5 Anhang

II) Daten der Kristallstrukturanalyse von Substanz (*S*,*S*)-97 (Abb. 45).
Cellular processes depend on the delicate balance of protein synthesis and degradation. Therefore cells feature two major pathways for protein degradation: proteolytic enzymes within the lysosome and the proteolytic core of the ubiquitin proteasome. The disregulation of protein half-life via disturbed destruction is common to many pathological processes. The selective inhibition of the multi-catalytic proteasome subunits is thus an attractive target for drug development in oncology and Alzheimer’s disease.\(^1\) For these therapeutic areas we investigate novel inhibitors of threonine proteases featuring reactive moieties, which bias their inhibition toward threonine over serine proteases. Several inhibitors of threonine proteases are known, both selective and unselective (Fig. 1).\(^2\) Currently the most prominent threonine protease inhibitor: bortezomib \(^2\), is approved for the treatment of multiple myeloma by the FDA.\(^3\)

We take the unspecific serine protease inhibitor I and its mode of action as our lead and intend to improve the selective inhibition of chymotrypsin-like activity of the 20S proteasome by reducing the inherent overkill. This over-activation derives from the dichlorovinyl ester, which reacts readily with all sorts of nucleophiles such as cysteine, serine and eventually threonine. The removal of the acyl function will significantly reduce the unspecific hydrolysis by ubiquitous nucleophiles and results in a reasonably stable dichlorovinyl ether. This ether tolerates acidic environment, but hydrolyses readily at pH 11 to be converted into an \(\alpha\)-chloroacetate, which in turn reacts with nucleophiles. This dual reactivity, which is delivered in a cascade reaction, fulfils the specific requirements of an N-terminal threonine protease inhibitor. The general hydrolysis of an amide bond by a threonine protease is depicted in Scheme 1. Structural analysis of the proteasome \(\beta\)-subunits revealed that the \(2\alpha\)-hydroxyls of the N-terminal threonines serve as acyl

![Figure 1. Serine and threonine protease inhibitors.](image)

![Scheme 1. Hydrolysis by threonine proteases.](image)
carriers. This difference from cysteine and serine proteases, which utilize less hindered 1° nucleophiles of an internal amino acid, holds potential for selective, mechanism-based inhibitors. The importance of the free amino terminus is apparent in the states I and III, where the amine directs a deprotonation cascade. These deprotonations result in hydrolysis of the amide and finally regenerate the catalytic site. Inhibitors addressing the active site may interact with the hydroxyl, the free amine or both. We have chosen compact, robust 2°-alcohols and aminoalcohols to explore the accessibility and stability of the required dichlorovinyl ethers. As it turned out, treatment of the alcohols with sodium hydride and trichloroethylene in dry THF at -50°C and slow warming to room temperature provided the desired ethers in moderate to excellent yields (Scheme 2).

All compounds were obtained as single diastereomers, which were assigned the E-stereochemistry, based on the known menthyl ester. Further derivatization was accomplished by a palladium-mediated cross-coupling reaction, which resulted in the selective arylation of the 2-position (11, Scheme 3) by a magnesium acetylide species. All other methods and conditions for the cross-coupling (Stephens-Castro, Corey-House, Sonogashira) provided only trace amounts of the desired product. The initial work-up procedure involved extraction with sodium hydrogen carbonate solution and led to significant hydrolysis resulting in an a-chloroacyl ester. This reactivity suggests these derivatives as potential threonine protease inhibitors.

The introduction of amino acid sequences provides protease specificity and is accomplished by standard peptide synthesis in solution (Scheme 4). Condensation of the Z-protected Leucine–Leucine sequence is achieved using EDAC (1-ethyl-3-(3°-dimethylaminopropyl)carbodiimide) and HOBT (N-hydroxybenzotriazole·H2O) in DMF.

The resulting peptide mimetics are insensitive to air or moisture at neutral or slightly acid pH. However, exposure to strong nucleophiles or pH >11 leads to rapid hydrolysis. The inhibition of the β-subunits of the proteasome by the compounds 12, 13 and close analogues thereof is subject to ongoing investigations.

Acknowledgements

We thank the Fonds der Chemischen Industrie, the DFG SPP1085 SCHM1012-3 and A. Hallberg, Uppsala Universitet for support of this work.

References and notes

5. A suspension of NaH (48 mg, 2.0 mmol) in dry THF (2 mL) was treated with (S)-(−)-1-methyl-2-pyrrolidinemethanol (115 mg, 1.0 mmol) and stirred at −15°C for 30 min. The mixture was cooled to −50°C prior to the addition of
trichloroethylene (1.23 mmol, 110 µL) in THF (2 mL). The mixture was warmed to +8 °C within 2 h and quenched with 2 mL sat. NH₄Cl solution and 6 mL Et₂O. The organic phase was washed with 2 mL H₂O, dried (Na₂SO₄) and concentrated. The crude oil was purified by filtration through Alox 90-II using CHCl₃/EtOH 100:1 \(R_f: 0.88 \) (Alox 60-N-E) to give the ether as a colorless oil (82.3 mg, 39%).

Tripeptide Mimetics Inhibit the 20 S Proteasome by Covalent Bonding to the Active Threonines*

Hannes A. Braun‡, Sumaira Umbreen‡, Michael Groß‡, Ulrike Kuckelkorn¶, Izabela Mlynarczuk¶, Moritz E. Wigand¶, Ilse Drung¶, Peter-Michael Kloetzeli¶, and Boris Schmidt‡‡‡

From the §Darmstadt University of Technology, Clemens Schönfl-Institute for Organic Chemistry and Biochemistry, D-64287 Darmstadt, Germany; ¶Institute for Physiological Chemistry, Ludwig Maximilian University München, D-81377 Munich, Germany; ¶Charité-Universitätsmedizin Berlin, Institute for Biochemistry, D-10117 Berlin, Germany, and ¶Department of Histology and Embryology, Center of Biostructure Research, The Medical University of Warsaw, 02-004 Warsaw, Poland

Proteasomes play an important role in protein turnover in living cells. The inhibition of proteasomes affects cell cycle processes and induces apoptosis. Thus, 20 S proteasomal inhibitors are potential tools for the modulation of neoplastic growth. Based on MG132, a potent but nonspecific 20 S proteasome inhibitor, we designed and synthesized 22 compounds and evaluated them for the inhibition of proteasomes. The majority of the synthesized compounds reduced the hydrolysis of LLVY-7-aminomethylcoumarin peptide substrate in cell lysates, some of them drastically. Several compounds displayed inhibitory effects when tested *in vitro* on isolated 20 S proteasomes, with lowest IC₅₀ values of 58 nM (chymotrypsin-like activity), 53 nM (trypsin-like activity), and 100 nM (caspase-like activity). Compounds 16, 21, 22, and 28 affected the chymotrypsin-like activity of the β5 subunit exclusively, whereas compounds 7 and 8 inhibited the β2 trypsin-like active site selectively. Compounds 13 and 15 inhibited all three proteolytic activities. Compound 15 was shown to interact with the active site by x-ray crystallography. The potential of these novel inhibitors was assessed by cellular tolerance and biological response. HeLa cells tolerated up to 1 μM concentrations of all substances. Intracellular reduction of proteasomal activity and accumulation of polyubiquitinated proteins were observed for compounds 7, 13, 15, 22, 25, 26, 27, and 28 on HeLa cells. Four of these compounds (7, 15, 26, and 28) induced apoptosis in HeLa cells and thus are considered as promising leads for antitumor drug development.

The balance of protein synthesis and degradation processes is essential to maintain cellular homeostasis. Cells possess two major pathways to fulfill protein degradation: proteins are digested either by proteolytic enzymes within the lysosomes or via the ubiquitin-proteasome system. The imbalance of the protein synthesis and degradation processes causes many pathological processes (1).

*This work was supported by the Fonds der Chemischen Industrie, Deutsche Forschungsgemeinschaft Grants SPP1085 SCHM1012-3 and Ku1281, and EU Contract LSHM-CT-2003-503330 (APOPS). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

**To whom correspondence should be addressed: Darmstadt University of Technology, Clemens Schönfl-Institute for Organic Chemistry and Biochemistry, Petersenstrasse 22, D-64287 Darmstadt, Germany. Tel.: 49-6151-16-5278; Fax: 49-6151-16-3278; E-mail: schmibo@oc.chemie.tu-darmstadt.de

26 S proteasomes, multi-subunit protease complexes, perform ATP-dependent degradation of polyubiquitinated proteins and are responsible for most of the non-lysosomal proteolysis in eukaryotic cells. They consist of the proteolytic 20 S proteasome core particle and are capped at one or both ends by 19 S regulatory particles (2, 3). The 20 S core particle is a cylindrical assembly of 28 subunits arranged in four stacked heptameric rings; two rings are formed by 7 α-type subunits, and two rings are built of 7 β-type subunits (4, 5). The two inner β-rings form the central cavity of the cylinder and harbor the proteolytic sites. In contrast to prokaryotic 20 S proteasomes, which contain 14 identical proteolytically active β-type subunits, eukaryotic 20 S proteasomes belong to the family of N-terminal nucleophilic hydrolases (6, 7). They possess only three subunits with N-terminal active site threonines in the β-ring. In addition, the stimulation of mammalian cells by γ-interferon causes the replacement of the three active β-subunits β1, β2, and β5 by their immunohomologues β1i, β2i, and β5i, resulting in the formation of immunoproteasomes, which display modified cleavage patterns of substrate peptides. The functional integrity of proteasomes is indispensable for a variety of cellular functions, such as metabolic adaptation, cell differentiation, cell cycle control, stress response, degradation of abnormal proteins, and generation of epitopes presented by major histocompatibility complex class I receptors (for reviews, see Refs. 8 and 9). However, proteasomes are an important supplier (but not the exclusive supplier) of antigenic peptides (10, 11).

The deregulation of the ubiquitin-proteasome proteolytic degradation pathway in humans causes several diseases, such as cancer and neurodegenerative, autoimmune, and metabolic disorders. Inhibition of proteasomes influences the stability of many proteins, especially those that are involved in the cell cycle regulation. In fact, most of the cells treated with proteasomal inhibitors become sensitive to apoptosis (12, 13). Thus, selective inhibitors of catalytic proteasome subunits are attractive targets for drug development (14). Interestingly, tumor cells are usually more sensitive to proteasomal inhibition than normal cells. Healthy cells display cell cycle arrest when treated with proteasomal inhibitors but, in contrast to tumor cells, are not as susceptible to apoptosis (15, 16). So far, several proteasomal inhibitors have been characterized, both selective (4, lactacystin; 5, TMC-95A; and 6, epoxomicin) and nonspecific (1, dichlorovinyl ester; 3, MG132) (Fig. 1A) (17).

The most prominent proteasomal inhibitor 2 (Bortezomib®, VELEDA® is approved by the United States Food and Drug Administration as a prescription drug for the treatment of multiple myeloma (18–20). Similar applications of proteasomal...
inhibitors in oncology and neurodegenerative diseases are at
the focus of our interest (21). We intend to develop selective
inhibitors for the three different proteolytic activities of the
20 S proteasome. Our goals may be achieved by creating com-
ounds or reactive moieties, which bind covalently to the
N-terminal threonine.

The proteasomal amide hydrolysis differs from all other
classes of proteases and is performed by N-terminal threonines,
as depicted in Fig. 1B. The crystal structure analysis of the 20 S
proteasome revealed that the Thr-10 function as the nucleo-
phile and that the N-terminal amino group serves as an acyl
carrier (6). Covalent inhibitors can bind to the active site
through the Thr-10 hydroxyl group or both the free N termi-
nus and Thr-10 (for review, see Ref. 17).

Effective in vivo inhibitors of the 20 S proteasome require
high selectivity and good penetration of the cellular mem-
branes. We decided to address the selectivity problems of
3 (MG132) first. A focused set of peptide analogue aldehydes
13–18 aimed at the proteolytic activity of Ε subunit was syn-
thetized and tested for inhibition of the 20 S proteasome and
secretase (22, 23). These results encouraged us to address the
design of irreversible and selective proteasome inhibitors. We
concentrated on the nonspecific serine protease inhibitor 1 and
introduced modifications to improve its selective inhibition of
the chymotrypsin-like activity of the 20 S proteasome.

MATERIALS AND METHODS

Isolation of 20 S Proteasomes—20 S proteasomes were isolated from
red blood cells. Cells were lysed with dithiothreitol (1 mM), and the
stroma-free supernatant was applied to DEAE-Sepharose (Toyopearls).
20 S proteasome was eluted with a NaCl gradient in TEAD (20 mM
Tris-HCl, pH 7.4, 1 mM EDTA, 1 mM azide, and 1 mM dithiothreitol)
from 100 to 350 mM NaCl. 20 S proteasome was concentrated by am-
nium sulfate precipitation (between 40 and 70% of saturation) and
separated in a 10–40% sucrose gradient by centrifugation at 40,000
rpm for 16 h (SW40; L7; Beckman & Coulter). Finally, 20 S proteasome
was purified on MonoQ column and eluted with a NaCl gradient at 280
mM NaCl. The fractions containing purified 20 S proteasome were
dialyzed against 50 mM NaCl in TEAD and stored on ice. The purity was
determined by SDS-PAGE.

Protease Assays—Suc-LLVY-AMC, Z-VGR-AMC, and LLE-AMC
(Bachem, Calbiochem) were used to estimate chymotrypsin-like, tryp-
in-like, and caspase-like (post-acidic) activities of the 20 S proteasome,
respectively. Substrates were incubated with 20 S proteasome at 37 °C
in assay buffer (20 mM Tris-HCl, pH 7.2, 1 mM EDTA, and 1 mM
dithiothreitol) for 1 h. 100 ng of 20 S proteasome was preincubated with
0.01–10 μM of the inhibitors for 15 min. The reaction was started by
addition of substrate (50 μM). The released AMC was detected by
fluorescence emission at 460 nm (excitation at 390 nm) using a TECAN
fluorometer. Activity was estimated in fluorescence units, and the in-
hibiaction is represented by IC50 values.

Cell Culture—HeLa cells and MeWo cells (human melanoma) were
cultured in RPMI 1640 supplemented with 10% heat-inactivated fetal
calf serum and penicillin/streptomycin at 5% CO2. Inhibitors were
applied from 100 μM stocks (in Me2SO) at the indicated final concentra-
tions and incubated for variable times.

Sensitivity of Cells against Added Compounds—The viability of
HeLa cells was tested by crystal violet staining after incubation with
inhibitors. The cells were washed once with PBS, fixed with 1% of
glutaraldehyde for 30 min, and washed again. Finally, the fixed cells
were stained with 0.1% crystal violet in PBS for 30 min and subse-
quently washed carefully with water to remove unbound dye. The
remaining dye was eluted by 0.1% Triton X-100 in PBS and determined
at 550 nm.

Inhibition of 20 S Proteasomes within Cells—Cells were harvested
and lysed with 0.1% Nonidet P-40 in TEAD in the presence of the
commercial protease inhibitor mixture Complete (Roche Applied Sci-
ce). The proteasomal activity was measured in 10 μl of lysates by
using Suc-LLVY-AMC as a substrate. The protein content was quanti-
fied by Bradford (Protein assay; Bio-Rad).

Detection of Accumulated Polyubiquitinated Proteins—50 μg of total
cell lysate was separated by SDS-PAGE and blotted onto polyvinylidene
difluoride membrane (Millipore). Blots were blocked by 5% of milk
suspension. The polyubiquitinated proteins were detected by anti-ubiq-

1 The abbreviations used are: AMC, 7-aminomethylcoumarin; Z, ben-
yloxycarbonyl; PBS, phosphate-buffered saline.
uitin antibody (DAKO) and anti-rabbit peroxidase-labeled as secondary antibody (DianoVA) and then visualized by ECL.

Analysis of Cell Cycle—MeWo cells were treated with inhibitor 15 and MG132 for 24 h. Cells were trypsinized, washed with cold PBS, suspended in 70% ethanol, and fixed at −20 °C for 2 h. Fixed cells were washed twice with PBS, incubated with RNase A (Sigma) at room temperature for 20 min, and placed on ice. Propidium iodide was added to a final concentration of 5 μg/ml and cells were stained at least for 2 h at 4 °C. The cells were analyzed after staining by flow cytometry (FAC-SCalibur flow cytometer; BD Biosciences) using CellQuest software. Statistical significance was determined by the χ² test.

Apoptosis Assay—HeLa cells (10,000 cells/well) were disseminated in a 96-well plate and treated with 1 μM of inhibitors for 20 h. The ongoing apoptosis was estimated by the Apo-One® assay (Promega).

Co-crystallization—Crystals of 20 S proteasome from Saccharomyces cerevisiae were grown in hanging drops at 24 °C as described previously (6) and incubated for 60 min with compound 15. The protein concentration used for crystallization was 40 mg/ml in Tris-HCl (10 mM, pH 7.5) and EDTA (1 mM). The drops contained 3/10 l of protein and 2/10 l of the reservoir solution, which contained 30 mM magnesium acetate, 100 mM morpholinoethanesulfonic acid, pH 7.2, and 10% 2-methylpentane-2,4-diol.

The space group belongs to P2₁ with cell dimensions of a = 135.8 Å, b = 300.1 Å, c = 144.4 Å, and β = 113.1°. Data to 2.8 Å were collected using synchrotron radiation with λ = 1.05 Å on the BW6-beamline at DESY (Hamburg, Germany). Crystals were soaked in a cryoprotecting buffer (30% 2-methylpentane-2,4-diol, 20 mM magnesium acetate, 100 mM morpholinoethanesulfonic acid, pH 6.9) and frozen in a stream of liquid nitrogen gas at 90 K (Oxford Cryo Systems). X-ray intensities were evaluated by using the MOSFILM program package (version 6.1), and data reduction was performed with CCP4 (24). The anisotropy of diffraction was corrected by an overall anisotropic temperature factor by comparing observed and calculated structure amplitudes using the program X-PLOR (25). A total of 2,383,416 reflections yielding 248,616 unique reflections (96.9% completeness) was collected. The corresponding Rmerge was 8.7% at 2.8 Å resolution (41.9% for the last resolution shell). Electron density was improved by averaging and back-transforming the reflections 10 times over the 2-fold noncrystallographic symmetry axis using the program package MAIN (26). Conventional crystallographic rigid body, positional, and temperature factor refinements were carried out with X-PLOR using the yeast 20 S proteasome structure as starting model (6). For model building, the program MAIN was used. The structure was refined to a R-factor of 21.7% (free R-factor, 24.9%) with root mean square deviations from target values of 0.007 Å for bonds and 1.30° for angles (27). Modeling experiments were performed using the coordinates of yeast 20 S proteasome with the program MAIN (26).

Synthesis—Compounds 7–18 were synthesized as analogues of 3 (MG132) based on the established substrate preferences of β-secretase (23) by standard methodology or as published previously (28). The condensation of commercial protected dipeptides and amino acids with

Fig. 2. Peptidomimetics designed for 20 S proteasome inhibition.

FIG. 3. Estimation of proteolysis in cell lysates by addition of MG132 and 7–28. Compounds (10 μM) were added to clarified lysates and preincubated for 30 min on ice prior to the proteolysis assay (black bars). In parallel, lysate was preincubated with the commercial protease inhibitor mixture Complete for 30 min, which inhibited most of the cytosolic serine/aspartate proteases, but not proteasomes (white bars). This partial inactivation was followed by incubation with the indicated compounds. The proteolytic activity was determined in 10 μl of the lysates by addition of LLVY-AMC (10 μM) in TEAD. The AMC released by non-inhibited lysate was set to 100%. MG132 was used as inhibition control.
Inhibition of 1, dichlorovinyl ester their ability to inhibit threonine proteases. The nonselective enzyme inhibition. Therefore, other moieties were tested for S proteasome. Peptide aldehydes generally lack selectivity in several compounds turned out to be potent inhibitors of the 20S proteasome. Lead structures, resisted oxidation to the desired ketone. Therefore, we focused activity may be observed for propargylic ketones. A similar N-terminal threonine protease inhibitor. An analogue dual reactivity features may be observed for propargylic ketones. A similar N-terminal threonine protease inhibitor. An analogue dual reactivity, which is delivered by nucleophiles such as cysteine, serine, and, eventually, threonine protides, reacts readily with all sorts of nucleophiles and results in reasonably stable dichlorovinyl ethers (28). Such ethers (13–18) tolerate acidic environment but hydrolyze readily at pH 11 be converted into α-chloroaacetates, which in turn may react with nucleophiles. This dual reactivity, which is delivered in a cascade reaction, meets the specific requirements of an N-terminal threonine protease inhibitor. An analogue dual reactivity may be observed for propargylic ketones. A similar compound was synthesized, but unfortunately, the alcohol 21 resisted oxidation to the desired ketone. Therefore, we focused on transition state mimetics as inhibitors. Lead structures, such as statines (34), α-ketoamides, and chloromethyl ketones, are well established in protease inhibition. Combination of these structures with a β selective tripeptide furnished the compounds 22–28 (Fig. 2). Compound 22 was prepared from commercial Z-LI and chloromethyl leucine. Compounds 23–25 were obtained by a Passerini reaction of MG132 with three isonitriles. The subsequent oxidation by 2-iodooxybenzoic acid in Me2SO furnished the α-ketoamides 26–28.

All peptide mimetics (7–28) were tested for their ability to inhibit the 20 S proteasome. Initially, we investigated the inhibition of cellular soluble proteases. 10 μM solutions of compounds 7–28 were added to the cytosolic fraction of HeLa cells and incubated for 30 min on ice. Subsequently, the proteolytic process was monitored by addition of the peptidic substrate Suc-LLVY-AMC. In parallel, the cytosolic fraction was incubated with the broad specific protease inhibitor mixture Complete (Roche Applied Science) prior to the addition of substrate. This inhibitor mixture did not affect 20 S proteasomes. 11 of 22 investigated compounds diminished proteolysis in the cytosolic fraction as well as in the Complete-pretreated lysate (Fig. 3). The inhibition rates differed drastically. Some of the compounds displayed no inhibition, whereas five of the analyzed compounds decreased the hydrolysis of Suc-LLVY-AMC by >75%.

To ensure that the inhibitory effect observed in the cytosolic fraction was indeed caused by inhibition of 20 S proteasomes, the inhibitors were compared with that of the frequently employed 20 S proteasome inhibitor 3 (MG132). The chymotryptic-like (Suc-LLVY-AMC), tryptic-like (Bz-VGR-AMC), and caspase-like (Z-LLE-AMC) activities of 20 S proteasomes were determined after incubation at 37 °C for 1 h. The strongest inhibitory effects were observed for chymotryptic-like activity. Six of the tested inhibitors (15, 20, 21, 23, 27, and 28) displayed IC50 values of <1 μM. The inhibition of tryptic-like activity was <1 μM for the inhibitors 7, 13, and 15. Only compounds 7 and 8 showed exclusive inhibition of tryptic-like activity. The inhibition of caspase-like activity was even weaker (Table I). 20 S proteasomes isolated from HeLa cells contain more constitutive proteasomes than immunoproteasomes. Therefore, we repeated the inhibition experiments with immunoproteasomes isolated from stably transfected T2.27 cells. These experiments revealed that immunoproteasomes and constitutive proteasomes display similar sensitivities to the inhibitors (data not shown). 26 S proteasomes are responsible for ATP-dependent degradation of

RESULTS

The intermediate alcohol derivatives 7–12 and the tripeptide aldehydes 13–18 were investigated for enzyme inhibition. Inhibition of β-secretase was rather poor (IC50 > 200 μM), but several compounds turned out to be potent inhibitors of the 20 S proteasome. Peptide aldehydes generally lack selectivity in enzyme inhibition. Therefore, other moieties were tested for their ability to inhibit threonine proteases. The nonselective dichlorovinyl ester 1, which reacts readily with all sorts of nucleophiles such as cysteine, serine, and, eventually, threonine, served as our lead, but we intended to reduce the inherent overactivation. The removal of the acyl group may reduce the nonspecific hydrolysis by ubiquitous nucleophiles and results in reasonably stable dichlorovinyl ethers (28). Such ethers (13–18) tolerate acidic environment but hydrolyze readily at pH 11 be converted into α-chloroaacetates, which in turn may react with nucleophiles. This dual reactivity, which is delivered in a cascade reaction, meets the specific requirements of an N-terminal threonine protease inhibitor. An analogue dual reactivity may be observed for propargylic ketones. A similar compound was synthesized, but unfortunately, the alcohol 21 resisted oxidation to the desired ketone. Therefore, we focused on transition state mimetics as inhibitors. Lead structures, such as statines (34), α-ketoamides, and chloromethyl ketones, are well established in protease inhibition. Combination of these structures with a β selective tripeptide furnished the compounds 22–28 (Fig. 2). Compound 22 was prepared from commercial Z-LI and chloromethyl leucine. Compounds 23–25 were obtained by a Passerini reaction of MG132 with three isonitriles. The subsequent oxidation by 2-iodooxybenzoic acid in Me2SO furnished the α-ketoamides 26–28.

Table I

Calculated IC50 values for compounds 7–28.

<table>
<thead>
<tr>
<th>Inhibitor Access no.</th>
<th>IC50 (\mu M)</th>
<th>β(_6) Ch-I (L)</th>
<th>β(_3) Trypsin-like (R)</th>
<th>β(_1) Caspase-like (E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 BSc2114</td>
<td>>10</td>
<td>-a</td>
<td>0.053</td>
<td>>10</td>
</tr>
<tr>
<td>8 BSc2117</td>
<td>>10</td>
<td>-</td>
<td>5.481</td>
<td>>10</td>
</tr>
<tr>
<td>9 BSc2207</td>
<td>>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10 BSc2195</td>
<td>>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11 BSc2196</td>
<td>>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12 BSc2158</td>
<td>>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13 BSc2115</td>
<td>0.582</td>
<td>0.102</td>
<td>0.495</td>
<td>0.098</td>
</tr>
<tr>
<td>14 BSc2128</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
</tr>
<tr>
<td>15 BSc2118</td>
<td>0.058</td>
<td>0.031</td>
<td>0.155</td>
<td>1.791</td>
</tr>
<tr>
<td>16 BSc2129</td>
<td>7.26</td>
<td>-</td>
<td>>10</td>
<td>>10</td>
</tr>
<tr>
<td>17 BSc2208</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>18 BSc2197</td>
<td>1.731</td>
<td>-</td>
<td>-</td>
<td>3.122</td>
</tr>
<tr>
<td>19 BSc2158</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>20 BSc2166</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
</tr>
<tr>
<td>21 BSc2167</td>
<td>1.303</td>
<td>>10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>22 BSc2160</td>
<td>2.196</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>23 BSc2159</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>24 BSc2185</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>25 BSc2186</td>
<td>0.981</td>
<td>-</td>
<td>-</td>
<td>4.04</td>
</tr>
<tr>
<td>26 BSc2187</td>
<td>0.441</td>
<td>-</td>
<td>-</td>
<td>1.72</td>
</tr>
<tr>
<td>27 BSc2188</td>
<td>0.350</td>
<td>-</td>
<td>-</td>
<td>7.966</td>
</tr>
<tr>
<td>28 BSc2189</td>
<td>0.072</td>
<td>-</td>
<td>-</td>
<td>>10</td>
</tr>
<tr>
<td>29 MG132</td>
<td>0.024</td>
<td>2.240</td>
<td>9.215</td>
<td>2.288</td>
</tr>
</tbody>
</table>

a — no inhibition.

Notes

Commercial amino alcohols was followed by oxidation to the aldehydes by 2-iodooxybenzoic acid in Me2SO.

A similar N-terminal threonine protease inhibitor. An analogue dual reactivity features may be observed for propargylic ketones. A similar compound was synthesized, but unfortunately, the alcohol 21 resisted oxidation to the desired ketone. Therefore, we focused on transition state mimetics as inhibitors. Lead structures, such as statines (34), α-ketoamides, and chloromethyl ketones, are well established in protease inhibition. Combination of these structures with a β selective tripeptide furnished the compounds 22–28 (Fig. 2).
polypeptide-linked tagged proteins within living cells. They exhibited a similar susceptibility to the most potent inhibitor (15) in vitro (data not shown).

Protease inhibitors are often toxic to organisms or single cells (1). Therefore, selected inhibitors were tested on cell cultures for cell lysis or cell death. The viability of HeLa cells in the presence of different compounds was tested in 24-h cultures. HeLa cells tolerated 1 μM concentrations of inhibitory and non-inhibitory substances (Fig. 4A). The relative survival rate of the cells was clearly diminished at concentrations of 10 μM. This effect was pronounced for the most potent inhibitors from the in vitro experiments (15, 28, and 27) (Fig. 4B).

The impact of inhibitors on living cells and organisms crucially depends on adequate cell permeability. Therefore, we analyzed the proteasome function within cells at different inhibitor concentrations. The application to cell cultures or animals required the concentrations of the inhibitors to be as low as possible. The specific proteasome activity was reduced below 50% (Fig. 5A) in cells treated with 1 μM solutions of 15, 22, 25, 26, and 28. Compounds 7, 13, and 27 exhibited weaker effects on the specific activity, whereas compounds 18 and 21 hardly inhibited the cellular proteasome at all. Remarkably, inhibitors 15, 22, and 28 reduced the proteolytic activity already at a concentration of 100 nM (Fig. 5A). Specific inhibition of proteasomes results in the accumulation of polyubiquitinated proteins. Indeed, the amounts of polyubiquitinated proteins increased during incubation with the inhibitors. First effects were observed after 2 h for the potent compound 15 (Fig. 5B) and for compounds 20, 22, 25, and 28 (data not shown). The accumulation of polyubiquitinated proteins via proteasome inhibition depended strongly on the applied concentrations (Fig. 5C). Thus, several of these new inhibitors are able to permeate cells and affect the activity of proteasomes. The consequences of proteasome inhibition for distinct cellular functions are subject to ongoing investigations.

The particular sensitivity of tumor cells to proteasome inhibitors (1) was evaluated in the melanoma cell line MeWo at different concentrations of compound 15 for 72 h. The viability was compared with MeWo cells treated with MG132 under the same conditions (Fig. 6A). 50% of the MeWo cells treated with 35 nM MG132 were still alive after 72 h. Very few cells survived the treatment with inhibitor 15, which demonstrated its potency. Proteasome inhibitors can induce a cell cycle arrest in the G1/S or G2 phase, therefore the cell cycle progression was analyzed after 24-h inhibitor treatment of MeWo cells (Fig. 6B and C). Compound 15 led to a cell cycle arrest in the G2 phase, like MG132, albeit at considerably lower concentrations.

Proteasomes determine the delicate balance of life and death of the cells by controlling transcription factors and proteins involved in apoptosis. The reduction of proteasomal activity and intracellular accumulation of polyubiquitinated proteins in cells co-cultured with inhibitors were tested in lysed cells A. HeLa cells were cultured in the presence of inhibitors for 24 h. After lysis of cells, the protein concentration was measured according to Bradford to normalize the different cell amounts. Thereafter, Complete (Roche Applied Science) was added to all lysates, and the proteasomal activity was determined by hydrolysis of Suc-LLVY-AMC. Lysates of HeLa cells were added to all lysates, and the proteasomal activity was determined by hydrolysis of Suc-LLVY-AMC. Lysates of HeLa cells were cultured with 1 μM compound 15 for 0, 2, 4, 6, and 24 h. Cells were lysed, and proteins were separated by SDS-PAGE in a 10% gel, blotted onto a polyvinylidene difluoride membrane, and detected in Western blot by an anti-ubiquitin antibody (DAKO). C. HeLa cells were treated with increasing concentrations of the inhibitors 15, 25, 26, 27, and 28 for 24 h (c, inhibitor concentration). Cells were lysed, proteins were separated in 15% gels, and the accumulation of polyubiquitinated proteins was controlled by Western blots.
Tripeptide Mimetics Inhibit the 20 S Proteasome

Fig. 6. Higher susceptibility of human melanoma cells to inhibitor 15. A, human melanoma cells (MeWo) were treated with increasing concentrations of inhibitor 15 or 3 (MG132) for 72 h. The viability of the cells after treatment with 15 (gray diamonds) or MG132 (white squares) was estimated by crystal violet staining. Statistical significance (asterisks) was calculated by Student’s t test. B and C, investigation of cell cycle arrest. MeWo Cells were cultured with inhibitors 15 and 3 (MG132) for 24 h. The harvested cells were washed and fixed in 70% ethanol. Subsequently, the cells were incubated with RNase A. DNA was stained by addition of propidium iodide to a final concentration of 5 μg/ml. DNA was analyzed by fluorescence-activated cell sorting (FACSCalibur flow cytometer; BD Biosciences). Statistical significance was calculated by Student’s t test. The relative distribution of cells that resided in G1 (black bar), S (white bar), or G2 phase (checkered bar) is shown for inhibitor 15 in B and for MG132 in C.

may result in the initiation of apoptosis, as reported for the proteasome inhibitor MG132 (29). Therefore, HeLa cells cultured with 1 μM solutions of the inhibitors 7, 8, 11, 13–16, 18, 20–23, and 25–28 for 24 h were monitored for the induction of apoptosis by measuring caspase 3/7 activity. Most of the tested inhibitors did not affect cell viability. In contrast, application of the inhibitors 11, 13–16, 20, and 22 caused an activation of caspase 3/7, signaling apoptotic events (Fig. 7).

