[Strehl and Littman, 2008, Dong et al., 2019].
For the behavior of exploration policies and their empirical convergence, we show how the visi-
tation count changes over time.
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Figure 3.22: Steps to learn on varying the deep sea size N = 5, 7, . . . , 59. Each filled dot denotes
the average over ten runs with 500,000 steps limit. Error bars denote 95% confidence interval.
In empty dots connected with dashed lines, the algorithm did not learn within steps limit at least
once. In this case, the average is over converged runs only. Missing algorithms (random, ϵ-greedy,
UCB1, Thompson sampling) performed poorly and are not reported. Only our algorithms learn with
confidence interval close to zero, and attain the lowest sample complexity.

Figure 3.24: The ergodic chainworld.

MDP Characteristics. The MDP, shown
in Figure 3.24, is a chainworld with s =
1, . . . , N states, three actions, and stochas-
tic transition defined as follows. The first

action moves the agent forward with probability p, backward otherwise. The second action
moves the agent backward with probability p, forward otherwise. The third action keeps the
agent in the current state with probability p, and randomly moves it backward or forward oth-
erwise. The initial state is the leftmost state, and no state is terminal. This MDP is ergodic,
i.e., all state are transient, positive recurrent and aperiodic for any deterministic policy. In our
experiments, we set p = 0.99. The reward is 10−8 for doing “stay” in the initial state s1, 1 for
doing “stay” in the last state sN , and 0 everywhere else.

Unlike previous MDPs, this has no terminal state, the horizon is infinite, and the state is never
reset. Instead, to simulate infinite horizon, the agent explores the environment for one episode
of 200,000 steps. To comply with the classic sample complexity definition [Strehl and Littman,
2008, Dong et al., 2019], we use classic Q-learning without replay memory. We do not compare
against bootstrapping algorithms, because they are designed to select a different behavior Q-
function at every episode, and this setup has only one episode. Approximate Thompson sampling
by D’Eramo et al. [2019], instead, selects the Q-function at every step, and it is included in the
comparison (without memory as well). All algorithms use zero Q-function initialization. Due to
the stochasticity of the MDP, we increased the number of random seeds to 50.
Results. Figure 3.23 shows how the algorithms explore over time. Only ours (3.23a and 3.23b)
and UCB1 (3.23c) explore uniformly, but UCB1 finds the last state (with the reward) later. The
auxiliary rewards (3.23d) and approximate Thompson sampling (3.23e) also perform poorly, since
the exploration is not uniform and the reward is found only late. ϵ-greedy exploration (3.23f),
instead, is soon stuck in the local optimum represented by the small reward in the initial state.

65



Ti
m

es
te

p

(a) Ours (UCB Reward) (b) Ours (Count Reward) (c) UCB1

Ti
m

es
te

p

State
(d) Expl. Bonus

State
(e) Approx. Thompson Sampl.

State
(f) ϵ-greedy

Figure 3.23: Visitation counts for the chainworld with 27 states (x-axis) over time (y-axis). As time
passes (top to bottom), the visitation count grows. Only our algorithms and UCB1 explore uniformly,
producing a uniform colormap. However, UCB1 finds the last state (with the reward) much later.
Once UCB1 finds the reward (Figure 3.23c, step 1,000) the visitation count increses only in the last
state. This suggests that when UCB1 finds the reward contained in the last state it effectively stops
exploring other states. By contrast, our algorithms keep exploring the environment for longer. This
allows the agent to learn the true Q-function for all states, and explains why our algorithms achieve
lower sample complexity and MSVE in Figures 3.25 and 3.26.

The visitation count also shows that all exploration policies but ours act greedily once the
reward is found. For example, UCB1 finds the reward at step 1,000, and after that its visitation
count increses only in the last state (and nearby states, because of the stochastic transition). This
suggests that when these algorithms find the reward contained in the last state they effectively
stops exploring other states. By contrast, our algorithms explore the environment for longer,
yielding a more uniform visitation count. This allows the agent to learn the true Q-function for
all states, achieving lower sample complexity and MSVE as shown in Figures 3.25 and 3.26.

Figures 3.25 shows the sample complexity on varying the chain size over three values of ε. In all
three cases, our algorithms scale gracefully with the number of states, suggesting a complexity of
O(N2.5) and strengthening the findings of Section 3.4.2. By contrast, other algorithms performed
poorly. Their sample samplexity has large confidence interval, and as ε decreases the complexity
increases to the point that they almost never learn an ε-optimal policy.

These results are confirmed by Figure 3.26 (left plots), where only our algorithms attain low
sample complexity even for ε = 0. Our algorithms are also the only ones to learn an almost
perfect Q-function, with a MSVE close to zero (right plots). As anticipated, these results are
explained by the uniform visitation count in Figure 3.23. By not converging to the greedy policy
too quickly after discovering the reward, the agent keeps visiting old states and propagate to
them the information about the reward, thus learning the true optimal Q-function for all states.
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smaller ε they almost never learn an ε-optimal policy.
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Figure 3.26: Sample complexity against ε, and MSVE over time for 27- and 55-state chainworlds.
Shaded areas denote 95% confidence interval. As seen in Figure 3.25, the sample complexity of our
approach is barely influenced by ε. Even for ε = 0, our algorithms attain low sample complex-
ity, whereas other algorithms complexity is several orders of magnitude higher. Similarly, only our
algorithms learn an almost perfect Q-function, achieving a MSVE close to zero.

Stochastic Gridworlds

As we discussed in Section 3.3.4, the visitation rewards for training the W-functions penalize
terminal state-action pairs. One may think that this would lead to poor exploration in stochastic
environments, where the same state-action pair can lead to both terminal and non-terminal
states. Here, we evaluate all algorithms again on some of the previous environments but this
time with stochastic transition, and show that the proposed W-functions still solve the MDPs
and outperform existing algorithms. Each transition (s, a) has probability p of succeeding,
probability 1 − p/2 of not moving the agent, and probability 1 − p/2 of moving the agent to
a random adjacent state. In our experiments, we set p = 0.9. Due to the stochasticity of the
transition function, we increased the number of random seeds from 20 to 50.

Figure 3.27 shows the number of states discovered, and the expected discounted return com-
puted in closed form as V π(s0), where V π is defined according to the Bellman expectation
equation as V π = (I − γPπ)−1Rπ. Similarly to the deterministic setting (Figures 3.12, 3.13,
and 3.14, leftmost plots), our algorithms (blue and orange) outperform all baseline algorithms,
being the only ones to solve all three MPDs within steps limit6. With the UCB reward (blue),

6 Notice that the steps limit is higher compared to the deterministic setting. Because of the stochasticity,
in fact, we decreased the learning rate from 0.5 to 0.1.
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Figure 3.27: Results on three of the previous MDPs, but this time with stochastic transition function.
Once again, only our algorithms visit all states and learn the optimal policy within steps limit in all
MDPs, and their performance is barely affected by the stochasticity.

our approach always learns the optimal policy. With count reward (orange), our approach al-
most always learns the optimal policy, and converges to a distractor only two times (out of 50) in
the deep gridworld, and once in the “prison” gridworld. However, they both quickly discovered
all states, as shown by top plots. The better performance of UCB-based reward is due to the
optimistic initialization of the W-function. As seen in Section 3.4.2, Figure 3.23a, this version
of the algorithm explores the environment for longer, and converges to the greedy policy much
later. Therefore, the agent will visit the high-reward state more often, and it is less likely to
learn suboptimal policies.
Bootstrapping with a prior (green) is not affected by the stochasticity, and it performs as in the
deterministic setting (it solves the “toy” gridworld but not the other two). Vanilla bootstrapping
(red), instead, is heavily affected by the stochasticity, and its performance is substantially worse
compared to the deterministic setting (it cannot learn even the “toy” gridworld within steps
limit). UCB1 (brown) and bonus-based exploration (pink), instead, benefit from the stochastic-
ity. In the deterministic setting they could not solve these MDPs, while here they solve the two
gridworlds (even though much later than ours). This improvement is explained by the larger
number of visitated states (top plots), which denotes an overall better exploration. This is not
surprising, if we consider that a stochastic transition function naturally helps exploration.

3.5 Conclusion and Future Work

Effective exploration with sparse rewards is an important challenge in RL, especially when spar-
sity is combined with the presence of “distractors”, i.e., rewards that create suboptimal modes
of the objective function. Classic algorithms relying on dithering exploration typically perform
poorly, often converging to poor local optima or not learning at all. Methods based on immedi-
ate counts have strong guarantees but are empirically not sample efficient, while we showed that
methods based on intrinsic auxiliary rewards require hand-tuning and are prone to suboptimal
behavior. In this paper, we presented a novel approach that (1) plans exploration actions far
into the future by using a long-term visitation count, and (2) decouples exploration and exploita-
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tion by learning a separate function assessing the exploration value of the actions. Contrary to
existing methods which use models of reward and dynamics, our approach is off-policy and
model-free. Empirical results showed that the proposed approach outperforms existing methods
in environments with sparse and distracting rewards, and suggested that our approach scales
gracefully with the size of the environment.

The proposed approach opens several avenues of research. First, in this work we focused on
empirical results. In the future, we will investigate the theoretical properties of the proposed
approach in more detail. Second, in this work we considered model-free RL. In the future, we will
extend the proposed approach and combine it with model-based RL. Third, the experimental
evaluation focused on identifying the challenges of learning with sparse and distracting rewards.
In the future, we will consider more diverse tasks with continuous states and actions, and extend
the proposed exploration to actor-critic methods.
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4 TD-Regularized Actor-Critic Methods
Actor-critic methods can achieve incredible performance on difficult reinforcement learning prob-
lems, but they are also prone to instability. This is partly due to the interaction between the
actor and the critic during learning, e.g., an inaccurate step taken by one of them might adversely
affect the other and destabilize the learning. To avoid such issues, we propose to regularize the
learning objective of the actor by penalizing the temporal difference (TD) error of the critic.
This improves stability by avoiding large steps in the actor update whenever the critic is highly
inaccurate. The resulting method, which we call the TD-regularized actor-critic method, is a
simple plug-and-play approach to improve stability and overall performance of the actor-critic
methods. Evaluations on standard benchmarks confirm this.
Source code can be found at https://github.com/sparisi/td-reg

4.1 Introduction

Actor-critic methods have achieved incredible results, showing super-human skills in complex
real tasks such as playing Atari games and the game of Go [Silver et al., 2017a, Mnih et al.,
2016]. Unfortunately, these methods can be extremely difficult to train and, in many cases,
exhibit unstable behavior during learning. One of the reasons behind their instability is the
interplay between the actor and the critic during learning, e.g., a wrong step taken by one of
them might adversely affect the other and can destabilize the learning [Dai et al., 2018]. This
behavior is more common when nonlinear approximators, such as neural networks, are employed,
but it could also arise even when simple linear functions are used1. Figure 4.1 (left) shows such
an example where a linear function is used to model the critic but the method fails in three out
of ten learning trajectories. Such behavior is only amplified when deep neural networks are used
to model the critic.

In this chapter, we focus on developing methods to improve the stability of actor-critic meth-
ods. Most of the existing methods have focused on stabilizing either the actor or the critic.
For example, some recent works improve the stability of the critic by using a slowly-changing
critic [Lillicrap et al., 2016, Mnih et al., 2015, Hessel et al., 2018], a low-variance critic [Munos
et al., 2016, Gruslys et al., 2018], or two separate critics to reduce their bias [van Hasselt, 2010,
Fujimoto et al., 2018]. Others have proposed to stabilize the actor instead, e.g., by constraining
its update using entropy or the Kullback-Leibler (KL) divergence [Peters et al., 2010, Schulman
et al., 2015, Akrour et al., 2016, Achiam et al., 2017, Nachum et al., 2018, Haarnoja et al., 2018].
In contrast to these approaches that focus on stabilizing either the actor or the critic, we focus
on stabilizing the interaction between them.

Our proposal is to stabilize the actor by penalizing its learning objective whenever the critic’s
estimate of the value function is highly inaccurate. We focus on critic’s inaccuracies that are
1 Convergence is assured when special types of linear functions known as compatible functions are used

to model the critic [Sutton et al., 1999, Peters and Schaal, 2008a]. Convergence for other types of
approximators is assured only for some algorithms and under some assumptions [Baird, 1995, Konda and
Tsitsiklis, 2000, Castro et al., 2008].
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Figure 4.1: Left figure shows three runs that failed to converge out of ten runs for an actor-critic
method called deterministic policy gradient (DPG). The contour lines show the true expected return
for the two parameters of the actor, the white circle shows the starting parameter vector. For DPG,
we approximate the value function by an incompatible linear function (details in Section 4.5.1). None
of the three runs make it to the maximum, located at the bottom-left corner. By contrast, as shown
in the middle figure, adding the TD-regularization fixes the instability and all the runs converge.
The rightmost figure shows the estimated TD error for the two methods. We clearly see that TD-
regularization reduces the error over time and improves not only stability and convergence but also
the overall performance.

caused by severe violation of the Bellman equation, as well as large temporal difference (TD)
error. We penalize for such inaccuracies by adding the critic’s TD error as a regularization
term in the actor’s objective. The actor is updated using the usual gradient update, giving
us a simple yet powerful method which we call the TD-regularized actor-critic method. Due
to this simplicity, our method can be used as a plug-and-play method to improve stability of
existing actor-critic methods together with other critic-stabilizing methods. in this chapter, we
show its application to stochastic and deterministic actor-critic methods [Sutton et al., 1999,
Silver et al., 2014], trust-region policy optimization [Schulman et al., 2015] and proximal policy
optimization [Schulman et al., 2017], together with Retrace [Munos et al., 2016] and double-critic
methods [van Hasselt, 2010, Fujimoto et al., 2018]. Through evaluations on benchmark tasks,
we show that our method is complementary to existing actor-critic methods, improving not only
their stability but also their performance and data efficiency.

4.1.1 Related Work

Instability is a well-known issue in actor-critic methods, and many approaches have addressed
it. The first set of methods do so by stabilizing the critic. For instance, the so-called target
networks have been regularly used in deep RL to improve stability of TD-based critic learning
methods [Mnih et al., 2015, Lillicrap et al., 2016, van Hasselt, 2010, Gu et al., 2016b]. These
target networks are critics whose parameters are slowly updated and are used to provide stable
TD targets that do not change abruptly. Similarly, Fujimoto et al. [2018] proposed to take the
minimum value between a pair of critics to limit overestimation, and delay to update the policy
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parameters so that the per-update error is reduced. Along the same line, Munos et al. [2016]
proposed to use truncated importance weighting to compute low-variance TD targets to stabilize
critic learning. Instead, to avoid sudden changes in the critic, Schulman et al. [2016] proposed
to constrain the learning of the value function such that the average Kullback-Leibler divergence
between the previous and the current value function is sufficiently small. These methods can be
categorized as methods that improve the stability by stabilizing the critic.

An alternative approach is to stabilize the actor by forcing it to not change abruptly. This
is often done by incorporating a Kullback-Leibler divergence constraint to the actor learning
objective. This constraint ensures that the actor does not take a large update step, ensuring safe
and stable actor learning [Peters et al., 2010, Schulman et al., 2015, Akrour et al., 2016, Achiam
et al., 2017, Nachum et al., 2018].

Our approach differs from both these approaches. Instead of stabilizing either the actor or the
critic, we focus on stabilizing the interaction between the two. We do so by penalizing the critic
error during the learning of the actor. Our approach directly addresses the instability arising
due to the interplay between the actor and the critic.

Prokhorov and Wunsch [1997] proposed a method in a spirit similar to our approach where
they only update the actor when the critic is sufficiently accurate. This delayed update can
stabilize the actor, but it might require many more samples to ensure an accurate critic, which
could be time consuming and make the method very slow. Our approach does not have this
issue. Another recent approach proposed by Dai et al. [2018] uses a dual method to address the
instability due to the interplay between the actor and the critic. In their framework the actor
and the critic have competing objectives, while ours encourages cooperation between them.

4.2 Actor-Critic Methods and Their Instability

We start with a description of the reinforcement learning (RL) framework, and then review
actor-critic methods. Finally, we discuss the sources of instability considered in this chapter for
actor-critic methods.

4.2.1 Reinforcement Learning and Policy Search

We consider RL in an environment governed by a Markov Decision Process (MDP). An MDP is
described by the tuple ⟨S,A,P,R, µ1⟩, where S ⊆ Rds is the state space, A ⊆ Rda is the action
space, P (s′|s, a) defines a Markovian transition probability density between the current s and
the next state s′ under action a, R (s, a) is the reward function, and µ1 is initial distribution for
state s1. Given such an environment, the goal of RL is to learn to act. Formally, we want to find
a policy π(a|s) to take an appropriate action when the environment is in state s. By following
such a policy starting at initial state s1, we obtain a sequence of states, actions and rewards
(st, at, rt)t=1...T , where rt = R(st, at) is the reward at time t (T is the total timesteps). We
refer to such sequences as trajectories or episodes. Our goal is to find a policy that maximizes
the expected return of such trajectories,

max
π

Eµπ(s)π(a|s)[Q
π(s, a)] , (4.1)

where Qπ(st, at) := E∏T
i=t+1 π(ai|si)P(si+1|si,ai)

[
T∑
i=t

γi−tri+1

]
, (4.2)
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where µπ(s) is the state distribution under π, i.e., the probability of visiting state s under π,
Qπ(s, a) is the action-state value function (or Q-function) which is the expected return obtained
by executing a in state s and then following π, and, finally, γ ∈ [0, 1) is the discount factor
which assigns weights to rewards at different timesteps.

One way to solve the optimization problem of Eq. (4.2) is to use policy search [Deisenroth
et al., 2013], e.g., we can use a parameterized policy function π(a|s; θ) with the parameter θ and
take the following gradients steps

θi+1 = θi + αθ ∇θ Eµπ(s)π(a|s;θ)[Q
π(s, a)]

∣∣
θ=θi

, (4.3)

where αθ > 0 is the stepsize and i is a learning iteration. There are many ways to compute a
stochastic estimate of the above gradient, e.g., we can first collect one trajectory starting from
s1 ∼ µ1(s), compute Monte Carlo estimates Q̂π(st, at) of Qπ(st, at), and then compute the
gradient using REINFORCE [Williams, 1992] as

∇θ Eµπ(s)π(a|s;θ)[Q
π(s, a)] ≈

T∑
t=1

[∇θ logπ(at|st; θ)] Q̂π(st, at), (4.4)

where Q̂π(st, at) = R(st, at) + γQ̂π(st+1, at+1), ∀t = 1, 2, . . . , T − 1,

and Q̂π(sT , aT ) := R(sT , aT ) = rT . The recursive update to estimate Q̂π is due to the
definition of Qπ shown in Eq. (4.2). The above stochastic gradient algorithm is guaranteed
to converge to a locally optimal policy when the stepsize are chosen according to Robbins-
Monro conditions [Robbins and Monro, 1985]. However, in practice, using one trajectory might
have high variance and the method requires averaging over many trajectories which could be
inefficient. Many solutions have been proposed to solve this problem, e.g., baseline substraction
methods [Greensmith et al., 2004, Gu et al., 2016a, Wu et al., 2018]. Actor-critic methods are
one of the most popular methods for this purpose.

4.2.2 Instability of Actor-Critic Methods

In actor-critic methods, the value function is estimated using a parameterized function approx-
imator, i.e., Qπ(s, a) ≈ Q̂(s, a;ω), where ω are the parameters of the approximator such as a
linear model or a neural network. This estimator is called the critic and can have much lower
variance than traditional Monte Carlo estimators. Critic’s estimate are used to optimize the
policy π(a|s; θ), also called the actor.

Actor-critic methods alternate between updating the parameters of the actor and the critic.
Given the critic parameters ωi at iteration i and its value function estimate Q̂(s, a;ωi), the actor
can be updated using a policy search step similar to Eq. (4.3),

θi+1 = θi + αθ ∇θ Eµπ(s)π(a|s;θ)

[
Q̂(s, a;ωi)

]∣∣∣
θ=θi

. (4.5)
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The parameters ω are updated next by using a gradient method, e.g., we can minimize the
temporal difference (TD) error δQ using the following update:

ωi+1 = ωi+αω Eµπ(s),π(a|s;θ),P(s′|s,a)

[
δQ(s, a, s

′; θi+1, ωi)∇ωQ̂(s, a;ω)|ω=ωi

]
,

where δQ(s, a, s
′; θ, ω) := R(s, a)+γ Eπ(a′|s′,θ)

[
Q̂(s′, a′;ω)

]
−Q̂(s, a;ω). (4.6)

The above update is approximately equivalent to minimizing the mean square of the TD error
[Baird, 1995]. The updates (4.5) and (4.6) together constitute a type of actor-critic method.
The actor’s goal is to optimize the expected return shown in Eq. (4.2), while the critic’s goal is
to provide an accurate estimate of the value function.

A variety of options are available for the actor and the critic, e.g., stochastic and deterministic
actor-critic methods [Sutton et al., 1999, Silver et al., 2014], trust-region policy optimization
methods [Schulman et al., 2015], and proximal policy optimization methods [Schulman et al.,
2017]. Flexible approximators, such as deep neural networks, can be used for the actor and
the critic. Actor-critic methods exhibit lower variance than the policy gradient methods that
use Monte Carlo methods to estimate of the Q-function. They are also more sample efficient.
Overall, these methods, when tuned well, can perform extremely well and achieved state-of-the-
art performances on many difficult RL problems [Mnih et al., 2015, Silver et al., 2017a].

