Ermittlung von Energieeinsparpotenzialen durch überbetriebliche Wärmeintegration in Deutschland

Dem Fachbereich Bau- und Umweltingenieurwissenschaften
der Technischen Universität Darmstadt

zur Erlangung des Grades eines
Doktors der Ingenieurwissenschaften (Dr.-Ing.)

vorgelegte Dissertation von
Ali Aydemir (M.Sc.)
aus Duisburg

Karlsruhe 2018

Erstreferentin: Prof. Dr. rer. nat. Liselotte Schebek
Korreferent: Prof. Dr.-Ing. Hans Joachim Linke
Korreferent: Dr.-Ing. Clemens Rohde
Aydemir, Ali: Ermittlung von Energieeinsparpotenzialen durch überbetriebliche Wärmeintegration in Deutschland
Darmstadt, Technische Universität Darmstadt,
Jahr der Veröffentlichung der Dissertation auf TUprints: 2018
URN: urn:nbn:de:tuda-tuprints-76843
Tag der mündlichen Prüfung: 16.03.2018
Veröffentlicht unter CC BY-SA 4.0 International
https://creativecommons.org/licenses/
Abstract

This dissertation deals with the question of how energy saving potentials through inter-company heat integration can be systematically determined for Germany. After a summary of the state of knowledge on this topic, the research gap is worked out in a structured manner (Chapter 3). It is found that to date there are no systematic models for determining energy saving potentials through inter-company heat integration for Germany. Previous work on this topic focuses on the analysis of individual processes. The overall economic potential of the energy efficiency measure "inter-company heat integration" is not considered. Consequently, the rest of the work is concerned with developing systematic models to close this research gap.

Chapter 4 first develops a model with which the theoretical energy saving potential through inter-company heat integration in Germany can be determined (quantified). The model is based on a top-down approach. A central limitation of the model is that the distribution of heat demand over the temperature ranges is assumed as in the underlying energy statistics. This is a simplistic abstraction, since a large number of companies are aggregated in the statistics. In addition, no distances and other technical aspects are taken into account in the approach and therefore only the theoretical energy saving potential for Germany can be determined with the approach. In principle, the approach can be applied to all regions for which energy statistics are available that show the heat demand by temperature and industry. Finally, Chapter 4 concludes with a corresponding theoretical estimate of potential for Germany, thus demonstrating the relevance of the topic for the energy system. Overall, it is estimated that the theoretical energy saving potential through inter-company heat integration in Germany is up to about 6 % in relation to the industry's final energy consumption.

The following parts of the work deal with the development of models with which the technical and economic energy saving potential through inter-company heat integration can be determined for Germany. In principle, this requires a bottom-up approach in which all eligible neighborhoods between production sites in Germany are identified and their technical and economic potential is evaluated. Therefore, in Chapter 5 a techno-economic model for the evaluation of the inter-company heat integration is first developed and validated and tested for an exemplary neighbourhood. In addition, Chapter 6 develops a spatial analysis model for locating promising neighborhoods of production sites for inter-company heat integration. The interaction of the models from Chapter 5 and Chapter 6 enables to determine the technical and economic potential for inter-company heat integration in Germany successively (bottom-up approach).

In the case study from Chapter 5, however, the techno-economic model developed shows that a large amount of data is required for a detailed evaluation of the technical and economic potential, which would have to be collected on site in the specific case or defined in technical detail in feasibility studies. The necessity of collecting this data is shown in sensitivity calculations. For this purpose, central input parameters (e.g. heat transfer coefficients) are varied and their effect on the economic potential depending on the distance is shown. In extreme cases, the maximum economic distances vary by up to ten kilometers.
Finally, Chapter 6 uses spatial analysis to estimate the number of neighbourhoods between production sites for which a more detailed technical and economic study appears promising. For a distance of a maximum of ten kilometres, the number of these neighborhoods is around 3,000; even at a rather short distance of one kilometre, the number of promising neighborhoods is still 375.

From the combination of the findings from Chapter 5 and Chapter 6, the following findings are derived in the context of the research question. The technical and economic energy saving potential for inter-company heat integration strongly depends on parameters that have to be defined for individual cases on a site-related basis (Chapter 5). The effort of this can only be estimated inaccurately. Furthermore, the spatial analysis in Chapter 6 has shown that the number of promising neighbourhoods for inter-company heat integration is particularly high. As a result, the effort required to determine the overall technical and economic energy saving potential for Germany through inter-company heat integration can only be estimated inaccurately as well. Thus, analyses to determine the technical and economic potential could therefore probably only be carried out step by step for smaller regional restrictions. This is the central limitation of the bottom-up approach in the context of the question.

On the basis of the above, it is also argued in Chapter 6 that the energy efficiency option "inter-company heat integration" could be incorporated into spatial decision support systems that support municipal spatial planners and energy managers in the planning of energy infrastructures.
Inhaltsverzeichnis

1. Einleitung und Motivation 1
2. Grundlagen 4
 2.1. Industrielle Abwärme 4
 2.2. Wärmeintegration 5
 2.3. Potenzialbegriffe 7
3. Stand des Wissens 9
 3.1. Erstichtung Literatur 9
 3.2. Strukturierte Literaturrecherche 10
 3.2.1. Untersuchungsraum 11
 3.2.2. Untersuchungsmerkmale 14
 3.2.3. Merkmalsverteilung 16
 3.2.4. Inhaltliche Ergebnisse der Literaturrecherche 18
 3.2.5. Ergebnis: Forschungslücke 24
 3.3. Weitere Vorgehensweise 25
4. Modell zur Ermittlung des theoretischen Potenzials (Top-Down) 27
 4.1. Datenbasis 27
 4.2. Methode 29
 4.2.1. Potenziell wärmehabgebende Wirtschaftszweige 29
 4.2.2. Theoretisches Abwärmpotenzial 30
 4.2.3. Kaskadenartige Verrechnung 35
 4.3. Ergebnisse: theoretisches Potenzial 40
5. Modell zur Berechnung des technischen und wirtschaftlichen Potenzials (Bottom-Up I/II) 45
 5.1. Methodeneingrenzung 45
 5.1.1. Pinch-Analyse 46
 5.1.2. Mathematisch programmierte Methoden 49
 5.1.3. Methodenwahl 49
 5.2. Modellentwicklung 51
 5.2.1. Grundlegendes Modellkonzept 51
 5.2.2. Abbildung von Wärmebedarfen im Modell 52
 5.2.3. Ermittlung des technischen Potenzials im Modell 55
 5.2.4. Ermittlung des wirtschaftlichen Potenzials im Modell 59
 5.2.5. Berücksichtigung dynamischer Aspekte im Modell 79
 5.2.6. Steuerungsmöglichkeiten intern vs. extern 82
 5.2.7. Zusammenfassung der Modellentwicklung 83
 5.3. Anwendung des Modells für eine exemplarische Nachbarschaft 84
 5.3.1. Datengrundlage (betrachtete Fabriken) 85
5.3.2. Validierung des Modells 88
5.3.3. Vergleich des Modells 88
5.3.4. Technisches und wirtschaftliches Potenzial 91
5.3.5. Sensitivitätsrechnungen 93
5.3.6. Ergebnisse: Sensitivität und Modellbewertung 103
5.4. Mögliche Modellweiterentwicklungen 105

6. Modell zur Lokalisierung von Nachbarschaften (Bottom-Up II/II) 107
6.1. Methodenwahl: Raumanalyse 108
6.2. Nachbarschaftssuche mit dem Kollokationsmusterminer 111
6.3. Extraktion der Nachbarschaften für Deutschland 113
6.3.1. Verwendete Geodaten 113
6.3.2. Ermittelte Nachbarschaften 114
6.4. Ergänzung um energiebezogene Aspekte 115
6.4.1. Prozesswärmestruktur 116
6.4.2. Kriteriendefinition 119
6.5. Ergebnisse: aussichtsreiche Nachbarschaften 121
6.6. Mögliche Integration in räumliche Entscheidungsunterstützungssysteme 125

7. Zusammenfassung, Diskussion und Ausblick 127

8. Anhang 130
8.1. Zu Kapitel 3: Stand des Wissens 130
8.2. Zu Kapitel 5: Methodik Wärmeintegration 131
8.3. Zu Kapitel 5: 134
8.3.1. Zur Beschichtungsfabrik 134
8.3.2. Zu Eisengießereien 139

9. Verzeichnisse 140
9.1. Tabellenverzeichnis 140
9.2. Abbildungsverzeichnis 141
9.3. Abkürzungsverzeichnis 142
9.4. Symbole 143
9.5. Literaturverzeichnis 144
9.6. Danksagung 154
1. Einleitung und Motivation

Die Steigerung der Energieeffizienz in allen Verbrauchssektoren ist einer der Grundpfeiler Deutschlands, um dem Klimawandel durch eine Reduzierung von Treibhausgasen entgegenzutreten und gleichzeitig die Versorgungssicherheit zu erhöhen (Bundesministerium für Wirtschaft und Energie (BMWi) 2016).

Gesamtwirtschaftliche Studien, die Potenziale zur Nutzung von Abwärme quantifizieren, berücksichtigen bis dato das Konzept der überbetrieblichen Wärmeintegration nur selten. Zudem quantifiziert keine der vorhandenen Arbeiten das Energieeinsparpotenzial durch überbetriebliche Wärmeintegration in Deutschland. Um diese Lücke möglichst bald zu schließen, befasst sich diese Arbeit mit folgender Forschungsfrage:

Wie lassen sich Energieeinsparpotenziale durch überbetriebliche Wärmeintegration in Deutschland systematisch ermitteln?

Abschließend werden zentrale Erkenntnisse der Arbeit zusammengefasst und es werden Ansatzpunkte für weitere Arbeiten aufgezeigt. Die Kapitelstruktur der Arbeit ist in Abbildung 1 dargestellt.
Kapitel 1: Einleitung und Motivation

Abbildung 1: Kapitelstruktur
2. Grundlagen

2.1. Industrielle Abwärme

Tabelle 1: Warum Abwärme in der Industrie entsteht.

Zur Steigerung der Energieeffizienz wird im Hinblick auf nicht genutzte Abwärme in der Regel auf einen gestuften Ansatz zurückgegriffen, der die verschiedenen Möglichkeiten priorisiert:

1. Vermeidung des Anfalls der Abwärme
2. Prozessinterne Nutzung der Abwärme
3. Innerbetriebliche Nutzung der Abwärme
4. Außerbetriebliche Nutzung der Abwärme
Kapitel 2: Grundlagen

Des Weiteren kann unterschieden werden, ob die Nutzung wiedergewonnener Abwärme innerhalb des Unternehmens, in dem die Abwärme entsteht, stattfindet, oder außerhalb. Die Nutzung von Abwärme innerhalb eines Unternehmens, in dem die Abwärme entsteht, wird im Rahmen dieser Arbeit als innerbetriebliche Abwärmenutzung bezeichnet. Findet die Nutzung außerhalb des Unternehmens statt, so wird die Maßnahme als überbetriebliche Abwärmenutzung bezeichnet.

2.2. Wärmeintegration

Wärmeintegration ist ein Überbegriff für Konzepte zur thermischen Kombination von stationären oder diskontinuierlichen Prozessen zur Wärmerückgewinnung durch Wärmeverbrauchung (Klemeš und Kravanja 2013). Die Wärmeintegration (im Englischen: heat integration) kann daher als ein technisches Konzept zur Reduktion des Energiebedarfs von Industrieanlagen und somit als Energieeffizienzmaßnahme aufgefasst werden.

2.3. Potenzialbegriffe

Die Wärmeintegration stellt eine Energieeffizienzmaßnahme zur Nutzung des Abwärmepotenzials dar (neben anderen). Daher lassen sich die Potenzialbegriffe wie folgt auf die Wärmeintegration übertragen.

- **Theoretisches/Physisches Potenzial für Wärmeintegration**: Beim theoretischen Potenzial für Wärmeintegration handelt es sich um die komplette Ausschöpfung des theoretischen Abwärmepotenzials mit der Energieeffizienzmaßnahme Wärmeintegration. Das theoretische Potenzial für Wärmeintegration kann somit gleich dem Abwärmepotenzial sein. Dies ist dann der Fall, wenn jeder einzelnen Abwärmequelle, die Bestandteil des theoretischen Abwärmepotenzials ist, ein Wärmebedarf in gleicher Höhe entgegengestellt werden kann, dessen Temperatur niedriger ist als die der Quelle.

- **Technisches Potenzial für Wärmeintegration**: Bei dem technischen Potenzial handelt es sich um den Anteil des theoretischen Potenzials, der unter technischen und ökologischen Restriktionen genutzt werden kann. Im Rahmen der Wärmeintegration müssen somit Verluste für Wärmeübertragung und Wärmetransport vom theoretischen Potenzial abgezogen werden.

Abbildung 2: Potenziale für die Wärmeintegration
3. Stand des Wissens

In den folgenden Unterkapiteln wird der Stand des Wissens im Hinblick auf die Forschungsfrage aufgearbeitet. Im ersten Schritt wird auf Basis aktueller wissenschaftlicher Artikel geprüft, welche Aspekte der überbetrieblichen Wärmeintegration bereits behandelt worden sind (vgl. Erstsichtung Literatur). Darauf aufbauend wird eine Hypothese formuliert, die mit einer strukturierten Literaturrecherche überprüft wird (vgl. Strukturierte Literaturrecherche).

3.1. Erstsichtung Literatur

Da es sich bei der überbetrieblichen Wärmeintegration um eine Energieeffizienzmaßnahme zur Nutzung industrieller Abwärme handelt, wurden zunächst aktuelle Beiträge aus dem Bereich der Schätzung von Abwärme gesichtet. Relevante Beiträge sind im Folgenden chronologisch sortiert zusammengefasst und es wird kurz dargestellt, inwieweit die Thematik der überbetrieblichen Wärmeintegration aufgegriffen wird.

2010

2014

2015
Für Europa wird die Menge industrieller Abwärme im Rahmen des Stratego-Projekts geschätzt (STRATEGO project 2015). Als Grundlage wird das europäische Emissionshandelsregister verwendet und es werden ausschließlich Standorte mit einer thermischen Leistung über 20 MW betrachtet. Basierend auf den gelisteten CO₂-Emissionen werden entsprechend Branchenaufteilung im Register
Primärenergieverbräuche errechnet. Zudem werden für die Sektoren diverse Wirkungsgrade bei der Energieumwandlung angenommen, um daraus die anfallende Abwärme zu berechnen. Die Thematik der überbetrieblichen Wärmeintegration wird im Stratego-Projekt nicht aufgegriffen.

2017

Auf Basis der Erstichtung werden folgende Hypothesen aufgestellt, die im Rahmen der strukturierten Literaturrecherche überprüft werden:

- In der Literatur wurden bisher nur wenige Ansätze zur systematischen Ermittlung von Energieeinsparpotenzialen durch überbetriebliche Wärmeintegration vorgestellt.
- Zudem wurde das Energieeinsparpotenzial durch überbetriebliche Wärmeintegration in Deutschland noch nicht ermittelt.

3.2. Strukturierte Literaturrecherche

Zweck der strukturierten Literaturrecherche ist die zuvor aufgestellten Hypothesen zu überprüfen und somit die in Kapitel 1 formulierte Forschungsfrage zu bestätigen. Dies ist notwendig, da die Thematik in vielen Literatursträngen aufgegriffen wird (Wärmeintegration, Schätzung von Abwärme, Industrielle Symbiose) und so sichergestellt werden kann, dass besonders relevante Artikel möglichst nicht übersehen worden sind. Dabei wird wie folgt vorgegangen:

1. Wahl relevanter Fachzeitschriften und Definition relevanter Suchtermine (Untersuchungsraum),
2. Definition der Untersuchungsmerkmale,
3. Auswertung der Merkmalsverteilung,
Die Wahl der Untersuchungsmerkmale wird dabei so gewählt, dass die eingangs gestellten Hypothesen überprüft werden können. Zudem werden weitere Merkmale aufgegriffen, so dass die strukturierte Literaturrecherche auch für weitere Analysen im Kontext der Abwärmenutzung nutzbar ist.

3.2.1. Untersuchungsraum

Tabelle 2: Fachzeitschriften der Literaturanalyse.

<table>
<thead>
<tr>
<th>Titel der Fachzeitschrift / SCImago Journal Rank Index (2014)</th>
<th>Energie</th>
<th>Umwelt</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Energy</td>
<td>8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Applied Thermal Engineering</td>
<td>41</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Energy</td>
<td>13</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Energy Conversion and Management</td>
<td>27</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Energy Efficiency</td>
<td>72</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Energy Policy</td>
<td>20</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Energy Procedia</td>
<td>145</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Heat Recovery Systems and CHP</td>
<td>*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>International Journal of Ambient Energy</td>
<td>194</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>International Journal of Energy Research</td>
<td>67</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>International Journal of Energy Technology and Policy</td>
<td>270</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>International Journal of Low-Carbon Technologies</td>
<td>-</td>
<td>326</td>
<td>-</td>
</tr>
<tr>
<td>JOM</td>
<td>-</td>
<td>-</td>
<td>207</td>
</tr>
<tr>
<td>Journal of Cleaner Production</td>
<td>36</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Journal of Heat Recovery Systems</td>
<td>**</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Renewable and Sustainable Energy Reviews</td>
<td>10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sustainable Energy Technologies and Assessments</td>
<td>91</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>368</td>
<td>1174</td>
<td>207</td>
</tr>
</tbody>
</table>

**: Vorgängertitel von Heat Recovery Systems and CHP.

- S2 und S6 beziehen sich im Allgemeinen auf Artikel, die sich mit dem Thema der industriellen Abwärme beschäftigen. Dabei handelt es sich um äquivalente Suchterme, bei denen lediglich der zu erfassende Zeitraum verändert wurde.

- S3 - S5 und S7 - S9 greifen Schlüsselwörter auf, die auf die Identifikation von Artikeln, welche sich auch mit dem Thema der überbetrieblichen Wärmeintegration befassen, zielen. S3 - S5 beziehen sich auf den Zeitraum von 2000 bis 2015 und S7 - S9 auf den Zeitraum von 1979 bis 1999. In S3 und S7 wird der Suchbegriff Total Site Analysis verwendet. Hier sind also Artikel zu erwarten, die sich zumindest indirekt mit dem Thema der überbetrieblichen Wärmeintegration befassen.

- Bei S4 und S8 wird der Suchbegriff „Intercompany“ (im Englischen für betriebsübergreifend) in Zusammenhang mit Energie, „Utility“ oder Wärme gesetzt. Hier sind also Artikel zu erwarten, die sich direkt mit überbetrieblichen Energieversorgungskonzepten befassen.

Tabelle 3: Verwendete Suchterme in Scopus

<table>
<thead>
<tr>
<th>Kürzel</th>
<th>Suchterme</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2</td>
<td>(("Waste heat" OR "Excess heat" OR "Heat recovery") AND "Industry") AND PUBYEAR > 1999</td>
</tr>
<tr>
<td>S3</td>
<td>("Total Site Analysis") AND PUBYEAR > 1999</td>
</tr>
<tr>
<td>S4</td>
<td>("Intercompany" AND ("Energy" OR "Utility" OR "Heat")) AND PUBYEAR > 1999</td>
</tr>
</tbody>
</table>
| S5 | "(Industrial ecology" AND ("Waste heat" OR "Excess heat" OR "Heat recovery")
| | AND PUBYEAR > 1999 |
| S6 | ("Industry" AND ("Waste heat" OR "Excess heat" OR "Heat recovery"))
| | AND PUBYEAR > 1978 |
| S7 | ("Total Site Analysis") AND PUBYEAR > 1978 AND PUBYEAR < 2000 |
| S8 | ("Intercompany" AND ("Energy" OR "Utility" OR "Heat"))
| | AND PUBYEAR > 1978 AND PUBYEAR < 2000 |
| S9 | ("Industrial ecology" AND ("Waste heat" OR "Excess heat" OR "Heat recovery"))
| | AND PUBYEAR > 1978 AND PUBYEAR < 2000 |

Tabelle 4: Referenzvergleich zur Zunahme der Artikel für den Suchterm S6.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Veröffentlichte Dokumente insgesamt</td>
<td>878,3</td>
<td>3728,2</td>
<td>4,2</td>
</tr>
<tr>
<td>Anzahl der Artikel entsprechend S6</td>
<td>4,5</td>
<td>15,7</td>
<td>3,5</td>
</tr>
</tbody>
</table>

Man erkennt, dass die relative Zunahme im Vergleich leicht unterproportional ist. Die Zunahme der Artikel in dem Themenbereich S6 ist also eher auf eine steigende Anzahl von Veröffentlichungen insgesamt zurückzuführen und der Themenkomplex wird vergleichsweise nicht überproportional stark adressiert. Des Weiteren erkennt man für die äquivalenten Suchtermine S3 - S5 und S7 - S9, dass vor 2000 keine Suchtreffer enthalten sind und nach 2000 die Anzahl der Treffer verglichen zu S2 sehr gering ist (4 % bezogen auf S2).

3.2.2. Untersuchungsmerkmale

Die Wahl der Merkmale zielt dabei auf die Untersuchung der im Folgenden aufgelisteten Fragestellungen ab:

- Wie viele Artikel befassen sich im Allgemeinen mit der Nutzung industrieller Abwärme? Gibt es sektorale Schwerpunkte diesbezüglich?
- Wie viele Artikel befassen sich mit energietechnischen Geräten oder Maschinen, die insbesondere auch für die Nutzung von Abwärme entwickelt oder weiterentwickelt werden (bspw. ORC-Turbinen)?
- Wie viele Artikel befassen sich mit Analyse- und Entwurfsmethoden zur Verbesserung der Energieeffizienz industrieller Standorte im Hinblick auf die Wärmeversorgung (bspw. Pinch-Analyse)?

Zudem sollte evaluiert werden, auf welcher technischen Ebene sich die Artikel mit der Nutzung von Abwärme befassen, wenn es um die Steigerung der Energieeffizienz durch Nutzung von Abwärme geht (Vermeidung, Nutzung innerhalb des Prozesses etc.). Hierfür wurden Merkmale definiert. Die Merkmale können grundsätzlich in die Blöcke Fokus und technische Ebene eingeteilt werden. Die Merkmale für die technische Ebene sind in Tabelle 5 beschrieben.

<table>
<thead>
<tr>
<th>Vermeidung von Abwärme</th>
<th>Im Zusammenhang von Optionen zur Steigerung der Energieeffizienz wird der Aspekt “Vermeidung von Abwärme” mit aufgegriffen.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Außerbetriebliche Nutzung von Abwärme</td>
<td>Im Zusammenhang von Optionen zur Steigerung der Energieeffizienz wird der Aspekt Abwärme außerbetrieblich zu nutzen auch aufgegriffen. Bei Fallstudien qualifiziert die Untersuchung dieser Maßnahme für das Merkmal.</td>
</tr>
</tbody>
</table>

Tabelle 6: Merkmal – Fokus.

<table>
<thead>
<tr>
<th>Merkmale und Potenziale</th>
<th>Deskription</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sektor- und/oder prozess- spezifisch</th>
<th>Deskription</th>
</tr>
</thead>
<tbody>
<tr>
<td>Der Artikel befasst sich mit der Nutzung industrieller Abwärme bezogen auf eine Branchen- oder einen industriellen Sektor*. Folgende Inhalte qualifizieren für das Merkmal:</td>
<td></td>
</tr>
<tr>
<td>- Abwärmequantifizierung für einen Sektor werden quantifiziert.</td>
<td></td>
</tr>
<tr>
<td>- Die Nutzung einer einem Sektor zugeordneten Abwärmequelle wird im Speziellen untersucht.</td>
<td></td>
</tr>
<tr>
<td>- Energieeffizienzpotenziale in einem Sektor werden untersucht und die Nutzung anfallender Abwärmequellen innerhalb des Sektors ist enthalten.</td>
<td></td>
</tr>
<tr>
<td>- Die Nutzung von industrieller Abwärme wird in einer Fallstudie, die einem Sektor zugeordnet werden kann, untersucht.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Komponenten- spezifisch</th>
<th>Deskription</th>
</tr>
</thead>
<tbody>
<tr>
<td>Der Artikel befasst sich explizit mit einer zur Nutzung von Abwärme geeigneten Technologie, die auch in diesem Kontext untersucht wird. Beispielsweise qualifiziert die Untersuchung folgender Komponenten für das Merkmal:</td>
<td></td>
</tr>
<tr>
<td>- Komponente zum Speichern von Wärme,</td>
<td></td>
</tr>
<tr>
<td>- Komponente zum Umwandeln von Abwärme in Strom,</td>
<td></td>
</tr>
<tr>
<td>- spezielle Wärmeübertrager für die Abwärmenutzung.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Methodische Perspektive</th>
<th>Deskription</th>
</tr>
</thead>
<tbody>
<tr>
<td>Der Artikel befasst sich im Schwerpunkt mit der Entwicklung oder Weiterentwicklung eines systematischen Ansatzes zur Erhöhung der Energieeffizienz auf betrieblicher oder überbetrieblicher Ebene und dabei wird die Optimierung der Wärmeversorgung mit berücksichtigt (bspw. Total Site Analysis).</td>
<td></td>
</tr>
</tbody>
</table>

* Industrieller Sektor und Branche werden synonym verwendet (bspw. die Stahlproduktion).
3.2.3. Merkmalsverteilung

Tabelle 7: Merkmalsverteilung für die Kategorie Fokus in %.

<table>
<thead>
<tr>
<th>Merkmale / Komponenten</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Möglichkeiten und Potenziale</td>
<td>11</td>
</tr>
<tr>
<td>Sektor- und / oder prozessspezifisch</td>
<td>49</td>
</tr>
<tr>
<td>Komponenten-spezifisch</td>
<td>24</td>
</tr>
<tr>
<td>Methodische Perspektive</td>
<td>16</td>
</tr>
</tbody>
</table>

Bei der Zuordnung der Merkmale für den Bereich Fokus wurde beobachtet, dass bestimmte Vorgehensweisen gehäuft vorkommen. Für das Merkmal „Möglichkeiten und Potenziale“ lässt sich feststellen, dass Energieeinsparpotenziale durch Nutzung von Abwärme abgeschätzt werden, indem die anfallende Abwärme mehrerer Industriezweige abgeschätzt wird, indem die anfallende Abwärme mehrerer Industriezweige abgeschätzt wird. Entsprechende Beiträge inklusive der untersuchten Region sind in Tabelle 8 aufgeführt.

Tabelle 8: Artikel mit Abwärmepeotenzialen für abgegrenzte Regionen.

<table>
<thead>
<tr>
<th>Beitrag</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Bonilla et al. 1997)</td>
<td>Baskenland (Spanien)</td>
</tr>
<tr>
<td>(Johnson et al. 2008b)</td>
<td>USA</td>
</tr>
<tr>
<td>(McKenna und Norman 2010)</td>
<td>Großbritannien</td>
</tr>
<tr>
<td>(Rattner et al. 2011)</td>
<td>USA</td>
</tr>
<tr>
<td>(Ammar et al. 2012)</td>
<td>Großbritannien</td>
</tr>
<tr>
<td>(Broberg et al. 2012)</td>
<td>Schweden</td>
</tr>
<tr>
<td>(Hammond und Norman 2014)</td>
<td>Großbritannien</td>
</tr>
<tr>
<td>(Persson et al. 2014)</td>
<td>Europäische Union (EU)</td>
</tr>
<tr>
<td>(Miró et al. 2015)*</td>
<td>EU, USA, Japan, Kanada</td>
</tr>
</tbody>
</table>

* War nicht in den Suchergebnissen enthalten, da der Artikel nach dem Suchzeitpunkt veröffentlicht wurde.
Den Artikeln wurde zudem der Industriesektor beziehungsweise die Branche zugeordnet. Im Ergebnis sind ca. 80 % der Artikel auf die Sektoren Eisen- und Stahlproduktion, Lebensmittelindustrie, Herstellung von Papier und Pappe, Petrochemie oder die Zementproduktion zurückzuführen.

Tabelle 9: Merkmalsverteilung für die Kategorie technische Ebene in %.

<table>
<thead>
<tr>
<th>Abwärmenutzung</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Innerbetriebliche</td>
<td>53</td>
</tr>
<tr>
<td>Außerbetriebliche</td>
<td>22</td>
</tr>
<tr>
<td>Umwandlung von Abwärme</td>
<td>25</td>
</tr>
</tbody>
</table>

Tabelle 10: Sektoral abgegrenzte Artikel mit Nutzung von Abwärme.

<table>
<thead>
<tr>
<th>Sektor</th>
<th>Beispiele</th>
<th>Quantifizierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keramik</td>
<td>(Ibáñez-Forés et al. 2013)</td>
<td>n</td>
</tr>
<tr>
<td>Eisen und Stahl</td>
<td>(Lyakishev und Perlov 1987)</td>
<td>n</td>
</tr>
<tr>
<td>Eisen und Stahl</td>
<td>(Mohsen und Akash 1998)</td>
<td>j **</td>
</tr>
<tr>
<td>Eisen und Stahl</td>
<td>(Ma et al. 2012)</td>
<td>j **</td>
</tr>
<tr>
<td>Eisen und Stahl</td>
<td>(Wang 2014)</td>
<td>j **</td>
</tr>
<tr>
<td>Eisen und Stahl</td>
<td>(Chen et al. 2014)</td>
<td>?</td>
</tr>
<tr>
<td>Eisen und Stahl</td>
<td>(Yu et al. 2015)</td>
<td>n</td>
</tr>
<tr>
<td>Lebensmittel (Getränke)</td>
<td>(Fawkes und Jacques 1986)</td>
<td>?</td>
</tr>
<tr>
<td>Lebensmittel</td>
<td>(Wang et al. 2007)</td>
<td>j</td>
</tr>
<tr>
<td>Lebensmittel</td>
<td>(Seck et al. 2013)</td>
<td>j</td>
</tr>
<tr>
<td>Metall allgemein</td>
<td>(Zhang 2012)</td>
<td>n</td>
</tr>
<tr>
<td>Papier und Pappe</td>
<td>(Fleiter et al. 2012b)</td>
<td>j</td>
</tr>
<tr>
<td>Grundstoffchemie</td>
<td>(NEELIS et al. 2007)</td>
<td>j **</td>
</tr>
<tr>
<td>Grundstoffchemie</td>
<td>(Liu et al. 2013)</td>
<td>j</td>
</tr>
<tr>
<td>Zement</td>
<td>(Rasul et al. 2005)</td>
<td>j **</td>
</tr>
<tr>
<td>Zement</td>
<td>(Ansari und Seifi 2013)</td>
<td>j</td>
</tr>
<tr>
<td>Zement</td>
<td>(Ammenberg et al. 2015)</td>
<td>n</td>
</tr>
<tr>
<td>Zement</td>
<td>(Shen et al. 2015)</td>
<td>j **</td>
</tr>
</tbody>
</table>

Die Quantifizierung zur Nutzung von Abwärme ist in der Methodik zur Ermittlung von Effizienzpotenzialen enthalten. Entsprechende Einsparpotenziale werden im Artikel jedoch nicht explizit aufgeführt.

