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Zusammenfassung

Die vorliegende Arbeit baut auf der in den letzten Jahren entwickelte Turbulenztheorie
auf der Basis der Lie-Gruppen-Theorie auf. Mit dem neuen Ansatz sind eine Reihe klass-
ischer semi-empirischer Ansätze, wie z.B. das logarithmische Wandgesetz, bestätigt und
eine Vielzahl neuer Turbulenzgesetze hergeleitet worden, die sich ausschließlich aus ”first
principle” ergaben.

Im Speziellen werden in der vorliegenden Arbeit drei Strömungsfälle untersucht: der
Strömungsfall der turbulenten Diffusion, die turbulente Grenzschichtströmung ohne Druck-
gradient und die voll ausgebildete, turbulente, rotierende Rohrströmung. Mit Hilfe von
Symmetriemethoden werden für diese Stömungsfälle lineare und nichtlineare Wirbel-
viskositäts-modelle, sowie Reynolds-Spannungsmodelle analysiert. Dabei wird überprüft,
ob die Modellgleichungen die gleichen Symmetrieeigenschaften wie die Zwei-Punkt-Korre-
lations Gleichungen haben und zusätzlich in der Lage sind, die turbulenten Skalengesetze
für die gegebenen Strömungsfälle zu beschreiben. Basierend auf diesen Untersuchungen
werden dann zum Teil Bedingungen für die Modellkonstanten, sowie die Struktur der
Modellgleichungen hergeleitet.

Im Folgenden werden die Hauptergebnisse kurz zusammengefaßt:
Beim Strömungsfall der turbulenten Diffusion wird Turbulenz durch die Vibration eines
Gitters erzeugt, die dann in das angrenzende Strömungsgebiet senkrecht zum Gitter in
das ruhende Fluid hineindiffundiert. Für diesen Strömungsfall wurden mittels der Lie-
Gruppen sechs neue stationäre und instationäre Lösungen entwickelt. Dies sind 1.) Tur-
bulente Diffusion mit räumlich anwachsendem integralen Längenmaß, 2.) Turbulente Dif-
fusion mit konstantem integralen Längenmaß, 3.) Turbulente Diffusion in einer konstant
rotierenden Umgebung.
Für den ersten Fall ergibt sich eine klassische Diffusionslösung vergleichbar mit der der
Wärmeleitungsgleichung. Die turbulent-kinetische Energie nimmt dabei nach einem alge-
braischen Gesetz ab.
Beim zweiten Fall handelt es sich bei der Lösung um eine Diffusionswellen-Lösung. Für den
stationären Fall ergibt sich ein exponentielles Abklingverhalten der turbulenten kinetis-
chen Energie.
Für Fall 3. ergibt sich ein quadratisches Abklingverhalten. Die turbulente Diffusion scheint
also nur ein begrenztes Gebiet zu beeinflussen. Die turbulent-kinetische Energie sinkt
dabei bis auf Null ab und kann dann nicht wieder zunehmen, da keinerlei Turbulenz-
quellen vorhanden sind.
Bezüglich der Modellierung des gegebenen Strömungsfalls wurden nun klassische Zwei-
gleichungs- und Reynolds-Spannungsmodelle daraufhin untersucht, ob sie mit diesen in-
varianten Lösungen konsistent sind. Dazu wurden die invarianten Lösungen in das K- ε
Modell und das lrr Second-Moment Closure Modell eingesetzt. Für den ersten Fall erhält
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man somit Gleichungen aus denen sich der Exponent, der das räumliche Abklingverhalten
der turbulent kinetischen Energie und Dissipation beschreibt, berechnen lässt. Für den
zweiten Fall wurde festgestellt, dass diese Lösung nur zu den Modellgleichungen konsistent
ist, wenn die Modellkonstanten modifiziert werden. Weiterhin wurde festgestellt, dass der
dritte Strömungsfall der turbulenten Diffusion mit Rotation bisher nur unbefriedigend
bzw. gar nicht durch die bereits existierenden Modelle wiedergegeben wird. Um letzt-
endlich eine ganzheitliche Modellierung der turbulenten Diffusion zu ermöglichen, wurde
mit Hilfe der Tensor-Invarianten-Theorie ein zusätzlicher Term für das Modell für die
Druck-Scher-Korrelation entwickelt.

Für die turbulente Grenzschichtströmung ohne Druckgradient wurde von Oberlack (2001)
ein exponentielles Geschwindigkeits-Gesetz mit Hilfe der Lie-Gruppen-Theorie hergeleitet.
Dieses Gesetz wurde in letzter Zeit mehrfach mittels experimenteller oder numerischer
Daten bestätigt. In der gegebenen Arbeit wurden daher zahlreiche statistische Turbu-
lenzmodelle dahingehend untersucht, ob sie das exponentielle Gesetz wiedergeben. Dazu
wurden, wie schon bei den Untersuchungen zur turbulenten Diffusion, die invarianten
Lösungen in die Modellgleichungen eingesetzt. Durch Lösen der reduzierten Gleichun-
gen nach den Koeffizienten des exponentiellen Gesetzes unter Verwendung der Standard
Modellkonstanten wurde festgestellt, dass keines der untersuchten Modelle das exponen-
tielle Gesetz wiedergibt. Es konnten allerdings Bedingungen für die Modellkonstanten
hergeleitet werden, die eine einwandfreie Modellierung dieses Strömungsfalls ermöglichen.

Die Untersuchungen zur voll ausgebildeten, turbulenten, rotierenden Rohrströmung ba-
sieren auf von Oberlack (1999) hergeleiteten Skalengesetzen. In der gegebenen Arbeit wur-
den nun lineare und nichtlineare Wirbelviskositätsmodelle, sowie Reynolds-Spannungs-
Modelle untersucht. Ein Untersuchungsschwerpunkt lag dabei auf einer zusätzlichen, un-
physikalischen Symmetrie, die das Standard K− ε Modell, sowie andere Zwei-Gleichungs-
modelle für den gegebenen Strömungsfall besitzen. Hierbei wurde festgestellt, dass die
unphysikalische Symmetrie in nichtlinearen Wirbelviskositätsmodellen, sowie Reynolds-
Spannungsmodellen gebrochen wird und die dafür verantwortlichen Tensorinvarianten und
skalaren Invarianten wurden identifiziert. Weiterhin konnte für die zuletzt genannten Mo-
dellklassen die Abhängigkeit der achsialen Geschwindigkeitskomponente von der Rota-
tionsrate mit Hilfe von Symmetriemethoden hergeleitet werden.

Die vorliegende Arbeit soll also den Nutzen und die Möglichkeiten der Lie-Gruppen-
Theorie im Zusammenhang mit der Kalibrierung und Entwicklung statistischer Turbu-
lenzmodelle darstellen.
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Abstract

The given thesis is based on the turbulence theory based on Lie group methods, which
has been developed in the last couple of years. With this theory at hand it is possible to
derive classical semi-empirical approaches, as for example the law of the wall, from first
principles.

Here three different flow cases, which are the turbulent diffusion, the zero-pressure gradient
turbulent boundary layer flow and the fully developed turbulent rotating pipe flow have
been investigated. Using symmetry methods linear and non-linear eddy viscosity models
as well as Reynolds stress models have been analyzed. Thereby it has been checked if
the model equations have the same symmetry properties as the two-point correlation
equations and if they are able to describe the turbulent scaling laws which have been
derived for the given flow cases. Based on these investigations conditions for the model
constants and the structure of the model equations have been derived.

In the following the main results are summarized:
For the flow case of turbulent diffusion turbulence is generated by a vibrating grid and
diffuses away from the grid in the undisturbed flow. For this flow case six new steady and
unsteady solutions have been derived using symmetry methods. These are 1.) Turbulent
diffusion with spatially growing integral length-scale; 2.) Turbulent diffusion with a con-
stant integral length-scale; 3.) Turbulent diffusion in a rotating frame.
For the first case a typical diffusion type of similarity variable, such as for the heat equa-
tion is received. The turbulent kinetic energy decreases algebraically with the distance
from the turbulence source.
The second case gives a diffusion-wave solution. The spatial decay behavior changes from
an algebraic to an exponential behavior.
For the third case a quadratic decreasing behavior is received. Thus the turbulent diffu-
sion only influences a finite domain. The turbulent kinetic energy decreases to zero and
can not increase again, due to the lack of turbulence source.
Concerning the modeling of the given flow cases two-equation models and Reynolds stress
models have been investigated if they are in accordance to the invariant solutions derived
using symmetry methods. Therefore the invariant solutions have been inserted into the
K − ε model and the lrr second-moment-closure model. For the first case equations are
received from which one can derive the exponent, giving the decreasing behavior of the
turbulent kinetic energy and the dissipation. For the second case it has been found that
the solutions are only consistent with the model equations if the model constants are
modified. Finally it has been established, that the third case of turbulent diffusion with
rotation cannot be modeled satisfactory by the existing turbulence models. To permit a
proper modeling of this flow case an additional term for the pressure strain correlation
has been developed using invariant theory.
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For the zero-pressure gradient turbulent boundary layer flow an exponential velocity law
has been derived by Oberlack (2001) using Lie group theory. This law has recently been
validated using experimental and numerical data. Thus a couple of statistical turbulence
models have been investigated in the given thesis, if they properly capture the exponential
law. Therefore the invariant solutions have been - as for the investigations on the turbulent
diffusion - introduced into the model equations. Solving the reduced equations for the
coefficients in the exponential law, using the standard model constants, it has been found,
that none of the tested models is in accordance with the theory. Anyway, conditions for
the model constants could be derived, allowing a proper modeling of this flow case.

The investigations for the fully developed turbulent rotating pipe flow are based on the
scaling laws derived by Oberlack (1999). In the given thesis linear and non-liner eddy
viscosity models as well as Reynolds stress models have been investigated. Emphasis was
thereby placed on an additional unphysical symmetry, which is admitted by the standard
K − ε model as well as by other two-equation models. Hereby it was found, that this
unphysical symmetry is broken by non-linear eddy viscosity models and Reynolds stress
models. Additionally the tensor invariants and scalar invariants, which are responsible for
this symmetry breaking, have been identified. Based on this findings a new model for the
eddy viscosity has been derived and calibrated Furthermore for non-linear eddy viscosity
models and Reynolds stress models the dependence of the axial velocity component on
the rotation rate could be derived using symmetry methods.

Within the scope of the given thesis it should thus be shown that symmetry methods
provide a very usefull tool for the calibration and development of statistical turbulence
models.
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NOMENCLATURE xviii

Nomenclature

The notation used is given here in the following order: Upper-case Roman, lower-case
Roman, upper-case Greek, lower-case Greek. There are some variables, which are multiply
defined. This is due to the fact, that different authors used the same variables to describe
different quantities. It seemed useful to me not to change these variables, so that things
can be looked up in the given references. To identify the exact meaning of the variable
the equation number is given, where the variable is defined or where it appears for the
first time.

Upper-case Roman

A+: model constant (Eq. 3.10)
A0: constant (Eq. 3.134)
Ai: constants (Eq. 3.33)
Bijpqkl: sixth rank tensor to model the M-tensor Mipqj (Eq. 3.56)
B2: model constant (Eq. 7.44)
C: universal parameter in the exponential velocity law (Eq. 6.5)
CT
0 : constant (Eq. 3.130)

C1: model constant = Rotta constant (Eq. 3.43)
C0
1 : model constant (Eq. 3.79)

C1
1 : model constant (Eq. 3.79)

CHM
1 : model constant (Eq. 5.63)

C1k: constant (Eq. 7.24)
C1u′iu

′
j
: constant (Eq. 7.23)

C1ε: constant (Eq. 7.25)
CHM
2 : model constant (Eq. 5.63)

C2: model constant (Eq. 3.34)
C2k: constant (Eq. 7.30)
C2u′iu

′
j
: constant (Eq. 7.29)

C2ε: constant (Eq. 7.31)
C3: constant (Eq. 7.11)
C4: model constant (Eq. 3.58)
C8: constant (Eq. 3.58)
Cb1: model constant (Eq. 6.7)
Cb2: model constant (Eq. 6.7)
CD: model constant (Eq. 3.13)
CK : = 1/σK model constant (Eq. 7.34)
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CR: model constant (Eq. 3.40)
Cs: model constant (Eq. 3.44)
Cs1: model constant (Eq. 5.81)
Cs2: model constant (Eq. 5.81)
Cij: Coriolis term (Eq. 2.13)
Cuz : constant (Eq. 7.18)
Cuφ : constant (Eq. 7.19)
C2uz : constant (Eq. 7.26)
C2uφ : constant (Eq. 7.27)
CW : model constant (Eq. 3.39)
Cε: 1/σε = model constant (Eq. 5.79)
Cε1: model constant (Eq. 3.18)
Cε2: model constant (Eq. 3.18)
Cε3: model constant (Eq. 5.64)
Cε4: model constant (Eq. 5.67)
CεΩ: model constant (Eq. 5.61)
Cµ: model constant (Eq. 3.19)
C ′
µ: model constant (Eq. 3.11)

C∗
µ: model constant (Eq. 7.48)

C∗∗
µ : model constant (Eq. 7.49)

C??
µ : model constant (Eq. 7.58)

D: universal parameter in the exponential velocity law (Eq. 6.5)
Dij: diffusion term (Eq. 2.13)
E: universal parameter in the exponential velocity law (Eq. 6.6)
E(κ): energy (Eq. 3.147)
F : determinant of the normalized Reynolds stress tensor (Eq. 3.101)
F (ψ): free function in ψ (Eq. 4.41)
G(λ): terms of the non-linear model for the rapid pressure strain correlation

(Eq. 3.35)
Gλ: coefficients in stress-stain relationship (Eq. 3.23)
G(ψ): free function in ψ (Eq. 4.41)
Iλ: scalar invariants (Eq. 3.25)
K: turbulent kinetic energy (Eq. 2.32)
K: constitutive dependent variables in the thermodynamic consistency

principle (Eq. 3.121)
Ki: flux vector of the turbulent kinetic energy (Eq. 3.111)
Miqpj: forth rank tensor to model the rapid pressure strain correlation (Eq. 3.31)
Nijpq: forth rank tensor to model Bijpqkl (Eq. 3.58)
Pij: production tensor (Eq. 2.13)
P : production term (Eq. 7.43)
Qi: turbulent heat flux vector (Eq. 3.111)
R: pipe radius (below Eq. 7.20)
ReT : turbulent Reynolds number (Eq. 3.6)
Reκ local Reynolds number (Eq. 3.150)
Ri Richardson number (Eq. 7.2)
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Ri{2}: two-point correlation tensor (Eq. 2.21)
Ri{n+1}: multi-point correlation tensor (Eq. 2.15)
Sκ: local strain-rate parameter (Eq. 3.149)
S: shear tensor (Eq. 3.21)
S∗: nondimensional shear tensor (Eq. 3.21)
Tij: Cauchy stress tensor (Eq. 3.111)
T λ: tensor basis (Eq. 3.25)
VM ,VT : constitutive independent variables in the thermodynamic

consistency principle (Eq. 3.122)
W : rotation tensor (Eq. 3.22)
W ∗: nondimensional rotation tensor (Eq. 3.22)
X(p): operator in the scope of symmetry methods (Eq. 4.11)
Ypq: structure tensor = one-point tensors, determined by the energy-containing

eddies (see e.g. Kassinos & Reynolds, 1994) (above Eq. 3.33)

Lower-case Roman

a: arbitrary constant (Eq. 4.45)
a: Reynolds stress anisotropy tensor (Eq. 5.74)
a: constant rotation matrix (Eq. 4.25)
a∗: nondimensional Reynolds stress anisotropy tensor (Eq. 3.20)
ai: group parameter (Eq. 5.16)
b: constant (Eq. 3.134)
b1: group parameter (Eq. 7.17)
b: half of the Reynolds stress anisotropy tensor = a/2 (Eq. 5.79)
eij: dissipation rate anisotropy (Eq. 3.78)
eikl: permutation tensor (Eq. 2.2)
eα: measure of the total strain rates along the principle axes (above Eq. 3.160)
f̄i: source term of momentum (Eq. 3.113)
h: source term of energy (Eq. 3.113)
`: length-scale (Eq. 3.9)
`m: mixing length (Eq. 3.10)
`t: integral length-scale (Eq. 5.1)
m: combination of group parameter (Eq. 5.20)
n: decay exponent in grid turbulence (Eq. 3.91)
p: instantaneous pressure (Eq. 2.2)
p̄: mean pressure (Eq. 2.6)
p′: fluctualiting pressure (Eq. 2.6)
q: root mean square of the turbulent velocity field (above Eq. 3.151)
qi: scalar functions in the non-linear model by Sjögren & Johansson (2000)

(Eq. 3.36)
qi: heat flux vector (Eq. 3.111)
r: correlation length (Eq. 2.27)



NOMENCLATURE xxi

sTi , s
M
i : constitutive quantities to be determined for thermodynamic consistent

modelling (Eq. 3.117)
t0: combination of group parameter (Eq. 5.19)
u: instantaneous velocity (Eq. 2.1)
uw: bulk velocit (Eq. 7.23)
uw: wall velocit (Eq. 7.20)
ū: mean velocity (Eq. 2.5)
u′: fluctuality velocity (Eq. 2.5)
ū0(x1): characteristic velocity scale (Eq. 3.6)
ū10 : constant streamwise velocity (Eq. 3.89)
ūc: centerline velocity (7.20)
ūτ : friction velocity (Eq. 3.95)

u′iu
′
j: Reynolds stress tensor (Eq. 2.12)

x0: combination of group parameter (Eq. 5.19)

Upper-case Greek

∆: Clauser-Rotta length-scale (above Eq. 6.4)
Θ: absolute temperature (Eq. 3.109)
Λ: Lagrange parameter (Eq. 3.119)
Ω: rotation rate (Eq. 2.2)

Lower-case Greek

α: constant (Eq. 3.143)
αk2 : constant (Eq. 3.143)
αi: constants in the model for the slow pressure strain correlation (Eq. 3.41)
αMi , α

T
p : coefficients in the symbolically written thermodynamic inequality (Eq. 3.126)

β: constant (Eq. 4.44)
β, βM : coefficients in the symbolically written thermodynamic inequality (Eq. 3.126)
γ1: constant (Eq. 4.44)
γ2: constant (Eq. 4.44)
δ∗: displacement thickness (Eq. 6.4)
δij: Kronecker-symbol (Eq. 3.5)
δ(x1): characteristic length-scale (Eq. 3.6)
εij: dissipation tensor (Eq. 2.13)
ε: dissipation term (Eq. 3.12)
ε: arbitary continous parameter in the scope of Lie group methods (Eq. 4.5)
ζ: constant (Eq. 7.22)
η: entropy (Eq. 3.109)
η: infinitesimal in the scope of symmetry methods (Eq. 4.7)
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η: normalized wall normal coordinate in the exponential velocity law = x2/∆
(Eq. 6.4)

ηK : Kolmogorov length-scale (Eq. 5.2)
ϑM , ϑT : material and turbulent coldness variables = 1/ΘM resp. 1/ΘT (Eq. 3.114)
κ: von Karmann constant ≈ 0.38...0.43 (Eq. 3.10)
κ: heat conductivity (Eq. 3.111)
κi: wave vector in sprectral representation (Eq. 3.146)
λ: constant (Eq. 7.28)
λi: unit vector ( above Eq. 3.66)
µ: viscosity (Eq. 3.111)
ν: kinematic viscosity (Eq. 2.2)
νt: eddy viscosity (Eq. 3.1)
ξ: infinitesimal in the scope of symmetry methods (Eq. 4.7)
π̄entr: entropy production (Eq. 3.112)
ρ: density (Eq. 2.2)
σ: model constants (Eq. 6.7)
σK : model constant (Eq. 3.17)
σε: model constant (Eq. 3.18)
σentr: source term of entropy (Eq. 3.109)
τ : time-scale (Eq. 2.8)
τw: wall shear stress (below Eq. 7.20)
φij: pressure strain correlation (Eq. 2.13)

φ̂ij: spectral tensor (above Eq. 3.161)
ϕentri : entropy flux (Eq. 3.109)
χ: function of the velocity ratio ūw/uτ in the axial velocity defect law for the

fully developed rotating pipe flow (Eq. 7.20)
ψ: two-dimensional stream function (Eq. 4.22)
ψ: exponent in the algebraic law for the axial and azimuthal velocity

components in the rotating pipe flow (Eq. 7.20)
ψM , ψT : Helmholtz free energy function (Eq. 3.118)
ω: constant (Eq. 7.28)
ωi: vorticity (Eq. 3.155)
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Abbreviations

The following abbreviations are used in the text.

bc: boundary condition
dns: direct numerical simulation
drsm: differential Reynolds stress model
earsm: explicit algebraic Reynolds stress model
evm: eddy viscosity model
kth: Kungliga Tekniska Högskolan

(Royal Institute of Technology, Stockholm, Sweden)
LaWiKa: Laminarer Wind Kanal (laminar wind tunnel

of the Hermann-Föttinger-Institute, Berlin, Germany)
les: large-eddy simulation
lrr: turbulence model by Launder et al. (1975)
mpc: multi-point correlation
nls term: non-linear scrambling term
ode: ordinary differential equation
pde: partial differential equation
pmlm: Prandtl’s mixing-length model
rdt: rapid distortion theory
rstm: Reynolds stress transport model
ssg: turbulence model by Speziale et al. (1991)
tp: two-point
tpc: two-point correlation
zpg: zero-pressure gradient
2dmfi: 2D material frame indifference
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1 Introduction

Many parts of our day-to-day life as for example the weather, many technical applications
and functions in our body are significantly characterized by turbulence. The comprehen-
sion of turbulence is therefore of fundamental interest from climatological as well as from
technical aspects where turbulence is sometimes desirable and sometimes not, depend-
ing on the application. Especially flows with rotation and strong streamline curvature
represent a cornerstone problem in the field of turbulence research. These flows play an
important role in engineering applications as for example turbomachinery or aeronautics
and are thus frequently used as test cases for all kinds of turbulence model.

But what is turbulence or better, how is it defined?
There occurs actually no clear-cut separation between laminar and turbulent flows. A very
general definition is that the streamlines of laminar flows lie parallel to each other, while
the streamlines of turbulent flows cross each other. Turbulent flows are characterized by
the following attributes (Rotta, 1972):

• Turbulence is unsteady.

• Turbulence is rotational.

• Turbulence is three-dimensional.

• Turbulence is stochastic, i.e. an instantaneous velocity field may be considered as
random realization of flow and cannot be experimentally reproduced.

• Turbulence is diffusive, i.e. has good mixing properties compared to laminar flows.

• Turbulence is dissipative, i.e. the energy of the large-scale velocity fluctuations is
transferred to small-scale motion and finally dissipated to heat.

Using a so called direct numerical simulation (dns) it is in principle possible to integrate
the Navier-Stokes equations numerically, which are the governing equations of fluid me-
chanics. However since the smallest length- and time-scale has to be resolved to do so,
the computational effort becomes enormous. Thus a dns is just viable for very simple
geometries and flows with very small Reynolds numbers. On the other hand performing
experiments of turbulent flows bears an enormous amount of time and money.
Therefore the calculability of turbulence is based on heuristic assumptions leading to the
turbulence model.
Since for most engineering applications only the averaged flow quantities are of interest
the turbulence models discussed in this thesis are all based on the Reynolds averaging
procedure, meaning that the instantaneous velocity field is decomposed into a mean and
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a fluctuating part (see section 2.2).
There are also other approaches as the large eddy simulation (les) which are not further
discussed here.
Introducing the Reynolds decomposition into the Navier-Stokes equations and averag-
ing gives statistical second order moments, the so called Reynolds stresses, which usually
dominate over the viscous stresses in turbulent flows. The Reynolds stresses are not known
and therefore the received system of equations is not closed anymore. Attempting to close
this system by introducing new transport-equations for the unknown terms yields further
unknown correlations of the unresolved fluctuations. This procedure has theoretically to
be continued ad infinitum. This so called Reynolds closure problem, has been posed by
Reynolds (1895). Since then some of the world’s most famous scientists including Heisen-
berg, Kolmogorov, Landau, von Neumann, and von Weizsäcker investigated this problem.
More than 100 years later the turbulence problem itself has still remained an unsolved
grand challenge problem of classical physics. Although many aspects of turbulence are
more or less phenomenologically understood including its origin, its decay and its in-
teraction with walls and laminar flow regions, a general quantitative Reynolds closure
approximation has not been proposed so far.

A solution of the closure problem can just be received by truncating the procedure of
introducing transport-equations for the unclosed correlations and introducing empirical
modeling approaches.
There exist a couple of modeling approaches to model turbulence properly (see chap-
ter 3). For engineering applications the most widely used models are the eddy viscosity
models (evm). These models are based on the Boussinesq hypothesis (Boussinesq, 1877),
which implies that the Reynolds stress anisotropy is proportional to the mean strain
rate tensor. The factor of proportionality is thereby the so called eddy viscosity which
depends on the state of turbulence and must be determined by the turbulence model.
evms are in equal measure numerically efficient and have a good accuracy of forecast.
Shortcomings of these models appear if more complex flows, as flows with separation,
rotation or strong streamline curvature are modeled. An improvement for these flows is
received if a transport-equation for the Reynolds stresses is introduced. Models incorpo-
rating this transport-equation are called Reynolds stress models (rstm) or differential
Reynolds stress models (drsm). In the Reynolds stress equation the diffusion, dissipation
and pressure strain rate tensor are dependent on unknown correlations and thus need to
be modeled in terms of the relevant quantities. drsms give for complex flows usually more
accurate results than evms at the cost of computating time. An intermediate level of mod-
eling between evms and drsms is the explicit algebraic Reynolds stress model (earsm).
In this approach one considers the transport-equation of the Reynolds stress anisotropy
aij and neglects the advection and diffusion of aij due to the weak equilibrium assumption.
The received algebraic equation is then solved explicitly under the assumption that aij
only depends on the mean velocity gradients. In addition to the relation between aij and
the mean velocity gradient the turbulent time-scale and turbulent kinetic energy have to
be determined. This is usually done using a standard two-equation evm. The earsms
have the advantage of similar low computational costs as evm but performing better in
more complex flows, since they are based on the transport-equation for aij.
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The model constants in the turbulence models are usually calibrated using classical flow
cases as for example homogeneous shear-flows, the decay of grid-turbulence or near-wall
turbulence (see section 3.5). For these flow cases exact solutions can be derived which are
then fitted to experimental and numerical data.

Guidelines for a systematic development of turbulence models are given by formulating
modeling principles (see section 3.6). Among these are the realizability principle, the
thermodynamic consistency, the rapid distortion theory (rdt) and last but not least the
symmetry methods.

Symmetry methods are a well known methodology to derive exact solutions of non-linear
differential equations. Although this method has already been developed in the second
half of the last century by Sophus Lie, it needed many decades until it was first used to
systematically derive solutions of the Navier-Stokes equations. Till now the symmetries
of the Navier-Stokes equations are more or less heuristically incorporated into the model
equations. The invariance of the model with respect to a rotation of the coordinate system
is for example received if the model is formulated tensorially correct. Also the scalings of
space and time are admitted by nearly all Reynolds stress models. Though it is desirable
to employ symmetry methods more systematically for the development, improvement or
calibration of turbulence models.