However, one issue with actor-critic methods is that they can be unstable, and may require
careful tuning and engineering to work well [Lillicrap et al., 2016, Dai et al., 2018, Henderson
et al., 2017]. For example, deep deterministic policy gradient (DDPG) [Lillicrap et al., 2016]
requires implementation tricks such as target networks, and it is known to be highly sensitive
to its hyperparameters [Henderson et al., 2017]. Furthermore, convergence is guaranteed only
when the critic accurately estimates the value function [Sutton et al., 1999], which could be
prohibitively expensive. In general, stabilizing actor-critic methods is an active area of research.

One source of instability, among many others, is the interaction between the actor and the
critic. The algorithm alternates between the update of the actor and the critic, so inaccuracies
in one update might affect the other adversely. For example, the actor relies on the value
function estimates provided by the critic. This estimate can have lower variance than the Monte
Carlo estimates used in Eq. (4.4). However, Monte Carlo estimates are unbiased, because they
maintain the recursive relationship between Q̂π(st, at) and Q̂π(st+1, at+1) which ensures that
the expected value of Q̂π(st, at) is equal to the true value function (the expectation is taken
with respect to the trajectories). When we use function approximators, it is difficult to satisfy
such recursive properties of the value function estimates. Due to this reason, critic estimates are
often biased. At times, such inaccuracies might push the actor into wrong directions, from which
the actor may never recover. In this chapter, we propose a new method to address instability
caused by such bad steps.

4.3 TD-Regularized Actor-Critic

As discussed in the previous section, the critic’s estimate of the value function Q̂(s, a;ω) might
be biased, while Monte Carlo estimates can be unbiased. In general, we can ensure the unbiased
property of an estimator if it satisfies the Bellman equation. This is because the following
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recursion ensures that each Q̂(s, a;ω) is equal to the true value function in expectation, as
shown below

Q̂(s, a;ω) = R(s, a) + γ EP(s′|s,a),π(a′|s′;θ)

[
Q̂(s′, a′;ω)

]
, ∀s ∈ S,∀a ∈ A. (4.7)

If Q̂(s′, a′;ω) is unbiased, Q̂(s, a;ω) will also be unbiased. Therefore, by induction, all es-
timates are unbiased. Using this property, we modify actor’s learning goal (Eq. (4.2)) as the
following constrained optimization problem

max
θ

Eµπ(s),π(a|s;θ)

[
Q̂(s, a;ω)

]
, (4.8)

s.t. Q̂(s, a;ω) = R(s, a) + γ EP(s′|s,a),π(a′|s′;θ)

[
Q̂(s′, a′;ω)

]
,∀s ∈ S,∀a ∈ A. (4.9)

We refer to this problem as the Bellman-constrained policy search. At the optimum, when
Q̂ = Qπ, the constraint is satisfied, therefore the optimal solution of this problem is equal
to the original problem of Eq. (4.3). For a suboptimal critic, the constraint is not satisfied
and constrains the maximization of the expected return proportionally to the deviation in the
Bellman equation. We expect this to prevent a large update in the actor when the critic is
highly inaccurate for some state-action pairs. The constrained formulation is attractive but
computationally difficult due to the large number of constraints, e.g., for continuous state and
action space this number might be infinite. In what follows, we make three modifications to this
problem to obtain a practical method.

4.3.1 Modification 1: Unconstrained Formulation Using the Quadratic Penalty Method

Our first modification is to reformulate the constrained problem as an unconstrained one by using
the quadratic penalty method [Nocedal and Wright, 2006]. In this method, given an optimization
problem with equality constraints

max
θ
f(θ), s.t. hj(θ) = 0, j = 1, 2, . . . ,M (4.10)

we optimize the following function

f̂(θ, η) := f(θ)− η
M∑
j=1

bjh
2
j(θ), (4.11)

where bj are the weights of the equality constraints and can be used to trade-off the effect
of each constraint, and η > 0 is the parameter controlling the trade-off between the original
objective function and the penalty function. When η = 0, the constraint does not matter, while
when η → ∞, the objective function does not matter. Assuming that ω is fixed, we propose
to optimize the following quadratic-penalized version of the Bellman-constrained objective for a
given η

L(θ,η) := Eµπ(s),π(a|s;θ)

[
Q̂(s,a;ω)

]
(4.12)

−η
∫∫

b(s,a)
(
R(s,a)+γEP(s′|s,a),π(a′|s′;θ)

[
Q̂(s′,a′;ω)

]
−Q̂(s,a;ω)

)2
dsda,
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where b(s, a) is the weight of the constraint corresponding to the pair (s, a).

4.3.2 Modification 2: Reducing the Number of Constraints

The integration over the entire state-action space is still computationally infeasible. Our second
modification is to focus on few constraints by appropriately choosing the weights b(s, a). A
natural choice is to use the state distribution µπ(s) and the current policy π(a|s; θ) to sample
the candidate state-action pairs whose constraints we will focus on. In this way, we get the
following objective

L(θ,η) := Eµπ(s),π(a|s;θ)

[
Q̂(s,a;ω)

]
(4.13)

−ηEµπ(s),π(a|s;θ)

[(
R(s,a)+γEP(s′|s,a),π(a′|s′;θ)

[
Q̂(s′,a′;ω)

]
−Q̂(s,a;ω)

)2]
.

The expectations in the penalty term in Eq. (4.13) can be approximated using the observed state-
action pairs. We can also use the same samples for both the original objective and the penalty
term. This can be regarded as a local approximation where only a subset of the infinitely many
constraint are penalized, and the subset is chosen based on its influence to the original objective
function.

4.3.3 Modification 3: Approximation Using the TD Error

The final difficulty is that the expectation over P(s′|s, a) is inside the square function. This
gives rise to a well-known issue in RL, called the double-sampling issue [Baird, 1995]. In order to
compute an unbiased estimate of this squared expectation over P(s′|s, a), we require two sets of
independent samples of s′ sampled from P(s′|s, a). The independence condition means that we
need to independently sample many of the next states s′ from an identical state s. This requires
the ability to reset the environment back to state s after each transition, which is typically
impossible for many real-world systems. Notice that the squared expectation over π(a′|s′; θ) is
less problematic since we can always internally sample many actions from the policy without
actually executing those actions on the environment.

To address this issue, we propose a final modification where we pull the expectation over
P(s′|s, a) outside the square

L(θ,η) := Eµπ(s),π(a|s;θ)

[
Q̂(s,a;ω)

]
(4.14)

−ηEµπ(s),π(a|s;θ),P(s′|s,a)

[(
R(s,a)+γEπ(a′|s′;θ)

[
Q̂(s′,a′;ω)

]
−Q̂(s,a;ω)︸ ︷︷ ︸

:=δQ(s,a,s′;θ,ω)

)2]
.

This step replaces the Bellman constraint of a pair (s, a) by the temporal difference (TD) error
δQ(s, a, s

′; θ, ω) defined over the tuple (s, a, s′). We can estimate the TD error by using TD(0)
or a batch version of it, thereby resolving the double-sampling issue. To further reduce the bias
of TD error estimates, we can also rely on TD(λ) (more details in Section 4.4.5). Note that this
final modification only approximately satisfies the Bellman constraint.
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4.3.4 Final Algorithm: the TD-Regularized Actor-Critic Method

Eq. (4.14) is the final objective we use to update the actor. For the ease of notation, in the rest
of the paper, we refer to the two terms in L(θ, η) using the following notation

L(θ, η) := J(θ)− ηG(θ), where (4.15)

J(θ) := Eµπ(s),π(a|s;θ)[Q̂(s, a;ω)], (4.16)
G(θ) := Eµπ(s),π(a|s;θ),P(s′|s,a)[δQ(s, a, s

′; θ, ω)2]. (4.17)

We propose to replace the usual policy search step (Eq. (4.5)) in the actor-critic method by a
step that optimizes the TD-regularized objective for a given ηi in iteration i,

θi+1 = θi + αθ

(
∇θ Eµπ(s)π(a|s;θ)

[
Q̂(s, a;ωi)

]∣∣∣
θ=θi
−ηi∇θG(θ)

∣∣∣
θ=θi

)
. (4.18)

The blue term is the extra penalty term involving the TD error, where we allow ηi to change
with the iteration. We can alternate between the above update of the actor and the update of
the critic, e.g., by using Eq. (4.6) or any other method. We call this method the TD-regularized
actor-critic. We use the terminology “regularization” instead of “penalization” since it is more
common in the RL and machine learning communities.

A simple interpretation of Eq. (4.14) is that the actor is penalized for increasing the squared
TD error, implying that the update of the actor favors policies achieving a small TD error. The
main objective of the actor is still to maximize the estimated expected returns, but the penalty
term helps to avoid bad updates whenever the critic’s estimate has a large TD error. Because
the TD error is an approximation to the deviation from the Bellman equation, we expect that
the proposed method helps in stabilizing learning whenever the critic’s estimate incurs a large
TD error.

In practice, the choice of penalty parameter is extremely important to enable a good trade-off
between maximizing the expected return and avoiding the bias in the critic’s estimate. In a
typical optimization problem where the constraints are only functions of θ, it is recommended
to slowly increase ηi with i. This way, as the optimization progresses, the constraints become
more and more important. However, in our case, the constraints also depend on ω which changes
with iterations, therefore the constraints also change with i. As long as the overall TD error of
the critic decreases as the number of iterations increase, the overall penalty due the constraint
will eventually decrease too. Therefore, we do not need to artificially make the constraints more
important by increasing ηi. In practice, we found that if the TD error decreases over time, then
ηi can, in fact, be decreased with i. In Section 4.5, we use a simple decaying rule ηi+1 = κηi
where 0 < κ < 1 is a decay factor.

4.4 Application of TD-Regularization to Existing Actor-Critic Methods

Our TD-regularization method is a general plug-and-play method that can be applied to any
actor-critic method that performs policy gradient for actor learning. In this section, we first
demonstrate its applications to popular actor-critic methods including DPG [Silver et al., 2014],
TRPO [Schulman et al., 2015] and PPO [Schulman et al., 2017]. Subsequently, building upon
the TD(λ) error, we present a second regularization that can be used by actor-critic methods
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doing advantage learning, such as GAE [Schulman et al., 2016]. For all algorithms, we show
that our method only slightly increases computation time. The required gradients can be easily
computed using automatic differentiation, making it very easy to apply our method to existing
actor-critic methods. Empirical comparison on these methods are given in Section 4.5.

4.4.1 TD-Regularized Stochastic Policy Gradient (SPG)

For a stochastic policy π(a|s; θ), the gradient of Eq. (4.14) can be computed using the chain
rule and log-likelihood ratio trick [Williams, 1992, Sutton and Barto, 1998]. Specifically, the
gradients of TD-regularized stochastic actor-critic are given by

∇θJ(θ) = Eµπ(s),π(a|s;θ)

[
∇θ logπ(a|s; θ)Q̂(s, a;ω)

]
, (4.19)

∇θG(θ) = Eµπ(s),π(a|s;θ),P(s′|s,a)

[
∇θ logπ(a|s; θ)δQ(s, a, s′; θ, ω)2

+ 2γEπ(a′|s′;θ)

[
∇θ logπ(a′|s′; θ)δQ(s, a, s′; θ, ω)Q̂(s′, a′;ω)

]]
. (4.20)

When compared to the standard SPG method, TD-regularized SPG requires only extra compu-
tations to compute ∇θ logπ(a′|s′; θ) and δQ(s, a, s′; θ, ω).

4.4.2 TD-Regularized Deterministic Policy Gradient (DPG)

DPG [Silver et al., 2014] is similar to SPG but learns a deterministic policy a = π(s; θ). To allow
exploration and collect samples, DPG uses a behavior policy β(a|s)2. Common examples are
ϵ-greedy policies or Gaussian policies. Consequently, the state distribution µπ(s) is replaced by
µβ(s) and the expectation over the policy π(a|s; θ) in the regularization term is replaced by an
expectation over a behavior policy β(a|s). The TD error does not change, but the expectation
over π(a′|s′, θ) disappears. TD-regularized DPG components are

Jdpg(θ) := Eµβ(s)

[
Q̂(s, π(s; θ);ω)

]
, (4.21)

Gdpg(θ) := Eµβ(s),β(a|s),P(s′|s,a)
[
δQ(s, a, s

′; θ, ω)2
]
, (4.22)

δQ(s, a, s
′; θ, ω) := R(s, a) + γQ̂(s′, π(s′; θ);ω)− Q̂(s, a;ω). (4.23)

Their gradients can be computed by the chain rule and are given by

∇θJdpg(θ) = Eµβ(s)

[
∇θπ(s; θ)∇aQ̂(s, a;ω)

∣∣
a=π(s;θ)

]
, (4.24)

∇θGdpg(θ) = 2γ Eµβ(s),β(a|s),P(s′|s,a)

[
δQ(s, a, s

′; θ, ω)∇θπ(s
′; θ)∇a′Q̂(s′, a′;ω)

∣∣
a′=π(s′;θ)

]
.

The gradient of the regularization term requires extra computations to compute ∇θπ(s
′; θ),

∇a′Q̂(s′, a′;ω) and δQ(s, a, s′; θ, ω).

2 Silver et al. [2014] showed that DPG can be more advantageous than SPG as deterministic policies have
lower variance. However, the behavior policy has to be chosen appropriately.
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4.4.3 TD-Regularized Trust-Region Policy Optimization (TRPO)

In the previous two examples, the critic estimates the Q-function. In this section, we demonstrate
an application to a case where the critic estimates the V-function. The V-function of π is defined
as V π(s) := Eπ(a|s)[Q

π(s, a)], and satisfies the following Bellman equation

V π(s) = Eπ(a|s)[R(s, a)] + γ Eπ(a|s),P(s′|s,a)[V (s′)] , ∀s ∈ S. (4.25)

The TD error for a critic V̂ (s;ω) with parameters ω is

δV (s, s
′;ω) := R(s, a) + γV̂ (s′;ω)− V̂ (s;ω). (4.26)

One difference compared to previous two sections is that δV (s, s′;ω) does not directly contain
π(a|s; θ). We will see that this greatly simplifies the update. Nonetheless, the TD error still
depends on π(a|s; θ) as it requires to sample the action a to reach the next state s′. Therefore,
the TD-regularization can still be applied to stabilize actor-critic methods that use a V-function
critic.

In this section, we regularize TRPO [Schulman et al., 2015], which uses a V-function critic
and solves the following optimization problem

max
θ

Ltrpo(θ, η) := Jtrpo(θ)− ηGtrpo(θ), s.t. Eµπ(s)[KL(π||πold)] ≤ ϵ, (4.27)

where Jtrpo(θ) := Eµπ(s),π(a|s;θ)

[
ρ(θ)Â(s, a;ω)

]
, (4.28)

Gtrpo(θ) := Eµπ(s),π(a|s;θ),P(s′|s,a)
[
ρ(θ)δV (s, s

′;ω)2
]
, (4.29)

where ρ(θ) = π(a|s; θ)/π(a|s; θold) are importance weights. KL is the Kullback-Leibler di-
vergence between the new learned policy π(a|s; θ) and the old one π(a|s; θold), and helps
in ensuring small policy updates. Â(s, a;ω) is an estimate of the advantage function
Aπ(s, a) := Qπ(s, a)− V π(s) computed by learning a V-function critic V̂ (s;ω) and approx-
imating Qπ(s, a) either by Monte Carlo estimates or from V̂ (s;ω) as well. We come back to
this in Section 4.4.5. The gradients of Jtrpo(θ) and Gtrpo(θ) are

∇θJtrpo(θ) = Eµπ(s),π(a|s;θ)

[
ρ(θ)∇θ logπ(a|s; θ)Â(s, a;ω)

]
, (4.30)

∇θGtrpo(θ) = Eµπ(s),π(a|s;θ),P(s′|s,a)
[
ρ(θ)∇θ logπ(a|s; θ)δV (s, s′;ω)2

]
. (4.31)

The extra computation for TD-regularized TRPO only comes from computing the square of the
TD error δV (s, s′;ω)2.

Notice that, due to linearity of expectations, TD-regularized TRPO can be understood as
performing the standard TRPO with a TD-regularized advantage function Âη(s, a;ω) :=

Â(s, a;ω) − ηEP(s′|s,a)[δV (s, s
′;ω)2]. This greatly simplifies implementation of our TD-

regularization method. In particular, TRPO performs natural gradient ascent to approximately
solve the KL constraint optimization problem3. By viewing TD-regularized TRPO as TRPO

3 Natural gradient ascent on a function f(θ) updates the function parameters θ by θ ← θ + αθF
−1(θ)g(θ),

where g(θ) is the gradient and F (θ) is the Fisher information matrix.
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with regularized advantage, we can use the same natural gradient procedure for TD-regularized
TRPO.

4.4.4 TD-Regularized Proximal Policy Optimization (PPO)

PPO [Schulman et al., 2017] simplifies the optimization problem of TRPO by removing the
KL constraint, and instead uses clipped importance weights and a pessimistic bound on the
advantage function

max
θ

Eµπ(s),π(a|s;θ)

[
min{ρ(θ)Â(s, a;ω), ρε(θ)Â(s, a;ω)}

]
, (4.32)

where the ρε(θ) is the importance ratio ρ(θ) clipped between [1 − ε, 1 + ε] and 0 < ε < 1
represents the update stepsize (the smaller ε, the more conservative the update is). By clipping
the importance ratio, we remove the incentive for moving ρ(θ) outside of the interval [1−ε, 1+ε],
i.e., for moving the new policy far from the old one. By taking the minimum between the clipped
and the unclipped advantage, the final objective is a lower bound (i.e., a pessimistic bound) on
the unclipped objective.

Similarly to TRPO, the advantage function Â(s, a;ω) is computed using a V-function
critic V̂ (s;ω), thus we could simply use the regularization in Eq. (4.29). However, the TD-
regularization would not benefit from neither importance clipping nor the pessimistic bound,
which together provide a way of performing small safe policy updates. For this reason, we
propose to modify the TD-regularization as follows

max
θ
Lppo(θ, η) := Jppo(θ)− ηGppo(θ), where (4.33)

Jppo(θ) := Eµπ(s),π(a|s;θ)

[
min{ρ(θ)Â(s, a;ω), ρε(θ)Â(s, a;ω)}

]
, (4.34)

Gppo(θ) := Eµπ(s),π(a|s;θ),P(s′|s,a)
[
max{ρ(θ)δV (s, s′;ω)2, ρε(θ)δV (s, s′;ω)2}

]
, (4.35)

i.e., we apply importance clipping and the pessimistic bound also to the TD-regularization. The
gradients of Jppo(θ) and Gppo(θ) can be computed as

∇θJppo(θ) =Eµπ(s),π(a|s;θ)[f(θ)] where (4.36)

f(θ):=

{
ρ(θ)∇θ logπ(a|s;θ)Â(s,a;ω) if ρ(θ)Â(s,a;ω)<ρε(θ)Â(s,a;ω)
0 otherwise,

∇θGppo(θ) =Eµπ(s),π(a|s;θ)[g(θ)] where (4.37)

g(θ):=

{
ρ(θ)∇θ logπ(a|s;θ)δV (s,s′;ω)2 if ρ(θ)δV (s,s′;ω)2>ρε(θ)δV (s,s′;ω)2

0 otherwise.

4.4.5 GAE-Regularization

In Sections 4.4.3 and 4.4.4, we have discussed how to apply the TD-regularization when a V-
function critic is learned. The algorithms discussed, TRPO and PPO, maximize the advantage
function Â(s, a;ω) estimated using a V-function critic V̂ (s, ω). Advantage learning has a long
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history in RL literature [Baird, 1993] and one of the most used and successful advantage estimator
is the generalized advantage estimator (GAE) [Schulman et al., 2016]. In this section, we build
a connection between GAE and the well-known TD(λ) method [Sutton and Barto, 1998] to
propose a different regularization, which we call the GAE-regularization. We show that this
regularization is very convenient for algorithms already using GAE, as it does not introduce any
computational cost, and has interesting connections with other RL methods.

Let the n-step return Rt:t+n be the sum of the first n discounted rewards plus the estimated
value of the state reached in n steps, i.e.,

Rt:t+n := rt + γrt+1 + . . .+ γn−1rt+n−1 + γnV̂ (st+n;ω), 0 ≤ t ≤ T − n, (4.38)

Rt:T+1 :=
T∑
i=t

γi−tri. (4.39)

The full-episode return Rt:T+1 is a Monte Carlo estimate of the value function. The idea behind
TD(λ) is to replace the TD error target rt+γV̂ (st+1, ω) with the average of the n-step returns,
each weighted by λn−1, where λ ∈ [0, 1] is a decay rate. Each n-step return is also normalized
by 1 − λ to ensure that the weights sum to 1. The resulting TD(λ) targets are the so-called
λ-returns

Rλ
t := (1− λ)

T−1∑
i=t

λi−tRt:i+1 + λT−tRt:T+1, (4.40)

and the corresponding TD(λ) error is

δλV (st, st+1;ω) := Rλ
t − V̂ (st;ω). (4.41)

From the above equations, we see that if λ = 0, then the λ-return is the usual TD target, i.e.,
R0

t = rt + γV̂ (st+1;ω). If λ = 1, then R1
t = Rt:T+1 as in Monte Carlo methods. In between

are intermediate methods that control the bias-variance trade-off between TD and Monte Carlo
estimators by varying λ. As discussed in Section 4.2, in fact, TD estimators are biased, while
Monte Carlo are not. The latter, however, have higher variance.