We determined the crystal structure of the yeast 20 S proteasome in complex with inhibitor 15 to reveal the inhibition mechanism of the most potent inhibitor, 15. This compound binds in a similar orientation to the active site threonine as observed for calpain inhibitor I (6). Defined electron density was found in all active sites, indicating that compound 15 lacks subunit specificity at the high concentrations employed (10 μM). The functional aldehyde of the inhibitor forms a covalent hemiacetal bond to the Thr-10γ. The peptide backbone of 15 adopts a β-conformation and fills the gap between β-strands and generates an anti-parallel β-sheet structure (Fig. 8). The leucine side chain projects into the S1 pocket, whereas the P2 side chain at P2 is not in contact with the protein. The leucine side chain at P3 closely interacts with the amino acids of the adjacent β-subunit. In general, both S1 and S3 specificity pockets play a prominent role in inhibitor binding as observed in the crystal structures of the 20 S proteasome in complex with lactacystin (6) and vinyl sulfone (30). The neutral character of Met-45 in subunit β5 has a dominant role for the specificity of this subunit. The crystallographic data (Fig. 8) reveal that the P1-Leu side chain of 15 causes a structural rearrangement of Met-45. In contrast to the crystal structure of the 20 S proteasome in complex with lactacystin, Met-45 is rearranged by 3 Å, avoiding a clash with the leucine side chain in P1 of 15, thereby making the S1 pocket more spacious. Remarkably, the hydrophobic interactions between the Leu residue of the inhibitor and Met-45 are only weak, thus reducing the mean residence time of the compound at the active center. The specificity defining pockets of subunits β1 and β2 have positive and negative charges, respectively, which destabilize the protein-ligand interactions. However, the inherent reactivity of the aldehyde in compound 15 causes binding to all proteolytically active sites. These observations indicate that the functional group of this inhibitor plays the dominant role in binding.

DISCUSSION

Proteasomes are involved in a number of different cellular processes. They are important for control of the cell cycle and protect cells from apoptosis by maintaining the balance of anti-apoptotic and pro-apoptotic proteins (9, 31, 32). The interest in potent and specific inhibitors that may be used as potential drugs against cancer or neoplastic growth is very high. Here we report the synthesis of inhibitors based on the proteasomal peptide inhibitor MG132, which is a potent yet nonspecific inhibitor. We assumed that side chain modifications of the tripeptide might offer higher potency, selectivity, and site-specific inhibition of the 20 S proteasome. This assumption is based on a couple of known and potent peptidic inhibitors (16, 17, 33, 35).

All novel compounds were tested for their inhibitory capacity in cell lysates. Therefore, serine proteases, cysteine proteases, and metalloproteases were blocked by the protease inhibitor mixture Complete (Roche Applied Science) during the assay with the synthesized mimetics. The proteolysis of the hydrophobic Suc-LLVY-AMC substrate was diminished by 11 of the investigated compounds in two assays. The specific inhibition of a single catalytic site is of special interest for drug development; therefore, we analyzed the inhibition of the different proteasomal activities. The different cleavage preferences of proteasomes were determined by specific substrates for the hydrophobic (chymotrypsin-like), trypsin-like, and post-acidic (caspase-like) activities on isolated proteasomes. 12 of 22 derivatives inhibited proteasomal activities with IC_{50} values below 10 μM. The peptide aldehydes 13 and 15 inhibited all proteasomal hydrolytic activities, whereas four compounds (18, 24, 25, and 26) inhibited the chymotryptic and caspase-like sites. However, the purpose of this investigation was the identification of fully selective inhibitors of proteasomal activity. The tripeptidic alcohol 7 (and with lower potency, 8) specifically reduced the trypsin-like activity, and compounds 16, 21, 22, and 28 resulted in an exclusive reduction of chymotryptic
FIG. 7. Proteasomal inhibition by 7, 15, 26, and 28 resulted in induction of apoptosis. HeLa cells treated with 1 μM of the indicated inhibitors for 20 h were incubated with caspase substrates (Apo-One®, Promega) for 2 h. The activation of caspase 3/7 was measured at 538 nm (excitation, 485 nm). Treatment of cells with tumor necrosis factor α (TNFα) or MG132 (M) served as positive controls; controls without treatment are indicated as co.

FIG. 8. Stereoview of a 30 Å sector of the crystal structures of the (top panel) β1, (middle panel) β2, and (bottom panel) β5 active sites of the yeast 20 S proteasome in complex with the aldehyde 15. 15 is depicted in yellow and shown for each subunit with its unbiased electron density. The active site Thr-1 is highlighted in black, and the covalent bond between 15 and Thr-1Oγ is highlighted in pink. Residues that are particularly responsible for the character of the S1 subsite are drawn in green.
activity. Notably, the most potent of the new inhibitors feature IC$_{50}$ values below 100 nM (7, 15, and 28). This is in the range of novel proteasomal inhibitors, which are in clinical trials (33). Remarkably, the tetrapeptide inhibitor PSI (Z-Ile(OMe)/BOu/AlaCHO) is structurally related to our component 15 (Z-LD(O)/BOu/CHO) (36), which is among the strongest inhibitors (IC$_{50}$ < 60 nM). Moreover, it exhibited low toxicity and was able to permeate cellular membranes. The comparison of our inhibitors indicates the major contributions of the ligand side chains to the specific tight interactions with the various proteolytically active sites (Fig. 8). Similar observations were made for the alcohol derivates, with compound 7 being more effective than the other six compounds. Furthermore, very potent inhibitors were identified in the chloromethyl ketone (22) and in compounds 25–28.

Tumor cells with their accelerated and neoplastic growth are often more sensitive to proteasomal inhibitors than normal cells. The clinically approved proteasomal inhibitor Bortezomib® causes growth arrest and apoptosis in the sensitive tumor cells, whereas “normal” cells tolerate higher inhibitor concentrations (37). The restriction to myeloma tumors may be overcome by more specific inhibitors, such as PSI, which blocks angiogenesis and modulates the growth of solid tumors (36). The differences in cellular features and the predictable resistance mechanisms require continuous development of new proteasomal inhibitors. Efficient cell permeation, stability in aqueous systems, and potent induction of cellular events are all mandatory for clinical applications. Therefore, we tested the permeation ability of our compounds and their in vivo impact on proteasomes, and we monitored the accumulation of polyubiquitinated proteins in cultured cells. A >50% reduction of cellular proteasome activity was observed for five of the new inhibitors (15, 22, 25, 26, and 28). The most potent inhibitors were achieved by compounds 15, 26, and 28, which reduced the proteasome activity to 10% at a concentration of 1 μM. Even 50 nM solutions of compound 15 arrested 70% of the melanoma cells. Our results indicate potency, membrane permeation, and sufficient stability throughout the incubation period for the inhibitors 15, 22, 25, 26, and 28. The cellular proteasomal activity was clearly reduced and accompanied by strong induction of apoptosis after 20 h treatment with 1 μM of inhibitors (15, 26, and 28). The prevalent enhanced sensitivity of tumor cells toward proteasomal inhibition was confirmed for inhibitor 15. Compound 15 exerts its effects at considerably lower concentrations than MG132 and exhibits an almost identical inhibitory profile as Bortezomib®, which is characterized by a lower K$_{f}$ value. The low toxicity of our new compounds and the effective proteasome inhibition encourage us to continue our evaluation of the lead compounds, 15, 26, and 28.

Acknowledgment—We thank Dr. B. Dalhmann (Charité) for the gift of 26 S proteasome.

REFERENCES

Syntheses of Peptidomimetics

Chemistry. General Comments. The 1H- and 13CNMR spectra were recorded on a Bruker AC 300 spectrometer at 300 (75). Chemical shifts are reported as ‰ values (ppm) downfield from Me₄Si. Mass spectrometry was performed on a Bruker-Franzen Esquire LC mass spectrometer. Flash column chromatography was carried out using Merck silica gel 60 (40-63 and 15-40 μm) and 60G (5-40 μm). Thin-layer chromatography (TLC) was carried out using aluminum sheets precoated with silica gel 60 F254 (0.2 mm; E. Merck). Chromatographic spots were visualized by UV and/or spraying with an acidic, ethanolic solution of p-anisaldehyde or an ethanolic solution of ninhydrin followed by heating. For preparative TLC, plates precoated with silica gel 60 F254 (2.0 mm; E. Merck) were used. Amino acid derivatives were bought from Fluka Chemie (Switzerland), NovaBiochem (Switzerland), or Bachem (Switzerland). THF was dried and distilled from sodium and benzophenone. DMF was stored over 3 Å molecular sieves. All other commercial chemicals were used without further purification.

7 (BSc 2114). Ethyl-3-(3´-dimethylaminopropyl)carbodiimide hydrochloride (EDAC, 191 mg, 1.0 mmol) and N-hydroxybenzotriazole hydrate (HOBt, 183 mg, 1.2 mmol) were added to a solution of Z-Asp(OtBu)-OH (29, 323 mg, 1.0 mmol) dissolved in CH₂Cl₂ (10 mL). The resulting mixture was stirred at ambient temperature for 5 min, then treated with L-leucinol (117 mg, 1.0 mmol) and triethylamine (151 mg, 1.5 mmol) for 24 h. CH₂Cl₂ (20 mL) was added and the solution was washed with HCl (0.1 N, 5 x 30 mL), NaOH (0.1 N, 3 x 30 mL), brine (1 x 30 mL), dried over Na₂SO₄, and concentrated to obtain the product 31 (350 mg, 83%). A solution of 31 (422 mg, 0.8 mmol) in ethanol (10 mL, abs.) was treated with palladium on activated carbon (100 mg) under hydrogen atmosphere at room temperature. The suspension was filtered after 3 h and the solvent was removed in vacuo to yield 33 (228 mg, 100%). EDAC (157 mg, 0.82 mmol) and HOBt (132 mg, 0.98 mmol) were added to the solution of Boc-Leu-OH (189 mg, 0.82 mmol) in CH₂Cl₂ (10 mL). The resulting mixture was stirred at ambient temperature for 5 min, then treated with 33 (228 mg, 0.82 mmol) and
triethylamine (124 mg, 1.23 mmol) for 24 h. DCM (20 mL) was added and the solution was washed with HCl (0.1 N, 5 x 30 mL), NaOH (0.1 N, 3 x 30 mL), and brine (1 x 30 mL). The solvent was removed after drying (Na$_2$SO$_4$) in vacuo to yield (400 mg, 97%) 7 (BSc2114).

1H-NMR (CDCl$_3$, 300 MHz): δ = 7.65 (d, 1H, 3J = 8.3 Hz), 6.8 (d, 1H, 3J = 8.3 Hz), 5.03 (d, 1H, 3J = 8.3 Hz), 4.55-4.45 (m, 1H), 3.99-3.89 (m, 2H), 3.57 (dd, 1H, 3J = 3.3 Hz, 2J = 11.0 Hz), 3.47 (dd, 1H, 3J = 3.3 Hz, 2J = 11.0 Hz), 2.99 (d, 1H, 3J = 4.3 Hz), 2.58 (d, 1H, 3J = 4.3 Hz), 2.48 (d, 1H, 3J = 4.3 Hz), 2.15-2.14 (m, 2H), 1.44 (s, 9H), 1.34 (s, 9H), 0.90-0.87 (m, 6H), 0.80-0.75 (m, 6H) ppm. 13C-NMR (CDCl$_3$, 75 MHz): δ = 173.0, 171.5, 170.5, 156.3, 81.9, 81.0, 65.6, 54.3, 50.6, 50.5, 40.8, 39.7, 35.9, 28.4, 28.0, 24.9, 23.2, 22.2, 21.6, 21.1 ppm. MS (EI): m/z = 501 (M$^+$).

13 (BSc2115). Compound 7 (BSc2114) (400mg, 0.8 mmol) was oxidized with IBX (2-oxooxybenzoic acid, 268 mg, 0.95 mmol) in DMSO (5 mL) at room temperature for 6 h. CH$_2$Cl$_2$ (30 mL) was added and the solution was washed with water (3 x 30mL), NaHCO$_3$ solution (3 x 30 mL, sat.), and brine (1 x 30 mL). The solvent was removed after drying (Na$_2$SO$_4$) under vacuum to yield 13 (BSc2115) (390 mg, 98%). 1H-NMR (CDCl$_3$, 300 MHz): δ = 9.4 (s, 1H), 7.54 (d, 1H, 3J = 8.3 Hz), 7.27 (d, 1H, 3J = 8.3 Hz), 4.89 (d, 1H, 3J = 8.3 Hz), 4.66-4.56 (m, 2H), 4.22-4.15 (m, 2H), 3.99 (dd, 1H, 3J = 3.3 Hz, 2J = 11.0 Hz), 2.99 (dd, 1H, 3J = 3.3 Hz, 2J = 11.0 Hz), 2.90 (d, 1H, 3J = 4.3 Hz), 2.58 (d, 1H, 3J = 4.3 Hz), 2.48 (d, 1H, 3J = 4.3 Hz), 1.66-1.55 (m, 1H),1.47-1.45 (m, 1H), 1.44 (s, 9H), 1.34 (s, 9H), 0.9-0.86 (m, 6H), 0.80-0.76 (m, 6H) ppm. 13C-NMR (CDCl$_3$, 75 MHz): δ = 200.1, 172.6, 171.6, 170.9, 156.2, 82.0, 80.8, 54.3, 50.6, 50.5, 40.8, 39.7, 35.9, 28.4, 28.0, 24.9, 23.2, 22.2, 21.6, 21.1 ppm. MS (EI): m/z = 499 (M$^+$).

14 (BSc2128). TFA (1 mL) was added to the stirred solution of 7 (BSc2114. 390 mg, 0.78 mmol) in CH$_2$Cl$_2$ (4 mL). The solvent was evaporated after 3h (260 mg, 97%) to obtain 14 (BSc2128). 1H-NMR (DMSO-d_6, 300 MHz): δ = 9.37 (s, 1H), 8.85 (d, 1H, 3J = 8.3 Hz), 8.19 (d, 1H, 3J = 8.3 Hz), 4.67-4.56 (m, 1H), 4.05-3.89 (m, 2H), 3.77-3.65 (m, 2H), 3.70-3.67 (m, 1H), 2.89 (dd, 1H, 3J = 4.1 Hz, 2J = 16.0 Hz), 2.78 (d, 1H, 3J = 4.1 Hz, 2J = 16.0 Hz), 2.58 (d, 1H, 3J = 4.1 Hz), 2.48 (d, 1H, 3J = 4.1 Hz), 1.60-1.58 (m, 1H), 1.46-1.44 (m, 1H), 0.80-0.76 (m, 6H), 0.70-0.66 (m, 6H) ppm. 13C-NMR (DMSO-d_6, 75 MHz): δ = 200.1, 171.1, 171.0,
Compounds 16 BSc2129, 9 BSc2207, 17 BSc2208, 18 BSc2197, and 12 BSc2194 were generated by analogue procedures.

Scheme 1 Synthesis of tripeptide mimetics

8 (BSc2117). The title compound was prepared from 33 according to the same procedure in 80% yield. \(^1H\)-NMR (CDCl\(_3\), 300 MHz): \(\delta = 7.51\) (d, 1H, \(^3J = 8.3\) Hz), 7.29-7.19 (m, 5H), 6.70 (d, 1H, \(^3J = 8.3\) Hz), 5.35 (d, 1H, \(^3J = 8.3\) Hz), 5.50 (s, 2H), 4.60-4.58 (m, 1H), 4.10-4.75 (m, 2H), 3.58 (dd, 1H, \(^3J = 3.3\) Hz, \(^2J = 11.0\) Hz), 3.45 (dd, 1H, \(^3J = 3.3\) Hz, \(^2J = 11.0\) Hz), 2.89 (dd, 1H, \(^3J = 4.1\) Hz), 2.80 (d, 1H, \(^3J = 4.1\) Hz, \(^2J = 16.0\) Hz), 2.59 (d, 1H, \(^3J = 4.3\) Hz), 2.50 (d, 1H, \(^3J = 4.3\) Hz), 2.0-1.96 (m, 2H), 1.55-1.53 (m, 1H), 1.34 (s, 9H), 1.25-1.23 (m, 1H), 0.89 (dd, 6H, \(^3J = 4.3\) Hz, \(^3J = 7.0\) Hz), 0.80 (dd, 6H, \(^3J = 4.3\) Hz, \(^3J = 7.0\) Hz) ppm. \(^{13}C\)-NMR (CDCl\(_3\), 75 MHz): \(\delta = 167.0, 166.2, 165.1, 151.4, 130.4, 123.3, 123.1, 123.1, 122.8, 77.1, 62.2, 60.2, 49.0, 48.9, 45.2, 35.6, 34.4, 31.1, 22.7, 22.7, 22.7, 21.6, 21.1, 19.5, 17.8 ppm. MS (ESI): \(m/z = 535(M^+)\).

15 (BSc2118). The title compound was prepared from 8 (BSc2117) according to the same procedure in 94% yield. \(^1H\)-NMR (CDCl\(_3\), 300 MHz): \(\delta = 9.49\) (s, 1H), 7.48 (d, 1H, \(^3J = 8.3\) Hz), 7.35-7.33 (m, 5H), 7.25 (d, 1H, \(^3J = 7.3\) Hz), 5.23-5.22 (m, 1H), 5.12 (s, 2H), 4.80-4.79 (m, 1H), 4.38-4.37 (m, 1H), 4.15-4.14 (m, 1H), 3.00 (d, 1H, \(^3J = 3.3\) Hz), 2.98 (d, 1H, \(^3J = 3.3\) Hz) ppm.
Hz), 2.60 (d, 1H, $^3J = 6.3$ Hz), 2.55 (d, 1H, $^3J = 6.3$ Hz), 2.30-2.28 (m, 1H), 2.23-2.22 (m, 1H), 2.05-1.99 (m, 2H), 1.77-1.76 (m, 1H), 1.44 (s, 9H), 1.35-1.34 (m, 1H), 0.89-0.86 (m, 6H), 0.80-0.78 (m, 6H) ppm. 13C-NMR (CDCl$_3$, 75 MHz): δ=200, 172.1, 171.6, 170.8, 67.4, 156.6, 135.9, 128.7, 128.4, 128.1, 122.8, 82.1, 57.5, 54.5, 49.8, 45.8, 45.2, 41.1, 37.4, 36.5, 28.0, 28.0, 24.5, 23.3, 23.0, 21.7 ppm. MS (ESI): m/z = 533 (M$^+$).

16 (BSc2129). The title compound was prepared from 15 (BSc2118) according to the same procedure in 84% yield. 1H-NMR (DMSO-d$_6$, 300 MHz): δ = 9.8 (s, 1H), 9.37 (s, 1H), 8.30 (d, 1H, $^3J = 8.3$ Hz), 8.24 (d, 1H, $^3J = 7.3$ Hz), 7.36-7.34 (m, 5H), 5.22-5.21 (m, 1H), 5.12 (s, 2H), 4.80-4.79 (m, 1H), 4.5-4.45 (m, 1H), 4.15-4.10 (m, 1H), 3.30-3.29 (m, 1H), 2.60-2.59 (m, 1H), 2.55-2.54 (m, 1H), 2.30-2.29 (m, 1H), 2.23-2.22 (m, 1H), 2.05-1.99 (m, 2H), 1.77-1.76 (m, 1H), 1.35-1.34 (m, 1H), 0.89-0.88 (m, 6H), 0.80-0.79 (m, 6H) ppm. 13C-NMR (DMSO-d$_6$, 75 MHz): δ=200, 172.1, 171.6, 170.8, 67.4, 156.6, 135.9, 128.7, 128.4, 128.1, 122.8, 82.1, 57.5, 54.5, 49.8, 45.8, 45.2, 41.1, 37.4, 36.5, 24.5, 23.3, 23.0, 21.7 ppm. MS (ESI): m/z = 476 (M$^+$).

9 (BSc2207). The title compound was prepared from 33 according to the same procedure in 93% yield. 1H-NMR (CDCl$_3$, 300 MHz): δ=7.67 (d, 1H, $^3J = 8.3$ Hz), 7.4 (d, 1H, $^3J = 9.2$ Hz), 7.26 (d, 1H, $^3J = 8.4$ Hz), 4.7-4.63 (m, 2H), 4.43-4.33 (m, 2H), 4.04-3.94 (m, 2H), 3.59-3.54 (m, 1H), 3.53-3.43 (m, 1H), 3.30 (dd, 1H, $^3J = 4.8$ Hz, $^2J = 17.0$ Hz), 2.8 (dd, 1H, $^3J = 4.8$ Hz, $^2J = 17.0$ Hz), 2.65-2.55 (m, 1H), 2.54-2.45 (m, 1H), 2.15-2.05 (m, 2H), 2.0 (d, 3H, $^3J = 15.0$ Hz), 1.44 (s, 9H), 0.9-0.87 (m, 6H), 0.80-0.78 (m, 6H) ppm. 13C-NMR (CDCl$_3$, 75 MHz): δ = 172.5, 172.3, 171.6, 169.9, 82.0, 66.6, 53.4, 50.4, 49.5, 40.8, 39.7, 35.9, 28.4, 25.0, 24.7, 22.9, 23.2, 22.1 ppm. MS (EI): m/z = 443 (M$^+$).

10 (BSc2195). The title compound was prepared from 34 according to the same procedure in 88% yield. 1H-NMR (CDCl$_3$, 300 MHz): δ = 8.26 (d, 1H, $^3J = 7.2$ Hz), 7.59 (m, 5H, ArH), 6.70 (d, 1H, $^3J = 7.3$ Hz), 6.35 (d, 1H, $^3J = 7.0$ Hz), 5.20 (s, 2H), 4.62-4.48 (m, 1H), 4.44-4.42 (m, 1H), 4.01-4.00 (m, 1H), 3.98-3.97 (m, 1H), 3.91-3.90 (m, 1H), 2.89-2.88 (dm, 1H), 2.80-2.78 (m, 1H), 2.59-2.58 (m, 1H), 2.50-2.49 (m, 1H), 2.0-1.99 (m, 2H), 1.55-1.54 (m, 1H), 1.34 (s, 3H), 1.25-1.24 (m, 1H), 0.89 (dd, 6H, $^3J = 3.8$ Hz, 6.7 Hz), 0.80 (dd, 6H, $^3J = 3.8$ Hz, 6.7 Hz) ppm. 13C-NMR (CDCl$_3$, 75 MHz): δ = 175.5, 173.7, 173.0, 169.7, 128.8, 128.3, 68.5,
17 (BSc2208). The title compound was prepared from 10 (BSc2195) according to the same procedure in 74% yield. \(^1H-NMR \) (CDCl3, 300 MHz): \(\delta = 9.40 \) (s, 1H), 8.26 (d, 1H, \(^3J = 7.0 \) Hz), 7.28-7.19 (m, 5H), 6.70 (d, 1H, \(^3J = 7.0 \) Hz), 5.65 (d, 1H, \(^3J = 7.0 \) Hz), 5.30 (s, 2H), 4.82-4.81 (m, 1H), 4.35-4.33 (m, 1H), 3.96-3.95 (m, 1H), 2.80-2.79 (m, 1H), 2.75-2.74 (m, 1H), 2.49-2.48 (m, 1H), 2.45-2.44 (m, 1H), 2.0-1.98 (m, 2H), 1.51-1.50 (m, 1H), 1.30 (s, 3H), 1.25-1.24 (m, 1H), 0.89 (dd, 6H, \(^3J = 3.8 \) Hz, 6.4 Hz), 0.80 (dd, 6H, \(^3J = 3.8 \) Hz, 6.4 Hz) ppm. \(^{13}C-NMR \) (CDCl3, 75 MHz): \(\delta = 200, 174.5, 173.5, 173.0, 166.7, 128.6, 128.3, 68.5, 41.4, 40.8, 40.2, 35.6, 34.4, 31.1, 23.5, 22.1, 23.9, 23.6, 22.9 \) ppm. \(MS \) (EI): \(m/z = 477 \) (M\(^+\)).

11 (BSc2196). The title compound was prepared from 34 according to the same procedure in 77% yield. \(^1H-NMR \) (CDCl3, 300 MHz): \(\delta = 7.29-7.19 \) (m, 10H), 6.65 (d, 1H, \(^3J = 7.0 \) Hz), 6.33 (d, 1H, \(^3J = 7.0 \) Hz), 5.35 (d, 1H, \(^3J = 7.0 \) Hz), 5.28-5.17 (m, 4H), 4.22-4.21 (m, 1H), 4.0-3.99 (m, 1H), 3.74-3.73 (m, 1H), 3.66-3.65 (m, 1H), 3.22-3.21 (m, 1H), 2.99-2.98 (m, 1H), 2.92-2.91 (m, 1H), 2.62-2.60 (d, 1H), 2.50-2.51 (d, 1H), 2.4-2.3 (m, 2H), 1.57-1.56 (m, 1H), 1.24-1.23 (m, 1H), 0.87 (dd, 6H, \(^3J = 3.8 \) Hz, 6.4 Hz), 0.80 (dd, 6H, \(^3J = 3.8 \) Hz, 6.4 Hz) ppm. \(^{13}C-NMR \) (CDCl3, 75 MHz): \(\delta = 172.4, 172.0, 170.2, 156.8, 142.8, 135.8, 128.7, 68.5, 67.2, 62.2, 52.0, 49.8, 49.2, 41.6, 40.4, 33.1, 22.4, 22.1, 21.6, 21.1, 19.5, 18.3 \) ppm. \(MS \) (EI): \(m/z = 569 \) (M\(^+\)).

18 (BSc2197). The title compound was prepared from 11 (BSc2196) according to the same procedure in 74% yield. \(^1H-NMR \) (CDCl3, 300 MHz): \(\delta = 9.33 \) (s, 1H), 7.26-7.19 (m, 10H), 7.03 (d, 1H, \(^3J = 7.0 \) Hz), 6.41 (d, 1H, \(^3J = 7.0 \) Hz), 5.66 (d, 1H, \(^3J = 7.0 \) Hz), 5.23-4.95 (m, 4H), 4.26-4.13 (m, 1H), 4.12-4.03 (m, 1H), 3.57-3.54 (m, 1H), 2.94 (d, 1H, \(^3J = 7.3 \) Hz), 2.72 (d, 1H, \(^3J = 7.3 \) Hz), 2.02 (d, 1H, \(^3J = 10.0 \) Hz), 1.99 (d, 1H, \(^3J = 10.0 \) Hz), 1.57-1.44 (m, 2H), 1.45-1.42 (m, 1H), 1.24-1.99 (m, 1H), 0.87 (dd, 6H, \(^3J = 3.8 \) Hz, 6.4 Hz), 0.80 (dd, 6H, \(^3J = 3.8 \) Hz, 6.4 Hz) ppm. \(^{13}C-NMR \) (CDCl3, 75 MHz): \(\delta = 200, 173.4, 172.6, 171.2, 156.8, 142.8, 138.8, 128.7, 66.5, 65.2, 52.0, 49.7, 48.2, 41.7, 40.6, 33.5, 22.6, 22.3, 21.9, 21.5, 19.4, 18.0 \) ppm. \(MS \) (ESI): \(m/z = 567 \) (M\(^+\)).

12 (BSc2194). The title compound was prepared from 34 according to the same procedure in 90% yield. \(^1H-NMR \) (CDCl3, 300 MHz): \(\delta = 7.32-7.28 \) (m, 5H), 7.01 (d, 1H, \(^3J = 7.0 \) Hz),
6.33 (d, 1H, $^3J = 7.0$ Hz), 5.32 (s, 2H), 4.91 (d, 1H, $^3J = 7.0$ Hz), 4.25-4.22 (m, 1H), 4.08-4.06 (m, 1H), 3.98-3.97 (m, 1H), 3.68-3.65 (dd, 2H), 2.99-2.97 (m, 1H), 2.92 (d, 1H, $^3J = 7.3$ Hz), 2.59 (d, 1H, $^3J = 7.3$ Hz), 2.50 (d, 1H, $^3J = 7.3$ Hz), 1.97-1.87 (m, 2H), 1.55-1.54 (m, 1H), 1.34 (s, 9H), 1.24-1.23 (m, 1H), 0.89 (dd, 6H, $^3J = 3.8$ Hz, 6.4 Hz), 0.80 (dd, 6H, $^3J = 3.8$ Hz, 6.4 Hz) ppm. 13C-NMR (CDCl$_3$, 75 MHz): $\delta = 172.8, 172.4, 170.1, 155.8, 135.4, 128.6, 77.1, 76.6, 67.2, 49.0, 45.8, 45.2, 35.6, 34.4, 33.1, 23.7, 22.4, 22.1, 21.6, 21.1, 19.5, 18.3 ppm. MS (EI): $m/z = 535$ (M$^+$.)

19 (BSc2158). A suspension of NaH in mineral oil (60%, 291 mg, 7.3 mmol) in THF (2 mL, abs.) was treated with (S-)(-)-phenylglycinol (500 mg, 3.6 mmol) at -15°C under argon atmosphere and stirred for 20 min. The mixture was cooled to -55°C prior to the addition of trichloroethylene (400 μL, 4.5 mmol) in THF (2 mL). The mixture was warmed to ambient temperature within 5 h, quenched with water (40 mL) and extracted with Et$_2$O (60 mL). The organic layer was separated, washed with brine (40 mL), dried (Na$_2$SO$_4$), and concentrated. The crude oil was purified by LC to give dichlorovinyl ether 35 (347 mg, 56%).

To a mixture of Z-Leu-Leu-OH (378 mg, 1.0 mmol), EDAC (192 mg, 1.0 mmol) and HOBt (170 mg, 1.1 mmol) DMF (2 mL) was added. The resulting solution was stirred vigorously for 10 min, then dichlorovinyl ether 35 (200 mg, 1.2 mmol) and Et$_3$N (0.28 mL, 2.0 mmol) were added. The solution was stirred for 2 h. DCM (40 mL) was added and washed with hydrochloric acid (0.1 N, 3 x 30 mL), aqueous NaHCO$_3$ (sat., 3 x 30 mL), and water (3 x 30 mL). The organic layer was dried (Na$_2$SO$_4$) and the solvent removed under vacuum to yield 19 (BSc2158) (403 mg, 77%). 1H-NMR (DMSO-d$_6$, 300 MHz): $\delta = 8.52$ (d, 1H, $^3J = 8.3$ Hz), 8.33 (d, 1H, $^3J = 8.3$ Hz), 7.44 (d, 1H, $^3J = 8.2$ Hz, NH-Leu1), 7.40-7.28 (m, 10H), 6.07 (s, 1H), 5.19-5.12 (m, 1H), 5.00 (s, 2H), 4.45-4.40 (m, 1H), 4.22-4.11 (m, 2H), 4.08-4.01 (m, 1H), 1.65-1.35 (m, 6H), 0.90-0.78 (m, 12H) ppm. 13C-NMR (DMSO-d$_6$, 75 MHz): $\delta = 172.0, 171.5, 155.8, 142.2, 138.4, 136.9, 128.2, 127.7, 127.6, 127.4, 127.5, 126.9, 97.7, 73.0, 65.2, 53.0, 51.4, 50.8, 40.8, 40.6, 24.1, 24.0, 22.6, 21.9, 21.6, 21.3 ppm. MS (EI): $m/z = 480$ (Z-Leu-Leu-C$_9$H$_9$).