Zudem wurden 27 Artikel gefunden, die das Thema der außerbetrieblichen Abwärmenutzung in irgendeiner Form mit aufgreifen. Die inhaltlichen Ergebnisse für alle Artikel, die den Aspekt überbetriebliche Abwärmenutzung aufgreifen, werden im folgenden Unterkapitel beschrieben.
3.2.4. Inhaltliche Ergebnisse der Literaturrecherche

Inhaltliche Ergebnisse: Möglichkeiten und Potenziale

(Holmgren 2006): Role of a district-heating network as a user of waste-heat supply from various sources - the case of Göteborg
In einer Fallstudie wird die Nutzung industrieller Abwärme für das Fernwärmenetz in Göteborg (Schweden) analysiert.

(Broberg et al. 2012): Industrial excess heat deliveries to Swedish district heating networks: Drop it like it's hot
Broberg et al. (2012) quantifizieren ungenutzte industrielle Abwärmevolkanziale zur Einspeisung in das Fernwärmenetz in Schweden. Hierfür wird eine Umfrage für eine Fallregion durchgeführt, die dann auf das ganze Land hochskaliert wird.

(Ammar et al. 2012): Low grade thermal energy sources and uses from the process industry in the UK

(Broberg Viklund und Johansson 2014b): Technologies for utilization of industrial excess heat: Potentials for energy recovery and CO2 emission reduction
Broberg Viklund und Johansson (2014b) führen zunächst eine Fallstudie zur Nutzung industrieller Abwärme für das Fernwärmenetz in Göteborg (Schweden) durch. Hierfür wird die Möglichkeit Abwärme in das Fernwärmenetz einzuspeisen, mit der Möglichkeit Abwärme zu verstromen verglichen. Insgesamt wird in der Fallstudie mehr als doppelt so viel Energie zurückgewonnen, wenn die Abwärme für das Fernwärmenetz statt zur Verstromung genutzt wird. Beim Vergleich wird jedoch nicht zwischen Wärme- und elektrischer Energie unterschieden.

(Hammond und Norman 2014): Heat recovery opportunities in UK industry
In dem Rahmen wird eine Quantifizierung von Einsparpotenzialen durch überbetriebliche Nutzung von Abwärme ebenfalls durchgeführt, da dies als Option zur Nutzung mitberücksichtigt wird. Hier werden der Prozesswärmebedarf und das Angebot an Abwärme von Industriestandorten in fünf

Inhaltliche Ergebnisse: sonstige Artikel mit überbetrieblicher Abwärmenutzung

(Gebremedhin et al. 2002): Optimisation of merged district - heating systems - Benefits of co-operation in the light of externality costs

In dem Artikel wird ein Energiesystem optimiert. Neuartig für den damaligen Zeitpunkt ist die interkommunale Betrachtung der Systemgrenzen. In dem Artikel werden vier Kommunen in Dänemark und eine Kommune in Schweden mit räumlicher Nähe zueinander gemeinsam modelliert. Im Rahmen der Modellierung des Energiesystems wird die potenzielle Einspeisung von industrieller Abwärme in die jeweils vorhandenen Fernwärmenetze mitberücksichtigt. Im Rahmen der Systemoptimierung werden Externalitäten ebenfalls mit einbezogen.

(Gebremedhin 2003): The role of a paper mill in a merged district heating system

(Grönkvist und Sandberg 2006): Driving forces and obstacles with regard to co-operation between municipal energy companies and process industries in Sweden

Bei dem Artikel handelt es sich um eine Studie zum Einsatz von Wärmepumpen in Fernwärmenetzen. Dabei wird Abwärme als mögliche Energiequelle evaluiert. Im Schwerpunkt werden vergleichende Analysen auf Basis von Simulationen für die betrachteten Energiesysteme durchgeführt.

(Svensson et al. 2008): Excess heat from kraft pulp mills: Trade-offs between internal and external use in the case of Sweden- Part 1: Methodology

(Klugman et al. 2009): A Swedish integrated pulp and paper mill-Energy optimisation and local heat cooperation

In der Studie von (Klugman et al. 2009) werden Möglichkeiten die Energieeffizienz einer Papierfabrik zu steigern evaluiert. Neben innerbetrieblichen Maßnahmen wie der Wärmeintegration wird auch die Verknüpfung der Fabrik mit einem lokalen Wärmemarkt (Fernwärme) diskutiert, um überschüssige Abwärme zu verkaufen. Diese Möglichkeit wird in der Studie als wirtschaftlich bewertet.

(Atkins et al. 2010): The challenge of integrating non-continuous processes - milk powder plant case study

(Chae et al. 2010): Optimization of a waste heat utilization network in an eco-industrial park

(Andrews und Pearce 2011): Environmental and economic assessment of a greenhouse waste heat exchange
In dem Beitrag von Andrews und Pearce (2011) wird eine Methode entwickelt, um die Nutzung von Abwärme in Gewächshäusern in nördlichen Regionen wirtschaftlich und technisch zu bewerten.

(Hackl et al. 2009): Targeting for energy efficiency and improved energy collaboration between different companies using total site analysis (TSA)

(Stijepovic & et al. 2011): Optimal waste heat recovery and reuse in industrial zones

(Atkins et al. 2012): Process integration between individual plants at a large dairy factory by the application of heat recovery loops and transient stream analysis

(Nowicki und Gosselin 2012): An overview of opportunities for waste heat recovery and thermal integration in the primary aluminum industry

(Ammar et al. 2013): Desalination using low grade heat in the process industry: Challenges and perspectives

(Ammar et al. 2013): Evaluation of low grade heat transport in the process industry using absorption processes

(Fang et al. 2013): Industrial waste heat utilization for low temperature district heating

Fang et al. (2013) schlagen einen ganzheitlichen Ansatz zur Planung der Verwertung von Abwärme industrieller Standorte vor. Der Ansatz wird für Abwärmeabströme einer Fabrik zur Kupferherstellung vorgestellt. Hierfür wird die Nutzung industrieller Abwärme in einem neu zu planenden Fernwärmenetz evaluiert. Die Abwärme soll dabei mit einem kaskadenartigen System gesammelt werden. Wasser wird zunächst aufgeheizt, um Abwärme niedriger Temperaturen aufzunehmen (also niedrigere Temperaturen
zu kühlen) und je Kaskade (3) zu höheren Temperaturen geführt. Dies führt zu einer hohen Effizienz. Zudem können beim Anzapfen der Kaskade auf unterschiedlichen Ebenen unterschiedliche Verbraucher versorgt werden (Niedertemperatur-Heizsysteme usw.).

(Hackl und Harvey 2013): Framework methodology for increased energy efficiency and renewable feedstock integration in industrial clusters

(Ljungstedt et al. 2013): Evaluation of opportunities for heat integration of biomass-based Fischer-Tropsch crude production at Scandinavian kraft pulp and paper mill sites

(Morandin et al. 2014): Economic feasibility of district heating delivery from industrial excess heat: A case study of a Swedish petrochemical cluster

(Oh et al. 2014): Improving energy efficiency for local energy systems

Oh et al. (2014) präsentieren eine systematische Methode auf Basis der Pinch-Analyse, die es erlaubt Energiesysteme zu optimieren. Dabei können mehrere Perioden (also eine zeitliche Dynamik) im Wärmelastgang berücksichtigt werden (inklusive thermischer Energiespeicher). Die Methode wird für eine Fallstudie angewendet, bei der saisonal fluktuierende Abwärme aus einem Industriekomplex zur Verfügung steht. Hierfür wird die Nutzung dieser Wärme für ein Fernwärmenetz inklusive thermischen Speichern analysiert.

(Broberg Viklund und Lindkvist 2015): Biogas production supported by excess heat - A systems analysis within the food industry

Beim ersten Konzept wird unterstellt, dass der aus der Lebensmittelfabrik stammende biogene Abfall für zwei externe Fabriken separat bereitgestellt wird. In der ersten der beiden Fabriken wird aus dem
biogenen Abfall Biogas für den Kraftfahrzeugverkehr hergestellt, in der zweiten Fabrik wird Biogas als Brennstoff für Fernwärmenetze produziert. Das aus dem biogenen Abfall hergestellte Biogas wird somit nicht innerhalb der Fabrik verwertet.

(Oluleye et al. 2015): A hierarchical approach for evaluating and selecting waste heat utilization opportunities

Zusammenfassung inhaltlicher Ergebnisse im Kontext der Forschungsfrage

3.2.5. Ergebnis: Forschungslücke

Die eingangs in Kapitel 1 gestellte Forschungsfrage lautete:

Wie lassen sich Energieeinsparpotenziale durch überbetriebliche Wärmeintegration in Deutschland systematisch ermitteln?

In diesem Zusammenhang wurden folgende Hypothesen mit der strukturierten Literaturrecherche überprüft. Ergebnisse für die Hypothesenprüfung sind unten aufgeführt.
• **Hypothese 1**: In der Literatur wurden bisher nur wenige Ansätze zur systematischen Ermittlung von Energieeinsparpotenzialen durch überbetriebliche Wärmeintegration vorgestellt.

• **Hypothese 2**: Das Energieeinsparpotenzial durch überbetriebliche Wärmeintegration wurde für Deutschland noch nicht ermittelt.

Die Ergebnisse der Literaturrecherche stützen somit die Hypothesen und somit die eingangs gestellte Forschungsfrage. Die weitere Vorgehensweise wird somit so gewählt, dass die Forschungslücke perspektivisch geschlossen wird.

3.3. Weitere Vorgehensweise

• Erstens, müssen die für die Energieeffizienzmaßnahme überbetriebliche Wärmeintegration in Frage kommende Nachbarschaften von Produktionsstandorten räumlich abgegrenzt identifiziert werden.

• Zweitens, müssen diese Nachbarschaften im Hinblick auf ihr Potenzial für die überbetriebliche Wärmeintegration technisch und wirtschaftlich bewertet werden.
In Kapitel 5 wird daher zunächst ein techno-ökonomisches Modell entwickelt, mit dem das technische und wirtschaftliche Potenzial für die überbetriebliche Wärmeintegration für beliebige Nachbarschaften von Produktionsstandorten berechnet werden kann. Das Modell wird in Kapitel 5 für eine exemplarische Nachbarschaft angewendet, um es zunächst zu validieren und zudem Sensitivitäten, die sich aus der Modellarchitektur, aber auch aus der Charakteristik der untersuchten Maßnahme (überbetriebliche Wärmeintegration) ergeben, herauszuarbeiten. In einem weiteren Schritt wird in Kapitel 6 ein raumanalytisches Modell entwickelt, mit dem sich Nachbarschaften zwischen Produktionsstandorten lokalisieren lassen, die für die Maßnahme überbetriebliche Wärmeintegration aussichtsreich sind. Das Modell wird für Deutschland angewendet und so die Anzahl aussichtsreicher Nachbarschaften für Deutschland bestimmt. Abschließend wird die Arbeit zusammengefasst und diskutiert.
4. Modell zur Ermittlung des theoretischen Potenzials (Top-Down)

Im folgenden Kapitel wird ein Modell zur Schätzung des theoretischen Energieeinsparpotenzials durch überbetriebliche Wärmeintegration für Deutschland entwickelt. Hierfür wird eine Top-Down-Methode entwickelt, die auf eine Datenbasis mit einer bestimmten Struktur angewendet werden kann. Schließlich wird das theoretische Einsparpotenzial durch Anwendung des Modells geschätzt. Dies erlaubt es, die Relevanz dieser Energieeffizienzmaßnahme in den Kontext des Energieverbrauchs des verarbeitenden Gewerbes zu stellen. Im Folgenden wird zunächst die Datenbasis vorgestellt (vgl. 4.1). Darauf aufbauend wird die Methode erläutert (vgl. 4.2) und abschließend werden Ergebnisse präsentiert (vgl. 4.3).

4.1. Datenbasis

In der Studie von Rohde et al. (2017) wird der Endenergiebedarf der deutschen Industrie für Prozesswärme auf Basis der Energiebilanzen der AG Energiebilanz abgeleitet (AG Energiebilanzen e.V.). In der Studie wird der Endenergiebedarf der deutschen Industrie differenziert nach Energieträgern und Wirtschaftszweigklassen ausgewiesen. Darauf aufbauend wird der Prozesswärmebedarf je Wirtschaftszweig auf Basis der folgenden Schritte ermittelt (vereinfacht).

- Im ersten Schritt wird der Endenergiebedarf für Brennstoffe berechnet, indem der Endenergiebedarf für Strom vom gesamten Endenergiebedarf abgezogen wird. Diese Berechnung basiert komplett auf den Energiebilanzen der AG Energiebilanz.

Eine Übersicht der zuvor erläuterten Vorgehensweise ist in Abbildung 3 dargestellt.

Abbildung 3: Konzept der Schätzung von Prozesswärmebedarfen in Rohde et al. (2017)
Blau: berechnete Werte; Grün: Werte aus Statistiken; Orange: Kennwerte aus der Literatur; „-“ kennzeichnet eine Subtraktion, „x“ eine Multiplikation.
4.2. Methode

Die Methode zur Top-Down-Schätzung des Energieeinsparpotenzials durch überbetriebliche Wärmeintegration besteht grundlegend aus drei Schritten.

- Im ersten Schritt werden auf Basis der Datenbasis potenziell wärmeabgebende Wirtschaftszweige definiert (vgl. Kapitel 4.2.1).
- Im zweiten Schritt wird das theoretische Abwärme potenzial differenziert nach Wirtschaftszweigen und Temperaturbereichen geschätzt (vgl. 4.2.2).
- Im dritten Schritt wird das zuvor geschätzte theoretische Abwärme potenzial kaskadenartig verrechnet, um das theoretische Potenzial für die überbetriebliche Wärmeintegration in Deutschland zu bestimmen. Die Art der Verrechnung wird in Kapitel 4.2.3 erläutert.

4.2.1. Potenziell wärmeabgebende Wirtschaftszweige

Zur Definition potenziell wärmeabgebender Wirtschaftszweige wird der Endenergiebedarf für Prozesswärme je Temperaturbereich auf den gesamten Endenergiebedarf für Prozesswärme des jeweiligen Wirtschaftszweigs für das Jahr 2014 bezogen. Daraus ergeben sich relative Anteile für den Prozesswärmebedarf je Temperaturbereich, was im Folgenden auch mit Wärmebedarfsprofil bezeichnet wird. Darauf aufbauend werden potenzielle wärmeabgebende Wirtschaftszweige definiert. Für die überbetriebliche Wärmeintegration werden diesbezüglich Wirtschaftszweige mit hohen Anteilen im

Tabelle 11: Aufteilung der Wirtschaftszweige für die Schätzung.

<table>
<thead>
<tr>
<th>Wirtschaftszweig</th>
<th>Nr. NACE-2008</th>
<th>Wärmebedarf [%]</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>< 500 °C</td>
<td>> 500 °C</td>
</tr>
<tr>
<td>Gew. v. Steinen u. Erden</td>
<td>8</td>
<td>100,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Ernährung und Tabak</td>
<td>10, 11, 12</td>
<td>96,5</td>
<td>3,5</td>
</tr>
<tr>
<td>Papiergewerbe</td>
<td>17</td>
<td>98,5</td>
<td>1,5</td>
</tr>
<tr>
<td>Grundstoffchemie</td>
<td>20.1</td>
<td>29,2</td>
<td>70,8</td>
</tr>
<tr>
<td>Sonst. chemische Industrie</td>
<td>20 ohne 20.1</td>
<td>100,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Gummi- u. Kunststoffwaren</td>
<td>22</td>
<td>100,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Glas u. Keramik</td>
<td>23.1, 23.2, 23.4, 23.31</td>
<td>28,1</td>
<td>71,9</td>
</tr>
<tr>
<td>Verarb. v. Steine u. Erden</td>
<td>23 ohne 23.1, 23.2, 23.4, 23.31</td>
<td>13,7</td>
<td>86,3</td>
</tr>
<tr>
<td>Metallerzeugung</td>
<td>24.1</td>
<td>3,1</td>
<td>96,9</td>
</tr>
<tr>
<td>NE-Metalle und Gießereien</td>
<td>24.4, 24.5</td>
<td>19,4</td>
<td>80,6</td>
</tr>
<tr>
<td>Metallbearbeitung</td>
<td>24 ohne 24.1, 24.4, 24.5; 25</td>
<td>71,1</td>
<td>28,9</td>
</tr>
<tr>
<td>Maschinenbau</td>
<td>28 ohne 28.23</td>
<td>89,8</td>
<td>10,2</td>
</tr>
<tr>
<td>Fahrzeugbau</td>
<td>29, 30</td>
<td>74,2</td>
<td>25,8</td>
</tr>
<tr>
<td>Sonst. Verarbeitendes Gewerbe</td>
<td>13, 14, 15, 15, 18, 28.23, 26.27, 31, 32, 33</td>
<td>82,5</td>
<td>17,5</td>
</tr>
</tbody>
</table>

J: Ja, N: Nein, N.b.: nicht betrachtet.

4.2.2. Theoretisches Abwärmepotenzial

Das theoretische Abwärmepotenzial wird auf Grundlage des Wärmebedarfs aus der Datenbasis für die folgenden zwei Temperaturbereiche geschätzt; >500 °C und 100 – 500 °C. Diese Unterteilung wurde gewählt, da der Wärmebedarf zwischen 100 °C und 500 °C zu großen Teilen auf Dampfsysteme zurückzuführen ist, die wiederum in den meisten Wirtschaftszweigen gängig sind. Die Abschätzung der Abwärme für den Temperaturbereich zwischen 100 °C und 500 °C erfolgt somit nicht differenziert nach Wirtschaftszweigen, sondern einheitlich unter der Annahme, dass Dampfsysteme diesen Temperaturbereich dominieren (vgl. Abschnitt Abwärmeanteile unter 500 °C). Die Abschätzung der Abwärme aus dem Temperaturbereich >500 °C wird jedoch differenziert nach Wirtschaftszweigen durchgeführt, da diese stärker von Prozesscharakteristiken abhängt, und wird somit gesondert betrachtet. Zur Schätzung der Abwärmemenge werden relative Abwärmefaktoren (RA) angenommen,
die den Anteil der Abwärmmemenge bezogen auf den Wärmebedarf im jeweiligen Temperaturbereich darstellen (vgl. Gleichung 4.1).

\[
RA_{\text{Industrie } i, \text{Temperaturbereich } A} = \frac{\text{Abwärme}_{\text{aus Temperaturbereich } A, \text{Industrie } i}}{\text{Endenergiebedarf}_{\text{Temperaturbereich } A, \text{Industrie } i}}
\] (4.1)

In der obigen Gleichung ist somit \(\text{Endenergiebedarf}_{\text{Temperaturbereich } A, \text{Industrie } i} \) gegeben, der Faktor \(RA_{\text{Industrie } i, \text{Temperaturbereich } A} \) wird angenommen und darauf aufbauend wird \(\text{Abwärme}_{\text{aus Temperaturbereich } A, \text{Industrie } i} \) ermittelt bzw. geschätzt. Der Gedanke hinter dieser Vorgehensweise besteht darin, dass der Endenergiebedarf in energieintensiven Wirtschaftszweigen für bestimmte Temperaturbereiche auf bestimmte Prozesse zurückgeführt werden kann. So ist bspw. der Endenergiebedarf über 500 °C im Industriesektor „Glasherstellung“ auf den eigentlichen Schmelzprozess in der Glasschmelzwanne zurückzuführen. Für Glasschmelzwannen liegen wiederum Technologieberichte vor, die den Anteil an Abwärme bezogen auf den Energieeinsatz der Wanne darstellen.

Die getroffenen Annahmen für die relativen Abwärmeanteile je Wirtschaftszweig und Temperaturbereich werden im Folgenden zunächst für den Temperaturbereich über 500 °C begründet. Danach folgt eine Begründung für den Temperaturbereich unter 500 °C.

Abwärmeanteile über 500 °C

Die Annahmen für die Abwärmeanteile über 500 °C werden im Folgenden differenziert nach Wirtschaftszweig begründet.

Metallerzeugung: Die Branche Metallerzeugung bezieht sich durch die Zuordnung des NACE-Sektors 24.1 (Erzeugung von Roheisen, Stahl und Ferrolegierungen) in erster Linie auf die Stahlherstellung. In Deutschland wird Stahl über zwei Routen hergestellt. Bei der ersten Route handelt es sich um die

- **Ernährung und Tabak:** Der relative Anteil am Endenergiebedarf für Wärme über 500 °C beträgt lediglich 4 %. Für den relativen Abwärmefaktor für Wärme im Temperaturbereich über 500 °C wird der sektoral äquivalente Wert aus Brueckner et al. (2017) angenommen. Im Hinblick auf die geringe Menge am Gesamtverbrauch wird die Nichtübereinstimmung der Temperaturbereiche toleriert.

- **Papiergewerbe:** Der relative Anteil am Endenergiebedarf für Wärme über 500 °C beträgt lediglich 2 %. Für den relativen Abwärmefaktor für Wärme im Temperaturbereich über 500 °C wird der Wert für die Papierindustrie insgesamt aus Brueckner et al. (2017) verwendet.

- **Metallbearbeitung, Maschinenbau und Fahrzeugbau:** Der anteilige Wärmebedarf in diesen drei Wirtschaftszweigen für den Temperaturbereich über 500 °C liegt zwischen 10 % und 30 %. In diesen drei Sektoren erscheint es plausibel anzunehmen, dass Wärmebedarfe über 500 °C in erster Linie auf metallschmelzende Prozesse zurückzuführen sind. Daher wird für den relativen Abwärmefaktor für diese drei Wirtschaftszweige die gleiche Annahme wie beim Wirtschaftszweig NE-Metalle und Gießereien verwendet.

- **Sonstiges Verarbeitendes Gewerbe:** Für diesen Wirtschaftszweig liegt der relative Anteil am Endenergiebedarf für Wärme über 500 °C bei 17 %. Für den relativen Abwärmefaktor für Wärme über 500 °C wird angenommen, dass sich das sonstige verarbeitende Gewerbe im Mittel so verhält, wie die anderen Wirtschaftszweige. Für den relativen Abwärmefaktor für Prozesswärme über 500 °C wird somit der Mittelwert der Werte aus den anderen Wirtschaftszweigen angenommen (rund 20 %).
Die Annahmen für den Anteil der Abwärme am Endenergieverbrauch für Prozesswärme über 500 °C differenziert nach Wirtschaftszweig sind in Tabelle 12 zusammengefasst aufgelistet.

Tabelle 12: Abwärmeanteile der Wirtschaftszweige für die Schätzung.

<table>
<thead>
<tr>
<th>Wirtschaftszweig</th>
<th>Anteil Abwärme am Wärmebedarf >500 °C [%]</th>
<th>Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ernährung und Tabak</td>
<td>10</td>
<td>Abgeleitet aus Brueckner et al. (2017).</td>
</tr>
<tr>
<td>Papiergewerbe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grundstoffchemie</td>
<td>10</td>
<td>Abgeleitet aus NEELIS et al. (2007).</td>
</tr>
<tr>
<td>Sonst. chemische Industrie</td>
<td>Bedarf > 500 °C nicht vorhanden (laut Datenbasis).</td>
<td></td>
</tr>
<tr>
<td>Gummi- u. Kunststoffwaren</td>
<td>Bedarf > 500 °C nicht vorhanden (laut Datenbasis).</td>
<td></td>
</tr>
<tr>
<td>Glas u. Keramik</td>
<td>15</td>
<td>Eigene Annahme.</td>
</tr>
<tr>
<td>Metallerzeugung</td>
<td>20</td>
<td>Abgeleitet aus Brueckner et al. (2017).</td>
</tr>
<tr>
<td>NE-Metalle und Gießereien</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metallbearbeitung</td>
<td>30</td>
<td>Eigene Annahme.</td>
</tr>
<tr>
<td>Maschinenbau</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fahrzeugbau</td>
<td>20</td>
<td>Eigene Annahme.</td>
</tr>
<tr>
<td>Sonst. Verarbeitendes Gew.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abwärmeanteile unter 500 °C

Zur Wahl der Annahmen für die Abwärme- potenzialschätzung

4.2.3. Kaskadenartige Verrechnung

Die im Folgenden vorgestellte kaskadenartige Verrechnung dient zur Berechnung des theoretischen Potenzials für die überbetriebliche Wärmeintegration in Deutschland und liefert somit eine theoretische Größenordnung des Energieeinsparpotenzials durch diese Energieeffizienzmaßnahme für die deutsche Industrie. Für die kaskadenartige Verrechnung wird zunächst davon ausgegangen, dass in der Praxis die innerbetriebliche Wärmeintegration der überbetrieblichen Wärmeintegration vorgezogen wird. Dies ist durch folgende Argumente gestützt:

- Die überbetriebliche Wärmeintegration schafft Abhängigkeiten zwischen Unternehmen, was wiederum ein grundsätzliches Hemmnis für diese Energieeffizienzmaßnahme darstellt, verglichen zur innerbetrieblichen Wärmeintegration (Hiete et al. 2012).
- Aufgrund der zu überbrückenden Entfernungen zwischen Betriebsstandorten kann davon ausgegangen werden, dass Aufwände der überbetrieblichen Wärmeintegration in der Regel höher sind als bei der innerbetrieblichen Wärmeintegration. Somit wäre die innerbetriebliche Wärmeintegration tendenziell wirtschaftlicher.
- Es kann nicht davon ausgegangen werden, dass Unternehmen bis dato ihre innerbetrieblichen Abwärme- potenziale voll ausschöpfen. Eine Befragung, die vom Autor dieser Arbeit im Jahr 2017 im Rahmen eines Forschungsprojekts durchgeführt worden ist, bekräftigt diese These. Die Befragung ist in Tabelle 14 kurz zusammengefasst.

Zur Ermittlung des Potenzials für überbetriebliche Wärmeintegration sollte also auch das Potenzial für innerbetriebliche Wärmeintegration bestimmt werden, denn schließlich reduziert diese vorzuziehende Energieeffizienzmaßnahme das für die Wärmeintegration notwendige Abwärmereservoir. In der Schätzung wird dem Rechnung getragen, indem Abwärmemengen prioritär innerhalb eines Wirtschaftszweigs verschoben werden. Dies wird umgesetzt, indem die geschätzten Abwärmemengen mit Wärmebedarfen aus niedrigeren Temperaturbereichen verrechnet werden, so dass der Bedarf der niedrigeren Temperaturbereiche entsprechend sinkt. Dies soll eine kaskadenartig und somit optimierte Prozessführung innerhalb der Branchen reflektieren.

Konkret werden die Abwärmemenge aus dem Wärmebedarf des Temperaturbereichs über 500 °C mit dem Bedarf aus dem Temperaturbereich 100 - 500 °C verrechnet und die Abwärmemenge aus dem Wärmebedarf des Temperaturbereichs 100 - 500 °C mit dem Wärmebedarf unter 100 °C. Die Systematik der Berechnung ist in Tabelle 13 dargestellt.

Kapitel 4: Modell zur Ermittlung des theoretischen Potenzials (Top-Down)
In die Berechnungssystematik fließen keinerlei technische oder wirtschaftliche Kriterien für die Nutzung ein und somit handelt es sich bei sämtlichen Energieeinsparpotenzialen, die auf Basis der Systematik abgeleitet werden, um theoretische Potenziale.

Zudem wird für die potenzielle Wärmelieferung an andere Wirtschaftszweige prinzipiell nur die residuale Abwärme aus dem Temperaturbereich über 500 °C berücksichtigt. In der Berechnungssystematik wird dies durch die entsprechende Definition von \(res_{AW_{500}} \) deutlich. Dieser Wert ist nur dann größer als null, wenn Abwärme aus dem Temperaturbereich über 500 °C vorhanden ist, nachdem sämtliche Mengen innerhalb eines Wirtschaftszweigs verrechnet worden sind. Bleibt Abwärme aus dem Temperaturbereich 100 - 500 °C nach der Verrechnung übrig, so wird diese nicht für die Lieferung von Wärme an andere Wirtschaftszweige berücksichtigt. Eine visuelle Darstellung der Vorgehensweise ist in Abbildung 6 für den Wirtschaftszweig Grundstoffchemie und in Abbildung 7 für den Wirtschaftszweig Metallerzeugung gegeben.

Tabelle 13: Berechnungssystematik residuale Abwärme (je Wirtschaftszweig)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(AS_{500} = RA_{500} \cdot WB_{500})</td>
</tr>
<tr>
<td>2</td>
<td>(red_{WB_{100-500}} = WB_{100-500} - AS_{500})</td>
</tr>
<tr>
<td>3</td>
<td>Wenn</td>
</tr>
<tr>
<td>4</td>
<td>(red_{WB_{100-500}} > 0:) (red_{WB_{100-500}} \leq 0:)</td>
</tr>
<tr>
<td>5</td>
<td>(AS_{100-500} = RA_{100-500} \cdot red_{WB_{100-500}}) (red_{WB_{<100}} = WB_{<100} + red_{WB_{100-500}})</td>
</tr>
<tr>
<td>6</td>
<td>(red_{WB_{<100}} = WB_{<100} - AS_{100-500}) (red_{WB_{100-500}} = 0 ^*)</td>
</tr>
<tr>
<td>7</td>
<td>Wenn</td>
</tr>
<tr>
<td>8</td>
<td>(red_{WB_{<100}} > 0:) (red_{WB_{<100}} \leq 0:) (red_{WB_{<100}} > 0:) (red_{WB_{<100}} \leq 0:)</td>
</tr>
<tr>
<td>9</td>
<td>(red_{WB_{<100}}) bleibt (red_{WB_{<100}} = 0 ^*) (red_{WB_{<100}}) bleibt (res_{AW_{500}} =</td>
</tr>
<tr>
<td>10</td>
<td>(res_{AW_{500}} = 0) (res_{AW_{500}} = 0) (res_{AW_{500}} = 0) (red_{WB_{<100}} = 0 ^*)</td>
</tr>
</tbody>
</table>

Abkürzungen:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Einheit</td>
<td></td>
</tr>
<tr>
<td>Relativer Abwärmeanteil aus dem Temperaturbereich > 500 °C</td>
<td>(RA_{500}) %</td>
</tr>
<tr>
<td>Relativer Abwärmeanteil aus dem Temperaturbereich 100 - 500 °C</td>
<td>(RA_{100-500}) %</td>
</tr>
<tr>
<td>Abwärme aus dem Temperaturbereich > 500 °C</td>
<td>(AS_{500}) TWh</td>
</tr>
<tr>
<td>Abwärme aus dem Temperaturbereich 100 – 500 °C</td>
<td>(AS_{100-500}) TWh</td>
</tr>
<tr>
<td>Wärmebedarf Temperaturbereich >500 °C</td>
<td>(WB_{500}) TWh</td>
</tr>
<tr>
<td>Wärmebedarf Temperaturbereich 100 – 500 °C</td>
<td>(WB_{100-500}) TWh</td>
</tr>
<tr>
<td>reduzierte Bedarfe, bspw. für 100 – 500 °C usw.</td>
<td>(red_{WB_{100-500}})</td>
</tr>
</tbody>
</table>

*: Wert wird gesetzt.
Tabelle 14: Durchgeführte Befragung zur Thematik industrielle Abwärme.

