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Abstract

The computation of protein sequence alignments is one of the most fundamental tasks in
computational biology. Pairwise sequence alignments (PSA) form the basis for the detection
of homologous protein sequences. Multiple sequence alignments (MSA) can provide insights
into structural and functional relationships across a set of proteins. In the alignment process,
evolutionary, functionally, or structurally related regions between the sequences are identified
and aligned depending on a particular scoring model. Evolutionary substitution events are
usually modeled by substitution matrices, while insertion and deletion events are modeled
by specific gap penalties.

The quality of sequence alignments depends heavily on the chosen scoring model, the
alignment algorithm, and the sequence data itself. The selection of the best parameters
for a given alignment task is, however, non-trivial. Thus many researchers regularly use
potentially suboptimal default parameters. This also includes biased and dated substitution
matrices. In addition, the construction of MSAs is an NP-complete task and as such the
optimal alignment is unknown, even for a fixed parameter set. MSA algorithms thus rely on
heuristics to approximate the optimal MSA resulting in alignments of suboptimal quality
which often require manual refinement. Assessing the quality of MSAs is also problematic
since most established quality measures are limited in the detection of bad alignment regions.

In this thesis, we present several approaches and concepts to improve the accuracy of
sequence alignments. In particular, this includes two novel substitution models to enable
existing methods to produce better alignments as well as approaches to enable experts and
non-experts to assess the quality of the computed MSAs and to effectively refine them to
improve their accuracy.

We present the novel CorBLOSUM substitution model that fixes a substantial programming
error in the original BLOSUM code. This error negatively affects the homologous sequence
search performance of the original BLOSUM matrices as well as their revised RBLOSUM
variants. Our exhaustive benchmark analysis based on 51 different ASTRAL subsets shows
that CorBLOSUM matrices usually detect more true homologs when compared with their
incorrect BLOSUM and RBLOSUM counterparts. For this reason, using CorBLOSUM matrices
instead of BLOSUM can substantially improve the results of homologous sequence search.

Furthermore, we propose the novel PFASUM substitution model that is derived from Pfam
seed alignments using our novel PFASUM algorithm. Unlike conventional substitution
models, our PFASUM matrices are thus based on manually curated expert ground truth
data that reflects the currently known sequence space. Additionally, our PFASUM algorithm
incorporates several mechanism to avoid oversampling while handling ambiguous amino
acids in a reasonable way. As shown by our thorough performance evaluations, these features
enable PFASUM matrices to significantly outperform widely used conventional matrices in
homologous sequence search. Additionally, using PFASUM matrices for the construction of
MSAs also results in more accurate MSAs in most cases.
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Beside the aforementioned substitution models, we present a novel visual analysis and
comparison approach for protein MSAs. It allows to detect reliably aligned and misaligned
regions in protein MSAs without much effort. This is achieved by using an automatic
comparison of alternative MSAs of the same sequence set and the visualization of consistently
aligned regions and uncertain areas in the MSAs. Our evaluation shows that our system
allows to successfully assess the accuracy of MSAs and to effectively determine uncertain
regions for further refinement. Additionally, it can be used to visually assess the impact of
different alignment algorithms and parameterizations on the resulting alignments.

In order to outsource the cumbersome task of manual MSA refinement, we present our
scientific discovery game Bionigma. It abstracts the alignment problem in the form of a
puzzle game. In these puzzles, the amino acids in the alignment are represented by different
game tokens. Like one would align beads of identical color in an abacus, the players must
align similar tokens to improve their score. Through this, the players successively refine the
real MSA in a playful manner. Several user studies show that Bionigma is fun to play and
delivers a true game experience to the players. Additionally, our results demonstrate that
casual players can successfully refine protein MSAs. In particular, they can even produce
more accurate than automatic methods.

In summary, the here presented approaches and concepts can help to significantly improve
the accuracy of protein sequence alignments. Notably, our methods enable biologists without
profound knowledge in the field of sequence alignments to generate better results without
much effort.
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Zusammenfassung

Die Konstruktion von Proteinsequenzalignments ist eine der fundamentalsten Aufgaben in
der Bioinformatik. Paarweise Sequenzalignments (PSA) stellen beispielsweise die Basis für
die Detektion homologer Proteinsequenzen. Multiple Sequenzalignments (MSA) erlauben es,
Erkenntnisse über strukturelle und funktionale Zusammenhänge zwischen mehreren Protein
zu gewinnen. In Abhängigkeit des gewählten Bewertungsmodells werden in einem Sequen-
zalignment entweder evolutionär, funktional oder strukturell verwandte Sequenzsegmente
identifiziert und zueinander angeordnet. Dabei werden evolutionäre Substitutionsereig-
nisse normalerweise durch sogenannte Substitutionsmatrizen modelliert. Insertions- und
Deletionsereignisse werden hingegen durch Lücken im Alignment repräsentiert, die mit
Strafpunkten bewertet werden.

Die Qualität eines Sequenzalignments hängt maßgeblich vom gewählten Bewertungsschema
und Alignmentalgorithmus ab. Zusätzlich haben die Sequenzdaten selbst einen gewissen
Einfluss auf die Qualität des Alignments. Da die Selektion dieser Parameter ein schwieriges
Problem darstellt, verwenden viele Benutzer suboptimale Standardparameter, wie zum Bei-
spiel ältere oder nachweislich durch Fehler beeinflusste Substitutionsmatrizen. Außerdem
stellt die Berechnung von optimalen multiplen Sequenzalignments ein NP-vollständiges
Optimierungsproblem dar. Dadurch ist die optimale Alignmentlösung selbst für ein fix
gewähltes Parameterset unbekannt. Aus diesem Grund verwenden die meisten Alignmen-
talgorithmen Heuristiken um das optimale Alignment zu approximieren. Dies resultiert
allerdings sehr häufig in suboptimalen Alignments, die manuell weiter verfeinert werden
müssen. Leider ist auch die Qualitätsanalyse von MSAs nur sehr eingeschränkt möglich,
da existierende Qualitätsmaße tatsächlich schlechte Alignmentregionen nur unzureichend
detektieren können.

In dieser Arbeit präsentieren wir daher verschiedene Ansätze, um die Genauigkeit und
Qualität von Protein MSAs zu verbessern. Hierfür stellen wir zwei neue Substitutionsmodelle
vor, durch deren Verwendung bestehende Alignmentverfahren in der Lage sind, bessere
Ergebnisse zu liefern. Zusätzlich stellen wir weitere Verfahren und Ansätze vor, um Experten
als auch Nicht-Experten eine bessere Qualitätsanalyse als auch eine effektivere Möglichkeit
zur Verfeinerung von MSAs zu bieten.

Hierzu stellen wir das neuartige CorBLOSUM Substitutionsmodell vor. Dieses Modell korri-
giert einen Programmierfehler im originalen BLOSUM Programmcode, der sich negativ auf
die Fähigkeiten zur homologen Sequenzsuche der BLOSUM als auch der RBLOSUM Matrizen
auswirkt. Unsere Ergebnisse basierend auf einer umfassenden Performanzuntersuchung
unter der Verwendung von 51 verschiedenen ASTRAL Datenbanken zeigen, dass CorBLO-
SUM Matrizen in der Regel mehr korrekte homologe Sequenzen detektieren können als
die getesteten BLOSUM und RBLOSUM Matrizen. Aus diesem Grund können CorBLOSUM
Matrizen substantiell dazu beitragen, bessere Ergebnisse in der homologen Sequenzsuche
zu erzielen.
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Darüber hinaus präsentieren wir in dieser Arbeit die neuartigen PFASUM Substitutionsma-
trizen. Diese Matrizen werden auf Basis von Pfam seed alignments unter Verwendung eines
neuartigen Algorithmus erzeugt. Im Gegensatz zu anderen Substitutionsmodellen basieren
unsere PFASUM Substitutionsmatrizen somit auf manuell von Experten optimierten Daten,
die den aktuell bekannten Proteinsequenzraum abbilden. Außerdem verwendet der PFASUM
Algorithmus verschiedene Techniken, um Oversampling zu vermeiden und uneindeutige
Aminosäuresymbole in den Alignments geeignet zu verarbeiten. Diese Eigenschaften erlau-
ben es unseren PFASUM Matrizen, konventionelle Substitutionsmodelle in der Suche nach
homologen Sequenzen zu übertreffen, wie unsere Studie belegt. Außerdem kann durch die
Verwendung unserer PFASUM Matrizen zur Konstruktion von MSAs in den meisten Fällen
eine höhere MSA Genauigkeit erzielt werden.

Weiterhin stellen wir einen neuartigen Ansatz zur visuellen Analyse und zum Vergleich von
Protein MSAs vor. Mit diesem Ansatz ist es möglich, zuverlässige und falsch angeordnete
Regionen in MSAs ohne großen Aufwand zu detektieren. Unser Verfahren nutzt hierzu
automatische Vergleichsmaße und verschiedene Visualisierungen, um konsistent angeord-
nete und unsichere Alignmentregionen hervorzuheben. Unsere Ergebnisse zeigen, dass
mit unserem Ansatz die Genauigkeit von MSAs erfolgreich bestimmt werden kann. Außer-
dem können hierdurch verbesserungswürdige Regionen in den Alignments zur weiteren
Optimierung detektiert werden. Unser Ansatz erlaubt es zusätzlich, den Einfluss von ver-
schiedenen Alignmentalgorithmen und Parametrisierungen auf die Struktur der Alignments
zu untersuchen.

Um die aufwendige Aufgabe der manuellen Verfeinerung von MSAs auszulagern, stellen wir
außerdem einen Computerspielansatz vor. Unser wissenschaftliches Erkundungsspiel Bio-
nigma abstrahiert das Alignmentproblem in Form eines Puzzles. Die Aminosäuren in einem
Alignment werden in diesen Puzzlen als Spielsteine repräsentiert. Durch die Anordnung von
ähnlichen Spielsteinen, ähnlich dem Anordnen von bunten Perlen in einem Abakus, können
die Spieler ihre Punktzahl erhöhen. Hierdurch wird auch das echte Alignment sukzessive
verfeinert. Mehrere Benutzerstudien zeigen, dass Bionigma Spaß macht und seinen Spielern
eine echte Spielerfahrung bietet. Außerdem zeigen unsere Ergebnisse, das Gelegenheitsspie-
ler erfolgreich MSAs verfeinern und auch unter Umständen MSA Programme übertreffen
können.

Zusammenfassend lässt sich sagen, dass die hier vorgestellten Verfahren signifikant zur
Verbesserung der Genauigkeit von MSAs beitragen können. Durch unsere Ansätze können
Biologen mit weniger profunden Kenntnissen auf dem Gebiet der Sequenzalignments bessere
Ergebnisse ohne großen Aufwand erzielen.
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Chapter 1
Introduction

1.1 Biological sequence data
Deoxyribonucleic acid (DNA) and protein sequences are essential parts of all living organisms.
According to Mount [2004, pp. 5–6], DNA sequences are double-stranded, helical molecules
which are composed of a sequence of four different types of nucleotides, i.e., adenine (A),
guanine (G), cytosine (C), and thymine (T). They form the building blocks of an organism’s
genome, i.e., its entire genetic material (the genes) are stored in the chromosomes. Genes
are functional regions within the DNA that encode “building plans” for the construction of
proteins, ribonucleic acid molecules (RNA), and other sequences.

Protein sequences are polypeptides composed of long chains of amino acids [Mount 2004,
p. 6]. They are responsible for a vast number of essential functions within the organism.
For instance, the well-known protein hemoglobin fulfills the function of oxygen and carbon
dioxide transport in human blood [Lesk 2010, p. 76].

The construction process of proteins within living cells using the build plans provided by
protein-coding genes is called protein synthesis [Lesk 2017, p. 7]. First, the DNA is transcribed
into messenger RNA molecules (mRNA). Afterwards, these molecules travel to the ribosome
where they are used as a template for the construction of a protein strand. Each triplet of
nucleotides in an mRNA sequence (so-called codons) is translated into a particular amino
acid in the protein. The type of an amino acid, usually denoted as an one letter code, is
defined by the genetic code represented by the codon (Table 1.1).

In most organisms, the codons encode twenty different types of amino acids which are
denoted as standard amino acids or canonic amino acids (Table 1.1). However, certain
organisms also produce additional amino acids such as selenocysteine (U) and pyrrolysine
(O) (Table 1.1). As described by Lesk [2010, p. 371], these non-standard amino acids are
synthesized by reinterpreting stop codons.

As outlined above, proteins (or peptides) fulfill a vast amount of functions within the
organisms. According to Lesk [2010, pp. 2, 68–80], this includes, e.g., controlling DNA
replication, processing stimuli responses, enzyme catalysis, and transporting different kinds
of molecules. There are also structural proteins such as the keratins found in hair and nails
of mammals, antibody proteins that repel invading pathogens, and transducer proteins that
convert chemical to mechanical energy. The function of a particular protein is determined
by its folding in three-dimensional space which in turn is defined by the amino-acid residues
in the protein sequence, their order and biochemical properties.

According to the IUPAC Compendium of Chemical Terminology [McNaught and Wilkinson
1997], an “amino-acid residue” refers to what remains of each amino acid in a peptide when
the elements of water are removed. In the context of protein sequences, this term is usually
abbreviated with “residue” and denotes a specific amino acid inside the protein.
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1.2 Sequence analysis

Amino acid Three letter code One letter code Codons

Alanine Ala A GCU, GCC, GCA, GCG
Arginine Arg R CGU, CGC, CGA, CGG, AGA, AGG
Asparagine Asn N AAU, AAC
Aspartic acid Asp D GAU, GAC
Cysteine Cys C UGU, UGC
Glutamic acid Glu E GAA, GAG
Glutamine Gln Q CAA, CAG
Glycine Gly G GGU, GGC, GGA, GGG
Histidine His H CAU, CAC
Isoleucine Ile I AUU, AUC, AUA
Leucine Leu L CUU, CUC, CUA, CUG, UUA, UUG
Lysine Lys K AAA, AAG
Methionine Met M AUG
Phenylalanine Phe F UUU, UUC
Proline Pro P CCU, CCC, CCA, CCG
Serine Ser S AGU, AGC, UCU, UCC, UCA, UCG
Threonine Thr T ACU, ACC, ACA, ACG
Tryptophan Trp W UGG
Tyrosine Tyr Y UAU, UAC
Valine Val V GUU, GUC, GUA, GUG

Selenocysteine Sec U UCA
Pyrrolysine Pyl O UAG

Table 1.1: Table of standard and non-standard amino acids and their corresponding one
letter codes, three letter codes, and their codons.

1.2 Sequence analysis

Since the DNA of an individual organism is unique, the amino acid composition of specific
protein sequences obtained from different organisms usually differs to some extent. The
detection and analysis of these differences as well as the similarities between a set of
protein sequences can reveal precious information that is useful for several important
biological tasks and applications. It allows, e.g., to identify active sites or core regions in the
proteins (domains), to gather information about the evolutionary process (point mutations
and conserved regions), or to conclude on similar structure and function (3D structure
prediction). The obtained insights form the basis for further crucial applications such as
the development of new drugs for medical treatment and the inference of evolutionary
relationships among different species (phylogeny). Differences and similarities between a
set of sequences are usually detected and examined by so-called sequence analysis methods.
This includes in particular pairwise sequence alignments (PSA), multiple sequence alignments
(MSA), and homologous sequence search.
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5. 10. 15. 20. 25. 30.
H2LZT3_ORYLA/288-321 SSASSSTGSTASNSVAGSAANISRAHSDGNLS-SA
F199X_DANRE/281-310 SSTSSSTASTGSN----SSTNISRAHSDGNLA-TA
W5NC60_LEPOC/287-318 STASSSNGSVGSSC---SAANMSRAHSDSSLSASA
F6W884_MONDO/289-322 SSASSTGSSVGNSA-SNSSANMSRAHSDSNLSTSA

↑↑ ↑↑↑ ︸ ︷︷ ︸

Substitutions Conserved region

Figure 1.1: Exemplary (multiple) sequence alignment of four protein segments obtained
from the Pfam seed alignment of family PF15814 [Finn et al. 2016]. Different amino acid
types are depicted by differently colored boxes and their one letter code representation.
Single or consecutive dash symbols represent gaps referring to evolutionary insertion or
deletion events. Columns containing mismatching amino acid types (e.g., those marked
with arrows) indicate substitution events, while columns with similar or identical amino
acid types reflect evolutionary stable regions (marker on the right hand side).

Sequence alignments

In a sequence alignment, either evolutionary, functionally, or structurally related segments
(homologous regions) between a set of protein sequences are aligned by inserting gaps
of different length into the sequences. This is similar to the process of aligning identically
colored beads in an abacus [Chatzou et al. 2016]. Sequence alignments are typically sepa-
rated into two different classes, pairwise sequence alignments (PSA) containing only two
sequences and multiple sequence alignments (MSA) aligning more than two sequences. Both
classes have different application purposes and are described later in this section. Notably,
in the context of this thesis we refer to alignments as protein sequence alignments based on
evolutionary relationships.

Figure 1.1 shows an exemplary alignment of four protein sequences with column numbers
shown at the top. Each row in the alignment represents a single sequence. The corresponding
names and sequence numbers are shown on the left hand side. Individual amino acid types
within the sequences are depicted by differently colored boxes and labeled with their
corresponding one letter codes. Gaps introduced to form the alignment are highlighted by
consecutive dash symbols on white background.

Evolutionary events and scoring models

Aligned amino acids and gaps in a sequence alignment indicate different evolutionary events
(Section 2.1). Columns containing amino acids of identical type imply evolutionary stable
or conserved regions (e.g., columns 23 to 28 in Figure 1.1). In contrast, columns containing
mismatching amino acids indicate evolutionary substitution events caused by point mutations
in the DNA (e.g., marked columns on the left hand side of Figure 1.1). The mismatching
threonine (T) residue in the second column, e.g., either indicates a substitution of serine
(S) with threonine (T) in sequence W5NC60_LEPOC/287-318 or the inverse substitution of
threonine (T) with serine (S) in the other three sequences. The exact “direction” of this
substitution cannot be determined from the alignment alone.
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1.2 Sequence analysis

Consecutive gap symbols in the alignment indicate evolutionary insertion or deletions
events, so-called indels. An insertion event represents the effect that a chain of amino acids
is inserted into a particular sequence during evolution. In contrast, a deletion event denotes
the opposite effect that a particular chain of amino acids was removed from a sequence
during the evolutionary process. Which kind of indel event a particular gap represents,
often cannot be directly determined from the alignment. A single amino acid in a column
otherwise exclusively containing gap symbols, e.g., is likely to be caused by an insertion
event. Distinguishing insertion and deletion events in a column containing the same number
of gaps and amino acids is, however, not possible.

Formally, the construction of a sequence alignment corresponds to an optimization problem
given a particular objective function that defines which sequence segments are related and
thus should be aligned or not. For example, the alignment process is often modeled as the
process of maximizing the residue similarity within the columns according to a specific
similarity measure while simultaneously minimizing the number of gaps.

This is typically achieved by applying penalties for the introduction of gaps and rating
pairs of aligned amino acids by a particular similarity matrix (Section 2.1.2). In the case
of protein alignments, so-called substitution matrices such as PAM [Dayhoff et al. 1978],
(R/Cor)BLOSUM [Henikoff and Henikoff 1992a, Styczynski et al. 2008, Hess et al. 2016a],
VTML [Müller and Vingron 2000, Müller et al. 2002], or PFASUM [Keul et al. 2017] are
used to rate pairs of aligned amino acids. These matrices represent the relative mutation
rates between two amino acid types αi and α j in the form of (rounded) log-odds scores.
In Chapter 4, we thoroughly describe and discuss different substitution matrices and their
application purposes in detail.

Pairwise sequence alignments

Pairwise sequence alignments under a particular scoring model can be computed either
locally or globally (Section 2.2). Local PSAs only align specific segments of two proteins
that are strongly similar, while global PSAs represent full end-to-end alignments of the
sequences. While the former enables the identification of similar regions in otherwise
dissimilar sequences, the latter allows to compare two sequences and to judge their similarity,
e.g., by counting the number of aligned amino acids of identical type. The PSA shown in
Figure 1.2, e.g., reveals 20 pairs of identical amino acids between the two sequences (blue).
Since the sequence shown at the top has a length of 34 amino acids, its similarity to the
shorter sequence at the bottom corresponds to 20/34≈ 59%.

5. 10. 15. 20. 25. 30.
A1YQX2_VOLCA/1-34 MSMAVSFAARVAGARPAVRAARPSARTRTVSVNA
A8IV40_CHLRE/1-32 MAMAMTFAARV-GAKPAVRGARPASR---MSCMA

Figure 1.2: Pairwise alignment of the sequence segments A1YQX2_VOLCA/1-34 and
A8IV40_CHLRE/1-32 obtained from the Pfam seed alignment of family PF11591 [Finn et al.
2016]. Pairs of identical amino acids are highlighted in blue.
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PSAs form the basis for several applications in computational biology such as homologous
sequence search, i.e., the detection of evolutionary related protein sequences (homologs)
[Mount 2004, p. 71]. For instance, homology search tools (BLAST [Altschul et al. 1990],
PSI-BLAST [Altschul et al. 1997] and FASTA [Pearson 1991]) usually identify homologs by
comparing a query sequence with the sequences in a large database based on pairwise
sequence alignments. Searching for homologs is one of the most common tasks in computati-
onal biology, e.g., when analyzing newly determined sequences [Pearson 2013]: Whenever a
new protein is discovered, identifying homologs may allow to transfer valuable details from
these homologs to the newly discovered protein such as structural and functional properties.
More detailed information about homologous sequence search and corresponding programs
are provided in Section 2.3.

Multiple sequence alignments

While the analysis of protein sequences with PSAs allows to transfer information about a
single sequence to another, the comparison of more than two sequences by so-called multiple
sequence alignments (MSA) (Figure 1.1) can yield additional and potentially more profound
information about a set of proteins (Section 2.4). For this reason, MSAs are the basis for
various biological applications and research areas. According to Chatzou et al. [2016],
this includes, e.g., domain analysis, phylogenetic reconstruction, and motif finding. Other
applications are the analysis of co-evolutionary effects and the detection of key functional
residues. For example, if a newly determined protein is associated with a specific disease,
multiple sequence alignment of this protein and homologous sequences may reveal similar
regions that are known to be responsible for the proper functioning of the protein. This
information can then be used to develop drugs affecting these key functional residues in
order to interfere with the protein’s function.

Analogous to pairwise alignments, MSAs align evolutionary, functionally, or structurally
related regions between sequences by introducing gaps (Figure 1.1). The computation
of an optimal global MSA, however, necessitates the simultaneous consideration of the
relationships between multiple sequences which is way more complex than only aligning
two sequences. In fact, the construction of an MSA has been proven to be an NP-complete
optimization problem [Wang and Jiang 1994, Just 2001, Elias 2006]. For this reason, MSA
algorithms typically rely on some kind of heuristic in order to approximate the optimal MSA
under a given scoring model. We provide a detailed description of different MSA construction
methodologies and an overview of a broad range of MSA programs in Section 2.4.

1.3 Problem statement

As outlined in the previous section, pairwise and multiple sequence alignments form the
basis for a vast amount of important tasks such homologous sequence search, phylogeny
and drug design. Thus, the success of these applications and the reliability of their results
strongly depends on the quality of the generated alignments. If a homologous sequence
search program computes incorrect pairwise alignments, e.g., the resulting list of homologs
probably contains a large number of false positives. This may result in misclassified protein
families which in turn results in inaccurate phylogenetic trees and so on.
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1.3 Problem statement

In general, the quality of protein sequence alignments depends on three main factors: the
scoring model, the alignment algorithm, and the sequence data. These main factors are
discussed in more detail in the following paragraphs.

Impact of the evolutionary scoring model

An evolutionary scoring model for the construction of sequence alignments usually involves
at least a particular substitution matrix for modeling evolutionary substitution events and a
specific gap penalty model for encoding evolutionary insertion and deletion events. Someti-
mes further criteria are considered such as the physico-chemical properties of the amino
acids [Katoh et al. 2002] or additional secondary structure information [Wright 2015].

The selection of the “best” scoring model for a particular alignment task is generally a
non-trivial problem [Giribet and Wheeler 1999, Reese and Pearson 2002, Price et al. 2005,
Agrawal and Huang 2009, Hess et al. 2014a]. For this reason, commonly used default scoring
models are often employed for sequence alignments which are usually quite dated and
may be suboptimal for a given alignment task. Commonly used substitution matrices are
typically derived by counting amino acid pairs in automatically aligned sequence datasets.
While this method itself provides a plausible way to infer substitution events, it obviously
requires correctly aligned datasets to produce reliable results. This is, however, a chicken-
and-egg problem since aligning a sequence dataset for inferring substitution events in turn
also requires a scoring model. A possible solution to break this loop is the creation and
usage of manually aligned sequence datasets. However, this requires domain specific expert
knowledge and is a very time consuming process.

In addition, widely used substitution matrices such as the popular BLOSUM [Henikoff and
Henikoff 1992a] or PAM matrices [Dayhoff et al. 1978] are derived from dated and quite
small datasets (Chapter 4). As shown by previous studies (e.g., Price et al. [2005]) as well
as our own evaluations presented in Chapter 4, this may limit their capabilities for the
alignment of sequences when considering that the known sequence space available today
provides a much larger basis for the construction of substitution matrices.

Besides the substitution matrix, the chosen gap penalties have another huge impact on
the resulting alignments. If the penalty values are too high, the number of gaps is strongly
limited resulting in an over-alignment. On the other hand, low penalties may introduce too
many gaps which results in an under-alignment. In general, the heights of the gap penalties
should depend on the chosen substitution matrix.

Impact of the alignment algorithm

The alignment algorithm chosen for a particular task has a large impact on the resulting
alignment. Optimal pairwise alignment of two sequences under a given scoring model can
be computed using algorithms such as Needleman-Wunsch [Needleman and Wunsch 1970]
or Smith-Waterman [Smith and Waterman 1981]. In contrast, the computation of MSAs
under the typically used sum-of-pairs scoring scheme (Section 2.4.1) is an NP-complete
optimization problem [Wang and Jiang 1994, Just 2001, Elias 2006].

MSA algorithms such as MUSCLE [Edgar 2004b] or MAFFT [Katoh et al. 2002] therefore rely
on heuristics to approximate the optimal MSA. This often leads to local misalignments
resulting in MSAs of suboptimal quality which requires cumbersome manual refinement.

6



Chapter 1: Introduction

In addition, the assessment of an MSA’s quality is non-trivial since the optimal MSA for a
particular scoring model is unknown. Hence, quality measures are required to judge the
local and global quality of an alignment. While state-of-the-art quality measures may reveal
probably correctly aligned regions, they cannot necessarily make reliable assertions about
bad alignment regions (Chapter 5). Another problem in this context is the lack of visual tools
for the quality assessment and comparison of MSAs. For these reasons, the cumbersome
process of manually refining MSAs usually requires expert domain knowledge.

Impact of the underlying sequence data

Besides the aforementioned problems, the sequence data itself has a strong impact on the
alignment process. The alignment of very similar sequences is usually much easier than
the computation of alignments only containing distantly related sequences. An explanation
for this behavior can be derived from the diagonal values of most substitution matrices.
Typically, the diagonal entries describing mutation rates between identical amino acid types
are much larger than the off-diagonal entries. In other words, the alignment of identical
amino acid pairs is usually favored over substitution events. Since similar sequences are
typically closely related and thus contain large numbers of conserved amino acid regions,
their alignment contains fewer “questionable” decisions induced by similar SP scores. The
alignment of distantly related sequences therefore requires a scoring model which contains
enough information about substitution events covering a sufficient evolutionary time frame
in order to identify the distant relationships.

Summary

In summary, there are a number of problems that arise in the context of sequence alignments
which have a huge impact on their quality. This includes in particular the properties of the
available substitution matrices, the need of expert knowledge for the manual refinement of
MSAs, and the lack of tools and reliable measures for the quality analysis of MSAs. In this
thesis, we address these issues by several contributions to the research field of sequence
alignments. A detailed list of these contributions is provided in the following section.

1.4 Contributions

In this thesis, we present several contributions to the research field of protein sequence
alignments and its applications such as homologous sequence search and the computation of
multiple sequence alignments. This includes the presentation of novel substitution matrices
for improved homology search results and MSA quality, a citizen science approach for
manual MSA refinement and an improved technique for the visual comparison and quality
assessment of MSAs.

The main contributions have been previously published as papers at international peer-
reviewed conferences and journals. These papers are presented in this thesis partially
in verbatim. They are combined with additional results in the form of separate sections
structured in three main parts. Each main part refers to a specific research field in the context
of protein sequence alignments: manual MSA refinement, substitution matrices, and MSA
quality analysis. The contributions are as follows:
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1.4 Contributions

Part I - Serious games for bioinformatics

• In this part, we present an improved citizen science game approach for the manual
refinement of protein multiple sequence alignments. Our approach abstracts the
alignment problem as a puzzle game. This enables non-experts to successfully improve
sequence alignments while having fun and experiencing a true game experience.
Several user studies and the quality scores obtained for the resulting MSAs based on
state-of-the-art quality measures provide evidence for our claims.

Chapter 3, [Hess et al. 2014b]

This citizen science game approach was developed by myself. This work was supervised
by Prof. Dr. Wiemeyer, Prof. Dr. Kay Hamacher, and Prof. Dr.-Ing. Michael Goesele.

Part II - Substitution matrices

• We first present the novel CorBLOSUM substitution matrix series [Hess et al. 2016a].
The CorBLOSUM algorithm removes an additional programming error in the clustering
routine of the original BLOSUM code [Henikoff and Henikoff 1992b] which affects the
original BLOSUM [Henikoff and Henikoff 1992a] and RBLOSUM matrices [Styczynski
et al. 2008]. As shown by our evaluation, the usage of these matrices for the task of
homologous sequence search can lead to significantly improved search results.

Chapter 4 - Section 4.4, [Hess et al. 2016a]

The CorBLOSUM matrix series was jointly developed by Frank Keul and myself. This
work was supervised by Prof. Dr.-Ing. Michael Goesele and Prof. Dr. Kay Hamacher.

• Second, we present a novel matrix series called PFASUM. This matrix represents a
novel evolutionary scoring model based on manually curated structural alignments
that cover the currently known sequence space. Our thorough evaluation shows that
the usage of PFASUM matrices for homology search produces significantly better
search results than commonly used conventional substitution matrices. Additionally,
our results demonstrate that employing PFASUM matrices for MSA construction can
substantially improve the quality of the resulting MSAs.

Chapter 4 - Section 4.5, [Keul et al. 2017]

Similar to the CorBLOSUM matrix series, the PFASUM matrix series was jointly de-
veloped by Frank Keul and myself. This work was also supervised by Prof. Dr.-Ing.
Michael Goesele and Prof. Dr. Kay Hamacher.

Part III - Visual analysis and comparison of multiple sequence alignments

• In the third part of this thesis, we propose a visual analytics approach for the visual
interactive comparison and quality assessment of multiple sequence alignments. This
approach allows the visual interactive detection and exploration of potentially correct
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as well as misaligned MSA regions. This technique supports the user in judging the
quality of an MSA and allows the manual refinement of the MSA for improved quality.

Chapter 5, [Hess et al. 2016b]

This visual analysis and comparison approach was developed by myself. This work was
supervised by Prof. Dr. Wiemeyer, Prof. Dr. Kay Hamacher, and Prof. Dr.-Ing. Michael
Goesele.

1.5 Thesis outline

Chapter 2: Background

In Chapter 2, we introduce the reader to the area of protein sequence alignments and its
applications in computational biology. First, we explain the different event types that lead to
changes in protein sequences during evolution and how these events are usually measured.
In the second part, we introduce the concept of pairwise sequence alignments and explain
how these alignments can be constructed using state-of-the-art algorithms and their purpose
within the context of homologous sequence search. In the third and last part, we introduce
multiple sequence alignments and discuss their purpose and how they are constructed by
state-of-the-art algorithms.

Chapter 3: Serious games for bioinformatics

Chapter 3 describes the concepts of citizen science and serious games. It presents Bionigma,
our citizen science game approach for improving protein MSAs. First, we discuss existing
crowdsourcing and citizen science game approaches and in particular those that address
problems from the biology domain. In the second part, we present the different develop-
mental stages of our citizen science game approach for the manual refinement of protein.
The remainder of this chapter presents the results of our user studies evaluating Bionigma’s
capability to provide game experience to the players and the quality of the obtained MSA
refinements.

Chapter 4: Substitution matrices

In Chapter 4, we discuss commonly used protein substitution matrices for homologous
sequence search and MSA computation and present two novel matrix series which lead to
improved homology search and MSA results. The CorBLOSUM matrix series corrects for
a substantial error that can be found in BLOSUM and RBLOSUM matrices which results
in improved homology search performance. The second matrix series presented in this
thesis is called PFASUM. It is derived from manually curated structural alignments using a
novel algorithm. Hence, PFASUM matrices represent scoring models based on the currently
known protein sequence space. As the results demonstrate, the usage of this novel matrix
series leads to significantly better homologous sequence search results and can substantially
improve the quality of MSAs.
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1.5 Thesis outline

Chapter 5: Visual analysis and comparison of multiple sequence alignments

Chapter 5 presents an improved visual analytics approach for the visual comparison and
quality assessment of MSAs. First, we provide the reader with a short motivation about this
particular topic by discussing existing approaches for the visual exploration of MSAs and
commonly used MSA quality measures. The remainder of this chapter presents our own
approach for the interactive visual comparison and quality analysis of MSAs on the basis of
existing quality and comparison measures as well as our own insights obtained during the
development of Bionigma.

Chapter 6: Conclusion

In this last chapter, we conclude this thesis by providing a summary of the presented
contributions and a discussion of the proposed approaches. We also highlight different
aspects that could be improved by future research.
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Chapter 2
Background

2.1 Scoring models for sequence alignments

The fundamental concept behind sequence analysis methods such as homologous sequence
search is the construction of sequence alignments. The construction of a sequence alignment
is the process of aligning either evolutionary, functionally, or structurally related sequence
segments by inserting gaps of different lengths into the sequences. This is similar to one
would align colored beads in an abacus. Notably, gaps can also be added to the ends of
the sequences to align their terminal regions with non-terminal areas in other sequences.
These gaps are denoted as terminal gaps. Solving this optimization problem requires specific
scoring models to define which sequence segments are related or represent parts that
were inserted or deleted during evolution (gaps). In particular, this includes modelling
evolutionary substitution, insertion, and deletion events (Figure 2.1).

2.1.1 Substitution events

In the context of protein sequences, evolutionary substitution events describe the effect
that amino acids in the sequence are substituted with different acid types during evolution.
This effect is initiated by point mutations in the DNA which alter the encoded amino acid
type used for the protein synthesis. In protein sequence alignments, substitution events
are indicated by mismatching amino acid pairs (red highlighted regions in Figure 2.1). In
contrast, aligned amino acids of identical type either indicate no change during evolution
or point mutations in the DNA not affecting the encoded acid type (bold blue letters in
Figure 2.1). For instance, DNA point mutations at the last nucleotide of the base triplet ACT
do not have an impact on the encoded amino acid type since the four possible resulting mRNA
triplets ACU, ACG, ACA, and ACC encode the same amino acid threonine (T) (Table 1.1).

5. 10. 15. 20. 25. 30.
A1YQX2_VOLCA/1-34 MSMAVSFAARVAGARPAVRAARPSARTRTVSVNA
A8IV40_CHLRE/1-32 MAMAMTFAARV-GAKPAVRGARPASR---MSCMA

Figure 2.1: Pairwise sequence alignment of the sequence segments A1YQX2_VOLCA/1-34
and A8IV40_CHLRE/1-32 obtained from the Pfam seed alignment of family 2Fe-2S_Ferredox
(PF11591, Pfam release 31.0) [Finn et al. 2016]. Preserved amino acids are shown in bold
blue letters, while mismatching amino acid pairs indicating substitutions are highlighted in
red. Alignment regions referring to evolutionary insertions or deletions are highlighted in
orange.
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2.1 Scoring models for sequence alignments

A R G M S T V

A 5 -1 0 -1 1 0 0
R -1 7 -2 -2 -1 -1 -3
G 0 -2 8 -4 0 -2 -4
M -1 -2 -4 8 -2 -1 1
S 1 -1 0 -2 5 2 -2
T 0 -1 -2 -1 2 6 0
V 0 -3 -4 1 -2 0 5

Table 2.1: Selection of PFASUM60 log-odds scores encoding the relative mutation rates
between the amino acid types alanine (A), arginine (R), glycine (G), methionine (M), serine
(S), threonine (T), and valine (V).

Substitution events between amino acids are usually modeled by substitution matrices. For
all pairs of two amino acid types αi and α j , these matrices represent the likelihood that type
αi mutates into α j in relation to independent evolution. The likelihood of preserving an
amino acid type, i.e., αi = α j , is represented on the diagonal. These likelihoods, i.e., relative
mutation rates, are typically encoded as log-odds scores. By representing the likelihoods
in the log-domain, the joint probability of multiple substitutions (e.g., within a PSA) can
simply be calculated by summing over the log-odds scores instead of computing the product
of the underlying likelihoods [Lesk 2017, p. 168]. Additionally, they are often rounded for
numerical reasons.

The relative mutation rates represented by a substitution matrix are usually derived from
observed amino acid pairs in aligned sequence datasets with known sequence relationships.
From these alignments it is, however, not possible to determine if an observed amino acid
pair AC refers to the substitution of A with C or vice versa [Lesk 2017, p. 185]. Hence,
substitution matrices are usually symmetric. An exemplary substitution matrix is depicted in
Table 2.1. The log-odds scores for the substitution events between the amino acids alanine
(A), arginine (R), glycine (G), methionine (M), serine (S), threonine (T), and valine (V) are
obtained from our novel PFASUM60 substitution matrix (Section 4.5).

If one applies this scoring model to the pairwise sequence alignment shown in Figure 2.1,
e.g., the first amino acid pair in the alignment (MM) yields a score of +8 for preserving
methionine. In contrast, the substitution of a serine residue (S) with an alanine residue (A)
at the second column is only rated with +1. As indicated by the different scores, preserving
methionine residues (MM) is considered to be more likely than substitutions between serine
and alanine (SA) and vice versa (AS). This is in concordance with common knowledge that
preserving amino acid types during evolution is more likely than amino acid substitutions.
Most substitution matrices thus possess much larger scores on the diagonal than on the off-
diagonal. Amino acid substitutions also tend to be conservative, i.e., substitutions between
amino acids of comparable size or similar physicochemical properties are considered to
be more likely than between amino acids with larger differences [Lesk 2013, p. 184]. The
PFASUM60 matrix, e.g., scores substitutions between the similar amino acid types valine (V)
and methionine (M) by +1, while substitutions between the dissimilar amino acids valine
(V) and arginine (R) are considered to be less likely and thus receive negative scores (−3).
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Chapter 2: Background

Notably, this section only provides a short introduction about substitution matrices in order
to prepare the reader for the following sections. More detailed information about substi-
tution matrices, e.g., different matrix series, their application purposes, and construction
methodologies, is presented later in Chapter 4.

2.1.2 Insertion and deletion events

Evolutionary insertion or deletion events (indel) describe the effect that an amino acid or a
chain of amino acids are inserted or deleted in a protein sequence during the evolutionary
process. Similar to amino acid substitutions, this effect is also initiated by point mutations
in the DNA. In sequence alignments, indels are represented in the form of gaps which are
usually denoted by consecutive dash (-) or dot (.) symbols (orange regions in Figure 2.1).

Gaps of a specific length l are typically rated using some sort of penalty model. The simplest
model for rating gaps is the constant gap penalty model which penalizes each gap with a
fixed value regardless of its length. In contrast, the linear gap penalty model g(l) = l ·ω
additionally takes the gap length into account by penalizing each gap symbol in a contiguous
gap with a fixed value ω. For instance, a gap of length l = 5 would receive a penalty five
times as large as a gap of length one.

From a biological perspective, both methods have some severe disadvantages. The constant
gap penalty does not take the length of the gap into account which can result in unrealistically
long gaps. In turn, the linear gap penalty model artificially reduces the number of longer
gaps by applying very high penalties. The linear gap penalty model thus contradicts common
knowledge that long contiguous gaps are considered to occur more likely than the same
number of indels at noncontiguous positions [Lesk 2013, p. 184] since they can be caused
by single mutations in the DNA [Gotoh 1982].

To overcome these limitations, one of the most commonly used gap penalty models is the
affine gap penalty model shown in Equation 2.1:

g(l) =ω+ (l − 1) · ε (2.1)

It can be considered as a hybrid of the constant and linear gap penalty model. A gap of
length l is penalized based on two different penalties – a gap opening or existence penalty
ω and a gap extension penalty ε. While the opening cost ω penalizes each gap by a fixed
amount analogous to the constant penalty model, the extension cost ε linearly penalizes the
gap depending on its length.

The height of the opening penalty is usually chosen larger than the extension penalty.
This accounts for common knowledge that indel events are considered to occur less likely
during evolution than amino acid substitutions, but also mitigates the costs for longer
gaps. For example, when using an affine penalty model with a gap opening penalty of
ω= −10 and a gap extension penalty of ε= −1, a gap of length l = 5 yields a penalty of
g(5) = −10+ (5− 1) · (−1) = −14.

When rating sequence alignments, the initial penalties are usually adapted depending on the
values of the chosen substitution matrix. There is also a consensus that gaps are more likely
to occur at specific positions in the alignment. Terminal gaps, i.e., those that occur at the
ends of the sequences, are often less penalized in order to cope with sequences of different
lengths [Thompson et al. 1994, Edgar 2004b]. Likewise, gaps aligned with consecutive
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stretches of hydrophilic residues are considered to be more likely than those aligned with
hydrophobic amino acids and are thus often penalized with reduced costs [Thompson et al.
1994, Edgar 2004b]. Some alignment algorithms also employ residue-specific gap penalties
depending on the type of the amino acids that are aligned with gaps [Thompson et al. 1994]
or profile-based gap penalty functions [Katoh et al. 2002]. The latter assigns variable gap
penalties in dependency of position-specific gap distributions observed for an alignment
profile.

The selection of the optimal gap penalty model for a given alignment task is typically a
non-trivial problem [Giribet and Wheeler 1999]. It depends on various factors, e.g., the
chosen substitution matrix as mentioned before, and the similarity of the sequences that
should be aligned. Evaluating gap penalty models and choosing biologically meaningful
gap parameters is thus still part of active research [Benner et al. 1993, Giribet and Wheeler
1999, Reese and Pearson 2002, Young and Healy 2003, Agrawal and Huang 2009, Eddy
2009, Wang et al. 2011].

2.2 Pairwise sequence alignments

As outlined in the introduction of this thesis, pairwise sequence alignments form the basis
for several applications and research tasks in computational biology. They are often used to
identify homologous sequences [Altschul et al. 1990, Pearson and Lipman 1988] or to infer
structural and functional information of an unknown protein from a related sequence with
known properties [Mount 2004, p. 71].

The construction of a PSA corresponds to the task of aligning homologous regions between
sequences by inserting gaps according to a particular scoring model, i.e., a substitution
matrix and a gap penalty model. More formally, the computation of a PSA represents an
optimization problem which aims at maximizing a specific similarity score. In contrast to
the construction of multiple sequence alignments, which is an NP-complete optimization
problem (Section 2.4), optimal PSAs under a given scoring model can be calculated using
dynamic programming (DP). The main difference between PSA algorithms [Needleman and
Wunsch 1970, Hirschberg 1975, Smith and Waterman 1981, Gotoh 1982] are their runtime
complexity, memory consumption, and the resulting PSA type, i.e., global or local PSAs.

A global pairwise sequence alignment represents a full end-to-end alignment of both sequen-
ces A and B, i.e., all amino acids of A and B are aligned to each other. However, if the lengths
of A and B differ to a greater extend or if A and B are very dissimilar, a large number of gaps
has to be inserted in order to form a global PSA. Hence, global PSAs are usually generated
for homologous sequences that are quite similar and of approximately equal length [Mount
2004, p. 70]. In contrast, local pairwise sequence alignments only align local regions of high
similarity between two sequences A and B. This allows, e.g., to detect homologous regions
in otherwise non-homologous or dissimilar sequences. Local PSAs are thus often used when
searching for potentially homologous sequences, e.g., when employing tools such as BLAST
[Altschul et al. 1990] or SSEARCH [Pearson 1991]. In the following subsections, we describe
different DP algorithms for the calculation of global and local PSAs in detail.
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2.2.1 Global pairwise sequence alignments

Needleman-Wunsch algorithm

The Needleman-Wunsch algorithm [Needleman and Wunsch 1970] is the most popular
DP algorithm for the computation of a global pairwise sequence alignment. In the initial
publication from 1970, the Needleman-Wunsch algorithm was only informally described.
The formal definition of the algorithm in the form of a matrix recurrence relation presented
here, is based on the publication “Some Biological Sequence Metrics” by Waterman et al.
[1976].

In order to calculate the global PSA of two sequences A and B of lengths m and n, first an
(n+ 1)× (m+ 1)-matrix M is initialized according to the following equations:

M(0, 0) = 0

M(i, 0) = M(i − 1, 0) + g(i)

M(0, j) = M(0, j − 1) + g( j)
(2.2)

The variables i and j are indices referring to the uninitialized matrix entries ranging between
1≤ i ≤ m and 1≤ j ≤ n, respectively. The function g(x) represents the cost for inserting a
gap of length x with x = i ∨ x = j. Afterwards, the remaining matrix entries are recursively
calculated as defined by the following matrix recurrence relation:

M(i, j) = max







M(i − 1, j − 1) + S(αi ,α j)
max1≤k≤i{M(i − k, j) + g(k)}
max1≤l≤i{M(i, j − l) + g(l)}







Substitution ↖
Deletion ↑
Insertion ←

(2.3)

S(αi ,α j) represents the log-odds score for the pairing of the i-th residue of sequence A
with the j-th residue of sequence B. Here, αi and α j denote the type of the corresponding
residues. The value of each entry in M represents the score of the optimal alignment of the
sequence prefixes A[1..i] and B[1.. j]. Hence, the score of the full global alignment of A and
B corresponds to the matrix entry M(n, m), i.e., the similarity of A and B. While this only
yields the score of the global PSA of A and B, the alignment itself can be obtained by storing
the decisions made in the construction process (Equation 2.3, labels on the right hand side)
in a separate matrix ÒM and backtracking. Notably, there can be multiple optimal alignments
that yield the same maximum score, but their editing path obtained through backtracking is
different.

The Needleman-Wunsch algorithm has a runtime complexity of O(max(n, m)3) for the
calculation of a PSA of two arbitrary sequences A and B of lengths n and m using linear
gap costs g(x). Its space complexity corresponds to O(nm) for storing the (n+ 1)× (m+ 1)-
matrices M and ÒM . In 1975, Hirschberg [1975] presented a divide-and-conquer strategy to
reduce the space complexity of the Needleman-Wunsch algorithm. Hirschberg’s algorithm
only requires linear space in dependency of the sequence length but comes at the cost of
doubled runtime [Löytynoja and Goldman 2005].

When choosing a fixed gap penalty cost ω, the Needleman-Wunsch algorithm can be specia-
lized in order to compute the optimal global PSA in only O(n2). We refer to this specialized
form of the Needleman-Wunsch algorithm in concordance to common practice as the stan-
dard DP algorithm for the computation of optimal global pairwise sequence alignments.
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2.2 Pairwise sequence alignments

Standard DP algorithm

Instead of searching the maximum scores for the deletion and insertion events within a
given row or column index range (Equation 2.3), the standard DP algorithm only requires
the calculation of the maximum of the neighboring cells as shown in Equation 2.4:

M(i, j) = max







M(i − 1, j − 1) + S(αi ,α j)
M(i − 1, j) +ω
M(i, j − 1) +ω







Substitution ↖
Deletion ↑
Insertion ←

(2.4)

The matrix is identically initialized as in Equation 2.2 with the exception that the linear gap
function g(x) is replaced by the fixed gap penalty ω.

The following example (Table 2.2 and Table 2.3) illustrates the standard DP algorithm and the
backtracking procedure for the PSA of two sequence segments A and B (A1YQX2_VOLCA/12-
17 and A8IV40_CHLRE/12-16) obtained from the Pfam seed alignment [Finn et al. 2016] of
family 2Fe-2S_Ferredox (PF11591, Pfam release 31.0). For this example, a fixed gap penalty
of ω = −1 is used in combination with our novel PFASUM60 substitution matrix (Table 2.1,
Section 4.5).

Table 2.2 shows the matrices M and ÒM after the initialization step (Equations 2.2). In order
to differentiate the three evolutionary events in the backtracking matrix ÒM , we use different
arrow symbols. A substitution is denoted by a diagonal arrow (↖) in the backtracking
matrix ÒM . Insertions and deletions are indicated by left arrows (←) and upper arrows (↑),
respectively.

Afterwards, the missing entries are calculated either row- or column-wise starting at M(1, 1)
which results in the matrices shown in Table 2.3. For instance, this entry corresponds to the
maximum alignment score of the segments A[1..1] and B[1..1] obtained for three different
evolutionary events. For a substitution event, the score equates to 7, i.e., the sum of the
diagonal predecessor M(0,0) = 0 and the log-odds score S(α1,α1) = S(R, R) = 7 of the
residue pair (A[1] = R, B[1] = R). The score for an insertion event is the maximum of the
score of the vertical predecessor M(i − 1, j) plus the fixed gap penalty of ω = −1. Thus, the
cost for an insertion at M(1, 1) is −2. Similarly, the score for a deletion event corresponds to
the score of the horizontal predecessor M(i, j−1) plus the fixed gap penalty. This also yields
a score of −2 for a deletion event at M(1,1). The score for the alignment of A[1..1] and
B[1..1] is then M(1, 1) = max{7,−2,−2} = 7. Since this score is achieved by a substitution
event, a diagonal arrow (↖) is inserted into the backtracking matrix at ÒM(1, 1) in order to
reconstruct the editing path of the final alignment.

As mentioned above, the score of the optimal PSA of two sequences A and B with sequence
lengths n and m is stored in the matrix entry M(n, m). In our example, this corresponds to
the entry M(5, 4) = 24 shown in red on the left hand side of Table 2.3. In order to reconstruct
the corresponding alignment, we backtrack the decisions made during the construction of
M using the backtracking matrix ÒM . Starting at ÒM(n, m) = ÒM(5, 4) =↖, we simply follow
the arrows until ÒM(0, 0) is reached. On the right hand side of Table 2.3, the resulting path
is highlighted by red arrows. For each↖, we align the residues of both sequences at the
current index. Similarly, a gap is introduced at the current index into A or B when observing
an ← or ↑ arrow. As noted above, there may be more than one editing path resulting in
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- R V A G A

- 0 -1 -2 -3 -4 -5
R -1
V -2
G -3
A -4

- R V A G A

- ↖ ← ← ← ← ←
R ↑
V ↑
G ↑
A ↑

Table 2.2: The Needleman-Wunsch matrix M (left) and the backtracking matrix ÒM (right)
after the initialization step using a fixed gap penalty of ω = −1. In the backtracking matrix,
a diagonal arrow (↖) indicates a substitution, a left arrow (←) an insertion and an upper
arrow (↑) a deletion.

- R V A G A

- 0 -1 -2 -3 -4 -5
R -1 7 6 5 4 3
V -2 6 12 11 10 9
G -3 5 11 12 19 18
A -4 4 10 16 18 24

- R V A G A

- ↖ ← ← ← ← ←
R ↑ ↖ ← ← ← ←
V ↑ ↑ ↖ ← ← ←
G ↑ ↑ ↑ ↖ ↖ ←
A ↑ ↑ ↑ ↖ ↑ ↖

Table 2.3: Result of the Needleman-Wunsch algorithm for the pairwise alignment of the
sequence segment A1YQX2_VOLCA/12-17 with the segment A8IV40_CHLRE/12-16 using
our novel PFASUM60 matrix (Table 2.1, Section 4.5) and a fixed gap penalty of ω = −1.
Both segments were obtained from the Pfam seed alignment of family 2Fe-2S_Ferredox
(PF11591, Pfam release 31.0). The matrix on the left hand side depicts the scoring matrix
M of the algorithm with the final alignment score shown in red. The matrix on the right
hand side shows the backtracking matrix ÒM . A diagonal arrow (↖) indicates a substitution,
a left arrow (←) an insertion in A8IV40_CHLRE, and an upper arrow (↑) a deletion in
A1YQX2_VOLCA. The arrows highlighted in red mark the editing path from the lower right
to the upper left corner that leads to the final pairwise alignment.

5.
A1YQX2_VOLCA/12-17 RVAGA
A8IV40_CHLRE/12-16 RV-GA

Figure 2.2: Optimal global pairwise sequence alignment for the sequence segments
A1YQX2_VOLCA/12-17 and A8IV40_CHLRE/12-16 based on the standard DP algorithm
using a fixed gap penalty of ω = −1 in combination with the PFASUM60 substitution matrix
(Table 2.1, Section 4.5).
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2.2 Pairwise sequence alignments

multiple optimal global PSAs solutions under a given scoring model. In the shown example
exists, however, only one valid editing path. Its corresponding optimal global PSA is shown
in Figure 2.2.

Gotoh algorithm

Another algorithm for the calculation of the optimal pairwise alignment of two sequences A
and B of length n and m is the Gotoh algorithm [Gotoh 1982], a modified version of the
Needleman-Wunsch algorithm. In contrast to the original algorithm, Gotoh’s modification has
a reduced runtime complexity of O(nm) and uses an affine gap penalty model (Equation 2.1).

In order to cope with the affine gap penalty model, the formalization of Gotoh’s algorithm
as matrix recurrence relations requires three matrices of size (m+1) · (n+1). These matrices
M , P, and Q are initialized as follows:

M(0,0) = P(0, 0) =Q(0, 0) = 0

M(i, 0) =Q(i, 0) = M(0, j) = P(0, j) = −∞
P(i, 0) = g(i)

Q(0, j) = g( j)

(2.5)

The variables i and j are index variables referring to the uninitialized matrix entries ranging
between 1 ≤ i ≤ m and 1 ≤ j ≤ n, respectively. These entries are calculated using the
following matrix recurrence relations in combination with the aforementioned gap penalty
parameters and a scoring matrix S:

M(i, j) = max







M(i − 1, j − 1) + S(i − 1, j − 1)
P(i − 1, j − 1) + S(i − 1, j − 1)
Q(i − 1, j − 1) + S(i − 1, j − 1)







P(i, j) = max







M(i − 1, j) +ω
P(i − 1, j) + ε
Q(i − 1, j) +ω







Q(i, j) = max







M(i, j − 1) +ω
P(i, j − 1) +ω
Q(i, j − 1) + ε







(2.6)

Analogous to the Needleman-Wunsch algorithm, the entries of the matrices M , P, and Q
represent the score of the optimal alignment of particular prefixes of the sequences A and B.
Here, M(i, j) corresponds to the alignment score of the prefixes of A[1..i] and B[1.. j] under
affine gap costs, while P(i, j) and Q(i, j) represent the score of the same prefixes that end
with a gap in A or gap in B, respectively. Again, the final pairwise alignment can be obtained
by storing the decisions made during the construction of M , P, and Q using three matrices
ÒM , bP, and bQ and employing backtracking. In this case, however, the backtracking algorithm
runs over three matrices instead of one.
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2.2.2 Local pairwise sequence alignments

Smith-Waterman algorithm

As outlined in Section 2.2, local pairwise alignments are another important form of pairwise
sequence alignments, e.g., to identify homologous regions in dissimilar sequences. Instead
of fully aligning two sequences, a local PSA only aligns strongly similar regions between a
query sequence A and a target sequence B. The most prominent algorithm for the calculation
of local PSAs is the Smith-Waterman algorithm [Smith and Waterman 1981].

This algorithm also represents a specialization of the aforementioned Needleman-Wunsch
algorithm using an affine gap penalty g(l) =ω+ (l − 1) · ε. Instead of initializing the first
row and column of M with the linear gap penalties of a specific length and maximizing
over three cases in the matrix recurrence relation, the Smith-Waterman algorithm initializes
the first row and column of M with zero (Equation 2.7) and maximizes over four cases
(Equation 2.8).