20 (BSc2166). Dichlorovinyl ether 36 (178 mg, 25%) was synthesized from (S)-(-)-leucinol (400 mg, 3.4 mmol) according to the synthesis of dichlorovinyl ether 35. The reaction was started at -70°C, warmed to ambient temperature over night, then stirred for another 60 h.
Coupling of 36 (100 mg, 0.47 mmol) with Z-Leu-Leu-OH (100 mg, 0.47 mmol) afforded product 20 (BSc2166) (143 mg, 63%). 1H-NMR (DMSO-d$_6$, 300 MHz): $\delta = 7.92$ (d, 1H, $^3J = 5.1$ Hz), 7.70 (d, 1H, $^3J = 5.1$ Hz), 7.48 (d, 1H, $^3J = 4.2$ Hz), 7.40-7.31 (m, 5H), 6.05 (s, 1H), 5.05 (s, 2H), 4.33-4.29 (m, 1H), 4.08-4.03 (m, 2H), 3.87-3.85 (m, 2H), 1.60-1.41 (m, 9H), 0.90-0.88 (m, 18H) ppm. 13C-NMR (DMSO-d$_6$, 75 MHz): $\delta = 171.9$, 171.5, 155.8, 142.9, 137.0 128.2, 127.7, 127.5, 97.9, 73.3, 65.3, 53.1, 50.9, 45.7, 40.9, 40.0, 39.8, 24.11, 24.08, 23.85, 23.16, 22.92, 22.87, 21.80, 21.50, 21.5 ppm. MS (EI): $m/z = 460$ (Z-Leu-Leu-C$_6$H$_4$N$^+$), 295 (CO-Leu-C$_6$H$_6$Cl$_2$NO$^+$).

Scheme 2 Synthesis of dichlorovinyl ethers 19 (BSc2158) and 20 (BSc2166)

21 (BSc2167). An oven dried round bottom flask was charged with Zn(OTf)$_2$ (168 mg, 0.45 mmol) and (-)-ephedrine (84 mg, 0.50 mmol) under argon atmosphere. Et$_3$N (51 mg, 70 μL, 0.50 mmol) was added in dry toluene (2 mL) and stirred at room temperature for 2 h. 3 (MG132) (200 mg, 0.42 mmol) and phenylacetylene (52 mg, 56 μL, 0.50 mmol) were added after further 15 min and stirred at 60$^\circ$C for 20 h. CH$_2$Cl$_2$ (40 mL) and an aqueous KH$_2$PO$_4$/Na$_2$HPO$_4$-buffer (30 mL, pH = 5.5) were added, the organic layer was separated and the aqueous phase extracted with CH$_2$Cl$_2$ (2 x 30 mL). The combined organic layers were dried (Na$_2$SO$_4$) and the solvent removed in vacuo. The crude product was purified by LC to yield 21 (BSc2167) (260 mg, 54%). 1H-NMR (DMSO-d$_6$, 300 MHz): $\delta = 8.46-8.37$ (m, 1H), 7.50-7.47 (m, 1H), 7.43-7.19 (m, 10H), 5.20-5.11 (m, 1H), 5.00-4.95 (m, 2H), 4.57-4.49 (m,
2H), 4.13-4.03 (m, 2H), 1.80-1.24 (m, 9H), 0.90-0.53 (m, 18H) ppm. 13C-NMR (DMSO-d$_6$, 75 MHz): $\delta =$ 174.2, 174.7, 156.9, 139.5, 131.2, 127.9, 127.8, 127.6, 127.3, 126.5, 126.3, 98.1, 80.0, 63.1, 62.8, 54.5, 52.9, 46.8, 40.9, 40.3, 36.9, 24.7, 24.2, 24.0, 23.2, 23.1, 22.9, 21.4, 21.2, 20.7 ppm. MS (EI) $m/z =$ 446 (Z-Leu-Leu-C$_5$H$_{11}$), 257 (CO-Leu-C$_6$H$_{13}$O$^+$).

Scheme 3 Addition of phenylacetylene to aldehyde 3 (MG132)

22 (BSc2160). Z-Leu-Leu-OH (151 mg, 0.4 mmol) and (S)-3-amino-1-chloro-5-methylhexan-2-one (80 mg, 0.4 mmol) were coupled as described for 19 (BSc2158). The crude product was purified by LC to give 22 (BSc2160) (32 mg, 16%). 1H-NMR (CDCl$_3$, 300 MHz): $\delta =$ 7.35-7.19 (m, 5H), 6.81-6.73 (m, 1H), 6.41-6.32 (m, 1H), 5.16 (d, 1H, $^3J =$ 5.1 Hz), 5.03 (s, 2H), 4.64-4.61 (m, 1H), 4.35-4.06 (m, 3H), 1.87-1.40 (m, 9H), 0.92-0.73 (m, 18H) ppm. 13C-NMR (CDCl$_3$, 75 MHz): $\delta =$ 201.4, 172.7, 172.3, 156.6, 136.2, 128.6, 128.3, 128.0, 67.2, 55.0, 53.8, 51.8, 47.1, 41.4, 40.6, 39.6, 24.9, 24.8, 23.3, 22.9, 22.7, 22.6, 22.3, 22.2, 21.5 ppm. MS (EI): $m/z =$ 488 (Z-Leu-Leu-Leu-CH$_2$), 432 (OCO-Leu-Leu-Leu-CH$_2$Cl$^+$).

Scheme 4 Synthesis of α-chloromethyl ketone 22 (BSc2160)

23 (BSc2159). 3 (MG132) (300 mg, 0.63 mmol), benzyl isonitrile (116 µl, 0.95 mmol), and pyridine (204 µl, 2.53 mmol) were dissolved in CH$_2$Cl$_2$ (2.0 mL) and cooled to -10°C. Trifluoroacetic acid (97 µL, 1.26 mmol) was added dropwise ($T < 0^\circ$C) under argon
atmosphere over 15 min. Cooling was maintained for 2 h, followed by additional 72 h at room
temperature. CH$_2$Cl$_2$ (50 mL) was added and washed with hydrochloric acid (0.1 N, 3 x 30 ml),
aqueous NaHCO$_3$ (sat., 3 x 30 mL) and brine (3 x 40 ml). The organic phase was dried
(Na$_2$SO$_4$) and purified by LC to give 23 (BSc2159) (191 mg, 50%). ¹H-NMR (CDCl$_3$, 300
MHz): $\delta = 7.51$-7.27 (s, 1H), 7.26-7.14 (m, 10H), 6.91-6.80 (m, 1H) 5.82-5.63 (m, 2H), 5.02-
4.90 (m, 2H), 4.35 (d, 1H, $^{3}J = 10.7$ Hz), 4.30-4.01 (m, 5H), 1.55-1.31 (m, 9H), 0.81-0.73 (m,
18H) ppm. ¹³C-NMR (CDCl$_3$, 75 MHz): $\delta = 173.3, 172.7, 172.6, 157.5, 138.0, 136.2, 128.9,
128.8, 128.6, 128.1, 127.9, 127.8, 73.5, 67.3, 53.9, 52.0, 51.7, 43.2, 42.4, 41.6, 25.0, 24.8,
23.3, 23.0, 22.1, 22.0, 21.6 ppm. MS (EI): $m/z = 610$ (M$^+$).

24 (BSc2185). 3 MG132 (145 mg, 0.3 mmol) and 3-picolyl isonitrile (52 mg, 0.45 mmol)
were converted into α-hydroxyl amide 24 (BSc2185) according to the preparation of 23
(BSc2159). Purification by LC resulted 24 (BSc2185) (103 mg, 56%). ¹H-NMR (CDCl$_3$, 300
MHz): $\delta = 8.62$-8.36 (m, 2H), 7.71-7.50 (m, 2H), 7.28-7.20 (m, 6H), 7.05-6.96 (m, 1H) 5.92-
5.57 (m, 2H), 5.00 (s, 2H), 4.72-4.56 (m, 1H), 4.46-4.10 (m, 5H), 1.79 (s, 1H), 1.62-1.18 (m,
9H), 0.92-0.73 (m, 18H) ppm. ¹³C-NMR (DMSO-d$_6$, 75 MHz): $\delta = 172.4, 171.9, 171.2,
155.8, 148.9, 147.9, 137.0, 135.2, 135.0, 128.2, 127.7, 127.6, 123.2, 73.8, 65.2, 53.0, 51.0,
49.2, 42.8, 40.6, 37.1, 24.1, 23.7, 22.2, 23.0, 21.8, 21.7, 21.6, 21.1 ppm. MS (EI) $m/z = 611$
(M$^+$).

25 (BSc2186). 3 MG132 (200 mg, 0.42 mmol) and phenyl isonitrile (65 mg, 0.63 mmol) were
converted into α-hydroxyl amide 25 (BSc2186) according to the preparation of 23 (BSc2159).
The crude product was purified by LC to give 25 (BSc2186) (70 mg, 28%). ¹H-NMR
(DMSO-d$_6$, 300 MHz): $\delta = 8.27$ (s, 1H), 7.72-7.57 (m, 2H), 7.37-7.20 (m, 7H), 7.11-7.01 (m,
2H), 6.11-6.08 (m, 1H), 5.95-5.92 (m, 1H), 5.07 (s, 2H), 4.30-4.24 (m, 2H), 4.07-3.99 (m,
2H), 1.57-1.32 (m, 9H), 0.88-0.61 (m, 18H) ppm. ¹³C-NMR (DMSO-d$_6$, 75 MHz): $\delta = 172.0,
171.1, 171.0, 155.7, 138.3, 137.0, 128.4, 128.2, 127.6, 127.5, 123.5, 119.5, 65.2, 52.7, 52.9,
26 (BSc2187). \(\alpha\)-Hydroxyl amide 23 (BSc2159) (40 mg, 0.065 mmol) and IBX (36 mg, 0.13 mmol) were dissolved in DMSO and stirred at room temperature for 12 h. DCM (40 mL) and water (30 mL) were added prior to filtration The organic layer was separated and washed with water (2 x 40 mL), aqueous NaHCO₃ (1 x 40 mL, 0.05 N) and water (1 x 30 mL). The organic layer was dried (Na₂SO₄) and the solvent removed in vacuo to give 26 (BSc2187) (22 mg, 56%).

\[\text{1H-NMR (CDCl}_{3}, 300 MHz): \delta = 7.50-7.41 (m, 1H), 7.41-7.14 (m, 10H), 6.91-6.80 (m, 1H) 5.58-5.54 (m, 1H), 5.27-5.21 (m, 1H), 5.03-4.94 (m, 2H), 4.43-4.31 (m, 3H), 4.19-4.03 (m, 2H), 1.64-1.12 (m, 9H), 0.92-0.74 (m, 18H) ppm. } \]

\[\text{13C-NMR (CDCl}_{3}, 75 MHz): \delta = 191.8, 172.6, 171.8, 161.4, 156.4, 136.9, 136.3, 128.9, 128.9, 128.6, 128.3, 128.1, 128.0, 67.2, 53.6, 53.3, 51.6, 43.4, 41.5, 40.86, 40.0, 25.3, 24.8, 23.8, 23.7, 23.3, 23.0, 22.8, 22.4, 22.1, 21.5 ppm. } \]

\[\text{MS (EI) } m/z = 596 (M^+). \]

27 (BSc2188). 24 (BSc2185) was oxidized according to the synthesis of 26 (BSc2187). Purification by LC afforded 27 (BSc2188) (60 mg, 49%).

\[\text{1H-NMR (CDCl}_{3}, 300 MHz): \delta = 8.46-8.44 (m, 2H), 7.64-7.47 (m, 2H), 7.24-7.12 (m, 6H), 6.85-6.82 (m, 1H), 5.54-5.47 (m, 1H), 5.22-5.15 (m, 1H), 5.04-4.93 (m, 2H), 4.46-3.99 (m, 4H), 1.62-1.16 (m, 9H), 0.92-0.76 (m, 18H) ppm. } \]

\[\text{13C-NMR (CDCl}_{3}, 75 MHz): \delta = 196.4, 172.6, 171.9, 159.8, 156.4, 149.3, 149.2, 136.2, 135.9, 133.0, 128.7, 128.3, 128.0, 123.8, 67.2, 53.7, 53.3, 51.5, 41.4, 40.8, 40.6, 39.9, 25.0, 24.8, 23.3, 23.0, 22.1, 22.0 ppm. } \]

\[\text{MS (EI): } m/z = 609 (M^+), 474 (Z-Leu-Leu-C₆H₁₂NO^+). \]

28 (BSc2189). 25 (BSc2185) (200 mg, 0.35 mmol) was oxidized according to the synthesis of 26 (BSc2187). Purification by LC afforded 28 (BSc2189) (30 mg, 50%).

\[\text{1H-NMR (CDCl}_{3}, 300 MHz): \delta = 8.58 (s, 1H), 7.56-7.54 (m, 2H), 7.29-7.19 (m, 7H), 7.11-7.00 (m, 1H), 6.75 (d, 1H, } ^{3}J = 9.0 Hz), 6.63 (d, 1H, } ^{3}J = 9.1 Hz), 5.36-5.28 (m, 2H), 5.07 (s, 2H), 4.51-4.41 (m, 1H), 4.19-4.11 (m, 1H), 1.97-1.41 (m, 9H), 0.93-0.77 (m, 18H) ppm. } \]

\[\text{13C-NMR (CDCl}_{3}, 75 } \]
MHz): \(\delta = 196.8, 172.5, 171.8, 157.2, 156.4, 136.3, 136.2, 129.3, 129.2, 128.7, 125.5, 120.0, 67.3, 53.7, 53.0, 51.6, 41.3, 40.6, 40.9, 25.4, 25.4, 24.8, 23.3, 23.0, 22.8, 22.2, 22.1, 21.5 \) ppm.

MS (EI): \(m/z = 474 \) (Z-Leu-Leu-C\(_6\)H\(_{12}\)NO\(^+\)).

3 MG132

1.) pyridine, isonitrile, CH\(_2\)Cl\(_2\)
2.) trifluoroacetic acid

benzyl isonitrile: 50%
3-picoly isonitrile: 56%
phenyl isonitrile: 28%

\[R = \text{IBX, DMSO} \]

N\(_2\)H\(_2\)OH

\[R \]

Leu

Leu

Z

\[\text{Scheme 5 Passerini reaction and following oxidation to } \alpha\text{-keto amides.} \]
2-Iodoethanols from aldehydes, diiodomethane and isopropylmagnesium chloride

Hannes A. Braun, Reinhard Meusinger and Boris Schmidt*

Darmstadt Technical University, Clemens Schönfl-Institute for Organic Chemistry and Biochemistry, Petersenstr. 22,
D-64287 Darmstadt, Germany

Received 18 January 2005; revised 15 February 2005; accepted 16 February 2005

Abstract—Diiodomethane and iodoform react with i-PrMgCl by halogen–metal exchange. The resulting magnesium reagents tolerate several functional groups, but aldehydes are converted selectively into iodoethanols in good to high yields. These mild reagents preserve racemization prone centres. The substrate controlled diastereoselectivity provides straightforward access to important intermediates of peptidomimetics.

© 2005 Elsevier Ltd. All rights reserved.

Keywords: Halogen–metal exchange; Iodomethane; Protease inhibitors.

Here we report the efficient synthesis of 2-iodoethanols and 2,2-diiodoethanols from safe and convenient precursors. Seeking a safer replacement of methyllithium, we decided to investigate i-PrMgCl, which has a remarkable potential for iodine–magnesium exchanges. The late G. Köbrich already reported the halogen–metal exchange of bromoform and dibromomethane with n-BuLi. On the contrary, the analogous chloro compounds react by deprotonation. The former reactivity continues in diiodomethane and iodoform, and may be improved by magnesium alkyls. We expected these magnesium reagents to favour late transition states, to tolerate a wide range of functional groups, to display reduced basicity, and thus allow stereoselective conversion of polyfunctional peptides. The rate of the halogen–metal exchange depends on the electron density to a great extent that the stepwise activation of geminal diiodides is feasible. The detailed kinetics and energetics were reported by Hoffmann and the potential of this reaction was revealed in a number of publications already. The activation of iodoform or diiodomethane by i-PrMgCl proceeded rapidly in tetrahydrofuran at −78 °C (Scheme 1).

The addition of i-PrMgCl to aldehydes was considerably slower at this temperature. Addition of an aldehyde after complete iodo-magnesium exchange (15 min) resulted in similar yields and selectivities as obtained for the simultaneous addition (Table 1). Both C1 nucleophiles, which are derived from long-lived ate complexes, reacted with aldehydes (1a–d) at −78 °C.
to the β-iodo-(2a–d) and β-diido compounds (3a and b). The formation of epoxides was not observed even at 0 °C for 2 h. These results are similar to the samarium methodology,8 but complement the diiodomethane derived lithium reagents, which provide epoxides.6

The turnover of 1e was remarkably slow, it reacted just marginally under these conditions. Consequently, the formylacetophenone 1d underwent iodomethylation at the aldehyde only. The benzoic anhydride 1f underwent rapid conversion into a multitude of unidentified products. The conversion of the acid chloride 1g did not take place, but reactivity could have been enhanced by either chelation assistance or the reported trans-metallation into a copper reagent.15 The differences between the two nucleophilic reagents (Scheme 1) became apparent in the reaction with cinnamic aldehyde, which was converted into the cyclopropyl-methanol 2b by diiodomethane and into the anticipated diiodinated allyl alcohol 3b by CHI3. Two pathways lead to the cyclopropane 2b: (a) an initial Michael addition is followed by cyclization and iodomethylation,16 or (b) an iodomethylation of the aldehyde is followed by a Simmons–Smith-like cyclopropanation, which is reported to occur with high syn-stereoselectivity, but modest yields for CH2I2/i-PrMgCl and allyl alcohols.17 Therefore, we have monitored the reaction at different ratios of aldehyde and CH2I2/i-PrMgCl to establish the mode of action. The allyl alcohol 4 (Scheme 2) was identified as the dominant intermediate, which was converted into 2b by a second equivalent of CH2I2/i-PrMgCl. The exclusive anti-configuration of the cyclopropane was determined by NMR spectroscopy and revealed the dormant carbenoid reactivity. The relative configuration of the alcohol was tentatively assigned in analogy to the results of Bolm and Pupowicz.17

The reaction of the Evans imide 5 with CH2I2/i-PrMgCl (Scheme 3) resulted in the unexpected, selective iodomethylation of the urethane to furnish the iodoacetate 6, initially in low yield. However, when the reaction mixture was kept at −25 °C for three days we obtained 6 as a single product. There is precedence for this reactivity of Evans imides.18 Vinylmagnesium chloride reacted in a similar fashion to result in vinylation of the urethane. A tetrahedral intermediate, similar to Weinreb-amides, was suggested for this monoalkylation.

Table 1. Reactions of aldehydes, ketones and carboxylic acid derivatives according to Scheme 1 with 2.0 equiv of CH2I2 or CHI3 and i-PrMgCl

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Aldehyde</th>
<th>Product</th>
<th>Yield [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH2I2/i-PrMgCl</td>
<td>PhO</td>
<td>PhOH2a</td>
<td>96%</td>
</tr>
<tr>
<td>CH2I2/i-PrMgCl</td>
<td>PhO</td>
<td>PhOH2b</td>
<td>91b%</td>
</tr>
<tr>
<td>CH2I2/i-PrMgCl</td>
<td>PhO</td>
<td>PhOH2c</td>
<td>73%</td>
</tr>
<tr>
<td>CH2I2/i-PrMgCl</td>
<td>PhO</td>
<td>PhOH2d</td>
<td>69%</td>
</tr>
<tr>
<td>CHI3/i-PrMgCl</td>
<td>PhO</td>
<td>PhOH3a</td>
<td>91%</td>
</tr>
<tr>
<td>CHI3/i-PrMgCl</td>
<td>PhO</td>
<td>PhOH3b</td>
<td>82d%</td>
</tr>
<tr>
<td>CHI3/i-PrMgCl</td>
<td>PhO</td>
<td>PhOH3f</td>
<td>Conversion < 10%</td>
</tr>
<tr>
<td>CHI3/i-PrMgCl</td>
<td>PhO</td>
<td>PhOH3g</td>
<td>No reaction</td>
</tr>
</tbody>
</table>

[a] Isolated yields.
[b] Diastereomeric mixture: syn/anti 96:4, assigned by NMR.17
[c] Determined by HPLC.
[d] Contains 4% of 2,2-diido-1-(2-iodo-3-phenylcyclopropyl)ethanol (mixture of diastereomers, d.r. > 3:1) and 3% of 2,2-diido-1-(2-phenylcyclopropyl)ethanol.

to the β-iodo-(2a–d) and β-diido compounds (3a and b). The formation of epoxides was not observed even at 0 °C for 2 h. These results are similar to the samarium methodology,8 but complement the diiodomethane derived lithium reagents, which provide epoxides.6
After these initial experiments we addressed the iodomethylation of peptide aldehydes, which are important intermediates for the synthesis of protease inhibitors. The deprotonation of the acidic amides required 5-fold excess of the reagent. This was not a nuisance, because the deprotonation froze the configuration of the P1–P3 positions of the tripeptide mimetics 7a–d. The aldehydes were used as 3:1 mixtures of diastereomers, as obtained from the oxidation of alcohols by IBX in DMSO, followed by aqueous work up. The iodomethylation and diiodomethylation provided the compounds 8a–d and 9 (Scheme 4), apparently without epimerization of the P1 position as judged by HPLC. The diastereoselectivity of the reaction was always better than 2:1 as judged by HPLC.

The diastereoselectivity of the iodomethylation was investigated for the phenylalanine derived aldehyde 10 (Scheme 5). The conversion into β-iodoalcohol 11 was followed by substitution of the iodide with diethylamine. The product 12 was deprotected and the resulting amino alcohol was treated with triphosgene to give oxazolidinone 13 and care was taken not to separate the diastereomers.

NMR spectroscopy (13C NMR: γ-effect, NOE) confirmed the relative configuration (anti-syn d.r. = 86:14). This is in accordance with a chelation controlled Cram transition state and complements the samarium methodology which provides access to the diastereomer when the nitrogen is dibenzylated. The substrate controlled diastereoselectivity provides straightforward access to important intermediates of peptidomimetics. The chiral induction by additional ligands is subject to ongoing investigations.

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (SPP1085 SCHM1012-3) and the EU contract LSHM-CT-2003-503330 (APOPIS).

Supplementary data

References and notes

Supplementary data

2-Iodoethanols from aldehydes, diiodomethane and iso-propylmagnesium chloride

Hannes A. Braun, Reinhard Meusinger, Boris Schmidt*

Darmstadt Technical University, Clemens Schöpf-Institute for Organic Chemistry and Biochemistry, Petersenstr. 22, D-64287 Darmstadt, Germany

1-Iodo-4-phenylbutan-2-ol (2a). iPrMgCl (4.0 mmol, 2.0 mL of a 2.0 M solution in Et₂O) was added dropwise to a solution of diiodomethane (1.07 g, 4.0 mmol) in THF (8 mL, abs.) at -78°C under argon atmosphere. A solution of 3-phenylpropanal (274 mg, 2.04 mmol) in THF (1 mL, abs.) was added and the resulting mixture was stirred at the same temperature for 15 min and at 0°C for 1 h. The mixture was quenched with aqueous NH₄Cl (5 mL, sat.) and extracted with CH₂Cl₂ (3x 20 mL). The combined organic layers were dried (Na₂SO₄) and concentrated under vacuum. The crude product was purified by LC (CHCl₃) to give alcohol 2a (541 mg, 96%). ¹H-NMR (CDCl₃, 300 MHz): δ = 7.37-7.01 (m, 5H), 3.46-3.41 (m, 1H), 3.31-3.26 (m, 1H), 3.19-3.13 (m, 1H), 2.75-2.59 (m, 2H), 1.99 (s, 1H), 1.82-1.75 (m, 2H) ppm. ¹³C-NMR (CDCl₃, 75 MHz): δ = 141.4, 128.7, 128.6, 126.2, 70.3, 38.3, 32.1, 16.7 ppm. MS (EI): m/z = 276 (M⁺).

(S)-2-Acetamido-3-phenylpropyl 2-iodoacetate (6). iPrMgCl (2.3 mmol, 1.15 mL of a 2.0 M solution in THF) was added dropwise to a solution of diiodomethane (616 mg, 2.3 mmol) in THF (4 mL, abs.) at -78°C under argon atmosphere. A solution of (S)-3-acetyl-4-benzyloxazolidin-2-one (100 mg, 0.46 mmol) in THF (1 mL, abs.) was added and the resulting mixture was stirred at the same temperature for 15 h and at -25°C for 3 d. The mixture was quenched with aqueous NH₄Cl (5 mL, sat.) and extracted with CH₂Cl₂ (3x 20 mL). The combined organic layers were dried (Na₂SO₄) and concentrated under vacuum. The crude product was purified by LC (CHCl₃) to give acetate 6 (138 mg, 82%). ¹H-NMR (CDCl₃, 300 MHz): δ = 7.27-7.12 (m, 5H), 5.70 (d, J = 6.0 Hz, 1H), 4.44-4.34 (m, 1H), 4.11-4.00 (m, 2H), 3.65 (s, 2H), 2.89-2.74 (m, 2H), 1.89 (s, 3H) ppm. ¹³C-NMR (CDCl₃, 75 MHz): δ = 169.9, 168.9, 136.9, 136.9, 129.3, 128.8, 127.0, 66.0, 49.6, 37.4, 23.5, -5.7 ppm. MS (EI): m/z = 361.2 (M⁺).

(4S,5S)-5-((Diethylamino)methyl)-4-benzyloxazolidin-2-one (13). iPrMgCl (3.08 mmol, 1.54 mL of a 2.0 M solution in THF) was added dropwise to a solution of diiodomethane (825 mg, 3.08 mmol) in THF (8 mL, abs.) at -78°C under argon atmosphere. A solution of benzyl (S)-1-formyl-2-phenylethylcarbamate 10 (248 mg, 0.88 mmol) was added and the resulting mixture was stirred at the same temperature for 15 min and at 0°C for 90 min. The mixture was quenched with aqueous NH₄Cl (5 mL, sat.) and extracted with CH₂Cl₂ (3x 20 mL). The combined organic layers were dried (Na₂SO₄) and concentrated under vacuum. The crude product was purified by LC (CHCl₃) to give alcohol 11 (292 mg, 78%). Alcohol 11 (244 mg, 0.57 mmol) was dissolved in EtOH (5 mL, abs.) and HNEt₂ (419 mg, 5.7 mmol). The mixture was heated under argon atmosphere to 60°C for 2 h and under reflux for 2 h. The crude product was purified by LC (system CHCl₃ to CHCl₃/MeOH 10:1) to afford amine 12 (201 mg, 95%). Amine 12 (201 mg, 0.54 mmol) was stirred with Pd/C catalyst (200 mg, 10wt%) in EtOH (4 mL, abs.) under H₂ atmosphere for 3 d to yield the deprotected compound (128 mg, quant.). The product (52 mg, 0.22 mmol) was dissolved in THF (8 mL, abs.). Triphosgene (130 mg, 0.44 mmol) was added and the reaction mixture was heated under reflux (argon
atmosphere) for 15 h. After 4 h and 8 h further triphosgene (2 × 130 mg, 0.44 mmol) was added. Ethyl acetate (50 ml) was added and washed with aqueous K₂CO₃ (3 × 30 mL, conc.). The organic layer was dried (Na₂SO₄) and concentrated under vacuum. The crude product was purified by LC (CHCl₃) to give oxazolidinone 13 (57 mg, 98%).

1H-NMR (CDCl₃, 300 MHz): δ = 7.29-7.10 (m, 5H), 5.51 (s, 1H), 4.28 (q, J = 5.8 Hz, 1H), 3.76 (q, J = 6.0 Hz, 1H), 2.87-2.72 (m, 2H), 2.62-2.37 (m, 6H), 0.88 (t, 6H) ppm.

13C-NMR (CDCl₃, 75 MHz): δ = 158.7, 136.4, 129.2, 129.0, 127.2, 126.7, 80.5, 57.6, 55.9, 47.9, 41.8, 12.0 ppm.

MS (EI): m/z = 262.2 (M+).
Drug Development and PET-Diagnostics for Alzheimer's Disease

Boris Schmidt*, Hannes A. Braun and Rajeshwar Narlawar

Clemens Schöpf-Institute for Organic Chemistry and Biochemistry, TU Darmstadt, Petersenstr. 22, D-64287 Darmstadt, Germany

Abstract: The exact cause of Alzheimer’s disease is still unknown; despite the dramatic progress in understanding. Most gene mutations associated with Alzheimer’s disease point to the amyloid precursor protein and amyloid β. The ε-, β- and γ-secretases are the three executioners of amyloid precursor protein processing. Significant progress has been made in the selective inhibition of these proteases, regardless of the availability of structural information. Several peptidic and non-peptidic leads were identified and first drug candidates are in clinical trials. Cholesterol lowering drugs and metal chelators are also in advanced clinical stages as disease modifiers. Successful trials demand either large cohorts or reliable markers for Alzheimer’s disease. Therefore, several radiomarkers are under investigation to support such clinical trials.

Keywords: Alzheimer’s disease, secretase, copper, statine, aspartic protease, cholesterol, imaging.

INTRODUCTION

Alzheimer's disease (AD), the most common dementia in elderly people, affects nearly 2% of the population in industrialised countries (http://www.alz.org). This epidemic neurodegenerative disorder claims millions of victims per year, not just erasing the memory of the patient, but effecting severe implications on the social environment. The AD prevalence equals 5.5 % above 60 years of age and increases for elderly people (clinical AD: 16% 85y, 22% 90y) [1, 2]. The onset of Alzheimer's disease is usually after 65 years of age, though earlier onset is not uncommon. As age advances, the incidence increases rapidly and roughly doubles every 5 years [1]. Age is the dominant risk factor overruling even the positive impacts of nutrition (low-fat diets), nutritional supplements after onset or education [3-5]. The socio-economic impact of AD, the care needed for disabled and chronically wasting patients, the consequences for patients, relatives and caretakers alike is a major social and financial issue for the coming decades. Current annual AD related expenditures total $83.9 billion in the US [6]. 14 million Americans are likely to be stricken by 2050 [7]. Despite all efforts, the exact cause of Alzheimer's disease is still unknown, but the pathways towards and away from Alzheimer's disease become better understood [8]. The process results in neuron and synapse degeneration, reduction of brain regions, memory loss and ultimately in death. There is progress in the definite diagnosis of AD prior to a post-mortem diagnosis. Problems arise from other causes of memory loss (e.g. vascular dementia). Several steps in the process offer potential for intervention, these include the amyloid cascade and plaque-related proteins [9], hyperphosphorylated tau protein [10, 11], zinc, copper and aluminium cations [12-14].

Established Therapies and Novel Approaches

Some 500 compounds are in development to treat neurodegenerative diseases. At least 10% of these are related to AD [15, 16]. The targets derive from a whole range of sometimes well-known receptors and enzymes: GSK-3, PDE 4 and muscarinic M1. nACh modulators, AChE inhibitors, NMDA modulators, 5-HT agonists and several vaccination projects (e.g. Elan, Cytos Biotechnology) are in advanced stages of research or development. The early rush on fibril formation inhibition resulted in a number of potent inhibitors thereof. However, the activities were confined to in vitro experiments or limited by poor DMPK properties, which excluded further development [17, 18]. Few drug candidates (e.g. SKF-74652, I [19], Scheme 1) went beyond animal testing and convincing clinical data are still wanted. Furthermore, the view on Aβ toxicity has changed dramatically. Plaques were seen as the true culprit and their removal was one of the therapy goals until 2001. Now, soluble Aβ and early oligomers have to take the blame for the Aβ associated effects. Thus, mature Aβ plaques may rather rest in peace.