Tabelle 15: Verteilung der Befragten auf die Wirtschaftszweige

<table>
<thead>
<tr>
<th>Wirtschaftszweig (im Projekt der Befragung)</th>
<th>Anzahl Befragte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemische Industrie</td>
<td>5</td>
</tr>
<tr>
<td>Maschinenbau und andere metallverarbeitende Industrien</td>
<td>1</td>
</tr>
<tr>
<td>Nahrungsmittelindustrie</td>
<td>1</td>
</tr>
<tr>
<td>Nicht-Eisen-Metallindustrie</td>
<td>6</td>
</tr>
<tr>
<td>Nichtmetallische Mineralstoffe</td>
<td>5</td>
</tr>
<tr>
<td>Papier- und Druckindustrie</td>
<td>0</td>
</tr>
<tr>
<td>Sonstiges verarbeitendes Gewerbe</td>
<td>1</td>
</tr>
<tr>
<td>Stahlindustrie</td>
<td>1</td>
</tr>
</tbody>
</table>

Aussagen, die sich bei den Befragungen wiederholt haben, wurden in Gruppen zusammengefasst. Tabelle 6 zeigt die Anzahl der Aussagen der Befragten zur Einschätzung, wie viel des innerbetrieblichen Abwärmepotenzials gegenwärtig ausgeschöpft ist. Fast die Hälfte der Befragten (8 x) nutzen Abwärme bereits teilweise aus. Weitere Befragte (2 x) geben an, dass vorhandene Abwärme nahezu vollständig genutzt wird. Ein Viertel der Befragten (5 x) gibt jedoch an, dass Abwärme nicht nennenswert genutzt wird, jedoch Potenzial zur Nutzung vorhanden wäre oder gesehen wird.

Abbildung 5: Aussagen der Befragten zur Abwärmenutzung in Ihrem Betrieb
Abbildung 6: Kaskadenartige Rechnung Grundstoffchemie (oben vor, unten nach der Verrechnung)

Anmerkung: Die Restabwärme aus dem Temperaturbereich 100 - 500 °C wird entsprechend der Methodik nicht für die überbetriebliche Wärmeintegration berücksichtigt.

Abbildung 7: Kaskadenartige Rechnung Metallerzeugung (oben vor, unten nach der Verrechnung)
Zusammenfassend stellt die Berechnungssystematik theoretische Energieeinsparpotenziale durch Wärmeintegration somit wie folgt dar.

- Die innerhalb von Wirtschaftszweigen kaskadenartig verrechnete Abwärmemenge stellt das theoretische Energieeinsparpotenzial durch innerbetriebliche Wärmeintegration dar.
- Das theoretische Energieeinsparpotenzial durch überbetriebliche Wärmeintegration wird durch die Summe der resultierenden Abwärmemengen, die über Wirtschaftszweige hinweg verschoben werden kann, bestimmt. In dem Fall, dass der Wärmebedarf der potenziell zu beliefерnden Wirtschaftszweige unter 500 °C höher ist als die Summe der resultierenden Abwärmemengen ($\Sigma res_{AW_{500}}$), entspricht die Summe der resultierenden Abwärmemengen eben dem theoretischen Energieeinsparpotenzial durch überbetriebliche Wärmeintegration.

Tabelle 16: Annahmen der eingeschränkten kaskadenartigen Verrechnung.

<table>
<thead>
<tr>
<th>Wirtschaftszweig</th>
<th>Art der kaskadenartigen Verrechnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gew. v. Steinen u. Erden</td>
<td>Nicht betrachtet, da Bedarf lediglich <100 °C.</td>
</tr>
<tr>
<td>Verarb. v. Steine u. Erden</td>
<td>Es wird angenommen, dass die Abwärme dieses Sektors in der Regel aufgrund fehlender Wärmesenken nicht innerbetrieblich verwertet werden kann. Daher wird die Abwärme aus T>500 °C nur für die überbetriebliche und nicht für die innerbetriebliche Verrechnung vorgesehen.</td>
</tr>
<tr>
<td>Grundstoffchemie</td>
<td>Es wird von eher tiefen Weiterverarbeitungsstufen ausgegangen, so dass die kaskadenartige Verrechnung über alle Temperaturbereiche hinweg gerechtfertigt erscheint. Zudem ist die innerbetriebliche Wärmeintegration in diesem Zweig sehr weit verbreitet.</td>
</tr>
<tr>
<td>Glas u. Keramik</td>
<td>Es wird angenommen, dass in diesen Sektoren Hersteller von Rohmaterialien und teilweise auch weiterverarbeitende Unternehmen erfasst sind. Demnach würden Wärmequellen ggf. keine Wärmesenken gegenüberstehen. Daher wird die Abwärme aus T>500 °C nur für die überbetriebliche und nicht für die innerbetriebliche Verrechnung vorgesehen.</td>
</tr>
<tr>
<td>Metallerzeugung</td>
<td></td>
</tr>
<tr>
<td>NE-Metalle und Gießereien</td>
<td></td>
</tr>
<tr>
<td>Ernährung und Tabak</td>
<td></td>
</tr>
<tr>
<td>Papiergewerbe</td>
<td></td>
</tr>
<tr>
<td>Sonst. chemische Industrie</td>
<td></td>
</tr>
<tr>
<td>Gummi- u. Kunststoffwaren</td>
<td></td>
</tr>
<tr>
<td>Metallbearbeitung</td>
<td></td>
</tr>
<tr>
<td>Maschinenbau</td>
<td></td>
</tr>
<tr>
<td>Fahrzeugbau</td>
<td></td>
</tr>
<tr>
<td>Sonst. Verarbeitendes Gewerbe</td>
<td></td>
</tr>
</tbody>
</table>

Anmerkung: Abwärme aus dem Temperaturbereich 100 - 500 °C wird weiterhin für alle Wirtschaftszweige mit dem Bedarf <100 °C verrechnet.

4.3. Ergebnisse: theoretisches Potenzial

Abwärmepotenzialschätzung

Mit dem Top-Down Ansatz wird bei der nicht eingeschränkten kaskadenartigen Verrechnung insgesamt ein Abwärmepotenzial von etwa 62,0 TWh geschätzt, wobei 52,2 TWh auf den Wärmebedarf über 500 °C zurückzuführen sind.
Bei der eingeschränkten kaskadenartigen Verrechnung wird ein etwas höheres Abwärmepotenzial geschätzt, was auf die im Folgenden erläuterte Ursache zurückzuführen ist. Bei der nicht eingeschränkten kaskadenartigen Berechnung wird die Abwärme aus dem Temperaturbereich >500 °C mit dem Bedarf aus dem Temperaturbereich 100 - 500 °C für alle Wirtschaftszweige verrechnet. Dies führt dazu, dass der Wärmebedarf im Temperaturbereich 100 - 500 °C für einige Wirtschaftszweige verschwindet (Glas u. Keramik, Verarb. v. Steine u. Erden, Metallerzeugung, NE-Metalle, -gießereien). Bei der eingeschränkten kaskadenartigen Verrechnung findet die vorab erwähnte Verrechnung für diese Wirtschaftszweige jedoch nicht statt (vgl. Tabelle 16). In diesen Wirtschaftszweigen besteht daher weiterhin ein Bedarf für den Temperaturbereich 100 - 500 °C, für den wiederum anfallende Abwärme geschätzt wird. Im Ergebnis führt dies insgesamt zu einem geschätzten Abwärmepotenzial von 63,2 TWh.

Einsparpotenzial durch überbetriebliche Wärmeintegration

Für den Fall ohne Einschränkung der kaskadenartigen Verrechnung verbleiben nach Verrechnung der Abwärmemengen drei von 14 Wirtschaftszweigen, die als potenzielle Wärmelieferanten für die anderen Wirtschaftszweige in Frage kommen (vgl. Tabelle 17, Wirtschaftszweige mit Wärmebedarf <500 °C=0). Für den Fall mit eingeschränkter kaskadenartiger Verrechnung werden definitorisch fünf von 14 Wirtschaftszweigen als mögliche Wärmelieferanten angesehen (vgl. potenzielle Quellen aus Tabelle 11). Tabelle 18 listet die je Wirtschaftszweig resultierenden Abwärmemengen, die zur überbetrieblichen Verschiebung verfügbar sind, auf. In beiden Fällen ist der Bedarf der anderen Wirtschaftszweige so hoch, dass die Summe der resultierenden Abwärmemengen komplett verwertet werden könnte. Das theoretische Energieeinsparpotenzial durch überbetriebliche Wärmeintegration entspricht somit dieser Summe.

Tabelle 18: Potenzielle Wärme zur externen Verschiebung (in TWh).

<table>
<thead>
<tr>
<th>Wirtschaftszweig</th>
<th>Ohne Einschränkung der Kaskade</th>
<th>Mit Einschränkung der Kaskade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundstoffchemie</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Glas u. Keramik</td>
<td>0,0</td>
<td>1,9</td>
</tr>
<tr>
<td>Verarb. v. Steine u. Erden</td>
<td>1,5</td>
<td>7,2</td>
</tr>
<tr>
<td>Metallerzeugung</td>
<td>22,0</td>
<td>26,1</td>
</tr>
<tr>
<td>NE-Metalle und Gießereien</td>
<td>1,1</td>
<td>5,6</td>
</tr>
</tbody>
</table>

Anmerkung: nur \(res_AW_{500}\) einbezogen vgl. Tabelle 13.
Tabelle 19 und Tabelle 20 stellen abschließend das theoretische Energieeinsparpotenzial durch innerbetriebliche und überbetriebliche Wärmeintegration bezogen auf unterschiedliche Referenzwerte dar.

Tabelle 19: Theoretisches Energieeinsparpotenzial durch innerbetriebliche Wärmeintegration.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>… bezogen auf den Wärmebedarf der Industrie insgesamt</td>
<td>7,2 %</td>
<td></td>
</tr>
<tr>
<td>… bezogen auf den Energiebedarf der Industrie insgesamt</td>
<td>5,2 %</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mit Einschränkung der kaskadenartigen Verrechnung (interne Menge: 21,5 TWh):</th>
<th>Inkl.</th>
<th>Exkl.</th>
</tr>
</thead>
<tbody>
<tr>
<td>… bezogen auf den Wärmebedarf der Industrie insgesamt</td>
<td>4,2 %</td>
<td></td>
</tr>
<tr>
<td>… bezogen auf den Energiebedarf der Industrie insgesamt</td>
<td>3,1 %</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 20: Theoretisches Energieeinsparpotenzial durch überbetriebliche Wärmeintegration.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>… bezogen auf den Wärmebedarf der Industrie insgesamt</td>
<td>4,8 %</td>
<td>0,2 %</td>
</tr>
<tr>
<td>… bezogen auf den Energiebedarf der Industrie insgesamt</td>
<td>3,5 %</td>
<td>0,2 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mit Einschränkung der kaskadenartigen Verrechnung (externe Menge: 40,8 TWh):</th>
<th>Inkl. Metall</th>
<th>Exkl. Metall</th>
</tr>
</thead>
<tbody>
<tr>
<td>… bezogen auf den Wärmebedarf der Industrie insgesamt</td>
<td>8,1 %</td>
<td>2,9 %</td>
</tr>
<tr>
<td>… bezogen auf den Energiebedarf der Industrie insgesamt</td>
<td>5,9 %</td>
<td>2,1 %</td>
</tr>
</tbody>
</table>

Tabelle 21: Theoretisches Energieeinsparpotenzial durch Wärmeintegration insgesamt.

<table>
<thead>
<tr>
<th></th>
<th>Inkl. Metallerzeugung</th>
<th>Exkl. Metallerzeugung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohne Einschränkung der Kaskade</td>
<td>8,7 %</td>
<td>5,4 %</td>
</tr>
<tr>
<td>Mit Einschränkung der Kaskade</td>
<td>9,0 %</td>
<td>5,2 %</td>
</tr>
<tr>
<td>… bezogen auf den Energiebedarf der Industrie insgesamt in %</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Werden die Einsparpotenziale für die überbetriebliche und innerbetriebliche Wärmeintegration aufaddiert, so ergibt sich für beide Fälle (mit und ohne Einschränkung der kaskadenartigen Verrechnung) ein Korridor für das Einsparpotenzial durch Wärmeintegration insgesamt. Bezogen auf den Endenergiebedarf der Industrie liegt dieser Korridor ohne Einbeziehung des Wirtschaftszweigs Metallerzeugung zwischen 5,2 % und 5,4 %. Mit Einbeziehung des Wirtschaftszweigs Metallerzeugung liegt der Korridor zwischen 8,7 % und 9,0 % (vgl. Tabelle 21). Da sich je nach Annahme innerbetriebliche Einsparpotenziale zu überbetrieblichen Potenzialen verschieben und umgekehrt, erscheint die Wärmeintegration insgesamt als ein aussichtsreiches Feld zur Senkung des Energiebedarfs der deutschen Industrie. Dies ist darin begründet, dass auch wenn keine internen Senken vorhanden sind (Schätzung ohne kaskadenartige Verrechnung), Betriebe der potenziell wärmeabgebenden Wirtschaftszweige häufig Nachbarschaften zu anderen Unternehmen haben könnten, die aussichtsreiche Senken darstellen würden. Die für die überbetriebliche und innerbetriebliche Wärmeintegration jeweils angegebenen Einsparpotenziale über- oder unterschätzen das Potenzial je nach Fall auf Basis der Annahmen. Daher
ist abschließend eine Bewertung zu den angegebenen Potenzialen in Tabelle 22 mit Begründung je Wert aufgeführt.

Tabelle 22: Bewertung der geschätzten Energieeinsparpotenziale für die Wärmeintegration.

<table>
<thead>
<tr>
<th>Energieeinsparpotenzial durch...</th>
<th>Fall</th>
<th>Schätzwertung (+/-)</th>
<th>Begründung</th>
</tr>
</thead>
</table>
| Interne Wärmeintegration | Ohne | + | Für jede Abwärmequelle liegen auch innerhalb des Wirtschaftszweigs relativ hohe Wärmesenken vor. Daher eher „Maximalwert“.
| Externe Wärmeintegration | Ohne | – | Die Heterogenität der Betriebe innerhalb des Wirtschaftszweigs wird insbesondere bei den potenziell wärmeabgebenden Wirtschaftszweigen nicht berücksichtigt. Daher eher „Minimalwert“.
| Externe Wärmeintegration | Mit | + | Die Abwärme der potenziell wärmeabgebenden Wirtschaftszweige aus T>500 °C wird komplett extern zur Verfügung gestellt. Senken innerhalb des Wirtschaftszweigs werden vernachlässigt. Daher eher „Maximalwert“.
| Interne Wärmeintegration | Mit | – | Durch das komplette Vernachlässigen der internen Verrechnung von Abwärme aus T>500 °C in einigen Wirtschaftszweigen wird das Potenzial eher unterschätzt.

Fall:
Ohne: Ohne Einschränkung der kaskadenartigen Verrechnung
Mit: Mit Einschränkung der kaskadenartigen Verrechnung

Schätzwertung:
+ : Tendenziale Überschätzung
– : Tendenziale Unterschätzung
5. Modell zur Berechnung des technischen und wirtschaftlichen Potenzials (Bottom-Up I/II)

Im folgenden Kapitel wird ein techno-ökonomisches Modell für die überbetriebliche Wärmeintegration entwickelt. Zweck des Modells ist es, das technische und wirtschaftliche Potenzial für überbetriebliche Wärmeintegration für beliebige Nachbarschaften von Produktionsstandorten zu berechnen. Bei der Modellentwicklung wird wie folgt vorgegangen:

- Für das Entwerfen von Wärmeübertragernetzwerken und somit zum Bewerten der Wärmeintegration stehen im Allgemeinen unterschiedliche methodische Richtungen zur Verfügung. Im ersten Schritt wird auf Basis der Forschungsfrage die in dieser Arbeit gewählte methodische Richtung begründet.
- Im zweiten Schritt wird das Bewertungsmodell entwickelt. Dabei handelt es sich um ein techno-ökonomisches Optimierungsmodell, dass relevante Faktoren zur technischen und wirtschaftlichen Bewertung der überbetrieblichen Wärmeintegration mitberücksichtigt. Mit dem Modell kann somit das technische und wirtschaftliche Potenzial für die überbetriebliche Wärmeintegration für eine Nachbarschaft von Produktionsstandorten berechnet werden.
- Im dritten Schritt wird das Modell im Rahmen einer Fallstudie angewendet und zunächst thermodynamisch validiert. Im Rahmen der Fallstudie werden zudem zahlreiche Sensitivitäten gerechnet, die der Bewertung des Modells dienen.
- Im vierten Schritt werden zentrale Ergebnisse der Sensitivitätsrechnungen zusammengefasst.

5.1. Methodeneingrenzung

Für zwei Prozesse, die mit Hilfe eines Wärmeübertragers vernetzt werden sollen, kann der theoretisch mögliche Wärmeübertrag von Wärmequelle auf Wärmesenke durch Beachtung diverser Faktoren errechnet werden. Zum einen müssen die technischen Eigenschaften des Wärmeübertragers wie beispielsweise die verfügbare Wärmeübertragerfläche und die Bauform (Gegenstrom, Gleichstrom, usw.) mit einbezogen werden. Zum anderen müssen Massenströme, Temperaturen, Aggregatzustand und Fähigkeit zur Wärmeübertragung der beteiligten Wärmeträgermedien beachtet werden.

Die Berechnung der möglichen Wärmeübertragung von Wärmequellen auf Wärmesenken in einem Wärmeübertragernetzwerk gestaltet sich deutlich komplexer. Dies ist darin begründet, dass die Anzahl der zu evaluierenden Netzwerke schon bei wenigen Prozessen sehr hoch ist. Schon bei fünf Wärmequellen und Wärmesenken beträgt die Anzahl der zu evaluierenden Wärmeübertragernetzwerke $25! \approx 1.5 \cdot 10^{25}$ (Rašković und Stoiljković 2009). Daher wurden entsprechende Methoden zum Bewerten und Entwerfen von Wärmeübertragernetzwerken entwickelt.

- Pinch-Analyse basierte Methoden: Diese Methoden basieren auf thermodynamischen Grundlagen und daraus abgeleiteten Heuristiken.
- Mathematisch programmierte Methoden: Bei diesen Methoden werden in der Regel Zielfunktionen für die Problemlösung formuliert, die es zu lösen gilt.

Im Folgenden wird zunächst die Pinch-Analyse als Grundlage für Pinch-Analyse basierte Methoden eingeführt. Des Weiteren werden mathematisch programmierte Methoden grundlegend eingeführt. Darauf aufbauend werden beide methodische Richtungen im Hinblick auf den Zweck dieser Arbeit argumentativ gegeneinander abgewogen und es wird eine der beiden Richtungen für die weitere Entwicklung gewählt.

5.1.1. Pinch-Analyse

Inwieweit es sich bei der Vielzahl der Methoden, die aus Weiterentwicklungen der Pinch-Analyse entstanden sind, noch um die Pinch-Analyse oder um Pinch-Analyse basierte Methoden handelt, wird sprachlich nicht einheitlich gehandhabt.

Annahmen und Grundlagen der Pinch-Analyse
Die Durchführung der Pinch-Analyse liefert grundsätzlich zwei Ergebnisse.
- Erstens wird der theoretische minimale Energiebedarf des Gesamtsystems ermittelt.
- Zweites wird ein Wärmeübertragernetzwerk entworfen. Dabei wird das Netzwerk in der Art entworfen, dass der theoretisch minimale Energiebedarf komplett oder annähernd erreicht werden kann.

Dabei werden in der ursprünglichen Pinch-Analyse nach Ahmad et al. (1990) die folgenden Grundannahmen getroffen.
- Die betrachteten Prozesse sind kontinuierlich und stationär.
- Die Wärmekapazitäten sind nicht temperaturabhängig.
- Potenzielle und kinetische Energie der Prozesse werden nicht betrachtet.
- Wärmeverluste werden nicht betrachtet.

Aufteilung des Systems in Wärmequellen und Wärmesenken
In der ursprünglichen Pinch-Analyse wird eine Industrieanlage auf Prozesse, die aufgeheizt und abgekühlt werden sollen, reduziert. Es werden somit Wärmequellen und Wärmesenken gebildet. Der Energiebedarf der Prozesse ergibt sich aus der notwendigen Wärmezufuhr oder Wärmeabfuhr, die den Prozessen zugefügt werden muss, um entsprechend gewünschte Temperaturen zu erreichen. Da von kontinuierlichen Prozessen ausgegangen wird, werden die Bedarfe üblicherweise als Leistung angegeben. Unter der Annahme konstanter Wärmekapazitäten und stationärer Prozesse ergibt sich die zu entziehende oder zuzuführende Wärmeleistung näherungsweise entsprechend Gleichung (5.1).

Bildung von Summenkurven und Ermittlung des minimalen Leistungsbedarfs
werden schließlich in einem Diagramm zusammengeführt. Die Kurven werden im Anschluss in horizontaler Richtung in der Art verschoben, so dass die heiße Summenkurve überall über der kalten Summenkurve liegt. Zudem werden die Kurven in vertikaler Richtung verschoben, bis der Abstand an der Stelle mit der größten Annäherung zwischen heißer und kalter Summenkurve in horizontaler Richtung der gewählten minimalen Temperaturdifferenz entspricht.

Die minimale Temperaturdifferenz stellt dabei das notwendige Temperaturgefälle dar, welches in den Wärmeübertragern vorhanden sein muss, um Wärme zu übertragen. Je kleiner die minimale Temperaturdifferenz gewählt wird, desto größer müssen die entsprechenden Wärmeübertragерflächen ausgeführt werden, was wiederum zu steigenden Investitionen führt. Die Stelle zwischen der heißen und kalten Summenkurve mit dem Abstand der minimalen Temperaturdifferenz wird als Pinch (aus dem Englischen für Engstelle) bezeichnet.

Weitere Darstellung der Summenkurven wie beispielsweise das Wärmestromprofil sind zur Bewertung ebenfalls üblich. Das Zusammenführen der heißen und kalten Summenkurve liefert die folgenden Ergebnisse.

- Der theoretisch minimale extern zuzuführende Leistungsbedarf zur Aufheizung und Abkühlung der Prozesse des gesamten Systems wird ermittelt.
- Der Pinch wird identifiziert. Der Pinch dient im Folgenden schließlich dazu, ein Wärmeübertragernetzwerk zu entwerfen.

Entwerfen des Wärmeübertragernetzwerks
Im letzten Schritt der Pinch-Analyse wird ein Wärmeübertragernetzwerk entworfen, mit dem der theoretisch minimale Energiebedarf vollständig oder annähernd erreicht werden kann. Für das Entwerfen des Wärmeübertragernetzwerks ist die Kenntnis über den Pinch notwendig. Der Pinch dient dazu, das Problem ein Wärmeübertragernetzwerk zu entwerfen in zwei kleinere Teilprobleme aufzuteilen. Hierfür wird das Gesamtsystem in zwei thermodynamisch voneinander getrennten Regionen aufgeteilt. In der Literatur wird die Region oberhalb des Pinch als Wärmesenke und die Region unterhalb des Pinch als Wärmequelle zusammengefasst (Abbildung 8). Das Wärmeübertragernetzwerk wird schließlich durch Anwendung diverser heuristischer Regeln entworfen. Damit ein Netzwerk mit möglichst minimalem Energiebedarf entworfen werden kann, dürfen dabei die drei folgenden Grundregeln nicht verletzt werden:

- Oberhalb des Pinch darf keine externe Wärme abgeführt werden.
- Unterhalb des Pinch darf keine externe Wärme zugeführt werden.
- Ein Wärmetransport über den Pinch vom Bereich der Wärmesenke zur Wärmequelle darf nicht stattfinden.

Eine erweiterte Variante der Pinch-Methode ist die sogenannte Total Site Analysis. Dabei handelt es sich um eine methodische Erweiterung, die dem Zweck dient auch Standorte zu evaluieren, deren Wärme- und Kältenachfragen weiter voneinander entfernt sind als üblicherweise (Hackl et al. 2011).

5.1.2. Mathematisch programmierte Methoden

5.1.3. Methodenwahl
Die strukturierte Literaturanalyse in Kapitel 3.2 hat aufgezeigt, dass eine Vielzahl von Methoden zum Entwerfen von Wärmeübertragernetzwerken vorhanden sind, die zudem kontinuierlich weiter entwickelt werden. Für die übergeordnete Fragestellung stellt sich somit die Frage, welche dieser Methoden oder methodischen Richtungen besonders gut geeignet ist, um das Einsparpotenzial für die überbetriebliche Wärmeintegration systematisch zu ermitteln. Zunächst sind daher Pinch-basierte und mathematisch basierte Methoden gegeneinander abzuwägen.

Pinch-basierte Programme sind in der Regel für das detaillierte Design der Wärmeübertragernetzwerke konzipiert und daher auch nur halb-automatisiert, d. h. bestimmte Schritte werden zwar übernommen, jedoch ist eine Interaktion seitens des Nutzers erforderlich. Eine Automatisierung der Pinch-basierten
Heuristiken in einer eigenständigen Entwicklung ist prinzipiell denkbar, aufgrund von Ausnahmeregeln zur Anwendung der Heuristiken (Kemp 2007) jedoch aufwendig zu bewerkstelligen und daher fehleranfällig.

5.2. Modellentwicklung

Im folgenden Kapitel wird die Modellentwicklung beschrieben. Zunächst wird das grundlegende Modellkonzept beschrieben. Darauf aufbauend werden elementare Modellbestandteile beschrieben (Problemzerlegung, Energetische Problemformulierung und Wirtschaftliche Problemformulierung).

5.2.1. Grundlegendes Modellkonzept

Das Modellkonzept basiert auf dem Entwurf von Wärmenetzen mit dem Transportalgorithmus. (Cerda et al. (1983) zeigen erstmals einen Weg auf, wie ein nach energetischen Kriterien optimales
Wärmeübertragernetzwerk durch Kombination von Ansätzen aus der Pinch-Analyse und dem Operations-Research erstellt werden kann.

Das Transportproblem hat seinen Ursprung im Operations-Research und beschäftigt sich damit, die Transportkosten zwischen Nachfrage und Angebot zu minimieren. Dabei sind die Kosten für jede mögliche Verbindung zwischen Nachfrage und Angebot gegeben (Fourer et al. 2003). Die Zielfunktion des Minimierungsproblems für das Transportproblem ist grundsätzlich wie folgt formuliert: \[\min \sum_i \sum_j c_{ij} \cdot x_{ij} \]. Die Kosten für den Transport einer Einheit von Angebot \(i \) zu Nachfrage \(j \) werden dabei mit \(c_{ij} \) bezeichnet und \(x_{ij} \) bezeichnet die von Angebot \(i \) zu Nachfrage \(j \) transportierte Menge.

Diese Grundformulierung kann nun auf das Problem ein Wärmeübertragernetzwerk zu erstellen übertragen werden. Dabei sind jedoch nicht nur die möglichen von Energieangeboten zu Energienachfragen transportierbaren Mengen von Relevanz, sondern auch die Temperaturintervalle für die jeweils entsprechenden Kombinationen zwischen Energienachfrage und Energieangebot. Dies liegt darin begründet, dass Wärme spontan nur von höheren auf niedrigere Temperaturen übertragen werden kann. Energieangebote können also nur dann zur Deckung von Energienachfragen gedeckt werden, wenn ihre Temperaturen über den Temperaturen der Energienachfrage liegen.

5.2.2. Abbildung von Wärmebedarfen im Modell

Temperaturliste für die aufzuheizenden Prozesse und eine heiße Temperaturliste für die abzukühlenden Prozesse erstellt.

Im zweiten Schritt werden die Energiemengen der Prozesse in den jeweiligen Temperaturbereichen berechnet, um schließlich eine Aufteilung vorzunehmen. Zur Darstellung wird die Energiemenge des abzukühlenden Prozesses im Folgenden mit B_j bezeichnet und die Energiemenge des aufzuheizenden Prozesses mit A_i. Die Prozesse sind somit nummerisch durch i bzw. j gekennzeichnet. Ziel ist es nun jeden aufzuheizenden Prozess in eine Gruppe von Energienachfragen a_{ik} und jeden abzukühlenden Prozess in eine Gruppe von Energieangeboten b_{jl} aufzuteilen. Dabei bezeichnet a_{ik} die Energienachfrage des Prozesses A_i im Temperaturbereich $k − 1$ bis k. Des Weiteren bezeichnet b_{jl} das Energieangebot des Prozesses B_j im Temperaturbereich $l − 1$ bis l. Der Zusammenhang zwischen Energieangeboten, Energienachfragen und zugrunde liegenden Prozessen ist in Abbildung 9 dargestellt.

![Abbildung 9: Prozesszerlegung in Energienachfragen und Energieangebote](image-url)

Schließlich werden die Ein- und Ausgangstemperaturen der Prozesse sequentiell mit den Temperaturen in den jeweiligen Temperaturlisten abgeglichen, um die Energiemengen in den jeweiligen Temperaturen zu berechnen.
Für die aufzuheizenden Prozesse wird die kalte Temperaturliste als Grundlage zur Aufteilung genommen. Der Betrag für die jeweiligen Energienachfragen ergibt sich dann durch Erweiterung von Gleichung (5.1) entsprechend Gleichung (5.2). Dabei bezeichnet \(\dot{m}_i \) den Massenstrom des Prozesses \(i \) und \(c_{p,i} \) die spezifische Wärmekapazität des Wärmeträgermediums des Prozesses \(i \). Zudem bezeichnet \(T_k \) die Austrittstemperatur der Energienachfrage \(a_{ik} \) und \(T_{k-1} \) die Eintrittstemperatur. Falls eine Verdampfung im Temperaturbereich auftritt, so wird eine zusätzliche Energienachfrage erstellt, deren Ein- und Ausgangstemperatur der Verdampfungstemperatur entspricht. Deren Energiebedarf ergibt sich dann durch Gleichung (5.3).

\[
a_{ik} = \dot{m}_i \cdot c_{p,i} \cdot (T_k - T_{k-1}) \quad (5.2)
\]

\[
a_{ik} = \dot{m}_i \cdot dhv_{ik-\rightarrow ik} \quad (5.3)
\]

Äquivalent wird für die Aufteilung der abzukühlenden Prozesse die heiße Temperaturliste als Grundlage genommen. Der Betrag für die jeweiligen Energieangebote ergibt sich dann äquivalent entsprechend Gleichung (5.4). Hier bezeichnet \(\dot{m}_j \) den Massenstrom des Prozesses \(j \) und \(c_{p,j} \) die spezifische Wärmekapazität des Wärmeträgermediums des Prozesses \(j \). Zudem bezeichnet \(T_l \) die Austrittstemperatur des Energieangebots \(b_{jl} \) und \(T_{l-1} \) die Eintrittstemperatur. Äquivalent zur Vorgehensweise zuvor wird ein zusätzliches Energieangebot entsprechend (5.5) erstellt, falls es innerhalb des Temperaturbereichs eines Prozesses zur Kondensation kommt.

\[
b_{jl} = \dot{m}_j \cdot c_{p,j} \cdot (T_l - T_{l-1}) \quad (5.4)
\]

\[
b_{jl} = \dot{m}_j \cdot dhv_{jl-\rightarrow jl} \quad (5.5)
\]

Nun könnte die Abwärme der Abgase genutzt werden, um den Luftstrom aufzuheizen. Da es sich lediglich um nur zwei potenzielle Quellen und eine Senke handelt, ist das Problem auch ohne Anwendung des Transportproblems zu lösen. Zur Darstellung des Algorithmus für die Bildung von Energienachfragen und Energieangeboten eignet sich jedoch ein simples Beispiel und daher wird der Algorithmus im Folgenden exemplarisch angewendet. Im weiteren Verlauf des Kapitels wird das Beispiel wiederholt aufgegriffen, um den Ansatz zur Problemlösung darzustellen.
Die Temperaturlisten für das Beispiel ergeben sich unter Anwendung der oben beschriebenen Regeln und sind in Tabelle 23 aufgelistet.