M(i, 0) = 0

M(0, j) = 0
(2.7)

M(i, j) = max











0
M(i − 1, j − 1) + S(αi ,α j)

M(i − 1, j) + g(i)
M(i, j − 1) + g( j)











Empty suffix �
Substitution ↖

Deletion ↑
Insertion ←

(2.8)

In contrast to the Needleman-Wunsch algorithm, which holds the score of the optimal PSA
of sequences A and B in the matrix entry M(n, m) with n and m being the lengths of A and
B, the score for the optimal local PSA can be found elsewhere in matrix M . It corresponds
to the largest value max(M) in M with the indices x1 and y1. Likewise, the second largest
value in M at index M(x2, y2) represents the score of the second best local alignment. Again,
the final optimal local PSA itself can be obtained by storing the decisions made during
the construction of M in a matrix ÒM and backtracking. However, this traceback starts at
ÒM(x1, y1) and stops as soon as an entry in ÒM is reached that refers to the empty suffix.
Analogous to global PSAs, there can be multiple optimal solutions for local PSAs resulting
in identical scores but different tracebacks and thus alignments.

The following example (Table 2.4 and Table 2.5) illustrates the functionality of the Smith-
Waterman algorithm for the construction of the optimal local PSA of the sequence segments
A1YQX2_VOLCA/26-30 and A8IV40_CHLRE/23-26 obtained from the Pfam seed alignment
of family 2Fe-2S_Ferredox (PF11591, Pfam release 31.0). The PFASUM60 matrix (Table 2.1,
Section 4.5) is used for rating substitution events, while gaps are penalized using a gap
opening penalty of ω= −10 and a gap extension penalty of ε= −1. Table 2.4 shows the
matrices M and ÒM after the initialization step (Equation 2.7). The final matrix entries based
on the matrix recurrence relation defined in Equation 2.8 are shown on the left hand side of
Table 2.5. Here, the highest local alignment score max(M) = 9 can be observed at the entry
M(3, 3) highlighted in red. The decisions made for each entry are stored in the backtracking
matrix ÒM (right). A diagonal arrow (↖) indicates a substitution and a � symbol is used for
the empty suffix. The red arrows show the editing path for obtaining the optimal local PSA
according to the alignment score of M(3,3) = 9. This alignment is shown in Figure 2.3.
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- R T R T V

- 0 0 0 0 0 0
A 0
S 0
R 0
M 0

- R T R T V

- � � � � � �
A �
S �
R �
M �

Table 2.4: The Smith-Waterman matrix M (left) and the backtracking matrix ÒM (right) after
the initialization step. A � symbol in the backtracking matrix indicates the empty suffix.

- R T R T V

- 0 0 0 0 0 0
A 0 0 0 0 0 0
S 0 0 2 0 2 0
R 0 7 0 9 0 0
M 0 0 6 0 8 1

- R T R T V

- � � � � � �
A � � �,↖ � �,↖ �,↖
S � � ↖ � ↖ �
R � ↖ � ↖ � �
M � � ↖ � ↖ ↖

Table 2.5: Result of the Smith-Waterman algorithm for the pairwise alignment of the
sequence segment A1YQX2_VOLCA/26-30 with the segment A8IV40_CHLRE/23-26 using
our novel PFASUM60 matrix (Table 2.1, Section 4.5) in combination with a gap opening
penalty of ω= −10 and a gap extension penalty of ε= −1. Both segments were obtained
from the Pfam seed alignment of family 2Fe-2S_Ferredox (PF11591, Pfam release 31.0). The
matrix on the left hand side depicts the scoring matrix M of the algorithm, the right hand
side shows the backtracking matrix ÒM . An↖ arrow indicates a substitution and a � symbol
the empty suffix. The arrows highlighted in red mark the editing path for the construction
of the optimal local pairwise alignment.

A1YQX2_VOLCA/26-30 TR
A8IV40_CHLRE/23-26 SR

Figure 2.3: Optimal local pairwise sequence alignment for the sequence segments
A1YQX2_VOLCA/26-30 and A8IV40_CHLRE/23-26 based on the Smith-Waterman algo-
rithm. The PFASUM60 matrix (Table 2.1, Section 4.5) was chosen as scoring model in
combination with a gap opening penalty of ω = −10 and a gap extension penalty of ε = −1.
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2.3 Homologous sequence search

Searching large protein databases for homologs of a particular query sequence is one of
the most common tasks in computational biology. For example, it is one of the first and
most informative steps when analyzing newly determined sequences [Pearson 2013] since
it potentially allows to transfer valuable knowledge about known sequences to the newly
discovered protein such as structural and functional properties.

Commonly used homology search programs (FASTA [Pearson and Lipman 1988], SSEARCH
[Pearson 1991], BLAST [Altschul et al. 1990], and PSIBLAST [Altschul et al. 1997] identify
potential homologs based on local pairwise sequence alignments, i.e., based on relative
sequence similarity. The PSAs are constructed during the search process by aligning each
protein sequence in the database to the query sequence typically using variations of the
Smith-Waterman algorithm (FASTA and BLAST). As a rule of thumb, PSAs with “high” SP
scores usually indicate similar sequences which are often considered to be homologous
and thus may represent valid search hits to the given query sequence. A list of potential
homologs to the query sequence can then be obtained by sorting the list of target sequences
in descending order of their PSA SP scores.

The disadvantage of this method is that it does not provide any information about the
significance of the search results. This is related to the fact that there is no definition at
which magnitude the SP score of a PSA indicates a true homologous sequence relationship
or not. Since the SP score is based on amino acid pairs, the score obviously scales with the
total number of possible amino acid pairs in the sequence dataset which depends on the
number of sequences and their lengths. Likewise, the differences between the SP scores
of a number of PSAs only reveal which PSA contains more similar sequences compared to
other PSAs, but the differences do not properly reflect the degree of diversity between the
sequences in terms of a distance metric.

For this reason, a so-called E-value or expect value is typically calculated for each computed
alignment which measures the significance of a search result based on statistics often
empirically obtained for a particular scoring model and sequence lengths:

E = Kmn e−λS (2.9)

Here, m and n refer to the sequence lengths in the PSA and S to the obtained alignment
score. The parameters K and λ characterize the statistics of the alignment scores under
a particular scoring model and sequence lengths. They are usually estimated empirically
by analyzing the scores of a sufficient number of optimal local PSAs of either unrelated
sequences [Collins et al. 1988, Pearson 1998] or those obtained from a random sequence
model [Altschul and Gish 1996].

In simple terms, the E-value represents the number of unrelated sequences that achieve
a local alignment score as least as high as the score obtained for the computed PSA of
the query and matching sequence [Mount 2004]. The E-value thus provides a statistical
measure for the identification of a reported search result as a true homolog purely by chance.
Homology search results for a given query sequence are typically presented in ascending
order of their E-values instead of their alignment scores.
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Lesk [2013, p. 195] provides rough guidelines for interpreting E-values. According to
these guidelines, a search result with an E-value of E ≤ 0.02 probably represents a true
homologous sequence to a query sequence, while E-values between 0.02 and 1 indicate
unproven homology but also cannot be ruled out. In contrast, E-values of E > 1 represent
search results probably found purely by chance. Notably, the author states that statistics
may provide a useful guide but cannot substitute careful thinking about the results. Hence,
manual inspection of the obtained search results by an expert is essential to retrieve reliable
information.

In the following subsections, we describe and discuss the methodology of the two most
commonly used packages for searching protein databases for homologous sequences given a
particular query sequence — the FASTA [Pearson 1991] and the BLAST [Altschul et al. 1990]
packages.

2.3.1 FASTA

One of the first software packages for rapidly searching DNA or protein sequences in large
sequence databases is the FASTA package by Pearson and Lipman [1988]. This package
provides two different programs for the identification of homologs given a particular protein
sequence as query and a protein database as target, namely the programs SSEARCH and
FASTA. SSEARCH performs full optimal local PSAs using the Smith-Waterman algorithm
(Section 2.2.2), while FASTA employs heuristics to speed up the search process. For this
reason, SSEARCH typically delivers more accurate search results than FASTA but at the cost of
increased computation time.

The following description of the FASTA algorithm is based on the book by Mount [2004,
pp. 240–247] and the publication by Pearson and Lipman [1988]. FASTA performs four steps
in order to compute the pairwise similarity score of two sequences. The intermediate results
of these steps are shown in Figure 2.4. Each subfigure illustrates the solution space for a
local PSA of a query sequence and a particular database sequence at a given step. The shown
diagonals indicate possible local alignments.

First, the ten best-matching regions between the query sequence and each database sequence
are identified. According to Mount [2004, p. 242], this is done by rapidly locating words of
length k (k-tuples) in both sequences that share the same position offsets by using a lookup
table. Matching k-tuples within a certain distance d to each other are then merged including
their intermediate regions to form joint matches. In the context of protein sequences, values
of either k = 1 and d = 32 or k = 2 and d = 16 are chosen. From these joint matches, again
the ten best matching regions are selected for further processing (red lines in Figure 2.4 a).

In the second step, the best-matching regions are rescored using a user-specified scoring
matrix. For each best-matching region, a subregion with maximal score, the so-called
initial region, is determined (red highlights in Figure 2.4 b). Subsequently, FASTA identifies
“compatible” initial regions that can be joined to create a single alignment (blue diagonals
in Figure 2.4 c). This is done by calculating an optimal alignment of the initial regions based
on their locations and scores, and a specific joining penalty. Low-scoring initial regions
(red diagonals in Figure 2.4 c) are not taken into account during this step in order to limit
degradation of selectivity. The score of the resulting alignment is then used to rank the
corresponding database sequence for further processing.

22



Chapter 2: Background

Figure 2.4: Example illustrating the results of the four different steps executed by FASTA
to compute the similarity score between a query and a database sequence. a) Identified
matching regions (joined k-tuples) with the ten best matching regions highlighted in red.
b) Identification of initial regions (red) within the ten best matching regions based on
substitution scores. c) Identification of “compatible” regions (blue) that can be used to
form a single alignment. Red diagonals depict low-scoring initial regions that are omitted
by applying a scoring threshold. d) The final pairwise sequence alignment. Red diagonals
represent the initial regions from the previous step. The highest scoring initial region that
limits the solution space for the final alignment (dotted band) is highlighted in blue.

In the last step, the sequences with the highest rank are optimally aligned to the query
sequence using a modified version of the Smith-Waterman algorithm. Instead of taking
all possible alignments into account, this algorithm only considers those solutions that lie
within a certain band (dotted lines Figure 2.4 d) around the highest scoring initial region
(blue diagonal, Figure 2.4 d).

FASTA and SSEARCH report the significance of the search results by presenting E-values. In
both programs, the E-values are calculated based on an extreme value distribution from
the mean and variance of the local alignment scores obtained for the PSAs of unrelated
sequences [Pearson 1998].

2.3.2 BLAST

The Basic Local Alignment Search Tool (BLAST) [Altschul et al. 1990] is the most widely
used software for homologous sequence search today [Pearson 2013]. Similarly to the
previously described FASTA package, BLAST provides several programs for comparing DNA
or protein sequences with protein or DNA databases in any combination. For instance,
protein databases can be searched with BLAST using the programs blastp [Altschul et al.
1997], PSI-BLAST [Altschul et al. 1997], PHI-BLAST [Zhang et al. 1998], and DELTA-BLAST
[Boratyn et al. 2012].

From this collection, blastp represents the initial BLAST program for homologous sequence
search. PSI-BLAST is a further development of blastp which produces significantly better
search results by employing so-called position-specific substitution matrices (PSSM) at the
cost of higher runtime. A more specialized kind of search can be performed with PHI-BLAST.
It limits the search results to contain only those sequences that match a user-specified input
pattern. The last development of the BLAST package is DELTA-BLAST. It works similar to
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PSI-BLAST but uses PSSMs constructed with information retrieved from a search in the
Conserved Domain Database. In the following, we describe the most commonly used BLAST
programs for homologous sequence search — blastp and PSI-BLAST — in more detail.

BLASTP

The standard BLAST program for the identification of homologous protein sequences is
blastp. The following description of the blastp algorithm is based on the book Bioinfor-
matics: Sequence and Genome Analysis by Mount [2004]. Similar to FASTA, the speed of the
alignment process is increased by searching small matching patterns (k-tuples) in the query
sequence and the database sequences. However, blastp only takes the most significant
k-tuples into account instead of searching for all possible words of length k. This effectively
reduces the number of k-tuples that need to be processed which provides blastp with a
speed advantage over FASTA. However, blastp uses preset word sizes of k ∈ {2,3,6} as
default1 and thus may provide less sensitivity than FASTA which compares words of size
k ∈ {1,2}.

First, blastp identifies all words of length k within the query sequence, i.e., the k-tuples
Ki with i denoting the index of a tuple. For all of these k-tuples Ki , blastp determines all j
possible k-tuples Mi, j of which the ungapped alignment to Ki would yield a score of at least
T given a particular substitution matrix (e.g., BLOSUM62). The following example illustrates
this step. Assuming an alphabet of 20 different amino acid types and query sequence tuples
Ki of the length k = 3, there are 20 × 20 × 20 = 8000 possible 3-tuples that could be
aligned without gaps to each Ki . Many of these 8000 tuples yield, however, bad alignment
scores. This indicates that these are very unlikely to occur in related sequences. For instance,
the alignment of the 3-tuple Ki = PQG with itself (the perfect match) yields the highest
BLOSUM62 score of 7+ 5+ 6= 18. In contrast, the very dissimilar 3-tuple FCL results in
a negative BLOSUM62 score of −4− 3− 4= −11. By applying a scoring based threshold
filtering, blastp only considers k-tuples with similar scores to the perfect match, i.e., those
j k-tuples Mi, j that are likely to be found in homologous sequences. For k = 3 and a scoring
threshold T = 13, e.g., this effectively reduces the number of tuples that has to be searched
for each single Ki from 8000 to approximately 50.

Afterwards, all database sequences are searched rapidly for exact matches to any of the
j most significant k-tuples Mi, j for each tuple Ki in the query sequence. Exact matches
are joined if they lie within a certain distance to each other on the same diagonal in the
alignment space. They are then extended in both directions until their score does no longer
increase.

Next, the significance of the scores of the extended sequence stretches, the so-called high-
scoring segment pairs (HSP), is determined by calculating E-values for each obtained score.
The parameters K and λ applied in the E-value equation (Equation 2.9) are chosen depending
on the substitution matrix used for scoring the HSPs. Blastp provides predefined parameters
for calculating E-values for each available substitution matrix that were empirically derived
from scores obtained for ungapped alignments of random sequences. The calculated E-
values are then used to determine which HSPs are sufficiently significant to produce a local
sequence alignment.

1Blastp preset word sizes were obtained from the NCBI protein-protein BLAST web service available at https:
//blast.ncbi.nlm.nih.gov (last accessed 15.09.2017)
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If more than one significant HSP is identified, blastp computes a local alignment and
determines the significance of the resulting alignment score in the form of E-values using
parameters K and λ based on gapped alignment statistics. These parameters are also
empirically determined via an analysis of the score distribution of alignments of random
sequences. These alignments were constructed using the same scoring matrix but also using
identical gap penalties.

Finally, the sequences containing significant HSP E-values are locally aligned to the query
sequence using the Smith-Waterman algorithm. For each of the obtained alignments, an
E-value is computed using statistical parameters for gapped alignments. These E-values are
then used to rank the corresponding sequences in the list of search results.

PSI-BLAST

According to Lesk [2013, pp. 200–201], blastp allows quite accurate and rapid detection of
homologs to a particular query under the assumption that the query and the target sequences
are relatively similar. However, more distantly related homologs cannot be detected accura-
tely by blastp in many cases. PSI-BLAST addresses this sensitivity problem by employing
so-called position-specific substitution matrices (PSSM). As reported by Lesk [2013, p. 201],
this allows PSI-BLAST to find three times as many correct homologs than blastp in the
so-called twilight zone of sequence identities below 30%.

Instead of encoding the relative substitution rate of an amino acid in relation to another
specific amino acid type (pairs of amino acids), position-specific substitution matrix scores
encode the likelihood of observing a particular amino acid type at a specific position in
an alignment (Table 2.6). This information is typically derived from multiple sequence
alignments by calculating the relative frequencies of each amino acid type separately for
each alignment column.

In the following, we describe the work flow of PSI-BLAST for the detection of homologous
protein sequences according to the information provided by Lesk [2013, pp. 200–201]. An
overview of the PSI-BLAST algorithm is shown in Figure 2.5. In the first step of the algorithm,
PSI-BLAST performs a standard gap enabled blastp search as previously explained using a
user-specific scoring model, i.e., a substitution matrix and affine gap penalties. The obtained
list of search results is then filtered using an E-value threshold to only keep the most
significant hits that are very likely to represent true homologous sequences. According to
Lesk [2013, p. 200], e.g., a frequently chosen E-value threshold is 0.005. In the next step, a

A R N D C · · ·
Pos. 1 -1 -9 -3 3 2 · · ·
Pos. 2 -2 4 -2 -2 -1 · · ·
Pos. 3 -5 4 -2 2 -2 · · ·
Pos. 4 -4 -1 -6 -3 0 · · ·

...
...

...
...

...
...

. . .

Table 2.6: Example illustrating a position specific scoring matrix (PSSM). The log-odds
score for the likelihood of alanine (A) occurring at the first position in an alignment is −1,
while the probability of observing an aspartic acid (D) at the third position is +2.
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Figure 2.5: Flowchart illustrating the program sequence when searching a protein database
for homologs to a given query sequence using PSI-BLAST. First, a gap enabled blastp search
is performed using a standard substitution matrix (e.g., BLOSUM62) which yields an initial
list of search hits. Second, the list is filtered to remove insignificant results based on a
certain E-value threshold. In the third step, the remaining sequences are multiply aligned
to the query sequence and the resulting MSA is used to derive a position-specific scoring
matrix. Afterwards, a new BLAST search is triggered using the position-specific scoring
matrix instead of the initially used standard substitution matrix. This procedure is repeated
until the obtained list of search hits does no longer change significantly.

multiple sequence alignment is computed for the remaining sequences. Based on this MSA,
PSI-BLAST counts the relative frequencies of the amino acids with respect to their position
in the alignment in order to derive a position-specific substitution matrix. The obtained
PSSM can then be used as a scoring matrix for a further blastp search which may identify
additional homologs. This process can be repeated multiple times with the PSSM derived in
iteration i being used as the substitution model in iteration i + 1. According to Lesk [2013,
p. 201], this loop is interrupted as soon as a single iteration yields only little or no change
in the obtained search hits.

2.4 Multiple sequence alignments

While pairwise sequence alignments primarily allow to measure the similarity of two se-
quences, multiple sequence alignments (Figure 2.6) can provide much more information.
They can be used, e.g., for the construction of Hidden Markov Models (HMM) which enable
categorization of protein sequences into different families [Finn et al. 2016]. Other rese-
arch areas that depend on MSAs include domain analysis and phylogenetic reconstruction
[Chatzou et al. 2016].

Similar to pairwise sequence alignments, the construction of an MSA under a particular
scoring model is the process of either aligning evolutionary, functionally, or structurally
related regions between sequences by inserting gaps of different lengths. However, the
computation of an MSA necessitates the simultaneous consideration of the relationships
between multiple sequences which is way more complex than only aligning two sequences.
For example, inserting gaps into any of the sequences shown in Figure 2.6 would affect all
pairwise induced alignments of this particular sequence to all other sequences and thus the
entire MSA. Hence, an MSA algorithm has to maximize the similarity score of all pairwise
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220. 225. 230. 235. 240. 245. 250. 255. 260.
H2LZT3_ORYLA/61-385 SSNASMVSSASSSTGSTASNSVAGSAANISRAHSDGNLS-SA
F199X_DANRE/56-374 SSNASMVSSTSSSTASTGSN----SSTNISRAHSDGNLA-TA
W5NC60_LEPOC/62-381 SSNASMVSTASSSNGSVGSSC---SAANMSRAHSDSSLSASA
F6W884_MONDO/67-385 SSSASMVSSASSTGSSVGNSA-SNSSANMSRAHSDSNLSTSA

Figure 2.6: Multiple sequence alignment of four sequence segments obtained from the
Pfam seed alignment of family FAM199X (PF15814, Pfam release 31.0). Shown are the
segments H2LZT3_ORYLA/61-385, F199X_DANRE/56-374, W5NC60_LEPOC/62-381, and
F6W884_MONDO/67-385 in the column interval [220, 260]. Conserved amino acid regions
are indicated by bold blue letters. Columns with mismatching amino acid pairs indicating
point mutations in the DNA are shown in red. Orange columns highlight indel regions in
the shown MSA.

induced alignments in order to compute a globally optimal alignment. Unfortunately, this
has been proven to be an NP-complete optimization problem [Wang and Jiang 1994, Just
2001, Elias 2006]. For this reason, MSA algorithms typically rely on some kind of heuristic
in order to approximate the optimal MSA under a given scoring model.

In the following subsections, we provide a broad overview of different methodologies and
programs for computing protein multiple sequence alignments. First, we introduce the reader
into the most widely used scoring measure for MSA construction, the so-called sum-of-pairs
score (SP), and explain how the standard DP approach can be used to calculate the optimal
MSA. Subsequently, we describe different methodologies that are commonly employed in
the construction process of MSA programs. The remainder of this section, presents and
describes a representative selection of state-of-the-art MSA programs and algorithms for
constructing protein MSAs.

2.4.1 MSA construction methodologies

Sum-of-pairs score

As outlined above, the computation of a global multiple sequence alignment necessitates
the simultaneous optimization of the scores of all pairwise induced sequence alignments
encoded in the MSA. This requires a scoring measure which is able to identify related regions
across multiple sequences by comparing alignment columns instead of single amino acid
pairs.

One of the most commonly used scoring measures for the construction of MSAs is the sum-
of-pairs score (SP) [Thompson et al. 1999b]. This measure can be either used for scoring
the residue similarity within an MSA (columns or regions), or between two columns of the
same or different MSAs. The latter is especially important when two sequence alignments –
so-called alignment profiles – have to be aligned in order to form a full MSA out of both
alignments (Section 2.4.1).

The SP score SP(i) of a column i simply corresponds to the sum of the log-odds scores Sαi ,α j

provided by a substitution matrix of all induced residue pairs. Pairs involving gap symbols
are typically ignored in the calculations. Figure 2.7 illustrates the SP score calculation for
an example column i obtained from an MSA of three sequences. This column contains three
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Figure 2.7: Example illustrating the log-odds scores summands of the SP score for a parti-
cular MSA column i. The shown example MSA is build of three sequences and thus induces
n·(n−1)

2 = 3·(3−1)
2 = 3 pairwise alignments, i.e., three different amino acid pairs are considered

in the calculation of the SP score.

residues and thus contributes n·(n−1)
2 = 3·(3−1)

2 = 3 residue pairs to its SP score. In particular,
the SP score for the shown column i corresponds to SP(i) = 1 · ST N + 1 · ST G + 1 · SNG. By
summing the column SP scores SP(i) over all N columns of an MSA (SP =

∑N
i SP(i)), one

can obtain an MSA SP score which can be used, e.g., to compare and judge two alternative
alignments (Chapter 5).

The SP score SP(i, j) for two different profile columns i and j can be computed in a
similar way. Instead of accumulating the score of all residue pairs within a single column,
the SP measure builds the sum over the scores of all possible pairs that can be formed
between each residue x from column i and each residue y from column j. For example,
one can form six pairs of amino acids between the profile columns i (ACD) and j (AE):
AA, AE, CA, CE, DA, and DE. The SP score for this profile columns then corresponds to
SP(i, j) = SAA+SAE+SCA+SC E+SDA+SDE . This effectively measures the similarity between
two profile columns based on their inherent residue types.

DP method for computing optimal MSAs

As explained in Section 2.2, the optimal global alignment of two sequences of length p and
q can be computed with dynamic programming using a p× q matrix. This concept can also
be applied to align an arbitrary number of sequences n of lengths l. However, this requires
the calculation of a fixed number of operations per entry in an n-dimensional matrix with
ln entries [Carrillo and Lipman 1988]. In other words, one can think of the optimal global
MSA of n sequences as a path inside an n-dimensional hypercube. Its sides correspond to
the induced pairwise alignment of two sequences in the MSA. Finding the optimal solution
thus has a computational complexity of O(ln). This makes the DP algorithm impractical for
MSAs including more than a few sequences as illustrated in the following example. For an
average sequence length of 250 amino acids, computing an MSA of three sequences already
requires the calculation of 2503 = 15,625,000 entries. While computing this number of
entries may still be feasible for modern computers, real world MSAs are usually build from
much more sequences in order to provide meaningful information. A small MSA of only 10
sequences, e.g., already necessitates the computation of 25010 ∼ 9.54× 1023 entries which
cannot be performed by modern computers in a reasonable time.
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To speed up the computation, Carrillo and Lipman [1988] proposed a strategy to reduce the
number of calculations while still guaranteeing to find the optimal alignment. The central
idea behind this strategy is that every MSA imposes pairwise sequence alignments between
all of its n sequences, i.e., the sides of the n-dimensional hypercube as outlined above. These
PSAs are projections of the MSA, i.e., the path followed inside the hypercube to obtain the
MSA, into the two-dimensional space spanned between two sequences. Likewise, these PSAs
also form bounds for the location of the optimal global MSA. This effectively restricts the
number of “relevant” entries in the n-dimensional matrix to find the optimal solution which
significantly reduces the number of computations.

The strategy by Carrillo and Lipman [1988] was later incorporated in the program MSA
[Lipman et al. 1989] which employs dynamic programming in combination with the SP
measure to compute multiple sequence alignments. Even though this strategy, as well as
further modifications [Gupta et al. 1995], reduces the runtime complexity of MSA significantly,
the remaining number of computation steps is still too large for computing MSAs with a
reasonable number of sequences in an acceptable time. In fact, several publications have
shown that computing the optimal MSA of n sequences with the DP algorithm under the SP
scoring model is NP-complete [Wang and Jiang 1994, Just 2001, Elias 2006]. Most MSA
programs used today thus rely on some kind of heuristic to speed up the computation. This
comes, however, at the cost of uncertain MSA quality which can be problematic as outlined
in the introduction of this thesis (Section 1.3).

Progressive alignment methods

Progressive alignment methods [Hogeweg and Hesper 1984, Feng and Doolittle 1987] are
the most commonly employed heuristic-based approaches for constructing MSAs [Chatzou
et al. 2016]. These methods first construct an initial alignment of the two most similar
sequences and then progressively add the remaining sequences or sequence groups to the
initial alignment by following the branching order of an evolutionary “guide” tree [Mount
2004]. At each inner node, a global pairwise sequence alignment is computed for either a
pair of sequences, a pair of intermediate alignments (alignment profiles), or a sequence and
an alignment profile. These pairwise alignments are typically computed using variations of
the Needleman-Wunsch algorithm in combination with a particular scoring model such as
the SP score which is able to measure the similarity between columns of different alignment
profiles.

Figure 2.8 illustrates this construction principle for a small example alignment of four
sequences. According to the evolutionary guide tree shown on the left hand side, the two
most similar sequences are A and B. Thus, the first step of the progressive alignment process
is to compute a PSA of A and B. The next node in the branching order of the guide tree
starting from the currently computed PSA(A,B) is the guide tree’s root node which aligns
two groups of sequences (AB and CD). Processing this node is equal to the computation
of a pairwise alignment of two alignment profiles, namely PSA(A,B) and PSA(C,D). In
order to satisfy the requirements for processing the root node, the next step is to compute
the PSA(C,D). The final MSA is then obtained by aligning the two profiles PSA(A,B) and
PSA(C,D). As outlined in Section 2.4.1, this can be achieved by using the chosen alignment
algorithm in combination with the SP score and by measuring the similarity between a
column i from the profile PSA(A,B) and a column j from the PSA(C,D).
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Figure 2.8: Flowchart illustrating the progressive sequence alignment process for a set of
four sequences. The guide tree reflecting the similarity of the sequences is shown on the
left hand side. The subtree being aligned in the current step is highlighted in red. Subtrees
indicating finished intermediate alignments are colored in blue. By following the branching
order of the guide tree, A is aligned with B in the first step followed by C and D in the second
step. In the third step, the alignment profiles AB and CD are aligned to form the final MSA.

Figure 2.9: Flowchart illustrating the construction process of a guide tree for multiple
sequence alignments. Given a sequence dataset and a particular distance measure, e.g.,
pairwise global similarity, a distance matrix is calculated. This matrix is then clustered with
a specific clustering method like UPGMA to construct the final binary guide tree.

The guide trees used in progressive alignments are usually constructed by hierarchically
clustering the sequence set using a distance matrix derived from pairwise sequence similarity
scores (Figure 2.9). First, the similarities between all sequence pairs are calculated, e.g.,
using global PSA algorithms such as the previously described Needleman-Wunsch algorithm
or by counting the number of identical subsequences of a given length k between two
sequences (k-mers) [Edgar 2004b]. Subsequently, these scores are transformed into a
distance matrix. The final guide tree is then computed from this distance matrix through
hierarchical clustering, e.g., by employing standard methods for constructing phylogenetic
trees such as the Neighbor-Joining [Saitou and Nei 1987] or UPGMA [Sneath and Sokal
1973] method.

The main advantage of progressive alignment methods is their speed. In contrast to the
standard DP algorithm, even large MSAs can be computed in a reasonable time. However, this
speed advantage comes at the cost of an uncertain alignment accuracy. Since the computed
intermediate alignments (inner nodes in the guide tree) never change in later steps, mistakes
made in earlier stages are propagated through the entire alignment process [Notredame et al.
2000, Wheeler and Kececioglu 2007, Sievers et al. 2011]. The accuracy of the final MSA thus
strongly depends on the quality of the guide tree [Nelesen et al. 2008, Zhan et al. 2015]. In
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order to mitigate these problems, many progressive alignment programs employ additional
strategies such as iterative refinement steps or consistency-based alignment constraints. In
the following, we describe these methods in more detail.

Iterative methods

Iterative alignment methods cope with the aforementioned problem that intermediate
alignments remain fixed through the entire progressive alignment process resulting in
potentially biased MSAs. Instead of computing a single final MSA only, these methods
iteratively refine the final MSA by splitting the sequence set of the MSA in two groups
which are subsequently re-aligned. During this process, the alignment structure within an
individual group typically remains unchanged. If the re-aligned MSA has a higher score
than the original one, it is returned as the result instead of the original MSA. This process is
repeated multiple times until the MSA score does no longer improve or a certain number of
iterations have been performed.

According to Wheeler and Kececioglu [2007], iterative MSA programs often select groups
for re-alignment either randomly [Do et al. 2005] or based on the guide tree [Edgar 2004b,
Katoh et al. 2002]. In the latter case, edges of the guide tree are repeatedly cut based on
a particular strategy in order to divide the sequence set in two separate groups. MUSCLE
[Edgar 2004b] for instance, iterates over all edges of the guide tree, while MAFFT [Katoh et al.
2002] visits edges in random order. Additional strategies were proposed, e.g., by Wheeler
and Kececioglu [2007] including the so-called exhaustive 2-cut, the random 3-cut, and an
on-the-fly method. The first strategy assigns a score to each edge representing its potential
for an improvement through re-alignment to determine the visiting order of the edges. The
random 3-cut divides the sequence set into three groups A, B, and, C and keeps the highest
scoring realignment out of the three different merge orders (ABC, ACB, and BCA). With
the on-the-fly method, also currently computed intermediate alignments are re-aligned by
cutting edges to a grandchild or child before continuing the alignment process.

Iterative alignments methods often produce MSAs of higher accuracy when compared to
standard progressive alignments without refinement steps. However, the gain in accuracy
often depends on the number of iterations performed and thus typically comes at the cost
of longer computation time. For the sake of higher accuracy, most commonly employed
progressive aligners still apply at least a few iterative refinements steps. We will describe a
representative selection of these methods in more detail in Section 2.4.2.

Consistency-based alignment methods

The accuracy of an MSA generated with the progressive alignment heuristic strongly depends
on the quality of the guide tree. Due to the greedy nature of this approach, mistakes made in
earlier stages when merging alignments directly affect the remaining alignment process and
cannot be corrected later [Notredame et al. 2000, Wheeler and Kececioglu 2007, Sievers
et al. 2011]. In other words, the processing order of the sequences in a progressive alignment
may lead to a local optimum which may prevent the construction of a globally optimal MSA,
i.e., an MSA that induces optimal pairwise alignments across all sequences. For example,
starting the alignment process from a PSA of very distantly related sequences may prevent
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very similar sequences from being optimally aligned to each other in the final MSA. Likewise,
aligning very similar sequences first and then adding distantly related ones may completely
break the optimal PSAs between these distantly related sequences.

According to Chatzou et al. [2016], the most common approach to avoid this effect and,
in turn, to improve MSA accuracy is the usage of consistency [Notredame et al. 2000]. The
key concept of this methodology is to employ optimal pairwise sequence alignments as
constraints for the construction of a global MSA. By re-estimating the match scores of residue
pairs based on information obtained from these PSAs, an adapted scoring model is derived.
This scoring model can steer the alignment process towards generating MSA regions that
are more “consistent” to the optimal PSAs of the involved sequences.

Kemena and Notredame [2009] report that consistency-based alignment programs generate
MSAs with higher accuracy than iterative progressive methods on structural MSA bench-
mark datasets. This improvement in accuracy comes, however, at the cost of significantly
higher computation time and memory consumption. Most implementations have a runtime
complexity of O(n3) and a space complexity of O(n2) [Chatzou et al. 2016]. According to
Kemena and Notredame [2009], aligning N sequences using consistency-based methods
require N times more CPU time on average than standard progressive alignment programs.

The consistency methodology is incorporated into several MSA programs (e.g., T-Coffee
[Notredame et al. 2000], Mafft [Katoh et al. 2002], MSAProbs [Liu et al. 2010], and ProbCons
[Do et al. 2005]). Since T-Coffee is considered to be an archetype for consistency-based
aligners [Chatzou et al. 2016], we describe this program in more detail in Section 2.4.2.
An extensive review about other consistency-based methods can be found in [Kemena and
Notredame 2009].

Phylogeny-aware alignment methods

Progressive alignment methods construct MSAs by successively performing pairwise align-
ments of two sequences or sequence groups until all sequences in the data set are added to
the MSA. Each time a pairwise alignment of two groups is performed, additional gaps may
be introduced into the final alignment that are fully penalized. Since pairwise alignments
do not distinguish between insertion and deletion events, this can be problematic when
introducing additional gaps into columns that already contain at least one gap. In this
case, the additional penalty would account for the new deletions but existing and already
penalized insertions would receive additional penalties as well.

Figure 2.10 illustrates this problem for a pairwise alignment of two example alignment
profiles. Starting on the left hand side, two pairs of sequences are aligned by introducing
gaps (red boxes) forming two different alignment profiles. Since pairwise alignments cannot
distinguish between insertion and deletion events, the applied gap penalty accounts for
both types of events. In the final MSA, additional gaps (red boxes) are introduced to form
the pairwise alignment of the profiles computed in the previous step. Again, the penalties
for these new gaps represent joint penalties for deletion and insertion events. Since the
“theoretical” insertions (blue boxes) were already penalized during the construction of the
alignment profiles, applying a full gap penalty in the profile alignment would “incorrectly”
penalize the insertions for a second time. According to Löytynoja and Goldman [2005],
this may result in over-aligned MSAs which effectively underestimate the true number of
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Figure 2.10: Flowchart illustrating the problem of penalizing insertions multiple times
in a progressive alignment. On the left hand side, two pairs of sequences are shown that
are aligned to form two profiles (middle). The gaps introduced in this step (red boxes)
are fully penalized and account for insertion and deletion events. On the right hand side,
the final MSA is shown which aligns the two profiles by introducing additional gaps (red
boxes). Again, these gaps are fully penalized and thus include potential insertions as well as
deletion events. Since the potential insertions (blue boxes) were already penalized during the
construction of the profiles, this results in insertions being “incorrectly” penalized multiple
times.

insertions. Thus, phylogeneticists often tend to manually refine similarity-based MSAs to
generate MSAs that more likely reflect homology from an evolutionary perspective [Chatzou
et al. 2016].

As reported by Löytynoja and Goldman [2005], traditional progressive alignment programs
treat gaps as deletions and use heuristics to correct for multiply penalized insertions, e.g.,
by lowering the penalties for gaps that are introduced at sites already containing gaps
as implemented in CLustalW [Thompson et al. 1994]. Even though this may prevent the
alignment of non-homologous residues at insertion sites, the phylogenetic information
contained in the indel events is discarded. This may result in substantial bias affecting
phylogenetic analysis based on these MSAs [Löytynoja and Goldman 2005].

According to Chatzou et al. [2016], phylogeny-aware alignment methods address this issue
by measuring the accuracy of an MSA based on the quality of its underlying phylogenetic
model. For example, one of the first phylogeny-aware alignment methods PRANK [Löytynoja
and Goldman 2005], directly avoids repeated penalties for insertions in order to produce
MSAs that reflect the true phylogenetic tree more properly. Another example is the iterative
phylogeny-aware alignment program Saté [Liu et al. 2009]. This program estimates the
MSA supporting the highest-scoring maximum likelihood tree [Chatzou et al. 2016].

2.4.2 MSA programs

Over the last decades, a vast amount of MSA programs and algorithms have been proposed
which compute protein MSAs out of a set of protein sequences. For instance, Chatzou et al.
[2016] mentioned that over 100 alternative MSA methods have been developed over the
last three decades.

These MSA programs mostly differ in their usage of different heuristics to approximate
the optimal MSA which in turn affects their accuracy, supported number of sequences and
runtime complexity. In this section, we thus focus on a representative selection of widely used
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Program Iterative
Consistency-

based
Secondary
Structure

Large-scale

ClustalW2 x - - -
Clustal Ω x - - x
T-Coffee - x - -
MUSCLE x - - -
Decipher x - x -

Table 2.7: Widely used programs for the computation of protein multiple sequence align-
ments and their underlying methodologies. This includes whether a particular program
uses some kind of iterative refinement, follows a consistency-based approach, makes use of
secondary structure information, or can be employed for large-scale alignments containing
thousands of sequences.

algorithms and programs for the construction of protein MSAs. Additionally, we included
the program DECIPHER which represents one of the most recent MSA programs to date. An
overview of these programs and their employed construction methodologies is given in
Table 2.7.

ClustalW and ClustalW2

ClustalW [Thompson et al. 1994] is one of the oldest but also one of the most popular
programs for progressively computing MSAs. In order to produce accurate alignments, Clus-
talW extends the standard progressive alignment procedure by a number of modifications.
In particular, this includes an individual weighting scheme for scoring residue pairs based
on relative sequence similarities, the usage of different substitution matrices for individual
alignment stages, and an adaptive position-specific gap penalty model.

The guide tree used for the progressive alignment is constructed on the basis of pairwise
sequence similarity scores using the Neighbor-Joining method [Saitou and Nei 1987].
ClustalW offers two methods for computing the pairwise similarity scores: The first method
counts the number of identical k-tuples in the best PSA generated by a fast approximate
method and subtracts a fixed penalty for each gap. The second method is reported to be
more accurate. It counts the number of identical residues in an optimal global PSA. This PSA
is constructed using a full dynamic programming approach in combination with a specific
substitution matrix and an affine gap penalty model.

Analogous to the second method, the sequences or sequence groups defined by the guide
tree are aligned using a full DP algorithm during the progressive alignment stages. In each
stage, the positions Ai and B j between two sequences or sequence groups A and B are rated
as the average of the weighted substitution matrix scores of each residue in Ai paired with
each residue in B j. Pairings with gaps receive a score of zero. In order to associate gaps
with the worst possible score, the matrices are rescored to contain only positive values. The
aforementioned weights of each sequence depend on its distance in the guide tree to the
root node. This distance is also used as a similarity measure between sequences or sequence
groups which determines the scoring matrix used for each alignment stage.
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The penalties for introducing gaps are adapted according to a set of rules. Each gap is scaled
by the average score for a substitution event and the similarity of the involved sequences
in percent. The length of the sequences and their differences also affect the gap penalties.
Additionally, ClustalW uses residue-specific and position-specific gap costs. For instance, the
gap penalties are locally reduced in hydrophilic stretches to encourage gaps in loop regions.
Likewise, introducing gaps in regions already containing gaps is less penalized.

In 2007, Larkin et al. presented a new ClustalW version called ClustalW2 [Larkin et al.
2007]. ClustalW2 provides a set of extensions to the original ClustalW program in order
to improve the program’s runtime and the accuracy of the generated MSAs. In particular,
this includes a faster guide tree computation based on the UPGMA method [Sneath and
Sokal 1973] and the option to iteratively refine the generated MSA. The latter option can be
applied to intermediate alignments or the final MSA. It successively removes and realigns
each sequence in the MSA and subsequently checks whether the re-alignment results in an
improved MSA score.

T-Coffee

The greedy nature of progressive alignment strategies can introduce a severe bias since
alignment errors made in early stages are propagated to the final MSA. In order to miti-
gate this problem, T-Coffee [Notredame et al. 2000] considers all sequences during each
alignment stage, instead of only those involved in the current intermediate alignment. In
other words, T-Coffee aims at constructing MSAs of which the induced pairwise alignments
match their optimal counterparts.

First, T-Coffee creates a library of pairwise sequence alignments. For each pair of sequences,
a global PSA and the ten best non-overlapping local PSAs are computed. These computations
use the previously described ClustalW software and the program Lalign [Huang and Miller
1991] of the FASTA package [Pearson and Lipman 1988], a variant of the Smith-Waterman
algorithm (Section 2.2.1). The pairwise residue matches represented by these alignments
are then used as constraints for the further alignment process. In order to designate their
importance for the final alignment, each residue pair also receives a weight equal to the
percentage of preserved residue pairs in the corresponding PSA.

In a second step, the information provided by the global and local PSAs is merged by stacking
duplicates into a single library by summing up their weights. The resulting primary library
is then extended by analyzing the transitive pairwise alignment relationships of the residues.
For each residue match between two sequences A and B, T-Coffee checks the corresponding
residue matches in the PSAs of A with sequence C, and B with sequence C. If these matches
are identical, i.e., refer to the same residuum in C, the weight for the particular residue
match between A and B is increased. This process is repeated until all transitive relationships
between all sequence pairs AB to all other sequence C 6∈ AB are analyzed.

On basis of this extended library, T-Coffee performs a progressive alignment according to the
method used in ClustalW. First, a guide tree is computed using the Neighbor-Joining method
based on a distance matrix. It is generated from sequence similarity scores obtained through
pairwise alignments. By following the branching order and using the aforementioned DP
algorithm, sequences or profiles are aligned using the position-specific weights stored in the
extended library. When aligning two profiles at inner nodes of the guide tree, each column
is rated by the average of the position-specific weights referring to the column’s position.
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Since the position-specific scores already reflect the gap penalties used in the construction
of the underlying PSAs, T-Coffee does not require a further gap penalty model. Hence, all
gap penalties are set to zero when performing the progressive alignment.

T-Coffee was reported to produce more accurate alignments than other methods such as
Dialign2 [Morgenstern 1999] or ClustalW [Thompson et al. 1994]. However, this accuracy
comes at the cost of a high computation time: The runtime complexity of T-Coffee is
O(N2 L2)+O(N3 L)+O(N3)+O(N L2) with N denoting the number of sequences in the MSA
and L the average sequence length. The individual terms correspond to the computation of
the primary library, the extension of the library, the construction of the Neighbor-Joining
guide tree, and finally the computation of the progressive alignment.

MUSCLE

MUSCLE [Edgar 2004a, Edgar 2004b] is another popular progressive alignment tool employing
iterative refinement for improved MSA accuracy and a novel objective function, the so-called
log-expectation (LE) score. This scoring function is a modified version of the log-average
scoring function [Ohsen and Zimmer 2001]. It takes the amino acid composition as well as
the frequency of gaps within the columns into account. MUSCLE computes an MSA in three
stages: a draft progressive stage, an improved progressive stage, and a final refinement stage.
At the end of each stage, an MSA is available. MSAs created in later stages are, however,
usually more accurate.

In the draft progressive stage, a first MSA is computed emphasizing speed over accuracy.
First, a distance matrix representing the pairwise similarities of the sequences is computed
using a fast but potentially inaccurate k-mer distance measure. Afterwards, the distance
matrix is used to construct a guide tree by employing the UPGMA method [Sneath and Sokal
1973]. Analogous to other progressive aligners, the MSA is then computed by following the
branching order of this guide tree. At each internal node, an intermediate alignment of the
corresponding two alignment profiles is generated by comparing profile columns using the
aforementioned log-expectation score. Through this, MUSCLE effectively favors alignment
columns with few gaps over those containing a large number of gaps.

At completion of the draft progressive stage, a first MSA is available. The quality of this MSA
is, however, questionable due to the usage of a probably suboptimal guide tree induced by
the approximative nature of the k-mer distance measure. In the second stage, the so-called
improved progressive stage, MUSCLE thus re-estimates the guide tree based on the MSA of
the draft progressive stage. First, MUSCLE computes the pairwise residue identity within
each pairwise alignment induced in this MSA. The computed values are then converted
into a distance matrix by applying a Kimura correction [Kimura 1983] which accounts for
multiple substitutions at a single site. A new guide tree is then derived from this distance
matrix, again using the UPGMA clustering method, and an additional progressive alignment
is performed as described above. However, only subtrees with different branching order to
the initial guide tree are progressively re-aligned in order to save computation time.

In the third and last stage, MUSCLE performs a user-specified number of refinement steps
to further improve the MSA. At each step, an edge, which has been visited in decreasing
distance from the root, is deleted to split the guide tree into two separate subtrees. The
resulting alignment profiles are then re-aligned. If the new alignment provides a higher SP
score than the previous MSA, the new alignment is kept or otherwise discarded.
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According to Edgar [2004], MUSCLE quickly produces MSAs with a comparable or superior
accuracy compared to other alignment methods (e.g., ClustalW [Thompson et al. 1994], T-
Coffee [Notredame et al. 2000], and MAFFT [Katoh et al. 2002]) on state-of-the-art alignment
benchmarks such as BAliBASE or SABmark. Even without refinement, the quality of the MSAs
generated with MUSCLE was reported to be indistinguishable from those computed with T-
Coffee or MAFFT. Edgar also declared that this version was the fastest of all tested methods.
It only required 7 minutes for the computation of an MSA of 5,000 sequences with an
average length of 350 residues.

Clustal Omega

Clustal Omega [Sievers et al. 2011] is the latest version of the aforementioned Clustal
programs which aims to align several hundreds of thousands of sequences quickly. In order
to handle this huge number of sequences, Clustal Omega employs a fast approximate guide
tree construction followed by a progressive alignment based on pairwise alignments of
profile hidden Markov models.

According to Sievers et al. [2011], the direct computation of all pairwise similarity scores
between N sequences in order to obtain a distance matrix to be used as an input for guide
tree construction typically has a runtime and space complexity of O(N2). To reduce the high
costs that comes with the alignment of huge sequence datasets, Clustal Omega uses the mBed
[Blackshields et al. 2010] method in combination with k-means or UPGMA [Sneath and
Sokal 1973] clustering to approximate a guide tree in O(N log N). Instead of computing all
pairwise similarities, mBed only computes the similarity between a number of seed sequences
t sampled from the data set and all non-seed sequences. The similarity scores can quickly
be computed using the k-mer measure which is also implemented in ClustalW2. Afterwards,
each sequence is replaced by a vector of length t with coordinates representing the similarity
scores obtained for the sequence vs. seed comparisons. Clustering the resulting vectors with
k-means or UPGMA then yields the final guide tree.

The multiple sequence alignment is computed progressively by following the branching
order of the computed guide tree. At each intermediate alignment stage, Clustal Omega
aligns two profile hidden Markov models (HMM) [Eddy 1998] using the HHalign package
[Söding 2004]. For increased accuracy, Clustal Omega can also iteratively refine its guide
tree and HMMs.

According to Sievers et al. [2011], Clustal Omega produces alignments of a comparable
quality to other methods for smaller numbers of sequences. For larger sequence datasets,
it was reported to outperform other MSA programs in terms of accuracy and computation
time.

DECIPHER

DECIPHER [Wright 2015] is one of the most recent programs for computing MSAs. Similar to
the aforementioned tools, DECIPHER computes MSAs using the progressive alignment strategy
and iterative refinement. Unlike other popular alignment programs, however, DECIPHER also
incorporates structural information in the alignment process. The program performs four
stages to produce an MSA.
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In the first stage, secondary structure prediction is performed on each sequence using
the GOR algorithm [Garnier et al. 1996] (Version IV). This results in each residue being
annotated with its probability to belong to a specific secondary structure conformation
within its sequence, namely helix (H), β-sheet (E) or coil (C).

In the second stage, a rough guide tree is computed based on shared k-mer distances similar
to MAFFT and MUSCLE. In contrast to these programs, DECIPHER only considers k-mers that
occur in the same order in both sequences. According to the author, this effectively mitigates
the problem that particular k-mers are expected to occur frequently by chance in longer
sequences but comes at the cost of higher computation time. The resulting distance matrix
is clustered by single-linkage clustering to obtain an initial guide tree.

By following its branching order, two profiles are globally aligned using a variation of
the Needleman-Wunsch algorithm in combination with a modified version of MUSCLE’s
profile sum-of-pairs (PSP) objective function. This objective function additionally encourages
conserved regions of matching secondary structure using the previously predicted secondary
structure information. Gaps are penalized in DECIPHER by a position-specific gap opening
penalty and an extension penalty proportional to the length of a gap raised to a power. The
opening penalty varies depending on the surrounding residues and their likelihood to occur
near gaps. In addition, gap opening and extension costs are adapted linearly depending on
the similarity of the sequence profiles to restrict gaps between closely related sequences.

During the third stage, a new UPGMA guide tree is calculated based on the Hamming
distance of each sequence pair in the alignment obtained from the second stage. For each
node difference between this UPGMA tree and the previous guide tree, the underlying
sequence profiles are re-aligned. This stage is repeated for a fixed number of iterations.

In the last stage, the obtained MSA is further refined. The UPGMA tree is successively split
at all edges that separate the sequences into two groups with a distance of at least 70%.
These groups are then re-aligned.

2.5 Analysis and comparison of multiple sequence alignments

Another important application in the context of sequence alignments is the assessment of
the accuracy of alignment programs and the resulting alignments. While PSA algorithms
guarantee to produce the optimal alignment given a particular scoring model (Section 2.2),
the usage of heuristics in MSA algorithms typically results in unknown MSA accuracy and
thus requires verification (Section 2.4). Since the optimal MSA of an arbitrary sequence
set under a given scoring model is unknown, the accuracy of MSA programs is normally
assessed using standardized MSA benchmarks.

MSA benchmark datasets (e.g., BAliBASE 3.0 [Thompson et al. 2005], OXBench [Raghava
et al. 2003], SABmark 1.65 [Van Walle et al. 2005]) provide specific sets of sequences and
corresponding reference alignments. These reference alignments are typically manually
curated or verified and are thus considered to be correctly aligned. Often, these reference
alignments are designed to represent specific alignment tasks. This includes, e.g., the
alignment of structurally related sequences (BAliBASE 3.0) or very dissimilar sequences
(SABmark 1.65).
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For each benchmark set of sequences, sequence alignments can be computed using arbitrary
MSA programs and corresponding parameters. The obtained alternative alignments can then
be compared with the reference alignment by employing a particular comparison measure
in order to assess the accuracy of the generated alignment and in turn the accuracy of the
alignment program and/or its parameters.

2.5.1 MSA benchmark datasets

Commonly used MSA benchmark datasets are, for instance, BAliBASE 3.0 [Thompson et al.
2005], OXBench [Raghava et al. 2003] and SABmark 1.65 [Van Walle et al. 2005]. These
benchmarks are also available in a single convenient benchmark collection called bench
[Edgar 2009a] which covers a broad range of different alignment scenarios.

BAliBASE 3.0 is one of the most widely used MSA benchmarks and provides 386 MSAs
categorized in five different sets. Each set represents a specific MSA use case, e.g., a set of
very divergent sequences (Reference 1) or sequence families that are aligned to a distantly
related sequence (Reference 2). The MSAs in each set were generated using a combination
of sequence- and structure-based methods with manual refinement [Edgar 2010]. SABmark
1.65 provides two sets of MSAs, a “Twilight Zone” set (209 MSAs) and a “Superfamilies” set
(425 MSAs) which are derived from a consensus of SOFI and CE [Boutonnet et al. 1995].
While the sequences in the first set share a maximum similarity of 25%, the second set
contains sequences with a maximum similarity of 50%. The underlying sequences were
selected using fold information from the SCOP database and thus possess known structure.
OXBench provides a set of 395 structural MSAs in total constructed using STAMP [Russell and
Barton 1992] and 3D structural information from the 3Dee database [Siddiqui et al. 2001].

2.5.2 MSA comparison measures

Several measures for the comparison of two alternative sequence alignments have been
proposed over the last years. In this thesis, we also present additional MSA comparison
measures later in Chapter 5. One of the simplest methods is to compute the sum-of-pairs
(SP) score for both alternative alignments and to consider the alignment with the higher
score as the “better” alignment. This method can also be accompanied with a certain gap
penalty model. However, the SP method is not able to quantify the differences between both
alignments in a meaningful way since the SP score for the optimal alignment is unknown
and thus no normalization can be applied.

Other measures represent the differences between a reference and a target alignment more
accurately. For example, the BAliBASE total column score [Thompson et al. 1999a] expresses
the difference between two alignments by the fraction of the number of identically aligned
columns in both alignments and the total number of columns in the reference alignment.
Some measures assess the alignment differences on a per residue level. The q-score measure
[Edgar 2004b], e.g., counts the number of identically aligned residue pairs in both alignments
and relates this count to the total number of aligned pairs in the reference alignment. This
measure is also known as the BAliBASE SP score [Thompson et al. 1999a] or the Developer
score [Sauder et al. 2000]. Likewise, the Modeler score [Sauder et al. 2000] corresponds to
the fraction of the total number of identically aligned residue pairs in both alignments and
the total number of aligned residue pairs in the target alignment.
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The aforementioned column- or residue-based measures are widely used especially when
evaluating the accuracy of MSA programs on the basis of state-of-the-art MSA benchmark
datasets. However, these methods do not report the magnitude of the per-column or per-
residue differences of the alignments.

Shift score measure

Another well-established alignment comparison measure is the so-called shift score by Cline
et al. [2002]. Unlike the aforementioned per-residue comparison measures, the shift score
not only counts the number of differently aligned residues but also takes the magnitude
of their alignment differences into account: Given two alternative pairwise alignments of
sequences A and B, the shift score analyzes the shift δ(x) of each residue at index x in
sequence A by comparing the indices (y1 and y2) of its aligned residues in sequence B in
the two alternative alignments. Likewise, the shift values of the residues of sequence B are
measured with regard to sequence A.

Figure 2.11 illustrates this principle based on two alternative example PSAs. Shown on the
left hand side is the reference PSA with two aligned residues being highlighted (orange).
The index of the leucine residue (L) in sequence A is denoted with x and the index of
the aligned methionine (M) with y1. On the right hand side, an alternative PSA is shown.
In contrast to the reference alignment, the same leucine residue of sequence A is aligned
with an isoleucine in sequence B at index y2. The shift value for this leucine residues thus
corresponds to δ(x) = y1 − y2 = 6− 9 = −3. The final shift score ∆(x) is then computed
based on the shift values δ(x) according to the following equation:

∆(x) =
1+ ε

1+ |δ(x)|
− ε (2.10)

The parameter ε allows to adjust the scoring range of the shift score measure between −ε
and 1. In fact, ε defines at which shift value the shift score drops into the negative range. The
usage of ε= 0.2 as suggested by the authors results, e.g., in residues with a total shift of 5
receiving a score of∆(x) = 0. Residues with larger shifts than 5 would receive negative shift
scores successively approaching −ε. Perfect matches are always rated with the highest shift
score of ∆(x) = 1 regardless of the chosen ε-value. Notably, the shift score is not defined
(∆(x) = 0) for alignment constellations where a residue is aligned to a gap symbol.

x
↓

Seq.A FV-CALRAASE
Seq.B FVPCRMRDISE

↑
y1

x
↓

Seq.A FV-CA---LRAASE
Seq.B FVPCRMRDI---SE

↑ ↑
y1 y2

Figure 2.11: Example of a reference PSA (left) and an alternative PSA (right) illustrating
the shift score measure by Cline et al. [2002]. In the reference PSA, the leucine (L) at index
x in sequence A is aligned with a methionine at index y1 in sequence B. The same leucine is
aligned in the alternative PSA with an isoleucine (I) at index y2. The shift value δ(x) of the
leucine between the two alignments thus corresponds to δ(x) = y1 − y2 = 6− 9= −3.
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Chapter 3
Serious games for bioinformatics

3.1 Introduction

Playing games is a central activity in human life across all societies, genders, and age classes.
Games are structured forms of playing behavior defined by specific rules and goals. Especially
digital games that use computing hardware such as a personal computer or a video game
console became more and more popular over the last years. In 2015, 42% of all citizens in
Germany older than 14 years played computer and video games [Bitkom Research 2015].
Another study performed by the entertainment software association (ESA) showed that in
2017 at least one person in 65% of the U.S. households regularly plays video games [ESA
2017]. According to this study, the average gamer is 35 years old.