Motivated by the same bias-variance trade-off, we propose to replace δV with δλV in Eq. (4.29)
and (4.35), i.e., to perform TD(λ)-regularization. Interestingly, this regularization is equivalent
to regularize with the GAE advantage estimator, as shown in the following. Let δV be an
approximation of the advantage function [Schulman et al., 2016]. Similarly to the λ-return, we
can define the n-step advantage estimator

At:t+n := δV (st, st+1;ω) + γδV (st+1, st+2;ω) + . . .+ γn−1δV (st+n−1, st+n;ω),

= Rt:t+n − V̂ (st;ω), 0 ≤ t ≤ T − n, (4.42)

At:T+1 := Rt:T+1 − V̂ (st;ω). (4.43)
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Following the same approach of TD(λ), GAE advantage estimator uses exponentially weighted
averages of n-step advantage estimators

Âλ(st, at;ω) := (1− λ)
T−1∑
i=t

λi−tAt:i+1 + λT−tAt:T+1, (4.44)

From the above equation, we see that GAE estimators are discounted sums of TD errors. Sim-
ilarly to TD(λ), if λ = 0 then the advantage estimate is just the TD error estimate, i.e.,
Â0(st, at;ω) = rt + V̂ (st+1;ω) − V̂ (st;ω). If λ = 1 then the advantage estimate is the
difference between the Monte Carlo estimate of the return and the V-function estimate, i.e.,
Â1(st, at;ω) = Rt:T+1 − V̂ (st;ω). Finally, plugging Eq. (4.42) into Eq. (4.44), we can rewrite
the GAE estimator as

Âλ(st, at;ω) := (1− λ)
T−1∑
i=t

λi−t(Rt:i+1 − V̂ (st;ω)) + λT−t(Rt:T+1 − V̂ (st;ω))

= (1− λ)
T−1∑
i=t

λi−tRt:i+1 + λT−tRt:T+1 − V̂ (st;ω)

= Rλ
t − V̂ (st;ω) = δλV (st, st+1;ω), (4.45)

i.e., the GAE advantage estimator is equivalent to the TD(λ) error estimator. Therefore, using
the TD(λ) error to regularize actor-critic methods is equivalent to regularize with the GAE
estimator, yielding the following quadratic penalty

Ggae(θ) = Eµπ(s),π(a|s;θ)

[
Âλ(s, a;ω)2

]
, (4.46)

which we call the GAE-regularization. The GAE-regularization is very convenient for methods
which already use GAE, such as TRPO and PPO4, as it does not introduce any computational
cost. Furthermore, the decay rate λ allows to tune the bias-variance trade-off between TD and
Monte Carlo methods5. In Section 4.5 we present an empirical comparison between the TD- and
GAE-regularization.

Finally, the GAE-regularization has some interesting interpretations. As shown by Be-
lousov and Peters [2017], minimizing the squared advantage is equivalent to maximizing the
average reward with a penalty over the Pearson divergence between the new and old state-
action distribution µπ(s)π(a|s; θ), and a hard constraint to satisfy the stationarity condition∫∫

µπ(s)π(a|s; θ)P (s′|s, a) dsda = µπ(s
′),∀s′. The former is to avoid overconfident policy

update steps, while the latter is the dual of the Bellman equation (Eq. (4.7)). Recalling that
the GAE-regularization approximates the Bellman equation constraint with the TD(λ) error, the
two methods are very similar. The difference in the policy update is that the GAE-regularization
replaces the stationarity condition with a soft constraint, i.e., the penalty6.

4 For PPO, we also apply the importance clipping and pessimistic bound proposed in Eq. (4.35).
5 We recall that, since GAE approximates Aπ(s, a) with the TD(λ) error, we are performing the same

approximation presented in Section 4.3.3, i.e., we are still approximately satisfying the Bellman constraint.
6 For the critic update, instead, Belousov and Peters [2017] learn the V-function parameters together with

the policy rather than separately as in actor-critic methods.
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Eq. (4.46) is equivalent to minimizing the variance of the centered GAE estimator, i.e.,
E[(Âλ(s, a;ω) − µÂ)

2] = Var[Âλ(s, a;ω)]. Maximizing the mean of the value function esti-
mator and penalizing its variance is a common approach in risk-averse RL called mean-variance
optimization [Tamar et al., 2012]. Similarly to our method, this can be interpreted as a way to
avoid overconfident policy updates when the variance of the critic is high. By definition, in fact,
the expectation of the true advantage function of any policy is zero7, thus high-variance is a sign
of an inaccurate critic.

4.5 Evaluation

We propose three evaluations. First, we study the benefits of the TD-regularization in the
2-dimensional linear-quadratic regulator (LQR). In this domain we can compute the true Q-
function, expected return, and TD error in closed form, and we can visualize the policy parameter
space. We begin this evaluation by setting the initial penalty coefficient to η0 = 0.1 and then
decaying it according to ηi+1 = κηi where κ = 0.999. We then investigate different decaying
factors κ and the behavior of our approach in the presence of non-uniform noise. The algorithms
tested are DPG and SPG. For DPG, we also compare to the twin delayed version proposed
by Fujimoto et al. [2018], which achieved state-of-the-art results.

The second evaluation is performed on the single- and double-pendulum swing-up
tasks [Yoshikawa, 1990, Brockman et al., 2016]. Here, we apply the proposed TD- and GAE-
regularization to TRPO together with and against Retrace [Munos et al., 2016] and double-critic
learning [van Hasselt, 2010], both state-of-the-art techniques to stabilize the learning of the critic.

The third evaluation is performed on OpenAI Gym [Brockman et al., 2016] continuous control
benchmark tasks with the MuJoCo physics simulator [Todorov et al., 2012] and compares TRPO
and PPO with their TD- and GAE-regularized counterparts. Due to time constraints, we were
not able to evaluate Retrace on this tasks as well. Details of the hyperparameter settings are
given in Appendix D.3.

For the LQR and the pendulum swing-up tasks, we tested each algorithm over 50 trials with
fixed random seeds. At each iteration, we turned the exploration off and evaluated the policy
over several episodes. Due to limited computational resources, we tested MuJoCo experiments
over five trials with fixed random seeds. For TRPO, the policy was evaluated over 20 episodes
without exploration noise. For PPO, we used the same samples collected during learning, i.e.,
including exploration noise.

4.5.1 2D Linear Quadratic Regulator (LQR)

The LQR problem is defined by the following discrete-time dynamics

s′ = As+Ba+N (0, 0.12), a = Ks, R (s, a) = −sTXs− aTY a,

where A,B,X, Y ∈ Rd×d, X is a symmetric positive semidefinite matrix, Y is a symmetric
positive definite matrix, and K ∈ Rd×d is the control matrix. The policy parameters we want to
learn are θ = vec(K). Although low-dimensional, this problem presents some challenges. First,
the policy can easily make the system unstable. The LQR, in fact, is stable only if the matrix
7 Eπ(a|s)[A

π(s,a)]=Eπ(a|s)[Q
π(s,a)−V π(s)]=Eπ(a|s)[Q

π(s,a)]−V π(s)=V π(s)−V π(s)=0.
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(A + BK) has eigenvalues of magnitude smaller than one. Therefore, small stable steps have
to be applied when updating the policy parameters, in order to prevent divergence. Second, the
reward is unbounded and the expected negative return can be extremely large, especially at the
beginning with an initial random policy. As a consequence, with a common zero-initialization of
the Q-function, the initial TD error can be very large. Third, states and actions are unbounded
and cannot be normalized in [0,1], a common practice in RL.

Furthermore, the LQR is particularly interesting because we can compute in closed form both
the expected return and the Q-function, being able to easily assess the quality of the evaluated
algorithms. More specifically, the Q-function is quadratic in the state and in the action, i.e.,

Qπ(s, a) = Q0 + sTQsss+ aTQaaa+ sTQsaa,

where Q0, Qss, Qaa, Qsa are matrices computed in closed form given the MDP characteristics
and the control matrix K. To show that actor-critic algorithms are prone to instability in
the presence of function approximation error, we approximate the Q-function linearly in the
parameters Q̂(s, a;ω) = ϕ(s, a)Tω, where ϕ(s, a) includes linear, quadratic and cubic features.

Along with the expected return, we show the trend of two mean squared TD errors (MSTDE):
one is estimated using the currently learned Q̂(s, a;ω), the other is computed in closed form
using the true Qπ(s, a) defined above. It should be noticed that Qπ(s, a) is not the optimal Q-
function (i.e., of the optimal policy), but the true Q-function with respect to the current policy.
For details of the hyperparameters and an in-depth analysis, including an evaluation of different
Q-function approximators, we refer to Appendix D.1.

Evaluation of DPG and SPG

DPG and TD-regularized DPG (DPG TD-REG) follow the equations presented in Section 4.4.2.
The difference is that DPG maximizes only Eq. (4.21), while DPG TD-REG objective includes
Eq. (4.22). TD3 is the twin delayed version of DPG presented by Fujimoto et al. [2018], which
uses two critics and delays policy updates. TD3 TD-REG is its TD-regularized counterpart. For
all algorithms, all gradients are optimized by ADAM [Kingma and Ba, 2014]. After 150 steps,
the state is reset and a new trajectory begins.

As expected, because the Q-function is approximated with also cubic features, the critic is
prone to overfit and the initial TD error is very large. Furthermore, the true TD error (Fig-
ure 4.2c) is more than twice the one estimated by the critic (Figure 4.2b), meaning that the
critic underestimates the true TD error. Because of the incorrect estimation of the Q-function,
vanilla DPG diverges 24 times out of 50. TD3 performs substantially better, but still diverges
two times. By contrast, TD-REG algorithms never diverges. Interestingly, only DPG TD-REG
always converges to the true critic and to the optimal policy within the time limit, while TD3
TD-REG improves more slowly. Figure 4.2 hints that this “slow learning” behavior may be due
to the delayed policy update, as both the estimated and the true TD error are already close
to zero by mid-learning. In Appendix D.1 we further investigate this behavior and show that
TD3 policy update delay is unnecessary if TD-REG is used. The benefits of TD-REG in the
policy space can also be seen in Figure 4.1. Whereas vanilla DPG falls victim to the wrong critic
estimates and diverges, DPG TD-REG enables more stable updates.

The strength of the proposed TD-regularization is also confirmed by its application to SPG, as
seen in Figure 4.3. Along with SPG and SPG TD-REG, we evaluated REINFORCE [Williams,
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Figure 4.2: DPG comparison on the LQR. Shaded areas denote 95% confidence interval. DPG
diverged 24 times out of 50, thus explaining its very large confidence interval. TD3 diverged twice,
while TD-regularized algorithms never diverged. Only DPG TD-REG, though, always learned the
optimal policy within the time limit.

25 50 75 100 125 150 175
−900

−700

−500

−300

−100

Iteration

E
xp

ec
te
d
R
et
u
rn

REINFORCE
SPG
SPG TD-REG

(a)

25 50 75 100 125 150 175

0

1

2

3

4

5

6

7
·106

Iteration

M
S
T
D
E
(E
st
im

at
e) SPG

SPG TD-REG

(b)

25 50 75 100 125 150 175

0

1

2

3

4

5

6

7
·106

Iteration

M
S
T
D
E
(T
ru
e)

SPG
SPG TD-REG

(c)

Figure 4.3: SPG comparison on the LQR. One iteration corresponds to 150 steps. REINFORCE does
not appear in the TD error plots as it does not learn any critic. SPG TD-REG shows an incredibly fast
convergence in all runs. SPG-TD, instead, needs much more iterations to learn the optimal policy, as
its critic has a much larger TD error. REINFORCE diverged 13 times out of 50, thus explaining its
large confidence interval.

1992], which does not learn any critic and just maximizes Monte Carlo estimates of the Q-
function, i.e., Q̂π(st, at) =

∑T
i=t γ

i−tri. For all three algorithms, at each iteration samples from
only one trajectory of 150 steps are collected and used to compute the gradients, which are then
normalized. For the sake of completeness, we also tried to collect more samples per iteration,
increasing the number of trajectories from one to five. In this case, all algorithms performed
better, but still neither SPG nor REINFORCE matched SPG TD-REG, as they both needed
several samples more than SPG TD-REG. More details in Appendix D.1.2.

Analysis of the TD-Regularization Coefficient η

In Section 4.3.4 we have discussed that Eq. (4.14) is the result of solving a constrained optimiza-
tion problem by penalty function methods. In optimization, we can distinguish two approaches
to apply penalty functions [Boyd and Vandenberghe, 2004]. Exterior penalty methods start at
optimal but infeasible points and iterate to feasibility as η →∞. By contrast, interior penalty
methods start at feasible but sub-optimal points and iterate to optimality as η → 0. In actor-
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Figure 4.4: Comparison of different values of κ. Shaded areas denote 95% confidence interval. In
order to provide enough regularization, κ must be sufficiently large during the whole learning. With
small values η vanishes and the TD-regularization is not in effect anymore.

critic, we usually start at infeasible points, as the critic is not learned and the TD error is very
large. However, unlike classical constrained optimization, the constraint changes at each itera-
tion, because the critic is updated to minimize the same penalty function. This trend emerged
from the results presented in Figures 4.2 and 4.3, showing the change of the mean squared TD
error, i.e., the penalty.

In the previous experiments we started with a penalty coefficient η0 = 0.1 and decreased it
at each policy update according to ηt+1 = κηt, with κ = 0.999. In this section, we provide a
comparison of different values of κ, both as decay and growth factor. In all experiments we start
again with η0 = 0.1 and we test the following κ: 0, 0.1, 0.5, 0.9, 0.99, 0.999, 1, 1.001.

As shown in Figures 4.4a and 4.4b, results are different for DPG TD-REG and SPG TD-REG.
In DPG TD-REG, 0.999 and 1 allowed to always converge to the optimal policy. Smaller κ did
not provide sufficient help, up to the point where 0.1 and 0.5 did not provide any help at all.
However, it is not true that larger κ yield better results, as with 1.001 performance decreases.
This is expected, since by increasing η we are also increasing the magnitude of the gradient,
which then leads to excessively large and unstable updates.

Results are, however, different for SPG TD-REG. First, 0.99, 0.999, 1, 1.001 all achieve the
same performance. The reason is that gradients are normalized, thus the size of the update step
cannot be excessively large and κ > 1 does not harm the learning. Second, 0.9, which was not
able to help enough DPG, yields the best results with a slightly faster convergence. The reason
is that DPG performs a policy update at each step of a trajectory, while SPG only at the end.
Thus, in DPG η, which is updated after a policy update, will decay too quickly if a small κ is
used.

Analysis of Non-Uniform Observation Noise

So far, we have considered the case of high TD error due to an overfitting critic and noisy
transition function. However, the critic can be inaccurate also because of noisy or partially
observable state. Learning in the presence of noise is a long-studied problem in RL literature.
To address every aspect of it and to provide a complete analysis of different noises is out of the
scope of this chapter. However, given the nature of our approach, it is of particular interest to
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Figure 4.5: SPG comparison on the LQR with non-uniform noise on the state observation. Shaded
areas denote 95% confidence interval. The TD error is not shown for REINFORCE as it does not learn
any critic. Once again, SPG TD-REG performs the best and is not affected by the noise. Instead of
being drawn to low-noise regions (which are far from the goal and correspond to low-reward regions),
its actor successfully learns the optimal policy in all trials and its critic achieves a TD error of zero.
Un-regularized SPG, which did not diverge in Figure 4.3a, here diverges six times.

analyze the effects of the TD-regularization in the presence of non-uniformly distributed noise in
the state space. In fact, since the TD-regularization penalizes for high TD error, the algorithm
could be drawn towards low-noise regions of the space in order to avoid high prediction errors.
Intuitively, this may not be always a desirable behavior. Thus, in this section we evaluate SPG
TD-REG when non-uniform noise is added to the observation of the state

sobs = strue +
N (0, 0.05)

clip(strue, 0.1, 200)
,

where sobs is the state observed by the actor and the critic, and strue is the true state. The clipping
between [0.1, 200] is for numerical stability. The noise is Gaussian and inversely proportional
to the state. Since the goal of the LQR is to reach strue = 0, near the goal the noise will be
larger and, subsequently, the TD error as well. One may therefore expect that SPG TD-REG
would lead the actor towards low-noise regions, i.e., away from the goal. However, as shown in
Figure 4.5, SPG TD-REG is the only algorithm learning in all trials and whose TD error goes
to zero. By contrast, SPG, which never diverged with exact observations (Figure 4.3a), here
diverged six times out of 50 (Figure 4.5a). SPG TD-REG plots, instead, are the same in both
Figures. REINFORCE, instead, does not significantly suffer from the noisy observations, since
it does not learn any critic.

4.5.2 Pendulum Swing-up Tasks

The pendulum swing-up tasks are common benchmarks in RL. Their goal is to swing-up and
stabilize a single- and double-link pendulum from any starting position. The agent observes the
current joint position and velocity and acts applying torque on each joint. As the pendulum is
underactuated, the agent cannot swing it up in a single step, but needs to gather momentum
by making oscillatory movements. Compared to the LQR, these tasks are more challenging
–especially the double-pendulum– as both the transition and the value functions are nonlinear.

In this section, we apply the proposed TD- and GAE-regularization to TRPO and compare
to Retrace [Munos et al., 2016] and to double-critic learning [van Hasselt, 2010], both state-of-
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the-art techniques to stabilize the learning of the critic. Similarly to GAE, Retrace replaces the
advantage function estimator with the average of n-step advantage estimators, but it additionally
employs importance sampling to use off-policy data

Âλ(st, at;ω) := (1− λ)
T−1∑
i=t

λi−t

(
T−1∏
j=t

wj

)
Ât:i+1 + λT−twT Ât:T+1, (4.47)

where the importance sampling ratio wj = min(1, π(aj |sj ; θ)/β(aj |sj)) is truncated at 1 to
prevent the “variance explosion” of the product of importance sampling ratios, and β(a|s) is the
behavior policy used to collect off-policy data. For example, we can reuse past data collected
at the i-th iteration by having β(a|s) = π(a|s; θi). Double-critic learning, instead, employs two
critics to reduce the overestimation bias, similarly to TD3. However, TD3 builds upon DPG
and modifies the target policy in the Q-function TD error target, which does not appear in
the V-function TD error (compare Eq. (4.6) to Eq. (4.26)). Therefore, we decided to use the
double-critic method proposed by van Hasselt [2010]. In this case, at each iteration only one
critic is randomly updated and used to train the policy. For each critic update, the TD targets
are computed using estimates from the other critic to reduce the overestimation bias.

In total, we tested 12 algorithms, i.e., all combinations of vanilla TRPO (NO-REG), TD-
regularization (TD-REG), GAE-regularization (GAE-REG), Retrace (RETR) and double-critic
learning (DOUBLE). All results are averaged over 50 trials. However, for the sake of clarity, in
the plots we show only the mean of the expected return. Both the actor and the critic are linear
function with random Fourier features, as presented in [Rajeswaran et al., 2017]. For the single-
pendulum we used 100 features, while for the double-pendulum we used 300 features. In both
tasks, we tried to collect as few samples as possible, i.e., 500 for the single-pendulum and 3,000 for
the double-pendulum. All algorithms additionally reuse the samples collected in the past four
iterations, effectively learning with 2,500 and 15,000 samples, respectively, at each iteration.
The advantage is estimated with importance sampling as in Eq. (4.47), but only Retrace uses
truncated importance ratios. For the single-pendulum, the starting regularization coefficient is
η0 = 1. For the double-pendulum, η0 = 1 for GAE-REG and η0 = 0.1 for TD-REG, as the
TD error was larger in the latter task (see Figure 4.6d). In both tasks, it then decays according
to ηt+1 = κηt with κ = 0.999. Finally, both the advantage and the TD error estimates are
standardized for the policy update. For more details about the tasks and the hyperparameters,
we refer to Appendix D.2.

Figure 4.6 shows the expected return and the mean squared TD error estimated by the critic
at each iteration. In both tasks, the combination of GAE-REG and Retrace performs the best.
From Figure 4.6a, we can see that GAE-REG is the most important component in the single-
pendulum task. First, because only yellow plots converge to the optimal policy. TD-REG also
helps, but blue plots did not converge after 500 iterations. Second, because the worst performing
versions are the ones without any regularization but with Retrace. The reason why Retrace, if
used alone, harms the learning can be seen in Figure 4.6c. Here, the estimated TD error of NO-
REG + RETR and of NO-REG + DOUBLE + RETR is rather small, but its poor performance
in Figure 4.6a hints that the critic is affected by overestimation bias. This is not surprising,
considering that Retrace addresses the variance and not the bias of the critic.
Results for the double-pendulum are similar but Retrace performs better. GAE-REG + RETR
is still the best performing version, but this time Retrace is the most important component,
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Figure 4.6: TRPO results on the pendulum swing-up tasks. In both tasks, GAE-REG + RETR
yields the best results. In the single-pendulum, the biggest help is given by GAE-REG, which is the
only version always converging to the optimal policy. In the double-pendulum, Retrace is the most
important component, as without it all algorithms performed poorly (their TD error is not shown as
too large). In all cases, NO-REG always performed worse than TD-REG and GAE-REG (red plots are
always below blue and yellow plots with the same markers).

given that all versions without Retrace performed poorly. We believe that this is due to the
larger number of new samples collected per iteration.

