TU Darmstadt / ULB / TUprints

Evaluation of the therapeutic potential of GDF5 mutants to treat osteoarthritis

Mang, Tanja (2019):
Evaluation of the therapeutic potential of GDF5 mutants to treat osteoarthritis.
Darmstadt, Technische Universität, [Ph.D. Thesis]

[img]
Preview
Text
PhD Thesis Tanja Mang final.pdf
Available under CC-BY-SA 4.0 International - Creative Commons, Attribution Share-alike.

Download (6MB) | Preview
Item Type: Ph.D. Thesis
Title: Evaluation of the therapeutic potential of GDF5 mutants to treat osteoarthritis
Language: English
Abstract:

Osteoarthritis (OA) is characterized by a progressive destruction of articular cartilage. Current treatment options do not enable to heal or stop the disease progression. Consequently, there is a strong need for disease-modifying OA drugs (DMOADs). The growth and differentiation factor 5 (GDF5) is a promising DMOAD candidate. It is a key regulator of cartilage development and is involved in cartilage maintenance during adulthood. GDF5 was shown to stimulate matrix production in chondrocytes, to promote chondrogenesis in mesenchymal stem cells (MSCs) and to induce cartilage formation in an OA model [1-3]. Moreover, it was shown to exhibit anti-catabolic properties [4]. Thus, GDF5 could enable to regenerate damaged OA cartilage and to prevent further cartilage worsening in vivo. However, GDF5 was also shown to have hypertrophic and osteogenic activities [3, 5], which could result in the formation of inferior cartilage and unwanted bone formation. To reduce the hypertrophic/osteogenic properties of GDF5, different GDF5 mutants were produced and three of them (M1673, W417F, W417R) were selected. The aim of the present work was to evaluate these GDF5 mutants for their therapeutic potential in the two cells types, which can produce cartilage: chondrocytes and MSCs. Among the GDF5 mutants, M1673 was previously shown to have the strongest anabolic effect in chondrocytes from different non-human species. The first aim of this work was to confirm the anabolic effect of M1673 in human OA chondrocytes (hOAC). This was achieved with the use of a 3D culture system and modified culture conditions (slightly increased medium osmolarity). Increasing the medium osmolarity was shown to favor the chondrocytes phenotype and its matrix production. In addition, the OA characteristics (cytokine and protease production) were reduced and the expression of BMPR1a, BMPR1b and BMPR2 enhanced. With these culture conditions, M1673 was shown to exhibit anabolic and anti-catabolic effects on hOAC. Moreover, the results also suggested M1673 to be less hypertrophic in hOAC compared to GDF5. In addition, the GDF5 mutants were tested in the present work for their chondrogenic and osteogenic properties in MSCs. First, it was shown that the GDF5 mutants display a lower BMPR1a affinity compared to GDF5 but a similar BMPR1b affinity. Among the GDF5 mutants, M1673 was shown to induce the strongest chondrogenic differentiation while preventing hypertrophy. In addition, the osteogenic differentiation was delayed with M1673 compared to GDF5. Originally, it was hypothesized that chondrogenesis is mediated through BMPR1b, while osteogenesis is mediated through BMPR1a. However, in the light of the results presented here, this had to be refined: it now appears that the activation of BMPR1a is necessary for chondrogenesis as well as for osteogenesis. In addition, BMPs with a higher BMPR1a/BMPR1b ratio appear to prevent hypertrophy and delay osteogenesis. Taken together, the results of this work show that M1673 can stimulate cartilage production in both hOAC and MSCs, while having a reduced hypertrophic and osteogenic potential in comparison to GDF5. Therefore, it could be demonstrated that M1673 bear potential as a DMOAD.