The given thesis therefore deals with the use of symmetry methods in the scope of tur-
bulence modeling.
First of all the incompressible stationary axisymmetric Euler equations with swirl, for
which an equivalent representation, the Bragg-Hawthorne equation can be derived via
a scalar stream function has been investigated (see chapter 4). Thereby the symmetry
properties of the Bragg-Hawthorne equation have been compared with the symmetry
properties of the incompressible stationary axisymmetric Euler equations.
For the analysis of turbulence models three different flow cases have been investigated
using symmetry methods. These are the shear-free turbulent diffusion; with and without
rotation and with a constant integral length-scale (chapter 5), the zero-pressure gradient
(zpg) turbulent boundary layer flow (chapter 6), and as an example for rotating flows,
the fully developed rotating turbulent pipe flow (chapter 7).
The solutions derived from symmetry methods can be used to derive conditions for the
model constants under which a proper modeling of the given flow cases is received.
The symmetry properties of the two- and multi-point correlation equations are further-
more compared with the symmetry properties of the investigated turbulence models.
Thereby it has been investigated if the model equations admit all symmetries and in-
variant solutions which are admitted by the two- and multi-point correlation equations.
Furthermore it has been checked if there are any unphysical symmetries admitted by
the model equations, which are not admitted by the two- and multi-point correlation
equations. The course of action is outlined in figure 1.

The thesis is organized as follows:
In chapter 2 the governing equations, which are the Euler and Navier-Stokes equations
(section 2.1), the Reynolds averaged Navier-Stokes equations (section 2.2), and the multi-
and two-point correlation equation (section 2.3) are given. Chapter 3 gives a short sum-
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mary of the most common turbulence modeling concepts as well as an survey of how the
modeling constants are usually calibrated (section 3.5). In section 3.6 the four most im-
portant modeling principles which are nowadays used for the development, investigation
and improvement of turbulence models are described shortly. A brief introduction into
symmetry methods is given in chapter 4, followed by a summary of the symmetries of the
Euler and Navier-Stokes (section 4.2) and a symmetry analysis of the Bragg-Hawthorne
equation (section 4.3). In the chapters 5, 6 and 7 the flow cases shear-free turbulent
diffusion, the zpg turbulent boundary layer flow and the fully developed rotating turbu-
lent pipe flow have been investigated using symmetry methods. The results are finally
summarized in chapter 8 and relevant conclusions are drawn.
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Figure 1.1: Course of action of the use of symmetry methods in the scope of turbulence
modeling
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2 Governing Equations

2.1 Euler and Navier-Stokes equations

The Navier-Stokes equations are the fundamental partial differential equations describing
the flow of incompressible, Newtonsche fluids. The assumption of incompressibility implies
that the Mach number is low and the temperature variations negligible. The Navier-Stokes
equations correspond to the Euler equations for inviscid flows, that is ν = 0. In cartesian
tensor notation the continuity equation reads:

∂uk
∂xk

= 0 (2.1)

and the momentum equation is

Dui
Dt

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xk∂xk

− 2Ωkeiklul (2.2)

with
D

Dt
=

∂

∂t
+ uk

∂

∂xk
(2.3)

whereby the Einstein summation convention applies for the double Latin indices. In (2.1)
and (2.2) t is the time, x the position vector, u the instantaneous velocity vector, p the
pressure, ρ the density and ν the kinematic viscosity. eikl is an antisymmetric tensor of
third rank, which is denoted permutation tensor. The permutation tensor has the following
properties:

eikl =





1 : if the arguments are an even permutation,
−1 : if the arguments are an odd permutation,
0 : if two or more arguments are equal.

(2.4)

When combined with the continuity equation of fluid flow, the Navier-Stokes equations
yield four equations in four unknowns (namely the scalar pressure and the three velocity
components). Thus the system of equations (2.1) and (2.2) is closed and a plan to attack
the turbulence problem can be worked out relying entirely on the application of powerful
numerical techniques, provided that the initial conditions are random and the boundary
conditions are periodic along the faces of the computational flow domain. However, a
specification of the initial and boundary conditions for turbulence can not be considered
as definitive, so that the matter has not yet been fully resolved. Therefore, except for de-
generate cases in very simple geometries, these equations cannot be solved exactly, so that
approximations are commonly made to allow the equations to be solved approximately
(see chapter 3).
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In chapter 7 of the given thesis the fully developed rotating turbulent pipe flow is investi-
gated. Since rotating flows generally play a very important role in engineering applications,
the Navier-Stokes equations in a rotating frame have been written down in appendix A.

2.2 Reynolds averaged Navier-Stokes Equations

For engineering applications as well as for the statistical description of turbulence the in-
stantaneous pressure and velocity field is mostly of minor interest. The attention is more
focused on the mean values for the pressure and the velocities. Therefore the instanta-
neous quantities are split into a mean and a fluctuating part according to the Reynolds
decomposition (Reynolds, 1895). The velocity and pressure can therefore be written as:

time

velocity

steady flow

unsteady flow

u = u + u

Figure 2.1: Statistic approach of turbulence

u = ū+ u′, (2.5)

p = p̄+ p′. (2.6)

The quantities marked with the bar denote thereby the mean quantities. The average
value is generally build by an ensemble averaging:

ū = lim
N→∞

(
1

N

N∑

n=1

un

)
, p̄ = lim

N→∞

(
1

N

N∑

n=1

pn

)
. (2.7)

For statistically stationary flows it is also possible to use a time average:

ū = lim
τ→∞

1

τ

∫ t+ τ
2

t− τ
2

u dt , p̄ = lim
τ→∞

1

τ

∫ t+ τ
2

t− τ
2

p dt. (2.8)
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If the flow is homogeneous in one or more directions, the further possibility exists to
average over one of the homogeneous directions.

There are a couple of calculation rules which have to be followed for the derivation of the
Reynolds averaged Navier-Stokes equations:

u′ = 0,

u = u,

u1 + u2 = u1 + u2,

∂u

∂s
=
∂u

∂s
,

∫
uds =

∫
uds,

u(1)u(2) . . . u(m)u′(n) = 0,

u′(1)u
′
(2) . . . u

′
(k) 6= 0.

(2.9)

Introducing the Reynolds decomposition into (2.1) and (2.2) and averaging gives the
Reynolds averaged continuity

∂ūk
∂xk

= 0 (2.10)

and momentum equation

D̄ūi
D̄t

= − ∂p̄

∂xi
+ ν

∂2ūi
∂xk∂xk

− ∂u′iu
′
k

∂xk
− 2Ωkeiklūl. (2.11)

Due to the averaging of the advection term in the Reynolds averaged momentum equation
the symmetrical tensor u′iu

′
k appears, which is also called Reynolds stress tensor:

u′iu
′
k =




u′1u
′
1 u′1u

′
2 u′1u

′
3

u′1u
′
2 u′2u

′
2 u′2u

′
3

u′1u
′
3 u′2u

′
3 u′3u

′
3


 . (2.12)

The trace of the Reynolds stress tensor is twice the kinetic energy of turbulent motion.
This tensor emphasizes turbulent exchange of the momentum due to the fluctuating mo-
tion. The six components of the Reynolds stress tensor are not known and therefore the
system of equations (2.10) to (2.11) is unclosed. It is then possible to derive an exact
equation for the Reynolds stress tensor, which is given by:

∂u′iu
′
j

∂t
+ ūk

∂u′iu
′
j

∂xk
= −u′iu′k

∂ūj
∂xk
− u′ju′k

∂ūi
∂xk︸ ︷︷ ︸

Pij

−2 ν ∂u
′
i

∂xk

∂u′j
∂xk︸ ︷︷ ︸

εij

+
p′

ρ

(
∂u′i
∂xj

+
∂u′j
∂xi

)

︸ ︷︷ ︸
φij

(2.13)

+
∂

∂xk

(
− u′iu′ju′k + ν

∂u′iu
′
j

∂xk
− p′

ρ
(δkju′i + δkiu′j)

)

︸ ︷︷ ︸
Dij

− 2Ωk[ekliu′ju
′
l + eklju′iu

′
l]︸ ︷︷ ︸

Cij

.
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Thereby Pij designates the rate of energy production. Note, that the negative sign is in-
cluded in the definition of Pij. This term represents the rate at which energy is transferred
from the mean flow to turbulent fluctuations. In most cases turbulent energy is generated
from mean shear.

The dissipation term (εij) has a negative sign and represents dissipation of turbulent
kinetic energy by the action of viscosity. One half of the trace of εij is usually denoted as
ε, which is the rate of transition of turbulent kinetic energy to heat. The components of
εij permit each component of the Reynolds stress tensor to dissipate at a different rate.

The redistribution term, also called pressure strain correlation term φij is responsible for

the shifting of variance between components of the Reynolds stress tensor u′iu
′
j without

altering the total energy K = (1/2)u′ku
′
k. The qualitative effect of redistribution is usu-

ally to shift energy from the larger components of the Reynolds stress tensor into the
smaller components to make turbulence more isotropic. The redistribution term has no
contribution in the equation for the turbulent kinetic energy, since its trace vanishes:

φii =
p′

ρ

(
∂u′i
∂xi

+
∂u′i
∂xi

)
= 0. (2.14)

Dij is the diffusion or transport term. This term transports energy, respectively the
Reynolds stresses, in space without creating or destroying it. It drives the spatial distribu-
tion to uniformity. The diffusion term consists of three terms, the turbulent diffusion, the
pressure diffusion and the molecular diffusion. The molecular diffusion can be neglected
for high Reynolds numbers.

The Coriolis term Cij appears if the equations are considered in a rotating frame. It
contains the rotation rate Ω, giving the number of rotations per time.

From the given terms the dissipation, pressure strain correlation and turbulent and pres-
sure diffusion term are unknown, leading to an unclosed system of equations. Therefore
further equations are essential, which, contain new unknown terms. Herein lies the central
obstacle of the entire turbulence theory, known as the closure problem. A solution of the
equation is therefore reliant on hypotheses and estimations, based on numerical and ex-
perimental data. These equations compose a turbulence model which closes the Reynolds
equations approximately.

2.3 Multi- and two-point correlation equations

The motion of any point in a turbulent flow affects the motion at other distant points
through the pressure field. Therefore an adequate description cannot be obtained by con-
sidering only mean values associated with single fluid particles. For a proper description
of a turbulent flow it is essential to consider two or more flow particles at two or more
positions. On account of this the multi-point correlation (mpc) equations have been intro-
duced, providing length-scale information on turbulent flows. The multi-point correlation
equations can be used for studying the spatial configuration of the flow field.
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The mpc is believed to properly model the statistical quantities of turbulence at all scales.
In order to write the mpc equations in a compact form we introduce the definition

Ri{n+1} = Ri(0)i(1)...i(n) = u′i(0)(x(0)) · . . . · u′i(n)(x(n)) (2.15)

at n + 1 points where u′i(k) denotes velocity fluctuation about the mean velocity ūi(k) at

the point x(k).

With this definition at hand it is straight forward to derive the mpc equations from the
Navier-Stokes equations (see Oberlack, 2000a)

Θi{n+1} =
∂Ri{n+1}

∂t
+

n∑

l=0

[
ūk(l)(x(l))

∂Ri{n+1}

∂xk(l)
+Ri{n+1}[i(l) 7→k(l)]

∂ūi(l)(x(l))

∂xk(l)

+
∂Pi{n}[l]

∂xi(l)
− ν

∂2Ri{n+1}

∂xk(l)∂xk(l)
−Ri{n}[i(l) 7→∅]

∂u′i(l)u
′
k(l)

(x(l))

∂xk(l)

+
∂Ri{n+2}[i(n+1) 7→k(l)][x(n+1) 7→ x(l)]

∂xk(l)
+ 2Ωkei(l)kmRi{n+1}[i(l) 7→m]

]
= 0

for n = 1, . . . ,∞ .

(2.16)

by employing the additional definitions

Ri{n+1}[i(l) 7→k(l)] =

u′i(0)(x(0)) · . . . · u′i(l−1)
(x(l−1))u′k(l)(x(l))u′i(l+1)

(x(l+1)) · . . . · u′i(n)(x(n)), (2.17)

Ri{n+2}[i(n+1) 7→k(l)][x(n+1) 7→ x(l)] = u′i(0)(x(0)) · . . . · u′i(n)(x(n))u′k(l)(x(l)), (2.18)

Ri{n}[i(l) 7→∅] = u′i(0)(x(0)) · . . . · u′i(l−1)
(x(l−1))u′i(l+1)

(x(l+1)) · . . . · u′i(n)(x(n)) (2.19)

and

Pi{n}[l] = u′i(0)(x(0)) · . . . · u′i(l−1)
(x(l−1))p′(x(l))u′i(l+1)

(x(l+1)) · . . . · u′i(n)(x(n)). (2.20)

The notation in square brackets denotes the replacement of certain variables or indices
with some other quantities standing on the right hand side of the arrow. Each Θ-equation
of the tensor order n + 1 only contains one unclosed term of the order n + 2. For any of
the remaining terms such as Pi{n}[l] exact equations may be derived from the continuity
equation or the Poisson equation for the pressure (see e.g. Oberlack, 2000a).

The two-point correlation tensor admits two additional identities, namely

lim
x(k)→x(l)

Ri{2} = lim
x(k)→x(l)

Ri(0)i(1) = u′i(0)u
′
i(1)

(x(l)) with k 6= l , (2.21)

where x(k) and x(l) may be an arbitrary position vector taken from x(0), . . . , x(n) and the
null identity

Ri{1}[i(l) 7→∅] = 0. (2.22)
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The latter is derived from the fact that the average of a single fluctuating velocity is zero.

From the continuity equation we also derive the following two sets of equations, which
have to be employed as additional kinematic constrains

∂Ri{n+1}[i(l) 7→k(l)]

∂xk(l)
= 0 for l = 0, . . . , n (2.23)

and
∂Pi{n}[k][i(l) 7→m(l)]

∂xm(l)

= 0 for k, l = 0, . . . , n and k 6= l. (2.24)

For simplicity we will proceed with the two-point correlation (tpc) equations which have
similar structure as the full set of mpc equations. In particular, they have the same
symmetry properties. In order to simplify notation we introduce the short form

Ri{2} = Rii(1) = Rij. (2.25)

For the derivation of the tpc equations the transport-equation for the turbulent fluctu-
ating velocities at the point x is multiplied with the fluctuating velocity at the point x1

and vice versa. If the resulting equations are added together we receive (see e.g. Rotta,
1972)

Θi{2} =
D̄Rij

D̄t
+Rkj

∂ūi(x, t)

∂xk
+Rik

∂ūj(x, t)

∂xk

∣∣∣∣
x+r

+ [ūk (x+ r, t)− ūk (x, t)]
∂Rij

∂rk
+
∂p′u′j
∂xi

−
∂p′u′j
∂ri

+
∂u′ip

′

∂rj

− ν
[
∂2Rij

∂xk∂xk
− 2

∂2Rij

∂xk∂rk
+ 2

∂2Rij

∂rk∂rk

]

+
∂R(ik)j

∂xk
− ∂

∂rk

[
R(ik)j −Ri(jk)

]
+ 2Ωk [ekliRlj + ekljRil] = 0,

(2.26)

where the difference between two-points has been introduced according to

x = x(0) , r = x(1) − x(0). (2.27)

The vectors p′u′j and u
′
ip

′ are special cases of Pi{n}[k] defined according to

p′u′j(x, r, t) = p′(x(0), t)u′j(x(1), t), u′ip
′(x, r, t) = u′i(x(0), t) p′(x(1), t), (2.28)

while R(ik)j and Ri(jk) are respectively defined as

R(ik)j = u′i(x, t)u
′
k(x, t)u

′
j(x

(1), t) , Ri(jk) = u′i(x, t)u
′
j(x

(1), t)u′k(x
(1), t). (2.29)

For the tp case the continuity equations (2.23) and (2.24) simplify to

∂Rij

∂xi
− ∂Rij

∂ri
= 0 ,

∂Rij

∂rj
= 0,

∂p′u′i
∂ri

= 0 ,
∂u′jp

′

∂xj
−
∂u′jp

′

∂rj
= 0. (2.30)
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The autocorrelation tensor is defined as

Rii(x, r, t) = u′i(x, t)u
′
i(x

(1), t) (2.31)

and the turbulent kinetic energy is simply one half of Rii with zero displacement:

K(x, t) = u′i(x, t)u
′
i(x, t). (2.32)

Thus the tpc tensor converges to the Reynolds stress tensor for zero displacement. In
contradiction to the Reynolds stress tensor the tpc tensor is non-symmetric since

Rij(x, r, t) = Rji(x+ r,−r, t). (2.33)

The tpc equations have, compared to the Reynolds stress equations, less unknown terms
(namely only the triple correlation) at the expense of usually three additional dimensions.

Further properties of the tpc tensor are that it obeys the Schwarz’s inequality

|Rij(x, r, t)| 6
(
u
′2
i (x, t)u

′2
j (x

(1), t)
)1/2

(2.34)

and that the velocities u′i and u
′
j are statistically independent for r →∞:

lim
|r|→∞

Rij(x, r, t) = 0. (2.35)
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3 Turbulence models

Turbulence modeling is the often neglected, but a necessary result of all turbulence re-
search. It attempts to make judicious use of various assumptions about the nature of
turbulent flows to reduce the intractable Navier-Stokes equations to a simpler, more prac-
tical system of equations that can be used to predict the predominantly complex and
chaotic fluid behavior. Therefore the closure models may be suitable for one class of flows
or flow regions, while less applicable for other classes.

3.1 The eddy viscosity concept

1877 Boussinesq introduced the idea of the eddy viscosity concept, which is used by most
common turbulence models. In eddy viscosity models (evm), the unknown correlations
are assumed to be proportional to the spatial gradients of the quantity they are meant to
transport. The Reynolds stresses are thus determined from

−u′iu′j = νt

(
∂ūi
∂xj

+
∂ūj
∂xi

)
. (3.1)

The eddy viscosity νt is thereby not a fluid property but depends on the state of turbulence
and must be determined by the turbulence model. Thus the number of unknowns has been
reduced from the six unknown components of the Reynolds stress tensor to one, namely
the eddy viscosity.

The approach from Boussinesq has to be extended since the trace of the Reynolds stress
tensor has to be

Rii = (u′1u
′
1 + u′2u

′
2 + u′3u

′
3) = 2K (3.2)

but is

Rii = −u′iu′i = 2νt

(
∂ū1
∂x1

+
∂ū2
∂x2

+
∂ū3
∂x3

)
= 0. (3.3)

This request is fulfilled by the extended ansatz

−u′iu′j = νt

(
∂ūi
∂xj

+
∂ūj
∂xi

)
− 2

3
Kδij, (3.4)

whereby δij is the Kronecker-symbol, defined by

δij =




1 0 0
0 1 0
0 0 1


 . (3.5)
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The eddy viscosity can then be introduced into the Reynolds averaged Navier-Stokes
equations. The challenge of the turbulence model is thus to find appropriate approaches
for the eddy viscosity, which is variable in time and space. These models are called closure
models of first order, whereby models for the Reynolds stresses are called closure models
of second order.

The most simple models describe the eddy viscosity with constants, which are calibrated
with numerical or experimental data. These so called algebraic or zero-equation mod-
els give only sound results, if the turbulence is homogeneous in time and space. Higher
turbulence models of first order put more numerical effort in the determination of the
eddy viscosity. These models are distinguished by the number of additional differential
equation, having to be solved. They are therefore called zero-equation, one-equation or
two-equation models.

3.1.1 Zero-equation models

These models prescribe the eddy viscosity as an algebraic equation. They use no informa-
tion about the flow but geometry. As a result they cannot predict the dynamic relation-
ships between productive and dissipative areas within the flow. Zero-equation models can
be divided into two classes, which are the uniform or constant turbulent viscosity and the
mixing-length model.

Constant eddy viscosity

The constant eddy viscosity calculation method is not a proper turbulence model and has
little significance for hydrodynamic properties. Therefore it is presented here only very
briefly.

In this calculation method a constant eddy viscosity / diffusivity is assumed for the
whole flow field whose value is found from experiments either directly, from empirical
information, or by trial and error calculations to match the observations of the considered
problem. The constant eddy viscosity model is of very little accuracy and can only be
applied in the far field where the eddy viscosity varies very little. The assumption of a
constant eddy viscosity / diffusivity is sometimes somewhat alleviated and different values
are adopted for the horizontal and vertical diffusivities.

In application to a planar two-dimensional free shear-flow, the uniform turbulent viscosity
model can be written

νt(x1, x2) =
ū0(x1)δ(x1)

ReT
, (3.6)

where ū0(x1) and δ(x1) are the characteristic velocity and length-scale of the mean flow.
ReT can be interpreted as a turbulent Reynolds number and is therewith a flow dependent
constant. The flow varies in the mean flow direction but is constant in the normal direction
(x2-direction). This model can only be applied for very simple flows for which it is possible
to define the direction of flow, the characteristic length-scale δ(x1) and the characteristic
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velocity scale ū0(x1). Furthermore the model is incomplete since ReT has to be specified,
depending upon the nature of the flow and on the definitions chosen for ū0(x1) and δ(x1).
The constant eddy viscosity concept provides therefore a useful tool for a basic description
of the mean velocity profile of very simple flows but is not applicable for more complex
flows for which the eddy viscosity is not constant.

Mixing-length model

In Prandtl’s (1925) mixing-length model (pmlm), the effective viscosity is taken as being
proportional to the square of a quantity having the dimensions of a length that is the
so-called mixing-length `m, multiplied by the absolute value of the local velocity gradient.
Thus

νt = `2m

∣∣∣∣
∂ū1
∂x2

∣∣∣∣ (3.7)

and with (3.1)

−u′1u′2 = `2m

∣∣∣∣
∂ū1
∂x2

∣∣∣∣
∂ū1
∂x2

, (3.8)

with which we can designate the mixing-length `m from numerical or experimental data.
For near wall flows a good approximation for the mixing-length is

`m = κx2, (3.9)

which has been extended by van Driest (1956) to

`m = κx2(1− e(−y
+/A+)), (3.10)

with A+ between 25...26. κ is thereby the von Karmann constant lying between 0.38...0.43.
The ansatz from van Driest allows a much better fit for the turbulence statistics in a
boundary layer.
The mixing-length `m has to be specified as a function of position. In unbounded flows,
`m is in the order of 0.1 times the layer width. Close to a wall `m is in the order of 0.4
times the distance from the wall (unless modified in the manner of van Driest (3.10)). In
the immediate vicinity of the wall where viscous effects predominate, it diminishes more
rapidly.

Calculations based on the pmlm are easy to make, because no additional differential equa-
tion must be solved. In unbounded flows (for example jets, wakes, plumes), the variation
of the pmlm across the layer width is not large, so that velocity profiles can be fairly well
predicted. Although very close to a wall the pmlm is not useful, the processes occurring
there can often be handled adequately by use of an empirically-based ”wall function”. For
most boundary layer flows at least the order of magnitude of the mixing-length can be
guessed fairly well.
For flows with recirculation or those with non-planar walls, it is impossible to estimate
the distribution of mixing-length magnitudes with acceptable accuracy. The pmlm im-
plies that the local level of turbulence depends only on the local generation and dissipation
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rates. In reality though, turbulence may be carried or diffused to locations where no turbu-
lence is actually being generated at all. The pmlm cannot represent this. Furthermore this
model implies that the turbulent viscosity is always positive (as do one- and two-equation
models as well), while in reality it can change sign.

Although its erroneous predictions and non-generality, the mixing-length model has formed
the basis for other turbulence models, even recent ones. Modern eddy viscosity models
which are based on the mixing-length concept are for example the Cebeci-Smith (Cebeci
& Smith, 1974) and the Baldwin-Lomax model (Baldwin & Lomax, 1978). Both models
are two-layer models with νt given by separate expressions in each layer.
The accurate prediction of these models is however more contributed to the introduced ad
hoc (or empirical) functions and constants, rather than any additional physics included
in the models. Since the zero-equation models do not have any transport of turbulence,
they cannot be expected to accurately predict any flows with non-local mechanisms. Nu-
merical simulations with the zero-equation models are thus usually restricted to attached
boundary layer flows, which can be modeled using only local relations.

3.1.2 One-equation models

In order to avoid the local behavior of the mixing-length turbulence models, a transport-
equation is needed for some turbulent quantity. Here the turbulent kinetic energy K is
a reasonable choice to determine νt in the Boussinesq relation (3.4). There are also one-
equation models which solve a transport-equation for the eddy viscosity νt. These models
will be neglected in the following due to minor importance. As the energy K is contained
mainly in the large-scale fluctuations,

√
K is a velocity scale for the large-scale turbulent

motion. Using this scale in the eddy viscosity concept, the eddy viscosity can be written

νt = C ′
µ

√
K` (3.11)

where C ′
µ is an empirical constant. The lengt-scale ` has to be introduced for dimensional

reasons. This equation has been introduced by Kolmogorov (1942) and Prandtl (1945)
independently. For the determination of the turbulent kinetic energy a simplified form of
its exact transport-equation is used. Contracting the transport-equation for the Reynolds
stresses (2.13) by putting i = j and taking the half, gives the equation for the kinetic
energy of turbulence

D̄K

D̄t
= u′ku

′
l

∂ūk
∂xl
− ε+ ∂

∂xk

[
−p

′u′k
ρ
− u′ku

′
lu

′
l

2
+ ν

∂K

∂xk
+ ν

∂u′ku
′
l

∂xl

]
. (3.12)

In this equation the pressure strain term is not contained any more, showing the restric-
tions of models based on equation (3.12). The unclosed K-equation is of no use in a
turbulence model because new unknown correlations appear in the diffusion and dissipa-
tion terms. Therefore model assumptions have to be introduced for these terms to receive
a closed set of equations. Thereby Boussinesq’s ansatz (3.4) has been adopted for the
production term. The dissipation is usually modeled from dimensional arguments by the
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expression

ε = CD
K3/2

`
(3.13)

with CD as an empirical constant. For the diffusion term it is assumed that it depends on
the gradient of the turbulent kinetic energy K:

∂

∂xk

[
−p

′u′k
ρ
− u′ku

′
lu

′
l

2
+ ν

∂K

∂xk
+ ν

∂u′ku
′
l

∂xl

]
=

∂

∂xk

((
νt
σK

+ ν

)
∂K

∂xk

)
, (3.14)

where σK is a further empirical constant.

With these assumptions the K-equation reads

D̄K

D̄t
= νt

(
∂ūi
∂xj

+
∂ūj
∂xi

)
∂ūi
∂xj
− CD

K3/2

`
+

∂

∂xk

((
νt
σK

+ ν

)
∂K

∂xk

)
. (3.15)

The empirical constants in equation (3.15) are usually C ′
µ ≈ 0.8, CD ≈ 0.8 and σK ≈ 1.

The calculations with this model are based on information about the distribution of the
length-scale ` in the flow field. This information is mostly not available especially for
complex flows, leading to a very restricted application range for these models. Equation
(3.15) has to be solved simultaneously with the streamwise momentum equation and with
equations for other mean-flow variables which may be of interest.
One-equation models do not account for the transport of turbulence length-scale and
offer therefore only small advantages over the mixing-length model. Since one-equation
models account for convective and diffusive transport of the turbulent velocity scale they
are superior to the mixing-length hypothesis when this transport is important. These
flows are for example non-equilibrium boundary layers with rapidly changing free-stream
conditions, boundary layers with free-stream turbulence and heat transfer across planes
with ∂ū1/∂x2 = 0 and recirculating flows.

