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Abstract: This thesis is concerned with the analysis and implementation of an isogeo-
metric boundary element method for electromagnetic problems. After an introduction of
fundamental notions, we will introduce the electric field integral equation (EFIE), which is
a variational problem for the solution of the electric wave equation under the assumption of
constant coefficients.

Afterwards, we will review the notion of isogeometric analysis, a technique to conduct
higher-order simulations efficiently and without the introduction of geometrical errors. We
prove quasi-optimal approximation properties for all trace spaces of the de Rham sequence
and show inf-sup stability of the isogeometric discretisation of the EFIE.

Following the analysis of the theoretical properties, we discuss algorithmic details. This
includes not only a scheme for matrix assembly but also a compression technique tailored
to the isogeometric EFIE, which yields dense matrices. The algorithmic approach is then
verified through a series of numerical experiments concerned with electromagnetic scattering
problems. These behave as theoretically predicted.

In the last part, the boundary element method is combined with an eigenvalue solver, a
so-called contour integral method. We introduce the algorithm and solve electromagnetic
resonance problems numerically, where we will observe that the eigenvalue solver benefits
from the high orders of convergence offered by the boundary element approach.






Zusammenfassung: Diese Arbeit befasst sich mit der Analyse und Implementierung
eines isogeometrischen Randelementverfahrens fiir elektromagnetische Probleme. Nach
einer Ubersicht iiber grundlegende Begriffe wird die elektrische Feldintegralgleichung (EFIE)
eingefiihrt, ein Variationsproblem zur Losung der elektrischen Wellengleichung unter An-
nahme konstanter Koeffizienten.

Anschlie3end wird die isogeometrische Analyse vorgestellt, ein Ansatz um numerische
Simulationen hoherer Ordnung effizient und ohne Einfiihrung geometrischer Fehler
durchzufiihren. Wir beweisen hierbei quasi-optimale Approximationseigenschaften fiir
alle Spurrdume der de Rham Sequenz. Anschliel3end zeigen wir die inf-sup Stabilitat der
isogeometrischen Diskretisierung der EFIE.

Nach der Analyse der theoretischen Eigenschaften diskutieren wir die dazugehorigen al-
gorithmischen Aspekte. Dazu gehort nicht nur die Matrixassemblierung, sondern auch die
Einfithrung eines effizienten Kompressionsschemas. Dies ist speziell auf die isogeometrische
EFIE, welche dichte Matrizen liefert, angepasst. Der algorithmische Ansatz wird dann in
einer Reihe von numerischen Beispielen, die sich mit elektromagnetischer Streuung befassen,
verifiziert. Diese zeigen das von der hergeleiteten Theorie vorausgesagte Verhalten.

Im letzten Teil der Arbeit wird die Randelementmethode mit einem Eigenwertloser, einer
sogenannten Konturintegralmethode, kombiniert. Wir erldutern den algorithmischen Ansatz
und 16sen elektromagnetische Resonanzprobleme numerisch. Hierbei zeigt sich, dass der
Eigenwertloser von den hohen Konvergenzordnungen der Randelementmethode profitiert.
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1. Motivation: The Cavity Problem

While many numerical methods for electromagnetism have been understood and established, certain
engineering applications are pushing these schemes to their limits.

One such example is the design and simulation of resonator cavities for particle accelerators, for example,
the TESLA cavity [4] as depicted in Figure 1.1.

O

s ]

Figure 1.1.: Superconducting 1.3 GHz nine-cell cavity, cf. [4, Fig. 3].

These cavities are crucial components of particle accelerators. Within them, resonating electric fields are
induced, see Figure 1.2, such that so-called particle bunches become accelerated to relativistic speeds.
The idea behind this principle is explained in Figure 1.2.

The resonant frequency has to be within a specific range, attuned to the target speed of the particle
bunches. This desired operating frequency of these devices is within the gigahertz regime, while changes
after production through so-called tuning can only be made within a range of 300 kHz [4, Table II].

This tuning mechanism is required to compensate manufacturing errors, as well as errors due to de-
formations induced by the operation of the device. These effects are known as Lorentz detuning and
microphonics and have an impact of roughly 600 Hz on the Tesla cavity [4, Table II]. Thus, it is desirable
that an initial design should fit the desired specifications as closely as possible, such that the tuning range
can be reserved exclusively to correct the above mentioned factors and does not have to compensate for
errors in the initial design.

While the tuners still can compensate for manufacturing errors and deformations due to Lorentz detuning,
conventional numerical methods struggle to resolve changes of this magnitude, since they happen within
a relative margin of roughly 10~7, and there are other examples of applications, where such high demands
of accuracy are desired of simulations. One other example is presented by Georg et al. [55], who explain
that one must resolve eccentric deformations of cavities within a relative error margin of 10~ w.r.t. the
operating frequency.

These requirements are challenging for established numerical methods. Lowest-order schemes such as
the finite integration technique [115] do not reach the necessary accuracies since their low convergence
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Figure 1.2.: The main principle behind cavities is as follows. The cavity is designed such that within each
cell, the electric field accelerates the charged particles forward (a). Once the particles leave
the cell (b), the standing electric wave within the cavity slowly begins to change polarity, until
the field is zero while the particle is in between two cells (c). Upon entering the next cell (d),
the direction of the field has changed and the particle is again accelerated forward, where the
maximum field strength is reached ideally in the centre of each cell (e). This scheme repeats
for each cell (f), such that in every cell the particle experiences a forward directed force. See
also [116].
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rates would require the assembly and solution of ill-conditioned systems of sizes which are too large to
handle. Moreover, even higher-order schemes struggle since these mostly mesh-based methods introduce
errors in the geometry model which are already irreconcilable with the desired error-margin.

This thesis investigates weather it is possible to achieve accuracies of this magnitude via numerical
simulations based on isogeometric boundary element methods.

1.1. Isogeometric Boundary Elements for Electromagnetism

This thesis proposes a novel numerical method satisfying the high accuracy requirements and governing
assumptions of the cavity problem, namely an isogeometric boundary element method (IGA BEM), based
on a discretisation of the electric field integral equation (EFIE). Through the so-called isogeometric
discretisation [67], parametric mappings are used to describe the geometry. This means that no meshing
errors are introduced and that the utilisation of discrete spaces of higher-order is viable.

The proposed isogeometric boundary element method offers doubled rates of convergence with respect
to the polynomial degree if the pointwise electric field is the quantity of interest. This convergence
behaviour can be exploited to accurately compute the resonant frequencies via so-called contour integral
methods [12]. These methods are capable of handling the introduced non-linear resonance problem
without solving a problem in the vicinity of the resonant frequency, which would introduce instable
behaviour.

Since contour integral methods on their own can exhibit exponential convergence, the conducted numeri-
cal experiments show the doubled order of convergence of the boundary element method to be preserved
in the approximation of the eigenvalue.

These notions are explained in-depth. We show the stability of the isogeometric discretisation away
from resonances and, for the first time, prove optimal convergence properties for isogeometric boundary
element schemes. All of this is verified through a series of numerical examples, which shows that the
high accuracy demands can be satisfied.

1.2. Common Acronyms

Table 1.1.: Common Acronyms used throughout this thesis.

Acronym | Meaning Acronym | Meaning

ACA adaptive cross approximation FMM fast multipole method

BEM boundary element method IGA isogeometric analysis

CAD computer aided design IGA-BEM | isogeometric boundary element method
CIM contour integral method NURBS non uniform rational B-Splines

DOF degree of freedom RT Raviart-Thomas

FEM finite element method
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Figure 1.3.: Developement before the year 1965.

1.3. Structure of the Document

We first establish a context for the isogeometric boundary element method, which we discuss in the
remainder of this Chapter. Afterwards, Chapter 2 discusses the fundamentals on which the approach
is built. Chapter 3 introduces and analyses the discretisation scheme, and Chapter 4 addresses a fast
implementation thereof. The numerical verification of the theoretic predictions is conducted in Chapter
5, which reviews a series of numerical examples with the electric field as a quantity of interest. After
this, the algorithmic approach which we use to find the resonant frequencies is explained in Chapter
6, which also includes corresponding numerical examples. Appendix A provides a summary of the
approximation properties and analogous finite element approximation in three dimensions would exhibit.
Lastly, Appendix B provides a brief overview of the numerical implementation that has been written as
part of this dissertation project.

1.4. Historical Context

Following Cheng and Cheng [33] and Townsend [111], we will provide some historical context w.r.t. iso-
geometric boundary element methods. The main steps leading towards the content discussed in this
thesis are depicted in figures 1.3 and 1.4. Therein, we do not address the history of particle acceleration
and Maxwell’s equations, since the former is merely a specific motivation for this work and the second is
already concisely presented by Rautio [93].

The Foundation of Variational Methods

Since this thesis is exclusively concerned about the Galerkin framework, both the paper of Ritz [95]
in 1909 and Galerkin [53] in 1915 should be mentioned. In these, the basis of what is now known as
variational formulation was introduced. While the foundation for todays numerical framework was laid, a
suitable way to handle generalised functions (i.e. Sobolev spaces) was not introduced until Sobolev [108]
used introduced notions to investigate the theory of linear hyperbolic differential equations in 1936.

Dissatisfied with purely theoretical assertions, applied mathematicians refined these notions to a point
which enabled them to explicitly compute solutions to real world problems. Courant [38] is commmonly
attributed with achieveing this goal in his 1943 paper, where he uses the variational framework to
compute mechanical forces by hand. It was one of the first applications, if not the first, of what has since

14
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Figure 1.4.: Developement after the year 1965.

developed itself into the finite element method, see [20]; a method often discretising the domain of interest
via small triangles (for two dimensions) or tetrahedrons (for three dimensions) on which computable
basis functions are defined. These are then used to represent an approximation of the quantity of interest.

Solution to Boundary Value Problems via Boundary Integrals

While, in its core, the finite element method requires knowledge about the interaction of discrete entities
within the domain of interest, scientists were well aware that the data on the boundary, together with
some assumptions on the behaviour of the problem, would fix a solution within. The idea that solutions
to partial differential equations could be represented by other quantities defined exclusively on the
boundary was first formulated under the name potential theory. It was investigated by the famous
scientists Leonhard Euler (1707-1783), Joseph-Louis Lagrange (1736-1813), Pierre-Simon Laplace
(1749-1827) and many more [33].

This eventually led to the first well-known integral identities that relate quantities within the domain
with quantities on the boundary; whose developement is most commonly attributed to Carl Friedrich
Gaul? (1777-1855), George Green (1793-1841), and George Gabriel Stokes (1819-1903). The identities
derived by Green [58] in 1828 yield exactly the boundary integral equation used to solve electrostatic
problems via boundary element methods.

These integral formulae resemble the representation theorems utilised by modern boundary element
methods. Derivation of such representation formulae continues until today, were the most famous one for
the case of electromagnetic problems, the so-called Stratton-Chu representation formula, goes back to
the early 1940s, cf. [109].

The first numerical solutions of physical problems via boundary integral equations were achieved by
multiple groups around the year 1962, cf. [33, Sec. 8]. A collective mentioning of such methods under
the name boundary element method can be dated back to the year 1977, cf. [33, Sec. 10].

Due to the reformulation of the problem in terms of integral equations, the system matrix becomes
densely populated. This made the boundary element method permissively expensive for problems of
industrial scope, until the introduction of so called fast methods.

Two such fast methods are the adaptive cross approximation introduced by Rjasanow [96] in 1998, and
the fast multipole method introduced by Greengard and Rokhlin [59] in 1987.

15



Figure 1.5.: Line-art drawing of a wooden spline as used in shipbuilding. The spline is only fixed at certain
points and creates a curvature with minimal bending energy.

Splines and Computational Geometry

Largely disjoint from the increasingly prominent field of numerics of partial differential equations, the
mathematician Schoenberg was working at a US military facility [111]. Instead of engineering, he was
tasked with the analysis and processing of actuarial data, fitting smooth curves to given data [102].

During this time, he developed the notion of piecewise polynomials of global smoothness (up to a certain
degree), which he called splines. The term spline was adapted from smoothly bent wooden planks used
in shipbuilding and other constructions, cf. Figure 1.5. A particular basis was given by the so called
B-splines, short for basis-splines, for which de Boor [16] derived a well-known recursion formula.

In the 1960’s in France, a link to geometry representation was made independently of this development.
The mathematician Paul de Faget de Casteljau was hired by Citroén to overcome problems with new
manufacturing tools.

De Casteljau was tasked to find a way to handle the free-form curves drawn by Citroén’s designers
numerically. Indeed, de Casteljau found an algorithmic solution for the task by 1963 [40]. However, this
was done in strict secrecy, and de Casteljau was not allowed to publish the findings.

Although de Casteljaus’ work was not made public, competing companies became aware of Citroén’s
effort. Eventually, word of de Casteljau’s achievement reached the head of Renault’s design department,
a man called Pierre Bézier. Although he knew of the achievement, he did not know of the algorithmic
approach. After starting anew, he miraculously came up with a mathematical concept equivalent to de
Casteljaus’ algorithm. His concept of modeling free-form curves through mathematical equations is today
known as Bézier curves. This notion is still utilised today in unaltered form to describe two-dimensional
vector graphics.

In contrast to Citroén, Renault allowed to publish these results, so the result was accredited to Bézier
rather than de Casteljau [111].

De Casteljau’s work can be seen as a special case of Schoenbergs initially one-dimensional notion of
splines. This notion was later on extended to make the notions even more expressive, first through the
construction of rational B-spline curves [91] and then through a generalisation to so called non-uniform
rational B-splines (NURBS), cf. Piegl and Tiller [90]. Through these, a large class of geometrical shapes
could be described. While Bézier curves are still used to describe vector graphics, NURBS and related
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Figure 1.6.: Isogeometric boundary element methods enable the computation directly on the CAD repre-
sentation.

notions are so expressive that they are used in modern computer aided design (CAD) frameworks to model
designs of industrial scope [37, 90].

Linking Design and Simulation

Different communities had already adopted the practice of using geometrically precise parametric
mappings for their computations, cf. [62]. However, a thorough link between the geometry and the
discrete entities on them was made in 2005 by Hughes et al. [67] through the introduction of isogeometric
analysis (IGA).

Building on the results reviewed by Piegl and Tiller [90] and the well established and understood theory
of the finite element method, Hughes et al. contrived a method to use not unstructured meshes, but
NURBS mappings of modern CAD systems to obtain a description of the domain without the introduction
of geometrical errors. Hughes and his group identified this as a way to simplify the industrial workflow,
since, through the utilisation of the mappings induced by the CAD systems, preprocessing steps could
be skipped, compare Figures 1.6 and 1.7. These preprocessing steps were previously time consuming,
known to take up to 80% of the time of the entire simultaion workflow [14].

To discretise the quantity of interest NURBS were utilised as well. Thus, when computing mechanical
displacements as quantities of interest, this gave the possibility to immediately deform the geometry.
This could be achieved by applying the computed displacements directly to the description of the domain,
due to the matching discretisation.

This idea could be seen as an extension of the finite element framework by a more elaborate geometry
description and discrete spaces. Nonetheless, it was immensely successful and spawned a whole new
area of research, cf. [7, 15, 29, 35, 37] and many more. One downside of the isogeometric scheme is
that most CAD frameworks operate only in terms of a boundary discretisation, and Hughes’ idea required
a volumetric description of the geometry. Thus, a straightforward connection of simulation tools to CAD
packages was still challenging. This predominant utilisation of boundary representations in CAD led
several engineers to adapt Hughes’ ideas to boundary element methods, which avoided the need for the
creation of a volume discretisation. The first known numerical results were published in 2012 by Simpson
et al. [106] and Takahashi and Matsumoto [110], dealing with simple two-dimensional examples.
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Figure 1.7.: For a FEM computation a mesh is generated from the boundary data available from the design
framework. Afterwards, a volume mesh is created.

1.5. State-of-the-Art and Contribution

We will now present a review of the state-of-the-art, together with an explanation of the authors’
contribution. The contributions, together with the corresponding publications, are summarised in Table
1.2

Volume-Based Methods

As of today, volume-based methods for the simulation of electromagnetic problems can be regarded as
the industry standard. Most implementations rely on conforming discretisations, which in the context
of finite element methods exist both for classical as well as for isogeometric formulations and are well
understood, see [28, 35, 83]. Another volume-based method, which is highly established within the
field of computational electromagnetism, is the finite integration technique, see the works of Weiland
et al. [115] and the references cited therein. As mentioned before, all of these volume-based methods
require pre-processing to obtain a volumetric discretisation, which will inevitably introduce some errors.
Moreover, automated generation of parametrisations for volumes is an open area of research.

Non-Volumetric Methods

For the solution of electromagnetic problems with a boundary representation alone, classical boundary
element methods are a valid choice. Three sound implementations are discussed by Hiptmair and
Kielhorn [66], émigaj et al. [107], and Weggler [114]. Of these only the code of Weggler [114] is
capable of higher-order simulations, and only the implementation of Smigaj et al. [107] is freely available.
Moreover, each of these approaches is mesh-based and, once again, suffers from the need of a geometry
discretisation, introducing geometrical errors. An approach via wavelets is also possible, cf. [62], and
will be discussed below.

A non-isogeometric method minimising the impact of geometry discretisations was introduced by Li
et al. [76]. The paper presents an approach to the electric field integral equation which is based on
subdivision, a scheme going back to the work of Catmull and Clark [31]. There, the exact geometry and
the discrete quantities are given as the limit of an exponentially converging recursive formula, which
yields a refined mesh in each iteration. Subdivision algorithms can be implemented more efficiently
than algorithms based on B-spline evaluations. Moreover, subdivision schemes offer the possibility to
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use globally smooth discrete spaces, which generally cannot be achieved by isogeometric methods due
to patch boundaries in multipatch domains. However, they do not pose a flawless alternative to the
isogeometric approach. First, in real-world examples, globally smooth geometries do not play important
roles, strongly weakening the main advantage advertised. Secondly, most CAD frameworks operate with
(trimmed) NURBS as boundary representation, while subdivision surfaces are mostly used for animations.
Thus, before subdivision schemes are applicable, preprocessing steps must be taken. This does not make
subdivision-based approaches attractive for the inclusion into manufacturing workflows since they do not
offer the user-friendliness of the isogeometric approach.

Isogeometric Boundary Element Methods

Simpson et al. [106] had already implemented an IGA-BEM for two-dimensional problems, and a simple
implementation of a collocation-based approach for three-dimensional problems was discussed in [105].
However, the first isogeometric three-dimensional Galerkin BEM was presented in our paper [48]. There,
we introduce a fast isogeometric discretisation of single layer approaches to both Laplace equation
and Helmholtz equation. Moreover, for the first time, we discussed the provably optimal behaviour of
the interpolation-based multipole compression for scalar problems as well as analytic stability of the
isogeometric discretisation.

With regards to electromagnetism, Simpson et al. [104] published numerical examples of a three-
dimensional IGA-BEM for the electric field integral equation. However, they do not address the electric
field as a quantity of interest and do not make any analytical considerations related to compression and
the stability of the discretisation. These questions were first discussed by us in [50], where we present the
first provably optimal compression scheme for isogeometric discretisations of boundary element methods
for electromagnetism, a proof of inf-sup stability of the isogeometric EFIE, and a series of numerical
examples, including a detailed investigation of the pointwise error in the electric field.

A comparison of the isogeometric ansatz spaces to different discretisations of the electric field integral
equation was first conducted by us in [47, 75], where we compare the spline-based discretisation to
parametric Raviart-Thomas elements and also discuss spectral elements, respectively. Our implementation
used for the numerical studies of [47, 50, 75] was made publicly available [44], archived [43], and
its API is explained in [45]. To the best of the authors’ knowledge, this is the only publicly available
isogeometric boundary element code, and the only publicly available code for the EFIE capable of
higher-order computations.

Table 1.2.: Correspondence between articles and thesis.

| Publication | Thesis | Key novelty
[25] Chap. 3 (excl. Sec. 3.6), | Interpolation operators & approximation
Append. A results
[45] Append. B Implementation
[47] Sec. 5.4 Comparison to RT elements
[50] Sec. 3.6, Sec. 5.1 - 5.3 Stability and compression scheme
[74] Chap. 6 Numerical study of IGA-BEM in conjunc-
tion with CIM
[75] Sec. 5.5 Discussion of spectral elements
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Fast Methods

Within the spline-based isogeometric boundary element framework, one could also consider a different
choice of a fast method. Different multipole methods are available, see for example [100, 101], but are
rarely black-box. The method used in this thesis is based on the previous work of Déolz et al. [46] and
has also been applied to other PDEs [48]. An alternative to multipole methods is given by the so-called
adaptive cross approximation (ACA) [60]. However, a comparison to other fast methods conducted by
Harbrecht and Peters [63] favoured multipole-based compression techniques over the ACA on parametric
surfaces for lowest-order discretisations. An account of a promising ACA specific to the isogeometric
setting can be found in [79], however, not in the context of electromagnetism.

One could also utilise a boundary element approach via wavelets, cf. [62, 70], which was the most
favourable approach in the above-mentioned comparison [63]. While the results remain largely unknown
to engineering communities, the theoretical properties of this approach are understood extremely well,
see the works of Dahmen et al. [39]. The wavelet approach for boundary element methods also does
not suffer from the need for fast methods. Due to a property of wavelet bases called vanishing moments
the system matrices obtained from this approach are almost sparse, in the sense that a large number of
entries are small enough to be considered zero. Thus, a fast boundary element approach via wavelets
yields sparse systems. However, implementation of wavelets is more involved than the implementation of
the isogeometric BEM proposed in this thesis, and, to the best of the authors’ knowledge, no studies of
higher-order divergence-conforming wavelets have been conducted.

Approximation Properties

The analysis of the isogeometric boundary element approach is highly dependent on suitable approx-
imation estimates for the spline spaces. For domains diffeomorphic to the unit cube, so-called single
patch domains, these were introduced by Buffa et al. [28]. A generalisation to other domains, so-called
multipatch domains was presented for globally continuous scalar functions in [30]. The non-trivial
generalisation of this concept to curl and div-conforming spaces, as well as quasi-optimal error estimates
w.rt. the spaces H~Y2(T"), H,"*(divp,T)), and H'/2(T) for multipatch boundaries I were introduced by
us in [25].

Electromagnetic Resonance Problems in the Context of IGA and BEM

As made clear in the motivation, resonance problems are of specific interest. An approach to the linear
eigenvalue problem via isogeometric finite elements was presented in [35].

However, an approach via boundary element methods renders the electromagnetic eigenvalue problem
non-linear. A study for the corresponding boundary element approach has only been considered outside
the isogeometric setting [118], where a Newton method is used to solve the non-linear eigenvalue
problem. Indeed, an algorithmic approach to non-linear eigenvalue problems was difficult, see e.g. the
overview of Mehrmann and Voss [81]. This changed with the introduction of a new class of algorithms in
2012, the so-called contour integral methods, independently presented by Asakura et al. [3] and Beyn
[12]. A comparison of multiple approaches was conducted by Imakura et al. [68]. There, the authors
concluded that all of the considered contour integral methods can be regarded as projection methods
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and can be categorised based on the subspaces projected on, as well as on the type of projections and the
problem to which they are applied implicitly.

The first approach via a contour integral method together with an isogeometric BEM is presented in
this thesis. For classical lowest-order BEM and without a fast method this has already been studied
numerically by Elasmi [51]. The analysis of the contour integral method in conjunction with general
Galerkin boundary element methods based on the electric field integral equation has recently been
presented by Unger [113].
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2. Foundations

From now on, in order to avoid the repeated use of generic but unspecified constants, by C' < D we mean
that C' can be bounded by a multiple of D, independently of parameters fixed through context or which
D may depend on. In the usual sense, C' > D isdefinedas D < C,and C ~DasC <D < C.

2.1. Hilbert Spaces

Before we precisely characterise the problems we want to solve, we need to recall some essential functional
analytic notions. We follow the books by McLean [80] and Wloka [117], deviating only to cover assertions
required for the vector valued cases specific to electromagnetic problems. For this, our main reference is
a review article by Buffa and Hiptmair [26].

Definition 2.1 (Hilbert Space, [80, p. 38]). Any vector space X equipped with an inner product (-, -) x
is said to be a Hilbert space, if it is complete w.r.t. the induced norm given by

2zl x = vV (=, 2)x (2.1)

forall z € X.
Now we cite a first fundamental result.

Lemma 2.2 (Cauchy-Schwarz Inequality, [80, Eq. (2.5)]). Let X be a Hilbert space with scalar product
(-,-)x and induced norm ||-|| . Then, for any =,y € X it holds that

[z, ) x| < llzllxllyllx-
This general setting alone already enables us to review some well-known results.

Definition 2.3 (Gelfand Triple, [117, Thm. 17.3]). Let X and Y be Hilbert spaces with a dense, continu-
ous, and injective embedding e: X < Y. Defining the dual norm

,ex
Il = sup Yl g 2.2)
o el

we denote the completion of Y w.r.t. ||-|| y, as X'. The tuple (X, Y, X') is called Gelfand Triple, and we
say that X' is the dual space of X w.r.t. the so-called pivot space Y.

At times, to highlight this relationship, we will write (-, -) x/ x instead of (-, -)y.
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Remark 2.4. Gelfand triples (X,Y, X') are usually defined for X not being a Hilbert space, but rather in
the more general setting of (reflexive) Banach spaces. This generalisation is of no interest for this thesis,
thus we choose to simplify the setting.