From this evaluation, we can conclude that TD- and GAE-regularization are complementary
to existing stabilization methods. In particular, the combination of Retrace and GAE-REG
yields promising results.

4.5.3 MuJoCo Continuous Control Tasks

We perform continuous control experiments using OpenAI Gym [Brockman et al., 2016] with the
MuJoCo physics simulator [Todorov et al., 2012]. For all algorithms, the advantage function is
estimated by GAE. For TRPO, we consider a deep RL setting where the actor and the critic are
two-layer neural networks with 128 hyperbolic tangent units in each layer. For PPO, the units
are 64 in each layer. In both algorithms, both the actor and the critic gradients are optimized
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by ADAM [Kingma and Ba, 2014]. For the policy update, both the advantage and the TD error
estimates are standardized. More details of the hyperparameters are given in Appendix D.3.

From the evaluation on the pendulum tasks, it emerged that the value of the regularization
coefficient η strongly depends on the magnitude of the advantage estimator and the TD error.
In fact, for TD-REG we had to decrease η0 from 1 to 0.1 in the double-pendulum task because
the TD error was larger. For this reason, for both PPO and TRPO we tested different initial
regularization coefficients η0 and decay factors κ, choosing among all combinations of η0 = 0.1, 1
and κ = 0.99, 0.9999.

Figure 4.7 shows the expected return against training iteration for PPO. On Ant, HalfChee-
tahm, Walker2d, Humanoid and HumanoidStandup both TD-REG and GAE-REG performed
substantially better, especially on Ant-v2, where PPO performed very poorly. On Swimmer and
Hopper, TD-REG and GAE-REG also outperformed vanilla PPO, but the improvement was less
substantial. On Reacher all algorithms performed the same. This behavior is expected, since
Reacher is the easiest of MuJoCo tasks, followed by Swimmer and Hopper. On Ant and Walker,
we also notice the “slow start” of TD-regularized algorithms already experienced in the LQR.
For the first 1,000 iterations, in fact, vanilla PPO expected return increased faster than PPO
TD-REG and PPO GAE-REG, but then it also plateaued earlier.

Results for TRPO (Figure 4.8) are the same except for Humanoid and HumanoidStandup.
TD-REG and GAE-REG always outperformed or performed as well as TRPO, and the ranking
of the algorithm (first, second and third best performing) is the same of Figure 4.7. On Ant,
HalfCheetah and Walker2d, GAE-REG performed better than TD-REG, while on Swimmer
GAE-REG surpassed TD-REG. On Hopper, Reacher, Humanoid, and HumanoidStandup, all
algorithms performed the same.

It is also interesting to notice that both GAE-REG and TD-REG shared the best performing η0
and κ. For instance, with PPO on Ant they both performed best with η0 = 1.0 and κ = 0.99999.
Only on HalfCheetah (for PPO) and Swimmer (for TRPO) we had to use different η0 and κ
between GAE-REG and TD-REG. On the contrary, the same values do not work for both PPO
and TRPO, as for instance with TRPO on Ant the best performing values were η0 = 0.1 and
κ = 0.99.
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OpenAI Gym Tasks with MuJoCo Physics - PPO
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Figure 4.7: Results averaged over five runs, shaded areas denote 95% confidence interval.
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OpenAI Gym Tasks with MuJoCo Physics - TRPO
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Figure 4.8: Results averaged over five runs, shaded areas denote 95% confidence interval.
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From this evaluation it emerged that both TD-REG and GAE-REG can substantially improve
the performance of TRPO and PPO. However, as for any other method based on regularization,
the tuning of the regularization coefficient is essential for their success.

4.6 Conclusion

Actor-critic methods often suffer from instability. A major cause is the function approximation
error in the critic. In this chapter, we addressed the stability issue taking into account the rela-
tionship between the critic and the actor. We presented a TD-regularized approach penalizing
the actor for breaking the critic Bellman equation, in order to perform policy updates producing
small changes in the critic. We presented practical implementations of our approach and com-
bined it together with existing methods stabilizing the critic. Through evaluation on benchmark
tasks, we showed that our TD-regularization is complementary to already successful methods,
such as Retrace, and allows for more stable updates, resulting in policy updates that are less
likely to diverge and improve faster.

Our method opens several avenues of research. In this chapter, we only focused on direct TD
methods. In future work, we will consider the Bellman-constrained optimization problem and
extend the regularization to residual methods, as they have stronger convergence guarantees even
when nonlinear function approximation is used to learn the critic [Baird, 1995]. We will also
study equivalent formulations of the constrained problem with stronger guarantees. For instance,
the approximation of the integral introduced by the expectation over the Bellman equation
constraint could be addressed by using the representation theorem. Furthermore, we will also
investigate different techniques to solve the constrained optimization problem. For instance, we
could introduce slack variables or use different penalty functions. Another improvement could
address techniques for automatically tuning the coefficient η, which is crucial for the success
of TD-regularized algorithms, as emerged from the empirical evaluation. Finally, it would be
interesting to study the convergence of actor-critic methods with TD-regularization, including
cases with tabular and compatible function approximation, where convergence guarantees are
available.

94



95



5 Conclusion and Future Work
Over the course of the last decade, reinforcement learning has developed into a promising tool for
learning a large variety of task. A lot of effort has been directed towards scaling reinforcement
learning to solve high-dimensional problems, such as robotic tasks with many degrees of freedom,
videogames, and board games. These advances, however, have been possible largely thanks to
experts prior knowledge and engineering, such as pre-structured parameterized agent behavior
policies and reward shaping. In particular, the design of task-specific exploration strategies and
auxiliary rewards is frequently needed, especially if the task to be solved includes different con-
flicting objectives, or if the reward is sparse, i.e., it is rarely emitted. Furthermore, a prohibitive
amount of data is often required, and without it the learning could be slower or more prone
to unstable behavior. For instance, with little data it is often necessary to reduce the learning
rate or to use larger batches, which may not always be possible due to limited computational
resources.

Motivated by the ambition of lifting the autonomy of artificial agents, we devoted our research
to make reinforcement learning less dependent on human pre-engineering. To this aim, we
considered three open challenges, namely learning (1) with additional conflicting objectives, (2)
with sparse rewards, and (3) preventing unstable behaviors. Our contributions in respect of each
topic are theoretical, algorithmic, and empirical, and are summarized in Table 5.1.

5.1 Summary of Contributions

In Chapter 2 we considered learning in the presence of conflicting objectives, introducing the
framework of multi-objective optimization and extending it to reinforcement learning. We dis-
cussed that providing the Pareto frontier is favorable over of tuning a scalar reward out of
multiple ones. First, because it encapsulates all the trade-offs among the objectives and gives
better insight into the problem, thus helping the a posteriori selection of the most desirable
solution. Second, because the agent trained by manually tuning a priori the reward function
may not meet our expected behavior. In contrast to classical approaches that pre-engineer the
task by scalarizing the reward functions, we presented a novel manifold-based method that ap-
proximates the Pareto frontier in a single run. We also proposed and evaluated an off-policy
extension by including importance sampling in the learning process, in order to further reduce
the sample complexity, and formalized two Pareto optimality indicator functions to assess the
quality of an approximate frontier. Evaluated on several domains, our algorithms outperformed
state-of-the-art competitors both in terms of quality of the learned Pareto frontier and sample
efficiency. In particular, the algorithms performed well in the presence of many objectives and
high-dimensional parameter spaces. To the best of our knowledge, we were among the first to
propose manifold-based approaches for multi-objective reinforcement learning, and to apply it
to reinforcement learning many-objective domains.

In Chapter 3 we then addressed the problem of learning in the presence of sparse rewards and
distractor rewards. Classical exploration techniques in reinforcement learning mostly revolve
around the signal received by the immediate reward. However, since improving the agent relies
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Table 5.1: Outline of the contributions of the thesis.

Contributions for Learning with Multiple Conflicting Objectives

Theoretical
Formalization of desirable
properties for approximate
frontiers, and of novel indi-
cator fuctions to assess their
quality.

Algorithmic
Manifold-based algorithm for
learning an approximation of
the Pareto frontier in a single
run and to take advantage of
importance sampling.

Empirical
Evaluation on three bench-
mark tasks against state-of-
the-art, including the simu-
lated robot tetherball and a
many-objecive domain.

Contributions for Learning with Sparse Reward

Theoretical
Novel value functions for long-
term exploration, with deriva-
tion of optimality bounds.

Algorithmic
Off-policy actor-critic algo-
rithm capable of learning with
sparse reward and in the pres-
ence of distractor rewards.

Empirical
Evaluation on several bench-
mark domains, both discrete
and continuous, against state-
of-the-art. Some domains are
novel as well.

Contribution for Actor-Critic Methods Instability

Theoretical
TD-regularization for actor-
critic methods, showing re-
lationship with existing rein-
forcement learning methods.

Algorithmic
Modification of common
actor-critic methods using
TD-regularization.

Empirical
Evaluation on several bench-
mark continuous tasks against
state-of-the-art.

on getting feedback via rewards, the agent cannot be improved until a reward is obtained. In
situations where this occurs very rarely, the agent can barely learn. Therefore, many algorithms
rely on well-shaped reward functions to guide the agent towards good solutions. From the
perspective of autonomous learning this reward engineering is unacceptable. First, it is easy
to misspecify the reward function and cause unexpected behavior, e.g., excessively penalizing
for collisions may prevent the robot from moving at all. Second, reward engineering requires
expertise, and the resulting reward function may not transfer to different tasks or systems. More
advanced exploration techniques use bootstrapping or revolve around heuristics to supply an
auxiliary “intrinsic” reward even when the environment does not provide one. However, first
these methods add the auxiliary reward after the action choice which makes exploration sample
inefficient for long horizon decision making. Second, they are sensitive to distractor rewards, i.e.,
low-value easily reachable rewards that correspond to local optima. Contrary to these approaches
we proposed long horizon exploration where the action we choose depends on the previous visits
to future states, that is, our approach prefers actions which allow the agent to visit states in the
future which have not been visited before. We formalized the long-term visitation value function
and developed an off-policy actor-critic algorithm for exploration. Our method significantly
improves exploration with sparse rewards and distractor rewards, and evaluations on standard
and novel benchmarks confirmed this. To the best of our knowledge, we were the first solving
efficiently discrete MDPs characterized by both sparse rewards and distractor rewards.
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Finally, in Chapter 4 we discussed actor-critic methods and their instability. A major cause
of such instability is the function approximation error in the critic. Unlike classical approaches
which address this by constraining the critic update separately from the actor, have taken into
account the relationship between the two. To the best of our knowledge, we were the among
the first proposing this kind of approach together with Dai et al. [2018]. We presented a TD-
regularized approach penalizing the actor for breaking the critic Bellman equation, in order to
perform policy updates producing small changes in the critic. We presented practical implemen-
tations of our approach and combined it together with existing methods stabilizing the critic.
Through evaluation on benchmark tasks, we showed that our TD-regularization is complemen-
tary to already successful methods, such as Retrace, and allows for substantially more stable
updates, resulting in policy updates that are less likely to diverge and improve faster.

5.2 Future Work

Our contributions opens several avenues of research. Below, we first present ideas that are
directly linked to extending the methods presented in this thesis. Then, we discuss directions of
research that have a more general scope.

5.2.1 Extensions to the Proposed Methods

The multi-objective reinforcement learning method we proposed has three main characteristics.
First, it is based on episodic reinforcement learning. Second, it revolves around Pareto optimality
indicator functions. Third, it takes advantage of importance sampling to increase its sample
efficiency. Each of these aspects can be extended and improved. The first straightforward
extension regards contextual episodic reinforcement learning, used to model many real-world
tasks, especially in robotics. Furthermore, multi-objective optimization and multi-task learning
are relatively young field of research. In particular, there are few applications of multi-objective
methods to multi-task learning. We believe that there is common ground between them, and
their combination is a promising direction of research. Second, of the two proposed indicator
functions only one is consistent, i.e., has Pareto optimality guarantees. However, as it is based
on the hypervolume, its computation is demanding. Therefore, our approach – and the multi-
objective community in general – would benefit from more computationally efficient yet still
Pareto optimal indicator functions. Third, we believe that the sampling efficiency can be further
improved. In future work we will adapt the exploration strategy proposed in Chapter 3 to the
sampling of the manifold. This would allow to sample manifolds from region of the space that
have not been explored yet. Another possibility is to use entropy-regularized mixture models,
as proposed by Arenz et al. [2018].

The exploration strategy we proposed for sparse reward reinforcement learning is based on the
long-term visitation value of state-action pairs. The function approximating this value is trained
recursively using its temporal-difference error. Subsequently, at each step our exploration policy
computes the visitation value for some candidate actions, and selects the one to execute according
to both the Q-function and the visitation value. This strategy proved to be superior to model-
free state-of-the-art methods. We believe that model-based reinforcement learning would also
benefit from our approach. Model-based methods learn a model of the transition function and,
sometimes, of the reward function as well. These models are then used for long-term planning,
i.e., the agent selects the action that maximizes the long-term Q-function according to multi-
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step simulations of the models. One of the shortcomings of these methods is that long-term
planning is computationally expensive. In future work, we will combine the proposed visitation
value with model-based learning. The idea is to learn a model of the transition function, and
use it to predict the next state give action candidates at the current state. Subsequently, the
visitation value is applied to the next state rather than on current state-action pairs. This
one-step prediction can have a significant impact on the action selection, but does not require
computationally demanding multi-step planning as in classical model-based methods.

Finally, to improve the stability of actor-critic methods we proposed the TD-regularization
loss, based on the relationship between the critic and the actor. This loss penalizes the actor
for breaking the critic Bellman equation, in order to perform policy updates producing small
changes in the critic. In this thesis, we only focused on direct TD methods. In future work,
we will consider the Bellman-constrained optimization problem and extend the regularization to
residual methods, as they have stronger convergence guarantees even when nonlinear function
approximation is used to learn the critic [Baird, 1995]. We will also study equivalent formulations
of the constrained problem with stronger guarantees. For instance, the approximation of the in-
tegral introduced by the expectation over the Bellman equation constraint could be addressed
by using the representation theorem. Furthermore, we will also investigate different techniques
to solve the constrained optimization problem. For instance, we could introduce slack variables
or use different penalty functions. Another improvement could address techniques for automat-
ically tuning the regularization coefficient, which is crucial for the success of TD-regularized
algorithms, as emerged from the empirical evaluation. Finally, it would be interesting to study
the convergence of actor-critic methods with TD-regularization, including cases with tabular and
compatible function approximation, where convergence guarantees are available.

5.2.2 General Ideas for Autonomous Reinforcement Learning

The problem of making reinforcement learning fully autonomous is far from solved. Beside the
challenges discussed in this thesis, there are many other aspects of rienforcement learning which
need to be addressed to achieve truly autonomous agents. Below, we discuss what we think are
some of the most relevant and that we will tackle in the future.

Goal-Driven Dimensionality Reduction

Finding state representations on which reinforcement learning can be performed is one of the
most tedious process when setting up a learning system. Manually designing features requires
expertise and usually these features do not generalize well over different tasks. This problem is
prominent in the presence of high-dimensional raw data such as images. For example, consider
the robot tetherball game. Truly autonomous agents would learn to play the game based solely
on raw observations of the environment, i.e. camera images. However, images provide high-
dimensional, redundant and even useless information. Redundant because only tracking the
pixels corresponding to the contour of the ball over time is enough to estimate its position and
velocity. Useless because everything else on the scene is irrelevant for the tetherball task. For
instance, the pole and the background should be ignored, as the former is fixed and the latter
does not affect the game even if its appearance may change because of light. In the end, as low-
dimensional state representations are essential to efficiently solve tasks, we handcrafted features
consisting of the ball position, velocity, and pivot point, estimated through a Kalman filter (we
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refer to Appendix A for more details). Nonetheless, learning from raw input without the need
of pre-engineering is mandatory for truly autonomous learning.

To the best of our knowledge, goal-driven dimensionality reduction from raw input is still an
open problem in reinforcement learning. On one hand, in fact, applying generic dimensionality
reduction, e.g., autoencoders, does not guarantee that the state representation is truly goal-
relevant, i.e., encoding only information relevant for the task. On the other hand, learning goal-
driven representations is challenging because of the circular dependency between the optimal
state representation and the optimal policy. To learn goal-relevant representations a large part
of the state space needs to be explored using a goal-achieving policy. At the same time, learning
a locally or globally optimal policy requires a concise representation.

In the last years, we presented preliminary work to address these limitations. First, in [Parisi
et al., 2017b] we combined information-theoretic algorithms with principal component anal-
ysis to perform a return-weighted reduction of the state representation. Second, together
with Tangkaratt et al. [2017] we proposed a policy search algorithm that learns a quadratic
model of the reward function to compute a Gaussian policy analytically. To address dimension-
ality reduction, we perform nuclear norm regularization on the reward model in a fully supervised
manner. Both methods achieved good results on benchmarks, but are limited to linear dimen-
sionality reduction. In the future, we will extend our work to mutual information, a quantity
measuring statistical dependency between random variables [Suzuki and Sugiyama, 2013, Niu
et al., 2013]. Mutual information is particularly appealing as it can be used to detect non-linear
dependencies between two random variables and has already been used for both dimensionality
reduction and, very recently, also for reinforcement learning [Kim et al., 2019].

Stochastic Environments and Uncertainty

The majority of reinforcement learning approaches, including the ones presented in this thesis,
assume deterministic environments, i.e., where the transition function is deterministic. Most of
the benchmarks, for instance, are deterministic simulators. In these environments, learning is
easier not only because of the lower variance of gradient estimates, but also because errors in
the estimates are due only to errors in the approximators. For instance, in actor-critic methods,
errors in the value function estimates would be due only to the bias or the variance in the critic.
By contrast, if the environment is stochastic, the error may be due also to the noise in the
data. Being able to distinguish when high errors are due to the stochasticity in the environment
and when they are due to inner errors in our approximators can make the difference between
success and failure. Consider the TD-regularization proposed in this thesis, which penalizes the
actor for inaccurate critic estimates. This assumes that high TD error is symptomatic of an
inaccurate critic. However, what if the critic error is due to noisy observations or transitions?
Then the TD-regularization could lead the actor towards low-noise regions in order to avoid high
TD errors, rather than towards regions maximizing the expected return.

In machine learning this problem takes the name of epistemic vs aleatoric uncertainty. In
reinforcement learning, it is still a relatively young area of research, with researcher addressing
it only recently [Sherstan et al., 2018, Pathak et al., 2019]. We believe that the identification
of different sources of uncertainty is crucial for the application of reinforcement learning to real-
world problem, which are naturally characterized by stochastic dynamics, and we will devote
part of our future research to it.
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A Details of the Robot Tetherball Task
Here, we provide the details about the robot tetherball platform, the learned and the hand-
crafted players. We also provide details of the experimental results, highlight the benfits of using
reinforcement learning instead of human programming, and discuss the hyperparameters tuning
of the learned player.
Regarding the hardware, we use two BioRob robots with six degrees of freedom each [Lens and
von Stryk, 2013]. The BioRobs are cable driven lightweight robots, that achieve highly dynamic
behavior due to the integration of springs between the motors and the cables which drive the
joints. This highly dynamic behavior, however, makes it hard to provide a inverse dynamics
model for the robot.
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Figure A.1: Schematics of the mechanical teth-
erball model. a) State representation in spherical
space with four degrees of freedom. b) Simplifica-
tion of the {x, y} coordinates by ignoring the pole
radius r. c) The infinitesimal change of the states
for formulating the nonholonomic constraints. d)
The distribution of the hitting points for both play-
ers. The hand-crafted player hits the ball in the
fixed plane defined by the pole and origin of the
robot. The learned player does not have any con-
straint and can freely choose the interception point.
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Formally, we denote the state of the environment by x = {q, q̇, b, ḃ, h}, where q, q̇ ∈ R6 are
the joint positions and velocities, b, ḃ ∈ R3 are the ball position and velocity in Cartesian
coordinates, h is the height of the pivot point along the pole. The control actions u ∈ R6 are
torques generated by a low-level controller u = fPD(x,xdes). The low-level controller chooses
actions u such that the robot follows a desired trajectory τ des = {xdes,i}i=1:H , where H is the
length of the desired trajectory. While the joint velocities q̇ can be controlled directly, the ball
positions b and the pivot point h are only controlled indirectly. Given this setup, we formulate
both an hand-crafted player and a learned player capable to play robot tetherball against each
other.

A.1 The Hand-Crafted Player

In this section, we dissect the tetherball task and discuss how the problem can be described
mathematically in order to derive an hand-crafted player. This hand-crafted player uses a me-
chanical model of tetherball to predict the ball trajectory and the resulting interception point.
Subsequently, a stroke movement represented by a spline function is generated and followed by
the low-level controller fPD(x,xdes).