People play games primarily for entertainment but some games are also designed with the
intention to achieve additional goals while still eliciting fun to the players. The prominent
board game Monopoly, e.g., was originally intended to serve as an educational tool to
demonstrate the negative effects of private monopolies [Orbanes 2007]. In light of the
large and steadily increasing number of computer gamers, digital games thus offer a great
potential for motivating and involving humans even in non-gaming tasks.

Games that are designed with this potential in mind are often loosely denoted as serious
games or mistakenly associated with the term gamification. In the context of this thesis, we
use the definitions by Dörner et al. to clarify these terms. They define a serious game as “a
digital game created with the intention to entertain and to achieve at least one additional
goal (e.g., learning or health)” [Dörner et al. 2016, p. 3]. These additional goals are denoted
as characterizing goals. In contrast, gamification describes the process of transferring “game
methodologies or elements to non-game applications and processes” [Dörner et al. 2016,
p. 3]. The outcomes of gamification thus do not necessarily represent an actual game [Dörner
et al. 2016, p. 4].

Serious games that are explicitly designed to engage players in specific non-game tasks are
called games with a purpose (GWAP) [Dörner et al. 2016, p. 6]. They combine the intrinsic
motivation of gaming with the concepts of crowdsourcing and citizen science. In citizen
science, research tasks are outsourced to a volunteer crowd of amateur or non-professional
“scientists” [Hand 2010]. Cooper et al. [2010] introduced a specific subcategory of games
with a purpose called scientific discovery games. According to Cooper et al. [2010], these
types of games “translate computationally difficult scientific problems into puzzles” and
provide “game-like mechanism for non-expert players to help solve these problems”.

Citizen science approaches and especially scientific discovery games can be powerful tools to
address computationally expensive problems in biology. The scientific discovery game Phylo
[Kawrykow et al. 2012], e.g., demonstrates that the time-consuming process of manual
MSA refinement can successfully be outsourced even to non-experts by transforming the
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task into a puzzle-style game. However, their approach does not support the refinement of
protein MSAs. The authors also did not evaluate if their game is fun to play and delivers a
true game experience.

According to Dörner et al. [2016, p. 11], game experience is the subjective experience of
true gaming. Providing the player with a true game experience while still achieving the
characterizing goals is essential for the success of a serious game. The concept of game
experience includes several dimensions, e.g., fun, flow, immersion, challenge, tension, and
positive as well as negative emotions. One of the most important dimensions is game flow.
It represents a player’s feeling of being absorbed by the game. As of Dörner et al. [2016,
p. 11], game flow is characterized by an exclusive concentration on the game and the feeling
of control over the game. Other aspects include being immersed by the game, facing clear
goals, and receiving immediate and consistent feedback. To enable the player to enter the
state of flow, a serious game thus must maintain an appropriate balance between the task
difficulty and the player’s skill level.

The players’ subjective game experience can be measured, e.g., using the game experience
questionnaire (GEQ) [IJsselsteijn et al. 2008, Nacke 2009]. This questionnaire assesses
game experience using 36 items referring to seven categories: immersion, flow, competence,
tension, challenge, positive and negative affect. The items are based on a Likert scale with
five possible answers ranging from “not at all” to “extremely”. The authors also offer a
shorter version called in-game experience questionnaire (iGEQ). This version is designed to
assess a player’s game experience during a game session. Thus, it only contains two items
per GEQ category.

Inspired by Phylo, we developed our own scientific discovery game called Bionigma for
improving the quality of protein MSAs. Unlike Phylo, Bionigma is especially designed to
deliver a true game experience to motivate and attract a large number of players. For this
purpose, we followed an iterative development process. In each iteration, we implemented
a new game version and evaluated the resulting prototype in various user studies. Based on
the feedback and insights obtained from the different evaluations, we successively improved
our game concept. As shown by the results of our follow-up studies, we could successfully
improve its capabilities to elicit fun and to deliver a true game experience with each iteration.

In this chapter, we first present successful examples for citizen science approaches and
games with a purpose addressing problems in biology and bioinformatics. The remainder of
this chapter describes the different developmental stages of our scientific discovery game
approach for solving and improving protein MSAs in detail. These parts also include detailed
evaluations and discussions of each developmental stage.

3.2 Related work

As mentioned above, citizen science describes the process of solving scientific problems by
a volunteer crowd of amateur or non-professional scientists [Hand 2010]. The success of
this concept often depends on the number of participating volunteers and thus motivation
is a crucial aspect. A popular method to motivate and encourage people for these tasks
are computer games, i.e., games with a purposes. In this section, we present a selection
of successful citizen science (game) approaches in detail. This includes two of the most

42



Chapter 3: Serious games for bioinformatics

popular citizen science approaches to date (SETI@home and Galaxy Zoo) that demonstrate
the overall usefulness of this concept. In particular, we focus on scientific discovery games
that address important problems in biology.

3.2.1 Crowdsourcing and citizen science

SETI@home and Folding@home

One of the most popular citizen science projects is SETI@home [Korpela et al. 2001].
This project aims at analyzing radio signals using home computers to search for signs of
extraterrestrial intelligence. While performing other tasks for different scientific projects,
the Arecibo radio telescope passively collects a vast amount of radio data. These datasets
could contain hints about extraterrestrial intelligence but their analysis requires an immense
computational effort. To address this problem, SETI@home divides the data into smaller
chunks. These chunks are then analyzed using distributed computing by employing private
computers from volunteers. Unlike other citizen science projects, the volunteer supporters
thus only provide SETI@home with computational resources but do not manually interact
with the data.

The success of this approach led to follow-up projects such as Folding@home [Shirts and
Pande 2000] which extends this citizen science concept to the molecular biology domain.
Folding@home uses the idle processing resources of computers provided by volunteers to
discover the process of protein folding. The obtained information is especially useful for
medical research and drug design.

Galaxy Zoo

Galaxy Zoo [Lintott et al. 2008, Willett et al. 2013, Willett et al. 2017, Simmons et al. 2017]
is a citizen science project that aims at the morphological classification of galaxies in millions
of pictures by using the natural visual pattern recognition capability of humans.

The users determine the shape of galaxies presented to them and classify certain features.
This is achieved by answering a questionnaire with a finite number of answers based on a
decision tree. For each available answer, Galaxy Zoo provides the user with example images
to support them in the decision process. In Galaxy Zoo 2, e.g., the root node of the decision
tree refers to the question “whether the galaxy is either ‘smooth’, has ‘features or a disk’,
or is a ‘star or artifact’” [Willett et al. 2013]. Depending on the user’s answers, the next
steps ask for further details about the chosen galaxy type or exit the classification when
the leaf nodes in the decision tree are reached. In order to collect reliable classifications
and to remove outliers, the user results are weighted based on different criteria such as the
community consensus [Simmons et al. 2017].

Since the initial start of Galaxy Zoo in July 2007 and across different project phases, over
one million morphologies for galaxies have been collected [Simmons et al. 2017]. Galaxy
Zoo thus demonstrates the huge potential of employing crowd-sourcing concepts for the
task of visual pattern recognition.
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Project Discovery

Project Discovery is a citizen science project embedded in the massively multiplayer online
role-playing game Eve Online [2017]. It outsources different research tasks to the players in
return for in-game rewards. The first research task in Project Discovery was the identification
of the subcellular localization of proteins in cells based on microscope images [Project
Discovery 2017]. According to Marx [2015], this information can be used, e.g., to obtain
clues about the function of the proteins and to create cellular maps. The latter can also help
when characterizing disease states.

Conforming to Marx [2015], subcellular protein locations are usually detected with spatial
proteomics techniques such as Immunofluorescence. However, the resulting images typically
have to be manually reviewed by experts in order to properly identify and categorize the
subcellular locations of the proteins [The Human Protein Atlas Blog 2016]. While this may
be feasible for a small number of images, the effort for processing huge image datasets
such as the millions of images taken in the Human Protein Atlas (HPA) project is immense
[Uhlén et al. 2005, Uhlen et al. 2010, Uhlén et al. 2015]. For this reason, the cumbersome
classification task was outsourced to a volunteer crowd of Eve Online players of Eve Online
[2017].

Eve Online is a massively multiplayer online role-playing game (MMORPG) with a persistent
world set up in a space scenario. The players can fly around in their space ships and visit
star systems while participating in in-game activities such as mining, piracy, manufacturing,
trading, exploration, and combat. The aforementioned classification task is embedded as
a mini-game within Eve Online. For increased immersion, it is also interweaved into Eve
Online’s story line. The players are recruited by the Sisters of EVE (SoE) to assist in the
identification of biological samples obtained from Drifters, a mysterious faction in Eve Online.
These samples are in fact the microscopy images obtained within the HPA’s subcellular protein
atlas project. Likewise, the task is the identification of patterns of protein distributions in
human cells.

According to the information provided on the Project Discovery [2017] website, the mini-
game shows the original microscope image to the players. Proteins in question within this
image are highlighted in green. Blue regions indicate cell nuclei and red lines represent
microtubules that fill the cytoplasm. The players may activate different filters or zoom the
image to focus on specific details. The player’s task is to classify the shown image according
to different categories illustrated by example images. If none of the depicted categories
match, the player can choose to declare the sample as abnormal indicating that the image
cannot be properly categorized.

For each solved task, the players earn small amounts of Interstellar Kredits (ISK), experience
points, and Analysis Kredits that can be spend in the main game. The magnitude of the
rewards depend on the player’s accuracy rating. This rating represents the reliability of the
player to accurately classify the images and serves as some sort of quality criteria.

As described on the Project Discovery [2017] website, this accuracy is measured in two
different ways. Before the players are allowed to classify real samples, they have to process
a set of pre-classified examples. Based on this dataset, a first accuracy rating is calculated by
comparing the pre-classifications with the player’s solutions. As soon as a player is allowed
to process real samples, the player’s accuracy rating is adjusted for each accomplished task
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after a consensus community solution is found. Depending on the deviation of the player’s
solution from this consensus, the player’s accuracy rating is either increased or decreased. If
such a consensus for the player’s current task exists, it is shown to the player after submitting
his own solution.

Already two months after launch of Project Discovery in March 2016, 40,000 players helped
in the analysis of 250,000 images of stained tissue samples resulting in over 4.5 million
individual protein location annotations [Peplow 2016]. Project discovery thus provides
further evidence for the usefulness of citizen science approaches and employing humans for
otherwise computationally expensive tasks.

3.2.2 Scientific discovery games in biology

Foldit

Foldit [Cooper et al. 2010a] is a multiplayer scientific discovery game that aims at finding
accurate solutions for the protein folding problem. According to [Lesk 2010, p. 123], many
approaches to predict a protein’s 3D structure try to reproduce the interatomic interactions
in the protein. Through this, an energy model can be derived that allows to compute the
free energy of any conformation. The 3D structure of a protein can then be predicted by
finding the minimum of this conformational energy function.

As reported by Cooper et al. [2010], predicting the 3D structure of proteins is still a largely
unsolved problem at least for larger proteins. The authors relate this to the enormous number
of degrees of freedom that have to be taken into account when searching the extremely
large free energy landscape of the protein. However, the authors of Foldit hypothesized
that the spatial reasoning of humans could help in sampling the conformational space and
determining suboptimal conformations.

Improperly folded protein conformations are depicted in Foldit using a simplified 3D visuali-
zation of the protein’s structure. The backbone of the protein is shown as a single object
hiding its underlying atoms. In contrast, the structure of the amino acid side chains including
the position of the atoms are fully visible. Depending on whether a side chain is hydrophilic
or hydrophobic, the side chain mesh is either colored in blue or orange. The color of the
various backbone regions indicate their energy. Low energy regions are colored in green and
those with high residue energy that should be improved are colored in red. Additionally, Fol-
dit visually highlights certain regions of interest. This includes, e.g., energetically frustrated
areas that could be improved, hydrogen bonds, or interatomic repulsion and cavities.

In order to improve the energy of the shown protein structure, the players can directly
manipulate the 3D structure. This can be achieved by pulling specific parts of the protein
in the desired direction. Additionally, Foldit provides the players with different automatic
tools based on algorithms from the Rosetta structure prediction methodology [Rohl et al.
2004]. To constrain the structure of the protein during these “automatic moves”, the players
can add “rubber bands” or “freeze” specific degrees of freedom. The current score of the
played level (the negative of the Rosetta energy) is shown at the top of the game screen
along with the player’s current ranking in comparison to other players. The latter provides
further motivation for the players to improve their score.
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To engage players with no previous knowledge in molecular biology, Foldit provides a tutorial
to learn the aforementioned game mechanics. In addition, Foldit features the creation of
interaction macros [Cooper et al. 2011]. These so-called recipes are collected in a “cookbook”
and are available to all Foldit players.

Recent studies showed that some solutions found by Foldit players even outperformed their
computer-based counterparts [Khatib et al. 2011a, Khatib et al. 2011b]. This demonstrates
that Foldit’s approach for the optimization of protein structure prediction results actually
works.

Phylo

Phylo is a scientific discovery game for improving DNA multiple sequence alignments
[Kawrykow et al. 2012]. Like all MSA problems, the computation of DNA multiple sequence
alignments is also NP-complete. Thus, heuristics are traditionally used to speed up the
computation process. Likewise, the resulting alignments may be suboptimal which can
negatively affect further applications based on these alignments. Since humans typically
outperform computers in detecting misalignments, an important step to improve the quality
of sequence alignments is manual refinement. However, this is a cumbersome task that often
requires the knowledge of experts. To address this problem, Phylo abstracts the alignment
problem in the form of a puzzle game to enable even non-experts to successfully refine DNA
alignments.

Similar to visual MSA editors (Section 5.2.2), Phylo represents a DNA sequence alignment in
a grid-like manner. Each row in this grid refers to a specific DNA sequence. The nucleotides
inside these sequences are depicted as colored squares with the color indicating their type.
Empty cells represent gaps in the alignment. The players can improve the alignments by
aligning identically colored squares to increase the number of matches while simultaneously
reducing the number of mismatches and gaps. This is achieved by moving single squares
or a rectangular selection of squares to the left or right through a mouse drag gesture.
Neighboring squares that collide with the current selection during movement are also moved
in the current movement direction.

Instead of providing the players with all sequences from the beginning, the players align the
full set of sequences in successive steps according to the branching order of an evolutionary
tree. This is similar to the progressive alignment method presented in Section 2.4.1. At each
alignment stage, the players must achieve a given minimum alignment score called par in
order to proceed with the next stage or – in the last stage – to finish the level. The par value
of the current stage as well as the player’s current score and personal highscore is shown at
the top of the screen as numbers.

The score of the current alignment stage is computed using an identity-based substitution
model and affine gap penalties. The total score is based on the similarity of a particular
sequence and its ancestor defined by the evolutionary tree, i.e., the consensus sequence of
the inner node. For each pair of matching squares between the sequence and the ancestor,
the player receives a reward of +1 point. Likewise each pair of mismatching squares is
penalized by −1. Additionally, Phylo penalizes each individual gap and each gap extension
by a certain amount. Terminal gaps are not penalized.
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Depending on the finally achieved alignment score, the players increase their rank in a
global ranking list. This list contains four different categories: the number of times a player
matched the par value, beat the par, holds the highscore, and the total sum of these values.
This mechanism provides another motivation factor for the players to achieve the highest
score per level and to solve additional puzzles. Additionally, the player may choose the
puzzles from a set of eight disease categories. Each category represents alignments that are
associated with a particular disease such as cancer or blood and immune system diseases.
This is another strong motivation factor for the players. It suggests that playing Phylo actually
helps to cure dangerous diseases.

According to the statistics shown at the Phylo website1, a total number of over one mil-
lion MSAs had been solved to date (24.10.2017). This indicates that Phylo was able to
successfully attract players to help in refining sequence alignments. According to the results
presented in the initial publication of Phylo [Kawrykow et al. 2012], the player-refined MSAs
outperformed their computer-generated counterparts in most cases. This demonstrates that
the player-refined alignments are actually useful.

Nonetheless, this promising approach has some limitations. According to [Kawrykow et al.
2012], Phylo can only deal with DNA sequences and only supports the refinement of small
alignment subsets of 8 sequences with a few number of nucleotides. The size of the playing
field is fixed which may constrain the players in their movements. Additionally, the number
of supporting information or interactions is very limited. There is also no further evidence
besides the actual number of improved MSAs that Phylo is actually fun to play and delivers
a true game experience.

3.3 First prototype

The goal of our first game prototype [Hess et al. 2014b]was to provide an initial puzzle game
version for protein MSA refinement with comparable features to Phylo [Kawrykow et al.
2012] and some additional improvements such as increased alignment size. Additionally,
we wanted to investigate whether this kind of puzzle-style citizen science game is able to
deliver a true game experience and enables non-experts to refine protein MSAs.

3.3.1 Approach

In line with Phylo and other visual MSA editors (Section 5.2.2), our prototype visualizes a
sequence alignment in a grid-like manner similar to an abacus (Figure 3.1). Each row in
this grid refers to a particular protein sequence in the alignment. Its corresponding amino
acids are represented by differently-colored circular discs, while gaps in the alignment are
depicted as empty space between the acids. For simplicity, we did not model similarities
between different amino acid types (e.g., different substitution scores) in this first prototype.
Instead, we employed a simple identity-based scoring model like that used in Phylo and
color-coded each individual acid type by a unique color (Figure 3.2).

For each pair of aligned amino acids of identical type (identical colors), the player receives
a fixed reward, while pairs of mismatching amino acids are penalized with a fixed negative
score. Gaps are penalized row-wise by an affine gap penalty model using fixed gap opening
and extension penalties (Section 2.1.2). The heights of the match reward and the penalties

1http://phylo.cs.mcgill.ca/, last accessed 24.10.2017
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Figure 3.1: The game interface of our first game prototype. The alignment grid is shown at
the center. Each row corresponds to a specific protein sequence. The amino acids inside the
proteins are depicted as circular disks. The different colors indicate the different acid types.
The icons and values shown at the upper left corner depict scoring information about the
current level (From the left to the right: match reward, mismatch penalty, gap opening and
extension penalty, level highscore, and current alignment score). The upper right corner
displays the undo/redo and menu buttons.

G R E S C P A Y H K L N V F D I M T W Q

Figure 3.2: The color scheme used in the first prototype to represent the 20 different
standard amino acids with unique colors.
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Figure 3.3: Aligning by drag and drop. The green disk with the white outline is dragged
one position to the left. It collides with the neighboring red disk which is in turn also moved
one position to the left.

are adapted for each individual game level. The settings for the currently played level are
shown at the upper left corner of the game user interface. In the level shown in Figure 3.1,
e.g., a match is rewarded with +3 points, while a mismatch receives a penalty of −1. The
introduction of a gap results in a penalty of −2 and extending an existing gap by one unit
costs 1 point.

Like existing MSA programs (Section 2.4.2), our prototype computes the total alignment
score S based on the sum-of-pairs scoring measure (Section 2.4.1). In particular, the rewards
and penalties for all pairs of aligned amino acids in the alignment and the penalties received
for each individual gap are accumulated. The score of the current alignment is also shown
at the top of the user interface (S) next to the level-depending highscore threshold (HS).
This threshold represents the minimum alignment score a player must achieve to complete
a level.

To solve a given level, the player must improve the alignment by aligning identically colored
residues while simultaneously reducing the number of mismatches and gaps. A single amino
acid can be aligned through a mouse drag gesture. This moves the selected acid highlighted
by a white ring either to the left or right side (Figure 3.3). Neighboring amino acids that
collide with the acids being currently moved are simply “pushed” in the movement direction.
During the movement phase, the score of the current alignment stage is recalculated in real-
time. This enables the player to determine if the movement results in a score improvement
or not.

Beside this movement interaction, the player can revert and restore each performed align-
ment change by clicking on the undo and redo buttons shown at the upper right corner
of the user interface. Additionally, the shown alignment can be zoomed in order to get an
overview of a large alignment or to focus on specific alignment regions.

To support easy learning of the game mechanics and controls, we also implemented a short
stepwise tutorial. In each step, the player learns a new aspect of the game mechanics and
can directly try out the learned content inside the tutorial level. This is contrary to Phylo
which only provides the player with a written tutorial in combination with screenshots.
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3.3.2 Evaluation

Methods

We evaluated our early game prototype in a user study with a convenience sample of 20
persons (6 women and 14 men; age: 22 to 34 years). The participants were colleagues and
students from the biology (n = 11), computer science (n = 8), and educational science
domain (n= 1). Notably, five participants had no prior experience in computer games.

The purpose of this evaluation was to test the prototype concerning the quality of the tutorial,
the game mechanics, and the game experience. We implemented 10 different puzzles with
increasing difficulty based on artificial sequence alignments. With each difficulty step, we
increased the number of sequences and their lengths, reduced the similarity of the sequences,
and adapted the scoring scheme. For practical reasons, the largest levels were limited to 20
sequences with a length of 16 amino acids.

Each test person had a maximum of one hour of playing time. Beside this time limit, there
were no further limitations. Thus, the participants were allowed to stop playing whenever
they wanted as well as to skip the tutorial or certain levels. The participants were encouraged
to report their immediate game impressions and to identify issues while playing the game.
After playing, the participants had to answer a questionnaire consisting of 38 items based
on a Likert scale with five possible answers, ranging from “not at all” to “extremely”.

The first 14 items represented a variation of the in-game experience questionnaire (iGEQ)
[IJsselsteijn et al. 2008, Nacke 2009] (Table A.1). As outlined in the introduction, this
questionnaire measures game experience by seven categories: immersion, flow, competence,
tension, challenge, positive and negative affect. For compatibility reasons to our game (e.g.,
there is no storyline), we substituted the original iGEQ items one, five, 13, and 14 with the
GEQ items 14, 28, 13, and 22 of the same category.

The items 15 to 29 were related to usability aspects regarding the design of the user interface
and the controls according to the ISO 9241/(1)10 norm. These items were designed in
correspondence to the Isometrics Questionnaire [Gediga et al. 1999]. This part of the
questionnaire is shown in Table A.2. The last 9 items addressed the usability and helpfulness
of the tutorial (Table A.3).

We analyzed the different items by coding their corresponding answers with integer values
between 0 (“not at all”) and 4 (“extremely”). The obtained results are shown in the following
sections as box plots. Bottom and top of the shown boxes correspond to the lower (Q1)
and upper quartile (Q3) of the answer distribution, while the horizontal line inside the box
represents the median x̃ . The mean µ is depicted as a small dot. The whiskers show the
minimum and the maximum of the underlying distribution.

Results - Game experience

The results of our user study for the seven GEQ categories measuring the game experience
delivered by our prototype are shown in Figure 3.4. Despite its early stadium, our first
prototype received overall positive ratings with only slight variations in the answer distribu-
tions. Our prototype performed very well in the category of positive affect with a median of
x̃ = 3 indicating that the players had fun playing the game and felt pleased. They also had
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Figure 3.4: Box plot showing the distributions of answers received for each individual GEQ
category.

a substantial feeling of competence and challenge in the game also indicated by medians of
x̃ = 3 and mean values of µ ∼ 2.6. The majority of the participants reported a loss of their
sense of time during the play which relates to a considerable flow ( x̃ = 3, µ= 2.55).

In the immersion category, our prototype performed moderately with a median of x̃ = 2 and
a mean value of µ= 2.23. While the majority of the participants were aesthetically pleased
by the prototype (µ= 2.7), they were only moderately impressed (µ= 1.74). With regard
to negative impressions, our prototype showed also very good results. The majority of the
players were neither bored nor found the game tiresome. This results in a mean of µ = 0.57
and a median of x̃ = 0 in the category of negative affect. Additionally, they experienced
only a very low level of tension ( x̃ = 1, µ= 0.61).

Results - Tutorial

The evaluation of our prototype’s tutorial showed also reasonable results (Figure 3.5). All
but one participant played the tutorial in order to familiarize themselves with the game
mechanics. The majority of the participants found the tutorial comprehensive ( x̃ = 3,
µ= 3.3). Likewise, most participants rated the tutorial as well structured (µ= 3.06) and
helpful (µ= 2.79). They also had the feeling that they learned all relevant aspects of the
game mechanics (µ= 3.06). However, the answers referring to these three categories vary
stronger (Q1 = 2, Q3 = 4) in contrast to the comprehensibility rating of the tutorial.

The possibility to instantly practice the learned content in the tutorial level was also consi-
dered to be very positive ( x̃ = 4, µ = 3.5). Some participants rated the tutorial length as too
long ( x̃ = 1, µ = 0.97) and would appreciate a shorter version with fewer text components.

Results - Usability and game mechanics

The results of the usability and game mechanics parts of our user study are shown in
Figure 3.6. The design of the graphical user interface (GUI) was rated very well with a mean
of µ= 2.95. The participants were very pleased with the screen layout and they rated the
graphical user interface to be very comprehensive. The ratings of the controls showed even
better results with a median of x̃ = 4 and a mean of µ= 3.37. The participants stated that
the controls were very intuitive, easy to learn, good to memorize, and precise.
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Figure 3.5: Box plot showing the distributions of answers received for the individual aspects
of the tutorial.
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Figure 3.6: Box plot depicting the answer distributions for the assessed usability and game
mechanics aspects.

Contrary to the tutorial, the comprehensiveness of the scoring system received only moderate
ratings (µ = 1.95). Some of the participants had problems to identify the reasons for an
increase or decrease of the score, especially when gaps were involved. Another problem
reported by some test users was the lack of discriminability of some acid colors like different
types of green. As a result, the rating for the color scheme was only moderate with a mean
of µ= 2.2.

Discussion

The results of our user study demonstrate that our puzzle game prototype already performed
reasonably well regarding usability and game experience. However, there exists no “ground
truth” to which our results can be compared since the game experience of comparable games
such as Phylo was not assessed by the authors. Furthermore, comparing our game to a
purely entertaining game or to professional sequence alignment editors would be equally
unfair. Still, the results of this first study can serve as a reference for follow-up studies.
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Some major issues revealed in our study are the comprehensibility of the scoring scheme
and the discriminability of the different acid colors, especially in alignments with twenty
different amino acid types. According to flow theory [Csikszentmihalyi 2000], a negative
effect of these issues on game experience would have been reflected in low flow and high
tension scores. As illustrated in Figure 3.4, this is obviously not the case. In addition, some
participants felt constrained in their game control due to the lack of a multi-selection feature.
The players’ immersion is another aspect that should be improved in later game versions.

3.3.3 Conclusion

Our first puzzle game prototype represented an improved game approach for the manual
refinement of protein sequence alignments using an integration of the concepts of citizen
science and gaming. We implemented this prototype with a major focus on usability, visually
appealing appearance, and fun of gaming. The evaluation of our prototype regarding these
aspects showed promising results. The participants rated the game prototype as visually
appealing, controllable, and challenging. In spite of the early developmental state of this
game version, the players already had much fun in playing it, especially in advanced levels.
Still, the simple identity-based scoring model is a major limitation since it does not properly
reflect the state-of-the-art for rating protein alignments.

3.4 Second prototype

Based on the user feedback and insights obtained during the development of our first
prototype (Section 3.3.2), we improved our game concept in various ways. From a player’s
perspective, major issues of the first game version were the reported low player immersion
and the lack of more sophisticated interactions. The simple identity-based scoring model
was a major issue from a biologist’s point of view since it did not reflect the state-of-the-art
for protein MSAs. In order to address these limitations, our second prototype provides a
fully redesigned game interface, new interactions, and implements a real-world scoring
model for protein MSAs.

3.4.1 Approach

The redesigned game interface of our second prototype is shown in Figure 3.7. The alignment
grid is still depicted in the center of the game window with each row representing a particular
protein sequence. The corresponding amino acids are shown again as colored circular disks.
Likewise, the undo/redo buttons and the menu are shown at the top right corner of the
screen.

To increase the player’s immersion and to provide a more visually appealing game experience,
we embedded the game scene in a science-fiction-styled interface border. Additionally, we
replaced the scoring information panel at the top of the interface with a more intuitive
progress bar. This bar shows the current level score as numbers and by the filling level (blue)
of the progress bar. The scoring threshold of the currently played level that must be fulfilled
to complete the level is shown as a marker on the right side of the progress bar. During
movement, the bar also depicts in real-time the potential reward (green) or penalty (red)
the player earns for the current alignment state as well as the resulting total alignment
score. This helps the player to directly determine the reward or penalty for the current move
supporting him or her in the alignment process.

53



3.4 Second prototype

Figure 3.7: The game interface of our second prototype. The alignment grid is shown at the
center. Each row corresponds to a specific protein sequence. The amino acids inside the pro-
teins are depicted as colored circular disks indicating the different acid types. Similar colors
like different tones of blue indicate similar amino acids that receive increased BLOSUM62
substitution scores when being aligned. The current alignment score is shown at the top
in the form of a progress bar with the level scoring threshold being depicted as a vertical
mark. The buttons shown at the top right corner provide access to the game menu and to
the undo/redo functions.

Furthermore, we implemented an additional function to revert the current level to its high-
scoring state shown together with the basic undo/redo function at the upper right corner of
the interface. Through this function, the player can test different alignment constellations
without loosing their best-scoring state or requiring the cumbersome process of manually
saving and loading specific level states.

We also implemented new selection interactions to support the players in the alignment
process. The player can select an arbitrary number of amino acids by either selecting
individual amino acids per left click, drawing a selection rectangle via a drag gesture, or by
double clicking on specific amino acids. The latter allows the user to select all amino acids of
the same type within the current column. Additionally, we added selector buttons for each
column at the top and bottom of the alignment window to enable the player to select entire
columns. Similar to our first prototype, the selected acids can be moved in real-time to the
left or right side using a mouse drag gesture. Likewise, colliding amino acids are pushed in
the current movement direction.

Besides these enhancements, we redesigned the color scheme of the amino acids in order
to cope with the real-world MSA scoring model used in this game version. Instead of an
identity matrix, we selected the commonly used BLOSUM62 matrix [Henikoff and Henikoff
1992a] for representing substitution events between different amino acid types. Substitution
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I L M V F Y C H P G T A S N D Q E R K W

Figure 3.8: The color scheme used in our second prototype for depicting the 20 different
standard amino acids. Similar colors, like different tones of red, indicate similar amino acids
that provide scoring bonuses when being aligned.

matrices typically encode mutation probabilities between two amino acids in the form of
rounded log-odds scores derived from observed substitutions in aligned sequence datasets
(Section 2.1.1, Chapter 4).

According to these scores, some amino acid substitutions are considered to occur more likely
than other substitutions. Substitutions between identical acid types occur most often in
aligned sequence datasets and thus usually receive the largest scores in substitution matrices
(e.g., SWW = 11 in BLOSUM62). Additionally, substitutions between amino acid types with
similar physico-chemical attributes are considered to be more likely than substitutions
between largely different acid types [Lesk 2013, p. 184]. Substitutions between similar
amino acid types thus also receive larger scores in most substitution matrices including
BLOSUM62. For this reason, we manually designed our new color scheme to reflect these
similarities by similar colors that are still distinguishable for detecting identical amino acid
types.

The resulting color scheme is shown in Figure 3.8. For instance, substitutions between the
aliphatic amino acids isoleucine (I), leucine (L), methionine (M), and valine (V) receive
positive scores according to BLOSUM62. Thus, we colored these amino acids using different
tones of red.

3.4.2 Evaluation

Methods

We evaluated our second game prototype in another user study with a sample size of 28
persons (9 women, 18 men, and 1 no indication; age: 7 to 61 years). All test persons
were visitors at the public day of the GameDays 20142 and had no specific background in
scientific fields such as biology or computer science. The focus of this study was to assess
the capabilities of our game prototype to deliver a true game experience.

For this test setting, we implemented five different puzzles with increasing difficulty and
size based on artificial sequence alignments. The smallest level represented an MSA of five
sequences with a maximum length of nine residues. The two largest levels contained 29
and 38 sequences with maximum sequence lengths of 45 and 37 amino acids, respectively.
The test persons were allowed to play the game without any restrictions. Additionally, they

2http://www.gamedays2014.de/, last accessed 24.10.2017.
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Figure 3.9: Box plot depicting the answer distributions of the different GEQ categories
obtained in the user study of our second prototype.

were encouraged to report their immediate game impressions while playing the game. After
playing, the participants had to answer our adapted version of the in-game experience
questionnaire (iGEQ) [IJsselsteijn et al. 2008, Nacke 2009] (Table A.1).

Results

The results obtained for the different GEQ categories based on the iGEQ questionnaire are
shown in Figure 3.9. Again, our game prototype received overall positive ratings. In the
immersion category, our second prototype performed on average better than our previous
prototype with median and mean values of x̃ = 3 vs. x̃ = 2 and µ = 2.57 and µ = 2.23,
respectively. The main improvement in this category was achieved for the question if the
players felt impressed. Here, the mean was µ= 2.32 compared to µ= 1.74 obtained in the
evaluation of our first prototype. In general, our new interface design received a positive
feedback and was reported to be visually appealing.

A slight drop could be observed in the challenge category. Unlike its predecessor, our second
prototype was considered to be slightly less challenging with median and mean values of
x̃ = 2 vs. x̃ = 3 and µ = 2.27 vs. µ = 2.65, respectively. This indicates that our second
prototype delivered a more balanced game experience regarding the difficulty of the provided
game levels. While our second game version achieved almost identical ratings to our first
prototype in the categories competence ( x̃ = 3, µ = 2.52) and negative affect ( x̃ = 0,
µ = 0.61), it performed substantially better in the tension category with a median and mean
of only x̃ = 0 and µ= 0.55. In the category positive affect, our second game version also
received positive ratings indicated by a median of x̃ = 3 and a mean of µ = 2.88. This
demonstrates that the player had fun playing the game and felt pleased.

Notably, our second prototype received worse ratings compared to its predecessor in the
flow category. Several participants reported no loss of their sense of time during the play
indicated by a median of x̃ = 2 instead of x̃ = 3 and mean values of µ = 1.8 versus µ = 2.55.
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Discussion

The results of our study showed that our second puzzle game prototype overall delivered a
true game experience. In comparison to our first prototype, we could improve the ratings of
the GEQ categories immersion and tension, and the different difficulty levels of the tested
game levels were also considered to be more balanced. These improvements were primarily
achieved by our new graphical user interface through its more game-like look and feel,
the immediate information about scoring rewards and penalties, and the new selection
interactions.

Notably, our second prototype achieved worse ratings than its predecessor in the flow
category. However, this drop can be related to environmental circumstances as mentioned
by some participants. While the participants of our first study played the game in a quiet
environment, the test persons of our second study were stronger affected by external
disturbances caused by the environmental setting at the public day of GameDays 2014.

On average, the employed BLOSUM62-based scoring model and the corresponding color-
coded acid similarities were considered to be transparent and comprehensible. However,
the participants also reported that some pairings of amino acid types provided rewards
even though they were differently-colored (e.g., histidine (green) and tyrosine (orange)).
Likewise, some participants were confused that similarly-colored amino acids yield negative
scores instead of rewards. For instance, proline (P) and glycine (G) are both colored in green
but substitutions between them are rated with a score of −2. This indicates that our color
scheme still needs refinement in order to represent amino acid similarities more properly.

3.4.3 Conclusion

Our second game prototype implements several improvement over its predecessor. In parti-
cular, this includes a more visually appealing and game-like interface, more sophisticated
interactions, and a real-world scoring model for protein MSAs. These improvements enabled
our second prototype to receive higher iGEQ ratings on average than our first game version.
In particular, our study demonstrated that this game version is able to deliver a true game
experience to the player.

In addition, the usage of the BLOSUM62-based scoring model in combination with the
color-coded acid similarities finally enabled us to implement game levels for the refinement
of real protein MSAs, i.e., the initial purpose of our citizen science game approach. However,
according to the participants’ feedback received during our user study, the color scheme still
needs further refinement to reflect the amino acid similarities encoded in BLOSUM62 more
properly and in more intuitive way.

3.5 Bionigma

The final version of our scientific discovery game approach is called Bionigma3, a portmanteau
of the words biology and enigma, the Greek word for “riddle”. Bionigma is based on our
second game prototype but implements several further improvements to overcome its

3Bionigma can be played without any charge. Versions for Windows, Linux, and Mac OS X are available as
download at our game website http://www.bionigma.de, last accessed 24.10.2017.
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Figure 3.10: The in-game visualization of a small protein sequence alignment in Bionigma.
Each row of the shown grid refers to a specific sequence in the alignment. The colored game
tokens represent the different amino acids.

limitations as well as additional features for increased game experience. In the following
sections, we describe Bionigma in detail. The remainder of this section presents the results
of our third major user study and discusses the accuracy of the player-refined protein MSAs.

3.5.1 Approach

Game concept

Bionigma represents a full scientific discovery game for enabling non-experts to support
biologists in refining real protein sequence alignments while having fun and undergoing a
true game experience. Similar to our previous game prototypes, the protein MSA problem is
abstracted in the form of a puzzle game representing an MSA as a grid filled with colored
game tokens. Each row in the grid represents a particular protein sequence and the colored
tokens its corresponding amino acids (Figure 3.10).

By aligning similar game tokens, the player refines the real MSA and earns rewards increasing
the total level score. Likewise, adding additional gaps or aligning dissimilar game tokens
results in score penalties. In order to align tokens, the player can select single tokens through
a left-click, identical tokens in the same column trough a double-click, entire columns using
the column selector buttons shown at the top or bottom of the game interface, or multiple
tokens by drawing a selection rectangle. The selected tokens can then be aligned by moving
them to the left or right side using a mouse drag gesture. Similar to our game prototypes,
neighboring tokens are also moved in the movement direction on collision with already
moving tokens. In Bionigma, the score improvement or loss of a move is shown in real-time
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at the scoring bar at the top of the screen and by a small numeric value shown below the
mouse cursor. This allows the user to directly assess the benefit or loss of an alignment
action.

To finish a level, i.e., to accomplish a Bionigma mission, the player must achieve a certain
minimum score. The height of this threshold depends on whether the player played the level
the first time or tries to improve the already achieved score. In the former case, the game
uses a preset threshold that corresponds to the score of an existing MSA solution minus a
certain offset defined by the level creator. This ensures that a certain level can be mastered
by most players and prevents player frustration. In the latter case, the threshold represents
the highscore achieved by the Bionigma community for the given level.

After reaching a level’s minimum score, the player can decide to finish the current level or
to further refine the level to beat the current highscore. In both cases, the player receives
point rewards depending on the difficulty rating of the played level. These point rewards
increase the player’s rank in Bionigma’s global player ladder as well as his ranking for the
finished level. Beating the highscore of a level (mastering a level) rewards the player with a
huge amount of bonus points. Simultaneously, the previous master of the level loses his or
her bonus for holding the highscore resulting in a rank decrease of this player in the global
ladder. Notably, players may decide to further improve already played MSAs at any time to
(re-)claim the level mastership. This mechanic adds an additional challenge to the game
that encourages players to further improve their MSAs to deliver even better solutions.

To provide the players with an easy way to learn the aforementioned game mechanics, we
implemented a step-wise tutorial. In this tutorial, the player is guided through the different
game stages by explanations and direct instructions given in text form. Additionally, all
relevant areas on the screen are highlighted to focus the player on its current task. Similar
to the tutorial of our first prototype, the player can directly try out the learned content in the
game. The tutorial starts with the selection of a new level at the mission hub and guides the
player with instructions and tips through the process of refining a small example alignment.
In a second step, the player learns more advanced interactions techniques.

In order to collect the refined MSA data as well as provide the player with the aforementioned
ranking information, Bionigma uses a client/server approach. While the Bionigma client
represents the actual game containing the full game logic, the Bionigma server provides
the clients with new game levels (new protein MSAs), receives and stores the refined MSA
results from the players, and holds and provides ranking information of the players. To play
Bionigma, the player thus must create a personal account. However, this only requires the
selection of a unique nickname, a password, and entering the player’s birth date. The latter
information is used for statistics only.

Main menu

After login, the player enters Bionigma’s main menu shown in Figure 3.11. By clicking on
the buttons on the left hand side of this menu, the player can switch between different
screens such as the Mission Hub, the player’s profile, the ladder, or the options menu. The
latter provides different options to configure the game including graphics and sound settings
or changing the game language. Currently supported languages are German and English.
The ticker at the top of the screen shows general information about the game such as the
overall progress of the community in improving MSAs.
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Figure 3.11: Bionigma’s main menu currently showing the mission hub screen. Additional
screens including the player’s profile and the ladder can be accessed using the buttons on
the left hand side. The buttons shown at the center of the mission hub provide access to new
levels (white), list played but not yet finished levels (blue), and show the list of mastered
(green) or challenge levels (red).

The profile screen shows different statistics about the player’s overall game progress. This
includes, e.g., the total number of played and finished levels as well as the number of
currently mastered levels. Likewise, the ladder shows the player’s rank in the global ranking
list in comparison to other players of the Bionigma community.

The most important screen is the mission hub opened as standard screen after login (Fi-
gure 3.11). It enables the player to access a list with new levels of different difficulty (white
button) and to get access to already played but still unfinished levels (blue button). In order
to encourage the player in finishing levels, the current version of Bionigma limits the player
to only store a total amount of 10 unfinished or new levels before additional levels are
provided by the server. The green button opens the list of mastered levels, while the red
buttons lists all challenge levels where the player does not hold the highscore and may try
to (re-)claim the level mastership.

Visualization

After selecting a new level or an existing one for further refinement, the player enters the
actual puzzle game (Figure 3.10). As outlined above, the MSA puzzle is shown at the center
of the screen. Similar to our second prototype, we use the BLOSUM62 matrix [Henikoff and
Henikoff 1992a] for representing the relative mutation rates between the different amino
acid types. However, we further redesigned the BLOSUM62-based color scheme in order to
provide the player with an even better visual representation of the underlying amino acid
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A T S N D E Q K R I L V M F W Y H G P C

Figure 3.12: BLOSUM62 residue theme used as default theme in Bionigma. Substitutions
between identically-colored residues are always rewarded with positive scores and are thus
preferred. Additionally, similarities between differently-colored residues are represented by
identical shape and texture (S vs. N). The highest rewards are received for substitutions
between identical residues.

similarities encoded in BLOSUM62. Unlike our previous approaches, we visually encode
these similarities in Bionigma using three different visual properties – color, shape, and
texture. The resulting residue theme is shown in Figure 3.12.

Game tokens with identical colors represent amino acid groups that are guaranteed to
receive positive or at least neutral substitution scores (zero) in BLOSUM62. For instance,
the aliphatic amino acids I, L, M, and V are colored in red since substitutions between these
acids are rewarded by positive BLOSUM62 scores. By aligning red game tokens, the player is
thus guaranteed to improve its alignment score. The different shapes and textures are used
in a similar manner. In most cases, identically-colored tokens also possess identical shapes
to further emphasize their similarity, while the textures are used to indicate the unique acid
type.

In some cases, however, the shape and/or texture properties are also used to represent
similarities between game tokens (amino acids) that have different colors. For instance, the
amino acids serine (S) and asparagine (N) are colored in blue and purple, respectively, but
receive positive scores in BLOSUM62. Simply coloring S in purple would solve this issue
but would wrongly yield a similarity between S and histidine (H). Additionally, the (visual)
similarity between S and A and S and T would be destroyed. For this reason, we visually
reflect the similarity between S and N by identical shape and texture.

According to BLOSUM62, substitutions between the amino acid types glycine (G), proline
(P), and cysteine (C) and other amino acids are always penalized or receive a score of zero.
Hence, the player only receives positive scores when aligning these types with themselves.
To visually emphasize this behavior, we assigned unique shapes and colors to these three
acid types.

Highlighting modes

To support the player in the alignment process, we implemented two different highlighting
modes that can be activated on the player’s demand using the buttons shown at the top left
corner of the game interface. When activating the similarity mode, the player can move the
mouse cursor over a specific game token to show similar tokens in the puzzle. This results in
dissimilar tokens being shown with reduced size which visually emphasizes similar tokens
that provide positive substitution scores. This principle is illustrated in Figure 3.13. Here,
a token in the form of a yellow star with a cross texture was selected resulting in other
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Figure 3.13: Bionigma’s similarity mode for highlighting similar game tokens to the currently
hovered token. Similar tokens are visually emphasized by reducing the size of dissimilar
tokens.

star-shaped tokens being highlighted. This highlighting mode allows the user to easily detect
similar game tokens and can be used, e.g., to reveal potential misalignments that could be
improved.

The latter aspect is also addressed by our second highlighting mode called bad token mode.
In this mode, the three worst scoring tokens types per column are visually emphasized by
reducing the size of well-scoring game tokens. This mode is shown in Figure 3.14. It enables
the player to directly assess the worst-performing tokens that could be re-aligned to further
improve the alignment score. Besides these modes, the player can optionally highlight gaps
by showing “gap tokens” as white dashes in the puzzle.

Special interactions

In addition to the aforementioned selection and movement interactions, we implemented
two different special interactions based on the feedback received during our user studies.
Both interactions can be triggered by clicking on the corresponding buttons shown at the
lower left corner of the game interface. By clicking on the align-left or align-right buttons,
the selected tokens are re-aligned to form a left or right justified alignment. This enables the
player to quickly form a straight vertical alignment border without the need of manually
moving individual tokens.

The second special interaction is an alignment mechanic we call threading. After triggering
this alignment action, the player can select one token per row. By clicking on a column
selector button of choice, the selected tokens are aligned in the player-specified column.
This interaction is similar to one would thread single beads and pull the thread at both
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Figure 3.14: Bionigma’s bad token mode for highlighting potentially improvable alignment
regions. This mode visually emphasizes the three worst-scoring tokens per column by
reducing the size of the well-scoring tokens.

sides to form a straight line. An illustration of this mechanic is shown in Figure 3.15. Using
this alignment action, the player can easily align similar tokens in specific columns, e.g., to
produce an initial alignment as preparation for further refinements.

3.5.2 Evaluation - Game experience and usability

We evaluated our citizen science game approach Bionigma with respect to two different
aspects. First, we assessed its capabilities to deliver a true game experience as well as its
usability and the helpfulness of the tutorial. Our second goal was to evaluate the accuracy
of the player refined sequence alignments. This part of the evaluation is presented later in
Section 3.5.3.

Methods

In order to evaluate Bionigma with respect to the delivered game experience and its usability
we performed another user study with a sample size of of 26 persons (9 women and 17
men; age: 9 to 56 years). All test persons were visitors at the public day of GameDays 20154.
They had no specific background in scientific fields such as biology or computer science.

For this test setting, we used real protein MSAs provided by the Bionigma server, i.e.,
subsets of a selection of Pfam seed alignments (version 27) [Finn et al. 2016]. These levels
were parameterized with individual gap opening and extension penalties as well as level-
specific scoring thresholds. Further details about the underlying MSAs are presented later
in Section 3.5.3. The test persons were allowed to play the game without any restrictions
including no maximum playing time and were encouraged to report their immediate game

4http://www.gamedays2015.de/, last accessed 24.10.2017
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Figure 3.15: Example illustrating the threading alignment action. Left: The player can select
one token per row. Hereby, a virtual thread is drawn through the selected tokens (dotted
white line). Right: Clicking on a column selector of choice (blue rectangular button) triggers
the alignment of the selected tokens in the corresponding column.

impressions while playing the game. After playing, the participants were asked to answer
a questionnaire consisting of 24 items based on a Likert scale with five possible answers
ranging from “not at all” to “extremely”.

The first 14 items referred to our modified version of the in-game experience questionnaire
(iGEQ) [IJsselsteijn et al. 2008, Nacke 2009] (Table A.1) like in our previous studies. The
remaining 10 items covered different aspects including usability, the usefulness of the tutorial
and the provided BLOSUM62-based residue theme, and general game impressions. This
part of the questionnaire is shown in (Table A.4).

Results - Game experience

The results of the iGEQ part of the questionnaire are illustrated in Figure 3.16. In these seven
categories, Bionigma received predominantly positive ratings. This provides evidence that
Bionigma delivers a true game experience to its players and is fun to play. In comparison to
our previous prototypes, Bionigma even showed the highest immersion rating with a median
of x̃ = 3 and a mean of µ = 2.9. The lower and upper quartiles for this category correspond
to Q1 = 2 and Q3 = 4 also indicating that the majority of the players felt immersive during
play.

In the flow category, Bionigma performed slightly better than its predecessor but still received
only moderate ratings with median and mean values of x̃ = 2.5 and µ= 2.35, respectively.
Notably, there is a large variance in the answers of the participants indicated by a lower
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Figure 3.16: Box plot depicting the answer distributions of the different GEQ categories
obtained in the user study of our citizen science game approach Bionigma.

quartile of only Q1 = 1 and a high upper quartile of Q3 = 4. While some participants
reported that they completely lost their sense of time during play, other participants were
apparently not affected by a considerable flow.

The majority of the participants reported a strong feeling of competence during play resulting
in a median of x̃ = 3. Still, 19% of all participants reported that they had problems in solving
the levels and 31% of the test person did not feel skillful during play reducing the mean
value to only µ= 2.46. Interestingly, these issues had apparently no affect on the challenge
category. Here, the players rated Bionigma overall moderately ( x̃ = 2, µ= 2.33) indicating
that the majority of the players considered the difficulty of the levels as well balanced.

Bionigma received very positive ratings in the category of negative affect ( x̃ = 0, µ = 0.54).
This demonstrates that the majority of the participants neither felt bored during play nor
found the game tiresome. Likewise, the players experienced only a very low level of tension
indicated by median and mean values of x̃ = 0 and µ = 0.62. Bionigma’s overall good
ratings in the category of positive affect ( x̃ = 3, µ= 3.06) further shows that Bionigma is
fun to play.

Results - Tutorial, usability and game mechanics

The results of the second part of our user study addressing the overall game impression
and mechanics as well as the tutorial is shown in Figure 3.17. Also in this part, Bionigma
received very positive feedback. The majority of the participants liked the game ( x̃ = 3,
µ = 3.23) and would have played longer if they had more time ( x̃ = 3, µ = 2.69). Most
of the participants were also interested in playing Bionigma in their leisure time ( x̃ = 3,
µ= 2.58).

Bionigma’s tutorial also received overall positive ratings. Most players found the tutorial
comprehensive ( x̃ = 4, µ= 3.5), well-structured ( x̃ = 3, µ= 3.35), and most importantly
helpful ( x̃ = 3, µ= 3.31). Additionally, the majority of the participants found the controls
of Bionigma intuitive including the novel special interactions and were pleased with the
precision of the interactions as indicated by median values of x̃ = 3 and mean values of
µ= 3.08 and µ= 2.96, respectively.
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Figure 3.17: Box plot depicting the answer distributions obtained in the user study of
Bionigma for the questions regarding the overall game impression (orange), the tutorial
(blue), the residue theme (red), and the controls (purple).

Likewise, our novel residue theme using shape, color, and texture for representing similarities
between different amino acid types received very positive ratings. Almost all players reported
that they could clearly distinguish the different types of tokens ( x̃ = 4, µ= 3.58) and also
could successfully identify similar tokens ( x̃ = 3, µ= 3.27).

Discussion

The results of our user study shows that our improved citizen game concept for the manual
refinement of protein MSAs presented in the form of our digital game Bionigma actually
works. The majority of the players had a lot of fun during play and are also interested in
playing the game in their leisure time. Likewise, the game was considered to be visually
appealing and attractive. The overall positive answers received in the GEQ Categories
provide further evidence that Bionigma delivers a true game experience to the players.

Still, there appears to be room for improvements with respect to the ratings of the GEQ
categories competence and flow. Roughly 31% of the players reported that they did not
feel skillful during play. Interestingly, we did not find, however, a correlation between these
answers and those obtained from the same persons regarding the challenge category. Thus,
we relate the negative ratings received for the competence category primarily to the fact
that the players played Bionigma for the first time and would probably feel more competent
with increased experience.

The reported feeling of flow was higher on average (µ = 2.35) compared to our second
prototype (µ = 1.8). Still, the answers received for this category varied strongly as indicated
by the lower and upper quartiles of Q1 = 1 and Q3 = 4, respectively. Similar to our previous
user study performed during the public day of GameDays 2014, a potential reason for this
variance could be again external disturbances caused by the environment which negatively
affected the concentration of some players. Unfortunately, we did not received additional
information from the participants that could further explain the reasons for the only moderate
flow ratings.
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3.5.3 Evaluation - MSA accuracy

In the second of part of the evaluation, we analyzed the accuracy of the MSAs refined by
the players of Bionigma. This includes the results obtained for the different levels played
during the user study described before and those received by the players during Bionigma’s
beta phase.

Methods - Level data

For this evaluation, we implemented a set of 32 game levels in total with difficulty ratings
ranging from “easy” to “difficult”. These levels are based on subsets of real protein MSAs
derived from Pfam seed alignments (version 27.0) [Finn et al. 2016]. Pfam seed alignments
are manually curated by experts and thus can be considered as ground truth sequence
alignments providing us with reliable MSA data.

The 32 levels were created by selecting rectangular regions from the original alignments
that were subsequently re-aligned by randomly inserting gaps. Even though this destroys
the original alignment constellation, it enables the players to start their own alignment
process from a more unbiased starting point. This also avoids the need to generate the entire
alignment from scratch. Additionally, we found that most players had more fun in playing
largely unaligned puzzles rather than improving puzzles pre-aligned by experts. Our method
thus also aims at producing levels that are fun to play.

We assigned each level a difficulty rating of either easy, normal, advanced, or difficult. This
rating depends on the size of a level, its overall sequence similarity, and the chosen gap
penalties. For most levels, we assigned a gap opening penalty of −10 and a gap extension
penalty of −2. This is in concordance to often chosen penalty settings by other tools (e.g.,
BLAST [Altschul et al. 1990], FASTA [Pearson 1991]). Additionally, we created copies of
existing levels and assigned them higher penalties to investigate the impact of different
penalty heights. Two copies were assigned a gap opening and extension penalty of −35 and
−2 and four copies received penalties of −45 and −2, respectively.

Methods - Alternative MSAs and quality measures

We analyzed the accuracy of the player-refined MSAs in comparison to the original Pfam
seed alignments and alternative MSAs generated with the frequently used MSA program
MUSCLE [Edgar 2004b] (Section 2.4.2). Here, we applied the same scoring parameters as in
Bionigma, i.e., the BLOSUM62 matrix as substitution model and the aforementioned gap
penalties. The accuracy of the different alignments was measured using the total SP score
and the scoring model used in Bionigma, i.e., the sum of the total SP value and the total
gap penalty.

Notably, we could not always compare the alternative alignments computed by MUSCLE and
the Bionigma players with their original Pfam seed counterparts. Some Pfam seed alignments
are too large to directly implement them as Bionigma levels. Therefore, we had to manually
select subsets. The original alignments of these subsets were constructed with respect to
the context of the entire sequence set. Since not all subsets properly reflect this context,
we cannot always compare the original subset alignments with their alternatives generated
by MUSCLE or the Bionigma community in a fair way. In these cases, we thus do not report
accuracy scores for the original Pfam seed alignment subsets.
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Results and discussion

The scoring results obtained for the alternative alignments of the Bionigma levels are shown
in Figure 3.18 and Figure 3.19. The results for the total SP score are shown in the upper
part and the lower half depicts the Bionigma score. If available, the scores for the original
Pfam seed alignments are shown in red. The scores of the MUSCLE alignments are colored in
yellow and the three highest-scoring MSAs generated by Bionigma players are depicted in
blue. The individual scores obtained for each level by MUSCLE and the high-scoring player
(the level master) and the scoring ratios between them are shown in Table A.5.

According to these results, the best Bionigma players always generated alignments with
higher total SP and Bionigma scores than MUSCLE. Where comparable, these player alignments
also received higher scores than the original Pfam seed alignments. Under the applied
scoring models (total SP and Bionigma score), Bionigma players thus produced better
alignments than MUSCLE and also the original Pfam seed alignments. The alignments created
by the players of Bionigma contain, however, much more gaps on average than the MUSCLE
alignments and the original Pfam seed MSAs. This effect can be observed in particular for
larger levels with gap opening and extension penalties of −10 and −2.