Scheme 1. Aβ fibril formation inhibitor and memantine hydrochloride: NMDA receptor antagonist.

Cholinesterase inhibitors (AChEI) produce small improvements in cognitive and global assessments [20-23], but galantamine, tacrine, donepezil and rivastigmine do not address the severe mortality in the final stages of AD. 565 patients with mild to moderate Alzheimer’s disease entered a 12-week run-in period, in which they were randomly allocated to donepezil or placebo. There were no significant benefits for the 486 patients who completed the 2nd period until the primary endpoints: entry to institutional care and

*Address correspondence to this author at the Clemens Schöpf-Institute for Organic Chemistry and Biochemistry, TU Darmstadt, Petersenstr. 22, D-64287 Darmstadt, Germany E-mails: schmibo@oc.chemie.tu-darmstadt.de or BSC2@gmx.net or boris.schmidt@mail.de

© 2005 Bentham Science Publishers Ltd.
progression of disability [24, 25]. This outcome contradicts a previous report: the chosen AChEI was not cost effective, with benefits below minimally relevant thresholds [22]. Tacrine is losing ground to the other 3 AChE inhibitors because of hepatotoxic effects [6]. The message of these studies is obvious: better drugs are needed to target the cause of Alzheimer’s disease.

Thus, a causal therapy is still in utter demand, as no existing therapy effectively stops or even cures the disease. The incidence of early-onset of Alzheimer’s disease in Down’s syndrome patients indicated chromosome 21 as a likely hotspot for gene location. Mutations linked to early-onset Alzheimer’s disease afflicted families in London and Sweden, and additional polymorphisms, that either cause or further AD, provided some insight into the biological pathways and the involvement of the amyloid precursor protein (APP) [41-44]. The genetic background of AD is quite heterogeneous; a large number of gene associations has been made with localisations on almost every chromosome [45]. Replicated or confirmed associations are few: the late-onset AD is linked to the ε4-allele of APOE, but its presence is neither necessary nor sufficient to cause the disease, but there is a dose-dependent relation to the age of onset [46]. Another cluster of mutations is located on chromosome 14, on the gene encoding for presenilin 1 [47]. Mouse models expressing mutated human APP and presenilin 1 display many symptoms of AD, although no model represents the full range of pathologies of the human disease. Particularly, the inflammation processes in humans and mice do not adequately relate to each other [48]. The observed loss of neurons (mice [49]) is accompanied by

Scheme 2. NSAIDs effect Aβ levels [28, 29].

Scheme 3. APP amino acid sequence close to the cleavage sites and point mutations in Aβ numbering.
plaque formation consisting of amyloid β-peptide in the human perfrontal cortices. But there is mounting evidence for a second pool of insoluble Aβ in cholesterol enriched low-density membranes, where it moderates membrane fluidity [50].

A rational approach to a successful, causal therapy is based on the detailed understanding of Aβ formation, deposition and the inflammatory consequences. Decisive functions were assigned to the amyloid precursor protein (APP) and its degrading aspartic proteases β-secretase and the presenilins. A simplified APP processing is depicted in (Scheme 3). APP occurs in 3 isoforms: APP695, APP751 and APP771, this includes a large extramembranous sequence and the crucial membrane spanning domain, followed by a short cytoplasmic tail. The non-pathological cleavage occurs between Lys687-Leu688 (resp. K16L17 in Scheme 3) by the α-secretase, which belongs to the ADAM family and is suspected to be TACE or ADAM10.

This dominating event leaves just 10% of the APP behind for the β-secretase, produces α-APP and ultimately leads to the fragments p3 and C83. The α-secretase is sensitive to membrane cholesterol levels and can thus be modulated [51]. The most relevant point mutations for Aβ formation are K670-M671->NL and V717->Phe (Stockholm or Indiana), which cause familial Alzheimer’s dementia (FAD). The molecular basis of these point mutations is explained by their modulation of the secretases. The rate limiting β-secretase usually cleaves between the Met671-Asp672 residues, but prefer the preceding amino acids Asn670-Leu671 of the Swedish mutation over Lys670-Met671. The V717->Phe mutation accelerates cleavage after Ala714, which leads to the notorious Aβ42, the decisive factor in plaque formation. The released C-terminal fragment interacts in the cytoplasm with an adapter protein, Fe65, and finally induces apoptosis in H4 cells [52, 53]. It seemed too obvious to address Aβ deposits directly, either by inhibition of plaque formation or by enhanced plaque degradation. Several companies pursued strategies related to “plaque busters” [54], but clinical data for this mode of action are still lacking, and there is mounting evidence that plaques are not the real culprit, e.g. AD does not correlate well with total plaque load [247]. Both soluble Aβ and early oligomers are now commonly blamed to be toxic, particularly in the presence of copper cations (see copper section below). This hypothesis has its merits and is hard to falsify in vivo, as neither copper nor early fibrils are detectable at the necessary sub-cellular resolution by antibodies or atomic absorption spectroscopy (AAS) of brain slices. Fortunately, there is evidence for a common mechanism in amyloidogenic diseases. The identification of minimal amyloidic sequences and the detailed understanding of protein misfolding may hold the key to treat Aβ, tau and PrPSc associated pathologies [55, 56].

β-Secretase

β-Secretase was identified as an aspartic protease, despite the initial lack of selective inhibitors [57]. The key features of an aspartic protease were confirmed: the flexible flap region, which is crucial for substrate docking. The kinetics of statine-based inhibitors revealed a two state mechanism with structural reorganisation and activity modulation [58]. The two states: open and closed, contribute to selectivity and activity of the enzyme [59]. Two β-secretases are known BACE1 (ASP2 or memapsin2) and BACE2 (ASP1 or memapsin1), with high homology, but subtle differences in the active site and an additional disulfide bridge for BACE1 [7]. BACE2 causes additional cleavages close to Phe20, which are reminiscent of α-secretase activity [60, 61]. BACE1 is anchored to the membrane via its transmembrane domain (455-480) and may be active as a dimer [62]. BACE1 has a pro-peptide domain, which is cleaved by furin-like proteases to form mature enzyme. The C-terminal transmembrane domain of BACE1 is not strictly required for activity, but the localisation of both enzyme and substrate in the same membrane enhances kinetics and specificity. The C-terminal truncation seems to influence enzyme kinetics even in the absence of membranes. BACE1 maturation requires cysteine formation (Cys216/Cys420, Cys278/Cys443, Cys330/Cys380), N-glycosylation and pro-peptide removal. Cysteine mutants undergo impaired maturation, but obtain catalytic activity. The Cys330/Cys380 bridge was found to be the most important [63]. Crucial for assay development and animal models: BACE1-/- knockout mice are fertile and healthy, and display reduced Aβ levels [64]. Selectivity issues arise not only by other aspartic proteases, but by the homologous BACE2, which displays a less pathogenic APP cleavage pattern and a distinctly different localisation [60, 65, 66]. The Aβ peptide is released by a subsequent proteolysis at Val711-Ile712 or Ala713-Thr714 by the intramembrane protease: γ-secretase, resulting in Aβ40 and Aβ42. A detailed analysis of BACE distribution, structure, species variation, degradation and properties was published recently [67]. BACE inhibition is not the only way to modulate the BACE dependent APP cleavage. High levels of ceramide or improved raft association can extend the half life of BACE1 (16 h) [68].

![Fig. (1). BACE complexed to OM99-2 (8).](image)
hydrogen bonds are established between OM99-2 (8), the binding pocket and the flap region. Despite the analogies to other aspartic proteases, there are significant differences in the side chain preferences. S4, S3' are hydrophilic and readily accessible by water. The hydrophilic S4', which holds the phenylalanine, is located at the surface and contributes little to binding. The subsite specificity was revealed by the cleavage rates of combinatorial substrate mixtures and selective inhibitors. This resulted in Glu-Leu-Asp-Ψ(Leu-Ala)-Val-Glu-Phe (9, OM00-3, $K_i = 0.31$ nM), which is still the most potent inhibitor of β-secretase. The hydroxyl group of OM00-3 (9) is coordinated by the two active site aspartates Asp32 and Asp228 through four hydrogen bonds (PDB: 1M4H) [75, 77]. Although very similar to OM99-2 (8, Glu-Val-Asn-Ψ(Leu-Ala)-Ala-Glu-Phe), the P3, P2, and P2' residues are exchanged, resulting in a more linear and extended conformation at either end. The replacement of the P2' alanine by valine facilitates binding and allows re-orientation of the P3' glutamate and the P4' phenylalanine. This shifts the C-terminal residue towards the surface of the enzyme and exposes it to the solvent.

The crystal structure of free BACE (1SGZ) revealed a part of the flap to be locked in an "open" position [76]. The structure is essentially the same as BACE1 bound to an inhibitor, but the flap positions differ by 4.5 Å at the tips. The open position of the flap is stabilised by two intraflap hydrogen bonds and is anchored by a new hydrogen bond involving Tyr71 in a novel orientation. The resulting gorge may contribute to sequence and shape selection. A gatekeeper function was evident from the unusually small substituent Ala in P2' (8, 1FKN). Thr72 forms the narrowest point (6.5 Å in apo BACE) [248] between the flap and Arg235, Ser328, and Thr329 on the opposite side, and thus contributes to the specificity of BACE. This gatekeeper blocks the access of peptides carrying larger residues in this position, although pocket P1' provides more than enough space for a significantly larger residue [76]. The small interaction of the C-terminal end of the octapeptides OM99-2 (8) and OM00-3 (9) with the enzyme inspired the design of shorter peptidic inhibitors (10-13). Different peptidic inhibitors featuring the hydroxyethylene moiety and flanked by multitude of amino acid residues were published.
Scheme 4. BACE inhibitors I.

(Schemes 4 and 5) [78-82]. Remarkably, the compact P1'-Ala of potent inhibitors has never been replaced by a sterically more demanding group.

Several scaffolds are known to provide inhibitors for aspartic proteases. Statines, norstatines, hydroxyethylamines and hydroxyethylureas can be employed as transition state mimetics, yet with dramatic differences in potency. The Kiso inhibitor 11 (KMI-370, IC₅₀ = 3.4 nM, HEK-293 IC₅₀ = 0.20 μM) featured a short C-terminal dicarboxylic acid and displayed high activity in vitro and in vivo (BACE1-HEK293 cells EC₅₀ = 0.20 μM) [83]. Chen et al. synthesised Ψ(Phe-Ala)-based pentapeptide mimetics like 12 (IC₅₀ = 35 nM) and came to similar conclusions [84, 85]. The SAR of these two series postulated a benzyl or a 3,5-difluorobenzyl residue to occupy the P1 position as realised in compound 13 [86, 87]. A good part of the peptidic heritage was replaced by an isophthalamide [88], which functions as the N-terminus in
the compounds 14-21. The switch from the statine core to the hydroxyethylene isoster allowed the replacement of the carboxylic acids by smaller groups, and resulted in the compact inhibitors (16-19) with reduced molecular mass and fewer hydrogen bond donors.

The Elan compounds (13-19) have lost a good part of their peptidic origin, which is mandatory to obtain sufficient oral absorption and blood brain barrier penetration [89, 90]. Significant information was revealed by a novel BACE complexed to a transition state mimetic [91]. Soaking of apo BACE crystals (PDB: 1W50) with small peptidomimetics, which were known to be moderate inhibitors in FRET or cellular assays, resulted in the incorporation of 18 in the active site (PDB: 1W51, Fig. 3a). This peptide mimetic features the isophthalamide to mimic the S2-S4 section and was claimed to have an IC50 = 200 nM. Some 750 close analogues were revealed in patents by Takeda (20) [92], Glaxo [93], Upjohn Pharmacia, [94-96] Elan (19) [89, 97-

[99], Astex [100] and a Sunesis employee (21) [101]. But the amino alcohol 18 held a little surprise, despite the R-configuration of the alcohol, it was far more potent than its S-configured diastereomer or the parent ketone, and thus contradicted previous SAR of the absolute configuration. The neighbouring amine receives a proton from the catalytic Asp228 and places its benzyl substituent in the S2’ pocket. One of the N-propyl groups of the isophthalamide occupies the S3 pocket and is directed towards the phenyl ring in the S1 pocket. The phenyl rings in both the S1 and the S2’ pocket interact with Tyr71. The C-terminal methoxyphenyl is positioned in the S2’ pocket. This success in high-throughput crystallography enabled ASTEX to license out this programme to GSK in 2003.

Despite all efforts by the pharmaceutical companies and academic groups, non-peptidic leads for BACE inhibition are still few. The FRET assays of soluble BACE deliver false positive hits to such a degree, that it is mandatory to profile
potential hits in a reliable secondary assay, such as a radioligand displacement [102, 103]. This progress in assay development allowed to identify peptidic and non-peptidic leads. Takeda reported a tetraline (22, Scheme 6), which is not an obvious scaffold for protease inhibition and is likely to stem from high-throughput screening efforts [104]. The activity is poor (IC$_{50}$ \geq 1 μM) and the mode of action was not confirmed. Neurologic’s diacid (24) [105] is unlikely to be an easy lead for AD. Latifolin (23), isolated from the heartwood of *Dalbergia sissoo*, was reported to inhibit the Aβ synthesis with an IC$_{50}$ of 180 μM, again a rather weak and unsecured activity [106]. Vertex reported [107] the biphenylpiperazine (25) as BACE inhibitor (IC$_{50}$ = 3 μM) and it was docked into the BACE structure by Park and Lee [108]. An unfortunate error improved it to 3 nM, which makes the outcome of this docking very questionable. Yet, similar biphenylated amines (26) were revealed by Actelion [109, 110]. MSD undertook the rational design [81, 111-113] of BACE inhibitors like many others [114-116].

More innovation was obtained by an Automated Ligand Identification System (ALIS): a novel resorcylic acid scaffold [117]. The amino pentyl derivative 27 was obtained after subtle modifications of the lead structure and displayed a moderate inhibition of BACE 1 (IC$_{50}$ = 1.4 μM) and good selectivity towards cathepsin D (IC$_{50}$ > 500 μM). A modified BACE 1 (K75A, E77A) was used for co-crystallisation with 27 (PDB: 1TQF, Fig. 3b), which occupies the S1-S4 subsites. Quite unusually, the S’ sites and the active site have no direct contact with the inhibitor. The acetamide is engaged in a hydrogen bond to the catalytic water, which is placed between the two aspartates. The 4-fluorophenyl moiety wedges the novel S3 subpocket open and the aminopentyl coils back into the S1 pocket. The S1 and S3 substituents may be linked together to result in macro lactams with reduced rotational freedom, the only way to improve activity [112]. Extension towards the active site, occupation of P1 by a phenyl group and placement of a cyclopropyl in P1’ improved the inhibition to 11 nM for 29 and retained 500-fold selectivity towards cathepsin D [118]. The compound was co-crystallised with BACE, but there was no entry in the PDB by 11/2004. DeNovo reported several scaffolds and mimetics: sulfonamides, 1-piperazinylpropan-2-ols and the triazine 28, which may offer additional imaging of Aβ fibrils [119-122].

γ-Secretase

Paradoxical: despite being the secretase reported first, the identity of γ-secretase was for a long time a subject debate and the detailed structure is still unknown. The close relation to the Notch pathway, which is important in embryonic development, became less hazy over the years.

Scheme 6. Non-peptidic BACE inhibitors.
Notch 1, an integral membrane receptor, is processed by proteases upon ligand binding. The intramembranous cleavage is similar to the APP cleavage and requires PS1. The released intracellular domain migrates to the nucleus, where it finally activates Notch target genes [123]. The crossover to the Notch pathway hampered attempts towards PS-/- knockout animals, which do not pass the embryonic state, but embryonic stem cells may fill a part of the gap [124]. The intracellular trafficking of Notch in human CNS neurons is reduced by PS1 inhibitors, and results in dramatic changes in neurite morphology. Maybe the Notch dysregulation causes the neuritic dystrophy observed in AD brain tissue [125]. Several other substrates are known to be cleaved by γ-secretase, which seems to be the “proteasome of the membrane” [126]. The relevance of the presenilin co-factors: Pen-2, Aph-1, Nicastrin is well established [8], and even isoforms of these co-factors have been studied at detail [127]. The Nicastrin association to FAD was questioned recently [128]. Cell free γ-secretase assays are still an art, despite the progress in kinetics and feasibility [129]. Substrate optimisation was crucial for both β-secretase and γ-secretase assays [130, 131]. The localisation of the active site within the membrane and the cleavage within the membrane anchor of C99 turns γ-secretase inhibition into a rather slippery fish. Currently, there is only one related enzyme: the signal peptide peptidase, which shares a number of the features and problems, but is inserted into the membrane by 7 transmembrane helices [132]. A proposal for the arrangement of the transmembrane helices has been made, but it does not explain the observed cleavage pattern of APP [133]. Moreover, the importance of the cytoplasmic tail is not acknowledged in this model; two sequences of this tail are required for ER-retention and Nicastrin binding [134]. The active site of γ-secretase is known at some detail and the concerted action of all co-factors is still a subject of debate. The replacements of both Asp257 and Asp385 within the transmembrane regions of PS1 (and the analogue replacements in PS2) inhibit γ-secretase activity [135, 136]. Furthermore, both Asp modifications significantly inhibited the Notch pathway. The Notch pathway may be a druggable target on its own; however, applications in oncology were claimed already [137, 138].

γ-Secretase Inhibitors

Non-peptidic inhibitors of γ-secretase are known from the patents by Elan/Eli Lilly, Bristol Myers Squibb and DuPont. Peptidic PS1 inhibitors, like Merck’s L-685,458 (30) [139] are still the most potent inhibitors and were patented [140] prior to publication in scientific journals [141, 142]. Lipophilic di- and tripeptides with bulky N-terminal protection are common inhibitors for γ-secretase and β-secretase. Lacking specificity and the inhibition of serine and cysteine proteases makes the use of these aldehydes rather cumbersome, because the general protease inhibition results in complex concentration activity

![Scheme 7. γ-Secretase inhibitors I.](image-url)
relationships. Obviously, this structural motif serves just a tool for assay development and labelling [143-150], e.g. difluoro ketones were used to block endoproteolysis of PS1 and to differentiate γ-secretase activity and Notch cleavage by selective modulation [151, 152]. The inhibition by several difluoro ketones supported the point mutation analysis and confirmed the phenylalanine scan of the APP transmembrane domain [133]. This scan strongly supported a unique α-helical presentation of the C99 fragment to the γ-secretase. Initial attempts of α-helix induction by α-amino isobutyric acid (Aib) were not convincing [153]. Yet, a surprising activity of an all D-tridecapeptide: Boc-VGAibVVIAibTV-AibVIAib-OMe (cell free IC50 = 0.14 nM) was reported by Wolfe et al. recently [154, 155]. A more druglike tetrapeptide mimetic Boc-Ψ(Phe-Phe)-Leu-Val-OMe displayed a cellular IC50 of 0.4 μM [156].

A giant leap forward was obtained by the serendipitous identification of Merck’s L-685,458 (30, Scheme 7). The all-lipophilic sequence with 3 phenylalanines was somewhat anticipated, as several studies [133] had indicated the lipophilic binding pockets (P2, P1, P1’, P2’, even P4’ and P7’) in proximity to the cleavage site. The inversion of the hydroxyethylene moiety reduced the inhibition 270-fold. Labelling studies were conducted with different non-radioactive probes, linking biotin and photoreactive fragments N- or C-terminally to the core structure to furnish L-852,505 (32) and L-852,646 (33). The biotin was introduced to facilitate the isolation and identification of the irreversibly labelled adducts via their streptavidin-enzyme linked conjugates. Both attachments of photoreactive benzophenones (L-852,646 (33), L-852,505 (32)) retained potent inhibition (IC50 < 1 nM for γ-secretase). Photolysis in the presence of solubilised γ-secretase provided a protein of 20 kD (L-852,505, 32) after isolation on a biotin-specific streptavidin-agarose gel, followed by partial digestion. This 20 kD fragment was shown to be the C-terminal fragment of presenilin 1 (PS1-CTF) by specific antibodies. Binding to wild-type PS1 was negative in a control experiment, yet binding to the deletion construct PS1ΔE9, which lacks the cytosolic E9 loop, was positive [157]. Useful information resulted from the photolysis of L-852,646 (33) in the

Scheme 8. γ-Secretase inhibitors II.
presence of solubilised γ-secretase. This resulted in the isolation of a 34 kD fragment, which was assigned to be an N-terminal fragment of PS1.

A similar transition-state motif, the hydroxyethylurea [158], was utilised for activity based affinity purification. The immobilisation of III-31-C (31, IC50 < 300 nM) on affinity gel allowed isolation and identification of PS1-CTF, PS1-NTF and Nicastrin from solubilised γ-secretase preparations [159]. Initial attempts to free active γ-secretase from the affinity gel failed. This was probably due to the high binding affinity of III-31-C (31) to the target protein complex, and partially due to the deep and narrow binding site, which required strong denaturing conditions to break up the binding interactions. A delicate combination of Brij-35 and CHAPSO resulted in the isolation of active γ-secretase. The co-precipitation of the inhibited γ-secretase with its substrates C83 and C99 gave rise to speculations about additional binding sites, where the substrate is recognised prior to transfer to the active site. These speculations are in accordance with the observed promiscuous nature of the cleavage, as they assign the specific recognition to other domains.

To this day, very little structural information is available for the γ-secretase complex. Therefore, selective, non-peptidic γ-secretase inhibitors had to be provided by HTS efforts. Elan’s DAPT 36 (HEK IC50 = 20 nM) was developed from a N-dichlorophenylalanine lead, and the phenylglycine and the difluoro phenylacetic acid are crucial for activity [160-162]. DAPT is not a prodrug, despite the phenylglycine and the difluoro phenylacetic acid are crucial for activity [160-162]. DAPT is not a prodrug, despite the phenylglycine and the difluoro phenylacetic acid are crucial for activity [160-162]. DAPT is not a prodrug, despite the phenylglycine and the difluoro phenylacetic acid are crucial for activity [160-162]. DAPT is not a prodrug, despite the phenylglycine and the difluoro phenylacetic acid are crucial for activity [160-162]. DAPT is not a prodrug, despite the phenylglycine and the difluoro phenylacetic acid are crucial for activity [160-162]. DAPT is not a prodrug, despite the phenylglycine and the difluoro phenylacetic acid are crucial for activity [160-162]. DAPT is not a prodrug, despite the phenylglycine and the difluoro phenylacetic acid are crucial for activity [160-162]. DAPT is not a prodrug, despite the phenylglycine and the difluoro phenylacetic acid are crucial for activity [160-162].

\[
\begin{align*}
\text{45 MSD WO2081435} & \\
\text{46 MSD (IC50 = 1.9 nM)} & \\
\text{47 MSD (IC50 = 0.06 nM)} & \\
\text{48 MSD (IC50 = 0.07 nM)} &
\end{align*}
\]

Scheme 9. γ-Secretase inhibitors III.
sulfonamides (34, IC50 = 2 μMol, Scheme 8) were reported by Amgen and MSD, which featured similar bicycloalkane skeletons. They share the arylsulfonamide moiety with 35, but lack the crucial N-alkyl extension [173, 174]. DuPont’s hybrid structure 38 [175] bears both signatures of a dipeptide based SAR and the lead, which was identified from a matrix metalloproteinase (MMP) programme. Removal of the central amide bond of the parent dipeptide, the replacement of the hydroxamic acid by an amide and the introduction of a caprolactam provided good activity and removed some of the problems associated with dipeptide leads. The potent compounds (IC50: 20-90 nM) were related to DAPT-like compounds and hybrids of the two series. The difluorophenacyl-caprolactam derivative 42, stemming from a Scios/DuPont cooperation, proved to be the most potent compound (IC50 = 0.3 nM) [176].

DuPont Pharmaceuticals, which was taken over by Bristol-Myers Squibb, went on to elaborate the caprolactam motif and described a large number of derivatives in a patent family. Some effort was dedicated to modify the N-terminus, in order to avoid patent infringement of Elan patents and resulted in the oxazolylsulfonamide 41 [177, 178]. Another straightforward attempt to bypass Elan claims is present in a recent Merck series, which is generalised in compound 40. Moreover, this series was claimed to be inactive on Notch signalling [179]. Several other compounds or claims exist for hybrid structures of 37 and 38. A common feature is an aza-caprolactam, which places the phenyl groups in a defined, twisted arrangement. Additional residues can be attached to the amide, and the glycine is commonly exchanged for small spirocyclic amino acids or amide excision peptidomimetics. Unfortunately, activities for these compounds were not reported yet. Boehringer-Ingelheim [180, 181] disclosed diaminopyrimidines (43) as non-peptidic inhibitors of γ-secretase with an IC50 = 4 to 1000 nM. The single patent application is written in German and the most active compound is therefore hidden well. But the BI lead resembles flupirtin (44), which displayed beneficial effects on the cognitive function in humans [182]. MSD bypassed the BMS claims for sulfonamide (35) by introduction of a cyclohexyl linker (45, Scheme 9). The seven-membered lactam re-appeared in several MSD structures (46-48) [183, 184], but the insufficient Notch selectivity put an end to the promising candidate 46 [185].

Nonsteroidal Anti-inflammatory Drugs (NSAIDS)

Negative outcomes have been reported for the nonsteroidal anti-inflammatory drugs prednisone, diclofenac, rofecoxib and naproxen [6]. But promising results were obtained with some COX1 inhibitors [27], both in vitro and in a prospective, population-based cohort study of 6989 patients [28-30]. These convincing clinical results are still in need of a sound rational and experimental validation. The proof of concept is still missing, despite the rapid progress. Potential modes of action were hinted or reported several times, but there is much heat and little light: “Non-steroidal anti-inflammatory drugs may lower amyloidogenic Aβ42” by inhibition of Rho/ROCK [31]. Yet, the Rho/ROCK inhibitors were applied at concentrations several magnitudes higher than the required IC50 for Rho/ROCK inhibition. In summary, just few NSAIDs (3-6, Scheme 2) display the desired effect, and if they do so, they do it by modulation of γ-secretase. The active NSAIDs interfere with substrate recognition/cleavage and shift the Aβ cleavage to the Aβ38 fragment. Any derivatisation of the NSAID’s carboxylic acid results in loss of this activity or inversion of the Aβ38 impact (unpublished results).

Flurbiprofen 3 (10 and 25 mg/kg/d) elicits non-selective reductions in both Aβ40 and Aβ42 plasma levels, and was found to be toxic. It produced small reductions in Aβ40 in the cortex at 25 mg/kg/d, but did not affect Aβ levels in the hippocampus or CSF. Contrary to previous reports, sulindac sulfide (4) and ibuprofen (6) were found to be neither toxic nor efficacious at doses up to 50 mg/kg/d [32]. The striking discrepancies between these results and the previous reports by Eriksen [33] and Weggen [28, 29] may be explained by the different methods used to extract brain Aβ, alkaline guanidine solution versus 70% formic acid. The kinetics of Aβ formation in the presence of the two NSAIDs and the displacement of an active site directed inhibitor support allosteric, non-competitive modes of action of sulindac-S and R-flurbiprofen (3) [34] at low concentrations. This results in selective inhibition of Aβ42 production. However, both NSAIDs shift their mode of action from modulation to complete, non-selective inhibition of γ-secretase at high concentrations. This remarkable pharmacological behaviour may be explained by the stabilisation of dimeric or multimeric enzyme. Unfortunately, NSAID derivatives have escaped photolabelling techniques so far, although they are known to increase capture efficiency in affinity precipitation.

Vaccination

Immunisation therapies against Aβ hold high potential and are under investigation by several companies [35]. The most advanced companies in this field: Elan Corp plc and Wyeth-Ayerst Laboratories, suffered a setback of their joint clinical development of AN-1792 in March 2002 [36]. The phase IIA trials were abandoned after observation that 4 out of 372 patients displayed clinical signs consistent with inflammation in the central nervous system. The alarming and unexplained brain-shrinkage of 6% on average and the lack of cognitive improvement backed the decision to end the trial, but all patients were monitored until December 2002 [37, 38]. Unfortunately, just 13 patients were monitored afterwards, although a small group displayed significant improvements in brain volume and cognitive abilities [39]. These positive results suggest further studies with improved epitopes or different vaccination strategies. Aβ vaccination reduces not only extra- and intracellular Aβ accumulation, but is accompanied by the clearance of early tau pathology. The tau pathology is reduced by the proteasome and depends on tau phosphorylation. Hyperphosphorylated tau aggregates remained unaffected by this antibody treatment [40]. On the contrary, the clearance of tau aggregates was reported for immunotherapy and DAPT treatment. However, Aβ deposits were cleared within 3 days after injection, versus 5 days it took for the reduction of tau lesions [40].

Indirect Approaches- or: Do Our Souls Reside in Fat?

Lithium chloride was found [186] to reduce secreted Aβ levels in 3 different cell lines: COS7, CHO and HEK.
Unfortunately, lithium displays a small therapeutic window and the required concentrations of 1-5 mM are well above tolerated therapeutic plasma levels of 0.8-1.2 mM. The mediator of the lithium activity is likely to be a better target for drug development. A similar effect was observed [187] for kenpaullone (49, Scheme 10), an unselective inhibitor of glycosynthase kinase-3 (GSK3) [188]. Control experiments with other unselective inhibitors for the two forms of GSK3: GSK3α and GSK3β, suggested GSK3α to offer indirect modulation of γ-secretase, including Notch selectivity. These spectacular claims for GSK3α were backed up by siRNA knock-downs, but are contradicted by a reported involvement of GSK3β [189].

Scheme 10. Kenpaullone.

Brain cholesterol accounts for up to 25% of total body cholesterol and is turned over within a few months. Individuals on a high-cholesterol diet are at increased risk to develop AD, but the cholesterol brain levels were unaffected in animal models. Some cholesterol lowering drugs such as pravastatin and lovastatin, resulted in reduced risk for AD in retrospective trials. Paradoxically, prospective trials resulted in a rather confusing situation with contradicting outcome, most prospective trials failed to confirm a risk reduction for AD [190]. Simvastatin does not reduce risk and pravastatin exerts the effect regardless of the blood-brain barrier (BBB) crossing [190-193]. The answer is not simple; both simvastatin and lovastatin pass the BBB in the prodrug form, prior to hydrolysis to the active acids, and can be detected in the CSF. The rationale for this activity is still subject to debate, but three important observations may hold the clue for an explanation: 1.) hypercholesterolemia results in increased levels of extractable total Aβ in mice 2.) BACE1 was found to be associated with cholesterol stabilised rafts [194-197] in the plasma membrane and 3.) the activity of the benign α-secretase is inversely related to cholesterol levels [195]. The relevance of these different, yet concerted modes of actions remains to be established in humans, but transgenic mice respond to hypercholesterolemia by reduction of soluble Aβ [196]. The pleiotropic, non-lipid-related activities may be caused by the inhibition of the isoprenoid synthesis downstream of HMG-CoA reductase, interfering with RAS and thus cell signalling [50]. A specific inhibitor of squelene synthase can inhibit the cholesterol biosynthesis, but does not block the isoprenoid pathway leading to dolichol and ubiquinone. The potential of such inhibitors was published for the cholesterol-lowering BM15.766 (50, Scheme 11), which resulted in halved Aβ brain loads. The plasma Aβ levels correlated well with the plasma cholesterol [197], but the brain cholesterol went down by a meagre 11-13%, which may be explained by uncorrected cholesterol determination. RPR107393 (51) and its R- and S-enantiomers are potent inhibitors of rat liver microsomal squelene synthase (IC_{50} = 0.6 to 0.9 nM) and modulate Aβ levels in transgenic mice [190]. The cholesterol acyltransferase ACAT modulates the generation of Aβ, and is thus a welcome addition for existing ACAT programmes [251, 252]. Most ACAT inhibitors were developed for cardiovascular therapies and still have to prove their clinical potential to treat AD.

Scheme 11. Cholesterol lowering drugs with impact on Aβ levels.