A.1.1 Mathematical Trajectory Prediction

Mathematically describing tetherball requires a complex mechanical model [Abdulsamad et al.,
2014]. Even after disregarding effects like friction, air drag and changes in string tension, the
underlying equations are still highly nonlinear. As shown in Fig. A.1a, we can describe the state
of the model with four degrees of freedom when represented in spherical space. Here, {θ, φ, l}
are the spherical coordinates while h is the vertical translation of the pivot point along the
pole. These four coordinates fully determine the Cartesian position of the ball according to the
equations

x ≃ l sin θ cosφ, y ≃ l sin θ sinφ, z = l cos θ + h. (A.1)

As shown in Fig. A.1b, for {x, y} coordinates we ignore the pole radius r when compared to the
length of the string l. In addition to these algebraic equations, the system is constrained by two
nonholonomic, i.e., not integrable, velocity conditions for {l̇, ḣ}, as shown in Fig. A.1c. These
constraints reflect the behavior of the string while it (un-)winds around the pole and are given
by

l̇ =
−rφ̇
sin θ , ḣ =

rφ̇

tan θ . (A.2)

For the purpose of estimating the ball trajectory we need the full equations of motion, which we
derive using the principle of Lagrange-D’Alembert [Bloch, 2003] for systems with nonholonomic
velocity constraints

d

dt

∂L

∂ρ̇i
− ∂L

∂ρi
=

n∑
j=1

λja
j
i , (A.3)

where ρi are the degrees of freedom and L = T − U is the Lagrangian consisting of the kinetic
energy T = mv 2/2 and potential energy U = −mgz. The right side of the equation incorporates
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the velocity constraints ai, as shown in Eq. (A.2), and their respective Lagrangian multipliers
λi

aTq̇ =
[
0 r

[
1

tan θ −
1

sin θ

]
1 1

] [
θ̇, φ̇, l̇, ḣ

]T
. (A.4)

By expanding the Lagrange-D’Alembert equation we obtain

d

dt

∂L

∂θ̇
− ∂L

∂θ
= 0,

d

dt

∂L

∂φ̇
− ∂L

∂φ
= λ1

r

sin θ − λ2
−r

tan θ ,

d

dt

∂L

∂l̇
− ∂L

∂l
= λ1,

d

dt

∂L

∂ḣ
− ∂L

∂h
= λ2. (A.5)

The resulting differential equations and constraints are solved for the accelerations {θ̈, ϕ̈, l̈, ḧ} and
the two Lagrangian multipliers {λ1, λ2}. Numerically integrating the initial state {θ, θ̇, ϕ, ϕ̇, l, h}
according to these equations allows us to predict the motion of the ball.
The hand-crafted player uses this model to estimate and continuously update the ball trajectory
until interception. This trajectory is transformed into the Cartesian frame of the player and used
to choose a hitting point that lies in the plane defined by the pole and origin of the robot (see
Fig. A.1d). Once such a point is found on a trajectory with a rotation direction corresponding
to the hitting direction of the player, the time and position information are passed on to the
lower controller to plan and execute the appropriate joint movement.

A.1.2 Generating Hitting Trajectories

Given the desired interception point xdes, the low-level controller starts by solving a constrained
inverse kinematics problem

qdes = f−1
kin(xdes)s.t. qmin < qdes < qmax. (A.6)

Thereupon, it generates a minimum jerk trajectory for a smooth transition to the hitting posture
while satisfying the end time and speed constraints. A minimum jerk trajectory is represented by
a fifth order polynomial qt =

∑5
i=0 cit

i whose parameters ci reflect the start and end conditions
of a trajectory. In the end, the joint trajectory is transformed into a series of motor torques ui

by an underlying PD-controller with gravity compensation.

A.2 Learning to Play Tetherball

After introducing the hand-crafted player, based on a mechanical model of tetherball, we show
how to formulate the problem of tetherball as a contextual episodic Markov Decision Process
(MDP) [Deisenroth et al., 2013] such that we can employ reinforcement learning (RL) algorithms
to learn how to play it. We formulate the problem with contexts s ∈ S, actions θ ∈ Θ and
returns Rθ,s ∈ R. The goal of the robot is to learn a context-dependent policy π(θ|s) which
selects actions according to the context and can, thus, generalize to different scenarios. We
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choose this distribution to be a Gaussian with linear mean π(θ|s) = N (a +As,Σ). We use
Dynamic Motor Primitives (DMPs) proposed by Ijspeert et al. [2002] to represent trajectories.
DMPs allow us to parametrize trajectories such that one vector of actions θ defines a desired
trajectory to be followed by the robot. In this setting, the context s defines the initial Cartesian
position and velocity of the ball as well as the pivot point of the rope at the start of the episode,
i.e., s = {b0, ḃ0, h0}. We define each player turn as an episode. A turn starts when a player
hits or misses the ball.
Alternatively, the tetherball task could be formulated as infinite horizon problem where a policy
π(u|x) directly selects control actions at every time step. However, formulating real robot
learning problems based on time indexed states and actions is difficult for several important
reasons. Firstly, a high control and sensory sampling frequency can lead to effects that render
the problem Markovian only in a higher order. This means that effects of control actions will not
be registered immediately by the sensors, and a history over several time steps has to be kept to
make the learning problem feasible. Reducing the frequency too much can lead to jerky behaviors
or controllers that do not resolve the desired behavior finely enough to solve the problem at hand.
Even worse, it is possible that there is no ‘sweet spot’ between the two extremes at all. Non-
Markovian behavior in the proposed platform is additionally introduced due to the fact that the
state of the springs and the extension of the cables cannot be directly observed. Furthermore,
solving the optimization problem with a time-dependent policy requires exploration noise for all
states. Requiring such noise on all states should be avoided for two reasons. First, it generates
non-smooth trajectories which may be not only undesirable but usually harmful to the robot.
Second, many step-based RL methods require the ability to sample from the state space during
the trajectory, i.e., to be able to set the robot and the environment to an arbitrary state, which
obviously is physically impossible.
However, while trajectory based learning methods can be easy to use, increase performance
and reduce the learning time in many scenarios, they are not suitable for arbitrary problems.
If, for example, feedback during the trajectory is crucial, step-based RL methods can be more
appropriate.

A.2.1 Compact Skill Representation

As stated above, DMPs offer a compact representation of basic movements. Formally, DMPs are
defined as a second order dynamic system that acts like a spring-damper system which is driven
by a non-linear forcing function f(zt,θ)

q̈t = τ 2
(
α

(
β (g − q)− q̇

τ

)
+ f(zt,θ)

)
,

żt = −ταzzt, (A.7)

where q, q̇, q̈ are the joint positions, velocities and accelerations respectively. The unique goal
attractor position and velocity are defined by g, ġ. Variable zt denotes the phase and τ is a
temporal scaling factor. Finally, α, β, αz are fixed parameters. Commonly, a separate DMP
is used for each joint of the robot and the phase zt is shared between all joints in order to
synchronize them. The forcing function is linear in its weights θ but non-linear in the phase
zt, i.e., f(zt,θ) = ψ(zt)

Tθ. Usually, for stroke-based movements, normalized Gaussian basis
functions are used. A crucial aspect that affects the accuracy of the resulting trajectory is the
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number of bases used, as they influence learning speed and expressiveness of the final policy. We
evaluate the effects of this choice in the experimental section.
The resulting desired trajectory represented by DMPs is then followed by the same PD-controller
with gravity compensation that is used by the hand-crafted player. However, even if the parame-
ters of the PD-controller are not precisely tuned to allow perfect tracking of the input trajectory,
the RL agent can learn to produce input trajectories that compensate for the tracking error of
the PD-controller, while the hand-crafted player depends on accurate tracking of the desired
trajectory τ des.

A.2.2 Imitation Learning of DMPs

When using DMPs to generate desired trajectories, we can easily bootstrap the learning process
by demonstrating an initial trajectory, i.e., by imitation learning. In many cases, bootstrapping
by imitation learning is essential to make the learning process feasible, as it not only provides a
good initial policy but also helps avoiding sampling trajectories that are dangerous to the robot
and its environment.
More formally, given a desired joint trajectory τ des = [qi, q̇i, q̈i]i=1:T , a unique goal attractor
g, ġ, fixed parameters α, β, αz and a temporal scaling factor τ , we can compute the forcing
function f(zt,θ) for each time step and obtain the parameters θ by linear regression

f(zt,θ) =
q̈t
τ 2
− α

(
β(g − qt) +

ġ − q̇t
τ

)
θ =

(
ΨTΨ+ λI

)−1
ΨTf(zt,θ) (A.8)

where Ψ = [ψ(z1), . . . ,ψ(zT )].
In the tetherball games, the movement we want to imitate using DMPs consists of several
phases, i.e., the robot starts from its initial resting position, hits the ball and finally goes back
to the resting position. While it is already challenging to learn such a movement for fixed
initial conditions, we require the robot to generalize to different contexts, i.e., ball positions and
velocities to win a match. Thus, the robot needs to adapt shape and execution speed of the DMPs
according to new contexts without re-learning the whole task. This generalization is represented
by the linear factor in the Gaussian policy. To initialize the policy π(θ|s), we use a set of M
initial demonstrations paired with different contexts. Given a dataset D = {yi, si}i=1:M , we
obtain M parameterizations θi using imitation learning and subsequently initialize a,A,Σ with
linear regression

Θ = [θ1, · · · ,θN ]T ,

Φ =
[
[s1, · · · , sN ]T ,1

]
,[

A
a

]
= (ΦTΦ)−1ΦΘ,

Σ = Cov(Θ). (A.9)

When using DMPs we can choose whether to only provide a single demonstration to deter-
mine the mean of the initial policy or to provide multiple demonstrations to also determine
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the covariance of the initial policy. We evaluate the effects of this decision in the experimental
section.

A.2.3 Contextual Episodic RL

While imitation learning is a powerful approach to initialize the policy, it is often not sufficient
to solve the learning problem. Thus, the robot relies on RL methods to further refine the policy.
The goal for the robot, then, is to learn a policy π(θ|s) that selects trajectories which hit the
ball and wind it around the pole for arbitrary initial ball positions and velocities. More formally,
the robot aims to find the policy π that maximizes the reward function

Rπ =

∫
s

µ(s)

∫
θ

π(θ|s)Rθ,sdθds,

π∗(θ|s) = arg max
π

Rπ, (A.10)

where µ(s) is the distribution over contexts and Rθ,s is the expected reward over all possible
trajectories executed with actions θ in context s, i.e., Rθ,s =

∫
τ
p(τ |θ, s)R(τ , s)dτ . The

reward function R(τ , s) is used to determine the quality of trajectory τ executed during an
episode with context s. For the robot tetherball game, we formulate the reward in terms of four
components pi, i.e., R(τ , s) = p1+p2+p3+p4. The first term p1 = k1(1−exp(d2)) reflects the
minimum distance d between the paddle and the ball during the episode. Component p2 = k2J
penalizes the total jerk of all joints during the whole trajectory. The third term p3 is a penalty
occurring when the robot misses the ball or hits it in the wrong direction. Finally, p4 is an
additional penalty given when the trajectory would cause a collision with the base the robot is
standing on. The scale factors ki are to transform costs into rewards and to scale the objectives
magnitude.

To solve the problem expressed in Eq. (A.10), we use contextual relative entropy policy search
(REPS) [Peters et al., 2010]. The update step for the policy π(θ|s) is defined as the solution
of the constrained optimization problem that determines the distribution p(s,θ) = µ(s)π(θ, s)
that maximizes the average return Rπ. At the same time, REPS bounds the relative en-
tropy (also called Kullback-Leibler divergence) between the new distribution p and the cur-
rent one q to stay close to the observed data to balance exploration and exploitation, i.e.,∫
s
p(s,θ) log (p(s,θ)/q(s,θ)) ds ≤ ϵ. However, the context distribution p(s) =

∫
θ
p(s,θ)dθ

cannot be chosen freely, as it is specified by µ(s), i.e., we need to satisfy the constraint
∀s : p(s) = µ(s). For continuous context vectors, we implement this constraint by match-
ing feature averages instead of single probability values, i.e.,

∫
p(s)φ(s)ds = φ̂, where φ(s) is
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a feature vector describing the context and φ̂ is the mean observed feature vector. The resulting
constrained optimization problem is given by

max
p

∫∫
s,θ

p(s,θ)Rθ,sdsdθ,

s.t.
∫∫

s,θ

p(s,θ) log p(s,θ)
q(s,θ)

ds ≤ ϵ,∫∫
s,θ

p(s,θ)φ(s)dsdθ = φ̂,∫∫
s,θ

p(s,θ)dsdθ = 1. (A.11)

Using the method of Lagrangian multipliers we derive the closed form for the new distribution
update step

p(s,θ) ∝ exp
(
Rs,θ − V (s)

η

)
, (A.12)

where the value function V (s) = γTφ(s) is a context-dependent baseline, while η and γ are
the Lagrangian parameters, found by optimizing the dual function.
As the relationship between the context-policy parameters pair {s,θ} and the corresponding
expected reward Rθ,s is not known, sample rollouts are used to approximated the integrals
in Eq. (A.11). To execute the i-th rollout, we first observe the context s[i] ∼ µ(s). Subse-
quently, we sample the DMPs parameters θ[i] ∼ π(θ|s[i]). Finally, we execute the DMPs with
parametrization θ[i] in context s[i] to obtain reward R[i]

θ,s. Repeating this process for N rollouts,
we obtain the average return Rπ and the weights p[i] for a maximum likelihood update of the
distribution p(s,θ)

p[i] ∝ exp
(
R

[i]
θ,s − V (s[i])

η

)
,

Rπ = ⟨Rθ,s⟩. (A.13)

The quality of the learned policy and the convergence speed depend on the number of episodes
N and by the basis functions φ used. Using many rollouts helps reducing the variance of an
update step, but may also increase the number of episodes to converge. In the same way, using
many features to approximate V (s) can slow down the solution of the constrained optimization
problem. We evaluate the effects of these decisions in the experimental section.

A.3 Evaluation

After detailing both the hand-crafted player as well as the RL-based player, we evaluate both and
show the results in this section. We start by investigating the effects of the different parameters
on the learned player and, subsequently, present the results of comparing the hand-crafted player
to the learned player. The evaluations done in simulation are averaged over ten trials, while the
evaluations done on the real robot are averaged over three trials. As REPS does not rely on
using samples from only the last policy, we base the policy update on samples from the last
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Figure A.2: Results for different number of Gaus-
sian basis functions per DoF used for the DMP.
Four bases achieve the best results. Using only
three leads to less smooth trajectories, while using
five bases increases the complexity of the learning
problem without improving the quality of the final
policy.
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Figure A.3: Comparison over different number of
demonstrations to initialize the policy π. Using
only a single demonstration, the initial policy per-
formance is considerably worse, as it is too explo-
rative. Providing more demonstrations bootstraps
the learning process and leads to better final poli-
cies.

20 policies to stabilize the policy update. This stabilization is important to keep the shape of
the explorative variance of the policy in high dimensional action spaces. The KL bound for all
experiments in Eq. (A.11) is set to ϵ = 0.9. The parameters, αz, α, β and τ of the DMPs are
set to αz = 0.8, α = 5, β = 1, τ = 1. These parameters are chosen to reflect a qualitative
trajectory shape that broadly fits the stroke profiles in our task.
For the real robot experiments, a Kinect sensor mounted on the ceiling delivers color and depth
images at a rate of 30Hz. As the pivot point of the string cannot be detected by the vision system,
an unscented Kalman filter [Simon, 2006] approximates the translation of the pivot point h along
the pole.

A.3.1 Evaluation of DMP Basis Functions

An important parameter of DMPs is the number of basis function ψ(zt) used to parametrize
the forcing function f(zt,θ). A higher number of basis functions allows for more complicated
trajectory shapes but also increases the dimensionality of the action space Θ and, thus, makes
the learning problem harder. Fig. A.2 shows the comparison of learning with different numbers of
Gaussian basis functionsψ(zt). The plot shows that using three or four bases leads to comparable
results, while using five bases per joint is increasing the complexity offsetting the potential benefit
of learning more expressive trajectories. While the expected reward achieved with three and four
bases is similar, the trajectories generated using four bases are overall smoother. Therefore we
use four basis function for all following experiments.

A.3.2 Selection of Initial Demonstration

We also investigate the number of demonstration recorded to initialize the policy π(θ, s).
Fig. A.3 shows that providing only a single demonstration leads to poor results. The reason
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Figure A.4: Evaluation of different number of
episodes per iteration. With ten samples the algo-
rithm already performs well. Providing 25 samples
slightly improves asymptotic quality but requires
more overall samples. With 50 samples the pol-
icy does not converge in the limit of 2,500 total
evaluations.
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Figure A.5: Comparison over different types of ba-
sis functions to approximate the value function.
While kernel based features are computationally
more intensive and generally require more sam-
ples to work well, they also increase performance
of the final policy.

is that with only one demonstration the initial covariance Σ needs to be set manually and uni-
formly in all dimensions (in our trials, Σ = 100I). This decision is not straightforward and
can produce policies that are too explorative, significantly increasing the convergence time. In-
deed, it can be noticed that after 2,500 episodes, the policy is still improving, but its quality
is far below those policies whose initial exploration bounds were determined through additional
demonstrations. When using multiple demonstrations, we choose a set of trajectory-context
pairs that span the largest context space possible. We also allow low quality demonstrations in
which the robot misses the ball. As expected, the more demonstrations are provided, the better
the quality of the initial policy is. However, in order to restrict the number of demonstrations
to a reasonable value, we decide not to use more than 20 demonstrations.

A.3.3 Evaluation of Value Function Features

Contextual REPS depends on a feature representation φ(s) of the state s to predict the ex-
pected quality V (s) of that state. While simpler features like linear or squared features can be
more robust and sample efficient, kernel based features promise better performance for complex
problems. Fig. A.5 shows that for the problem of robot tetherball kernel based features indeed
outperform the simpler alternatives. While linear and squared features can be used to achieve
acceptable performance, the greater flexibility of kernel based features offers an edge in due to
the non-linearity of the task.

A.3.4 Selection of Number of Rollouts

An important trade-off for any policy search algorithm is the number of evaluations used per
policy update. While more samples yield more stable updates, they also slow down the learning
process. Fig. A.4 shows that when using only 10 episodes the reward quickly increase but
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Figure A.6: Comparison of the real robots in the single player setup, averaged over three trials and
ten rollouts per iteration. The learned player reaches performance levels similar to the hand-crafted
one after about 50 iterations and outperforms it at the end of learning.

Table A.1: Match results for the real robots. The learned player defeats the hand-crafted one and
achieves better overall hit rate, averaged over 25 matches.

Player Hit rate Matches won Total score
handHcrafted 71% 6/25 8
Learned 85% 19/25 38

the asymptotic performance is slightly below what can be achieved when using 25 rollouts per
iteration. Using 50 episodes slows down the learning process considerably and does not lead to
a converged policy after the limit of 2,500 total episodes. The plot for using ten samples per
iteration is more noisy as it is averaged over fewer rollouts per data point.

A.3.5 Hand-Crafted vs. Learned Player

According to the results reported, we set the learned player to use 20 initial demonstrations, four
Gaussian basis functions for the DMP, kernel based features with three centers for approximating
value function, and 25 episodes per iteration for the policy update. To get an initial estimate of
their relative quality, we compare the learned player to the hand-crafted one in a single player
experiment using the hit rate as measure of evaluation. The comparison is performed on the real
system over three trials, every ten iterations and over ten episodes, summing up to 300 rollouts.
As shown in Fig. A.6, the learned player outperforms the hand-crafted system. The advantage
of the learned system is due to its ability to learn to compensate the highly non-linear forward
dynamics of the robot, as caused by springs in the joints. On the other hand, lacking a full inverse
dynamics model, the hand-crafted player fully depends on accurate tracking of the planned
trajectory. Therefore, improving the hand-crafted player would require a time-consuming process
to explicitly approximate the dynamics of the robots.
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A.3.6 Two Player Full Tetherball

As final evaluation, we let the real robots play full matches against each other and compare them
according to the score. A match is started by the referee throwing the ball randomly to one of
the robots and ends when none of the robots is able to hit the ball anymore. The score of a match
is determined by how often the ball winds around the pole for each player, i.e., by the number
of misses of the opponent. The two robots played a total of 25 games. The hand-crafted player
won six of the 25 games, while the learned player won the remaining 19 games. Throughout the
25 games, the hand-crafted player scored eight times, while the learned player scored 38 times.
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B Details of MORL Experiments
Here, we provide the details about the algorithms implementation used in Section 2.4. We devote
a section to each domain to describe the settings omitted from the main body of the chapter.
However, in order to improve the readability and the comparison of the settings of the domains,
we have summarized MO-eREPS and MO-NES common parameters in Table B.1. We recall that
ϵ is the bound to the KL divergence used by MO-eREPS, Neval is the number of samples drawn
from ϱ for the evaluation and ε is the unique parameter of the adaptive step-size algorithm used
by MO-NES and described in [Peters, 2007]

α =

√
ε

∇ωJ (ω)TF−1
ω ∇ωJ (ω)

, (B.1)

where Fω is the Fisher information matrix.