From a biological and evolutionary perspective, some of the MSAs generated by the Bionigma
community are thus doubtful even though they received high total SP and Bionigma scores.
An example illustrating this observation is shown in Figure 3.20. Here, the player could
achieve very high scores although he or she avoided almost all mismatches and introduced
numerous gaps. Notably, empty columns in this example are only used by the player for
structuring purposes and do not represent real gaps that are penalized.

The undesired effect of too many gaps can be related to the gap penalty model used in
Bionigma. Gaps are penalized row-wise but substitutions are rated pairwise. Substitutions
thus semi-quadratically influence the final score, while gaps only have a linear impact. For
this reason, one has to apply high gap penalties to balance both terms. In particular, the
penalties must be adjusted according to the number of sequences in the alignments. As
shown by the player MSA depicted in Figure 3.20, we apparently selected too low penalties
for some levels.

Nonetheless, we also obtained biologically and evolutionary reasonable MSAs from the
Bionigma community. For example, Figure 3.21 shows two alternative alignments of the
Bionigma level Usher-Protein-P1c using gap opening penalty of−35 and an extension penalty
of −2. Shown at the top is the original alignment of the Pfam seed MSA subset. Interestingly,
this MSA is identical to the MSA generated by MUSCLE and contains only terminal gaps. The
highest-scoring alternative alignment created by a Bionigma players is shown at the bottom.
Here, the Bionigma player decided to align the proline residues (pink stars) at the center
and at the C-terminal region (right hand side) of the alignment.

This is interesting because proline is known to be a so-called “helix breaker”. Alpha helices
are common secondary structure motifs of proteins. They are held together by hydrogen
bonds. Proline’s molecular structure prevents, however, its amino group from participating
in hydrogen bonding. The existence of a proline residue in a sequence may indicate the end
of an alpha helix. From a structurally driven alignment perspective, it thus makes sense to
align the proline residues in this Bionigma level.
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Figure 3.18: Scoring results obtained for the first 16 levels. The upper parts of the two
shown level groups represent the total SP score, the lower parts the Bionigma score.
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Figure 3.19: Scoring results obtained for the level numbers 17 to 32. The upper parts of
the two shown level groups represent the total SP score, the lower parts the Bionigma score.
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Figure 3.20: A player solution for the Bionigma level Herpes-Glyco-B-P1b using a gap
opening penalty of −10 and an extension penalty of −2.

Figure 3.22 shows another example for the Bionigma level Ion-Transporter-P4c. The MUSCLE
alignment is shown at the top and the highest-scoring player alignment is depicted at the
bottom. The original Pfam seed alignment is not shown in this case because it cannot be
compared in a fair way as outlined above. Overall, both alignments are relatively similar.
The MUSCLE alignment contains generally fewer gaps than the player alignment but has more
terminal gaps. The latter can be related to the reduced penalty that is applied by MUSCLE
for terminal gaps. This apparently results, however, in misalignments at the C-terminal
alignment region. In contrast, the Bionigma player aligned this region more reasonably.

Unlike MUSCLE, the player introduced several gaps of length one in the central region of
the alignment. This is contrary to common knowledge that longer consecutive gaps are
considered to be more likely than several single gaps at non-consecutive positions [Lesk
2013, p. 184]. In this case, however, adding these gaps substantially reduces the number of
mismatches between very dissimilar residues. This also leads to significantly increased total
SP scores. From this perspective, adding these gaps thus may be considered to be plausible.

3.5.4 Conclusion

We presented Bionigma, an improved scientific discovery game approach for the manual
refinement of protein sequence alignments. Bionigma abstracts the alignment problem
in the form of a puzzle game where the player must align similar game tokens. In order
to visually encode the similarities between the different amino acid types, we proposed
a novel visualization theme based on the BLOSUM62 substitution scores [Henikoff and
Henikoff 1992a] using different colors, shapes, and textures. Furthermore, we presented
novel highlighting and interaction modes to support the players in the alignment process.
These features in combination with a visually appealing game interface enable even non-
experts – casual players – to successfully improve sequence alignments.

As shown by our user study, Bionigma is fun to play and delivers a true game experience to
the players. The resulting player-refined MSAs also showed promising results. According
to commonly used scoring models, Bionigma players produced better alignments than
the alignment program MUSCLE [Edgar 2004b]. In view of biologically and evolutionary
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Original Pfam seed and MUSCLE alignment

Best player alignment

Figure 3.21: Alternative alignments of the Bionigma level Usher-Protein-P1c.

correctness, we found that the accuracy of the obtained alignments strongly depends on the
heights of the chosen gap penalties. For sufficiently large gap penalties, the players could,
however, successfully produce plausible alignments.
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MUSCLE alignment

Best player alignment

Figure 3.22: Two alternative alignments of the Bionigma level Ion-Transporter-P4c.
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4.1 Introduction

The computation of sequence alignments usually requires a particular scoring model which
represents evolutionary substitution, insertion and deletion events. While the latter two
events are normally encoded by specific gap penalty models as described in Section 2.1.2,
substitution events are represented in the form of substitution matrices. Each matrix entry
encodes the substitution event between two specific types of nucleotides or amino acids αi
and α j . The values on the off-diagonal entries represent the relative mutation rates between
αi and α j , i.e., the likelihood of αi mutating to α j in relation to independent evolution. The
likelihood of preserving a particular nucleotide or amino acid is represented on the diagonal
of the substitution matrix.

The computation of DNA sequence alignments is often based on simple substitution models
[Lesk 2013, p. 184]. This includes, e.g., the identity matrix or a matrix that rates preserved
pairs with +1 and substitutions with -1. The generation of a protein sequence alignment,
however, usually requires a more complex model since substitution events between at least
20 different standard amino acids need to be encoded. In addition, some amino acid types are
considered to mutate more likely into other types that have similar size or physicochemical
properties [Lesk 2013, p. 184]. A protein substitution matrix thus has to represent these
“similarities”, especially when it is used for the alignment of distantly related proteins which
may contain numerous point mutations.

Protein substitution matrices normally encode the relative mutation rates in the form of log-
odds scores which are commonly derived by counting amino acid substitution frequencies
in aligned sequence datasets. The unrounded log-odds score Sαi ,α j

for two amino acids αi
and α j corresponds to the following equation:

Sαi ,α j
= log2

p(αi ,α j)

p(αi)p(α j)

The term p(αi ,α j) represents the relative substitution frequency for the amino acids αi and
α j in the aligned sequence dataset, i.e., the number of αiα j pairings n(αi ,α j) in relation to
the total number of observed substitutions N =

∑

αi ,α j
n(αi ,α j). The terms p(αi) and p(α j)

correspond to the marginal probabilities for observing an amino acid αi and α j , respectively.
They can be derived by counting the number of amino acids of type αi and α j in the dataset
and relating these counts to the total number of amino acids. The final log-odds scores are
often rounded and scaled to mitigate numerical problems.
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4.2 Related work

Since the publication of the first commonly used protein substitution matrix by Dayhoff et al.
[1978], a large number of different protein substitution matrices for several application
purposes have been developed. For instance, some focus on providing a scoring model for
very specific problems such as searching for proteins that contain similar transmembrane
regions [Ng et al. 2000]. Other matrices [Dayhoff et al. 1978, Henikoff and Henikoff 1992a,
Styczynski et al. 2008, Müller et al. 2002, Hess et al. 2016a, Keul et al. 2017] are used in a
more generic context, e.g., when searching homologs of newly discovered protein sequences
with unknown properties or when aligning distantly related proteins.

In the following section, we will present and discuss state-of-the-art protein substitution
matrices which are commonly used for homologous sequence search and for the compu-
tation of multiple sequence alignments. Methodologies for measuring the performance of
substitution matrices in the context of these tasks are subsequently described in Section 4.3.
The remainder of this chapter presents our contributions in the research field of substitution
matrices.

First, we describe an error correction for the popular BLOSUM algorithm [Henikoff and
Henikoff 1992a] resulting in the new CorBLOSUM matrix series [Hess et al. 2016a]. These
matrices deliver improved homology search results when compared to BLOSUM (Section 4.4).
Second, we present a novel substitution matrix type called PFASUM [Keul et al. 2017] which
outperforms commonly used state-of-the-art matrices for homologous sequence search and
the computation of multiple sequence alignments (Section 4.5). Both substitution matrices
and the corresponding evaluations were jointly developed and performed by Frank Keul
and myself.

4.2 Related work

Over the last years, numerous protein substitution matrices have been developed which
aim at different application scenarios in the context of homologous sequence search and
MSA computation [Dayhoff et al. 1978, Gonnet et al. 1992, Jones et al. 1992, Henikoff
and Henikoff 1992a, Ng et al. 2000, Kann et al. 2000, Müller and Vingron 2000, Müller
et al. 2002, Styczynski et al. 2008, Song et al. 2015]. Due to the large number of different
substitution matrices, we focus in this section on commonly used substitution matrices for
homology search and MSA construction.

4.2.1 PAM - Point accepted mutation matrix

The PAM matrix series developed by Dayhoff et al. [1978] is the first set of commonly used
protein substitution matrices in the historical context. It is still employed today, especially
when analyzing closely related sequences, e.g., using popular homology search programs
such as BLAST [Altschul et al. 1990] and FASTA [Pearson and Lipman 1988]. PAMn matrices
model amino acid mutation probabilities for certain evolutionary distances n using Markov
chain models, i.e., the number of point accepted mutations (PAM) between two sequences.
The initial PAM1 matrix represents the evolutionary distance of 1% amino acid changes on
average. It is derived from 1, 572 amino acid substitutions observed in a set of very closely
related sequences. Markov chains for constructing PAM matrices for larger distances of n
PAM can be obtained by simply multiplying the initial PAM1 matrix n times with itself.
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Unlike other originating databases for substitution matrices, the dataset used by the PAM
matrices is very small compared to the large protein databases available today. PAM matrices
thus may be used for the detection of relationships between very closely related sequences
but their capabilities in the context of the alignment of distantly related proteins is very
limited [Henikoff and Henikoff 1993].

4.2.2 VTML - Variable time maximum likelihood matrix

The VTML substitution matrices [Müller and Vingron 2000, Müller et al. 2002] are another
popular matrix series that is widely used for the computation of sequence alignments. These
matrices were originally developed for a better detection of distantly related homologs. Still,
it is also commonly used to compute high quality multiple sequence alignments [Edgar
2004b]. VTML matrices are constructed by iteratively estimating evolutionary distances and
substitution rates from a set of pairwise sequence alignments using a maximum likelihood
estimator. As initial rate matrix for this process, the VTML matrices uses Dayhoff’s substitution
model described above.

The pairwise alignments are obtained by randomly sampling two pre-aligned sequences
from each protein family in the SYSTERS database [Krause and Vingron 1998]. This dataset
is much larger and more diverse compared to the data basis used by the PAM matrices.
This allows VTML matrices to provide a more reliable detection of remote homologs. Only
pairwise alignments are considered, however, to prevent bias from oversampling. The
covered sequence space by these alignments is still rather small compared to the sequence
space available today.

4.2.3 BLOSUM - Blocks substitution matrix

One of the most popular and commonly used substitution matrix types is the BLOSUM matrix
series (BLOcks SUbsitution Matrix) by Henikoff and Henikoff [1992] with BLOSUM62 being
the most prominent matrix. As described in Section 4.1, BLOSUM matrices represent amino
acid mutation rates in the form of rounded and scaled log-odds scores. The underlying
joint probabilities p(αi ,α j) and marginals p(αi) and p(α j) for observing the amino acid
types αi and α j are derived from aligned and conserved amino acid blocks stored in the
BLOCKS 5.0 database [Henikoff and Henikoff 1991]. Each block represents a set of related
sequence segments of equal length λ and is processed separately in the matrix construction.
Afterwards, the substitution and amino acid frequencies observed for each block are merged
into a single matrix and subsequently transformed into the final log-odds scores.

In contrast to the PAM matrix series, BLOSUM matrices do not directly model specific
evolutionary distances using Markov chain models and the number of point accepted
mutations. Instead, they re-weight the observed substitutions on basis of relative sequence
similarities. This mitigates the potential bias of overfitting that can occur when counting
amino acid changes between highly conserved sequences.

Before counting the amino acid changes n(αi ,α j) in a block, the sequences inside the block
are clustered based on their relative similarity Φ and a predefined threshold t. For each
two aligned sequences A and B in the block, the relative similarity Φ(A, B) is calculated by
counting the number of aligned amino acid pairs that share the same amino acid type and
normalizing this count by the block width λ. The obtained similarity Φ(A, B) is then compared
with the preset similarity threshold t in order to determine the cluster membership of A and
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B. First, each sequence is assigned to a separate cluster. The clusters are then iteratively
merged until no changes are detected. Hereby, two clusters cx and cy are merged into a
single cluster if the similarity Φ(A, B) of at least one sequence A in cx and one sequence B in
cy is greater or equal than the preset threshold t, i.e., Φ(A, B)≥ t with A∈ cx and B ∈ cy .

When processing the aligned amino acid pairs, substitutions between sequences that belong
to the same cluster are completely ignored. For all other substitutions between two sequences
A and B that belong to different clusters, each observed pair is weighted by the product
of the corresponding cluster sizes. In other words, each cluster is considered as a single
sequence in counting substitutions. For example, if A belongs to the cluster cx with a size
of |cx | = 3 and B to another cluster cy of size |cy | = 4, then each observed pair of the
amino acids αi and α j is counted as 1

|cx |·|cy |
= 1

12 . The number suffix in the BLOSUM matrix
names indicate the similarity threshold used in the construction process. For instance, the
BLOSUM62 matrix was created using a similarity threshold of 62%, i.e., t = 0.62.

BLOSUM matrices and especially the BLOSUM62 matrix are the de facto standard for
homology search. They are also often employed as substitution model for the computation
of multiple sequence alignments, for instance in ClustalW2 [Larkin et al. 2007] and MAFFT
[Katoh et al. 2002]. However, their underlying data basis in the form of the BLOCKS 5.0
database is rather small and dated compared to the large protein databases available today.
This may limit their capabilities as several studies suggested that larger originating datasets
can lead to significantly better performing substitution matrices [Price et al. 2005, Hess et al.
2016a]. Another important issue with the BLOSUM matrices is that many popular programs
still use the matrix versions calculated with the initial BLOSUM program implemented in
1992, even though these versions are known to be substantially biased due to implementation
errors [Styczynski et al. 2008, Hess et al. 2016a].

4.2.4 RBLOSUM - Revised BLOSUM matrix

In 2008, Styczynski et al. [2008] identified an implementation error in the original BLOSUM
source code which affects the weighting procedure employed in the substitution frequency
counting step. The original BLOSUM implementation only considered the size of the first
cluster for the re-weighting of the observed substitution frequencies instead of the product
of both cluster sizes as originally intended [Henikoff and Henikoff 1992a]. The correction
of this implementation error led to substantially different matrix compositions denoted as
RBLOSUM matrices (Revised BLOSUM). However, the usage of these corrected RBLOSUM
matrices for homologous sequence search was reported to produce less accurate search
results compared to the original BLOSUM matrices.

Interestingly, the RBLOSUM matrices are barely noticed in the scientific community even
though they are closer to the substitution matrices originally intended by Henikoff and
Henikoff. As of Google Scholar1, the RBLOSUM paper was cited only 77 times since its
publication in 2008, while the original BLOSUM paper received 3010 citations during the
same time period. As a result, the actually incorrect BLOSUM matrices are still widely used
and affect homologous sequence search results as well as MSAs.

1https://scholar.google.de, last accessed 28.09.2017.
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Notably, a similar effect can be observed for the usage of sequence alignment tools where
most people still tend to use programs that are not as accurate as others [Chatzou et al.
2016]. According to Chatzou et al. [2016], an explanation for this effect could be the
potential “existence of a strong methodological inertia within the biological community,
where tool usage tends to snowball through protocol recycling”.

4.2.5 Summary

Over the last years, several substitution matrices have been developed to address different
application scenarios. However, the arguably most popular matrices are still the PAM,
BLOSUM, and VTML matrix series. They are commonly suggested and used as default
parameter for state-of-the-art homology search programs [Altschul et al. 1990, Pearson
1991] and MSA tools [Edgar 2004b, Katoh et al. 2002]. While employing these matrices for
both tasks usually produces reasonable results, their capabilities may still be limited. First,
the de facto standard matrices for homologous sequence search – the BLOSUM matrices – are
substantially biased due to implementation errors [Styczynski et al. 2008, Hess et al. 2016a].
Second, all matrices were derived from filtered and rather small datasets compared to the
modern databases available today. This may limit their usefulness as shown by previous
studies [Price et al. 2005, Hess et al. 2016a]. To overcome these limitations, we propose a
further error correction of the BLOSUM algorithm as well as present a novel substitution
matrix derived from manually curated structural alignments covering the currently known
sequence space.

4.3 Methods

This section provides detailed information about assessing the performance of substitution
matrices for the tasks of homologous sequences search and MSA computation. First, we des-
cribe the state-of-the-art methodology used for homology search performance benchmarks
and assessing the statistical significance of the obtained results. The second part presents
methods to measure the capabilities of substitution matrices for the generation of sequence
alignments based on MSA benchmark datasets, corresponding reference alignments, and
comparison measures.

4.3.1 Measuring homology search performance

One of the most important applications for protein substitution matrices is the search
for homologous sequences given a particular query protein sequence. The state-of-the-art
approach for assessing the homology search performance of substitution matrices is to
perform homologous sequence search on a standardized database with known sequence
relations [Brenner et al. 1998, Brenner et al. 2000]. In this context, the ASTRAL database
[Brenner et al. 2000, Chandonia et al. 2004] serves as a gold standard for the assessment
of homology search performance and parameter selection [Brenner et al. 1998, Green and
Brenner 2002, Price et al. 2005, Styczynski et al. 2008]. The database itself is a subset of
the SCOP/SCOPe databases [Murzin et al. 1995, Fox et al. 2014] and consists of structural
alignments based on the hand-curated SCOP classification [Brenner et al. 2000, Chandonia
et al. 2004].
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Typically, all sequences of the ASTRAL database are searched against the entire database by
employing homology search programs such as BLAST [Altschul et al. 1990] or SSEARCH [Pear-
son 1991]. Additionally, these program are parameterized with the substitution matrices
that should be analyzed and varying gap penalties. The variation of the gap penalties allows
to address the bias from suboptimal gap penalty settings. For this benchmarking purpose,
the usage of SSEARCH is often favored over BLAST since SSEARCH is reported to produce more
accurate results [Henikoff and Henikoff 1992a, Green and Brenner 2002, Styczynski et al.
2008]. Additionally, BLAST does not directly support the usage of arbitrary substitution ma-
trices since BLAST additionally requires matrix and gap penalty model dependent alignment
score statistics in order to compute E-values (Section 2.3). After running the homologous
sequence search with the preferred parameter settings, a list of found homologs is obtained
for each query sequence usually ordered by the reported E-values. The known sequence
relations between a query sequence and its search results can then be used to determine
whether the chosen parameters led to correct search results.

The coverage measure

A well established measure for this benchmark method is the coverage measure Q at a given
errors per query value (epq) [Brenner et al. 1998]. Q represents the fraction of true positives
found in the search results after applying an E-value threshold filtering based on the epq
measure [Green and Brenner 2002, Price et al. 2005]. The classification of found homologs
into true and false positives depends on the SCOPe sequence superfamily annotations.
Typically, the maximum number of errors per query is set to 0.01 epq [Brenner et al. 1998,
Green and Brenner 2002, Price et al. 2005, Styczynski et al. 2008]. This corresponds to
a maximum of one allowed false positive relation identified per 100 queries on average
for the entire database. For example, the search results obtained for the entire ASTRAL40
database (version 1.69) with its 7,290 sequences are filtered to contain no more than 72
false positives in total.

Since the different superfamily sizes found in the ASTRAL databases can result in potential
bias when counting the number of true and false positives, the quadratic normalized coverage
Qquad is often used as the average of true positive relations found per superfamily [Price
et al. 2005]:

Qquad =
1
S

S
∑

i=1

ti

(s2
i − si)

(4.1)

Here, t i is the number of true positive relations found for a superfamily i with si sequences.
S is the number of superfamilies in the database.

Concerted Bayesian bootstrapping

As the coverage measure strongly depends on the composition of the search database, the
significance of the results can be estimated by Concerted Bayesian bootstrapping [Green
and Brenner 2002]. This method effectively analyzes the influence of slight changes in the
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database composition on the resulting coverage values. Applying the quadratic coverage
normalization to the Concerted Bayesian bootstrapping yields the following equations for a
single bootstrap:

bQi =
si
∑

j=1

N j
∑

m=1

δ(θ j ,θm)w jwm (4.2a)

Wi =
si
∑

k=1

si
∑

l=1

wkwl −
si
∑

k=1

(wk)
2 (4.2b)

bQquad =
1
S

S
∑

i=1

bQi

Wi
(4.2c)

In Equation 4.2a, w j represents the weight of the j-th query sequence of superfamily i
drawn from a Dirichlet distribution. θ j represents its superfamily annotation. Likewise, θm
denotes the superfamily of the m-th query results for the j-th sequence with the weight wm.
δ(θ j ,θm) is the Kronecker delta, returning 1 if θ j and θm are equal, i.e., if both sequences
are members of the same superfamily, and zero otherwise. N j is the number of homologs
found for the query sequence and si denotes the sequence count of the i-th superfamily.

Thus, Equation 4.2a describes the unnormalized coverage for the i-th superfamily, i.e., all
found “true positive” relations. Equation 4.2b is the quadratic normalization for the i-th
superfamily, i.e., all possible positive interactions for the i-th superfamily. Summing over all
relative coverages for the S-numbered superfamilies (Equation 4.2c) returns the quadratic
normalized coverage for a single bootstrap.

The significance of the coverage difference of two matrix/gap combinations is tested by
calculating a Z-score from a two-sample parametric means test using the variance from
the two corresponding bootstrap distributions [Green and Brenner 2002]. Hereby, the
Z-score measures the significance of the difference of the two underlying distributions
(Equation 4.3).

Zp,q =
Q̄p − Q̄q
r

σ2
p+σ2

q
N

(4.3)

For two different matrix/gap combinations p and q, Q̄p and Q̄q represent the mean of the
bootstrap coverages calculated for the p-th and q-th matrix/gap combinations at an errors
per query (epq) of 0.01. σ2

p and σ2
q correspond to the variance of the underlying bootstrap

coverage distributions. N represents the number of bootstrap rounds.

Coverage-based benchmark tools

A widely used toolkit [Price et al. 2005, Styczynski et al. 2008, Song et al. 2015] to calculate
the coverage measure from SSEARCH results is the PSCE toolkit by Green and Brenner [2002].
However, this toolkit has limitations in terms of computation performance when processing
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large amounts of SSEARCH results. In our studies, we thus used our own performance-
optimized reimplementation of the PSCE toolkit called CoverageCalculator [Hess et al.
2016a].

The coverage calculation as implemented in CoverageCalculator considers a search result as
a true positive relation if the superfamily annotations, as provided by the ASTRAL database,
are identical for the query and the reported sequence. The E-value threshold for the filtering
is selected adaptively, depending on the average number of false positive relations remaining
in all search results after applying the threshold. A search result is considered a false positive
relation if its superfamily annotation does not match the annotation of the query sequence.
This is contrary to the PSCE toolkit, where search results with different superfamily but same
fold annotation are ignored in the coverage calculation since their evolutionary relationship
is unknown. Hence, our CoverageCalculator takes all reported results into account and thus,
is not overestimating the "real" coverage by skipping unknown but real false positive relations
within the same fold. Since the true evolutionary relationship between the superfamilies is
not known, this may underestimate the "real" coverage, but consistently assumes that all
superfamilies are not related. In other words, the coverages reported by CoverageCalculator
represent a lower bound for the substitution matrix performance.

4.3.2 Measuring multiple sequence alignment performance

Another important field of application in computation biology for the use of protein substitu-
tion matrices is the computation of multiple sequence alignments. Similar to the state-of-the-
art approach for measuring the homologous sequence search performance of substitution
matrices, their capabilities in the context of MSA computation can also be assessed using
standardized MSA benchmark datasets and specific MSA comparison measures (Section 2.5).

As outlined in Section 2.5.1, MSA benchmark datasets (BAliBASE 3.0 [Thompson et al. 2005],
OXBench [Raghava et al. 2003], SABmark 1.65 [Van Walle et al. 2005]) usually provide
specific sets of sequences and corresponding reference alignments which are often designed
to represent specific alignment tasks. This includes, e.g., the alignment of structurally related
sequences (BAliBASE 3.0) or very dissimilar sequences (SABmark 1.65).

For each set of sequences, a sequence alignment can be calculated using the substitution
matrices that should be assessed in combination with a particular alignment algorithm
and accompanying parameters such as varying gap penalties. The obtained “alternative”
alignments can then be compared with the reference alignment by employing a particular
comparison measure to quantify the differences between both alignments (Section 2.5.2).
This effectively allows to measure the accuracy of the generated alignment and thus also
implicitly analyzes the impact of the chosen substitution matrix on the resulting MSA.

A convenient method for performing this sort of analysis is given in the form of the benchmark
collection bench [Edgar 2009a] and the program qscore [Edgar 2009b]. The benchmark col-
lection bench consists of several state-of-the-art MSA benchmark datasets such as BAliBASE
3.0 [Thompson et al. 2005], OXBench [Raghava et al. 2003], SABmark 1.65 [Van Walle et al.
2005], while qscore provides an implementation of widely used MSA comparison measures
such as the identically named q-score or the Modeler score by Sauder et al. [2000]. We use
a subset of this collection and the qscore program to assess the capabilities of our novel
PFASUM substitution matrices for the task of MSA construction.
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4.4 CorBLOSUM substitution matrices

4.4.1 Introduction

As outlined in Section 4.2.4, Styczynski et al. [2008] discovered miscalculations in the
clustering step of the popular BLOSUM matrix computation. Still, their revised RBLOSUM64
matrix performed significantly worse than the inaccurate original BLOSUM62 matrix. Howe-
ver, Styczynski et al. did not evaluate their correction in combination with other originating
databases. Also, they focused in their study only on a single RBLOSUM matrix and a specific
ASTRAL release (ASTRAL 1.69) as benchmark.

These limitations and the ever increasing coverage of the protein sequence space inspired us
to re-evaluate the impact of the RBLOSUM correction on the resulting substitution matrices
and their homology search performance. For the construction of the substitution matrices,
we chose three different versions of the BLOCKS database [Henikoff and Henikoff 1991]
as originating datasets. The BLOCKS 5.0 database represents the initial dataset used for
the publication of the BLOSUM [Henikoff and Henikoff 1992a] and RBLOSUM matrices
[Styczynski et al. 2008]. The BLOCKS 13+ database covers a larger sequence space and
was reported to produce better performing BLOSUM matrices than those created with
BLOCKS 5.0 [Price et al. 2005]. BLOCKS 14.3 represents the latest BLOCKS release from
April 2007. This release spans the largest sequence space available in BLOCKS and represents
a more conserved starting point for the parametrization of evolutionary models such as
substitution matrices.

Based on the corrections presented by Styczynski et al. we modified the original BLOSUM
code [Henikoff and Henikoff 1992b] to derive BLOSUM and RBLOSUM matrices from the
aforementioned datasets. Thereby, we noticed an additional inaccuracy in the sequence
clustering step (Section 4.2.3). This coding problem affects cluster memberships of sequences
and necessitates modifications to both the original BLOSUM and the RBLOSUM variant.
In short, the published code uses an inaccurate integer based threshold in the sequence
clustering step so that sequences may be assigned to a particular cluster even though
they do not meet the user-specified clustering threshold. While – on the surface – the
induced inaccuracies appear to be minuscule, the resulting substitution matrix entries are
systematically biased away from the actual conservation tendency intended by Henikoff et
al. [Henikoff and Henikoff 1992a].

A correction of this inaccuracy in combination with the problems reported earlier by Styczyn-
ski et al. [2008] prompted us to derive a new substitution matrix series called CorBLOSUM
[Hess et al. 2016a]. In the following subsections, we first provide a detailed description of
this inaccuracy and analyze its impact on a theoretical basis. The remainder of this section
discusses the compositional differences of the substitution matrices constructed by the diffe-
rent algorithms (BLOSUM, RBLOSUM, and CorBLOSUM) and different originating databases
(BLOCKS 5.0.0, BLOCKS 13+, and BLOCKS 14.3). An exhaustive analysis of the matrices’
capabilities for homologous sequence search is presented later in Section 4.4.3. Our analysis
demonstrates that fixing small coding errors results in substantially different CorBLOSUM
matrices which beneficially influences homology search performance in comparison to the
original matrix.

83



4.4 CorBLOSUM substitution matrices

// Threshold calculation
680 int threshold = (int)(Cluster*(Block.width))/100;

...
// Clustering decision

728 if (pairs[px].score >= threshold){
// Cluster sequences
...

}

Listing 4.1: Threshold calculation and clustering decision adapted from lines 680 and 728
of the original blosum.c file [Henikoff and Henikoff 1992b].

// Corrected threshold calculation
680 float threshold = (float)(Cluster*(Block.width))/100f;

...

Listing 4.2: The floating point threshold calculation used in the CorBLOSUM computation.

4.4.2 Algorithm

As mentioned in Section 4.2.3, the BLOSUM algorithm employs a similarity-based sequence
clustering step to mitigate the potential bias of overfitting when counting substitution
frequencies in highly conserved amino acid blocks. In order to determine the cluster mem-
berships of the sequences in a particular block, the original BLOSUM code performs two
steps (Listing 4.1):

1. An integer clustering (threshold) is computed based on a user specified similarity
value (e.g., 62% for BLOSUM62) defined in Cluster and the width of the currently
processed block defined in Block.width (Listing 4.1, line 680).

2. The similarity score pairs[px].score calculated for each sequence pair px, i.e., the
number of identical residues, is compared with the integer clustering threshold. If
the score pairs[px].score is at least as high as the threshold, the sequences in px
are assigned to the same cluster (Listing 4.1, line 728).

However, the usage of this integer threshold in the original BLOSUM code effectively
truncates the real floating point threshold. This can lead to an inaccurate clustering decision
in the subsequent clustering procedure. The following example illustrates this effect. At a
block length of 93 amino acids, e.g., a minimum sequence similarity of 62% — corresponding
to similarity value used to generate the BLOSUM62 substitution matrix — leads to a real
similarity threshold of 57.66 identical residues. Thus, at least 57.66 identical amino acids
have to be observed between two sequences in order to merge them into a cluster. In
the original implementation, this value is truncated to 57 identical residues. In fact, this
corresponds to an effective clustering value of just 61.29% which was not intended by the
user and may result in mistakenly clustered sequences.

To avoid this inaccuracy, we use a floating point clustering threshold as shown in Listing 4.2.
This modification in combination with the correction proposed by [Styczynski et al. 2008]
results in the new CorBLOSUM algorithm and the corresponding CorBLOSUM matrix series.
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4.4.3 Evaluation

We evaluated our CorBLOSUM construction method in comparison to the original BLOSUM
and RBLOSUM algorithms in three different scenarios. First, we analyzed the impact of
the clustering inaccuracy in the BLOSUM and RBLOSUM code from a theoretical point
of view. Second, we compared the compositional differences of the three different matrix
variants based on identical clustering thresholds and on the basis of similar relative entropy
levels. While the former analysis demonstrates the impact of the different BLOSUM-type
algorithms on the resulting matrix entries, the latter analyzes compositional differences
between matrices with comparable capabilities for homologous sequence search [Altschul
1991]. In the last scenario, we examined the homologous sequence search performance of
the three matrix variants on different ASTRAL databases with varying sequence similarity.

As the magnitude of both error corrections is influenced by the database composition and
as newer BLOCKS releases are reported to produce better performing matrices [Price et al.
2005], we investigated matrices derived from three different originating databases in all
scenarios: BLOCKS 5, BLOCKS 13+ and BLOCKS 14.3. The BLOCKS 5 database is the
database used for the publication of the BLOSUM [Henikoff and Henikoff 1992a] and
RBLOSUM matrices [Styczynski et al. 2008]. The BLOCKS 13+ covers a larger sequence
space and was reported to produce better performing matrices than those created with
BLOCKS 5 [Price et al. 2005]. BLOCKS 14.3 represents the largest and latest BLOCKS release.
We added the labels 5.0, 13+ and 14.3 as subscripts to the matrix names to distinguish from
which BLOCKS version a particular matrix is derived.

Theoretical error impact

On the surface, the above mentioned inaccuracy seems to be minuscule. However, when
investigating this inaccuracy in detail with regard to different BLOCKS databases and
underlying block lengths, a systematic bias can be identified. In order to quantify the effect
of the integer type cast for a given similarity value K , we calculated the threshold difference
∆Trel between the correct clustering threshold T and the threshold used in the original
BLOSUM code bT in relation to different block lengths lblock:

∆Trel =
T − bT
lblock

=
1

lblock
∗
�

K · lblock

100
−
�

K · lblock

100

��

Figure 4.1 shows the impact of the theoretical error∆Trel as a function of the increasing block
length and a similarity value of K = 62%, i.e., the similarity value used for the construction of
the popular BLOSUM62 matrix. The bar charts shown on the upper panels depict the number
of blocks of a given length that can be found in the BLOCKS 5.0 and BLOCKS 14.3 databases.
The former database corresponds to the BLOCKS version used for the original BLOSUM
matrices containing 27, 102 sequences. The latter dataset represents the last BLOCKS release.
It contains two orders of magnitude more sequences than BLOCKS 5.0 (6, 739, 916 entries)
which results in more incorrectly clustered sequences.
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Figure 4.1: Theoretical error indicated by the relative threshold difference ∆Trel for the
similarity value K = 62%. In the lowest panel, the difference ∆Trel between the floating
point threshold T and the truncated threshold bT is shown for increasing block lengths. The
number of sequences found in the BLOCKS 5.0 and BLOCKS 14.3 databases for these block
lengths are depicted in the panels above. The relative difference ∆Trel is large for smaller
blocks but vanishes with increasing block length. Note the systematic and therefore biased
behavior of ∆Trel as a function of the block length.

86



Chapter 4: Substitution matrices

Compositional matrix differences

a)Analysis based on identical clustering thresholds

In order to analyze the impact of our CorBLOSUM correction (Listing 4.2) on the resulting
matrix compositions in comparison to the original BLOSUM [Henikoff and Henikoff 1992a]
and RBLOSUM [Styczynski et al. 2008] matrices, we first compared the entries of the
CorBLOSUM matrices with their corresponding counterparts based on the same clustering
threshold and originating BLOCKS version. Figure 4.2 shows the results of this evaluation
in the form of the percentage of differing matrix entries. Notably, we omitted comparisons
between matrices generated by clustering thresholds smaller than 15% since not all matrices
in this range report valid log-odds scores for all pairs of amino acid types.

Independent of the originating database, one can see numerous entry changes between
CorBLOSUM and (R)BLOSUM matrices indicating substantially different substitution ma-
trices. In general, the number of differences between CorBLOSUM and BLOSUM matrices
is larger than those between CorBLOSUM and RBLOSUM. This is not unexpected since
the CorBLOSUM algorithm also incorporates RBLOSUM’s error correction resulting in
CorBLOSUM matrices being more similar to RBLOSUM matrices than BLOSUM matrices.
Still, a large number of differences between CorBLOSUM and RBLOSUM matrices can be
observed for all originating databases which highlights the substantial impact of using a
floating point clustering threshold instead of an integer based threshold.

The largest number of changes can be observed for matrices created with smaller clustering
thresholds where sequences are frequently clustered during the construction process even
though they are relatively dissimilar. For example, the BLOCKS 5.0-based CorBLOSUM
matrices constructed with clustering thresholds between 15% and 39% possess at least
50% different entries when compared to their BLOSUM5.0 counterparts. Likewise, the
comparison between CorBLOSUM5.0 and RBLOSUM5.0 in a similar clustering threshold range
of [15%, 32%] yields at least 34% different entries. In contrast, the number of differences
between matrices based on larger thresholds tends to be much smaller. The comparison
between CorBLOSUM matrices created with thresholds of ≥ 61% based on BLOCKS 5.0 and
their (R)BLOSUM counterparts, e.g., still yields ∼ 5% to ∼ 18% different entries.

Since the differences between CorBLOSUM matrices and their RBLOSUM and BLOSUM
counterparts mainly depend on the number of inaccurate clustering decisions and not
on the height of the chosen clustering threshold, the aforementioned observations have
to be related to the sequence compositions of the tested BLOCKS databases. Apparently,
the relative sequence similarity scores in the three assessed BLOCKS releases fall within
specific scoring ranges. This results in more sequences being inaccurately clustered at certain
clustering thresholds as indicated by the different “outliers” in Figure 4.2.

One interesting “outlier” is the comparison between CorBLOSUM595.0 and its (R)BLOSUM
counterparts BLOSUM595.0 and CorBLOSUM595.0. The per-entry comparison of these matri-
ces is shown in Figure 4.3 and reveals large differences not only in the number of differing
entries but also in the magnitude of the log-odds scores. The upper triangle matrix depicts
the per-entry differences between CorBLOSUM595.0 with RBLOSUM595.0, while the lower
triangle shows the comparison between CorBLOSUM595.0 and BLOSUM595.0.
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Figure 4.3: Per entry comparison of CorBLOSUM595.0 with BLOSUM595.0 (lower triangle)
and RBLOSUM595.0 (upper triangle). Red values represent negative differences, i.e., entries
being smaller in CorBLOSUM595.0 than its counterpart. Blue values show the opposite.

In both comparisons, the differences of the log-odds scores on the off-diagonal range
between [−2,2]. Interestingly, only ∼ 7.9% of all log-odds scores on the off-diagonal of
CorBLOSUM595.0 are smaller than their corresponding BLOSUM and RBLOSUM entries
(red values). In contrast, ∼ 56.8% (or ∼ 53.7%) of all CorBLOSUM595.0 off-diagonal values
are larger than those in BLOSUM (or RBLOSUM) (blue values). The largest differences can
be observed, however, on the diagonal with scoring differences between −1 and −5. The
CorBLOSUM595.0 variant thus strongly favors more substitution events than its (R)BLOSUM
counterparts BLOSUM595.0 and RBLOSUM595.0.

Since the BLOSUM625.0 matrix is arguably the most commonly used substitution matrices
for homologous sequence search and the computation of multiple sequence alignments,
we further compared the compositions of our CorBLOSUM62 matrices derived from the
three different originating BLOCKS databases with their corresponding BLOSUM62 and
RBLOSUM62 counterparts Figure 4.4.
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Figure 4.4: Per-entry comparisons between CorBLOSUM and (R)BLOSUM matrices derived
from the three different BLOCKS databases using a clustering value of 62%. Red cells repre-
sent entries being smaller in CorBLOSUM62 than in its counterpart. Blue cells show those
entries that are larger in CorBLOSUM62 when compared to the corresponding (R)BLOSUM
counterpart.

Again, one can clearly see numerous changes between the matrices created by the three
algorithms. For the BLOCKS 5.0 based substitution matrices, the log-odds scores differ in the
range of −1 to 1 with most changes indicating smaller scores in the CorBLOSUM625.0 matrix
when compared to (R)BLOSUM variants. In contrast, the BLOCKS 13+ and BLOCKS 14.3
based CorBLOSUM matrices differ more often from their counterparts and to a much greater
extend with scoring differences from −3 to +5. Thus, changes in the matrices cannot
exclusively be related to rounding issues. This provides further evidence that all three
BLOSUM algorithms are substantially different.

b)Analysis based on relative entropy levels

While the compositional comparison of CorBLOSUM substitution matrices with BLOSUM
and RBLOSUM matrices based on the same cluster threshold allows to reveal the differences
introduced by the construction algorithms, the assessment of the performance difference
between substitution matrices requires a different kind of evaluation. As per Altschul [1991],
the performance of substitution matrices can only be compared in a fair way if they share
similar relative entropies (H).
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Figure 4.5: Per entry comparison of CorBLOSUM615.0 with the popular BLOSUM625.0
(lower triangle) and RBLOSUM645.0 (upper triangle). Red cells represent entries being
smaller in CorBLOSUM615.0 than in its counterpart. Blue cells show those entries that are
larger in CorBLOSUM615.0 than in the corresponding (R)BLOSUM counterpart.

For this reason and in concordance to the RBLOSUM study by Styczynski et al. [2008], we also
compared the BLOCKS 5.0 based matrices CorBLOSUM615.0 (H = 0.6939), BLOSUM625.0
(H = 0.6979) and RBLOSUM645.0 (H = 0.7003) on a per-entry basis (Figure 4.5). Again,
the differences between CorBLOSUM and its BLOSUM counterpart are shown at the lower
triangle, while the upper triangle depicts the differences to the RBLOSUM-type matrix.

On one hand, a total of 31 matrix entries are different between the CorBLOSUM615.0 and
BLOSUM625.0 (i.e., 14.8%), with 17 entries being reduced (Figure 4.5, lower triangle).
On the other hand, only 7 entries differ between CorBLOSUM615.0 and RBLOSUM645.0,
with three entries being larger in absolute value (Figure 4.5, upper triangle). The smaller
number of differences between RBLOSUM645.0 and CorBLOSUM615.0 are not unexpected,
as the RBLOSUM correction is also included in the CorBLOSUM algorithm. However, the
number of differences between CorBLOSUM and RBLOSUM type matrices increases for other
BLOCKS versions. The large differences between CorBLOSUM- and BLOSUM-type matrices
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determined for BLOCKS 5.0 can also be observed for the other two BLOCKS releases. This
comparison of matrices based on a similar entropy level further highlights that the three
algorithms create substantially different substitution matrices.

Homology search performance

Method

In order to evaluate the different matrix variants BLOSUM, RBLOSUM and CorBLOSUM
for the task of homologous sequence search, we employed the state-of-the-art methodology
described in Section 4.3.1. Analogous to previous studies [Price et al. 2005, Styczynski et al.
2008, Song et al. 2015], we chose the ASTRAL database as the basis for our performance
analysis.

As mentioned earlier, the performance study by Styczynski et al. [2008] was solely based
on the ASTRAL40 1.69 release with less than 40% identical sequences. Instead, we tested
the homology search performance of all generated substitution matrices on all available
ASTRAL database releases (versions 1.55 to 2.06) in order to prevent potentially biased
results caused by a specific database composition. For the same reason and inspired by
Angermüller et al. [2012], we used three different sequence similarity thresholds (20%, 40%
and 70%) for each release resulting in 51 separate benchmark datasets. In the following,
we use the terms ASTRAL20, ASTRAL40, and ASTRAL70 to distinguish between these three
similarity based subsets. Additionally, we use the terms SCOP- or SCOPe-based ASTRAL
datasets to refer to ASTRAL versions 1.55 to 1.75 and 2.01 to 2.06, respectively. We would
like to note that SCOP-based ASTRAL releases are entirely manually curated, while SCOPe
releases are based on a semi-automated approach for the database generation.

This wide variety of databases allows to study the effect of improving sequence space
coverage and different database compositions on matrix performance. However, performing
this large number of benchmarks results in an immense computational effort. For this
reason, we focused our performance analysis on a representative set of matrices derived
from the three different BLOCKS database versions. Out of the original BLOSUM variants,
we chose the clustering thresholds 50 and 62 since the BLOSUM505.0 and BLOSUM625.0
matrices are the two most widely used BLOSUM matrices. For example, these matrices are
employed as default matrices in SSEARCH [Pearson 1991] and BLAST [Altschul et al. 1990].
The corresponding RBLOSUM and CorBLOSUM counterparts were selected according to
their relative entropies in comparison to the chosen BLOSUM matrices in order to ensure a
fair performance comparison [Altschul 1991]. The 18 matrices assessed in our study, their
clustering values, relative entropies, and matrix scales based on unrounded log-odd scores
are listed in Table 4.1.

Notably, the clustering thresholds of the RBLOSUM5.0 and CorBLOSUM5.0 matrices are closer
to the one of the corresponding BLOSUM5.0 matrices than to those based on BLOCKS 13+
and BLOCKS 14.3. This effect is induced by the different sequence compositions in the
different BLOCKS releases. While the BLOCKS 5.0 release only provides 27, 102 sequences
for the matrix calculation, the BLOCKS 13+ provides 663, 288 sequences and the even larger
BLOCKS 14.3 database 6,739,916 sequences. Similarly, the composition of the database
influences the relative matrix entropy. Whereas the entropy of the matrices which originate
from BLOCKS 5.0 database is rather high, the distribution of substitution events (i.e., the
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Matrix Clust. Threshold Rel. Entropy Bit Units

BLOSUM505.0 50 0.4808 1/3
RBLOSUM525.0 52 0.4918 1/3
CorBLOSUM495.0 49 0.4849 1/3

BLOSUM625.0 62 0.6979 1/2
RBLOSUM645.0 64 0.7003 1/2
CorBLOSUM615.0 61 0.6939 1/2

BLOSUM5013+ 50 0.2430 1/4
RBLOSUM5913+ 59 0.2410 1/4
CorBLOSUM5713+ 57 0.2479 1/4

BLOSUM6213+ 62 0.3672 1/3
RBLOSUM6913+ 69 0.3601 1/3
CorBLOSUM6613+ 66 0.3653 1/3

BLOSUM5014.3 50 0.1509 1/5
RBLOSUM5914.3 59 0.1477 1/5
CorBLOSUM5714.3 57 0.1515 1/5

BLOSUM6214.3 62 0.2685 1/4
RBLOSUM6914.3 69 0.2662 1/4
CorBLOSUM6714.3 67 0.2636 1/4

Table 4.1: Overview of the matrices assessed in this study and their clustering values, relative
entropies, and corresponding scale in bits per unit.

joint distribution) in the BLOCKS 13+ and BLOCKS 14.3 is closer to an independent event
(i.e., the product of the marginals) and hence, the relative substitution matrix entropy is
smaller.

In order to evaluate the performance of the different substitution matrices on the different
ASTRAL databases, we conducted a homology search for each of the 51 ASTRAL databases
against itself. Here, we used the Smith-Waterman alignment algorithm implemented in
SSEARCH (version 36.3.6d) [Pearson 1991], as SSEARCH has been shown to possess higher
accuracy than BLAST in assessing the performance of different substitution matrices [Henikoff
and Henikoff 1992a, Green and Brenner 2002, Styczynski et al. 2008]. To address the
potential bias from suboptimal gap penalty settings on the matrix performance, we varied
the gap open penalty between 5 and 20 in steps of 1 and the gap extension penalty between
1 and 2. These penalties correspond to commonly used parameter settings in homology
search tools (BLAST and SSEARCH ) and previous performance studies such as [Price et al.
2005]. In total, we performed 29, 376 entire database searches. This is, to our knowledge,
the largest study of this kind performed till today.

For each combination of matrix, gap open and gap extension penalty, we obtained a list of
homologs found for each sequence in the benchmarked ASTRAL release ordered by their
E-value. The best performing gap parameter sets for each matrix on each of the tested
ASTRAL databases are listed in Table B.1 till Table B.9. According to the state-of-the-art
homology search benchmark methodology described in Section 4.3.1, we measured the
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rate of correctly found homologs for a fixed errors-per-query limit (epq) of 0.01 using
the quadratically normalized coverage measure Qquad . Similarly, the significance of the
computed coverage values were examined by a Concerted Bayesian bootstrapping using
500 bootstrap rounds. All values were calculated using our CoverageCalculator program.

General matrix performance overview

In order to obtain a general overview, we counted how often a specific CorBLOSUM matrix
performed equally or better than its corresponding BLOSUM counterpart. Considering all
test scenarios, substitution matrices computed with the CorBLOSUM algorithm performed at
least as good as their BLOSUM counterparts in ∼ 75% of the time. On SCOPe-based ASTRAL
releases (versions 2.01 to 2.06) this percentage even increased to ∼ 86%.

Since we cannot directly compare the performance of substitution matrices derived from
different BLOCKS versions due to their relative entropies, we compared the performance
of each substitution matrix on all three similarity based ASTRAL subsets in an identical
manner to the above described method. Cases where CorBLOSUM matrices performed at
least as good as their corresponding BLOSUM variants are shown in Table 4.2. Here, the
CorBLOSUM matrices performed better than the BLOSUM matrices, i.e., with one interesting
exception, the original BLOSUM625.0 matrix. This matrix still performed better than its
CorBLOSUM615.0 counterpart in most of the cases on the ASTRAL20 and ASTRAL40 subsets.

Although, the achieved coverage range differs widely between the ASTRAL20, ASTRAL40
and ASTRAL70 subsets, our results show a specific performance pattern within each identity
subset regardless of the BLOCKS version and entropy level used for the computation of
the matrices. For ASTRAL40 and ASTRAL70, the coverage increases drastically for ASTRAL
versions based on SCOP (version ≤ 1.75) to those based on SCOPe (version ≥ 2.01).
Interestingly, this trend cannot be observed for ASTRAL20.

BLOCKS ASTRAL BLOSUM50 BLOSUM62
version subset entropy level entropy level

ASTRAL20 70.59% 23.53%
BLOCKS 5.0 ASTRAL40 76.47% 23.53%

ASTRAL70 100% 58.82%

ASTRAL20 94.12% 58.82%
BLOCKS 13+ ASTRAL40 100% 76.47%

ASTRAL70 100% 82.35%

ASTRAL20 76.47% 76.47%
BLOCKS 14.3 ASTRAL40 76.47% 100%

ASTRAL70 88.24% 70.59%

Table 4.2: Comparison of CorBLOSUM- with BLOSUM-type matrices. Shown is the relative
frequency given in percent for which a CorBLOSUM matrix performed at least as good as its
BLOSUM counterpart.
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In the following sections, we discuss the matrix performances on each of the three different
similarity based ASTRAL subsets in detail. The values reported there reflect the best matrix/-
gap parameter combinations. For all test scenarios, we consider performance differences
with Z-scores< 1.96 as insignificant and thus assume matrix performance to be almost equal.
In cases where the coverage difference between a BLOSUM- and CorBLOSUM-type matrix is
insignificant, an O is displayed above the bar. For the CorBLOSUM/RBLOSUM comparison,
we highlight this with a small X. The underlying Z-scores for estimating the significance of
these coverage differences are shown in Figure B.1, Figure B.2, and Figure B.3.

Matrix performance on ASTRAL40

For the ASTRAL40 subset results shown in Figure 4.6, a general performance trend can be
observed for all assessed relative entropy levels. Starting from ASTRAL release 1.57 the
performance increases steadily until ASTRAL 1.69, the database used by Styczynski et al.
[2008] to measure the RBLOSUM performance. Here, a drastic drop in the coverages can be
observed. From ASTRAL 1.71 the coverages continue to steadily increase with a very large
increment upon the introduction of SCOPe at ASTRAL 2.01. The highest coverage over all
entropy levels, BLOCKS versions and ASTRAL releases was obtained for CorBLOSUM495.0
on ASTRAL 2.06 with a coverage of 0.4389 at a gap open/extension penalty of 15/1.

For BLOCKS 5.0 derived substitution matrices at a matrix entropy level of ∼ 0.7 bit, the
original, inaccurate BLOSUM625.0 dominates the corrected variants on almost every ASTRAL
release but the latest three. For these, CorBLOSUM615.0 and RBLOSUM645.0 performed at
least as well as BLOSUM625.0 at a statistically significant level. Our results for the ASTRAL
1.69 database are in concordance with the results published in the RBLOSUM study [Sty-
czynski et al. 2008]— i.e., the BLOSUM625.0 significantly outperforms the RBLOSUM645.0.
Interestingly, the used BLOCKS version significantly influences this performance difference as
RBLOSUM matrices derived from BLOCKS 13+ and BLOCKS 14.3 outperform their BLOSUM
counterparts.

The CorBLOSUM495.0 showed higher coverages than the BLOSUM505.0 for all databases
but the oldest ASTRAL and the oldest SCOPe derived ASTRAL databases 2.01 and 2.02. In
general, BLOSUM505.0 entropy level matrices achieve higher coverages than those at the
BLOSUM625.0 entropy level. This cannot be observed for BLOCKS 13+ and BLOCKS 14.3.
For these, the CorBLOSUM5713+ and CorBLOSUM6714.3 consistently outperformed their
BLOSUM counterparts on all test databases. CorBLOSUM6613+ and CorBLOSUM5714.3
achieved a coverage at least as high as the BLOSUM in ∼ 76% of the tested scenarios. For
all SCOPe derived ASTRAL datasets CorBLOSUM substitution matrices outperformed their
BLOSUM counterpart.

Overall, the comparison between CorBLOSUM- and RBLOSUM-type matrices showed mixed
results. Notably, CorBLOSUM matrices derived from BLOCKS 13+ and BLOCKS 14.3 achieved
higher coverages than RBLOSUM matrices in ∼ 83% of the analyzed SCOPe-based datasets.
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Matrix performance on ASTRAL70

The coverage results for the different versions of the ASTRAL70 subset are shown in Fi-
gure 4.7. Overall, the matrix performances on this subset showed the highest coverage scores
in our homology search performance benchmark with values of up to 0.5445. This coverage
value was achieved on the latest ASTRAL70 release (version 2.06) by our CorBLOSUM6613+
in combination with a gap opening/extension penalty of 12/1.

When analyzing the coverage values in relation to the different ASTRAL versions, one can
see a similar general performance trend to the results reported for the ASTRAL40 subset.
Starting from the initial ASTRAL release 1.55, the coverage scores decrease slowly until
release 1.59 and then increase steadily until ASTRAL 1.69. Here, the same drastic drop in
the coverage scores determined for ASTRAL40 can be observed for the ASTRAL70 subset.
Likewise, one can also discover the huge increment observed for ASTRAL40 at the ASTRAL
version 2.01 — the introduction of SCOPe.

In contrast to ASTRAL40 where the original BLOCKS 5.0-based BLOSUM625.0 dominated
their corrected variants on almost all ASTRAL releases but the latest three, the correspon-
ding results on ASTRAL70 mostly do not show significant performance differences. Also,
CorBLOSUM495.0 always achieved as least as high coverage values than BLOSUM505.0 and
thus outperforms the inaccurate original BLOSUM variant on average. In comparison to
the BLOCKS 5.0-based RBLOSUM matrices, again, one can see mixed results similar to the
results obtained for ASTRAL40.

Our results obtained for the BLOCKS 13+-based matrices demonstrate that CorBLOSUM
matrices perform at least as good or better than BLOSUM matrices in nearly all cases.
Especially on SCOPe-based datasets, CorBLOSUM matrices outperformed their BLOSUM
counterparts significantly. In comparison to the BLOCKS 13+-based RBLOSUM matrices,
however, CorBLOSUM matrices deliver similar coverage scores with negligible performance
differences.

The comparison of the BLOCKS 14.3-based matrices with a relative entropy level comparable
to BLOSUM5014.3 showed that CorBLOSUM5714.3 outperformed BLOSUM5014.3 in most
cases — especially on SCOPe-based databases. However, the comparison to RBLOSUM5914.3
revealed a slight performance advantage of RBLOSUM5914.3 over CorBLOSUM5714.3. For
the BLOSUM62 entropy level, the different matrix types showed overall mixed results.

In general, the comparison for the BLOSUM50 entropy level shows that CorBLOSUM-type
matrices perform at least as good as their original BLOSUM counterparts in ∼ 94% of all
test cases. In comparison to the RBLOSUM variants on the same entropy level, CorBLOSUM
matrices still showed similar or better performance in ∼ 51% of the tested scenarios. On the
BLOSUM62 entropy level, CorBLOSUM matrices were able to perform as least as good as
their BLOSUM and RBLOSUM counterparts in ∼ 75% and ∼ 59% of the tested databases,
respectively.

Matrix performance on ASTRAL20

Figure 4.7 depicts the coverage results obtained for the different versions of the ASTRAL20
subset. The ASTRAL20 coverage results are the smallest scores measured in our benchmark
with a value of only 0.1634 achieved for the ASTRAL20 1.55 database by RBLOSUM6913+
and gap opening/extension penalties of 12/1. This is not unexpected since a maximum
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sequence similarity of only 20% represents the scenario of identifying distantly related
homologs which is generally a more difficult task than searching homologs in similar
sequence datasets.