Tabelle 23: Heiße und kalte Temperaturliste für das Beispiel – Werte in °C.

<table>
<thead>
<tr>
<th>Heiße Temperaturliste</th>
<th>20+10=30</th>
<th>150</th>
<th>200+10=210</th>
<th>450</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kalte Temperaturliste</td>
<td>20-10=10</td>
<td>20</td>
<td>150-10=140</td>
<td>200</td>
</tr>
</tbody>
</table>

Nun werden die Energienachfragen unter Beachtung der kalten Temperaturliste und die Energieangebote unter Beachtung der heißen Temperaturliste gebildet. Dabei werden die Anteile je Prozess systematisch aufgeteilt. Für die zwei Beispielprozesse würden sich Aufteilungen entsprechend Tabelle 24 und Tabelle 25 ergeben.

Tabelle 24: Exemplarische Aufteilung – Energienachfrage.

<table>
<thead>
<tr>
<th>Intervall</th>
<th>20</th>
<th>150-10=140</th>
<th>200</th>
<th>450-10=440</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wert</td>
<td>N.V.</td>
<td>$a_{Luft.1} = \dot{m}{Luft} \cdot c{p,Luft} \cdot (140 - 20)$</td>
<td>$a_{Luft.2} = \dot{m}{Luft} \cdot c{p,Luft} \cdot (200 - 140)$</td>
<td>N.V.</td>
</tr>
</tbody>
</table>

Tabelle 25: Exemplarische Aufteilung – Energieangebot.

<table>
<thead>
<tr>
<th>Intervall</th>
<th>20+10=30</th>
<th>150</th>
<th>200+10=210</th>
<th>450</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wert</td>
<td>N.V.</td>
<td>$b_{Abgas.1} = \dot{m}{Abgas} \cdot c{p,Abgas} \cdot (150 - 30)$</td>
<td>$b_{Abgas.2} = \dot{m}{Abgas} \cdot c{p,Abgas} \cdot (210 - 150)$</td>
<td>$b_{Abgas.3} = \dot{m}{Abgas} \cdot c{p,Abgas} \cdot (450 - 210)$</td>
</tr>
</tbody>
</table>

5.2.3. Ermittlung des technischen Potenzials im Modell

Das technische Energieeinsparpotenzial für überbetriebliche Wärmeintegration ist dann die Differenz aus dem Energieverbrauch des zu analysierenden Systems im gegenwärtigen Zustand verglichen mit dem Energieverbrauch des zu analysierenden Systems, das im Modell im energetischen Optimum vorliegt, abzüglich der Wärmeverluste, die beim Transport der Wärme über Standortgrenzen hinweg anfallen.

Im Folgenden wird die Suche nach dem energetischen Optimum erläutert, die elementar für die Ermittlung des technischen Potenzials ist. Die im vorigen Kapitel gebildeten Energienachfragen und Energieangebote aus der Problemzerlegung werden nun im Rahmen der Zielfunktion aufgegriffen, um ein optimales Wärmeübertragernetzwerk zu entwerfen. In der Formulierung nach Cerda et al. (1983) wird nun angenommen, dass ein Kälteversorger a_{C1} existiert, der ausreichend Kapazität besitzt, um alle im System betrachteten Energieangebote abzukühlen. Die entsprechende Randbedingung ist in Gleichung (5.6) angegeben. Zudem wird angenommen, dass ein Wärmeversorger existiert, der in der Lage ist, die komplette Energienachfrage im System zu decken. Die entsprechende Randbedingung ist in Gleichung (5.7) aufgeführt. Die von Energieangebot b_{jl} zu Energienachfrage transportierte Wärmemenge wird mit $q_{ik,jl}$ bezeichnet. Zudem wird vorgeschrieben, dass das zu entwerfende Wärmeübertragernetzwerk so gestaltet wird, dass die komplette Energienachfrage alle Energienachfragen exakt gedeckt wird (vgl. (5.8)). Gleichung (5.9) schreibt dann äquivalent vor, dass alle Energieangebote ihre Wärme übertragen müssen bzw. abgekühlt werden, zudem kann nicht mehr Energie übertragen werden als verfügbar ist. Die Randbedingungen sind in Tabelle 26 zusammengefasst.

<table>
<thead>
<tr>
<th>Tabelle 26: Randbedingungen nach (Cerda et al. 1983).</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_{C1} \geq \sum_{j=1}^{H-1} \sum_{l=1}^{L} b_{jl}$ (5.6)</td>
</tr>
<tr>
<td>$b_{HL} \geq \sum_{i=1}^{C-1} \sum_{k=1}^{C} a_{ik}$ (5.7)</td>
</tr>
<tr>
<td>$a_{ik} = \sum_{j=1}^{H} \sum_{l=1}^{L} q_{ik,jl}$ $i = 1,2,\ldots,C$ $k = 1,2,\ldots,L$ (5.8)</td>
</tr>
<tr>
<td>$b_{jl} = \sum_{j=1}^{H} \sum_{l=1}^{L} q_{ik,jl}$ $i = 1,2,\ldots,H$ $k = 1,2,\ldots,L$ (5.9)</td>
</tr>
<tr>
<td>$q_{ik,jl} \geq 0$ für alle i,j,k und l (5.10)</td>
</tr>
</tbody>
</table>

Mit folgenden Variablen:
- a_{ik}: Energienachfrage: Wärme, die Prozess i im Temperaturintervall k bis $k-1$ benötigt.
- b_{jl}: Energieangebot: Wärme, die Prozess j im Temperaturintervall l bis $l-1$ zur Verfügung hat.
- L: Länge der Temperaturliste.
- $q_{ik,jl}$: Die Wärmemenge, die von Energieangebot b_{jl} zu Energienachfrage a_{ik} transportiert wird.
- Die Lösungen für $q_{ik,jl}$ besagt somit, welche Prozesse miteinander verbunden werden und wie groß die Wärmeübertrager zwischen den Prozessen sind.
Das Ziel der Optimierung ist nun $q_{ik, jl}$ für H-1 Energieangebote und C-1 Energienachfragen in der Art zu bestimmen, dass der Leistungsbedarf von a_{C_1} und b_{HL}, also der entsprechende Bedarf für die Kälte- und Wärmeversorger, minimiert wird. Die entsprechende Zielfunktion dafür ist in Gleichung (5.11) angegeben.

$$\min_{q_{ik, jl}} \sum_{i=1}^{C} \sum_{k=1}^{L} \sum_{j=1}^{H} \sum_{l=1}^{L} C_{ik, jl} \cdot q_{ik, jl} \quad (5.11)$$

In Gleichung (5.11) wird $q_{ik, jl}$ mit entsprechend assoziierten Kosten $C_{ik, jl}$ multipliziert und für alle Fälle aufsummiert. Die erste Anforderung dabei ist $q_{ik, jl}$ so zu wählen, so dass die Summe der Funktion minimiert wird. Zudem darf kein Wärmetransport zwischen Energienachfrage und Energieangebot stattfinden, wenn die Temperatur der Nachfrage höher ist als die des Angebots. Die zweite Anforderung besteht somit darin, $q_{ik, jl}$ für solche Verbindungen mit null zu belegen. Die Einhaltung beider Anforderungen wird durch entsprechende Parametrisierung der assoziierten Kosten sichergestellt. Um ein Wärmeübertragernetzwerk mit minimalem Leistungsbedarf zu ermitteln, werden demnach assoziierten Kosten $q_{ik, jl}$, die Energieangebot und Energienachfrage verbinden und im Hinblick auf Temperatur niveaus zulässig sind, mit null bewertet. Assoziierte Kosten für $q_{ik, jl}$, die Energieangebot und Energienachfrage verbinden und im Hinblick auf Temperatur niveaus nicht zulässig sind, werden hingegen mit einer sehr großen (in der Theorie unendlichen) Zahl belegt. Assoziierte Kosten für $q_{ik, jl}$, die Energieangebot mit dem Kälteversorger (a_{C_1}) verbinden, und assoziierte Kosten für $q_{ik, jl}$, die Energienachfrage mit dem Wärmeversorger (b_{HL}) verbinden, werden mit eins bewertet. Die Kostenfaktoren für die jeweiligen Fälle sind in Tabelle 27 zusammengefasst.

Tabelle 27: Kostenfaktoren – energetische Optimierung.

<table>
<thead>
<tr>
<th>$C_{ik, jl}$</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>i ist nicht C und j ist nicht H und die Temperaturen sind zulässig. Verbindungen zwischen E-Angebot und E-Nachfrage.</td>
</tr>
<tr>
<td>0</td>
<td>i ist C und j ist H. Verbindungen zwischen Versorgern (nur zum Modellieren notwendig, nicht technisch).</td>
</tr>
<tr>
<td>1</td>
<td>Entweder i ist C oder j ist H. Verbindungen zwischen einem Versorger (Wärme/Kälte) und E-Nachfrage oder E-Angebot.</td>
</tr>
</tbody>
</table>

Kosten, die für den Transport einer Einheit entlang Verbindung $q_{ik, jl}$ angesetzt werden.

Dabei müssen für die Zulässigkeit der Temperaturbereiche die Ein- und Austrittstemperaturen des Energieangebots über den Ein- und Austrittstemperaturen der Energienachfrage liegen. Im Rahmen der Arbeit werden ausschließlich Gegenstromwärmeübertrager betrachtet. Für eine Kombination von Energienachfrage a_{ik} und Energieangebot b_{jl} muss somit Gleichung (5.12) erfüllt sein (vgl. Tabelle 28).

Für das Beispiel aus Abbildung 10 und entsprechenden Energienachfragen und Energieangeboten aus Tabelle 24 und Tabelle 25 würde sich demnach die in Abbildung 11 dargestellte Belegung aufgrund hierlegter Kosten ergeben. Der Solver würde im Ergebnis die schwarzen (durchgezogenen) Verbindungen im Hinblick auf das verfügbare Energieangebot maximal belegen, um so die Kosten der Zielfunktion zu minimieren. Lila Verbindungen würden so gut es geht vermieden werden und rote Verbindungen würden gar nicht gewählt werden.
5.2.4. Ermittlung des wirtschaftlichen Potenzials im Modell

Kostenfaktor Wärmeübertrager

Tabelle 29: Spezifische Kosten für Wärmeübertrager im Modell.

<table>
<thead>
<tr>
<th>$c_{WT,ik,ji}$ [EUR/W]</th>
<th>$= \left(\frac{sk_{wt}[EUR/m^2]}{k[W/m^2*K] \cdot \Delta T_G[K]} \right) \cdot \left(\frac{1}{A[a]} + \frac{Z[%]}{2} + W[%] \right)$ (5.13)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sk_{wt}</td>
<td>Spezifische Investitionen für Wärmeübertragerflächen</td>
</tr>
<tr>
<td>k</td>
<td>Wärmedurchgangskoeffizient</td>
</tr>
<tr>
<td>ΔT_G</td>
<td>Logarithmische Temperaturdifferenz für Gegenstromwärmeübertrager</td>
</tr>
<tr>
<td>A</td>
<td>Abschreibungsdauer für Wärmeübertrager in Jahren</td>
</tr>
<tr>
<td>Z</td>
<td>Kalkulatorischer Zins pro Jahr</td>
</tr>
<tr>
<td>W</td>
<td>Relativer Faktor für Wartungsaufwand</td>
</tr>
</tbody>
</table>

Der sich aus der Abschreibung ergebende Term inklusive Aufwand für Betrieb und Wartung wird in Gleichung (5.14) zwecks Übersichtlichkeit zu LA zusammengefasst, da er für weitere Kostenfaktoren identisch aufgegriffen wird.

\[
LA = \left(\frac{1}{A[a]} + \frac{Z[\%]}{2} + W[\%] \right) \tag{5.14}
\]

Zusammenfassend werden nochmal die wichtigsten Vereinfachungen, die bei der Bildung des Kostenfaktors für Wärmeübertrager angenommen werden, im Folgenden aufgelistet.

- sk_{wt} ist nicht abhängig von der zu übertragenden Leistung. In der Praxis sind Skaleneffekte zu erwarten, die zu einer Reduktion der spezifischen Kosten mit steigender Wärmeübertragerfläche führen.

• Der relative Faktor für Wartungs- und Betriebsaufwände variiert grundsätzlich ebenfalls in Abhängigkeit der beteiligten Medien. Medien mit korrosiven Bestandteilen werden beispielsweise höhere Wartungsaufwände an den Wärmeübertragern zur Folge haben als Medien ohne korrosive Bestandteile. Dies wird hier nicht berücksichtigt.

Methodik zum Einbinden weiterer Kostenfaktoren

Zusammenfassend kann also gesagt werden, dass Investitionen, Wartung- und Betriebskosten für Pumpen und Verrohrung von der Lösung, also dem zu entwerfenden Wärmeübertragernetzwerk, abhängig sind. Zur Abbildung der Faktoren spielt die Entfernung zwischen den zu verbindenden Energieangeboten und Energienachfragen eine Rolle.

Prinzipiell sind zwei Möglichkeiten denkbar, um die zuvor genannten Faktoren bei der Erstellung eines Wärmeübertragernetzwerks auf Basis des Transportalgorithmus nach Cerda et al. (1983) mit einzubeziehen.

Dies ist darin begründet, dass eventuell weitere Entwurfskriterien beim Netzwerketwurf mitberücksichtigt werden müssen, die nicht im Modell abgebildet werden. Ein Beispiel wären bauliche Einschränkungen bei der Rohrleitungsplanung, die eine Anpassung des Netzwerketwurfs zur Folge haben kann.

Im Rahmen dieser Arbeit wird nicht das Ziel verfolgt ein Modell zur Entwurfsoptimierung zu entwickeln, sondern es werden Methoden der Zieloptimierung in den Kontext der Potenzialermittlung für die überbetriebliche Wärmintegration gestellt. Infolgedessen sind Schätzsätze im Rahmen dieser Arbeit zielführender, denn sie ermöglichen eine lineare Problemformulierung und somit vergleichsweise schnellere Lösungsfundung. Daher wird im Rahmen dieser Arbeit ein Schätzsatz zur Berücksichtigung von Kostenfaktoren auf Basis von (Ludwig 2012) implementiert und weiterentwickelt. In den folgenden Unterkapiteln werden die diesbezüglichen Grundlagen zunächst erläutert, bevor auf die konkrete Ausgestaltung im implementierten Modell eingegangen wird. Dabei wird wie im Folgenden aufgelistet vorgegangen:

- Zunächst wird ein Schätzsatz vorgestellt, der dazu dient die maximal austauschbare Energiemenge zwischen zwei Prozessen zu berechnen. Auf dieser Basis werden Kostenfaktoren für Verrohrung geschätzt, die bei der Lösungsfundung mitberücksichtigt werden.

Schätzsatz: maximal austauschbare Energiemengen

Im Rahmen dieser Arbeit wird zur Ermittlung der maximal austauschbaren Wärmemenge zwischen zwei Prozessen \(Q_{ij,\text{Schätzung}} \) der im Folgenden vorgestellte Ansatz verwendet.

Der Ansatz zur Ermittlung der Wärmemenge \(Q_{ij,\text{Schätzung}} \) baut grundsätzlich auf drei Schritten auf, wobei sich die ersten beiden Schritte auf die Ermittlung der Wärmemenge beziehen. Grundsätzlich kann ein direkter und ein indirekter Wärmetransport durch den Ansatz abgebildet werden. Im Folgenden werden die drei Schritte daher zunächst für den direkten und im Anschluss für den indirekten Wärmetransport dargestellt.

Ermittlung der geschätzten Volumenströme bei direkter Wärmeübertragung

Zur Ermittlung der maximal austauschbaren Wärmemenge \(Q_{ij,\text{Schätzung}} \) zwischen einem abzukühlenden Prozess \(B_j \) und einem aufzuheizenden Prozess \(A_i \) werden die Temperaturen der jeweiligen Prozesse betrachtet.

Im ersten Schritt werden die Ein- und Austrittstemperaturen für alle Kombinationen der Prozesse \(B_j \) und \(A_i \) abgeglichen, um jede Kombination anhand unterschiedlicher Fälle zu kategorisieren. Diese Kategorisierung ist notwendig, da die maximal austauschbare Wärmemenge zwischen den Prozessen je Fall unterschiedlich berechnet wird. Auf Basis der Kategorisierung werden Temperaturen definiert, die im Folgenden Schätzttemperaturen genannt werden und mit deren Hilfe die maximal austauschbare Wärmemenge zwischen den Prozessen ermittelt wird. Hierfür wird die Ein- und Austrittstemperatur eines abzukühlenden Prozesses mit \(T_{j,\text{ein}} \) und \(T_{j,\text{aus}} \) bezeichnet. Für die aufzuheizenden Ströme werden die Temperaturen äquivalent mit \(T_{i,\text{ein}} \) und \(T_{i,\text{aus}} \) bezeichnet. Grundsätzlich kann das Verhältnis der Temperaturen zueinander entsprechend der fünf Fälle in Tabelle 30 zusammengefasst werden. Die Fälle 1 bis 4 erlauben grundsätzlich einen Wärmetransport zwischen \(B_j \) und \(A_i \).
Tabelle 30: Fälle für die Temperaturüberlappung.

<table>
<thead>
<tr>
<th>Fallvisualisierung</th>
<th>Prüfbedingungen</th>
<th>Temperaturen zur Berechnung von $Q_{ij\text{Schätzt}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fall 1</td>
<td>- $T_{j\text{ein}} - \Delta T_{\text{min}} \geq T_{i\text{aus}}$ und - $T_{j\text{aus}} - \Delta T_{\text{min}} \geq T_{i\text{ein}}$</td>
</tr>
<tr>
<td>$T_{j\text{aus}}$</td>
<td>$T_{j\text{ein}}$</td>
<td>N.V.</td>
</tr>
<tr>
<td>$T_{i\text{ein}}$</td>
<td>$T_{i\text{aus}}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fall 2</td>
<td>- $T_{j\text{ein}} - \Delta T_{\text{min}} \geq T_{i\text{aus}}$ und - $T_{i\text{ein}} \geq T_{j\text{aus}} - \Delta T_{\text{min}}$</td>
</tr>
<tr>
<td>$T_{j\text{aus}}$</td>
<td>$T_{j\text{ein}}$</td>
<td>- $T_{\text{einschätzt,ij}} = T_{i\text{ein}}$ - $T_{\text{auschätzt,ij}} = T_{i\text{aus}}$</td>
</tr>
<tr>
<td>$T_{i\text{ein}}$</td>
<td>$T_{i\text{aus}}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fall 3</td>
<td>- $T_{j\text{ein}} - \Delta T_{\text{min}} < T_{i\text{aus}}$ und - $T_{i\text{ein}} < T_{j\text{ein}} - \Delta T_{\text{min}}$ und - $T_{i\text{ein}} \geq T_{j\text{aus}} - \Delta T_{\text{min}}$</td>
</tr>
<tr>
<td>$T_{j\text{aus}}$</td>
<td>$T_{j\text{ein}}$</td>
<td>- $T_{\text{einschätzt,ij}} = T_{i\text{ein}}$ - $T_{\text{auschätzt,ij}} = T_{j\text{ein}} - \Delta T_{\text{min}}$</td>
</tr>
<tr>
<td>$T_{i\text{ein}}$</td>
<td>$T_{i\text{aus}}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fall 4</td>
<td>- $T_{i\text{aus}} \geq T_{j\text{ein}} - \Delta T_{\text{min}}$ und - $T_{i\text{ein}} \leq T_{j\text{aus}} - \Delta T_{\text{min}}$</td>
</tr>
<tr>
<td>$T_{j\text{aus}}$</td>
<td>$T_{j\text{ein}}$</td>
<td>- $T_{\text{einschätzt,ij}} = T_{j\text{aus}}$ - $T_{\text{auschätzt,ij}} = T_{j\text{ein}}$</td>
</tr>
<tr>
<td>$T_{i\text{ein}}$</td>
<td>$T_{i\text{aus}}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fall 5</td>
<td>sonst, bzw. - $T_{i\text{ein}} \geq T_{j\text{ein}} - \Delta T_{\text{min}}$</td>
</tr>
<tr>
<td>$T_{j\text{aus}}$</td>
<td>$T_{j\text{ein}}$</td>
<td>N.V.</td>
</tr>
<tr>
<td>$T_{i\text{ein}}$</td>
<td>$T_{i\text{aus}}$</td>
<td></td>
</tr>
</tbody>
</table>

- Bei Fall 1 liegt die Eintrittstemperatur des abzukühlenden Prozesses B_j über der Austrittstemperatur des aufzuheizenden Prozesses A_i und die Austrittstemperatur von B_j liegt über der Eintrittstemperatur von A_i. Die maximal übertragbare Wärmemenge zwischen den Prozessen ist somit entweder durch die maximale Wärmemenge, die A_i aufnehmen kann, bestimmt oder durch die maximale Wärmemenge, die B_j abgeben kann. Infolgedessen ergibt sie sich aus der kleineren der beiden Wärmemengen. Für Fall 1 ist die Definition von Schätztemperaturen zur Bestimmung der maximal austauschbaren Energiemenge somit nicht notwendig.

- Bei den Fällen 2 bis 4 kann immer nur ein Teil der Wärmemenge von B_j oder A_i zwischen den Prozessen übertragen werden. Zur Berechnung dieser Wärmemenge ist die Definition von Schätztemperaturen notwendig, die im Folgenden mit $T_{\text{einschätzt,ij}}$ und $T_{\text{auschätzt,ij}}$ bezeichnet werden. Die je Fall entsprechende Belegung ist ebenfalls in Tabelle 30 aufgeführt.

- Bei Fall 5 liegt die Eingangstemperatur des abzukühlenden Prozesses unter der Eingangstemperatur des aufzuheizenden Prozesses. Eine Wärmeübertragung zwischen den Prozessen ist somit nicht möglich und daher werden keine Schätztemperaturen definiert.
Im zweiten Schritt wird die maximal austauschbare Energiemenge $Q_{ij,\text{Schätzung}}$ für alle Kombinationen von B_j und A_i entsprechend vorliegendem Fall bestimmt. Liegt Fall 1 vor, so wird $Q_{ij,\text{Schätzung}}$ mit dem Betrag der kleineren der beiden Wärmemengen B_j und A_i belegt. Für die Fälle 2, 3 und 4 werden zunächst die Energiemengen des jeweils abzukühlenden und aufzuheizenden Prozesses innerhalb des Temperaturbereichs $T_{\text{einschätz}_{ij}}$ und $T_{\text{ausSchätzung}_{ij}}$ analog der Gleichungen (5.15) und (5.16) berechnet. Die spezifische Wärmekapazität wird dabei im Temperaturbereich als konstant angenommen.

\[
A_{ij,\text{Schätzung}} = \dot m_i \cdot c_{p,i} \cdot (T_{\text{ausSchätzung}_{ij}} - T_{\text{einschätz}_{ij}}) \tag{5.15}
\]

\[
B_{ji,\text{Schätzung}} = \dot m_j \cdot c_{p,j} \cdot (T_{\text{einschätz}_{ij}} - T_{\text{ausSchätzung}_{ij}}) \tag{5.16}
\]

\[
A_{ij,\text{Schätzung-pW}} = \dot m_i \cdot \left[c_{p,\text{fl},i} \cdot (T_{\text{Siede}} - T_{\text{einschätz}_{ij}}) + d h v + c_{p,\text{gas},i} \cdot (T_{\text{ausSchätzung}_{ij}} - T_{\text{Siede}}) \right] \tag{5.17}
\]

In einem weiteren Schritt wird $Q_{ij,\text{Schätzung}}$ für die Fälle 2, 3 und 4 entsprechend Gleichung (5.18) bestimmt.

\[
Q_{ij,\text{Schätzung}} = \begin{cases}
\min\{A_i; B_j\} & \text{Für Fall 1} \\
\min\{A_{ij,\text{Schätzung}}; B_{ji,\text{Schätzung}}\} & \text{Für die Fälle 2, 3, und 4} \\
0 & \text{Für Fall 5}
\end{cases} \tag{5.18}
\]

Im dritten Schritt wird der zu transportierende Volumen- und Massenstrom auf Basis von $Q_{ij,\text{Schätzung}}$ bestimmt. Beim direkten Transport wird von keiner Übertragung von Wärme auf ein Wärmeträgermedium ausgegangen und somit sind die stofflichen Werte der Medien von Prozess A_i und B_j für die Berechnung relevant.

geschätzte Energiemenge $Q_{ij, Schätzung}$ bereitzustellen. Dabei wird im Gegensatz zu (Ludwig 2012) jedoch nicht angenommen, dass der zu transportierende Massenstrom lediglich die Hälfte des von ihm abgedeckten Temperaturbereichs durchläuft, sondern den ganzen Bereich. Die zugrundeliegenden Massenströme für beide Varianten der Prozessführung ergeben sich somit durch die Gleichungen (5.19) und (5.20).

\[
\dot{m}_{ij, Schätzung(kalt→heiss)} = \frac{Q_{ij, Schätzung}}{c_{p,i} \cdot (T_{äußere Schätzung, ij} - T_{eines Schätzung, ij})}
\]

\[
\dot{m}_{ij, Schätzung(heiss→kalt)} = \frac{Q_{ij, Schätzung}}{c_{p,j} \cdot (T_{eines Schätzung, ij} - T_{äußere Schätzung, ij})}
\]

In einem darauf aufbauenden Schritt werden die entsprechend zu transportierbaren Volumenströme für beide Varianten entsprechend Gleichungen (5.21) und (5.22) ermittelt. Dabei stellt $\rho_{i,j}$ jeweils die Dichten des abzukühlenden oder aufzuheizenden Mediums dar.

\[
V_{ij, Schätzung(heiss→kalt)} = \frac{\dot{m}_{ij, Schätzung(heiss→kalt)}}{\rho_i}
\]

\[
V_{ij, Schätzung(kalt→heiss)} = \frac{\dot{m}_{ij, Schätzung(kalt→heiss)}}{\rho_j}
\]

Zu beachten ist, dass auch hier Fälle mit Phasenwechsel differenziert berechnet werden, indem zwischen Flüssig- und Gasphase unterschieden wird und die Verdampfungs-bzw. Kondensationsenthalpie mitberücksichtigt wird. Für die Prozessführung wird abschließend angenommen, dass der kleinere der beiden Volumenströme transportiert wird (vgl. (5.23)).

\[
V_{ij, Schätzung} = \min\{V_{ij, Schätzung}(A_i); V_{ij, Schätzung}(B_j)\}
\]

Ermittlung der geschätzten Volumenströme bei indirekter Wärmeübertragung

Bei der Nutzung von Wärme über Standortgrenzen hinweg ist der standortübergreifende Transport von Massenströmen, die direkt den Prozessen entstammen, häufig in der petrochemischen oder der chemischen Industrie anzufinden. Dabei handelt es sich in der Regel um Betriebskomplexe, die mehrere Produktionshallen wärmetechnisch integrieren, jedoch zu demselben Unternehmen gehören.

Im Rahmen dieser Arbeit sollen jedoch insbesondere die noch nicht umgesetzten Möglichkeiten zur überbetrieblichen Wärmeintegration adressiert werden, bspw. die Nutzung von heißen Abgasen aus Gießereien zur Wärmeversorgung benachbarter Produktionsstandorte. In einer solchen Konstellation, bestehend aus Standorten, die zum einen zu anderen Firmen und zum anderen eventuell zu unterschiedlichen Industrien gehören, ist ein indirekter Wärmevertransport über Betriebsgrenzen die technisch weniger komplexe Lösung und würde daher voraussichtlich bevorzugt werden.

Zur Abbildung der indirekten Wärmeintegration muss grundsätzlich errechnet werden, wie viel Energie potenziell an ein Wärmeträgermedium übertragen werden kann. Im Rahmen dieser Arbeit wird hierfür angenommen, dass die Wärmeübertragung entweder auf einen Heißwasser- oder einen Dampfstrom bei
5 bar erfolgt. Dabei wird davon ausgegangen, dass der Wasser- oder Dampfstrom am Standort des Energieangebots erwärmt wird und anschließend zum Standort der Energienachfrage transportiert wird.

Hierfür erfolgt im ersten Schritt wieder eine Kategorisierung der Prozesse \(B_j \) und \(A_i \) anhand unterschiedlicher Fälle. Die Kategorisierung wird dabei äquivalent zur Vorgehensweise bei direkter Wärmeübertragung vorgenommen, mit dem einzigen Unterschied, dass bei den Prüfbedingungen die treibende Temperaturdifferenz doppelt berücksichtigt werden muss. Dies ist darin begründet, dass bei indirekter Wärmeübertragung zwei anstatt einem Wärmeübertrager notwendig sind. Der erste Wärmeübertrager überträgt dabei Wärme vom abzukühlenden Prozess auf das Wärmeträgermedium und der zweite Wärmeübertrager überträgt die Wärme vom Wärmeträgermedium schließlich auf den aufzuheizenden Prozess. Für Fall 1 wären die Prüfbedingung in Tabelle 30 somit beispielsweise:

\[
T_{j,\text{ein}} - 2 \cdot \Delta T_{\text{min}} \geq T_{i,\text{aus}} \quad \text{und} \quad T_{j,\text{aus}} - 2 \cdot \Delta T_{\text{min}} \geq T_{i,\text{ein}}.
\]

Im zweiten Schritt erfolgt dann wieder äquivalent zur Vorgehensweise bei direkter Wärmeübertragung die Ermittlung der Wärmemenge \(Q_{ij,\text{Schätzung}} \). Im dritten Schritt wird auf Basis von \(Q_{ij,\text{Schätzung}} \) schließlich der notwendige Massen- und Volumenstrom zum Transport der Wärme errechnet. Dabei werden drei Fälle entsprechend Tabelle 31 unterschieden.