B.1 Water Reservoir Control

As the water reservoir domain has been fully described in the experimental section, we need only
to define some parameters exploited by the algorithms. WS-eREPS scalarizes the objectives
by 50 and 500 linearly spaced weights for the 2-objective and the 3-objective case, respectively,
and its KL divergence bound is ϵ = 1. RA follows 50 and 500 linearly spaced directions and,
along with PFA, exploits the natural gradient [Peters and Schaal, 2008a] and the learning rate
described in Equation (B.1) with ε = 4. SMS-EMOA has a maximum population size of 100
and 500, for the 2- and 3-objective cases respectively. Its crossover is uniform and the mutation,
which has a chance of 80% to occur, adds a white noise to random chromosomes. At each
iteration, the top 10% individuals are kept in the next generation to guarantee that the solution
quality will not decrease.
PMGA uses the learning rate described in Equation (B.1) as well, with ε = 2. The algorithm
parameterizes the manifold in the policy parameters space by a polynomial fρ(x), where x is the
free sampling variable. A first degree polynomial and a second degree polynomial are used for
the 2- and 3-objective, respectively. Both parameterizations are forced to pass near the extreme
points of the Pareto frontier, computed through single-objective policy search, as described in
the original paper [Pirotta et al., 2015]. In both cases, the manifold parameters to be learned by
PMGA are six. During learning, one and five parameters θ[i] are collected from the manifold,
for the 2- and 3-objective case, respectively. Since PMGA requires the indicator function S to
be differentiable, we employed the indicator presented in [Pirotta et al., 2015], consisting of a
ratio between the distances of a point J(θ[i]) to utopia and anti-utopia points, i.e.,

S
(
J(θ[i])

)
= β1

J(θ[i])− Jau

J(θ[i])− Ju
− β2.
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Table B.1: Algorithms setup details for MO-eREPS and MO-NES.
Domain 2-obj. Water Reservoir 3-obj. Water Reservoir LQR Tetherball
Ju −[0.5, 0.9] −[0.5, 0.9, 0.001] −283 [−20, 20]
Jau −[2.5, 11] −[65, 12, 0.7] −436 [−50, 0]
ϵ 1 (without IS) ; 2 (with IS) 2 2 1
ε 0.2 0.2 0.1 0.2

Neval 500 1,000 10,000 200

We chose β1 = 1 and β2 = 1. Finally, as approximate frontiers returned by PMGA are con-
tinuous, they are discretized by sampling 500 and 1,000 points from the manifold for the 2- and
3-objective case, respectively.

B.2 Linear-Quadratic Regulator

As done in the previous section, we only need to provide the algorithms setup. Both WS-eREPS
and RA perform 5,000 optimization procedures. WS-eREPS KL divergence bound is ϵ = 1,
while RA and PFA learning rate parameter is ε = 5. SMS-EMOA setting is the same as in the
water reservoir domain and its maximum population size is 2,000.
As the LQR is defined only for control actions in the range [−1, 0] and controls outside this
range lead to divergence of the system, PMGA parameterizes the manifold by

θ = fρ(x) =
−1

exp(poly(x,ρ, 2)) , x ∈ simplex([0, 1]5),

where poly(x,ρ, 2) is the complete degree of variables x, coefficients ρ and degree two, for a total
of 75 parameters ρ to learn. During learning, 50 samples θ[i] are collected from the manifold
and the same scalarization function S as in the water reservoir control task is used. As for
MO-eREPS and MO-NES, their frontiers are discretized by sampling 10,000 points from the
manifold.

B.3 Simulated Robot Tetherball

The tetherball domain has been extensively described in the experimental section. Additional
parameters regarding MO-eREPS and MO-NES are reported in Table B.1. WS-eREPS and RA
perform 25 optimization procedures. WS-eREPS KL divergence bound is ϵ = 2, as well as RA
and PFA learning rate parameter ε = 2. SMS-EMOA crossover, mutation and elitism are the
same as above, while its maximum population size is 200.
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C Details of Exploration Experiment
Below, we present the pseudocode and the hyperparameters of the algorithms used in Section
3.4. In all of them, we kept two separate Q-tables for the behavior policy β(a|s) and the target
(greedy) policy π(a|s). The former can be either initialized to zero or optimistically, while
the latter always to zero. With the optimistic initialization, all entries of Q(s, a) are set to
rmax/(1− γ). The reason why we do not initialized Qπ(s, a) optimistically is that if the agent
does not visit all the state-action pairs, and thus never updated the corresponding Q-table entries,
it would still had an optimistic belief over some states. The performance of the target policy
can therefore be poor until all state-action pairs are visited. For example, in our experiments
in the “prison” gridworld, the ϵ-greedy policy was finding some low-value treasures, but during
the evaluation the greedy policy was not trying to collect them because it still had an optimistic
belief over unvisited empty states.
In most of the pseudocode, we explicitly distinguish between Qβ(s, a) and Qπ(s, a). If simply
Q(s, a) appears, it means that both Q-tables are updated using the same equation.
In all algorithms, we evaluate π(a|s), i.e., the greedy policy over Qπ(s, a), every 50 training
steps. Each evaluation episode has a horizon 10% longer than the training one. The learning
rate is η = 0.5 and the discount factor γ = 0.99. For MDPs with stochastic transition function
(Sections 3.4.2 and 3.4.2) we used η = 0.1. The ϵ-greedy initially has ϵ0 = 1, then it decays at
step according to ϵi+1 = ξϵi, where ξ is chosen such that ϵend = 0.1 when the learning is over.
Finally we break ties with random selection, i.e., if two or more actions have the same max
Q-value the winner is chosen randomly.

C.1 The Generic Q-Learning Scheme

In all experiments we used Q-learning with infinite replay memory. Classic Q-learning by Watkins
and Dayan [1992] updates the Q-tables using only the current transition. The so-called experience
replay, instead, keeps past transitions and use them multiple times for successive updates. This
procedure became popular with deep Q-learning [Mnih et al., 2013] and brought substantial
improvement to many RL algorithms.
In our experiments, we followed the setup proposed by Osband et al. [2019] and used an infinite
memory, i.e., we stored all transitions, since it allowed much faster learning than classic Q-
learning. This can also be seen as Dyna-Q [Sutton, 1990] without random memory sampling. In
our experiments, the size of the domains does not pose any storage issue. When storage size is
an issue, it is possible to fix the memory size and sample random mini-batches as in DQN [Mnih
et al., 2013]. More details in Appendix C.6.
Algorithm 2 describes the generic scheme of Q-learning with infinite replay memory. TD learning
is used on both Qπ(s, a) and Qβ(s, a), with the only difference being the initialization (Qπ(s, a)
is always initialized to zero).
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Algorithm 2: Tabular Q-Learning with Replay Memory
1 Initialize Qβ

0 (s, a), Qπ
0 (s, a), i = 0

2 While i < ibudget do
3 Reset environment to state s1
4 For t = 1...H or until st is terminal
5 Select action according to at ∼ β(·|st)
6 Transition to st+1 = P (st+1|st, at) and receive reward rt = R (st, at)

7 Store tuple (st, at, rt, st+1)

8 For all tuples (s, a, s′, r) in the replay memory

9 δ(s, a, s′) =

rt −Qi(s, a) if s is terminal
rt + γmaxaQi(s

′, a)−Qi(s, a) otherwise
10 Qi+1(s, a)← Qi(s, a) + ηδ(s, a, s′)

11 Update budget counter: i← i+ 1

Depending on β(a|s), we have different exploration strategies, i.e.,

β(at|st) ∼ unif{A}, random (C.1)

β(at|st)

{
= arg maxa

{
Qβ(st, a)

}
with probability 1−ϵ,

∼ unif{A} with probability ϵ,
ϵ-greedy (C.2)

β(at|st) = arg max
a

Qβ(st, a) + κ

√
2 log

∑
aj
n(st, aj)

n(st, a)

 . UCB1 (C.3)

Numerical stability and worst-case scenario. For UCB1 [Auer et al., 2002], a visitation count
n(s, a) is increased after every transition (see Algorithm 3, line 7). In classic bandit problems,
UCB1 is initialized by executing all actions once, i.e., with n(s, a) = 1. In MDPs we cannot
do that, i.e., we cannot arbitrarily set the agent in any state and execute all actions, thus
n(s, a) = 0. Following the W-function bound in Section 3.3.3, we always add +1 inside the
logarithm, and bound the square root to (Qmax−Qmin)/κ+

√
2 log |A| when n(s, a) = 0. This

correspond to the case where all actions but ā has been executed once, and enforces the policy
to choose ā. In our experiments, we set Qmax = rmax/(1− γ) and Qmin = 0.
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C.2 Q-Learning with Augmented Reward

This version follows the same scheme of Algorithm 2 with ϵ-greedy exploration. The only dif-
ference is that the reward used to train the behavior policy is augmented with the exploration
bonus proposed by Strehl and Littman [2008]. In our experiments, α = 0.1, as used by Strehl
and Littman [2008] and Bellemare et al. [2016].

Algorithm 3: Tabular Q-Learning with Replay Memory and Augmented Reward
1 Initialize Qβ

0 (s, a), Qπ
0 (s, a) = 0, n(s, a) = 0, i = 0

2 While i < ibudget do
3 Reset environment to state s1
4 For t = 1...H or until st is terminal
5 Select action according to the ϵ-greedy policy of Qβ

i (s, a)

6 Transition to st+1 = P (st+1|st, at) and receive reward rt = R (st, at)

7 Update visitation count: n(st, at)← n(st, at) + 1

8 Store tuple (st, at, rt, st+1)

9 For all tuples (s, a, s′, r) in the replay memory

10 δπ(s, a, s′) =

rt −Qπ
i (s, a) if s is terminal

rt + γmaxaQ
π
i (s

′, a)−Qπ
i (s, a) otherwise

11 Qπ
i+1(s, a)← Qπ

i (s, a) + ηδπ(s, a, s′)

12 Augment reward: r+t = rt + α n(st, at)
−1/2

13 δβ(s, a, s′) =

r+t −Q
β
i (s, a) if s is terminal

r+t + γmaxaQ
β
i (s

′, a)−Qβ
i (s, a) otherwise

14 Qβ
i+1(s, a)← Qβ

i (s, a) + ηδβ(s, a, s′)

15 Update budget counter: i← i+ 1

C.3 Q-Learning with Visitation Value

Algorithms 4 and 5 describe the novel method proposed in this paper. In our experiments
κ = rmax/(1− γ) and γw = 0.99. For the chainworld in Section 3.4.2 we set γw = 0.999. With
infinite horizon, in fact, this yielded better results by allowing the agent to explore for longer.
For the stochastic gridworld in Section 3.4.2 we set γw = 0.9. As discussed in the results, in
fact, a stochastic transition function naturally improves exploration, thus a smaller visitation
discount was sufficient and yielded better results.
In Algorithm 4, W β

ucb(s, a) is initialized as Eq. (3.23). In Algorithm 5, line 6, we bound the
square root to Eq. (3.26) when n(s, a) = 0. In our experiments, with Qmax = rmax/(1 − γ)
and Qmin = 0.
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Algorithm 4: Tabular Q-Learning with Replay Memory and Visit. Value (UCB)
1 Initialize Qβ

0 (s, a), Qπ
0 (s, a) = 0,W β

ucb,0(s, a), n(s, a) = 0, i = 0

2 While i < ibudget do
3 Reset environment to state s1
4 For t = 1...H or until st is terminal
5 Select action according to

β(at|st) = arg maxa

{
Qβ

i (st, a) + κ(1− γw)W β
ucb,i(st, a)

}
6 Transition to st+1 = P (st+1|st, at) and receive reward rt = R (st, at)
7 Update visitation count: n(st, at)← n(st, at) + 1
8 Store tuple (st, at, rt, st+1)
9 For all tuples (s, a, s′, r) in the replay memory

10 δ(s, a, s′) =

{
rt −Qi(s, a) if s is terminal
rt + γmaxaQi(s

′, a)−Qi(s, a) otherwise
11 Qi+1(s, a)← Qi(s, a) + ηδ(s, a, s′)
12 Compute visitation reward according to Eq. (3.10)

13 δW (s, a, s′) =

{
rWt −W

β
ucb,i(s, a) if s is terminal

rWt + γmaxaW
β
ucb,i(s

′, a)−W β
ucb,i(s, a) otherwise

14 W β
ucb,i+1(s, a)←W β

ucb,i(s, a) + ηδW (s, a, s′)

15 Update budget counter: i← i+ 1

Algorithm 5: Tabular Q-Learning with Replay Memory and Visit. Value (Count)
1 Initialize Qβ

0 (s, a), Qπ
0 (s, a) = 0, n(s, a) = 0,W β

n,0(s, a) = 0, i = 0

2 While i < ibudget do
3 Reset environment to state s1
4 For t = 1...H or until st is terminal
5 Compute pseudocount: n̂(st, a) = (1− γw)W β

n,i(st, a)

6 Select action according to β(at|st) = arg maxa

{
Qβ

i (st, a) + κ

√
2 log

∑
aj

n̂(st,aj)

n̂(st,a)

}
7 Transition to st+1 = P (st+1|st, at) and receive reward rt = R (st, at)
8 Update visitation count: n(st, at)← n(st, at) + 1
9 Store tuple (st, at, rt, st+1)

10 For all tuples (s, a, s′, r) in the replay memory

11 δ(s, a, s′) =

{
rt −Qi(s, a) if s is terminal
rt + γmaxaQi(s

′, a)−Qi(s, a) otherwise
12 Qi+1(s, a)← Qi(s, a) + ηδ(s, a, s′)
13 Compute visitation reward according to Eq. (3.15)

14 δW (s, a, s′) =

{
rWt −W

β
n,i(s, a) if s is terminal

rWt + γminaW
β
n,i(s

′, a)−W β
n,i(s, a) otherwise

15 W β
n,i+1(s, a)←W β

n,i(s, a) + ηδW (s, a, s′)

16 Update budget counter: i← i+ 1
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C.4 Bootstrapped Q-Learning

Bootstrap algorithms have an ensemble of Q-tables {Qb(s, a)}b=1...B. The behavior policy is
greedy over one Q-table, randomly chosen from the ensemble either at the beginning of the
episode or at every step. The behavior Q-tables are initialized randomly. After initializing each
Qb(s, a) either optimistically or to zero, we add random noise drawn from a Gaussian N (0, 1).
Then, each one is trained on a random mini-batch from the replay memory. In our experiments,
we used batches of size 1,024 and an ensemble of B = 10 behavior Q-tables. The target Q-table
is still updated as in previous algorithms, i.e., using the full memory.

Algorithm 6: Tabular Bootstrapped Q-Learning with Replay Memory
1 Initialize Qb

0(s, a) for b = 1 . . . B, Qπ
0 (s, a) = 0, i = 0

2 While i < ibudget do
3 Reset environment to state s1
4 Select random Q-table: Qβ

i (s, a) ∼ unif{Q1
i (s, a), . . . , Q

B
i (s, a)}

5 For t = 1...H or until st is terminal
6 Select action according to the ϵ-greedy policy of Qβ

i (s, a)
7 Transition to st+1 = P (st+1|st, at) and receive reward rt = R (st, at)
8 Store tuple (st, at, rt, st+1)
9 For all tuples (s, a, s′, r) in the replay memory

10 δπ(s, a, s′) =

{
rt −Qπ

i (s, a) if s is terminal
rt + γmaxaQ

π
i (s

′, a)−Qπ
i (s, a) otherwise

11 Qπ
i+1(s, a)← Qπ

i (s, a) + ηδπ(s, a, s′)

12 For all behavior Q-tables Qb
i(s, a)

13 Sample mini-batch from the replay memory
14 For all tuples (s, a, s′, r) in the mini-batch

15 δb(s, a, s′) =

{
rt −Qb

i(s, a) if s is terminal
rt + γmaxaQ

b
i(s

′, a)−Qb
i(s, a) otherwise

16 Qb
i+1(s, a)← Qb

i(s, a) + ηδb(s, a, s′)

17 Update budget counter: i← i+ 1

The above pseudocode defines the generic bootstrap approach proposed by Osband et al. [2016a].
In Section 3.4 we also compared to two slightly different versions. The first uses approximate
Thompson sampling and randomly selects the behavior Q-table at every step instead of at the
beginning of the episode [D’Eramo et al., 2019]. The second keeps the sampling at the beginning
of the episode, but further regularizes the TD error [Osband et al., 2018, 2019]. The regularization
is the squared ℓ2-norm of the distance of the Q-tables from “prior Q-tables” Qp(s, a), resulting
in the following regularized TD update

δbreg(s, a, s
′) = δb(s, a, s′) + ν

(
Qp(s, a)−Qb(s, a)

)
, (C.4)

wehere ν is the regularization coefficient which we set to ν = 0.1 (in the original paper ν = 1,
but dividing it by ten worked best in our experiments).
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In theory, Qp(s, a) should be drawn from a distribution. In practice, the same authors fix it at
the beginning of the learning, and for the deep sea domain they set it to zero. This configuration
also worked best in our experiments.

C.5 Horizons.

All environments in Section 3.4 are infinite horizon MDPs, except for the deep sea which has a
finite horizon equal to its depth. However, for practical reason we end the episode after H steps
and reset the agent to the initial state. Table C.1 summarizes the training horizon H for each
environment, as well as the steps needed for the optimal policy to find the highest reward. Also,
recall that an episode can end prematurely if a terminal state (e.g., a reward state) is reached.
Finally, notice that the agent receives the reward on state-action transition, i.e., it needs to
execute an additional action in the state with a treasure to receive the reward. This is why, for
instance, the agent needs 9 steps instead of 8 to be rewarded in the 5× 5 gridworlds.

Table C.1: Time horizons H for the tabular MDPs presented in Section 3.4.
Deep Sea Taxi Deep Grid. Grid. (Toy) Grid. (Prison) Grid. (Wall)

Optimal Depth 29 11 9 9 135

Short H. Depth 33 55 11 11 330

Long H. Depth 66 110 22 22 660

Stochastic - - 55 15 25 -

C.6 Infinite Memory vs No Memory

Except for the chainworld in Section 3.4.2, the evaluation in Section 3.4 was conducted with
Q-learning with infinite replay memory, following the same setup of Osband et al. [2019] as
described in Section C.1. Here, we present additional results without replay memory, i.e., using
classic Q-learning by Watkins and Dayan [1992] which updates the Q-tables using only the cur-
rent transition. We show that the proposed method benefits the most from the replay memory,
but can learn even without it while other algorithms cannot. We compare ϵ-greedy exploration,
our proposed visitation-value-based exploration, and bootstrapped exploration. Nevertheless,
the latter needs a replay memory to randomize the Q-tables update, as each Q-table is updated
using different random samples. Thus, for bootstrapped Q-learning, we compare the use of finite
memory and small batches to infinite memory and large batches..
Algorithm 7 describes the generic scheme of Q-learning without replay memory. The only dif-
ference from Algorithm 2 is the absence of the loop over the memory. The same modification
is done to Algorithms 5 and 6 to derive the version of our algorithms without infinite memory.
Boostrapped Q-learning is the same as Algorithm 4 but with finite memory. The finite memory
keeps at most 20H steps, where H is the episode horizon, and uses mini-batches of 32 samples
instad of 1,024.
Results. Figure C.1 shows the results on two gridworlds. The “toy” one has a single reward, while
the “prison” one has also distractors. We refer to Section 3.4.1 for their full description. In the
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Algorithm 7: Classic Tabular Q-Learning
1 Initialize Qβ

0 (s, a), Qπ
0 (s, a), i = 0

2 While i < ibudget do
3 Reset environment to state s1
4 For t = 1...H or until st is terminal
5 Select action according to at ∼ β(·|st)
6 Transition to st+1 = P (st+1|st, at) and receive reward rt = R (st, at)
7 Store tuple (st, at, rt, st+1)

8 δ(st, at, st+1) =

{
rt −Qi(st, at) if st is terminal
rt + γmaxaQi(st+1, a)−Qi(st, at) otherwise

9 Qi+1(st, at)← Qi(st, at) + ηδ(st, at, st+1)
10 Update budget counter: i← i+ 1
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Figure C.1: Comparison of the proposed exploration against ϵ-greedy and bootstrapped exploration
with and without replay memory. Each line denotes the average over 20 seeds. Only exploration
based on the visitation value always learns in both domains, i.e., both with and withou local optima
(distractor rewards), regardless of the memory.

first domain, all algorithms perform well except for ϵ-greedy exploration (green), which missed
the reward in some trials. The use of infinite memory helped all algorithms, allowing boostrap
and visitation-value-based to learn substantially faster. For example on average, without replay
memory our algorithms (blue and orange) converged in 1,000 steps, while with replay memory
they took only 250 steps, i.e., ×4 times faster. Bootstrapped Q-learning (red), performance does
not change substantially with finite and infinite memory.
However, in the second domain only visitation-value-based exploration always learns, regardless
of the memory. As already discussed in Section 3.4.1, bootstrap performs poorly due to distractor
rewards, and the infinite memory does not help it. For visitation-value-based exploration, the
speed up gained from the infinite memory is even larger than before, due to the higher complexity
of the domain. In this case, in fact, with infinite memory learn ×4 and ×8 times faster than
without memory (blue and orange, respectively).
This evaluation shows that the proposed method benefits the most from the replay memory, but
can learn even without it while other algorithms cannot.
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C.7 Recap Tables

Here, we report tables summarizing the results of Section 3.4.1 in terms of discovery (percentage
of states discovered during learning) and success (number of times the algorithm learned the
optimal policy within steps limit). These are extended version of Table 3.1, which reported
results only for the “zero initialization short horizon” scenario.