Copper and Chelators

The copper enhanced Aβ associated toxicity stimulated investigations of dietary copper and copper homeostasis in mice and men [13, 198]. The initial hypothesis had to be revised, as increased copper levels (0.25 g CuSO_{4}·5 H_{2}O/L) in drinking water turned out to decrease Aβ levels in transgenic APP mice. A potential mode of action may be present in the reduced superoxide dismutase 1 activity. Metal chelators were frequently investigated to moderate copper levels in brain tissue, which were thought to be responsible for Aβ toxicity. However, in most in vitro studies, the copper concentrations required to observe the effect were magnitudes higher than found in vivo. Studies in 20 patients with clioquinol 52 (Scheme 12), a metal chelator that crosses the blood-brain barrier readily and has similar affinity for zinc and copper ions, indicated interesting results.
But the lack of a control group in the study left ample room for other explanations, e.g. inflammation stimulus [199, 200]. However, recent data from animal models support a benign impact of clioquinol on copper homeostasis. Clioquinol was found to mediate copper uptake and counteract copper efflux activities of APP [201]. The improved selectivity of the quinol towards copper was addressed by Prana Biotechnology [202], who submitted a multitude of clioquinol analogues to a catalase type assay in the presence of Aβ. Several inhibitors (53-55) were profiled in rats and the DMPK properties were communicated in a patent application.

Diagnostics - Markers for AD

Several genes and small molecules such as 24S-hydroxycholesterol, were previously linked to the age of onset and the severity of Alzheimer’s disease [203-205]. Genetic factors are well established and reviewed: e.g. the ApoE e4 allele, which is a risk factor, but not a deterministic gene [206]. Currently, all these genes and their derived products, e.g. inflammatory proteins [207], do not fulfill the requirements for large scale diagnosis or medical imaging. Unfortunately, most of the promising, small molecules require sampling of cerebrospinal fluid (CSF) [208], which

![Scheme 13. AD imaging probes.](image-url)
will be a major obstacle in clinical trials [209-214]. α7-nAChR levels correlate [215] to the Aβ levels, but the reliable sampling of indicative cells (e.g. olfactory neuroblasts) remains to be an issue. Congo red, which is known to stain amyloid deposits for several decades [216-218], stimulated the ongoing search for small markers of Aβ levels. Yet, the detailed mechanism of Congo red binding is still a subject of investigations [219-224]. Most amyloid binding dyes do not differentiate between the different aggregates of Aβ, PHF and PrPSc. This lack of selectivity is almost irrelevant for the development of aggregation inhibitors, but is a crucial issue for diagnostic markers. The Aβ deposits precede the formation of tau positive paired helical filaments, thus amyloid markers suitable for radio diagnostic of Alzheimer’s disease have to be selective for just one of the proteins deposits, which accompany the pathology. Specifically designed compounds address the issue of improved brain penetration, and radioactive compounds were explored for non-invasive imaging: PET and SPECT. A technetium bipyridyl complex was reported in 1996, but was not taken up by other groups [225]. Chrysamine-G (Scheme 13) [220] overcome some of the drawbacks of Congo red, particularly the poor BBB penetration. Furthermore, it indicated a promising inhibition of Aβ derived toxicity. X-34 (57), and its derivative BSB (58) were radio labelled and profiled in rodents [226-229]. The pharmacokinetic properties and their mode of action justify the abbreviation BSB: beta sheet breaker. But steryl derivatives with improved properties [230] are available: SB-13 (73) [231] and BF-168 (72), which display sufficient fluorescence to be analysed in murine brain slices. Post-mortem incubation with human brain preparations of confirmed AD cases indicated unselective binding to Aβ deposits and neurofibrillary tangles. Thioflavin T (59, Ki = 750 to 2000 nM) does not pass the BBB, but several uncharged analogues with high affinity to Aβ oligomers do: IBOX (63), BTA-1 (62, Ki = 2.8 nM) [232], 6OH-BTA-1 (60) [233, 234], PIB (Pittsburgh probe B, 64, Ki = 7.6 nM), TZDM (61, Ki = 0.06-02 nM) [229], FDDNP (69) [235], 125I-IMPY (67, Ki < 1.4 nM), FEM-IMPY (70, Ki = 40 nM) and FPM-IMPY (68, Ki = 8 nM) [236]. PIB (64) is probably the best documented probe and PIB load in cortical areas correlated inversely with cerebral glucose metabolism. However, the cognitive impairment and amyloid detection did not correlate well in patients (65 ± 10y) with mild dementia (Mini-Mental State Examination: 28-29). Moreover, the older control group (69 ± 7y) was identified as asymptomatic amyloid-positive [237].

This is in contrast to the post-mortem incubation with SB-13 (73), which displayed no in vitro labelling of the age matched controls [231]. FDDNP (69) binds to two sites on Aβ1-42 fibrils with different affinity (Kd = 0.012 nM and 1.9 nM) [235] and was the second attempt to image the AD pathology in humans. The accumulation of FDDNP in human brains correlated with lower memory performance, and the brain residence time of the probe was greater in patients with AD than in control subjects [238]. All reported IMPYs pass the blood brain barrier rapidly after intravenous injection. The detailed synthesis suitable for different labels was published and further derivatives [236, 239, 240] are accessible by palladium mediated iodine/ammine exchange. 125I-IMPY, 18F-FEM-IMPY (70) and 18F-FPM-IMPY display complex clearance patterns, which are characterised by polar and non-polar metabolites and substantial skull incorporation of 18F by the latter two. Yet, the metabolism of the 18F-FEM-IMPY was slower in rhesus monkey than in mouse [236]. The post-mortem incorporation of human brain sections of AD patients with 18F-FEM-IMPY, resulted in displaceable uptake in grey matter and low non-specific binding in the white matter. Several of these markers are in advanced stages of development as AD radio diagnostics, despite their sometimes striking similarity to estrogen receptor [241, 242] ligands, which may affect the signal to noise ratio. Most of these compounds display excitation and emission between 340 and 440 nm, which differs from the fluorescence of Thioflavin T (450/480 nm) [243]. The Novartis probe (74) [244, 250] resembles the dye Disperse Yellow 332 and introduces a fluorescent coumarin to the Aβ ligand. This will aid to relate cold imaging of brain slices to PET or SPECT images, thus, will improve image calibration and validation. The affinity of these compounds to Aβ fibrils is uniformly high in the nanomolar range (Kd = 0.2 to 10 nM) and selectivity versus tau PHFs is usually poor, except for PIB (64) [232, 245]. But these values are misleading in the absence of a well-defined target and the high number of binding sites per fibril. The whole research area was moved to solid ground by the identification of three distinctly different binding sites: BS1-3 for Thioflavin T analogues. A GlaxoSmithKline team [243] accomplished a formidable task and evaluated several known compounds in fluorescence based assays. They determined the highest affinities to relate to the low capacity BS3, which is present per every 500 Aβ peptides. The BS1 and BS2 binding sites are far more abundant (1 per every 4 or 30 Aβ) and are characterised by similar affinity and partial overlap between BS1 and BS2. Certain markers: TZDM, TZPI (66, Kd = 0.13 nM) [229] and BF-1 (65, Kp = 1.6 nM) [229] display selectivity for BS2. The structural discriminator for selectivity was assigned to the halogen substituent. The authors concluded that improved PET probes may be available in BS2 targeting ligands, because they will display the highest sensitivity for Aβ.

OUTLOOK

Despite the tremendous progress in the field, a γ-secretase inhibitor, free of Notch activity is still in utter demand. The selective inhibition of γ-secretase by NSAIDs is pointing in the right direction: allosteric modulation of the active site, which can be identified by additional cleavage sites mediated by PS1 [246]. Confirmed, non-peptidic β-secretase inhibitors are few and still have to reveal their true potential. Several compounds and vaccinations are entering phase II clinical trials and demand improved AD diagnostics. Actually, the vaccination may outpace the other therapies on the way to market. Dietary copper is unlikely to be a remedy for late stage AD, but may offer inexpensive prevention.

ACKNOWLEDGEMENTS

B.S., H.B. and R.N. thank the DFG SPP1085 SCHM1012-3-1/2 and the EU contract LSHM-CT-2003-503330 (APOPIS) for support of this work.

[248] apo: The protein component of an enzyme that is separable from the prosthetic group but that requires the prosthetic group to form the functioning holoenzyme.

Modulators and Inhibitors of \(\gamma \)- and \(\beta \)-Secretases

Boris Schmidt Stefanie Baumann Rajeshwar Narlawar Hannes A. Braun Gregor Larbig
Clemens Schöpf Institute for Organic Chemistry and Biochemistry, TU Darmstadt, Darmstadt, Germany

Key Words
Alzheimer’s disease Secretase Aspartic protease BACE inhibitors Presenilin

Abstract
Most gene mutations associated with Alzheimer’s disease point to the metabolism of amyloid precursor protein as a potential cause. The \(\beta \)- and \(\gamma \)-secretases are two executioners of amyloid precursor protein processing resulting in amyloid-\(\beta \). Significant progress has been made in the selective inhibition of both proteases, regardless of structural information for \(\gamma \)-secretase. Several peptidic and nonpeptidic leads were identified for both targets.

Introduction
Alzheimer’s disease (AD) is the most common progressive, irreversible dementia with neither definitely assigned cause nor an available causal therapy. The symptoms of the disease include memory loss, confusion, impaired judgment, personality changes, disorientation, and loss of language skills [1]. A hallmark of AD is the accumulation of extracellular amyloid plaques in the brain. The \(\beta \)-amyloid (A\(\beta \)) peptide, which is the major constituent of these amyloid plaques, performs a central role in the neuropathology of AD. The A\(\beta \) peptides, which differ in length from 38 to 42 amino acids, are generated from the amyloid precursor protein (APP) by two aspartic proteases: \(\beta \)-secretase and \(\gamma \)-secretase (fig. 1). Both secretases are rather promiscuous, they have multiple substrates and cause several distinctly different cleavages of APP. The membrane localization of both enzymes is crucial for selectivity, as cell-free conditions shift the cleavage pattern or result in additional cleavage sites. Usually 90% of APP is degraded by the benign \(\alpha \)-secretase pathway, and a mere 10% of APP is degraded by the consecutive cleavages of \(\beta \)- and \(\gamma \)-secretases to result in the build-up of extracellular A\(\beta \) deposits. Neither the pathological consequences of deposited or soluble A\(\beta \) are established beyond doubt, nor does plaque formation adequately correlate to the progress of AD. A definite proof of the A\(\beta \) hypothesis is still missing for humans.

BACE Inhibitors
Several reviews on BACE inhibition summarize the biology and chemical concepts [2–6]. The majority of potent inhibitors are still peptide-based transition state analogues. Hydroxyethylenes, statins, norstatins, bisstatins, hydroxyethylamines and hydroxyethylureas were employed. The hydroxyethylenes delivered the first highly potent inhibitors. Their subsite specificity was revealed by the cleavage rates of substrate mixtures and selective inhibitors, resulting in the design of the heptapeptides
Glu-Val-Asn-ψ(Leu-Ala)-Ala-Glu-Phe (1, OM99-2, $K_i = 1.6 \text{ nM}$, fig. 2) and Glu-Leu-Asp-ψ(Leu-Ala)-Val-Glu-Phe (2, OM00-3, $K_i = 0.31 \text{ nM}$) [7]. The two inhibitors allowed co-crystallization with BACE and structure determination at 1.9 Å and 2.1 Å, respectively (PDB: OM99-2, 1FKN; OM00-3, 1M4H) [8]. The hydroxyethylenes are coordinated by four hydrogen bonds to the two catalytic aspartates. Essentially, the structure of the enzyme and the backbone conformations from P_3 to P_2 are the same, although they differ in side-chain orientation in several subsites.

The introduction of the isophthalamide was an important step towards less peptidic compounds 3–6 (fig. 2), which is mandatory to obtain sufficient oral absorption and blood-brain barrier penetration [9]. We adopted this moiety for our BACE inhibitor program utilizing our novel methodology for iodomethanols [10]. This resulted in the stereoselective synthesis of an advanced intermediate 7. Opening of the epoxide with benzylamines furnished a series of hydroxyethylene isosters (fig. 3), which were tested in collaboration with M. Willem, LMU München, and F. Hoffmann-La Roche, Basel. Almost all compounds displayed poor activity; we attribute this to the wrong S-stereochemistry of the hydroxyl group. However, the epoxide 7 turned out to be an irreversible inhibitor of BACE; the irreversibility is apparent from the time dependence of the inhibition. Unfortunately, the compound displays poor activity in cellular assays; this may be due to rapid degradation by other proteases, which in turn is an indicator of lacking selectivity [10]. We currently revise our synthesis to obtain the necessary diastereomers.

Despite all efforts in the development of BACE-1 inhibitors, two major hurdles have hampered progress: blood-brain barrier permeability and oral bioavailability. To overcome these problems, novel nonpeptidic lead structures are of great interest. For several years, there were few structures, usually with an obscure mode of action [11, 12]. However, detailed activities were reported by A. Simon for 12 at the Alzheimer/Parkinson conference in Sorrento, March 2005 ($IC_{50} = 15 \text{ nM}$ BACE-1, $IC_{50} = 230 \text{ nM}$ BACE-2, $IC_{50} = 7,620 \text{ nM}$ cathepsin D, $T_{1/2} \sim 2.1 \text{ h}$, clearance 76 ml/min/kg, $V_{\text{diss}} 7.2 \text{ l/kg}$). Furthermore, the compound did not pass the blood-brain barrier in mice. A proof of concept was attempted via intracerebroventricular dosage (7.5 mg/kg/day) for 14 days. $A\beta_{40}$ was reduced by 47% at the end of the trial [13]. A compound with improved properties was reported recently [14].

Acylated tetronic and tetramic acids have been investigated as aspartic protease inhibitors before [15]. This was due to their similarity to Tipranavir, an active site inhibitor of the HIV-1 aspartic protease. Co-crystallization with the HIV-1 protease and structure determination revealed that the acidic hydroxyl of Tipranavir interacts with the catalytic aspartates [16]. The more compact
tetrates and tetramic acids may adopt a similar orientation in the active site, placing their substituents into lipophilic pockets. At the time we started the synthetic program on tetrasic and tetramic acids, researchers from F. Hoffmann-La Roche identified a broad series of tetrasic and tetramic acids with BACE inhibitor activity (13, IC$_{50} = 11$ μM) [17]. We explored several synthetic strategies in solution and on polymeric supports. A cyclization/cleavage strategy allowed to introduce diversity and resulted in more than 70 derivatives. The compounds 14–17 (fig. 4) were tested in collaboration with F. Hoffmann-La Roche, Basel, and M. Willem at the LMU, München. However, the activities were moderate at best. The removal of the acyl substituent or the replacement by a sulfone reduced the activity (IC$_{50} > 200$ μM) in FRET assays on isolated BACE-1 dramatically. The compounds were inactive in a radio ligand displacement assay against an active site-directed inhibitor. Furthermore, they displayed very poor inhibition in cellular assays, which points at a weak allosteric mode of action [18].
γ-Secretase Inhibitors

Special features of the γ-secretase complex hinder crystallization and thus crystallographic analysis of the enzyme, which is a major obstacle for structure-based drug design. Furthermore, the information available on inhibitor-binding sites is still limited. Therefore, all selective, nonpeptidic γ-secretase inhibitors had to be provided by high throughput screening efforts. Peptidic PS1 inhibitors, like Merck’s L-685,458 (18, IC\textsubscript{50} = 17 nM) (fig. 5), are potent inhibitors [19]. The all-lipophilic sequence with 3 phenylalanines was somewhat anticipated, as several studies had indicated the lipophilic binding pockets (P\textsubscript{2}, P\textsubscript{1}, P\textsubscript{1}′, P\textsubscript{2}′, even P\textsubscript{1}′ and P\textsubscript{2}′) in proximity to the cleavage site [20]. It was suggested that compound 18 acts as a direct transition-state analogue of the A\textsubscript{β} 1–40 and 1–42 cleavage sites. Elan’s semipeptidic γ-secretase inhibitor DAPT (19, IC\textsubscript{50} = 20 nM) was developed from an N-dichlorophenylalanine lead. Structure activity relationships studies revealed phenylglycine and difluorophenylacetic acid to be crucial for activity [21]. DAPT has demonstrated robust efficacy in vivo at relatively high doses. Several preclinical studies revealed in vivo toxicity, because DAPT affects the Notch pathway at higher levels (100- to 1,000-fold) [22]. We speculated in 2002 that DAPT may be binding in close contact to the aspartic ac-
ids of the active site and developed a series of acid-labile DAPT analogues. The compounds were intended to result in H⁺ catalyzed fragmentation and reactive cationic intermediates. Some of the DAPT analogues were indeed potent inhibitors, but none of the compounds displayed the predicted time-dependent inhibition in the assays of C. Haass and H. Steiner, LMU München. We concluded that there is no irreversible inhibition by these pH sensors [23]. The difluorophenylacetyl moiety in DAPT can be replaced by 5-bromopyridin-3-ylacetyl without loss of activity. Methylation of the pyridine results in membrane-blocked DAPT analogues; these were evaluated in the reconstituted γ-secretase assay (C. Haass, H. Steiner, LMU München) and cellular assays (K. Baumann, M. Brockhaus, F. Hoffmann-La Roche, Basel). All compounds displayed activity in the reconstituted assay, yet at a varying degree. The quaternized, membrane-blocked compounds lacked activity in the cellular assay. The analysis of these compounds is ongoing. In the meantime, we moved on to immobilize DAPT analogue esters on affigel (Biorad) by 3 different linkers of varying length. One of the linkers included a photolabile nitrobenzyl ester to allow a mild cleavage without denaturation of the assembled complex. However, all affinity gels displayed high and unspecific background binding, the isolation of active γ-secretase by these gels was unsuccessful.

The γ-secretase inhibitors must reduce Aβ production sufficiently to alleviate the cause of AD, but must not totally abolish either its production or the processing of other proteins, which have important roles in neuronal structure and function. Several substrates must be considered in addition to APP and Notch: the Notch ligands Delta and Jagged, apoER2 lipoprotein receptor, the low-density lipoprotein receptor-related protein, ErbB4 receptor tyrosine kinase, CD44, p75 neurotrophin and β-subunits of voltage-gated sodium channels. The important issue is: are there γ-secretase inhibitors that reduce APP processing without generating an unacceptable side

Fig. 4. Nonpeptidic BACE inhibitors.

![Nonpeptidic BACE inhibitors](image-url)
effect? Gleevec (21) inhibits Aβ production but not Notch cleavage [24]. IC₅₀ values for Aβ₄₀, Aβ₄₂, and AICD were recently reported to be ~75 μM. The generation of NICD-Flag was not inhibited, even at >10-fold concentrations.

Selected nonsteroidal anti-inflammatory drugs (NSAIDs) reduce Aβ production without affecting alternative cleavages [25, 26]. The mechanisms of different γ-secretase inhibitors were explored in detail [27, 28]. Most of these bind directly to the active site or alter it through an allosteric interaction. Torrey Pines Pharmaceuticals disclosed a large number of aminothiazol-derivatives (23) with Aβ₄₂/Aβ₄₀-lowering activity at a concentration of about 30 μM [29]. Approximately 60 of these structures were claimed to display modulation of γ-secretase (activity < 0.2 μM). We decided to synthesize compound 24 and to evaluate it in collaboration with C. Haass and Hoffman-La Roche, Basel. The substance did not display modulation but inhibition: EC₅₀(Aβ₃₈) = 1.5 μM, IC₅₀(Aβ₄₀) = 1.8 μM, IC₅₀(Aβ₄₂) = 1.6 μM. A selective γ-secretase modulator (25) was reported by Merck Sharp & Dohme [30]; the carboxylic acid seems to be relevant for the desired ratio of Aβ₃₈/Aβ₄₀/Aβ₄₂. This modulation is distinctly different from inhibition as the total Aβ load may be unaffected. This was observed for several NSAIDs and is unrelated to COX1 inhibition [25]. Some COX1 inhibitors are suitable candidates to improve their ini-

Fig. 5. Inhibitors and modulators of γ-secretase.
tially weak activity. The analogy of BMS-299897 to COX1 inhibitors inspired us to explore derivatives of commercial NSAIDs: sulindac, flurbiprofen, ibuprofen, indomethacin, diclofenac, naproxen, carprofen, ketoprofen, and diflunisal. We prepared more than 150 derivatives, initially esters and amides of the parent carboxylic acids and identified several full γ-secretase inhibitors. The verratryl amides obtained from sulindac and diclofenac caused reduction of Aβ38, Aβ40 and Aβ42 in cellular assays (IC50 10–50 μM). However, some amides and esters displayed ‘inverse’ NSAID properties: Aβ38 levels decreased, whereas Aβ40 and Aβ42 levels increased in cellular assays. γ-Secretase modulation was observed as the third mode of action: Aβ38 increased, whereas Aβ40 and Aβ42 decreased in cellular assays. A structure–activity relationship is already apparent: the carboxylic acid is strictly required, and a lipophilic substituent branching out from the core structure improves the activity 10- to 100-fold. The scaffold can either derive from carprofen or carbazole. The lipophilic branch can be attached by alkylation or by sulfonylation of the aniline. The best cores have been attached to biotinylated, photoreactive linkers to result in 5 biotinylated compounds (just one example is provided in figure 6). However, these compounds turned out to be unsuitable baits for the γ-secretase complex, although some displayed significant modulation of γ-secretase activity. They resulted in unspecific binding or no detectable binding at all. A robust bait for the successful pull-down of the binding domain within γ-secretase is still unknown.

Outlook

The availability of peptidic and peptidomimetic inhibitors for β- and γ-secretase inhibitors, both as tool and lead structures, made a huge impact on the research area. But these potent peptidomimetics come with costly price tags: oral availability, cost of goods and blood-brain barrier penetration impose severe obstacles on drug development. Despite the extremely rapid progress in the field, there are no reports of brain penetrating secretase inhibitors in phase II or III (02/2006). The only γ-secretase inhibitor in phase I has a red flag associated with it. This is due to its impact on the Notch pathway. The selective modulation of γ-secretase by NSAIDs is pointing in the right direction: allosteric modulation of the active site, which can be identified by additional cleavage sites of presenilin-1.

Fig. 6. NSAID-derived γ-secretase modulators.
Collaborations within the German Research Foundation Priority Program 1085

A ligand-based approach to Tau aggregation inhibitors was conducted in collaboration with the participant E. Mandelkow, Hamburg. A manuscript was submitted (30/01/06). β-Secretase inhibitors, γ-secretase inhibitors and modulators, 20S proteasome inhibitors and targeted screening collections were supplied to R. Baumester, C. Haass, T. Hartmann, U. Müller, G. Multhaup, J. Walter, S. Weggen, M. Willem. This resulted in 6 publications [2, 3, 10, 31–33] and 1 patent application (not yet published).

Acknowledgements

The authors thank the DFG (SPP1085 SCHM1012-3-1/2) and the EU (contract LSHM-CT-2003-503330; APOFIS) for support. We thank K. Baumann, M. Brockhaus and C. Czech (all at F. Hoffmann-La Roche, Basel) for biological assays, valuable input and long discussions.

References

Inhibitors and Modulators of \(\beta\)- and \(\gamma\)-Secretase

Boris Schmidt*, Stefanie Baumann, Hannes A. Braun and Gregor Larbig

Clemens Schöpf-Institute for Organic Chemistry and Biochemistry, TU Darmstadt, Petersenstrasse 22, D-64287 Darmstadt, Germany

Abstract: Most gene mutations associated with Alzheimer’s disease point to the metabolism of amyloid precursor protein as potential cause. The \(\beta\)- and \(\gamma\)-secretases are two executioners of amyloid precursor protein processing resulting in amyloid \(\beta\). Significant progress has been made in the selective inhibition of both proteases, regardless of structural information for \(\gamma\)-secretase. Several peptidic and non-peptidic leads were identified and first drug candidates are in clinical trials. This review focuses on the developments since 2003.

Keywords: Alzheimer’s disease, secretase, aspartic protease, inhibitor, presenilin.

INTRODUCTION

Alzheimer’s disease (AD) is the most common progressive, irreversible dementia with neither definitely assigned cause nor an available causal therapy. The symptoms of the disease include memory loss, confusion, impaired judgment, personality changes, disorientation, and loss of language skills. Furthermore, it is always fatal [1]. More than 4.5 million Americans are struck by Alzheimer’s disease and this number may increase to 14 million by 2050. Approximately 350,000 new cases of Alzheimer’s disease are diagnosed each year and 59,000 patients die of it in the US alone. A hallmark of Alzheimer’s disease is the accumulation of extracellular amyloidic plaques in the brain [2-3]. The \(\beta\)-amyloid (A\(\beta\)) peptide, which is the major constituent of these amyloid plaques, performs a central role in the neuropathology of AD. The A\(\beta\) peptides, which differ in length from 38 to 42 amino acids, are generated from the amyloid precursor protein (APP) by two aspartic proteases: \(\beta\)-secretase and \(\gamma\)-secretase (Fig 1). Both secretases are rather promiscuous, they have a multiple substrates and cause several distinctly different cleavages of APP. The membrane localization of both enzymes is crucial for selectivity, as cell free conditions shift the cleavage pattern or result in additional cleavage sites. Usually 90% of the APP is degraded by the benign \(\alpha\)-secretase pathway, and a mere 10% of APP are degraded by the consecutive cleavages of \(\beta\)- and \(\gamma\)-secretase to result in the build up of extracellular A\(\beta\) deposits. The contribution of these deposits to AD is still subject to debate. Neither the pathological consequences of deposited or soluble A\(\beta\) are established beyond doubt, nor does plaque formation adequately correlate to the progress of AD. A definite proof of the A\(\beta\) hypothesis is still missing for humans.

ESTABLISHED THERAPIES AND NOVEL APPROACHES

More than 50 compounds are in development to treat AD [4-5]. They target a whole range of known receptors and enzymes: GSK-3, PDE 4, and muscarinic M1 amongst others. Several acetylcholine (nACh) modulators, acetylcholinesterase (AchE) inhibitors, N-methyl-D-aspartate (NMDA) modulators, 5-hydroxytryptamine (5-HT) agonists and vaccination projects are in advanced stages of research or clinical development. The approved nAChE inhibitors and Vitamin E or combinations thereof have been marketed as therapies for AD. Unfortunately, recent clinical studies did not confirm benefits superior to placebo for vitamin E in mild cognitive impairment. Donepezil, an approved AChE inhibitor, slowed the AD progress in the first 12 months of treatment, but not in the following two years [6].

Some cholesterol lowering drugs such as pravastatin and lovastatin resulted in reduced risk for AD in retrospective trials. Paradoxically, prospective trials resulted in a contradicting outcome, and failed to confirm a risk reduction for AD. The rationale for this activity was subject to debate, but three observations suggested an explanation:

1). hypercholesterolemia is accompanied by increased levels of extractable total A\(\beta\)
2). \(\beta\)-secretase is associated to cholesterol stabilized rafts in the plasma membrane and
3). activity of the benign \(\alpha\)-secretase is inversely related to cholesterol levels [7-9].

This hinted at a connection of AD pathology and cholesterol levels. The missing link turned out to be the regulation of cholesterol metabolism by amyloid \(\beta\), which modifies the de novo cholesterol synthesis via 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) inhibition [10].

The early rush on fibril formation inhibition resulted in a number of potent inhibitors thereof. However, the activities were confined to in vitro experiments or limited by poor drug metabolism and pharmacokinetic (DMPK) properties, which excluded further development. Several drug candidates were tested in transgenic mice, but convincing data were not reported for humans. Furthermore, the view on A\(\beta\) toxicity has changed dramatically. Plaques were seen as the culprit and their removal was a therapeutic goal until 2001. Now, soluble A\(\beta\) and early oligomers have to take the
blame for the Aβ associated effects. Thus mature Aβ plaques may rather rest in peace.

\section*{β-SECRETASE (BACE)}

BACE-1 seemed to be an ideal target for drug development, because APP was the only known substrate. This scenario has changed substantially over the last two years, when amyloid precursor-like proteins (APLP1 and APLP2) and other substrates were reported [11]. However, these substrates can actually improve drug development as they can be utilized to identify BACE modifiers [12]. β-Secretase was identified as an aspartic protease long before selective inhibitors became available [13]. The key feature of an aspartic protease was confirmed early: the flexible flap region, which is crucial for substrate docking. The kinetics of statine-based inhibitors revealed a two state mechanism with structural reorganisation and activity modulation [14]. The two states: open and closed, contribute to selectivity and activity of the enzyme [15]. The flexibility of free and inhibitor bound BACE was investigated \textit{in silico} and revealed several novel aspects of BACE, which are useful for structure-based, computer-aided inhibitor design [16]. The protonation states of the two active site residues Asp32 and Asp228 were calculated by several groups with different results [16-19]. Two β-secretases are known: BACE-1 (AS2 or memapsin 2) and BACE-2 (ASP1 or memapsin 1) with high homology, yet subtle differences in the active site and an additional disulfide bridge for BACE-1 [20]. BACE-2 causes additional cleavages close to Phe20, which are reminiscent of α-secretase activity [21, 22]. BACE-1 is anchored to the membrane via its transmembrane domain (455-480) and may be active as a dimer [23]. BACE-1 has a propeptide domain, which is cleaved by furin-like proteases to form mature enzyme. The C-terminal transmembrane domain of BACE-1 is not strictly required for activity, but the localization of both enzyme and substrate in the same membrane enhances kinetics and specificity. The C-terminal truncation influences enzyme kinetics even in the absence of membranes. BACE-1 maturation requires cysteine bridge formation (Cys216/Cys420, Cys278/Cys443, Cys330/Cys380), N-glycosylation and propeptide removal. Cysteine
Inhibitors and Modulators of β- and γ-Secretase

mutants undergo impaired maturation, but retain catalytic activity. The Cys330/Cys380 bridge was found to be the most important [4]. Crucial for assay development and animal models: BACE-1 -/- knockout mice are fertile and healthy, and display reduced Aβ levels [24]. Selectivity issues arise from other aspartic proteases, and the homologous BACE-2, which displays a less pathogenic APP cleavage pattern and a distinctly different localization [25-26]. The Aβ protein is released by a subsequent proteolysis at Val711-Ile712 or Ala713-Thr714 by the intramembrane protease: γ-secretase, resulting in Aβ40 and Aβ42. A detailed analysis of BACE distribution, structure, species variation, degradation and properties was published [27]. There is a ligand binding pocket within the catalytic domain of BACE that is distinct from the enzymatic active site [28]. Peptides binding to this exosite can inhibit proteolysis of APP in BACE (e.g. Ac-ALYPYFLPISAK-NH2, IC50 = 1.3 μM). However, BACE inhibition is not the only way to modulate the BACE dependent APP cleavage. High levels of ceramide or improved raft association can extend the half-life of BACE-1 to 16 h [29]. Modest overexpression of BACE resulted in an enhanced amyloid deposition, while a high overexpression decreased amyloid deposition and altered the subcellular localization of BACE cleavage [30].

BACE INHIBITORS

Several reviews on secretase inhibition of BACE have been published [27, 31-34]. The majority of potent inhibitors are still peptide-based transition state analogues. Hydroxyethylamines, statines, norstatines, bis-statines, hydroxysterin derivatives were employed. The hydroxyethylamines delivered the first highly potent inhibitors. Their substrate specificity was revealed by the cleavage rates of combinatorial substrate mixtures and selective inhibitors, resulting in the design of the heptapeptides Glu-Val-Asn-Ψ(Phe-Ala)-Val-Leu-Phe (1, OM99-2, K1 = 1.6 nM, Scheme 1) and Glu-Leu-Asp-Ψ(Leu-Ala)-Val-Glu-Phe (2, OM99-3, K1 = 0.31 nM) [35-37]. The two Tang-Ghosh inhibitors allowed co-crystallisation with BACE and structure determination at 1.9 Å and 2.1 Å, respectively (PDB: OM99-2, 1FKN; OM99-3, 1M4H) [38-40]. The inhibitors are located in the active site as defined by design. The hydroxyethylamines are coordinated by four hydrogen bonds to the two catalytic aspartates. Essentially, the structure of the enzyme and the backbone conformations from P1 to P7' are the same, although they differ in sidechain configurations of several subsites. In OM99-3, the P1, P2, and P7' residues have been replaced. However, it is the P2 Glu of OM99-3 that resides in a new S2 pocket and the P1' and P7' residues are more extended, leading to a more linear conformation at both ends of OM99-3 compared to OM99-2. In the latter complex, a hydrogen bond from the P2 Glu to the P2 Asn is more favourable than to the P2 Asp in OM99-3. This hydrogen bond and resulting interactions inspired the design of a novel inhibitors with low nanomolar potencies comprising a 14- to 16-membered P2-cycloamide-urethane [41]. A protein-ligand X-ray structure of compound 3 bound to memapsin 2 was prepared (resolution 2.8 Å, PDB: 1XST).