Proposition 2.5 (Canonical Embedding of the Dual, [117, Thm. 17.3]). The embedding ¢': Y — X’
induced by the completion in Definition 2.3 is dense, continuous, and injective. Moreover, X' is a Hilbert
space.

Summarising, this yields the density, continuity, and injectivity of the embeddings
XSy Sx.

The embeddings utilised within this thesis are exclusively those induced by completion w.r.t. the norms.
Thus, we will refrain from using the notation e and ¢’ from this point forward.

By continuity arguments, one can show the following.

Lemma 2.6 (Continuity of the Duality Product, [117, Thm. 17.2]). Let (X,Y, X') be a Gelfand triple. For
all z € X and y € X' it holds that

@,y | < llzllxllyllx

2.2. Approximations in Hilbert Spaces

Having defined the essential notions of Hilbert spaces, we can now review some basic approximation
results.

Theorem 2.7 (Best Approximation in Hilbert Spaces, [80, Lem. 2.28]). Let X be a Hilbert space and let
Y C X be a nonempty, closed, and convex subset. Then for any u € X there exists a unique element i € Y’
such that

i — ul|y = inf [y — ul|y-.
la—ully = inf lly —ullx

Theorem 2.7 particularly is applicable to any finite dimensional subspace Y := X}, of a Hilbert space X,
since it fulfils the closedness and convexity assumption by their definition via the span of a finite basis.
These best approximations can be obtained by orthogonal projections.

Definition 2.8 (Orthogonal Projection, [80, p. 40]). Let X be a Hilbert space and let Y C X be a
nonempty, closed, and convex subset. We define the X-orthogonal projection P: X — Y such that
Pu = u, where @ € Y is the solution to the problem of Theorem 2.7.
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Indeed, for any orthogonal projection P it is clear that P is a projection in the sense of P o P = P. This
projection induces the orthogonal decomposition

X=YaVYT,
where Y = im P and YT = ker P. Commonly, Y7 is referred to as orthogonal complement of Y in X.

We now introduce three essential results discussing well-posedness of variational problems and the quality
of approximate solutions.

The first result is due to Céa [32], and may also be found in many standard references to the finite
element method, e.g. the book by Monk [83].

Theorem 2.9 (Céa’s Lemma, Monk [83, p. 25]). Let X be a Hilbert space endowed with the norm ||-|| . Let
a: X x X — K be a continuous and X -coercive sesquilinear form over X and let £: X — K be a bounded
linear operator. Let u € X denote the solution to the problem

a(u,v) = £(v), forallv e X.
Then, for any finite dimensional space X; C X the solution u;, € X}, to the problem
a(up,vy) = (vy), for all v, € Xy,
satisfies

u—1u < min ||lu— vyl.
Ju = unlly S in = wn]

Theorem 2.10 (Inf-Sup Condition, [5]). Let U,V be Hilbert spaces, and let a: U x V' — K be a continuous
bilinear form with a(u,v) < ||ully|lvly ., for all w € U,v € V. Then the variational problem of finding a
function u € U with

a(u,v) = £(v), forallv eV,
and an ¢ € V' is well posed if and only if there exists an o € R such that
inf  sup M: inf  sup M:a>0
0#u€l gzyeV |l o]y 04vEV 0£uecU Jullllvlly
holds.
Theorem 2.11 (Discrete Inf-Sup Condition, [119, Thm. 1]). Let the assumptions of Theorem 2.10 be
satisfied, and let U, C U and V}, C V' be two non-trivial subspaces. If the condition

inf sup M— inf  sup M:ah>e>0

0£un€U 0ty eV, Unllpllonlly — 0oneV ozuyev lunllyllonlly
for some € > 0 is fulfilled, then the variational problem of finding an u;, € U, with
a(uh, ’Uh) = E(vh), fOT' all vy, € Vi,

and an ¢ € V' is well posed. Furthermore, for u being the solution to the problem in Theorem 2.10, it holds
that

— < inf — .
[|lu Uh|’UNw}1LIethHU whHU
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2.3. Sobolev Spaces in Domains

We are interested in a special class of Hilbert spaces, namely those Hilbert spaces which come in the form
of Sobolev spaces, i.e., Hilbert spaces of functions. While general LP-theory is relevant in many areas, we
only recall the required theory for this thesis. Let 2 C R%, d = 2, 3. For the remainder of the thesis, for
any set 2 € R? we will set Q¢ := R\ Q.

Definition 2.12 (C*-Domain, [80, p. 89ff]). Let k£ > 0. A domain 2 ¢ R? with compact boundary T is
called C*-Domain if

e for a suitable index set J there exists a finite open covering {W,}c; of I" and {€2;}cs of Q such
that each ; can be transformed to a C*-hypograph, i.e., set of the form

Q={x=(x1,...,2q) € RY: 24 < () forall 2’ = (z1,...,24-1) € R4}
for some C* functions {0;} e, by a rigid motion, i.e., rotation and translation, and
* one finds W; NQ; =W;NQforall j € J.
If the 6; are (only) Lipschitz continuous, we refer to (2 as a Lipschitz domain and to the Q; as Lipschitz

hypographs.

Without loss of generality we will omit the inclusion of the rigid motion mentioned above in the following
derivations. Moreover, we will call a d-dimensional manifold I" Lipschitz boundary if there exists a Lipschitz
domain Q € R4 with 90 =T.

As commonly done, we define the scalar product

()20 = [ wla)ofa) da

for all functions u,v: Q2 — C in which the right hand side is well defined in the sense of the Lebesgue
integral. As in Definition 2.1, we can now define the Hilbert space of functions L?(12) as the closure of
the infinitely differentiable functions C*°(2) w.r.t. the induced norm

lull 2) = 1/ (s v) £2(0)- (2.3)

To define Sobolev spaces of higher regularity, we first need to introduce multi-index notation. A multi-
index is a tuple @ = (ay, - ,aq) € N% and |a| = > 1<j<a@j. Moreover, we define the notation
Def = 9z} --- 0gd f for any sufficiently differentiable function f.

Definition 2.13 (Sobolev Spaces, [80, p. 73ff]). Let €2 be a Lipschitz domain. Fixing the notation
H°(Q) = L*(Q), we define for any integer m > 0 the space of functions H™(f) as the subset of L?()
for which the norm

lullZrm @) = lullzrm—ioy+ D ID%ull72q)

la|=m
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induced by the scalar product

(U, V) () = (U, V) gm—1() + >, (D%, D*) 2(q)

|a|l=m

is finite. For Q C R?, ¢ € (0,1) and integers m > 0 one can define the scalar product (u, v) Hmte(Q) aS

iy + 5 [ [ )= PO TG g,

‘33 _ y’d—l—Ze

|a|=m
thus inducing the Sobolev spaces H™¢((2).

For unbounded domains we will denote any Sobolev space H;; .(Q2°) for s > 0 as the space of functions f
for which f € H*(D) holds for any precompact domain D C Q°.

Of specific importance are spaces of type H' (). Thus, for ease of notation, we denote their seminorm
term by |-| 1) It can be related to the L?(2)-norm as follows.

Lemma 2.14 (Poincaré Inequality, [117, Thm 7.7]). Let Q C R¢ be a compact and connected Lipschitz
domain with Lebesgue measure |2|. Let, moreover, u € H*(Q). Then, for @ == |Q|™! [, u(z) dz, there exists
a constant C = C(Q2) such that

lu =l 2y < Clulg(g-

All of these notions can be extended to vector-valued Sobolev spaces, where the regularity assumptions
need to be understood component-wise. Thus, we set

LX(Q) == (L*(Q)" and H*(Q):= (H*(Q))".

Note that these spaces still maintain a Hilbert space structure, since the respective norms can be induced
by defining corresponding scalar products via summation of the products for scalar-valued functions of
each vector component.

On Lipschitz domains one last class of function spaces need to be introduced. For s > 0 we define the
scalar products

(U, V) Fs (curl,) = (U, V) gs(q) + (curlu,curl v) g+ (), and
(u, V) s (div,0) = (W, V) gs(Q) + (divu, div o) gs(q)-

These induce the norms

ol urn = /Nl + lcurlul 3., and

ol e sy 1= /1l + vl 3o o,

We set the corresponding spaces H*(curl, Q) and H*(div, ) as the subspaces of L?(Q2) for which the
respective norm is finite. These spaces will be referred to as spaces with graph norm. Note that this notion
can be extended to further differential operators in complete analogy, specifically to curl? = curl o curl,
which will be mentioned later on.

How Sobolev spaces of different regularities, as well as Sobolev spaces and other function spaces can be
related to each other is made clear by the following three theorems.
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Theorem 2.15 (Sobolev Embedding Theorem, [99, Thm. 2.5.4]). Let Q C R¢ be a bounded C*-domain.
Let m be an integer such that m < ¢ — d/2 holds for some real number ¢ < k. Then the embedding
HY(Q) < C™(Q) is well-defined and continuous. Specifically, for m = 0 this reduces to the continuous
embedding H¥/?*t¢ — C%(Q) for all € > 0.

Theorem 2.16 (Inclusion of Sobolev Spaces, [99, Prop. 2.5.2]). Let s < t. Then the embedding H'(Q)) —
H#(Q) is well-defined and continuous.

In the sense of the Theorem 2.16, we will commonly write H'(Q2) C H*(f2).

Theorem 2.17 (Interpolation Inequality, [10, Def. 2.4.1, Thm. 4.1.2]). Let 0 < s1 < soand 0 < t; < ty
be integers and let 2 be a bounded Lipschitz domain. For o € [0,1], if T: H% (Q) — H' () is a bounded
linear operator for both j = 1,2, with

[ Tull gy Q) < CjHuHHSJ(Q)v
for two constants Cy and Cs, then we find

HTUHH(l—U)'il-‘rU'tQ Q) < 011_0020HUHH(I—U)'Sl-‘rU'%(Q)-

The results of the last three theorems carry over to Sobolev spaces defined via graph norm, where a proof
of the interpolation inequality for graph norm spaces is discussed e.g. in [23, Prop 4.14].

2.4. Tensor Products of Sobolev Spaces

Within this thesis we will heavily rely on tensor product structures and will thus also encounter tensor
products of function spaces. In this section, we will compile some elementary results and definitions. The
account will follow [42, Sec. II].

Definition 2.18 (Simple Tensors of Functions, [42, Eq. (IL.1.5)]). We define a simple tensor f €
H*®(0,1) ® H'(0,1) as a function

=& f=fife

for f; € H(0,1) and f» € H'(0,1).

Scalar products of tensor product Sobolev spaces are induced by their definition on simple tensors

(f1 ® f2,91 ® g2) s (0,1)@mt(0,1) = (15 91) F5(0,1){f2, 92) Ht (0,1

inducing the norm
1f1® fallgso,nyemt0,1) = Lfillas o)l f2ll Bt 0,1)-

Tensor product Sobolev spaces can then be defined through completion of finite linear combinations of
simple tensors w.r.t. this norm.
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Definition 2.19 (Tensor Product Sobolev Spaces, [94, Sec. I1.4]). For integers s,t > 0 the tensor product
space H*(0,1) ® H'(0,1) is defined as the closure of

Z Z cjififa: cji € C, fi € H*(0,1), fo € H(0,1)
0<i<N; 0<j<Na
WLt || - || as0,1)@H (0,1)-

The following alternative characterisation will be useful when reasoning about these spaces.

Theorem 2.20 (Alternative Characterisation, [94, Thm. I1.10]). For natural numbers s,t > 0, the
identification

H°(0,1) ® H'(0,1) = {f € L*(0): 030 f € L*(O) forall a < 5,3 < t} (2.4)

holds.
This allows us to provide some elementary inclusions.

Corollary 2.21 (Inclusions of Tensor Product Sobolev Spaces). For integers s it holds that
H*(O) 2 H*(0,1) ® H(0,1) 2 H**(0), s> 0, (2.5)
where equality of these spaces holds only for s = 0. Moreover, it holds that

(H'(0,1) ® L*(0,1)) x (L*(0,1) ® H'(0,1)) € H(div, D). (2.6)

Proof. The first assertion follows directly when comparing (2.4) to the representation
H*(O):={f e L*0): 0200 f € L*(O) for all a + 3 < s}.
For f = (fs, fy)7, the second inclusion follows immediately from the inequality
0z foe| + [0y fy| 2 10n fo + Oy fy| = [ div(f)],

which estimates the seminorm terms of both spaces in (2.6). [ |

It only remains to define the action of tensor products of linear operators through density of finite linear
combinations of simple tensors.

Definition 2.22 (Tensor Products of Linear Operators, [77, Def. 1.29]). Let X and Y denote either Sobolev
spaces on (0, 1) or C. Tensor products of linear operators T4 : H5(0,1) — X and Tp: H'(0,1) — Y are
defined for finite linear combinations of simple tensors via

(Ta@Tp) [ Y. D caihfe|= D Y cTal(f))(Ts(f2)

0<i<N;1 0<j<Na 0<i<N; 0<j<Na

and on H*(0,1) ® H'(0,1) through the density relation stated in Definition 2.19.
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2.5. Sobolev Spaces on Boundaries

We are interested in function spaces on compact boundaries I' = 02 of Lipschitz domains 2. As commonly
done, we define the corresponding spaces on I' via charts and partitions of unity. In the following, we
will briefly go through this process, since an intuition about it is helpful for arguments to come.

Following the notation of the previous definition, let I'; = I" N W; be invoked by a Lipschitz mapping ¢
and letI'; C R?~1 be given as the set

;= {z: (z,0(x)) € W, NT}.

Now, for a Lebesgue-measurable function f one can define integration over I'; via

/ flx) dTy = [ f(a',0(x"))\/det(dO(x')TdO (")) da’, 2.7)
r; T

where df(z’) denotes the Jacobian of § at a point 2’ € [. This enables us to give meaning to the spaces
H*(T';), as well as their norms and scalar products, in analogy to domains, by using (2.7) as a means of
integration. Thus, for u € L?(T") and hypographs I'; induced by a mapping # we can set

ug(a') = u(z’, 0(z"))
for 2’ € R?~1. This allows us to define the space H*(T;) as
H*(D) = {u e LX(T;): up € H*(T;)},
given that @ is regular enough. This space can then be equipped with the scalar product
(u, U>H5(1"j) = (ug, v0>H5(fj)'
We can now define the following.
Definition 2.23 (Sobolev Spaces on Manifolds, [80, p. 99]). Let I" be a Lipschitz boundary and let s > 0.
Let {¢;}ics be a partition of unity subordinate to the finite open cover {W;};c; of T, i.e., a family of

C*>°(W;)-functions such that } . ; ¢;(x) = 1 for all € T'. Then, one can define an inner product on I
via

(u, V) grs(ry = Z<¢ju7 GjV) 3 (1)
et

where, as above, I'; = I' N W;. The corresponding spaces H*(I') and, analogously the vector-valued
spaces H*(I"), can now be defined be via the induced norms, cf. (2.1).

Remark 2.24 ([80, p. 98f.]). Two remarks on these function spaces on I' are due.

1. A different choice of partition (I';, W}),cs yields equivalent scalar products and norms when
applying Definition 2.23. Moreover, (2.7) makes it clear that the range of s is limited by the
smoothness of I': If the Lipschitz mappings {6, },c; can be chosen to be C*~1! for k > 0, then s
can be chosen as s € [—k, k].
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(a) Original vector (b) Image of o

9i¢

(c) Image of v, (d) Image of v,

Figure 2.1.: Visualisation of the trace operators. The black arrow corresponds to a pointwise value of a
vector field, which can be decomposed into two tangential components (green and yellow), as
well as a normal component (orange).

2. The assertions of Theorem 2.15, Theorem 2.16, and Theorem 2.17 carry over to the spaces on
manifolds.

Given Definition 2.23, we define H*(I") to denote the dual space to H*(T") in the sense of Definition 2.3,
with L?(I") as a pivot space. The vector-valued spaces are treated analogously.

These spaces on boundaries relate to spaces on the domain through the restriction of functions in 2 onto
I'. Formally, this can be realised through the so-called trace operators.

Note that since 6 is Lipschitz, one can show that the Jacobian df exists almost everywhere, cf. [80, p. 96.].
This immediately ensures the existence of the outward unit normal vector n,, for almost all z € T", as well.

Definition 2.25 (Trace Operators, [26, 99]). Let u: R? — C and u: R* — C3 be smooth. For almost all
zo € I we can define the

Dirichlet trace Yo(u)(zo) = 1;1520 u(zx),

tangential trace Yo(u)(zo) == zlirilou(m) —Ng, (u() - ng,),
rotated tangential trace vi(u)(zo) = zli_)rrzlou(x) X Mgy,

and normal trace T (u)(zo) == mIL%lo u(x) - ng,

Equipped with the superscript ™ we will refer to them interior traces and choose z € 2. For the superscript
et they will be referred to as exterior traces, where we will set z € Q°. When the choice of interior or
exterior is clear from the context, i.e., when the domain of the trace is clearly stated, we will omit the
superscript for ease of notation.

The trace operators are visualised in Figure 2.1.

We will now spend the remainder of this section with a discussion of the ranges of said trace operators.
For this we define the trace space

H3 (D) = ~,(H*2(Q)), for 0<s<1,
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where the subscript x will be used to denote the rotation around the normal.

The space H_*(I") denotes the corresponding dual space w.r.t. the duality pairing

(v,pu)x = /(v xn)-pdl, (2.8)
r

cf. [26, Def. 1]. Note that H$ (I") might not coincide with H*(I') understood in a componentwise sense,
since jumps of the normal might break existing continuities in the preimage. However, this identification
holds for smooth-manifolds, cf. [24].

Defining
H 2 (divp,T) = v, (H(curl, 2)),

together with its rotated counterpart
H~'2(curlp,T) == ~o(H(curl, Q)),

one can use density arguments to extend the trace operators to a weak setting with domain €2 or ¢,
respectively. We summarise the resulting mapping properties, as presented by McLean [80, Thm. 3.37],
and Buffa and Hiptmair [26, Thm. 1, Thm. 3].

Theorem 2.26 (Mapping Properties of the Trace Operators, [26, 80]). For the trace operators, the following
properties hold.

1. The trace operator ~y: H*(Q) — H*~Y/2(T) is linear, continuous and surjective, with a continuous
right inverse for 1/2 < s < 3/2.

2. The operator vq: H%(curl, Q) — H -1/ 2(curlr, T) is linear, continuous, surjective, and possesses a
continuous right inverse.

—1/2, .. - . .
3. The operator v;: H%(curl,Q)) — H_ / (divp,T') is linear, continuous, surjective, and possesses a
continuous right inverse.

4. The operator v, : HO(div, Q) — H~Y%(T") is linear; continuous and surjective.

The resulting connectivity between functions spaces in the domain and on the boundary is depicted
in Figure 2.2. Note that the Hilbert spaces H~'/?(curly, T') and H ;1/ 2(divr, I') can be defined in terms
of spaces induced by a graph norm, in analogy to their counterparts in the volume. To do so, using
the surjectivity of the traces as well as the existence and continuity of right-inverse operators, we can
introduce the following.

Definition 2.27 (Surface Differential Operators). Given Definition 2.25, we define the surface differential
operators gradr, curly, curlp, and divp such that the diagram in Figure 2.2 commutes.

This yields a definition of spaces with graph norm on I', where H*(divp, I') will be of specific importance.
Specifically, for the traces of H (curl, 2) we can proceed as in [23, p. 8] and characterise

H P (divp,T) = {f e H,A(T): divp f € HVX(T)}. (2.9)
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HI(Q) —— grad —> HO(CIII‘I, Q) — curl — HO(dIV,Q)

\
Yo
Tt 3
70 H-?(curly, T) n
gradr curlp
— ~
HY2(T) xn H~/2(TI)

~ J
curlp divp
~ _—
H*(divp,T)

Figure 2.2.: Two dimensional de Rham complex on the boundary, induced by application of the trace op-
erators to the three-dimensional complex in the domain.

2.6. A Model of Electromagnetism

We will now introduce the physical model for the problems to be investigated. This section is largely
based on the books of Jackson [69] and Monk [83].

Let T denote a (possibly infinite) time interval in R. Furthermore, let Q C R? denote a domain, and let
0; denote derivation w.r.t. time. Via vector valued functions

E:QxT —R3, called electric field (intensity), (2.10)
H: QxT — R3, called magnetic field (intensity), (2.11)
D:QOxT—R3, called electric displacement, (2.12)
B: QxT — R3, called magnetic induction, (2.13)
T: QxT —R3, called current density, (2.14)

and the scalar function
0: OAxT — R, called charge density, (2.15)

one can model electromagnetic fields by the well-known Maxwell’s Equations

curl€ = —9,B, called Faraday’s law, (2.16)
curlH =90,D + J, called Ampére’s law, (2.17)
divD = p, called Gauss’s law, and (2.18)
divB =0, referred to as Gauss’s magnetism law. (2.19)

These quantities can be equipped with their corresponding SI units, see e.g. the book of Jackson [69,
Sec. 1.2]. For reasons of notational simplicity, and since most arguments in this thesis will be independent
of units, we will not refer to them.
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For suitable vector fields E, H, D, B, J: Q — C? as well as a complex-valued scalar quantity p: Q — C
we assume sinusoidal oscillation of currents and charges, i.e., relations of the form

£ =Re(e ™E), H = Re(e “'H),
D = Re(e ™'D), B = %e(e ™'B),
J = Re(e ™), 0 =NRe(e D).

Under these assumptions the system (2.16)—(2.19) can be reduced to the so-called time-harmonic system
of equations

curlE = iwB, (2.20)
curlH = — iwD + J, (2.21)
divD = g, (2.22)
divB = 0, (2.23)

cf. Section 1.2 in the book of Monk [83].

The electric displacement and the magnetic induction can be expressed in terms of the electric and
magnetic field via material parameters.

The material parameter electric permittivity and magnetic permeability denoted by € and p, respectively,
will be assumed to be scalar constants. This modelling choice yields material laws of the form

D=cE and (2.24)
B = pH. (2.25)

Remark 2.28 (Differential Forms). The framework of differential forms links naturally to the structure
of electromagnetism. In this sense, the volumetric section of Figure 2.2 relates to 0-, 1-, and 2-forms,
where the classical endpoint of this exact sequence, L?(12), can be identified with the 3-forms. In this
sense the electromagnetic quantities can be identified with the function spaces of the De Rham sequence
with E, H € H(curl, ), and B, D € H(div,?). The material laws manifest as applications of the Hodge
operator, showcasing, together with Faraday’s and Ampere’s law, the isomorphism of 1- and 2-forms in
three dimensions.

To keep the upcoming analysis palatable, a further discussion of this has to be put out of the scope of
this document. More about this can be found in the works of Bossavit [19], while an account specific to
Maxwell BEM can be found in the work of Kurz and Auchmann [71].

Assuming the absence of currents, i.e., J = 0, one can insert (2.25) in (2.20) and (2.24) in (2.21),
arriving at

curl‘icurlE +iweE = 0. (2.26)
Wi

Due to linearity of the curl operator, we can move the material parameters together and define the
non-negative wavenumber x = w,/en. This means, that any vector field E which fulfils the equation

curleurlE — x°E = 0, k>0, (2.27)

is a valid model of an electric field in the given setting and in the absence of currents.
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The electric wave equation will be the governing partial differential equation throughout the thesis.
However, formulating this equation in terms of a well-posed boundary value problem requires the
introduction of boundary conditions.

We will model all geometries as perfect electric conductors, resulting in the application of the so-called
perfect electric conducting (PEC) boundary condition, which can be derived from the absence of a field
within mediums of infinite conductivity. Since this boundary condition will be applied to all problems
discussed within this thesis, we will state it as an assumption.

Assumption 2.29 (Perfect Electric Conductor, [83, Eq. (1.17)]). For any solution to (2.27) we assume
that
vwE=Exn=0 onl. (2.28)

Note that, through Maxwell’s Equations, as well as the material relations, the PEC boundary condition
implies H -n=0onT.

When interested in exterior problems, we must also apply a condition at infinity. This is given by the
so-called Silver-Miiller Radiation Condition.

Assumption 2.30 (Silver-Miiller Radiation Condition, [71, p. 29]). For & € Q¢ and any solution E to

(2.27) we assume that
1
=0 <|m|> N |.’l:‘ — OQ.

We remark that the radiation condition as formulated above is more specific than the ones often citet, see
e.g. [83, Eq. (1.22)] or [23, Eq. (55)], which only demand that the limit vanishes. When formulated as
above the physical interpretation becomes clear: For increasing distance to the scatterer, the scattered
field should start to resemble that of a spherical wave going out from the scatterer. This means that for a
large distance to the scatterer, geometric details become negligible within the observed field.

curl E(z) x I%I —ikE()

The assumptions above enable us to formulate the two problems central to this thesis.

Problem 2.31 (Scattering Problem, [83, Sec. 1.4.1]). Given a Lipschitz domain Q2 with boundary
I', a wavenumber x, and incident wave E; € H ?Oc(curl,R3), we are looking for the scattered field
E, € Hy,.(curl?, Q°) which satisfies

curleurlE, — x%2E, = 0, in Q°,

v:Es = —v:E;, onl,

1
:O<|1:|)’ |Z| — oc.