Interestingly, the highest coverage scores for this ASTRAL subset were mostly achieved
on the oldest ASTRAL release 1.55. This is quite different to the results obtained for the
other ASTRAL subsets where the highest coverages were always reported for the latest
ASTRAL release 2.06. Likewise, the general performance trend observed for all matrices
on the ASTRAL40 and ASTRAL70 differs to a greater extend from the trend visible in the
ASTRAL20 subset. Here, the coverage values steadily decrease with few exceptions starting
from ASTRAL version 1.55 until version 2.04. The drastic performance increase upon the
introduction of SCOPe (version 2.01) observed on ASTRAL40 and ASTRAL70, can first be
seen on ASTRAL20 for the SCOPe-based ASTRAL version 2.04.

When investigating the performance of the BLOCKS 5.0-based matrices on ASTRAL20, one
can see a similar behavior for BLOSUM625.0 compared to the results obtained for ASTRAL40.
The original BLOCKS 5.0-based BLOSUM625.0 dominated their corrected variants on almost
all ASTRAL releases but the latest three. For the BLOSUM50 entropy level, we obtained mixed
results for all matrix types on older ASTRAL releases. However, on newer ASTRAL20 databa-
ses we observe a significant performance advantage of CorBLOSUM495.0 over BLOSUM505.0.
With the exception of the latest ASTRAL20 version 2.06, CorBLOSUM495.0 also significantly
outperforms RBLOSUM645.0.

Our analysis of the BLOCKS 13+-based matrices revealed that the CorBLOSUM13+ matrices
outperformed the BLOSUM13+ matrices in nearly all cases. Especially on SCOPe-based
datasets, CorBLOSUM matrices always superseded their BLOSUM counterparts significantly.
Interestingly, BLOCKS 13+-based RBLOSUM matrices perform better than CorBLOSUM
matrices on older ASTRAL20 releases but are significantly outperformed on ASTRAL20
versions ≥ 2.03.

On the BLOSUM5014.3 entropy level, our CorBLOSUM5714.3 matrix significantly superseded
their BLOSUM and RBLOSUM counterpart for ASTRAL20 versions ≥ 1.69. Overall, the
results obtained for the BLOSUM6214.3 entropy level show mixed results. An interesting
exception are the coverage scores obtained for the recent ASTRAL20 releases 2.04 and
2.05. Here, the BLOSUM6214.3 showed the best performance of all matrices. For the latest
ASTRAL20 version 2.06, however, no performance difference between our CorBLOSUM6714.3
and BLOSUM6214.3 can be seen.

In summary, using our tested CorBLOSUM variants for homologous sequences search on
the three latest ASTRAL20 subsets (2.04, 2.05, and 2.06) resulted in significantly more
correctly found homologs compared to the tested (R)BLOSUM matrices. There are only three
exceptions to this finding. RBLOSUM5714.3 superseded CorBLOSUM5714.3 on ASTRAL20
2.06. On the ASTRAL20 subset versions 2.04 and 2.05, BLOSUM6214.3 performed better
than CorBLOSUM5714.3 and RBLOSUM5914.3.

4.4.4 Conclusion

We presented an additional error correction to the BLOSUM code. The matrices created
by our CorBLOSUM algorithm are substantially different from (R)BLOSUM matrices and
outperformed the original BLOSUM matrices in∼ 75% of all 51 test scenarios. On up-to-date
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Chapter 4: Substitution matrices

SCOPe-based ASTRAL releases, the current gold standard for homology search performance
assessment, the CorBLOSUM matrices outperformed their BLOSUM counterparts in∼ 86% of
the cases. On these databases, the CorBLOSUM matrices also achieved the highest reported
coverages for all three ASTRAL similarity subsets when compared with their BLOSUM
counterparts.

The aim of this study was not to assess optimal parameters for homologous sequence search,
such as the best matrix/gap-parameter combination. Nevertheless, this is an interesting
question that should be addressed in the future, especially since our study showed that
the relative entropy of substitution matrices is not necessarily an indicator for matrix
performance.

Our results for the BLOSUM625.0 vs. RBLOSUM645.0 setup concur with the previous findings
by Styczynski et al. [2008]. There, the test covered only a very specific scenario (ASTRAL40
1.69) in which the RBLOSUM645.0 was outperformed by the BLOSUM625.0. These previous
results would have been quite different if at that time other available BLOCKS and ASTRAL
databases had been used. RBLOSUM matrices tested in this study performed equally or
better than their BLOSUM counterparts in most of the cases. Our study showed that for the
RBLOSUM/CorBLOSUM comparison no consistent trend can be observed for older ASTRAL
releases prior to 2.01, as RBLOSUM and CorBLOSUM matrices are superior in ∼ 50% of
these cases. However, on databases with increased sequence and structure space coverage –
as provided by SCOPe-based ASTRAL versions – CorBLOSUM-type matrices achieved higher
coverages than the RBLOSUM matrices in ∼ 74% of the tests.

Furthermore, our study revealed two contradicting effects: on the one hand, matrices with
very similar entropies show a statistically significant difference in performance. On the other
hand, we also showed that matrices with very different entropies and matrix scales can
achieve similar coverages. The latter effect is apparently enhanced by increasing sequence
similarity within superfamilies and the database itself. This raises an interesting question
for further research on the influence of changes in database composition on its respective
searchability.

We conclude that the CorBLOSUM algorithm fixes errors of the original BLOSUM imple-
mentation and that the resulting matrices perform better for homologous sequence search.
Hence, we encourage the usage of CorBLOSUM matrices for this specific task.

4.5 PFASUM substitution matrices

4.5.1 Introduction

Most of the widely used substitution matrices to date are based on quite old, filtered, and
small datasets (Section 4.2). As thoroughly discussed in the previous section, the popular
BLOSUM matrix is even substantially biased through programming errors in their originating
source code. These issues may severely limit the sensitivity of these substitution matrices for
the construction of sequence alignments compared to matrices derived from a larger and
more diverse sequence space [Price et al. 2005, Hess et al. 2016a].

For these reasons, we developed a novel type of substitution matrix based on structural
alignments. Our Pfam substitution matrix (PFASUM) series is derived from the manually
curated Pfam seed alignments (version 29.0) [Finn et al. 2016] using a novel algorithm. Thus,
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4.5 PFASUM substitution matrices

our PFASUM matrices rely on state-of-the-art expert ground truth data that covers a much
larger and diverse sequence space than conventional substitution matrices. As of release
29.0, there are 47.3 billion amino acid pairings available in 16, 295 MSAs. Additionally, our
PFASUM algorithm takes all information in the MSAs into account instead of omitting parts
containing gaps or ambiguous amino acids to avoid the loss of important information. These
features enable PFASUM matrices to significantly outperform commonly used substitution
matrices, especially when dealing with sequences of low similarity.

In the following, we will first describe the construction methodology of our PFASUM matrices
in detail. Subsequently, we present a thorough performance evaluation and discussion of
PFASUM’s capabilities for homologous sequence search and MSA construction in comparison
to frequently used substitution matrices. The results of this evaluation provide evidence for
our claims that PFASUM matrices deliver superior performance over state-of-the-art matrices
for the tasks of homologous sequence search and MSA construction.

4.5.2 Algorithm

Database selection

As outlined in the introduction, commonly used substitution matrices are derived from
quite old and incomplete (filtered) datasets. It is also known that larger and more diverse
sequence datasets can produce significantly better performing substitution matrices [Price
et al. 2005, Hess et al. 2016a]. Hence, we chose the Pfam seed alignment dataset [Finn et al.
2016] as the basis for our PFASUM substitution matrices. This dataset consists of numerous
MSAs (16, 295 MSAs in Pfam release 29.0 [Finn et al. 2016]) that cover the currently known
sequence space. Each MSA contains a set of representative sequences for a specific group of
proteins such as a protein family or domain. This allows our algorithm to capture substitution
events between closely related sequences. Combining all MSAs, and thus different groups of
sequences, into a single matrix enables us to apply derived substitution events on protein
sequences with distant relationships. Furthermore, all Pfam MSAs are manually curated by
experts and thus represent ground truth structural alignments.

PFASUM algorithm

As described in the introduction of this chapter (Section 4.1), substitution matrices usually
represent substitution rates in the form of rounded log-odds scores derived from aligned
and filtered sequence data. For two different amino acids αi and α j the unrounded score
Sαi ,α j

corresponds to Sαi ,α j
= log2 p(αi ,α j)− log2

�

p(αi)p(α j)
�

. The term p(αi ,α j) denotes
the substitution frequencies for αi and α j which are derived by counting all αiα j pairings
n(αi ,α j) and relating these to all counted pairs, i.e., N =

∑

αi ,α j
n(αi ,α j). The terms p(αi)

and p(α j) represent the marginals for observing amino acid αi and α j , respectively. These
can directly be derived by summing over the probability of conservation p(αi ,αi) and all
substitution events (

∑

j 6=i p(αi ,α j)). Often, the resulting real-numbered log-odds score Sαi ,α j

is rounded to the next integer value.

Our PFASUM algorithm and the corresponding matrices also follow this basic principle. We
process each MSA in the Pfam seed dataset separately, accumulate the counted substitution
frequencies in a single matrix, and subsequently transform these to the final rounded log-
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odds scores. In order to process unfiltered Pfam seed alignments and to handle special
cases such as oversampling issues and ambiguous amino acids, it is, however, necessary to
introduce additional steps. The PFASUM algorithm thus consists of five major components:

• A sequence clustering step to prevent oversampling based on the method proposed
by Henikoff and Henikoff [1992].

• A sequence similarity measure to determine cluster memberships that copes with
different sequence lengths, jointly proposed by Frank Keul and Martin Heß.

• A strategy for handling gaps frequently found in Pfam seed MSAs, jointly proposed
by Frank Keul and Martin Heß.

• A group size normalization step to further mitigate potential bias from oversampling
caused by different sequence group sizes proposed by Martin Heß.

• A method for computing log-odds scores for ambiguous amino acids proposed by
Frank Keul.

Sequence clustering

Counting amino acid substitutions in a set of highly redundant sequences may result in
potential bias from oversampling. To mitigate this problem, Henikoff and Henikoff [1992]
use a clustering algorithm for the BLOSUM-t matrix calculation to group sequences of equal
length λ depending on their relative similarity Φ and a preset clustering threshold t.
Instead of counting the observed amino acid substitutions n(αi ,α j) for each sequence pair
A and B fully, each substitution is counted as n(αi ,α j)/(|cx | ∗ |cy |). Thereby, cx corresponds
to the cluster that contains sequence A and cy to the cluster containing sequence B. The
cardinalities |cx | and |cy | represent the corresponding cluster sizes, i.e., the number of
sequences within the clusters. If both sequences A and B belong to the same cluster, i.e.,
cx = cy , all substitutions between A and B are ignored in counting pairs. In other words, a
single cluster is considered as a single sequence in counting pairs.

First, the clustering algorithm calculates the similarity Φ(A,B) between two sequences A
and B. The similarity Φ(A,B) between two sequences A and B is measured by counting
the number of aligned positions that share the same amino acid type, normalized by the
length λ of both sequences. The similarity value is then compared to the preset clustering
threshold t in order to decide whether the sequences should be grouped or not. For example,
if sequences A and B are Φ(A,B) = 73.5% identical and the clustering threshold is set to
t = 62, the sequences are grouped within a cluster. Additional sequences C are assigned to
this cluster if at least one sequence X exists inside the cluster that is at least t % similar to
C , i.e., Φ(C,X)≥ t.

The PFASUM algorithm incorporates this method to mitigate oversampling problems. Ana-
logous to the BLOSUM matrices, the number suffix in a matrix’ name (e.g., PFASUM43)
indicates the chosen clustering threshold used for the construction of the matrix. However,
we had to adapt the similarity measure to cope with the aligned sequences found in the
Pfam seed dataset as explained in the following section.
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4.5 PFASUM substitution matrices

Sequence similarity

Two aligned sequences A and B from a Pfam seed alignment can directly be compared as
both can be considered as correctly aligned. A gap symbol found in these alignments is
denoted as γ. We define A as a vector of amino acid and gap symbols with the length L, i.e.,
A= (α1, . . . ,αL). The number of amino acid symbols in A, i.e., without the gap symbol γ,
is denoted as λA. Similarly, B is defined as (β1, . . . ,βL) and λB represents the number of
amino acids in B. The unnormalized similarity φ between A and B is defined as:

φ(A,B) =
L
∑

l=1

δ(αl ,βl) [1−δ(αl ,γ)] [1−δ(βl ,γ)] (4.4)

Hereby, δ(x , y) is the Kronecker delta which equals one if x = y, and zero otherwise. In
other words, we omit all pairings that contain at least one gap symbol and count only pairs
with identical one letter codes. The fractional similarity value Φ is computed by normalizing
φ(A,B) with the length of the shorter sequence, i.e., min(λA,λB).

Group size normalization

Generally, Pfam alignments represent groups of related protein regions. For our purpose,
these groups of sequences are collections of related proteins. Within the broad term “group”
we encapsulate protein families, domains, and similar organizational structures. Substitution
matrices derived from Pfam seed alignments aim at capturing the average evolutionary
behavior, while the number of sequences within each group can vary widely. To avoid
over-representing groups with high sequence counts, the PFASUM algorithm derives group-
specific pair frequency counts pk(αi ,α j) for each sequence group k. These pk(αi ,α j) are
obtained by normalizing the pair counts nk

�

αi ,α j

�

found in a group k with the number
of sequences sk in this group. Pair frequencies p(αi ,α j) for the entire database are then
obtained by summing over all normalized pk(αi ,α j).

Gaps

The Pfam seed dataset contains complete MSAs and thus gaps occur frequently to compensate
for different sequence lengths induced by deletions and insertions of amino acids. This is
contrary to the data basis of most conventional substitution matrices, e.g., the BLOCKS
database used for the BLOSUM construction [Henikoff and Henikoff 1991]. These datasets
are usually filtered by omitting alignment parts containing gaps. Rather than neglecting
MSA columns with at least one gap, the PFASUM algorithm simply neglects gap/amino
acid (as well as gap/gap) pairings in counting substitution frequencies. Hence, the PFASUM
algorithm considers all found amino acid pairings even in gap-rich columns with few amino
acids. Since these regions are also manually curated and thus can be considered as reliably
aligned, this allows us to extract unique information about substitution events even within
insertion/deletion regions (indels).

Ambiguous amino acids

Ambiguous amino acid characters – such as B, Z, J, and X – occur rarely in most sequence
databases, especially in older databases. This consequently results in very low frequencies
for pairs that involve ambiguous amino acids so that the computed relative pair frequencies
often vanish. Hence, most substitution matrix algorithms fully ignore observed ambiguous
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amino acids when counting pair frequencies. Instead, matrix entries for these characters
are subsequently generated from averaging the pair frequencies of the canonic amino acids,
following the translation scheme shown in Table 4.3.

The number of ambiguous amino acids can be, however, larger in modern sequence databases
such as Pfam and thus can have a greater influence on the observed substitution frequencies.
To correctly account for this, PFASUM fully processes ambiguous amino acids in counting
substitution frequencies. As ambiguous amino acids encode at least two canonic amino
acids, it is necessary to redefine amino acids as a set Θx of symbols with x representing the
one letter code of the amino acid. Canonic amino acids are thus represented as sets with a
cardinality of one, e.g., ΘA = {A}. Ambiguous amino acids are defined as sets containing
their encoded canonic acids, e.g., ΘB = {N , D}.

The PFASUM algorithm equally distributes pair counts ΘxΘy of any found ambiguous amino
acid among their canonic amino acids, again following Table 4.3. Also, we count the observed
ΘxΘy directly. For example, each found amino acid substitution ΘAΘB in group k is counted
as 0.5 ΘAΘN , 0.5 ΘAΘD, and 1.0 ΘAΘB.

Afterwards, the final pair frequency counts for all acid-to-acid combinations x , y are obtained
using the following formula which accounts for counting ΘxΘy more than once if an
ambiguous amino acid is involved:

µk

�

Θx ,Θy

�

=

�

∑

αi∈Θx

∑

α j∈Θy

nk

�

αi ,α j

�

�

− nk

�

Θx ,Θy

�

|Θx ||Θy |

pk

�

Θx ,Θy

�

=
µk

�

Θx ,Θy

�

+ nk

�

Θx ,Θy

�

Nk

(4.5)

In pk, we add a correction term µk(Θx ,Θy) to the number of observed amino acid pairings
nk

�

Θx ,Θy

�

. This term equates to zero for pairings of canonic amino acids. For pairs including
ambiguous amino acids, µ copes with adding these pairings to both canonic amino acids
pair counts as well as ambiguous acid pair counts. This ensures that each observed amino
acid pairing is only counted once. The normalization factor Nk corresponds to the total
number of observed amino acid pairings in a group k.

Using the example from above, a single observed AB substitution would result in frequency
counts nk(ΘA,ΘN ) = nk(ΘA,ΘD) = 0.5 and nk(A, B) = 1. The resulting relative frequencies
using Equation 4.5 then yield pk(ΘA,ΘN ) = pk(ΘA,ΘD) = 0.5 and pk(ΘA,ΘB) = 1.

Ambiguous amino acid B Z J X

Canonic amino acid N, D E, Q I, L all

Table 4.3: Ambiguous amino acids and their designated canonic amino acids shown as one
letter codes.
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4.5.3 Evaluation - Homology search performance

One of the most common tasks employing substitution matrices is the identification of
homologous sequences. We thus evaluated the capabilities of PFASUM matrices for this
particular task in three different scenarios. First, we analyzed the performance differences
between PFASUM matrices generated by different clustering values to get a general over-
view of PFASUM’s homology search performance. Second, we compared the performance
of PFASUM matrices with commonly used substitution matrices (e.g., BLOSUM62) and
R/CorBLOSUM matrices based on similar relative entropy levels. This scenario represents
the state-of-the-art approach for comparing substitution matrices as per Altschul [1991] on
the basis of their general compositional properties (and to some extend the underlying algo-
rithm). Third, we investigated homology search performance in a more user centered way
by analyzing which of the tested matrices performed best on different databases, regardless
of their relative entropies. The following sections describe the different matrix test sets and
databases used for this evaluation as well as the employed methodology in detail.

Tested substitution matrices

We calculated PFASUM matrices using integer clustering values ranging from 0 to 100.
Depending on the input data, too small clustering thresholds can lead to clustering results
only containing a single large “super-cluster”. Since amino acid substitutions are only counted
between different clusters and not within the clusters, this can result in matrices that do
not report substitution rates for all possible amino acid substitutions. Hence, we omitted all
PFASUM matrices with clustering thresholds < 10. We denote the finally obtained matrix
set in the following as PFASUM Search Matrices (Table 4.4).

In order to evaluate the homology search performance of PFASUM Search Matrices against
state-of-the-art substitution matrices, we focus on a set of widely used substitution matrices
denoted as Standard Search Matrices (Table 4.4). This set contains various BLOSUM, MD,
Optima, PAM, and VTML matrices which are used, e.g., as default parameter in popular
homology search tools such as SSEARCH/FASTA [Pearson 1991] and BLAST [Altschul et al.
1990].

In addition, we computed a set of (R/Cor)BLOSUM, PAM, and VTML matrices that possess
similar relative entropies to the PFASUM31, PFASUM43, and PFASUM60 matrices, the three
best performing PFASUM Search Matrices on the tested databases as shown later in the
first part of this evaluation. This set is denoted as PFASUM-comparable Search Matrices and
allows us to compare the performance of PFASUM matrices with our previously proposed
CorBLOSUM and state-of-the-art matrices based on similar relative entropy (Table 4.4).

Databases

To investigate the performance differences between PFASUM Search Matrices and Standard
Search Matrices or PFASUM-comparable Search Matrices, we conducted homology search
experiments on basis of the most recent ASTRAL 2.06 [Brenner et al. 2000, Chandonia
et al. 2004] datasets, a subset of sequences of the SCOP/SCOPe database [Murzin et al.
1995, Fox et al. 2014]. As outlined in Section 4.3.1, the ASTRAL database, and especially
its ASTRAL40 subset containing sequences with a maximum similarity of 40%, has been
commonly suggested as the gold standard for homology search performance evaluation
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[Brenner et al. 1998, Green and Brenner 2002, Price et al. 2005, Styczynski et al. 2008]. In
order to evaluate substitution matrix performance for different application purposes, we
differentiated between three distinct test scenarios and thus ASTRAL database subsets.

While the ASTRAL40 subset represents the state-of-the-art homology search benchmark,
the ASTRAL70 dataset emulates database searches against very similar and closely related
sequences. We also conducted a performance evaluation based on the ASTRAL20 dataset.
This simulates homology searches of novel proteins with unknown structural features and
few known homologs. Effectively, these three datasets allow us to evaluate the performance
of substitution matrices for different evolutionary distances.

Search methods

To obtain the most accurate results for the evaluation of homology search performance
we employed the SSEARCH [Pearson 1991] algorithm of FASTA (Version: 36.3.8d). SSEARCH
was reported previously to possess higher accuracy than BLAST [Henikoff and Henikoff
1992a, Green and Brenner 2002, Styczynski et al. 2008]. In order to avoid a potential bias
introduced through inaccurate gap parameter settings, we varied the gap opening and gap
extension penalties from −5 to −20 and −1 to −3, respectively. For each gap parameter
and substitution matrix combination, we generated a list of found potential homologous
relations when searching all sequences of an ASTRAL dataset to the entire database. These
relations were ordered based on their E-values, i.e., the probability of obtaining a hit for an
unrelated sequence with equal length by pure chance.

Performance evaluation

Similar to our CorBLOSUM performance benchmark (Section 4.4.3), we evaluated the
homology search performance of substitution matrices using the state-of-the-art approach
by using the quadratically normalized coverage measure Qquad described in Section 4.3.1.
For a list of homologous search results ordered by their E-values, this measure represents
the fraction of the correctly found, true positive superfamily relations which remain after

Test set Algorithm Matrix numbers

PFASUM Search
Matrices

PFASUM [11,100]

Standard Search
Matrices

BLOSUM 50, 62,80
MD 10, 20,40
Optima 5
PAM 120, 250
VTML 10,20,40, 80,120, 160,200

PFASUM-comparable
Search Matrices

BLOSUM 37, 43,51
RBLOSUM 37, 43,52
CorBLOSUM 35, 41,50
PAM 203, 258,316
VTML 182, 226,270

Table 4.4: The matrix test sets assessed in the homology search performance evaluation.
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cutting the list in order to restrict the number of false positives to a certain amount. We set
this threshold to 0.01 errors per query (epq) in concordance to other studies [Price et al.
2005, Hess et al. 2016a]. This effectively restricts the number of false positives found within
100 queries to a single false positive.

The significance of the differences between the coverage scores obtained for different matri-
ces were also examined using the state-of-the-art approach by employing Concerted Bayesian
bootstrapping and Z-score statistics (Section 4.3.1). Concerted Bayesian bootstrapping al-
lowed us to evaluate the effect of changes in the database composition on the resulting
coverage scores. Through variation of the prior distribution of the sequences in the database,
we obtained 500 different coverage scores for each list of search results computed with
a particular matrix and gap parameters. The significance of the performance difference
between two of these benchmark results was then examined by computing a Z-score based
on the mean and variance of these coverage distributions and the number of performed
bootstrap steps, i.e., 500 in our case.

Overview - PFASUM homology search performance

In the first part of our evaluation, we investigated the homology search performance of all
PFASUM Search Matrices on each of the three ASTRAL subsets. The highest coverage values
obtained for our PFASUM Search Matrices with clustering values ≥ 15 in combination with
optimal gap penalties are shown in Figure 4.9. The full list of obtained coverage scores for
all PFASUM Search Matrices and the corresponding optimal gap penalties can be found in
Table C.5, Table C.6, and Table C.7.

Similar to the results of our CorBLOSUM performance study presented in Section 4.4.3,
the largest coverage values were reported on the ASTRAL70 subset with scores of up to
∼ 0.5508, closely followed by the results obtained for ASTRAL40 with coverages of up to
∼ 0.4448. Likewise, the overall smallest coverage scores with a maximum of ∼ 0.1706
were obtained for the ASTRAL20 subset. Again, this is not unexpected because identifying
true homologs in dissimilar sequence datasets is more difficult than finding homologous
sequences in closely related sequence sets.

When analyzing the results for ASTRAL20 in detail, the overall largest coverage scores were
obtained for PFASUM Search Matrices with clustering values between 34 and 64. In this
range, the highest coverage score of Q ≈ 0.1706 was achieved by the PFASUM60 matrix
and a gap open/extension penalty of -16/-1, closely followed by PFASUM48 (Q≈ 0.1701)
and PFASUM47 (Q= 0.1695) for gap parameters of -15/-1.

The results for the ASTRAL40 subset show a similar performance trend. On this subset, the
largest coverage scores were achieved by PFASUM Search Matrices with a clustering value
range of ∼ [30,60]. Here, PFASUM43 in combination with gap open/extension penalty
settings of -13/-1 produced the highest coverage score with Q≈ 0.44483. The second and
third highest coverage scores were produced by PFASUM45 (Q≈ 0.44476) and PFASUM41
(Q≈ 0.44471) using gap penalties of -13/-1 and -14/-2, respectively.
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On ASTRAL70, the largest coverage scores were obtained for matrices with a clustering
value range of ∼ [29,50] with PFASUM31 being the best performing matrix. This matrix
achieved the highest coverage of ∼ 0.5508 in combination with a gap open penalty of -13
and an extension penalty of -2. The performance differences to the other PFASUM Search
Matrices in the clustering value range of ∼ [29, 50] is, however, rather small.

In general, PFASUM Search Matrices with small clustering values (≤ 24) delivered the
worst homology search performance across all tested ASTRAL subsets. Another interesting
performance pattern can be observed for PFASUM Search Matrices with clustering values
≥ 80. All matrices in this range delivered nearly the same performance with the exception
of PFASUM100 which shows a slight performance increase over its predecessors. Between
these ranges (24< Q< 80), PFASUM Search Matrices show similar performance trends on
all subsets. This indicates that PFASUM matrices can be useful for the detection of closely
related sequences as well as distant homologs.

Comparison based on relative entropy

In order to properly assess the performance of substitution matrices, Altschul [1991] sugge-
sted comparing matrices with similar relative entropy H, the information divergence between
independent and observed evolutionary relations. For this reason, we compared the homo-
logy search performance of our PFASUM matrices with the capabilities of state-of-the-art
substitution matrices of comparable entropy levels in two different scenarios.

In the first scenario, we compare the three best performing PFASUM matrices on the tested
ASTRAL subsets with their PAM, VTML, and (R/Cor)BLOSUM counterparts denoted as
PFASUM-comparable Search Matrices. This enables us to judge the performance of the best
PFASUM matrices in comparison to our own CorBLOSUM matrices and those generated
with the most popular substitution matrix algorithms. The second scenario is focused on the
comparison of Standard Search Matrices, i.e., those matrices widely used for homologous
sequence search, with their PFASUM counterparts.

a)Best performing PFASUM matrices vs. (R/Cor)BLOSUM, PAM, and VTML

In this first scenario, we compare the performance of the best performing PFASUM Search
Matrices on the three ASTRAL subsets (PFASUM31, PFASUM43, and PFASUM60) with
their PAM, VTML, and (R/Cor)BLOSUM counterparts of comparable relative entropies. The
matrices assessed in this scenario are listed with their relative entropies in Table 4.5.

BLOSUM, RBLOSUM, and CorBLOSUM matrices were constructed using the respective varia-
tions of the original BLOSUM code [Henikoff and Henikoff 1992b] described in Section 4.4.2.
The VTML matrices were generated using the original VT/VTML scripts2 provided by Tobias
Mueller. The PAM matrices were computed using the C program pam3 by E. Michael Gertz
and Stephen F. Altschul. Since this program neither reports relative entropy values nor com-
putes log-odds scores for ambiguous amino acids, we modified the source code accordingly.
Notably, the log-odds scores of ambiguous amino acids computed with our implementation
do not always match their corresponding entries found in existing PAM matrices, e.g., those

2The perl scripts used for the generation of the VTML matrices were obtained from https://owww.molgen.mpg.
de/~muelle_t/vt_scores, last accessed 05.07.2016.

3The pam source code was obtained from ftp://ftp.ncbi.nlm.nih.gov/blast/matrices/pam.tar.gz, last acces-
sed 20.06.2017.
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Chapter 4: Substitution matrices

PFASUM31 PFASUM43 PFASUM60
H ≈ 0.230 H ≈ 0.335 H ≈ 0.494

Matrix H Matrix H Matrix H

BLOSUM37 0.231 BLOSUM43 0.337 BLOSUM51 0.485
CorBLOSUM35 0.234 CorBLOSUM41 0.337 CorBLOSUM50 0.488
RBLOSUM37 0.231 RBLOSUM43 0.333 RBLOSUM52 0.492
PAM316 0.229 PAM258 0.335 PAM203 0.495
VTML270 0.229 VTML226 0.334 VTML182 0.496

Table 4.5: Table of (R/Cor)BLOSUM, VTML, and PAM matrices with comparable relative
entropies to the best performing PFASUM Search Matrices on the three ASTRAL subsets
PFASUM31, PFASUM43, PFASUM60.

obtained from the NCBI FTP server4. We relate these slight score offsets to numerical diffe-
rences between intermediate results computed with our implementation and the unknown
original source code. Since our implementation of the relative entropy computation does
not take ambiguous amino acids into account and these acid types rarely occur in the tested
ASTRAL subsets, we still consider our benchmark results for these matrices as valid.

Figure 4.10 shows the highest achieved coverage scores at 0.01 errors per query (epq)
on the three ASTRAL subsets for the PFASUM31, PFASUM43, and PFASUM60 matrices
and PFASUM-comparable Search Matrices each using optimal gap penalties(Table C.8). The
significance of the results was estimated with Z-score statistics based on the mean and
variance of coverage distributions generated by Concerted Bayesian bootstrapping using
500 bootstrap steps (Table C.8).

Our results demonstrate that PFASUM31 and PFASUM43 always significantly outperform
their (R/Cor)BLOSUM, VTML, and PAM counterparts on all three tested ASTRAL subsets and
thus are better options for homologous sequence search than their counterparts. PFASUM60
also significantly supersedes its counterparts on ASTRAL20 but is in turn outperformed by
VTML182 on the ASTRAL40 and ASTRAL70 subsets. On these datasets, however, PFASUM60
is also outperformed by PFASUM31 and PFASUM43. This indicates that PFASUM60 is
generally not the best PFASUM Search Matrices for homologous sequence search on databases
with high sequence similarity.

b)Standard Search Matrices vs. PFASUM counterparts

For the second evaluation scenario, we identified PFASUM Search Matrices with similar rela-
tive entropies to the Standard Search Matrices set. Since the entropy values of PFASUM Search
Matrices (Table C.4) range between 0.0668 bits (PFASUM11) and 0.7319 bits (PFASUM100)
and some Standard Search Matrices possess to drastically different or unknown relative en-
tropies, we could not directly compare all Standard Search Matrices to our PFASUM Search
Matrices. The full list of Standard Search Matrices and their comparable PFASUM counterparts
based on similarity entropy levels assessed in this scenario is shown in Table 4.6.

4NCBI FTP server ftp://ftp.ncbi.nlm.nih.gov/blast/matrices/, last accessed 20.06.2017.
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Figure 4.10: Performance comparison of the best performing PFASUM Search Matrices on
the three ASTRAL subsets (PFASUM31, PFASUM43, and PFASUM60) with their PAM, VTML,
and (R/Cor)BLOSUM counterparts with comparable relative entropies (PFASUM-comparable
Search Matrices). The highest achieved coverage at 0.01 errors per query for the best gap
opening and extension penalty combination is shown. The dashed red line indicates the
maximum coverage value obtained for each comparison. Notably, the shown range of the
coverage is reduced to emphasize the differences between the matrices.

For all Standard Search Matrices matrices with comparable entropy levels to PFASUM Search
Matrices matrices, we compared their performance on the three ASTRAL datasets for varying
gap penalty settings. Figure 4.11 shows the highest achieved coverage scores at 0.01 errors
per query (epq) for Standard Search Matrices and their comparable PFASUM counterparts
each using individual best performing gap penalties (Table C.9). Again, the significance
of the results was estimated with Z-score statistics and Concerted Bayesian bootstrapping
(Table C.9).

The obtained coverage results and Z-Scores show that PFASUM Search Matrices always
perform at least as good or significantly better than their comparable Standard Search
Matrices with one single exception: The VTML160 matrix performs slightly better on the
ASTRAL70 dataset. This performance difference can be related to the different matrix
compositions. While the diagonal entries of VTML160 and its counterpart PFASUM67 are
very similar, there are numerous differences of up to four log-odds scores in PFASUM67
when comparing the off-diagonal entries. PFASUM67 thus favors more substitution events
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than VTML160 which may be useful when searching for remote homologs. For datasets
containing similar sequences such as ASTRAL70, however, this can result in more false
positive relationships identified.

On a global level, the performance advantage of PFASUM Search Matrices over the tested
Standard Search Matrices grows with decreasing sequence similarity in the test databases.
While the performance differences on ASTRAL70 and ASTRAL40 are only marginal but still
significant, the coverage differences for ASTRAL20 are much greater. This indicates that
PFASUM Search Matrices are especially useful for detecting remote homologs.

Entropy-independent search performance comparison

Henikoff and Henikoff [1993] showed that substitution matrices of a given matrix family
perform best around a relative entropy H of∼ 0.7 bit. We chose to re-evaluate this hypothesis
on the basis of the Pfam seed database. Similar to Hess et al. [2016], our results show that
the best performing substitution matrices – including PFASUM Search Matrices – possess
relative entropies well below the suggested 0.7 bit.

As shown in Figure 4.12, the best performance on the ASTRAL20 dataset was achieved by
PFASUM60 (Table C.3) with a relative entropy of H = 0.4941 bit. The best performing ma-
trices on the datasets ASTRAL40 and ASTRAL70 are PFASUM43 (H = 0.3354 bit, Table C.2)
and PFASUM31 (H = 0.2297 bit, Table C.1).

Standard Search Matrix Entropy (bit) PFASUM Search Matrix Entropy (bit)

BLOSUM50 0.4808 PFASUM59 0.4849
BLOSUM62 0.6979 PFASUM78 0.6931
BLOSUM80 0.9868 n/a n/a

MD10 n/a n/a n/a
MD20 n/a n/a n/a
MD40 n/a n/a n/a

Optima5 n/a n/a n/a

PAM120 0.9790 n/a n/a
PAM250 0.3540 PFASUM45 0.3529

VTML10 3.4680 n/a n/a
VTML20 2.9125 n/a n/a
VTML40 2.2675 n/a n/a
VTML80 1.4279 n/a n/a
VTML160 0.5625 PFASUM67 0.5649
VTML200 0.4121 PFASUM51 0.4084

Table 4.6: Table of Standard Search Matrices with their relative entropy as listed in FASTA
(Version: 36.3.8d, found in upam.h). Comparable PFASUM substitution matrices are listed
with their respective entropy. Entries with n/a refer to comparisons where no PFASUM
matrix with comparable relative entropy level could be found or the relative entropy of the
Standard Search Matrices is unknown.
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4.5 PFASUM substitution matrices

Figure 4.11: Performance comparison of Standard Search Matrices with PFASUM Search
Matrices of similar entropies on all three ASTRAL datasets. Shown is the highest achieved
coverage at an 0.01 errors per query for any gap opening and extension penalty combination.
The best-performing gap parameter for each matrix and database combination as well as the
corresponding Z-scores can be found in Table C.9. Notably, the shown range of the coverage
is reduced to emphasize the differences between the matrices.

We also find that PFASUM matrices with higher matrix number tend to perform better on
sequence data with lower sequence similarity than matrices with lower matrix number
(Figure 4.9). Whereas PFASUM60 shows the best performance on the ASTRAL20 dataset,
the best performing PFASUM matrices for sequences with relatively high sequence similarity
can be found at low clustering thresholds with PFASUM31 which outperforms all the others
on the ASTRAL70 dataset.
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Figure 4.12: Comparison of the performance of all Standard Search Matrices with the
novel PFASUM Search Matrices on three different ASTRAL datasets. Shown are the highest
achieved coverage scores at 0.01 errors per query for any gap opening and extension penalty
combination (Table C.10). With the exception of two performance differences, all shown
coverage values are significantly different according to our Z-score analysis (Table C.11).

When comparing the three top performing PFASUM Search Matrices to all Standard Search
Matrices, we find that PFASUM Search Matrices deliver superior homology search perfor-
mance with significantly greater coverage values (Figure 4.12) as indicated by the correspon-
ding Z-scores (Table C.11). The highest improvements in coverage over Standard Search
Matrices were achieved on the ASTRAL20 dataset. Similar to our findings in the evaluation
based on similar entropy, this indicates that PFASUM Search Matrices are especially useful
when searching for remote homologs.
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Database Matrix Gap parameters Coverage

ASTRAL20
VTML200 -14/-1 0.1598

PFASUM60 -16/-1 0.1706

ASTRAL40
VTML200 -14/-1 0.4392

PFASUM43 -13/-1 0.4448

ASTRAL70
VTML200 -9/-2 0.5459

PFASUM31 -13/-2 0.5508

Table 4.7: Best performing substitution matrices of the PFASUM Search Matrices and
Standard Search Matrices sets for the three test scenarios.

Surprisingly, the often used BLOSUM matrices are outperformed by VTML200 and the
OPTIMA5 matrix. Additionally, BLOSUM80 – often suggested as the matrix of choice for
sequence datasets with high similarity – is outperformed by BLOSUM50 and BLOSUM62 on
all three test datasets. Both PAM matrices exhibit relative good performance on the high
similarity dataset (ASTRAL70) but either is under-performing for sequences with more
remote evolutionary relation (ASTRAL20). The MD matrices [Jones et al. 1992] deliver
similar results to the lower numbered VTML matrices.

While VTML200 tends to be an universally good choice for homology search as the best
performing matrix out of the Standard Search Matrices set on all three datasets, PFASUM
Search Matrices can still achieve higher coverage values (Table 4.7). In general, the best
performing PFASUM Search Matrices for the ASTRAL20, ASTRAL40, and ASTRAL70 datasets
outperform all Standard Search Matrices on a statistical significant level (Table C.11).

Discussion

PFASUM Search Matrices perform significantly better than Standard Search Matrices in ho-
mologous sequence search, especially on datasets with small or limited sequence similarity
such as ASTRAL20. The best performing matrix on this dataset is the PFASUM60 matrix
with a relative entropy of H = 0.4941 bit. Interestingly, this matrix performs slightly worse
on more similar datasets such as ASTRAL40 and ASTRAL70 compared to PFASUM43 and
PFASUM31 which have much lower relative entropies of only H = 0.3354 bit and H =
0.2297 bit, respectively. For ungapped alignments, matrices with higher relative entropy
are usually more suitable for detecting homologs within similar sequences than matrices
with lower relative entropies [Altschul 1991]. This is apparently not the case when using
PFASUM matrices on the tested ASTRAL datasets.

A possible explanation for these findings can be drawn from the composition of the Pfam
seed alignments, the basis for PFASUM Search Matrices. Pfam seed alignments consist of
representative sequences for each family that are aligned based on their structural properties.
The sequences within a family are thus structurally similar but do not necessarily possess a
similar amino acid composition. When clustering these potentially dissimilar sequences using
low clustering thresholds, substitution events between them are thus attenuated. PFASUM
Search Matrices with lower matrix number, i.e., lower clustering thresholds, apparently
favor pairs of identical amino acids over substitution events and are more suited for similar
sequence datasets despite their relative entropy is being small. A full assessment of this
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Test set Algorithm Matrix numbers

PFASUM MSA Matrices PFASUM 31, 43,60

BLOSUM 50,62
Standard MSA Matrices PAM 250

VTML 160,200

Table 4.8: The matrix test sets assessed in the MSA construction evaluation.

effect requires a deep and thorough analysis of the amino acid compositions in the ASTRAL
dataset and Pfam seed sequences. This is, however, beyond the scope of this thesis and
recommended for future research.

4.5.4 Evaluation - MSA construction

Another popular task for employing substitution matrices is the construction of Multiple
Sequence Alignments (MSA). Hence, we also evaluated the impact of PFASUM matrices on
the quality of MSAs using state-of-the-art MSA benchmarks. The following sections describe
this evaluation in detail.

Tested substitution matrices

The calculation of pairwise sequence alignments forms the basis of many homology search
tools and MSA programs. For example, the search tools SSEARCH [Pearson 1991] and BLAST
[Altschul et al. 1990] employ pairwise alignments for calculating the similarity between
sequences. MSA programs such as MUSCLE [Edgar 2004b] and MAFFT [Katoh et al. 2002]
use pairwise alignments, e.g., during guide tree construction or when generating profile-
profile alignments. This suggests that matrices which are suitable for either task may also
be useful for the other task. Hence, we assess PFASUM’s MSA construction capabilities by
focusing on the three best performing PFASUM Search Matrices in our homology search per-
formance evaluation, namely PFASUM31, PFASUM43 and PFASUM60 (Table C.1, Table C.2,
and Table C.3). We refer to this matrix subset in the following as PFASUM MSA Matrices
(Table 4.8).

Out of the set of Standard Search Matrices, we chose the PAM250, BLOSUM50, BLOSUM62,
VMTL160, and VTML200 matrices for this evaluation. These matrices are used as default
matrix by several MSA algorithm such as MUSCLE and MAFFT. We denote this matrix subset in
the following as Standard MSA Matrices (Table 4.8).

Benchmark datasets

To compare the quality of MSAs generated using our novel PFASUM matrices with those
created with conventional matrices, we used the MSA benchmark collection bench provided
by Edgar [2009]. This collection of benchmark datasets consists of commonly used MSA
benchmarks stored in the FASTA [Pearson and Lipman 1988] format. From these, we selected
the unmodified BAliBASE 3.0 [Thompson et al. 2005], SABmark 1.65 [Van Walle et al. 2005]
and OXBench [Raghava et al. 2003] benchmarks for our evaluation. Each benchmark consists
of reference MSAs and corresponding unaligned sequence sets.
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BAliBASE 3.0 is one of the most widely used MSA benchmarks and provides 386 MSAs
categorized in five different sets. Each set represents a specific MSA use case, e.g., a set of
very divergent sequences (Reference 1) or sequence families that are aligned to a distantly
related sequence (Reference 2). The MSAs in each set were generated using a combination
of sequence- and structure-based methods with manual refinement [Edgar 2009c]. SABmark
1.65 provides two sets of MSAs, a “Twilight Zone” set (209 MSAs) and a “Superfamilies” set
(425 MSAs) which are derived from a consensus of SOFI and CE [Boutonnet et al. 1995].
While the sequences in the first set share a maximum similarity of 25%, the second set
contains sequences with a maximum similarity of 50%. The underlying sequences were
selected using fold information from the SCOP database and thus possess known structure.
The last benchmark used in our evaluation is OXBench. It provides a set of 395 structural
MSAs constructed using STAMP [Russell and Barton 1992] and 3D structural information
from the 3Dee database [Siddiqui et al. 2001].

MSA methods

For our evaluation, we constructed 543,360 MSAs in total using the popular MUSCLE algorithm
(v3.8.425) [Edgar 2004a, Edgar 2004b] in combination with the aforementioned substitution
matrices and different gap penalties. Similar to our homology search performance evaluation,
we varied the gap opening and gap extension penalties between −5 and −20 and −1 and
−3, respectively, to prevent the bias from potentially inaccurate gap penalty settings.

MUSCLE constructs MSAs in three steps, i.e., a draft progressive, an improved progressive,
and an iterative refinement step. In order to mitigate MSA quality differences solely induced
by refinement steps, we set the maximum number of iterations to one. The MSAs are thus
computed using a matrix independent guide tree and a single progressive alignment step only
based on our chosen parameters. Hence, the quality of the generated MSAs only depends
on the evaluated substitution matrix and gap penalties.

MSA quality evaluation

We measured the quality differences between our generated MSAs and the reference MSAs
using the q-score measure [Edgar 2004b] implemented in the identically named tool qscore
by Edgar [2009]. This measure describes the fraction of identically and thus correctly aligned
amino acid pairs between a test and a reference MSA. In other words, the quality of a test
MSA can be expressed as a number between 0 and 1.

We use the q-score in two different evaluation scenarios. First, we calculate the average
q-score q̄ over all MSAs in a benchmark dataset for each substitution matrix separately. This
allows a general comparison but is obviously sensitive to strong outliers. To compensate this
issue, we provide a second evaluation scenario. Here, we count the number of times that a
specific PFASUM matrix in the PFASUM MSA Matrices set produced an MSA of at least as
good quality as a specific matrix out of the Standard MSA Matrices set.

Results

Whereas homologous sequence search assessment aims at evaluating the performance of
substitution matrices for pairwise sequence alignments, the alignment of multiple sequences
in MSAs is another field of application for substitution matrices. We will first compare
the average performance of matrices in the PFASUM MSA Matrices set to conventional
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Figure 4.13: General comparison of MSA matrix performance based on the average q-score
q̄ per benchmark database. PFASUM MSA Matrices outperform the tested Standard MSA
Matrices on the BAliBASE 3.0 and SABmark 1.65 benchmarks. PFASUM31 achieved the
highest q̄ for BAliBASE 3.0 and SABmark 1.65. VTML200 leads all matrices on the OXBench
dataset. The red dotted line indicates the maximum q̄ separately for each benchmark.

substitution matrices grouped in the Standard MSA Matrices set (Table 4.8) on three popular
MSA benchmark datasets. In the second part, we will dissect these results and investigate
how PFASUM MSA Matrices fare on single MSAs in comparison to Standard MSA Matrices.

a)Average matrix performance

To properly evaluate the capabilities of PFASUM MSA Matrices in comparison to Standard
MSA Matrices for MSA construction, we computed MSAs based on three different MSA
benchmark datasets using the MSA program MUSCLE in combination with the aforementio-
ned matrices and varying gap penalties. The quality differences between these MSAs and
their benchmark reference MSAs were measured afterwards using the q-score measure.
Figure 4.13 shows the results for the average q-score (q̄) for all tested matrices on the
BAliBASE, OXBench and SABmark datasets.

As expected, we observed a significantly higher q̄ for all matrices on the OXBench dataset
than on BAliBASE 3.0 and SABmark since ≥ 73% of the MSAs in this dataset consist of
sequences with at least 40% sequence identity. Contrarily, the SABmark dataset presents
a decisively more difficult challenge for all matrices. Over 93% of all alignments contain
sequences with less than 40% sequence similarity. The BAliBASE 3.0 dataset can be placed in
between SABmark and OXBench in terms of sequence identity. At least 63% of the BAliBASE
3.0 alignments contain sequences with less then 40% similarity.

Even though we analyze the alignment quality of substantially different test datasets, we find
our PFASUM MSA Matrices in the top three performing matrices on all datasets. On BAliBASE
3.0, PFASUM31 achieved the highest q̄ of all matrices with q̄PFASUM31 = 0.8128, closely
followed by PFASUM60 with q̄PFASUM60 = 0.8110 and VTML160 with q̄VTML160 = 0.8093. The
highest alignment quality on OXBench is reported for VTML200 (at q̄VTML200 = 0.9102) only
marginally besting PFASUM60 with q̄PFASUM60 = 0.9095. For the SABmark dataset we find
the highest two performances for PFASUM31 (q̄ = 0.5808) and PFASUM60 (q̄ = 0.5804). In
this case, the next highest average alignment quality by a matrix out of the Standard MSA
Matrices set was achieved by VTML160 (q̄ = 0.5771).
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PFASUM31 PFASUM43 PFASUM60

B
A

liB
A

SE
3.

0 BLOSUM50 67.36 (59.07) 62.69 (54.92) 62.44 (51.81)
BLOSUM62 71.50 (65.03) 69.43 (62.44) 67.88 (58.03)
PAM250 75.39 (70.21) 71.76 (63.73) 70.73 (66.84)
VTML160 63.47 (54.92) 61.14 (50.52) 61.66 (48.45)
VTML200 68.13 (57.77) 63.21 (51.81) 61.92 (50.00)

O
X

B
en

ch

BLOSUM50 81.52 (25.06) 83.29 (26.84) 84.30 (23.80)
BLOSUM62 79.24 (23.04) 81.01 (22.03) 80.76 (21.52)
PAM250 80.00 (32.41) 82.03 (31.65) 79.49 (33.16)
VTML160 79.24 (24.81) 83.80 (28.61) 82.53 (25.32)
VTML200 76.96 (20.76) 82.03 (22.53) 80.00 (20.51)

SA
B

m
ar

k
1.

65 BLOSUM50 67.85 (47.52) 63.36 (44.21) 65.96 (43.74)
BLOSUM62 63.59 (48.23) 64.30 (47.28) 64.30 (45.86)
PAM250 72.58 (59.57) 70.21 (56.97) 72.81 (60.05)
VTML160 64.78 (45.39) 60.76 (43.50) 65.25 (42.08)
VTML200 66.67 (47.99) 63.83 (44.21) 68.56 (44.21)

Table 4.9: Fraction of times (in percent) that a specific matrix in the PFASUM MSA Matrices
set produced an MSA of at least as good (≥) quality as a specific matrix out of the Standard
MSA Matrices set. The comparison for better-than-relations (>) are shown in brackets. The
values are shown for all PFASUM MSA Matrices vs. Standard MSA Matrices comparisons on
all three different benchmark datasets.

The SABmark dataset allows us to delve deeper in the performance of substitution matrices
on alignments with very low sequence identity (’twilight zone’ dataset) and moderately
difficult alignments (’superfamily’ dataset). On both datasets, we observe that PFASUM MSA
Matrices outperform the Standard MSA Matrices with PFASUM60 achieving the highest q̄
for the ’twilight zone’ dataset, while PFASUM31 performed the best for the ’superfamily’
alignments (Table C.12).

In summary, PFASUM MSA Matrices outperform all analyzed Standard MSA Matrices on
average on benchmark datasets with low sequence identity. In this case, PFASUM60 is the
matrix of choice for very difficult alignments of sequences with low sequence identity. For
alignments with moderate complexity and medium sequence similarity, PFASUM31 proofs
to generate better alignments than any of the Standard MSA Matrices.

b)Quality improvements over Standard MSA Matrices

While the average q-score is an overall assessment of the alignment quality, directly compa-
ring the performance between two matrices on alignments can yield insights on whether the
average is dominated by strong outliers. Hence, we chose to compare PFASUM MSA Matrices
with Standard MSA Matrices on a per alignment level based on their reported q-score values.
For this, we count the number of times that a specific tested PFASUM matrix produced
an MSA of at least as good or higher quality as a specific matrix out of the Standard MSA
Matrices set. The results for this comparison based on BAliBASE 3.0, OXBench and SABmark
are shown in percent in Table 4.9.
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PFASUM MSA Matrices achieved a q-score at least as good as the Standard MSA Matrices
in over 60% of all BAliBASE 3.0 alignments, outperforming them in at least 50% of the
test cases. In comparison to PAM250, the usage of PFASUM MSA Matrices even resulted
in higher quality in over 63% of the test cases. Similar to BAliBASE 3.0, over 60% of all
SABmark alignments reconstructed using PFASUM MSA Matrices show a comparable quality
than those generated with Standard MSA Matrices and at least 42% are of higher quality.

In contrast to the other two benchmarks, the performance gain of PFASUM MSA Matrices
over Standard MSA Matrices on OXBench MSAs is rather small. Only 20% to 33% of the
MSAs generated with PFASUM MSA Matrices show larger q-scores than those constructed
with Standard MSA Matrices. However, between 76% and 84% of the PFASUM generated
MSAs are at least as good as their counterparts. Interestingly, while VTML200 achieves a
higher average q-score q̄ than any of the PFASUM MSA Matrices on OXBench alignments,
PFASUM MSA Matrices still produced higher or equal quality MSAs than VTML200 in over
76% of these alignments.

Discussion

Our performance evaluation shows that SSEARCH using PFASUM Search Matrices provides
significantly better search results and as such also higher quality pairwise sequence align-
ments. Since these form the basis for many state-of-the-art MSA algorithms such as MUSCLE
and MAFFT, we also tested the capabilities of a selection of the aforementioned matrices
for MSA construction. Our results indicate that the tested PFASUM MSA Matrices perform
exceptionally well when aligning sequences with medium to low sequence similarity such as
in the BAliBASE 3.0 and SABmark 1.65 benchmarks. However, the performance differences
between PFASUM MSA Matrices and the best performing Standard MSA Matrices on datasets
containing similar sequences such as OXBench is rather small.

This effect can be related to compositional similarities between the matrices which in parti-
cular affects the alignment of similar sequences. All tested matrices in our MSA evaluation,
with the exception of PAM250, share comparable scoring ratios between diagonal and off-
diagonal entries per amino acid, favoring amino acid conservation over substitutions. Since
similar sequences are usually more conserved and the majority of the matrix differences can
be observed on the off-diagonal, the alignments generated with PFASUM MSA Matrices and
Standard MSA Matrices only show minor differences.

4.5.5 Conclusion

We presented the novel PFASUM substitution matrices for the accurate detection of homolo-
gous protein sequences and for scoring and constructing high quality protein MSAs. Our
PFASUM matrices are based on the Pfam seed dataset [Finn et al. 2016] (version 29.0)
which represents the currently known sequence space covering a large variety of related and
divergent sequences. The MSAs in this dataset are also manually curated by experts. Hence,
the data basis for PFASUM substitution matrices is not only much larger and diverse than
those of conventional substitution matrices but also represents ground truth data instead
of automatically generated and thus potentially biased data. In contrast to conventional
construction methods, our algorithm can also effectively handle unfiltered MSAs and ambi-
guous amino acid symbols and thus prevents the loss of potentially important information.
An in-depth evaluation showed that these features enable PFASUM substitution matrices
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to deliver significantly better homology search results and produce more accurate MSAs
than conventional matrices. One of the best performing PFASUM matrix for homologous
sequence search is PFASUM60, especially when searching for distantly related homologs.
PFASUM60 also showed reasonable quality improvements for MSA construction. We thus
recommend PFASUM60 as a general choice for these particular tasks.
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Visual analysis and comparison of
multiple sequence alignments

5.1 Introduction

Sequence alignments, and especially multiple sequence alignments (MSA), are the basis for
several important applications in modern biology such as evolutionary heritage, domain
analysis, or protein structure prediction. While optimal pairwise sequence alignments (PSA)
can be computed with dynamic programming in less than one minute using a standard PC
(Section 2.2), the construction of an optimal multiple sequence alignment under the widely
used sum-of-pairs scoring model (Section 2.4.1) corresponds to an NP-complete optimization
problem [Wang and Jiang 1994, Just 2001, Elias 2006]. Thus, optimal MSAs with more
than 10 sequences cannot be computed in reasonable time even on modern computers. To
cope with the NP-complete nature of the MSA problem, state-of-the-art MSA algorithms
typically use heuristics to speed up the computation process (Section 2.4). The usage of
heuristics such as the progressive alignment method (Section 2.4.1) comes, however, at the
cost of reduced or at least uncertain alignment quality. This may have a strong negative
impact on all subsequent analysis and applications. For this reason, MSA quality assessment
and manual MSA refinement are crucial steps to produce reliable MSAs for further analysis
and research tasks (Section 1.3).

The vast number of MSA algorithms and programs that have been proposed over the last
years (Section 2.4.2) and their huge parameter space is another problem that demonstrates
the importance of MSA quality assessment. Choosing a suitable MSA program and especially
an optimal scoring model (i.e., a substitution matrix and gap penalties) for a given alignment
problem is still an unsolved problem and subject of current research [Giribet and Wheeler
1999, Reese and Pearson 2002, Price et al. 2005, Agrawal and Huang 2009, Edgar 2009c,
Kececioglu and DeBlasio 2013, Hess et al. 2014a]. Notably, there is no guarantee that a
particular scoring model produces evolutionary correct alignments.

As a result of these uncertainties, most users – in particular those without specific knowledge
in the field of MSA – often generate MSAs by simply using well established algorithms in
combination with default parameters, even though these programs and settings may be
suboptimal for the particular alignment task. For instance, the enormous number of over
42,000 citations of ClustalW (Section 2.4.2) implies that ClustalW is still the most used MSA
program even though it has not been consistently reported to compute the most accurate
alignments [Chatzou et al. 2016]. Hence, analyzing the quality of MSAs or comparing MSAs
computed with different algorithms and parameter sets may substantially help in choosing
more suitable programs and parameters and thus result in better alignments.
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Despite the obvious usefulness of MSA quality assessment, this aspect is generally unnoticed
by the biological community [Anderson et al. 2011, Chatzou et al. 2016]. There are several
reasons for this. For instance, most users lack more profound knowledge about the MSA
algorithms and the impact of their parameters or simply blindly trust the chosen programs.
Chatzou et al. [2016] even speculates “on the existence of a strong methodological inertia
within the biological community, where tool usage tends to snowball through protocol
recycling”. Another problem is the lack of visual analysis and comparison tools that effectively
support the intricate task of MSA quality analysis.