The crystal structure of free BACE (1SGZ) revealed a flaps segment in an "open" position [42]. The structure is essentially the same as BACE-1 bound to an inhibitor, but the flap positions differ by 4.5 Å at the tips. The open position of the flap is stabilized by two intraflap hydrogen bonds and is anchored by a new hydrogen bond involving Tyr71 in a novel orientation. The resulting gorge may contribute to sequence and shape selection. A gatekeeper function was evident from the unusually small substituents Ala in P2' (1, 1FKN). Thr72 forms the narrowest point (6.5 Å in apo BACE) between the flap and Arg235, Ser328, and Thr329 on the opposite side and thus contributes to the specificity of BACE. This gatekeeper blocks the access of peptides carrying larger residues in this position, although pocket P1' provides more than enough space for a significantly larger residue. Simulations suggest that BACE inhibitors should make use of both the open-flap and the closed-flap conformation, including different hydrogen bonds to Tyr71 [16].

Another inhibitor Lys-Thr-Glu-Glu-Ile-Ser-Glu-Val-Asn-(statine)-Val-Ala-Glu-Phe (P10-P4' StatVal, K1 = 40 nM, PDB: 1XN3) was co-crystallised with BACE [43]. The crystal structure revealed that the active cleft can accommodate at least three additional residues P2-P7 at the N-terminus. The residue preference of the new subsites and their influence on the hydrolytic activity of BACE were examined. An inhibitor Arg-Glu-Trp-Trp-Ser-Glu-Val-Asn-L*4-Ala-Glu-Phe (hydroxyethylene isostere, OM03-4) with a K1-value of 0.03 nM wa co-crystallised with BACE (PDB: 1XN2).

The small interactions of the C-terminal ends of OM99-2 and OM00-3 co-crystallised with BACE indicated a possible reduction without loss of activity. This was realised in the cyclic urethanes and further acyclic derivatives [44], yet with different degrees of success [44-47]. Hanessian et al. designed inhibitor 5 (IC50 = 0.039 μM) with a cyclopetante ring fused to the hydroxyethylene portion and a short Ala-terminus [48]. Chen et al. synthesised mimetics based on the P(Phe-Ala) hydroxyethylene such as 6 and arrived at similar conclusions [49, 50]. Kiso et al. started from large hydroxymethylcarbonyl isosteres [51]. Inhibitor 7a (KMI-370, IC50 = 3.4 nM) features a short dicarboxylic acid and displayed high activity in vitro and in vivo (BACE HEK293 cells IC50 = 0.20 μM) [52]. The tetrazole 7b is a biosisostere of 7a and exhibits similar activity and improved stability [53]. In the “Kiso” and the “Chen” series benzyl groups occupy the P1 position. The introduction of a 3,5-difluorobenzyl to the S1 pocket and non-peptidic N-termini made a further chain reduction possible, e.g. compound 8. The asparagine replacements to the P2-P7 region deleted the pepitidic character of the N-terminus, as realised in compound 9 by Elan [54-55].

The introduction of the isophthalamide was an important step towards less peptidic compounds 10-15 (Scheme 2), which is mandatory to obtain sufficient oral absorption and blood brain barrier penetration [56, 57]. The modification also enabled further reduction of the C-terminus and utilization of different transition state isosteres. Significant information was revealed by a novel crystal structure of BACE complexed to hydroxyethylamine 13 [58-59]. Soaking of apo BACE crystals (PDB: 1W50) with small peptidomimetics, which were known to be moderate inhibitors in FRET or cellular assays, resulted in the
incorporation of 13 in the active site (PDB: 1W51, Fig. 2a, 2b). The inhibitor features the isophthalamide to mimic the S2-S3 section and was claimed to have an IC\textsubscript{50} = 200 nM, although the secondary alcohol is \textit{R}-configured and thus has a different stereochemistry compared to other BACE transition state mimetics. The secondary amine and secondary alcohol recognise the active site aspartates in an unusual fashion. The neighbouring amine receives a proton from the catalytic Asp228 and places its 3-methoxy benzyl substituent in the S2' pocket. One of the \textit{N}-propyl groups of the isophthalamide occupies the S3 pocket and is directed towards the phenyl ring in the S1 pocket. The phenyl rings in both the S1 and the S2' pocket interact with Tyr71 of the flap in a T-shaped stacking. Some 750 close analogues of 13 were revealed in patents by Takeda (14) [60], Glaxo [61], Upjohn Pharmacia [62-64], Elan [56, 65-68] and a Sunesis employee (15) [69]. A series of inhibitors by Bristol-Myers Squibb makes use of benzylic hydroxyethylamines (16, IC\textsubscript{50} < 0.1 μM), but rely on more peptidic scaffolds, some of these compounds display good activity [70].
Inhibitors and Modulators of β- and γ-Secretase

Current Topics in Medicinal Chemistry, 2006, Vol. 6, No. 4 381

Schering-Plough filed patent applications based on isophthalamide bioisosteres and derivatives such as 17 (IC50 = 1.4 nM) and 18 (IC50 = 1 nM) with isophthalide replacement by a multitude of other groups, e.g. 5- and 6-membered cyclic ureas or lactams (Scheme 3) [71]. For the most part, the C-terminus is a substituted piperazine or piperazinone. Elan filed additional patents on BACE inhibitors: dipeptides and a number of smaller inhibitors were claimed (19, 20) [72-74]. In two Elan patents, the inhibitors have neither a P2 nor a P3 substituent and the N-terminus is formed by an acetyl group only (21, 22) [75-78].

The bicyclic inhibitor 23 has a low nanomolar IC50 in both the cell free and the cellular assay. It displays an oral bioavailability of 15%, a relative brain uptake (brain / plasma, 60 min) of 3.5 and an efficacy (efficacy = \{1-(total Aβ concentration in tissue of dose group / total Aβ concentration in tissue of vehicle control)} x 100%, at 100 mg / kg) for the cortex and the plasma of 47% and 63%, respectively. There are even smaller inhibitors of BACE (24, 25), but 25 exhibits no selectivity toward cathepsin D (IC50(CatD) / IC50(BACE) = 1.1) [79]. Novartis created small inhibitors based on the original hydroxyethylene core [80-82]. The central portion is flanked by a very short alkyl residue at the C-terminus and a 14-membered macrocycle at the N-terminus incorporating a fragment of the hydroxyethylene and an isophthalamide derivative (26), mimicking the P1-P3 residues.

Scheme 2. BACE inhibitors II.
Despite all efforts in the development of BACE-1 inhibitors, two major hurdles have hampered progress: blood-brain barrier permeability and oral bioavailability. To overcome these problems novel non-peptidic lead structures are of great interest. For several years, there were just few structures, usually with an obscure mode of action [83, 84]. Fluorescence resonance energy transfer (FRET) assays of soluble BACE delivered false positive hits to such a degree, that it was mandatory to profile potential hits in a reliable secondary assay, such as a radioligand displacement assay [85]. Vertex reported the biphenylpiperazine (27) as BACE inhibitor (IC_{50} = 1 nM, Scheme 4) [86] and it was docked into the BACE structure by Park and Lee [17]. An unfortunate error improved it to 3 nM, which makes the outcome of this docking questionable. Yet, Actelion Pharmaceuticals revealed similar biphenylated amines (28) [87, 88].

Scheme 3. BACE inhibitors III.
The Automated Ligand Identification System (ALIS) [89] enabled MSD researchers to discover a novel resorcylic acid scaffold as reversible and selective BACE-1 inhibitor [90]. Further modifications lead to an aminopentyl derivative (29), which displays moderate inhibition of BACE-1 (IC$_{50}$ = 1.4 μM) and a good selectivity towards cathepsin D (IC$_{50}$ > 500 μM). Examination of an enzyme/inhibitor complex, which was obtained by using a modified BACE-1 (K75A, E77A) for co-crystallisation with 29 (PDB: 1TQF), revealed that the compound occupies the S$_4$ to S$_1$ subsites and does not have any interaction with the “prime side” of the enzyme. Most notably, the active site has no direct contact with the inhibitor. The acetamide is engaged in a hydrogen bond to the catalytic water, which is placed between the two aspartates as observed for the apo crystal structures of other aspartic proteases [90]. A novel S$_3$ subpocket was identified which is created by the orientation of the p-fluorophenyl ring towards the S$_3$ site. Another notable finding is that the terminal aminopentyl residue coils back into the S$_1$ pocket – a discovery that inspired the design of macrocycles (31, 32) in which the P$_1$ and P$_3$ substituents are linked together increasing the activity by reduction of rotational freedom [91, 92].

Further development focused on the direct interaction with the catalytic aspartates, which is assumed to enhance activity. The hydroxylamine motif connected to an isophthalamide backbone improved the inhibition to 11 nM (33) and retained 500fold selectivity towards cathepsin D (Scheme 5) [93]. The direct two-pronged interaction - wherein the hydroxyl functionality of the inhibitor engages Asp32, while the protonated α-amino group simultaneously contacts Asp228 – contributes to the increased potency. The occupation of the S$_1$ subsite and placement of a cyclopropyl, which is oriented toward the S$_1'$ site of the enzyme, may have improved the inhibition further. The variation of the P$_1'$ substituent exerts influence on cell permeability only. The compound was co-crystallised with BACE and the structure was deposited in the PDB recently (2B8L, Fig. 2c). Slightly different activities were reported by A. Simon for 33 at the Alzheimer / Parkinson conference in Sorrento, March 2005 (IC$_{50}$ = 15 nM BACE-1, IC$_{50}$ = 230 nM BACE-2, IC$_{50}$ = 7620 nM cathepsin D, T$_{1/2}$ ∼2.1 hr, clearance 76 ml/min/kg, V$_{diss}$ 7.2 l/kg). Furthermore, the compound did not pass the blood brain barrier in mice. A proof of concept was attempted via intracerebroventricular (ICV) dosage (7.5 mg/kg/d) for 14 days. Aβ$_{40}$ was reduced by 47% at the end of the trial. Several recent patents focus on the diversification of the side chains. Yet, there are no hints of an activity enhancement [94-98]. The Glaxo compound 34 features the same N-terminus, a similar transition state isostere, and a sulfonamide in the same position as the MSD compound, but all features are now locked in a tricyclic indolic ring system. Compound 34 has an activity (IC$_{50}$) of less than 1 μM in the Asp-2 inhibitory assay and more than 100fold selectivity for BACE over cathepsin D [99]. DeNovo reported several other scaffolds and mimetics: sulfonamides, 1-piperazinylpropan-2-ols and the triazine 35, which may be useful for Aβ fibril imaging [100-103]. Researchers from Hoffmann-La Roche described a broad series of tetronic and tetramic acids with BACE inhibitor activity.
activity \((36, \text{IC}_{50} = 11 \, \mu M)\) [104]. Acylated tetronic and tetramic acids have been investigated as aspartic protease inhibitors before [105]. This was due to their similarity to Tipranavir, an active site inhibitor of the HIV-1 aspartic protease. Co-crystallisation with the HIV-1 protease and structure determination revealed that the acidic hydroxyl of Tipranavir interacts with the catalytic aspartates [106]. The more compact tetronates and tetramic acids may adopt a similar orientation in the active site, placing their substituents into lipophilic pockets. The removal of the acyl substituent or the replacement by a sulfoxide reduced the activity \((\text{IC}_{50} > 200 \, \mu M)\) in FRET assays on isolated BACE1 [107].

Schering-Plough revealed 2-iminoimidazolidin-4-ones \((37, \text{IC}_{50} < 1 \, \mu M)\) as BACE-1 inhibitors [108]. The same scaffold was described as potent inhibitor for cathepsin D – a limiting factor for the progression of that substance class into drug development.

A fragment-based docking procedure followed by substructure search was used to identify the phenylureathiadiazole \(38\) \((\text{IC}_{50} > 25 \, \mu M \text{ BACE-1}, \text{EC}_{50} = 2.6 \, \mu M \text{ Aβ})\) [71]. The rigid conformation of BACE-1 in its complex with OM00-3 inhibitor \((\text{PDB: 1M4H})\) was used for the docking of \(38\) into the active site, resulting in the prediction of two binding modes. The two NH groups are involved in hydrogen bonds with one of the two catalytic aspartates. The \(S_1\) pocket is occupied by the phenyl group and the ethylthioether is orientated toward the \(S_2'\) site of the enzyme. In the alternative binding mode, the two NH groups of the urea are involved in hydrogen bonds with Asp228 instead of Asp32. The overall orientation is flipped end-to-end. The phenyl group now occupies the \(S_1'\) subsite and the ethylthioether reaches into the \(S_1\) pocket.

γ-SECRETASE

Paradoxical: despite being the secretase reported first, the identity of γ-secretase was subject to debate for a long time and the exact topology is still insecure. Now, it is well established that the γ-secretase is a high molecular weight protein complex composed of presenilin (PS) 1 or 2, nicastrin, Aph-1, and Pen-2 [109-113]. There is increasing evidence that PS – a polytopic transmembrane (TM) protein of ~50 kDa with 10 hydrophobic domains (HD) - forms the catalytic component of the γ-secretase complex [114-116], but presenilins alone are not sufficient to mediate enzyme activity [117, 118]. The active site of γ-secretase is known at some detail and the concerted action of all co-factors is still subject to debate. The inhibition by peptidomimetic transition-state analogues pointed to an aspartyl protease at work [118]. Following this assumption, the sequence analysis of presenilin revealed two likely candidates: Asp-257 and Asp-385 [115]. The ten HD may all cross the membrane, but it is still a controversial issue. The prevalent view until 2003 held that PS has an eight TM domain organization. A significant difference for this arrangement was reported recently. The introduction of glycosylation sites in PS1 revealed 9 TM domains, with the N-terminus and the large hydrophilic loop located in the cytosol, and the C-terminus in the ER lumen or extracellular [119]. Domain
Inhibitors and Modulators of β- and γ-Secretase

Current Topics in Medicinal Chemistry, 2006, Vol. 6, No. 4 385

swap experiments indicated two domains within the TM1, which affect presenilinase and γ-secretase activity differently. These TM1 mutants did not bind to the transition state mimetic Merck C [120], indicating a conformational change resulting in loss or reduction of catalytic activity [121].

In addition to βAPP, several other substrates are known to be cleaved by γ-secretase, which seems to be the “proteosome of the membrane” [122]. Generally, such multiple substrates increase the risk for toxic side effects by γ-secretase inhibition. In fact, the close relation to the Notch pathway, which is important in embryonic development, makes the γ-secretase a rather challenging and risky drug target. The crossover to the Notch pathway hampered attempts towards PS-/- knockout animals, which did not pass the embryonic state, but embryonic stem cells may fill part of the gap [123]. The intracellular trafficking of Notch in human CNS neurons is reduced by PS1 inhibitors, and results in dramatic changes in neurite morphology. A great task will be the determination of a therapeutic window between efficacy and any unacceptable toxicity [43]. Similar IC50 for the competing cleavages of Notch and C99 do not rule out a safe application per se, as a 10% reduction in Aβ42 production is regarded as the therapeutic goal. And indeed, a first compound with moderate Notch selectivity is in human trials [153].

γ-SECRETASE INHIBITORS

Special features of the γ-secretase complex hinder crystallisation and thus crystallographic analysis of the enzyme, which is a major obstacle for structure-based drug design. Furthermore, the information available on inhibitor binding sites is still limited. Therefore, all selective, non-peptidic γ-secretase inhibitors had to be provided by high throughput screening (HTS) efforts. Peptidic PS1 inhibitors, like Merck’s L-685,458 (39, IC50 = 17 nM) are potent inhibitors and were patented prior to publication in scientific journals [124, 125]. The all-lipophilic sequence with 3 phenylalanines was somewhat anticipated, as several studies had indicated the lipophilic binding pockets (P3, P2, P1, P1', P2', even P1' and P2') in proximity to the cleavage site [10]. It was suggested that compound 39 acts as a direct transition-state analogue of the Aβ (1-40) and (1-42) cleavage sites (Scheme 6). The two des-hydroxy analogues displayed reduced inhibition (270fold) [124]. The core structure of 39 was linked to biotin and photoreactive fragments N- or C-terminally leading to L-852,505 (41) and L-852,646 (42), which were suitable for labelling studies. Despite the attachment of the photoreactive benzophenones, 41 and 42 retained potent inhibition (IC50 < 1 nM for γ-secretase). Biotin was used to facilitate the isolation and determination of the reversibly labelled adducts via their streptavidin-enzyme linked conjugates. Photolysis in the presence of solubilised γ-secretase and isolation on a biotin-specific streptavidin-agarose gel provided a protein of 20 kD linked to L-852,505 (41). This fragment was shown to be the C-terminal fragment of PS1 (PS1-CTF) by specific antibodies. In a control experiment, the binding of 41 to wild type PS1 was negative. However, the binding to the deletion construct PS1ΔE9, which lacks the cytosolic E9 loop, was positive [126]. Useful information resulted from the photolysis of L-852,646 (42) in the presence of solubilised γ-secretase. This resulted in the isolation of a 34 kD fragment, which was assigned to be an N-terminal fragment of PS1. A similar transition-state motif, the hydroxyethylurea 40 [127], was utilised for activity based affinity purification. The immobilisation of III-31-C (40, IC50 < 300 nM) on affigel 102 allowed isolation and identification of PS1-CTF, PS1-NTF and Nicastrin from solubilised γ-secretase preparations [128]. Initial attempts to free active γ-secretase from the affinity gel failed. This was probably due to the high binding affinity of III-31-C (40) to the target protein complex, and partially due to the deep and narrow binding site, which required strong denaturing conditions to break up the binding interactions. Yet, a delicate combination of Brij-35 (polyoxyethyl lauryl ether 30%aq. solution) and CHAPSO (3-cyclohexylamino)-2-hydroxy-1-propanesulfonic acid) resulted in the isolation of active γ-secretase. The co-precipitation of the inhibited γ-secretase with its substrates C83 and C99 gave rise to speculations about additional binding sites, where the substrate is recognised prior to transfer to the active site. These speculations are in accord-dance with the observed substrate cleavage nature of the enzyme, which affects specific recognition to other domains. Elan’s semi-peptidic γ-secretase inhibitor DAPT (43, IC50 = 20 nM) was developed from a N-dichlorophenylalanine lead. Structural activity relationships (SAR) studies revealed the phenylglycine and the difluoro phenylacetic acid to be crucial for activity [129, 130]. DAPT has demonstrated robust efficacy in vivo at relatively high doses. The subcutaneous application to mice in a dosage of 100 mg/kg resulted in a 50% reduction of cortical Aβ levels within 3 hours. A 40% Aβ reduction was observed at the dosage of 100 mg/kg orally, again after 3 hours, but no brain levels of DAPT were reported for the latter study [131]. Several preclinical studies revealed in vivo toxicity, because DAPT affects the Notch pathway at higher levels (100 – 1000fold) [132, 133]. These are negative news for future development.

Extensive in vivo studies have been carried out with the more potent analogue LY-411575 (44a). A stereoselective placement of the hydroxyl group and the locked spatial arrangement of two phenyl rings in a caprolactam increased the activity 20fold (44a, IC50 = 0.4 nM) compared to 39 (Scheme 7). Extensive studies have been carried out with the

128. Current Topics in Medicinal Chemistry, 2006, Vol. 6, No. 4 385
fluid (CSF) levels were constant. LY450139 (44b) is claimed to be mildly selective for \(\gamma \)-secretase cleavage over the Notch pathway.

DuPont Pharmaceuticals and Scios described a highly potent difluorophenacyl-caprolactam derivative (45, \(\text{IC}_{50} = 0.3 \text{ nM} \)) [137]. Bristol-Meyers Squibb assumed DuPont, and continued to elaborate this caprolactam motif. As a result, a large number of derivatives were described. Some efforts were dedicated to modify the N-terminus to create non-infringing structures to the Elan patent. The synthesis of oxazolylsulfonamide 46 [138] is one such example.

The \(\gamma \)-secretase inhibitors must reduce A\(\beta \) production sufficiently to alleviate the cause of AD, but neither abolish totally its production nor the processing of other proteins, which have important roles in neuronal structure and function [139]. Several substrates must be considered in addition to APP and Notch: the Notch ligands Delta and Jagged, apoER2 lipoprotein receptor, the low density lipoprotein receptor-related protein, ErbB4 receptor tyrosine kinase, CD44, p75 neurotrophin and \(\beta \) subunits of voltage-gated sodium channels [140-141]. The important issue is: are there \(\gamma \)-secretase inhibitors, which reduce APP processing without generating an unacceptable side effect? Gleevec (47) inhibits A\(\beta \) production but not Notch cleavage (Scheme 7) [142]. Recently, Fraering et al. reported \(\text{IC}_{50} \) values for A\(\beta_{40} \), A\(\beta_{42} \) and AICD of \(\approx 75 \mu \text{M} \). Generation of NICD-Flag was not inhibited, even at >10-fold concentrations. The authors proposed a potential nucleotide-binding domain on \(\gamma \)-secretase, because ATP was able to rescue the \(\gamma \)-secretase

\[\text{Scheme 6. \(\gamma \)-Secretase inhibitors I.} \]
activity inhibited by a Gleevec formulation. There is strong support for this hypothesis: γ-secretase binds to ATP-acrylamide resin through the γ-phosphate [143]. Furthermore, selected nonsteroidal anti-inflammatory drugs reduce Aβ production without affecting alternative cleavages [124]. Isocoumarin inhibitors (JLK inhibitors) do not inhibit the E-cadherin processing, BACE-1/2, α-secretase, the proteasome and GSK2β kinase [144]. BMS-299897 (48) displayed a 15-fold lower IC50 value for APP than Notch-1-cleavage in vitro (HEK293 cells, APP IC50: 7.1 nM, Notch IC50: 105.9 nM) [43]. 2,3-Benzodiazepin-4-diones were designed as peptidomimetic inhibitors for γ-secretase [145]. The oral administration of these triamides in Tg2675 βAPP-Swedish transgenic mice resulted in a 15% reduction of CNS Aβ levels. Wolfe et al. [146] explored the mechanisms of different γ-secretase inhibitors at detail. Most of these bind directly to the active site or alter it through an allosteric interaction. Some inhibitors, e.g. the isocoumarins and the Aib-containing helical peptides, do not block Aβ production by affecting the active site of the protease, thus they do not target γ-secretase directly. Signal Peptide Peptidase SPP inhibitors can inhibit γ-secretase too, showing that SPP and γ-secretase have similar active sites and are likely to share the proteolytic mechanism [147].

Neurogenetics (now Torrey Pines Pharmaceuticals) disclosed a large number of aminothiazol-derivatives (49) with Aβ42/Aβ40-lowering activity at a concentration of about 30 μM [148]. The compounds derived from α-halogenated ketones and appropriate thioureas or ureas. Approximately 60 of these structures were claimed to display very good inhibition (activity < 0.2 μM). Compound 50 displayed similar activity (EC50(Aβ38) = 1.5 μM, IC50(Aβ40) = 1.8 μM, IC50(Aβ42) = 1.6 μM) [unpublished data]. The substituted thiazolamides (51), which resemble the Torrey Pines compounds, were coupled to a redox chemical delivery system (RCD) and may feature enhanced pharmacokinetic properties [149]. A dihydropyridine RCDS was introduced to improve the blood brain barrier (BBB) permeation. The tested compounds exhibited EC50 values ranging from 0.1 to 1.0 μM in cell free assays. Compound 51 displayed an EC50 value of 0.2 μM in cellular assays using APP transfected HEK 293 cells.

The Elan patent application [149] reported three general synthetic schemes and about 700 tabulated examples. Selected N-(oxazepanyl) benzenesulfonamides showed promising activities, for example, compound 52 inhibited γ-secretase with an IC50 within the range of 0.1-25 nM.

Scheme 7. γ-Secretase inhibitors II.
However, the activities of compound 53 and 54 are unknown (or not reported).

Roche’s 1,4-benzoxazepin-3-one (55) was prepared by a cyclocondensation of (formylaryloxy)alkanoic acid, amine and isonitrile [151]. Compound 55 inhibited γ-secretase with an IC$_{50}$ value of 0.18 (no units given). Additionally, Roche presented malonamide derivatives, where some compounds display IC$_{50}$ values of < 1.0 μM [152]. The aryl cyclohexyl sulfone (56) [153], developed by Merck, inhibits the processing of APP by γ-secretase with ED$_{50}$ values of < 1 μM. Eli Lilly optimized the series of dipeptides to challenge the amyloid hypothesis in a clinical setting [154]. Vlaams Interuniversitair Instituut disclosed peptides deriving from APP that specifically inhibit the γ-secretase cleavage without affecting the cleavage of Notch [155]. Their most potent inhibitor, the peptide D7 having the amino acid sequence VVIATVIVTLVMLK-TP inhibits γ-secretase activity up to 60-40% at a concentration of 1.5 μM. D7 did not affect S3-cleavage within the transmembrane domain of Notch.

A selective γ-secretase modulator (57) was reported by MSD [156], the carboxylic acid seems to be important to achieve the desired ratio of Aβ$_{38}$/Aβ$_{40}$/Aβ$_{42}$. This modulation is distinctly different from inhibition as the total Aβ load may be unaffected. This was observed for several NSAIDs and is unrelated to cyclooxygenase 1 (COX1) inhibition [157]. Some COX1 inhibitors are suitable candidates to enhance the initially weak activity.

OUTLOOK

The early availability of peptidic and peptidometimetic inhibitors for β- and γ-secretase inhibitors, both a tools and as lead structures, made a huge impact on the research area.
These potent peptidomimetics come with costly price tags: oral availability, cost of goods and blood brain barrier penetration impose severe obstacles on drug development. The lessons learned in the renin and HIV programmes certainly paid off, but the BBB issue multiplication the tasks for the medicinal chemists. There is a rigorous trend in most patent families finding on peptidomimetics leads to reduce the peptidic heritage as much as possible. BACE HTS assays provided very few non-peptidic scaffolds, but in silico screens were able to identify scaffolds with the desired properties. On the contrary, HTS on γ-secretase provided plenty of non-peptidic leads, but most of these are γ-secretase inhibitors, not modulators. Several compounds are close to enter phase I or phase II clinical trials. Despite the extremely rapid progress in the field, there are no reports of brain penetrating secretase inhibitors in phase II or III (Dec. 2005). The reported γ-secretase inhibitor in phase I has a red flag associated to it, this is due to its impact on the Notch pathway. The selective modulation of γ-secretase by nonsteroidal anti-inflammatory drugs (NSAIDs) is pointing development to treat AD.

REFERENCES

[27] Ishihara, S. Dementia Jpn. 2000, 14, 236.
Ensemble-docking approach on BACE-1: Pharmacophore Perception and Directives for Drug Development

Vittorio Limongelli,[a] Luciana Marinelli,[a] Sandro Cosconati,[a] Hannes A. Braun,[b] Boris Schmidt[b], and Ettore Novellino[a]

Introduction

Alzheimer disease (AD) is a cerebral neurodegenerative pathology that is characterized by the progressive formation of insoluble amyloid plaques and fibrillar tangles. Although AD is the most common cause of dementia in western industrialized countries, up to now there is no approved causal treatment. The available symptomatic treatments or disease modifiers provide only limited benefits to the affected people. Approved drugs, such as Vitamin E and AChE inhibitors, slow down, but do not stop disease progression. Thus, a growing need exists for new effective therapies with a specific mode of action, which allow to control onset and progression of the disease. Over the last decade great attention has been paid to the cascade of physiological events that contribute or accompany AD.[2,10,13,18] It is generally accepted that the β-amyloid precursor protein (APP) is cleaved by two proteases to generate the 40/42 amino acid long amyloid-β peptides (Aβ) increased Aβ formation results in extracellular amyloid plaques deposition and is accompanied by the intracellular formation of neurofibrillary tangles in the brain.[12,19] The neurotoxicity associated with Aβ oligomerization is assumed to cause neuronal death, brain inflammation, and finally AD.[7,10] The APP is processed via the major α- or the minor β-secretase pathway, the latter produces fragments, that are further processed by γ-secretase.[6,8] Differently from the nonpathogenic products of α-secretase, the β-secretase pathway produces pathogenic Aβ peptides. After the demonstration that β-secretase (BACE-1), a member of the peptidase family of aspartyl proteases, is the rate-limiting enzyme in the production of Aβ,[7,9] and that its genetic depletion in mice abolishes β-amyloid formation without major side effects,[10] BACE-1 has emerged as the leading target for therapeutic treatment of Alzheimer disease.[11] Recently BACE-1 was shown to control myelination of peripheral nerves in the late foetal development, the relevance of this finding to chronic treatment of adults will have to be considered.[12,13]

Up to now, several X-ray structures of BACE-1 (hereinafter "BACE") have been reported, either in the apo form (PDB codes: 1SGZ and 1W50), either in complex with large-size peptidomimetic ligands (1FK4, 1M4H, 1XN2, 1XN3, 1XS7, 2F3E, 1YM2, 1YM4, 2B8L, 2B9V and 2FDP), or with rather small inhibitors (1W51, 1TOF, 2G9M). An important advance in the elucidation of inhibitor-BACE recognition process has been provided by the 1W51 structure, where the enzyme has been co-crystallized with the inhibitor 1.[13] Figure 1 highlights the main interactions between 1 and the BACE-1 enzyme.

A detailed comparison of the available X-ray structures
suggests that BACE can adopt at least two major conformations mainly differing in the FLAP region, which can adopt an open and a closed conformation in the ligand free and ligand bound enzyme, respectively. Thanks to the availability of all these structures, great strides in the development of new BACE inhibitors have been made by both academic and industrial research groups.

Many noncleavable transition state isosteres were designed as new inhibitors on the basis of initial kinetics and substrate specificity data. Most of these peptide analogues mimic the scissile amide bond of the endogenous substrates. The hydroxymethylene derivatives, such as OMK9-2 and OM60-3, represented the first class of highly potent BACE inhibitors. The employment of the steric moiety led to the peptidomimetic compound 2 (IC50 = 20 nM), which features non peptidic portions at both C- and N-termini in the effort to reduce the peptic character of the first inhibitors, numerous hydroxyethylamine-containing compounds were investigated as new BACE inhibitors. Among them, inhibitors 3 and 4 are of particular interest for their low nanomolar activity (IC50 = 1 and 1.4 nM, respectively) and for the originality of their structures, being the second amine of HEA arranged in a six-membered cycle. With the aim of achieving selectivity for BACE over other aspartic proteases, a sulphonylamide group has been introduced in an HEA derivative leading to compound 6. Recently, high BACE-1 selective compounds (e.g. compound 5, IC50 = 4 nM) featuring a γ(CH2NH) reduced amide bond, were reported by Coburn et al.