Note that the second equation of Problem 2.31 ensures that Assumption 2.29 is satisfied by the total field
E=E,+E,.

curl E,(z) x “:7' —ikE(z)

Moreover, an analogue of Problem 2.31 can be formulated for the interior domain €2, where the radiation
condition can be simply omitted.

Another application of the techniques mentioned within this work is the solution of eigenvalue problem
induced by (2.27), i.e., the approximation of resonant frequencies and corresponding electromagnetic
fields within a resonator.
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Problem 2.32 (Resonance Problem, [83, Sec. 1.4.2]). Given a scatterer ) with Lipschitz boundary T,
we are looking for an eigenpair (E, x2) € H(curl?, Q) x Ry with E # 0, x # 0 that satisfies

curlcurlE — k°E =0, in Q,
Exn=0, onT.

For the remainder of this thesis we will call a wavenumber x non-resonant if there does not exist an FE
such that (E, k) is a solution to Problem 2.32.

2.7. Representation of Fields via Boundary Integral Equations

For the remainder of the chapter we will focus on Problem 2.31. Indeed, any solution to this problem can
be derived via a boundary integral formulation.

Although its derivation is technically involved, it is not instructive for the topics discussed within this
thesis. Thus, we will only state the assertion. The derivations reviewed here are originally due to Stratton
and Chu, see e.g. [109], but have also been discussed in a plethora of other works, see e.g. [26, 118].
The version reviewed here resembles the one presented by Buffa and Hiptmair [26, Thm. 6].

For any wavenumber « € C let v} (z,y): R3 x R? — C denote the Helmholtz fundamental solution

o—irlz—y|

Uﬁ(m,y) = m (2.29)

For notational convenience, we define the Maxwell double layer potential
W H.*(divp,T) — Hyoe(curl?, Q U Q°)
as
W) = eurl, | (@, y)u(y) dTy,
and the Maxwell single layer potential
Y H*(divr,T) = Hye(curl?, QU Q°)
as

V@) = [ wileuty) ATy + serad, [ uiey)(diven)w) aT,

for sufficiently smooth functions u. We extend their meaning to the weak setting by density arguments.
The resulting mapping properties are reviewed by Buffa and Hiptmair [26, Thm. 5], who also show that
the image of both potentials is divergence-free.

Armed with these operators we can now introduce the well-known boundary integral formulation.

36



Theorem 2.33 (Stratton-Chu Representation Formula, [26, Thm. 6]). Any E; € H ?OC (curl?, Q°) that is
the solution to Problem 2.31 can be represented by

E; = -WAPYEs)) —W((§ o curl)(Ey)).

Moreover, any E, € H°(curl?, Q) which solves the corresponding interior problem within §) can be represented
as

E; =W.(v"(E;)) + V((v™ o curl)(Ey)).

Remark 2.34 (Null-Property, [71, p. 33]). The evaluation of the interior representation in the exterior
domain yields 0, and vice versa. This is sometimes referred to as null-property of the representation
formula.

Remark 2.35 (Cauchy Data, [23, Def. 3]). The Stratton-Chu formula already allows for a solution of the
boundary value problem given 7, (E), which is determined through the incoming wave because E; + E;
must fulfill Assumption 2.29. In this case 4, o curlE is the unknown, and the pair (y.Es,v; o curlEy) is
called Cauchy data.

Let E°** denote the solution to an exterior scattering problem induced by the incoming wave E;, i.e.,
governed by the boundary condition

ext ppext __ ext .
v BT = v E

Then we can find the solution E™ to the corresponding interior problem, with boundary data generated
by

ext ppext __ . int pint
Vi Es = Es .

Applying this to Theorem 2.33 and setting w = (y§** — i) (curlE), together with the null-property
yields the following.

Corollary 2.36 (Single-Layer Representation, [26, Sec. 7.2]). If E; € H,.(curl?®, Q U Q) is a solution
to the electric wave equation (2.27) on 2 U Q€ that also fulfills Assumptions 2.29 and 2.30, then it can be
represented via

E; =) (w).

Denoting the average of the interior and exterior rotated tangential trace by

int ext )
9

1
v = 50"+
we define the Maxwell single layer operator

Vi = {7} o W

The Maxwell single layer operator allows us to recast the identity in Corollary 2.36 in terms of a variational
problem on the boundary w.r.t. the duality pairing (2.8). This identity is famously known as the electric
field integral equation (EFIE).
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Problem 2.37 (Electric Field Integral Equation, [23]). Let x > 0 be a non-resonant wavenumber, and E;
an incident wave. Find a function w € H ;1/ 2(divF, I') such that

<\/Iiwa#>>< = 7<7tEinu’>><

holds for all p € H*/*(divr, T).

This unknown is a physical quantity known as surface current [69, p. 194], and throughout this thesis, we

will use the electric field integral equation to represent the solution of scattering problems via Corollary
2.36.

Existence and uniqueness of the solution to the EFIE, and other variational problems that can be derived
from Theorem 2.33 can be shown since they satisfy a so-called generalised Garding inequality, see [26,
Lem. 10] for non-resonant . The continuous problems have been discussed extensively in the literature,
thus, this thesis will focus on their discrete counterparts which can be used to formalise numerical
approximations to the continuous solution.

Remark 2.38 (Representation and Solvability). While solvability of Problem 2.37 can only be guaranteed
for non-resonant wavenumbers, resonant fields can still be represented by means of Corollary 2.36,
cf. [26].

The existence and uniqueness in the discrete sense depend, among other things, on the specific choice
of a discrete space. For classical elements, for example, Raviart-Thomas elements, see the dissertation
of Zaglmayr [120] for definitions, existence and uniqueness assertions have been provided, e.g. in the
paper by Buffa and Christiansen [23], which is exclusively devoted to this task. The upcoming chapter
establishes analogue assertions for the isogeometric setting.
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3. Isogeometric Boundary Elements

We briefly review the basic notions of isogeometric methods. These notions create a framework in which
pull-backs and push-forwards are used to conduct numerical computations without the introduction
of a geometry error. Moreover, basis functions of higher regularity, i.e., splines, will be used as ansatz
functions for this purpose.

We refer to works of Cottrell et al. [37] and Hughes et al. [67] for an introduction to isogeometric analysis
and of Piegl and Tiller [90] and Schumaker [103] for more details on NURBS and spline theory. For
notational convenience, we set [J := (0, 1) throughout the entire thesis. The main results of this chapter
have been first published in [25] and [50], whose lines we follow for the introduction of fundamental
concepts as well.

3.1. B-Spline Spaces

Of central importance is the notion of B-Splines, which are defined as follows.

Definition 3.1 (B-Spline Basis, [8, Sec. 2]). Let K be either R or C and p, k be integers with 0 < p < k.
We define a p-open knot vector = as a set of the form

5:{goz...:§p<§p+1§...§§k71<§k:...:§k+p}6[071]k+p+1_
e N——
=0 =1

The elements ¢; are referred to as knots and we will assume their multiplicity to be at most p. We can
then define the basis functions {o? }o<;<; on [0, 1] for p = 0 as

o o '
b?(x) _ {1, lf& Sz < fl+1,

0, otherwise,
and for p > 0 via the recursive relationship

W () — r—& L) + Sitpr1 — T 1
(@) Sivp— & " (= Citpt1 — &y T

for all 0 < i < k. The spline space S,(Z) is given as span({b! }o<;<x). The integer k hereby denotes the
dimension of the spline space. For a visualisation of B-splines see Figure 3.1.

(z),

Remark 3.2 (Derivative of a B-Spline, [90]). By using the recursion formula, one can show through
induction that the derivative of a B-spline of order p is a linear combination of two B-splines of order

p— 1.
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Figure 3.1.: B-spline bases for p = 0, 1, 2 and open knot vectors with interior knots 1/3 and 2/3.

40



Let d = 2,3, and let the knot vectors Z, ..., =, be given. B-spline functions on the domain [0, 1]¢ are
constructed through simple tensor product relationships for p;, . ;, € Kvia
flanma) = Y o Y P W (1) B (), (3.1)

0<i1 <k 0<ig<kq

which allows tensor product B-spline spaces, denoted by

to be defined. We will refer to non-empty intervals of the form [¢;,&;11], 0 < i < k, and in the tensor
product sense, non-empty sets of the form [&;,, &, +1] X -+ - X [&i,, & +1] as elements w.r.t. the knot vectors.

Definition 3.3 (Locally Quasi-uniform Knot Vectors, [8, Ass. 2.1]). For a p-open knot vector =, let
hi = &41 — &. We define the mesh size h to be the maximal distance h := maxy<;< h; between
neighbouring knots. We call a knot vector locally quasi-uniform when for all elements [¢;,, &, +1] and
[€i, &in+1] there exists a constant § > 1 such that the ratio h;, - h;, ! satisfies =1 < h;, - h,;l < 0.

Definition 3.4 (Support Extension, [30, Sec. 2.A]). Let S,(Z) be a k:-dirnensior}al spline space on [0, 1],
and let Q be an element of the knot vector =. We define the support extension @ of Q by

Q= {U0§i<k supp(b?): b (x) # 0 for z € Q} )
The same concept is generalised by tensor product construction to spline spaces on [0, 1]¢.

Assumption 3.5 (Quasi-Uniformity of Knot Vectors). All knot vectors will be assumed to be p-open and
locally quasi-uniform, such that the usual spline theory of Beirdo da Veiga et al. [8], Piegl and Tiller [90],
and Schumaker [103] is applicable.

Throughout this paper, we will reserve the letter / for the maximal distance between two given knots and
p for the minimal polynomial degree. Moreover h will denote the maximal size of a support extension.

Definition 3.6 (Patch). We define a patch T" to be the image of J under a diffeomorphism F: 0 — I C R3.
Let € be a Lipschitz domain. A multipatch geometry is defined to be a compact, orientable two-dimensional
manifold I' = 99 invoked via I' = (Jy;n I'; by a family of patches {I';}o<j<n, N € N, given by a
family of diffeomorphisms
{Fj: 0= Tj}ogj<n,

called parametrisation. We require the images of [J of all F'; to be disjoint and that for any patch interface
D of the form D = 0I';, N 0T'j, # 0, we find that the parametrisations F;, and F';, coincide up to
orientation.

Note that this definition excludes non-watertight geometries and geometries with T-junctions, since
mappings at interfaces must coincide.

In the spirit of isogeometric analysis, these mappings will usually be given by NURBS mappings, i.e., by

Cj1, 2bp11 (x)bpj (y)w 1,42
Fope ¥ Y b0,

k1—1 ko—1 )
0< T oky 0< jamhky 2it—0 2in—o Uy (@) () Wi iy
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for control points ¢;, ;, € R and weights w;, ;, > 0. In accordance with the isogeometric framework,
degrees and knot vectors of the discrete spaces to be mapped from the reference domain are usually chosen
in accordance with the parametrisation [67]. However, the description of the geometry is independent of
the analysis that will follow. From now on we reserve the letter N for the number of patches and the
letter j to refer to a generic patch.

To avoid technical details, we introduce the following assumption.

Assumption 3.7 (Smoothness of Geometry Mappings). We assume any multipatch geometry to be given
by an invertible, non-singular parametrisation {F}o<;<y that can be extended to mappings in C>°(0J)
such that the Jacobian of the extension has full rank everywhere on .

Note that Assumption 3.7 implies that each patch I'; has a Lipschitz boundary. Moreover, we stress that,
limited by the smoothness of {F;}<;<n, variants of all results are still provable for non-smooth but
invertible NURBS parametrisation. This would require an analysis via bent Sobolev spaces as in the works
of Beirdo da Veiga et al. [8]. Assumption 3.7 is merely for convenience. Moreover, it is possible to obtain
parametric mappings satisfying Assumption 3.7 either through extraction of rational Bézier patches,
which can be obtained as subpatches of a given NURBS parametrisation or, more generally, through an
algorithmic approach as proposed by Harbrecht and Randrianarivony [64].

Definition 3.8 (Spaces of Patchwise Regularity). Let I' = | Jo;. 5 I'; be a multipatch geometry. We
define the norm -

Wy = > I e,

0<j<N

for s > 0 and all f € L?(T") for which the right-hand side is well defined. We define the corresponding
space equipped with this norm as

H3\(T) = {f € L2(D): [ fllgs, oy < o0}

In complete analogy, we extend the definition to vector-valued Sobolev spaces and spaces with graph
norms. As usual, we denote these by bold letters Hy (I').

Definition 3.9 (Single Patch Spline Complex, [27]). Let p = (p1, p2) be a pair of positive integers and
E = (E1, Z2) be a pair of p-open knot vectors on [0, 1], where the multiplicity of interior knots in Z; is at
most p;. Let =} and =Y denote their truncation, i.e., the knot vector without its first and last knot. We

define the spline complex on [ as the spaces

Sp=(0) = Spyps(Z1,2),

p7
SII”E(D) = Sp1pe-1(Z1, EIQ) X Spi—1,ps (5/17 Ea),
SIZLE(D) = p1—17p2—1(5/17512)~

In the reference domain, the spline complex can be visualised as in Figure 3.2. Assume I" to consist of a
single patch given via a geometry mapping F' in accordance with Assumption 3.7. To define the spaces in
the physical domain, we resort to an application of pull-backs and push-forwards.
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1

5}2(0)

Figure 3.2.: Visualisation of the single patch spline-complex for p = (2, 2). The blue functions are the uni-
variate B-splines related to each coordinate direction, whose tensor-product gives the bases
of the spline spaces in Definition 3.9. The two-dimensional curl operator maps the smooth
space to a vector valued space where the regularity in each vector component is lowered
w.r.t. one spatial component. Analogously, the divergence operator maps to the space of glob-
ally lowered regularity.

For the case of two-dimensional mappings from [0 — T';, Peterson [89] introduces the explicit form

w(F;)(fo)(@) = (foo Fj) (), x e,
u(Fy)(f1)(@) == (Up,(x) - dF;)" (f10 F))) (@), rel,
w(Fj)(f2)(x) = (Ip, (@) - (f20 F}))(x), xel,

where the term Jp, for z € [J is given by the so-called surface measure
I, (@) = 05, F () % 02, F ;). (3.2)

The integral-preserving transformation ¢, comes as a special case of the transformation used in (2.7).
Note that if one were to compute the pullbacks ¢;(F';) for i = 0, 1,2 as above, at first glance one were to
encounter a dimensionality problem, since the inverse dFj_1 of the Jacobian dF'; arising from F is of size
2 x 3, and thus not readily invertible. The work of e.g. Bossavit [19] and Kurz et al. [72] make it clear that,
due to Assumption 3.7, required inverse mappings for the case of embedding a two-dimensional manifold
into three-dimensional ambient space exist. They need to be understood as mappings from a tangent
space of [J onto a tangent space of I';. It is locally a smooth one to one mapping of a two-dimensional
space into another, and invertibility must be understood in this sense.

For implementation this matters little. Both ansatz- and test functions will be defined on [J. Therefore
one merely needs to compute the corresponding push-forwards, readily available through the equalities

(w(F;) " (fo) = (foo Fj ') (@), zel,
(1(F3) " (f1) = (I(@) 7" (dF))fL o F;') (), zel,
(2(F3)) 7 (f2) = (9(=) - f2 0 Fj ') (@), zel.

That the corresponding inverse mappings are well-defined is guaranteed by Assumption 3.7. The inverse
of F; does not need to be computed, since F;l (I') = O is known by construction.
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Remark 3.10. Peterson and Aberegg [88, Chap. 5] make clear that these mappings are conforming for
I'; C R3, ie., that the diagram

HY(O) — cul — H(div,J) — dgiv— L2?(0)
| | |

w(F;)~1 1 (Fy)~1 va(Fj)~1
! ! !
Hl(Fj) — curlr - H(diVF,F]‘) — divp = LQ(F])

commutes. Because of this, we can identify the divergence on the reference domain with the divergence
on the physical domain, up to a bounded factor induced by the corresponding pull-back. This is possible
due to Assumption 3.7. We will, later on, utilise this explicitly to apply estimates of the kind

||divp fHLQ(Fj) =~ ||div(f OFj)||L2(D)’

see also the books of Monk [83] and Peterson [89] for a further review of these concepts.

Now we can define corresponding discretisations on the physical domain I'; by

{f: w(F)(f) €SO},
Spa(l)) = {f: u(F;)(f) €S=(O)}, (3.3)
{f+F;)(f) €SO}

Proceeding as Beirdo da Veiga et al. [8], the spline complex for spaces on the boundary is defined as
follows.

Definition 3.11 (Multipatch Spline Complex on Trace Spaces). Let I' = [Jy;.y I'; be a multipatch
geometry satisfying Assumption 3.7. Moreover, let Z := (Z;)o<;<n be pairs of knot vectors in accordance
with Assumption 3.5 and p = (p;)o<;j<n pairs of integers, corresponding to polynomial degrees. Then
we define the spline complex on the boundary T" via

Spe(l) = {f € H'*(T): flr; €Sy =, (Ty) forall 0 < j < N},
S, =) = {f e H;*(divp,T): flr; €8y, 2, (Ty) forall 0 < j < N} :
P

S24(T) = {f e H™V2(I): flr, €S2 = (T)) forall 0 < j < N} .

We assume that p and = coincide on every patch-interface.

Remark 3.12. Note that a different definition of the considered spline spaces can be given by application
of the trace operators to the volumetric parametrisation, provided their existence, see Theorem 2.26.
However, the construction above seems more suitable for the analysis of approximation properties.
Moreover, the above easily generalises to screens and non-orientable surfaces.
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3.2. Approximation Properties of Conforming Spline Spaces

We will now investigate approximation properties of the spaces defined in the previous section. This
will be done through the introduction of quasi-interpolation operators, projections, which are defined in
terms of a dual basis.

For one-dimensional spline spaces Schumaker [103, Sec. 4.2] introduced quasi-interpolants

Mpz: f= Y Xip(HPL.

0<i<k

They are defined in terms of dual functionals

Xip: L& &ivpr1) = K,
Sitp+1
Xip: [ f(2)oPHyy(x) d,

i

for a weight function v; only depending on p and the knot vector =. By definition of the ); ;,, they merely
require f to be square integrable.

From these quasi interpolation operators one can derive projection operators Hg = 1'[;, = HIQJ z mapping
onto the spaces S =(0J), S} =(0), and S} £(0J), see [8, p. 169ff], where error estimations and L?-stability
for B-spline approximations have been also been provided. A crucial property of these operators is the

following.

Lemma 3.13 (Commuting Interpolation Operators, [8, Prop. 5.8]). The diagram

HY(DO) -2, H(div,0) — 12(0)

0 curl 1 div 2
Spel) —— Sp=(0) —— §;=(0)

commutes.

Remark 3.14. For the two-dimensional setting Beirdo da Veiga et al. [8, Sec. 5.5] define two spaces 8175
and S;:E, which correspond to curl conforming and divergence conforming spaces, respectively. Since
we are interested mostly in spaces of the div-type and the spaces differ only by a rotation, we will not
mention the two different types of spline spaces. However, it should be noted that our spaces of type S;E

correspond to those of type S;*E in the cited literature.

By application of the pull-backs used to define the spline spaces one can immediately generalise the
projectors and all results to the case of functions on the physical domains. Beirdo da Veiga et al. [8,
Cor. 5.12] show that for the case of a single patch I'; the following holds.
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Corollary 3.15 (Single Patch Approximation Estimate, [8, Cor. 5.12]). Let I'; be a single patch domain
and let Assumptions 3.5 and 3.7 hold. Then we find that

|u— HS,EU‘ HA(T;) < hS_T||u||HS(Fj), foro0<r<s<p+1,
o~ ) S 1 ey Sor0 <5<

e = Tl =]

Hr(Tj) ~ S h THU”Hs(r ) for0<r<s<np.

By properties of the pull-backs, the operators also commute w.r.t. the surface differential operators. Thus,
one finds that

= - Tz
Hu m! _u!

[ Hl,EuHHT(divF,F- y T [ divr(w) leF(H HHT r;)

Hry) T HdivF(u) - Hp,E divr(u ”Hr(rj).

This allows to apply the estimates of the previous corollary, which yields

1
Ju =Tzl ) S5l e fOPOS 7 <5 <

In the following, we will generalise these notions for the multipatch case.

3.2.1. Multipatch Quasi-Interpolation Operators

To obtain a generalisation of the previous result to the multipatch setting, we first construct interpolation
operators that can preserve continuity across patch boundaries. For one-dimensional spline spaces S, (=)
and f € C*(0, 1), Beirdo da Veiga et al. [8, Sec. 2.1.5] define

ﬁp,E: f'_> Z X7§,p(f)bli)7

0<i<k
where for 0 < i < k — 1 we set \;,(f) = \ip(f), but additionally, require

Xop(f) = f(0) aswellas  N_1,(f) = f(1). (3.9
This will yield versions of the projection operators which respect boundary conditions.

Note that 5\071) and S\k_l,p are well defined for continuous input, for which point evaluations are defin-
able. Noting this, for some suitable domain Dom(TI, =) to be investigated later on we can construct
quasi-interpolation operators for the multipatch case that commute w.r.t. derivation, analogously to the
construction of Buffa et al. [27]. Investigation of the one-dimensional diagram

Dom(IT,, =) O, Dom(~g75)
Jfns I, @3)
— az —/
Sp(8) ———— Sp1(F)
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makes clear that a suitable choice of H8 = is given by

= f= 0 [ / flx dx]. (3.6)
By diagram chase and application of the fundamental theorem of calculus one can see that (3.6) renders
Diagram (3.5) commutative.
While TT,, = has been investigated already [30], ﬂa,g and all consequential concepts have not been analysed.
We will start with the following essential observation.
Proposition 3.16 (Spline Preserving Property). The operator

1 —1/=

92: L%(0,1) — SP~4(=)
preserves B-splines within SP~1(Z).
Proof. From the results of Buffa et al. [30, Sec. 2] we know that the assertion holds for IT,, =. Fixing a spline
v € SP~1(Z'), we know that there exists a spline b € S?(Z) with 9,b = ¥/, since 9,: SP(Z) — SP~1(Z)

is surjective. Now, since b is within the domain of the interpolation operator, the assertion follows by
diagram chase. n

An immediate consequence of this proposition is that the operator 1:[2 = is a projection. Moreover, it can
be safely applied to functions in H'(0, 1), as shown by the following proposition.

Proposition 3.17 (Stability of ﬁp,g). Let Assumption 3.5 hold. Assume f to be continuous in a neigh-
bourhood around 0 and 1 and let I = (§;,&;+1). Let I denote the support extension of I. Then it holds
that

Hﬁp,a(f)‘
(/)]

20 < ||f”L2(i) + h‘f|H1([~)7 (3.7)

Y 1 P (3.8)
Moreover, we find

H P.E )HLQ(I) SN2y

Proof. The first two inequalities have been discussed by Buffa et al. [30, Prop. 2.3]. Investigating the
third assertion, we set g(z) = [; f

The proof concludes by a nontrivial apphcation of the Poincaré inequality. Set C' = —ﬁ J7 9 dz, where

‘f ‘ denotes the Lebesgue measure of I, and observe that

9,11, = / f(t) dt
0 L2(I)

0,11, = < / f(t)dt+0> »

[z ([ 10 ar+c)
H(1)

1/2
< (g + Clagpy + 19+ ) >

7T

p=(Dlzy
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where the inequality follows from (3.8). We will now estimate the two terms in the last line seperately.

By definition of C' we find that ﬁ J7g do = —C and can apply Lemma 2.14. This yields
g+ Cllizzry S lglgy = 1 2y
For the second term we find
9+ Clingy = [ 10a(a(@) + OO da = lofi = 171y

Combining all estimates the assertion follows. It should be remarked that the constants in the estimates
involving Lemma 2.14 can be chosen independently of &, since bounds for the Poincaré constant on the
unit interval are known [87] and a restriction to subintervals cannot increase it [98, Lem. 4]. [ |

For the exact domains of definitions Dom(I, =) and Dom(ﬁga) of the projection operators, the last
proposition implies that

Dom(ﬁpﬁ) = Hl( ’1)7
Dom(II)=) 2 L?(0,1)
We define quasi-interpolation operators via
ﬁg,E = ]':IPLEI ® ﬁpz,:w
+ R 10 0 =
Hp,E = (leval ® sz,EQ) X (le,El ® sz,Ez)v (3'9)
72 0 70
HP,E = Mp1E ®Hp2,:2

Proposition 3.17 together with the tensor product construction (3.9) makes it clear that suitable domains
of the interpolation operators are given by the tensor product spaces

Dom(II) =) O H'(0,1) ® H'(0,1), (3.10)
Dom(fl,z) O (H'(0,1) @ L*(0,1)) x (L*(0,1) @ H'(0,1)), (3.11)
Dom(II2 £) 2 L*(0,1) ® L*(0, 1) = L*(0)). (3.12)

In this sense, we have the following.

Lemma 3.18 (Commutativity in the Reference Domain). The diagram

commutes.
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Proof. By (3.5) we have o 200, =030 I =. The characterisation of the domains and the definition of
the interpolation operators via tensor products now yields the assertion by application of the differential
operators in their representation w.r.t. cartesian coordinates and simple computations, in analogy to [8,
Prop. 5.8]. |

We can now define global projections on the physical domain via application of the pull-backs.