3.1.3 Two-equation models

Two-equation models have served as the basis for computing turbulent flows during the
last two decades. For all two-equation models, the starting point is the Boussinesq approx-
imation (3.1) and the turbulence kinetic energy equation (3.15). In two-equation models
a second equation, determining the turbulent length-scale has to be solved in addition
to the transport-equation for the turbulent kinetic energy. The length-scale equation not
necessarily needs to have the length-scale itself as dependent variable. Any dimensionally
correct combination of the turbulent kinetic energy and the length-scale

Z = Km`n (3.16)

suffice, because the kinetic energy K is already known from solving the K−equation
(3.15). For example there are a couple of models which solve an equation for the dissipation
rate ε ∼ K3/2/` (e.g. Chou, 1945; Davidov, 1961; Harlow & Nakayama, 1967; Jones &

Launder, 1972) , the frequency f ∼
√
K

1/2
/` (e.g. Kolmogorov, 1942) or the vorticity
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ω ∼ K/`2 (e.g. Spalding, 1971; Saffman, 1970). Rotta (1968) and Rodi & Spalding (1970)
introduced a transport-equation for K` and Rotta (1951) and Spalding (1967) introduced
an equation for the length-scale ` itself. Some of the equations were derived first in exact
form by manipulation of the Navier-Stokes equations and then were turned into a tractable
form by model assumptions, while others were conceived heuristically. It is possible to
transfer the transport-equations for the different turbulence quantities into each other.
Thereby all terms can be transferred exactly into each other besides the diffusion term.
Experience with the various equations has shown that this difference is unimportant in
free flows. Near walls though the gradient assumption for diffusion with a single constant
appears to work better for ε than for any other variable. The ε-equation does not require
a secondary source term while the equations for all other variables require a near-wall
correction term. Additionally the ε-equation can be derived relatively easily and ε appears
directly in the K-equation making the ε-equation become considerably more popular than
the other scale supplying equations.
Therefore in this thesis the discussions on two-equation models are presented in terms
of the K − ε model, which is by far the most popular two-equation model. The earliest
development efforts based on this model have been done by Chou (1945), Davidov (1961)
and Harlow & Nakayama (1968). The best known model is the one developed by Jones &
Launder (1972) which is therefore called standard K-ε model. In 1974 Launder & Sharma
modified the model’s closure coefficients. Nowadays most researchers use the coefficients
introduced by them.

The equations of the standard K-ε model are the one for the turbulent kinetic energy K

D̄K

D̄t
= νt

(
∂ūj
∂xk

+
∂ūk
∂xj

)
∂ūj
∂xk
− ε+ ∂

∂xj

[
νt
σK

∂K

∂xj

]
(3.17)

and the one for the dissipation of the turbulent kinetic energy, ε

D̄ε

D̄t
= Cε1

ε

K
νt

(
∂ūj
∂xk

+
∂ūk
∂xj

)
∂ūj
∂xk
− Cε2

ε2

K
+

∂

∂xj

[
νt
σε

∂ε

∂xj

]
, (3.18)

with

νt = Cµ
K2

ε
. (3.19)

Model constants are determined from experimental data invoking specific turbulent flows
(see section 3.5). For the K-ε model constants are given in table 3.1.

Cµ σK σε Cε1 Cε2
0.09 1.0 1.3 1.44 1.92

Table 3.1: Model constants of the K − ε model.
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3.1.4 Non-linear eddy viscosity models

Even though the eddy viscosity models have proven to work well in approximately parallel
shear-flows, there are a number of effects that can not be captured by these isotropic
eddy viscosity type of model. For example the normal stresses of a purely shearing flow
are predicted as equal although this is certainly not observed in experiments . Linear
isotropic eddy viscosity models are furthermore not capable to reproduce the flow features
appearing in rotating flows or flows with strong streamline curvature. These shortcomings
can be removed by a more general constitutive relation containing non-linear terms, as
demonstrated by Speziale (1987).

Following the work by Pope (1975) the principles for the derivation of more general
effective viscosity relationships between the Reynolds stress tensor and the mean velocity
gradient field will be shortly outlined. Non-linear eddy viscosity models are closely related
to explicit algebraic Reynolds stress models, which will be described in section 3.4.

The basic assumption behind a non-linear eddy viscosity model is that the Reynolds
stresses are uniquely related to the rates of strain, the rates of rotation and local scalar
quantities. The two scaling parameters K and ε are usually employed to normalize the
Reynolds stresses the rates of strain and the rates of rotation as follows:

aij =
u′iu

′
j

K
− 2

3
δij, (3.20)

S∗
ij =

1

2

K

ε
Sij =

1

2

K

ε

(
∂ūi
∂xj

+
∂ūj
∂xi

)
, (3.21)

W ∗
ij =

1

2

K

ε
Wij =

1

2

K

ε

(
∂ūi
∂xj
− ∂ūj
∂xi

+ ejikΩk

)
. (3.22)

The anisotropy tensor a and the shear tensor S∗ are non-dimensional symmetric tensors
with zero trace. The rotation tensor W ∗ is non-dimensional and antisymmetric. Owing
to the Cayley-Hamilton theorem, the number of independent invariants and linearly de-
pendent second order tensors that may be formed from the shear and rotation tensor is
finite. In general form the stress-strain relationship might be written in the closed tensor
polynomial:

a =
∑

λ

GλT
λ (3.23)

or rewritten to the unnormalized Reynolds stress

u′iu
′
j =

2

3
Kδij +K

∑

λ

GλT
λ
ij. (3.24)

Thereby the coefficients Gλ are functions of a finite number of invariants. In the general,
three-dimensional case there are ten tensors and five scalar invariants which have been
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identified by using the tensor invariant theory (see e.g. Spencer, 1971):

T ∗1 = S∗,

T ∗2 = S∗W ∗ −W ∗S∗,

T ∗3 = S∗2 − 1
3
δ{S∗2},

T ∗4 = W ∗2 − 1
3
δ{W ∗2},

T ∗5 = W ∗S∗2 − S∗2W ∗,

T ∗6 = W ∗2S∗ + S∗W ∗2 − 2
3
δ{S∗W ∗2},

T ∗7 = W ∗S∗W ∗2 −W ∗2S∗W ∗,

T ∗8 = S∗W ∗S∗2 − S∗2W ∗S∗,

T ∗9 = W ∗2S∗2 + S∗2W ∗2 − 2
3
δ{S∗2W ∗2},

T ∗10 = W ∗S∗2W ∗2 −W ∗2S∗2W ∗

and

I∗1 = {S∗2}, I∗2 = {W ∗2}, I∗3 = {S∗3}, I∗4 = {W ∗2S∗}, I∗5 = {W ∗2S∗2}, (3.25)

whereby {·} is the trace and the following abbreviated notations are used:

S∗W ∗ = S∗
ikW

∗
kj, S

∗W ∗S∗W ∗ = S∗
ikW

∗
klS

∗
lmW

∗
mj, etc.

S∗2 = S∗
ikS

∗
kj, {S∗2} = S∗

ikS
∗
ki, etc., I = δij.

(3.26)

The linear eddy viscosity model is received using only the first tensor T ∗1.

In order to complete the non-linear effective viscosity hypothesis, the unknown function
Gλ appearing in (3.23) have to be determined. This is done by calibrating the coefficients
against some chosen set of basic flows. Pope (1975) has determined the coefficients for the
two-dimensional case but this will not be outlined in the following since this solution is
of minor importance in connection with the given thesis. The equations given by (3.23)
has then to be solved together with the equations for the turbulent kinetic energy (3.17)
and the dissipation rate (3.18).
Non-linear viscosity models have been proposed by Yoshizawa (1984), Speziale (1987),
Rubinstein & Barton (1990), Craft et al. (1996) and others.

3.2 Differential Reynolds stress models

The next level of complexity in the hierarchy of turbulence models are models based
on the transport-equations of the Reynolds stress tensor (2.13) itself. In these models
the Reynolds stress is not coupled directly to the mean velocity gradient. Instead the
effect on the evolution of the Reynolds stress tensor in a flow field from the interaction
between turbulence and the mean field is modeled. The first model based on the Reynolds
stress transport-equation was developed by Rotta (1951) but the development of more
advanced models of this class is still ongoing. An advantage of Reynolds stress models
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(rstm) compared to eddy viscosity models is that the anisotropy of the turbulence is
preserved. Furthermore rstms are, contrary to two-equation models, for most flow cases
(one exception will be outlined in chapter (5)) sensitive to rotation due to the inclusion
of the Coriolis term in the equation. The six equations for the Reynolds stresses have to
be completed by a length-scale determining equation, usually the ε-equation.

The explicit form of the production tensor is

Pij = −u′ju′k
∂ūi
∂xk
− u′iu′k

∂ūj
∂xk

, (3.27)

which involves the dependent variable u′iu
′
j and the given flow gradients; hence it is a

closed term. The half trace of Pij is the production of turbulent kinetic energy. The terms
in (2.13) for which model approximations have to be found are the diffusion, dissipation
and pressure strain term.

3.2.1 Model approximation for the diffusion term

The quantitative contribution of the diffusion term in the transport-equation (2.13) is
usually of minor importance. The turbulent diffusion is composed of two parts. From
measurements it is known, that the pressure velocity correlation is small compared to the
triple correlation. The most simple model of the diffusion term is the model of Daly &
Harlow (1970) given by:

∂u′iu
′
ju

′
k

∂xk
− 1

ρ

(
∂u′jp

′

∂xi
+
∂u′ip

′

∂xj

)
+ ν

∂2u′iu
′
j

∂x2k
=

∂

∂xk

[(
νδkl + Cs

K

ε
u′ku

′
l

)
∂u′iu

′
j

∂xl

]
. (3.28)

Cs is thereby the model constant with the standard value Cs = 0.25, whereby Daly &
Harlow (1970) suggested 0.22.

3.2.2 Model approximation for the dissipation term

The viscous dissipation is characterized by the small scales for which the assumption of
an isotropic distribution is valid in contradiction to the larger scales. The dissipation can
thus be modeled by an isotropic ansatz

εij = 2ν
∂u′i
∂xk

∂u′j
∂xk

=
2

3
εδij. (3.29)

This ansatz is not valid in extreme situations where the Reynolds stress anisotropy is very
large and the turbulence is close to a two-component state. It is then favorable to lump
the dissipation rate together with the slow part of the pressure strain term.
The trace of the dissipation rate tensor equals twice the dissipation rate of the turbulent
kinetic energy.
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3.2.3 Model approximation for the pressure strain correlation

The pressure strain term has a purely redistributive effect among the components of the
Reynolds stress tensor. It does not appear in the transport-equation for the turbulent
kinetic energy, since the pressure strain term has zero trace.
The explicit appearance of the fluctuating pressure can be eliminated by taking the di-
vergence for the fluctuating velocity, thus obtaining the Poisson equation for the pressure

−1

ρ

∂2p′

∂xk∂xk
= 2

∂ūi
∂xj

∂u′j
∂xi

+
∂2u′iu

′
j

∂xi∂xj
−
∂2u′iu

′
j

∂xi∂xj
. (3.30)

Integration of the Poisson equation for the pressure gives the pressure strain correlation,
which can be divided into three parts. These are the rapid part, the slow part and the
harmonic part. The last part is only of importance in the near wall region and otherwise
negligible small compared to the other two parts. The rapid and the slow term of the
pressure strain correlation are usually modeled separately.

Rapid part of the pressure strain correlation

The rapid part of the pressure strain correlation describes the interaction between the
mean velocity field and the turbulence. It responds directly to changes in the mean flow
field. Solving the Poisson equation for the pressure (3.30) for homogeneous flows the rapid
pressure strain rate can be written in terms of a forth rank tensor:

φrapij = 4K
∂ūq
∂xp

(Miqpj +Mjqpi) (3.31)

in which

Miqpj = −
1

8πK

∫
∂2Rij

∂rp∂rq

dV

| r | , (3.32)

where Rij(r) is the two-point velocity correlation. The problem is now to model the forth
rank tensor Miqpj. This tensor has the following properties:

• Modeling assumption: Miqpj = f (δij, aij) .

• Symmetry condition: Miqpj =Miqjp, Miqpj =Mqipj .

• Continuity condition: Miqij = 0.

• Green’s condition: Miqpp =
1
2
aiq +

1
3
δiq.

• Miipq = Ypq; Ypq= structure tensor (Kassinos & Reynolds, 1994) .

• Miipp = 2K.
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A natural approach to model the rapid pressure strain correlation is to express Miqpj in
terms of the dimensionless Reynolds stress anisotropy tensor. The above given symmetry
conditions are satisfied by the linear expansion

Miqpj =A1δijδpq + A2(δipδjq + δiqδjp) + A3δijapq + A4aijδpq

+ A5(δipajq + δiqajp + δjqaip + δjpaiq).
(3.33)

Insertion of this ansatz into (3.31) and applying the continuity and Green’s condition
leads to the linear model of Launder et al. (1975):

φrapij =
4

5
KSij +

9C2 + 6

11
K(aikSjk + ajkSik −

2

3
aklSklδij)

+
−7C2 + 10

11
K(aikWjk + ajkWik)

(3.34)

where different values for the model constant C2, ranging from 0.4 to 0.56 have been
proposed.
A non-linear model for the rapid part of the pressure strain correlation has for example
been proposed by Johansson & Hallbäck (1994). Using the Cayley-Hamilton theorem the
most general form for the rapid part of the pressure strain correlation contains 15 terms
with non-linearity up to forth order, each multiplied by a function of scalar parameters
such as the invariants of aij. Using the symmetry, continuity and Green’s condition given
above the number of independent functions reduces to nine.
Thus any model for the rapid pressure strain rate can be expressed with the aid of the
following eight terms

G
(1)
ij = aij,

G
(2)
ij = Sij,

G
(3)
ij = aikSkj + Sikakj −

2

3
alkSklδij,

G
(4)
ij = aikWkj −Wikakj,

G
(5)
ij = aikakj −

1

3
alkaklδij,

G
(6)
ij = aikSklalj −

1

3
ankaklSlnδij,

G
(7)
ij = aikaklWlj −Wikaklalj,

G
(8)
ij = aikaklWlmamj − aikWklalmamj.

(3.35)

Sjögren & Johansson (2000) found that the nine independent functions appearing in the
M tensor expression reduce to six after insertion into the expression for the rapid pressure
strain. The most general model for the rapid part of the pressure strain correlation is thus:

φrapij

K
= (q1alkSkl + q9ankaklSln)G

(1)
ij + q2G

(2)
ij + q3G

(3)
ij + q4G

(4)
ij

+ (q5alkSkl + q10ankaklSln)G
(5)
ij + q6G

(6)
ij + q7G

(7)
ij + q8G

(8)
ij ,

(3.36)
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where only six of the scalar functions are independent

q2 =
4

5
− 1

10
(4q1 − 3q7) IIa −

2

5
q9IIIa,

q3 =
12

7
+

9

7
q4 −

1

7
(3q8 + 2q9) IIa −

2

7
q10IIIa,

q5 = q9,

q6 = 6q1 − 9q7 − q10IIa,

(3.37)

with IIa = aikaki and IIIa = ailalkaki.

Sjögren & Johansson (2000) introduced an extension of the rapid part of the pressure
strain correlation for an improved prediction of effects of rotation. The new term is
quadratic in W scaled with

√
−IIW =

√
−WijWji, so that it is linearly dependent on

the magnitude of the rotation

Nij =
1√
−IIW

(
aikWklWlj +WikWklalj −

2

3
IaWW δij

)
. (3.38)

The expression for the complete rapid pressure strain correlation is thus

φrapij = 4K
∂ūp
∂xq

(Miqpj +Mjqpi) + CWKNij, (3.39)

whereby the value for the model constant CW has be chosen as 0.5.

Slow part of the pressure strain correlation

The modeling of the slow part of the pressure strain correlation is based on the return-
to-isotropy concept. That means that the slow pressure strain term redistributes energy
among velocity components towards isotropy in the absence of external forcing. Rotta
(1951) was first to develop a model for the slow part of the pressure strain correlation.
Applying dimensional analysis and assuming that the pressure strain rate is proportional
to the deviation from isotropy he introduced the model

p′(s)

ρ

(
∂u′i
∂xj

+
∂u′j
∂xi

)
= −CR

K3/2

`

(
φslowij

K
− 2

3
δij

)
. (3.40)

A general form for the model for the slow part of the pressure strain correlation can be
derived by using the Cayley-Hamilton theorem. Thereby it is assumed that the slow part
of the pressure strain correlation is a function of the Reynolds stress anisotropy tensor,
which has the following properties:

• For isotropic flows: φslowij = 0⇒ aij = 0.

• Symmetry condition: φslowij = φslowji .



Differential Reynolds stress models 25

• Continuity condition: φslowkk = 0.

Applying the Cayley-Hamilton theorem the slow term is given by

φslowij = α1δij + α2aij + α3a
2
ij. (3.41)

(3.41) reduces with the conditions above mentioned to

φslowij = α2aij + α3

(
a2ij −

1

3
a2kkδij

)
. (3.42)

The most commonly used form for the slow redistribution is the Rotta model

φslowij = −C1εaij (3.43)

where C1 is known as the Rotta constant, usually assigned a value in the range 1.5− 1.8.

3.2.4 The Launder-Reece-Rodi model

A well known model, which is based on the transport-equations for the Reynolds stresses
is the Launder-Reece-Rodi (lrr) model (Launder et al., 1975). The full equations of the
lrr model are

D̄u′iu
′
j

D̄t
=−

[
u′ju

′
k

∂ūi
∂xk

+ u′iu
′
k

∂ūj
∂xk

]
− 2

3
δijε

− C1
ε

K

(
u′iu

′
j −

2

3
δijK

)
+ (φij + φji)2 + (φij + φji)w

+ Cs
∂

∂xk

[
K

ε

(
u′iu

′
l

∂u′ju
′
k

∂xl
+ u′ju

′
l

∂u′ku
′
i

∂xl
+ u′ku

′
l

∂u′iu
′
j

∂xl

)]
,

(3.44)

whereby the influence of the mean velocity gradient on the pressure strain correlation may
be expressed by

(φij + φji)2 =
C2 + 8

11
(Pij −

2

3
Pδij)−

30C2 − 2

55
K

(
∂ūi
∂xj

+
∂ūj
∂xi

)

8C2 − 2

11

(
Dij −

2

3
Pδij

)
,

(3.45)

with

Pij = −
(
u′iu

′
k

∂ūj
∂xk

+ u′ju
′
k

∂ūi
∂xk

)
, Dij = −

(
u′iu

′
k

∂ūk
∂xj

+ u′ju
′
k

∂ūk
∂xi

)
. (3.46)

In the given thesis the near-wall correction to the pressure strain correlation (φij + φji)w
is omitted since its contribution is usually negligible.

The transport-equation for ε takes the form

D̄ε

D̄t
= −Cε1

εu′iu
′
k

K

∂ūi
∂xk
− Cε2

ε2

K
+ Cε

∂

∂xk

(
K

ε
u′ku

′
l

∂ε

∂xl

)
. (3.47)

The lrr model constants are given in table 3.2.
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C1 C2 Cs Cε1 Cε2 Cε
1.5 0.4 0.11 1.44 1.9 0.15

Table 3.2: Model constants of the lrr model.

3.3 Generalization of the Reynolds stress concept

In today’s life several turbulence problems exist, where the effects of strong streamline
curvature or system rotation are strong. Reynolds stress transport closures and lower
level models seem to have some serious shortcomings concerning the modeling of such
flows. Therefore a new model based on the generalization of the Reynolds stress concept,
introduced by Johansson (2003) will be presented here. This new model contains more
of the turbulence dynamics associated with rotational effects at the cost of algebraic
complexity. Due to this complexity the present model seems to be more or less defective
for engineering applications. It is therefore the scope of the introduction of this model to
illustrate the modeling difficulties and limitations associated with rotational mean flows
and the levels of closure where the effects may be appropriately described.

Some difficulties classical Reynolds stress models have with the modeling of rotational
flows can be more easily identified if the rapid limit is considered. For this case only the
rapid pressure strain term needs to be modeled.

To improve the shortcomings of the classical Reynolds stress closures concerning rotational
effects one may take one step up in the hierarchy of modeling. Therefore Johansson (2003)
developed a new generalized single-point closure based on transport-equations for the M -
tensor. The derivation of this model is restricted to homogeneous, incompressible flows,
leaving spatial redistribution and other inhomogeneity effects outside the scope of the
present study.
Based on the work of Johansson the derivation and one application of this M -tensor
model will be outlined in the following. In a similar manner Oberlack (1995) derived a
general form of the model for the pressure strain correlation. Using rapid distortion theory
(rdt) he pointed out, that the two-point correlation equation can be solved exactly for
homogeneous turbulence with any arbitrary gradient of the mean velocity.

3.3.1 A new generalized single-point closure

Deriving transport-equations for the M -tensor, whereby the Reynolds stresses are left
without any need of modeling, a new model that provides physically more realistic pre-
diction of rotational effects has been developed by Johansson (2003).
A general forth rank tensor has 81 elements. To reduce the number of elements the in
section (3.2.3) mentioned properties of the M -tensor have been used. With the symme-
try conditions the number of elements for the M -tensor decreases to 36. The continuity
condition gives nine further equations, leaving 27 independent elements of the M -tensor.
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The transport-equation for the M-tensor

The transport-equation for the M -tensor can be written in the following general form:

DMijpq

Dt
= Pijpq + Φ

(r)
ijpq + Φ

(s)
ijpq − εijpq +Dijpq . (3.48)

In this equation all terms on the right hand side besides the production term Pijpq need
to be modeled. For Pijpq an exact expression in terms of the M -tensor can be derived.

To derive the exact equation for the M -tensor the rapid homogeneous limit is consid-
ered. Further a spectral representation with time-dependent wavenumbers is used. The
equations for the velocity fluctuations and the continuity equation then read

dû′i
dt

= −iκip̂− û′j
∂ūi
∂xj

(3.49)

κiû′i = 0 . (3.50)

Using
dκi
dt

+
∂ūj
∂xi

κj = 0 (3.51)

and the continuity equation (3.50) the pressure can be eliminated and the equation for
the fluctuating velocities (3.49) becomes

dû′i
dt

=
∂ūk
∂xm

[
2κiκk
κ2
− δik

]
ûm . (3.52)

Introducing the definition for the spectral tensor

φ̂ij = 〈û∗i ûj〉 , (3.53)

whereby the asterisk denotes the complex conjugate, its evolution equation can be derived
from (3.52):

dφ̂ij
dt

=
∂ūk
∂xm

(
2κnκk
κ2

− δnk
)(

δinφ̂mj + δjnφ̂im

)
. (3.54)

Since the M -tensor may be written in terms of spectral quantities as

Mijpq =

∫
κpκq
κ2

φ̂ijd~κ, (3.55)

its evolution equation can be received by multiplying (3.54) with (κpκq)/κ
2, making use

of (3.51) and integrating over the wavenumber space to

dMijpq

dt
=
∂ūk
∂xl

(−δqlMijkp − δplMijkp − δikMljpq − δjkMilpq

+2Bijpqkl + 2Bljpqki + 2Blipqkj) .

(3.56)
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Thereby the sixth rank B-tensor

Bijpqkl =

∫
κpκqκkκl

κ2
φijd~κ (3.57)

needs to be modeled in terms of the M -tensor.
From (3.2.3) we know that the Reynolds stresses are retrieved when the last two indices
of the M -tensor are contracted. Therefore the exact Reynolds stress transport-equation
can be derived from (3.56) by contraction of the last two indices of the M -tensor. Hence,
no modeling is needed for the terms in the Reynolds stress equation.

The second part in (3.56) containing the B-tensor corresponds to the rapid pressure strain
correlation. Therefore the model for φrapijpq in (3.48) is based on an expansion of the B-
tensor in terms of theM -tensor. A linear expansion of the B-tensor, that satisfies the right
tensor index symmetry properties may be expressed in terms of 16 tensorially independent
parts, each multiplied by a numeric model parameter. The ansatz is schematically given
by

Bijpqrs = 2K(C1δijNpqrs + Cδi·Nj···) + (C3Rij + C4Yij)Npqrs

+ C5(Ri·Nj··· +Rj·Ni···) + C6(Yi·Nj··· + Yj·Ni···) + C7δijδ··R··

+ C8δijδ··Y·· + C9R··Nij·· + C10Y··Nij·· + C11δijM···· + C12δ··Mij··

+ C13δ··M··ij + C14δ··(Mi··j +Mj··i) + C15(δi·Mj··· + δj·Mi···)

+ C16(δi·M···j + δj·M···i) .

(3.58)

Thereby dots signify permutations of pqrs. Yij is the structure tensor and Nijpq gives the
forth rank isotropic tensor, which is defined as

Nijpq =
1

15
(δijδpq + δipδjq + δiqδjq) . (3.59)

The B-tensor is symmetric in the first two and in any pair of the last four indices. Two fur-
ther constrains are the continuity and the retrieval of the M -tensor upon the contraction
of any two of the last four indices:

Bijpqki = 0 , (3.60)

Bijpqkk =Mijpq , Bijppkq =Mijkq . (3.61)

These constrains reduce the number of model parameters to one (and 15 linearly inde-
pendent groups of terms). Further details on the model are given in appendix C.

The slow pressure strain term is responsible for the redistribution of energy towards
isotropy. The most simple possible approach to model this tendency of isotropization
mathematically is to assume that the pressure strain rate is proportional to the deviation
from isotropy as was suggested by Rotta (1951). Thus if Φslow

ijpq is modeled according to
Rotta’s model (see 3.2.3) we receive at the given hierarchy of modeling

Φslow
ijpq = −C1

ε

K
(Mijpq − 2KNijpq) . (3.62)
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Herein C1 is the Rotta constant.

The dissipation rate tensor εij represents destruction of turbulent kinetic energy due to
viscous effects. In the following the attention is focused on high Reynolds numbers and
thus local isotropy is assumed. The model for εijpq can then be written as

εijpq = 2εNijpq , (3.63)

whereby Nijpq is defined in (3.59).

As model for the diffusion term the model which was introduced by Daly & Harlow (1970)
has been chosen. It reads for the given level of modeling

Dijpq = Cs
∂

∂xk

(
u′ku

′
l

ε
K
∂Mijpq

∂xl

)
. (3.64)

As value for the model constant Cs = 0.25 corresponds to the one given in section 3.2.1.

3.3.2 Application of the new model to rotational flows

In the following axisymmetric turbulence is considered. Next to isotropic turbulence ax-
isymmetric turbulence is the second most simple form of homogeneous turbulence. All
axisymmetric tensors must be expressible in terms of the unit vector λi, the Kronecker
delta δij, the permutation tensor eijk and a number of scalars depending on the rank of
the tensor. The fourth rank M -tensor is then completely described by the five scalars

K, Rλλ, Yλλ, Mλλλλ and eλipMiλpλ . (3.65)

Thereby the shorter notation Rλλ has been used for Rijλiλj, etc.
It is interesting to note that the exact expression for the rapid pressure strain rate in
axisymmetry can be written

Φrap
λλ = 4

∂ūk
∂xm

Mmλkλ = 6σMλλλλ + 4ΩeλipMiλpλ , (3.66)

with Ω as the rotation rate.
In Reynolds stress closures it follows from the assumption that the M -tensor is expand-
able in terms of the Reynolds stress anisotropy tensor aij that the quantity eλipMiλpλ is
identically zero, and hence that the pressure strain rate will be independent of the rotation
rate.