In this thesis part, we address the latter issue by presenting a novel interactive visual
comparison and analysis approach for protein MSAs. It enables even non-expert users to
visually explore, compare and analyze multiple MSAs in order to assess their quality and
the impact of different MSA algorithms and scoring models. The comparison and analysis
of (alternative) MSAs can be performed on global as well as on local levels supported by
different highlighting techniques based on automatic quality assessment.

5.2 Related work
Like other visual analytics techniques, our interactive visual comparison and analysis appro-
ach for MSAs combines automatic data mining methods with different visualizations and
interactions. For this reason, we first describe and discuss related work about methods for
the automatic comparison and quality analysis of MSAs. The second part of this section,
describes state-of-the-art visualization and visual comparison techniques for MSAs in detail.

5.2.1 MSA comparison and quality analysis

Due to the NP-complete nature of the MSA problem, the optimal MSA under a given scoring
model is generally unknown. According to Kececioglu and DeBlasio [2013], MSA quality is
thus usually assessed by two different principles. The first one is to compute a number of
alternative alignments for the same set of sequences using different alignment algorithms,
parameter settings, and scoring models. Afterwards, the generated alignments are analyzed
by identifying consistently aligned regions over all alternative MSAs which are considered to
be valid [Vingron and Argos 1990]. The second method is to infer alignment quality directly
from an MSA’s inherent structure by analyzing different criteria such as the number of gaps
or the average symbol diversity in the MSA columns [Kececioglu and DeBlasio 2013].

MSA quality assessment based on comparison of alternative alignments

Over the last years, several methods have been proposed that apply the first principle of
comparing alternative alignments to identify reliable regions [Vingron and Argos 1990,
Mevissen and Vingron 1996, Vingron 1996, Cline et al. 2002, Lassmann and Sonnhammer
2005, Sela et al. 2015]. For instance, Vingron and Argos [1990] presented a scoring based
approach to estimate the reliability of a specific position within a pairwise alignment. The
authors compared the score of a particular PSA with the score of the optimal PSA where
this specific position had been removed.

Another approach by Vingron [1996] uses near-optimal alignment analysis to predict reliable
regions in a set of alternative PSAs. Consistently aligned regions across a set of alternative
alignments are then considered to be reliable and thus correctly aligned. In contrast, those
with large differences are assumed to be unreliable and potentially need further refinement.
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Consistently aligned regions between two alignments can be detected, e.g., using local MSA
comparison measures (Section 2.5.2). This includes measures that quantify the alignment
differences on a per-column (e.g., BAliBASE total column score [Thompson et al. 1999a]) or
on a per-residue level (e.g., q-score [Edgar 2004b]).

Unlike other local measures, the shift score proposed by Cline et al. [2002] also allows to
quantify the magnitude of the per-residue alignment differences as explained in detail in
Section 2.5.2. For each residue x , i.e., a single symbol x in a sequence, in two alternative
MSAs A and B, a shift value is calculated on the basis of the residues aligned to x in these
two MSAs. If x is aligned with the same residues in both MSAs, the shift is zero. Otherwise,
the shift represents the difference between their indices. This shift value is then transformed
by an affine function to compute the final shift score within a pre-defined scoring range.
For these reasons, we use the shift score measure in our approach as the basis for the visual
pairwise comparison of MSAs (Section 5.3.3).

MSA quality assessment based on alignment inner structure

As outlined above, another principle for MSA quality assessment is based on the direct
analysis of an MSA’s inner structure. Two of the most commonly used measures for the
direct quality assessment of MSAs are the column based sum-of-pairs score [Thompson et al.
1999b] previously described in Section 2.4.1 and the consensus score. The former rates the
quality of an alignment column by accumulating the substitution scores of its residue pairs
using a particular substitution matrix such as BLOSUM62 [Henikoff and Henikoff 1992a].
The latter measures the overall diversity of residue types per column, often based on a
simple majority rule with gaps optionally taken into account.

The disadvantage of both methods is that they do not take neighboring columns into account
and that their scores can easily be misinterpreted. Columns containing several diverse amino
acids are typically rated by these measures with low scores and are thus considered to
be probably misaligned. When investigating these low-scoring columns in the context of
their neighboring regions, they may still reflect correct alignments from an evolutionary
perspective. Also, the scores reported by the column-wise sum-of-pairs measure typically
cannot be compared in a fair way. Since most substitution matrices report different scores
for preserved amino acid pairs (e.g., BLOSUM62: AA = 4 vs. WW = 11), the sum-of-
pairs measure rates even fully conserved columns with different scores depending on their
underlying amino acid type. Nevertheless, we adopted both measures in our approach in
order to provide state-of-the-art quality criteria that can still be used for a rough assessment
of alignment quality.

Recently, Kececioglu and DeBlasio [2013] presented further alignment-only based quality
measures for protein MSAs. These measures were initially developed to train a parameter
advisor for sequence alignment called FACET on state-of-the-art MSA benchmark datasets
[Kececioglu and DeBlasio 2013]. In their report, the so-called Average Substitution Score,
the Gap Open Density, and the secondary structure-based measures Secondary Structure
Blockiness, Secondary Structure Identity, and Secondary Structure Agreement were reported to
perform best. However, the usage of these measures for the quality assessment of arbitrary
MSA is limited as outlined below.
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The authors describe the Average Substitution Score as the average score of all substitutions
in an alignment measured with an adapted version of the BLOSUM62 matrix [Henikoff and
Henikoff 1992a]. This variation of the BLOSUM62 matrix has been shifted and scaled to a
scoring range of [0, 1]. Hence, this measure is identical to the standard sum-of-pairs score
including all aforementioned drawbacks even though its total score lies within the range of
0 to 1.

The Gap Open Density represents the fraction between the number of gaps and the overall
gap length. In general, longer gaps are considered to be more likely than the same number of
gap symbols at noncontiguous sites [Lesk 2013, p. 184]. For this reason, this measure could
be used as a very rough indicator for alignment quality but severely lacks the possibility of
providing normalized scoring values that can be meaningfully compared. Additionally, it
only allows quality assessment on a global level.

The three secondary structure-based measures use secondary structure annotations predicted
with PSIPRED [Jones 1999] to measure the alignment accuracy. The Secondary Structure
Blockiness is the number of non overlapping blocks of residues with identical secondary
structure annotation, while the Secondary Structure Identity corresponds to the fraction of
identical secondary structure annotations per column. The last secondary structure-based
measure called Secondary Structure Agreement represents the probability that two residues
belong to the same secondary structure type by averaging the normalized confidence values
reported by PSIPRED for neighboring residues. While using secondary structure information
for the detection of local misalignments is generally useful, many sequence datasets do not
report the required secondary structure annotations. Hence, an analysis based on predicted
secondary structure always introduces an additional bias and also comes at the cost of
increased computation time.

In summary, even though some of the aforementioned direct MSA quality measures may
be useful to identify probably correctly aligned regions, most of them are still not able to
reliably identify misaligned regions. This further highlights the importance of visual analysis
tools for sequence alignments since humans can effectively detect misalignments through
their visual system and natural pattern recognition (Section 3.5).

5.2.2 Visual analysis and comparison of MSAs

Many different MSA visualization tools have been published to this day (e.g., ClustalX2
[Larkin et al. 2007], Jalview [Waterhouse et al. 2009], SeaView [Gouy et al. 2010], Webprank
[Löytynoja and Goldman 2010], SuiteMSA [Anderson et al. 2011], SBAL [Wang et al. 2012],
AliView [Larsson 2014]). Some of these tools also provide additional functionality such as
manual MSA editing and interfaces to prominent alignment algorithms and web services
for sequence retrieval or secondary structure prediction. In the following, we describe a
representative selection of these programs and approaches in more detail.

Jalview

One of the most prominent visual editors for multiple sequence alignments is the Java-based
program Jalview [Waterhouse et al. 2009]. Like other MSA visualization programs, Jalview
depicts an MSA in the form of a grid filled with the one letter codes of the residues or gap
symbols. The background of each grid cell can be colored according to specific criteria such
as the physico-chemical attributes of the corresponding residues. This allows the visual
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detection of potential misalignments or the identification of interesting alignment regions.
However, the shape of the residues cannot be adapted in order to transport additional
information on a second visual dimension like the representation used in our citizen science
game Bionigma (Section 3.5).

Below the alignment visualization, further information about the different alignment columns
is shown. For example, this includes the consensus amino acid type, the degree of amino
acid conservation, the fraction of non-gap symbols, and a column quality indicator based
on BLOSUM62 scores. As mentioned above, even though these measures may be useful
for the detection of potentially correctly aligned regions, they still do not take neighboring
acids or columns into account and cannot reliably detect misaligned regions. Hence, quality
assessment in Jalview primarily relies on the visual detection of misalignments through
color encoded residues and pattern recognition.

In addition, Jalview does not have a zooming functionality and instead only relies on
a one-pixel-per-residue overview visualization. This severely limits its usefulness for the
analysis of larger sequence alignments. However, Jalview enables the user to hide specific
regions of the MSA. The shown MSAs can be manually refined and annotated through
several editing functions including copy-&-paste of sequences or sequence segments and
shifting of residues.

Other features of Jalview include access to web services for sequence alignment and secon-
dary structure prediction as well as functions for deriving and inspecting phylogenetic trees.
If available, Jalview also supports the visual exploration of a protein’s 3D structure using
Jmol1 interlinked with the corresponding 2D MSA visualization.

In summary, Jalview is a feature-rich MSA editor but its capabilities for the visual quality
assessment of MSA are limited, especially for larger MSAs. Additionally, even though Jalview
supports visualizing multiple MSAs in separate windows, it does not provide any functionality
for comparing alternative alignments.

AliView

AliView [Larsson 2014] is a light-weight visual editor for multiple sequence alignments
which focuses on fast data processing and fluid visualization of large MSAs. To achieve
these goals, AliView creates an index of the sequences in the files and only caches them in
memory when they are actually viewed as well as employs a multi-threaded method for MSA
rendering. Like Jalview, AliView is written in Java and visualizes MSAs in the form of a grid
filled with the one letter codes of the residues. AliView also supports several color schemes
to visually encode similarities between the residues. However, the shape and texture of the
residues cannot be changed and there is also no possibility to individually customize the
color schemes. This may limit the user in performing more specialized analysis tasks.

For the quality analysis of MSAs, AliView provides a small set of highlighting mechanisms.
This includes, e.g., highlighting residues that differ from the consensus of an MSA column or
that belong to it, and highlighting of residues that deviate from a particular “trace” sequence.
Again, these methods may support the user in detecting potentially well-aligned regions but
still restrict the analysis to single columns and do not reliably reveal misaligned regions.

1Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/, last accessed
18.10.2017.
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However, AliView provides the user with an unlimited zooming function. Through this, one
can easily get an overview of the entire alignment as well as inspect specific alignment
regions in detail on demand. This function in combination with the fast MSA rendering
method used by AliView allows the user to effectively visualize even very large MSAs.

MSAs can be edited in AliView using standard functions such as insertion or deletion of
sequences or shifting sequence segments. In addition, AliView allows to merge overlapping
sequences into a consensus sequence, provides an unique functionality to compute all
possible primers for a user-selected alignment region, and enables automatic re-alignment
of MSAs or regions through external MSA programs.

AliView’s main advantages are its lightweight design and fast visualization of very large
MSAs. However, its capabilities for the visual analysis of alignment quality are limited
through the lack of highlighting mechanisms and the missing functionality of comparing
alternative MSAs.

SuiteMSA

SuiteMSA [Anderson et al. 2011] is a collection of different visual analysis tools for multiple
sequence alignments and related fields. This includes, e.g., an MSA Viewer to visualize single
MSAs, a Phylogeny Viewer to view and edit phylogenetic trees, and a separate graphical
interface to execute external MSA programs and to control their parameters. Additionally,
SuiteMSA enables the rare option to visually compare MSAs through the programs MSA
Comparator and Pixel Plot.

In the MSA Viewer, the MSA is depicted similar to the aforementioned programs using a grid-
like view containing the one letter codes of the residues. Likewise, the residues can be colored
according to pre-defined color schemes in order to emphasize similarities and differences
between them. Besides these color schemes, the appearance of the residues cannot be further
adapted, e.g., by user-customized colors or shapes which may restrict the user in the analysis.
Also, MSA Viewer only provides very limited options for the quality analysis of MSAs. This
includes the possibility to visualize separately obtained structure information in the form
of an additional MSA shown below the original one and a bar chart indicating the level of
column conservation. Since MSA Viewer does neither provide a zooming function like that
in AliView nor an overview visualization as in Jalview, larger MSAs cannot be effectively
analyzed, especially when showing additional structural information below the MSA. The
manual editing functionality of MSA Viewer is also very limited by only allowing the deletion
and insertion of gaps instead of moving individual residues or sequence segments which
would be substantially more intuitive.

As mentioned above, SuiteMSA also contains programs for the visual comparison of MSAs.
For instance, the MSA Comparator allows the visual comparison of a reference MSA shown
at the top and an alternative MSA depicted at the bottom. Between both visualizations, the
column-wise sum-of-pairs score of the corresponding alignment columns can be optionally
shown in order to identify potentially similar columns. By selecting a specific column range
in the reference MSA, the respective residues in the alternative alignment are highlighted.
Consistently aligned residues are highlighted in blue, while differently aligned residues
are marked in red. This allows the direct visual assessment of alignment differences and
similarities. However, since the color property is used for encoding alignment consistency
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and no further color scheme can be applied, the inner structure of the alignments can barely
be assessed. Also, MSA Comparator neither allows MSA editing nor does it provide a zooming
function. This effectively restricts its usage to the comparison of relatively small alignments.

The Pixel Plot enables the rudimentary comparison of more than two MSAs. The different
MSAs visualizations are shown in the form of a list. Each residue is represented as a small
black square on a white background. Similar to MSA Comparator, one can select a specific
column range in the reference alignment shown at the top of the list which results in
the corresponding residues being highlighted in the alternative MSAs. However, unlike
the method provided by MSA Comparator, the Pixel Plot does not color-code consistently
or differently aligned residues which severely limits its usefulness for the comparison
of alignments. The missing editing and zooming functionality additionally amplify this
limitation.

Even though SuiteMSA provides a number of tools for the visual analysis and comparison of
MSAs, most programs have severe limitations. Larger MSAs cannot be effectively analyzed
due to the lack of a zooming function and accessing all features of SuiteMSA requires the
usage of different programs that are not connected. For instance, it is neither possible
to edit an MSA in other programs than the MSA Viewer nor to directly visualize these
changes in already running instances of MSA Comparator since the SuiteMSA programs do
not synchronize their data.

Summary

Most of the aforementioned tools only provide limited capabilities to visually analyze an
alignment’s quality or to compare two or more MSAs. They only rely on consensus or sum-of-
pairs scores which have several limitations and drawbacks. Additionally, they do not support
the comparison of MSAs or only in a very limited way.

To address these issues, our approach provides a broader range of measures that are used
to directly present quality information inside the MSA visualization supported by various
highlighting techniques. Our method also enables quality assessment on global as well as on
local levels, allows to focus on similarities or differences depending on the user’s demand,
and enables the analysis and comparison of multiple large MSAs. In the following section,
we present our approach for the visual analysis and comparison of sequence alignments in
detail.

5.3 Approach

Typical analysis tasks to assess the quality of an MSA include the identification of consistently
and differently aligned regions in a set of alternative MSAs and the analysis of the inhe-
rent structure of an MSA, e.g., by identifying conserved columns and local misalignments
(Section 5.2.1). Existing approaches are constrained by several limitations as discussed in
Section 5.2 but also provide useful features. For this reason, we developed a novel approach
for the visual analysis and comparison of sequence alignments. It combines the strengths of
existing concepts with new features to overcome the limitations mentioned in Section 5.2.
Our approach provides the following core features:
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Global MSA comparison Local residue comparison

Global residue comparison

Local quality analysis

Figure 5.1: Our approach allows a novel visual comparison and analysis of multiple alterna-
tive MSAs on different levels of detail. Left: A Similarity Matrix depicting the pairwise MSA
similarities of the dataset representing global comparison information. Center: Comparison
of two large MSAs. For a local comparison, the MSA at the bottom highlights differently
(red), slightly different (yellow) and consistently aligned residues (blue) with respect to
the reference MSA shown at the top. In contrast, the reference MSA at the top shows this
information globally with respect to all MSAs in the dataset. White highlights depict MSA
differences for a specific selection. Right: Different highlighting modes allow the detection
of potentially misaligned regions and local assessment of alignment quality.

• Our analysis system can handle multiple large MSAs simultaneously through the
usage of multi-threaded rendering combined with caching and an unlimited zooming
function inspired by AliView [Larsson 2014].

• The MSA visualizations can be fully adapted to the user’s needs by either choosing
a predefined visualization theme or by customizing the shape, the texture, and the
color of the individual amino acid types. Thus, each visual property can be used to
encode a separate per-residue information such as different physico-chemical attributes
(Figure 5.1, right).

• MSAs can be easily edited by selecting and shifting specific alignment regions to the
left or the right using the arrow keys on the keyboard. Two different movement modes
either allow to move neighboring acids upon collision with the selected residues or to
preserve their alignment.

• Multiple alternative MSAs can be simultaneously compared on a global as well as on
a local level using novel comparison measures and a visual interactive N:N and 1:N
comparison style. The former allows to assess the overall similarity of the MSAs in
the dataset (Figure 5.1, left), while the latter compares all MSAs in the dataset to a
user-specified reference alignment on a per-residue level (Figure 5.1, center).

• Several highlighting modes enable the user to focus on specific analysis aspects such as
similarities and dissimilarities between alternative alignments or within single MSAs
(Figure 5.1, right).
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In the following subsection, we will first describe the different quality and comparison
measures employed in our approach as the basis for the different visualizations. Subsequently,
we present our interactive MSA visualization used for the visual analysis and manual
refinement of individual MSAs. The remainder of this section presents our concept for the
visual interactive N:N and 1:N comparison of sequence alignments in detail.

5.3.1 Quality and comparison measures

Our system uses several MSA quality and comparison measures in combination with different
visualizations to support the user’s analysis task. These measures can be either used for
local analysis, i.e., on a per-column or per-residue level and/or on a global level covering
an entire MSA. Notably, the underlying measure system of our approach is modularized in
order to provide an easy way to extend existing measures or to integrate new ones.

Comparison measures

One focus of our approach is the visual comparison of alternative MSAs. This requires
particular comparison measures that measure alignment differences on a local and global
scale. As described in Section 2.5.2, a well-established scoring measure for the comparison
of two sequence alignments is the shift score by Cline et al. [2002]. It allows an accurate
assessment of local alignment differences and similarities on a per-residue level. Unlike
other comparison measures such as the q-score, Modeler score, or Developer score, this
measure also takes the magnitude of the per-residue alignment differences into account.
For this reason, we use the shift score as the basis for our visual MSA comparison and to
derive additional comparison measures.

Notably, the shift score encodes the alignment difference (shift) of a particular residue x in
a sequence Sx in relation to its aligned residues y1 and y2 in sequence Sy in two alternative
alignments (Section 2.5.2). By computing the average of all shift scores ∆(x) obtained
for a single residue x in alignment A with respect to an alignment B, one can obtain an
indicator for its total alignment difference between A and B. We denote this measure as
Average Residue Shift and use it to visualize per-residue differences between two MSAs.

Likewise, the average of the Average Residue Shift scores obtained for all residues in the
comparison of two alignments A and B represents a global similarity score for this comparison.
We denote this measure as MSA Shift and use it for the global pairwise comparison of two
alternative MSAs.

Quality measures

Like existing visual MSA editors, our goal is to support the user’s analysis task by auto-
matic MSA quality measures. For this purpose, we provide two state-of-the-art measures:
the column-wise sum-of-pairs score (SP) [Thompson et al. 1999b] (Section 2.4.1) and a
consensus-style measure denoted as Symbol Identity. In contrast to other visual MSA tools,
we enable the user to select a custom substitution matrix for the computation of the SP
score. The sum of all column SP scores is then used as global MSA measure.

The column-wise Symbol Identity represents the fraction of amino acids that belong to the
dominating equivalence class in the respective column inspired by the Amino Acid Identity
measure proposed by Kececioglu and DeBlasio [2013]. Each equivalence class represents
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a group of amino acids, e.g., those that share specific chemical attributes. The user can
either choose from predefined sets of equivalence classes representing reduced amino acid
alphabets or define new ones.

These measures allow an easy but rough assessment of alignment quality as outlined in
Section 5.2.1. They are also the state-of-the-art methods for assessing the quality of MSAs
and can be used to identify potentially well aligned columns. In addition, we propose a new
quality measure denoted as Global Residue Shift based on the Average Residue Shift measure
described above. This measure represents the average score of all Average Residue Shifts
obtained for a specific residue in the comparison of all alternative alignments in the dataset.
A Global Residue Shift of 1 thus demonstrates that the particular residue is consistently
aligned in all alternative MSAs of the dataset. In contrast, negative Global Residue Shifts
indicate that the corresponding residues are differently aligned in all MSAs in most cases.
This enables the user to effectively determine consistently aligned regions on a per-residue
level in all alternative MSAs.

5.3.2 Visual analysis of multiple sequence alignments

MSA visualization

Similar to existing visual MSA editors, our approach presents an MSA in a grid-like manner
where each row corresponds to a specific sequence and the cells either correspond to a
specific residue in this sequence or a gap symbol. However, since similarities between amino
acids such as similar physico-chemical attributes play a central role in assessing an MSA’s
quality, our approach uses multiple visual properties – shape, color, and texture – for the
visualization of the individual amino acid types (Figure 5.2).

Depending on the user’s choice, each residue is either depicted using a colored rectangular
shape like in other methods or a specific colored shape, e.g., a circular disc or star. Optionally,
each residue can be either lettered with its one letter code or shown with a specific texture,
e.g., a cross or small triangle. This allows to simultaneously encode different amino acid
properties using the three separate visual properties, i.e., shape, color, and texture.

For instance, the visualization on the left side of Figure 5.2 uses colored circular discs to
visually encode whether a specific residue is either hydrophobic or hydrophilic. The gray
stars represent residues where this particular chemical property is not set. In contrast, the
visualization on the right side of Figure 5.2 applies the BLOSUM62 residue theme used in
our citizen science game Bionigma (Section 3.5).

This residue theme emphasizes amino acid similarities represented by high substitution
scores in the BLOSUM62 matrix [Henikoff and Henikoff 1992a]. For instance, substitutions
between the aliphatic amino acid types I, L, M, and V are rated in BLOSUM62 with high
log-odds scores. In contrast, substitutions between other acid types and aliphatic amino
acids are penalized or receive scores of zero. To visually encode these similarities, I, L, M,
and V residues are colored in red with a hexagonal shape, while the small black textures
encode the respective amino acid type. Likewise, the similarity between asparagine (N) and
aspartic acid (D) is encoded by the pink color. However, their shapes are different since N is
also similar to serine (S) and D is also similar to glutamic acid (E), but N is not similar to E.
Likewise, D is not similar to S. Hence, the more visual properties between two residues are
identical, the higher is their substitution score in the BLOSUM62 matrix.
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Figure 5.2: Illustration of our MSA visualization approach of a small MSA region. Left: Our
residue theme emphasizing hydrophilic (cyan) and hydrophobic (red) amino acids. Other
amino acids are shown as dark gray stars in order to prevent visual distraction. Right: The
same MSA region using our BLOSUM62 residue theme which visually emphasizes the amino
acid similarity information encoded in the BLOSUM62 substitution matrix [Henikoff and
Henikoff 1992a]. The more visual properties between two residue types are identical, the
higher is their substitution score in the BLOSUM62 matrix. For this reason, the aliphatic
amino acids I, L, M, and V are colored in red using hexagonal shapes. Their textures indicate
their amino acid types. While the color of a group is unique and thus represents the most
important visual similarity property, the shape is also used to indicate weaker similarities
across groups. For example, the pink and green squares represent acids that belong to
different groups but still share some similarities.

In order to adjust the visualization according to the user’s needs, the appearance of each
individual amino acid type can be fully adapted. Additionally, we provide a set of predefined
residue themes for common analysis tasks such as the themes shown in Figure 5.2. Besides the
appearance of the residues, the user can also freely adjust the grid spacing of the alignment
visualization.

To handle large MSAs effectively, our approach provides an unlimited zooming functionality
inspired by AliView [Larsson 2014]. The user can easily zoom into the alignment at the
current mouse cursor position by using the scroll wheel or zoom out to view the full
alignment. In the lowest zoom level, each residue is visualized with the smallest possible
size, i.e., one pixel per residue.

MSA editing

For the basic manipulation of MSAs, our approach provides several selection interactions and
different movement modes (shift and push) to change the alignment inspired by our citizen
science game Bionigma. The user can either select a particular residue in the alignment,
specific residues in the same column, or a whole alignment region. Individual residues in
the same column can be selected by left clicks, while a double-click adds all residues of the
same amino acid type in this column to the selection. Regions can be selected by drawing a
selection rectangle with the mouse through a drag gesture.

The selected amino acids (and gaps in case of a region selection) can then be moved to the
right or left side by using the arrow keys on the keyboard. By holding a modifier key such
as the shift key, the user can switch between the two provided movement modes. In the
shift mode, the selected residues are moved in the desired direction until one of the residues
“collides” with another residue that is not part of the current selection. This mode allows to
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Figure 5.3: Illustration of the Symbol identity overlay and the two different overlay modes
used in our approach (color and transparency). The Symbol identity measure was para-
meterized to rate the degree of conserved amino acids in the columns. Shown is a small
alignment region of an MSA of 211 sequences in total. Left: The example alignment region
visualized with the BLOSUM62 residue scheme with no overlay activated. Middle: Quality
visualization of the same region using the color mode and a red-yellow-blue colormap. Blue
colors indicate highly conserved columns while those highlighted in red depict columns
of diverse amino acid types. Right: The quality visualization using the transparency mode.
Columns with scores < 0.35 are filtered to focus on relatively conserved columns only.

manipulate the alignment locally without affecting the alignment of neighboring regions.
When using the push mode, colliding residues are also moved in the movement direction.
This allows to manipulate the alignment without restrictions.

Visual quality analysis

For the visual quality assessment of single MSAs based on their inherent inner structure,
we provide the user with different overlays. These overlays visualize the quality of the
aligned residues or alignment columns directly in the MSA visualization either using color or
transparency (Figure 5.3). In the color mode, the alignment quality of the residues or columns
are represented by colors obtained from a user-specified colormap. The alignment region
shown on the left side of Figure 5.3 depicts the quality rating of the Symbol Identity measure
using the red-yellow-blue colormap. In this case, each individual amino acid type was
assigned to its own equivalence class. The Symbol Identity measure thus simply represents
the fraction of conserved amino acids in each columns. Highly conserved columns are
highlighted in blue, while columns with diverse amino acid compositions are marked in red.

The transparency mode shown on the right hand side of Figure 5.3 allows an alternative
visualization of the chosen quality criteria. By adjusting a scoring threshold (≥ 0.35 in this
example), the user can interactively filter the shown residues or columns to focus on those
objects that represent a certain quality level either greater equal or less equal the chosen
threshold. Notably, filtered objects are not fully hidden but are rendered with transparent
colors. Through this, the user can maintain the context of the alignment regions while still
focusing on high or low quality alignment regions.

5.3.3 Visual comparison of multiple sequence alignments

Our approach aims to enable the visual comparison of multiple alternative MSAs on global
as well as on local levels. We realize this through several comparison measures presented
in Section 5.3.1 in combination with different visualizations. On one hand, this includes
a similarity matrix visualization for the N:N comparison of all alternative alignments. On
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the other hand, this includes interlinked MSA visualizations for the 1:N comparison of an
user-specified reference alignment with all other alignments in the datasets. Figure 5.4
shows our visual interactive comparison and analysis system in detail.

Similarity matrix

The N:N comparison of the alignments in the dataset in the form of a sortable similarity
matrix visualization (1) (Figure 5.4) enables an initial visual assessment of the relative MSA
similarity in the dataset. For instance, this enables a global scale analysis of the impact of
different MSA algorithms or scoring parameters (e.g., different substitution matrices and
gap penalties) on the resulting MSAs. Each cell in this matrix represents the similarity of two
specific MSAs according to a user-specified global MSA comparison measure, e.g., the MSA
Shift score measure presented in Section 5.3.1. The score obtained for each comparison is
mapped to a particular color retrieved from a user-specified colormap. Optionally, the score
can be normalized in order to emphasize small differences between the values.

In Figure 5.4, the red-yellow-blue colormap is selected with the MSA Shift score chosen as
the comparison measure. Matrix cells representing the pairwise comparison of similar MSAs
– i.e., those with MSA Shift scores near 1.0 – are thus highlighted in blue tones. In contrast,
yellow-colored cells indicate MSAs with slight differences, while those highlighted in red
represent MSAs with largely different structure.

Further details about individual pairwise MSA comparisons such as the corresponding MSAs
and comparison scores are shown in a tooltip. It is activated by moving the mouse cursor
over the cells. Additionally, the user can sort the matrix entries either alphabetically or by
the comparison score. He or she can also opens a particular pairwise MSA comparison by
double-clicking on the corresponding matrix cell.

MSA list

The MSA list (2) (Figure 5.4) shown below the similarity matrix lists all alternative MSAs in
the dataset. It allows to clone MSAs to add additional alternative MSAs to the dataset. Like-
wise, MSAs can be removed from the dataset, selected as reference for the 1:N comparison,
or shown in an MSA visualization. This list can also be sorted according to a user-specified
MSA quality measure (Section 5.3.1). This allows the user to get a quick overview of the
overall quality in the dataset and to select potentially interesting MSAs.

MSA comparison panel

The MSA comparison panel (3) (Figure 5.4) depicted in the center of our visual comparison
system realizes the 1:N comparison feature. The MSA visualization shown at the top always
refers to the chosen reference alignment to which all other alternative alignments in the
dataset are compared. Residues in the reference alignment are colored according to their
Global Residue Shift score and the chosen colormap. This enables the user to assess local
residue differences on a global scale. As described in Section 5.3.1, this measure represents
a residue’s global alignment consistency across all MSAs in the dataset. According to the
red-yellow-blue colormap used in Figure 5.4, the blue-highlighted residues in the center of
the reference MSA indicate regions that are consistently aligned in the entire dataset and
thus can be considered to probably be correctly aligned. In contrast, regions highlighted in
red represent strongly deviating alignment regions that need further inspection.
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The visualizations of the alternative MSAs shown below the reference MSA represent a
different comparison measure using the same colormap. Here, the highlighted per-residue
alignment differences refer to the Average Residue Shift scores obtained for the pairwise
comparison of the alternative MSA and the currently chosen reference MSA. This allows
to visually assess local alignment differences between a specific alternative MSA and the
reference alignment.

Notably, the user can decide to either show MSAs in the comparison panel or in separate
windows to visually compare even more MSAs. Additionally, all MSA visualizations are
connected to each other. For instance, this allows the user to either zoom and scroll all MSAs
simultaneously or to control them separately. The main advantage of the interlinked MSA
visualizations is the possibility to select and highlight specific residues or regions across all
MSAs. Through this, the different alignment constellations of user-specified residues can be
exactly determined.

Another interesting aspect in the analysis of the per-residue alignment differences is the
magnitude of the individual shifts. To support this analysis on a more detailed level, the
user can set a threshold to filter residues with shift values less equal or greater equal than a
specific threshold, similar to the method used for the quality assessment of individual MSAs
(Section 5.3.2).

In summary, our visual MSA comparison system allows a fast detection of consistently aligned
regions on a global level – i.e., over the entire dataset – and locally with respect to the
selected reference MSA. Since consistently aligned regions over a large set of alignments are
usually assumed to be correctly aligned [Vingron and Argos 1990], this allows to effectively
judge alignment quality on a global and local level.

5.4 Evaluation

A common problem when constructing multiple sequence alignments is the selection of a
suitable alignment algorithm and corresponding parameters for the given set of sequences.
One option to address this problem is to compute several alternative alignments of the
same sequence set using different algorithms and parameter settings and to select the most
reliable alignment for further processing.

For the evaluation of our visual analysis and comparison approach, we simulated this scenario
by analyzing and comparing 8 alternative MSAs of a set of 211 HCN (Hyperpolarization-
activated cyclic nucleotide-gated) ion channel proteins generated with different algorithms
and corresponding default parameters. HCN ion channels are important for the functionality
of cells in the heart. Hence, we address current research interests in biomedicine. To obtain
our 211 sequences, we run a BLAST search (Section 2.3.2) using as a query the known
sequence gi355749904.The E-value threshold was set to 0.00001. In addition, we kept only
those sequences annotated as "hyperpolarization" and "cyclic". In a third step, a molecular
biologist and bioinformatician deleted thirteen additional sequences as non-hits. In total,
we obtained a set of 211 valid HCN sequences [Hess et al. 2014a].
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Figure 5.5: The similarity matrix view depicting the pair-
wise comparison of the eight MSAs computed with the
different algorithms and respective default parameters.
The algorithms represented by the columns from the left
to the right are the four MAFFT variants G-INS-i, L-INS-i,
E-INS-i, and Default, followed by MUSCLE, ClustalW2, Ka-
lign, and ClustalOmega. Low normalized MSA Shift scores
are colored in red, while those near 1.0 are highlighted in
blue. Yellow tones indicate moderate MSA Shifts of ∼ 0.5.

The 8 different alternative alignments of this sequence set were generated with the state-of-
the-art MSA programs ClustalW2 [Larkin et al. 2007], ClustalOmega [Sievers et al. 2011],
MUSCLE [Edgar 2004b], Kalign [Lassmann et al. 2009], and MAFFT [Katoh et al. 2002] using
their respective default parameter settings. For MAFFT, we additionally employed its three
“high-accuracy” variants L-INS-i, E-INS-i, and G-INS-i.

5.4.1 Visual comparison and analysis of HCN MSAs

In order to detect differences between the generated MSAs on a global level, we first
compared them using our similarity matrix view. The overall reported similarity between
the MSAs was relatively high, with MSA Shift scores of ≥ 0.9. This indicates that all
tested algorithms generated relatively similar alignments. In order to visually emphasize
the differences between these scores, we switched the similarity matrix view to show the
min/max normalized scores (Figure 5.5).

Not surprisingly, the four generated MAFFT alignments are quite similar (columns 1 to 4),
with the Default MAFFT MSA showing the most differences in this set. While these four
MSAs are also structurally similar to the ClustalOmega alignment (column 8), they differ to
a greater extend from the MSAs computed with MUSCLE, ClustalW2, and Kalign (columns 5
to 7). For these pairwise comparisons, our system reported normalized MSA Shift scores of
up to ∼ 0.32 for MUSCLE and ClustalW2, and ∼ 0.52 for Kalign, respectively. The pairwise
comparison of the MUSCLE, ClustalW2, and Kalign alignments among themselves (red cells
in columns 5 to 7) reveal the largest differences in the dataset with normalized MSA Shift
scores of < 0.12. Interestingly, all three alignments share the most similarities with the
ClustalOmega MSA (column 8) which thus represents some sort of consensus alignment of
all alternative alignments in the dataset. This indicates that the usage of ClustalOmega with
default parameters seems to be a generally good choice for the alignment of the 211 HCN
sequences used in this test scenario.

Nevertheless, the existing differences between the generated alignments should be analyzed
in more detail to retrieve more profound information about the impact of the different
algorithms on the resulting MSA structure. For this reason, we compared the different
alternative MSAs with the ClustalOmega MSA selected as reference. The result of this
comparison is shown for the N-terminal regions of the MSAs in Figure 5.6. From the top
to the bottom, the shown visualizations refer to the alternative alignments generated with
ClustalOmega, MAFFT-Default, G-INS-i, L-INS-i, E-INS-i, MUSCLE, ClustalW2, and Kalign.
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Chapter 5: Visual analysis and comparison of multiple sequence alignments

Figure 5.6: Comparison of the N-terminal region of the ClustalOmega MSA chosen as
reference (top) and all other alternative MSAs (from top to bottom: MAFFT-Default, G-INS-
i, L-INS-i, E-INS-i, MUSCLE, ClustalW2, and Kalign). White highlights show the different
alignment constellations of selected residues.
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5.4 Evaluation

Figure 5.7: Conserved columns with Symbol Identity scores ≥ 0.40 in the N-terminal region
of the alternative alignments. The reference MSA generated with ClustalOmega is shown at
the top followed by the alternative MSAs generated with MAFFT-Default, G-INS-i, L-INS-i,
E-INS-i, MUSCLE, ClustalW2, and Kalign.
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The visualization of the reference MSA (ClustalOmega, top) using our Global Residue Shift
measure reveals large regions in the center of the alignment that are consistently aligned in all
alternative MSAs (blue highlights). These regions mostly refer to conserved alignment areas
that were almost identically aligned by all tested algorithm (Figure 5.7). In the N-terminal
area, however, the alternative alignments substantially differ as depicted by red-colored
regions in the reference MSA visualization. In order to investigate these differences in more
detail, we additionally selected some residues in the reference alignment (white) which
highlighted their corresponding counterparts in the alternative MSAs.

As shown in Figure 5.6 (rows 2 to 5), the four different variations of MAFFT introduced more
and much longer gaps in the N-Terminal regions than the other algorithms, resulting in
significantly fewer mismatches but many very small “domains”. When analyzing the same
regions with our Symbol Identity measure using a scoring threshold of ≥ 0.40 (Figure 5.7),
one can see that these small “domains” are also not well conserved. Hence, we do not see
a clear motivation for the introduction of so many gaps. This is why we rate the MAFFT
alignments worse than the other alignments.

Kalign (bottom) introduced many shorter gaps also resulting in several smaller domains. In
contrast, the MSAs generated with ClustalOmega (top) and especially MUSCLE and ClustalW
(rows 6 and 7) are more compact. As shown by the white boxes in Figure 5.7, these MSAs
further generated different conserved regions which cannot be directly observed in the MAFFT
MSAs. After investigating these four MSAs in detail, we found the MUSCLE MSA to be the
alignment with the best ratio of number of conserved columns and reasonable compactness.
For this reason, we would select the MUSCLE alignment as the basis for further applications.

5.4.2 Discussion

Our evaluation demonstrates that using our visual analysis and comparison approach allows
to effectively and efficiently select reasonable MSAs from a set of alternative alignments for
further processing. Even though the proposed similarity matrix view in combination with
our MSA Shift score measure does not directly allow to assess the quality of the alternative
MSAs, it can be used to effectively detect outliers and to get a first overview of the overall
alignment differences in the dataset.

The reference MSA visualization based on the Global Residue shift measure can successfully
reveal consistently aligned regions across the entire dataset. Likewise, the visualization of
the Average Residue Shift measure in the other MSAs allows to retrieve this information with
respect to the chosen reference alignment. Both methods thus effectively allow to determine
probably correctly aligned regions and to focus on questionable alignment regions for
manual refinement.

In our evaluation, however, consistently aligned regions mostly referred to conserved align-
ment columns. Thus one could argue that measuring the relative rate of conserved or similar
amino acids in the alignment columns is sufficient to identify likely correct alignment regions.
This would also avoid the computationally expensive MSA comparison. These column-based
methods would fail, however, when analyzing structure-based MSAs or alignments of dis-
tantly related sequences. In these alignments, conserved columns usually occur less often.
In contrast, our approach still allows to identify reliable alignment regions through the
detection of consistently aligned regions across alternative MSAs.
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Notably, SuiteMSA [Anderson et al. 2011] also provides the possibility to compare MSAs
but its capabilities are very limited compared to our approach. For instance, our system
represents an all-in-one solution which allows the user to simultaneously compare and
analyze multiple large MSAs supported by a fast rendering technique and an unlimited
zoom, while in SuiteMSA, only two small MSAs can be effectively compared and accessing
other analysis functionalities require the usage of separate and disconnected tools.

Even though our approach provides several benefits for the visual comparison and analysis
of MSAs, there are still some limitations. Unlike other visual MSA editors such as Jalview
or AliView, our system currently does not provide functions for auto-alignment through
external tools or masking mechanisms to hide specific parts of large alignments. Also, we
currently do not make use of supporting information such as secondary structure annotations
and only provide a limited number of quality measures.

5.5 Conclusion
We presented a novel interactive visual comparison and analysis approach to analyze
individual large MSAs and to compare a set of alternative alignments for selecting reliable
alignments for further processing. Our system combines automatic comparison and quality
measures with different visualizations and highlighting techniques as well as supporting
interactions such as an unlimited zoom function. This enables the detection of potentially
misaligned regions in individual MSAs. It also allows to reveal differently and consistently
aligned areas between alternative MSAs on different levels of detail. For the latter, differences
on a global MSA level can be easily and quickly determined using our similarity matrix view
showing the N:N pairwise comparison of alternative MSAs. Local alignment differences
can be investigated on a per-residue level using our 1:N comparison method and the
corresponding visualizations and highlighting techniques.

We evaluated our approach using a set of 8 alternative MSAs based on real biological data
(211 HCN ion channel proteins) that is of current research interest in biomedicine. Using
our approach, we were able to successfully assess the impact of different MSA algorithms
on the resulting alternative alignments. In particular, our approach revealed consistently
(and thus probably correct) aligned regions and was able to highlight alignment differences
on a per-residue level. This information led to a better understanding of different alignment
algorithms and enabled a more reliable selection of a representative alignment for the usage
in further applications such as protein structure prediction.
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6.1 Summary

Suboptimal multiple sequence alignments affect various research areas and applications
since decades. Most research was focused on the development of more and more complex
alignment algorithms to produce better alignment approximations. As a result, a myriad of
alignment programs is available to date. Most people are, however, apparently not aware
of them and still use outdated tools. But even for these outdated tools, there exists no
consensus or at least profound information which of them is most suitable for a given
alignment problem. The same holds true for the selection of appropriate scoring models.

Instead of developing yet another complex alignment algorithm that is likely to be overlooked
by the biological community, the goal of our work was to significantly improve the MSA
results of existing approaches. On one hand, this requires reliable and correct substitution
models based on the currently known sequence space that allow existing methods to generate
better results. On the other hand, this necessitates tools and methods that allow experts
and non-experts to assess the quality of the computed MSAs and to effectively refine them
to improve their accuracy.

In order to address the first requirement, we presented two novel substitution models.
The CorBLOSUM substitution model [Hess et al. 2016a] presented in Section 4.4 fixes
a programming error in the original BLOSUM code. Through the incorrect usage of an
integer threshold, sequences are clustered even though they do not fulfill the user-specified
minimum similarity value. This error negatively affects the homologous sequence search
performance of the original BLOSUM matrices as well as their revised RBLOSUM variants.

Our PFASUM substitution matrices [Keul et al. 2017] presented in Section 4.5 are derived
from Pfam seed alignments [Finn et al. 2016] using a novel algorithm. Unlike conventional
substitution models, our PFASUM matrices are thus based on manually curated expert
ground truth data that reflects the currently known sequence space. Additionally, our
PFASUM algorithm incorporates several mechanism to avoid oversampling and handles
ambiguous amino acids in a reasonable way.

We fulfilled the second requirement by proposing two different approaches. Our visual
analysis and comparison approach [Hess et al. 2016b] presented in Chapter 5 allows to
detect reliable and misaligned alignment regions in protein MSAs. It automatically compares
alternative MSAs of the same sequence set and visualizes consistently aligned regions and
uncertain areas in the MSAs. This in combination with different highlighting modes allows
to visually assess the accuracy of MSAs and to determine uncertain regions for further
refinement.
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6.2 Discussion

Our scientific discovery game Bionigma outsources the cumbersome task of manual MSA
refinement to casual players (Section 3.5). It abstracts the protein alignment problem in the
form of a puzzle game. The amino acids in the alignment are represented by different game
tokens. Their shape, color, and texture visually encode the similarity of the different amino
acids. Like one would align beads of identical color in an abacus, the players must align
similar tokens to improve their score. Through this, the alignments are successively refined
without the need of expert knowledge.

6.2 Discussion

As shown by our exhaustive homology sequence search benchmark presented in Section 4.4.3,
there is no longer a reason to use the incorrect BLOSUM62 substitution matrix. Our results
showed that our tested CorBLOSUM matrices can significantly outperform their incorrect
BLOSUM and RBLOSUM counterparts on modern databases. Notably, our CorBLOSUM
model does not claim to be a completely new and innovative substitution model. Instead, it
fixes substantial programming errors and thus actually represents the substitution model
originally intended by Henikoff and Henikoff [1992]. Although our results demonstrate
that the tested CorBLOSUM matrices actually perform better than the incorrect BLOSUM
variants, we noticed that the old BLOSUM62 matrices are still commonly used to date. This
leaves the impression that the biological community is either not aware of the existence
of newer and better methods or simply needs a substantial amount of time to accept new
methods and concepts. Similar impressions were also reported by other scientists [Chatzou
et al. 2016].

Our PFASUM substitution model showed even better results than the CorBLOSUM matrices.
Using our PFASUM31, PFASUM43, and PFASUM60 matrices allows to detect significantly
more true homologs than employing widely used substitution matrices. This includes, e.g.,
the BLOSUM62, PAM250, and VTML200 matrices. Our tests also showed that using PFASUM
matrices for the construction of MSAs results in improved accuracy in most cases. Even
though we could not evaluate the performance of all substitution matrices available to date,
using our PFASUM60 matrix, e.g., is generally a safe choice for biologists that do not have
much experience with sequence alignments. We are looking forward to see whether the
advantages of these matrices for the computation of sequence alignment will be noticed by
the biological community. A few scientists contacted us and reported that they at least plan
to test our PFASUM matrices in their tools. Still, we only received profound feedback from a
single researcher.

Using our proposed substitution models can lead to significantly more accurate sequence
alignments as shown by our benchmark results. Still, the resulting alignments could be
further improved through manual inspection of the results and refinement. According to
Chatzou et al. [2016], the obvious usefulness of performing these tasks is another aspect
that is generally overlooked by the biological community. To our knowledge, most biologists
either blindly trust the chosen algorithm and default settings or simply feel not competent
enough to inspect the results.

Our proposed visual analysis and comparison approach successfully addresses this problem.
Using our system, one can easily determine the accuracy of MSAs without much effort. This is
achieved by automatically comparing a set of alternative alignments. Regions that probably
can be improved and those that can likely be trusted are comprehensively highlighted, e.g.,
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in red or blue. Misalignments can easily be detected through a similarity-based amino acid
coloring theme. These features allow even non-experts to quickly assess the accuracy of
alignments and to effectively refine them. It also allows to assess the impact of different
alignment algorithms and scoring parameters. From this perspective, there are no excuses
for not inspecting and improving the quality of MSAs. Additionally, the refinement task can
be even successfully outsourced to a crowd of computer gamers as shown by the promising
results of our scientific discovery game Bionigma.

In summary, we proposed several approaches that can help to significantly improve the accu-
racy of sequence alignments without introducing yet another complex alignment algorithm.
Notably, our methods enable biologists without profound knowledge in the field of sequence
alignments to generate better results without much effort. Nonetheless, our approaches also
have their limitations.

Our homologous sequence search and MSA benchmarks do not cover the entire spectrum of
substitution matrices that are available to date. Testing all variants of substitution models
would have simply required too much time due to the immense computational effort. Our
claims of superior matrix performance thus only refer to the comparison of our matrices
with a set of widely used substitution matrices.

A notable limitation of our visual analysis and comparison approach is that it lacks some
features other visual MSA editors offer. This includes, e.g., options for auto-aligning specific
regions or hiding specific parts of the shown alignments. Also, our system currently makes
no use of secondary structure information which could be useful for MSA quality assessment.

In view of our scientific discovery game Bionigma, we found that our current alignment
scoring model needs further refinement. There is an imbalance between the substitution
scores and the applied gap penalties. Still, this problem can be reasonably addressed by
applying higher gap penalties. There is also room for improvements regarding Bionigma’s
game concept. Although most players had a lot of fun playing Bionigma, their feeling of
flow and competence should be improved to motivate them in the long run. Notably, we
published Bionigma as a beta version and in turn did not yet advertise the game. Hence,
we only attracted a relative small number of 64 players so far. Nonetheless, our results
demonstrates that our game concept can attract a larger number of players.

6.3 Future work

In the previous section, we identified some limitations of our proposed approaches that
could be improved in future work. Beside these limitations, there are additional problems
and open research questions that should be addressed in the future. In this section, we
discuss these improvements and aspects in detail.

In concordance with previous studies [Price et al. 2005, Hess et al. 2016a], we found
that deriving substitution matrices from modern databases covering the currently known
sequence space can substantially improve sequence alignments. We are thus planning to
derive and evaluate new PFASUM versions for each new Pfam release. Another interesting
aspect for future work regarding substitution models are problem-specific substitution
matrices. The log-odds scores of substitution matrices inherently depend on the absolute
frequency of the amino acid types observed in their originating databases. This raises the
interesting question if substitution matrices can deliver better alignment performance, when
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they are based on comparable amino acid background frequencies to the sequences that
have to be aligned. Additionally, deriving matrices from substitutions between groups of
neighboring amino acids instead of pairs of single acids could also be very interesting. These
matrices thus would partially grasp the context of a given originating alignment. This could
be useful to drive the alignment process into certain directions.

To further improve the game experience of the Bionigma players, we plan to implement
additional in-game help mechanics and tutorial improvements. Help mechanics could be,
e.g., tools for automatic alignment. The tutorial could be improved by integrating short
explanation videos. Other game related enhancements to attract more players are the
implementation of achievements, time limited events, and a version for mobile devices. We
are also planning to implement additional residue themes to support other substitution
models than BLOSUM62 such as our PFASUM matrices. Other improvements regarding
the scoring model of Bionigma include further experiments to examine more suitable gap
penalties to avoid too many gaps in the players’ solutions.

An interesting aspect for future research regarding our visual analysis and comparison
approach for MSAs would be a guided MSA analysis. This guide could directly show the user
regions of interests and accompanying information. Through this, non-expert users could be
further supported in judging the quality of their MSAs. For this purpose, we also want to
integrate Bionigma’s similarity and bad token highlighting modes. Additionally, we plan to
implement missing features compared to other visual MSA editors. This includes interfaces
for automatic alignment tools and the integration of secondary structure information.

Beside the future work of our own approaches, there are still several problems affecting the
accuracy of sequence alignments that should be addressed in the future. One of the most
severe problems in MSA computation and quality analysis is that there is, in our opinion,
no sufficient definition of what a correct alignment looks like. The common consensus is
that alignments with many conserved columns are probably correct. In contrast, regions
containing numerous non-consecutive gaps are typically considered to be unreliable. This
common assumption is also reflected by the popular usage of column-based scoring and
quality measures such as sum-of-pairs or consensus scores. When analyzing alignments of
dissimilar sequences, however, this common consensus simply does not work. Through the
overall low sequence similarity in these alignments, most standard measures will probably
report almost all columns as “improvable”.

Our proposed visual comparison approach circumvents this problem by comparing alternative
alignments. Still, measures for the automatic and reliable detection of correct and improvable
alignment regions without the need of comparing MSAs would be the better choice. In
our opinion, the development of such measures requires, however, rethinking of what
makes a good alignment. Instead of rating alignment accuracy by separately assessing the
composition of individual alignment columns, the neighboring alignment context should
also be taken into account. Are alignment regions that contain numerous mismatches or
gaps actually wrong, when they result in almost conserved neighboring regions? Probably
not but standard column-only measures cannot grasp this aspect.

Likewise, the role of gaps should be reconsidered. To our impression, there are situations
where the introduction of multiple non-consecutive gaps actually makes sense. This includes,
e.g., alignment regions that contain very different amino acid types. If these residues
could be aligned to form almost conserved columns at the cost of adding multiple smaller
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gaps, we would still consider these gaps to be correct. In consequence, new gap scoring
models are required that apply penalties depending on the current alignment context. There
already exists some adaptive gap penalty models in alignment programs. They are, however,
apparently not sufficient to grasp the aforementioned situations.

To our knowledge, one of the biggest problems affecting alignment accuracy is still the
biological community itself. As outlined above and as reported by other scientists [Anderson
et al. 2011, Chatzou et al. 2016], most people neither make use of improved alignment
methods nor inspect their results. Better methods thus cannot have a real impact on alignment
accuracy if no one uses them. Therefore, informing the biological community about novel
and better alignment methods is crucial to improve the accuracy of sequence alignments in
the long run.

We therefore suggest to establish a central alignment service platform that supports experts
and non-experts in solving and analyzing their MSAs. This platform could present a central
place where developers of alignment algorithms can host and rank their programs using
different parameter settings based on state-of-the-art MSA benchmarks. For this purpose,
the platform could also provide up-to-date collections of substitution models that could be
used in the alignment programs. Based on the rankings, the users could be provided with
guidelines which programs are suitable for their alignment task. For example, a questionnaire
based on a decision tree reflecting the individual properties of the MSA algorithms could
support non-experts in computing reasonable MSAs. Afterwards, this service could also
provide tools for analyzing and comparing the computed MSAs. Through this, the users
could choose the best alignment for further applications or select regions for refinement.
These regions could then be refined by the users themselves or, e.g., with the help of the
Bionigma Community.
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No. Item GEQ category GEQ item no.

1 It was aesthetically pleasing Immersion 14
2 I felt successful Competence 19
3 I felt bored Negative affect 18
4 I found it impressive Immersion 30
5 I lost track of time Flow 28
6 I felt frustrated Tension 32
7 I found it tiresome Negative affect 11
8 I felt irritable Tension 27
9 I felt skillful Competence 2
10 I felt completely absorbed Flow 5
11 I felt content Positive affect 1
12 I felt challenged Challenge 29
13 I thought it was hard Challenge 13
14 I enjoyed it Positive affect 22

Table A.1: The variation of the in-game experience questionnaire (iGEQ) [IJsselsteijn et al.
2008, Nacke 2009] used for the evaluation of the game experience of our scientific discovery
game prototypes and Bionigma. We substituted the iGEQ items one, five, 13, and 14 with
the GEQ items 14, 28, 13, and 22, respectively.

No. Item

1 I found the increase in difficult too drasticy
2 I found the scoring model comprehensible
3 I found the graphical user interface comprehensible
4 I could directly determine the different user interface functions
5 I liked the layout of the graphical user interface
6 I could easily reach all buttons
7 I found the icons comprehensible
8 I could easily distinguish the different colors
9 I found the controls intuitive
10 I could easily learn the controls
11 I found the controls sufficiently precise
12 I could directly see the effect of my inputs
13 I can easily remember the controls
14 I could revert my inputs
15 I could find bugs during play

Table A.2: The second part of the questionnaire used in the user study of our first prototype
to assess the different usability aspects of the game.
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No. Item

1 I found the tutorial comprehensive
2 I could understand the meaning of all terms
3 I found the tutorial helpful
4 I could learn all aspects of the game
5 I found the tutorial well-structured
6 I could directly try out the learned content
7 I found the examples helpful
8 I found the texts too long
9 I found the tutorial too long

Table A.3: The third part of the questionnaire used in the user study of our first prototype
to assess the quality of the game tutorial.