Definition 3.19 (Global Interpolation Operators). Let = and p denote N-tuples of pairs of knot vectors
and polynomial degrees, respectively. Let I = ( J, ;. y I'; be a geometry induced by a family of diffeo-
morphisms {F;}o<;<n as in Definition 3.6. For a family of patchwise linear operators {L;}o<j<n We
denote by {L,}o<j<n their extensions by 0 onto I and write

@ L; = Z ij.

0<j<N 0<j<N

Now we define the global B-spline projections as

0= @ ((lF) " oMl = o wlFy),

0<j<N

~ 1 _ ~1

= @ ((F) ol 2 on(Fy).
0<j<N

M= @ ((2F) "ol 2 0 (),
0<j<N

i.e., by patchwise application of the projections of (3.9) with their corresponding pull-backs and push-
forwards.

Note that, since the pull-backs are commuting with the differential operators in the reference domain
and surface differential operators [89], an analogue of Lemma 3.13 holds also for the global operators.

Moreover, an analogue characterisation of the domain of these global operators to that of Equations
(3.10)-(3.12) is possible. However, since this will be technically involved, we will rely on relation (2.5)
and conduct the upcoming approximation analysis with respect to the domains Dom(II{) = HPQW(I‘),

Dom(f[;) = H},(I), and Dom(II%) = L*(T"), respectively. This yields the following.

Lemma 3.20 (Commutativity in the Physical Domain). The diagram

Dom (I, o, Dom(f[llﬂ) e, Dom(I13)

[ Jm [

0 C'I.ll'll" 1 din‘ 2
Sp,E (P) Sp,E (F) S H(F)

p’:‘

commutes.

The construction of (3.9) and Definition 3.19 can easily be generalised to three dimensions, see Appendix
A.
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3.2.2. Approximation Estimates

We will now provide approximation estimates for the introduced interpolation operators. Note that,
by construction, it is clear that the boundary interpolating projections commute w.r.t. the differential
operators. It is however not clear whether the condition (3.4) and the construction in (3.6) and (3.9)
impacts the convergence behaviour w.r.t. h-refinement.

To utilise the commuting property to show convergence in the energy spaces, we need an analogue of
Corollary 3.15 for the multipatch operators.

Utilising the stability assertion in Proposition 3.17, we now can provide an error estimate in one dimension.

Proposition 3.21 (Approximation Properties of f[pvg). Let the assumptions of Proposition 3.17 hold. For
integers 1 < s < p + 1 one finds

.

LZ(I) ShSHfHHS(IN)v fOT‘alleHS(O, 1)7

and for integers 0 < s < p one finds

Hf - ﬁg,EfHLQ(I) S hs“fHHS(f)v fOT' all f € Hs(()? 1)

Proof. We investigate merely the case of ﬁpg . Due to the stability of ﬁgE as discussed in Proposition
3.17, we can prove the other case by similar means.

For the first inequality, as in [8, Prop. 4.2], it is enough to consider classical polynomial estimates together
with Proposition 3.17 to achieve

Jr-ie

<1 = allzz + | Tozta = 1)

SN =dallzy + lla = Fll 2y + Rla = Flgs
5 hSHfHHs(i)a

L2(I) L3(I)

for the best approximating polynomial ¢ of degree no higher than p. Herein, the last inequality holds by
classical polynomial estimates, see e.g. [21, Lem. 4.3.8]. |

We can now state the main result of this section. Its proof is a standard tensor product argument,
cf. Section 2.4 and the literature cited therein. While by Definition 2.22 tensor product operators can
be applied to arbitrary elements of the tensor product space, we will conduct the upcoming proof on
the elementary level of finite linear combinations of simple tensors, cf. Definition 2.19. This is done for
the readers convenience, since these foundational arguments are usually not made transparent in the
literature concerned with isogeometric analysis.

Theorem 3.22 (Approximation via Commuting Multipatch Quasi-Interpolants). Let Assumptions 3.5 and
3.7 be satisfied and let s be integer-valued. Let fy € Hy, ('), 2 < s, as well as f1 € H, (T'), 1 < s, and
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f2 € H, (), 0 < s. Moreover, let each function be within the domain of the interpolation operator applied
below, cf. Lemma 3.20. We find that

[fo =112 fo]| ., 0 S Mol for2<s<p+1,
r70 s—1

[0 =11250]], 0 S 2 ol ey for2<s<p+1,
~1 s

1+ = Tefill oy < 22081, o for1<s<p,

‘fZ—ﬁ%‘fQ L) §h5||f2HH;W(F), for0 < s<p.

Furthermore, the operators satisfy the estimate
~1
Hfl - HFfl HHO(din,F) 5 thleH;w(divF,F)7 fOT' I<s< p. (313)

Proof. Due to Assumption 3.7 and the locality of all involved norms we can pull all quantities back to [J.
Thus, it suffices to provide a patchwise argument in the reference domain. Note that the regularity of the
spline approximation is always sufficient for the involved norms to be defined since it is enforced by the
interpolation property of the IT at the patch interfaces.

Buffa et al. [30, Prop. 4.2] directly provide

|f-par

2 (@) S PN e oy (3.14)

for r = 0, 1, from which the 1:[1‘1 case follows immediately.

We will now provide a proof for the IT2 case by investigating ﬁz == ﬁg,El ® ﬁg,zy which will be done
largely analogous to the proofs within the cited literature.

The third assertion, i.e., the case of f[% follows from a combination of the arguments discussed here and
in [30, Prop. 4.2].

In the upcoming proof, we will make the tensor product structure as discussed in Section 2.4 explicit. Let,
fornow, f =3, ./ ciw fi fir be a finite linear combination of simple tensors from H7°(0,1) ® H*(0,1) 2
H?$(0J) for integers s > 0. Note that by Definition 2.19 and linearity of ﬁ% it suffices to show the property
for such f and then apply suitable density arguments. Let Iy x I = ) C [ be an element. One can
estimate via triangle inequality that

1f =Tz fll o) = If = (g, @ =) (D] 2
<||f - (x, ®1d) ()| 2
+ (|2, @ 14) () = (M2, @ T2,) (D] 20 (3.15)

A simple Gram-Schmidt argument makes clear that, since f is a finite linear combination of simple
tensors, we may assume without loss of generality that f is represented by

f=> ciuvei @y,

1,8/ <M

where {;|1,} are L?(I;)-orthogonal and the {v|7,} are L?(I5)-orthogonal.
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By Proposition 3.21 we can immediately estimate the first term of (3.15) via

~ 2
Hf— (e, ®1d)f\ 0 (3.16)
= <f o (1:[331 ®Id)f’f o (ﬁ187151 ®Id)f>L2(Q)
= < Z civir (0i — ﬁg,al%‘) ® Yy, Z cjjr(pj — ﬁ?,ale) ® ¢j’>
ii' <M J.d' <M L2(Q)
- Z Cii! Z cjg (i — = 1%) ® Pur, (¢ ﬁg,a%) ®¢J”>L2(Q)
3,1/ <M J5j' <M
= Z Cii/ Z cj (o = 1%) (0 ﬁ35190j)>1:2([1)<¢i’7¢J”>L2(12)
0,4’ <M J,g' <M
= Z Ci,i’<(§0i - ﬁg,El @Z)? (()01 - ﬁ?),El SDZ')>L2(II)<1/}’L"7 ¢i’>L2(I2) (317)
1,0 <M
g Z Ci i/ h28<()0i7 (Pi>Hs (jl) <¢i’a wi’>L2(12)
1,0/ <M
= Z Ci i/ Z Cj7j/h2s<90i790j>Hs(jl)<¢i’a¢j’>L2(12) (318)
3,1/ <M g3’ <M
= Z Ci ! Z Cj,j’h25<(10i ® ¢i’a Pj ® ¢jl>HS(I~1)®L2(IQ)
3,1 <M g3’ <M
= h25<f, f>HS () ®L2(I2)
= h2s”f”Hs(j1)®L2([2)- (3.19)

Therein, the orthogonality is used in equations (3.17) and (3.18) where all cross-terms vanish. We can
estimate the second term of (3.15) by similar means, utilising the stability property from Proposition
3.17 and Proposition 3.21, which yields

(0=, ©1d)(f) ~ (1=, ® T02) (N[220 S P11tz (3.20)
Combining the above with (3.15) yields

[P Pyl Fi AP (3.21)

The result transfers to H*(0,1) ® H*(0,1) 2 H?*(0) by density of finite linear combinations of simple
tensors, cf. Definition 2.19. Now density of H?*(0J) in H*(0) yields the assertion, since by (3.21) it
suffices for f to be in H*([J).

Again, we stress that the missing assertion for an interpolator of type II ® I1? follows analogously, even
though it is not L2-stable due to the impact of the seminorm term in (3.7). One merely needs to include
the stability estimate (3.7) into either (3.16) to (3.19) or (3.20) and note that the seminorm term scales
with h, and thus can be treated as part of the constant.

For an investigation of (3.13), it suffices to utilise Lemma 3.20 together with the above to see that, for
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1 < s < p, one finds

~1 ~ 1 . ~1
Hfl _Hp,Ef1HH0(diV,D) < Hfl _Hp,Ef1HL2(D) + Hle(fl - HPEfl)HL?(D)
= |1 _ﬁ;,EﬁHL?(D) +|[|div f1 = diV(ﬂ;,sfl)Hp(D)
= Hfl - ﬁgl),EfluLz(D) + Hdivfl - ﬁi,E div(fl)HL2(D)
ST PAY

H*(div,0)"

The result follows by properties of the geometry mapping. |

These results are immediately applicable to two-dimensional finite element methods with a straightforward
generalisation to three dimensions, see Appendix A.

Corollary 3.23 (Approximation Results for Finite Element Methods). Let Q2 be a two-dimensional domain,
satisfying Assumption 3.7. Let fo € HY(Q), f1 € H°(div,Q) and f2 € L*(Q). Then, its holds that

inf [ fo— S B foll g - orlsssp+l,
fn€sy =(Q) 1o thHl(Q) ~ HfOHHPW(Q) S P
inf _ < s or0<s=<p,
Fresl=(9) 11 = Frllgoaiv.oy S Pl F s, aiv.o) for0<s<p
of . < hs . , or 0 < <p.
b = Sl S0l forss=p

p,=

Proof. Due to the stability of the respective orthogonal projections onto the spline spaces, given by
P HY(Q) — ) =(9), Pawv: HO(div, Q) — Sp=(Q) and Po: L2(Q) — S, =(Q), we immediately have
the result for the minimal values of s. Repeating the same steps as in the proof of Theorem 3.22, we
find the result for larger values of s and smooth choices of f,, f1 and f>. The assertion now follows by
interpolation arguments as in Lemma 2.17 and density of smooth functions in (subspaces of) L(©2). H

A generalisation of this result to the sequence
Hl grad 0 curl 0/ 32 div 2
(Q) —— H%curl,Q) —— H"(div,Q) —— L*(Q)

on three-dimensional volumetric domains {2 is given in Appendix A.

3.3. Approximation w.r.t. the Energy Norms of the Trace Spaces

Now, we will consider approximation properties of the spaces S) =(I'), S, ('), and S} (') w.r.t. the
fractional Sobolev spaces HY/2(T"), H"/*(divp,T), and H~Y/2(T'). While for the EFIE only the case

of H ;1/ 2(divF, I') is of relevance, for boundary element methods for Laplace or Helmholtz problems
the cases of H*!/2(T") are crucial. Corresponding isogeometric boundary element methods and their
implementation have been introduced and studied by my coauthors and myself in [48].

This investigation will be conducted through the study of the corresponding orthogonal projections.
Due to their optimality, we know that they must achieve the same convergence rates w.r.t. h-refinement
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as those of Theorem 3.22. Moreover, properties of the orthogonal projections are of interest for an
application in the context of partial differential equations, since an inf-sup conditions yield quasi-optimal
behaviour for the approximate solution w.r.t. the orthogonal projection of the involved energy space, see
Chapter 2.

We will start by utilisation of interpolation as in Theorem 2.17 and optimality of the orthogonal projection
of the respective energy space to get convergence results for positive fractional spaces. This yields the
following corollary.

Corollary 3.24 (Approximating H'/?(T") with Sp=(T)). Let Assumptions 3.5 and 3.7 hold. Let f €
H3, () N HY2(T) for integers 2 < s < p+ 1, and let P, j f denote its H'/?(T")-orthogonal projection onto
Sp= (). It holds that

|/ - 7’1/2fHH1/2(F) S h5_1/2HfHng(r)-
Proof. By Theorem 3.22 we know for integers s with 2 < s < p + 1 that

| =12, 0y 22 Wl

for both r € {0, 1}. Now, application of Theorem 2.17 yields

F=T0O| oSBT s, -
| . ;

By optimality of the H'/?(I")-orthogonal projection Py, we obtain the result. [ |

Interpolation does not yield estimates in norms with negative index. Thus, to show the approximation
properties of 812: =z(I')in H —1/2(T), we resort to an application of the Aubin-Nitsche Lemma [1].

Corollary 3.25 (Approximating H~'/?(T") with S =(T')). Let Assumptions 3.5 and 3.7 be satisfied. Let

f € HY2(I') N HE,,(T) for some s > 0. Let P_; j denote the H~/?(T")-orthogonal projection of f onto
S;=(T). Then it holds that

15 = Prjof Nl osory S 721 g oy 0<s<p. (3.22)

Proof. Assume, for now, that f € L*(T') N H},(T). For the L*-orthogonal projection P onto S, =(I") we
can estimate

‘(f —Pof, U>L2(F)‘

If = Poflg-1r2gry == sup
ogveri2my IVl
—Pof,v—Pov
— sw [(f = Pof 0v) r2(ry | (3.23)
0£veEHL/2(T) ””HH1/2(I‘)

lv = Povll2(p

S = Poflley  swp )
0#4ve H/2(T) H”HH1/2(F)

By Theorem 3.22 and density arguments, we now arrive at || f — Po f[| g-1/2r) < hl/2Es| £ H3, (T) for

0 < s < p. Replacing Py by P_; /, now yields the assertion, using Theorem 2.17, optimality of P_;

w.r.t. the H~/2(I")-error and density of regular functions in H~1/2(I"). |
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Remark 3.26. This result does not necessarily rely on Theorem 3.22. Since H~'/2(T") allows for disconti-
nuities, it can be reproduced by application of the patchwise estimates of Corollary 3.15. This has been
done by myself and my coauthors in [48].

Remark 3.27. Note that by putting global norms on the right hand side, analogues of Corollaries 3.24 and
3.25 can be shown for minimal regularities, i.e., 1/2 < s in the case of the H'/?(T')-error and —1/2 < s
in the sense of the H~1/ 2(T)-error by almost analogous means, cf. [99, Thm. 4.2.17]. However, these
results rely on the smoothness of the geometry for the norm on the right hand side to be well-defined.

We aim for our results to be immediately applicable to the multipatch setting of isogeometric analysis,
where we want to require smoothness of the geometry only patchwise.

Now, what is missing is an analysis of the approximation properties of S1 =(I') in H, 1/2 (divp,T'). For
this purpose, we want to employ an argument similar to the one of Corollary 3.25. However as will be
discussed in a moment, this cannot be done with such ease as before in Corollary 3.25. To proof the
approximation result, we need to generalise the technique employed by Buffa and Christiansen [23] to
larger classes of basis functions. This procedure is lengthy and technical, and presented in the upcoming
Section 3.4.

Theorem 3.28 (Approximating H ;1/ Q(diVF, I') with S;,’E(F)). Let Assumptions 3.5 and 3.7 be satisfied

and let Py f denote the H ,, 1/2(div1~, I')-orthogonal projection of f onto S;E(F). Let f € HS (divr,T') for
some —1/2 < s < 0. Then one finds

||f - PXf”H;1/2(d1V F) ~ h1/2+8”f”H5 (ler‘, )
Moreover; let f € H(divr,T') and f|r, € H*(divr,T;) for 0 < s < p and dll patches T';. Then one finds

If = PXfHH;l/2(diVF,F) S h1/2+stHHf>w(di"F’F)'

Remark 3.29. Note that Corollary 3.25 and Theorem 3.28 include the classical results from boundary
element theory, even though a first glance suggests otherwise. This is due to the fact, that p refers not to
the degree of Sﬁ}E(F) and S},E(F) respectively, but rather to the degree at the beginning of the sequence
Sp=(T) = S, =(T) — S, =(T). In terms of basis functions, the space S =(T') contains splines of degree
p — 1, thus shifting the notation by 1.

3.4. Proof of the Results for the EFIE

Within this section, we provide a detailed proof of Theorem 3.28, by means of a patch by patch duality
argument, similar to the one utilised to achive the estimate in H~'/?(I"). However, one problem with a
naive patchwise argument is due to the fact, that H ;1/ 2(divF, I') incorporates a (weak) continuity across
the patch normals w.r.t. 9I';, see [26]. Thus, an orthogonal approximation required for an Aubin-Nitsche
type argument cannot easily be localised to a single patch.

However, the problem can be overcome through a chain of technical arguments. We will proceed as
follows.
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1. First, we need suitable localisation mechanisms. We will introduce a normal trace local to each
patch and define a patchwise version of the H ;1/ 2(divF, I')-norm. This, together with analysis of
the respective properties, will be done in Section 3.4.1.

2. In Section 3.4.2 we then introduce a projection operator, which approximates both the flux across
patches as well as the part of the field without outgoing flux separately. We will require quasi-
optimality of said projector. To prove it, we need to introduce a discrete continuous right inverse of
the localised normal trace.

3. The technical lemmas and propositions will then be compiled to a proof of Theorem 3.28 in
Section 3.4.3. The proof will assume some extra regularity, such that the technical constructions
discussed in the first to parts of this section can be applied. The results will then be extended to

the H ;1/ 2(clivr, I')-orthogonal projection by density arguments.

3.4.1. Localisation and Flux Across Interfaces

We will begin by defining the space K7 as the kernel of the local trace operator

Y (f)(@o) = lim f(Z) - ng,, for almost all zy € oI},

I'j>z—xo

on H*(divr,T'j), where ng, denotes the outer unit normal w.r.t. OI'; at z, € OI';. Note that the definition
of the local trace operator has to be understood in a weak sense. The same way we denote the kernel of
Tnj on Sy =(T;) by K. Note that

Yo HO(div, (0,1)%) — H~'/2(00)
is continuous [57, Thm. 2.5]. Due to Assumption 3.7 this immediately transfers to
Ynj: HO(divy, T;) — H~Y2(ar).

Here, H~1/2(9T;) has to be understood as the lifted counterpart to #~'/2(90), in complete analogy to
the definition for two-dimensional domains, cf. [80, p. 96ff]. This definition is, again, rendered valid due
to Assumption 3.7.

Remark 3.30 (Local Shifting Property). We remark that ~, ; enjoys a local shifting property, in the sense
that v, j: H*(T';) — H*~1/2(0T;;) is continuous for s > 1/2, which implies continuity of the local trace
Ynj: H*(divy,T;j) — H*~1/2(0T; ;). Here, OT';; denotes one of the four sides of OT';. This can be seen,
since in the reference domain, and restricted to one side of 901 the identity v, (f) = yo(e] - f) holds,
where e, is either (1,0)T or (0, 1)T, depending on the side.

This allows us to utilise the canonical continuity assertions of -, compare [80, Thm. 3.37]. The argument
goes as follows: We extend a given u € H*((0,1)?) continuously to H*(R?), see [80, Thm. A.4], apply
the trace operator to the boundary 9P of a half-plane P ~ [0, c0) x R, see [80, Lem. 3.35], and restrict it
onto a given edge of [J. Assumption 3.7 enables us to immediately transfer this argument to the physical
domain.

We now proceed by reviewing two technical results.
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Lemma 3.31 (Continuity Estimate, [23, Lem. 4.8]). Fix a patch T; of the geometry. Let ( € H~'/2(9T})
such that (¢, 1) 12091,y xm1/2(or,) = 0 holds. Let § € HO(divr,T';) be the solution to the problem
(& v)Ho(divp,r,) = 0 fordlv € KJQ with v, ;(§) = ¢ onto OT';. Then one finds

1€l s+1/2(dive,r;) < CsllCl s ar,)

for both s = —1and s = —1/2.

Lemma 3.32 (Duality Relation, [23, Lem. 4.7]). Let (K J_ 1 2)’ denote the dual of K J_ 2 with respect to

HO(divr,T';). There exists an isomorphism K;/Q — (Kj_l/z)/,

We shall further make use of the space H ;vi/ 2(divr, I') equipped with the patchwise norm

Z H’HH—l/Q(divF,Fj)- (3.24)
0<j<N

Two remarks about this definition should be made.

Remark 3.33 (Missing L?-Regularity). The norm (3.24) does not incorporate the global L?-requirement,
which is included in the definition of the pw-spaces as previously stated.

Remark 3.34 (Dual Spaces on Domains with Boundary). To avoid technicalities, the spaces of negative
Sobolev index on domains with a boundary as required by (3.24) have not been defined within this thesis.
Rather, the reader is referred to the book of McLean [80, p. 77]. There, two different types of dual space,
denoted by H~%(Q) and H—*(2) for Q with boundary 9Q # () and s > 0 are introduced. In essence, the
difference between these two spaces lies in weather one considers the dual space w.r.t. functions Hj(£2),
i.e. the functions in H*(Q2) whose trace onto 0f) vanishes, or w.r.t. the entire H*(2).

For our purposes, we will consider H~/2(T;) as the dual space of H'/?(I';) w.r.t. the entire H'/%(T;),

equipped with the corresponding norm

(fs 92,
1 llg2qe,) = sup %
ger/2(r;) 191y

The vector-valued case and the corresponding spaces with graph norm will be consider analogously.

The patchwise norm (3.24) is required to estimate the H ;1/ Q(divr, I')-norm locally, a fact first used in
the first inequality of [23, Eq. (98)]. However, there the assertion is stated without proof. To show the
corresponding estimate, we require some extra regularity, as we state a proof for functions in H°(divr, T').

There, the arguments are elementary, and the case suffices for our purposes, since the upcoming use of
the quasi-interpolation operators requires even more patchwise regularity.

Proposition 3.35 (Local estimation of the H ;1/ 2(divr, I')-norm). For f € H°(divr,T') one finds

HfHH;l/Q(divF,F) S HfHH;J/Q(divF,F)'
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Proof. Looking at the representation (2.9), we can estimate the vector-valued term in the H ;1/ 2(1“)—
norm and the divergence term measuring the divergence in the H~'/2(I")-norm separately. Buffa and
Hiptmair [26, p. 8] state a characterisation of the H IX/ 2(I‘j)-norm. This characterisation makes clear that
glr, € H'/*(L;) for any g € H'/*(D).

Moreover, from the same representation one can see that on smooth domains the spaces H Y 2( I') and
H'/%(I") can be identified. This allows us to estimate any f € H pw/ (divr,I') via

||f|| 1/2 ) = Sup ”<|.’f7g>><
gerY?m) 191m12(n)

(fIr; xn.glr;)L2(r))

= sup
geH/*(T") 0<j<N ”gHI-ﬂX/?(F)

< sup (flr; x n79|rj>L2(rj)
geH/* () 0<j<N Hg‘FJ‘HHlﬂ(F]-)

<Y s (flr; xn,95)L2(r,)

NO§j<N9j€H1/2(Fj) HgJ'HHW(Fj)

(flr;95)L2(r))

0<j<N 9;€H/2(T Hgﬂ X nHHW(F )

~ . HfierH_mm-

0<j<N

The last step uses that (- x n): H*(I';) — H*(I';) is continuous for s € {0,1}, as can be shown by
straight-forward computation. Continuity for s = 1/2 then follows from Theorem 2.17. An argument to
estimate the divergence term is obtained analogously. |

3.4.2. A Flux Preserving Projection

We immediately define a localised projection operator that takes the kernel and preimage of v, ; into
account separately.

Definition 3.36 (Conforming Projection). For g € H 1}JW(F) we define the projection m = P, ;. y 7; via
patchwise projections m; onto 811, =(I';). There, each 7; is given as solution to the problem

(mjg — g|pj,b>H0(diVF7Fj) =0, forallbe KJS and 0 < j < N, (3.25)
(Yn,j(mj9) — ’)/n7j(g),"}/n7j(b)>L2(8Fj) =0, forallbe st’ and 0 < j < N. (3.26)

Herein, we use the decomposition
S,=(Tj) =N} & K5, (3.27)

where N; 2 denotes the span of basis functions with non-vanishing normal trace 7, ;. Note that this induces

a unique decomposition of every function in b € S;, (T"), since it is clear that both N; S and K; S can be

identified with specific, disjoint sets of degrees of freedom, i.e., are discrete and closed subspaces of
Sk ().
p,.:'.
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The idea behind this projection is similar to projections in the context of mixed finite element methods,
which is equal to the face by face projection that preserves boundary data on interfaces, see [13]. It
chooses the part without outgoing flux as the optimal approximation w.r.t. the H°(divr, I';)-norm, and
the part incorporating outgoing fluxes as optimal w.r.t. the L?(dI';)-norm. Since the outgoing flux is
continuous across patch boundaries, (3.26) ensures the same for the discretisation.

Note that the projection is indeed well defined with respect to the composition (3.27) since each of the
lines (3.25) and (3.26) fixes a unique element of N jS or KJS, respectively.

Remark 3.37 (Locality of the L?(0T';)-Projection). We remark that, due to the structure of the spline space
and locality of the L?(9I';)-scalar product, the L?(9I';)-orthogonal projection in (3.26) is equivalent to
application of the projection to each side 0I';; of OI'; separately.