Tabelle 31: Ermittlung des Massenstromes – indirekter Wärmevertrag.

<table>
<thead>
<tr>
<th>Fall 1: Heiß- und Dampfwasserstrom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfbedingung: (T_{j,\text{ein}} \geq 150 + \Delta T_{\text{min}}) (\text{und} \quad T_{j,\text{aus}} < 150 + \Delta T_{\text{min}}), mit</td>
</tr>
<tr>
<td>(\dot{m}{ij,\text{Schätzung}} = \frac{Q{ij,\text{Schätzung}}}{c_{p,H_2O \text{ fl}} \cdot \Delta T_1 + dhv_{H_2O (5bar)} + c_{p,H_2O \text{ gas}} \cdot \Delta T_2})</td>
</tr>
<tr>
<td>(\Delta T_1 = 150 - (T_{j,\text{aus}} - \Delta T_{\text{min}})) (\text{und} \quad \Delta T_2 = (T_{j,\text{ein}} - \Delta T_{\text{min}}) - 150)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fall 2: Nur Heißwasserstrom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfbedingung: (T_{j,\text{ein}} \leq 150) (\text{und} \quad T_{j,\text{aus}} \leq 150), mit</td>
</tr>
<tr>
<td>(\dot{m}{ij,\text{Schätzung}} = \frac{Q{ij,\text{Schätzung}}}{c_{p,H_2O \text{ fl}} \cdot (T_{j,\text{ein}} - \Delta T_{\text{min}}) - (T_{j,\text{aus}} - \Delta T_{\text{min}})})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fall 3: Nur Dampfstrom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfbedingung: (T_{j,\text{ein}} \geq 150 + \Delta T_{\text{min}}) (\text{und} \quad T_{j,\text{aus}} \leq 150), mit</td>
</tr>
<tr>
<td>(\dot{m}{ij,\text{Schätzung}} = \frac{Q{ij,\text{Schätzung}}}{c_{p,H_2O \text{ fl}} \cdot (T_{j,\text{ein}} - \Delta T_{\text{min}}) - (T_{j,\text{aus}} - \Delta T_{\text{min}})})</td>
</tr>
</tbody>
</table>

Zuordnen zu Kostenfaktoren

Die in den vorangegangenen Abschnitten errechneten Massen- und Volumenströme dienen grundsätzlich der wirtschaftlichen Bewertung des Transports von Wärme zwischen einem abzukühlenden Prozess \(B_j \) und \(A_i \). Wie bereits zuvor erläutert können Kostenfaktoren in der hier betrachteten Modellstruktur nur dann betrachtet werden, wenn sie spezifisch in Geldeinheit je Leistung den jeweils möglichen Kombinationen von Energieangeboten und Energienachfragen zugeordnet werden. Die gebildeten Energienachfragen und Energieangebote (vgl. Kapitel 5.2.2) müssen somit mit
den geschätzten Massen- und Volumenströmen der Schätzwärmestromen $Q_{ij, \text{Schätzung}}$ in Relation gebracht werden. Dies geschieht in zwei Schritten.

In einem ersten Schritt wird bestimmt, wie viel Energie maximal von Energieangebot b_{jl} zu Energienachfrage a_{ik} transportiert werden kann. Diese Energiemenge ergibt sich aus dem Minium der betrachteten Kombination von Energienachfrage und Energieangebot und somit entsprechend Gleichung (5.24).

$$q_{\text{max},ik,jl} = \min\{b_{jl};a_{ik}\} \quad (5.24)$$

Im zweiten Schritt wird der zuvor bestimmten Energiemenge ein Massenstrom zwecks Abbildung von Kostenfaktoren zugeordnet. Als Grundlage hierfür wird der Massenstrom $\dot{m}_{ij, \text{Schätzung}}$ der Prozesskombination B_j und A_i herangezogen, die den jeweiligen Energienachfragen und Energieangeboten zugrundeliegt. Die Allokation des Massenstromes $\dot{m}_{ij, \text{Schätzung}}$ zu der jeweiligen Kombination von Energienachfrage a_{ik} und Energieangebot b_{jl} erfolgt dann proportional entsprechend Gleichung (5.25).

$$\dot{m}_{\text{Schätzung},jl,ik} = \frac{q_{\text{max},ik,jl}}{Q_{ij, \text{Schätzung}}} \cdot \dot{m}_{ij, \text{Schätzung}} \quad (5.25)$$

Kostenfaktor Verrohrung

In Abhängigkeit des Wärmeträgermediums des heißen (abzukühlenden) Prozesses und der Entfernung zwischen den Prozessen wird nun der notwendige Rohrleitungsdurchmesser bestimmt, um den Massenstrom $\dot{m}_{\text{Schätzung},jl,ik}$ zu fördern. Für die Berechnung wird eine Fließgeschwindigkeit von 25 m/s angenommen, die bei Dampfsystemen üblich ist. Die Dichte des Wärmeträgermediums wird mit ρ_j bezeichnet. Dabei wird die Dichte in dem jeweiligen Temperaturbereich konstant angenommen. Kommt es zur Verdampfung in dem Überlappungsbereich, so wird der Mittelwert aus der Dichte der Flüssigphase und der Gasphase zur Berechnung herangezogen. Der notwendige Durchmesser ergibt sich schließlich entsprechend Gleichung (5.26).

$$d_{\text{Schätzung},jl,ik}[m] = 2 \cdot \sqrt{\frac{\dot{m}_{\text{Schätzung},jl,ik}}{\rho_{jl} \cdot 25}} \quad (5.26)$$

Der ermittelte Durchmesser wird schließlich auf gängige DN-Größen aufgerundet (vgl. Gleichung (5.27(5.26))), um entsprechende Anschaffungskosten zuordnen zu können. Zudem wird auch eine Dämmung für die fiktive Rohrleitung nach Energieeinsparverordnung (EnEV 2014) angenommen.

$$DN_{j,ik} \approx d_{\text{Schätzung},jl,ik} \quad (5.27)$$

Die geschätzte Annuität der Investitionen zuzüglich Betriebs- und Wartungskosten $l_{R,jl,ik}$ für die fiktive Rohrleitung wird schließlich entsprechend Gleichung (5.28) abgebildet.
Die geschätzte Annuität der Investitionen zuzüglich Betriebs- und Wartungskosten $I_{R,j,l,k}$ wird abschließend verwendet, um einen spezifischen Kostenfaktor für Rohrleitungen $c_{R,j,l,k}$ für jede Kombination von Energienachfrage $a_{i,k}$ und Energieangebot $b_{j,l}$ zu definieren. Dies geschieht, indem $I_{R,j,l,k}$ entsprechend Gleichung (5.29) auf $q_{max,i,k,j}$ bezogen wird.

$$c_{R,j,l,k} \left[\text{EUR/W}\right] = \frac{I_{R,j,l,k}}{q_{max,i,k,j}} \quad (5.29)$$

Unter der Annahme, dass mehrere Energieangebote $b_{j,l}$ ein und desselben abzukühlenden Prozesses B_j und mehrere Energienachfragen $a_{i,k}$ ein und desselben aufzuheizenden Prozesses A_i miteinander verknüpft werden, ergeben sich die Kostenfaktoren wie folgt. In dem Modell werden Kostenfaktoren gebildet, indem für jede Verbindung zwischen Energieangebot und Energienachfrage der entsprechende Durchmesser gebildet wird und die Kosten entsprechend der zuvor erläuterten Methodik abgeschätzt werden. In einer tatsächlichen Rohrleitungsplanung würden die Energieangebote und Energienachfragen viel mehr in einem Rohr zusammengefasst werden, wenn Start und Ziel identisch wären. Dies hätte eine andere Geometrie zur Kostenabschätzung zur Folge. Der geometrische Unterschied ist in Abbildung 12 visuell dargestellt.

Zusammenfassend werden nochmal die wichtigsten Vereinfachungen, die bei der Bildung des Kostenfaktors für Verrohrungen angenommen werden, im Folgenden aufgelistet.

- Die Verrohrungsgeometrie basiert nicht auf Prozessströmen, sondern Energienachfragen und Energieangeboten und ist somit vereinfacht. Tendenziell wird die Anzahl der Rohre überschätzt.
- Skaleneffekte, bspw. geringere Anschaffungspreise, wenn viele Rohre im System vorhanden sind, können nicht abgebildet werden.

Kostenfaktor Arbeitsmaschinen

Im folgenden Abschnitt wird die Festlegung von spezifischen Kosten für Arbeitsmaschinen zur Förderung von Fluiden erörtert. Dabei kann es sich prinzipiell entweder um Pumpen zur Förderung flüssiger Medien handeln oder um Verdichter zur Förderung gasförmiger Fluide.

Investitionen für Arbeitsmaschinen

Tabelle 33: Annuität der Investition für Arbeitsmaschinen.

\[
I_{P,jl,ik} [EUR] = sk_{P/V} \left[\frac{EUR}{m^3/s} \right] \cdot \frac{\dot{m}_{Schätz,jl,ik} [kg/s]}{\rho_j [kg/m^3]} \cdot LA
\]
(5.30)

Mit,

<table>
<thead>
<tr>
<th>sk_{P/V}</th>
<th>Spezifische Anschaffungsinvestition für Pumpen/Verdichter</th>
</tr>
</thead>
<tbody>
<tr>
<td>RWM</td>
<td>Faktor für Restwertmethode inklusive Wartung (siehe Gl. (5.14))</td>
</tr>
</tbody>
</table>

Die geschätzten Investitionen werden schließlich auf die maximale Energieübertragung zwischen dem jeweils zugehörenden Energieangebot und der zugehörenden Energienachfrage bezogen (vgl. Gleichung (5.31)).

\[
c_{P/V,Inv,jl,ik} [EUR/W] = \frac{I_{P,jl,ik}}{q_{max,ik,jl}}
\]
(5.31)

Betriebskosten für Pumpen

Tabelle 34: Druckverlustes für Rohre.

\[
\Delta p_{12} [Pa] = \frac{\rho \cdot u_m^2}{2} \cdot \left(\lambda \cdot \frac{L}{D} + \sum \zeta_i \right)
\]
(5.32)

Mit,

<table>
<thead>
<tr>
<th>\rho</th>
<th>Dichte des Fluides in kg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{um}</td>
<td>mittlere Geschwindigkeit des Fluides in m/s</td>
</tr>
<tr>
<td>\lambda</td>
<td>Rohrreibungszahl</td>
</tr>
<tr>
<td>D</td>
<td>hydraulischer Durchmesser der Rohrleitung in m</td>
</tr>
<tr>
<td>\zeta_i</td>
<td>Beiwerte für zusätzliche Druckverluste (bspw. durch Ventile)</td>
</tr>
</tbody>
</table>
Der Druckverlust lässt sich ebenfalls in Abhängigkeit des Massenstroms und der Dichte darstellen. Bezogen auf die in Abbildung 12 vorgestellte Rohrleitungsgeometrie ergibt sich für den Druckverlust die Gleichung (5.33).

\[
\Delta p_{p,j,l,k}[Pa] = 8 \cdot \frac{\dot{m}_{schätz,j,l,k}^2}{\rho_j \cdot D_{j,l,k}^4 \cdot \pi^2} \left(\lambda \cdot \frac{L_{i,j}}{D_{j,l,k}} + \sum \zeta_i \right)
\]

Zur Berechnung des Leistungsbedarfs einer Pumpe kann die sogenannte Förderhöhe \(H \) herangezogen werden (vgl. Spurk und Aksel 2010). Im Rahmen der Arbeit werden geodätische Höhenunterschiede vernachlässigt. Zudem werden die Querschnitte im Rohr nicht verändert und es wird daher vereinfacht von einer konstanten Geschwindigkeit des Fluids im Rohr ausgegangen \((u = const)\). Bezogen auf die in Abbildung 12 vorgestellte Rohrleitungsgeometrie ergibt sich somit die notwendige elektrische Leistung an der Pumpe entsprechend Gleichung (5.34).

\[
P_{j,l,k}[W] = \frac{H \cdot \rho_j \cdot g \cdot V}{\eta_p} = \left(\frac{\dot{m}_{schätz,j,l,k}}{s} \right) \frac{kg}{m^3} \cdot \Delta p_{p,j,l,k} \left[\frac{N}{m^2} \right]
\]

Dabei stellt \(\eta_p \) den Wirkungsgrad der Pumpe inklusive elektrischem Antriebsmotor dar \((\eta_p = \eta_{Pumpe} \cdot \eta_{Elektromotor})\). Der elektrische Leistungsbedarf wird schließlich zur Definition eines Kostenfaktors zum Betrieb der Pumpe herangezogen. Dabei werden die Kosten ebenfalls wie die Investition auf die maximale Energieübertragung zwischen dem jeweils zugehörenden Energieangebot und der zugehörenden Energieanfrage bezogen (vgl. (5.35)).

Tabelle 35: Kostenfaktor – Betriebskosten Pumpen.

| \(c_{PUBetr,j,l,k} \) [EUR/W] | = \(\frac{P_{j,l,k}[W] \cdot sk_{Strom}[EUR/Wh] \cdot BeStd[h]}{q_{max,j,l,k}[W]} \) | (5.35) |
|--------------------------------|---|
| Mit, | spezifische Stromkosten | jährliche angenommene Betriebsstunden |

Betriebskosten für Verdichter

Der in Gleichung (5.32) vorgestellte Zusammenhang gilt nur für Fluide mit annähernd konstanter Dichte. Verdichter fördern Fluide in der gasförmigen Phase. Durch Abkühlung in den Rohrleitungen kann sich die Dichte demnach maßgeblich ändern und prinzipiell ist die Annahme einer konstanten Dichte für die Berechnung des Druckverlusts ungenau. Es existieren daher alternative Berechnungsmethoden für die Berechnung des Druckverlusts kompressibler Fluide (vgl. Sigloch 2012). Im Rahmen der Arbeit wird dies jedoch vernachlässigt. Druckverluste und entsprechende Betriebskosten werden identisch zu der Berechnung für Pumpen ermittelt. Befindet sich das Fluid in der gasförmigen Phase, so wird die Dichte zur Berechnung als konstant angenommen.
Kostenfaktor Pumpen oder Verdichter insgesamt

Die Kostenfaktoren für Betrieb und Investition für Pumpen werden abschließend in einen gemeinsamen Kostenfaktor für Pumpen für die jeweiligen Energienachfragen und Energieangebote überführt (vgl. (5.36)).

\[c_{P/\text{V},jl,ik} \left(\frac{EUR}{W} \right) = c_{P\text{Betr},jl,ik} + c_{P/\text{V,Inv},jl,ik} \] \hspace{1cm} (5.36)

Zusammenfassend werden nochmal die wichtigsten Vereinfachungen, die bei der Bildung des Kostenfaktors für Arbeitsmaschinen angenommen werden, im Folgenden aufgelistet.

- Es werden keine fixen Investitionen in den Kostenfunktionen hinterlegt, da dies mit der vorhandenen Modellstruktur nicht zielführend vereinbar wäre.

Kostenfaktor Wärmeverluste

Im Folgenden wird dargestellt, wie auftretende Wärmeverluste im Modell berücksichtigt werden. Dabei werden zunächst Grundlagen zu Wärmeverlusten eingeführt, bevor die Implementierung von Wärmeverlusten im Modell dargestellt wird.

Wärmeverlustgleichungen für das Modell

Zur Ermittlung der Wärmeübertragung eines technischen Systems an die Umgebung kann der sogennante Wärmeübergangswiderstand herangezogen werden. Dabei ist ein Wärmeübergangswiderstand \(R_\alpha \) definiert als Kehrwert der Wärmeübergangszahl \(\alpha \), welche die Intensität des Wärmeübergangs an einer Grenzfläche darstellt (in \(\frac{W}{m^2 K} \)). Die Wärmeübergangszahl lässt sich dabei für den jeweiligen Mechanismus differenziert berechnen. Ein Wärmeverlust \(Q_w \), der durch eine treibende Temperaturdifferenz \(\Delta T \) an einer Übertragungsfläche entsteht, lässt sich dann entsprechend Gleichung (5.37) bestimmen (Herwig und Moschallski 2009).

\[R_\alpha = \frac{\Delta T}{Q_w} = \frac{1}{\alpha \cdot A} \] \hspace{1cm} (5.37)

In technischen Systemen treten die drei Wärmeverlustmechanismen nebeneinander auf. Für das Gesamtsystem kann der Wärmeverlust dann durch Ermittlung des Wärmewiderstands für das gesamte

Für ein frei verlegtes Rohr ergibt sich dann das entsprechende Wärmewiderstandsnetzwerk in Tabelle 36.

Tabelle 36: Wärmewiderstandsnetzwerk für ein frei verlegtes Rohr.

| 0 → 1: Konvektion zwischen Wärmeträgerfluid und Innenwand Rohr |
| 1 → 2: Wärmeleitung im Rohr zwischen \(r_1 \) und \(r_2 \) |
| 2 → 3: Wärmeleitung in der Isolierung zwischen \(r_2 \) und \(r_3 \) |
| 3 → 4: Konvektion und Wärmestrahlung zwischen Isolierung und Umgebung |

Der Gesamtwiderstand für das Widerstandsnetzwerk ergibt sich schließlich entsprechend Gleichung (5.38).

\[
R_{\text{Ges, frei}} = R_{\text{KONV,01}} + R_{\text{WLEIT,12}} + R_{\text{WLEIT,23}} + \left(\frac{1}{R_{\text{KONV,34}}} + \frac{1}{R_{\text{STRAHL,34}}} \right)^{-1} \quad (5.38)
\]

Der Wärmeverlust des Systems \(Q_{WV} \) kann nun grundsätzlich entsprechend Gleichung (5.39) dargestellt werden, wobei \(T_0 \) die Temperatur des Wärmeträgerfluids bezeichnet und \(T_u \) die Umgebungstemperatur.

\[
Q_{WV, frei} = \frac{T_0 - T_u}{R_{\text{Ges, frei}}} \quad (5.39)
\]
Die Wärmewiderstände können nun ermittelt werden, indem für jeden Mechanismus der Wärmeübertagung die Wärmeübergangszahlen und die Übertragungsflächen ermittelt werden. Für das vorliegende Problem wird die Wärmeleitung durch Strahlung vernachlässigt, da diese erst bei sehr hohen Temperaturen relevant wird. Der Wärmeverlust Q_{WW} für ein isoliertes Rohr entsprechend Abbildung 12 kann dann mit Gleichung (5.40) dargestellt werden.

Tabelle 37: Wärmeverlust für ein erdverlegtes isoliertes Rohr.

<table>
<thead>
<tr>
<th>$Q_{WW, \text{frei}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\left(T_0 - T_a \right) \cdot 2 \cdot \pi \cdot L$</td>
</tr>
</tbody>
</table>

Mit,

$\alpha_{\text{innen}} / \alpha_{\text{außen}}$	Wärmeübergangskoeffizient innen/außen $[W/m^2K]$
$\lambda_{Rohr} / \lambda_{Iso}$	Wärmeleitfähigkeit des Rohrwerkstoffes/der Isolierung $[W/mK]$
r_1-3	Radien entsprechend Abbildung 13

Tabelle 38: Wärmewiderstandsnetzwerk für ein erdverlegtes Rohr.

| Vereinfacht: |
| 0 → 1: Konvektion zwischen Wärmeträgerfluid Rohrinnenwand |
| 1 → 2: Wärmeleitung im Rohr zwischen r_1 und r_2 |
| 2 → 3: Wärmeleitung in der Isolierung zwischen r_2 und r_3 |
| 3 → 4: Konvektion, Wärmestrahlung und -leitung zwischen Isolierung und Erdreich |
| 3 → 4 (vereinfacht): Wärmeleitung zwischen Isolierung und Erdreich |

Für das vereinfachte Widerstandsnetzwerk lässt sich nun der Gesamtwiderstand entsprechend Gleichung (5.41) ermitteln.

$$ R_{\text{Ges, frei}} = R_{KONV,01} + R_{WLEIT,12} + R_{WLEIT,23} + R_{WLEIT,34} \quad (5.41) $$

Der Wärmeverlust des Systems Q_{WW} kann nun grundsätzlich entsprechend Gleichung (5.42) dargestellt werden, wobei T_0 die Temperatur des Wärmeträgerfluids bezeichnet und T_B die Bodenoberflächentemperatur.
\[Q_{WV, erde} = \frac{T_0 - T_B}{R_{Ges, frei}} \] (5.42)

Der VDI-Wärmeatlas präsentiert für den Wärmeverlust einer erdverlegten Leitung an das Erdreich durch Wärmeleitung den Zusammenhang entsprechend Gleichung (5.43).

Tabelle 39: Wärmeverlustgleichung für eine erdverlegte Leitung.

<table>
<thead>
<tr>
<th>(Q_{WV, Leitung})</th>
<th>(\lambda_{Boden} \cdot S_L \cdot (T_W - T_B))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mit, (\lambda_{Boden})</td>
<td>Wärmeleitfähigkeit Boden (\frac{W}{m \cdot K})</td>
</tr>
<tr>
<td>(S_L)</td>
<td>Dimensionsloser Formfaktor ([-])</td>
</tr>
<tr>
<td>(T_W)</td>
<td>Temperatur der Rohrwand (hier: Isolierung) ([K])</td>
</tr>
<tr>
<td>(T_B)</td>
<td>Bodenoberflächentemperatur ([K])</td>
</tr>
</tbody>
</table>

Zwecks Konsistenz mit der Darstellung aus Gleichung (5.41) lässt sich \(R_{WLEIT,34} \) entsprechend Gleichung (5.44) darstellen. Dabei gilt für \(\alpha_{Boden} = \lambda_{Boden} \cdot \frac{S_L}{2 \cdot \pi \cdot r} \).

\[R_{WLEIT,34} = \frac{1}{\alpha_{Boden} \cdot 2 \cdot \pi \cdot r \cdot L} = \frac{1}{\lambda_{Boden} \cdot S_L \cdot L} \] (5.44)

Unter der Annahme, dass \(T_B \approx T_U \) gilt, lässt sich der Wärmeverlust \(Q_{WV, erde} \) einer erdverlegten, isolierten Leitung schließlich entsprechend Gleichung (5.45) darstellen.

\[Q_{WV, erde} = \frac{(T_0 - T_U)}{\left(\frac{1}{2 \cdot \pi \cdot L} \left(\frac{1}{\alpha_{innen} \cdot r_1} + \frac{1}{\lambda_{Rohr}} \cdot \ln \left(\frac{T_2}{T_1} \right) + \frac{1}{\lambda_{Iso}} \cdot \ln \left(\frac{T_3}{T_2} \right) \right) \right) + \frac{1}{\lambda_{Boden} \cdot S_L \cdot L}} \] (5.45)

Die Einflussgrößen der Gleichungen für den Wärmeverlust einer frei verlegten Leitung \(Q_{WV, frei} \) und für den Wärmeverlust einer erdverlegten Leitung \(Q_{WV, erde} \) lassen sich somit in folgende Gruppen einteilen:

- materialabhängige Kennwerte (\(\lambda_{Rohr}, \lambda_{Iso} \)) für die Wärmeleitung,
- geometrische Parameter (alle Längen, Radien und Formfaktoren),
- Prozessparameter- bzw. Umgebungsbedingungen (\(T_0/T_U \)),
- stoff- und strömungsabhängige Kennwerte (\(\alpha_{innen}/\alpha_{außen} \)) für die Konvektion.

Die stoff- und strömungsabhängigen Wärmeübertragungskoeffizienten \(\alpha_{innen} \) und \(\alpha_{außen} \) sind nicht bekannt und müssen zusätzlich bestimmt werden. In der Literatur zur Wärmeübertragung werden Kennzahlen und Zusammenhänge vorgestellt, um Wärmeübertragungskoeffizienten zu schätzen. Im Rahmen des Modells werden die Nusselt- (\(Nu \)), Reynoldsd- (\(Re \)), Prandtl- (\(Pr \)), Grashof- (\(Gr \)) und Raleigh- (\(Ra \)) Zahl verwendet.

Zur Berechnung von \(\alpha_{innen} \) und \(\alpha_{außen} \) werden zudem Ähnlichkeitsgesetze entsprechend VDI-Wärmeatlas angewendet. Zentral dabei sind Korrelationsgleichungen für die Nusselt-Zahl einer freien
und erzwungenen Konvektion. Die Gültigkeit dieser Korrelationsgleichungen wird in der Regel durch die Art der Strömung (turbulent/laminar) und somit der Reynolds-Zahl, durch stoffliche Eigenschaften und somit der Prandtl-Zahl und gegebenenfalls durch geometrische Kennwerte, wie bspw. dem Verhältnis von Länge und Durchmesser des Rohrs, bestimmt. Entsprechende Definitionen der Zahlen und die Berechnungsschema für α_{innen} und $\alpha_{\text{außen}}$ sind im Anhang aufgeführt.

Abschließend werden die ermittelten Wärmeübertragungskoeffizienten im Modell verwendet, um den Wärmeverlust einer frei- und erdverlegten Rohrleitung entsprechend Gleichungen (5.40) und (5.45) (siehe Anhang) zu berechnen. Dabei wird das Rohr- und Isolierrahmen für alle Fälle j,l,ik identisch angenommen und somit sind λ_{Rohr} und λ_{Iso} für alle Fälle identisch. Die Radien hängen im Modell von den geschätzten Durchmessern ab. Sie sind somit abhängig vom Fall und es gilt $r_{1-3} = f(DN_{j,l,ik})$. Die Längen der Rohre werden ebenfalls fallspezifisch ermittelt. Die entsprechenden Gleichungen für Wärmeverluste mit Bezug zu den Modellgrößen sind in Tabelle 40 dargestellt.

Tabelle 40: Berechnung der Wärmeverluste im Modell.

<table>
<thead>
<tr>
<th>Modellverwendung</th>
<th>Gleichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Für die frei verlegte Rohrleitung:</td>
<td>$Q_{\text{WV,frei,j,l,ik}} = \frac{(T_j - T_u) \cdot 2 \cdot \pi \cdot L_{i,j}}{\left(\frac{1}{\alpha_{\text{innen,j,l,ik}} \cdot r_1()} + \frac{1}{\lambda_{\text{Rohr}}} \cdot \ln \left(\frac{r_2()}{r_1()}\right) + \frac{1}{\lambda_{\text{Iso}}} \cdot \ln \left(\frac{r_3()}{r_2()}\right) + \frac{1}{\alpha_{\text{außen,j,l,ik}} \cdot r_3()}\right)}$</td>
</tr>
<tr>
<td>Für die erdverlegte Rohrleitung:</td>
<td>$Q_{\text{WV,erde,j,l,ik}} = \frac{(T_j - T_u)}{\left(\frac{1}{\alpha_{\text{innen,j,l,ik}} \cdot r_1()} + \frac{1}{\lambda_{\text{Rohr}}} \cdot \ln \left(\frac{r_2()}{r_1()}\right) + \frac{1}{\lambda_{\text{Iso}}} \cdot \ln \left(\frac{r_3()}{r_2(*)}\right) + \frac{1}{\lambda_{\text{Boden}} \cdot S_L \cdot L_{i,j}}\right)}$</td>
</tr>
<tr>
<td>$*=DN_{j,l,ik}$</td>
<td></td>
</tr>
</tbody>
</table>

Abbildung von Wärmeverlusten in der Modellstruktur

Die zuvor vorgestellten Beziehungen für Wärmeverluste einer frei- und erdverlegten Rohrleitung werden im Modell nun zur Bildung eines spezifischen Kostenfaktors herangezogen. In der folgenden Darstellung zur Abbildung des Kostenfaktors wird in der Bezeichnung der Wärmeverluste nicht mehr zwischen frei- und erdverlegten Leitungen unterschieden, da die Abbildung des Kostenfaktors für beide Verlegungsarten äquivalent erfolgt ($Q_{\text{WV,erde,j,l,ik}}, Q_{\text{WV,frei,j,l,ik}} \rightarrow Q_{\text{WV,j,l,ik}}$).

Die spezifischen Kosten für Wärmeverluste werden wie bereits die Kostenfaktoren für Rohrleitungen und Pumpaufwände auf die geschätzte maximal übertragbare Energiemenge zwischen den entsprechenden aufzuheizenden und abzukühlenden Prozessen bezogen. Der Kostenfaktor wird demnach entsprechend Gleichung (5.48) ermittelt. Dabei stellt η_{WV} einen thermischen Wirkungsgrad dar, der sich an den Opportunitäten orientiert. Wärmeverluste müssten durch zentrale Erzeuger oder Heizaggregate, die direkt an den Prozessen angeordnet sind ausgeglichen werden. Für η_{WV} kann also der Wirkungsgrad der entsprechenden Systeme angenommen werden, für ein Dampfsystem bspw. $\eta_{\text{WV}} = \eta_{\text{Erzeuger}} \cdot \eta_{\text{Verteilerverluste}} \cdot \text{BeStd}$ steht für die jährlich angenommenen Betriebsstunden. Die Brennstoffkosten für das zentrale System, bspw. Erdgas bei einem Dampferzeuger, werden schließlich mit sk_{Brenn} bezeichnet.
\[
c_{WV,jl,ik} \left[\frac{EUR}{W} \right] = \left(\frac{Q_{WV,jl,ik}}{q_{max,ik,jl}} \right) \left[- \right] \cdot \left(\frac{1}{\eta_{WV}} \right) \left[- \right] \cdot s_{k_{Brenn}} \left[\frac{EUR}{Wh} \right] \cdot BeStd[h]
\]
(5.48)

Zusammenfassend werden nochmal die wichtigsten Vereinfachungen, die bei der Bildung des Kostenfaktors für Wärmeverluste angenommen werden, im Folgenden aufgelistet.

- Es gelten grundsätzlich dieselben Nachteile wie bei der Verrohrungsgeometrie, da Wärmeverluste auf Basis dieser Geometrie ermittelt werden.
- Wärmeverluste werden nicht energetisch, sondern monetär abgebildet.

Kostenfaktor zentrale Wärme- und Kälteerzeuger

\[
c_{UT,jl,ik} \left[\frac{EUR}{W} \right] = s_{k_{UT}} \left[\frac{EUR}{W} \right] \cdot RWM + \frac{s_{k_{Energie}} \left[\frac{EUR}{Wh} \right]}{\eta_{UT}} \cdot BeStd[h]
\]
(5.49)

Mit,

<table>
<thead>
<tr>
<th>Berechnungsart</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_{k_{UT}})</td>
<td>Spezifische Anschaffungsinvestition für Erzeuger</td>
</tr>
<tr>
<td>(s_{k_{Energie}})</td>
<td>Spezifische Energieträgerkosten</td>
</tr>
<tr>
<td>(BeStd)</td>
<td>Betriebs-/Produktionszeit</td>
</tr>
<tr>
<td>(RWM)</td>
<td>Faktor für Restwertmethode inklusive Wartung (siehe Gl. (5.14))</td>
</tr>
</tbody>
</table>

Bei der Bildung des Kostenfaktors für zentrale Wärmeerzeuger wird mit einem spezifischen, leistungsabhängigen Faktor für Investitionen gerechnet. Leistungsabhängige Skaleneffekte bei Anschaffungsinvestitionen werden somit nicht berücksichtigt, was die wichtigste Vereinfachung im Hinblick auf die Annahmen darstellt.