Axial strain with superimposed rotation

To illustrate some of the modeling difficulties for this flow case the Craya formalism (see
Craya, 1958) has been used:

φij(~κ) = N1(κ, µ)βiβj +N2(κ, µ)γiγj + Sr(κ, µ)(βiγj + βjγi) , (3.67)
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where the three scalars N1, N2, and Sr are functions of the scalar wave number κ and
µ = ~κ~λ/κ . The two vectors ~β and ~γ are unit-vectors orthogonal to ~κ defined as

γ =
κ× λ
|κ× λ| and β =

κ× γ
|κ× γ| . (3.68)

This equation is the most general expression for axisymmetric turbulence except for an
imaginary anti-reflectional part which has been omitted here for brevity. The Sr-part of
the spectrum has an anti-reflectional symmetry (with respect to ~λ) and is closely associ-
ated with rotational effects. With I denoting the integrals

∫∞
0
·κ2dκ the five independent

elements of the M -tensor and the rapid pressure strain can be expressed as

K = π
∫ 1

−1
(N I

1 +N I
2 )dµ , (3.69)

Rλλ = 2π
∫ 1

−1
(1− µ2)N I

1dµ , (3.70)

Yλλ = 2π
∫ 1

−1
µ2(N I

1 +N I
2 )dµ , (3.71)

Mλλλλ = 2π
∫ 1

−1
µ2(1− µ2)N I

1dµ , (3.72)

eλipMiλpλ = −2π
∫ 1

−1
µ(1− µ2)SrIdµ , (3.73)

Φrap
λλ = 6σMλλλλ + 4ΩeλipMiλpλ . (3.74)

Hereby only the fifth element (3.73) of the M -tensor, which becomes non-zero with rota-
tion is associated with Sr. Since this fifth element has no counterpart in Reynolds stress
closures the rapid pressure strain becomes independent of rotation for axisymmetric tur-
bulence, whereas the new model keeps the dependence on the rotation rate.

3.4 Explicit algebraic Reynolds stress models

So far, eddy viscosity based two equation models have been dominating in the context of
industrial flow computations, but with higher demands on prediction accuracy in increas-
ingly challenging flow situations, the need for more complex models has become more
urgent. The level of differential Reynolds stress models includes much more of the flow
physics, but the implementation of these models into codes for design work of complex
industrial flows is quite difficult. Explicit algebraic Reynolds stress models (earsm) are a
possibility to overcome the deficiencies of two equation models by keeping their numerical
robustness. In earsms the Reynolds equation (2.13) is left without any explicit modeling.
The traditional earsm idea, which has been introduced by Rodi (1976) is to neglect the
advection and the diffusion terms in the exact transport-equation for the Reynolds stress
anisotropy tensor. This approach is known as the weak equilibrium assumption. If the
weak equilibrium assumption as well as

Daij
Dt

= 0 ;Da
ij = 0 (3.75)

is used one receives the following symbolicly written equation

u′iu
′
j

K
(P − ε) = Pij − εij + φij − 2Ωm(emkju′iu

′
k + emkiu′ju

′
k), (3.76)
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where P and ε are the traces of the production respectively diffusion term. The advection
term is indeed exactly zero for all stationary parallel mean flows, such as fully developed
channel or pipe flow. The weak equilibrium assumption is deficient in curvilinear flows. A
weak equilibrium condition for algebraic Reynolds stress models for rotating and curved
flow has for example been proposed by Gatski & Wallin (2004).

Rewriting (3.76) in terms of the Reynolds stress anisotropy tensor a, the mean strain S
and the mean rotation tensor W gives

(P − ε)aij =−
2

3
KSij −K(aikSjk + ajkSik −

2

3
amnSmnδij)

−K[aik(Wjk + 2emkjΩm) + bjk(Wik + 2emkiΩm)] +
1

2
Πij.

(3.77)

In this equation the dissipation rate tensor and the pressure strain rate tensor need to be
modeled.

To model the pressure strain correlation the slow part of the pressure strain rate and the
dissipation rate anisotropy, given by

eij =
εij
ε
− 2

3
δij (3.78)

have been lumped together. The general quasilinear model for the pressure strain corre-
lation can be written

Π

ε
− e = −1

2

(
C0
1 + C1

1

P
ε

)
a+ C2S +

C3

2

(
aS + Sa− 2

3
{aS}I

)

− C4

2
(aW −Wa),

(3.79)

where {·} denotes the trace.

If (3.79) and the dimensionless, rescaled variables:

Ŝ = g(2− C3)S
∗, (3.80)

Ŵ = g(2− C4)W
∗, (3.81)

â =

(
2C3 − 4

C2 − 4
3

)
a, (3.82)

with

g =

(
1

2
C1 +

P
ε
− 1

)−1

. (3.83)

are introduced one obtains the reduced Reynolds stress transport equation of the form:

â = −Ŝ − (âŜ + Ŝâ− 2
3
{âŜ}I) + âŴ − Ŵ â, (3.84)

where {·} denotes the trace and I denotes the unit tensor (for more detail on the derivation
of (3.84) see Gatski & Speziale (1993)). (3.84) is a set of linear algebraic equations for the
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determination of the components of â in terms of Ŝ and Ŵ ; the solution of (3.84) is of
the general form

â = f(Ŝ, Ŵ ). (3.85)

To complete the earsm formulation the procedure corresponds now to the procedure
applied for non-linear eddy viscosity models (see section (3.1.4)). The Reynolds stresses
are thus uniquely related to the rates of strain and local scalar quantities. The strategy
is then to insert the anisotropy expression (3.23) into equation (3.84). This generates a
complex system of equations for the coefficients Gλ:

∑

λ

GλT̂
λ
= −

∑

λ

δ1λT̂
λ −

∑

λ

Gλ

[
T̂
λ
Ŝ + ŜT̂

λ − 2
3
{T̂ λ

Ŝ}I − T̂ λ
Ŵ + Ŵ T̂

λ
]
, (3.86)

where it is made use of the fact that T̂
1
= Ŝ. Using the fact that T̂

λ
is an integrity basis

the solutions for Gλ for the three-dimensional case are given by (see Gatski & Speziale,
1993):

G1 = 1
2
(6− 3Î1 − 21Î2 − 2Î3 + 30Î4)/D,

G2 = −(3 + 3Î1 − 6Î2 + 2Î3 + 6Î4)/D,

G3 = (6− 3Î1 − 12Î2 − 2Î3 − 6Î4)/D,

G4 = −3(3Î1 + 2Î3 + 6Î4)/D,

G5 = −9/D,

G6 = −9/D,
G7 = 9/D,

G8 = 9/D,

G9 = 18/D,

G10 = 0,

(3.87)

where the denominator is

D = 3− 7
2
Î1+ Î

2
1− 15

2
Î2−8Î1Î2+3Î22− Î3+ 2

3
Î1Î3−2Î2Î3+21Î4+24Î5+2Î1Î4−6Î2Î4. (3.88)

The Îi are the scalar invariants (3.25) given in section (3.1.4). Finally these solutions for
the coefficients are put into the anisotropy expression (3.23), which is then solved together
with the K− and the ε− equation.
The earsm approximation is deficient for flow situation with strong streamline curva-
ture since the optimal coordinate system can not be chosen in advance for this kind of
flows. Therefore Girimaji (1997) and Sjögren (1997) introduced curvature corrections by
imposing the weak equilibrium assumption in a general curvilinear coordinate system.
For details on this curvature correction see Girimaji (1997), Sjögren (1997) Wallin &
Johansson (2001) and Wallin & Johansson (2002).

3.5 Determination of the empirical constants

The model constants are usually calibrated using classical flow cases as for example ho-
mogeneous shear-flows, the decay of grid-turbulence or near-wall turbulence. Although
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the constants are determined from experiments in air and water, they should be approx-
imately valid for most other fluids. It should also be remarked, that although the model
coefficients are called constants, they are nevertheless variable. They can depend on fluid
properties and non-dimensional parameters, such as the Prandtl or Reynolds number. In
the following it will be pointed out exemplarily how the coefficients Cε2, C1 and Cε1 are
calibrated.

The coefficient Cε2 is usually determined from the measured rate of decay of the turbulent
kinetic energy behind a grid. The experiment for this flow consists of a uniform flow behind
a grid with a constant streamwise velocity and the other two velocity-components being
zero. In grid-turbulence the diffusion and production terms are zero so that Cε2 is the only
constant, which is appearing in the equations. Thus the modeled K−equation reduces to

ū10
∂K

∂x1
= −ε (3.89)

with ū10 being constant streamwise velocity. The modeled ε−equation reduces to

ū10
∂ε

∂x1
= −Cε2

ε2

K
. (3.90)

Solving theses two equations for K and ε gives with K = Axn1

Cε2 =
n− 1

n
. (3.91)

For the decay of turbulent kinetic energy it was found from grid-turbulence experiments,
that n ' −1.1...− 1.3 and therewith Cε2 ' 1.76...1.9.

For determining C1 the anisotropic grid-turbulence is used. Thus the same flow conditions
as for the determination of Cε2 are used but this time with a contraction of the flow area
beneath the grid to produce anisotropy. For this flow the exact equation for u′1u

′
1 becomes

ū1
∂u′1u

′
1

∂x1
= −2ν ∂u

′
1

∂xl

∂u′1
∂xl

+
2p′

ρ

∂u′1
∂x1

(3.92)

and the modeled equation for u′1u
′
1 becomes

ū1
∂u′1u

′
1

∂x1
= −2

3
ε− C1

ε

K

(
u′1u

′
1 −

2

3
K

)
. (3.93)

Combining the equations (3.92) and (3.93) gives

2p′

ρ

∂u′1
∂x1

2ν
∂u′1
∂x1

∂u′1
∂x1

= −C1

(
3u′1u

′
1

2K
− 1

)
. (3.94)

The experimental data from the anisotropic region gives then C1 ≈ 1...3, depending on
the ratio x/M , with M being the grid spacing.
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For the calibration of Cε1 or σε the near wall region in which the logarithmic velocity
profile is valid is considered. The log-layer is a constant-stress-layer with −u′1u′2 = ū2τ
giving for the log-law

∂ū1
∂x2

=
ūτ
κx2

. (3.95)

ūτ is thereby the friction velocity. The molecular viscosity is small in this layer and the
flow is in local equilibrium. Thus the solution for ε is

P = −u′1u′2
∂ū1
∂x2

=
ū3τ
κx2

= ε. (3.96)

The eddy viscosity is

νt = −u′1u′2
∂ū1
∂x2

= κūτx2, (3.97)

and from the K − ε model

νt = Cµ
K2

ε
. (3.98)

With the solution given for ε (3.96) this implies

Cµ =

(
u′1u

′
2

K

)2

. (3.99)

Experimentally the stress-intensity ratio (u′1u
′
2/K)2 is found to be approximately 0.3 and

therefore Cµ = 0.09. Substituting (3.96) and (3.97) into the ε-equation (3.18) gives after
some algebra

κ2 = (Cε2 − Cε1)σε
√
Cµ. (3.100)

With the von Karmann constant being approximately equal to 0.43 one receives using the
other standard constants σε = 1.3.

3.6 Modeling principles

By formulating modeling principles guidelines, for a systematic development of turbulence
models, are given. The principles can be divided into inviolable and optional ones. Obvious
principles are dimensional and tensorial consistency and physical coherence. Dimensional
consistency means that all terms in any equation must have the same dimension. This
principle is trivial, but still a powerful tool in turbulence modeling. A consistent use of
tensor algebra is invoked to ensure that all terms in the equation have the same free
subscripts and that matrix multiplication is done correctly. Physical coherence is more a
conceptual principle meaning that closure models should be physically plausible substitu-
tions for the real process, e.g. an inviscid effect should not be modeled in terms of viscous
parameters. Further principles discussed in this section are

• Realizability.
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• Thermodynamic consistency.

• Rapid Distortion Theory (rdt).

• Principles derived from symmetry methods.

These principles make an important contribution to the understanding of turbulence.
They lead to new mathematical developments which can give a guideline for the evalua-
tion, improvement and development of turbulence models.
In the given thesis the principles derived from symmetry methods are used to derive con-
strains which have to be fulfilled by the turbulence models. Anyhow similar to the tensor
invariant theory, which is described in the frame work of non-linear eddy viscosity mod-
els (section 3.1.4) and explicit algebraic Reynolds stress models (section 3.4) symmetry
methods might also be used for the derivation of turbulence models from first principles.
The other three principles mentioned above can all be used for the derivation of constrains
which have to be fulfilled by the turbulence model. These principles are therefore useful
for the calibration of the empirical constants. Furthermore the rdt is a very useful tool
for the simplification of differential equations. It can assist at the derivation of turbulence
models using for example invariant theory (see section 3.3).

3.6.1 Realizability

One of the basic expectations of a turbulence model is that it yields statistics that are
realizable, meaning that the Reynolds stresses have to obey the following statistic funda-
mental coherences (Schumann, 1977):

• The diagonal components (energies) have to be non negative: ū2α ≥ 0.

• The off-diagonal elements have to satisfy the Schwarz inequality:
(
u′αu

′
β

)2 ≤ u2αu
2
β.

These expectations give valuable constrains for the development of turbulence models
leading to an improved physical accuracy. Realizability is furthermore of practical impor-
tance, as realizable models tend to be computationally robust and less stiff (Sjögren &
Johansson, 2000). Thus the Schumann realizability constraint has served as the theoreti-
cal basis for several turbulence models (e.g. Johansson & Hallbäck, 1994; Ristorcelli et al.,
1995; Sjögren & Johansson, 2000).

A convenient measure in the range of realizability is the determinant of the normalized
Reynolds stress tensor (Pope, 2000)

F ≡ det

(
u′iu

′
j

1
3
u′ku

′
k

)
. (3.101)

Considering the Lumley triangle (see figure 3.6.1) one can show that the value of F is
positive within the Lumley triangle, equal to zero on the two-component line and negative
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Figure 3.1: The Lumley triangle showing trajectories of three types: (a) violates realiz-
ability; (b) satisfies weak realizability; (c) satisfies strong realizability. (Note
that other types of trajectories are possible) (Pope, 2000).

in the unrealizable region (across the two-component line) (see Pope, 2000). In the Lumley
triangle the variables ξ and η are the two independent invariants of the anisotropy tensor
b:

6η2 = bijbji (3.102)

and
6ξ3 = bijbjkbki. (3.103)

In the literature it is distinguished between a weak and a strong form of realizability.
The strong form states that when a principal Reynolds stress component vanishes, its
time rate of change must also vanish and its second derivative must be positive (Lumley,
1978). The strong realizability form can be written in terms of F as

(
d2F

dt2

)

F=0

> 0,

(
dF

dt

)

F=0

= 0. (3.104)

Rapid pressure strain models based on the strong realizability condition have been devel-
oped by Shih & Lumley (1985), Sjögren & Johansson (2000) and Chung & Kim (1995).
They claimed that a rapid pressure strain model linear in the Reynolds stresses cannot
satisfy the strong realizability constraint and thus developed models which are non-linear
in the Reynolds stresses.
The weak form of realizability states that when a principal Reynolds stress component
vanishes, its time derivative must be positive, giving the constraint

(
dF

dt

)

F=0

> 0. (3.105)
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Fu et al. (1987) and Sarkar & Speziale (1990) developed rapid pressure strain correlation
models based on the weak realizability condition. These models are much more simple,
than the models based on the strong realizability condition and thus more widely used.

Girimaji (2004) argued that the Schumann proposal is a necessary, but not sufficient con-
dition for comprehensive realizability. Especially the weak realizability approach ignores
the realizability of individual moments in the Reynolds stress evolution equation. Giri-
maji (2004) thus proposed as additional requirement that the closure model for each of
the unclosed statistical moments in the Reynolds stress equation has to be individually
realizable. Based on this, he derived two realizability constrains on the rapid pressure
statistics, namely:

• The rapid pressure gradient variance must be positive which leads to the requirement
that the Mijkl tensor must be positive and semi-definite. This gives the realizability
constraint on Mijkl for any arbitrary mean flow:

∂ūj
∂xi

∂ūk
∂xl

Miljk ≥ 0. (3.106)

For purely strained flows, the same constraint reduces to

SijpSij ≥ 0. (3.107)

• The rapid pressure strain correlation closure must satisfy the Schwarz inequality
which requires

|uα
∂p

∂xβ
| ≤ u′αu

′
α

1/2 ∂p

∂xβ

∂p

∂xβ

1/2

, (3.108)

whereby repeated Latin indices imply summation, whereas Greek indices do not.

Girimaji (2004) pointed out that an unrealizable closure model is the cause of Reynolds
stress realizability violation. Based on Girimaji’s finding that the pressure strain corre-
lation constrains (3.108) are violated before the Reynolds stresses become unrealizable,
Sambasivam et al. (2004) reduced this statement further on the rapid pressure strain
correlation. Performing model computations with various second-moment-closure models
Sambasivam et al. found that a violation of the rapid pressure strain correlation realizabil-
ity precedes violation of Reynolds stress realizability. They further found, that Reynolds
stress realizability based on either weak or strong formulation does not guarantee a real-
izable rapid pressure strain correlation.

One might object that models which do not guarantee realizability in extreme states,
might still be valid in most applications (Schumann, 1977).

3.6.2 Thermodynamic consistency

Since any flow, no matter if turbulent or not, describes an irreversible process it seems to
be necessary to include the second law of thermodynamics to the modeling principles. In
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Sadiki & Hutter (2000) it is stated, that the realizability constrains, described in section
3.6.1 alone are not able to guarantee conformity with the irreversibility of the turbulent
processes.
To define the second law of thermodynamics one has first to understand the first law of
thermodynamics. The first law of thermodynamics states that one form of energy, e.g.
kinetic, potential, electrical energy, thermal, etc. can be converted into another without
loss. The second law states that thermal energy or heat, is special among the types of
energies: all forms of energy can be converted into heat, but in a way that is not reversible;
it is not possible to convert the heat fully back into its original form. In other words, heat
is a form of energy of lower quality. A measure for the amount of energy which is converted
irreversible and thus dissipates into heat is the entropy η, which is always positive. The
second law of thermodynamics is therefore given by the entropy inequality:

∂ρη

∂t
+

∂

∂xi
(ηui + ϕentri )− σentr ≥ 0, (3.109)

whereby ρ is the entropy density, ϕentri = qi/Θ is the entropy flux (heat flux vector divided
by the temperature) and σentr = h/Θ the source term of entropy (source term of energy
divided by the temperature).
A couple of authors included this thought in their investigations and developments of
turbulence models. The first who picked up the idea of irreversibility and investigated
turbulence models in respect to their ability to fulfill the second law of thermodynamics
was probably Ahmadi (1984). Ahmadi derived the averaged forms of the entropy inequality
for incompressible and compressible fluids and studied its consequences for the modeling
of turbulence. In Ahmadi (1991a) and Chowdhury & Ahmadi (1990) quadratic and cubic
eddy viscosity models have been derived and the model constants have been calibrated by
means of the second law of thermodynamics. Furthermore Mueller & Wilmanski (1986),
Jou et al. (1996), Sadiki (1998), Sadiki et al. (2000), Sadiki & Hutter (2000) and Sadiki
et al. (2003) derived consistency conditions in the form of restrictions upon the model
constants by using the principle of thermodynamic consistency.

In the following the idea of thermodynamic consistency is schematically outlined along
the lines of Sadiki (1998), Sadiki et al. (2000) and Sadiki & Hutter (2000). For further
details on this subject see Sadiki (1998).

Averaged balance equations and the entropy principle

The averaged equations of continuum thermodynamics, describing the mean local balances
of mass density ρ̄, specific momentum ρ̄ūi, internal energy ε̄, turbulent kinetic energy K
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and the mean local imbalance of entropy in a fully developed turbulent flow are

∂ūi
∂xi

= 0,

dūi
dt

=
1

ρ̄

∂T̄ij
∂xj

+
∂Rij

∂xj
+ f̄i + (I0i + 2Wikūk),

ρ̄
dε̄

dt
= − ∂q̄i

∂xi
− ∂Qi
∂xi

+ T̄ij
∂ūj
∂xi

+ ρ̄ε+ ρ̄h̄,

ρ̄
dK

dt
= Rij

∂ūj
∂xi

+
∂Ki

∂xi
− ρ̄ε,

ρ̄
dη̄

dt
=
∂ϕ̄entri

∂xi
+
∂ϕ̄

entr(T )
i

∂xi
− σ̄entr ≥ 0.

(3.110)

In this equation

Rij =− u′iu′j, Qi = ρ̄ε′u′i, ϕ
entr(T )
i = −ρu′iη′,

Ki =(Tiju′j − (1/2)ρ̄u′iu
′
ju

′
j), ε = T<ij>u′j,i/ρ̄,

T̄ij = −p̄δij + 2µS̄ij, q̄i = −κΘ,i

(3.111)

define the Reynolds stress tensor, the turbulent heat flux vector, the turbulent entropy
flux, the flux vector of the turbulent kinetic energy, the dissipation rate of the turbulent
kinetic energy, the Cauchy stress tensor and the heat flux vector. Sij is thereby the
symmetric part of the velocity gradient, Θ the absolute temperature, µ the viscosity
and κ the heat conductivity. The notation T<ij> means the deviatoric part of the tensor
Tij, while T̄ij represents the tensor’s averaged value.
The entropy principle is implemented by following the entropy principle introduced by
Sadiki & Hutter (2000):

1. In every fluid material, which possesses the potential to form laminar and turbulent
motion there exists an quantity, called entropy with non-negative production such
that equation (3.110)5 holds.

2. To each field variable in the entropy balance there exists a microscopic (molecular)
and mesoscopic (turbulent) contribution which are additive and given by

η̄ = ηM + ηT , ϕi = ϕ̄entri + ϕ
entr(T )
i

σ̄entr = σM + 0, π̄entr = πM + πT ,
(3.112)

with (·)M and (·)T describing the material and turbulent parts, respectively. In
(3.112) ηM depends on the molecular fluctuations in the fluid and is a function of
the fluid temperature. ηT represents the turbulent fluctuations of the flow and is a
function of the state of fluctuation of turbulence. π̄entr is the entropy production.

3. The turbulent parts of the quantities in (3.112) vanish when the flow is purely
laminar.
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4. Entropy supply possesses no turbulent contribution and the material contribution
is a linear combination of the momentum and energy supply term:

σM = Λfi f̄i + Λεh̄, (3.113)

with f̄i being the source term of momentum and h̄ being the source term of energy.

5. There exist two empirical temperatures ΘM and ΘT representing measures for the
intensity of the molecular and the turbulent fluctuating motions. Associated with
these are also the material and turbulent coldness variables ϑM and ϑT . The coldness
is defined as the inverse temperature:

ϑM =
1

ΘM
, ϑT =

1

ΘT
. (3.114)

6. The entropy production is non-negative for all thermodynamic processes:

π̄entr = πM + πT ≥ 0. (3.115)

From item 2 and (3.115) it follows immediately that

πM ≥ 0 and πM + πT ≥ 0 (3.116)

must hold for all thermodynamic processes, since the entropy principle must also hold for
purely laminar flows.

In the mean entropy inequality (3.110)5 ϕ̄
entr
i and ϕ̄

entr(T )
i may be written as

ϕ̄entri = ϕ̄
entr(M)
i + sMi = (q̄i +Qi)ϑM , where sMi = q′iϑ

′

and ϕ̄
entr(T )
i = ρη′u′i = Kiϑ

T + sTi
(3.117)

for turbulent motions. Thereby sMi (through Qi) and sTi are constitutive quantities which
have to be determined.
Introducing the Helmholtz free energy function for the mean thermal and turbulent fluc-
tuations according to

ψM = ε̄− ηM

ΘM
, ψT = K − ηT

ΘT
, (3.118)

inserting (3.112) into (3.110)5 and taking (3.117) and (3.110 lines 1,3,4) into account gives
the inequality

ϑM
{
−ρ̄
(
dψM

dt
− ηM

(ϑM)2
dϑM

dt

)
− 1

ϑM
(qi +Qi)ϑM,i +

(
T̄ij + Λρδij

)
ūj,i + ρ̄ε

}

+ϑT
{
−ρ̄
(
dψT

dt
− ηT

(ϑT )2
dϑT

dt

)
− 1

ϑT
Kiϑ

T
,i −

1

ϑT
sTi,i +Rijūj,i − ρ̄ε

}
≥ 0,

(3.119)

with ΛP being the Lagrange parameter.
Being the averaged form of the entropy inequality (3.119) gives restricting conditions
for the constitutive equations as well as for the turbulent closure assumption. The term
ΛP ūj,iδij takes thereby account of the incompressibility of the fluid in the mass equation.
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Constitutive assumptions and equations

The evolution of the dissipation rate is described by the equation

ρ̄
dε

dt
= Πε +Kε

i,i, (3.120)

where the single terms have to be in accordance with the entropy inequality. The supply
term σε vanishes, since the dissipation rate describes an inertial process of the turbulent
flow, which does not involve a supply from outside.
The constitutive dependent quantities in (3.110), (3.117) and (3.120) are thus

K = (ψM , ηM , qi, T̄ij)
⋃

(Qi, Ki, K
ε
i ,Π

ε, Rij, ψ
T , ηT , sTi ), (3.121)

which have to be written down as functionals of the independent variables, which are
required to describe a turbulent flow:

VM = (ΘM ,ΘM
i , S̄ij), VT = (ΘT ,ΘT

i , S̄ij, W̄ij, S̄
∗
ij, ε, ε,i) (3.122)

where
Km = K̂m(VM) , K̄ = ˆ̄K(VM

⋃
VT ). (3.123)

Lumley (1970) and Sadiki & Hutter (1996) stated that turbulent flows can be considered
as laminar flows of non-Newtonian fluids. Using this statement the time derivative of ūi,j
may be replaced by the Jaumann derivative

S̄∗
ij =

dS̄ij
dt

+ S̄ikWkj + S̄jkWki (3.124)

to account for the viscoelastic effects.
To calculate the constitutive equations for the variables in (3.123), taking account of the
entropy inequality (3.110)5 one has to calculate the free energies ψM and ψT by carrying
out all necessary derivatives

ϑM
{
−ρ̄
(
∂ψM

∂ϑM
− ηM

(ϑM)2

)
ϑ̇M +

∂ψM

∂∆
∆̇ +

∂ψM

∂ϑM,i ϑ
M
,i

(ϑ,iϑ,i)
·

+
1

ϑM
(q̄i +Q,i)ϑM,i +

(
T̄ij + Λρδij

)
ūj,i + ρ̄ε

}

+ ϑT
{
−ρ̄
(
∂ψT

∂ϑT
− ηT

(ϑT )2

)
ϑ̇T − 2ρ̄

∂ψT

∂ε,i
(ε,i)

· − ρ̄
(
∂ψT

∂ϑM
ϑ̇M +

∂ψT

∂∆W
∆̇W

)

−ρ̄
(
∂ψT

∂∆y
∆̇y +

∂ψT

∂∆Sy
∆̇Sy +

∂ψT

∂∆Wy
∆̇Wy +

∂ψT

∂S∗
kk

S̄∗
kk

)

−ρ̄∂ψ
T

∂ε
ε̇+

(
Rij − ρ̄

(
∂ψT

∂∆
S̄∗
ij

))
S̄ij +

1

ϑT
Kiϑ

T
,i −

1

ϑT
sTi,i − ρ̄ε

}
≥ 0,

(3.125)

in which

∆ =
1

2
S̄ijS̄ij, ∆W =

1

2
WijWij, ∆y = y,iy,i, ∆Sy = yiS̄ijy,j, and ∆Wy = yiWijy,j,
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with y = (ϑM , ϑT , ε). Symbolically (3.125) might be written as

ϑM(αMi ẏ
M
i + βM) + ϑT (αTp ẏp + β) ≥ 0, i = 1, 2, 3, p = 1, 2, . . . 9 (3.126)

where yMi and yp are given by the set of variables VM and (VM ⋃VT ), respectively and
αi, αp as well as β

M , β are functions of yMi and yp, respectively.
Equation (3.125) is linear in ẏMi and ẏp since they do not appear in the constitutive
equations (3.122) and (3.123) and αMi , β

M , αTp and β are independent of ẏi. These variables
could assume any value and therefore their factors have to vanish to ensure that the
inequality (3.125) holds:

αMi = 0 and αTp = 0 and ϑMβM + ϑTβ ≥ 0 (3.127)

giving with (3.125)

ηM = (ϑM)2
∂ψM

∂ϑM
, ηT = (ϑT )2

∂ψT

∂ϑT
,

∂ψT

∂ϑM
= 0 =

∂ψT

∂∆W
=

∂ψT

∂y1,iy1,i
, with y1 =

(
ϑM , ϑT

)
,

∂ψM

∂∆
=

∂ψM

∂ϑM,i ϑ
M
,i

= 0,
∂ψT

∂∆Sy
=

∂ψT

∂∆Wy
=
∂ψT

∂S̄∗
kk

= 0.