No. Item

1 I liked the game
2 I would have liked to play longer
3 I would play the game also in my leisure time
4 I found the tutorial comprehensive
5 I found the tutorial well-structured
6 I found the tutorial helpful
7 I could clearly distinguish the tokens
8 I could clearly identify similar tokens
9 I found the controls intuitive
10 I found the controls sufficiently precise

Table A.4: The second part of the questionnaire used in the user study of Bionigma. It
contains items regarding the usability of Bionigma, the usefulness of the tutorial and the
provided BLOSUM62-based residue theme, and general game impressions.
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Level
SP score Bionigma score

Player MUSCLE Ratio Player MUSCLE Ratio

ABC-Transporter-P1b 19338 8438 2.29 8128 6594 1.23
ABC-Transporter2-P1b 35215 14681 2.40 22601 13135 1.72
ABC-Transporter2-P2b 35006 26504 1.32 28466 25376 1.12
Bionigma-B 61523 44182 1.39 53087 43302 1.23
Coronavirus-M-P1b 5279 3891 1.36 4023 3551 1.13
Coronavirus-M-P2b 5547 4408 1.26 4689 4182 1.12
Coronavirus-M-P3b 6075 4308 1.41 4753 4198 1.13
Coronavirus-M-P4b 7032 3810 1.85 4646 3412 1.36
FlxA-like-Protein-P1b 3548 2604 1.36 2610 2258 1.16
Glycoprotein-P1b 12416 7810 1.59 9132 7230 1.26
Hantavirus-G1-P1b 16585 15543 1.07 15891 15361 1.03
Hantavirus-G1-P2b 14609 12261 1.19 11351 11875 0.96
Hepatitis-NS4a-P0b 15536 11150 1.39 13440 10546 1.27
Hepatitis-NS5a_1b-P1b 30024 22389 1.34 26918 21899 1.23
Hepatitis-Virus-P0b 4162 4002 1.04 3950 3878 1.02
Herpes-Glyco-B-P1b 70920 49382 1.44 62308 48570 1.28
Herpes-Glyco-B-P2b 59123 32919 1.80 49453 32185 1.54
Herpes-Glyco-B-P4b 40219 21125 1.90 22131 16677 1.33
Herpes-Glyco-B-P5b 51055 41583 1.23 44903 40295 1.11
Herpes-Glyco-B-P6b 55344 39300 1.41 45618 37734 1.21
Ion-Transporter-P2b 25159 16875 1.49 19495 15555 1.25
Ion-Transporter-P2c 19919 15605 1.28 17975 14525 1.24
Ion-Transporter-P4b 95454 77015 1.24 87612 75365 1.16
Ion-Transporter-P4c 84058 71598 1.17 81812 69948 1.17
NineChanBlues-1 4676 2019 2.32 -3514 -4213 0.83
Peroxiredoxin-P1b 7714 6924 1.11 6900 6646 1.04
Peroxiredoxin-P1c 6755 6639 1.02 6505 6361 1.02
Peroxiredoxin-P2b 21185 17978 1.18 19333 17582 1.10
Peroxiredoxin-P2c 17576 16574 1.06 17180 16186 1.06
Peroxiredoxin-P3b 38422 28846 1.33 33418 27794 1.20
Peroxiredoxin-P3c 31914 27985 1.14 30368 26933 1.13
Usher-Protein-P1b 16985 13718 1.24 15449 13566 1.14
Usher-Protein-P1c 15110 13718 1.10 14674 13566 1.08

Table A.5: The SP and Bionigma scoring results obtained for the different Bionigma levels
by the best-performing Bionigma player and the MUSCLE alignment program. The shown
ratios represent the factor of score improvement of the player alignments in comparison to
the MUSCLE alignments.
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Appendix B: Supplemental material - CorBLOSUM substitution matrices

Subset Version Matrix Gop Ext Cov.

Astral20 1.55 BLOSUM505.0 14 1 0.1564
Astral20 1.57 BLOSUM505.0 14 1 0.1491
Astral20 1.59 BLOSUM505.0 13 1 0.1423
Astral20 1.61 BLOSUM505.0 13 1 0.1386
Astral20 1.63 BLOSUM505.0 14 1 0.1409
Astral20 1.65 BLOSUM505.0 13 1 0.1454
Astral20 1.67 BLOSUM505.0 12 1 0.1328
Astral20 1.69 BLOSUM505.0 12 1 0.1249
Astral20 1.71 BLOSUM505.0 14 1 0.1243
Astral20 1.73 BLOSUM505.0 12 1 0.1149
Astral20 1.75 BLOSUM505.0 12 1 0.1219
Astral20 2.01 BLOSUM505.0 12 1 0.1207
Astral20 2.02 BLOSUM505.0 12 1 0.1214
Astral20 2.03 BLOSUM505.0 13 1 0.1190
Astral20 2.04 BLOSUM505.0 15 1 0.1333
Astral20 2.05 BLOSUM505.0 15 1 0.1404
Astral20 2.06 BLOSUM505.0 15 1 0.1474

Astral20 1.55 BLOSUM625.0 9 1 0.1518
Astral20 1.57 BLOSUM625.0 6 2 0.1466
Astral20 1.59 BLOSUM625.0 9 1 0.1342
Astral20 1.61 BLOSUM625.0 9 1 0.1335
Astral20 1.63 BLOSUM625.0 9 1 0.1391
Astral20 1.65 BLOSUM625.0 9 1 0.1390
Astral20 1.67 BLOSUM625.0 11 1 0.1321
Astral20 1.69 BLOSUM625.0 9 1 0.1225
Astral20 1.71 BLOSUM625.0 9 1 0.1257
Astral20 1.73 BLOSUM625.0 9 1 0.1163
Astral20 1.75 BLOSUM625.0 9 1 0.1190
Astral20 2.01 BLOSUM625.0 8 1 0.1193
Astral20 2.02 BLOSUM625.0 8 1 0.1195
Astral20 2.03 BLOSUM625.0 8 1 0.1207
Astral20 2.04 BLOSUM625.0 10 1 0.1321
Astral20 2.05 BLOSUM625.0 10 1 0.1366
Astral20 2.06 BLOSUM625.0 10 1 0.1465

Astral20 1.55 CorBLOSUM495.0 14 1 0.1552
Astral20 1.57 CorBLOSUM495.0 11 2 0.1514
Astral20 1.59 CorBLOSUM495.0 12 1 0.1426
Astral20 1.61 CorBLOSUM495.0 13 1 0.1383
Astral20 1.63 CorBLOSUM495.0 16 1 0.1439
Astral20 1.65 CorBLOSUM495.0 16 1 0.1429
Astral20 1.67 CorBLOSUM495.0 14 1 0.1319
Astral20 1.69 CorBLOSUM495.0 17 1 0.1257
Astral20 1.71 CorBLOSUM495.0 15 1 0.1268
Astral20 1.73 CorBLOSUM495.0 16 1 0.1173
Astral20 1.75 CorBLOSUM495.0 15 1 0.1210
Astral20 2.01 CorBLOSUM495.0 12 1 0.1209
Astral20 2.02 CorBLOSUM495.0 12 1 0.1209
Astral20 2.03 CorBLOSUM495.0 15 1 0.1219
Astral20 2.04 CorBLOSUM495.0 14 1 0.1365
Astral20 2.05 CorBLOSUM495.0 14 1 0.1447
Astral20 2.06 CorBLOSUM495.0 16 1 0.1505

Subset Version Matrix Gop Ext Cov.

Astral20 1.55 CorBLOSUM615.0 9 1 0.1495
Astral20 1.57 CorBLOSUM615.0 9 1 0.1421
Astral20 1.59 CorBLOSUM615.0 8 1 0.1324
Astral20 1.61 CorBLOSUM615.0 8 1 0.1275
Astral20 1.63 CorBLOSUM615.0 8 1 0.1321
Astral20 1.65 CorBLOSUM615.0 11 1 0.1338
Astral20 1.67 CorBLOSUM615.0 9 1 0.1288
Astral20 1.69 CorBLOSUM615.0 9 1 0.1220
Astral20 1.71 CorBLOSUM615.0 9 1 0.1224
Astral20 1.73 CorBLOSUM615.0 8 1 0.1103
Astral20 1.75 CorBLOSUM615.0 8 1 0.1140
Astral20 2.01 CorBLOSUM615.0 8 1 0.1151
Astral20 2.02 CorBLOSUM615.0 8 1 0.1151
Astral20 2.03 CorBLOSUM615.0 9 1 0.1165
Astral20 2.04 CorBLOSUM615.0 9 1 0.1338
Astral20 2.05 CorBLOSUM615.0 9 1 0.1405
Astral20 2.06 CorBLOSUM615.0 9 1 0.1473

Astral20 1.55 RBLOSUM525.0 14 1 0.1577
Astral20 1.57 RBLOSUM525.0 14 1 0.1520
Astral20 1.59 RBLOSUM525.0 14 1 0.1416
Astral20 1.61 RBLOSUM525.0 12 1 0.1372
Astral20 1.63 RBLOSUM525.0 15 1 0.1419
Astral20 1.65 RBLOSUM525.0 16 1 0.1425
Astral20 1.67 RBLOSUM525.0 12 1 0.1318
Astral20 1.69 RBLOSUM525.0 17 1 0.1253
Astral20 1.71 RBLOSUM525.0 15 1 0.1248
Astral20 1.73 RBLOSUM525.0 15 1 0.1160
Astral20 1.75 RBLOSUM525.0 14 1 0.1198
Astral20 2.01 RBLOSUM525.0 12 1 0.1184
Astral20 2.02 RBLOSUM525.0 16 1 0.1186
Astral20 2.03 RBLOSUM525.0 17 1 0.1216
Astral20 2.04 RBLOSUM525.0 15 1 0.1361
Astral20 2.05 RBLOSUM525.0 15 1 0.1432
Astral20 2.06 RBLOSUM525.0 16 1 0.1544

Astral20 1.55 RBLOSUM645.0 9 1 0.1504
Astral20 1.57 RBLOSUM645.0 9 1 0.1405
Astral20 1.59 RBLOSUM645.0 8 1 0.1310
Astral20 1.61 RBLOSUM645.0 8 1 0.1269
Astral20 1.63 RBLOSUM645.0 8 1 0.1321
Astral20 1.65 RBLOSUM645.0 8 1 0.1336
Astral20 1.67 RBLOSUM645.0 8 1 0.1288
Astral20 1.69 RBLOSUM645.0 9 1 0.1225
Astral20 1.71 RBLOSUM645.0 9 1 0.1218
Astral20 1.73 RBLOSUM645.0 7 1 0.1112
Astral20 1.75 RBLOSUM645.0 8 1 0.1137
Astral20 2.01 RBLOSUM645.0 8 1 0.1140
Astral20 2.02 RBLOSUM645.0 8 1 0.1137
Astral20 2.03 RBLOSUM645.0 9 1 0.1158
Astral20 2.04 RBLOSUM645.0 9 1 0.1317
Astral20 2.05 RBLOSUM645.0 9 1 0.1386
Astral20 2.06 RBLOSUM645.0 9 1 0.1456

Table B.1: Highest achieved coverage values (Cov.) on the different ASTRAL20 subset versi-
ons for the six BLOCKS 5.0-based substitution matrices tested in the CorBLOSUM benchmark
and the corresponding gap opening (Gop) and extension (Ext) penalty parameters.
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Subset Version Matrix Gop Ext Cov.

Astral20 1.55 BLOSUM5013+ 14 2 0.1487
Astral20 1.57 BLOSUM5013+ 16 2 0.1413
Astral20 1.59 BLOSUM5013+ 15 1 0.1335
Astral20 1.61 BLOSUM5013+ 15 1 0.1302
Astral20 1.63 BLOSUM5013+ 16 1 0.1335
Astral20 1.65 BLOSUM5013+ 15 1 0.1279
Astral20 1.67 BLOSUM5013+ 17 1 0.1308
Astral20 1.69 BLOSUM5013+ 19 1 0.1230
Astral20 1.71 BLOSUM5013+ 18 1 0.1217
Astral20 1.73 BLOSUM5013+ 18 1 0.1157
Astral20 1.75 BLOSUM5013+ 17 1 0.1153
Astral20 2.01 BLOSUM5013+ 19 1 0.1170
Astral20 2.02 BLOSUM5013+ 19 1 0.1169
Astral20 2.03 BLOSUM5013+ 19 1 0.1188
Astral20 2.04 BLOSUM5013+ 18 1 0.1330
Astral20 2.05 BLOSUM5013+ 18 1 0.1379
Astral20 2.06 BLOSUM5013+ 16 2 0.1413

Astral20 1.55 BLOSUM6213+ 12 2 0.1560
Astral20 1.57 BLOSUM6213+ 13 1 0.1515
Astral20 1.59 BLOSUM6213+ 14 1 0.1448
Astral20 1.61 BLOSUM6213+ 12 1 0.1402
Astral20 1.63 BLOSUM6213+ 14 1 0.1434
Astral20 1.65 BLOSUM6213+ 13 1 0.1399
Astral20 1.67 BLOSUM6213+ 14 1 0.1377
Astral20 1.69 BLOSUM6213+ 14 1 0.1294
Astral20 1.71 BLOSUM6213+ 14 1 0.1302
Astral20 1.73 BLOSUM6213+ 14 1 0.1225
Astral20 1.75 BLOSUM6213+ 14 1 0.1231
Astral20 2.01 BLOSUM6213+ 14 1 0.1245
Astral20 2.02 BLOSUM6213+ 14 1 0.1246
Astral20 2.03 BLOSUM6213+ 15 1 0.1241
Astral20 2.04 BLOSUM6213+ 15 1 0.1373
Astral20 2.05 BLOSUM6213+ 14 1 0.1416
Astral20 2.06 BLOSUM6213+ 15 1 0.1466

Astral20 1.55 CorBLOSUM5713+ 16 1 0.1489
Astral20 1.57 CorBLOSUM5713+ 13 2 0.1452
Astral20 1.59 CorBLOSUM5713+ 16 1 0.1347
Astral20 1.61 CorBLOSUM5713+ 16 1 0.1314
Astral20 1.63 CorBLOSUM5713+ 18 1 0.1313
Astral20 1.65 CorBLOSUM5713+ 18 1 0.1322
Astral20 1.67 CorBLOSUM5713+ 17 2 0.1328
Astral20 1.69 CorBLOSUM5713+ 18 1 0.1256
Astral20 1.71 CorBLOSUM5713+ 18 1 0.1240
Astral20 1.73 CorBLOSUM5713+ 20 1 0.1173
Astral20 1.75 CorBLOSUM5713+ 20 1 0.1184
Astral20 2.01 CorBLOSUM5713+ 20 1 0.1202
Astral20 2.02 CorBLOSUM5713+ 20 1 0.1202
Astral20 2.03 CorBLOSUM5713+ 18 1 0.1211
Astral20 2.04 CorBLOSUM5713+ 13 2 0.1372
Astral20 2.05 CorBLOSUM5713+ 13 2 0.1402
Astral20 2.06 CorBLOSUM5713+ 18 1 0.1438

Subset Version Matrix Gop Ext Cov.

Astral20 1.55 CorBLOSUM6613+ 11 2 0.1611
Astral20 1.57 CorBLOSUM6613+ 12 1 0.1491
Astral20 1.59 CorBLOSUM6613+ 13 1 0.1439
Astral20 1.61 CorBLOSUM6613+ 12 1 0.1395
Astral20 1.63 CorBLOSUM6613+ 13 1 0.1416
Astral20 1.65 CorBLOSUM6613+ 13 1 0.1431
Astral20 1.67 CorBLOSUM6613+ 14 1 0.1387
Astral20 1.69 CorBLOSUM6613+ 14 1 0.1293
Astral20 1.71 CorBLOSUM6613+ 14 1 0.1255
Astral20 1.73 CorBLOSUM6613+ 15 1 0.1195
Astral20 1.75 CorBLOSUM6613+ 14 1 0.1202
Astral20 2.01 CorBLOSUM6613+ 14 1 0.1272
Astral20 2.02 CorBLOSUM6613+ 14 1 0.1272
Astral20 2.03 CorBLOSUM6613+ 14 1 0.1276
Astral20 2.04 CorBLOSUM6613+ 14 1 0.1421
Astral20 2.05 CorBLOSUM6613+ 14 1 0.1494
Astral20 2.06 CorBLOSUM6613+ 15 1 0.1528

Astral20 1.55 RBLOSUM5913+ 16 2 0.1547
Astral20 1.57 RBLOSUM5913+ 16 1 0.1467
Astral20 1.59 RBLOSUM5913+ 15 1 0.1375
Astral20 1.61 RBLOSUM5913+ 15 1 0.1346
Astral20 1.63 RBLOSUM5913+ 15 1 0.1360
Astral20 1.65 RBLOSUM5913+ 17 1 0.1360
Astral20 1.67 RBLOSUM5913+ 18 1 0.1344
Astral20 1.69 RBLOSUM5913+ 18 1 0.1280
Astral20 1.71 RBLOSUM5913+ 18 1 0.1254
Astral20 1.73 RBLOSUM5913+ 18 1 0.1206
Astral20 1.75 RBLOSUM5913+ 20 1 0.1199
Astral20 2.01 RBLOSUM5913+ 20 1 0.1213
Astral20 2.02 RBLOSUM5913+ 20 1 0.1219
Astral20 2.03 RBLOSUM5913+ 19 1 0.1206
Astral20 2.04 RBLOSUM5913+ 14 2 0.1356
Astral20 2.05 RBLOSUM5913+ 14 2 0.1374
Astral20 2.06 RBLOSUM5913+ 16 2 0.1432

Astral20 1.55 RBLOSUM6913+ 12 2 0.1634
Astral20 1.57 RBLOSUM6913+ 13 1 0.1512
Astral20 1.59 RBLOSUM6913+ 12 1 0.1444
Astral20 1.61 RBLOSUM6913+ 13 1 0.1425
Astral20 1.63 RBLOSUM6913+ 13 1 0.1444
Astral20 1.65 RBLOSUM6913+ 13 1 0.1437
Astral20 1.67 RBLOSUM6913+ 13 1 0.1392
Astral20 1.69 RBLOSUM6913+ 13 1 0.1318
Astral20 1.71 RBLOSUM6913+ 15 1 0.1294
Astral20 1.73 RBLOSUM6913+ 14 1 0.1227
Astral20 1.75 RBLOSUM6913+ 15 1 0.1213
Astral20 2.01 RBLOSUM6913+ 14 1 0.1262
Astral20 2.02 RBLOSUM6913+ 14 1 0.1265
Astral20 2.03 RBLOSUM6913+ 14 1 0.1262
Astral20 2.04 RBLOSUM6913+ 14 1 0.1400
Astral20 2.05 RBLOSUM6913+ 13 1 0.1471
Astral20 2.06 RBLOSUM6913+ 13 1 0.1465

Table B.2: Highest achieved coverage values (Cov.) on the different ASTRAL20 subset
versions for the six BLOCKS 13+-based substitution matrices tested in the CorBLOSUM ben-
chmark and the corresponding gap opening (Gop) and extension (Ext) penalty parameters.
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Appendix B: Supplemental material - CorBLOSUM substitution matrices

Subset Version Matrix Gop Ext Cov.

Astral20 1.55 BLOSUM5014.3 18 1 0.1392
Astral20 1.57 BLOSUM5014.3 19 1 0.1377
Astral20 1.59 BLOSUM5014.3 19 1 0.1294
Astral20 1.61 BLOSUM5014.3 16 1 0.1273
Astral20 1.63 BLOSUM5014.3 18 1 0.1292
Astral20 1.65 BLOSUM5014.3 20 1 0.1303
Astral20 1.67 BLOSUM5014.3 20 1 0.1281
Astral20 1.69 BLOSUM5014.3 17 2 0.1174
Astral20 1.71 BLOSUM5014.3 17 2 0.1179
Astral20 1.73 BLOSUM5014.3 18 2 0.1142
Astral20 1.75 BLOSUM5014.3 19 2 0.1169
Astral20 2.01 BLOSUM5014.3 19 2 0.1155
Astral20 2.02 BLOSUM5014.3 19 2 0.1158
Astral20 2.03 BLOSUM5014.3 17 2 0.1157
Astral20 2.04 BLOSUM5014.3 20 2 0.1300
Astral20 2.05 BLOSUM5014.3 18 2 0.1363
Astral20 2.06 BLOSUM5014.3 19 2 0.1367

Astral20 1.55 BLOSUM6214.3 15 2 0.1518
Astral20 1.57 BLOSUM6214.3 19 1 0.1412
Astral20 1.59 BLOSUM6214.3 15 1 0.1334
Astral20 1.61 BLOSUM6214.3 17 1 0.1310
Astral20 1.63 BLOSUM6214.3 19 1 0.1326
Astral20 1.65 BLOSUM6214.3 18 1 0.1366
Astral20 1.67 BLOSUM6214.3 16 2 0.1350
Astral20 1.69 BLOSUM6214.3 15 2 0.1276
Astral20 1.71 BLOSUM6214.3 16 2 0.1278
Astral20 1.73 BLOSUM6214.3 20 1 0.1210
Astral20 1.75 BLOSUM6214.3 16 2 0.1245
Astral20 2.01 BLOSUM6214.3 16 2 0.1242
Astral20 2.02 BLOSUM6214.3 16 2 0.1246
Astral20 2.03 BLOSUM6214.3 20 1 0.1257
Astral20 2.04 BLOSUM6214.3 16 2 0.1412
Astral20 2.05 BLOSUM6214.3 16 2 0.1471
Astral20 2.06 BLOSUM6214.3 15 2 0.1463

Astral20 1.55 CorBLOSUM5714.3 17 1 0.1421
Astral20 1.57 CorBLOSUM5714.3 18 1 0.1353
Astral20 1.59 CorBLOSUM5714.3 17 1 0.1272
Astral20 1.61 CorBLOSUM5714.3 16 1 0.1275
Astral20 1.63 CorBLOSUM5714.3 16 1 0.1239
Astral20 1.65 CorBLOSUM5714.3 19 1 0.1296
Astral20 1.67 CorBLOSUM5714.3 20 1 0.1325
Astral20 1.69 CorBLOSUM5714.3 20 1 0.1241
Astral20 1.71 CorBLOSUM5714.3 20 1 0.1240
Astral20 1.73 CorBLOSUM5714.3 19 2 0.1157
Astral20 1.75 CorBLOSUM5714.3 19 2 0.1209
Astral20 2.01 CorBLOSUM5714.3 17 2 0.1211
Astral20 2.02 CorBLOSUM5714.3 17 2 0.1215
Astral20 2.03 CorBLOSUM5714.3 17 2 0.1238
Astral20 2.04 CorBLOSUM5714.3 17 2 0.1403
Astral20 2.05 CorBLOSUM5714.3 17 2 0.1431
Astral20 2.06 CorBLOSUM5714.3 19 2 0.1449

Subset Version Matrix Gop Ext Cov.

Astral20 1.55 CorBLOSUM6714.3 14 2 0.1521
Astral20 1.57 CorBLOSUM6714.3 15 1 0.1460
Astral20 1.59 CorBLOSUM6714.3 15 1 0.1395
Astral20 1.61 CorBLOSUM6714.3 15 1 0.1313
Astral20 1.63 CorBLOSUM6714.3 17 1 0.1336
Astral20 1.65 CorBLOSUM6714.3 18 1 0.1402
Astral20 1.67 CorBLOSUM6714.3 18 1 0.1370
Astral20 1.69 CorBLOSUM6714.3 18 1 0.1275
Astral20 1.71 CorBLOSUM6714.3 18 1 0.1300
Astral20 1.73 CorBLOSUM6714.3 18 1 0.1223
Astral20 1.75 CorBLOSUM6714.3 19 1 0.1223
Astral20 2.01 CorBLOSUM6714.3 18 1 0.1241
Astral20 2.02 CorBLOSUM6714.3 18 1 0.1241
Astral20 2.03 CorBLOSUM6714.3 18 1 0.1281
Astral20 2.04 CorBLOSUM6714.3 15 2 0.1380
Astral20 2.05 CorBLOSUM6714.3 14 2 0.1451
Astral20 2.06 CorBLOSUM6714.3 15 2 0.1464

Astral20 1.55 RBLOSUM5914.3 17 1 0.1456
Astral20 1.57 RBLOSUM5914.3 16 1 0.1416
Astral20 1.59 RBLOSUM5914.3 17 1 0.1310
Astral20 1.61 RBLOSUM5914.3 16 1 0.1335
Astral20 1.63 RBLOSUM5914.3 17 1 0.1292
Astral20 1.65 RBLOSUM5914.3 18 1 0.1345
Astral20 1.67 RBLOSUM5914.3 20 1 0.1333
Astral20 1.69 RBLOSUM5914.3 19 1 0.1227
Astral20 1.71 RBLOSUM5914.3 19 1 0.1215
Astral20 1.73 RBLOSUM5914.3 20 1 0.1165
Astral20 1.75 RBLOSUM5914.3 20 1 0.1211
Astral20 2.01 RBLOSUM5914.3 20 1 0.1205
Astral20 2.02 RBLOSUM5914.3 20 1 0.1207
Astral20 2.03 RBLOSUM5914.3 20 1 0.1222
Astral20 2.04 RBLOSUM5914.3 16 2 0.1366
Astral20 2.05 RBLOSUM5914.3 16 2 0.1407
Astral20 2.06 RBLOSUM5914.3 18 2 0.1415

Astral20 1.55 RBLOSUM6914.3 16 1 0.1484
Astral20 1.57 RBLOSUM6914.3 19 1 0.1479
Astral20 1.59 RBLOSUM6914.3 18 1 0.1400
Astral20 1.61 RBLOSUM6914.3 18 1 0.1377
Astral20 1.63 RBLOSUM6914.3 18 1 0.1345
Astral20 1.65 RBLOSUM6914.3 20 1 0.1390
Astral20 1.67 RBLOSUM6914.3 19 1 0.1340
Astral20 1.69 RBLOSUM6914.3 19 1 0.1266
Astral20 1.71 RBLOSUM6914.3 20 1 0.1276
Astral20 1.73 RBLOSUM6914.3 19 1 0.1220
Astral20 1.75 RBLOSUM6914.3 19 1 0.1207
Astral20 2.01 RBLOSUM6914.3 18 1 0.1238
Astral20 2.02 RBLOSUM6914.3 18 1 0.1238
Astral20 2.03 RBLOSUM6914.3 18 1 0.1273
Astral20 2.04 RBLOSUM6914.3 20 1 0.1340
Astral20 2.05 RBLOSUM6914.3 20 1 0.1418
Astral20 2.06 RBLOSUM6914.3 20 1 0.1445

Table B.3: Highest achieved coverage values (Cov.) on the different ASTRAL20 subset
versions for the six BLOCKS 14.3-based substitution matrices tested in the CorBLOSUM ben-
chmark and the corresponding gap opening (Gop) and extension (Ext) penalty parameters.
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Subset Version Matrix Gop Ext Cov.

Astral40 1.55 BLOSUM505.0 13 1 0.3836
Astral40 1.57 BLOSUM505.0 13 1 0.3765
Astral40 1.59 BLOSUM505.0 13 1 0.3741
Astral40 1.61 BLOSUM505.0 14 1 0.3744
Astral40 1.63 BLOSUM505.0 13 1 0.3779
Astral40 1.65 BLOSUM505.0 14 1 0.3764
Astral40 1.67 BLOSUM505.0 13 1 0.3838
Astral40 1.69 BLOSUM505.0 15 1 0.3715
Astral40 1.71 BLOSUM505.0 15 1 0.3681
Astral40 1.73 BLOSUM505.0 15 1 0.3710
Astral40 1.75 BLOSUM505.0 12 2 0.3730
Astral40 2.01 BLOSUM505.0 12 2 0.3992
Astral40 2.02 BLOSUM505.0 12 2 0.3992
Astral40 2.03 BLOSUM505.0 11 2 0.4128
Astral40 2.04 BLOSUM505.0 12 1 0.4236
Astral40 2.05 BLOSUM505.0 11 1 0.4268
Astral40 2.06 BLOSUM505.0 11 2 0.4371

Astral40 1.55 BLOSUM625.0 9 1 0.3789
Astral40 1.57 BLOSUM625.0 6 2 0.3730
Astral40 1.59 BLOSUM625.0 9 1 0.3732
Astral40 1.61 BLOSUM625.0 9 1 0.3757
Astral40 1.63 BLOSUM625.0 9 1 0.3790
Astral40 1.65 BLOSUM625.0 8 1 0.3765
Astral40 1.67 BLOSUM625.0 10 1 0.3834
Astral40 1.69 BLOSUM625.0 10 1 0.3694
Astral40 1.71 BLOSUM625.0 10 1 0.3653
Astral40 1.73 BLOSUM625.0 9 1 0.3675
Astral40 1.75 BLOSUM625.0 10 1 0.3731
Astral40 2.01 BLOSUM625.0 10 1 0.3977
Astral40 2.02 BLOSUM625.0 10 1 0.3977
Astral40 2.03 BLOSUM625.0 9 1 0.4112
Astral40 2.04 BLOSUM625.0 10 1 0.4224
Astral40 2.05 BLOSUM625.0 10 1 0.4245
Astral40 2.06 BLOSUM625.0 10 1 0.4346

Astral40 1.55 CorBLOSUM495.0 11 2 0.3822
Astral40 1.57 CorBLOSUM495.0 13 1 0.3734
Astral40 1.59 CorBLOSUM495.0 14 1 0.3750
Astral40 1.61 CorBLOSUM495.0 14 1 0.3770
Astral40 1.63 CorBLOSUM495.0 13 1 0.3815
Astral40 1.65 CorBLOSUM495.0 14 1 0.3786
Astral40 1.67 CorBLOSUM495.0 14 1 0.3855
Astral40 1.69 CorBLOSUM495.0 15 1 0.3718
Astral40 1.71 CorBLOSUM495.0 16 1 0.3699
Astral40 1.73 CorBLOSUM495.0 15 1 0.3726
Astral40 1.75 CorBLOSUM495.0 15 1 0.3760
Astral40 2.01 CorBLOSUM495.0 15 1 0.3990
Astral40 2.02 CorBLOSUM495.0 15 1 0.3990
Astral40 2.03 CorBLOSUM495.0 15 1 0.4141
Astral40 2.04 CorBLOSUM495.0 15 1 0.4253
Astral40 2.05 CorBLOSUM495.0 14 1 0.4288
Astral40 2.06 CorBLOSUM495.0 15 1 0.4389

Subset Version Matrix Gop Ext Cov.

Astral40 1.55 CorBLOSUM615.0 8 1 0.3755
Astral40 1.57 CorBLOSUM615.0 8 1 0.3693
Astral40 1.59 CorBLOSUM615.0 8 1 0.3689
Astral40 1.61 CorBLOSUM615.0 8 1 0.3713
Astral40 1.63 CorBLOSUM615.0 8 1 0.3770
Astral40 1.65 CorBLOSUM615.0 9 1 0.3757
Astral40 1.67 CorBLOSUM615.0 8 1 0.3821
Astral40 1.69 CorBLOSUM615.0 9 1 0.3668
Astral40 1.71 CorBLOSUM615.0 9 1 0.3626
Astral40 1.73 CorBLOSUM615.0 9 1 0.3670
Astral40 1.75 CorBLOSUM615.0 9 1 0.3716
Astral40 2.01 CorBLOSUM615.0 9 1 0.3945
Astral40 2.02 CorBLOSUM615.0 9 1 0.3945
Astral40 2.03 CorBLOSUM615.0 9 1 0.4091
Astral40 2.04 CorBLOSUM615.0 9 1 0.4230
Astral40 2.05 CorBLOSUM615.0 9 1 0.4247
Astral40 2.06 CorBLOSUM615.0 9 1 0.4346

Astral40 1.55 RBLOSUM525.0 11 2 0.3834
Astral40 1.57 RBLOSUM525.0 11 2 0.3768
Astral40 1.59 RBLOSUM525.0 13 1 0.3738
Astral40 1.61 RBLOSUM525.0 13 1 0.3760
Astral40 1.63 RBLOSUM525.0 14 1 0.3820
Astral40 1.65 RBLOSUM525.0 14 1 0.3791
Astral40 1.67 RBLOSUM525.0 14 1 0.3852
Astral40 1.69 RBLOSUM525.0 15 1 0.3745
Astral40 1.71 RBLOSUM525.0 16 1 0.3696
Astral40 1.73 RBLOSUM525.0 15 1 0.3735
Astral40 1.75 RBLOSUM525.0 15 1 0.3760
Astral40 2.01 RBLOSUM525.0 15 1 0.4001
Astral40 2.02 RBLOSUM525.0 15 1 0.4001
Astral40 2.03 RBLOSUM525.0 15 1 0.4146
Astral40 2.04 RBLOSUM525.0 14 1 0.4262
Astral40 2.05 RBLOSUM525.0 14 1 0.4298
Astral40 2.06 RBLOSUM525.0 15 1 0.4375

Astral40 1.55 RBLOSUM645.0 8 1 0.3770
Astral40 1.57 RBLOSUM645.0 8 1 0.3713
Astral40 1.59 RBLOSUM645.0 8 1 0.3691
Astral40 1.61 RBLOSUM645.0 8 1 0.3714
Astral40 1.63 RBLOSUM645.0 8 1 0.3796
Astral40 1.65 RBLOSUM645.0 8 1 0.3760
Astral40 1.67 RBLOSUM645.0 9 1 0.3815
Astral40 1.69 RBLOSUM645.0 9 1 0.3690
Astral40 1.71 RBLOSUM645.0 9 1 0.3638
Astral40 1.73 RBLOSUM645.0 9 1 0.3674
Astral40 1.75 RBLOSUM645.0 9 1 0.3719
Astral40 2.01 RBLOSUM645.0 9 1 0.3952
Astral40 2.02 RBLOSUM645.0 9 1 0.3952
Astral40 2.03 RBLOSUM645.0 9 1 0.4102
Astral40 2.04 RBLOSUM645.0 9 1 0.4229
Astral40 2.05 RBLOSUM645.0 9 1 0.4250
Astral40 2.06 RBLOSUM645.0 9 1 0.4351

Table B.4: Highest achieved coverage values (Cov.) on the different ASTRAL40 subset versi-
ons for the six BLOCKS 5.0-based substitution matrices tested in the CorBLOSUM benchmark
and the corresponding gap opening (Gop) and extension (Ext) penalty parameters.
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Appendix B: Supplemental material - CorBLOSUM substitution matrices

Subset Version Matrix Gop Ext Cov.

Astral40 1.55 BLOSUM5013+ 14 1 0.3750
Astral40 1.57 BLOSUM5013+ 16 1 0.3671
Astral40 1.59 BLOSUM5013+ 14 1 0.3679
Astral40 1.61 BLOSUM5013+ 14 1 0.3696
Astral40 1.63 BLOSUM5013+ 15 1 0.3739
Astral40 1.65 BLOSUM5013+ 15 1 0.3694
Astral40 1.67 BLOSUM5013+ 18 1 0.3786
Astral40 1.69 BLOSUM5013+ 14 1 0.3676
Astral40 1.71 BLOSUM5013+ 17 1 0.3641
Astral40 1.73 BLOSUM5013+ 17 1 0.3661
Astral40 1.75 BLOSUM5013+ 12 2 0.3683
Astral40 2.01 BLOSUM5013+ 12 2 0.3929
Astral40 2.02 BLOSUM5013+ 12 2 0.3929
Astral40 2.03 BLOSUM5013+ 14 2 0.4084
Astral40 2.04 BLOSUM5013+ 16 1 0.4218
Astral40 2.05 BLOSUM5013+ 18 1 0.4248
Astral40 2.06 BLOSUM5013+ 16 1 0.4319

Astral40 1.55 BLOSUM6213+ 13 1 0.3842
Astral40 1.57 BLOSUM6213+ 11 1 0.3749
Astral40 1.59 BLOSUM6213+ 12 1 0.3752
Astral40 1.61 BLOSUM6213+ 12 1 0.3765
Astral40 1.63 BLOSUM6213+ 13 1 0.3786
Astral40 1.65 BLOSUM6213+ 13 1 0.3733
Astral40 1.67 BLOSUM6213+ 13 1 0.3808
Astral40 1.69 BLOSUM6213+ 9 2 0.3677
Astral40 1.71 BLOSUM6213+ 15 1 0.3675
Astral40 1.73 BLOSUM6213+ 10 2 0.3696
Astral40 1.75 BLOSUM6213+ 10 2 0.3706
Astral40 2.01 BLOSUM6213+ 13 1 0.3962
Astral40 2.02 BLOSUM6213+ 13 1 0.3962
Astral40 2.03 BLOSUM6213+ 10 2 0.4128
Astral40 2.04 BLOSUM6213+ 10 2 0.4260
Astral40 2.05 BLOSUM6213+ 13 1 0.4289
Astral40 2.06 BLOSUM6213+ 10 2 0.4357

Astral40 1.55 CorBLOSUM5713+ 17 1 0.3777
Astral40 1.57 CorBLOSUM5713+ 18 1 0.3722
Astral40 1.59 CorBLOSUM5713+ 17 1 0.3695
Astral40 1.61 CorBLOSUM5713+ 17 1 0.3713
Astral40 1.63 CorBLOSUM5713+ 15 1 0.3758
Astral40 1.65 CorBLOSUM5713+ 17 1 0.3736
Astral40 1.67 CorBLOSUM5713+ 17 1 0.3836
Astral40 1.69 CorBLOSUM5713+ 16 1 0.3709
Astral40 1.71 CorBLOSUM5713+ 19 1 0.3685
Astral40 1.73 CorBLOSUM5713+ 18 1 0.3718
Astral40 1.75 CorBLOSUM5713+ 18 1 0.3718
Astral40 2.01 CorBLOSUM5713+ 18 1 0.3961
Astral40 2.02 CorBLOSUM5713+ 18 1 0.3961
Astral40 2.03 CorBLOSUM5713+ 19 1 0.4135
Astral40 2.04 CorBLOSUM5713+ 19 1 0.4255
Astral40 2.05 CorBLOSUM5713+ 17 1 0.4289
Astral40 2.06 CorBLOSUM5713+ 19 1 0.4327

Subset Version Matrix Gop Ext Cov.

Astral40 1.55 CorBLOSUM6613+ 12 1 0.3827
Astral40 1.57 CorBLOSUM6613+ 11 1 0.3754
Astral40 1.59 CorBLOSUM6613+ 11 1 0.3740
Astral40 1.61 CorBLOSUM6613+ 10 1 0.3735
Astral40 1.63 CorBLOSUM6613+ 14 1 0.3793
Astral40 1.65 CorBLOSUM6613+ 13 1 0.3738
Astral40 1.67 CorBLOSUM6613+ 11 2 0.3819
Astral40 1.69 CorBLOSUM6613+ 13 1 0.3681
Astral40 1.71 CorBLOSUM6613+ 14 1 0.3656
Astral40 1.73 CorBLOSUM6613+ 13 1 0.3710
Astral40 1.75 CorBLOSUM6613+ 9 2 0.3747
Astral40 2.01 CorBLOSUM6613+ 14 1 0.3980
Astral40 2.02 CorBLOSUM6613+ 14 1 0.3981
Astral40 2.03 CorBLOSUM6613+ 12 1 0.4140
Astral40 2.04 CorBLOSUM6613+ 9 2 0.4273
Astral40 2.05 CorBLOSUM6613+ 9 2 0.4289
Astral40 2.06 CorBLOSUM6613+ 13 1 0.4362

Astral40 1.55 RBLOSUM5913+ 15 1 0.3818
Astral40 1.57 RBLOSUM5913+ 15 1 0.3729
Astral40 1.59 RBLOSUM5913+ 16 1 0.3706
Astral40 1.61 RBLOSUM5913+ 14 1 0.3733
Astral40 1.63 RBLOSUM5913+ 16 1 0.3798
Astral40 1.65 RBLOSUM5913+ 16 1 0.3779
Astral40 1.67 RBLOSUM5913+ 19 1 0.3820
Astral40 1.69 RBLOSUM5913+ 19 1 0.3710
Astral40 1.71 RBLOSUM5913+ 19 1 0.3680
Astral40 1.73 RBLOSUM5913+ 19 1 0.3700
Astral40 1.75 RBLOSUM5913+ 11 2 0.3719
Astral40 2.01 RBLOSUM5913+ 12 2 0.3966
Astral40 2.02 RBLOSUM5913+ 12 2 0.3966
Astral40 2.03 RBLOSUM5913+ 19 1 0.4112
Astral40 2.04 RBLOSUM5913+ 18 1 0.4257
Astral40 2.05 RBLOSUM5913+ 15 1 0.4276
Astral40 2.06 RBLOSUM5913+ 17 1 0.4335

Astral40 1.55 RBLOSUM6913+ 11 2 0.3816
Astral40 1.57 RBLOSUM6913+ 13 1 0.3748
Astral40 1.59 RBLOSUM6913+ 13 1 0.3766
Astral40 1.61 RBLOSUM6913+ 11 1 0.3770
Astral40 1.63 RBLOSUM6913+ 12 1 0.3776
Astral40 1.65 RBLOSUM6913+ 14 1 0.3757
Astral40 1.67 RBLOSUM6913+ 14 1 0.3836
Astral40 1.69 RBLOSUM6913+ 15 1 0.3706
Astral40 1.71 RBLOSUM6913+ 15 1 0.3672
Astral40 1.73 RBLOSUM6913+ 14 1 0.3705
Astral40 1.75 RBLOSUM6913+ 10 2 0.3718
Astral40 2.01 RBLOSUM6913+ 14 1 0.3966
Astral40 2.02 RBLOSUM6913+ 14 1 0.3966
Astral40 2.03 RBLOSUM6913+ 13 1 0.4124
Astral40 2.04 RBLOSUM6913+ 13 1 0.4265
Astral40 2.05 RBLOSUM6913+ 13 1 0.4296
Astral40 2.06 RBLOSUM6913+ 13 1 0.4354

Table B.5: Highest achieved coverage values (Cov.) on the different ASTRAL40 subset
versions for the six BLOCKS 13+-based substitution matrices tested in the CorBLOSUM ben-
chmark and the corresponding gap opening (Gop) and extension (Ext) penalty parameters.
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Subset Version Matrix Gop Ext Cov.

Astral40 1.55 BLOSUM5014.3 16 1 0.3744
Astral40 1.57 BLOSUM5014.3 19 1 0.3684
Astral40 1.59 BLOSUM5014.3 18 1 0.3679
Astral40 1.61 BLOSUM5014.3 17 1 0.3705
Astral40 1.63 BLOSUM5014.3 18 1 0.3723
Astral40 1.65 BLOSUM5014.3 18 1 0.3705
Astral40 1.67 BLOSUM5014.3 19 1 0.3775
Astral40 1.69 BLOSUM5014.3 16 2 0.3653
Astral40 1.71 BLOSUM5014.3 17 2 0.3627
Astral40 1.73 BLOSUM5014.3 16 2 0.3666
Astral40 1.75 BLOSUM5014.3 17 2 0.3722
Astral40 2.01 BLOSUM5014.3 16 2 0.3925
Astral40 2.02 BLOSUM5014.3 16 2 0.3925
Astral40 2.03 BLOSUM5014.3 16 2 0.4070
Astral40 2.04 BLOSUM5014.3 20 1 0.4237
Astral40 2.05 BLOSUM5014.3 20 1 0.4276
Astral40 2.06 BLOSUM5014.3 16 2 0.4291

Astral40 1.55 BLOSUM6214.3 15 1 0.3765
Astral40 1.57 BLOSUM6214.3 16 1 0.3690
Astral40 1.59 BLOSUM6214.3 19 1 0.3678
Astral40 1.61 BLOSUM6214.3 17 1 0.3719
Astral40 1.63 BLOSUM6214.3 18 2 0.3726
Astral40 1.65 BLOSUM6214.3 18 2 0.3727
Astral40 1.67 BLOSUM6214.3 17 1 0.3790
Astral40 1.69 BLOSUM6214.3 17 2 0.3652
Astral40 1.71 BLOSUM6214.3 20 1 0.3658
Astral40 1.73 BLOSUM6214.3 20 1 0.3689
Astral40 1.75 BLOSUM6214.3 20 1 0.3740
Astral40 2.01 BLOSUM6214.3 20 1 0.3963
Astral40 2.02 BLOSUM6214.3 20 1 0.3963
Astral40 2.03 BLOSUM6214.3 19 1 0.4107
Astral40 2.04 BLOSUM6214.3 19 1 0.4264
Astral40 2.05 BLOSUM6214.3 18 1 0.4296
Astral40 2.06 BLOSUM6214.3 18 1 0.4330

Astral40 1.55 CorBLOSUM5714.3 18 1 0.3720
Astral40 1.57 CorBLOSUM5714.3 19 1 0.3664
Astral40 1.59 CorBLOSUM5714.3 17 1 0.3656
Astral40 1.61 CorBLOSUM5714.3 17 1 0.3691
Astral40 1.63 CorBLOSUM5714.3 19 1 0.3763
Astral40 1.65 CorBLOSUM5714.3 19 1 0.3749
Astral40 1.67 CorBLOSUM5714.3 16 1 0.3815
Astral40 1.69 CorBLOSUM5714.3 19 1 0.3686
Astral40 1.71 CorBLOSUM5714.3 20 1 0.3658
Astral40 1.73 CorBLOSUM5714.3 20 1 0.3680
Astral40 1.75 CorBLOSUM5714.3 20 1 0.3742
Astral40 2.01 CorBLOSUM5714.3 19 1 0.3960
Astral40 2.02 CorBLOSUM5714.3 19 1 0.3960
Astral40 2.03 CorBLOSUM5714.3 15 2 0.4119
Astral40 2.04 CorBLOSUM5714.3 18 1 0.4271
Astral40 2.05 CorBLOSUM5714.3 18 1 0.4299
Astral40 2.06 CorBLOSUM5714.3 19 1 0.4324

Subset Version Matrix Gop Ext Cov.

Astral40 1.55 CorBLOSUM6714.3 15 1 0.3803
Astral40 1.57 CorBLOSUM6714.3 15 1 0.3711
Astral40 1.59 CorBLOSUM6714.3 16 1 0.3679
Astral40 1.61 CorBLOSUM6714.3 16 1 0.3716
Astral40 1.63 CorBLOSUM6714.3 17 1 0.3763
Astral40 1.65 CorBLOSUM6714.3 16 1 0.3762
Astral40 1.67 CorBLOSUM6714.3 16 2 0.3829
Astral40 1.69 CorBLOSUM6714.3 13 2 0.3713
Astral40 1.71 CorBLOSUM6714.3 14 2 0.3678
Astral40 1.73 CorBLOSUM6714.3 18 1 0.3702
Astral40 1.75 CorBLOSUM6714.3 19 1 0.3739
Astral40 2.01 CorBLOSUM6714.3 19 1 0.3974
Astral40 2.02 CorBLOSUM6714.3 13 2 0.3972
Astral40 2.03 CorBLOSUM6714.3 13 2 0.4123
Astral40 2.04 CorBLOSUM6714.3 18 1 0.4277
Astral40 2.05 CorBLOSUM6714.3 18 1 0.4310
Astral40 2.06 CorBLOSUM6714.3 19 1 0.4364

Astral40 1.55 RBLOSUM5914.3 16 1 0.3754
Astral40 1.57 RBLOSUM5914.3 12 2 0.3694
Astral40 1.59 RBLOSUM5914.3 17 1 0.3696
Astral40 1.61 RBLOSUM5914.3 17 1 0.3725
Astral40 1.63 RBLOSUM5914.3 19 1 0.3773
Astral40 1.65 RBLOSUM5914.3 20 1 0.3775
Astral40 1.67 RBLOSUM5914.3 19 1 0.3819
Astral40 1.69 RBLOSUM5914.3 16 1 0.3690
Astral40 1.71 RBLOSUM5914.3 15 2 0.3636
Astral40 1.73 RBLOSUM5914.3 19 1 0.3682
Astral40 1.75 RBLOSUM5914.3 16 2 0.3734
Astral40 2.01 RBLOSUM5914.3 17 2 0.3959
Astral40 2.02 RBLOSUM5914.3 17 2 0.3959
Astral40 2.03 RBLOSUM5914.3 16 2 0.4095
Astral40 2.04 RBLOSUM5914.3 18 1 0.4267
Astral40 2.05 RBLOSUM5914.3 17 1 0.4296
Astral40 2.06 RBLOSUM5914.3 18 1 0.4328

Astral40 1.55 RBLOSUM6914.3 15 1 0.3787
Astral40 1.57 RBLOSUM6914.3 17 1 0.3703
Astral40 1.59 RBLOSUM6914.3 17 1 0.3717
Astral40 1.61 RBLOSUM6914.3 15 1 0.3747
Astral40 1.63 RBLOSUM6914.3 17 1 0.3756
Astral40 1.65 RBLOSUM6914.3 17 1 0.3758
Astral40 1.67 RBLOSUM6914.3 20 1 0.3810
Astral40 1.69 RBLOSUM6914.3 18 1 0.3706
Astral40 1.71 RBLOSUM6914.3 19 1 0.3668
Astral40 1.73 RBLOSUM6914.3 20 1 0.3704
Astral40 1.75 RBLOSUM6914.3 15 2 0.3739
Astral40 2.01 RBLOSUM6914.3 15 2 0.3971
Astral40 2.02 RBLOSUM6914.3 15 2 0.3971
Astral40 2.03 RBLOSUM6914.3 19 1 0.4114
Astral40 2.04 RBLOSUM6914.3 18 1 0.4272
Astral40 2.05 RBLOSUM6914.3 19 1 0.4311
Astral40 2.06 RBLOSUM6914.3 16 1 0.4344

Table B.6: Highest achieved coverage values (Cov.) on the different ASTRAL40 subset
versions for the six BLOCKS 14.3-based substitution matrices tested in the CorBLOSUM ben-
chmark and the corresponding gap opening (Gop) and extension (Ext) penalty parameters.
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Appendix B: Supplemental material - CorBLOSUM substitution matrices

Subset Version Matrix Gop Ext Cov.

Astral70 1.55 BLOSUM505.0 14 1 0.4749
Astral70 1.57 BLOSUM505.0 14 1 0.4680
Astral70 1.59 BLOSUM505.0 12 1 0.4647
Astral70 1.61 BLOSUM505.0 12 1 0.4646
Astral70 1.63 BLOSUM505.0 12 1 0.4687
Astral70 1.65 BLOSUM505.0 12 1 0.4725
Astral70 1.67 BLOSUM505.0 14 1 0.4826
Astral70 1.69 BLOSUM505.0 15 1 0.4713
Astral70 1.71 BLOSUM505.0 12 2 0.4582
Astral70 1.73 BLOSUM505.0 8 2 0.4580
Astral70 1.75 BLOSUM505.0 8 2 0.4605
Astral70 2.01 BLOSUM505.0 11 2 0.4933
Astral70 2.02 BLOSUM505.0 11 2 0.4934
Astral70 2.03 BLOSUM505.0 11 2 0.5146
Astral70 2.04 BLOSUM505.0 9 2 0.5285
Astral70 2.05 BLOSUM505.0 11 1 0.5310
Astral70 2.06 BLOSUM505.0 15 1 0.5420

Astral70 1.55 BLOSUM625.0 7 2 0.4748
Astral70 1.57 BLOSUM625.0 9 1 0.4681
Astral70 1.59 BLOSUM625.0 9 1 0.4651
Astral70 1.61 BLOSUM625.0 9 1 0.4649
Astral70 1.63 BLOSUM625.0 9 1 0.4694
Astral70 1.65 BLOSUM625.0 9 1 0.4738
Astral70 1.67 BLOSUM625.0 9 1 0.4820
Astral70 1.69 BLOSUM625.0 9 1 0.4708
Astral70 1.71 BLOSUM625.0 9 1 0.4580
Astral70 1.73 BLOSUM625.0 8 1 0.4540
Astral70 1.75 BLOSUM625.0 9 1 0.4593
Astral70 2.01 BLOSUM625.0 10 1 0.4911
Astral70 2.02 BLOSUM625.0 10 1 0.4911
Astral70 2.03 BLOSUM625.0 9 1 0.5122
Astral70 2.04 BLOSUM625.0 8 1 0.5247
Astral70 2.05 BLOSUM625.0 8 1 0.5271
Astral70 2.06 BLOSUM625.0 9 1 0.5402

Astral70 1.55 CorBLOSUM495.0 13 1 0.4767
Astral70 1.57 CorBLOSUM495.0 13 1 0.4701
Astral70 1.59 CorBLOSUM495.0 13 1 0.4685
Astral70 1.61 CorBLOSUM495.0 13 1 0.4673
Astral70 1.63 CorBLOSUM495.0 14 1 0.4713
Astral70 1.65 CorBLOSUM495.0 14 1 0.4754
Astral70 1.67 CorBLOSUM495.0 14 1 0.4844
Astral70 1.69 CorBLOSUM495.0 15 1 0.4728
Astral70 1.71 CorBLOSUM495.0 15 1 0.4606
Astral70 1.73 CorBLOSUM495.0 9 2 0.4580
Astral70 1.75 CorBLOSUM495.0 13 1 0.4626
Astral70 2.01 CorBLOSUM495.0 15 1 0.4934
Astral70 2.02 CorBLOSUM495.0 15 1 0.4935
Astral70 2.03 CorBLOSUM495.0 15 1 0.5152
Astral70 2.04 CorBLOSUM495.0 14 1 0.5296
Astral70 2.05 CorBLOSUM495.0 14 1 0.5321
Astral70 2.06 CorBLOSUM495.0 11 2 0.5419

Subset Version Matrix Gop Ext Cov.

Astral70 1.55 CorBLOSUM615.0 9 1 0.4742
Astral70 1.57 CorBLOSUM615.0 8 1 0.4661
Astral70 1.59 CorBLOSUM615.0 8 1 0.4646
Astral70 1.61 CorBLOSUM615.0 8 1 0.4635
Astral70 1.63 CorBLOSUM615.0 8 1 0.4692
Astral70 1.65 CorBLOSUM615.0 8 1 0.4732
Astral70 1.67 CorBLOSUM615.0 8 1 0.4816
Astral70 1.69 CorBLOSUM615.0 9 1 0.4677
Astral70 1.71 CorBLOSUM615.0 9 1 0.4569
Astral70 1.73 CorBLOSUM615.0 9 1 0.4549
Astral70 1.75 CorBLOSUM615.0 9 1 0.4596
Astral70 2.01 CorBLOSUM615.0 9 1 0.4909
Astral70 2.02 CorBLOSUM615.0 9 1 0.4909
Astral70 2.03 CorBLOSUM615.0 9 1 0.5123
Astral70 2.04 CorBLOSUM615.0 8 1 0.5251
Astral70 2.05 CorBLOSUM615.0 8 1 0.5277
Astral70 2.06 CorBLOSUM615.0 9 1 0.5403

Astral70 1.55 RBLOSUM525.0 13 1 0.4770
Astral70 1.57 RBLOSUM525.0 13 1 0.4706
Astral70 1.59 RBLOSUM525.0 13 1 0.4678
Astral70 1.61 RBLOSUM525.0 13 1 0.4666
Astral70 1.63 RBLOSUM525.0 14 1 0.4724
Astral70 1.65 RBLOSUM525.0 13 1 0.4763
Astral70 1.67 RBLOSUM525.0 13 1 0.4838
Astral70 1.69 RBLOSUM525.0 15 1 0.4726
Astral70 1.71 RBLOSUM525.0 9 2 0.4612
Astral70 1.73 RBLOSUM525.0 9 2 0.4610
Astral70 1.75 RBLOSUM525.0 9 2 0.4636
Astral70 2.01 RBLOSUM525.0 14 1 0.4939
Astral70 2.02 RBLOSUM525.0 14 1 0.4939
Astral70 2.03 RBLOSUM525.0 15 1 0.5157
Astral70 2.04 RBLOSUM525.0 8 2 0.5296
Astral70 2.05 RBLOSUM525.0 10 2 0.5318
Astral70 2.06 RBLOSUM525.0 12 1 0.5420

Astral70 1.55 RBLOSUM645.0 9 1 0.4746
Astral70 1.57 RBLOSUM645.0 8 1 0.4680
Astral70 1.59 RBLOSUM645.0 8 1 0.4652
Astral70 1.61 RBLOSUM645.0 8 1 0.4644
Astral70 1.63 RBLOSUM645.0 8 1 0.4694
Astral70 1.65 RBLOSUM645.0 8 1 0.4727
Astral70 1.67 RBLOSUM645.0 8 1 0.4813
Astral70 1.69 RBLOSUM645.0 9 1 0.4688
Astral70 1.71 RBLOSUM645.0 10 1 0.4577
Astral70 1.73 RBLOSUM645.0 9 1 0.4557
Astral70 1.75 RBLOSUM645.0 9 1 0.4607
Astral70 2.01 RBLOSUM645.0 9 1 0.4922
Astral70 2.02 RBLOSUM645.0 9 1 0.4926
Astral70 2.03 RBLOSUM645.0 9 1 0.5119
Astral70 2.04 RBLOSUM645.0 8 1 0.5242
Astral70 2.05 RBLOSUM645.0 9 1 0.5265
Astral70 2.06 RBLOSUM645.0 9 1 0.5404

Table B.7: Highest achieved coverage values (Cov.) on the different ASTRAL70 subset versi-
ons for the six BLOCKS 5.0-based substitution matrices tested in the CorBLOSUM benchmark
and the corresponding gap opening (Gop) and extension (Ext) penalty parameters.
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Subset Version Matrix Gop Ext Cov.