Alternative Abstract:
Alternative AbstractLanguage
Osteoarthrose (OA) ist durch eine zunehmende Zerstörung des Gelenkknorpels charakterisiert. Zurzeit steht keine Behandlung zur Verfügung, die eine Heilung herbeiführt oder ein Fortschreiten der OA verhindert. Daher besteht ein Bedarf an krankheits-modifizierenden OA Medikamenten. In diesem Zusammenhang ist der Wachstums- und Differenzierungsfaktor 5 (GDF5) ein vielversprechender Kandidat. GDF5 spielt während der Knorpelentwicklung und bei der Knorpelerhaltung im erwachsenen Menschen eine Schlüsselrolle. Es wurde bereits gezeigt, dass GDF5 sowohl die Matrixproduktion im Chondrozyten, als auch die Chondrogenese von mesenchymalen Stammzellen (MSCs) und die Knorpelneubildung in einem OA Modell induziert [1-3]. Zusätzlich werden GDF5 anti-katabole Fähigkeiten zugeschrieben [4]. Somit könnte GDF5 in vivo die Regenerierung von OA Knorpel ermöglichen, wie auch ein Fortschreiten des Knorpelabbaus verhindern. Es wurde jedoch auch gezeigt, dass GDF5 hypertrophe/osteogene Fähigkeiten besitzt [3, 5], die den Aufbau minderwertigen Knorpels und eine unerwünschte Knochenbildung zur Folge haben. Zur Verringerung der Osteogenizität von GDF5 wurden verschiedene GDF5 Mutanten generiert, von denen M1673, W417F und W417R selektiert wurden. Ziel der vorliegenden Arbeit war es, diese Mutanten in Bezug auf ihr therapeutisches Potential hin in zwei Knorpel-produzierenden Zelltypen, den Chondrozyten und den MSCs, zu untersuchen. In früheren Studien zeigte die Mutante M1673 den größten anabolen Effekt in nicht-humanen Chondrozyten. Das erste Ziel dieser Arbeit war es, den anabolen Effekt von M1673 in humanen OA Chondrozyten (hOAC) zu bestätigen. Dies konnte in einem 3D Kultursystem unter modifizierten Bedingungen (leicht erhöhte Osmolarität) nachgewiesen werden. Dabei zeigte sich, dass eine erhöhte Medium-Osmolarität den Phänotyp von Chondrozyten sowie deren Matrixproduktion begünstigt. Zusätzlich wurden Charakteristika der OA (Zytokin und Protease Produktion) reduziert und die Expression von BMPR1a, BMPR1b und BMPR2 erhöht. Unter diesen Kulturbedingungen zeigte M1673 anabole und anti-katabole Effekte in hOAC. Zudem wurde gezeigt, dass M1673 im Vergleich zu GDF5 in hOAC weniger hypertroph sein könnte. Weiterhin wurden die GDF5 Mutanten auf ihr chondrogenes und osteogenes Potential in MSCs getestet. Zunächst wurde gezeigt, dass alle drei Mutanten im Vergleich zu GDF5 eine reduzierte BMPR1a und eine vergleichbare BMPR1b Affinität besitzen. Die GDF5 Mutante M1673 wies das stärkste chondrogene Potential auf und verhinderte gleichzeitig Hypertrophie. Zusätzlich zeigte M1673 im Vergleich zu GDF5 eine reduzierte Osteogenizität. Die initiale Hypothese war, dass Chondrogenese über BMPR1b und Osteogenese über BMPR1a vermittelt wird. Versuche im Rahmen dieser Arbeit konnten allerdings nachweisen, dass BMPR1a sowohl für Chondrogenese als auch für Osteogenese benötigt wird und dass BMPs mit erhöhtem BMPR1a/BMPR1b Ratio Hypertrophie verhindern und Osteogenese verzögern. Zusammenfassend stimulierte M1673 die Knorpelproduktion sowohl in hOAC als auch in MSCs. M1673 zeigte im Vergleich zu GDF5 reduzierte hypertrophe und osteogene Eigenschaften. Somit konnte gezeigt werden, dass M1673 Potential für ein krankheits-modifizierendes OA Medikament besitzt.German
Place of Publication: Darmstadt
Classification DDC: 500 Naturwissenschaften und Mathematik > 540 Chemie
Divisions: 07 Department of Chemistry
07 Department of Chemistry > Fachgebiet Biochemie
07 Department of Chemistry > Fachgebiet Biochemie > Allgemeine Biochemie
Date Deposited: 30 Apr 2019 08:53
Last Modified: 09 Jul 2020 02:25
URN: urn:nbn:de:tuda-tuprints-82062
Referees: Kolmar, Prof. Dr. Harald and Michaelis, Prof. Dr. Martin
Refereed: 13 July 2018
URI: https://tuprints.ulb.tu-darmstadt.de/id/eprint/8206
Export:
Actions (login required)
View Item View Item