(3.128)

With (3.128) thermodynamic restrictions on the mean free energy functions are imposed,
so that

ψM = ψm(ϑM), ψT = ψT (ϑT , ε, (ε,i)
2,∆). (3.129)

The so called residual-inequality remains

1

T

[
− 1

T̄
(qi +Qi) T̄,i +

(
T̄<ij> + (Λρ − p̄) δij

)
Sji + ρ̄ε

]

+
CT

K

[(
−ρ̄∂ψ

T

∂ε
−Bj,j +

ρ̄

K
Bj

(
K,j −

K

ε
ε,j

))(
Kε
i,i +Πε

)

1

K
Ki

(
K,i −

K

ε
ε,i

)
+

(
R<ij> − ρ̄

∂ψT

∂∆
S̄∗
ij +Bjε,i

)
S̄ij − ρ̄ε

]
≥ 0

(3.130)

where (see Ahmadi, 1991b and Marshall & Nagdhi, 1988):

1

ϑM
= Θ, ϑT =

CT

K
, CT = CT

0 ε, C
T
0 = const

At the derivation of (3.130) the terms, in which the time and space differentiations of the
dissipation rate and the turbulent extra-entropy flux appear, have been transformed as
follows:

−ρ̄∂ψ
T

∂ε,i
(ε,i)

· − ρ̄∂ψ
T

∂ε
ε̇− 1

ϑT
sTi,i =ρ̄Aε̇+

(
ρ̄Biε̇−

1

ϑT
sTi

)

,i

−

1

(ϑT )2
sTi ϑ

T
,i +Bj (ūi,j) ε,i

(3.131)
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where

A = −
(
∂

∂ε
−∇i

∂

∂ε,i

)
ψT , Bi = −

∂ψT

∂ε,i
. (3.132)

By exploiting the resulting entropy inequality once (3.131) is inserted into (3.125) to
obtain (3.130) the second term on the right-hand side of (3.131), which involves the
turbulent extra-entropy flux, must vanish. Thus following Maugin (1990) the extra-entropy
flux is given by the constitutive relation

sTi = ϕ̄ϑ̄TBiε̇. (3.133)

Further thermodynamic restrictions are received from (3.130) by introducing explicit ex-
pressions for the Helmholtz free energy as well as for the constitutive quantities. The
Helmholtz free energy can be written as (see Sadiki, 1998):

ψT = K

(
ln

(
CT
0 ε

K
+ αε2∆+ b(ε,i)

2 + A0

))
, (3.134)

with α, b, A0 constant. With (3.134) it follows from (3.128) and (3.131)

Bi,i = −2bK(ε,i),i − 2bK,iε,i; CT = −ϑT ∂

∂ϑT

(
(ϑT )2

∂ψT

∂ϑT

)
. (3.135)

For the remaining constitutive quantities, one could write down complete isotropic func-
tion relations, but that would be so complicated to serve no practical purpose. Therefore
it is referred to Sadiki et al. (2000) for expressions for the anisotropy Reynolds stress
tensor, the turbulent heat flux vector, the flux vector of the turbulent kinetic energy and
its dissipation rate and the production of the dissipation rate for non-Newtonian fluids

aij =−
Rij

K
+

2

3
δij = −

µt
K
S̄ij + c1

µt
ε

(
S̄ikS̄kj −

1

3
S̄mmS̄mmδij

)

+
c8
K

(
ε,iε,j −

1

3
(ε,k)

2 δij

)
+ c3

µt
ε

(
WikWkj −

1

3
WmnWmnδij

)

+ c2
µt
ε

(
S̄ikWkj +WikS̄kj

)
+ c6

µtK

ε2
(
S̄mnS̄mn

)
S̄ij + c7

µtK

ε2
WmnWmnS̄ij

+ c
′
4

µt
ε

(
S̄∗
ij −

1

3
S̄∗
kkδij

)

(3.136)

Qi =b1
K2

ε
T̄,i + b2

K3

ε2
S̄ijT̄,j + b5

K3

ε2
WijT̄,j

+ b4
K4

ε3
S̄ikS̄kjT̄,j + b6

K4

ε3
WikWkjT̄,j +

(
b7
K4

ε3
S̄ikWkj + b8

K4

ε3
WikS̄kj

)
T̄,j

+ b12
K5

ε4
(
S̄mnS̄mnS̄ij

)
T̄,j + b22

K5

ε4
(
WmnW̄mnS̄ij

)
T̄,j

+ b15
K5

ε4
(
S̄mnS̄mnWij

)
T̄,j + b125

K5

ε4
(
WmnW̄mnWij

)
T̄,j

(3.137)
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Ki =α
k
1

(
K,i −

K

ε
ε,i

)

+
(
αk2S̄ij + αk3S̄ikS̄kj + αk4WikWkj + α1k

2 ∆S̄ij + α2k
2 WmnWmnS̄ij

)
(
K,j −

K

ε
ε,j

) (3.138)

Kε
i =α

ε
1ε,i

+
(
αε2S̄ij + αε3S̄ikS̄kj + αε4WikWkj + α1ε

2 ∆S̄ij + α2ε
2 WmnWmnS̄ij

)
ε,j

(3.139)

Πε = −ρ̄cε2
ε2

K
+ γ3S̄ijS̄ij + γ4WijWij + cε3ρ̄

ε

K2

(
K,i +

K

ε
ε,i

)(
K,i −

K

ε
ε,i

)
. (3.140)

From the residual inequality (3.130) one can now derive the constitutive equation in the
material part

T̄ij = −p̄δij + 2µS̄ij with Λp = p̄, q̄i = −κT̄,i (3.141)

Thermodynamic compatibility

To guarantee that the equations (3.136) to (3.140) and (3.141) fulfill the residual inequality
(3.130) the model coefficients have to be restricted. By substituting (3.136) to (3.140) and
(3.141) into (3.130) one receives

µ ≥ 0, κ+ κT ≥ 0 with κ ≥ 0, bi = 0, (i ≥ 2) and κT = −b1
k2

ε
,

αk1 ≥ 0, αk2 6= 0, αk3 = αk4 = α1k
2 = α2k

2 = 0,

αε1 6= 0, αε3 = αε4 = α1ε
2 = α2ε

2 = 0, γ4 = 0,

c′4 = ρ̄
∂ψT

∂∆
, µt ≥ 0, c6∆ ≥ −µt, c3 = 0, c7 = 0.

(3.142)

whereby the last line has been identified as the Schwarz-inequality, giving the classical
realizability constraint (see section 3.6.1).
The terms S̄kiWkj or S̄kjWik have a gyroscopic character and therefore give no contribution
to the entropy inequality. All coefficients in (3.142) depend only on T̄ , K, ε, (ε,i)

2 and ∆.
In Sadiki (1998) it is furthermore stated that the coefficients in the ε-equation cannot be
calibrated independently from the coefficients in the K-equation. This can be shown by
the relation

−
(
CT
0

ε
+ 2Kεα∆

)
ε

K2
Cε3 +

αk1
K
≥ 0, Cε3 ≥ 0, and C8 ∝ 2(b− K

ε2
αk2) (3.143)

where αk2 cannot be independently calibrated of C8.
Furthermore the inequality

α ≥ 0⇒ c′4 = β′
4 ≤ 0, and b ≥ 0 (3.144)

must be fulfilled, so that the turbulent free energy is minimal in equilibrium. As further
restriction on the model constants Sadiki (1998) gives

c1 + 2c′4 6= 0 c′4 ≤ 0. (3.145)
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Equations (3.142) -(3.145) define the thermodynamic consistent validity domain of the
model coefficients. Thus the model coefficients should obey these constrains to be ther-
modynamically consistent.

3.6.3 Rapid distortion theory

The rapid distortion theory (rdt) uses linearized equations to describe the changes of
a given velocity field while subjected to a rapid distortion. This theory is developed of
ideas how grid-turbulence behaves as it passes through a wind tunnel contraction. As the
flow accelerates through the contraction of the wind tunnel it is strained along the axes of
the tunnel. The basic requirement of the theory is thereby that the distortion occurs on
a short time-scale compared to the eddy life-time, τ = K/ε. For this case the turbulent
time-scale is big in comparison to the distortion, so that the turbulence does not have
time to interact with itself. The influence of a mean strain rate field on the evolution of a
turbulent field can then be analyzed by studying the linearized dynamic equation for the
turbulent field since the non-linear terms can be neglected. Usually a Fourier decomposi-
tion with random amplitudes and phases of the given or initial velocity field is introduced
to make the treatment of the pressure term and viscous term straightforward.
Rapid distortions have been studied experimentally by sending grid-turbulence through
a variable cross section duct (Gence & Mathieu, 1979), or by introducing turbulence into
the flow upstream of an impingement plate (Britter et al., 1979). Lee et al. (1989) made
comparative calculations of a homogeneous shear-flow using direct numerical simulations
and rdt-analysis. Analytical studies using rdt-analysis have been conducted by Batch-
elor & Proudman (1954) of the effect of irrotational distortion, by Townsend (1976) of
homogeneous shear and by Mansour et al. (1991b) and Cambon et al. (1992) of pure
rotation of a fluid in turbulent motion.

To analyze the linearized Navier-Stokes equations using rdt it is useful to make order of
magnitude estimations of the linear and non-linear inertial terms as well as of the viscous
terms (see e.g Pearson, 1959). For this purpose it is convenient to study the dynamic
equation for the coefficient ûi associated with the wavenumber κi in a discrete spectral
representation

dûi
dt

=
[
δin − 2

κiκn
κ2

]
ūn,mûm + i

[κiκn
κ2
− δin

]
κmûnum − νκ2ûi. (3.146)

Now a local scaling of the Fourier coefficient based on the energy content in the spectrum
around a certain wavenumber is made:

| û |∼
√
E(κ)∆κ ∼

√
E(κ)κ. (3.147)

If the analysis is restricted to irrotationally strained turbulence

S =
√
SijSji/2 (3.148)

can be used as a scalar measure for the mean gradient tensor ū. Therewith the linear,
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non-linear and viscous term have the following order of magnitude:

linear ∼ S
√
κE(κ),

non-linear ∼ κ2E(κ),

viscous ∼ νκ2
√
κE(κ).,

In order to compare the relative magnitude of these terms a local strain-rate parameter
Sκ and a local Reynolds number Reκ have been introduced as the ratio of the linear and
non-linear term and the non-linear and viscous term respectively:

Sκ =
S

κ3/2E1/2
, (3.149)

Reκ =
E1/2

νκ1/2
. (3.150)

If now a Kolmogorov inertial range spectrum αε2/3κ−5/3 is assumed and κt = ΛT =
(q3/ε)−1 is chosen as a typical wavenumber of the range of energy containing eddies,
where q is the root mean square of the turbulent velocity field, one obtains

ST =
S

ε/q2
, (3.151)

Reκ =
q4

νε
, (3.152)

where the subscript T denotes a macro scaling. Choosing on the other hand κη = η−1 =
(ν3/ε)−1/4 as a typical small, dissipative length-scale one obtains:

Sη =
S

ω
, (3.153)

Reη = 1, (3.154)

with ω2 = ε/ν in homogeneous turbulence.
If S À ω then the mean strain is rapid enough to make a linearization of the problem
possible and to obtain analytical solutions at least formally (see e.g. Batchelor, 1953).
If the mean strain is moderately rapid (ε/q2 6 S ∼ ω) then the linear inertial term is
dominated everywhere except in the dissipative range, where all three terms play equally
important roles.
If more accurate predictions are desired one can model the non-linear terms by introducing
the turbulent viscosity νt. For an isotropic νt the non-linear term is replaced by −νtκ2ûi.
There νt has to be modeled.

For the case of irrotational mean strain the linearized equations become easily solvable.
This is done by solving the vorticity equation, which has the form without non-linear
terms for the irrotational case

dω̂ni
dt

= Sijω̂
n
j − ν(κ2)nω̂ni ,

κni
dt

= −Sijκnj .
(3.155)



Modeling principles 47

If the coordinate axes are now considered to be parallel, with the principle axes of the
strain rate tensor, Sij becomes

Sij =




s1 0 0
0 s2 0
0 0 s3


 . (3.156)

If now the components of Sij are prescribed to be constant in time the equations for the
components of the wave number vector become easy to integrate in time.

κn1 = κn10e
−s1t , κn2 = κn20e

−s2t , κn3 = κn30e
−s3t. (3.157)

The equations for the vorticity components become nearly decoupled. The 1-component
reads:

ω̂n1
dt

= s1ω̂
n
1 − ν(κ2)nω̂n1 , (3.158)

which gives after integrating in time:

ω̂n1 = ω̂n10e
s1tD, where D = exp

[
−ν
2

3∑

α=1

1

sα
((κ2α0)

n − (κ2α)
n)

]
. (3.159)

By introducing the notation eα = esαt as a measure of the total strain ratios along the
principal axes one gets for the 1-component of û:

û1 =

[
1

e1
û10 −

κ10
e1κ2

(
κ10
e21
û10 +

κ20
e22
û20 +

κ30
e23
û30+

)]
D. (3.160)

From (3.160) expressions for the evolution of statistical quantities, such as the spectrum

tensor φ̂ij = (û∗i ûj) can be derived. If for example the initial state is assumed isotropic:

φ̂0ij =
E(κ)

4πκ2
(δij −

κiκj
κ2

) (3.161)

and the three-dimensional energy spectrum is known or prescribed, then the spectrum
tensor is determined completely by the mean strain

φ̂11(~κ) =
E(κ)

4πe21κ
4κ20

[
κ210

(
κ220
e42

+
κ230
e43

)
+

(
κ220
e42

+
κ230
e43

)2
]
D2. (3.162)

From (3.162) second moment one-point measures such as the Reynolds stress tensor and
the dissipation tensor can be calculated:

< u′iu
′
j >

∫
φ̂ijd

3κ and εij = 2ν

∫
κ2φ̂ijd

3κ. (3.163)

Since the rapid part of the pressure strain correlation, the dissipation and the production
term of the dissipation rate are all expressible in terms of the second order correlation
spectrum tensor rdt can be used for calibration of the model parameter values of these
terms (see e.g. Johansson & Hallbäck, 1994) and (see e.g. Halbäck et al., 1990).



Modeling principles 48

3.6.4 Principles derived from symmetry methods

The principles derived from symmetry methods, which are outlined below are the subject
the given thesis. Using symmetry methods three different flow cases have been determined.
Further details on this method are thus given in the following chapters.
The necessary symmetry conditions for Reynolds averaged turbulence models have been
formulated in Oberlack (2000b) as follows:

a.) All symmetries of the two-and multi-point correlation equations have to be admitted
by the model equations (necessary but not sufficient condition!).

b.) There should be no additional unphysical symmetries in the model equations also for
dimensionally reduced cases such as those admitting rotational symmetry.

c.) The symmetry conditions (a.) and (b.) have to be admitted by each single model
equation and independent of the momentum and continuity equation.

d.) All invariant solutions implied by the symmetries of the two- and multi-point corre-
lation equations also have to be admitted by the model equations.

Condition (a.) implies independence of the coordinate system, the Galilean invariance
or invariance under a frame rotation since these translations are symmetries of the two-
and multi-point correlation. Coordinate system independence means that the model must
be independent of its expression by a particular set of components. Galilean invariance
implies that the equation should be the same in any two frames of reference that move
with a constant relative velocity.
In second-moment-closure modeling this is usually fulfilled by using the substantial deriva-
tive (2.3) and by allowing the model to depend on the velocity derivatives but not on the
velocity itself. Properly formulated algebraic models should furthermore be invariant un-
der frame rotation, since turbulent motions are most certainly affected by rotation. The
Coriolis acceleration should therefore appear in the closure model.

Condition (b.) emerged from a symmetry analysis of the K − ε model in plane and
axisymmetric parallel shear-flows with rotation. From these test cases Oberlack (2000b)
found that the K− ε model has too many symmetries which are not contained in the two-
and multi-point equations. This obvious shortcoming is further discussed in chapter 7 by
investigating the fully developed rotating pipe flow.

From a symmetry analysis of the K − ε model Khor’kova & Verbovetsky (1995) found
that condition (a.) is usually fulfilled by the most of modern turbulence model equations.
Though the K − ε model apparently admits all necessary symmetries, we find that it is
still incapable to reproduce all invariant solutions which are derived from the symmetries
of the multi-point equations (condition (d.)). A first hint towards this problem is given
in chapter 5 by investigating shear-free turbulent diffusion. This clear contradiction is
further illuminated by the example of the exponential velocity law for the zero-pressure
gradient turbulent boundary layer flow in chapter 6.
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4 Symmetry methods in fluid me-
chanics

4.1 Introduction to symmetry methods

In the winter of 1873-1874 the Norwegian mathematician Sophus Lie (figure 4.1) began
to develop systematically what became his theory of continuous transformation groups,
later called Lie groups. It came to him in the middle of the night. Filled with excitement

Figure 4.1: Sophus Lie 1842 to 1899

he rushed to see his friend Ernst Motzfeldt, woke him up and shouted: ”I have found it,
it is quite simple!”

In order to understand symmetries of differential equations, it is helpful to consider sym-
metries of more simple objects. Roughly speaking, a symmetry of a geometrical object
is a transformation whose action leaves the object apparently unchanged. For instance,
consider the result of rotating a square about its center (see figure 4.2). After a rotation
of π/2 the square looks the same as it did before, so this transformation is a symmetry.
Rotations of π, 3π/2 and 2π are also symmetries of the equivalent square. In fact, rotat-
ing by 2π maps each point to itself and is a symmetry of every geometrical object. This
symmetry is called the trivial symmetry. Furthermore the square can be reflected in the
four axes marked in figure 4.2. Thus the square has eight distinct symmetries.

Considering now differential equations gives the following analogy: the geometrical object
or, in this case the square, corresponds to the differential equation and the virtual change
corresponds to a transformation of variables.

But what are symmetries good for?
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Figure 4.2: A square and its symmetries

There are many ingenious techniques to obtain exact solutions for differential equations,
but most of them only work for a very limited class of problems. Symmetry methods pro-
vide a very useful tool to analyze and to derive systematically exact solutions of differential
equations. They can thus be used for

a.) The reduction of ordinary differential equations (ode) (complete solution possible, if
there are enough symmetries).

b.) The similarity reduction of a partial differential equations (pde).

c.) The transformation of a non-linear pde to a linear pde if special symmetries are
admitted by the original pde.

d.) The mapping of a linear pde with non constant coefficients to a pde with constant
coefficients.

e.) The constitution of conservation laws.

f.) The derivation of equations from symmetries.

In the following the basic idea of symmetry methods will be explained. For a detailed
description of the method see for example Bluman & Kumei (1989), Olver (1986), or
Ibragimov (1995a, 1995b and 1996).

4.1.1 Symmetries of differential equations

For the definition of symmetries some abridging notations have to be introduced.

x and y denote vectors of the length m and n. The derivation of y with respect to x of
the order of p can be abbreviated by

yk,j1j2...jp =
∂pyk

∂xj1∂xj2 . . . ∂xjp
. (4.1)
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All derivatives of a given order p are combined to new vectors, which are reduced to

y
1
=
[
yk,jp

]
, y

2
=
[
yk,jpjq

]
, y

3
=
[
yk,jpjqjr

]
, . . .

with k = 1, . . . ,m and jp, jq, jr, · · · = 1, 2, . . . , n. (4.2)

The brackets denote a listing of all possible combinations of k, jp, jq and jr, which delates
for higher derivatives.

According to the analogy between geometrical objects and differential equations given in
section (4.1) a symmetry is a transformation under which a system of differential equations
does not change its functional form. Thus one has to find a transformation

x̄ = φ(x,y) and ȳ = ψ(x,y), (4.3)

such that the following equivalence holds for (4.3)

F

(
x,y,y

1
,y
2
, . . . ,y

p

)
= 0 ⇔ F

(
x̄, ȳ, ȳ

1
, ȳ
2
, . . . , ȳ

p

)
= 0, p = 1, 2, · · · . (4.4)

As an immediate result we find that a symmetry maps a solution to a new solution.
In the following we will confine on transformations, which depend on an arbitrary, con-
tinuous parameter ε ∈ R of the form

x̄ = φ(x,y; ε) and ȳ = ψ(x,y; ε). (4.5)

These symmetries constitute continuous transformation groups called Lie groups, which
allow the construction of analytic solutions. Thus the transformations obey the require-
ment to have group properties which are:

a.) Any combination of two transformations Tε3x = Tε2Tε1x is a new transformation
where Tεi ∈ GT (closure).

b.) A transformation exists I ∈ GT , such that ITεx = TεIx = Tεx (unitary element).

c.) Any transformation GT possesses an inverse element, such that T−1
ε Tεx = TεT

−1
ε x =

Ix = x (inverse element).

d.) Any three transformations Tεi ∈ GT , i = 1, 2, 3 possess the property Tε1(Tε2Tε3)x =
(Tε1Tε2)Tε3x (associativity).

We do now a Taylor series expansion in ε of the transformation groups (4.5). Assuming
that the identity transformation corresponds to ε = 0:

x̄ = φ(x,y, ε = 0) = x and ȳ = φ(x,y, ε = 0) = y, (4.6)

and with the introduction of the infinitesimals ξ and η for terms of the order O(ε) one
obtains:

x̄i = xi + ξi(x,y)ε+O(ε2) and ȳm = ym + ηm(x,y)ε+O(ε2). (4.7)
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The global form of the transformations (4.5) can be received from the corresponding
infinitesimals by integrating the first order system:

dx̄i
dε

= ξi(x̄, ȳ) and
dȳm
dε

= ηm(x̄, ȳ), (4.8)

with the initial conditions:

ε = 0 : x̄i = xi and ȳm = ym. (4.9)

In order to write the symmetry condition (4.4) into infinitesimal form we implement (4.7)
into the right hand side of (4.4) and expand with respect to ε to obtain

F

(
x,y,y

1
,y
2
, . . . ,y

p

)
+ εX(p)F

(
x,y,y

1
,y
2
, . . . ,y

p

)

+
ε2

2

[
X(p)

]
F

(
x,y,y

1
,y
3
, . . . ,y

p

)
+O(ε2) = 0,

(4.10)

whereby the operator X (p) is given by

X(p) = ξi
∂

∂xi
+ ηj

∂

∂yj
+ ζj;i1

∂

∂yj,i1
+ · · ·+ ζj;i1i2...ip

∂

∂yj,i1i2...ip
, (4.11)

being called prolongation of the generator

X = ξi
∂

∂xi
+ ηj

∂

∂yj
(4.12)

of order p. In (4.11) ζj;i1i2...ip is defined according to

ζk;i =
Dηk
Dxi
− yk,m

Dξm
Dxi

and

ζk;i1...is =
Dξk;i1...is−1

Dxis
− yk,mi1...i:s−1

Dξm
Dxis

, for s > 1,

(4.13)

with

D
Dxi

=
∂

∂xi
+ yk,i

∂

∂yk
+ yk,ij

∂

∂yk,j
+ · · · . (4.14)

Details on the derivation of (4.13) and (4.14) may be taken from Bluman & Kumei (1989).
With (4.4) the final symmetry condition may be written in infinitesimal form as

[(X)F ]
∣∣
F=0

= 0. (4.15)

From this an overdetermined system of linear homogeneous differential equations is re-
ceived. This is called determining system. The system can then be solved for the infinites-
imals ξ and η. Using Lie’s differential equations (4.8) and (4.9) the infinitesimals can be
used to derive the global transformations.

It is quite laborious to calculate the determining system by hand. Thus the determining
systems, which have been used for the calculations in the given thesis have all been
calculated with the Maple package desolv r5 by Carminati & Vu (2000).
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4.1.2 Invariant solutions

It is possible to derive invariant solutions from the symmetries of a differential equation.
y = Θ(x) is an invariant solution of a differential equation if (y −Θ(x)) is an invariant
function with respect to X and if y = Θ(x) is a solution of the differential equation.
Therewith we receive

[y −Θ(x)] = 0 with y = Θ(x). (4.16)

Expanding the derivatives in (4.16) by employing X according to (4.12) we obtain the
hyperbolic system

ξk(x,Θ)
∂θl
∂xk

= ηl(x,Θ) (4.17)

and the corresponding characteristic equation

dx1
ξ1(x,Θ)

=
dx2

ξ2(x,Θ)
= · · · = dxm

ξm(x,Θ)
=

dy1
η1(x,Θ)

=
dy2

η2(x,Θ)
= · · · = dyn

ηn(x,Θ)
.(4.18)

Solving the characteristic equation one receives the new variables. Therefore it is sugges-
tive to take them−1 solutions of them equations on the left hand side as new independent
variables. Each term of the n terms on the right hand side can be set equal to one of the
m terms on the left hand side. The solution of this equation might then be taken as new
dependent variable. Due to this procedure the set of independent variables in the original
pde reduces at least by one.

Generating invariant solutions, symmetries are partly broken due to extern conditions.
Thus special boundary or initial conditions are given, which are not conform with certain
transformations.
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4.2 Symmetries of the Navier-Stokes and Euler equations

The Euler equations (ν = 0) in a non-rotating frame admit the ten-parameter symmetry
group

X1 =
∂

∂t
,

X2 = xi
∂

∂xi
+ uj

∂

∂uj
+ 2p

∂

∂p
,

X3 = t
∂

∂t
− ui

∂

∂ui
− 2p

∂

∂p
,

X4 = −x2
∂

∂x1
+ x1

∂

∂x2
− u2

∂

∂u1
+ u1

∂

∂u2

X5 = −x3
∂

∂x2
+ x2

∂

∂x3
− u3

∂

∂u2
+ u2

∂

∂u3

X6 = −x3
∂

∂x1
+ x1

∂

∂x3
− u3

∂

∂u1
+ u1

∂

∂u3

X7 = f1(t)
∂

∂x1
+

df1(t)

dt

∂

∂u1
− x1

d2f1(t)

dt2
∂

∂p
,

X8 = f2(t)
∂

∂x2
+

df2(t)

dt

∂

∂u2
− x2

d2f2(t)

dt2
∂

∂p
,

X9 = f3(t)
∂

∂x3
+

df3(t)

dt

∂

∂u3
− x3

d2f3(t)

dt2
∂

∂p
,

X10 = f4(t)
∂

∂p
,

(4.19)

whereby f1(t)-f3(t) are at least twice differentiable functions of time. f4(t) is an arbitrary
function of time.