Astral70 1.55 BLOSUM5013+ 14 1 0.4704
Astral70 1.57 BLOSUM5013+ 14 1 0.4635
Astral70 1.59 BLOSUM5013+ 14 1 0.4611
Astral70 1.61 BLOSUM5013+ 14 1 0.4618
Astral70 1.63 BLOSUM5013+ 16 1 0.4657
Astral70 1.65 BLOSUM5013+ 15 1 0.4695
Astral70 1.67 BLOSUM5013+ 18 1 0.4804
Astral70 1.69 BLOSUM5013+ 15 1 0.4692
Astral70 1.71 BLOSUM5013+ 17 1 0.4597
Astral70 1.73 BLOSUM5013+ 16 1 0.4581
Astral70 1.75 BLOSUM5013+ 16 1 0.4615
Astral70 2.01 BLOSUM5013+ 16 1 0.4940
Astral70 2.02 BLOSUM5013+ 16 1 0.4941
Astral70 2.03 BLOSUM5013+ 16 1 0.5151
Astral70 2.04 BLOSUM5013+ 15 1 0.5300
Astral70 2.05 BLOSUM5013+ 17 1 0.5324
Astral70 2.06 BLOSUM5013+ 17 1 0.5413

Astral70 1.55 BLOSUM6213+ 12 1 0.4739
Astral70 1.57 BLOSUM6213+ 11 1 0.4684
Astral70 1.59 BLOSUM6213+ 12 1 0.4635
Astral70 1.61 BLOSUM6213+ 12 1 0.4640
Astral70 1.63 BLOSUM6213+ 13 1 0.4672
Astral70 1.65 BLOSUM6213+ 13 1 0.4717
Astral70 1.67 BLOSUM6213+ 14 1 0.4815
Astral70 1.69 BLOSUM6213+ 10 2 0.4701
Astral70 1.71 BLOSUM6213+ 13 1 0.4599
Astral70 1.73 BLOSUM6213+ 9 2 0.4574
Astral70 1.75 BLOSUM6213+ 10 2 0.4624
Astral70 2.01 BLOSUM6213+ 10 2 0.4925
Astral70 2.02 BLOSUM6213+ 10 2 0.4933
Astral70 2.03 BLOSUM6213+ 10 2 0.5154
Astral70 2.04 BLOSUM6213+ 10 2 0.5314
Astral70 2.05 BLOSUM6213+ 12 1 0.5335
Astral70 2.06 BLOSUM6213+ 13 1 0.5418

Astral70 1.55 CorBLOSUM5713+ 17 1 0.4730
Astral70 1.57 CorBLOSUM5713+ 16 1 0.4668
Astral70 1.59 CorBLOSUM5713+ 17 1 0.4632
Astral70 1.61 CorBLOSUM5713+ 17 1 0.4640
Astral70 1.63 CorBLOSUM5713+ 17 1 0.4685
Astral70 1.65 CorBLOSUM5713+ 17 1 0.4717
Astral70 1.67 CorBLOSUM5713+ 17 1 0.4830
Astral70 1.69 CorBLOSUM5713+ 16 1 0.4698
Astral70 1.71 CorBLOSUM5713+ 18 1 0.4626
Astral70 1.73 CorBLOSUM5713+ 19 1 0.4604
Astral70 1.75 CorBLOSUM5713+ 18 1 0.4634
Astral70 2.01 CorBLOSUM5713+ 18 1 0.4962
Astral70 2.02 CorBLOSUM5713+ 18 1 0.4962
Astral70 2.03 CorBLOSUM5713+ 17 1 0.5175
Astral70 2.04 CorBLOSUM5713+ 18 1 0.5316
Astral70 2.05 CorBLOSUM5713+ 12 2 0.5340
Astral70 2.06 CorBLOSUM5713+ 17 1 0.5432

Subset Version Matrix Gop Ext Cov.

Astral70 1.55 CorBLOSUM6613+ 11 1 0.4762
Astral70 1.57 CorBLOSUM6613+ 11 1 0.4704
Astral70 1.59 CorBLOSUM6613+ 12 1 0.4665
Astral70 1.61 CorBLOSUM6613+ 11 1 0.4654
Astral70 1.63 CorBLOSUM6613+ 14 1 0.4678
Astral70 1.65 CorBLOSUM6613+ 15 1 0.4703
Astral70 1.67 CorBLOSUM6613+ 15 1 0.4811
Astral70 1.69 CorBLOSUM6613+ 13 1 0.4692
Astral70 1.71 CorBLOSUM6613+ 14 1 0.4612
Astral70 1.73 CorBLOSUM6613+ 12 1 0.4592
Astral70 1.75 CorBLOSUM6613+ 9 2 0.4640
Astral70 2.01 CorBLOSUM6613+ 9 2 0.4962
Astral70 2.02 CorBLOSUM6613+ 9 2 0.4962
Astral70 2.03 CorBLOSUM6613+ 12 1 0.5168
Astral70 2.04 CorBLOSUM6613+ 12 1 0.5326
Astral70 2.05 CorBLOSUM6613+ 12 1 0.5340
Astral70 2.06 CorBLOSUM6613+ 12 1 0.5445

Astral70 1.55 RBLOSUM5913+ 17 1 0.4727
Astral70 1.57 RBLOSUM5913+ 17 1 0.4677
Astral70 1.59 RBLOSUM5913+ 15 1 0.4646
Astral70 1.61 RBLOSUM5913+ 15 1 0.4649
Astral70 1.63 RBLOSUM5913+ 16 1 0.4698
Astral70 1.65 RBLOSUM5913+ 16 1 0.4724
Astral70 1.67 RBLOSUM5913+ 17 1 0.4826
Astral70 1.69 RBLOSUM5913+ 19 1 0.4714
Astral70 1.71 RBLOSUM5913+ 17 1 0.4639
Astral70 1.73 RBLOSUM5913+ 18 1 0.4604
Astral70 1.75 RBLOSUM5913+ 16 1 0.4635
Astral70 2.01 RBLOSUM5913+ 16 1 0.4957
Astral70 2.02 RBLOSUM5913+ 16 1 0.4958
Astral70 2.03 RBLOSUM5913+ 16 1 0.5166
Astral70 2.04 RBLOSUM5913+ 18 1 0.5320
Astral70 2.05 RBLOSUM5913+ 17 1 0.5344
Astral70 2.06 RBLOSUM5913+ 17 1 0.5429

Astral70 1.55 RBLOSUM6913+ 13 1 0.4751
Astral70 1.57 RBLOSUM6913+ 12 1 0.4681
Astral70 1.59 RBLOSUM6913+ 12 1 0.4663
Astral70 1.61 RBLOSUM6913+ 12 1 0.4656
Astral70 1.63 RBLOSUM6913+ 13 1 0.4686
Astral70 1.65 RBLOSUM6913+ 14 1 0.4706
Astral70 1.67 RBLOSUM6913+ 15 1 0.4804
Astral70 1.69 RBLOSUM6913+ 10 2 0.4713
Astral70 1.71 RBLOSUM6913+ 10 2 0.4616
Astral70 1.73 RBLOSUM6913+ 12 1 0.4595
Astral70 1.75 RBLOSUM6913+ 9 2 0.4622
Astral70 2.01 RBLOSUM6913+ 13 1 0.4934
Astral70 2.02 RBLOSUM6913+ 9 2 0.4941
Astral70 2.03 RBLOSUM6913+ 9 2 0.5146
Astral70 2.04 RBLOSUM6913+ 9 2 0.5313
Astral70 2.05 RBLOSUM6913+ 12 1 0.5342
Astral70 2.06 RBLOSUM6913+ 12 1 0.5428

Table B.8: Highest achieved coverage values (Cov.) on the different ASTRAL70 subset
versions for the six BLOCKS 13+-based substitution matrices tested in the CorBLOSUM ben-
chmark and the corresponding gap opening (Gop) and extension (Ext) penalty parameters.
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Appendix B: Supplemental material - CorBLOSUM substitution matrices

Subset Version Matrix Gop Ext Cov.

Astral70 1.55 BLOSUM5014.3 18 1 0.4710
Astral70 1.57 BLOSUM5014.3 18 1 0.4654
Astral70 1.59 BLOSUM5014.3 19 1 0.4617
Astral70 1.61 BLOSUM5014.3 19 1 0.4610
Astral70 1.63 BLOSUM5014.3 18 1 0.4617
Astral70 1.65 BLOSUM5014.3 20 1 0.4653
Astral70 1.67 BLOSUM5014.3 19 1 0.4773
Astral70 1.69 BLOSUM5014.3 16 2 0.4665
Astral70 1.71 BLOSUM5014.3 16 2 0.4607
Astral70 1.73 BLOSUM5014.3 16 2 0.4579
Astral70 1.75 BLOSUM5014.3 16 2 0.4624
Astral70 2.01 BLOSUM5014.3 16 2 0.4943
Astral70 2.02 BLOSUM5014.3 16 2 0.4943
Astral70 2.03 BLOSUM5014.3 16 2 0.5160
Astral70 2.04 BLOSUM5014.3 16 2 0.5331
Astral70 2.05 BLOSUM5014.3 16 2 0.5349
Astral70 2.06 BLOSUM5014.3 16 2 0.5401

Astral70 1.55 BLOSUM6214.3 16 1 0.4740
Astral70 1.57 BLOSUM6214.3 16 1 0.4672
Astral70 1.59 BLOSUM6214.3 17 1 0.4644
Astral70 1.61 BLOSUM6214.3 16 1 0.4634
Astral70 1.63 BLOSUM6214.3 19 1 0.4638
Astral70 1.65 BLOSUM6214.3 16 2 0.4673
Astral70 1.67 BLOSUM6214.3 20 1 0.4790
Astral70 1.69 BLOSUM6214.3 15 2 0.4683
Astral70 1.71 BLOSUM6214.3 20 1 0.4622
Astral70 1.73 BLOSUM6214.3 19 1 0.4599
Astral70 1.75 BLOSUM6214.3 19 1 0.4650
Astral70 2.01 BLOSUM6214.3 19 1 0.4964
Astral70 2.02 BLOSUM6214.3 19 1 0.4964
Astral70 2.03 BLOSUM6214.3 19 1 0.5174
Astral70 2.04 BLOSUM6214.3 14 2 0.5334
Astral70 2.05 BLOSUM6214.3 17 1 0.5349
Astral70 2.06 BLOSUM6214.3 17 1 0.5422

Astral70 1.55 CorBLOSUM5714.3 18 1 0.4714
Astral70 1.57 CorBLOSUM5714.3 17 1 0.4666
Astral70 1.59 CorBLOSUM5714.3 18 1 0.4608
Astral70 1.61 CorBLOSUM5714.3 20 1 0.4591
Astral70 1.63 CorBLOSUM5714.3 18 1 0.4643
Astral70 1.65 CorBLOSUM5714.3 20 1 0.4694
Astral70 1.67 CorBLOSUM5714.3 20 1 0.4803
Astral70 1.69 CorBLOSUM5714.3 20 1 0.4699
Astral70 1.71 CorBLOSUM5714.3 20 1 0.4645
Astral70 1.73 CorBLOSUM5714.3 15 2 0.4594
Astral70 1.75 CorBLOSUM5714.3 15 2 0.4649
Astral70 2.01 CorBLOSUM5714.3 15 2 0.4969
Astral70 2.02 CorBLOSUM5714.3 15 2 0.4969
Astral70 2.03 CorBLOSUM5714.3 15 2 0.5183
Astral70 2.04 CorBLOSUM5714.3 19 1 0.5345
Astral70 2.05 CorBLOSUM5714.3 18 1 0.5359
Astral70 2.06 CorBLOSUM5714.3 15 2 0.5409

Subset Version Matrix Gop Ext Cov.

Astral70 1.55 CorBLOSUM6714.3 15 1 0.4761
Astral70 1.57 CorBLOSUM6714.3 15 1 0.4684
Astral70 1.59 CorBLOSUM6714.3 15 1 0.4645
Astral70 1.61 CorBLOSUM6714.3 16 1 0.4634
Astral70 1.63 CorBLOSUM6714.3 18 1 0.4659
Astral70 1.65 CorBLOSUM6714.3 19 1 0.4704
Astral70 1.67 CorBLOSUM6714.3 20 1 0.4815
Astral70 1.69 CorBLOSUM6714.3 15 2 0.4708
Astral70 1.71 CorBLOSUM6714.3 14 2 0.4633
Astral70 1.73 CorBLOSUM6714.3 16 1 0.4593
Astral70 1.75 CorBLOSUM6714.3 17 1 0.4648
Astral70 2.01 CorBLOSUM6714.3 17 1 0.4959
Astral70 2.02 CorBLOSUM6714.3 17 1 0.4959
Astral70 2.03 CorBLOSUM6714.3 17 1 0.5180
Astral70 2.04 CorBLOSUM6714.3 18 1 0.5329
Astral70 2.05 CorBLOSUM6714.3 18 1 0.5351
Astral70 2.06 CorBLOSUM6714.3 17 1 0.5423

Astral70 1.55 RBLOSUM5914.3 17 1 0.4731
Astral70 1.57 RBLOSUM5914.3 17 1 0.4680
Astral70 1.59 RBLOSUM5914.3 17 1 0.4649
Astral70 1.61 RBLOSUM5914.3 17 1 0.4650
Astral70 1.63 RBLOSUM5914.3 18 1 0.4650
Astral70 1.65 RBLOSUM5914.3 18 1 0.4705
Astral70 1.67 RBLOSUM5914.3 20 1 0.4808
Astral70 1.69 RBLOSUM5914.3 18 1 0.4701
Astral70 1.71 RBLOSUM5914.3 18 2 0.4648
Astral70 1.73 RBLOSUM5914.3 19 1 0.4598
Astral70 1.75 RBLOSUM5914.3 19 1 0.4640
Astral70 2.01 RBLOSUM5914.3 18 1 0.4959
Astral70 2.02 RBLOSUM5914.3 18 1 0.4959
Astral70 2.03 RBLOSUM5914.3 19 1 0.5182
Astral70 2.04 RBLOSUM5914.3 15 2 0.5345
Astral70 2.05 RBLOSUM5914.3 15 2 0.5371
Astral70 2.06 RBLOSUM5914.3 15 2 0.5420

Astral70 1.55 RBLOSUM6914.3 15 1 0.4744
Astral70 1.57 RBLOSUM6914.3 16 1 0.4680
Astral70 1.59 RBLOSUM6914.3 16 1 0.4658
Astral70 1.61 RBLOSUM6914.3 15 1 0.4654
Astral70 1.63 RBLOSUM6914.3 15 1 0.4660
Astral70 1.65 RBLOSUM6914.3 15 1 0.4708
Astral70 1.67 RBLOSUM6914.3 20 1 0.4798
Astral70 1.69 RBLOSUM6914.3 20 1 0.4694
Astral70 1.71 RBLOSUM6914.3 14 2 0.4614
Astral70 1.73 RBLOSUM6914.3 17 1 0.4602
Astral70 1.75 RBLOSUM6914.3 17 1 0.4648
Astral70 2.01 RBLOSUM6914.3 17 1 0.4970
Astral70 2.02 RBLOSUM6914.3 17 1 0.4970
Astral70 2.03 RBLOSUM6914.3 18 1 0.5181
Astral70 2.04 RBLOSUM6914.3 14 2 0.5344
Astral70 2.05 RBLOSUM6914.3 14 2 0.5359
Astral70 2.06 RBLOSUM6914.3 20 1 0.5424

Table B.9: Highest achieved coverage values (Cov.) on the different ASTRAL70 subset
versions for the six BLOCKS 14.3-based substitution matrices tested in the CorBLOSUM ben-
chmark and the corresponding gap opening (Gop) and extension (Ext) penalty parameters.
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Appendix C
Supplemental material -
PFASUM substitution matrices
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A R N D C Q E G H I L K M F P S T W Y V B Z J X *
A 4 -1 -1 -1 1 0 -1 0 -2 -1 -1 -1 0 -2 -1 1 0 -2 -2 0 -5 -5 -5 -18 -6
R -1 7 0 0 -3 2 1 -2 1 -4 -3 3 -2 -4 -1 0 0 -2 -2 -3 -4 -2 -7 -18 -6
N -1 0 7 3 -3 1 1 1 1 -4 -4 1 -3 -4 -1 1 1 -4 -2 -4 -1 -3 -8 -18 -6
D -1 0 3 8 -4 1 3 0 0 -6 -5 1 -4 -5 0 1 0 -5 -3 -5 -1 -1 -9 -18 -6
C 1 -3 -3 -4 16 -3 -4 -2 -2 0 0 -4 0 0 -3 0 -1 -2 -1 1 -7 -8 -4 -18 -6
Q 0 2 1 1 -3 5 3 -1 1 -3 -3 2 -1 -4 -1 0 0 -3 -2 -3 -3 -2 -7 -18 -6
E -1 1 1 3 -4 3 6 -1 0 -4 -4 2 -3 -5 0 0 0 -4 -3 -4 -2 -2 -8 -18 -6
G 0 -2 1 0 -2 -1 -1 9 -2 -4 -4 -1 -3 -4 -1 1 -1 -3 -3 -3 -4 -5 -8 -18 -6
H -2 1 1 0 -2 1 0 -2 12 -4 -3 0 -2 -2 -1 0 -1 -1 2 -3 -3 -4 -7 -18 -6
I -1 -4 -4 -6 0 -3 -4 -4 -4 5 3 -4 2 2 -3 -3 -1 -1 -1 4 -9 -8 -2 -18 -6
L -1 -3 -4 -5 0 -3 -4 -4 -3 3 5 -4 3 2 -3 -3 -2 0 0 2 -9 -8 -2 -18 -6
K -1 3 1 1 -4 2 2 -1 0 -4 -4 6 -2 -4 0 0 0 -4 -2 -3 -3 -2 -8 -18 -6
M 0 -2 -3 -4 0 -1 -3 -3 -2 2 3 -2 6 2 -3 -2 -1 0 0 1 -7 -6 -1 -17 -6
F -2 -4 -4 -5 0 -4 -5 -4 -2 2 2 -4 2 7 -3 -3 -2 3 4 1 -9 -8 -2 -18 -6
P -1 -1 -1 0 -3 -1 0 -1 -1 -3 -3 0 -3 -3 10 0 -1 -3 -3 -2 -4 -5 -7 -18 -6
S 1 0 1 1 0 0 0 1 0 -3 -3 0 -2 -3 0 4 2 -3 -2 -2 -3 -4 -7 -18 -6
T 0 0 1 0 -1 0 0 -1 -1 -1 -2 0 -1 -2 -1 2 5 -3 -2 0 -4 -4 -6 -18 -6
W -2 -2 -4 -5 -2 -3 -4 -3 -1 -1 0 -4 0 3 -3 -3 -3 16 4 -1 -8 -8 -4 -18 -6
Y -2 -2 -2 -3 -1 -2 -3 -3 2 -1 0 -2 0 4 -3 -2 -2 4 9 -1 -7 -6 -4 -18 -6
V 0 -3 -4 -5 1 -3 -4 -3 -3 4 2 -3 1 1 -2 -2 0 -1 -1 5 -8 -7 -1 -18 -6
B -5 -4 -1 -1 -7 -3 -2 -4 -3 -9 -9 -3 -7 -9 -4 -3 -4 -8 -7 -8 -1 -6 -13 -22 -6
Z -5 -2 -3 -1 -8 -2 -2 -5 -4 -8 -8 -2 -6 -8 -5 -4 -4 -8 -6 -7 -6 -2 -12 -22 -6
J -5 -7 -8 -9 -4 -7 -8 -8 -7 -2 -2 -8 -1 -2 -7 -7 -6 -4 -4 -1 -13 -12 -3 -22 -6
X -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -17 -18 -18 -18 -18 -18 -18 -18 -22 -22 -22 -27 -6
* -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 1

Table C.1: The PFASUM31 matrix derived from the Pfam seed alignments of Pfam release
29.0 [Finn et al. 2016]. PFASUM31 has a relative entropy of H = 0.2297. The entries are
rounded and scaled to 1/4 bit units.

A R N D C Q E G H I L K M F P S T W Y V B Z J X *
A 4 -1 -1 -1 0 0 -1 0 -2 -1 -1 -1 0 -2 -1 1 0 -2 -2 0 -4 -4 -4 -13 -5
R -1 6 0 0 -3 2 1 -2 1 -3 -3 3 -2 -3 -1 0 0 -2 -2 -3 -3 -2 -6 -13 -5
N -1 0 6 2 -2 1 1 0 1 -4 -4 1 -2 -3 -1 1 0 -3 -2 -3 0 -2 -7 -13 -5
D -1 0 2 6 -4 1 3 0 0 -5 -5 0 -4 -5 0 0 0 -4 -3 -4 0 -1 -8 -14 -5
C 0 -3 -2 -4 13 -3 -4 -2 -2 -1 -1 -4 0 -1 -3 0 -1 -2 -1 0 -6 -7 -4 -14 -5
Q 0 2 1 1 -3 5 2 -1 1 -3 -3 2 -1 -3 -1 0 0 -3 -2 -2 -2 -1 -6 -13 -5
E -1 1 1 3 -4 2 5 -1 0 -4 -4 2 -3 -4 -1 0 0 -4 -3 -3 -1 -1 -7 -13 -5
G 0 -2 0 0 -2 -1 -1 7 -2 -4 -4 -1 -3 -4 -1 0 -1 -3 -3 -3 -3 -4 -7 -14 -5
H -2 1 1 0 -2 1 0 -2 9 -3 -3 0 -2 -1 -1 0 -1 -1 2 -3 -3 -3 -6 -13 -5
I -1 -3 -4 -5 -1 -3 -4 -4 -3 5 2 -3 2 1 -3 -3 -1 -1 -1 3 -7 -7 -1 -13 -5
L -1 -3 -4 -5 -1 -3 -4 -4 -3 2 4 -3 2 2 -3 -3 -2 0 0 2 -7 -6 -1 -14 -5
K -1 3 1 0 -4 2 2 -1 0 -3 -3 5 -2 -4 -1 0 0 -3 -2 -3 -2 -1 -6 -13 -5
M 0 -2 -2 -4 0 -1 -3 -3 -2 2 2 -2 6 1 -3 -2 -1 0 0 1 -6 -5 -1 -13 -5
F -2 -3 -3 -5 -1 -3 -4 -4 -1 1 2 -4 1 7 -3 -3 -2 3 4 0 -7 -7 -1 -13 -5
P -1 -1 -1 0 -3 -1 -1 -1 -1 -3 -3 -1 -3 -3 9 0 -1 -3 -3 -2 -4 -4 -6 -14 -5
S 1 0 1 0 0 0 0 0 0 -3 -3 0 -2 -3 0 4 2 -3 -2 -2 -2 -3 -6 -13 -5
T 0 0 0 0 -1 0 0 -1 -1 -1 -2 0 -1 -2 -1 2 4 -3 -2 0 -3 -3 -4 -13 -5
W -2 -2 -3 -4 -2 -3 -4 -3 -1 -1 0 -3 0 3 -3 -3 -3 13 3 -2 -7 -6 -4 -14 -5
Y -2 -2 -2 -3 -1 -2 -3 -3 2 -1 0 -2 0 4 -3 -2 -2 3 8 -1 -5 -5 -4 -14 -5
V 0 -3 -3 -4 0 -2 -3 -3 -3 3 2 -3 1 0 -2 -2 0 -2 -1 4 -7 -6 -1 -13 -5
B -4 -3 0 0 -6 -2 -1 -3 -3 -7 -7 -2 -6 -7 -4 -2 -3 -7 -5 -7 0 -5 -10 -16 -5
Z -4 -2 -2 -1 -7 -1 -1 -4 -3 -7 -6 -1 -5 -7 -4 -3 -3 -6 -5 -6 -5 -1 -9 -16 -5
J -4 -6 -7 -8 -4 -6 -7 -7 -6 -1 -1 -6 -1 -1 -6 -6 -4 -4 -4 -1 -10 -9 -1 -17 -5
X -13 -13 -13 -14 -14 -13 -13 -14 -13 -13 -14 -13 -13 -13 -14 -13 -13 -14 -14 -13 -16 -16 -17 -20 -5
* -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 1

Table C.2: The PFASUM43 matrix derived from the Pfam seed alignments of Pfam release
29.0 [Finn et al. 2016]. PFASUM43 has a relative entropy of H = 0.3354. The entries are
rounded and scaled to 1/3 bit units.
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Appendix C: Supplemental material - PFASUM substitution matrices

A R N D C Q E G H I L K M F P S T W Y V B Z J X *
A 5 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -3 0 -5 -4 -4 -14 -6
R -1 7 0 -1 -4 2 0 -2 1 -4 -3 3 -2 -4 -2 -1 -1 -3 -2 -3 -4 -2 -7 -14 -6
N -2 0 7 2 -3 1 0 0 1 -5 -4 1 -3 -4 -1 1 0 -4 -2 -4 0 -2 -8 -13 -6
D -2 -1 2 7 -5 1 3 -1 0 -6 -6 0 -4 -6 -1 0 -1 -5 -4 -5 1 -1 -9 -14 -6
C 0 -4 -3 -5 14 -4 -5 -2 -2 -1 -1 -4 -1 -1 -4 0 -1 -2 -1 0 -7 -7 -4 -14 -6
Q -1 2 1 1 -4 6 2 -2 1 -4 -3 2 -1 -4 -1 0 0 -3 -2 -3 -2 0 -6 -13 -6
E -1 0 0 3 -5 2 6 -2 0 -5 -4 1 -3 -5 -1 0 -1 -5 -3 -4 -1 0 -8 -14 -6
G 0 -2 0 -1 -2 -2 -2 8 -2 -5 -5 -2 -4 -5 -2 0 -2 -4 -4 -4 -3 -5 -8 -14 -6
H -2 1 1 0 -2 1 0 -2 10 -4 -3 0 -2 -1 -2 -1 -1 -1 2 -3 -3 -3 -6 -13 -6
I -1 -4 -5 -6 -1 -4 -5 -5 -4 6 3 -4 2 1 -4 -3 -1 -2 -2 4 -8 -7 0 -14 -6
L -1 -3 -4 -6 -1 -3 -4 -5 -3 3 5 -4 3 2 -4 -4 -2 -1 -1 1 -8 -7 -1 -14 -6
K -1 3 1 0 -4 2 1 -2 0 -4 -4 6 -2 -5 -1 0 0 -4 -3 -3 -3 -1 -7 -13 -6
M -1 -2 -3 -4 -1 -1 -3 -4 -2 2 3 -2 8 1 -4 -2 -1 -1 -1 1 -7 -5 -1 -13 -6
F -2 -4 -4 -6 -1 -4 -5 -5 -1 1 2 -5 1 8 -4 -3 -3 3 4 0 -8 -8 -2 -14 -6
P -1 -2 -1 -1 -4 -1 -1 -2 -2 -4 -4 -1 -4 -4 10 0 -1 -4 -4 -3 -4 -4 -7 -14 -6
S 1 -1 1 0 0 0 0 0 -1 -3 -4 0 -2 -3 0 5 2 -4 -3 -2 -2 -3 -7 -13 -6
T 0 -1 0 -1 -1 0 -1 -2 -1 -1 -2 0 -1 -3 -1 2 6 -3 -2 0 -3 -3 -5 -13 -6
W -3 -3 -4 -5 -2 -3 -5 -4 -1 -2 -1 -4 -1 3 -4 -4 -3 14 3 -2 -8 -7 -4 -14 -6
Y -3 -2 -2 -4 -1 -2 -3 -4 2 -2 -1 -3 -1 4 -4 -3 -2 3 9 -2 -6 -6 -4 -14 -6
V 0 -3 -4 -5 0 -3 -4 -4 -3 4 1 -3 1 0 -3 -2 0 -2 -2 5 -8 -6 -1 -14 -6
B -5 -4 0 1 -7 -2 -1 -3 -3 -8 -8 -3 -7 -8 -4 -2 -3 -8 -6 -8 1 -5 -11 -17 -6
Z -4 -2 -2 -1 -7 0 0 -5 -3 -7 -7 -1 -5 -8 -4 -3 -3 -7 -6 -6 -5 0 -10 -16 -6
J -4 -7 -8 -9 -4 -6 -8 -8 -6 0 -1 -7 -1 -2 -7 -7 -5 -4 -4 -1 -11 -10 0 -17 -6
X -14 -14 -13 -14 -14 -13 -14 -14 -13 -14 -14 -13 -13 -14 -14 -13 -13 -14 -14 -14 -17 -16 -17 -21 -6
* -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 1

Table C.3: The PFASUM60 matrix derived from the Pfam seed alignments of Pfam release
29.0 [Finn et al. 2016]. PFASUM60 has a relative entropy of H = 0.4941. The entries are
rounded and scaled to 1/3 bit units.
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Matrix Scale Rel. entropy

PFASUM11 1/6 0.1036
PFASUM12 1/8 0.0668
PFASUM13 1/7 0.0727
PFASUM14 1/7 0.0803
PFASUM15 1/6 0.0953
PFASUM16 1/6 0.1067
PFASUM17 1/6 0.1183
PFASUM18 1/6 0.1239
PFASUM19 1/6 0.1301
PFASUM20 1/5 0.1350
PFASUM21 1/5 0.1418
PFASUM22 1/5 0.1506
PFASUM23 1/5 0.1587
PFASUM24 1/5 0.1675
PFASUM25 1/5 0.1759
PFASUM26 1/5 0.1849
PFASUM27 1/5 0.1938
PFASUM28 1/4 0.2029
PFASUM29 1/4 0.2121
PFASUM30 1/4 0.2211
PFASUM31 1/4 0.2297
PFASUM32 1/4 0.2381
PFASUM33 1/4 0.2466
PFASUM34 1/4 0.2551
PFASUM35 1/4 0.2634
PFASUM36 1/4 0.2716
PFASUM37 1/4 0.2806
PFASUM38 1/4 0.2900
PFASUM39 1/4 0.2995
PFASUM40 1/4 0.3083
PFASUM41 1/4 0.3177
PFASUM42 1/4 0.3265
PFASUM43 1/3 0.3354
PFASUM44 1/3 0.3441
PFASUM45 1/3 0.3529
PFASUM46 1/3 0.3619
PFASUM47 1/3 0.3712
PFASUM48 1/3 0.3803
PFASUM49 1/3 0.3900
PFASUM50 1/3 0.3981
PFASUM51 1/3 0.4084
PFASUM52 1/3 0.4173
PFASUM53 1/3 0.4266
PFASUM54 1/3 0.4362
PFASUM55 1/3 0.4454

Matrix Scale Rel. entropy

PFASUM56 1/3 0.4552
PFASUM57 1/3 0.4654
PFASUM58 1/3 0.4750
PFASUM59 1/3 0.4849
PFASUM60 1/3 0.4941
PFASUM61 1/3 0.5043
PFASUM62 1/3 0.5141
PFASUM63 1/3 0.5241
PFASUM64 1/3 0.5341
PFASUM65 1/3 0.5443
PFASUM66 1/3 0.5547
PFASUM67 1/3 0.5649
PFASUM68 1/3 0.5753
PFASUM69 1/3 0.5860
PFASUM70 1/3 0.5965
PFASUM71 1/3 0.6078
PFASUM72 1/3 0.6187
PFASUM73 1/3 0.6299
PFASUM74 1/2 0.6415
PFASUM75 1/2 0.6528
PFASUM76 1/2 0.6661
PFASUM77 1/2 0.6794
PFASUM78 1/2 0.6931
PFASUM79 1/2 0.7083
PFASUM80 1/2 0.7236
PFASUM81 1/2 0.7288
PFASUM82 1/2 0.7300
PFASUM83 1/2 0.7306
PFASUM84 1/2 0.7308
PFASUM85 1/2 0.7309
PFASUM86 1/2 0.7311
PFASUM87 1/2 0.7311
PFASUM88 1/2 0.7312
PFASUM89 1/2 0.7313
PFASUM90 1/2 0.7314
PFASUM91 1/2 0.7315
PFASUM92 1/2 0.7315
PFASUM93 1/2 0.7315
PFASUM94 1/2 0.7316
PFASUM95 1/2 0.7317
PFASUM96 1/2 0.7317
PFASUM97 1/2 0.7318
PFASUM98 1/2 0.7318
PFASUM99 1/2 0.7319
PFASUM100 1/2 0.7122

Table C.4: List of PFASUM matrices and their corresponding scale and relative entropies.
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Appendix C: Supplemental material - PFASUM substitution matrices

Subset Matrix Gop Ext Cov.
ASTRAL20 PFASUM11 18 3 0.0248
ASTRAL20 PFASUM12 20 3 0.0467
ASTRAL20 PFASUM13 20 3 0.0939
ASTRAL20 PFASUM14 20 3 0.1070
ASTRAL20 PFASUM15 20 3 0.1214
ASTRAL20 PFASUM16 17 3 0.1218
ASTRAL20 PFASUM17 20 3 0.1295
ASTRAL20 PFASUM18 20 3 0.1284
ASTRAL20 PFASUM19 17 3 0.1382
ASTRAL20 PFASUM20 14 3 0.1404
ASTRAL20 PFASUM21 18 2 0.1409
ASTRAL20 PFASUM22 15 3 0.1427
ASTRAL20 PFASUM23 14 3 0.1438
ASTRAL20 PFASUM24 18 3 0.1419
ASTRAL20 PFASUM25 20 2 0.1511
ASTRAL20 PFASUM26 19 2 0.1527
ASTRAL20 PFASUM27 20 2 0.1598
ASTRAL20 PFASUM28 15 2 0.1571
ASTRAL20 PFASUM29 14 2 0.1575
ASTRAL20 PFASUM30 20 1 0.1569
ASTRAL20 PFASUM31 15 2 0.1562
ASTRAL20 PFASUM32 20 1 0.1564
ASTRAL20 PFASUM33 20 1 0.1578
ASTRAL20 PFASUM34 20 1 0.1659
ASTRAL20 PFASUM35 15 2 0.1644
ASTRAL20 PFASUM36 15 2 0.1634
ASTRAL20 PFASUM37 15 2 0.1633
ASTRAL20 PFASUM38 20 1 0.1651
ASTRAL20 PFASUM39 16 2 0.1656
ASTRAL20 PFASUM40 16 2 0.1680
ASTRAL20 PFASUM41 17 2 0.1666
ASTRAL20 PFASUM42 16 2 0.1673
ASTRAL20 PFASUM43 14 1 0.1650
ASTRAL20 PFASUM44 14 1 0.1671
ASTRAL20 PFASUM45 14 1 0.1658
ASTRAL20 PFASUM46 15 1 0.1682
ASTRAL20 PFASUM47 15 1 0.1695
ASTRAL20 PFASUM48 15 1 0.1701
ASTRAL20 PFASUM49 17 1 0.1673
ASTRAL20 PFASUM50 17 1 0.1666
ASTRAL20 PFASUM51 15 1 0.1672
ASTRAL20 PFASUM52 15 1 0.1686
ASTRAL20 PFASUM53 15 1 0.1670
ASTRAL20 PFASUM54 15 1 0.1671
ASTRAL20 PFASUM55 15 1 0.1661

Subset Matrix Gop Ext Cov.
ASTRAL20 PFASUM56 12 2 0.1655
ASTRAL20 PFASUM57 15 1 0.1647
ASTRAL20 PFASUM58 16 1 0.1674
ASTRAL20 PFASUM59 16 1 0.1688
ASTRAL20 PFASUM60 16 1 0.1706
ASTRAL20 PFASUM61 12 2 0.1661
ASTRAL20 PFASUM62 16 1 0.1653
ASTRAL20 PFASUM63 15 1 0.1629
ASTRAL20 PFASUM64 15 1 0.1627
ASTRAL20 PFASUM65 16 1 0.1606
ASTRAL20 PFASUM66 11 2 0.1596
ASTRAL20 PFASUM67 15 1 0.1587
ASTRAL20 PFASUM68 15 1 0.1544
ASTRAL20 PFASUM69 16 1 0.1566
ASTRAL20 PFASUM70 16 1 0.1566
ASTRAL20 PFASUM71 18 1 0.1559
ASTRAL20 PFASUM72 17 1 0.1550
ASTRAL20 PFASUM73 15 1 0.1524
ASTRAL20 PFASUM74 9 1 0.1542
ASTRAL20 PFASUM75 9 1 0.1538
ASTRAL20 PFASUM76 9 1 0.1523
ASTRAL20 PFASUM77 9 1 0.1531
ASTRAL20 PFASUM78 9 1 0.1546
ASTRAL20 PFASUM79 9 1 0.1531
ASTRAL20 PFASUM80 10 1 0.1493
ASTRAL20 PFASUM81 9 1 0.1445
ASTRAL20 PFASUM82 9 1 0.1443
ASTRAL20 PFASUM83 9 1 0.1443
ASTRAL20 PFASUM84 9 1 0.1443
ASTRAL20 PFASUM85 10 1 0.1440
ASTRAL20 PFASUM86 10 1 0.1440
ASTRAL20 PFASUM87 10 1 0.1440
ASTRAL20 PFASUM88 10 1 0.1440
ASTRAL20 PFASUM89 10 1 0.1440
ASTRAL20 PFASUM90 9 1 0.1453
ASTRAL20 PFASUM91 9 1 0.1453
ASTRAL20 PFASUM92 9 1 0.1453
ASTRAL20 PFASUM93 9 1 0.1453
ASTRAL20 PFASUM94 9 1 0.1453
ASTRAL20 PFASUM95 9 1 0.1453
ASTRAL20 PFASUM96 9 1 0.1453
ASTRAL20 PFASUM97 9 1 0.1453
ASTRAL20 PFASUM98 9 1 0.1453
ASTRAL20 PFASUM99 9 1 0.1453
ASTRAL20 PFASUM100 10 1 0.1495

Table C.5: Highest achieved coverage values (Cov.) on the ASTRAL20 subset (version
2.06) obtained for PFASUM Search Matrices and the corresponding gap opening (Gop) and
extension (Ext) penalty parameters.
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Subset Matrix Gop Ext Cov.
ASTRAL40 PFASUM11 20 2 0.1992
ASTRAL40 PFASUM12 20 3 0.3137
ASTRAL40 PFASUM13 20 2 0.3902
ASTRAL40 PFASUM14 20 2 0.4071
ASTRAL40 PFASUM15 18 2 0.4153
ASTRAL40 PFASUM16 16 3 0.4151
ASTRAL40 PFASUM17 20 2 0.4197
ASTRAL40 PFASUM18 20 2 0.4205
ASTRAL40 PFASUM19 17 2 0.4257
ASTRAL40 PFASUM20 16 2 0.4274
ASTRAL40 PFASUM21 15 2 0.4306
ASTRAL40 PFASUM22 19 1 0.4323
ASTRAL40 PFASUM23 15 2 0.4341
ASTRAL40 PFASUM24 17 2 0.4335
ASTRAL40 PFASUM25 17 2 0.4346
ASTRAL40 PFASUM26 16 2 0.4373
ASTRAL40 PFASUM27 17 2 0.4389
ASTRAL40 PFASUM28 17 1 0.4365
ASTRAL40 PFASUM29 17 1 0.4401
ASTRAL40 PFASUM30 17 1 0.4406
ASTRAL40 PFASUM31 17 1 0.4427
ASTRAL40 PFASUM32 17 1 0.4422
ASTRAL40 PFASUM33 18 1 0.4427
ASTRAL40 PFASUM34 17 1 0.4430
ASTRAL40 PFASUM35 17 1 0.4425
ASTRAL40 PFASUM36 17 1 0.4428
ASTRAL40 PFASUM37 17 1 0.4429
ASTRAL40 PFASUM38 18 1 0.4425
ASTRAL40 PFASUM39 15 2 0.4413
ASTRAL40 PFASUM40 19 1 0.4437
ASTRAL40 PFASUM41 14 2 0.4447
ASTRAL40 PFASUM42 14 2 0.4437
ASTRAL40 PFASUM43 13 1 0.4448
ASTRAL40 PFASUM44 13 1 0.4428
ASTRAL40 PFASUM45 13 1 0.4448
ASTRAL40 PFASUM46 14 1 0.4420
ASTRAL40 PFASUM47 11 2 0.4415
ASTRAL40 PFASUM48 16 1 0.4425
ASTRAL40 PFASUM49 15 1 0.4426
ASTRAL40 PFASUM50 16 1 0.4433
ASTRAL40 PFASUM51 17 1 0.4418
ASTRAL40 PFASUM52 15 1 0.4411
ASTRAL40 PFASUM53 11 2 0.4426
ASTRAL40 PFASUM54 16 1 0.4419
ASTRAL40 PFASUM55 11 2 0.4430

Subset Matrix Gop Ext Cov.
ASTRAL40 PFASUM56 11 2 0.4429
ASTRAL40 PFASUM57 11 2 0.4445
ASTRAL40 PFASUM58 15 1 0.4411
ASTRAL40 PFASUM59 11 2 0.4416
ASTRAL40 PFASUM60 15 1 0.4412
ASTRAL40 PFASUM61 11 2 0.4392
ASTRAL40 PFASUM62 11 2 0.4394
ASTRAL40 PFASUM63 15 1 0.4391
ASTRAL40 PFASUM64 12 2 0.4390
ASTRAL40 PFASUM65 14 1 0.4396
ASTRAL40 PFASUM66 11 2 0.4390
ASTRAL40 PFASUM67 9 3 0.4388
ASTRAL40 PFASUM68 14 1 0.4395
ASTRAL40 PFASUM69 14 1 0.4384
ASTRAL40 PFASUM70 14 1 0.4402
ASTRAL40 PFASUM71 16 1 0.4362
ASTRAL40 PFASUM72 16 1 0.4386
ASTRAL40 PFASUM73 16 1 0.4386
ASTRAL40 PFASUM74 9 1 0.4380
ASTRAL40 PFASUM75 9 1 0.4390
ASTRAL40 PFASUM76 9 1 0.4380
ASTRAL40 PFASUM77 10 1 0.4370
ASTRAL40 PFASUM78 10 1 0.4372
ASTRAL40 PFASUM79 10 1 0.4368
ASTRAL40 PFASUM80 10 1 0.4360
ASTRAL40 PFASUM81 10 1 0.4341
ASTRAL40 PFASUM82 10 1 0.4342
ASTRAL40 PFASUM83 10 1 0.4342
ASTRAL40 PFASUM84 10 1 0.4342
ASTRAL40 PFASUM85 9 1 0.4340
ASTRAL40 PFASUM86 9 1 0.4340
ASTRAL40 PFASUM87 9 1 0.4340
ASTRAL40 PFASUM88 9 1 0.4340
ASTRAL40 PFASUM89 9 1 0.4340
ASTRAL40 PFASUM90 9 1 0.4346
ASTRAL40 PFASUM91 9 1 0.4346
ASTRAL40 PFASUM92 9 1 0.4346
ASTRAL40 PFASUM93 9 1 0.4346
ASTRAL40 PFASUM94 9 1 0.4346
ASTRAL40 PFASUM95 9 1 0.4346
ASTRAL40 PFASUM96 9 1 0.4346
ASTRAL40 PFASUM97 9 1 0.4346
ASTRAL40 PFASUM98 9 1 0.4346
ASTRAL40 PFASUM99 9 1 0.4346
ASTRAL40 PFASUM100 10 1 0.4373

Table C.6: Highest achieved coverage values (Cov.) on the ASTRAL40 subset (version
2.06) obtained for PFASUM Search Matrices and the corresponding gap opening (Gop) and
extension (Ext) penalty parameters.
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Appendix C: Supplemental material - PFASUM substitution matrices

Subset Matrix Gop Ext Cov.
ASTRAL70 PFASUM11 19 2 0.3406
ASTRAL70 PFASUM12 20 3 0.4506
ASTRAL70 PFASUM13 16 3 0.5125
ASTRAL70 PFASUM14 20 2 0.5252
ASTRAL70 PFASUM15 16 3 0.5316
ASTRAL70 PFASUM16 18 2 0.5328
ASTRAL70 PFASUM17 20 2 0.5354
ASTRAL70 PFASUM18 18 2 0.5361
ASTRAL70 PFASUM19 17 2 0.5397
ASTRAL70 PFASUM20 16 2 0.5404
ASTRAL70 PFASUM21 15 2 0.5434
ASTRAL70 PFASUM22 15 2 0.5455
ASTRAL70 PFASUM23 15 2 0.5458
ASTRAL70 PFASUM24 17 2 0.5444
ASTRAL70 PFASUM25 17 2 0.5453
ASTRAL70 PFASUM26 17 2 0.5457
ASTRAL70 PFASUM27 17 2 0.5473
ASTRAL70 PFASUM28 13 2 0.5465
ASTRAL70 PFASUM29 13 2 0.5481
ASTRAL70 PFASUM30 13 2 0.5502
ASTRAL70 PFASUM31 13 2 0.5508
ASTRAL70 PFASUM32 17 1 0.5499
ASTRAL70 PFASUM33 17 1 0.5499
ASTRAL70 PFASUM34 17 1 0.5500
ASTRAL70 PFASUM35 12 2 0.5496
ASTRAL70 PFASUM36 17 1 0.5496
ASTRAL70 PFASUM37 14 2 0.5483
ASTRAL70 PFASUM38 14 2 0.5490
ASTRAL70 PFASUM39 14 2 0.5475
ASTRAL70 PFASUM40 19 1 0.5494
ASTRAL70 PFASUM41 15 2 0.5502
ASTRAL70 PFASUM42 18 1 0.5493
ASTRAL70 PFASUM43 12 1 0.5479
ASTRAL70 PFASUM44 12 1 0.5487
ASTRAL70 PFASUM45 10 2 0.5484
ASTRAL70 PFASUM46 13 1 0.5475
ASTRAL70 PFASUM47 11 2 0.5496
ASTRAL70 PFASUM48 10 2 0.5492
ASTRAL70 PFASUM49 10 2 0.5497
ASTRAL70 PFASUM50 10 2 0.5484
ASTRAL70 PFASUM51 10 2 0.5460
ASTRAL70 PFASUM52 10 2 0.5472
ASTRAL70 PFASUM53 10 2 0.5472
ASTRAL70 PFASUM54 10 2 0.5476
ASTRAL70 PFASUM55 10 2 0.5470

Subset Matrix Gop Ext Cov.
ASTRAL70 PFASUM56 10 2 0.5467
ASTRAL70 PFASUM57 10 2 0.5475
ASTRAL70 PFASUM58 10 2 0.5463
ASTRAL70 PFASUM59 14 1 0.5449
ASTRAL70 PFASUM60 11 2 0.5448
ASTRAL70 PFASUM61 14 1 0.5445
ASTRAL70 PFASUM62 10 2 0.5440
ASTRAL70 PFASUM63 10 2 0.5443
ASTRAL70 PFASUM64 10 2 0.5445
ASTRAL70 PFASUM65 14 1 0.5441
ASTRAL70 PFASUM66 10 2 0.5433
ASTRAL70 PFASUM67 10 2 0.5433
ASTRAL70 PFASUM68 14 1 0.5429
ASTRAL70 PFASUM69 11 2 0.5426
ASTRAL70 PFASUM70 15 1 0.5432
ASTRAL70 PFASUM71 11 2 0.5423
ASTRAL70 PFASUM72 11 2 0.5430
ASTRAL70 PFASUM73 11 2 0.5427
ASTRAL70 PFASUM74 8 1 0.5415
ASTRAL70 PFASUM75 9 1 0.5426
ASTRAL70 PFASUM76 8 1 0.5422
ASTRAL70 PFASUM77 8 1 0.5421
ASTRAL70 PFASUM78 9 1 0.5433
ASTRAL70 PFASUM79 9 1 0.5436
ASTRAL70 PFASUM80 8 1 0.5397
ASTRAL70 PFASUM81 8 1 0.5401
ASTRAL70 PFASUM82 8 1 0.5399
ASTRAL70 PFASUM83 8 1 0.5399
ASTRAL70 PFASUM84 8 1 0.5399
ASTRAL70 PFASUM85 8 1 0.5399
ASTRAL70 PFASUM86 8 1 0.5399
ASTRAL70 PFASUM87 8 1 0.5399
ASTRAL70 PFASUM88 8 1 0.5399
ASTRAL70 PFASUM89 8 1 0.5399
ASTRAL70 PFASUM90 8 1 0.5401
ASTRAL70 PFASUM91 8 1 0.5401
ASTRAL70 PFASUM92 8 1 0.5401
ASTRAL70 PFASUM93 8 1 0.5401
ASTRAL70 PFASUM94 8 1 0.5401
ASTRAL70 PFASUM95 8 1 0.5401
ASTRAL70 PFASUM96 8 1 0.5401
ASTRAL70 PFASUM97 8 1 0.5401
ASTRAL70 PFASUM98 8 1 0.5401
ASTRAL70 PFASUM99 8 1 0.5401
ASTRAL70 PFASUM100 9 1 0.5417

Table C.7: Highest achieved coverage values (Cov.) on the ASTRAL70 subset (version
2.06) obtained for PFASUM Search Matrices and the corresponding gap opening (Gop) and
extension (Ext) penalty parameters.
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Appendix C: Supplemental material - PFASUM substitution matrices

Subset Matrix Gop Ext Cov. Z-score

ASTRAL20 BLOSUM50 15 1 0.1474
-124.9418

ASTRAL20 PFASUM59 16 1 0.1688

ASTRAL20 BLOSUM62 10 1 0.1465
-48.0527

ASTRAL20 PFASUM78 9 1 0.1546

ASTRAL20 PAM250 9 3 0.1105
-348.2035

ASTRAL20 PFASUM45 14 1 0.1658

ASTRAL20 VTML160 16 1 0.1566
-12.0228

ASTRAL20 PFASUM67 15 1 0.1587

ASTRAL20 VTML200 14 1 0.1598
-40.5518

ASTRAL20 PFASUM51 15 1 0.1672

ASTRAL40 BLOSUM50 11 2 0.4371
-22.6776

ASTRAL40 PFASUM59 11 2 0.4416

ASTRAL40 BLOSUM62 10 1 0.4346
-10.4120

ASTRAL40 PFASUM78 10 1 0.4372

ASTRAL40 PAM250 10 2 0.4024
-216.6223

ASTRAL40 PFASUM45 13 1 0.4448

ASTRAL40 VTML160 15 1 0.4386
-0.0428

ASTRAL40 PFASUM67 9 3 0.4388

ASTRAL40 VTML200 14 1 0.4392
-12.1233

ASTRAL40 PFASUM51 17 1 0.4418

ASTRAL70 BLOSUM50 15 1 0.5420
-16.6450

ASTRAL70 PFASUM59 14 1 0.5449

ASTRAL70 BLOSUM62 9 1 0.5402
-18.8916

ASTRAL70 PFASUM78 9 1 0.5433

ASTRAL70 PAM250 11 2 0.5187
-172.2656

ASTRAL70 PFASUM45 10 2 0.5484

ASTRAL70 VTML160 11 2 0.5448
8.4916

ASTRAL70 PFASUM67 10 2 0.5433

ASTRAL70 VTML200 9 2 0.5459
1.2365

ASTRAL70 PFASUM51 10 2 0.5460

Table C.9: Highest achieved coverage scores (Cov.) for the comparison of Standard Search
Matrices and PFASUM Search Matrices based on similar relative matrix entropy and the
corresponding optimal gap opening (Gop) and extension (Ext) penalties for each matrix.
Also shown is the computed Z-score for each individual comparison based on 500 bootstrap
rounds. Negative Z-scores indicate a performance advantage of PFASUM Search Matrices
over Standard Search Matrices. Positive Z-scores (blue) refer to Standard Search Matrices
that perform better than their PFASUM counterpart. Insignificant performance differences
are highlighted in red.

175



ASTRAL20 ASTRAL40 ASTRAL70

Matrix Gop Ext Cov. Matrix Gop Ext Cov. Matrix Gop Ext Cov.

PFASUM31 15 2 0.1562 PFASUM31 17 1 0.4427 PFASUM31 13 2 0.5508
PFASUM43 14 1 0.165 PFASUM43 13 1 0.4448 PFASUM43 12 1 0.5479
PFASUM60 16 1 0.1706 PFASUM60 15 1 0.4412 PFASUM60 11 2 0.5448

BLOSUM50 15 1 0.1474 BLOSUM50 11 2 0.4371 BLOSUM50 15 1 0.542
BLOSUM62 10 1 0.1465 BLOSUM62 10 1 0.4346 BLOSUM62 9 1 0.5402
BLOSUM80 8 1 0.1231 BLOSUM80 9 1 0.414 BLOSUM80 8 1 0.5256

MD10 6 2 0.0206 MD10 7 2 0.1923 MD10 6 2 0.3494
MD20 6 2 0.032 MD20 7 2 0.239 MD20 7 2 0.3889
MD40 8 2 0.0512 MD40 9 2 0.2996 MD40 9 2 0.4381

OPTIMA5 19 3 0.1563 OPTIMA5 14 3 0.4383 OPTIMA5 17 3 0.5442

PAM120 9 1 0.0988 PAM120 9 1 0.3976 PAM120 10 1 0.5092
PAM250 9 3 0.1105 PAM250 10 2 0.4024 PAM250 11 2 0.5187

VTML10 5 1 0.0192 VTML10 6 1 0.1909 VTML10 5 1 0.3476
VTML20 5 1 0.0331 VTML20 6 1 0.2468 VTML20 6 1 0.3937
VTML40 7 1 0.0557 VTML40 7 1 0.3162 VTML40 7 1 0.4472
VTML80 8 1 0.0951 VTML80 9 1 0.389 VTML80 8 1 0.5044
VTML120 9 1 0.131 VTML120 9 1 0.426 VTML120 9 1 0.5337
VTML160 16 1 0.1566 VTML160 15 1 0.4386 VTML160 11 2 0.5448
VTML200 14 1 0.1598 VTML200 14 1 0.4392 VTML200 9 2 0.5459

Table C.10: Highest achieved coverage scores (Cov.) for the comparison of PFASUM31,
PFASUM43, and PFASUM60 with Standard Search Matrices and the corresponding optimal
gap opening (Gop) and extension (Ext) penalties for each matrix.
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Appendix C: Supplemental material - PFASUM substitution matrices
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Matrix average Q-score

Tw
ili

gh
t

Zo
ne

BLOSUM50 0.3913
BLOSUM62 0.3914
PAM250 0.3710
PFASUM31 0.4034
PFASUM43 0.4002
PFASUM60 0.4048
VTML160 0.3997
VTML200 0.3885

Su
pe

rf
am

ili
es

BLOSUM50 0.6342
BLOSUM62 0.6343
PAM250 0.6115
PFASUM31 0.6417
PFASUM43 0.6378
PFASUM60 0.6407
VTML160 0.6379
VTML200 0.6381

Table C.12: Average q-score q̄ for the SABmark alignments, split between superfamily
alignments and so-called "twilight zone" alignments. Matrices with the highest performances
are highlighted in bold.
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Appendix D
(Co-)Authored publications

• PFASUM: A substitution matrix from Pfam structural alignments
Frank Keul, Martin Hess, Michael Goesele and K. Hamacher
BMC Bioinformatics, Vol. 18, pp. 293, 2017

• Visual Analysis and Comparison of Multiple Sequence Alignments
Martin Hess, Daniel Jente, Josef Wiemeyer, Kay Hamacher and Michael Goesele
In: 6th Eurographics Workshop on Visual Computing for Biology and Medicine, 2016

• Addressing inaccuracies in BLOSUM computation improves homology search
performance.
Martin Hess, Frank Keul, Michael Goesele and K. Hamacher
BMC Bioinformatics, Vol. 17, pp. 189, 2016

• Serious Games for Solving Protein Sequence Alignments-Combining Citizen Science
and Gaming
Martin Hess, Josef Wiemeyer, Kay Hamacher and Michael Goesele
In: Games for Training, Education, Health and Sports. 4th International Conference
on Serious Games, GameDays 2014

• Visual exploration of parameter influence on phylogenetic trees
Martin Hess, Sebastian Bremm, Stephanie Weissgraeber, Kay Hamacher, Michael Goesele,
Josef Wiemeyer and Tatiana von Landesberger
IEEE Computer Graphics and Applications, Special Issue – BioVis, Vol. 34, No. 2, pp.
48-56, 2014

• PCDC – On the Highway to Data – A Tool for the Fast Generation of Large Synt-
hetic Data Sets
Sebastian Bremm, Martin Hess, Tatiana von Landesberger and Dieter W. Fellner
In: International Workshop on Visual Analytics, 2012

• Interactive Visual Comparison of Multiple Trees
Sebastian Bremm, Tatiana von Landesberger, Martin Heß, Tobias Schreck, Philipp Weil
and Kay Hamacher
IEEE Visual Analytics Science and Technology, 2011
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Data”
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