Zusammenfassung Kostenfaktoren

Sämtliche zuvor vorgestellten Kostenfaktoren werden für jede Kombination von Energienachfrage und Energieangebot ermittelt (vgl. Indexierung \(ik, jl \)). Zwecks Lesbarkeit wird im Folgenden jedoch auf die Indexierung der spezifischen Kosten verzichtet. Die Kosten werden je nach Fall entsprechend Tabelle 42 zusammengeführt und bei der Lösung des Optimierungsproblems mit berücksichtigt.
Tabelle 42: Kostenfaktoren – wirtschaftliche Optimierung.

<table>
<thead>
<tr>
<th>(C_{ik,ji})</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_{WT} + c_R + c_{P/V} + c_{WV})</td>
<td>(i) ist nicht (C) und (j) ist nicht (H) und die Temperaturen sind zulässig. Verbindungen zwischen E-Angebot und E-Nachfrage.</td>
</tr>
<tr>
<td>0</td>
<td>(i) ist (C) und (j) ist (H). Verbindungen zwischen Versorgern (nur zum Modellieren notwendig, nicht technisch).</td>
</tr>
<tr>
<td>(c_{UT})</td>
<td>Entweder (i) ist (C) oder (j) ist (H). Verbindungen zwischen einem Versorger (Wärme/Kälte) und E-Nachfrage oder E-Angebot.</td>
</tr>
<tr>
<td>(M)</td>
<td>Sonst (M), eine große Zahl. Für Verbindungen zwischen E-Nachfrage und E-Angebot mit unzulässigen Temperaturen.</td>
</tr>
</tbody>
</table>

5.2.5. Berücksichtigung dynamischer Aspekte im Modell

Zur Bewertung der überbetrieblichen Wärmeintegration in einem systemischen Rahmen ist es sinnvoll, dynamische Aspekte bei der wirtschaftlichen Bewertung ebenfalls zu adressieren. Dies ist darin begründet, dass der Wärmebedarf der potenziell teilnehmenden Betriebe zeitlich zueinander variieren kann.

Dies ist beispielsweise relevant, wenn ein Betrieb Abwärme an einen benachbarten Standort liefert, wobei dessen Produktionszeit über das Jahr hinweg kürzer ist als die des Wärmeabnehmers. In diesem Fall kann der wärmeabnehmende Betrieb seinen Bedarf nicht zu jedem Bedarfszeitpunkt durch die Lieferung von Abwärme reduzieren und muss infolgedessen zusätzliche Kapazitäten bei den anderen Wärmeerzeugern vorhalten. Die notwendige Infrastruktur kann dann natürlich auf die Abwärmmenge, die über das Jahr hinweg kontinuierlich geliefert werden kann, ausgelegt werden. Sie würde somit im Hinblick auf zu transportierende Leistungen gegebenenfalls kleiner ausgelegt werden, verglichen zu einem Fall, indem der wärmeabgebende Betrieb eine genau so lange Produktionszeit hätte, wie der wärmeaufnehmende Betrieb. Dies würde sich somit in kleineren Wärmeübertragern, Pumpen usw. äußern.

Möglichkeiten zur Implementierung in der Modellstruktur

Die erste Möglichkeit besteht darin, ein überbetriebliches Wärmeübertragernetzwerk mit Hilfe des Transportalgorithmus auszulegen und dabei zeitliche Differenzen zwischen den Standorten zunächst nicht zu berücksichtigen. Im Anschluss daran müsste das entworfene Netzwerk im Hinblick auf die Wirtschaftlichkeit bewertet werden. Dies kann durch energetische Simulation des Netzwerks in zeitlicher

Andere Heuristiken zur Verbesserung der Wirtschaftlichkeit im Hinblick auf zeitliche Aspekte angewendet werden. Dies spricht im Rahmen der Arbeit prinzipiell gegen einen iterativen Ansatz.

Implementierung in der Modellstruktur

Die Weiterentwicklung geschieht zunächst durch Erweiterung der Zielfunktion entsprechend Gleichung (5.50). Dabei bezeichnet $q_{tik,tl}$ die Wärmeleistung, die zum Zeitraum t von Energieangebot b_{jl} zum Energiebedarf a_{ik} transportiert wird. In der Modellimplementierung werden somit Energienachfragen und Energieangebote für die jeweiligen Zeiträume gebildet; $a_{ik} \rightarrow a_{tik}$ und $b_{jl} \rightarrow b_{tjl}$. Dies wird umgesetzt, indem ein relaterer Teillastfaktor $PF_{st,t}$ eingeführt wird, der nach Zeitraum und je Standort differenziert ist. Dabei stellt der erste Zeitraum ($t = 1$) immer den Zeitraum dar, in dem beide Betriebe Volllast aufweisen, somit gilt $PF_{st,1} = 1$.

\[
\min_{t=1}^{T} \sum_{i=1}^{C} \sum_{k=1}^{L} \sum_{j=1}^{H} \sum_{l=1}^{L} c_{tik,tl} \cdot q_{tik,tl} \tag{5.50}
\]

Für Zeiträume, bei denen $t \neq 1$ gilt, ergibt sich ein Energieangebot entsprechend Gleichung (5.51). Zu beachten ist, dass in der Modellimplementierung für diesen Schritt Energienachfragen und Energieangebote jeweiligen Standorten (bspw. $a_{tik} \rightarrow a_{st,tik}$) zugeordnet werden. In der folgenden Darstellung wird jedoch zwecks Übersichtlichkeit auf einen Standortindex verzichtet.

\[
a_{tik} = PF_{st,t} \cdot a_{tik,1jl} \tag{5.51}
\]

Grundsätzlich können die Zeiträume dabei variabel lang sein. Für ein Beispiel mit zwei Standorten, bei dem der erste Standort eine Produktionszeit von 8.000 Stunden bei voller Last und der zweite Standort eine Produktionszeit von 4.000 Stunden bei voller Last und 4.000 Stunden bei nur halber Last aufweist, lässt sich dies wie folgt abbilden. Zur Abbildung dieses Falls werden zwei Zeiträume gebildet ($T = \{1,2\}$), die jeweils für einen Zeitraum von 4.000 Stunden stehen. Darauf aufbauend werden je nach Standort Teillastfaktoren gebildet ($PF_{1,1} = PF_{1,2} = 1$, $PF_{2,1} = 1$, $PF_{2,2} = 0.5$), auf dessen Grundlage die Energieangebote und Energienachfragen gebildet werden. Dabei ist darauf hinzuweisen, dass die Zuordnung zwischen Energieangebot und Energienachfrage in der Modellstruktur grundsätzlich auf Basis von thermischen Leistungen erfolgt. Produktions- bzw. Betriebszeiten (hier bspw. jeweils 4.000 Stunden) werden ausschließlich zur Bildung der spezifischen Kostenfaktoren herangezogen, indem Energiekosten über die Betriebszeit bilanziert und anschließend spezifiziert mit einbezogen werden.
Des Weiteren werden zwei zusätzliche Randbedingungen eingeführt. Die erste dieser Randbedingungen ist in Gleichung (5.52) dargestellt. Sie stellt sicher, dass keine Verbindungen zwischen Energieangeboten und Energienachfragen festgelegt werden, die zu unterschiedlichen Zeiträumen gehören. Der zweite Abschnitt der Randbedingung ist zur Darstellung im Rahmen dieser Arbeit prinzipiell nicht notwendig, denn an keiner Stelle wurde in der Indexierung von $q_{tik.tjl}$ das t vor und nach dem Komma unterschiedlich bezeichnet. Infolgedessen handelt es sich immer um denselben Wert. Für die programmtechnische Umsetzung ist jedoch zwingend darauf zu achten, Mechanismen einzubauen, die Verbindungen zwischen unterschiedlichen Zeiträumen für $q_{tik.tjl}$ verhindern. Bei der Umsetzung im Rahmen dieser Arbeit wurde dies wie in Gleichung (5.52) dargestellt gelöst.

\begin{align*}
q_{tik.tjl} \geq 0 & \quad \text{für alle Kombinationen von } i, j, k, l \text{ und } t, \text{ und} \\
q_{tik.tjl} = 0 & \quad \text{für } q_{tik.tjl} \text{ mit unterschiedlichem } t \text{ im Index} \\
\end{align*} \tag{5.52}

Für die zweite Randbedingung wird für jede mögliche Verbindung ($q_{tik.tjl}$) zunächst ermittelt, welcher Teillastfaktor maßgeblich ist. Dabei wird die möglicherweise austauschbare Wärme zwischen zwei Standorten im Teillastbetrieb durch den kleineren der beiden Teillastfaktoren bestimmt. Wenn somit a_{tik} und b_{tjl} zu unterschiedlichen Standorten gehören, dann wird der kleinere Teillastfall gewählt; dies ist in Gleichung (5.53) angedeutet.

\begin{equation}
P_{F_{t=2}} = \min\{P_{F_{1,2}}, P_{F_{2,2}}\} \tag{5.53}
\end{equation}

Die Relation für $q_{tik.tjl}$ zwischen Zeiträumen, in denen Teillast vorliegt und dem Fall der Volllast, wird schließlich durch die zweite zusätzliche Randbedingung in Gleichung (5.54) hergestellt. An dieser Stelle ist anzumerken, dass $q_{tik.tjl}$ die Menge des Wärmetransports zwischen Energienachfrage und Energieangebot darstellt. Implizit stellt $q_{tik.tjl}$ also auch die Größe eines Wärmeübertragers für die entsprechende Verbindung dar. Konsequenterweise wird im Modell gefordert, dass wenn eine Verbindung zwischen zwei Prozessen zum Zeitpunkt der Volllast gewählt wird, die zu diesem Zeitpunkt transportierte Menge die Obergrenze für den Wärmetransport über die Zeit hinweg für dieselbe Verbindung darstellt. Dies impliziert die Handlungsprämisse, dass die Größen der Wärmeübertrager für den Volllastfall ausgelegt werden.

\begin{equation}
q_{tik.tjl} = q_{lik,3,jl} \cdot P_{F_t} \quad \text{für alle } i, j, k, l \text{ und } t, \text{ mit } P_{F_t} \leq 1 \tag{5.54}
\end{equation}

5.2.6. Steuerungsmöglichkeiten intern vs. extern

Bei der Ermittlung der Einsparpotenziale mit Berücksichtigung von wirtschaftlichen Aspekten (wirtschaftliche Einsparpotenziale) werden Kostenfaktoren für notwendige Komponenten und Betriebskosten im Optimieransatz mitberücksichtigt. Diese beziehen sich auf Wärmeübertrager, Arbeitsmaschinen, Verrohrung, zentrale Wärme- und Kälteerzeuger und Mehraufwand bei Wärmeerzeugern durch Wärmeverluste im System. Prinzipiell lassen sich diese Kostenfaktoren sowohl auf die innerbetriebliche als auch auf die überbetriebliche Wärmeintegration anwenden. Werden alle Kostenfaktoren sowohl für die innerbetriebliche und für die überbetriebliche Wärmeintegration

Bei der ersten Vorgehensweise wird die Distanz für die innerbetriebliche Wärmeintegration auf null gesetzt und infolgedessen werden bei der innerbetrieblichen Wärmeintegration ausschließlich Kosten für Wärmeübertrager berücksichtigt, während bei der überbetrieblichen Wärmeintegration weiterhin alle distanzrelevanten Kosten mit einbezogen werden (Verrohrung usw.). Der Nachteil dieser Vorgehensweise ist, dass nicht mit Sicherheit ausgeschlossen werden kann, dass innerbetriebliche Verbindungen immer vor überbetrieblichen Verbindungen vorgezogen werden. Schließlich wird lediglich die Anzahl der Kostenfaktoren für die innerbetriebliche Wärmeintegration reduziert, was sich zwar bevorzugend für die innerbetriebliche Wärmeintegration auswirkt, jedoch nicht sicherstellen kann, dass in bestimmten Fällen die überbetriebliche Wärmeintegration spezifisch günstiger ist und gewählt wird.

Die zweite Vorgehensweise besteht darin, spezifische Kosten für mögliche Verbindungen bei der innerbetrieblichen Wärmeintegration analog zur Ermittlung energetischer Potenziale auf null zu setzen. Hier wird die innerbetriebliche Wärmeintegration technisch maximal ausgeschöpft.

5.2.7. Zusammenfassung der Modellentwicklung

Die dem Modell zugrundeliegende Methode basiert auf einem Optimierungsansatz. Im Rahmen dieser Arbeit wurde die Programmiersprache Python zusammen mit der Python-Bibliothek PuLP verwendet,

5.3. Anwendung des Modells für eine exemplarische Nachbarschaft

Das zuvor entwickelte Modell wird im Folgenden in für eine exemplarische Nachbarschaft zwischen zwei Fabriken angewendet. Dabei hat die exemplarische Anwendung die im Folgenden genannten Ziele.

- **Validierung:** Die energetische Optimierung (als Teil der technischen Potenzialermittlung) soll anhand eines Vergleichs mit theoretischen Werten validiert werden. Dies stellt sicher, dass die Modellimplementierung die Prozesse thermodynamisch korrekt in Energienachfragen und Energieangebote zerlegt und korrekt optimiert.
- **Exemplarische Potenzialdarstellung:** Das Modell liefert das technische und wirtschaftliche Energieeinsparpotenzial für die überbetriebliche Wärmeintegration bezogen auf den gegenwärtigen Zustand. Für die exemplarische Nachbarschaft werden diese Ergebnisse differenziert für unterschiedliche Entfernungen dargestellt.
- **Sensitivitäten:** Abschließend wird eine Sensitivitätsanalyse durchgeführt. Hier liegt der Fokus insbesondere darauf, den Einfluss der für die überbetriebliche Wärmeintegration eingebrachten Kostenfaktoren im Modell aufzuzeigen. Der Fokus liegt hier also auf dem wirtschaftlichen Potenzial. Dieser Fokus wurde gewählt, da das technische Potenzial eines zu untersuchenden Systems im Modell prinzipiell auf Basis des energetischen Optimums ermittelt wird. Sensitivitäten beim technischen Potenzial ergeben sich also „weniger“ aus der Modellarchitektur heraus oder den im Modell getroffenen Annahmen, sondern aus unterschiedlichen Eingangsdaten (Wärmebedarfe für die Fabriken), die in das Modell gespeist werden. Abschließend werden die Erkenntnisse aus den Sensitivitätsrechnungen im Kontext der Fragestellung zusammengefasst und es werden Ansatzpunkte für Verbesserungsmöglichkeiten diskutiert und in ersten Ansätzen exemplarisch aufgezeigt.
5.3.1. Datengrundlage (betrachtete Fabriken)

Beschichtungsanlage

In der Beschichtungsanlage werden zwei Beschichtungsverfahren angewendet. Für Komponenten mit 'hohen' Anforderungen an die Beschichtung wird ein elektrostatisches Pulverbeschichtungsverfahren (EPS-Verfahren) angewendet. Für weitere Komponenten wird ein Email-Beschichtungsverfahren (Email-Verfahren) eingesetzt. Beide Verfahren setzten eine Vorbehandlung der Komponenten voraus.

Abbildung 14: Beschichtungsanlage – Vorbehandlung

Abbildung 15: Beschichtungsanlage – EPS-Verfahren

Abbildung 16: Beschichtungsanlage – Enamel-Verfahren

Eisengießerei

Tabelle 43: Parameter Gießerei.

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Wert (gerundet)</th>
<th>Einheit</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumenstrom Abgas bei 750 °C</td>
<td>47.620</td>
<td>m³/h</td>
<td>Gegeben</td>
</tr>
<tr>
<td>Dichte Gichtgas bei 750 °C</td>
<td>0,4</td>
<td>kg/m³</td>
<td>Annahme</td>
</tr>
<tr>
<td>Massenstrom Abgas</td>
<td>4,8</td>
<td>kg/s</td>
<td>Berechnet</td>
</tr>
<tr>
<td>T.ein</td>
<td>600</td>
<td>°C</td>
<td>Gegeben</td>
</tr>
<tr>
<td>T.aus</td>
<td>400</td>
<td>°C</td>
<td>Gegeben</td>
</tr>
<tr>
<td>Thermische Leistung (600 °C bis 400 °C)</td>
<td>12</td>
<td>MW</td>
<td>Gegeben</td>
</tr>
<tr>
<td>‚Fiktive‘ spezifische Wärmekapazität</td>
<td>14,75</td>
<td>kJ/kgK</td>
<td>Berechnet</td>
</tr>
<tr>
<td>Betriebszeit</td>
<td>4.500</td>
<td>Stunden</td>
<td>Gegeben</td>
</tr>
</tbody>
</table>
5.3.2. Validierung des Modells

Tabelle 44: Validierung der Modellwerte für $dT_{\text{min}} = 25 \, ^\circ\text{C}$.

<table>
<thead>
<tr>
<th>Summenkurven</th>
<th>Modellwerte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beschichtungsanlage alleine</td>
<td>Beschichtungsanlage mit benachbarter Gießerei</td>
</tr>
<tr>
<td>• Wärmebedarf: 483,8 kW</td>
<td>• Wärmebedarf: 483,8 kW</td>
</tr>
<tr>
<td>• Kältebedarf*: 291,7 kW</td>
<td>• Kältebedarf*: 291,7 kW</td>
</tr>
<tr>
<td>Beschichtungsanlage mit benachbarter Gießerei</td>
<td></td>
</tr>
<tr>
<td>• Wärmebedarf: 0 kW</td>
<td>• Wärmebedarf: 0 kW</td>
</tr>
<tr>
<td>• Kältebedarf*: 1187,5 kW</td>
<td>• Kältebedarf*: 1187,5 kW</td>
</tr>
<tr>
<td>• bzw. verfügbare Restwärme</td>
<td></td>
</tr>
</tbody>
</table>

5.3.3. Vergleich des Modells

Im Folgenden werden Vergleiche im Hinblick auf Netzwerkstruktur und optimale minimale Temperaturdifferenz zwischen Modellergebnissen und dem Bericht von Grieder (2011) durchgeführt.

Netzwerkstruktur

Abbildung 17: Anzahl Wärmeübertrager in der Beschichtungsanlage je nach Ansatz

Optimales dTmin

Abbildung 18: Variation dTmin für die Beschichtungsanlage – Leistungen

Abbildung 19: Variation dTmin für die Beschichtungsanlage – Kosten
5.3.4. Technisches und wirtschaftliches Potenzial

Das technische und wirtschaftliche Potenzial hängt von der Entfernung zwischen den betrachteten Fabriken ab. Entsprechend der Definitionen wird das Potenzial immer auf den gegenwärtigen Zustand bezogen.

Das resultierende technische und wirtschaftliche Potenzial für die mit dem Modell ausgewertete exemplarische Nachbarschaft ist schließlich in Abbildung 20 gegeben.

Abbildung 20: Technisches und wirtschaftliches Potenzial für die exemplarische Nachbarschaft
Tabelle 45: Kreuztabelle für Beschichtungsanlage (Werte entsprechend Grieder (2011)).

<table>
<thead>
<tr>
<th>Heiß (links)</th>
<th>Entfetten (Kammerabluft)</th>
<th>EPS-Ofen (Rauchgase)</th>
<th>EPS-Ofen (Kammerabluft)</th>
<th>Email-Ofen (Brüden)</th>
<th>Schlickertrockner (Kammerabluft)</th>
<th>Haftwassertrockner (Kammerabluft)</th>
<th>Wärmeerzeuger</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kalt (rechts) in [kW]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>73,3</td>
<td>73,3</td>
</tr>
<tr>
<td>Entfetten (Kammerabluft)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>73,3</td>
<td>73,3</td>
<td></td>
</tr>
<tr>
<td>EPS-Ofen (Rauchgase)</td>
<td>7,4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>13,0</td>
<td>20,4</td>
<td></td>
</tr>
<tr>
<td>EPS-Ofen (Kammerabluft)</td>
<td>34,7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>34,9</td>
<td>69,6</td>
<td></td>
</tr>
<tr>
<td>Email-Ofen (Brüden)</td>
<td>14,1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>56,4</td>
<td>70,5</td>
<td></td>
</tr>
<tr>
<td>Schlickertrockner (Kammerabluft)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2,8</td>
<td>-</td>
<td>30,0</td>
<td>32,8</td>
</tr>
<tr>
<td>Haftwassertrockner (Kammerabluft)</td>
<td>91,4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>121,8</td>
<td>213,2</td>
<td></td>
</tr>
<tr>
<td>Wärmeerzeuger</td>
<td>9,0</td>
<td>173,0</td>
<td>157,0</td>
<td>9,4</td>
<td>173,0</td>
<td>-</td>
<td>521,4</td>
<td></td>
</tr>
<tr>
<td>Summe</td>
<td>156,6</td>
<td>173,0</td>
<td>157,0</td>
<td>9,4</td>
<td>2,8</td>
<td>173,0</td>
<td>329,3</td>
<td>850,8</td>
</tr>
</tbody>
</table>
5.3.5. Sensitivitätsrechnungen

Tabelle 46: Eingangsparameter Sensitivitätsrechnungen.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betriebsstunden Beschichtungswerk</td>
<td>2.250</td>
</tr>
<tr>
<td>Betriebsstunden Gießerei</td>
<td>4.500</td>
</tr>
<tr>
<td>Brennstoffpreis in EURct./kWh</td>
<td>4,15</td>
</tr>
<tr>
<td>Strompreis in EURct./kWh</td>
<td>16,5</td>
</tr>
<tr>
<td>Kalkulatorischer Zins pro Jahr</td>
<td>3 %</td>
</tr>
<tr>
<td>Abschreibungsdauer in Jahren</td>
<td>30</td>
</tr>
</tbody>
</table>

Im ersten Teil der Analyse wird die Modelllogik anhand von Leistungsdiagrammen, die über die Entfernung differenziert sind, exemplarisch dargestellt. Danach wird jeweils einer der zusätzlich eingebrachten Kostenfaktoren für die Fallstudie angewendet und es wird die Entfernung zwischen den betrachteten Standorten schrittweise erhöht. Zudem werden für jeden Faktor zusätzlich zentrale Annahmen und Parameter variert.

In Kapitel 5.3.6 werden schließlich zentrale Schlussfolgerungen aus den Sensitivitätsrechnungen zusammengefasst. Darauf aufbauend werden in Kapitel 5.4 Ansätze für Weiterentwicklungen aufgezeigt.

Darstellung der Modelllogik

• Im ersten Bereich ist nahezu der komplette Anteil der Wärmeversorgung auf externe Wärmeintegration zurückzuführen.
• Im zweiten Bereich geht der Anteil der Wärmeversorgung durch externe Wärmeintegration zurück und wird durch eine Zunahme bei der innerbetrieblichen Wärmeintegration substituiert.
• Im dritten Bereich geht der Anteil der Wärmeversorgung durch externe Wärmeintegration weiter zurück und wird diesmal jedoch durch eine Zunahme der Wärmeleistung bei den zentralen Wärmeerzeugern kompensiert.

Abbildung 21: Zusammensetzung der Wärmeleistung
Anmerkung: inkl. Wärmeübertrager- und Rohrleitungskosten
Einfluss Rohrleitungen und Wärmeverluste

Abbildung 22 zeigt die überbetriebliche Wärmebereitstellung durch die Gießerei für die Beschichtungsanlage in Abhängigkeit der Entfernung, wobei ausschließlich Kosten für Wärmeübertrager und Rohrleitungen berücksichtigt worden sind. Zudem sind die spezifischen Investitionen für die Rohrleitungen einmal um 75 % reduziert und einmal um 100 % erhöht worden. Für beide Modellvarianten ist zu erkennen, dass bei Annahme besonders niedriger Investitionen für die Rohrleitungen (25 %) überbetriebliche Wärmeübertragung bis zu einer Entfernung von über 35 Kilometern stattfindet, bei hoch angesetzten Investitionen (200 %) beträgt diese Entfernung lediglich rund 5 Kilometer.

Abbildung 22: Überbetriebliche Wärmeleistung mit Wärmeübertrager- und Rohrleitungs kosten

In Abbildung 23 sind neben Kosten für Wärmeübertrager und Rohrleitungen auch Kosten für Wärmeverluste mit berücksichtigt. Dies führt dazu, dass die maximalen Entfernungen mit überbetrieblicher Wärmeintegration deutlich fallen, von etwa zehn Kilometer auf etwa fünf bis sechs Kilometer (für die 100 %-Fälle).
Abbildung 23: Überbetriebliche Wärmeleistung
Anmerkung: mit Wärmeübertrager-, Rohrleitungs- und Wärmeverlustkosten

Einfluss Arbeitsmaschinen

In Abbildung 24 ist äquivalent zu den vorangegangenen Kapiteln die überbetriebliche Wärmebereitstellung für beide Modellvarianten dargestellt, wobei neben den Investitionen für Wärmeübertrager und Rohrleitungen zusätzlich Betriebskosten und Investitionen für Arbeitsmaschinen berücksichtigt sind. Bezogen auf den Fall mit 100 % Rohrleitungskosten geht die maximale Entfernung bei beiden Varianten etwa drei bis vier Kilometer zurück.
Kapitel 5: Modell zur Berechnung des technischen und wirtschaftlichen Potenzials (Bottom-Up I/II)

Abbildung 24: Überbetriebliche Wärmeleistung
Anmerkung: mit Kosten wie bei Abbildung 23 inklusive Arbeitsmaschinen

Einfluss Dynamik

Abbildung 25 zeigt den Einfluss der Einbeziehung zeitlicher Differenzen bei den Produktionsbetrieben. Im Modell werden hierfür zwei Zeitscheiben mit je 2.250 Stunden hinterlegt, wobei in der ersten Zeitscheibe beide Betriebe bei Volllast produzieren (Teillastfaktor $P_{F,1,1} = P_{F,1,2} = 1$). Für den zweiten Zeitpunkt wird der Teillastfaktor der Gießerei auf Volllast belassen ($P_{F,2,2} = 1$) und der Teillastfaktor der Beschichtungsanlage wird auf einen sehr niedrigen Wert reduziert ($P_{F,2,1} = 0.0001$). Wenn nun eine Verbindung für die erste Zeitscheibe erstellt wird, dann bewirkt die Randbedingung aus Gleichung (5.54), dass auch eine Verbindung der gleichen Kombination für die zweite Zeitscheibe erstellt werden muss (proportional zur Teillast). Infolgedessen werden auch für die zweite Zeitscheibe Kosten veranschlagt. Wenn nun in der zweiten Zeitscheibe wenig Wärme transportiert wird, dann sind diese spezifischen Kosten aufgrund der Methodik vergleichsweise höher als in der ersten Zeitscheibe. Der Grund hierfür ist, dass die spezifischen Kosten auf die maximal austauschbare Menge zwischen Energieangebot und Energienachfrage bezogen und spezifiziert werden, bspw. bei den Rohrleitungen (vgl. Gleichung (5.29)). Diese Vorgehensweise bewirkt somit, dass zeitliche Differenzen zwischen den Produktionsbetrieben dazu führen, dass die überbetriebliche Wärmeintegration weniger wirtschaftlich bewertet wird. Für die Modellvariante mit direktem Wärmetransport lässt sich infolgedessen beobachten, dass bei Einbeziehung zeitlicher Differenzen die überbetriebliche Wärmeintegration nur über kürzere Distanzen gewählt wird. Bei der indirekten Wärmeintegration wird ab einer Entfernung von 500 Metern keine überbetriebliche Wärmeintegration mehr veranschlagt.
Die errechneten Investitionen für Wärmeübertrager sind ein zentraler Faktor im Modell, da diese unabhängig davon, ob die Wärmeintegration innerbetrieblich oder überbetrieblich stattfindet, mit einbezogen werden. Im Modell werden notwendige Flächen für Wärmeübertrager auf Basis der logarithmischen Temperaturdifferenz und angenommenen Wärmeübergangszahlen errechnet. Im VDI-Wärmeatlas werden Bandbreiten für Wärmeübergangszahlen nach Art der Medienkombination (flüssig/flüssig, flüssig/gasförmig usw.) differenziert für Rohrbündelwärmeübertrager angegeben (vgl. Tabelle 47).

<table>
<thead>
<tr>
<th>Medienkombination</th>
<th>k-Wert Bereich [W/(m²K)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas innerhalb und außerhalb der Rohre (je 1 bar)</td>
<td>5 bis 35</td>
</tr>
<tr>
<td>Flüssigkeit innerhalb und Gas(1 bar) außerhalb der Rohre, oder umgekehrt</td>
<td>15 bis 70</td>
</tr>
<tr>
<td>Flüssigkeit innerhalb und außerhalb der Rohre</td>
<td>150 bis 1200</td>
</tr>
</tbody>
</table>

Für das Modell wird in der Grundkonfiguration der Wert in der Mitte der Bandbreite für die jeweilige Medienkombination als Wärmeübergangszahl angenommen, also bspw. 20 W/(m²K) für Gas/Gas-Kombinationen. Dieser Wert kann in der Praxis jedoch abweichen und daher wurden diesbezüglich Sensitivitäten für die Varianten 1-a und 2-a gerechnet. Dabei wurden jeweils der obere und untere Grenzwert der Bandbreiten aus Tabelle 47 für die Wärmeübergangszahlen angenommen, also bspw. 5 W/(m²K) für Gas-Gas-Verbindungen für den unteren Grenzwert. Es werden somit im Folgenden drei Fälle unterschieden; Hoch, Mittel und Niedrig.
Abbildung 26 zeigt den Einfluss der zuvor erläuterten Variation auf die maximale Entfernung mit überbetrieblichem Wärmetransport für die Modellvariante mit direktem Wärmetransport. Bei niedrigen Wärmeübergangszahlen wird ab einem Kilometer Entfernung keine Wärme überbetrieblich transportiert. Bei hohen Wärmeübergangszahlen wird tendenziell etwas mehr Wärme überbetrieblich transportiert, als dies bei mittleren Übergangszahlen der Fall ist. Abbildung 27 zeigt die entsprechende Zusammensetzung der Wärmeleistung differenziert nach überbetrieblichem, innerbetrieblichem Wärmetransport und zentralen Wärmeerzeugern. Dabei ist zu erkennen, dass sich die innerbetriebliche Wärmeleistung in allen drei Fällen ähnlich verhält, d. h. auch bei Variationen der Wärmeübergangszahlen bleiben viele innerbetriebliche Verbindungen in diesem Fall wirtschaftlich.