The Euler equations have an additional symmetry if restricted to a two dimensional flow
with

u = u(x1, x2, t) and p = p(x1, x2, t), (4.20)

and the condition
∂u1
∂x3

=
∂u2
∂x3

=
∂u3
∂x3

=
∂p

∂x3
= 0, (4.21)

is introduced. This additional symmetry was sometimes called “2D material frame indif-
ference” (2dmfi) and is in infinitesimal form

X2DMFI = tx2
∂

∂x1
− tx1

∂

∂x2
+ (x2 + u2t)

∂

∂u1
− (x1 + u1t)

∂

∂u2
+ 2ψ

∂

∂p

with u1 =
∂ψ

∂x2
and u2 = −

∂ψ

∂x1
,

(4.22)

whereby ψ is the two-dimensional stream function.
Another extra symmetry of the Euler equations is received due to a restriction to ax-
isymmetric flows. Thus we write the flow equations in a cylindrical coordinate system
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with the coordinates r, φ and z and the corresponding velocities ur, uφ and uz. The flow
is axisymmetric if the velocity components and the pressure are independent of φ. The
equations are then given by

∂ur
∂t

+ ur
∂ur
∂r

+ uz
∂ur
∂z
−
u2φ
r

+
∂p

∂r
= 0,

∂uφ
∂t

+ ur
∂uφ
∂r

+ uz
∂uφ
∂z

+
uruφ
r

= 0,

∂uz
∂t

+ ur
∂uz
∂r

+ uz
∂uz
∂z

+
∂p

∂z
= 0,

∂ur
∂r

+
ur
r

+
∂uz
∂z

= 0.

(4.23)

It is interesting to see that these equations admit an additional symmetry of the form

X12 = −
1

r2uφ

∂

∂uφ
+

1

r2
∂

∂p
. (4.24)

With the help of Lie’s differential equations the symmetries (4.19), (4.22) and (4.24) may
be written in global form

T1 : t
∗ = t+ a1 , x∗ = x , u∗ = u , p∗ = p,

T2 : t
∗ = t , x∗ = ea2x , u∗ = ea2u , p∗ = e2a2p,

T3 : t
∗ = ea3t , x∗ = x , u∗ = e−a3u , p∗ = e−2a3p,

T4 − T6 : t∗ = t , x∗ = a · x , u∗ = a · u , p∗ = p,

T7 − T9 : t∗ = t , x∗ = x+ f(t) , u∗ = u+
df

dt
, p∗ = p− x · d

2f

dt2
,

T10 : t
∗ = t , x∗ = x , u∗ = u , p∗ = p+ a7f4(t)

(4.25)

and

T11 : t
∗ = t, x∗1 = x1 cos(a8t)− x2 sin(a8t), x∗2 = x1 sin(a8t) + x2 cos(a8t),

u∗1 = u1 cos(a8t)− u2 sin(a8t)− a8x1 sin(a8t)− a8x2 cos(a8t),
u∗2 = u1 sin(a8t) + u2 cos(a8t) + a8x1 cos(a8t)− a8x2 sin(a8t),

p∗ = p+ 2 a8

∫

Q

(u2dx1 − u1dx2) +
1

2
a28(x

2
1 + x22),

(4.26)

and

T12 : t
∗ = t, r∗ = r, z∗ = z , u∗r = ur , u

∗
φ = ±(u2φ − 2ar−2)

1
2 ,

u∗z = uz, p
∗ = p+ ar−2,

(4.27)

whereby a1-a8 are the group parameter, a is a constant rotation matrix with the proper-
ties a ·aᵀ = aᵀ ·a = I and |a| = 1 and f(t) = (a4f1(t), a5f2(t), a6f2(t))

ᵀ, respectively f4(t)
fulfill the properties mentioned in (4.19).
Only the additional two dimensional symmetry of the Euler equations has a pendant in
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flows involving friction.
It is much easier to identify the physical meaning of the symmetries from the global form
than from the infinitesimal form:
The symmetry T1 describes a translation in time.
The symmetries T2 and T3 are scalings of space and time.
The transformations T4-T6 describe the invariance of the equations with respect to a finite
rotation of the coordinate system.
The symmetries T7-T9 comprise the translation invariance with respect to space for con-
stant f1-f3 as well as the classical Galilei invariance, if f1-f3 are linear functions of time.
The symmetry T10 describes the invariance of the equation with respect to the addition
of an arbitrary time dependent function to the pressure.
The global form of the 2dmfi respectively T11 reveals that the rotation of a two-dimensional
flow does not change the flow if the rotation rate is constant and the rotation is around
the axis of independence.
The symmetry T12 may be interpreted as a non-linear combination of the potential vortex
with a given solution of the system. This may even the trivial solution for uφ which leads
to a simple potential vortex for u∗φ.

Considering the Navier-Stokes equations, thus adding the molecular viscosity we receive
modified symmetry properties. Thereby two cases corresponding to a constant and a
variable molecular viscosity can be distinguished.

First the case
ν = const (4.28)

will be described. For this case we have similar symmetries as for the Euler equations. We
receive a nine-parameter group of symmetries, which corresponds to the eight symmetries
X1 and X4-X10 of the Euler equations and a ninth symmetry which is a recombination of
the two scaling symmetries X2 and X3, given by:

X23 = 2t
∂

∂t
+ xi

∂

∂xi
− uj

∂

∂uj
+ 2p

∂

∂p
. (4.29)

The 2dmfi (4.22) maintains its form under the assumption of a constant viscosity and
hence also the global form (4.26) is retained. Symmetry (4.29) is in global form

T9 : t∗ = e2a6t , x∗ = ea6x , u∗ = e−a6u , p∗ = e−2a6p. (4.30)

A more general approach is received, if the viscosity is considered as further independent
variable. Then we receive the symmetries

X1 = g1(ν)
∂

∂t
,

X2 = g2(ν)

[
xi

∂

∂xi
+ uj

∂

∂uj
+ 2p

∂

∂p
+ 2ν

∂

∂ν

]
,

X3 = g3(ν)

[
t
∂

∂t
− ui

∂

∂ui
− 2p

∂

∂p
− ν ∂

∂ν

]
,
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X4 = g4(ν)

[
−x2

∂

∂x1
+ x1

∂

∂x2
− u2

∂

∂u1
+ u1

∂

∂u2

]
,

X5 = g5(ν)

[
−x3

∂

∂x2
+ x2

∂

∂x3
− u3

∂

∂u2
+ u2

∂

∂u3

]
,

X6 = g6(ν)

[
−x3

∂

∂x1
+ x1

∂

∂x3
− u3

∂

∂u1
+ u1

∂

∂u3

]
,

X7 = g7(t, ν)
∂

∂x1
+

dg7(t, ν)

dt

∂

∂u1
− x1

d2g7(t, ν)

dt2
∂

∂p
,

X8 = g8(t, ν)
∂

∂x2
+

dg8(t, ν)

dt

∂

∂u2
− x2

d2g8(t, ν)

dt2
∂

∂p
,

X9 = g9(t, ν)
∂

∂x3
+

dg9(t, ν)

dt

∂

∂u3
− x3

d2g9(t, ν)

dt2
∂

∂p
,

X10 = g10(t, ν)
∂

∂p
. (4.31)

And for the 2dmfi with a variable ν

X2DMFI = g11(ν)

[
tx2

∂

∂x1
− tx1

∂

∂x2
+ (x2 + u2t)

∂

∂u1
− (x1 + u1t)

∂

∂u2
+ 2ψ

∂

∂p

]

with u1 =
∂ψ

∂x2
and u2 = −

∂ψ

∂x1
. (4.32)

From a comparison of the symmetries of the Euler (4.19) and (4.22) and the Navier-Stokes-
equations (4.31) and (4.32) one finds that the structure of the symmetries does not change
if the viscosity is considered as further independent variable. The global symmetries then
correspond to the equations (4.25) and (4.26) with the difference, that the group parameter
have to be multiplied by gi(ν).

4.3 Symmetries of the Bragg-Hawthorne equation

In the following a symmetry analysis of the Bragg-Hawthorne equation, carried out by
Frewer et al. (2005) is presented. This analysis should just be an example to illustrate the
approach to perform symmetry analysis of differential equations.

We discuss the incompressible stationary axisymmetric Euler equations with swirl, for
which we derive via a scalar stream function an equivalent representation, the Bragg-
Hawthorne equation (see Bragg & Hawthorne, 1950). Despite of this obvious equivalence,
we will show that under a local Lie point symmetry analysis the Bragg-Hawthorne equa-
tion exposes itself as not being fully equivalent to the original Euler equations. This is
reflected in the way that it possesses more symmetries than its counterpart. In other
words, a symmetry of the Bragg-Hawthorne equation is in general not a symmetry of the
Euler equations. Not the differential Euler equations but rather a set of integro-differential
equations attain full equivalence to the Bragg-Hawthorne equation. For these intermediate
Euler equations, it is interesting to note that local symmetries of the Bragg-Hawthorne
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equation transform to local as well as to non-local symmetries. On the one hand, this
behavior is in accordance with Zawistowski’s (2001) result, that it is possible for integro-
differential equations to admit local Lie point symmetries. On the other hand, with this
transformation process we collect symmetries which can not be obtained when carrying
out a usual local Lie point symmetry analysis.

4.3.1 Construction of the Bragg-Hawthorne equation

The Euler equations describing the dynamics of an incompressible stationary axisymmet-
ric flow with swirl are appropriately given in cylindrical coordinates as

ur
∂ur
∂r

+ uz
∂ur
∂z
−
u2φ
r

+
∂p

∂r
= 0,

ur
∂uφ
∂r

+ uz
∂uφ
∂z

+
uruφ
r

= 0,

ur
∂uz
∂r

+ uz
∂uz
∂z

+
∂p

∂z
= 0,

∂ur
∂r

+
ur
r

+
∂uz
∂z

= 0.

(4.33)

Where the constant density has been absorbed into the pressure variable. This set of
equations is a system for the unknown functions (ur, uφ, uz, p) depending on the variables
(r, z). The maximal symmetry algebra of these Euler equations in the sense of local Lie
point transformations is spanned by the following five-dimensional basis

X1 =
∂

∂z
,

X2 = r
∂

∂r
+ z

∂

∂z
,

X3 = ur
∂

∂ur
+ uφ

∂

∂uφ
+ uz

∂

∂uz
+ 2p

∂

∂p
,

X4 =
1

uφr2
∂

∂uφ
− 1

r2
∂

∂p
,

X5 =
∂

∂p
. (4.34)

It is to note that through the use of cylindrical coordinates the equations (4.33) show an
explicit dependence on r. In other words, relative to this coordinate the equations are not
autonomous and therefore can not exhibit a translational invariance in radial direction.
In the following we will focus on an alternative representation for the Euler equations
(4.33). Due to the incompressibility and the axisymmetry of the flow, it is possible to
introduce a scalar stream function ψ, such that the continuity equation is satisfied iden-
tically. The definition is

ur = −
1

r

∂ψ

∂z
, and uz =

1

r

∂ψ

∂r
, (4.35)
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being equivalent to the path-independent line integral

ψ − ψ0 =

∫

C

r(uzdr − urdz), (4.36)

where C denotes an arbitrary curve in the (r,z)-plane connecting two-points (r0, z0) and
(r, z). Further, by claiming the unknown function uφ to be an arbitrary function of ψ as

ruφ = C(ψ), (4.37)

it is easily verified that the third equation in (4.33) is satisfied identically as well. Finally
we connect p with the stream function ψ. For this we rewrite the first equation of (4.33)
in terms of the Bernoulli energy function

∂

∂r

[
p+

1

2
(u2r + u2φ + u2z)

]
=

uφ
r

∂

∂r
(ruφ) + uz

∂

∂r
uz − uz

∂

∂z
ur, (4.38)

and likewise for the third equation

∂

∂z

[
p+

1

2
(u2r + u2φ + u2z)

]
= ur(

∂

∂z
ur −

∂

∂r
uz) + uφ

∂

∂z
uφ. (4.39)

Now, by also letting p to be an arbitrary function of ψ in the way that

p+
1

2
(u2r + u2φ + u2z) = H(ψ), (4.40)

both equations (4.38) and (4.39) accumulate into one equation

ψzz + ψrr −
1

r
ψr = r2G(ψ) + F (ψ),

with F (ψ) = − d

dψ

[
1

2
C2(ψ)

]
and G(ψ) =

d

dψ
H(ψ).

(4.41)

Thus without any loss of information the four Euler equations (4.33) can be represented
as a single equation for the stream function ψ depending on (r, z). This equation is called
Bragg-Hawthorne equation or in plasma physics Grad-Shafranov equation (Andreev et al.,
1998). Solving for ψ under an arbitrary choice of (F,G), one can easily construct the
corresponding solutions of the original or primitive variables (ur, uφ, uz, p). This scalar
equation thus fully describes the class of incompressible stationary axisymmetric motions
of an ideal fluid with swirl.
Although the Bragg-Hawthorne equation is a one-to-one derivation from the original Eu-
ler equations, these two systems of pdes are not fully equivalent to each other for all
mathematical investigations. This will be shown in section 4.3.3 under the example of a
local Lie point symmetry investigation. It leads to a behavior that not every symmetry
of equation (4.41) when transformed back to its primitive variables, is also a symmetry
of equations (4.33).
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4.3.2 Symmetry analysis of the Bragg-Hawthorne
equation

This section gives a complete Lie point symmetry analysis of the Bragg-Hawthorne equa-
tion. Complete in the sense that at the end it will be possible to identify the full symmetry
group (4.34) within a set of symmetries admitted by the Bragg-Hawthorne equation.
When performing a local Lie point symmetry analysis on a differential equation with
arbitrary functions like the Bragg-Hawthorne equation

ψzz + ψrr −
1

r
ψr = r2G(ψ) + F (ψ), (4.42)

the aim is to find all possible symmetry algebras for every choice that can be made on
the arbitrary functions (F,G). From the structure of equation (4.42), it is easy to see that
the minimal symmetry algebra is spanned by the single operator X1 = ∂z, irrespective of
the choice for (F,G). Certainly more interesting is to know, for which special choice of F
and G it is possible to gain the maximal symmetry algebra. For that one has to perform
a group-theoretical classification upon equation (4.42). This has been partly done by
Andreev et al. (1998). Partly in the sense that their classification emerged under the
restriction that at least one of the functions F or G had to be non-linear.
The reason why a linear choice of F and G has to be investigated separately from a
non-linear one, is that a Lie point symmetry analysis of equation (4.42) results into the
following classifying relations for (F,G)

(
Fψ
Fψψ

)

ψ

= α, and

(
Gψ

Gψψ

)

ψ

=
α

2
, (4.43)

where α is a constant. Hence, one can only extract information from these two decoupled
relations when the second derivatives of F or G relative to ψ do not vanish. In other words
when at least one of these two functions are non-linear.

Nonlinear case

When the non-linear condition is satisfied (Fψψ 6= 0 or Gψψ 6= 0), the task is to solve
the set of equations (4.43) for the functions (F,G). Since these classifying relations can
be solved in the most general way, it is not necessary to simplify their structure by
constructing equivalence transformations for the Bragg-Hawthorne equation (4.42), as it
was done by Andreev et al. (1998). Furthermore, since the classifying relations are part of
the determining system of the underlying symmetry analysis, they must be solved in such
a way that their solutions do not induce contradictions to the rest of the determining
system. Following that condition will lead to three different classes of local symmetry
algebras which are distinguished by the following choices of α

α = 0 : F (ψ) = γ1e
ψ/β, G(ψ) = γ2e

2ψ/β, with β 6= 0,

{Y1 =
∂

∂z
; Y2 = r

∂

∂r
+ z

∂

∂z
− 2β

∂

∂ψ
},
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α ∈ � \{0} : F (ψ) = γ1(ψ + β)1+1/α, G(ψ) = γ2(ψ + β)1+2/α,

{Y1 =
∂

∂z
; Y2 = r

∂

∂r
+ z

∂

∂z
− 2α(ψ + β)

∂

∂ψ
},

α = −1
4
: F (ψ) = γ1(ψ + β)−3, G(ψ) = γ2(ψ + β)−7,

{Y1 =
∂

∂z
; Y2 = r

∂

∂r
+ z

∂

∂z
+ 1

2
(ψ + β)

∂

∂ψ
;

Y3 = rz
∂

∂r
+ 1

2
(z2 − r2) ∂

∂z
+ 1

2
z(ψ + β)

∂

∂ψ
}, (4.44)

where the set (β, γ1, γ2) are arbitrary constants. When the functions (F,G) are fixed as in
the last part of (4.44) we obtain the maximal symmetry algebra based on a local Lie point
transformation of the Bragg-Hawthorne equation (4.42). Such a size comparison between
different classes of symmetry algebras fail, when it comes down to the pure linear case,
for which a corresponding symmetry analysis will lead in general to infinite dimensional
algebras.

Linear case

If the functions (F,G) are fixed in the most general way as

F (ψ) = c1ψ + a, and G(ψ) = c2ψ + b, (4.45)

a proper local Lie point symmetry analysis of the Bragg-Hawthorne equation will be as
complicated as solving the equation itself. Trying to solve for the infinitesimals of the
symmetry group or to get the general solution of ψ itself always leads to complicated
integrals over Whittaker functions. For these functions no analytical nor a numerical
theory exists for calculating such quantities properly. In the appendix B an analytical
attempt on how to find the general solution of the linear Bragg-Hawthorne equation is
shown.
For our purposes in the next section, it is fully sufficient to look at the most simple
specification: c1= c2= 0. There we will show that already within this special symmetry
group, together with the symmetry groups of the non-linear case, the full symmetry group
(4.34) of the Euler equations can be identified. Performing a local Lie point symmetry
analysis on equation

ψzz + ψrr −
1

r
ψr = br2 + a, (4.46)

results into the following infinite dimensional symmetry algebra

Y1 =
∂

∂z
,

Y2 = r
∂

∂r
+ z

∂

∂z
+ (az2 + 1

2
br4)

∂

∂ψ
,

Y3 = 2r
∂

∂r
+ 2z

∂

∂z
+ (3

2
az2 + 7

8
br4 + ψ)

∂

∂ψ
,
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Y4 = 2rz
∂

∂r
+ (z2 − r2) ∂

∂z
+ (1

2
az3 + 7

8
zbr4 + zψ)

∂

∂ψ
,

Y5 = φ(r, z)
∂

∂ψ
, with φzz + φrr − 1

r
φr = 0. (4.47)

Making use of the method of separation of variables the general solution of φ in the
radial coordinate can be expressed as Bessel functions (Abramowitz & Stegun, 1968).
For our purposes again it’s sufficient to simplify the symmetry algebra (4.47) down to a
five-dimensional algebra by fixing φ to the trivial solution φ(r, z) = 1.

4.3.3 Symmetry identification

In this section we identify the full symmetry group (4.34) of the Euler equations within
the set of symmetries obtained in the previous section for the Bragg-Hawthorne equation.
There we have listed eight distinct local symmetries

F, G arbitrary : Y1 =
∂

∂z
,

F ∼ eψ/β, G ∼ e2ψ/β : Y2 = r
∂

∂r
+ z

∂

∂z
− 2β

∂

∂ψ
,

F ∼ (ψ + β)1+1/α, G ∼ (ψ + β)1+2/α : Y3 = r
∂

∂r
+ z

∂

∂z
− 2α(ψ + β)

∂

∂ψ
,

F ∼ (ψ + β)−3, G ∼ (ψ + β)−7 : Y4 = rz
∂

∂r
+ 1

2
(z2 − r2) ∂

∂z
+ 1

2
z(ψ + β)

∂

∂ψ
,

F = a, G = b : Y5 = r
∂

∂r
+ z

∂

∂z
+ (az2 + 1

2
br4)

∂

∂ψ
,

Y6 = 2r
∂

∂r
+ 2z

∂

∂z
+ (3

2
az2 + 7

8
br4 + ψ)

∂

∂ψ
,

Y7 = 2rz
∂

∂r
+ (z2 − r2) ∂

∂z

+ (1
2
az3 + 7

8
zbr4 + zψ)

∂

∂ψ
,

Y8 =
∂

∂ψ
. (4.48)

When these eight Bragg-Hawthorne symmetries in terms of the scalar stream function ψ
are transformed back to the primitive variables (ur, uφ, uz, p) of the Euler equations, they
gain the following structure

Z1 =
∂

∂z
,

Z2 = r
∂

∂r
+ z

∂

∂z
− 2
[
ur

∂

∂ur
+ uφ

∂

∂uφ
+ uz

∂

∂uz
+ 2p

∂

∂p

]
,

Z3 = r
∂

∂r
+ z

∂

∂z
− (2α + 2)

[
ur

∂

∂ur
+ uφ

∂

∂uφ
+ uz

∂

∂uz
+ 2p

∂

∂p

]
,
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Z4 = rz
∂

∂r
+

1

2
(z2 − r2) ∂

∂z
−
(
3

2
zur − ruz +

ψ + β

2r

)
∂

∂ur
− 3

2
zuφ

∂

∂uφ

−
(
3

2
zuz + rur

)
∂

∂uz
+

(
ψ + β

2r
ur − 3zp

)
∂

∂p
,

Z5 = r
∂

∂r
+ z

∂

∂z
−
(
2ur +

2az

r

)
∂

∂ur
−
(
uφ +

abr2

2uφ
+
a2z2

r2uφ

)
∂

∂uφ
− (2uz − 2br2)

∂

∂uz

+

(
2u2r + u2φ + 2u2z +

2az

r
ur +

a2z2

r2
− 2br2uz +

1

2
abr2 + abz2 +

1

2
b2r4

)
∂

∂p
,

Z6 = 2r
∂

∂r
+ 2z

∂

∂z
−
(
3ur +

3az

r

)
∂

∂ur
−
(
2uφ +

7

8

abr2

uφ
+

3
2
a2z2 + aψ

r2uφ

)
∂

∂uφ

+

(
7

2
br2 − 3uz

)
∂

∂uz
+

(
3u2r + 2u2φ + 3u2z +

3az

r
ur +

3
2
a2z2 + aψ

r2
− 7

2
br2uz

+
7

8
abr2 +

3

2
abz2 +

7

8
b2r4 + bψ

)
∂

∂p
,

Z7 = 2rz
∂

∂r
+ (z2 − r2) ∂

∂z
−
(
3zur +

3az2

2r
+

7

8
br3 +

ψ

r
− 2ruz

)
∂

∂ur

−
(
2zuφ +

7

8
z
abr2

uφ
+

1
2
a2z3 + azψ

r2uφ

)
∂

∂uφ
+

(
7

2
zbr2 − 3zuz − 2rur

)
∂

∂uz

+

(
3zu2r + 2zu2φ + 3zu2z +

3az2

2r
ur +

1
2
a2z3 + azψ

r2
− 7

2
zbr2uz

+
7

8
zabr2 +

7

8
br3ur +

ψ

r
ur +

1

2
abz3 +

7

8
zb2r4 + zbψ

)
∂

∂p
,

Z8 = − a

r2uφ

∂

∂uφ
+
(
b+

a

r2

) ∂

∂p
, (4.49)

where ψ is the path-independent line integral as given in (4.36). Due to this ψ-dependence
the three operators Z4, Z6 and Z7 will generate non-local symmetries. The rest of this set
represent local symmetries in the sense of Lie point group transformations. On inspection
we recognize the full symmetry group (4.34) of the Euler equations as the following subset

{Z1 = X1 ; Z
α=−1
3 = X2 ;

1
2
(Zα=−1

3 − Z2) = X3 ; Z
(a,b)=(−1,0)
8 = X4 ; Z

(a,b)=(0,1)
8 = X5 }.

The rest of the set (4.49) represent no symmetries of the Euler equations. In other words,
the Bragg-Hawthorne equation (4.42) admits more symmetries than the Euler equations
(4.33) do. This statement is easily traceable if one for example looks at the local symmetry
Z5. It cannot be a symmetry of the Euler equations, since its maximal local symmetry
group is already fixed by (4.34). What is the reason for this different behavior, if appar-
ently the Bragg-Hawthorne equation was obtained without any loss of information from
the Euler equations? Shouldn’t they be equivalent and therefore admit the same set of
symmetries? A reasonable explanation is that equations (4.33) are a fully unsolved system
of the four unknown functions (ur, uφ, uz, p), while the Bragg-Hawthorne equation (4.42)
implicitly represents a partially solved system for (uφ, p). This is reflected in the arbitrary
functions (F,G), which are to be seen as pde integration functions for (uφ, p). But exactly
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this is a crucial condition for a symmetry analysis of differential equations, since such an
investigation strongly depends on the number of equations involved.
So what are the fully equivalent equations in terms of the primitive variables for the
Bragg-Hawthorne equation?