To argue that the projector 7; has the expected approximation properties, we require a discrete right-
inverse of 5 ;. Such constructions are readily available, often via approximation of the continuous
right-inverse. This requires for a boundary value preserving interpolation to be H(div, I')-stable, which

. . e ~1 .. . . e .. . .

is not satisfied by II.. However, similar result is satisfied. By application of an inverse estimate for
polynomials to (3.7) one observes that the one-dimensional interpolant II is L2(0, 1)-stable for piecewise
polynomial inputs. The following construction builds on this observation.

Proposition 3.38 (Discrete Right-Inverse of the Normal Trace). There is a discrete right-inverse
Rij: (=) — Sp=(T;)

to yn,; which is continuous in the sense of H~/2(9T;) — H(divr,T;).

Proof. The proof is simple yet technical. W.l.o.g. we conduct the argument with respect to the reference
domain. First, we note that there exists a Raviart-Thomas space, that we denote by Qp, consisting of
elements Q, = Q) p—1 X Qp—1,p, cf. [36] on I such that S;E(D) C Qp.

For Qp, the existence of a continuous right-inverse Rg, is known, see e.g. [92, Thm. 4.1.9] for lowest-
order Raviart-Thomas elements. The same construction can be applied straightforwardly for high order
elements, as it relies on the existence of stable quasi-interpolation operators [13, Eq. (2.5.26)], and the
regularity of the continuous right-inverse, see again [92, Thm. 4.1.9] for details. Compare [36, Thm.
3.10] and Figure 2.2, noting that in two dimensions the curl conforming spaces correspond to a rotation
of the divergence conforming ones.

o =1 o .
As a second step, we set our lifting as R;, ; = I, z o Rg, and show continuity. For this, we note that
the IT operators commute with the surface differential operators, and that by Proposition 3.17 and the

tensor-product construction (3.9) the operator IZIZE is L2-stable, compare also the regularity requirement
(3.11). For u € Wm(Sy=(0)) S 1n(Qp) we estimate

|,

Ro,u HHO div,0)

P

= |,

P

=( )

=(Ropu)||720 + [[div(IL, = (Ro,w)||72 )
= || = (Ray )220y + My z(div(Ro, )22

=( )

< 2 (Ray )52y + 1div(Bo,w)[72
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For the first term we estimate only one vector component, since the estimate for the second vector
component follows analogously. Let Ryu denote the first vector component of Rg,u. Making the tensor
product structure explicit, we apply the assertions of Proposition 3.17 which yields

B B _ 2
(M= ® HP»E)RluHiQ(D) S H(Id ®HP’E)R1UHL2(D)
1 2

< [ |z R, )|

dx

0 ’ L2(0,1)

1 2
S [ (R @ sz + B E G i) da

Note that, by choice of S;E(D) C @y the semi-norm term is well-defined. Since Rju(x,-) is a contin-
uous piecewise polynomial for any = € [0, 1], we can apply inverse estimates [21, Lem. 4.5.3], i.e.,
hl(Riw)(@, )| 10,1y S [|(Biu)(@, )l 12(0,1)- This together with the above yields

~ 1
HHpE(R@p“)HHO(diV,D) S HR@puHHO(diV,D)'

As a third step, we invoke the continuity of Rg, and pull-back to the physical domain. The assertion
follows. u

Lemma 3.39 (Convergence Property). For any 0 < j < N and w € H*(divr,I';) the projection m; defined
in Definition 3.36 fulfils

lu — mjullgo @y S PNl geer,).  1<s<p.

Proof. Let us define the subspace of discrete functions whose normal trace coincides with 7;u, i.e., the
space
W= {w €S, 2(I)) : nj(w) = (mju)} = {w € S, (l)) s w — mju € K7}

In complete analogy to the proof of the Céa Lemma, see [21, Eq. (2.8.1)], we can estimate
[lw — ﬂ-ju”%fo(divr,l—‘j) < (u—Tmju,u— 7TjU>H0(divF,rj)

< (U — Tju, U — ) godivp,r,) (U — TjU, TU — Wh) HO(divp.I)

Orthogonal, see (3.25)
< (u—mju,u — Tju+ TjU— 'LUh)HO(divF’F].)

< [lu — mjull go(divy,r)) e — wallHo@ive 1))

for any w;, € W, thus arriving at
[ 7Tj“Hjaﬂ)(cu\zp,rj) S wlggv [u — w”HO(divF,ij (3.28)

Let us define

w =T, zu — Ry j (v, (M 2) — Ya j(mjn))
where 1'[11, = is the single patch operator of Lemma 3.13 lifted to I';. By definition, it is immediate to see
that v, j(w) = yn j(7;u), and therefore one finds that w € W. The triangle inequality yields

lu — w”HO(divnFj) < H“ - Hl,EuHHO(divF,Fj) + HRhJ ('Vn»j (H;,E“) - %J(Wju)) HHO(divF,F]-)'
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The first term on the right can be estimated by

1 s
[ u — 11 ,E“HHO(divF,rj) S PNl g ivr.r))»
due to Corollary 3.15. The second term can be bounded from above by

1
| Rn.; (vm.j (I, zu) — Tn.j(Tju)) HHO(divF,Fj)
S [ (T zw) = i, (mj0) + A (1) = () z-1/200r,)
1
S [ vms (TMp g2 — ’U’>HH*1/2(8F]-) + [ (u — ”j“)HHfl/Z(arj)
1

S T zu — uHHO(divF,Fj) + i) = (Poo %J)(“)HH—W(@Q)'
Here, we use the continuity of the lifting R;, ;, followed by a triangle inequality, and the continuity of 7, ;
together with the identity Py oy j = Yn ; o 7; immediately extractable from (3.26). The first term can be

estimated by application of Corollary 3.15 while the second term can be handled via duality arguments.
One notes that

[7n.5 (@) = (Po o Yai) (@)l r-1/2 61,
((Id =Po)(m,ju), v) L2 (ar;)

= sup

0£veH/2(8T;) HUHHl/z(arj)
- - ((Id =Po)(n,ju), vi) L2(ar; )
B i=0,...,3 O#vi€H1/2(8Fj,i) ||/U’i||H1/2(8Fj’i)

where each 0I';; for i = 0,...3 corresponds to one of the smooth sides of I';. In light of Remark 3.37,
application of the arguments in the proof of Corollary 3.25 yields

H’Yn,j(u) —(Poo 'Yn,j)('u')”H—l/?(arj) Sh? Z ||7n7j(“)HHs—1/2(arj7i)-
i=0,...,3

One can apply the shift property of the normal trace as observed in Remark 3.30 and obtains

H'Yn,j(u) - (PO © fynyj)(u)HH—l/?(aI‘j) S h? Z ||7"7j(u)||Hs—1/2(8l"]-7i) S hSHu”HS(diVF,Fj)'
i=0,...,3

This finally yields

[ —wll gogivy,r;) S P lell g (aiver,)
which along with (3.28) concludes the proof. [ |

3.4.3. Approximation of the Surface Current by Splines

To complete the proof of Theorem 3.28, we need to introduce one last definition, which can be interpreted
as a partial application of the conforming projection 7.
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Definition 3.40 (Interface Approximation). Given a function f € H'(I';), its interface approximation is
given by ¢ = ¢ + ¢1, where ¢ € N. jS is given as the solution to the problem

(’Yn,j (1), Tn,j (b)>L2(apj) = <'7n,j (f)fYn,j (b)>L2(apj)> for allb € N]S> (3.29)

and ¢y € K7 given by

(0, V) goaivy,r,) = (f — @1, V) goivr,), forallve KJQ. (3.30)

The interface approximation ¢ is chosen as the H%(divr, I';)-optimal approximation of f such that the
outgoing fluxes ¢; consist of the L?(dT';)-optimal approximation in the discrete sense. Note that, due to
the construction of the spline space, the same is obtained if one were to apply this projection to each side
of OT'; separately. Since ¢; as above is well-defined and the problem in (3.30) is well-posed, it is clear
that ¢ is well defined.

Remark 3.41. We remark that we require regularity of f in Definitions 3.36 and 3.40 only for (3.26) and
(3.29) to be well defined in the sense of L2-orthogonality. Both definitions are merely technical tools to
provide an estimate w.r.t. the H ;1/ Q(divF, I')-orthogonal projection, which, by density arguments, does
not depend on the extra regularity.

We now have the required tools to show the desired convergence property. The idea of the proof is the
following: Assuming regular input, we will first split the error of the approximation into two terms, one
which we can estimate only w.r.t. the kernel of +,, ; via the duality relation of Lemma 3.32, and one for
which we are only concerned about the outgoing flux. The second term, through the continuity of both
7n,; and the discrete right inverse, can then be reduced to a one-dimensional approximation purely on
the boundary.

Estimating each term separately will yield an optimal convergence order, and, combining both terms,
once again an approximation result w.r.t. a non-orthogonal projection. Replacing this by the optimal
orthogonal projection allows us to retain the approximation estimate and to use density arguments to
extend the estimate to non-smooth inputs.

Proof of Theorem 3.28. Fix an index 0 < j < N, and assume f to be regular enough for Theorem 3.22
to be applicable. Specifically, this means that f is smooth enough for Definitions 3.36 and 3.40 to be well
defined.

The triangle inequality with the interface approximation ¢ of f on I'; as intermediate element yields

T 4 ) Ry (3.31)
+ H(p — 7ijHH71/2(din7Fj).

Let P denote the L?(9I';) orthogonal projection onto 7y ; (S;7E(Fj)). We will now estimate each term on
the right hand side independently.

1. For the first term, we apply Lemma 3.31 with ¢ = v, ;(f) — Po(m,;(f)) and £ = f|r; — ¢. One
readily verifies that the required assumptions are satisfied: Galerkin orthogonality yields that
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(¢ 1) gr-12(ar)x i /2(or;) = 0 due to 1 € 1 (S, =(T';)) and € is the solution to the problem given
in Lemma 3.31 due to definition of the interface approximation, see (3.30). This results in

|£lr, - ‘PHH*/?(diVFIj) S i (F) = PO('anj(f))HHfl(aij

(3.32)
Hf|Fj - ‘PHHO(diVF,rj) S H'anj(f) - PO('YnJ(f))HHfIM(arj)'

Then, application of duality arguments as in (3.23), compare also [23, Eq. (103)], yields the
estimate

Hf|1“j - ‘PHH—l/z(divr,rj) S i (F) = PO(Wn,j(f))|’H*1(8Fj)
S B2 g (F) = PoCvng (P r-1/2or,
S h1/2||f - ij”HO(divr,Fj)‘ (3.33)

Here the last inequality is due to the continuity of the normal trace, and the fact that, by (3.26),
Po © Vnj = Tn,j © 7. Lemma 3.39 yields

|flr, — <p}|H_1/2(diVF’F],) < hs“/?HfHHS(divr,rj) (3.34)

for1 <s <np.

2. To estimate the second term of (3.31) we note that by Definition 3.40 and (3.26) we know that
Yn.j(®) = m.;(mjep) holds, and thus (¢ — m;p) € K follows. For all b € K C K¢ we find, through
application of (3.25), (3.30) and (3.25) again, that

(70, 0) 5o dive,r;) = (Po +©1,0)Hodive 1))
=(f-—p1+ ¢17b>H0(din,Fj)
= <7rjfab>H0(din,1"j)'

This, together with 7, (¢ — f) = 0 which we know since (3.26) and (3.29) coincide, implies
TP = 7ij, (335)

1/2

which yields (¢ — 7;f) € K C K; /*. Thus, it follows that

(o — mif, V) HO(@ive T))

llo — 7rijH71/2 dive,T;) — sup
(divp,I'y O#UG(Kj_l/z)’ ||’I)H(Kj_1/2),
holds. We stress that K7 C Kj_l/2 and that Kj_l/2 is a closed subspace of H~/?(divr,T';). Lemma

3.32 and the fact that on the kernel of v, ; the projector 7; coincides with the H°(divr,T';)-
orthogonal projection onto S§ p(F), cf. (3.25), allow us to apply the Aubin-Nitsche technique to the
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above. From this follows

(¢ — 7, v)Ho(dive.T;)
]|

sup
0Ave(K; 2y

(¢ — ij7w>H0(diw,Fj)

(K 2y

< sup
07£’LU€K1/2 ||'wHH1/2(din,Fj)
(o —mif, w— 7Tj'w>H°(din7Fj)
= sup
o;éweKlﬂ ||w||H1/2(diVF7Fj)

[w — 75w gogivy. 1))

< lle = mif ll goas sup
J (divp,Ly )07£w6K1/2 Hw||H1/2(diVF,Fj)

Note that 7; is applicable, since (3.26) is well defined due to ~, jw = 0 almost everywhere. Corollary

3.15 yields
llp — ijHH*l/Q(divr,Fj) < h1/2||<p — ijHHO(divF,Fj) (3.36)
S h1/2||<p — flr; HHO(divF,rj) (3.37)
+ 02| flr, - TrijHO(divF,Fj)' (3.38)

The second term can again be estimated by application of Lemma 3.39. For the first term, we apply
the second equation of (3.32), which we can estimate in complete analogy to (3.33), which yields

le — 73 f - 2aiveryy S 521 s, - (3.39)
With both terms of (3.31) estimated by means of (3.34) and (3.39), we arrive at the patchwise estimate
s+1/2
Hf|Fj - ij|FjHH*1/2(divr,Fj) Sh / Hf|FJ'HHS(divF,Fj)'

Since by Proposition 3.35 the patchwise H ;‘;/ 2(divr, I')-norm can be used to estimate the non-local
H, v 2(d1Vp, I')-norm, we arrive at the corresponding global assertion

Hf ﬂ—fHH I/Z(dlvF )~ < hs+1/2H‘fHHS (divp,I')» 1 SS S D, (340)

by properties of . Now, stability of and optimality of P, w.r.t. H ;1/ 2(din, I') yield the estimates

1f =Pl aiorry < Wl g-172 iy (3.41)

If _PXf||H;1/2(divF,F) < W25 a0 iy (3.42)
as well as

1f = Pocfll g1/ xy S P21 F N, aivr - (3.43)

1f = Pofll g1/ ry S B2 18 Larg, ey (3.44)

By density of regular functions in H 1/2 (divp,T') and continuity of the orthogonal projection, the results
carry over to non-smooth f. Now we can use interpolation to generalise the resulttoall —1/2 < s <p.! W

UThis can be done thanks to Appendix 2 of [23], which proves that H'/?(divr, I') and H°(divr,T") induce an interpolation
scale, i.e., can be handled similarly to Theorem 2.17. Specifically, see [23, Thm. 4.12] where the notation translates to ours
via X = H"/*(divp,T) and X* = H3 (divp,T).
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3.5. Summary of the Approximation Properties

Up to this point, we have derived multipatch approximation results of the spline complex w.r.t. the norms
required by boundary- and finite element methods.

Let the functions fy, f1, fo be regular enough for the norms on both left and right-hand side of the
following estimates to be well defined, see also Lemma 3.20. For boundaries I' in accordance with
Assumptions 3.5 and 3.7, we proved

fheiSlﬁi(F) 1fo = fallgrrery S hs_1/2||f0Hng(r) 2<s<p+1, (3.45)
fhegii oy = Tl 72y 2 WY £l s i) ~1/2< s <0, (3.46)
el o 1f1 = Fullg 272 gy S 221 F 1 s, ater ) 0<s<p, (3.47)

fheiSE}i(F) 12 = Full=rr2ey S B2 fell g, oy O<s=<p (3.48)

Here, (3.45) follows from Corollary 3.24, (3.46) and (3.47) follow from Theorem 3.28, and (3.48)
follows from Corollary 3.25. Moreover, we can apply these results for finite element methods as well. We
find for multipatch domains 2 C R? the estimates

inf - < h,s_l < s 2 < S < + 1’
fhESg’E(Q) ”f3 thHl(Q) N Hf3||HpW(Q) <s<p
inf - o) S P s (di 1<s<p,
fhEéIIIj',E(Q) Hf4 thHO(d]V’Q) ~ ||f4||pr(d1V79) SSSDp
eéglf_(Q)HfB_thm(Q)Shs||f5||ng(Q) 0<s<p,

p.=

for fs3, f4 and f5 smooth enough for the norms to be defined, as explained in Corollary 3.23. By
extension of the tensor product structure in the construction of spline spaces and interpolation operators
by one dimension, the given construction can easily be generalised, see Appendix A. Estimates for three-
dimensional spaces, including H (curl, ?), follow analogously, cf. Corollary A.1 in Appendix A. We can
drop the regularity requirements from Theorem 3.22, since they are only required by the constructed
quasi-interpolants, and not by the orthogonal projection w.r.t. the corresponding Sobolev spaces, see
Section 3.3.

Taking into account the three-dimensional generalisation of the construction, we now have access to a
discretisation of the diagram in Figure 2.2, given by

0 _ 1 (0) — 2 () — div 3
Sﬁé(g) grad — Sf),E(Q) curl — Si)’,:,(Q) div — Si’f:(Q)

=

| | | (3.49)

Y0 Yt Tn
N2 N2 N2

SSE(F) — curlp - S;),E(F) — divp — 812,75(1_‘)

=

for suitable choices of (lists of tuples of) polynomial degrees p,p and knot vectors Z, =, a multipatch
domain . Note that a corresponding discretisation of the rotated counterpart H—'/?(curly, I') can be
obtained in complete analogy to the construction of Sll, =(T).
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To this end, we know that for any problem formulated within the isogeometric framework that enjoys a
discrete inf-sup condition as in Theorem 2.11 or allow for an application of Céa’s Lemma as in Theorem
2.9 w.r.t. the norms above, we can expect a convergence of optimal order w.r.t. h-refinement [119]. Note,
however, that the orthogonal projection will, in general, not have the commuting diagram property in
the sense of Lemma 3.20. This distinction is critical for existence and uniqueness proofs for problems
requiring conforming discretisations, as will become clear in the remainder of this chapter.
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3.6. The Isogeometric Electric Field Integral Equation

This section will now apply the proven approximation properties to the electric field integral equation,
results first published in [50]. To this end, replacing H ;1/ *(divp,T) by S;,E(F) CH ;1/ ?(divr, T) yields
the discrete variational problem to Problem 2.37, given as follows.

Problem 3.42 (Discrete Problem). Find wy, € ) £(T') such that

<\fliwh>l‘l‘h>>< = _<’Yteial-‘l‘h>><7 (350)

for all py, € S} =(I).

Given a basis {¢;}¥; of S;E(I‘), this yields the linear system
Virwy = —fa, (3.51)

where the right-hand side f}, is given by [f h]j = (v:€;,;)x and the system matrix V, j, by
[\,fi,h] i, = <\,I£Q0]?<p2>><
= up(z — i(@) - pi(y) doy dog
[ [ uite v v doy (3.5

1 ) ‘
- / / uy (x —y) divr ;(x) divr ;(y) doy dog,
rJr

see [23, Eq. (32)]. We remark that the system matrix is symmetric, but not Hermitian.

According to the classical theory of the electric field integral equation the following holds.

Lemma 3.43 (Criteria for a Stable Discretisation, [26, Prop. 4.1]). Assume the following.

1. There exists a continuous splitting H ;l/ 2(din, I') = W @V such that the bilinear form induced by
Problem 2.37 is stable and coercive on V- x V.and W x W, and compact on V. x W and W x V.

2. The space Szl, =(T") can be decomposed into a sum

S,=T) =W,aV,

of closed subspaces of H ;1/ 2(divr, ).
3. Wy, and V}, are stable under complex conjugation, and

4. One finds Wy, C W, and the so-called gap-property

Hv _vhHH71/2 d F
x Ve D) hog (3.53)

sup inf
vy eV, VEV ||vh”H;1/2(diVF7F)

holds.

Then Problem 2.31 satisfies the assumptions of Theorem 2.11, i.e., is inf-sup-stable.
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The continuous splitting of H ;1/ 2(divr, I') has been discussed for non-resonant wavenumbers by, e.g.,
Buffa and Christiansen [23], and is required for proving the inf-sup-stability of Problem 2.37. One of
the most concise (although not self-contained) constructions of said splitting and the discrete inf-sup
condition according to this scheme is presented by Bespalov et al. [11], whose lines we will follow closely,
starting with the introduction of some necessary operators. The theory behind them goes back to Hiptmair
[65].

Lemma 3.44 (Regularising Projection, [11, Lem. 3.1.]). For compact domains 2 with Lipschitz boundary
there exists a continuous projection R: H ;1/ 2(divF, ' —H 1X/ 2(1“) such that

(divp oR)(u) = divru, (3.54)

for allw € H,"*(divp,T).

Proof. We shortly review the proof for later reference. For any v € H ;1/ 2(divr, I'), the solution of the
Neumann problem

Aw =0 in €,

3.55
gradw -n = divpv onT, ( )

defines a vector field grad w € H(div 0,€2) with (grad w - n, 1) 2(ry = 0. Herein, H°(div 0, ©2) denotes
the divergence-free subspace of L?(2). Using a continuous lifting operator L: H°(div,2) — H'() with
curllLuy = u for all u € H°(div 0, Q) satisfying (u - n, L)r2ry = 0, see, e.g., [57, Theorem 3.4], we finally
arrive at Rv = y,Lgradw € H 1X/ 2(1“). Property (3.54) follows. Since grad w depends continuously on
divpvandy,: HY(Q) - H 1X/ 2(F) is continuous as well, the continuity of R follows. [
Indeed, one can show the continuous inf-sup-condition via the splitting V := R(H ;1/ 2(divr, I')) and

W = (Id-R)(H ;1/ 2(divF, I')). However, in contrast to Bespalov et al. [11], we cannot use the operator
R to introduce a discrete splitting, since the image of R is not patch-wise in H', which would be required
for a function to be contained in the domain of f[%. Instead, we have to introduce another regularising
projection.

Lemma 3.45 (Regularising Projection of Higher Regularity). For compact 2 with Lipschitz boundary there
exists a continuous projection
Ro: H'(divp,T') — H}, (T)

such that
(diVF OR()) (’U,) = diVI‘ u (356)

holds for all w € H®(divr,T).

Proof. The proof is in analogy to Lemma 3.44. First, we remark that divru € L?(I"). Thus, (3.55) yields
a field grad w € H'/?(div 0, Q) with

(gra.dw ‘n, 1>L2(F) =0.
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Girault and Raviart [57, Remark 3.12] show that there is a continuous lifting
Ly o HY2(div0, Q) — H2(Q)

with curllu = u for all v € H'/2(div0,Q) satisfying (u - n, 1)z2ry = 0. This yields the assertion by
patchwise application of the rotated tangential trace. We remark that the continuity of L, /5 follows by
noting that the construction of the extensions in [57, Theorem 3.4] and [57, Corollary 3.3] depend
continuously on the input data. The interpolation argument of [57, Remark 3.12] then yields the
continuity assertion, since the image of the procedure in [57, Theorem 3.4] and [57, Corollary 3.3]
coincides for equivalent input data. |

In analogy to the continuous setting, by Lemma 3.45 and the construction and properties of the quasi-
interpolation operators constructed in [25], the definition of the discrete splitting via

Vi = (IfoRo)(Sp =), Wy = (Id -1} o Ry)(Sp=(1)),
is well-defined and will prove to be a suitable candidate to fulfill the assumptions of Lemma 3.43.

Remark 3.46. The construction of both R and R shows that the kernel of the respective operator consists
exactly of the divergence-free functions. Thus, it follows that W; C W holds, compare [11, Eq. 3.5].

We are now ready to provide a statement about the inf-sup-stability of the discretised EFIE.

Theorem 3.47 (Discrete Inf-Sup Condition). For non-resonant wavenumbers problem 3.42 is inf-sup-stable
in the sense of Theorem 2.11.

Proof. First, we consider the case of where S;,E(F) is patchwise continuous. Due to Remark 3.46, it
remains to check the gap property (3.53) for V and V;,. We write

sup inf ”vivh”H;l/Z(diVFvF) < sup HRovhivhnH;lm(diVnF)
on eV, VEV thHH;l/z(diVFI) ~ wneVa thHH;l/2(divr,F)
Ro —IIL o Ry) (v H
H( 0 r° 0)( h) H;lm(divr,f‘)
= sup ‘
v eV, thHH;l/z(divF,F)

Note that the last equality holds because one can show that 1:1111 o Ry is a projection, as done by Bespalov
et al. [11, Sec. 6] for R. Thus, it holds that

~1 ~1
(I o Ro) (V1) = Vi := (IIp 0 Ro)(S, =(I)).
Since the embedding H®(divy,T') — H ;1/ 2(din, I') is continuous we arrive at

< H(RO “fiko RO)(m)

~

_ Tl
H(RO Hp o RO)(”h)HHXuz HO(divp,I")

(diVF ,F)

By the divergence preserving property (3.56) of Ry and the fact that the interpolation operators are
projections which commute w.r.t. the surface differential operator, we can apply Theorem 3.22. Thus we
arrive at

| (Ro — 11} o Ro)(w)|

= || Ry~ Ttk o Ro)wn)|| , S BlIRoAIgy, -

HO(divp,I) L2(I)
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Note that the right hand side is well-defined due to Ry(V},) C H Il)w(l“). Combining the above with the
continuity of the Ry operator and an inverse estimate, provided in [50, Lem. A.1] for patchwise continuous
basis functions, yields
[Ro =Tt 0 Ro) @), vy g S H 2100272y

Thus the assertion for the patchwise continuous case. The case where S1 =(I") is not continuous within
each patch is realised only for maximal knot repetition within knot Vectors It reduces either to analogous
arguments applied to subdomains satisfying the continuity assumption, or, otherwise reduces to the
classical theory of higher order Raviart-Thomas elements on quadrilaterals for which we refer to the
works of Buffa and Hiptmair [26] and Zaglmayr [120]. Compare also the proof of Proposition 3.38,
which uses a similar approach. [ |

Following classical theory as established by Babuska [5] we can finally combine Theorems 3.28 and 3.47
and arrive at the main result of this subsection.