Abbildung 26: Überbetriebliche Wärmeintegration bei Variation der k-Werte (direkte Variante)
ABBE 27: Zusammensetzung der Wärmeleistung bei Variation der k-Werte (direkte Variante)

Bei der Modellvariante mit indirektem Wärmetransport ist das Verhalten strukturell äquivalent und daher wird auf entsprechende Abbildungen an dieser Stelle verzichtet.

Wärmegestehungskosten

Abschließend ist der Einfluss der unterschiedlichen Kostenfaktoren auf die Entwicklung des überbetrieblichen Wärmetransports über die Entfernung zusammenfassend in Abbildung 28 dargestellt. Dabei handelt es sich jeweils um 100 %-Fälle, d. h. Investitionen etc. werden entsprechend der Ursprungskonfiguration angenommen.
Abbildung 28: Maximale Distanzen mit überbetrieblichem Wärmetransport für die Fallstudie

Kapitel 5: Modell zur Berechnung des technischen und wirtschaftlichen Potenzials (Bottom-Up I/II)

Abbildung 29: Wärmegestehungskosten der überbetrieblichen Wärmeintegration die Fallstudie

Abbildung 30: Anteile der eingebrachten Kostenfaktoren an Wärmegestehungskosten
5.3.6. Ergebnisse: Sensitivität und Modellbewertung

Mit dem in diesem Kapitel entwickelten Modell kann das technische und wirtschaftliche Potenzial für die überbetriebliche Wärmeintegration für eine Kombination von Produktionsstandorten berechnet werden. Prinzipiell kann es somit als Grundlage zur Berechnung des technischen und wirtschaftlichen Potenzials für die überbetriebliche Wärmeintegration in Deutschland dienen.

Mit dem entwickelten Modell wurde im Vorangegangenen eine Fallstudie inklusive Validierung und Sensitivitätsrechnungen durchgeführt. Im Folgenden werden diesbezüglich zentrale Ergebnisse zusammengefasst, die sich auf drei Bereiche beziehen.

- Ersten werden zentrale Erkenntnisse aus den Sensitivitätsrechnungen im Hinblick auf den Einfluss zusätzlich eingebrachter Kostenfaktoren in das Modell zusammengefasst.
- Zweitens wird das Modell im Hinblick auf die Eignung zur Bewertung der überbetrieblichen Wärmeintegration anhand zentraler Vor- und Nachteile diskutiert.
- In einem Folgekapitel werden schließlich Ansatzpunkte zur Weiterentwicklung aufgezeigt.

Ergebnisse: Einfluss (zusätzlich) eingebrachter Faktoren

Wärmeübertrager

Zur Variation von Investitionen für Wärmeübertrager können grundsätzliche spezifische Investitionen für die Wärmeübertrager, aber auch entsprechende Wärmeübergangszahlen variiert werden. In der Fallstudie wurden Wärmeübergangszahlen variiert, da dann ebenfalls die Konkurrenz zwischen überbetrieblicher und innerbetrieblicher Wärmeintegration exemplarisch aufgezeigt wird.

In der Fallstudie werden bei niedrigen Wärmeübergangszahlen bei sehr kurzen Entfernungen (< 500m) keine innerbetrieblichen Verbindungen gewählt, da sich die niedrigen Wärmeübergangszahlen auch nachteilig auf die innerbetriebliche Wärmeintegration auswirken. Es werden stattdessen überbetriebliche Verbindungen gewählt, da sich dort die höheren logarithmischen Temperatordifferenzen vorteilhaft auswirken. Bei etwas höheren Entfernungen (> 1 km) werden dann keine überbetrieblichen Verbindungen mehr gewählt.

Rohrleitungen und Wärmeverluste

Arbeitsmaschinen

Die Sensitivitätsanalyse hat ergeben, dass die Einbeziehung von Betriebskosten für Arbeitsmaschinen ebenfalls sehr wichtig ist. Durch Hinzufügen von Investitionen und Betriebskosten für Arbeitsmaschinen reduziert sich die maximale wirtschaftliche Distanz in beiden Fällen zusätzlich um mehrere Kilometer.

Dynamik

Ergebnisse: Diskussion des Modells

Auf Basis der in der Fallstudie gerechneten Sensitivitäten ergeben sich zentrale Vorteile und Nachteile bei der Bewertung der überbetrieblichen Wärmeintegration mit dem entwickelten Modell. Diese werden im Folgenden aufgelistet.

Nachteile:

Vorteile:

- Mit Hilfe des vorgestellten Ansatzes lassen sich relevante Investitionen für überbetriebliche Wärmeübertragernetzwerke wie Wärmeübertrager, Rohrleitungen, Arbeitsmaschinen usw. plausibel adressieren. Auch wenn es sich um keine technische Detailplanung handelt, so lässt sich mit dem Ansatz vergleichsweise schnell das notwendige Investitionsvolumen in Abhängigkeit der zu überbrückenden Entfernung abschätzen.

- Auf Basis der ermittelten Werte können Wärmegestehungskosten für potenzielle Wärmeübertragernetzwerke vergleichsweise zügig errechnet werden. Im Rahmen von Investitionsentscheidungen in betriebliche Infrastruktur stellt dies somit eine wertvolle zusätzliche Information dar.

5.4. Mögliche Modellweiterentwicklungen

Auch bei einer Weiterentwicklung der Methode wäre es jedoch fragwürdig, inwieweit Druckverluste auf Basis fiktiv konstruierter Rohrleitungspläne tatsächlich realitätsnah abgebildet werden können.

6. Modell zur Lokalisierung von Nachbarschaften (Bottom-Up II/II)

Im vorliegenden Kapitel wird ein raumanalytisches Modell zur Lokalisierung aussichtsreicher Nachbarschaften von Produktionsstandorten für die überbetriebliche Wärmeintegration entwickelt und für Deutschland angewendet. Das Kapitel ist dabei wie folgt strukturiert:

Abbildung 31: Modell zur Identifikation aussichtsreicher Nachbarschaften
6.1. Methodenwahl: Raumanalyse

In der regional-ökonometrischen Forschung gibt es weitere methodische Ansätze, in denen die räumliche Abhängigkeit zwischen mehreren (häufig zwei) Wirtschaftszweigen ausgewertet wird. Beispiele sind die Decay- und Bi-Square-Funktion. Bei diesen Ansätzen wird eine räumliche Abhängigkeit zwischen zwei Wirtschaftszweigen festgestellt, wenn die Standorte der Wirtschaftszweige häufiger in räumlicher Nähe (Nachbarschaft) zueinander anzutreffen sind als Standorte anderer Wirtschaftszweige. Hierfür wird das zu analysierende Untersuchungsgebiet in Teilgebiete aufgeteilt und es wird im Prinzip innerhalb dieser

Tabelle 48 listet alle zuvor vorgestellten Methoden nochmal auf und bewertet diese vor dem Hintergrund der Fragestellung qualitativ.

Tabelle 48: Bewertung raumanalytischer Methoden für die Fragestellung.

<table>
<thead>
<tr>
<th>Methode</th>
<th>Kurzbeschreibung</th>
<th>Einschätzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gini-Koeffizient</td>
<td>Messen die räumliche Konzentration von räumlichen Objekten gleicher Art (bspw. Unternehmen desselben Wirtschaftszweigs).</td>
<td>Da Objekte gleicher Kategorie sein müssen, für die Frage nicht geeignet.</td>
</tr>
</tbody>
</table>

Insgesamt erscheint für die übergeordnete Fragestellung eine Data-Mining basierte Methode somit am besten geeignet. Dies hat insbesondere die im Folgenden aufgelisteten Gründe.

- **Kriterien für Muster**: Die Struktur von Data-Mining-Ansätzen erlaubt es Kriterien zur Erkennung von Mustern flexibel zu definieren. Es wäre somit prinzipiell möglich, ein Kriterium speziell für die überbetriebliche Wärmeintegration zu entwickeln und anzuwenden.
6.2. Nachbarschaftssuche mit dem Kollokationsmusterminer

![Abbildung 32: Kollokationsmusterminer – Schritt 1](image-url)
2. Realisierung der potenziellen Kollokationsmuster: In diesem Schritt werden alle Objekte der Klassen des potenziellen Kollokationsmusters identifiziert, die den vorgegebenen maximalen Nachbarschaftsabstand nicht überschreiten (Realisierungen).

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Häufigkeit}(C, A) = \frac{2 \cdot \text{Realisierungen}}{3 \cdot \text{Objekte in Klasse } A} = \frac{2}{3}$</td>
</tr>
<tr>
<td>$\text{Häufigkeit}(C, B) = \frac{2 \cdot \text{Realisierungen}}{2 \cdot \text{Objekte in Klasse } B} = 1$</td>
</tr>
<tr>
<td>$\text{Häufigkeitswert } (C) = \min(\text{Häufigkeit}(C, A); \text{Häufigkeit}(C, B)) = \frac{2}{3}$</td>
</tr>
</tbody>
</table>

Im Rahmen der Fragestellung ist dies ein Nachteil der Methode, da keine Informationen über wärmebezogene Kriterien einbezogen werden und so unter Umständen interessante Muster alleine aufgrund von relativen Häufigkeiten aussortiert werden, wenn der Schwellwert zu hoch angesetzt wird.

Die Anwendung des Kollokationsmusterminers erlaubt somit die Beantwortung der folgenden Fragestellungen im Rahmen der übergeordneten Thematik.

- Welche Kombinationen von Wirtschaftszweigen kommen häufig in Nachbarschaft zueinander vor?
- Wo sind die Fabriken der diesbezüglichen Wirtschaftszweige lokalisiert? Wo liegen diese Nachbarschaften?

6.3. Extraktion der Nachbarschaften für Deutschland

6.3.1. Verwendete Geodaten

Das E-PRTR wird aus den im Folgenden genannten Gründen als aussichtsreiche öffentliche Datenquelle für die übergeordnete Fragestellung angesehen.

- Energieintensive Produktionsstandorte sind prinzipiell aussichtsreiche Kandidaten für die überbetriebliche Wärmeintegration. In der Regel emittieren solche Produktionsstandorte auch erhebliche Schadstoffmengen.
- Das E-PRTR enthält Lageinformationen zu Produktionsstandorten in Form von Längen- und Breitengraden.
- Durch die gegebene Kodierung der Produktionsstandorte mit Wirtschaftszweigklassen können branchenspezifische Informationen auf die Produktionsstandorte angewendet werden.

Das E-PRTR hat jedoch auch Nachteile im Hinblick auf die Fragestellung.

6.3.2. Ermittelte Nachbarschaften

Abbildung 34: Quantile für die Anzahl der Muster

Tabelle 50: Häufige Kollokationsmuster im E-PRTR für Deutschland.

<table>
<thead>
<tr>
<th>Wirtschaftszweig 1</th>
<th>Wirtschaftszweig 1</th>
<th>Realisierungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metallbearbeitung</td>
<td>NE-Metalle, -gießereien</td>
<td>1.005</td>
</tr>
<tr>
<td>Sonst. chemische Industrie</td>
<td>Grundstoffchemie</td>
<td>493</td>
</tr>
<tr>
<td>Metallbearbeitung</td>
<td>Grundstoffchemie</td>
<td>420</td>
</tr>
<tr>
<td>Sonst. Verarbeitendes Gewerbe</td>
<td>Metallbearbeitung</td>
<td>327</td>
</tr>
<tr>
<td>NE-Metalle, -gießereien</td>
<td>Grundstoffchemie</td>
<td>301</td>
</tr>
</tbody>
</table>

6.4. Ergänzung um energiebezogene Aspekte

- Im nächsten Schritt werden daher energiebezogene Informationen zu jeder ermittelten Nachbarschaft zugeordnet. Dies geschieht auf Basis von Informationen, die den Wirtschaftszweigen der Nachbarschaften zugeordnet sind. Dies sind im konkreten Fall die nach Temperaturen differenzierten aggregierten Wärmebedarfe der Wirtschaftszweige. Die ermittelten Nachbarschaften werden somit mit energiebezogenen Informationen synthetisiert (vgl. 6.4.1).
Die vorangegangene Synthese führt zu charakteristischen Prozesswärmeprofilen, auf dessen Basis ein Kriterium zur Auswertung der ermittelten Nachbarschaften definiert wird (vgl. 6.4.2). Abschließend werden die ermittelten Nachbarschaften im Hinblick auf das zuvor definierte Kriterium ausgewertet (vgl. 6.5).

6.4.1. Prozesswärmestruktur

Tabelle 51: Aufteilung der Wirtschaftszweige für die Fallstudie.

<table>
<thead>
<tr>
<th>Wirtschaftszweig</th>
<th>Nr. Nace-2008</th>
<th>Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kokerei</td>
<td>19.10</td>
<td>zusätzlich</td>
</tr>
<tr>
<td>Mineralölverarbeitung</td>
<td>19.20</td>
<td></td>
</tr>
<tr>
<td>Gew. v. Steinen u. Erden</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Ernährung und Tabak</td>
<td>10, 11, 12</td>
<td></td>
</tr>
<tr>
<td>Papiergewerbe</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Grundstoffchemie</td>
<td>20.1</td>
<td></td>
</tr>
<tr>
<td>Sonst. chemische Industrie</td>
<td>20 ohne 20.1</td>
<td>entsprechend</td>
</tr>
<tr>
<td>Gummi- u. Kunststoffware</td>
<td>22</td>
<td>(Rohde et al. 2017)</td>
</tr>
<tr>
<td>Glas u. Keramik</td>
<td>23.1, 23.2, 23.4, 23.31</td>
<td></td>
</tr>
<tr>
<td>Verarb. v. Steine u. Erden</td>
<td>23 ohne 23.1, 23.2, 23.4, 23.31</td>
<td></td>
</tr>
<tr>
<td>Metallerzeugung</td>
<td>24.1</td>
<td></td>
</tr>
<tr>
<td>NE-Metalle und Gießereien</td>
<td>24.4, 24.5</td>
<td></td>
</tr>
<tr>
<td>Metallbearbeitung</td>
<td>24 ohne 24.1, 24.4, 24.5; 25</td>
<td></td>
</tr>
<tr>
<td>Maschinenbau</td>
<td>28 ohne 28.23</td>
<td></td>
</tr>
<tr>
<td>Fahrzeugbau</td>
<td>29, 30</td>
<td></td>
</tr>
<tr>
<td>Sonst. Verarbeitendes Gewerbe</td>
<td>13, 14, 15, 15, 18, 28.23, 26, 27, 31, 32, 33</td>
<td></td>
</tr>
<tr>
<td>Wärme- und Kälteversorgung</td>
<td>35.30</td>
<td>zusätzlich</td>
</tr>
</tbody>
</table>

Die Zuordnung der Prozesswärmeprofile zu den ermittelten Nachbarschaften resultiert in zwei charakteristischen Kombinationen von Prozesswärmeprofilen.

- **V- oder U-Profil**: Bei dieser Kombination von zwei Prozesswärmeprofilen hat ein Produktionsstandort einen relativ hohen Prozesswärmebedarf auf höheren Temperaturen und der andere Standort hat einen Prozesswärmebedarf auf relativ niedrigen Temperaturen. Werden die Prozesswärmeprofile der beiden Standorte übereinander gelegt,

- **L- oder J-Profil:** Bei dieser Kombination von zwei Prozesswärmeprofilen haben beide Produktionsstandorte entweder einen relativ hohen Bedarf auf niedrigen Temperaturniveaus oder beide Standorte haben einen relativ hohen Bedarf auf hohen Temperaturniveaus. Werden beide Profile übereinander gelegt, so bilden die Profile gemeinsam ein „L“ oder ein „J“ und werden daher L- oder J-Profil genannt (vgl. Abbildung 37 und Abbildung 38).

Abbildung 35: Typische V-Form

Abbildung 36: Typische U-Form
In Deutschland ist nur ein einziger dokumentierter Fall der überbetrieblichen Wärmeintegration für eine Nachbarschaft von zwei Betrieben bekannt. Dieser bezieht sich auf die Kombination einer Gießerei mit einem Hersteller von Fertiggerichten (Umweltbundesamt 2011). Legt man die Prozesswärmeprofile der Wirtschaftszweige dieser Nachbarschaft übereinander, so ist zu erkennen, dass diese eine typische V- oder U-Form entsprechend Abbildung 35 oder Abbildung 36 bilden.
6.4.2. Kriteriendefinition

Auf Basis der vorangegangenen Kapitel können nun unterschiedliche Kriterien zur Auswertung der ermittelten Nachbarschaften abgeleitet werden, anhand derer aussichtsreiche Nachbarschaften für die überbetriebliche Wärmeintegration identifiziert werden könnten. Grundsätzlich lassen sich diese wie im Folgenden aufgelistet gruppieren:

- Kriterium auf Basis der Anzahl oder
- Kriterium auf Basis der Prozesswärmeprofile.

Im Folgenden werden die unterschiedlichen Möglichkeiten im Hinblick auf eine Eignung für die Funktion grundsätzlich diskutiert und gegeneinander abgewogen.

Kriterium auf Basis der Anzahl

Kriterium auf Basis von Prozesswärmeprofilen

Insgesamt erscheint ein Kriterium, welches auf Basis von Prozesswärmeprofilen entsprechende U- oder V-Profil identifiziert zweckmäßig für die Suche nach geeigneten Nachbarschaften für die überbetriebliche Wärmeintegration. Dies ist zum einen durch Argumente gestützt, die dafür sprechen, dass ein Vorliegen von U- oder V-Profil ein effektives Kriterium für die Suche nach aussichtsreichen Nachbarschaften zwischen Produktionsstandorten ist. Zum anderen ist dies jedoch auch durch Argumente gestützt, die dagegensprechen, dass die anderen Profile (L/J-Profile) ein effektives Kriterium zum Suchen sein könnten.

Was gegen Nachbarschaften mit L- oder J-Profilen spricht:

- Bei Vorliegen eines L-Profil (vgl. Abbildung 38) ist davon auszugehen, dass beide Standorte relativ hohe Wärmebedarfe bei niedrigen Temperaturen haben. Nichtsdestotrotz liegen auch relativ geringe Wärmebedarfe für Prozesse mit höheren Temperaturen vor. Falls bei diesen Prozessen Abwärme erzeugt wird, ist jedoch davon auszugehen, dass diese zur Senkung der relativ hohen Bedarfe auf niedrigeren Temperaturniveaus eingesetzt wird. Dies ist darin begründet, dass innerbetriebliche Wärmekaskaden vorzuziehen sind (vgl. hierzu auch Kapitel 4.2.3). Da die Wärmebedarfe auf niedrigeren Temperaturniveaus relativ hoch sind, ist es plausibel anzunehmen, dass die erzeugte Abwärme somit vollständig innerbetrieblich verwertet werden könnte.

Was für Nachbarschaften mit U- oder V-Profilen spricht:

Falls die Hochtemperatur-Prozesse Abwärme produzieren würden, würde diese somit zunächst zur Verwertung der innerbetrieblichen Wärmesenken verwertet werden. Dies ist darin begründet, dass davon ausgegangen werden kann, dass innerbetriebliche Wärmesenken priorisiert werden (vgl. dazu auch Kapitel 4.2.3). Da jedoch der Wärmebedarf dieses Standorts bei niedrigen Temperaturen relativ niedrig ist, ist es plausibel anzunehmen, dass an dem Standort auch abzüglich der Versorgung innerbetrieblicher Wärmesenken trotzdem noch Abwärme zur Verfügung stehen könnte. Diese Wärme könnte der Standort dann potenziell an den anderen Standort liefern, da dieser wiederum einen relativ hohen Wärmebedarf bei niedrigen Temperaturen hat.

- Die einzige in Deutschland bekannte umgesetzte Energiewirkungsmaßnahme der überbetrieblichen Wärmeintegration weist ebenfalls ein U- oder V-Profil auf.

Die reinevisuelle Bewertung, ob ein Prozesswärmeprofil eine V/U- oder J/L-Form aufweist kann jedoch subjektiv sein. Für die folgende Analyse wird daher ein Kriterium definiert, anhand dessen eine Einteilung in zwei Profilgruppen erfolgt. Dabei werden die relativen Unterschiede für die sechs Temperaturbereiche (<100 °C, 100 – 200 °C usw.) zwischen den Profilen als Grundlage zur Gruppierung verwendet. Erfüllt eine Kombination von zwei Prozesswärmeprofilen die Bedingung in (6.1), dann wird diese als V/U-Form bezeichnet, sonst als J/L-Form.

\[
\left| \sum_{T_i}^{T_n} \text{Relativer Anteil} \text{ Sektor } 1,T_i - \text{Relativer Anteil} \text{ Sektor } 2,T_i \right| \geq 0,3, \quad (6.1)
\]

für i=1...3 (niedrige Temperaturen) und i=4...6 (hohe Temperaturbereiche).

Bei einer aussichtsreichen Nachbarschaft handelt es sich dann um eine ermittelte Nachbarschaft, die das Kriterium aus 6.1 erfüllt.

6.5. Ergebnisse: aussichtsreiche Nachbarschaften

Die Anzahl der Kollokationsmuster je Profilgruppe ist schließlich in Tabelle 52 für einen Abstand von einem und zehn Kilometern gegeben. Für einen Abstand von zehn Kilometern erfüllen 60 der 123 Kollokationsmuster das Kriterium, auf die wiederum rund 36 % der ermittelten Nachbarschaften (etwa 3.000) zurückzuführen sind. Wird der Abstand auf einen Kilometer reduziert, dann beträgt die Anzahl der ermittelten Nachbarschaften, die das Kriterium erfüllen, etwa 375.

Tabelle 52: Anzahl der Kollokationsmuster und ermittelte Nachbarschaften je Profilkategorie.
Die ermittelten Nachbarschaften sind zur Veranschaulichung auf einer Karte in Abbildung 39 dargestellt. Dabei kennzeichnen grüne Linien ermittelte Nachbarschaften zwischen zwei Standorten, bei denen das Kriterium aus (6.1) erfüllt ist, wohingegen dies bei den roten Linien nicht der Fall ist.

Abbildung 39: Karte zu Realisierungen der Analyse

Welche Produktionsstandorte sollte ich zur Erfassung von industriellen Abwärme- potenzialen (als erstes) kontaktieren?

- In der interaktiven Karte können je Produktionsstandort der jeweilige Industriesektor und das Prozess- wärmeprofil hinterlegt werden. Aussichtsreiche Standorte für die Frage sind in der Regel Standorte mit besonders hohen Prozesstemperaturen und es würde daher Sinn machen, diese Standorte als erstes zu kontaktieren.
Wo befinden sich Agglomeration von Produktionsstandorten mit aussichtsreichen Kriterien für die Umsetzung von Öko-Industrieparks?

- Agglomerationen, bei denen viele Verbindungen grün gekennzeichnet sind, wären interessant für weitere Untersuchungen. Hier könnten bspw. zunächst die Eignung für Wärmeverbünde in Form von zentralen Dampfnetzen geprüft werden.

Ansatzpunkte:

Diverse zu überprüfende Kombinationen (grüne Linien), bspw.:
- Metallerzeugung + Ernährung und Tabak oder
- Metallerzeugung + Sonst. chemische Industrie
 (beide unmittelbar benachbart, etwa 3km).

Abbildung 40: Beispielhafter Kartenausschnitt für Bochum.
6.6. Mögliche Integration in räumliche Entscheidungsunterstützungssysteme

Zur Erstellung eines räumlichen Entscheidungsunterstützungssystems für die Erstellung von Klimaschutzplänen müssten geeignete Daten und Methoden zunächst für viele unterschiedliche Themenbereiche zusammengestellt und ausgearbeitet werden. Im Rahmen dessen wäre auch ein Teilmodul zum Themenspektrum „Abwärmenutzung“ für kommunale Akteure hilfreich. Die in dieser Arbeit vorgestellten Ansätze können zur Entwicklung eines solchen Teilmoduls als Grundlage dienen. Die Fragestellung für ein solches Modul könnte wie folgt lauten:
Wo befindet sich Abwärme innerhalb der Kommune, die gegenwärtig nicht genutzt wird, jedoch einen Nutzen für Industrie und Gesellschaft haben könnte? Wie viel Abwärme fällt diesbezüglich an? Welcher Nutzung sollte die Abwärme zugeführt werden?

In diesem Kontext liefern Aspekte dieser folgenden Ansätze zur Beantwortung:

- **Lokalisierung:** Mit den Ansätzen aus Kapitel 6 lassen sich prinzipiell aussichtsreiche Industriestandorte mit möglicherweise ungenutzter Abwärme lokalisieren.

- **Technologien:**
 - **Überbetriebliche Wärmeintegration:** Mit der Methode aus Kapitel 5 lässt sich eine der verfügbaren Optionen zur Nutzung von industrieller Abwärme wirtschaftlich bewerten.
 - **Weitere Technologien:** Eine alternative Technologie bestünde in der Verstromung von Abwärme. Zur Bewertung kann die Annuitätenmethode angewendet werden.
 - **Alternativen bzw. Technologievergleich:** Hier müssten zusätzliche methodische Konzepte angewendet werden, um die Alternativen gegeneinander abzuwägen. Da die zur Verfügung stehenden Technologien unterschiedliche Vor- und Nachteile haben und somit andersartige Charakteristiken, könnten multikriterielle Ansätze hilfreich sein.
7. Zusammenfassung, Diskussion und Ausblick

In Kapitel 4 wird zunächst ein Modell entwickelt, mit dem das theoretische Energieeinsparpotenzial durch überbetriebliche Wärmeintegration in Deutschland ermittelt (quantifiziert) werden kann. Das Modell basiert auf einem Top-Down-Ansatz. Eine

In der Fallstudie aus Kapitel 5 wird mit dem entwickelten technoökonomischen Modell jedoch gezeigt, dass zur detaillierten Bewertung des technischen und wirtschaftlichen Potenzials eine Vielzahl von Daten notwendig sind, die im konkreten Fall vor Ort erfasst bzw. in Machbarkeitsstudien technisch detailliert

Schließlich wird in Kapitel 6 anhand einer raumanalytischen Analyse die Anzahl der Nachbarschaften zwischen Produktionsstandorten abgeschätzt, für die eine detailliertere technische und wirtschaftliche Untersuchung aussichtsreich erscheint. Für eine Entfernung von maximal zehn Kilometern beträgt die Anzahl dieser Nachbarschaften rund 3.000. Sogar bei einer eher geringen Distanz von einem Kilometer beträgt die Anzahl der aussichtsreichen Nachbarschaften noch 375.

In dieser Arbeit wurde nicht untersucht, unter welchen Randbedingungen Produktionsstandorte die Energieeffizienzoption „überbetriebliche Wärmeintegration“ adaptieren würden. Insbesondere in diesem Feld besteht weiterhin Forschungsbedarf. Mit dieser Frage verknüpft wurde auch nicht untersucht, welche dezidierten politischen Instrumente die Adaption der vorangegangenen Option beschleunigen würden. Hier besteht somit ebenfalls weiterer Forschungsbedarf. Zudem ist aufgefallen, dass für den Bereich der Wärmeintegration kaum Publikationen vorhanden sind, die sich dezidiert mit dem Abweichen von Plan- und Ist-Kosten bei tatsächlich realisierten Projekten beschäftigen. Es wurde lediglich eine wissenschaftliche Publikation aus dem Jahr 1985 gefunden, welche sich mit Investitionsschätzungen für Chemieanlagen beschäftigt und die Thematik somit peripher behandelt. Insbesondere im frühen Projektstadium, also bei niedrigen Planungsgraden werden dort
Schätzungsauigkeiten von +/- 40 % angegeben. Für komplexe Energieeffizienzoptionen, wie bspw. der überbetrieblichen Wärmeintegration, könnten solche Schätzungsauigkeiten eine große Rolle bei der Bereitschaft zur Adaption spielen. Dies wurde bereits in einigen Fachgesprächen, die mit Energiemanagern aus der Praxis durchgeführt worden sind angedeutet. Insbesondere hier besteht somit ebenfalls weiterer Forschungsbedarf.
8. Anhang

Der Anhang ist nach zugehörigen Kapiteln differenziert.