4.3.4 Intermediate Euler equations

Following the same procedure as for the construction of the Bragg-Hawthorne equation,
we start again with the Euler equations (4.33) and rewrite the first and third equation
equivalently as (4.38) and (4.39) respectively. When substituting the expressions (4.37)
and (4.40) into these two equations and using the scalar stream function in the definition
of (4.36), we obtain the following equivalent set of integro-differential equations for the
two unknown functions (ur, uz)

1

r

∂

∂r
(rur) +

∂

∂z
uz = 0,

∂

∂r
uz −

∂

∂z
ur =

1

r
F (ψ) + rG(ψ), (4.50)

where (F,G) are arbitrary functions depending on the path-independent line integral
ψ = ψ(r, z) as given in (4.36). Fixing a choice for F (ψ) and G(ψ), the above system (4.50)
can be solved for the unknowns (ur, uz), at least theoretically. Then the corresponding
solutions for the azimuthal velocity and the pressure are given by

uφ = ±1

r

√
−2
∫
F (ψ)dψ,

p =

∫
G(ψ)dψ − 1

2
(u2r + u2φ + u2z). (4.51)

From now on we will call the set of equations (4.50) together with the solutions (4.51) the
intermediate Euler equations. By construction they are on the one hand equivalent to the
Euler equations. As stated above the second and fourth equation of (4.33) accumulate into
the second equation of (4.50), while the third equation of (4.33) is satisfied identically by
the solution of uφ given in (4.51). On the other hand, the intermediate Euler equations are
also equivalent to the Bragg-Hawthorne equation. Applying definition (4.35) will satisfy
the continuity equation in (4.50) identically, while the second equation changes to (4.42).
But on the basis of a Lie point symmetry analysis, only the Bragg-Hawthorne equation
is fully equivalent to the intermediate Euler equations. The reason is that a Lie symme-
try analysis is highly sensitive to the number of equations being investigated. The Euler
equations represent an unsolved systems for four unknown functions (ur, uφ, uz, p), while
the Bragg-Hawthorne and the intermediate Euler equations represent an unsolved system
in only two unknown functions (ur, uz) — the Bragg-Hawthorne equation represents it
implicitly, while the intermediate Euler equations represent it explicitly. This full equiva-
lence between the Bragg-Hawthorne and the intermediate Euler equations expresses itself
in the way that all the distinct symmetries Zi listed in (4.49) relative to the variables
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(r, z, ur, uz) are admitted by the integro-differential system (4.50).
Interesting to note is that this integro-differential system exhibits local symmetries like
Z1, Z2 or Z3. Normally for an integro-differential equation one would expect only non-
local symmetries like Z4, since they usually describe non-local features of a system. The
fact that the integro-differential (4.50) equation admits local Lie point symmetries is fully
consistent with the results found by Zawistowski Zawistowski (2001). He showed that it
is possible to apply a local Lie point symmetry analysis to integro-differential equations.
In the case of integro-differential equations there is no need for a non-local extension of
a symmetry group. It is sufficient to stay in the same variable space as in the case of
differential equations. This property allows an integro-differential equation to admit local
Lie point symmetries. Through the method proposed by Zawistowski (2001) it is possi-
ble to determine the local symmetries Z1, Z2 or Z3 directly by applying a local Lie point
analysis onto the integro-differential system (4.50). The insight that an integro-differential
equation can exhibit local Lie point symmetries was gained here by the process of finding
the fully equivalent equations for the Bragg-Hawthorne equation in primitive variables.
On the other hand we know from the investigations of Ibragimov (1995b) that for differen-
tial equations it is also possible to admit non-local symmetries, which cannot be obtained
by a direct Lie point symmetry analysis. For the choice of constant arbitrary functions
F (ψ) = a and G(ψ) = b, the integro-differential equations (4.50) turn into a system of
pure differential equations for the unknowns (ur, uz). The transformation process from
the Bragg-Hawthorne to the intermediate Euler equations shows how the local symmetry
Y7 gives rise to a non-local symmetry Z7 within differential equations. In other words,
one clearly sees how a non-local symmetry for a differential system is generated implicitly
from a local Lie point analysis.
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5 Shear-free turbulent diffusion

The investigations on shear-free turbulent diffusion using symmetry methods have been
carried out by Oberlack & Guenther (2003). The investigations on turbulent diffusion in
a rotating frame have been published in Guenther et al. (2004).

5.1 Introduction

We reconsider the problem of shear-free turbulent diffusion with no production due to
a mean-velocity gradient. Turbulence is generated at the plane x1 = 0 and diffuses in
the direction x1 > 0. Turbulence is homogeneous in the x2-x3 plane. Experimentally this
problem is investigated by a plane vibrating grid in a sufficiently large tank. In order to
produce a reasonable high degree of turbulence the grid is usually vibrating in the x1
direction at a sufficiently small amplitude but at a large frequency. The flow geometry is
given in figure (5.1) This is a classical problem which has been treated both experimentally

k

x3

x1

x2

u

Figure 5.1: Flow geometry

and theoretically by several authors. It has long been known that in this classical case the
turbulent kinetic energy behaves according to

K ∼ x−n1 .

Essentially all Reynolds averaged models such as two-equation or Reynolds stress trans-
port models are compatible with this finding. Model constants determine the value of n.
In reverse, the measured value of n may be used to determine the model constants (see
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e.g. Chen & Jaw, 1989). Sometimes the exponent is used to determine the diffusion coef-
ficient in the Reynolds stress or the turbulent kinetic energy equation, since other model
parameters are determined by homogeneous or near-wall flows.

A broad variety of experiments both with one and two grids have been conducted. Exper-
iments with one grid were for example conducted by Shy & Beidenthal (1991), Fernando
& De Silva (1993), De Silva & Fernando (1994) or Srdic et al. (1996) investigating the
spatial decay behavior, as well as other influencing parameters such as stratification. The
numerical values for n found therein vary in the range of 0.86 to 1.5. Two parallel grids
in opposite configuration were primarily used to produce a relatively large region of weak
turbulence variation or in other words to generate nearly isotropic turbulence. Extensive
experiments of this kind were for example conducted by Shy et al. (1997) or Mann et al.
(1999) to name only a few. Also direct numerical simulations were for example carried
out by Briggs et al. (1996) determining a value for n in the range given above.

It is the simplicity of the problem which makes it attractive to also theoretically investigate
it. Any scalar statistical equation, such as the one for the turbulent kinetic energy or the
dissipation of turbulent kinetic energy only contains three terms: an unsteady term, a
destruction term, and a diffusion term. The latter two have to be modeled. However,
since there is no mean flow in the problem, no production term is contained. Since usually
a plane problem is studied the general model equations reduce to a simplified form with
one spatial coordinate and time.

Aiming to analyze unsteady flows of this type the problem was reconsidered by Lele
(1985) raising the question whether a turbulent diffusion-wave exists by investigating two
equation models such as the K-ε model. Unfortunately, the non-local transformation he
suggested did not lead to the simplification as it was intended to do. Still, and this will be
shown in section 5.4.2, the suggested transformation has its validity for steady problems.
In this case, it leads to the proposed linearization of the model equation. Hence, a complete
analytic solution is admitted for the K-ε model. Since this solution has not been obtained
from classical symmetry methods it can be concluded that the model equations admit
additional hidden symmetries.

In a series of papers Cazalbou and collaborators (Cazalbou & Bradshaw, 1993; Cazalbou
et al., 1994; Cazalbou & Chassaing, 2001, 2002) analyzed turbulent diffusion investigating
turbulence models at the edge of turbulent flows as well as the present problem of grid-
turbulence. For the latter problem it was recognized in Cazalbou & Chassaing (2002) that
for certain model constants the latter algebraic decay changes to an exponential decay.
Two-equation and Reynolds stress transport models were analyzed using the algebraic
decay law and an unsteady extension of it. It was shown that depending on the specific
model different decay rates and anisotropy levels are obtained.
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5.2 Large- and small-scale expansion of the multi-point

correlation equations for shear-free turbulent diffu-

sion

For the derivation of invariant solutions of shear-free turbulent flows below we need to
investigate the symmetry properties of the multi-point correlation mpc equations (see
section 2.3). In Oberlack (2000a) it is shown that all known symmetry groups of the
Euler and Navier-Stokes equations are linear (see e.g. Ibragimov, 1995a,b, 1996) and
hence uniquely map to a set of new symmetries for the mpc equations.

At this point we may discuss boundary conditions (bc) on the two-point (tp) quantities.
From its basic definitions any quantity in (2.26) will become zero on a solid wall due
to non-slip bc u′i = 0. For any tp quantity we also have to specify the bc in r-space.
Considering a turbulent flow in infinite space any tp quantity, such as Rij becomes zero for
|r| → ∞. In one of the present cases also periodic bc will be invoked such as Rij(r2, r3) =
Rij(r2+a, r3+a) to be specified in section 5.3.2. In principle, no bcs need to be specified
at r = 0 since the values are determined during the solution process. However, in some
problems the limit limr→0Rij = u′iu

′
j needs to be invoked if for example Reynolds stresses

are specified on bcs as is the case for all the present flows at the vibrating grid. Also, if
mean flows are considered there is a direct coupling to the momentum equation which,
however, is a one-way coupling.

A general problem with bc in the context of similarity solutions and its generalizations
invariant solutions, derived from Lie group theory is the fact that they are special solu-
tions. For most non-linear partial differential equations (pde) these are the only analytic
solutions that may be obtained. Hence arbitrary bc may not be imposed. Still, even if ar-
bitrary bcs may not be invoked employing different symmetry groups for the construction
of the solution allows at least a small number of different solutions to be shown below.
These solutions are determined by global constrains, stemming from scaling groups other
than classical bcs.

For the understanding of large Reynolds number turbulent flows it is important to note
that the Euler equations admit one more scaling group compared to the Navier-Stokes
equations (see section 4.2). It is in particular this additional scaling group which is crucial
to understand turbulent scaling laws.

In order to “recover” this additional scaling group though the mpc equations contain
viscosity we have to adopt these equations in a form derived from a singular asymptotic
expansion, first suggested in Oberlack (2000a). Therein it was proven that, similar to
the laminar boundary layer equations we may separate the correlation equations into an
inner and outer equation, corresponding to small- and large-scale turbulence. The inner
equations cover the inertial range and the dissipation range. The outer equations include
all large-scales down to the inertial range. The inertial range is the matching region. A
sketch of the asymptotic region in r-space is depicted in figure 5.2.

The following boundary layer type of expansion for small r is based on the turbulent
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Figure 5.2: The asymptotic region in r-space.

Reynolds number

ReT =

√
K`t
ν

, (5.1)

where the integral length-scale `t and the Kolmogorov length scale ηK are respectively
defined as

`t =
1

K

∫

Vr

Rkk
d3r

r2
and ηK =

(
ν3

ε

) 1
4

, (5.2)

whereby Vr describes the volume of integration covering entire R3. K and ε are the tur-
bulent kinetic energy and the dissipation of turbulent kinetic energy.

The outer part of the asymptotic expansion in r-space, that is the domain ηK ¿ r, is
obtained by taking the limit 1/Ret → 0 or ν → 0 in the equations (2.26) yielding for the
two-point correlation equation to

Θi{2} =
D̄Rij

D̄t
+Rkj

∂ūi(x, t)

∂xk
+Rik

∂ūj(x, t)

∂xk

∣∣∣∣
x+r

+ [ūk (x+ r, t)− ūk (x, t)]
∂Rij

∂rk
+
∂p′u′j
∂xi

−
∂p′u′j
∂ri

+
∂u′ip

′

∂rj

+
∂R(ik)j

∂xk
− ∂

∂rk

[
R(ik)j −Ri(jk)

]
+ 2Ωk [ekliRlj + ekljRil] = 0.

(5.3)

It is apparent that the latter equation is not valid in the limit r → 0 since no dissipation
is contained which becomes important as r → ηK .

The inner part of the asymptotic expansion of the correlation function may be obtained
by introducing the singular expansion

Rij(x, r) = u′iu
′
j(x)−Re

− 1
2

t R
(1)
ij (x, r̂)−O(Re

− 3
4

t ),

R(ik)j(x, r) = u′iu
′
ju

′
k(x) +Re

− 3
4

t R
(1)
(ik)j(x, r̂)−O(Re−1

t ),

Ri(jk)(x, r) = u′iu
′
ju

′
k(x) +Re

− 3
4

t R
(1)
i(jk)(x, r̂)−O(Re−1

t ),

with r̂ = Re
3
4
t r

(5.4)
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into (2.26) resulting in the leading order equation

D̄u′iu
′
j

D̄t
+ u′ju

′
k

∂ūi(x, t)

∂xk
+ u′iu

′
k

∂ūj(x, t)

∂xk
− ∂ūk(x, t)

∂xl
r̂l
∂R

(1)
ij

∂r̂k

+

[
∂p′u′j
∂xi

−
∂p′u′j
∂ri

+
∂u′ip

′

∂rj

]∣∣∣∣∣
r=0

+ 2
∂2R

(1)
ij

∂r̂k∂r̂k

+
∂u′iu

′
ju

′
k

∂xk
− ∂

∂r̂k

[
R

(1)
(ik)j −R

(1)
i(jk)

]
+ 2Ωk

[
ekliu′ju

′
l + eklju′iu

′
l

]
= 0.

(5.5)

The pressure velocity correlations p′u′j and u
′
ip

′ are determined by the Poisson equation
and hence are not independent of the velocity correlations.

Comparing the equations (5.3) and (5.5) with boundary layer theory for laminar flows
we find that (5.3) corresponds to the inviscid outer flow while (5.5) is the analog to
the boundary layer equation. In complete resemblance to boundary layer theory where
the pressure-gradient in streamwise direction is determined by the outer inviscid flow we

may compute R
(1)
ij (x, r̂) in (5.5). Therein the quantities u′iu

′
j, u

′
iu

′
ju

′
k, p

′u′j and u′ip
′ are

determined by the outer equations (5.3) by invoking the appropriate limit r = 0. The
only term that has no counterpart in equation (5.3) is the last term in the second line of
equation (5.5) which denotes dissipation.

For the analysis to be carried out in the following section we first investigate the large-
scale equation (5.3) to obtain quantities such as the Reynolds stress tensor. Once this is
acquired we may derive the small-scale quantities such as the dissipation from (5.5).

5.3 Symmetries and invariant solutions of the correlation

equation

Since the mpc equations of different tensor order have similar structure, in the following
we solely present the two-point correlation (tpc) equations. It is important to note that
all results to be presented below are fully consistent with all higher order correlation
functions up to infinite order.

We are primarily interested in large-scale quantities such as the Reynolds stress tensor or
the integral length-scale and hence we adopt the large-scale tpc equation (5.3) which for
the present flow of shear-free diffusion reduces to

∂Rij

∂t
+ δi1

∂p′u′j
∂x1

−
∂p′u′j
∂ri

+
∂u′ip

′

∂rj
+
∂R(i1)j

∂x1

− ∂

∂rk

[
R(ik)j −Ri(jk)

]
+ 2Ωk [ekliRlj + ekljRil] = 0,

(5.6)

extended by the kinematic conditions for the correlation functions derived from the con-
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tinuity equation

δi1
∂R1j

∂x1
− ∂Rij

∂ri
= 0,

∂Rij

∂rj
= 0,

∂u′1p
′

∂x1
−
∂u′jp

′

∂rj
= 0,

∂p′u′i
∂ri

= 0. (5.7)

For a non-rotating frame of reference (Ω = 0) the equations (5.6) and (5.7) admit the
following classical symmetries in generator form

Xsx = x1
∂

∂x1
+ ri

∂

∂ri
+ 2Rij

∂

∂Rij

+ . . . , (5.8)

Xst = t
∂

∂t
− 2Rij

∂

∂Rij

+ . . . , (5.9)

Xx1 =
∂

∂x1
, (5.10)

Xt =
∂

∂t
, (5.11)

where dots denote additional higher order correlation functions which have been omitted.

Employing Lie’s first theorem we may rewrite the symmetries in global form

T̄sx : t∗ = t , x∗1 = ea1x1 , r∗ = ea1r , R∗ = e2a1R , . . . (5.12)

T̄st : t
∗ = ea2t , x∗1 = x1 , r∗ = r , R∗ = e−2a2R , . . . (5.13)

T̄x1 : t
∗ = t , x∗1 = x1 + a3 , r∗ = r , R∗ = R , . . . (5.14)

T̄t : t
∗ = t+ a4 , x∗1 = x1 , r∗ = r , R∗ = R , . . . (5.15)

which respectively correspond to scaling of space, scaling of time, translation in space and
translation in time. The ai’s are the corresponding group parameter. Again dots refer to
the omitted correlation functions.

Note that the equations (5.6) and (5.7) admit additional symmetries, which may not be
employed for the present purpose to derive scaling laws: Galilean invariance, rotation
invariance about x1 and all three reflection groups for Ω = 0. If rotation about x1 is
considered the reflection groups in the x2-x3 plane are not admitted.

From a given set of symmetries we know from basic group theory that also any linear com-
bination of them is a new symmetry. Hence we may combine all of the latter symmetries
and rewrite the resulting symmetry in generator form

X = a1Xsx + a2Xst + a3Xx1 + a4Xt. (5.16)

The latter combined generator may be rewritten to obtain the separated infinitesimals

ξx1 = a1x1 + a3,

ξt = a2t+ a4,

ξrk = a1rk,

ηRij = 2(a1 − a2)Rij,

...
...

... .

(5.17)
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Invoking the condition of an invariant solution we obtain (see e.g. Bluman & Kumei, 1989)

dx1
a1x1 + a3

=
dt

a2t+ a4
=

dr[k]
a1r[k]

=
dR[ij]

2(a1 − a2)R[ij]

= . . . , (5.18)

where indices in brackets indicate no summation. Depending on the scaling group pa-
rameter a1 and a2 we distinguish three different cases. Hence, in the subsequent three
subsections bcs or rather global constrains coming from a1 and a2 for the different cases
are discussed separately.

It is important to note that the invariant solutions (scaling laws) to be derived in the
subsequent sections 5.3.1-5.3.3 are special solutions, having a limited range of applicability
and usually also possess one or more singular points. In order to substantiate this we may
consider the classical logarithmic law of the wall which has singular points, both at y+ = 0
and y+ =∞. Thus we cannot expect to find an analytic law in turbulence which is regular
for the entire region of consideration. Experience shows that the range of applicability is
always sufficiently far away from the singularities. The log-law is for example valid in the
range y+ ∼ 100 up to several thousand depending on the Reynolds number. The same
may hold true here, however the range, where the new scaling laws are valid cannot be
given, since no method is know to determine it.

5.3.1 Turbulent diffusion with spatially growing integral length-scale
(a1 6= 0, a2 6= 0)

Integration of (5.18) leads to a set of invariants which are taken as the new independent
and dependent variables

x̃1 =
x1 + xo

(t+ to)
1/(m+1)

, r̃ =
r

x1 + xo
,

Rij(x1, t, r) = (x1 + xo)
−2mR̃ij(x̃1, r̃) , . . . ,

(5.19)

where xo =
a3
a1
, to =

a4
a2

and

m =
a2
a1
− 1. (5.20)

The value for m is not allocable with the help of bcs since an semi-infinite domain is
considered into which turbulence can propagate and length-scales can evolve freely. This
is for example in contrast to the case in the next section 5.3.2 where there is a limitation
on the length-scale evolution due to periodic bcs.

The mathematical problem of determining m emerges due to the fact, that it is derived
from the scaling group parameter a1 and a2 gathered from the symmetry analysis of the
mpc equations. A major difference between the similarity solution of the mpc equations
and for example Prandtl’s boundary layer equations is that the mpc equations are pdes
while Prandtl’s boundary layer equations are odes. This has important consequences one
of which is that certain parameters such as the scaling exponentmmay not be determined.
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However, this is a well known fact for turbulent scaling laws. Classical examples are the
decay of isotropic turbulence with K ∼ t−n or the logarithmic law of the wall ū+ =
1
κ
ln(y+) + C which are both rigorously derived from the mpc equations (see Oberlack

2001, 2002a and 2002b). Nevertheless, scaling parameters such as the decay exponent n
or the von Kármán constant κ are derived from the Lie group theory but numerical values
cannot be given. A unifying theory for this open problem is still outstanding.

This is in clear contrast to the derivation of invariant solutions of closed systems such
as the Prandtl’s boundary layer equations. From this system Lie group theory leads for
example to the Blasius or the Falkner-Skan solution for the flat or inclined plate where all
flow parameters can be determined. Note that even in this case a full solution cannot be
given and the reduced ordinary differential equations have to be solved numerically. Since
in the present case a reduced but still infinite dimensional system is treated a numerically
solution is not feasible.

Though a unifying theory for the numerical value of the scaling parameter in turbulent
scaling laws are still outstanding the key achievement from Lie group theory is that the
variables (5.19) lead to a similarity reduction of (5.6)/(5.7). From (5.2) and by invoking
the one-point limit in (5.21) we obtain

u′iu
′
j(x1, t) = (x1 + xo)

−2mũ′iu
′
j(x̃1) and

`t(x1, t) = (x1 + xo)˜̀t(x̃1),
(5.21)

where x̃1 is taken from (5.19).

The corresponding dissipation function may immediately be taken from the small-scale
equation (5.5) or even simpler directly from (5.21)

ε(x1, t) = (x1 + xo)
−3m−1ε̃(x̃1), (5.22)

invoking the relation

ε ∼ K3/2

`t
. (5.23)

`t is linearly growing with x1 independent of m. From experiments we usually have m =
0.43 . . . 0.75 such that u′iu

′
j decreases algebraically with the distance from the turbulence

source at x1 = 0. x̃1 is a typical diffusion type of similarity variable such as for the heat
equation.

It is important to note that for the steady problem, that is t → ∞ we can show that all
mpcs such as Rij become independent of x̃1. Correspondingly the similarity variables for

the one-point quantities such as ũ′iu
′
j,

˜̀
t and ε̃ in (5.21) and (5.22) become constants. This

may also directly be derived from (5.18) by omitting the part for the invariant surface
corresponding to t and r.

A sketch of the unsteady and the steady self-similar turbulent diffusion according to (5.21)
is given in figure 5.3.
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A similarity solution of the form (5.21) and (5.22) has already been derived in Cazalbou
& Chassaing (2001) by classical methods using an ansatz function. Cazalbou & Chassaing
suggested a somewhat extended form of x̃1 defined by

η =
δ(t)− z

K3/2(t)/E(t)
.

However, from their results one can easily show that δ(t) ∼ K3/2(t)/E(t) and hence x̃1 is
fully equivalent to η with just a constant offset.

Due to the special character of similarity solutions bcs usually cannot be employed for the
construction of the solution. Nevertheless, bcs may be determined a posteriori once the
similarity solution has been derived. Since this is not a process of constraining something
we do not have bcs in the classical sense. Still in the following we call this a bc of the
present flows having the modified meaning in mind.

In the present case, we need to employ that at the vibrating grid any velocity correlation
is determined. As a result the tpc has to obey the condition

Rij(x1 = 0, t, r = 0) = x−2m
o ũ′iu

′
j

(
xo

(t+ to)
1/(m+1)

)
, (5.24)

taken from (5.19) and (5.21). From the latter we may also derive the bc for the steady
problem which is derived from t→∞ leading to

Rij(x1 = 0, t→∞, r = 0) = x−2m
o ũ′iu

′
j(0)

, (5.25)

which only requires regularity of ũ′iu
′
j at x̃1 = 0. Since no other energy source is imple-

mented on the x1-axis we have

Rij(x1 →∞, t, r) = 0. (5.26)

Finally we have the condition

Rij(x1, t, r →∞) = 0, (5.27)

which reflects the physical fact that velocity fluctuations decorrelate if measured at infinite
separation.

Note, that no bcs need to be imposed for pressure velocity correlations since, continuity
and Poisson equations may be derived for these quantities. Also in an incompressible flow
pressure is a kinematic quantity, which admits the symmetry

t∗ = t , x∗ = x , u∗ = u , p∗ = p+ f(t), (5.28)

which means that the absolute value of p is irrelevant.
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Figure 5.3: Sketch of the temporal evolution of the heat-equation-like turbulent diffusion
process with linearly increasing integral length-scale according to (5.21).

5.3.2 Turbulent diffusion wave at a constant integral length-scale

(a1 = 0, a2 6= 0)

Since from the invariant surface condition (5.18) we can derive invariant solutions for
arbitrary ai’s we may also impose certain symmetry breaking constrains. For the present
case we impose a1 = 0, which according to x∗1 = ea1x1 in (5.12), corresponds to the
symmetry breaking of scaling of space or in other words a1 = 0 amounts to a constant
integral length-scale.

Under this constraint and similar to (5.19) we obtain from (5.18)

x̃1 = x1 − xo ln (t+ to) , r̃ = r, Rij(x1, t, r) = e−2
x1
xo R̃ij(x̃1, r̃), . . . , (5.29)

where xo =
a3
a2

and to =
a4
a2
. From (5.29) together with (5.23) we derive the corresponding

one-point quantities

u′iu
′
j(x1, t) = e−2

x1
xo ũ′iu

′
j(x̃1), `t(x1, t) = ˜̀

t(x̃1)

and ε(x1, t) = e−3
x1
xo ε̃(x̃1) ,

(5.30)

where the variable x̃1 is taken from (5.29).

Similar to subsection 5.3.1 we may consider the corresponding steady case. The similarity

variables of the mpcs for example in (5.29) become independent of x̃1. Similarly, ũ′iu
′
j,

˜̀
t and ε̃ in (5.30) become constants. In particular the integral length-scale becomes a
constant in space as t→∞.

Equation (5.29) or rather (5.30) imply two important results. Due to the symmetry break-
ing of scaling of space, a diffusion-wave type solution is induced with decreasing amplitude
in x1-direction and decreasing wave speed proportional to 1/t as may be taken from x̃1 in
(5.29). Second, the spatial decay behavior in x1-direction has changed from an algebraic
to an exponential function.
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Figure 5.4: Sketch of the temporal evolution of the turbulent diffusion wave at constant
integral length-scale according to (5.30).

Except for the last one, bcs are comparable to the one in the previous subsection. bc
(5.24) changes to

Rij(x1 = 0, t, r = 0) = ũ′iu
′
j (−xo ln (t+ to)) , (5.31)

taken from (5.29) and (5.30). Apparently we have to ensure that the functional behavior

of ũ′iu
′
j is as such that a constant value is approached for t→∞. In other words we need

to have

Rij(x1 = 0, t→∞, r = 0) = ũ′iu
′
j(0)

, (5.32)

where ũ′iu
′
j(0)

is a constant. The third bc (5.26) is the same as for the present case.

The symmetry breaking of scaling of space or in other words the constant integral length-
scale along the x1 direction may be imposed by periodic bcs in the x2-x3 plane that
is

Rij(x1, t, r1, r2, r3) = Rij(x1, t, r1, r2 + c2, r3 + c3). (5.33)

In an experiment such a bc may not be achieved. Still, in a direct numerical simulation
of the Navier-Stokes equations periodic bc may be imposed such that the integral length-
scale cannot grow along x1.

A sketch of the diffusion wave and the corresponding long time behavior is depicted in
figure 5.4.

5.3.3 Turbulent diffusion in a constantly rotating frame (a1 6= 0,
a2 = 0)

In contrast to the previous case we may now consider the symmetry breaking of scaling
of time in (5.13) due to a2 = 0, imposed by an external time-scale given by the frame
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rotation (τ = 1/|Ω|). In the correlation equations (5.3), (5.5) or (5.6) frame rotation is
modeled by invoking a non-zero Ω or to be more specific in the present case Ω1 6= 0.

If the rotation rate Ω1 is considered as further independent variable in the mpc equations
we receive the invariant solutions

x1 = x́1γ(Ω1), ri = ŕiγ(Ω1),

Rij(x1, r) = Ŕij(x́1, ŕ)γ(Ω1)
2Ω2

1,
(5.34)

and corresponding the tp quantities

u′iu
′
j(x1) =

´u′iu
′
j(x́1)γ(Ω1)

2Ω2
1, `t(x1) =

(
1

2

)3/2

´̀
t(x́1)γ(Ω1)

and ε(x1) = έ(x́1)γ(Ω1)
2Ω3

1,

(5.35)

where γ(Ω1) describes an unknown free function which naturally appears due to the group
analysis. Implementing these new dependent and independent variables in the primary
equations, we receive a reduced set of equations. Performing a further Lie group analysis
of these reduced equations we receive the final form of the invariant solutions:

x̃1 =

(
x1

γ(Ω1)
+ xo

)
e−

tΩ1
to , r̃ =

r

x1 + γ(Ω1)xo

Rij(x1, r) = Ω2
1 (x1 + γ(Ω1)x0)

2 R̃ij(x̃1, r̃) ,

(5.36)

where xo =
a3
a1

and to =
a4
a1
.

The one-point quantities are similar to (5.21) and (5.22) with a2 = 0 or rather m = −1
in (5.20) and may be written as

u′iu
′
j(x1) = Ω2

1 (x1 + γ(Ω1)x0)
2 ũ′iu

′
j(x̃1), `t(x1) =

(
1

2

)3/2

(x1 + γ(Ω1)x0) ˜̀(x̃1),

and ε(x1) = Ω3
1 (x1 + γ(Ω1)x0)

2 ε̃(x̃1) ,

(5.37)

where x̃1 is defined in (5.36). Similar to the above case, the steady case corresponds to
the fact that the similarity variables in (5.36) and (5.37) become independent of x̃1.

