TU Darmstadt / ULB / TUprints

Regularized Theta Lifts of Harmonic Maass Forms

Schwagenscheidt, Markus :
Regularized Theta Lifts of Harmonic Maass Forms.
Technische Universität, Darmstadt
[Ph.D. Thesis], (2018)

[img]
Preview
Regularized Theta Lifts of Harmonic Maass Forms - Text
main_final.pdf - Accepted Version
Available under CC-BY 4.0 International - Creative Commons Attribution 4.0.

Download (831kB) | Preview
Item Type: Ph.D. Thesis
Title: Regularized Theta Lifts of Harmonic Maass Forms
Language: English
Abstract:

In this thesis we study regularized theta lifts between various spaces of harmonic Maass forms and their applications. The work consists of three main parts.

In the first part we investigate the so-called Millson theta lift, which maps harmonic Maass forms of weight -2k (with k a non-negative integer) for congruence subgroups of the modular group to vector valued harmonic Maass forms of weight 1/2-k. We show that the Fourier coefficients of the lift of a harmonic Maass form F are given by traces of CM values and cycle integrals of non-holomorphic modular forms arising from F by application of certain differential operators, and that the Millson lift is related to the classical Shintani theta lift via the xi-operator. This part is based on joint work with Claudia Alfes-Neumann.

The second part discusses some new applications of the Millson and the Kudla-Millson theta lifts. First we construct completions of two of Ramanujan's mock theta functions using the Millson lift of a suitable weakly holomorphic modular function F and use this to derive formulas for the coefficients of the mock theta functions in terms of traces of CM values of F. Further, we use the Millson and the Kudla-Millson theta lifts to obtain xi-preimages of unary theta functions of weight 3/2 and 1/2 whose holomorphic parts have rational Fourier coefficients. We also use these preimages to compute the Petersson inner products of harmonic Maass forms of weight 1/2 and 3/2 with unary theta series, and thereby obtain formulas and rationality results for the Weyl vectors of Borcherds products at the cusps. This part is based on joint work with Jan Hendrik Bruinier.

In the third part we extend Borcherds' regularized theta lift in signature (1,2) to the full space of harmonic Maass forms of weight 1/2, i.e., those forms whose non-holomorphic part is allowed to grow linearly exponentially at infinity. We obtain real analytic modular functions with logarithmic singularities at CM points and new types of singularities along geodesics in the upper half-plane. Further, we use the theta lift to construct modular integrals of weight 2 with rational period functions, whose coefficients are given by linear combinations of Fourier coefficients of harmonic Maass forms of weight 1/2.

Alternative Abstract:
Alternative AbstractLanguage
In dieser Dissertation werden regularisierte Thetalifts zwischen verschiedenen Räumen harmonischer Maaßformen und ihre Anwendungen untersucht. Die Arbeit besteht aus drei Hauptteilen. Im ersten Teil untersuchen wir den sogenannten Millson Thetalift, der harmonische Maaßformen vom Gewicht -2k (wobei k eine nicht-negative ganze Zahl ist) zu Kongruenzuntergruppen der Modulgruppe auf vektorwertige harmonische Maaßformen vom Gewicht 1/2-k abbildet. Wir zeigen, dass die Fourierkoeffizienten des Lifts einer harmonischen Maaßform F gegeben sind durch Spuren von CM-Werten und Zykelintegralen von nicht-holomorphen Modulformen, die aus F durch Anwendung gewisser Differentialoperatoren hervorgehen, und dass der Millson Thetalift mit dem klassischen Shintani Thetalift durch den xi-Operator in Beziehung steht. Dieser Teil basiert auf einer gemeinsamen Arbeit mit Claudia Alfes-Neumann. Der zweite Teil behandelt neue Anwendungen des Millson und des Kudla-Millson Thetalifts. Wir konstruieren zunächst Vervollständigungen von zwei von Ramanujans Mock Thetafunktionen als Millson Thetalift einer geeigneten schwach holomorphen modularen Funktion F und benutzen dies, um Formeln für die Koeffizienten der Mock Thetafunktionen in Termen von Spuren von CM-Werten von F herzuleiten. Außerdem erhalten wir durch den Millson und den Kudla-Millson Thetalift xi-Urbilder unärer Thetafunktionen vom Gewicht 3/2 und 1/2, deren holomorphe Teile rationale Fourierkoeffizienten haben. Wir benutzen diese Urbilder auch, um Petersson Skalarprodukte von harmonischen Maaßformen vom Gewicht 1/2 und 3/2 mit unären Thetafunktionen zu berechnen, und erhalten dadurch Formeln und Rationalitätsresultate für die Weyl-Vektoren von Borcherds-Produkten an den Spitzen. Dieser Teil basiert auf einer gemeinsamen Arbeit mit Jan Hendrik Bruinier. Im dritten Teil erweitern wir Borcherds' regularisierten Thetalift in Signatur (1,2) auf den vollen Raum der harmonischen Maaßformen vom Gewicht 1/2, also Formen, deren nicht-holomorpher Teil bei Unendlich linear exponentiell wachsen darf. Wir erhalten reell-analytische modulare Funktionen mit logarithmischen Singularitäten an CM-Punkten und neuen Typen von Singularitäten entlang von Geodäten in der oberen Halbebene. Außerdem benutzen wir den Thetalift, um modulare Integrale vom Gewicht 2 mit rationalen Periodenfunktionen zu konstruieren, deren Koeffizienten durch Linearkombinationen von Fourierkoeffizienten von harmonischen Maaßformen vom Gewicht 1/2 gegeben sind.German
Place of Publication: Darmstadt
Classification DDC: 500 Naturwissenschaften und Mathematik > 510 Mathematik
Divisions: 04 Department of Mathematics > Algebra > Automorphic Forms, Number Theory, Algebraic Geometry
Date Deposited: 26 Jan 2018 13:03
Last Modified: 26 Jan 2018 13:03
URN: urn:nbn:de:tuda-tuprints-71927
Referees: Bruinier, Prof. Dr. Jan Hendrik and Scheithauer, Prof. Dr. Nils and Funke, Prof. Dr. Jens
Refereed: 8 January 2018
URI: http://tuprints.ulb.tu-darmstadt.de/id/eprint/7192
Export:
Actions (login required)
View Item View Item

Downloads

Downloads per month over past year