Theorem 3.48 (Discretisation Error). For non-resonant wavenumbers the solution to Problem 3.42 exists and
is unique. Moreover, assuming w € H; (divr,T') for some 0 < s < p, for the solutions w € H ;1/ 2(divr, I)
and wy, € SII,E(P) of Problem 2.37 and Problem 3.42 we find that

Hw — 'l.UhHH;l/Q < hs+1/2HwHHS (divp,I')*

(divp,I') ~

As a corollary, we can predict the expected convergence rates of the scattered electric field. Similar to
scalar-valued problems, the convergence rate of the field doubles.

Corollary 3.49 (Pointwise Error). Let x € €€ fixed. Let w be the solution to Problem 2.37 and wy, the
solution to Problem 3.42. Then, for E; = Ww and e, = Wwy, it holds
1Es(2) — Esp(@)]cs < C@)h™lwl g, (aivr.r)»

if w and the solution of a suitable adjoint problem are sufficiently smooth.

Proof. One readily verifies that () -)(z) is a linear and continuous functional on H ;1/ 2(divr, I") for given
x. Let then ¢® be the solution of the adjoint problem of finding ¢*) ¢ H ;1/ Q(divr, ') such that

(V&0 = (%€)(x) (3.57)

holds for all { € H ;1/ Z(divF, I'). Let <p§f) denote its discrete analogon. The assertion now follows by
applying [99, Thm. 4.2.14] to each component of the scattered field to obtain

||ES (x) - Es,h(x) ||(C3 SJ ”w - wh”H;l/z(divF,F) HQO( - QOELZ) HH;I/Q(diVF,F)'
The previous theorem yields the assertion with C'(z) = C|¢@ || HP, (dive,T)> if the solutions to Problem
2.37 and (3.57) are smooth enough. [ |

Remark 3.50. The proof also applies to linear and continuous output functionals of w. Thus, similar error
estimates hold also for other quantities of interest, for example for path integrals of the electric field, i.e.,
voltages, radar cross sections, see the book of Jackson [69], or even the solutions to the corresponding
eigenvalue problems, as will be discussed later in this thesis.
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4. Algorithmic Considerations for Matrix Assembly

In this chapter, we will review the algorithmic approach to the matrix assembly of the linear system
induced by the isogeometric discretisation of the EFIE as first published in [50]. Since, in general, the
matrices will be densely populated due to the non-local kernels of the integral operators, a compression
scheme needs to be utilised for large computations.

While adaptive cross approximation (ACA) techniques tailored to the isogeometric setting exist and yield
good results, see e.g. [79], we must briefly comment on the classical black-box ACA, which has been
used, for example, in [104]. Being a simple and purely algebraic algorithm, the ACA is very popular in
the engineering community, cf. [73]. However, due to the overlapping supports of higher-order B-spline
discretisations, it will inevitably lead to redundant kernel and geometry evaluations.

As an example, compare the lowest-order case in Figure 4.1a to the higher-order case depicted in
Figure 4.1b. If one computes the interaction between one function ; to two different functions 2, @3,
evaluations of kernel and geometry on multiple elements will coincide in the higher-order case. These
values would need to be either recomputed or stored, where one option is permissive because of its
computational complexity and the other for its storage requirement.

Since in the isogeometric setting the support will scale with p, such a scheme will become increasingly
inefficient for higher-order.

In contrast, the scheme we are going to present in this chapter is not based on the ACA. It is a non-trival
variant of a compression scheme based on the interpolation of the kernel as introduced by [63] and
adopted to scalar IGA-BEM in [48]. A particular feature of this approach is that its implementation
integrates effortlessly into the 7{?-matrix framework [18] and avoids redundant computations due to its
element-based philosophy. This will be realised through what we call a superspace approach.

This Chapter is structured as follows. First, in Section 4.1, we will review the representation of the Maxwell
single layer operator w.r.t. the reference domain [J. These representations are used to assembly a local
element matrix, which can then be translated into the system matrix by the superspace approach, which
will be introduced in Section 4.2. Afterwards, in Section 4.3, we will introduce an interpolation-based
multipole scheme which provably reduces the storage requirements and complexity of the matrix-vector
multiplication of the local element matrix.
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/ Y2 3

Patch 2

(a) Lower-order functions are local to each element. Due to the close element-to-basis-function relation
evaluations of interactions may be computed between basis functions.

Patch 1

Ly

Ly

P1 Ly

A Y2 @3
| 4
P

Patch 2

(b) Higher-order spline functions span their support over multiple elements. In this example consider
scalar functions with p = 3 and thus a support of 3 x 3 elements. Due to higher choice of p, more
quadrature points are required as well. The overlap contains six elements.

Figure 4.1.: A basis function oriented approach yields either a large overhead for bookkeeping or requires
many redundant kernel and geometry evaluations.
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4.1. Integration on the Reference Domain

Before we introduce the compression scheme, we first have to pull the matrix represention (3.52) back
to the reference domain. For this, we will first introduce some essential concepts.

We assume that the B-spline space on S} = (I) is generated by the tuple E,, ; = (En, =5,,) on each patch
I';, where =, is an equidistant knot vector with 2, m > 0, elements.

This corresponds to m steps of uniform refinement in terms of the reference domain and generates a
nested sequence of meshes. Then, for each level of refinement m, the mesh consists of 4™ elements per
patch. The key point of this refinement strategy is that it induces a quadtree structure on the geometry,
cf. Figure 4.2, which the compression scheme will be based around. Each element within the nested
sequence of meshes will be denoted by T'; , 1, i.e., referred to by a tuple A := (¢, m, k). In this, i denotes
the corresponding parametric mapping, m < m showcases the level of refinement of the element and &
denotes the index of the element in hierarchical order. For notational purposes, we will define |A| :=m
and also introduce the diffeomorphisms F'y: (1 — I'y which can easily be defined by combining F'; with
a suitable affine transformation. For an efficient compression, each instance of Iy is also considered as a
cluster, in the sense that I'y will be considered as the set of tree leaves appended to the subtree with root
I'). Naively said, Iy, can be visualised as “a square region on the geometry”, compare Figure 4.2 (a). The
hierarchically ordered collection of all "y will be called cluster tree and denoted by 7.

For each pair of clusters in 7, the fundamental solution v}, can be localised to a localised fundamental
solution

u.:)\,)\’: |:| X |:| — (C, UZ7A’)\/(S,t) = U:(FA(S) — F)\/(t)) (4,1)

which reparametrises the fundamental solution to [J x [J, and localises the geometry mappings F'; to
cluster-oriented mappings F') through scaling and translation. This reduces the dimension (in terms of
input variables) of the fundamental solution artificially to the dimension of the boundary.

On each element I'y, ansatz functions ¢, are defined by lifting suitable shape functions ¢ on [J to the
surface by the suitable localised pull-back.

Fiizliie

refine refine

oo
m=m-+1 m=m-+1

FitoTiin

(a) Refinement of the patch induced by the i-th mapping. Bold region corresponds to cluster I'y with A = (4,1, 1).

/ oo \
Livo L D12 i3
Lioo,..-sLi23  Tiga,....li27 Tiog,....l211 Ti212,...,1%215

(b) Quadtree structure induced by refinement of the i-th mapping.

Figure 4.2.: Refinement, labelling, and quadtree structure.

73



To obtain suitable shape functions of polynomial degree p on [J, we introduce the knot vector =7,
generated from =,, by increasing the multiplicity of each knot to p+ 1. We then define the spaces S;, ,,, (),
to be the discontinuous spaces generated by p = (p,p) and Ef, = (=*,, =), i.e., the space

S;,m(lj) = Sp(E,) @ Sp(E,)- (4.2)

By definition of the B-spline basis S} ,,(0J) contains exactly the tensor product Bernstein polynomials
of degree p on each element, i.e., is locally of dimension (p + 1)2. The refinement yields 4™ elements
per patch, and thus, after mapping S}, ,,(0J) to each patch T';, this yields a global discrete discontinuous
function space S, ,, (I') of dimension 4™ N (p + 1)2, where N refers to the number of patches. According
to [89], for two basis functions ¢; and ¢; of S, (I') supported on I'y;) and T'y;, together with theit
pulled-back counterparts p;, = p; o F,, ; = ¢; o Fy, the first integral of the Maxwell single layer
operator is given by

[ [z oiwaryar,
rJr

4.3)
= [ [ 2020 (5. AP (95, (6). AP (07,8) e,

Iy I

Let, for the remainder of this chapter, 9; and J; denote the derivation w.r.t. the first or second argument.

(4.4)

Assuming that a finite dimensional basis of Sy, ,,,(I') is given in terms of scalar functions, i.e.,

{ {%@] 7 [O] : ¢4, @; basis functions of S;,m(F)}y

P
with their pulled-back counterparts @;, ¢;, the matrix V¥, can be further decomposed into

v v
= |yl ys)

with
o= [ o x0 .00 (6).05F 20 01750050 .
4.5
L
— 5 0a55(8)05%:(t) ) dt ds.
fora,B=1,2.

Remark 4.1 (Symmetry of the Bilinear Form). To obtain an efficient implementation, one may choose
to simultaneously assemble the V( %) and exploit the symmetry Vﬁl’l) = (VI{(E’Q))T and the intrinsic

symmetry of the blocks VH(’ h Y and V,ﬁm.

Remark 4.2 (Element-Wise Quadrature). Choosing to compute element-element interactions instead of
function-function interaction avoids redundant kernel and geometry evaluations by design. This comes
naturally with the presented superspace approach. On each element, we employ classical boundary
element schemes for numerical integration of singular integrals, often referred to as Sauter-Schwab
quadrature rules, see [99] or [62]. These can be applied without modifications.
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4.2. The Superspace Approach

Since B-splines are piecewise polynomials the relation
Spz,, (1) €Sy m(D) =S}, (D) xS}, (1)

withp = (p, p) and E,, = (Z,,,, =) is evident. We can therefore represent each basis function of S} =z, ()
by a linear combination of basis functions of S5, . (I").

Now, instead of assembling the system of linear equations (3.51) with respect to 81 ('), one may
assemble it with respect to §j, ,, (I') to obtain a local element matrix V"), and a vector f b . A linear system
of equations equivalent to (3.51) is then given by

TV, Tw=—TTf, (4.6)
V.
=Vk,h

for a suitable transformation matrix T .

Remark 4.3 (Computation of T'). Set [S*| = dim(S;,,,(I")). The coefficients encoded in 7" are exactly the
coefficients ¢; required to represent

a(bj,bi):a Z le;j, Z Cil;i

0<5<|S*| 0<i<|S*|
= E cja bj, E Cibi
0<5<[S*] 0<5<[S*|

S oo Y ga(beb).

0<j<IS*|  0<i<|S*|

for all b;,b; € Sl =(I') and b b € S;, ('), and any bilinear form a. Note that most of the coefficients
will be zero. Th1s is exactly the relatlon utilised in (4.6), where the double sum is written as a basis
transformation.

In the implementation, the coefficients are computed by solving multiple interpolation problems a priori
in a black-box fashion: Let b; € S1 =(T ) be fixed and choose (p + 1)? suitable interpolation points x; € T
on each element. Then, for b = (b (:1:0) .,bi(xx—1))T, the i-th column of T is given given by a vector ¢
which is the solution to

Ac =0,
with Ai’j = Bi(.’l:j).

Note that the structure of this interpolation problem is local to each element and can be pulled back to
the reference element. Thus, only local problems of size (p + 1) x (p + 1) must be solved. For this, the
inverse of this small interpolation matrix must be computed only once.

Remark 4.4 (Compression of V*h) Since the dimension of S* (') is larger than the dimension of
S;,E (I'), the matrix V* ' is larger than the matrix V, j,. However it has been shown in [97] for the
case of classical higher- order Raviart-Thomas elements that the superspace approach can achieve better
compression rates and, thus, better computation times.

Indeed, the local support of S, (T') will benefit the compression scheme immensely, as will be discussed
later on.
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4.3. Interpolation-Based Multipole Method

Due to the non-locality of the fundamental solution v}, the local element matrix V* 1, is densely populated.
Its storage and assembly cost are thus prohibitively expensive for higher- dlmensmnal ansatz and test
spaces, and an efficient fast method for the reduction of storage requirements and the cost of matrix-vector
products is needed.

A particular feature of this approach is that its simple implementation integrates effortlessly into the
H2-matrix framework [18], which is a more efficient variant of the commonly used -matrix variant
[60].

We follow the approach of [46, 48, 63] to compress the matrices I/;(c;l’g ), o,B8 = 1,2, in terms of a

specialised fast multipole method, which yields a representation of these matrices in terms of 2-matrices,
see also [18]. However, the approach is only applicable to matrices of the kind

A= [ [ via-vei@w) do o
/ / AD)AG) (8:8)P5(8)i(t) dt ds,

which does not readily fit the format of the matrices from (4.5) due to the derivatives of the geometry
mappings contained in the basis functions and the involved surface divergences. In the following, we
will, therefore, adapt the construction to the setting of the electric single layer operator.

For constructing the H?-matrix representation, consider the level-wise Cartesian product 7 X T :=
{Tx x Ty : Tx,Ty € T,|A| = |X|} of the cluster tree 7. Compressible matrix blocks are then identified
by the following admissibility condition.

Definition 4.5 (Admissibility Condition, [46, Def. 5.1]). The clusters I'y and T'y, with |[A| = || are
called admissible if

max { diam(I'y), diam(I'y/) } < ndist(I'x,Ty) 4.7)

holds for a fixed n € (0, 1). Let pred(X) denote the predecessor of a tuple A w.r.t. undelying tree structure
of the refinement process. The largest collection of admissible blocks I'y x 'y, € 7 W T such that
Lpred(n) X Tpreda(a) is not admissible will be called far-field 7 C 7 X T. The remaining non-admissible
blocks will be called near-field N C T X T.

The far-field yields the compressible matrix blocks, while the near-field is assembled densely, see Figure 4.3
for an illustration. The block-cluster tree B := F U N can be constructed as explained in [48]. We remark
that for all block-clusters 'y x 'y, € B, it holds |A| = |X’| and refer to [46, 63] for an in-depth discussion
about the special properties of the block-cluster tree in the isogeometric setting.

For a given polynomial degree ¢ € N, let {x,z1,...,2,} C [0,1] denote ¢ + 1 interpolation points.
Furthermore, let L,(s) for r = 0,...,q be the Lagrangian basis polynomials with respect to these
interpolation points. By a tensor product construction, one obtains the interpolation points &, := (z,,, x,,)
and the corresponding tensor product basis polynomials

Ly(s):= Ly (s1) Lry(s2) forry,ra=0,...,q,
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1 R

Figure 4.3.: Illustration of the #2-matrix partitioning. All but the darkest blocks are contained in the
farfield and will be compressed.

in all admissible blocks I'y x Iy, € F. This gives rise to the approximation

wian(8t)~ D uf s (@, @) Le(s) Lo ().
||"'H<><>§q7
Il oo <q

Remark 4.6 (Complexity of the Multipole Approximation). We remark that the approach presented here
interpolates the localised kernel (4.1) via polynomials on the reference domain [ of the isogeometric
mappings. Specifically, this amounts to an interpolation on a two-dimensional manifold, rather than the
original kernel in space, i.e, interpolation in three-dimensional space. The latter was first introduced
in [56, 61]. The intrinsically two-dimensional approach has complexity of ¢* = ¢? - ¢® instead of a
complexity of ¢° = ¢* - ¢* for the volume case, in terms of the interpolation degree ¢ of the multipole
scheme.

We remind ourselves that S,(=},) denotes the spline space based on Z,, for maximal knot repetition,
i.e, of Bernstein polynomial on each element of =,,, compare Equation (4.2). Including the geometry
information into the kernel evaluation yields

(avﬁ)’ _ ylap) (e,8)
Vin AN Vini AN + Vo AN (4.8)
with
(a,8)
[V“’h’l A,)\'L,Z’
= [ [ ar(s:0)0uFA ). 05FA0) 20 (9)7u(t) dt s
~ Z u:,A,A' (@r, Ty ) (OaF A (1), O F \ (1))
i
T oo S ~ ~
’ . / Lo (8)30 (s) ds / Lo (£)30(t) dt
o o
for two basis functions @y, gy € S;; m—|A (O). This means we have the representation
(a,8) _ afD gr(@B) (ag0
[Vn,h,l ‘/\7,\,} o [MII\IK/\,,\/,l(M\A’I)T}e,w
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where
KD = wax(@r @) 0P (@), 05F A (o)

and

For the second term in (4.8) we obtain

(a7ﬁ)
{V”’W ‘A,,\J 00

1 . ~ ~
:_,ﬁz/D/DUn,,\,,\(svt)aasoz/(S)agw(t) dt ds
1, ~ R
~ ~ U (@, Tr) /D Ly (8)0aPe(s)ds /D Ly (t)050,(t) dt,
Il oo <g,

l[r"lloc <q

which amounts to the representation

(a,8) _ a,0 g () 6,0
{Vn,h,Q‘/\)‘,}&ﬁ, = [Mw K,\,,\/72(M|,\/|)T]e,e”
with
0 ! N N
M), = /0 Lo(s)03e(s)ds, 1€ Sp(Ely_):
1,0 9]
Mw —M‘)\|®M|,\|,
2,0 0
M= M) @Mjy,
and 1
[K;ﬁg\éé]rr, = _?uz’A’)‘/ (x,,-,:l:r/).

In view of (4.8), this yields the low-rank representation

K(P) 0 (MR)T
Ve~ MR Mo [ ML b (4.9)
h ’A,x MR M 0 K| (M)

for the matrices (4.5) in all admissible matrix blocks, see also Figure 4.4 for an illustration.

We remark that this representation is within the same framework as it was used for the treatment of
the hypersingular operator for the Laplace equation in [46]. Therefore, all considerations made in [46]
apply. This immediately transfers the following result to our setting.

Theorem 4.7 (Algorithmic Complexity of the Compression, [46, Sec. 5.3]1). Let N denote the number of
patches and m the level of refinement. The storage consumption of the compressed matrix has a complexity
of O(N - 4™(pq)?). Moreover, the matrix-vector multiplication has also a complexity of O(N - 4™ (pq)?), if a
fast H?-implementation is used.
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Figure 4.4.: Tllustration of the compression of an admissible block Vﬁ(z’ﬁ ) N

It must be stressed that the introduced compression scheme has an intrinsic 2-structure. This renders it
more efficient than the frequently used #-matrix-based schemes. Its efficiency is based on the fact that,
for each admissible block A x X/, there are only ¢* evaluations of the geometry and the kernel function
required to assemble the matrices K g\oy‘f’)l and K g\af)z The other required matrices from (4.9) can be
efficiently represented by recurrence relations from smaller matrices with tensor product structure such
that assembly, storage and application do not affect the asymptotic behaviour, see [46].

An error analysis of this scheme has been conducted by my coauthors in [50] and yields the following.

Theorem 4.8 (Error of the Compression, [50, Thm. 4.7]). The presented compression scheme maintains
the existence and uniqueness of solutions of the numerical scheme. Moreover, there exists gy > 0 such that the
optimal convergence rate of Theorem 3.48 is maintained if one chooses ¢ ~ (s + 5/2)m and q > qo.

Remark 4.9 (Smoothness of the Geometry Mapping). Note that both the analysis of Chapter 3 as well as
the compression requires C°°-mappings to the geometry. While NURBS mappings will, in general, only
be C* due to knot repetition, we employ Bézier extraction [17] as a preprocessing step of the geometry.
This is the process of extracting locally C'*°-sub-patches of the geometry, which enables the geometry
evaluation to be reduced to the evaluation of (rational) Bernstein polynomials. These sub-patches form
the basis of the cluster tree for the proposed multipole method. By the superspace approach, smooth
functions across multiple of these sub-patches can then be reconstructed through suitable coefficients
within the matrix T'.
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5. Numerical Examples:
Electromagnetic Scattering

This chapter is devoted to the presentation of multiple numerical examples. These are designed to verify
the behaviour predicted in Theorem 3.48 and Corollary 3.49, and to benchmark the method.

Our approach to this is as follows. We will first investigate an example with a known analytical solution of
the surface current, i.e., the unknown of the EFIE, thus verifying Theorem 3.48. We will also investigate
multiple examples with a known solution to the electric field to check for the behaviour predicted by
Corollary 3.49.

Afterwards, in Section 5.4, we will compare the B-Spline basis S1 =(I") to a corresponding quadrilateral
Raviart-Thomas discretisation. Section 5.5 will then showcase the case where only p-refinement is applied,
which corresponds to what is sometimes called spectral element method, cf. [75]. Finally, the compression
rates of the multipole method will be reviewed in Section 5.6.

Note that a commodity of fast boundary element methods is that they all rely on iterative solvers and,
thus, they are likely to struggle with high condition numbers caused by a large product of wavenumber to
geometry diameter. Thus, the arising systems are solved via a complex GMRES unless otherwise stated,
without the application of preconditioners, since a treatise of preconditioning remains an open research
topic.

As mentioned before, the geometry evaluation incorporates Bézier extraction for efficient geometry
evaluations. Matrix assembly, matrix-vector multiplication and potential evaluation are parallelised via
OpenMP [86]. The implementation, called Bembel, is publicly available [44] and is reviewed in Appendix
B.

5.1. Mie Scattering

First, we test the implementation via the computation of the surface current induced by a plane wave
from a perfectly conducting unit sphere. The data and some of the figures presented within this section
were first published in [50].

An analytic solution to the density is known in terms of a series expansion, see [114] for a comprehensive
account. Since the energy norm ||-|| -2 (dive T) of the density is not computable explicitly, we choose to
« T

compare the L?(T)-error of the density. In accordance to quasi-optimality of the approach, cf. Theorem
3.48, a convergence of order p is expected, cf. Remark 3.29. As can be seen in Figure 5.1a, the
implementation behaves as predicted.
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Figure 5.1.: Numerical examples on the unit sphere. Wavenumber x = 1, parameters ¢ = 10, and n = 1.6.
The evaluation points are a selection of 100 points on a sphere of radius 3 around the origin.
GMRES was restarted every 1500 iterations, with a stopping criterion of ||r|, < 107%.

5.2. The Electric Field as a Quantitiy of Interest

Although the density obtained in an approach via the electric field integral equation admits a physical
interpretation as the surface current, the quantity of interest of scattering problems is mainly the scattered
electric field. This section will present corresponding numerical examples. The data was first published
in [50].

In order to obtain a reference solution, we employ an approach via manufactured solution, cf. [85,
Chap. 6.3], i.e., a function that fulfils the electric wave equation in € is used to generate the required
Dirichlet data. By existence and uniqueness of the solution to Problem 2.31, cf. [23], one can validate
the numerical scheme, i.e., an implementation to solve the discrete Problem 3.42.

As such a manufactured solution, we utilise a simple Hertz-dipole, for which one can check that it fulfils
both (2.27) as well as Assumption 2.30.

Definition 5.1 (Hertz-dipole, [69, p. 411, (9.18)]). Let o € 2. We define the function
Cirr (K2 1 ik
DPy,(z) =e 7(” X po) X n+ 32 (3n(n -po) —po) ),
with r = || — x¢||2, po = (0,0.1,0.1), and n = (x — z¢) /7.

Given a reference solution, the errors illustrated in Figure 5.1b validate the convergence rates of the
electric field predicted by Corollary 3.49, where the maximal pointwise error in this and all upcoming
tests is given as

max [DPg, (x) — en(2)]|cs

zeV

for a point set V' around the geometry, which will be further specified for each example.
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The last data point of the highest order does not match the predicted order, but is, with an error around
10~'2, where numerical inaccuracies are to be expected.

Since the sphere-example is a classical benchmark test, we choose to publish detailed data about the
computation, specifically in terms of time to solution, in Table 5.1. There, one can also find detailed
information about the machine used for computations. This may serve as a reference to compare the
presented approach to other implementations, but we stress again that one has to act cautiously when
comparing times, since the performance of the fast method depends on various parameters of the problem,
in particular, the product of the wavenumber « to the size of the geometry. The input parameters of all
computations are detailed in the captions of the corresponding figures.

Table 5.1 also makes clear that the conditioning of the system poses a problem, as is well-known and a
field of research for the EFIE [2, 34]. One can clearly see that the time spent solving the system dominates
the time to solution over the highly optimised assembly routines. This difference in time is visualised in
Figure 5.2.

While for classical lowest order elements quasi-optimal preconditioning strategies exist, see e.g. [2], a
satisfying preconditioning strategy for the isogeometric approach is still an open area of research.