8.1. Zu Kapitel 3: Stand des Wissens

Tabelle 53: Anzahl Artikel und Suchtreffer je Fachzeitschrift

<table>
<thead>
<tr>
<th>Titel der Fachzeitschrift</th>
<th>Suchtreffer</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S2 S3 S4 S5 S6./ S2 S7 S8 S9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applied Energy</td>
<td>34 1 - 1 2</td>
<td>- - -</td>
<td>37</td>
</tr>
<tr>
<td>Applied Thermal Engineering</td>
<td>56 2 - - 7</td>
<td>- - -</td>
<td>58</td>
</tr>
<tr>
<td>Energy</td>
<td>49 3 - - 8</td>
<td>- - -</td>
<td>59</td>
</tr>
<tr>
<td>Energy Conversion and Management</td>
<td>28 - - - 6</td>
<td>- - -</td>
<td>34</td>
</tr>
<tr>
<td>Energy Efficiency</td>
<td>6 - - - -</td>
<td>- - -</td>
<td>6</td>
</tr>
<tr>
<td>Energy Policy</td>
<td>14 - - - 2</td>
<td>- - -</td>
<td>16</td>
</tr>
<tr>
<td>Energy Procedia</td>
<td>20 - - - -</td>
<td>- - -</td>
<td>20</td>
</tr>
<tr>
<td>Heat Recovery Systems and CHP</td>
<td>- - - - 14</td>
<td>- - -</td>
<td>14</td>
</tr>
<tr>
<td>International Journal of Ambient Energy</td>
<td>1 - - - - -</td>
<td>- - -</td>
<td>1</td>
</tr>
<tr>
<td>International Journal of Energy Research</td>
<td>11 - - - 5</td>
<td>- - -</td>
<td>16</td>
</tr>
<tr>
<td>International Journal of Energy Technology and Policy</td>
<td>- - - - -</td>
<td>- - -</td>
<td>-</td>
</tr>
<tr>
<td>International Journal of Low-Carbon Technologies</td>
<td>2 - - - - -</td>
<td>- - -</td>
<td>2</td>
</tr>
<tr>
<td>JOM</td>
<td>2 - - - 1</td>
<td>- - -</td>
<td>3</td>
</tr>
<tr>
<td>Journal of Cleaner Production</td>
<td>18 - - 2 1</td>
<td>- - -</td>
<td>19</td>
</tr>
<tr>
<td>Journal of Heat Recovery Systems</td>
<td>- - - - 20</td>
<td>- - -</td>
<td>20</td>
</tr>
<tr>
<td>Renewable and Sustainable Energy Reviews</td>
<td>10 - - - -</td>
<td>- - -</td>
<td>10</td>
</tr>
<tr>
<td>Sustainable Energy Technologies and Assessments</td>
<td>1 - - - - -</td>
<td>- - -</td>
<td>1</td>
</tr>
<tr>
<td>Summen</td>
<td>252 6 - 3 66</td>
<td>- - -</td>
<td>316</td>
</tr>
</tbody>
</table>

/. kürzt eine Subtraktion ab.
8.2. Zu Kapitel 5: Methodik Wärmeintegration

Zu Wärmeverlusten (verwendete Kennzahlen):
Definitionen verwendeter dimensionsloser Kennzahlen:

\[
Nu = \frac{\alpha \cdot CL}{\lambda}
\]

(8.1)

\[
Re = \frac{u \cdot CL}{v}
\]

(8.2)

\[
Pr = \frac{v}{a} = \frac{v \cdot \rho \cdot c_p}{\lambda}
\]

(8.3)

\[
Gr = 2,5 \cdot Re_{aq}^2
\]

(8.4)

\[Ra = Gr \cdot Pr \]

(8.5)

Korrelationsgleichungen Nusselt-Zahl

\[Nu_{Rohr, innen} = \sqrt[3]{3,66^3 + 0,7^3 + \left(1,615 \cdot \left(Re \cdot Pr \cdot \frac{d}{L}\right)^{1/3} - 0,7\right)} \]

(8.6)

Für die freie (thermische) Konvektion, die zwischen dem äußeren Radius der Isolierhülle und der Umgebungsluft stattfindet, wird ebenfalls eine Korrelationsgleichung entsprechend VDI-Wärmeatlas angenommen. Hierfür wird die Rohrleitung als horizontaler Zylinder angenommen. Der entsprechende Zusammenhang ist in Gleichung (8.7) abgebildet.

\[Nu_{Rohr, außen} = 0,60 + 0,387 \cdot \left[Ra \cdot f_3(Pr)\right]^{1/6}, \]

mit \(f_3(Pr) = \left[1 + \left(\frac{0,559}{Pr}\right)^{9/16}\right]^{-9/16/9} \)

(8.7)

Berechnungsschema \(\alpha_{innen} \) und \(\alpha_{außen} \):

Im Folgenden werden die zuvor eingeführten Kennzahlen verwendet, um die Wärmeübergangszahlen \(\alpha_{innen} \) und \(\alpha_{außen} \) für eine frei und erdverlegte Leitung zu bestimmen. Die Darstellung erfolgt für beide Fälle getrennt in Flussdiagrammen mit jeweiligen Verweisen zu den Modellgrößen. Für die Ermittlung sind die zuvor vorgestellten dimensionslosen Kennzahlen und Korrelationsgleichungen für die Nusselt-Zahl erforderlich.
(8.1) = (8.6), mit
\[\alpha = \alpha_{\text{innen}, ji, ik} \]
\[CL = DN_{ji, ik} \]
\[\lambda = \lambda_{j} \]

(8.6) = \(f \left((8.2), (8.3)\right) \), mit
\[Re = Re_{\text{innen}, ji, ik} \]
\[Pr = Pr_{\text{innen}, ji, ik} \]

(8.2) für Re, mit
\[u = u_m \text{ (s. (5.32))} \]
\[CL = DN_{ji, ik} \]
\[\nu = \nu_{j} \]

(8.3) für Pr, mit
\[c_p = c_{p,j} \]
\[\rho = \rho_{j} \]
\[\nu = \nu_{j} \text{ und } \lambda = \lambda_{j} \]

Anmerkung: \(j \), da sich die Stoffwerte innerhalb des Rohrs auf das Energieangebot der Kombination \(ji, ik \) beziehen.

Tabelle 55: Berechnungsschema \(\alpha_{\text{außen}} \).

(8.1) = (8.6), mit
\[\alpha = \alpha_{\text{außen}, ji, ik} \]
\[CL = f(DN_{ji, ik}) \]
\[\lambda = \lambda_{\text{Luft}, 20^\circ C} \]

(8.6) = \(f \left((8.3), (8.5)\right) \), mit
\[Ra = Ra_{\text{außen}, ji, ik} \]
\[Pr = Pr_{\text{außen}, ji, ik} \]

(8.5) für Ra, mit
\[Pr = Pr_{\text{außen}, ji, ik} \]
\[Gr = Gr_{\text{außen}, ji, ik} \]

(8.3) für Pr, mit
\[c_p = c_{p,\text{Luft}, 20^\circ C} \]
\[\rho = \rho_{\text{Luft}, 20^\circ C} \]
\[\nu = \frac{\text{DynVisk}_{\text{Luft}, 20^\circ C}}{\rho_{\text{Luft}, 20^\circ C}} \]

\[Pr \text{ wie oben.} \]

(8.4) für \(Gr \)
\[[-] \]

\[[-] \]

\[[-] \]

\[Re_{aq} \text{ mit} \]
Stoffwerten
für Luft bei
20 \(^\circ \text{C} \). Für
\[u = u_{\text{Luft}}. \]

Anmerkung: Bspw. für \(u_{\text{Luft}} = 0.4 \text{ m/s in Räumen oder Hallen (vgl. Dr. Franc Sodec 2008).} \)
8.3. Zu Kapitel 5:

8.3.1. Zur Beschichtungsfabrik

Tabelle 56: Prozessströme für die Beschichtungsanlage (aus Grieder 2011).

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>T.ein</th>
<th>T.aus</th>
<th>Massenstrom [kg/s]</th>
<th>cp [kJ/kgK]</th>
<th>Leistung [kW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entfetten Badheizung</td>
<td>55</td>
<td>60</td>
<td>1,860</td>
<td>16,8400</td>
<td>156,6</td>
</tr>
<tr>
<td>EPS-Ofen Kammerheizung</td>
<td>195</td>
<td>200</td>
<td>34,600</td>
<td>1,0000</td>
<td>173,0</td>
</tr>
<tr>
<td>Schlickertrockner Kammerheizung</td>
<td>145</td>
<td>150</td>
<td>31,400</td>
<td>1,0000</td>
<td>157,0</td>
</tr>
<tr>
<td>EPS-Ofen Verbrennungsluft</td>
<td>9</td>
<td>55</td>
<td>0,203</td>
<td>1,0040</td>
<td>9,4</td>
</tr>
<tr>
<td>Schlickertrockner Verbrennungsluft</td>
<td>9</td>
<td>55</td>
<td>0,060</td>
<td>1,0040</td>
<td>2,8</td>
</tr>
<tr>
<td>Haftwassertrockner Kammerheizung (inkl. AWN)</td>
<td>155</td>
<td>160</td>
<td>31,460</td>
<td>1,1000</td>
<td>173,0</td>
</tr>
<tr>
<td>Entfetten Kammerablauft</td>
<td>50</td>
<td>20</td>
<td>2,464</td>
<td>0,9910</td>
<td></td>
</tr>
<tr>
<td>EPS-Ofen Rauchgase</td>
<td>260</td>
<td>20</td>
<td>0,077</td>
<td>1,1040</td>
<td>-20,4</td>
</tr>
<tr>
<td>EPS-Ofen Kammerablauft</td>
<td>200</td>
<td>20</td>
<td>0,385</td>
<td>1,0040</td>
<td>-69,6</td>
</tr>
<tr>
<td>Email-Ofen Brüden</td>
<td>95</td>
<td>20</td>
<td>0,936</td>
<td>1,0040</td>
<td>-70,5</td>
</tr>
<tr>
<td>Schlickertrockner Kammerablauft</td>
<td>150</td>
<td>20</td>
<td>0,229</td>
<td>1,1010</td>
<td>-32,8</td>
</tr>
<tr>
<td>Haftwassertrockner Kammerablauft (inkl. AWN)</td>
<td>160</td>
<td>20</td>
<td>1,169</td>
<td>1,3030</td>
<td>-213,2</td>
</tr>
</tbody>
</table>
Tabelle 57: Summenkurven für die Fallstudien.

Beschichtungsanlage (alleine)

Beschichtungsanlage und Giößerei
Tabelle 58: Kreuztabelle für Beschichtungsanlage (Werte nach (Grieder 2011)).

<table>
<thead>
<tr>
<th>Heiß (links) über</th>
<th>Entfetten (Rauchgase)</th>
<th>EPS-Ofen (Kammerabluft)</th>
<th>Schlickertrockner (Kammerabluft)</th>
<th>EPS-Ofen (Verbranntenluft)</th>
<th>Schlickertrockner (Verbranntenluft)</th>
<th>Haftwassertrockner (Kammerabluft)</th>
<th>Katalysator</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kalt (rechts) in</td>
<td>73,3</td>
<td>13,0</td>
<td>34,9</td>
<td>56,4</td>
<td>2,8</td>
<td>30,0</td>
<td>121,8</td>
<td>850,8</td>
</tr>
<tr>
<td>kW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entfetten (Rauchgase)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>EPS-Ofen (Kammerabluft)</td>
<td>7,4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Email-Ofen (Brüden)</td>
<td>34,7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Wärmeerzeuger</td>
<td>9,0</td>
<td>173,0</td>
<td>157,0</td>
<td>9,4</td>
<td>173,0</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Summe</td>
<td>156,6</td>
<td>173,0</td>
<td>157,0</td>
<td>9,4</td>
<td>2,8</td>
<td>173,0</td>
<td>329,3</td>
<td>850,8</td>
</tr>
</tbody>
</table>
Kreuztabelle für Beschichtungsanlage (Werte für energetische Optimierung)

<table>
<thead>
<tr>
<th>Heiß (links) über Kalt (rechts) in [kW]</th>
<th>Entfetten (Kammerabluft)</th>
<th>EPS-Ofen (Rauchgase)</th>
<th>EPS-Ofen (Kammerabluft)</th>
<th>Schlickertrockner (Kammerabluft)</th>
<th>Haftwassertrockner (Kammerabluft)</th>
<th>Kälteerzeuger</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entfetten (Kammerabluft)</td>
<td>-</td>
<td>2,6</td>
<td>3,0</td>
<td>0,9</td>
<td>1,4</td>
<td>-</td>
<td>3,8</td>
</tr>
<tr>
<td>EPS-Ofen (Rauchgase)</td>
<td></td>
<td>8,8</td>
<td>-</td>
<td>3,9</td>
<td>-</td>
<td>7,7</td>
<td>52,2</td>
</tr>
<tr>
<td>EPS-Ofen (Kammerabluft)</td>
<td></td>
<td>5,8</td>
<td>-</td>
<td>3,9</td>
<td>-</td>
<td></td>
<td>69,6</td>
</tr>
<tr>
<td>Email-Ofen (Brüden)</td>
<td></td>
<td>8,8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>61,7</td>
<td>70,5</td>
</tr>
<tr>
<td>Schlickertrockner (Kammerabluft)</td>
<td></td>
<td>17,6</td>
<td>-</td>
<td>1,9</td>
<td>1,8</td>
<td>11,4</td>
<td>32,8</td>
</tr>
<tr>
<td>Haftwassertrockner (Kammerabluft)</td>
<td></td>
<td>121,9</td>
<td>-</td>
<td>6,1</td>
<td>1,0</td>
<td>-</td>
<td>84,3</td>
</tr>
<tr>
<td>Wärmeerzeuger</td>
<td></td>
<td>-</td>
<td>170,0</td>
<td>152,3</td>
<td>-</td>
<td>161,5</td>
<td>483,8</td>
</tr>
<tr>
<td>Summe</td>
<td>156,6</td>
<td>173,0</td>
<td>157,0</td>
<td>9,4</td>
<td>2,8</td>
<td>173,0</td>
<td>291,7</td>
</tr>
</tbody>
</table>

Tabelle 59: Kreuztabelle für Beschichtungsanlage (Werte für energetische Optimierung)
Tabelle 60: Kreuztabelle für Beschichtungsanlage (Werte für wirtschaftliche Optimierung).

<table>
<thead>
<tr>
<th>Heiß (links) über Kalt (rechts) in [kW]</th>
<th>Entfetten (Kammerabluft)</th>
<th>EPS-Ofen (Rauchgase)</th>
<th>EPS-Ofen (Kammerabluft)</th>
<th>Schlackertrockner (Kammerabluft)</th>
<th>Haftwassertrockner (Kammerabluft)</th>
<th>Wärmeerzeuger</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entfetten (Kammerabluft)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>73,3</td>
</tr>
<tr>
<td>EPS-Ofen (Rauchgase)</td>
<td>7,7</td>
<td>3,4</td>
<td>3,0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6,4</td>
</tr>
<tr>
<td>EPS-Ofen (Kammerabluft)</td>
<td>35,6</td>
<td>-</td>
<td>3,1</td>
<td>1,8</td>
<td>-</td>
<td>-</td>
<td>29,0</td>
</tr>
<tr>
<td>Email-Ofen (Brüden)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>70,5</td>
</tr>
<tr>
<td>Schlackertrockner (Kammerabluft)</td>
<td>14,3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>18,5</td>
</tr>
<tr>
<td>Haftwassertrockner (Kammerabluft)</td>
<td>99,0</td>
<td>-</td>
<td>3,3</td>
<td>1,0</td>
<td>-</td>
<td>-</td>
<td>110,0</td>
</tr>
<tr>
<td>Wärmeerzeuger</td>
<td>-</td>
<td>173,0</td>
<td>153,6</td>
<td>-</td>
<td>173,0</td>
<td>-</td>
<td>499,6</td>
</tr>
<tr>
<td>Summe</td>
<td>156,6</td>
<td>173,0</td>
<td>157,0</td>
<td>9,4</td>
<td>2,8</td>
<td>173,0</td>
<td>307,6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>807,2</td>
</tr>
</tbody>
</table>
8.3.2. Zu Eisengießereien

Eisenguss wird zu großen Teilen mit Kupolöfen hergestellt. Bei Kupolöfen handelt es sich um Schachtenschmelzöfen, die mit Koks befeuert werden. Bezogen auf die in den Ofen eingebrachte Energie liegt die Abwärme im Abgasstrang zwischen etwa 40 % und 60 % (Institut für Gießereitechnik 2008).

Tabelle 61: Geschätztes Abwärme potenzial für Eisengießereien in Deutschland.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einheit</th>
<th>Minimal</th>
<th>Maximal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Koksverbrauch</td>
<td>kgKoks/t</td>
<td>90</td>
<td>135</td>
</tr>
<tr>
<td>Heizwert Kohle/Koks</td>
<td>kWh/kg</td>
<td>8,5</td>
<td>8,5</td>
</tr>
<tr>
<td>Energiebedarf</td>
<td>kWh/t</td>
<td>765</td>
<td>1148</td>
</tr>
<tr>
<td>Energieanteil im Abgas</td>
<td>%</td>
<td>36 %</td>
<td>57 %</td>
</tr>
<tr>
<td>Energiegehalt Abgas</td>
<td>kWh/t</td>
<td>275</td>
<td>654</td>
</tr>
<tr>
<td>jährliche Produktion</td>
<td>Mio. t</td>
<td>2,4</td>
<td>2,4</td>
</tr>
<tr>
<td>Abwärme potenzial (theoretisch)</td>
<td>GWh</td>
<td>649</td>
<td>1541</td>
</tr>
</tbody>
</table>

9. Verzeichnisse

9.1. Tabellenverzeichnis

Tabelle 1: Warum Abwärme in der Industrie entsteht ... 4
Tabelle 2: Fachzeitschriften der Literaturanalyse .. 11
Tabelle 3: Verwendete Suchterm in Scopus .. 12
Tabelle 4: Referenzvergleich zur Zunahme der Artikel für den Suchterm S6 13
Tabelle 5: Merkmale – technische Ebene ... 14
Tabelle 6: Merkmal – Fokus .. 15
Tabelle 7: Merkmalsumsetzung für die Kategorie Fokus in % ... 16
Tabelle 8: Artikel mit Abwärmeoperationen für abgegrenzte Regionen 16
Tabelle 9: Merkmalsverteilung für die Kategorie technische Ebene in % 17
Tabelle 10: Sektoral abgegrenzte Artikel mit Nutzung von Abwärme 17
Tabelle 11: Aufteilung der Wirtschaftszweige für die Schätzung .. 30
Tabelle 12: Abwärmeanteile der Wirtschaftszweige für die Schätzung 34
Tabelle 13: Berechnungssystematik residuale Abwärme (je Wirtschaftszweig) 36
Tabelle 14: Durchgeführte Befragung zur Thematisierung industrielle Abwärme 37
Tabelle 15: Verteilung der Befragten auf die Wirtschaftszweige .. 37
Tabelle 16: Annahmen der eingeschränkten kaskadenartigen Verrechnung 40
Tabelle 17: Wärmebedarf nach kaskadenartiger Verrechnung (in TWh) 42
Tabelle 18: Potenzielle Wärme zur externen Verschiebung (in TWh) ... 42
Tabelle 19: Theoretisches Energieeinsparpotenzial durch innerbetriebliche Wärmeintegration .. 43
Tabelle 20: Theoretisches Energieeinsparpotenzial durch überbetriebliche Wärmeintegration .. 43
Tabelle 21: Theoretisches Energieeinsparpotenzial durch Wärmeintegration insgesamt 43
Tabelle 22: Bewertung der geschätzten Energieeinsparpotenziale für die Wärmeintegration 44
Tabelle 23: Heiße und kalte Temperaturliste für das Beispiel – Werte in °C 55
Tabelle 24: Exemplarische Aufteilung – Energiennachfrage ... 55
Tabelle 25: Exemplarische Aufteilung – Energieangebot .. 55
Tabelle 26: Randbedingungen nach (Gerda et al. 1983) ... 56
Tabelle 27: Kostenfaktoren – energetische Optimierung ... 57
Tabelle 28: Gleichung (5.12) mit grafischer Darstellung ... 58
Tabelle 29: Spezifische Kosten für Wärmeübertrager im Modell ... 60
Tabelle 30: Fälle für die Temperaturüberlappung .. 64
Tabelle 31: Ermittlung des Massenstromes – indirekter Wärmetransport 67
Tabelle 32: Annuität der Investition für Verrohrung ... 69
Tabelle 33: Annuität der Investition für Arbeitsmaschinen ... 71
Tabelle 34: Druckverlustes für Rohre ... 71
Tabelle 35: Kostenfaktor – Betriebskosten Pumpen ... 72
Tabelle 36: Wärmewiderstandsnetzwerk für ein frei verlegtes Rohr ... 74
Tabelle 37: Wärmeverlust für ein erdverlegtes isoliertes Rohr ... 75
Tabelle 38: Wärmewiderstandsnetzwerk für ein erdverlegtes Rohr ... 75
Tabelle 39: Wärmeverlustgleichung für eine erdverlegte Leitung ... 76
Tabelle 40: Berechnung der Wärmeverluste im Modell ... 77
Tabelle 41: Spezifische Kosten für zentrale Erzeuger im Modell.. 78
Tabelle 42: Kostenfaktoren – wirtschaftliche Optimierung... 79
Tabelle 43: Parameter Gießerei. ... 87
Tabelle 44: Validierung der Modellwerte für dTmin = 25 °C. .. 88
Tabelle 45: Kreuztabelle für Beschichtungsanlage (Werte entsprechend Grieder (2011))................. 92
Tabelle 46: Eingangsparameter Sensitivitätsrechnungen... 93
Tabelle 47: k-Werte Bereich nach VDI. ... 98
Tabelle 48: Bewertung raumanalytischer Methoden für die Fragestellung. 110
Tabelle 49: Kollokationsmustermixer – Schritt 3... 112
Tabelle 50: Häufige Kollokationsmuster im E-PRTR für Deutschland.. 115
Tabelle 51: Aufteilung der Wirtschaftszweige für die Fallstudie.. 116
Tabelle 52: Anzahl der Kollokationsmuster und ermittelte Nachbarschaften je Profilkategorie...... 121
Tabelle 53: Anzahl Artikel und Suchtreffer je Fachzeitschrift.. 130
Tabelle 54: Berechnungsschema a_{innen} .. 132
Tabelle 55: Berechnungsschema $a_{außen}$... 133
Tabelle 56: Prozessströme für die Beschichtungsanlage (aus Grieder 2011)...................................... 134
Tabelle 57: Summenkurven für die Fallstudien... 135
Tabelle 58: Kreuztabelle für Beschichtungsanlage (Werte nach (Grieder 2011))............................ 136
Tabelle 59: Kreuztabelle für Beschichtungsanlage (Werte für energetische Optimierung).............. 137
Tabelle 60: Kreuztabelle für Beschichtungsanlage (Werte für wirtschaftliche Optimierung)......... 138
Tabelle 61: Geschätztes Abwärmepotenzial für Eisengießereien in Deutschland............................... 139

9.2. Abbildungsverzeichnis

Abbildung 1: Kapitelstruktur 3
Abbildung 2: Potenziale für die Wärmeintegration 8
Abbildung 3: Konzept der Schätzung von Prozesswärmebedarfen in Rohde et al. (2017) 28
Abbildung 4: Struktur der theoretischen Potenzialschätzung 29
Abbildung 5: Aussagen der Befragten zur Abwärmenutzung in Ihrem Betrieb 37
Abbildung 6: Kaskadenartige Rechnung Grundstoffchemie (oben vor, unten nach der Verrechnung) 38
Abbildung 7: Kaskadenartige Rechnung Metallerzeugung (oben vor, unten nach der Verrechnung) 38
Abbildung 8: Pinch-Temperatur 49
Abbildung 9: Prozesszerlegung in Energienachfragen und Energieangebote 53
Abbildung 10: Beispiel für Bildung von Energienachfragen und Energieangeboten 55
Abbildung 11: Kostenbelegung – energetische Optimierung für das Beispiel 59
Abbildung 12: Geometrische Grundlage zur Schätzung von Kosten für Verrohrung 70
Abbildung 13: Isoliertes Rohr mit Bezeichnung verwendeter Radien 74
Abbildung 14: Beschichtungsanlage – Vorbehandlung 85
Abbildung 15: Beschichtungsanlage – EPS-Verfahren 86
Abbildung 16: Beschichtungsanlage – Enamel-Verfahren 86
Abbildung 17: Anzahl Wärmeüberträger in der Beschichtungsanlage je nach Ansatz 89
Abbildung 18: Variation dTmin für die Beschichtungsanlage – Leistungen 90
Abbildung 19: Variation dTmin für die Beschichtungsanlage – Kosten 90
Abbildung 20: Technisches und wirtschaftliches Potenzial für die exemplarische Nachbarschaft 91

Verzeichnisse 141
Abbildung 21: Zusammensetzung der Wärmeleistung 94
Abbildung 22: Überbetriebliche Wärmeleistung mit Wärmeübertrager- und Rohrleitungskosten 95
Abbildung 23: Überbetriebliche Wärmeleistung 96
Abbildung 24: Überbetriebliche Wärmeleistung 97
Abbildung 25: Einfluss der Dynamik für die Fallstudie 98
Abbildung 26: Überbetriebliche Wärmeeintegration bei Variation der k-Werte (direkte Variante) 99
Abbildung 27: Zusammensetzung der Wärmeleistung bei Variation der k-Werte (direkte Variante) 100
Abbildung 28: Maximale Distanzen mit überbetrieblichem Wärmevertrag für die Fallstudie 101
Abbildung 29: Wärmegestehungskosten der überbetrieblichen Wärmeeintegration die Fallstudie 102
Abbildung 30: Anteile der eingebrachten Kostenfaktoren an Wärmegestehungskosten 102
Abbildung 31: Modell zur Identifikation aussichtsreicher Nachbarschaften 107
Abbildung 32: Kollokationsmustermixer – Schritt 1 111
Abbildung 33: Kollokationsmustermixer – Schritt 2 112
Abbildung 34: Quantile für die Anzahl der Muster 115
Abbildung 35: Typische V-Form 117
Abbildung 36: Typische U-Form 117
Abbildung 37: Typische J-Form 118
Abbildung 38: Typische L-Form 118
Abbildung 39: Karte zu Realisierungen der Analyse 122
Abbildung 40: Beispielhafter Kartenausschnitt für Bochum. 124

9.3. Abkürzungsverzeichnis

Ggf. Gegebenenfalls
S. Seite
u.a. unter anderem
usw. und so weiter
vgl. vergleiche
z.Bsp. zum Beispiel
9.4. Symbole

Wichtige Symbole für Kapitel 4

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_A_{\text{Industrie } i, \text{Temperaturbereich } A}$</td>
<td>Abwärme der Industrie i bezogen auf den Wärmebedarf im Temperaturbereich A</td>
</tr>
<tr>
<td>R_A_{500}</td>
<td>Relativer Abwärmeanteil aus dem Temperaturbereich > 500 °C</td>
</tr>
<tr>
<td>$R_A_{100-500}$</td>
<td>Relativer Abwärmeanteil aus dem Temperaturbereich 100–500 °C</td>
</tr>
<tr>
<td>A_S_{500}</td>
<td>Abwärme aus dem Temperaturbereich > 500 °C</td>
</tr>
<tr>
<td>$A_S_{100-500}$</td>
<td>Abwärme aus dem Temperaturbereich 100–500 °C</td>
</tr>
<tr>
<td>W_B_{500}</td>
<td>Wärmebedarf Temperaturbereich > 500 °C</td>
</tr>
<tr>
<td>$W_B_{100-500}$</td>
<td>Wärmebedarf Temperaturbereich 100–500 °C</td>
</tr>
<tr>
<td>$W_B_{<100}$</td>
<td>Wärmebedarf Temperaturbereich < 100 °C</td>
</tr>
<tr>
<td>$\text{red}{W_B{100-500}}$</td>
<td>reduzierte Bedarfe, bspw. für 100–500 °C usw.</td>
</tr>
</tbody>
</table>

Wichtige Symbole für Kapitel 5

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_i</td>
<td>Wärmebedarf eines Prozesses A_i</td>
</tr>
<tr>
<td>B_j</td>
<td>Wärmeangebot eines Prozesses B_j</td>
</tr>
<tr>
<td>a_{ik}</td>
<td>Energiennachfrage: Wärme, die Prozess i im Temperaturintervall k bis $k-1$ benötigt</td>
</tr>
<tr>
<td>b_{jl}</td>
<td>Energieangebot: Wärme, die Prozess j im Temperaturintervall l bis $l-1$ bietet</td>
</tr>
<tr>
<td>$q_{ik, jl}$</td>
<td>Die Wärmemenge, die von Energieangebot b_{jl} zu Energiennachfrage a_{ik} transportiert wird. Die Lösungen für $q_{ik, jl}$ besagt somit welche Prozesse miteinander verbunden und wie groß die Wärmeübertrager zwischen den Prozessen sind</td>
</tr>
<tr>
<td>$Q_{ij, \text{Schätz}}$</td>
<td>Wärme, die von Prozess B_j an Prozess A_i geliefert werden kann</td>
</tr>
<tr>
<td>$V_{ij, \text{Schätz}}$</td>
<td>Volumenstrom, der zwischen Prozess A und B transportiert werden würde, um Wärme $Q_{ij, \text{Schätz}}$ zu übertragen</td>
</tr>
<tr>
<td>$c_{WT, ik, jl}$</td>
<td>Spezifische Kosten [EUR/W], zum Transport der Wärmeübertrager</td>
</tr>
<tr>
<td>$c_{R, jk, il}$</td>
<td>- Rohrleitungen</td>
</tr>
<tr>
<td>$c_{P/V, ji, ik}$</td>
<td>Wärmemenge - Arbeitsmaschinen</td>
</tr>
<tr>
<td>$c_{WV, jll, ik}$</td>
<td>$q_{ik, jl}$ für - Wärmeerluste</td>
</tr>
<tr>
<td>$C_{ik, jl}$</td>
<td>Kosten [EUR/W], die für den Transport einer Einheit entlang Verbindung $q_{ik, jl}$ angesetzt werden</td>
</tr>
</tbody>
</table>

Verzeichnisse
9.5. Literaturverzeichnis

Ansari, Nastaran; Seifi, Abbas (2013): A system dynamics model for analyzing energy consumption and CO2 emission in Iranian cement industry under various production and export scenarios. In: Energy Policy 58, S. 75–89. DOI: 10.1016/j.enpol.2013.02.042.

Bartelt, Dipl-Geogr Martin; Beck, Jessica; Donner, Dipl-Ing Oliver; Mambro, Dipl-Wirt-Ing Constanze; Michels, Dipl-Ing Armin; Schrader, Dipl-Ing Knut et al. (2013): Perspektiven der
Fernwärme im Ruhrgebiet bis 2050 Endfassung. Hg. v. Büro für Energiewirtschaft und technische Planung GmbH.

Blesl, Markus; Kempe, Stephan; Ohl, Michael; Fahl, Ulrich; König, Andreas; Jenssen, Till; Eltrop, Ludger (2009): Wärmeatlas Baden-Württemberg-Erstellung eines Leitfadens und Umsetzung für Modellregionen.

Dr. Franc Sodec (2008): Auslegungskriterien für thermische Behaglichkeit (technischer Bericht). Unter Mitarbeit von Dr. Franc Sodec. Hg. v. caverion GmbH.

Forschungsdatenzentrum der Statistischen Ämter der Länder: AFiD-Panel Industrieeunternehmen.

Hackl, Roman; Andersson, Eva; Harvey, Simon (2011): Targeting for energy efficiency and improved energy collaboration between different companies using total site analysis (TSA). In: Energy 36 (8), S. 4609–4615. DOI: 10.1016/j.energy.2011.03.023.

Hirzel, Simon; Sontag, Benjamin; Rohde, Clemens (2013): Industrielle Abwärmenutzung. Kurzstudie. Karlsruhe: Fraunhofer ISI.

Geodätisches Institut Karlsruhe (GIK) und am Fraunhofer Institut für System- und Innovationsforschung (ISI) Betreuer: Dr.-Ing. Norbert Rösch & Ali Aydemir.

Roman Hackl; Eva Andersson; Simon Harvey (2011): Targeting for energy efficiency and improved energy collaboration between different companies using total site analysis (TSA). In: Energy 36 (8), S. 4609–4615. DOI: 10.1016/j.energy.2011.03.023.

Shen, Weiguo; Cao, Liu; Li, Qiu; Zhang, Wensheng; Wang, Guiming; Li, Chaochao (2015): Quantifying CO2 emissions from China’s cement industry. In: Renewable and Sustainable Energy Reviews 50, S. 1004–1012. DOI: 10.1016/j.rser.2015.05.031.

9.6. Danksagung

- Professor Schebek, für die Übernahme der Betreuung dieser Arbeit und für hilfreiche Ratschläge zur Strukturierung dieser Arbeit.
- Dr.-Ing. Clemens Rohde, für die Übernahme des Korreferats, des Mentorings und für stets konstruktives Feedback zur Ausgestaltung dieser Arbeit.
- Professor Linke, für die Übernahme des Korreferats und Hinweise zur Raumanalyse.
- Den ehemaligen Mitgliedern der ruhmreichen „Badmintonrunde“: Lisa Nabitz und Martin Pudlik.
- Meinen ehemaligen wissenschaftlichen Hilfskräften Simon Möhren und Dorothea Ko, für Ihre tatkräftige Unterstützung während Ihrer Zeit am Fraunhofer ISI.
- Kerstin Kopf für das Gegenlesen und Auffinden zahlreicher Kommafehler in der Entwurfsversion dieser Arbeit.
- Meinen Eltern und drei Geschwistern, die mir aus dem fernen Ruhrgebiet mentale Unterstützung gegeben haben.