Despite this considerable progress, it is worth noting that the majority of the reported peptidomimetics with low nanomolar activity in BACE-1 enzymatic assays are poorly active in cell-based assays because of the limited penetration across cell membranes. Thus, non-peptidic inhibitors with lower molecular weight, suitable for oral delivery and transport through cell membranes and the blood-brain barrier are still in great demand. In spite of all the efforts made by the pharmaceutical companies and academic groups, non-peptidic leads for BACE inhibition are still few. Thus, BACE turns out to be a structurally challenging target having on one hand multiple sites for effective binding and, on the other hand an high homology with other aspartic proteases such as cathepsin D, pepsin, renin. Currently, medicinal chemists can choose among a number of novel approaches for drug discovery such as high-throughput in vitro screening, combinatorial chemistry, focused library or pharmacophore-based and/or target structure-based virtual screening (VS), being the latter two approaches increasingly used having the advantage to avoid long and expensive experimental efforts. However, the pharmacophore-based VS is exclusively possible when a trustworthy pharmacophore model exists, while the structure-based VS needs the design of a proper protocol as it is well known that several features, as the charge state of potential interactive residues, the protein conformations (apo and ligand bound), the docking methods and the scoring functions can all deeply affect the success rate. In this regard, the work of Polgar et al. is particularly helpful, as the influence of protonation state of catalytic Asp residues of BACE (D32 and D228) as well as the enzyme conformations were investigated in a comparative VS. From this study, it emerges that the nonprotonated form (D228+, D32) of the BACE catalytic site gave better enrichment factor compared to the default protonation state (D32 and D228 deprotonated), and ligands can find proper poses easier in a ligand-bound structure (FLAP closed), than in the unbound form (FLAP open). Interestingly, the introduction of pharmacophore constraints in the docking calculations improved enrichment factors for both structures (bound and unbound), reducing ligands false positive poses and increasing the active drop-out rate.

In structure-based VS, a 3-D pharmacophore model can be used either to constrain the number of possible ligands poses either to pre-screen compounds databases, both helping to pursue a more accurate and saving time simulations. The pharmacophore constraints used in the study of Polgar et al. were retrieved from a patent document, where a congeneric series of BACE-1 inhibitors were presented.

Here, with the aim to extend our understanding of inhibitors binding at the BACE-1 catalytic site and to provide an exhaustive structure-based pharmacophore model, a number of active and structurally diverse inhibitors (1-6) was selected and subjected to an ensemble molecular docking process into BACE X-ray structures. The superimposition of the calculated bioactive conformations of these inhibitors let us capture both the common geometric and electronic features essential for ligand recognition and enzyme inhibition. Furthermore, in order to achieve BACE-1 selective inhibitions, a comparison of the X-ray structures of BACE-1 and the cathepsin D was made to better understand the structural and chemical differences in their respective catalytic sites.

The elucidation of the different binding modes of the diverse ligands on one hand, and the developed pharmacophore model on the other, are intended to furnish a support for pharmacophore- and structure-based VS techniques and a source for the optimization of the screened compounds as well as of the already-known leads.

Insert Chart 1

Results and Discussion

X-ray Structures Selection for the Ensemble Docking Studies.

Even today, a major hurdle for successful molecular docking is protein flexibility. At the present time, many effective methods are available for docking a flexible ligand into a rigid protein, while docking calculations including target flexibility still remain problematic, both in terms of computational time and efficiency. In this respect, BACE shows the type of flexibility that can pose challenging problems in docking simulations as the enzyme is known to undergo a massive rearrangement of the FLAP region (residues 69-74) during association with ligands and a certain mobility is expected for the “108 loop” (residues 9-14). To the best of our knowledge, no docking program, that attempts to include wide flexibility of the protein, has been extensively validated so far. Fortunately, in the case of BACE, numerous crystallographic structures exist enabling us to use an ensemble of enzyme conformations for our docking calculations. Docking a ligand into a battery of binding pockets is a strategy to deal with protein flexibility, although it is still far from perfection.

A comparative structural analysis of all available BACE structures revealed that the FLAP region is always in the closed conformation whenever an inhibitor, either peptidomimetic or non-peptidomimetic, is bound. Because ligands 1-6 are substrate analogues that interact with the FLAP-closed form of BACE, we
limited our studies to all BACE structures with a FLAP closed conformation (PDB codes: 1FKN, 1M4H, 1TQF, 1XN2, 1XN3, 1XS7, 1YM2, 1YM4, 2BP8, 2BPV, 2FDP, 2G94, 2FSE, 2F3F). With the aim of reducing the BACE structure redundancy, only the most divergent structures were considered for our docking calculations.

To assess the differences among the BACE structures, they were superimposed on the alpha carbon atoms (Cα) using 1W51 structure as reference. Interestingly, the FLAP closed conformations are all surprisingly similar regardless of the inhibitor type bound, while some differences were found in the side chain conformations of few residues with the most notable one residing in Q73 (Figure 2). Additionally, some expected flexibility is also found in various residues lining the binding site cleft such as R128, T231, D307 and D235.

From the comparative analysis of BACE X-ray structures, it clearly emerges that the “10S loop”, a short loop located between two strands at the base of the S3 subpocket, shows mainly three low-energy conformations, an open (1FKN, 1XN3, 1XN2, 1XS7, 1YM2, 1M4H, 2F3F, 2G94) a closed (1W51, 1FDP, 2BP8, 2BPV, 1YM4, 2F3E) and an outlier conformation (1TQF) (Figure 2).

In view of the capability of “10S loop” in affecting the shape of the S3 subpocket (S3sp) and thus the ligand binding, the inclusion of such structural variability in a docking study becomes of fundamental importance. Thus, 1FKN, 1W51, 1TQF and 1TQF were chosen for our docking experiments as they cover the experimentally observed motions of the “10S loop” as well as of some residues in the catalytic site such as Q73, R126, R307, R235, and T231. Two additional structures were considered (1XN3 and 2G94) so as to include additional conformers of Q73 and R235 residues. Thus, each ligand was docked in a total of five BACE structures (1FKN, 1W51, 1TQF, 2G94, 1XN3).

Assessment of the Docking Program.

Although Autodock program is the most widely used docking program and has been extensively validated, it is well-known that each docking algorithm performs better for certain protein systems than for others, thus the reliability of a docking program towards the target of interest has always to be assessed. Furthermore, testing a program by docking a ligand into its native protein is intrinsically biased because the protein has already changed its shape to better accommodate the ligand and this unavoidably affects positively docking results. Here, with the aim of accurately evaluating the program performances on the studied system, a cross-docking experiment of 1 in its native enzyme (1W51) and in four non-native enzyme conformations (1FKN, 1TQF, 2G94 and 1XN3) was conducted. It is generally accepted that a successful docking result reproduces the crystallographic conformation of a ligand in the complex structure within ~2 Å of RMSD on all ligand atoms and that the first-ranked docked conformation (herein referred as ranking conformation) should be always the preferable one. On the other hand, from our experience in the case of Autodock program, the lowest energy docked conformation of the most populated cluster (herein referred as cluster conformation) has to be taken into account as well. Indeed, in the case of BACE, in two complexes, 1W51 and 2G94, the conformation calculated by AutoDock with the lowest free energy of binding belongs to the most populated cluster, thus, no ambiguity exists for the selection of the ‘best’ binding pose. Autodock program well reproduced the experimental binding mode of 1 (Figure 2) both in native (1W51) and non-native (2G94) enzyme structure, with an RMSD values of 0.4 and 0.6 Å, respectively. For the other three enzyme structures, good results were obtained considering the cluster conformations (0.59 Å for both 1FKN and 1TQF, and 1.20 Å for 1XN3) while the accuracy in reproducing the X-ray conformation lowered when the ranking conformation is considered only (2.9 Å for 1FKN, 3.4 Å for 1TQF and 2.8 Å for 1XN3). Our test experiments confirmed that Autodock program can be successfully applied to BACE-1 in order to predict the binding modes of small peptidomimetic ligands such as 1-6, although whenever the ranking conformation does not correspond to the cluster one, both solutions have to be taken in consideration. The final choice between the ranking and the cluster conformations will be governed by their coherency with experimental data, when available (e.g. SARs).

Docking Results.

Docking of 2. Due to the undetermined absolute stereochemistry of the carbon atom attached to the biphenyl ring of compound 2 both stereoisomers were subjected to docking calculations.

Docking of 2 with the (R) absolute stereochemistry revealed that in four out of five calculations (1TQF, 1W51, 1XN3 and 2G94) comparable results were found for all the predicted ranking conformations. Using as receptor 1FKN, docking of 2 did not succeed in predicting a plausible binding mode, therefore it was omitted from the comparison. As depicted in Figure 3, the (S) statin isoster places the hydroxyl group in the catalytic dyad allowing the simultaneous interaction with D32 and D228 as previously observed in others X-ray complexes (e.g. 1FKN).

Insert Figure 3

The difluorobenzyl moiety of 2 (P1) occupies the aromatic pocket S1, analogous to the corresponding benzyl group of 1. Noteworthy, due to the withdrawing property of the fluorine atoms present on the aromatic system of 2, the charge transfer interactions of the P1 branch in 2 with the Y71, W108 and P115 aromatic rings are expected to be stronger with respect to those observed for compound 1. Anologue to 1, the calculated binding mode preserves the H-bond with G34 backbone CO, while two additional H-bonds with T72 and T231 side chains are present (Figure 3).

Unfortunately, a direct comparison between the potency of 2 (IC50 = 20 nM) and 1 (IC50 = 200 nM) is not meaningful, this is due to the different biological assays. Differently from 1, compound 2 features an isopropyl group (P1) which establishes hydrophobic contacts with I226 and V332 side chains (S1 pocket) while the biphenyl moiety deepens into a narrow passage (S3sp) mainly formed by two glycines (G13 and G230). An interesting feature of 2, which certainly contributes to its great potency (IC50 = 20 nM), is the aminocyclohexanecarboxylate moiety (P2), which was inserted to mimic the C-terminus of the first known peptidic inhibitors. Indeed, docking results confirm that this P2 moiety entirely fills the S2’ hydrophobic pocket with both the carboxylate groups engaging a charged-reinforced H-bond with the guanidine group of R129.
Docking of 2 with bipyphenyl unit attached to the (S) configuration gave for three out of five docking calculations (1FKN, 1X3N and 2G94) a slightly different binding conformation in comparison to that found for the (R) isomer indeed, the main interactions with the enzyme are well conserved for this isomer while some differences come out for the N-terminal moiety (P3 branch). Here, the bipyphenyl group points into the S3sp, similarly to the (R) isomer, while the hydroxyl function due to its (S) stereocchemistry is now incapable to interact with T231. Although it is not known which is the most active diastereomer, it has been reported that one isomer is 100 fold more active than the other.10 Our docking results do not clearly discriminate between the two analyzed isomers. Nevertheless, the low convergence of docking results for the (S)-isomer allow us to hypothesize a weaker binding to BACE if compared to the (R)-isomer.

However, the proposed binding modes are in alignment with the available SARs data.10 Indeed, analogues of 2, featuring non acidic amineclobenzonecarbodioximate derivatives, do not interact with R128, this results in loss of activity.10

Furthermore, the replacement of the amineclobenzonecarbodioxidemocly by 4-aminoethylbenzo acid, presenting only one acidic function, caused a 10-fold loss of activity thus demonstrating the contribution of both acidic groups for the enzyme binding. Interestingly, the amineclobenzonecarbodioxidemethyl derivative displays only a 10-fold decrease in the inhibitory activity. These data are in accordance with our results, which place the amineclobenzonecarbodioxidemethyl near to R128, where the carbonyl of the methyl ester forms a H-bond with the guanidine side chain.

Docking of 3 and 4. The binding pose of 3 does not substantially change when different enzyme structures are used and basically resembles the binding position found for 1 and 2. As depicted in Figure 4a, the hydroxyl group of the HEA core H-bonds with D32, while the protonated secondary amine, which differs from 1 by the locked conformation of the 6-membered ring. It engages a salt bridge with D228 and H-bonds with G34. Interestingly, all HEA derivatives feature an unusual stereocchemistry at the secondary alcohol (R absolute configuration). A secondary amine in the HEA derivatives causes the interaction with D228, which would be lost by the inversion of the stereocchemistry at the secondary alcohol. The benzyl ring (P2) is stacked in between the Y198 and Y71 residues (S2’ pocket), while the ligand amide group H-bonds with G230 and Q73 backbones. Analogue to 2, the difluorobenzyl branch (P1) fills the S1 pocket shaped by Y71, F108 and W115 residues (Figure 4a).

Insert Figure 4

While the above-described interactions are conserved in all five BACE structures, an ambiguity was encountered for the relative position of the imidazolidoine moiety. Ligand docking into 1W51 and 1XN3 structures placed the imidazolidoine so as to allow the carbonyl group to H-bond with T232 backbone. The benzyl group (P2) to establish a cation-r interaction with the guanidine group of R235 and the N-alkyl substituent to thread into the narrow S3 subpocket (S3sp) (Figure 4a). However, ligand docking into 1FKN and 1T0F structures, placed the imidazolidoine ring so that the phenyl ring pointed to the S3sp, while the alkyl chain pointed out of the enzyme. In this case, ensemble docking leads to two comparable but not equal conformations. A subsequent analysis of BACE structures suggests that the different conformations of the R235 side chain are mainly responsible for the divergent results. More precisely, in 1W51 and 1XN3 structures, the R235 side chain is optimally oriented to engage a cation-r interaction with the phenyl ring of 3 (Figure 4a), while in 1FKN and 1T0F structures, the R235 guanidine group partially occludes the catalytic site, as to prevent the placement of the phenyl group. Indeed, both ligand conformations are feasible. Nevertheless, the orientation of the N-alkyl substituent into the S3sp and the benzyl moiety towards the external part of the enzyme maximizes the interaction with the protein by allowing the formation of a H-bond with T232 and a cation-r interaction with R235. Further support for this hypothesis is provided by recent X-ray studies outlining the importance of the interactions with T232 and R235.[11]

Similarly to 3, the HEA isoster in 4 well interacts with both the catalytic asparagines as well as with G34 (Figure 4b). The benzyl and difluorobenzyl moieties of the ligand optimally fill the S2’ and the S1 pockets, respectively, while the isopropylamide group lies in the S2 open region with one of the two amide functions H-bonding with G230 and Q73. Interestingly, the methoxyethyl substituent of the pyrrolidine protrudes above the S3sp, where polar interactions with R307 and T232 side chains occur. The high potencies of 3 and 4 (IC50 = 1 nM, IC50 = 1.4 nM, respectively) suggest that T232, R235 and R307 are further points of ligand attachment strengthening the inhibitor binding.

Docking of 5 and 6. Ensemble docking experiments on 5 and 6 showed for both of them convergence of results. In fact, all docking calculations apart from one (1W51) detected a single solution which is at the same time the ranking and cluster conformation.

The protonated nitrogen of 5 was found to interact with D228 while the isobutylamine branch (P2’) engages H-bonds with T72 and G34 placing the alkyl chain into the hydrophobic S2’ pocket (Figure 5a). The n-propyl branch (P1’) lies in S1’ pocket shaped by hydrophobic aminocarbons such as I226, V332 and Y198. The benzyl group (P1) is placed into the aromatic cage S1 with the adjacent amide group forming two H-bonds with G230 and Q73. Comparing the binding modes of the docked ligands, we noticed that H-bonds with G230, T72 or Q73 backbones are frequently present and this seems to be important for high BACE inhibitory activity.33 Interestingly, in all five BACE structures used for the ensemble docking, the N-methyl methylsulfonamidic group (P2’) was found in a polar region among N233, S235 and R235, mostly interacting with the latter residue. The proposed location of the sulfonamide function is in line with the recently reported X-ray structures of BACE complexed with sulfonamide-containing ligands.[20,21,22,23] The difluorobenzyl branch deepens inside the narrow channel in the S3sp engaging a T-shape interaction with Tyr14 (Figure 5a). It is interesting to note that this channel constitutively the access to an additional small pocket filled by hydrophobic residues (L152, L154, V31 and Y14) and up to date no inhibitor has entirely filled this newly identified pocket.

The hydrophobic interactions of the n-propyl branch (P1’) in the S1’ pocket are supported by SAR data which show a slight decrease of activity for the ethyl and/or methyl (P1’) substituent.[15] Furthermore, additional SARs suggest that an H-bond donor on P2’ substituent can be important for BACE activity
and this is in agreement with our finding of an H-bond interaction between the isobutylamide branch and the G34 backbone.

Due to the structural similarity, compound 6 docked in a mode similar to 5. Nevertheless, being 6 an HEA derivative, it contacts both D32 and D228, as described for all the others HEA derivatives. While the benzyl group (P1) deepens into the S1 pocket, the sulfonamide group engages an electrostatic interaction with R235 (Figure 6b).

Insert Figure 5

The two cyclopropyl branches of 6 fit in the hydrophobic S1' pocket and S3sp, respectively. Despite the structural similarity, compounds 5 and 6 show different activities (IC_{50} = 4 and 35 nM, respectively). According to our docking results, this difference in potency has to be ascribed to the additional interactions established by 5, which occupies S3sp, S1' and S2' pocket, while 6 just partially occupies the S3sp and S1' pocket and does not fill the S2' pocket at all.

Pharmacophore fingerprints and guidelines for drug design.

The superimposition of the calculated bioactive conformations of inhibitors 1-6 (Figure 6a) allowed us to capture both the common geometric and electronic features essential for ligand recognition and enzyme inhibition. From the analysis of the interactions established between the ligands and the enzyme, it is apparent that both polar and hydrophobic interactions are equally important in the inhibitor–enzyme recognition process.

Despite the structural diversity, compounds 1-6 are linked by five highly conserved pharmacophoric points (blue spheres in Figure 6b and 6c): three H-bond donors (D1, D2 and D3), one acceptor (A4) and one hydrophobic centre (H5). All compounds, with the exception of 5, feature an interaction point with D32 (D1) and with the other catalytic aspartate (D228) through the D2 point. This observation confirms the importance of the interaction with the two catalytic aspartates of the binding site for an effective enzyme inhibition. Moreover, all compounds, apart from 2, present the D2 point. This highlights the convenient insertion of a protonable amine in this position to achieve simultaneous interaction with D228 and G34 residues. As shown in Figure 6c, the D3 point donates an H-bond to G230 backbone CO while the H-bond acceptor A4 interacts with either T72 or Q73 backbone NHs. It is noteworthy how these two latter points (D3 and A4) represent an ancestral inheritance of the endogenous ligands of BACE where these points are normally filled by an amide moiety of the peptide backbone.

Despite the relevance of such polar features, the hydrophobic point H5, constantly present in 1-6, underlines the essential role of a hydrophobic group in this position, interacting with the S1 pocket residues Y71, W108 and F115. (Figure 6c).

The frequent occurrence of D1, D2, D3, A4 and H5 pharmacophoric points in the analysed compound set (Table 1) suggests that these are the indispensable features for ligand recognition. Unfortunately these interactions do not offer the key to selective BACE inhibition. This is due to the conservation of the majority of their corresponding interacting residues in other proteases such as cathepsin D as discussed hereafter.

From our docking results, four additional pharmacophore points, represented as cyan spheres in Figure 6b and 6c, emerge. They are mostly hydrophobic (H6, H7 and H9), with the exception of one, that can be either hydrophobic or a polar (H8/A8).

Insert Figure 6

The H6 point represents a hydrophobic feature able to reach the S2' pocket (Figure 6c). The structural variability of this feature (Figure 6a) demonstrates that, although an aromatic substituent in H6 is not mandatory (see compounds 2 and 5), an hydrophobic group is required due to the nonpolar character of the S2' pocket. It is worth noting that in all analysed compounds, only 2 features the H6 point optimally functionalized having two carbonyl groups that establish a double salt bridge with R128. Such an interaction is particularly interesting being R128 an unique feature of BACE enzyme. In order to achieve a better pharmacokinetic profile preserving a good inhibitory potency, the acidic functions present in the H6 point could be methylated not preventing the ability to H-bond with R128.

The additional point H7 finds place in the hydrophobic S1' pocket (I226, V332 and Y198) where, due to its limited dimension, only an alkyl or cycloalkyl chain with maximum three carbon atoms, seems to be tolerated. This position was recently employed to achieve selective BACE inhibition and should be investigated further.

Another pharmacophoric point, which may be exploited to achieve BACE-selectivity, is represented by the H/A8 point, which is located in the S2 open region and can be either hydrophobic or polar. An H-bond acceptor in this position, such as a sulfonamide (compounds 5 and 6), or an hydrophobic phenyl ring (compound 3) can interact with the surrounding residues such as N233, R235 and S325. These three residues are peculiar to BACE in comparison to other proteases, thus this interaction is expected to have an important role in BACE selectivity. Our observation is in accordance with the recently reported X-ray analysis of co-crystallized complexes of selective BACE inhibitors featuring a sulfonamide group as H/A8 point.

After the superposition of all compounds in their predicted binding poses, it clearly emerges a different sized branch as H9 point indicating that aliphatic, as well as aromatic branches are well tolerated in the S3sp. The extension of this pocket mainly depends on the conformation of '1OS loop, but it has to be pointed out that among all analysed compounds, only inhibitor 5 goes across the S3sp, reaching with its aromatic system the inner hydrophobic pocket made by L152, L164, V131 and Y14 residues. In the design of new BACE inhibitors, this cavity should be explored further, as demonstrated for the renin inhibitor aliskiren. Comparing the BACE and renin cavities, we noticed that they have chemical and structural differences, which offer further chances to improve inhibitor selectivity.

Insert Table 1

Insert Table 2

The compounds 1-6 are characterized by five to eight identified pharmacophoric points (Table 1); appropriate chemical modifications can result in more potent analogues. For instance, the BACE binding affinity of compound 6 may be improved by the addition of an hydroxyl group on the carbon of the CHO(NH)
duced amide bond so as to present the D1 point and complete the nine-point pharmacophore.

Regarding compound 1, the substitution of the α-propyl chain with a benzyl moiety may optimize the interactions with the BACE S3sp and the addition of an H-bond acceptor in position 2 on the isophthalamide group such as a sulfonate or carbonyl group may provide the basis for BACE selectivity.

So far, only one pharmacophore model derived from a congeneric series of BACE inhibitors has been disclosed via a patent application by Vertex. The authors proposed that the flap is shifted and stabilised in an open conformation in the presence of their inhibitors.

Comparing the Vertex pharmacophore model with ours, we found that the two models are rather similar regarding the pharmacophoric points interacting with residues unaffected by flap movement. In particular, the Vertex model shares a pattern of three H-bond donors, and two hydrophobic points corresponding to D1, D2 and D3 and H5 and H6 in our model. Despite the general coherency of the chemical features of these points in both pharmacophoric models, the reported distances between them diverge to a large extent. For instance, in our model, the distance between D1 and D2 and D1 and D3 is maximum 2.9 and 3.8 Å respectively, (see Figure 6b) while in the Vertex model both range from 4 to 5 Å. Moreover, the D1-H6 distance is calculated as a range of 4.2–7.8 Å in our pharmacophore model and this value is very low in comparison to the minimum distance of 8 Å reported for the corresponding points in the Vertex model (HB-1 and HPB-3, respectively). This discrepancy may be due to the fact that Vertex model places the HPB-3 point in a different pocket of the S2 region.

The discrepancies found between the two pharmacophoric models can be assigned to the different compounds used for model generation. The Vertex pharmacophore model derived from congeneric series based on a piperazine scaffold which are thought to stabilize the flap in an open conformation. Consequently, in their pharmacophoric model, an additional hydrophobic point referred as HPB-2 is involved in the interactions with the flap pocket (W76, F108, F109, W115, and H102). Here, we have used BACE with the flap in a closed conformation, thus this pocket is no longer present. Consequently the HPB-2 point has to be considered a typical feature of the open flap pharmacophore model.

With respect to the Vertex model, our model offers an accurate description of three new pharmacophoric points: A4, H7 and H9, which are particularly important for selective BACE inhibition.

The structural diversity of the compounds used in our study contributes to the value of our pharmacophore model, which is also substantiated by the X-ray structure of the binding conformation of compound 1, perfectly filling seven pharmacophoric points.

The design of new BACE Inhibitors has to consider the other human aspartyl proteases which could be potentially inhibited by BACE ligands, such as renin, napsin-A, and B, cathepsin-E, pepsinogen-A, and C and cathepsin-D. Indeed, the catalytic domain of BACE is similar to that of other aspartyl proteases and the interactions of these enzymes with their inhibitors do not diverge too much from those we observed in the case of BACE. For instance, most of the human aspartyl proteases accept a phenylalaine analogue in P1. The selectivity versus BACE over other human aspartyl proteases is required to avoid adverse side effects and is thus mandatory for clinical development of BACE inhibitors. For instance, inhibition of cathepsin D, which is largely expressed in all cells controlling their protein catabolism, would mean a likely consuming of that BACE inhibitor as well as the occurrence of probable toxicity.

Therefore we performed a structure-based sequence alignment of BACE and cathepsin D in order to investigate the differences in their binding sites. The superposition of BACE and cathepsin D three-dimensional structures reveals that the two enzymes display very similar residues in their binding sites and consequently possess a similar shape, which is visualised by their Connolly surfaces in Figure 7. Besides the catalytic dyad, several residues important for the ligands recognition such as G34 or G230 (G35 and G233 in cathepsin D) are conserved. As shown in Figure 7, the shape of the hydrophobic S1 and S2' pockets is equivalent in BACE and cathepsin D. However, a careful comparison of the two binding sites reveals several important points of diversification (Figure 7).

Insert Figure 7

Probably the most striking difference is located near to the catalytic dyad and thus easily accessible to the inhibitors, it concerns the S2 pocket, which presents the polar tripeptide N233-R235-S325 in BACE and the hydrophobic tripeptide L236-V238-M307 in cathepsin D. In line with this observation, a series of highly selective inhibitors containing a sulfonfyl group in the P2 branch interacts with the residues of the BACE S2 region. Besides the different character of the S2 region in BACE and cathepsin D, the space available for ligand binding in cathepsin D is limited by the M307 and M309 side chains; these are replaced by less space spacious residues in BACE (S325 and S327). This finding suggests the incorporation of bulky P2 branches, functionalized with polar groups capable to interact with the BACE tripeptide (N233-R235-S325).

The superposition of BACE and cathepsin D reveals significant differences in the length and sequence of the loop defining the S1'/S3 pocket. Indeed, this loop is shorter in BACE (S327, S328, T329 and G330) than in cathepsin D, which presents a long loop of ten residues containing a rigid section called proline loop (P312, P313, P314, S315, G316 and P317).

This relevant difference indicates an alternative way to achieve BACE/cathepsin D selectivity. In fact, a properly oriented bulky moiety on the P1' substituent will occupy the BACE S1 pocket and will not be tolerated by cathepsin D. Moreover, the exchange of BACE-K224 to E227 in cathepsin D, suggests the insertion of a hydrogen bond acceptor on a positively charged group on the bulky moiety. To our knowledge, only few peptic inhibitors targeted an interaction with K224. Another dissimilarity between BACE and cathepsin D resides in the S2' pocket, where R128 is replaced by V144 in cathepsin D. Therefore, inhibitors including one or more acidic functions on the P2 branch are expected to favour interaction with BACE. The cathepsin D flap region, where G79 replaces the BACE-T72, offers another opportunity for enhanced selectivity. The last divergence of BACE/cathepsin D resides in the region above the...
S3 pocket. Here, as shown in Figure 7, two basic amino acids (R307 and K321) are replaced by two hydrophobic residues (L252 and L303) in cathepsin D. Thus, compounds presenting an interaction with R307 and/or K321 (e.g. 4) may contribute to selective BACE inhibition.

Mapping our pharmacophore model into the BACE/cathepsin D superposed structures, two main issues can be inferred. Firstly, it is apparent how conserved pharmacophoric points (blue spheres in Figure 7) are essential for ligand recognition in both enzymes. These pharmacophoric points are placed in a region where all residues are conserved, therefore these points cannot confer selectivity.

On the contrary, some additional points (cyan spheres in Figure 7) are located in regions, which are dissimilar in BACE and cathepsin D. In particular, the HA8 has to be considered critical for the improvement of ligand potency and selectivity by allowing the interaction with the basic triplet (N233, R236 and S325) present in BACE and not in the homologous cathepsin D. Similarly, the H6 and H7 points offer the opportunity to obtain compounds featuring an acidic group or a H-bond acceptor on the P1' and P2' branches so as to allow an interaction with R128 and K224 residues, which are only expressed in BACE.

In conclusion, despite the high sequence homology between BACE and cathepsin D, we have identified a distinctive fingerprint of the BACE catalytic site that is worth targeting in the effort to achieve potent and selective inhibitors.

Insert Table 3

Conclusion

In the present paper an ensemble-docking approach was undertaken on six highly potent BACE inhibitors identifying for all of them plausible binding modes. A common pharmacophore model linking the multiple structural classes of inhibitors was derived. This allowed us to capture both the geometric and electronic features essential for ligand recognition and enzyme inhibition. In particular, we identified nine points pharmacophore model outlining the relative distances among them. Interestingly, five of these points are present in all inspected ligands: they can be referred to as essential features for ligand recognition. Whereas the others four points have been defined as accessory points of interaction. An accurate structural comparison of BACE and cathepsin D was made to support the rational design of BACE-selective inhibitor. Despite the high degree of similarity, many structural differences were identified and highlighted; these can be used to achieve or enhance a selective BACE inhibition.

Both, the elucidation of the binding modes of the diverse ligands, and the development of an exhaustive structure-based pharmacophore model are expected to provide a support for pharmacophore- and structure-based VS techniques and a source for the optimization of screen derived hits as well as of established leads.

Computational Methods

Molecular modeling calculations and graphics manipulations were performed on a Silicon Graphics Octane2 workstation equipped with two 2600 MHz R14000 processors using the SYBYL7.2 software package. Automated docking calculations were performed using version 3.0.5 of the AutoDock program.

Ligand setup: The protonation state of ligands 1-6 was calculated using MarvinSketch tools (available at http://www.chمapoo.com/marvin/digest/example-sketch-1.html) at the pH value of the corresponding biological assay. The absolute stereochemistry of each ligand was considered as reported in literature. Due to the undetermined stereochemistry on the N-terminal hydroxy group of compound 2, both possible isomers were taken into account for the docking calculations. For 2, 3 and 4 the Cambridge Structural Database (CSD) was searched for the conformational preference of the alkyl and the piperazine moieties. Energy minimizations of the obtained structures were achieved with the TRIVOS force field using the SYBYLMAKMIN2 minimizer by applying the BFGS (Broyden, Fletcher, Goldfarb and Shannon) algorithm with a convergence criterion of 0.001 kcal/mol. Partial atomic charges were assigned by using the Gasteiger-Marsili formalism. All the relevant torsion angles were treated as rotatable during the docking process, allowing thus a search of the conformational space.

Protein setup: All the X-ray structures of BACE (PDB entry codes = 1FKN, 1WS1, 1TQF, 1X13 and 2G94) were set up for docking as follows: polar hydrogens were added using the BIOPOLYMERS module of the SYBYL program (the side chain of Asp32 was taken as protonated while all other Asp, Glu, Lys and Arg side chains were considered ionized and all His were considered neutral by default). Kollman united-atom partial charges were assigned and all waters were removed. In order to optimize the side chains and the hydrogen positions, the protein structures were minimized using both steepest descent and conjugated gradient, keeping the backbone atoms constrained. Employing the DISCOVER program with the CVFF force field. ADDCSOL utility of the AutoDock program was used to add salvation parameters to the protein structures and the grid maps representing the proteins in the docking process were calculated using AutoGrid. The grids, one for each atom type in the ligand, plus one for electrostatic interactions, were chosen to be large enough to include not only the catalytic site, but also a significant part of the protein around it. As a consequence, for all docking calculations, the dimension of the grids map was 80 x 80 x 80 Å with a grid-point spacing of 0.375 Å. The centre of the grid was set to be coincident with one of the two oxygens of Asp226.

Docking simulation: Docking simulations of compounds 1-6 were carried out using the Lamarckian Genetic Algorithm and applying a protocol with an initial population of 50 randomly placed individuals, a maximum number of 1.0 x 10^7 energy evaluations, a mutation rate of 0.02, a crossover rate of 0.80, and an elitism value of 1. Proportional selection was used, in which the average of the worst energy was calculated over a window of the previous 10 generations. The pseudo-Select and Watts algorithm with a maximum of 300 interactions was applied for the local search. 100 independent docking runs were carried out for each ligand, clustering together the resulting conformations which differ by less than 2.0 Å in positional root-mean-square deviation (rmsd). The result with the lowest free energy of binding was taken as the representative of each cluster.

Energy refinement of the BACE-1/ligand complexes. Energy optimizations of the obtained complexes were carried out using 3000 steps of steepest descent followed by 2000 steps of conjugated gradient algorithm employing the CVFF force field as implemented in the DISCOVER program. Only the ligand and the side chains of all residues within a radius of 8 Å around the ligand were allowed to relax. Connolly surfaces of BACE and Cathepsin D were calculated using PyMOL software.
Chart 1. Chemical structures of docked compounds.