Table C.2: Deep sea results recap.
Algorithm Discovery (%) Success (%)

Ours (UCB Reward) 100± 0 100± 0
Ours (Count Reward) 100± 0 100± 0

Rand. Prior (Osband 2019) 99.90± 0.01 100± 0

Bootstr. (Osband 2016a) 99.77± 0.05 100± 0

Zero Init. Bootstr. (D’Eramo 2019) 63.25± 3.31 0± 0

UCB1 (Auer 2002) 55.72± 0.34 0± 0

Expl. Bonus (Strehl 2008) 85.65± 1.0 0± 0

ϵ-greedy 57.74± 1.11 0± 0

Random 58.59± 1.35 0± 0

Ours (UCB Reward) 100± 0 100± 0
Ours (Count Reward) 100± 0 100± 0

Rand. Prior (Osband 2019) 100± 0 100± 0

Bootstr. (Osband 2016a) 100± 0 100± 0

Opt. Init. Bootstr. (D’Eramo 2019) 100± 0 100± 0

UCB1 (Auer 2002) 76.85± 0.3 0± 0

Expl. Bonus (Strehl 2008) 98.79± 0.21 0± 0

ϵ-greedy 98.79± 0.20 0± 0

Random 58.59± 1.35 0± 0
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Table C.3: Taxi results recap.
Algorithm Discovery (%) Success (%)

Ours (UCB Reward) 100± 0 100± 0
Ours (Count Reward) 100± 0 100± 0

Rand. Prior (Osband 2019) 69.60± 2.96 13.07± 2.96

Bootstr. (Osband 2016a) 52.44± 7.55 18.77± 9.24

Zero Init. & Short Hor. Bootstr. (D’Eramo 2019) 22.44± 1.81 1.9± 1.47

UCB1 (Auer 2002) 31.17± 0.70 1.53± 1.37

Expl. Bonus (Strehl 2008) 74.62± 2.24 17.6± 2.56

ϵ-greedy 29.64± 0.98 1.92± 1.49

Random 29.56± 0.98 1.92± 1.49

Ours (UCB Reward) 100± 0 100± 0
Ours (Count Reward) 100± 0 100± 0

Rand. Prior (Osband 2019) 100± 0 100± 0

Bootstr. (Osband 2016a) 100± 0 100± 0

Opt. Init. & Short Hor. Bootstr. (D’Eramo 2019) 100± 0 100± 0

UCB1 (Auer 2002) 99.94± 0.08 100± 0

Expl. Bonus (Strehl 2008) 100± 0 100± 0

ϵ-greedy 100± 0 100± 0

Random 29.56± 0.98 1.92± 1.49

Ours (UCB Reward) 100± 0 100± 0
Ours (Count Reward) 100± 0 100± 0

Rand. Prior (Osband 2019) 76.38± 2.31 15.69± 2.93

Bootstr. (Osband 2016a) 53.80± 6.63 29.85± 12.72

Zero Init. & Long Hor. Bootstr. (D’Eramo 2019) 36.34± 3.16 6.54± 2.62

UCB1 (Auer 2002) 49.66± 2.45 8.35± 1.32

Expl. Bonus (Strehl 2008) 92.83± 2.26 76.18± 16.09

ϵ-greedy 42.26± 2.52 7.66± 0.03

Random 55.89± 0.98 2.06± 1.49

Ours (UCB Reward) 100± 0 100± 0
Ours (Count Reward) 100± 0 100± 0

Rand. Prior (Osband 2019) 100± 0 100± 0

Bootstr. (Osband 2016a) 100± 0 100± 0

Opt. Init. & Long Hor. Bootstr. (D’Eramo 2019) 95.45± 0 100± 0

UCB1 (Auer 2002) 98.74± 0.09 100± 0

Expl. Bonus (Strehl 2008) 100± 0 100± 0

ϵ-greedy 100± 0 100± 0

Random 55.89± 0.98 2.06± 1.49
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Table C.4: Deep gridworld results recap.
Algorithm Discovery (%) Success (%)

Ours (UCB Reward) 100± 0 100± 0
Ours (Count Reward) 100± 0 100± 0

Rand. Prior (Osband 2019) 75± 9.39 59.03± 4.2

Bootstr. (Osband 2016a) 60.82± 11.78 63.35± 6.89

Zero Init. & Short Hor. Bootstr. (D’Eramo 2019) 63.73± 10.35 56.85± 0.06

UCB1 (Auer 2002) 92.18± 0.36 56.88± 0

Expl. Bonus (Strehl 2008) 95.45± 1.57 69.81± 8.84

ϵ-greedy 74.36± 4.42 56.88± 0

Random 92.45± 0.64 56.88± 0

Ours (UCB Reward) 100± 0 100± 0
Ours (Count Reward) 100± 0 100± 0

Rand. Prior (Osband 2019) 100± 0 100± 0

Bootstr. (Osband 2016a) 100± 0 100± 0

Opt. Init. & Short Hor. Bootstr. (D’Eramo 2019) 100± 0 100± 0

UCB1 (Auer 2002) 100± 0 100± 0

Expl. Bonus (Strehl 2008) 100± 0 100± 0

ϵ-greedy 100± 0 100± 0

Random 92.45± 0.64 56.88± 0

Ours (UCB Reward) 100± 0 100± 0
Ours (Count Reward) 100± 0 100± 0

Rand. Prior (Osband 2019) 78.18± 8.97 56.88± 0

Bootstr. (Osband 2016a) 77.64± 10.02 69.81± 8.84

Zero Init. & Long Hor. Bootstr. (D’Eramo 2019) 71.64± 10.35 56.85± 0.06

UCB1 (Auer 2002) 95.54± 0.46 56.4± 3.12

Expl. Bonus (Strehl 2008) 95± 1.66 65.5± 7.71

ϵ-greedy 76.45± 4.25 56.88± 0

Random 92.09± 0.69 56.88± 0

Ours (UCB Reward) 100± 0 100± 0
Ours (Count Reward) 100± 0 100± 0

Rand. Prior (Osband 2019) 100± 0 100± 0

Bootstr. (Osband 2016a) 100± 0 100± 0

Opt. Init. & Long Hor. Bootstr. (D’Eramo 2019) 100± 0 100± 0

UCB1 (Auer 2002) 100± 0 100± 0

Expl. Bonus (Strehl 2008) 100± 0 100± 0

ϵ-greedy 100± 0 100± 0

Random 92.09± 0.69 56.88± 0
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Table C.5: Gridworld (toy) results recap.
Algorithm Discovery (%) Success (%)

Ours (UCB Reward) 100± 0 100± 0
Ours (Count Reward) 100± 0 100± 0

Rand. Prior (Osband 2019) 99.8± 0.39 100± 0

Bootstr. (Osband 2016a) 99.2± 0.72 100± 0

Zero Init. & Short Hor. Bootstr. (D’Eramo 2019) 84.8± 4.33 40± 21.91

UCB1 (Auer 2002) 97.4± 0.99 50± 22.49

Expl. Bonus (Strehl 2008) 99.8± 0.39 100± 0

ϵ-greedy 97.4± 1.17 45± 22.25

Random 97.2± 1.15 45± 22.25

Ours (UCB Reward) 100± 0 100± 0
Ours (Count Reward) 100± 0 100± 0

Rand. Prior (Osband 2019) 100± 0 100± 0

Bootstr. (Osband 2016a) 100± 0 100± 0

Opt. Init. & Short Hor. Bootstr. (D’Eramo 2019) 100± 0 100± 0

UCB1 (Auer 2002) 100± 0 100± 0

Expl. Bonus (Strehl 2008) 100± 0 100± 0

ϵ-greedy 100± 0 100± 0

Random 97.2± 1.15 45± 22.25

Ours (UCB Reward) 100± 0 100± 0
Ours (Count Reward) 100± 0 100± 0

Rand. Prior (Osband 2019) 100± 0 100± 0

Bootstr. (Osband 2016a) 99.8± 0.39 100± 0

Zero Init. & Long Hor. Bootstr. (D’Eramo 2019) 94.6± 1.9 70± 20.49

UCB1 (Auer 2002) 100± 0 98.5± 0.22

Expl. Bonus (Strehl 2008) 100± 0 100± 0

ϵ-greedy 100± 0 100± 0

Random 100± 0 100± 0

Ours (UCB Reward) 100± 0 100± 0
Ours (Count Reward) 100± 0 100± 0

Rand. Prior (Osband 2019) 100± 0 100± 0

Bootstr. (Osband 2016a) 100± 0 100± 0

Opt. Init. & Long Hor. Bootstr. (D’Eramo 2019) 100± 0 100± 0

UCB1 (Auer 2002) 100± 0 100± 0

Expl. Bonus (Strehl 2008) 100± 0 100± 0

ϵ-greedy 100± 0 100± 0

Random 100± 0 100± 0
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Table C.6: Gridworld (Prison) results recap.
Algorithm Discovery (%) Success (%)

Ours (UCB Reward) 100± 0 100± 0
Ours (Count Reward) 100± 0 100± 0

Rand. Prior (Osband 2019) 72.39± 6.9 44.44± 14.69

Bootstr. (Osband 2016a) 64.35± 11.1 33.03± 8.54

Zero Init. & Short Hor. Bootstr. (D’Eramo 2019) 54.78± 6.69 25.61± 8.39

UCB1 (Auer 2002) 80.78± 2.56 32.31± 4.11

Expl. Bonus (Strehl 2008) 85.87± 3 46.96± 12.35

ϵ-greedy 58.38± 5.27 22.84± 2.48

Random 76.96± 3.08 35.36± 10.37

Ours (UCB Reward) 100± 0 100± 0
Ours (Count Reward) 100± 0 100± 0

Rand. Prior (Osband 2019) 100± 0 100± 0

Bootstr. (Osband 2016a) 100± 0 100± 0

Opt. Init. & Short Hor. Bootstr. (D’Eramo 2019) 100± 0 100± 0

UCB1 (Auer 2002) 100± 0 100± 0

Expl. Bonus (Strehl 2008) 100± 0 100± 0

ϵ-greedy 100± 0 100± 0

Random 76.96± 3.08 35.36± 10.37

Ours (UCB Reward) 100± 0 100± 0
Ours (Count Reward) 100± 0 100± 0

Rand. Prior (Osband 2019) 77.83± 6.93 56.04± 14.79

Bootstr. (Osband 2016a) 67.61± 9.75 44.12± 13.02

Zero Init. & Long Hor. Bootstr. (D’Eramo 2019) 59.57± 9.92 29.31± 4.11

UCB1 (Auer 2002) 90.17± 2.55 51.55± 10.67

Expl. Bonus (Strehl 2008) 88.91± 3.1 54.48± 11.63

ϵ-greedy 67.39± 5.16 24.69± 3.31

Random 86.09± 3.77 49.73± 11.5

Ours (UCB Reward) 100± 0 100± 0
Ours (Count Reward) 100± 0 100± 0

Rand. Prior (Osband 2019) 100± 0 100± 0

Bootstr. (Osband 2016a) 100± 0 100± 0

Opt. Init. & Long Hor. Bootstr. (D’Eramo 2019) 100± 0 100± 0

UCB1 (Auer 2002) 100± 0 100± 0

Expl. Bonus (Strehl 2008) 100± 0 100± 0

ϵ-greedy 100± 0 100± 0

Random 86.09± 3.77 49.73± 11.5
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Table C.7: Gridworld (wall) results recap.
Algorithm Discovery (%) Success (%)

Ours (UCB Reward) 100± 0 100± 0
Ours (Count Reward) 100± 0 100± 0

Rand. Prior (Osband 2019) 9.44± 3.14 0.14± 0.06

Bootstr. (Osband 2016a) 6.35± 2.74 0.23± 0.08

Zero Init. & Short Hor. Bootstr. (D’Eramo 2019) 12.55± 4.45 0.18± 0.08

UCB1 (Auer 2002) 24.7± 4.45 0.46± 0.03

Expl. Bonus (Strehl 2008) 45.16± 2.29 0.52± 0.04

ϵ-greedy 38.15± 1.95 0.39± 0.08

Random 65.28± 0.45 0.59± 0

Ours (UCB Reward) 100± 0 100± 0
Ours (Count Reward) 100± 0 100± 0

Rand. Prior (Osband 2019) 100± 0 100± 0

Bootstr. (Osband 2016a) 100± 0 100± 0

Opt. Init. & Short Hor. Bootstr. (D’Eramo 2019) 100± 0 100± 0

UCB1 (Auer 2002) 100± 0 100± 0

Expl. Bonus (Strehl 2008) 100± 0 100± 0

ϵ-greedy 100± 0 100± 0

Random 65.28± 0.45 0.59± 0

Ours (UCB Reward) 100± 0 100± 0
Ours (Count Reward) 100± 0 100± 0

Rand. Prior (Osband 2019) 13.05± 3.83 0.2± 0.08

Bootstr. (Osband 2016a) 8.69± 3.53 0.2± 0.08

Zero Init. & Long Hor. Bootstr. (D’Eramo 2019) 11.64± 5.24 0.23± 0.08

UCB1 (Auer 2002) 21.44± 3.64 0.44± 0.03

Expl. Bonus (Strehl 2008) 47.75± 1.68 0.55± 0.03

ϵ-greedy 42.53± 1.89 0.54± 0.03

Random 70.51± 0.75 0.59± 0

Ours (UCB Reward) 100± 0 100± 0
Ours (Count Reward) 100± 0 100± 0

Rand. Prior (Osband 2019) 100± 0 100± 0

Bootstr. (Osband 2016a) 100± 0 100± 0

Opt. Init. & Long Hor. Bootstr. (D’Eramo 2019) 100± 0 100± 0

UCB1 (Auer 2002) 100± 0 100± 0

Expl. Bonus (Strehl 2008) 100± 0 100± 0

ϵ-greedy 100± 0 100± 0

Random 70.51± 0.75 0.59± 0
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D Details of TD-REG Experiments
Here, we provide the details about the algorithms implementation used in Section 4.5. We devote
a section to each domain to describe the settings and the experiments omitted from the main
body of the chapter.

D.1 2D Linear-Quadratic Regulator

The LQR problem is defined by the following discrete-time dynamics

s′ = As+Ba+N (0, 0.12), a = Ks, R (s, a) = −sTXs− aTY a,

where A,B,X, Y ∈ Rd×d, X is a symmetric positive semidefinite matrix, Y is a symmetric
positive definite matrix, and K ∈ Rd×d is the control matrix. The policy parameters we want
to learn are θ = vec(K). For simplicity, dynamics are not coupled, i.e., A and B are identity
matrices, and both X and Y are identity matrices as well.
Although it may look simple, the LQR presents some challenges. First, the system can become
easily unstable, as the control matrix K has to be such that the matrix (A+BK) has eigenvalues
of magnitude smaller than one. Therefore, policy updates cannot be too large, in order to
prevent divergence. Second, the reward is unbounded and the expected return can be very large,
especially at the beginning with an initial random policy. As a consequence, the initial TD error
can be very large as well. Third, states and actions are unbounded and cannot be normalized in
[0,1], a common practice in RL.
However, we can compute in closed form both the expected return and the Q-function, being
able to easily assess the quality of the evaluated algorithms. More specifically, the Q-function is
quadratic in the state and in the action, i.e.,

Qπ(s, a) = Q0 + sTQsss+ aTQaaa+ sTQsaa,

where Q0, Qss, Qaa, Qsa are matrices computed in closed form given the MDP characteristics
and the control matrix K. It should be noted that the linear terms are all zero.
In the evaluation below, we use a 2-dimensional LQR, resulting in four policy parameters. The
Q-function is approximated by Q̂(s, a; θ) = ϕ(s, a)Tω, where ϕ(s, a) are features. We evaluate
two different features: polynomial of second degree (quadratic features) and polynomial of third
degree (cubic features). We know that the true Q-function is quadratic without linear features,
therefore quadratic features are sufficient. By contrast, cubic features could overfit. Furthermore,
quadratic features result in 15 parameters ω to learn, while the cubic one has 35.
In our experiments, the initial state is uniformly drawn in the interval [−10, 10]. The Q-function
parameters are initialized uniformly in [−1, 1]. The control matrix is initialized as K = −KT

0 K0

to enforce negative semidefiniteness, where K0 is drawn uniformly in [-0.5, -0.1].
Along with the expected return, we show the trend of two mean squared TD errors (MSTDE) of
the critic Q̂(s, a;ω): one is estimated using the TD error, the other is computed in closed form
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using the true Qπ(s, a) defined above. It should be noticed that Qπ(s, a) is not the optimal Q-
function (i.e., of the optimal policy), but the true Q-function with respect to the current policy.
We also show the learning of the diagonal entries of K in the policy parameter space. These
parameters, in fact, are the most relevant because the optimal K is diagonal as well, due to the
reward and transition functions characteristics (A = B = X = Y = I).
All results are averaged over 50 trials. In all trials, the random seed is fixed and the initial
parameters are the same (all random). In expected return plots, we bounded the expected
return to −103 and the MSTDE to 3·105 for the sake of clarity, since in the case of unstable
policies (i.e., when the matrix (A+BK) has eigenvalues of magnitude greater than or equal to
one) the expected return and the TD error are −∞.

D.1.1 DPG Evaluation on the LQR

In this section, we evaluate five versions of deterministic policy gradient [Silver et al., 2014]. In
the first three, the learning of the critic happens in the usual actor-critic fashion. The Q-function
is learned independently from the policy and a target Q-function of parameters ω̄, assumed to
be independent from the critic, is used to improve stability, i.e.,

δQ(s, a, s
′; θ, ω, ω̄) = r + γQ̂(s′, π(s′; θ); ω̄)− Q̂(s, a;ω). (D.1)

Under this assumption, the critic is updated by following the SARSA gradient

∇ω Eµβ(s),β(a|s),P(s′|s,a)
[
δQ(s, a, s

′; θ, ω, ω̄)2
]
=

Eµβ(s),β(a|s),P(s′|s,a)

[
δQ(s, a, s

′; θ, ω, ω̄)∇ωQ̂(s, a;ω)
]
, (D.2)

where β(a|s) is the behavior policy used to collect samples. In practice, ω̄ is a copy of ω. We also
tried a soft update, i.e., ω̄t+1 = τωωt+(1− τω)ω̄t, with τω ∈ (0, 1], as in DDPG [Lillicrap et al.,
2016], the deep version of DPG. However, the performance of the algorithms decreased (TD-
regularized DPG still outperformed vanilla DPG). We believe that, since for the LQR we do not
approximate the Q-function with a deep network, the soft update just restrains the convergence
of the critic.
These three versions of DPG differ in the policy update. The first algorithm (DPG) additionally
uses a target actor of parameters θ̄ for computing the Q-function targets, i.e.,

δQ(s, a, s
′; θ̄, ω, ω̄) = r + γQ̂(s′, π(s′; θ̄); ω̄)− Q̂(s, a;ω), (D.3)

to improve stability. The policy is updated softly at each iteration, i.e., θ̄t+1 = τωθt+(1−τθ)θ̄t,
with τθ ∈ (0, 1] The second algorithm (DPG TD-REG) applies the penalty function G(θ)
presented in this chapter and does not use the target policy, i.e.,

δQ(s, a, s
′; θ, ω, ω̄) = r + γQ̂(s′, π(s′; θ); ω̄)− Q̂(s, a;ω), (D.4)

in order to compute the full derivative with respect to θ for the penalty function (Eq. (4.24)).
The third algorithm (DPG NO-TAR) is like DPG, but also does not use the target policy. The
purpose of this version is to check that the benefits of our approach do not come from the lack
of the target actor, but rather from the TD-regularization.
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The last two versions are twin delayed DPG (TD3) [Fujimoto et al., 2018], which achieved state-
of-the-art results, and its TD-regularized counterpart (TD3 TD-REG). TD3 proposes three
modifications to DPG. First, in order to reduce overestimation bias, there are two critics. Only
the first critic is used to update the policy, but the TD target used to update both critics is
given by the minimum of their TD target. Second, the policy is not updated at each step, but
the update is delayed in order to reduce per-update error. Third, since deterministic policies
can overfit to narrow peaks in the value estimate (a learning target using a deterministic policy
is highly susceptible to inaccuracies induced by function approximation error) noise is added to
the target policy. The resulting TD error is

δQi
(s, a, s′; θ̄, ω, ω̄1, ω̄2) = r + γ min

j=1,2
Q̂(s′, π(s′; θ̄) + ξ; ω̄j)− Q̂(s, a;ωi), (D.5)

where the noise ξ = clip(N (0, σ̃),−c, c) is clipped to keep the target close to the original
action. Similarly to DPG TD-REG, TD3 TD-REG removes the target policy (but keeps the
noise ξ) and adds the TD-regularization to the policy update. Since TD3 updates the policy
according to the first critic only, the TD-regularization considers the TD error in Eq. (D.5) with
i = 1.

Hyperparameters

• Maximum number of steps per trajectory: 150.

• Exploration: Gaussian noise (diagonal covariance matrix) added to the action. The stan-
dard deviation σ starts at 5 and decays at each step according to σt+1 = 0.95σt.