5.3. A Benchmark: Scattered Fields around TESLA Cavities

To test more involved geometries with larger numbers of degrees of freedom, we test our boundary
element method on the TESLA cavity geometries [4, 50]. They resemble the cavities as used in particle
accelerators, as explained in the introduction of this thesis. It should be remarked that all of these
examples avoid resonant frequencies, and are only to be considered as a benchmark for solving scattering
problems and to verify that the boundary element method works as desired. With cavities one is usually
interested in solving the eigenvalue problem, which will be investigated in Chapter 6.

We start these numerical experiments on a single cell of the TESLA cavity, as depicted in Figure 5.3,
which resembles a single cell of the full nine-cell cavity. A volumetric discretisation is freely available
through the geopdes package of Octave [52]. The scattering problem is then solved with a right hand
side induced by the dipole for which the precise parameters are presented in Figure 5.4 and Table 5.2.
The results are depicted in Figure 5.4.

One can still observe the high convergence rates w.r.t. the number of degrees of freedom. One can also
see that the time for matrix assembly, as well as the time to solution, seem to scale independently of
the polynomial degree of the discrete functions. However, both the time for matrix assembly and the
time to solution differ by a constant factor, favoring solutions obtained via higher-order approaches.
Moreover, one observes that the number of GMRES iterations required for the solution of the system
w.r.t. the achieved accuracy of the solution scales independently of p, suggesting that the iteration count
to solve the system remains constant for a desired accuracy, weather this accuracy is achieved via p or h
refinement. This slightly favors higher-order approaches: For a set accuracy threshold, systems of higher
order approaches are smaller due to the higher accuracy per DOF. Thus, each iteration of a matrix-free
solver is computationally cheaper.

For the nine-cell example, such clear behavior is not visible, cf. Table 5.2. We attribute this to the fact that
the compression parameters (1 for admissibility condition and order ¢ of the multipole interpolation)
had to be chosen such that the problem remained computable on the accessible machines, i.e., one can
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Figure 5.2.: Time to solution visualised for the Sphere-example. One can clearly see that the time spent
solving the system dominates the time to solution over the highly optimised assembly rou-
tines. The data corresponds to that of Table 5.1.
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Table 5.1.: Detailed data of the Sphere-example with « = 1 and » = 1.6. Computed on a Workstation with
Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz, and has been compiled with g++ 5.4, with compile
flags -03 -march=native -fopenmp. The Mie-error refers to the error w.r.t. the analytic so-
lution of the scattering problem described in Section 5.1, while the DP-error refers to the error
obtained via the manufactured solution as described in Section 5.2, cf. Figures 5.1a and 5.1b.
Every 1500 iterations, the GMRES was restarted, with a stopping criterion of ||r||, < 107%. The
DP-error was evaluated on a set of 100 points scattered across the sphere of radius 3.

p=1
hw.rt. O 0.5 0.25 0.125 0.06125
complex DOFs 48 192 768 3057
matrix ass. (s) 0.02 0.14 1.14 9.15
solving (s) 0.02 0.32 3.4 79.9
GMRES iterations 12 55 119 231
DP-error 0.0074 0.0009 0.0001 1.23e-05
Mie error (L?) 1.051 0.499 0.246 0.122
p=2
hw.rt. O 0.5 0.25 0.125 0.06125
complex DOFs 108 300 972 3468
matrix ass. (s) 0.06 0.55 4.8 47.3
solving (s) 0.046 2.6 100.6 2279.6
GMRES iterations 48 158 362 616
DP-error 0.0009 1.82e-05 4.41e-07 1.29e-08
Mie error (L?) 0.251 0.052 0.012 0.0029
p=3
hw.rt. O 0.5 0.25 0.125 0.06125
complex DOFs 192 432 1200 3888
matrix ass. (s) 0.8 1.16 17.4 197.3
solving (s) 0.15 8.46 237.8 8433
GMRES iterations 123 294 702 2003
DP-error 5.29e-05 9.83e-07 3.72e-09 2.45e-11
Mie error (L?) 0.085 0.011 0.0010 0.000121
p=4
hw.rt. O 0.5 0.25 0.125 0.06125
complex DOFs 300 588 1452 4332
matrix ass. (s) 0.6 5.42 52.1 746.29
solving (s) 2.08 79.2 3072.9 78508
GMRES iterations 224 400 919 5681
DP-error 6.81-e06 1.54e-07 6.77e-11 8.33e-12
Mie error (L?) 0.021 0.0034 0.00012 6.69e-06
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Figure 5.3.: Mesh induced by refinement of level 3 of the TESLA geometries. ©2019, SIAM.
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Table 5.2.: Detailed data of the nine-cell TESLA example with x = 10. Computed on a Workstation, with
Intel(R) Xeon(R) CPU E7- 8850, and has been compiled with g++ 4.8.5, with compile flags
-03 -march=native -fopenmp. The DP-error refers to the maximum error obtained via the
manufactured solution of a selection of 100 points on a sphere of radius 3 around the origin.
The stopping criterion for the GMRES was a residual of |jr||; < 107!°, with a restart every 1500
iterations.

p=2,q=12,7=0.15

hw.rt. O 0.5 0.25 0.125
complex DOFs 4068 11300 36612
matrix ass. (s) 43 64 2031

GMRES iterations 879 1230 2552

DP-error 1.69e-03 3.84e-07 9.79e-09
p=3,¢q=10,n=0.3

hw.rt. OJ 0.5 0.25 0.125
complex DOFs 7232 16272 45200
matrix ass. (s) 37 207 5944

GMRES iterations 1424 2987 7934

DP-error 9.07e-07 3.28e-07 1.33e-09

not depend on the result of Theorem 4.8. Despite the suboptimal choice of parameters 1 and ¢, one still
can observe that the method converges and yields good results.

5.4. Comparison to Raviart-Thomas Elements

This section compares the isogeometric basis S}, =(T") to the parametric quadrilateral Raviart-Thomas Q,
of elements @,,, where each element is of the form @, = Q-1 X Qp—1, for Qp, p, = Py, @ Py, cf. [120,
Sec. 5.2.2].

We define the elements @p on the isogeometric elements induced by the knot vectors in reference domain
and then apply the push-forward of the geometry mapping to get a discrete space in physical domain.
Note that on Q,, normal continuity must be enforced as well. As with the isogeometric discretisation, this
is implemented by means of a transformation as in (4.6).

Since the geometry transformation is used, we do not introduce meshing errors in our benchmarks. This
means that this comparison is optimistic w.r.t. the performance of @,, since in most commercial tools a
non-parametric mesh would be introduced.

We remark that by this construction, the lowest order spline space coincides with the lowest order
Raviart-Thomas space. This can be observed the results of all experiments, cf. Figures 5.5, 5.6, and 5.9.
In addition to the visualisations, detailed numerical data of selected simulations are depicted in Table
5.3. All data and some figures presented within this section were first published in [47]. !

1©2019, IEEE. Reprinted, with permission, from D6z et al., “A Numerical Comparison of an Isogeometric and a Parametric
Higher Order Raviart-Thomas Approach to the Electric Field Integral Equation”, Jan 2020.
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Figure 5.5.: Sphere-example, z, = (0.1,0.1,0) T, x = 1. The isogeometric approach shows to be beneficial
w.r.t. accuracy per degree of freedom.

5.4.1. The Unit Sphere

We start our comparison with the unit sphere. The dipole is positioned at (0.1,0.1,0) " and the wavenumber
chosen to be x = 1. The error measurement corresponds to the maximum pointwise error (in the complex
Cartesian sense), evaluated at 100 points on a sphere with radius 3 around the origin. Due to the smooth
geometry the effect of higher-order basis functions w.r.t. the order of convergenc of O(h?’*!) is clearly
visible, see Figure 5.5.

For the same level of refinement the Raviart-Thomas discretisation yields better accuracies. This is
expected, since for the same polynomial degrees and the same level of refinement, the spline discretisation
is contained in the corresponding Raviart-Thomas space. In contrast, the B-spline spaces yield an improved
accuracy per degree of freedom (DOF) as visualised in Figure 5.5.
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Figure 5.6.: Fichera-example. Dipole placed at 2y = (0.5,0.5,0.5) " with wavenumber « = 1. This example
admits improved accuracy per degree of freedom compared to the Raviart-Thomas elements,
as well.

5.4.2. The Fichera Cube

We now employ a 24 patch Fichera cube with o = (0.5,0.5,0.5)T and x = 1 as a test case. The choice of
evaluation points coincide with the previous example.

As with the sphere, the Raviart-Thomas elements yield an increased accuracy w.r.t. the same refinement
level, whereas the B-splines admit an improved accuracy per DOF, cf. Figure 5.6.

5.4.3. The Ship Geometry

As a last example of this comparison, we test with the ship geometry depicted in Figure 5.7. The mesh
underlying the second refinement level can be seen in Figure 5.8. The ship is mad up of 28 quadratic
NURBS patches. This time we solve an interior problem with a dipole placed at 2y = (7,2,0)" and the
wavenumber chosen to be x = 5. The accuracy of the solution is measured at a set of nine points around
the point (1,0,0) .
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Figure 5.7.: The ship geometry.

In analogy to the previous tests, the Raviart-Thomas space achieves higher accuracies if one compares
the same underlying mesh, i.e., the element structure induced by the level of refinement, cf. Figure 5.9,
and in terms of accuracy per DOF the spline space is superior.

5.5. Spectral Elements as a Subset of IGA

Spectral methods, c.f. Trefethen [112], are classes of methods for solving differential equations, closely
related to classical element-based methods. They share the same idea: The approximation of the solution
through a series of basis functions. While classical methods choose to refine a mesh, and with this
to further localise the support of each individual basis function, spectral methods employ global basis
functions to approximate the solution of the problem. Thus, quite often any finite and boundary element
method which relies on (possibly local) p-refinement, i.e., the increase of the degree of the local basis,
instead of mesh (h-) refinement, is referred to as a spectral element method.

In engineering applications, spectral element methods are rarely considered; the reason simply being
that to fully enjoy their convergence properties, meshes with curved elements of increasing orders
must be generated. This poses challenges to mesh generation and pre-processing. In contrast, classical
h-refinement based mesh generators are well understood. This caveat can be circumvented through the
utilisation of parametric mappings as in the case of isogeometric analysis.

This section showcases examples of the solution of electromagnetic scattering problems through p-
refinement, whose data was first published in [75]. We employ p-refinement to patchwise Bernstein
polynomials. We remark that a dedicated implementation should use basis better suited for spectral
approaches, cf. [112], and that the Bernstein polynomials were chosen for mere convenience.
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Figure 5.8.: Ship geometry and magnitude of the real part of the scattered field with mesh induced by
refinement of level 2. ©2019, IEEE.

Table 5.3.: Showcase of examples of comparable accuracy. The simulation was stopped once the specified

accuracy w.r.t. the manufactured solution was achieved. ©2019, IEEE.

Example 1 Example 2 Example 3

Geometry Sphere Fichera Ship

P 4 3 2

' Splines 3 3 4
refinement level Raviart-Thomas 2 2 4
Splines 2904 9600 32368

Number of DOFS  p . iart-Thomas 6144 13824 114688
Accuracy spec. le-10 le-06 le-04
Error Splines 3.021e-11 1.626e-08 5.724e-05
Raviart-Thomas | 4.663e-11 1.809e-07 3.747e-05

lterations Splines 783 2505 7483
Raviart-Thomas 958 4363 58169
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Figure 5.9.: Ship example, z, = (7,2,0)7, x = 5.

As a first example, we choose the example of a unit sphere and define a dipole with £y = py = (0,0.1,0.1)
as an excitation. Although a boundary element framework has been utilised to solve the problem, no
compression was applied to the systems due to their small system size, cf. Figure 5.10. Thus, the condition
of the system matters little compared to the case in which compression must be applied, since direct
solvers can be applied. In this case, the partially pivoted LU decomposition of [9] was used.

On the sphere, a stable exponential rate of convergence w.r.t. p is observed. The application of p-
refinement reduces the time required for matrix assembly as well as the overall system size, cf. Figure 5.10,
significantly.

As a second geometry, we investigate the boat. Placing the dipole inside with 2y = (1,0,0) and py =
(0,0,0.1), we evaluate the electric field around the geometry. The rate of convergence is not as pronounced
as before. Still, one can see an exponential convergence behaviour paired with excellent times to solution.

Both examples show that p-refinement alone is a valid alternative to h-refinement. Moreover, as mentioned
before, the reduced system size allows for the application of direct solvers. However, since with higher p
the conditioning of the system deprecates rapidly, one will eventually reach the point where even direct
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Figure 5.10.: Numerical examples on the unit sphere. Wavenumber « = 1. The error is evaluated on a
selection of 10 000 points on a sphere of radius 2 around the origin. The computation was
conducted on a desktop PC with 16 GB RAM and an Intel i7 8600k processor.

solvers start to struggle. This might explain the declining convergence rate observed in Figure 5.10 for
p = 11,12, and could possibly be avoided by the utilisation of a different polynomial basis.
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Figure 5.11.: Numerical examples for the ship geometry. The highest value of p generates a discretisation
with 5600 complex-valued degrees of freedom. Wavenumber « = 1. The error was evaluated
on a selection of 10 000 points on a sphere of radius 6 around the origin. The computation
was conducted on a desktop PC with 16 GB RAM and an Intel i7 8600k processor.

5.6. Compression Rates

To conclude this chapter, we will briefly mention compression rates. To verify the asymptotic behaviour
of the compression scheme, the memory which would be allocated by the implementation if the corre-
sponding matrices were to be assembled has been recorded. The visualised data can be seen in Figure
5.12.

Therein, “Vj, ;, uncompressed” denotes the matrix V,, ), corresponding to the left hand side of (4.6).
“V,7;, uncompressed” denotes the local element matrix assembled w.r.t. the superspace S} ,,,, and “V.*;,
compressed” refers to the local element matrix after application of the interpolation-based multipole
scheme.

Due to the superspace approach and the fact that the compression scheme can only be effectively applied to
larger levels of refinement all of these examples show a range where a dense assembly of the small system
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Figure 5.12.: Efficiency of the compression scheme and storage requirements. For both examples n = 1.6

was set. For the sphere the FMM-degree ¢ = 8 was chosen, while for the Cavity a fixed ¢ = 10
was utilised.

is favourable. However, for larger levels of refinement, i.e., more degrees of freedom, the compression
proves to be effective. All examples show linear compression behaviour, since the interpolation degree ¢ of
the multipole method has been fixed. Note that, to maintain asymptotically optimal behaviour, ¢ should
be chosen to scale logarithmically with the number of degrees of freedom, see Theorem 4.8. However, all
previous numerical examples of the sphere and the one-cell TESLA geometry were conducted with the
same value of ¢ = 10 as in Figure 5.12. The choice to fix ¢ as a constant and sufficiently high parameter
was made deliberately to simplify reproduction and parameter dependence of the numerical examples.

It must also be remarked that the interpolation-based multipole method does not only reduce the storage
requirements, but also the complexity of the matrix-vector product, cf. Theorem 4.8.
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5.7. Summary of the Numerical Experiments

We discussed multiple numerical experiments showcasing that the proposed isogeometric discretisation
of the electric field integral equation, i.e., our numerical scheme to Problem 3.42, is a valid alternative to
the other methods briefly introduced within the introduction.

First, a classical Mie-scattering example in Section 5.1 verified the quasi-optimality of the unknown
surface current as predicted by Theorem 3.48. In Section 5.2 and the following, pointwise numerical
evaluations of the representation in Corollary 2.36 were shown to behave as predicted by Corollary 3.49.
We furthermore compared our approach to other discretisations w.r.t. their accuracy per degree of freedom.
Specifically, the doubled convergence order of 2p + 1 w.r.t. the error in the electric field was verified
through an approach via manufactured solutions.

Afterwards, in Section 5.5, an approach via p-refinement was applied successfully. Moreover, the asymp-
totic behaviour of the storage requirements was verified through the implementation as well, which was
previously predicted by Theorem 4.8.

However, the numerical experiments also make clear that the development of a preconditioning strategy
for the isogeometric EFIE is an important open topic of research.
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6. The Discrete Eigenvalue Problem

This chapter is devoted to the discussion of the solution of Problem 2.32, i.e., the computation of resonant
frequencies within perfectly conducting structures.

Noting that the perfect electric conductor boundary condition, i.e., Assumption 2.29, requires the solution
E of the eigenvalue problem to fulfill v,(E) = 0, the single layer representation of Corollary 2.36
immediately yields the following discrete counterpart to Problem 2.32.

Problem 6.1 (Discrete Eigenvalue Problem). Find wy € S})’E(F) and € (0, 0c0) such that

<‘/:iwh7ll'h>>< == 07 (61)

for all py, € S;E(F).

As mentioned in the introduction of this thesis, the solution of this problem, specifically within the design
of accelerator cavities, requires high accuracy. While the boundary element method promises superb
convergence behaviour, cf. Remark 3.50, the non-linear dependency on the wavenumber within the
fundamental solution « renders the linear eigenvalue problem stated in Problem 2.32 non-linear.

However, the recently introduced class of contour integral methods offers a solution to this caveat.

This chapter consists of two parts. First, in Section 6.1 we introduce the contour integral method. The
second part, Section 6.2, discusses numerical examples showcasing the solution of Problem 6.1 via the
combination of a contour integral method and our proposed isogeometric boundary element method.

6.1. The Contour Integral Method

This section will give a short summary of the contour integral method as introduced by Beyn [12], without
any non-trivial modifications. Note that there are alternative approaches by other authors, where the first
publication seems to go back to Asakura et al. [3], compare also [68]. After this short review, we will
discuss three numerical examples that utilise this method to solve Problem 2.32. Note that for this entire
section m will refer to the dimension of the discrete space of the proposed boundary element method
instead of the refinement level.

LetT: D — C™ ™ be holomorphic on some compact and connected domain D C C. By T" we denote the
Hermitian transpose of T', and T'T denotes its usual transpose. We want to solve a non-linear eigenvalue
problem

Tzv=0, veC”™, wv#0, ze€D.
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If z is not an eigenvalue of T', we find by the condition above that the kernel of T'(z) is trivial, thus T'(z)
has full rank and is invertible.

For the remainder of this chapter, we set I' = 9D. Assume there to be k eigenvalues (Aj);j<k in the interior
of D, such that all eigenvectors are linearly independent. We remark that the entire approach of Beyn
[12] was also generalised to the case of linearly dependent eigenvectors.

As a consequence of the version of the Keldysh Theorem as proven by Mennicken and Moller [82], we

can provide the following generalisation of the classical residue theorem.

Theorem 6.2 (Contour Integral Theorem, [12, Thm. 2.9.]). For T as above and holomorphic f: D — C,
it holds that

1
2w Jp

k
FEAT(2) " dz =Y f(\)vw],
j=1

where v; and w; are left and right eigenvectors corresponding to A, that are normalized according to
w?TT()\j)vj =1

forall j < k.

Note that the left hand side of Problem 6.1 can be interpreted as a matrix-valued function X : D — C™*™

with X (k) =V ,, where V, 5, is defined in (3.52). Thus the contour integral method can use Theorem
6.2 to find a solution to Problem 6.1 as follows.

Theorem 6.3 (Linearisation of Eigenvalue Problems, [12, Thm. 3.1]). Suppose that T: D — C™*™ is
holomorphic and the eigenvectors of all eigenvalues (\;)o< ;<) in some compact and connected domain D are
linearly independent. Then, there exists a diagonalisable matrix B which can be computed from X such that
B that has the same eigenvalues as the eigenvalue problem under consideration within D.

Proof. Let V,W € C™** be the matrices

V= w)
W:(wl"'wk)

of left and right sided eigenvectors, respectively. Assume them to have full rank. We choose some random
matrix V € C™*¢ for k < ¢ < m such that WV e C**¢ has full rank.

One can check that X is holomorphic since the fundamental solution can be represented as a power
series, compare also [113, Lem. 2.3]. We define the matrices

1

Ap=o [ X(2)"'WdzeC™’  and 6.2)
I
1 ~
A= | 2X(2)7W dz e C™, (6.3)
r
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and thus, by Theorem 6.2, obtain the identities

k
Ag =) vV =VW"V  and (6.4)
j=1
k A~ AN
A =) NowV =VAW'V. (6.5)
j=1

The matrix A is the diagonal matrix with the j-th eigenvalue in the j-th row.
By means of a singular value decomposition we find

Ay =VW"V =V S,Wh (6.6)
where Vi is a m x k matrix, W is an ¢ x k matrix, VBVO = W8W0 = I and X is the diagonal matrix
with (non zero) singular values o1 > --- > o1 > 0.

It is clear that V = V ViV, and thus we set S := V3V e CF** where S is invertible since Vy and V
have maximal rank.

We can now conclude

VoS =V. (6.7)
By (6.6) and (6.7) we get
VoSWV =V S,Wh, (6.8)
and since V has rank £ we get
WV = S5 Wh. (6.9)

Inserting (6.9) in (6.5) together with the definition of S yields
VhA; = SAWPV = SAS 'S W (6.10)
Since ¥ is invertible and W, is unitary we obtain
SAS™' =VhA WS (6.11)

Thus, the eigenvalues of B := V8A1W025 ! will be the eigenvalues of X within D. |

The proof is constructive, which means

we can immediately extract a working algorithm. In the following, this algorithm is outlined in human-
readable form. It corresponds to the implemented method up to performance optimisations, as will be
discussed below.

Note that the algorithm is capable of identifying eigenvalues of the generalised eigenvalue problem
without evaluating at or close to those values. This means that it is applicable to a discretisation of the
electric field integral equation without any problems, since an approach via EFIE becomes instable at
resonant frequencies.
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Algorithm (Contour Integral Method, [12, p. 15]). Let X be given as above, {fn}ng N be a set of N
equidistant quadrature points on some I' = 9D as above, 0,¢ > 0 and ¢ < m.

Data: {fn}nSN,X,(S, el
Result: (Aj)jgk

1 kfound <« false;

2 m <+ size(X);

3 while kfound == false do

4 | V « RandomFullRank(m x ¢);

5| Ao iy LX)V

6 | (V,Z,W") « SVD(Ap); // ¥ =diag(oy,...,00)
7 k<« j,whereoy >--->0;>0>0j1~ - -~oy =0
8 if £ < ¢ then

9 kfound « true;

10 Vo V(1:m,1:k);

11 Wo+—W(l:4,1: k);

12 Yo+ X
13 else

14 | L0+

15 A] « ziN Z;Vﬂ ij(fj)_l‘/},‘
16 B+ VAW E,;
17 (Aj)j<k < eigs(B);

At first the algorithm might seem prohibitively expensive due to the application of a singular value
decomposition. However, since the number of eigenvalues k will be small and often known a-priori such
that one can even choose k = ¢ directly. An example of this is given by accelerator cavities, which are
specifically designed to have only few resonant modes close to a frequency specified by their utilisation
within the accelerator. Then complexity of the singular value decomposition becomes negligible in
comparison to solving the linear system in lines 5 and 15 of the algorithm.

Moreover, in an actual implementation A; and A are assembled simultaneously, since the most expensive
operation of the algorithm is evaluating X (I';)~!V. In general, k and ¢ will be small, so storing both A;
poses no issues.

Since smooth contours should be used, exclusively, one can expect the trapezoidal rules for the assembly
of the A; to converge exponentially with respect to V. This means only few quadrature points are needed,
and the bottleneck in terms of accuracy of the entire scheme appears to be the accuracy in which X
represents the bilinear form of the EFIE, cf. the left-hand side of Problem 2.37.

Remark 6.4 (Obtaining the Eigenvectors). Note that through this algorithm we not only obtain the
eigenvalues of Problem 6.1, but also the coefficients of the corresponding eigenfunctions in the form of
the matrices V and W. Note moreover that the number of non-zero singular values reflects the number
of solutions within D and can be used for verification of an implementation if the number of solutions is
known from analytical representations or measurements.
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Figure 6.1.: On the left the mean absolute difference of the computed first eigenvalue of the sphere to the
analytical solution is depicted. On the right the computed singular values for the example
with p = 3 can be seen.

6.2. Numerical Examples: Resonances in Perfectly Conducting Structures

In the following we will discuss some numerical experiments showcasing the application of the contour
integral method to the isogeometric boundary element method. In this, we will omit a discussion of the
naturally arising question of how the eigenvalues of the continuous Problem 2.32 are linked to those of
the discrete counterpart Problem 6.1, and how such a link would be affected through the application of
the contour integral method. These questions have been addressed by Unger [113] in detail, see also
[74].

Moreover, often one will find that the number of eigenvalues k inside the contour will be £ > 1. This means
that multiple linear systems have to be solved for the same matrix. Since no quasi-optimal preconditioners
for the isogeometric discretisation of the electric field integral equation are known, iterative solvers yield
suboptimal runtimes. Thus, since the examples are based on comparably small systems for which the
compression is still within the preasymptotic regime, the following numerical experiments will use a
dense matrix assembly, cf. Section 5.6.

This is paired with a partially pivoted LU decomposition of [9] to solve the arising systems. As discussed
in Section 5.5, our higher-order approaches yield systems small enough for this approach to be more
than feasible. This holds especially true since for £ > 1 one has to solve multiple systems with the same
matrix, and since direct solvers suffer less from ill-conditioned systems than iterative methods.