1. \(IC_{50} = 200 \text{ nM} \)
2. \(IC_{50} = 20 \text{ nM} \)
3. \(IC_{50} = 1 \text{ nM} \)
4. \(IC_{50} = 1.4 \text{ nM} \)
5. \(IC_{50} = 4 \text{ nM} \)
6. \(IC_{50} = 35 \text{ nM} \)
Figure 3

Figure 4
Figure 5
Figure 6
Captions:

Figure 1. Schematic representation of the main interactions of 1 with the BACE catalytic site.

Figure 2. Cartoon representation of the BACE X-ray structures used for the ensemble-docking study (1WS1, 1FKN, 1TCF, 1XN3, 3AS4) are in pink, green, cyan, yellow and orange, respectively) with 1 shown as grey sticks and transparent grey spheres, hydrogen atoms are omitted for clarity. The most flexible residues, emerged from the BACE X-ray structures superposition, are represented in stick mode and coloured according to the BACE structures colour code.

Figure 3. Binding mode of compound 2 (green) into BACE catalytic site represented as Connolly surface. The ligand and the interacting residues are shown in stick representation and coloured by atom type, while the FLAP region is represented as cartoon. Hydrogen bonds are represented with dashed black lines. All nonpolar hydrogens were removed for clarity.

Figure 4. Binding modes of compound 3,4 and 5 into BACE catalytic site.

Figure 5. Binding modes of compound 6 into BACE catalytic site.

Figure 6. a) Overlay of bioactive conformations of compounds 1-6 on the experimentally determined bound conformation of 1. The pharmacophoric points are coloured as conservative (blue) or additional (cyan). The non polar hydrogens are omitted for clarity. The letter “A” corresponds to an H-bond acceptor group, “D” to an H-bond donor, while “H” to an hydrophobic group. “AH” means that an H-bond acceptor or an hydrophobic group is tolerated. b) Two-dimensional representation of the distances between the identified pharmacophoric points. The distances are reported in Å and represent the minimum and the maximum value found in the proposed bioactive conformations of 1-6. The distances were calculated considering the nitrogen and oxygen atoms of the H-bond acceptor and donor groups, the sulphur atom of the sulphonamide function, the centroids of the aromatic rings, the centre of mass of the alkyl and cycloalkyl groups. c) Mapping of the pharmacophoric points into the BACE catalytic site represented as Connolly surface. Interactions between the pharmacophoric points and some BACE residues are highlighted by black dashed lines.

Figure 7. Superposition of BACE (pink) and cathepsin D (brown) structures represented as Connolly surfaces. The pharmacophoric points were mapped into the BACE enzymes. Misused residues in the binding pocket are shown in stick representation and labelled with the one-letter amino acid code. The letters and the number in parentheses refer to the cathepsin D enzyme.
Table 1. Pharmacophoric points present in ligands 1-6

<table>
<thead>
<tr>
<th>Compound</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D1-D2-D3-A4-H5-H6-H7-H8-H9</td>
</tr>
<tr>
<td>2</td>
<td>D1-H5-H6-H7-H8-H9</td>
</tr>
<tr>
<td>3</td>
<td>D1-D2-D3-A4-H5-H6-H7/H8-H9</td>
</tr>
<tr>
<td>4</td>
<td>D1-D2-D3-A4-H5-H6-H9</td>
</tr>
<tr>
<td>5</td>
<td>D2-D3-A4-H5-H6-H7/H8-H9</td>
</tr>
<tr>
<td>6</td>
<td>D1-D2-D3-A4-H5-H7-H8-H9</td>
</tr>
</tbody>
</table>
Table 2. Distances (Å) between the pharmacophoric points and the BACE interacting residues. The distances were calculated considering the pharmacophoric points and each Cα of the corresponding residues. Cα were taken into account for glycine residues.

<table>
<thead>
<tr>
<th>Pharmacophoric Points</th>
<th>Interacting Residues</th>
<th>Distances</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>D32</td>
<td>4.8</td>
</tr>
<tr>
<td>D2</td>
<td>G54</td>
<td>3.7</td>
</tr>
<tr>
<td>D2</td>
<td>D228</td>
<td>4.5</td>
</tr>
<tr>
<td>D3</td>
<td>G230</td>
<td>4.4</td>
</tr>
<tr>
<td>A4</td>
<td>G73</td>
<td>4.5</td>
</tr>
<tr>
<td>H5</td>
<td>Y71</td>
<td>6.4</td>
</tr>
<tr>
<td>H5</td>
<td>P108</td>
<td>8.9</td>
</tr>
<tr>
<td>H6</td>
<td>Y71</td>
<td>5.4</td>
</tr>
<tr>
<td>H6</td>
<td>Y198</td>
<td>8.1</td>
</tr>
<tr>
<td>H7</td>
<td>I229</td>
<td>6.0</td>
</tr>
<tr>
<td>H7</td>
<td>V332</td>
<td>6.4</td>
</tr>
<tr>
<td>H9</td>
<td>R235</td>
<td>6.6</td>
</tr>
<tr>
<td>H9</td>
<td>N233</td>
<td>5.3</td>
</tr>
<tr>
<td>H9</td>
<td>G111</td>
<td>5.1</td>
</tr>
<tr>
<td>H9</td>
<td>G320</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Table 3. Main dissimilarities in BACE and Cathepsin-D catalytic sites.

<table>
<thead>
<tr>
<th>Binding Site Location</th>
<th>BACE Residues</th>
<th>Cathepsin-D Residues</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2 Open Region</td>
<td>N233</td>
<td>L236</td>
</tr>
<tr>
<td></td>
<td>R236</td>
<td>V259</td>
</tr>
<tr>
<td></td>
<td>S325</td>
<td>M307</td>
</tr>
<tr>
<td></td>
<td>S327</td>
<td>M309</td>
</tr>
<tr>
<td>S1' pocket</td>
<td>K224</td>
<td>E227</td>
</tr>
<tr>
<td>Loop between S1' and S2'</td>
<td>S328, T329 and G330</td>
<td>D310, I511, P312, P313, P314, S315, G316, P317 and L318</td>
</tr>
<tr>
<td>S2' pocket</td>
<td>R120</td>
<td>V144</td>
</tr>
<tr>
<td>Flap Region</td>
<td>T72</td>
<td>G79</td>
</tr>
<tr>
<td>Others</td>
<td>R307</td>
<td>L202</td>
</tr>
<tr>
<td></td>
<td>K321</td>
<td>L303</td>
</tr>
</tbody>
</table>
Table 1. Crystal data and structure refinement for 1037.

<table>
<thead>
<tr>
<th>Identification code</th>
<th>1037 (649 F2B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C15 H22 I N O3</td>
</tr>
<tr>
<td>Formula weight</td>
<td>391.24</td>
</tr>
<tr>
<td>Temperature</td>
<td>299(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 A</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>Monoclinic, C2</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 20.303(5) A, alpha = 90 deg.</td>
</tr>
<tr>
<td></td>
<td>b = 5.182(2) A, beta = 99.04(2) deg.</td>
</tr>
<tr>
<td></td>
<td>c = 16.780(3) A, gamma = 90 deg.</td>
</tr>
<tr>
<td>Volume</td>
<td>1743.5(9) A^3</td>
</tr>
<tr>
<td>Z, Calculated density</td>
<td>4, 1.490 Mg/m^3</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>1.843 mm^-1</td>
</tr>
<tr>
<td>F(000)</td>
<td>784</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.40 x 0.12 x 0.05 mm</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>4.20 to 25.67 deg.</td>
</tr>
<tr>
<td>Limiting indices</td>
<td>-24<=h<=24, -4<=k<=6, -20<=l<=20</td>
</tr>
<tr>
<td>Reflections collected / unique</td>
<td>4902 / 2338 [R(int) = 0.0538]</td>
</tr>
<tr>
<td>Completeness to theta</td>
<td>95.4 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Empirical</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.992 and 0.567</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F^2</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>2338 / 2 / 195</td>
</tr>
<tr>
<td>Goodness-of-fit on F^2</td>
<td>1.201</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R1 = 0.0820, wR2 = 0.1384</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.1433, wR2 = 0.1559</td>
</tr>
<tr>
<td>Absolute structure parameter</td>
<td>0.06(8)</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.613 and -0.465 e.A^-3</td>
</tr>
</tbody>
</table>

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3) for 1037.

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I(1)</td>
<td>4044(1)</td>
<td>9938(5)</td>
<td>-888(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>4876(4)</td>
<td>7488(15)</td>
<td>2796(6)</td>
</tr>
<tr>
<td>O(2)</td>
<td>2748(3)</td>
<td>9730(20)</td>
<td>134(4)</td>
</tr>
<tr>
<td>O(3)</td>
<td>4151(4)</td>
<td>4500(20)</td>
<td>2151(5)</td>
</tr>
<tr>
<td>N(1)</td>
<td>4014(4)</td>
<td>8824(17)</td>
<td>1961(5)</td>
</tr>
<tr>
<td>C(1)</td>
<td>3871(6)</td>
<td>8200(30)</td>
<td>196(8)</td>
</tr>
<tr>
<td>C(2)</td>
<td>3390(4)</td>
<td>9720(30)</td>
<td>619(6)</td>
</tr>
<tr>
<td>C(3)</td>
<td>3351(5)</td>
<td>8680(20)</td>
<td>1451(7)</td>
</tr>
<tr>
<td>C(4)</td>
<td>2835(4)</td>
<td>10130(40)</td>
<td>1863(6)</td>
</tr>
<tr>
<td>C(5)</td>
<td>2820(5)</td>
<td>9300(30)</td>
<td>2718(8)</td>
</tr>
<tr>
<td>C(6)</td>
<td>3203(6)</td>
<td>10570(30)</td>
<td>3356(9)</td>
</tr>
<tr>
<td>C(7)</td>
<td>3201(8)</td>
<td>9670(60)</td>
<td>4140(8)</td>
</tr>
<tr>
<td>C(8)</td>
<td>2843(8)</td>
<td>7610(40)</td>
<td>4310(12)</td>
</tr>
<tr>
<td>C(9)</td>
<td>2473(8)</td>
<td>6320(30)</td>
<td>3670(12)</td>
</tr>
<tr>
<td>C(10)</td>
<td>2471(6)</td>
<td>7130(30)</td>
<td>2899(10)</td>
</tr>
<tr>
<td>C(11)</td>
<td>4331(6)</td>
<td>6660(30)</td>
<td>2292(8)</td>
</tr>
<tr>
<td>C(12)</td>
<td>5332(7)</td>
<td>5530(30)</td>
<td>3228(10)</td>
</tr>
<tr>
<td>C(13A)</td>
<td>5770(20)</td>
<td>7150(70)</td>
<td>3917(18)</td>
</tr>
<tr>
<td>C(13B)</td>
<td>5963(16)</td>
<td>7320(60)</td>
<td>3460(20)</td>
</tr>
<tr>
<td>C(14)</td>
<td>4970(8)</td>
<td>4030(30)</td>
<td>3800(9)</td>
</tr>
<tr>
<td>C(15)</td>
<td>5612(7)</td>
<td>3910(30)</td>
<td>2649(12)</td>
</tr>
</tbody>
</table>
Table 3. Bond lengths [Å] and angles [deg] for 1037.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>I(1)-C(1)</td>
<td>2.107(13)</td>
</tr>
<tr>
<td>O(1)-C(11)</td>
<td>1.352(14)</td>
</tr>
<tr>
<td>O(1)-C(12)</td>
<td>1.482(16)</td>
</tr>
<tr>
<td>O(2)-C(2)</td>
<td>1.423(9)</td>
</tr>
<tr>
<td>O(2)-H(2O)</td>
<td>0.8200</td>
</tr>
<tr>
<td>O(3)-C(11)</td>
<td>1.191(15)</td>
</tr>
<tr>
<td>N(1)-C(11)</td>
<td>1.366(15)</td>
</tr>
<tr>
<td>N(1)-C(3)</td>
<td>1.480(12)</td>
</tr>
<tr>
<td>N(1)-H(1N)</td>
<td>0.8600</td>
</tr>
<tr>
<td>C(1)-C(2)</td>
<td>1.517(17)</td>
</tr>
<tr>
<td>C(1)-H(1A)</td>
<td>0.9700</td>
</tr>
<tr>
<td>C(1)-H(1B)</td>
<td>0.9700</td>
</tr>
<tr>
<td>C(2)-C(3)</td>
<td>1.508(15)</td>
</tr>
<tr>
<td>C(2)-H(2)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(3)-C(4)</td>
<td>1.538(16)</td>
</tr>
<tr>
<td>C(3)-H(3)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(4)-C(5)</td>
<td>1.503(16)</td>
</tr>
<tr>
<td>C(4)-H(4A)</td>
<td>0.9700</td>
</tr>
<tr>
<td>C(4)-H(4B)</td>
<td>0.9700</td>
</tr>
<tr>
<td>C(5)-C(6)</td>
<td>1.387(18)</td>
</tr>
<tr>
<td>C(5)-C(10)</td>
<td>1.387(19)</td>
</tr>
<tr>
<td>C(6)-C(7)</td>
<td>1.40(2)</td>
</tr>
<tr>
<td>C(6)-H(6)</td>
<td>0.9300</td>
</tr>
<tr>
<td>C(7)-C(8)</td>
<td>1.35(3)</td>
</tr>
<tr>
<td>C(7)-H(7)</td>
<td>0.9300</td>
</tr>
<tr>
<td>C(8)-C(9)</td>
<td>1.38(2)</td>
</tr>
<tr>
<td>C(8)-H(8)</td>
<td>0.9300</td>
</tr>
<tr>
<td>C(9)-C(10)</td>
<td>1.360(19)</td>
</tr>
<tr>
<td>C(9)-H(9)</td>
<td>0.9300</td>
</tr>
<tr>
<td>C(10)-H(10)</td>
<td>0.9300</td>
</tr>
<tr>
<td>C(12)-C(15)</td>
<td>1.47(2)</td>
</tr>
<tr>
<td>C(12)-C(14)</td>
<td>1.51(2)</td>
</tr>
<tr>
<td>C(12)-C(13B)</td>
<td>1.58(2)</td>
</tr>
<tr>
<td>C(12)-C(13A)</td>
<td>1.58(2)</td>
</tr>
<tr>
<td>C(13A)-H(13A)</td>
<td>0.9600</td>
</tr>
<tr>
<td>C(13A)-H(13B)</td>
<td>0.9600</td>
</tr>
<tr>
<td>C(13A)-H(13C)</td>
<td>0.9600</td>
</tr>
<tr>
<td>C(13B)-H(13D)</td>
<td>0.9600</td>
</tr>
<tr>
<td>C(13B)-H(13E)</td>
<td>0.9600</td>
</tr>
<tr>
<td>C(13B)-H(13F)</td>
<td>0.9600</td>
</tr>
<tr>
<td>C(14)-H(14A)</td>
<td>0.9600</td>
</tr>
<tr>
<td>C(14)-H(14B)</td>
<td>0.9600</td>
</tr>
<tr>
<td>C(14)-H(14C)</td>
<td>0.9600</td>
</tr>
<tr>
<td>C(15)-H(15A)</td>
<td>0.9600</td>
</tr>
<tr>
<td>C(15)-H(15B)</td>
<td>0.9600</td>
</tr>
<tr>
<td>C(15)-H(15C)</td>
<td>0.9600</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)-C(11)-C(12)</td>
<td>118.5(10)</td>
</tr>
<tr>
<td>C(2)-O(2)-H(2O)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(11)-N(1)-C(3)</td>
<td>121.5(9)</td>
</tr>
<tr>
<td>C(11)-N(1)-H(1N)</td>
<td>119.3</td>
</tr>
<tr>
<td>C(3)-N(1)-H(1N)</td>
<td>119.3</td>
</tr>
<tr>
<td>C(2)-C(1)-I(1)</td>
<td>112.8(9)</td>
</tr>
<tr>
<td>C(2)-C(1)-H(1A)</td>
<td>109.0</td>
</tr>
<tr>
<td>I(1)-C(1)-H(1A)</td>
<td>109.0</td>
</tr>
<tr>
<td>C(2)-C(1)-H(1B)</td>
<td>109.0</td>
</tr>
<tr>
<td>I(1)-C(1)-H(1B)</td>
<td>109.0</td>
</tr>
<tr>
<td>H(1A)-C(1)-H(1B)</td>
<td>107.8</td>
</tr>
<tr>
<td>O(2)-C(2)-C(3)</td>
<td>110.8(8)</td>
</tr>
<tr>
<td>Bond</td>
<td>Angle (°)</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>O(2)-C(2)-C(1)</td>
<td>109.5(10)</td>
</tr>
<tr>
<td>C(3)-C(2)-C(1)</td>
<td>112.3(10)</td>
</tr>
<tr>
<td>O(2)-C(2)-H(2)</td>
<td>108.0</td>
</tr>
<tr>
<td>C(3)-C(2)-H(2)</td>
<td>108.0</td>
</tr>
<tr>
<td>C(1)-C(2)-H(2)</td>
<td>108.0</td>
</tr>
<tr>
<td>N(1)-C(3)-C(2)</td>
<td>110.1(8)</td>
</tr>
<tr>
<td>N(1)-C(3)-C(4)</td>
<td>109.7(9)</td>
</tr>
<tr>
<td>C(2)-C(3)-C(4)</td>
<td>112.4(9)</td>
</tr>
<tr>
<td>N(1)-C(3)-H(3)</td>
<td>108.2</td>
</tr>
<tr>
<td>C(2)-C(3)-H(3)</td>
<td>108.2</td>
</tr>
<tr>
<td>C(4)-C(3)-H(3)</td>
<td>108.2</td>
</tr>
<tr>
<td>C(5)-C(4)-C(3)</td>
<td>113.9(11)</td>
</tr>
<tr>
<td>C(5)-C(4)-H(4A)</td>
<td>108.8</td>
</tr>
<tr>
<td>C(3)-C(4)-H(4A)</td>
<td>108.8</td>
</tr>
<tr>
<td>C(5)-C(4)-H(4B)</td>
<td>108.8</td>
</tr>
<tr>
<td>C(3)-C(4)-H(4B)</td>
<td>108.8</td>
</tr>
<tr>
<td>H(4A)-C(4)-H(4B)</td>
<td>107.7</td>
</tr>
<tr>
<td>C(6)-C(5)-C(10)</td>
<td>117.5(14)</td>
</tr>
<tr>
<td>C(6)-C(5)-C(4)</td>
<td>120.4(13)</td>
</tr>
<tr>
<td>C(10)-C(5)-C(4)</td>
<td>122.0(13)</td>
</tr>
<tr>
<td>C(5)-C(6)-C(7)</td>
<td>118.8(17)</td>
</tr>
<tr>
<td>C(5)-C(6)-H(6)</td>
<td>120.6</td>
</tr>
<tr>
<td>C(7)-C(6)-H(6)</td>
<td>120.6</td>
</tr>
<tr>
<td>C(8)-C(7)-C(6)</td>
<td>123.2(18)</td>
</tr>
<tr>
<td>C(8)-C(7)-H(7)</td>
<td>118.4</td>
</tr>
<tr>
<td>C(6)-C(7)-H(7)</td>
<td>118.4</td>
</tr>
<tr>
<td>C(7)-C(8)-C(9)</td>
<td>117.6(18)</td>
</tr>
<tr>
<td>C(7)-C(8)-H(8)</td>
<td>121.2</td>
</tr>
<tr>
<td>C(9)-C(8)-H(8)</td>
<td>121.2</td>
</tr>
<tr>
<td>C(10)-C(9)-C(8)</td>
<td>120.8(16)</td>
</tr>
<tr>
<td>C(10)-C(9)-H(9)</td>
<td>119.6</td>
</tr>
<tr>
<td>C(8)-C(9)-H(9)</td>
<td>119.6</td>
</tr>
<tr>
<td>C(9)-C(10)-C(5)</td>
<td>122.1(15)</td>
</tr>
<tr>
<td>C(9)-C(10)-H(10)</td>
<td>119.0</td>
</tr>
<tr>
<td>C(5)-C(10)-H(10)</td>
<td>119.0</td>
</tr>
<tr>
<td>O(3)-C(11)-O(1)</td>
<td>128.1(12)</td>
</tr>
<tr>
<td>O(3)-C(11)-N(1)</td>
<td>125.6(10)</td>
</tr>
<tr>
<td>O(1)-C(11)-N(1)</td>
<td>106.3(11)</td>
</tr>
<tr>
<td>C(15)-C(12)-O(1)</td>
<td>110.2(12)</td>
</tr>
<tr>
<td>C(15)-C(12)-C(14)</td>
<td>113.6(12)</td>
</tr>
<tr>
<td>O(1)-C(12)-C(14)</td>
<td>109.5(12)</td>
</tr>
<tr>
<td>C(15)-C(12)-C(13B)</td>
<td>97(2)</td>
</tr>
<tr>
<td>O(1)-C(12)-C(13B)</td>
<td>98.2(16)</td>
</tr>
<tr>
<td>C(14)-C(12)-C(13B)</td>
<td>126.8(18)</td>
</tr>
<tr>
<td>C(15)-C(12)-C(13A)</td>
<td>124(2)</td>
</tr>
<tr>
<td>O(1)-C(12)-C(13A)</td>
<td>103.4(19)</td>
</tr>
<tr>
<td>C(14)-C(12)-C(13A)</td>
<td>94.7(18)</td>
</tr>
<tr>
<td>C(13B)-C(12)-C(13A)</td>
<td>33.6(18)</td>
</tr>
<tr>
<td>C(12)-C(13A)-H(13A)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(12)-C(13A)-H(13B)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(12)-C(13A)-H(13C)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(12)-C(13B)-H(13D)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(12)-C(13B)-H(13E)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(13D)-C(13B)-H(13E)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(12)-C(13B)-H(13F)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(13D)-C(13B)-H(13F)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(13E)-C(13B)-H(13F)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(12)-C(14)-H(14A)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(12)-C(14)-H(14B)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(14A)-C(14)-H(14B)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(12)-C(14)-H(14C)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(14A)-C(14)-H(14C)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(14B)-C(14)-H(14C)</td>
<td>109.5</td>
</tr>
</tbody>
</table>
Table 4. Anisotropic displacement parameters (A\(^2\) x 10\(^3\)) for 1037.

The anisotropic displacement factor exponent takes the form:
\[-2 \pi^2 \left[h^2 a^*^2 U_{11} + \ldots + 2h\ k\ a^*\ b^* U_{12} \right] \]

<table>
<thead>
<tr>
<th>U11</th>
<th>U22</th>
<th>U33</th>
<th>U23</th>
<th>U13</th>
<th>U12</th>
</tr>
</thead>
<tbody>
<tr>
<td>I(1)</td>
<td>86(1)</td>
<td>169(1)</td>
<td>70(1)</td>
<td>29(1)</td>
<td>14(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>55(6)</td>
<td>34(5)</td>
<td>90(7)</td>
<td>4(5)</td>
<td>-35(5)</td>
</tr>
<tr>
<td>O(2)</td>
<td>32(4)</td>
<td>51(6)</td>
<td>74(5)</td>
<td>4(7)</td>
<td>-15(3)</td>
</tr>
<tr>
<td>O(3)</td>
<td>47(5)</td>
<td>24(6)</td>
<td>86(6)</td>
<td>0(5)</td>
<td>-17(4)</td>
</tr>
<tr>
<td>N(1)</td>
<td>26(5)</td>
<td>39(8)</td>
<td>63(6)</td>
<td>3(5)</td>
<td>-1(4)</td>
</tr>
<tr>
<td>C(1)</td>
<td>47(8)</td>
<td>78(11)</td>
<td>74(10)</td>
<td>19(8)</td>
<td>-14(7)</td>
</tr>
<tr>
<td>C(2)</td>
<td>18(5)</td>
<td>38(7)</td>
<td>57(6)</td>
<td>-3(8)</td>
<td>-9(4)</td>
</tr>
<tr>
<td>C(3)</td>
<td>8(5)</td>
<td>32(7)</td>
<td>71(8)</td>
<td>0(6)</td>
<td>-5(5)</td>
</tr>
<tr>
<td>C(4)</td>
<td>27(5)</td>
<td>59(8)</td>
<td>72(7)</td>
<td>16(11)</td>
<td>0(5)</td>
</tr>
<tr>
<td>C(5)</td>
<td>8(5)</td>
<td>68(13)</td>
<td>91(9)</td>
<td>-4(8)</td>
<td>9(5)</td>
</tr>
<tr>
<td>C(6)</td>
<td>65(8)</td>
<td>64(13)</td>
<td>84(10)</td>
<td>-8(9)</td>
<td>15(7)</td>
</tr>
<tr>
<td>C(7)</td>
<td>87(10)</td>
<td>120(16)</td>
<td>64(9)</td>
<td>-7(15)</td>
<td>2(7)</td>
</tr>
<tr>
<td>C(8)</td>
<td>49(10)</td>
<td>115(17)</td>
<td>114(15)</td>
<td>8(13)</td>
<td>20(10)</td>
</tr>
<tr>
<td>C(9)</td>
<td>69(11)</td>
<td>68(12)</td>
<td>115(15)</td>
<td>22(10)</td>
<td>23(10)</td>
</tr>
<tr>
<td>C(10)</td>
<td>35(8)</td>
<td>85(13)</td>
<td>88(12)</td>
<td>12(9)</td>
<td>3(7)</td>
</tr>
<tr>
<td>C(11)</td>
<td>22(6)</td>
<td>46(11)</td>
<td>53(8)</td>
<td>2(7)</td>
<td>-8(6)</td>
</tr>
<tr>
<td>C(12)</td>
<td>60(9)</td>
<td>49(11)</td>
<td>89(11)</td>
<td>1(10)</td>
<td>-32(8)</td>
</tr>
<tr>
<td>C(13A)</td>
<td>120(30)</td>
<td>90(30)</td>
<td>70(20)</td>
<td>40(20)</td>
<td>-50(20)</td>
</tr>
<tr>
<td>C(13B)</td>
<td>60(20)</td>
<td>50(20)</td>
<td>60(20)</td>
<td>20(20)</td>
<td>-50(20)</td>
</tr>
<tr>
<td>C(14)</td>
<td>107(13)</td>
<td>94(19)</td>
<td>77(10)</td>
<td>5(10)</td>
<td>-19(9)</td>
</tr>
<tr>
<td>C(15)</td>
<td>42(8)</td>
<td>78(15)</td>
<td>165(17)</td>
<td>40(12)</td>
<td>14(9)</td>
</tr>
</tbody>
</table>

Table 5. Hydrogen coordinates (x 10\(^4\)) and isotropic displacement parameters (A\(^2\) x 10\(^3\)) for 1037.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(2O)</td>
<td>2611</td>
<td>8247</td>
<td>69</td>
</tr>
<tr>
<td>H(1N)</td>
<td>4205</td>
<td>10301</td>
<td>2051</td>
</tr>
<tr>
<td>H(1A)</td>
<td>3694</td>
<td>6477</td>
<td>79</td>
</tr>
<tr>
<td>H(1B)</td>
<td>4293</td>
<td>8028</td>
<td>555</td>
</tr>
<tr>
<td>H(2)</td>
<td>3549</td>
<td>11505</td>
<td>676</td>
</tr>
<tr>
<td>H(3)</td>
<td>3218</td>
<td>6867</td>
<td>1398</td>
</tr>
<tr>
<td>H(4A)</td>
<td>2933</td>
<td>11966</td>
<td>1861</td>
</tr>
<tr>
<td>H(4B)</td>
<td>2396</td>
<td>9877</td>
<td>1550</td>
</tr>
<tr>
<td>H(6)</td>
<td>3456</td>
<td>12007</td>
<td>3263</td>
</tr>
<tr>
<td>H(7)</td>
<td>3459</td>
<td>10531</td>
<td>4565</td>
</tr>
<tr>
<td>H(8)</td>
<td>2846</td>
<td>7073</td>
<td>4840</td>
</tr>
<tr>
<td>H(9)</td>
<td>2223</td>
<td>4888</td>
<td>3768</td>
</tr>
<tr>
<td>H(10)</td>
<td>2226</td>
<td>6201</td>
<td>2479</td>
</tr>
</tbody>
</table>
Table 6. Torsion angles [deg] for 1037.

\[
\begin{array}{cccc}
I(1)-C(1)-C(2)-O(2) & 65.2(13) \\
I(1)-C(1)-C(2)-C(3) & -171.3(8) \\
C(11)-N(1)-C(3)-C(2) & -119.9(12) \\
C(11)-N(1)-C(3)-C(4) & 116.0(12) \\
O(2)-C(2)-C(3)-N(1) & -176.8(11) \\
C(1)-C(2)-C(3)-N(1) & 60.4(13) \\
O(2)-C(2)-C(3)-C(4) & -54.2(15) \\
C(1)-C(2)-C(3)-C(4) & -177.0(10) \\
N(1)-C(3)-C(4)-C(5) & -52.7(15) \\
C(2)-C(3)-C(4)-C(5) & -175.5(11) \\
C(3)-C(4)-C(5)-C(6) & 92.7(16) \\
C(3)-C(4)-C(5)-C(10) & -82.3(14) \\
C(10)-C(5)-C(6)-C(7) & -2(2) \\
C(4)-C(5)-C(6)-C(7) & 177.1(14) \\
C(5)-C(6)-C(7)-C(8) & 0(3) \\
C(6)-C(7)-C(8)-C(9) & 3(2) \\
C(7)-C(8)-C(9)-C(10) & 177.9(13) \\
C(12)-O(1)-C(11)-O(3) & 2(2) \\
C(12)-O(1)-C(11)-N(1) & -178.2(12) \\
C(3)-N(1)-C(11)-O(3) & 8(2) \\
C(3)-N(1)-C(11)-O(1) & -172.5(9) \\
C(11)-O(1)-C(12)-C(15) & 61.2(17) \\
C(11)-O(1)-C(12)-C(14) & -64.5(16) \\
C(11)-O(1)-C(12)-C(13B) & 162(2) \\
C(11)-O(1)-C(12)-C(13A) & -165(2) \\
\end{array}
\]

Symmetry transformations used to generate equivalent atoms:
#1 x,y+1,z #2 -x+1/2,y-1/2,-z

Table 7. Hydrogen bonds for 1037 [Å and deg.].

\[
\begin{array}{cccccc}
D-H...A & d(D-H) & d(H...A) & d(D...A) & <(DHA) \\
N(1)-H(1N)...O(3)#1 & 0.86 & 2.18 & 2.965(14) & 150.8 \\
O(2)-H(2O)...O(2)#2 & 0.82 & 1.97 & 2.791(4) & 177.3 \\
\end{array}
\]

Symmetry transformations used to generate equivalent atoms:
#1 x,y+1,z #2 -x+1/2,y-1/2,-z
Lebenslauf

Persönliche Daten
Name: Hannes Braun
Geburtsdatum/-ort: 03. März 1979 in Pforzheim
Staatsangehörigkeit: deutsch
Familienstand: ledig

Ausbildung
06/1997 Reifeprüfung in Bad Ischl / Österreich
09/1997-06/1998 Grundwehrdienst in Lahnstein
10/2000 - 05/2003 Hauptstudium Chemie, TU Darmstadt
06/2003 - 12/2003 Diplomarbeit bei Prof. Dr. B. Schmidt, TU Darmstadt

„Selektive Inhibition des Proteasoms“
seit 02/2004 Doktorand bei Prof. Dr. B. Schmidt, Technische Universität
Darmstadt
07/2004 - 09/2004 Trinity College Dublin / Irland bei Dr. D. G. Lloyd,
Computergestütztes Design von BACE-Inhibitoren

Veröffentlichungen
Siehe Anhang, S. 146.
Eidesstattliche Erklärung

Ich erkläre hiermit an Eides Statt, dass ich meine Dissertation selbständig und nur mit den angegebenen Hilfsmitteln angefertigt habe.
Erklärung

Ich erkläre hiermit, noch keinen Promotionsversuch unternommen zu haben.