• Discount factor: γ = 0.99.

• Steps collected before learning (to initialize the experience replay memory): 100.

• Policy and TD errors evaluated every 100 steps.

• At each step, all data collected (state, action, next state, reward) is stored in the experience
replay memory, and a mini-batch of 32 random samples is used for computing the gradients.

• DPG target policy update coefficient: τθ = 0.01 (DPG NO-TAR is like DPG with τθ = 1).
With τθ = 0.1 results were worse. With τθ = 0.001 results were almost the same.

• ADAM hyperparameters for the gradient of ω: α = 0.01, β1 = 0.9, β2 = 0.999, ϵ = 10−8.
With higher α all algorithms were unstable, because the critic was changing too quickly.

• ADAM hyperparameters for the gradient of θ: α = 0.0005, β1 = 0.9, β2 = 0.999,
ϵ = 10−8. Higher α led all algorithms to divergence, because the condition for stability
(magnitude of the eigenvalues of (A+BK) smaller than one) was being violated.

• Regularization coefficient: η0 = 0.1 and then it decays according to ηt+1 = 0.999ηt.

• In TD3 original paper, the target policy noise is ξ ∼ N (0, 0.2) and is clipped in [-0.5,0.5].
However, the algorithm was tested on tasks with action bounded in [-1,1]. In the LQR,
instead, the action is unbounded, therefore we decided to use ξ ∼ N (0, 2) and to clip it in
[−σt/2, σt/2], where σt is the current exploration noise. We also tried different strategies,
but we noticed no remarkable differences. The noise is used only for the policy and critics
updates, and it is removed for the evaluation of the TD error for the plots.

149



• In TD3 and TD3 TD-REG, the second critic parameters are initialized uniformly in [−1, 1],
like the first critic.

• In TD3 and TD3 TD-REG, the policy is updated every two steps, as in the original paper.

• The learning of all algorithms ends after 12, 000 steps.

DPG on LQR - Quadratic Features
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Figure D.1: All algorithms perform similarly (DPG and DPG NO-REG almost overlap), because
quadratic features are sufficient to approximate the true Q-function. Only TD3 TD-REG did not
converge within the time limit in two runs, but it did not diverge either.

DPG on LQR - Cubic Features
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Figure D.2: By contrast, with cubic features the critic is prone to overfit, and DPG and DPG NO-
TAR diverged 24 and 28 times, respectively. TD3 performed better, but still diverged two times.
TD-regularized algorithms, instead, never diverged, and DPG TD-REG always learned the true Q-
function and the optimal policy within the time limit. Similarly to Figure D.1, TD3 TD-REG is the
slowest, and in this case it never converged within the time limit, but did not diverge either (see also
Figure D.5b).

Results
Figures D.1 and D.5a show the results using quadratic features. Since these features are very
unlikely to overfit, all algorithms perform almost the same. However, from Figure D.5a we
can clearly see that the TD-regularization keeps the policy parameters on a more straight path
towards the optimum, avoiding detours. Both the TD-regularization and TD3 also result in
smaller, but safer, update steps. This behavior is reflected by the learning curves in Figure D.1,
as DPG and DPG NO-TAR converge slightly faster. However, using both TD3 and TD-REG at
the same time can result in excessively slow learning. The green arrows in Figure D.5a are, in
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fact, the smallest, and in Figure D.1 TD3 TD-REG did not converge within the time limits in
two runs (but it did not diverge either).
Looking at the TD error plots, it is interesting to notice that the estimated TD error is always
smaller than the true TD error, meaning that the critic underestimates the TD error. This is a
normal behavior, considering the stochasticity of the behavior policy and of the environment. It
is also normal that this overestimation bias is less prominent in TD3, thanks to the use of two
critics and to delayed policy updates. However, TD3 TD-REG is surprisingly the only algorithm
increasing the estimated TD error around mid-learning. We further investigate this behavior at
the end of this section.

TD3 on LQR - Quadratic Features, No Policy Update Delay
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Figure D.3: Without policy update delays, both TD3 and TD3 TD-REG converge faster.

TD3 on LQR - Cubic Features, No Policy Update Delay
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Figure D.4: With cubic features, TD3 NO-DELAY performs worse than TD3, diverging six times
instead of two. By contrast, TD3 TD-REG NO-DELAY performs better than TD3 TD-REG and it
always converges within the time limit.

Results are substantially different when cubic features are used (Figure D.2). In this case, many
features are irrelevant and the model is prone to overfit. As a consequence, the TD error shown
in Figure D.2 is much larger than the one shown in Figure D.1, meaning that it is harder for
the critic to correctly approximate the true Q-function. The problem is prominent for DPG
and DPG NO-TAR, which cannot learn 24 and 28 times, respectively, out of 50 (thus, the very
large confidence interval). Similarly to the previous case, the true TD error is underestimated.
Initially their critics estimate a TD error of 105 but the true one is 2.5·105. This large error
guides the actors incorrectly, inevitably leading to divergence. Then, after approximately 3,000
steps, the two TD errors match at 1.5·105. Among the two algorithms, DPG NO-TAR performs
worse, due to the lack of the target policy.
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Path of the Learned Policy Parameters θ

(a) Quadratic features. (b) Cubic features.

Figure D.5: Paths followed by the policy parameters in runs in which no algorithm diverged. Each
arrow represents 100 update steps. Contour denotes the expected return magnitude. The initial
policy parameters are denoted by the white circle. The TD-regularization enables safer and more
stable trajectories, leading the policy parameters more straightforwardly to the optimum. Notice
that blue and green arrows are initially shorter, denoting smaller update steps. In fact, due to the
initial inaccuracy of the critic, the TD-regularization gradient “conflicts” with vanilla gradient at early
updates and avoids divergence. However, for TD3 TD-REG combining two critics, delayed policy
updates and TD-regularization slows down the learning up to the point that the algorithm never
converged within the time limit (Figure D.5b).

TD3 performs substantially better, but still diverges two times. By contrast, TD-REG algorithms
never diverges. Figure D.5b shows the benefits of the TD-regularization in the policy space.
Initially, when the TD error is large, the policy “moves around” the starting point. Then, as
the critic accuracy increases, the policy goes almost straightforwardly to the goal. This “slow
start” behavior is also depicted in Figure D.2, where DPG TD-REG expected return initially
improves more slowly compared to TD3 and TD3 TD-REG. Finally, we notice once again that
the combination of TD3 and TD-REG results in the slowest learning: unlike TD3, TD3 TD-
REG never diverged, but it also never converged within the time limit. This behavior is also
depicted in Figure D.5b, where green arrows (TD3 TD-REG policy updates) are so small that
the algorithm cannot reach the goal in time.
Figure D.2 hints that the “slow learning” behavior of TD3 TD-REG may be due to the delayed
policy update, as both the estimated and the true TD error are close to zero by mid-learning.
To further investigate this behavior, we performed the same experiments without delayed policy
updates for both TD3 and TD3-REG. For the sake of clarity, we report the results on separates
plots without DPG and DPG NO-TAR and without shaded areas for confidence interval. In the
case of quadratic features (Figure D.3) both TD3 and TD3 TD-REG gain from the removal of
the policy update delay. However, in the case of cubic features (Figure D.4), TD3 NO-DELAY
performs worse than TD3, as it diverges six times instead of two. By contrast, TD3 TD-REG
NO-DELAY performs better than TD3 TD-REG, and the expected return curve shows traits of
both TD3 and TD-REG: initially it improves faster, like TD3, and then it always converges to
optimality, like DPG TD-REG. We can conclude that delaying policy updates is not necessary
when appropriate features are used and overfitting cannot happen. Otherwise, the combination
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of two critics and TD-regularization yields the best results, with the TD-regularization providing
the most benefits.

D.1.2 SPG Evaluation on the LQR

DPG is an on-line algorithm, i.e., it performs a critic/actor update at each time step, using
mini-batches of previously collected samples. Instead, stochastic policy gradient (SPG) collects
complete trajectories with a stochastic policy before updating the critic/actor. In this section,
we evaluate SPG, SPG TD-REG, and REINFORCE [Williams, 1992]. The first two maximize
Q-function estimates given by a learned critic. SPG TD-REG additionally applies the TD-
regularization presented in the paper. REINFORCE, instead, maximizes Monte Carlo estimates
of the Q-function, i.e.,

Q̂π(st, at) =

T∑
i=t

γi−tri. (D.6)

The policy is Gaussian, i.e., π(a|s; θ) = N (Ks,Σ), where Σ is a diagonal covariance matrix. K
is initialized as for DPG. The diagonal entries of Σ are initialized to five. Six policy parameters
are learned, four for K and two for Σ.
For SPG TD-REG, the expectation Eπ(a′|s′;θ)

[
Q̂(s′, a′;ω)

]
is approximated with the policy mean

Q-value, i.e., Q̂(s′,Ks′;ω).
For SPG and SPG TD-REG, Q̂(s, a;ω) is learned by Matlab fminunc optimizer using the
samples collected during the current iteration.
Hyperparameters

• Trajectories collected per iteration: 1 or 5.

• Steps per trajectory: 150.

• Discount factor: γ = 0.99.

• Policy and TD error evaluated at every iteration.

• No separate target policy or target Q-function are used for learning the critic, but we still
consider ∇ωQ̂(s′, a′;ω) = 0.

• Policy update learning rate: 0.01. The gradient is normalized if its norm is larger than
one.

• The policy update performs only one step of gradient descent on the whole dataset.

• Regularization coefficient: η0 = 0.1 and then it decays according to ηt+1 = 0.999ηt.

Results
Figures D.6 and D.7 show the results when one or five episodes, respectively, are used to collect
samples during one learning iteration. REINFORCE performed poorly in the first case, due to
the large variance of Monte Carlo estimates of the Q-function. In the second case, it performed
better but still converged slowly. SPG performed well except for two runs in Figure D.7, in
which it diverged already from the beginning. In both cases, its performance is coupled with the
approximator used, with quadratic features yielding more stability. By contrast, SPG TD-REG
never failed, regardless of the number of samples and of the function approximator used, and
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despite the wrong estimate of the true TD error. Similarly to what happened in DPG, in fact,
the critic always underestimates the true TD error (Figures D.6b and D.7b).
Finally, Figure D.8 shows the direction and the magnitude of the gradients. We clearly see
that initially the vanilla gradient (which maximizes Q-function estimates, red arrows) points
towards the wrong direction, but thanks to the gradient of the TD-regularization (blue arrows)
the algorithm does not diverge. As the learning continues, red arrows point towards the optimum
and the magnitude of blue arrows decreases, because 1) the critic becomes more accurate and
the TD error decreases, and 2) the regularization coefficient η decays. The same behavior was
already seen in Figure D.5 for DPG, with the penalty gradient dominating the vanilla gradient
at early stages of the learning.

SPG on LQR - One Episode per Iteration
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Figure D.6: Results averaged over 50 runs, shaded areas denote 95% confidence interval. Only
one episode is collected to update the critic and the policy. SPG TD-REG did not suffer from the
lack of samples, and it always learned the optimal critic and policy within few iterations, both with
quadratic and cubic features (the two blue plots almost overlap). By contrast, vanilla SPG is much
more sensitive to the number of samples. Even if it never diverged, its convergence is clearly slower.
REINFORCE, instead, diverged 13 times, due to the high variance of Monte Carlo estimates.

SPG on LQR - Five Episodes per Iteration

25 50 75 100 125 150 175
−300

−250

−200

−150

−100

Iteration

E
xp

ec
te
d
R
et
u
rn

REINFORCE
SPG TD (Cubic)
SPG TD-REG (Cubic)
SPG TD (Quadratic)
SPG TD-REG (Quadratic)

(a)

25 50 75 100 125 150 175

0

1

2

3

4

·106

Iteration

M
S
T
D
E
(E
st
im

at
e) SPG TD (Cubic)
SPG TD-REG (Cubic)
SPG TD (Quadratic)
SPG TD-REG (Quadratic)

(b)

25 50 75 100 125 150 175

0

1

2

3

4

·106

Iteration

M
S
T
D
E
(T
ru
e)

SPG TD (Cubic)
SPG TD-REG (Cubic)
SPG TD (Quadratic)
SPG TD-REG (Quadratic)

(c)

Figure D.7: With more samples per iteration REINFORCE was able to converge, as Monte Carlo es-
timates have lower variance. However, it still converged more slowly than SPG TD-REG. Surprisingly,
vanilla SPG diverged two times, thus explaining its slightly larger confidence interval (in Figure D.7a
the y-axis starts at -300 for the sake of clarity). In the other 48 runs, it almost matched SPG TD-REG.
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Figure D.8: On the left, beginning of the path followed by SPG TD-REG in the policy parameter
space during one trial, when samples from only one episode are collected per iteration. The initial
policy parameter vector θ is denoted by the white circle. Each arrow represents one iteration. Red
and blue arrows denote the direction of the gradient ∇θ E[Q̂(s, a;ω)] and ∇θ E[ηδQ(s, a, s′; θ, ω)2],
respectively. Contour denotes the expected return magnitude. The magnitude of the arrows has been
scaled for better visualization, and the true one is shown on the right. Initially, as the critic estimate
is highly inaccurate (see the TD error in Figures D.6b and D.6c), red arrows point to the wrong
direction. However, blue arrows help keeping the policy on track.

D.2 Pendulum Swing-up Tasks

Single-pendulum
This task (Figure D.9a) follows the equations presented in OpenAI Gym [Brockman et al., 2016].
The state consists of the angle position q and velocity q̇ of the link. The former is bounded in
[−π, π] and is initialized uniformly in [−π, π]. The latter is bounded in [−8, 8] and is initialized
in [−1, 1]. As the pendulum is underactuated, the action is bounded in [−2, 2]. The transition
function is

q̇t+1 = q̇t −
3g

2l
sin(q + π) +

3

ml2
aδt,

qt+1 = qt + q̇t+1δt,

where g = 10 is the gravitational acceleration, m = 1 is the link mass, l = 1 is the link length,
and δt = 0.05 is the timestep. The goal state is q = 0 and the reward function is

rt = −q2t − 0.1q̇2t − 0.001a2t .

For learning, at each iteration only 10 episodes of 50 steps are collected. For the expected return
evaluation, the policy is tested over 1,000 episodes of 150 steps.
The critic approximates the V-function with a linear function V̂ (s;ω) = ϕ(s)Tω where ϕ(s)
are 100 random Fourier features, as presented in [Rajeswaran et al., 2017]. The bandwidths are
computed as suggested by [Rajeswaran et al., 2017] as the average pairwise distances between
10,000 state observation vectors. These states are collected only once before the learning and are
shared across all 50 trials. The phase and the offset of the Fourier features are instead random
and different for all trials.
The policy is Gaussian, i.e., π(a|s; θ) = N (b +Kϕ(s), σ2). The same Fourier features of the
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Figure D.9: The two pendulum swing-up tasks, with an example of the current state (in blue) and
the goal state (in red).

critic are used for the policy, for a total of 102 policy parameters to learn. K and b are initialized
to zero, while σ to four. For the expected return evaluation, the noise of the policy is zeroed.
The critic parameters are initialized uniformly in [−1, 1] and are learned with Matlab fminunc
optimizer such that they minimize the mean squared TD(λ) error (since we use GAE). GAE
hyperparameters are γ = 0.99 and λ = 0.95.
The policy is learned with TRPO with a KL bound of 0.01. For computing the natural gradient,
both the advantage, the TD error and the regularization are standardized, i.e., ŷ ← (ŷ−µy)/σy,
where ŷ is either the advantage estimator, the TD error estimator, or the regularization (δ2
or Â2, depending if we use TD-REG or GAE-REG), µy is the mean of the estimator and σy

its standard deviation. The conjugate gradient is computed with Matlab pcg. Additionally,
since TRPO uses a quadratic approximation of the KL divergence, backtracking line search is
performed to ensure that the KL bound is satisfied. The starting regularization coefficient is
η0 = 1 and then decays according to ηt+1 = κηt with κ = 0.999.

Double-pendulum
This task (Figure D.9b) follows the equations presented by Yoshikawa [1990]. The state consists
of the angle position [q1, q2] and velocity [q̇1, q̇2] of the links. Both angles are bounded in [−π, π]
and initialized uniformly in [−π, π], while both velocities are bounded in [−50, 50] and initialized
in [−1, 1]. The agent, however, observes the six-dimensional vector [sin(q), cos(q), q̇]. As the
pendulum is underactuated, the action on each link is bounded in [−10, 10]. The transition
function is

q̈t+1 =M−1
t (at − fgt − fct − fv t),

q̇t+1 = q̇t − q̈t+1δt,

qt+1 = qt + q̇t+1δt,
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where δt = 0.02 is the timestep, M is the inertia matrix, fg is gravitational, fc the Coriolis
force, and fv the frictional force. The entries of M are

M11 = m1

(
l1
2

)2

+ I1 +m2

(
l21 +

(
l2
2

)2

+ 2l1

(
l2
2

)2

cos(q2)
)

+ I2,

M12 =M21 = m2

((
l2
2

)2

+ l1
l2
2

cos(q2)
)

+ I2,

M22 = m2

(
l2
2

)2

+ I2,

where li = 1 is the length of a link, mi = 1 is the mass of the a link, and Ii = (1+ 0.0001)/3.0
is the moment of inertia of a link. Gravitational forces are

fg1 = m1g
l1
2

cos(q1) +m2g

(
l1 cos(q1) +

l2
2

cos(q1 + q2)

)
,

fg2 = m2g
l2
2

cos(q1 + q2),

where g = 9.81 is the gravitational acceleration. Coriolis forces are

fc1 = −m2l1
l2
2

sin(q2)(2q̇1q̇2 + q̇22),

fc2 = m2l1
l2
2

sin(q2)q̇21.

Frictional forces are

fv1 = v1q̇1,

fv2 = v1q̇2,

where vi = 2.5 is the viscous friction coefficient. The goal state is q = [π/2, 0] and the reward
function is

rt = −||π − abs(abs(q − qgoal)− π)||22 − 0.001||a||22,

where the first term is the squared distance between the current angles and the goal position
qgoal = [π/2, 0], wrapped in [−π, π]. Note that, compared to the single-pendulum, the frame of
reference is rotated of 90◦. The first angle q1 is the angle between the base of the pendulum and
the first link. The second angle q2 is the angle between the two links.
For learning, at each iteration only 6 episodes of 500 steps are collected, because the double-
pendulum needs more steps to swing up than the single-pendulum. For the expected return
evaluation, the policy is tested over 1,000 episodes of 500 steps. The same actor-critic setup of
the single-pendulum is used, except for

• The Fourier features, which are 300,

• The policy, which has a full covariance matrix. Its diagonal entries are initialized to 200
and we learn its Cholesky decomposition, for a total of 605 parameters to learn, and
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• The initial regularization coefficient for TD-REG, which is η0 = 0.1.

D.3 MuJoCo Continuous Control Tasks

The continuous control experiments are performed using OpenAI Gym [Brockman et al., 2016]
with MuJoCo physics simulator. All environments are version 2 (v2). We use the same hyper-
parameters and neural network architecture for all tasks. The policy is a Gaussian distribution
with a state-independent diagonal covariance matrix. Each algorithm is evaluated over five tri-
als using different random seeds with common seeds for both methods. For TRPO, the policy
was evaluated over 20 episodes without exploration noise. For PPO, we used the same samples
collected during learning, i.e., including exploration noise.
The actor mean and the critic networks are two-layer neural networks with hyperbolic tangent
activation function. Because all tasks actions are bounded in [−1, 1], the actor network output
has an additional hyperbolic tangent activation.
At each iteration, we collect trajectories until there are at least 3,000 transition samples in the
training batch. The maximum trajectory length is 1,000 steps. Then, we compute the GAE esti-
mator as in Eq. (4.45) and train the critic to minimize the mean squared TD(λ) error (Eq. (4.41))
using ADAM [Kingma and Ba, 2014]1. The actor is then trained using the same training batch,
following the algorithm policy update (PPO, TRPO, and their respective regularized versions).
For the policy update, both the advantage, the TD error and the regularization are standardized,
i.e., ŷ ← (ŷ−µy)/σy, where ŷ is either the advantage estimator, the TD error estimator, or the
regularization (δ2 or Â2, depending if we use TD-REG or GAE-REG), µy is the mean of the
estimator and σy its standard deviation.

TRPO Hyperparameters

• Hidden units per layer 128.
• Policy initial standard deviation 1.
• GAE hyperparameters: λ = 0.97 and γ = 0.995

• ADAM hyperparameters: 20 epochs, learning rate 0.0003, mini-batch size 128.
• Policy KL divergence bound ϵ = 0.01.
• We also add a damping factor 0.1 to the diagonal entries of the Fisher information matrix

for numerical stability
• The maximum conjugate gradient step is set to 10.

PPO Hyperparameters

• Hidden units per layer 64.
• Policy initial standard deviation 2.
• GAE hyperparameters: λ = 0.95 and γ = 0.99

• ADAM hyperparameters (for both the actor and the critic): 20 epochs, learning rate
0.0001, mini-batch size 64.

• Policy clipping value ε = 0.05.
1 TRPO original paper proposes a more sophisticated method to solve the regression problem. However,

we empirically observed that batch gradient descent is sufficient for good performance.
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