6.2.1. The Unit Sphere

As a first example, we compute the first eigenvalue of Problem 6.1 for the sphere, cf. Figure 6.1 for the
results. The contour was chosen as the curve

0.2 -sin(t) +i-0.2 - cos(t) + 2.7, fort =[0,27).
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Figure 6.2.: The setup for the contour integral method. Sphere (left) and cube (right), both computed with
N=30,p=2h=1/4

The trapezoidal rule for lines 5 and 15 of the algorithm was chosen with N = 30. An analytical solution
Aana is known [113, Sec. 5.1.2] and given as the first root of the spherical Bessel function of the first kind,
cf. Figure 6.2.

It is an eigenvalue of multiplicity three, thus three non-zero singular values in ¥ are expected. This
behaviour is reflected by the numerical examples perfectly. The error in Figure 6.1 refers to the average
error of all three computed eigenvalues, i.e.,

1
error = 3 E |Aj — Aanal-
0<j<3

The convergence behaviour w.r.t. 4 matches the one predicted by Corollary 3.49, compare Remark 3.50.

6.2.2. The Unit Cube

As a second example, we investigate the first three eigenvalues of the unit cube, where an analytical
solution is given by the eigenvalues Ay, 0 = 71/2 of multiplicity three and Aana,1 = 7v/3 of multiplicity
two. The ellipse was defined as

sin(t) +¢-0.2-cos(t) +4.9, fort=|0,2n),

where the contour integrals were evaluated, again, with N = 30. The error visualised corresponds to

1
error = — min |A; — Aanail-
5 Z i=0,1 A = Aanai
0<5<5
Again, as one can see in Figure 6.3, the multiplicity of the eigenvalues is reflected perfectly by the
non-zero singular values, i.e., all eigenvalues have been recognised. Moreover, we again observe the
doubled order of convergence with respect to h.
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Figure 6.3.: On the left the minimal difference of the simultaneously computed first and second eigen-
value A, of the cube to their analytical solution \; via min;—g 1 |Acim — A;| is depicted. On the
right the computed singular values for the example with p = 3 can be seen.
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Figure 6.4.: Eigenvalue problem of the one-cell TESLA cavity solved for the first eigenvalue. Error has
to be understood as the relative difference to the result of a computation. Bembel Reference
refers to the error of our method to a reference computation with » = 1/8 and p = 4 of our
own implementation, and the CST Reference to the error w.r.t. a reference solution obtained
via CST Microwave Studio 2018.

6.2.3. The TESLA Cavity

As a third example we discuss an eigenvalue computation of the one-cell TESLA geometry, cf. Figure 6.4.
For this example no analytical solution is known, but experience dictates a resonant frequency around
k =~ 26.5. We choose the contour

2-sin(t) +7-0.5 - cos(t) +26.5, fort = [0,2m)

and N = 22. As a reference solution we utilise the result of a computation with p = 4 and h = 1/8. This
reference solution was compared to a computation with CST Microwave Studio 2018. The set solver
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order was 3rd (constant) and the mesh was generated with 200 771 curved tetrahedral elements of
order 5. CST yields the solution of 1.27666401260 GHz. Our reference solution of A\, = 26.75690022
corresponds to a frequency of 1.276664063 GHz. This results in a relative error of 3.9798e-08. Thus our
experiments are in good agreement with those of commercial software. However, note that in Figure 6.4
one can clearly see stagnation w.r.t. the CST Solution on higher-order computations and small 4. This
suggests that the Bembel reference solution is more accurate, provided the convergence of the contour
integral approach behaves as observed in the previous numerical experiments.

The order of convergence for the cavity is not as pronounced as in the examples with analytical solution,
which, in light of the results of Section 5.3 is most likely due to an imperfect reference solution or a more
complex geometry. Either way, one can clearly see an increased accuracy in higher-order approaches.

Overall, the contour integral method yields exceptional accuracies in conjunction with our isogeometric
boundary element method. Judging from the asymptotic behaviour predicted by Remark 3.50 and
observed in the numerical examples, the accuracy of the combination of isogeometric boundary element
method and the contour integral method promises higher orders of convergence to the correct solution
compared to currently implemented volume based approaches, since these will not benefit from the
convergence order of 2p + 1, cf. Remark 3.50. This means that, for the same computational resources,
the maximum reachable accuracy of the IGA-BEM with contour integration is higher compared to many
volume-based methods. However, due to the long time spend solving the systems, this means that the
IGA-BEM with contour integral offers this higher accuracy only in exchange for runtime.
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7. Final Remarks

As closing remarks, we will summarise the results of this thesis and mention some closely related open
problems.

7.1. Summary

We discussed the analysis and implementation of an isogeometric boundary element method for the
electric wave equation (2.27) in three dimensions.

Chapter 3 provided definitions for all the required discrete spaces in the multipatch setting and showed
quasi-optimal approximation properties w.r.t. the de Rham complex and its traces, which were summarised
in Section 3.5.

We introduced an isogeometric discretisation of the EFIE for which we provided a proof for the discrete
inf-sup stability (Theorem 3.47). Based on this and the approximation results, we could derive quasi-
optimality of the numerical solution (Theorem 3.48), as well as doubled convergence order in the
pointwise error of the electric field and other continuous linear output functionals (Corollary 3.49).

We proposed an implementation based on a superspace approach (4.6) such that a modified version of
the interpolation-based fast multipole method of D61z et al. [46] is applicable, cf. Section 4.3.

We verified all this in a series of numerical examples in Chapter 5, also showcasing that the compression
scheme maintains asymptotic behaviour for a suitable choice of parameters.

Lastly, in Chapter 6, we applied the contour integral method of Beyn [12] to the isogeometric boundary
element framework to solve the underlying eigenvalue problem. Here, we provide a series of numerical
examples showing that the doubled rate of convergence transfers to the error in the eigenvalues as well,
as theoretically predicted in Remark 3.50.

These were then applied to the one-cell TESLA cavity and benchmarked successfully against commercial
software. Moreover, we provide the entire codebase as open-source software [43, 44] and explain the
API of the library (Appendix B).

7.2. Things Left to Consider

While the accounts made within this thesis form a coherent storyline capable of standing on its own,
there are still some closely related topics which deserve some work. We will discuss some of them.
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* As mentioned before, the EFIE is notoriously ill conditioned. While isogeometric boundary element

methods offer high accuracies, the time to solution depends on efficient linear solvers. Thus, when
used in conjunction with compression, a quasi-optimal preconditioning strategy for iterative solvers
would be beneficial. For the case for classical (lowest order triangular) elements such methods are
technical to implement but understood, see e.g. the works of Andriulli et al. [2] and Christiansen
and Nédélec [34] or those cited therein. However, for the isogeometric spline spaces efficient
preconditioning is still an open problem.

To resolve fine sub-structures of geometries, approaches based on tensor product refinement are
unsuitable, since the refinement will propagate globally. This problem could either be overcome
using mortaring techniques [22] or spline variants capable of local refinement, e.g. T-splines [6].
Also, to maintain optimal convergence behaviour, adaptive refinement strategies are required, see
e.g. [54]. However, to the best of my knowledge, neither local refinement nor adaptivity have been
investigated for isogeometric discretisations of the electric field integral equation.

Concerning adaptivity, an approach via divergence-conforming wavelets could be promising. While
for the lowest order case some works exist, including the required norm equivalences, see e.g. [70],
higher-order wavelets and norm equivalences w.r.t. H ;1/ 2(divr, I') have, to the best of my knowl-
edge, not been discussed. Such an approach would be interesting since it generally yields sparse
systems, thus do not need aditional compression schemes. Moreover, wavelet bases have shown to
better conditioned compared to splines and classical elements when used for scalar PDEs, and they
are naturally suited for adaptive refinement [62, 63].

A last point to mention would be the handling of trimmed geometries, i.e., geometries which are
not representable as NURBS parametrisation, but rather as implicitly defined subdomains thereof.
While works for this exist, see e.g. [78], a clear best-practice and a scheme applicable to the
electromagnetic case have yet to be developed.
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A. Multipatch Estimates for Three Dimensions

All the presented estimates are applicable to achieve three-dimensional estimates as well. We will briefly
go over the construction and state the result corresponding to Theorem 3.22.

For p > 0 we define the spline complex on [0, 1]? via
Sgy_([() ]3) = Sp17p27p3 (Eh o, 53)7
Sll’»—-([ ) ]3) = Op1—1,p2,p3 (EllaEQaES)X

_ = =
X Splvpz—l,Ps (‘-‘17‘—‘27 =3)X

X Sphpz,m 1 (Ela =, Eé),

- (A1)
812,75([0, 1]3) Sp1,pa—1,p3—1(Z1, 2, Z3) X
X Splfl,pz,psfl(:b:% Eg)x
X Spy—1p2-1,5(Z1, Z5, E3),
813;,5([(]’ 1]3) p1—1,p2—1,p3— 1(“17 H27“—‘é)
Let fo, f1, f2, f3 be sufficiently smooth. We can use the transformations
w(F)(fo) = fooF, u(F)(f1) = (dF) (f1o F), (A.2)

12(F)(f2) == det(dF)(dF) Y (f2 o F), 13(F)(f3) := det(dF)(f3 0 F),

to define the corresponding spaces in the single patch physical domain as in (3.3), cf. [65]. Now, the
projections H =0 1'[1 =05 Hf, > and H = o W.Lt. the reference domain for E = [E, =5, Z3] defined in

complete analogy to (3 9) commute w1th “the differential operators grad, curl and div. By properties of
the pullbacks, cf. [8, Sec. 5.1], this holds for the physical domain as well. The three-dimensional global
B-spline projections are then defined as

1= P (wE) " eMzgon®)), o=@ ((E) " eMyzaoulF)),

0<j<N 0<j<N

) . =2 -

Mo = @ ((F) " oMzgon®E)), =@ (wF) " olfzgouF)).
0<j<N 0<j<N

In complete analogy to the proof of Theorem 3.22, one can achieve the following result for the three-
dimensional multipatch spline complex.

Corollary A.1. Let the volumetric analogue of Assumptions 3.5 and 3.7 be satisfied. Assume the functions
fo, F1, f2, f3 to be sufficiently smooth, i.e., such that the norms and interpolation operators below are well
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defined. Then one finds, for integers s as below,

[0 =180, o S Mol
[ =ty o S
TR 1 R Y 1 Pt

|2 -1 Qfg\ poiy S Pl 0

forr=0,1.
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B. Notes on the C++ Implementation

This Appendix is devoted to briefly reviewing the structure of the code used for all computations discussed
within this thesis [45]. The code, called Bembel, short for Boundary Element Method Based Engineering
Library, is publicly available under the GNU GPLv3 [44].

We will not discuss all of the underlying algorithmic and software architectural decisions made, most of
which are discussed within this thesis. Rather, this section will go through all of the main building blocks
of the user interface and explain the underlying design considerations. Since changes to the API in the
next month are already planned, this explanation will focus on the archived version [43].

B.1. Design Considerations

Most modern three-dimensional boundary element codes with built-in matrix compression are written in
C or C++, which are proven to lead to efficient implementations. One of the central aims of Bembel
is to provide a computationally efficient isogeometric boundary element code with a plain and simple
user interface. Therefore, the API of Bembel is designed in modern C++ and provides an interface for
the Eigen template library for numerical linear algebra [9]. This allows the user for a programming
experience similar to Matlab and Octave and for the use of all matrix-free algorithms from the Eigen
library. Particularly, all iterative solvers provided by Eigen can be employed without further modifications.
In contrast, the low-level routines of Bembel are written in optimised C code which is tuned towards
efficiency. Shared memory parallelism by the use of OpenMP is provided and hence aims at multicore
machines.

B.2. Implementation

The following sections each correspond to a central piece of the API, each implemented in one of the
include/*. hpp files.

Geometry

With Bembel, geometry representations can directly be imported from files generated vie the octave
package geopdes [52]. However, we should mention that the implementation of the Geometry class is
rather flexible such that the NURBS mappings may be replaced by arbitrary smooth parametric mappings
defined by the user.
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PDE

The PDE to solve and the potential ansatz to use are defined by a derivation of the base class PDEproblem.
The currently available derivations are LaplaceSingle, HelmholtzSingle, and MaxwellSingle, which
implement the boundary integral equations for Laplace, Helmholtz and Maxwell problems. The derived
classes contain all necessary information for the PDE and the boundary integral equation under consider-
ation. Note that, for HelmholtzSingle and MaxwellSingle, the construction of a class instance requires a
wave-number described as std: :complex<double>.

Discretisation

Given a Geometry object and a class inheriting from PDEproblem, e.g. LaplaceSingle, an object of the
template class Discretization<LaplaceSingle> describes a conforming boundary element space on
refinement level L and polynomial degree P. The type of the B-spline boundary element space is
automatically defined through the class inheriting from PDEproblem, e.g. LaplaceSingle.

Boundary Values

The load vectors of the Galerkin systems can be obtained via quadrature from a std: : function object
describing the boundary values. For the Laplace case, computeRhs takes a Discretization and a std: :
function<double(Eigen::Vector3d)>) object and returns the load vector as an Eigen: :VectorXd. For
the Helmholtz and Maxwell case, the return value is an Eigen: :VectorXcd. Note that in this case the std: :
function object has to be modified accordingly, i.e. it must accept arguments of type Eigen: :Vector3cd.
Bembel provides exemplary functions. They can be wrapped into this framework, e.g, via C++ lambdas.

System Matrix

Given a specialised Discretization, for example Discretization<LaplaceSingle>, and a degree for the
H2-compression, a corresponding specialisation of the template class HierarchicalMatrix, for exam-
ple HierarchicalMatrix<LaplaceSingle>, may be used to assemble the compressed system matrix of
the Galerkin system. Note that the type of the PDE and the geometry are directly encoded into the
discretisation, such that no further information is required here.

The template class HierarchicalMatrix<T> inherits from the corresponding specialisation of Eigen’s
EigenBase matrix class, i.e. EigenBase<HierarchicalMatrix<T>>. Therefore, a HierarchicalMatrix ob-
ject may use the Eigen interface and can be passed to all functions which accept EigenBase<Derived>
objects as parameters. The Eigen methods rows() and cols() are specialised in order to return the
dimensions. Moreover, to facilitate the multiplication of Eigen: :VectorX objects, the template specialisa-
tion Product<HierarchicalMatrix, Rhs, AliasFreeProduct> of the Eigen Product class is provided. In
particular, the operator * is overloaded to support expressions like H * x, where His a HierarchicalMatrix
<PDEproblem> object, and x an Eigen: :VectorX object, with a fitting Scalar type.

12



Solution of the System of Linear Equations

The solution of linear systems within Bembel can be performed by the matrix-free solvers from Eigen.
To that end, the template class HierarchicalMatrixinherits the Eigen::internal::traits of an Eigen::
SparseMatrix with the same Scalar type as in the corresponding example from the Eigen documentation
on matrix-free solvers. We opted for the Eigen: :SparseMatrix traits, since they seem to impose the least
requirements. Hence, in view of the implemented general matrix-vector (GEMV) product H * x, all Eigen
iterative solvers which solely rely on this operation may be used.

Evaluation of the Solution

Having the density vector rho from the iterative solver, the solution to the PDE in either the exterior
or the interior domain can be evaluated by the function Sol::evalSolution(gridpoints, rho, myDisc
). In here, gridpoints should be an Eigen::Matrix<double, Eigen::Dynamic, 3> matrix of n three-
dimensional points in the domain of interest. Depending on the PDE, sol is either an Eigen: :VectorXd,
Eigen::VectorXcd or Eigen::Matrix<std::complex<double>, Eigen::Dynamic, 3> object, where each
row contains the solution at the corresponding gridpoint.

Visualisation

The Bembel: :Vis::plotDiscretizationToVTK functions can be used to visualise rho and the geometry
in vtk-format. All of the pictures within this thesis are based on these routines. Their functionality is
explained extensively in the src/examples/example_Visualization.cpp file.

B.3. Example Program

In the following we discuss a full example for the solution of an electromagnetic scattering problem. It
corresponds to the file src/examples/example_MaxwellSingle.cpp, excluding comments and the defini-
tion of the excitation.

int main() {
using namespace Bembel;
using namespace Eigen;

const int multipoleDegree = 16;
const int knotRepetition = 1;
const std::complex<double> wavenumber(3, 0);

O 0 N AW N =

Geometry geom( );
MaxwellSingle pde(wavenumber);
MatrixXd gridpoints = Util::makeSphereGrid(6, 10);

[ S
w N = O

const std::function<Vector3cd(Vector3d, std::complex<double>)>

14 fun = ... ; // Define incident wave
15

16 for (int P =1 ; P < 10 ; ++P)) {

17 for (int L =0 ; L <6 ; ++L) {
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18 Discretization<MaxwellSingle> disc(geom, pde, P, knotRepetition, L);
19 VectorXcd rhs = Rhs::computeRhs(disc, fun);

20 HierarchicalMatrix<MaxwellSingle> hmat(disc, multipoleDegree);

21 GMRES<HierarchicalMatrix<MaxwellSingle>, IdentityPreconditioner> gmres;
22 gmres.compute(hmat) ;

23 VectorXcd rho = gmres.solve(rhs);

24 MatrixXcd pot = Sol::evalSolution(gridpoints, rho, disc);

25 }

26 }

27 return (90);

28 || }

At the beginning of the program, the polynomial degree for the 2-compression, the knot repetition of
the B-spline spaces, and the wave-number are defined. The Geometry object is loaded from the file

, and the PDE is defined for a given wave-number. Util: :makeSphereGrid(6,10) generates
ten evaluation points on ten lines of latitude for the scattered field on a sphere around the origin with
radius 6. Afterwards, an incident wave for the scattering problem is defined in fun.

The rest of the example program loops over different polynomial degrees P and refinement levels L. In
the loop, the discrete space is defined as a Discretization object, the load vector and the system matrix
are assembled and solved with the GMRES solver from the Eigen (unsupported) package. Finally, the
scattered field is evaluated at the previously defined points.

Note that the program is straightforwardly adapted to the Laplace and Helmholtz cases as indicated by
the example files in the src/examples folder. These examples also provide error measurements of the
solution to the underlying PDE and output of these errors into log-files. These were not included to the
above example for a better understanding of the main functionality of the code. IXTiX-files creating error
plots can be found in the LaTeX folder. The routines can also visualise the intermediate quantity rho.
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C. List of Symbols

General
Symbol Meaning Page
<,z < and > up to a constant factor independent of variables appearing in terms 23
on either side
~ <and 2 23
K either R or C
h mesh size 41
m level of refinement, alternatively size of a matrix 73
s, t index referring to the regularity of a Sobolev space -
X Cartesian product -
® tensor product -
O open unit square 39
u, Helmholtz fundamental solution 36
U AN localised fundamental solution 73
n parameter for the admissibility condition 76
Geometric Entities
Symbol Meaning Page
Q Lipschitz domain in R? 26
r boundary of Lipschitz domain in R? 30
n outward-directed unit normal 31
F; C*° geometry mapping from (O to I'; 41
14 (F) for x = 0, 1, 2, pull-backs induced by a given diffeomorphism F 43
J(x) surface measure at a given pointz on I 43
N number of patches, alternatively number of quadrature points 41
ik, Ia element of the nested refinement sequence i.e., a cluster of the cluster tree 73
F) localised geometry mapping 73
T cluster tree on I" 73
Operators
Symbol ‘ Meaning Page
Yo Dirichlet trace operator 31
Yo tangential trace operator 31
Ye rotated tangential trace operator 31
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Yn normal trace operator 31
divp surface divergence 32
gradp surface gradient 32
curlp vector-valued surface curl 32
curlp scalar surface curl 32
I, = one-dimensional multipatch quasi-interpolation operator 46
ﬁz‘?’: commuting one-dimensional multipatch quasi-interpolation operator 46
1:11?,’E H*(O) conforming, commuting multipatch quasi-interpolation operator for 48
the reference domain
1:[,1,,5 H (div,0) conforming, commuting multipatch quasi-interpolation operator 48
for the reference domain
ﬁz,a L?(0) conforming, commuting multipatch quasi-interpolation operator for 48
the reference domain
jig) H'(T') conforming, commuting multipatch quasi-interpolation operator for 49
the physical domain
183 H(div,T") conforming, commuting multipatch quasi-interpolation operator 49
for the physical domain
Iz L*(T") conforming, commuting multipatch quasi-interpolation operator for 49
the physical domain
T, Tj quasi-optimal H (divr, I') projection, defined patchwise via 7, 58
Ps orthogonal projection with respect to the H°(I") scalar product 24
Paiv orthogonal projection with respect to the H(divr, T") scalar product 24
Px orthogonal projection with respect to the H ;1/ ?(divr, T) scalar product 24
R regularising projection 68
Ro regularising projection of higher regularity 68
W, Maxwell double layer potential 36
) Maxwell single layer potential 36
V. Maxwell single layer operator 37
Vi.n discretised Maxwell single layer operator 67
V.o local element matrix 75
Physical Entities
Symbol Meaning Page
K wavenumber 34
I magnetic permeability 34
€ electric permittivity 34
£ electric field intensity 33
H magnetic field intensity 33
D electric displacement 33
B magnetic induction 33
J current density 33
0 charge density 33
E time-harmonic electric field intensity 34
H time-harmonic magnetic field intensity 34
D time-harmonic electric displacement 34
B time-harmonic magnetic induction 34
J time-harmonic current density 34
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0 ‘ time-harmonic charge density 34

Sobolev Spaces

Symbol Meaning Page
Hy, (1) space of functions patchwise in H*(T';) 42
H;, (divr,T) space of functions patchwise in H*(divr, I';) 57
K; kernel of v ; wrt. H°(div, T';) 56
(K3 dual of K w.r.t. H(divr, I') 57
X' dual space of X 23
(,)x scalar product of the space X -
(-, Y xxx’ duality pairing between X and X’ 23
L*(Q) space of square-integrable functions on a Lipschitz domain 26
H*(Q) Sobolev space of regularity s on a Lipschitz domain €2, for s = 0 this coincides 26
with L?(Q) and for s < 0 it denotes the dual w.r.t. L*(Q).
L*(Q) space of componentwise square-integrable, vector-valued functions on a 26
Lipschitz domain
H®(Q) Sobolev space of vector-valued functions of componentwise regularity s on a 26
Lipschitz domain €, for s = 0 this coincides with L*(Q)
H*(curl, Q) functions of H*®(€2) with curl in H*(Q) 27
H*(div, Q) functions of H*(Q2) with divergence in H®(Q2) 27
|- 1lx norm of the space X 23
LA(I") space of square-integrable functions on a surface I" 30
H*(T) Sobolev space of regularity s on a surface I, for s = 0 this coincides with 30
L?(T") and for s < 0 it denotes the dual w.r.t. L*(T)
H*(divr,T) functions of H*®(I") with surface-divergence in H*(T") 32
H ;1/ ?(divr,T) | rotated tangential trace space of H (curl, 2) 32
HS () rotated tangential trace of H**/2(Q) for0 < s < 1,and for 1 < s < 0 dual 32
of H°(T') wrt. (-, ) x
(-, )x a special duality pairing 32

Discrete Spaces

Symbol Meaning Page
polynomial degree -
P N-tuples of pairs of polynomial degrees 49
= knot vector 39
=m equidistant knot vector with 2™ elements 73
= N-tuples of pairs of knot vectors 49
b? B-spline basis function 39
Sp(2) B-spline space of degree p over knot vector = 39
p1,pe (21,22) | tensor product B-spline space of degrees p1, p2 over knot vectors =1, =, 41
,Q support extension of I, Q) 41
Sp=(T) H'(I")-conforming spline space in the physical domain on a multipatch ge- 44
ometry I'
Sp=(D) H (divr, I')-conforming spline space in the physical domain on a multipatch 44
geometry I
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Sp.m(T)

L?(I')-conforming spline space in the physical domain on a multipatch ge-
ometry I'

space of quadrilateral Raviart-Thomas elements
kernel of v ; wr.t. §; =(I)
globally discontinuous, locally polynomial basis

44

59
56
74
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Index

admissibility condition, 76

B-spline, 39
complex (multipatch), 44
complex (single patch), 42
space, 39
tensor product, 41

Cauchy-Schwarz inequality, 23
cluster, 73
tree, 73
contour integral, 100
method, 100
Céa Lemma, 25

de Boor recursion formula, 39
dual space, 23

eigenvalue problem, 36
electric field integral equation, 38

fundamental solution, 36
localised, 73

Gelfand triple, 23

Hertz-dipole, 82
Hilbert space, 23

inf-sup condition, 25
discrete, 25

interpolation, 28

interpolation operator
commuting (multipatch), 48
commuting (single patch), 45
global, 49
Schumaker-, 45

knot, 39
vector, 39

Lipschitz, 26
boundary, 26

domain, 26
locally quasi-uniform, 41

manufactured solution, 82
Maxwell double layer potential, 36
Maxwell single layer operator, 37
Maxwell single layer potential, 36
mesh size, 41
multipatch

geometry, 41

NURBS, 41
orthogonal projection, 24

parametrisation, 41
patch, 41

interface, 41
patchwise regularity, 42
perfect electric conductor, 35
Poincaré inequality, 27
pull-back, 43
push-forward, 43

scattering problem, 35
Silver-Miiller condition, 35
Sobolev

space (boundaries), 30

embedding, 28

space, 26
Stratton-Chu formula, 37
superspace approach, 75
support extension, 41
surface differential operator, 32
surface measure, 43

trace, 31
Dirichlet trace, 31
normal trace, 31
rotated tangential trace, 31
tangential trace, 31
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