This is because for the steady case the second time-dependent term of the characteristic
equation (5.18) is absent and therefore no similarity variable such as x̃1 can be identified.
As a result we find that all “˜”-quantities are simply constants of integration.

One may expect that for t → ∞ the unsteady solution converges to the steady solution.
From (5.36) we determine that in this limit we obtain x̃1 = 0. Hence, we may conclude
that all of the “˜”-quantities become constant at x̃1 = 0 since there is no reason to believe
that they admit singular points such as a pole.

The reasoning is based on a rather ”physical” assumption related to the principle problem
that we are dealing with an infinite dimensional set of correlation equations, which cannot
be solved explicitly. Hence we cannot give explicit solutions for the functions R̃ij, R̃ijk and
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Figure 5.5: Sketch of the temporal evolution of the turbulent diffusion on a finite domain
at a constant integral time-scale due to rotation according to (5.37).

so on. As a consequence we have to assume regularity for all “˜” quantities, in particular
at critical points such as x̃1 = 0.

Discussing the spatial dependence of the scaling law (5.37), x̃1 = 0 also corresponds to the
point x1 = −xo. At this point any turbulence quantity approaches zero. Due to physical
reasons an increasing for example of the turbulent kinetic energy K has to be excluded if
there is no additional energy source at x1 > −xo. x1 = −xo appears to be a singular point
since for example the second derivative of u′iu

′
j(x1) may be discontinuous as may be taken

from figure 5.5. We have to recall that turbulent scaling laws usually possess singularities
as has been pointed out above. Close to singularities other effects may become dominant.
For the present case the local Reynolds number becomes small close to x1 = −xo. Hence
there is a possibility that viscous effects may become large however a decisive answer is
beyond the present analysis.

The surprising result for the present case is that even for t → ∞ the turbulent diffusion
only influences a finite domain due to the quadratic behavior of the large-scale turbulence
quantities. bcs for the present case are rather similar to one for the case in subsection
5.3.1. Only condition (5.24) changes to

Rij(x1 = 0, t, r = 0) = x2oũ
′
iu

′
j

(
xoe

− t
to

)
, (5.38)

while the corresponding steady case is identical to (5.25).

From the results of the present subsection parallels can be drawn to Long’s theory on
grid-turbulence in a stably stratified fluid (see Long, 1978 and Fernando & Long, 1983).
Due to the stratification the development of the turbulence perpendicular to the strat-
ification is suppressed, which apparently can also be achieved through system rotation.
Long describes in his work the temporal development of the mixed layer. In case of frame
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rotation the depth of the turbulent layer becomes a constant for t→∞. From a symme-
try point of view stratification imposes an external scale on the turbulent flow, which is
symmetry breaking similar to the time-scale τ = 1/|Ω|.

The present case is from two points of view quite curious. It is in general quite hard to
imagine, that the turbulent diffusion only influences a finite domain and that any turbu-
lence quantity approaches zero at a given point.
Furthermore corresponds the given case to the first case, whereby a coordinate transforma-
tion has been conducted. Actually a transformation from a fixed to a rotating coordinate
system should not change the symmetry properties of an equation. So the symmetries
and invariant solutions for the given case and the first case should be the same. Thus the
third case should be examined in more detail in future projects.

5.4 Model implications and analytic model solutions for

the turbulent diffusion without rotation

Classical two-equation models and Reynolds stress transport models are investigated on
their capability to capture one or several of the above three invariant solutions. The
particular model equations we will investigate here are the classicalK-ε (Jones & Launder,
1972) and the Launder-Reece-Rodi (lrr) second-moment-closure model (Launder et al.,
1975). For further details on the model equations see chapter 3. In addition, in section
5.4.2 it will be shown that for the steady case a full analytic solution is given for the K-ε
model. The invariant solutions in the subsequent section are special cases of this complete
analytic solution.

5.4.1 Model implications derived from invariant solutions

Umlauf (2001) may have been the first who empirically recognized by numerically solving
the steady diffusion problem employing the K-ε model that for certain model parame-
ters a very distinguished change in model behavior appears. Without giving the invariant
solution Umlauf derived the condition for the model parameter where the change in be-
havior occurred. Substantiating this result from certain model constants of the K-ε model
but independent of Umlauf, Cazalbou & Chassaing (2001) were the first suggesting the
exponential solution. We may suspect and this is what we see below, that this change
corresponds to a singular point in all model equations, separating between an algebraic
and an exponential decay with the singular point at m = −1 or rather a1 = 0. For each
model this point corresponds to a certain set of model constants.

In order to test the compatibility of the invariant solutions derived in the last section with
turbulence models we simply implement the solutions into the model equations, here the
K-ε and the lrr model.

It is important to note that we only need to employ the steady solutions into the model
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equation, the rational behind this being the following. Formally, the invariant solutions
derived above for the unsteady problem lead to a reduction of the K-ε or the lrr model
equations. These reduced set of equations has to be compatible with physically appropriate
bcs given above. In particular the condition of boundedness for x1 → ∞ has to hold
true for all time and hence also for t → ∞, which corresponds to the steady solution.
Hence implementing the steady solution into the model equations imposes a minimum
requirement on the boundedness. In fact, one can show by asymptotic arguments that the
condition of boundedness for the reduced equations of the unsteady case is the same as
for the steady case.

In order to prove the latter we employ as an example the K-ε model where the algebraic
decay (5.21) and (5.22) has been implemented into (3.17) and (3.18). As a result we
respectively obtain

− 1

m+ 1
x̃m+2
1

dK̃

dx̃1
=

− ε̃+ cµ
σK

[
x̃1
ε̃2

(
dK̃2

dx̃1
ε̃− K̃2 dε̃

dx̃1

)(
−2mK̃ +

dK̃

dx̃1
x̃1

)

+
K̃2

ε̃

(
6m2K̃ + (−5m+ 1)x̃1

dK̃

dx̃1
+

d2K̃

dx̃21
x̃21

)]
(5.39)

and

− 1

m+ 1
x̃m+2
1

dε̃

dx̃1
=

− cε2
ε̃2

K̃
+
cµ
σε

[
x̃1
ε̃2

(
dK̃2

dx̃1
ε̃− K̃2 dε̃

dx̃1

)(
(−3m− 1)ε̃+ x̃1

dε̃

dx̃1

)

+
K̃2

ε̃

(
(3m+ 1)(4m+ 1)ε̃− (7m+ 1)x̃1

dε̃

dx̃1
+ x̃21

d2ε̃

dx̃21

)]
. (5.40)

The latter two equations require two boundary conditions for both limits x̃1 → 0 and
x̃1 →∞. The former stems from the bcs (5.24) which together with the definition for x̃1
in (5.19) and t→∞ immediately leads to x̃1 → 0. From (5.21) and (5.22) we obtain that
as x̃1 approaches zero both K̃(0) and ε̃(0) have to be constants since any singularity has
be excluded due to physical reasons. Expanding K̃ and ε̃ about x̃1 = 0 and implementing
this into (5.39) and (5.40) we obtain

0 = −ε̃+ cµ
σK

6m2 K̃
3

ε̃
(5.41)

and

0 = −cε2
ε̃2

K̃
+
cµ
σε

(12m2 + 7m+ 1)K̃2 (5.42)

where the argument (0) from K̃ and ε̃ has been omitted. The latter two equations are
identical to the equations obtained from the steady problem that is if all ˜-quantities in
(5.21) and (5.22) are assumed to be constants when implemented into the K-ε model.
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Solving the latter two equations, whereby K̃3/ε̃2 and m are the unknowns, we derive a
quadratic equation for m, depending on the model parameter only and independent of
K̃ and ε̃ to be discussed below. Employing any of the two solutions for m into the latter
equations (5.41) and (5.42) we obtain two identical equations of the form K̃3 ∼ ε̃2. The
latter equation possesses two physical solutions. If K̃ is given ε̃ is determined and vice
versa. This corresponds to the bc at x̃1 = 0. Note that this also means that the bcs for
K̃ and ε̃ may not be chosen independently.

The second solution is given from the fact that both K̃ and ε̃ may become zero. This
solution corresponds to the bc x̃1 →∞ the reason being the following. Though any other
value for K̃ and ε̃, compatible with (5.41) and (5.42) may be chosen there is no physical
reason that K̃ and ε̃ are non-zero for x̃1 → ∞, since the only energy source exists close
to x1 = 0. Hence K̃ = 0 and ε̃ = 0 are the appropriate bcs at x̃1 →∞.

The latter analysis may be extended to any one-point model and invariant solution given
above. Hence from the reasons given earlier we only need to consider the steady case for
the model investigations below.

From the equations (5.41) and (5.42) we find that for the generic case of no symmetry
breaking the value of m in subsection 5.3.1, which determines the spatial decay and the
temporal behavior in (5.21) and (5.22), is determined by a quadratic equation

6(2σK − cε2σε)m2 + 7σKm+ σK = 0

⇒ m1,2 =
7σK ±

√
σK(σK + 24cε2σε)

12(cε2σε − 2σK)
.

(5.43)

Similarly a quartic equation

(456cεc1cscε2 − 144c21c
2
ε + 144c1c

2
ε − 336cεcscε2 − 216c2sc

2
ε2
)m4

+(168c1c
2
ε − 168c21c

2
ε − 196cεcscε2 + 266cεc1cscε2)m

3

+(73c1c
2
ε − 28cεcscε2 − 73c21c

2
ε + 38cεc1cscε2)m

2

+(14c1c
2
ε − 14c21c

2
ε)m− c21c2ε + c1c

2
ε = 0

(5.44)

is derived by implementing the invariant solution (5.21) and (5.22) into the lrr model.
From (5.43) and (5.44) and the standard model constants (see chapter 3) we respectively
obtain the solutions for m: m1 = −0.14, m2 = 2.49 and m1 = −0.76, m2 = −0.18,
m3 = −0.13, m4 = 2.17.

Since any of the values for m represent a solution of the corresponding model equations
multiple algebraic solutions are admitted. This property of Reynolds averaged models
is known to be important under certain conditions. In Durbin & Pettersson Reif (2001)
it is shown that multiple solutions and the corresponding bifurcation of homogeneous
shear-flows are an important property which in fact models important turbulence physics.
Nevertheless, only m2 and m4 respectively represent physically reasonable solutions of the
K-ε and the lrrmodel, because all other values form would lead to a positive exponent in
the similarity solutions (5.19) and (5.21). A positive exponent would describe an increase
of turbulent kinetic energy which is physically impossible.
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Unfortunately the exponents m2 and m4 are not in agreement with the values which could
be determined from different experiments. Nokes (1988) obtained for example values form
between 0.43 and 0.75, depending on the amplitude of the oscillating grid and the distance
from the grid at which measurements have been taken. 0.75 corresponds also to the value,
which Thompson & Turner (1975) determined from their experiments. Hannoun et al.
(1988) obtained a value of m = 0.5 from their experiments, while the experiments from
Hopfinger & Toly (1976) led to m = 1.

The second invariant solution (5.30) in subsection 5.3.2 where the symmetry breaking of
scaling of space is imposed, that is when a constant integral length-scale is considered, is
only admitted if the model constants are modified. For example implementing (5.30) into
the K-ε model, model constants need to obey the equation

cε2σε
σK

= 2. (5.45)

This singular point is already visible in equation (5.43), since the denominator in the
second equation should not become zero for the exponent m of the algebraic solution.
Still, employing (5.45) into the first equation of (5.43) a linear equation for m is obtained
with the solution m = − 1

7
independent of any model constant. Hence, the singular point

(5.45) corresponds to multiple solutions one of which exhibits an exponential decay and
another with an algebraic behavior.

The corresponding polynomial equations derived from implementing the exponential so-
lution (5.30) into the lrr model is given by

(3c21c
2
ε − 12c1c

2
ε − 8c1cεcscε2 + 112cscεcε2 − 144c2sc

2
ε2
)∗

(9c21c
2
ε − 12c1c

2
ε − 104c1cεcscε2 + 112cscεcε2 + 144c2sc

2
ε2
) = 0.

(5.46)

Again we see at least for the lrr model that due to the two large factored terms, different
model parameters lead to multiple, here exponential, solutions.

It is important to note that for a given set of model constants only one solution type is
admissible, either the algebraic solution (5.21)/(5.22) or the exponential solution (5.30).
Note that the classical model constants do not solve the above equations (5.45) and (5.46).
Hence, a one-dimensional solution in form of an exponential spatial decay is not admitted.

This limitation is inherent to all one-point turbulence models since no structure knowledge
such as a length-scales may be chosen independently of the scaling information delivered
by K and ε. Apparently this limitation is abolish for two-point models since periodic
boundary condition such as given by (5.33) may be invoked.

Interesting enough, if higher dimensional problems are considered, such as the 2D problem
of turbulent diffusion constrained between two parallel walls we find that also the one-
point models allow for solutions of the type (5.30). We may conclude that the reduced
dimensionality of one-point models limits the ability to model certain solutions if only one-
dimensional versions of the model equations are considered. Higher-dimensional versions
or two-point models considerable extend the solution space.

The steady version of the solutions (5.21)/(5.22) and (5.30) implemented into the model
equations do not necessarily allow for independent bcs for the Reynolds stresses and
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the dissipation as mentioned above. For example implementing the steady form of the
algebraic solution (5.21) and (5.22) into the K-ε model leads to the relation

(
K̃3

ε̃2

)

alg

=
24σK(cε2σε − 2σK)

2

cµ

(
7σK ±

√
σK(σK + 24cε2σε)

)2 , (5.47)

where, only the positive sign has a physical meaning if the standard model constants
are used. Hence, once K̃ is picked ε̃ is determined. In contrast the steady version of the
exponential decay (5.30) invoked into the K-ε model yields after employing the restriction
(5.45) (

K̃3

ε̃2

)

exp

=
x20σK
6cµ

, (5.48)

which, apparently, allows to freely chose K̃ and ε̃ due to the unconfined length-scale x0,
which is proportional to `t.

Note that the dimensions of K̃ and ε̃ are different for the two cases above. According to
(5.21)/(5.22) K̃ and ε̃ have fractional dimensions in (5.47), while from (5.30) we find that
in (5.48) K̃ and ε̃ have the same dimensions as the original variables K and ε.

Interesting enough the singular point (5.45) is also visible in the boundary relation (5.47).
At this point the nominator becomes zero. In addition also the denominator vanishes, if
the minus sign is chosen.

5.4.2 Lele’s transformation for the K-ε model of a steady turbulent
diffusion flow

We have to realize that the invariant solution obtained in section 5.4 are special solutions
of the model equations. Still, for certain models a full analytic solution may be attained
to be shown in the present section.

Though the transformation introduced by Lele (1985) did not lead to a simplification for
the unsteady diffusion problem it may still be very useful for the steady flow. In this case
the full K-ε model detailed in the equations (3.19)-(3.19) in section 3 simplify to

0 = −ε+ d
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[
cµ
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K2

ε
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dx1

]
(5.49)

and

0 = −cε2
ε2

K
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[
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ε
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]
. (5.50)

Introducing the non-local transformation Lele (1985) based on the integral length-scale `t

dz =

√
3

2

σK
cµ

dx1
`t

with `t ≡
K3/2

ε
(5.51)
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as well as a new variable for the turbulent kinetic energy

H = K3/2 (5.52)

into (5.49) and (5.50) we respectively obtain the set of equations

d2H

dz2
−H = 0 (5.53)

and
d2ε

dz2
+

1

3

1

H

dH

dz

dε

dz
− 2

3
C∗ε = 0, with C∗ =

cε2σε
σK

, (5.54)

which in fact decouple from each other. Hence, once separated, they may be treated as
two linear equations. Note that C∗ comprises the singular point, identified in the previous
sections. The singular value 2 may be taken from (5.45).

The equations (5.53) and (5.54) may immediately be solved to yield together with (5.52)

H(z) = C1e
z + C2e

−z or K(z) =
[
C1e

z + C2e
−z]2/3 (5.55)

and
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− 1
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− 1
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1
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√
1+24C∗

− 1
6

(
− 1
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)

[H(z)]1/6
, (5.56)

where P µ
ν (x) is the associated Legendre function of the first kind (see e.g. Abramowitz &

Stegun, 1968).

In order to write the solution in terms of the spatial variable x1 we may rewrite (5.51) in
integrated form

x1 =

√
2

3

cµ
σK

∫

z

H(z)

ε(z)
dz, (5.57)

which could not be evaluated explicitly. Since H and ε are positive functions of z, x1
increases monotonically in z. As a result, the functional x1 dependence of H and ε is
unique. To conclude, the full analytic solution to the equations (5.49) and (5.50) is given
in parametric form defined by (5.55), (5.56) and (5.57), where bcs have to be specified by
determining the Ci’s. Since four Ci’s are to be determined we may independently specify
K and ε at two different locations. Unfortunately, the free constants C1 − C4 may not
explicitly be derived from the bcs for K and ε due to the non-local dependence (5.57).
An iterative method has to be invoked in order to solve for bcs e.g. at x1 = 0 and x1 = a.

It is interesting to note that the analytic solution above may not be obtained from classical
Lie symmetries since the transformation (5.51) is not a point transformation, as may be
taken from (5.57). Applying classical Lie symmetry method to (5.49) and (5.50) we solely
obtain the three groups

T̄K−ε
sx : x∗1 = ea1x1 , K∗ = e2a1K , ε∗ = e2a1ε , (5.58)

T̄K−ε
st : x∗1 = x1 , K∗ = e−2a2K , ε∗ = e−3a2ε , (5.59)

T̄K−ε
x1

: x∗1 = x1 + a3 , K∗ = K , ε∗ = ε . (5.60)
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Since three Lie symmetries are not sufficient to completely integrate (5.49) and (5.50)
other methods need to be applied. As a result, the underlying symmetries may not be
uncovered by this technique and other methods such as non-classical symmetries, potential
or generalized symmetries (see e.g. Bluman & Kumei, 1989) need to be invoked to uncover
the underlying “hidden” symmetries.

It should be noted that a multi-dimensional form of the transformation (5.51) also leads
to a multi-dimensional linear set of equations, a simple extension of (5.53) and (5.54).

5.5 Investigations and model implications for the turbu-

lent diffusion with rotation

The third invariant solution (5.37) of diffusion in a rotating frame in subsection 5.3.3, here
rotating about x1, cannot be reproduced by one-point models. Classical two-equation mod-
els are insensitive to rotation anyway. However, even most fully non-linear two-equation
models and non-linear Reynolds stress transport models (non-linear in the Reynolds
stresses for the pressure strain model) are insensitive to rotation about x1 for the present
type of flow, elucidating a serious shortcoming of these models. Anyway, there are still a
few turbulence models which seem to be capable to give a dependence of the Reynolds
stresses, respectively the kinetic energy on the rotation rate. Thereby the vanishing dissi-
pation rate for rapid rotations is mostly built into the modeled dissipation rate equation,
whereby the condition of the vanishing viscosity is violated. A model satisfying the second
condition has been derived by Rubinstein & Zhou (1997). In the following we will con-
centrate on the models satisfying the condition on the dissipation rate. The two models
which are tested numerically in section (5.5.2) are the model from Shimomura (1993) as
an example for a two-equation model, and the model from Sjögren & Johansson (2000)
as an example for a second-moment-closure model.

5.5.1 Large eddy simulations of turbulent diffusion with rotation

To obtain a better understanding of the given flow case, large-eddy simulations (les) in a
rotating frame at a constant angular velocity Ω1 about the x1 axis have been performed.
For the les a standard pseudo-spectral method is used with periodic bcs in all three
directions. In order to simulate shear-free turbulence, the flow field with zero mean velocity
is forced in a limited part at the center of the domain. Outside this region the flow field
is not forced. A method introduced by Alevlius (1999) is used to generate a random but
statistically stationary forcing. The forcing is implemented in spectral space where it is
concentrated at small wavenumbers. Hence the power input is introduced into the flow
at large-scales. The randomness in time makes the forcing uncorrelated with the velocity
field and the effect from the forcing on the velocity field is a priori determined by the
forcing. The fact that the time-scale of the forcing is separated from all time-scales of
the turbulent flow makes it neutral in the sense that it does not particularly enhance
a certain time-scale in an unknown way. This random forcing in a limited part of the
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computational domain provides conditions, which are similar to a vibrating grid in an
experiment. Turbulent fluctuations develop in the forcing region, which then diffuse in x1
direction. The subgrid scales of the velocity field are modeled by means of a simple eddy
viscosity model due to Smagorinsky (1963) with the Smagorinsky constant Cs = 0.115
and a low Reynolds number correction. We observed that the subgrid scales have only a
significant contribution inside and close to the part of the domain where the forcing is
applied. Further apart from the forcing region the subgrid contribution is small because of
the lower turbulence intensity. The simulations have been running using a 1024× 48× 48
grid in a 40π × 2π × 2π box at various rotation rates.
Figure 5.6 shows the spatial decay of the turbulent kinetic energy depending on the
rotation rate if anisotropic forcing is considered. From (5.6) it is easily see, that the spatial
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Figure 5.6: Decay of turbulent kinetic energy obtained by large eddy simulation for vari-
ous rotation rates: −−−Ω1 = 0.5, − · −Ω1 = 1, · · · Ω1 = 2.

decay of the turbulent kinetic energy is faster for small rotation rates than for larger ones.
Hence the rotation decreases the decay of the turbulent kinetic energy. The larger the
rotation is the more intense is this effect. The same results have already been obtained for
the temporal decay of isotropic turbulence in various former numerical simulations and
experiments (for a list of relevant numerical simulations and experiments (see Jacquin
et al., 1990). The slower decay of kinetic energy is due to the fact that the rotation
inhibits the transfer of energy from large to small scales and therefore results in a decrease
of the dissipation rate. In Mansour et al. (1991a) it is shown that the transfer of energy
is essentially shut off at Rossby numbers of Ro = ε/ΩK < 0.01.

The integral length-scale is increasing as predicted by the theory (5.37). The les does
not predict the finite domain diffusion, which is given by the theory. Thus the assumption
that this solution is physically not correct is supported by the les results.
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5.5.2 Modeling of the rotating turbulent diffusion with two-equation
models

Existing extensions of the ε-equation

Since the rotation reduces the dissipation rate (see chapter 5.5.1) it is near to hand to
introduce a modification in the ε-equation to account for the rotation. Although there is
no term in the exact dissipation rate equation that accounts for system rotation directly,
ε is indirectly influenced through changes in anisotropies of the dissipation correlation
εij. All of the commonly used dissipation rate equations predict that for a given mean
flow a system rotation has no effect on the evolution of the dissipation rate, what is in
contradiction to numerical and experimental data. For this reason there exist a couple of
two-equation models in which the ε-equation is augmented by a term which is quadratic
in the mean rotation rate tensor

Wij =
1

2

(
∂ūi
∂xj
− ∂ūj
∂xi

)
+ ejimΩm.

Bardina et al. (1985) for example proposed to model the influence of rotation by a modi-
fication of the Cε2 parameter

C
(mod)
ε2 = Cε2 + CεΩΩ

∗ , (5.61)

where

Ω∗ = Ω
2K

ε
(5.62)

might be interpreted as an inverse Rossby number and Ω = |Ω|. From comparisons with
the experimental data of Wiegeland & Nagib (1978) they found a value of CεΩ = 0.075 to
give the best fit. The effect of the extra term is to lower the decay rate of the turbulent
kinetic energy for higher rotation rates. In Cambon et al. (1992) and Hallbäck & Johansson
(1993) it is stated that an anomalous feature of the model (5.61) is that for large times
(Ωt À 1) a constant value of the kinetic energy, determined by the rotation rate Ω is
approached which causes a significant overprediction of K in cases with high rotation
rates.
For this purpose Hallbäck & Johansson (1993) proposed a model which behaves well also
at high rotation rates. In their model Cε2 is described by Ω∗ and the turbulence Reynolds
number ReT = 4K2

νε
, giving

CHM
ε2 = Cε2 +

CHM
1 Ω∗√ReT
CMH
2 + Ω∗ , (5.63)

with CHM
1 = 0.15 and CHM

2 = 25. Hallbäck & Johansson pointed out that their model
agrees fairly well with the direct numerical simulation data from Speziale et al. (1987).
For very large Reynolds numbers CHM

ε2 becomes very large, leading to a very slow decrease
of the kinetic energy in time.
Hanjalić & Launder (1972) improved the standard model by subtracting the term

Cε3KWijWij , (5.64)
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with Cε3 = 0.54 from the standard equation. Transforming this term into a rotating frame
of reference it takes the form:

−Cε3K(WijWij − 2(Ω2 − eijkΩiWjk)). (5.65)

In Shimomura (1993) it is pointed out that with this model modification the analytical
solution for K for homogeneous turbulent flow without mean shear shows a sinosoidal
behavior causing negative values of ε. Therefore the model is not realizable with respect
to K and ε. The solution has further a singularity at finite time, which is even worse.
A further modification of the dissipation destruction term was proposed by Rubinstein &
Zhou (2004):

−Cε2
(
1 + CεΩΩ

2K
2

ε2

) 1
2 ε2

K
, (5.66)

without giving a value for CεΩ. Testing the model, Jakirlić et al. (2002) could not find
any improvements. They concluded that the exponent in (5.66) should be higher than 1
instead of 1/2 to capture the non-linear rotational effects.
Shimomura (1993) introduced the term

εω = −Cε3
KWijWji

1 + Cε4WijWji
K2

ε2

, (5.67)

which will be investigated in section (5.5.2). This model guarantees realizability due to
an additional term εω/K in the K-equation. Shimomura proposed as coefficients for the
model constants Cε3 = Cε4 = 0.05.
Shimomura (1989) further proposed to introduce an additional source term

CΩKeijk
∂ūi
∂xj

(5.68)

with CΩ = 0.074, which was determined from theoretical considerations. In Jakirlić et al.
(2002) it is pointed out that despite the theoretical derivation of Shimomura, a negative
CΩ would yield to the desired improvements in capturing asymmetric effects of rotation
in rotating channel flows at higher Reynolds numbers.

Capability of the given ε-equation modification to model the rotating turbulent
diffusion problem

The K−ε model augmented by the εω-term from Shimomura (1993) has been investigated
numerically for the given flow geometry with the help of a numerical tool, called 1D solver
( c© S. Wallin, foi) (see e.g. Wallin & Martensson, 2004). The K- and ε-equations reduce
for the given flow case to

∂K

∂t
= −ε+ ∂

∂x1

(
CµK

2

σKε

∂K

∂x1

)
, (5.69)
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∂ε

∂t
= −Cε2

ε2

K
+

∂

∂x1

(
Cµk

2

σεε

∂ε

∂x1

)
− Cε3

KΩ2
1

1 + Cε4Ω2
1
K2

ε2

. (5.70)

Figure 5.7 shows, that the model gives a finite domain diffusion due to rotation. The
position of the fixed point depends thereby on the rotation rate Ω1 as predicted in section
5.3.3. Considering the dependence of the decay of kinetic energy on the rotation rate,
it is found, that the Shimomura model reproduces the trend of the invariant solution in
equation 5.36. It is quite interesting to note that the model predicts the finite domain
diffusion, which is in contradiction to the les results. As already mentioned is this finite
domain diffusion an arguable result. Anyway this result is partly reproduced by the model
equations. It is not clear yet, why the models reproduce this seemingly deficient theoretic
result. For an improvement of turbulence models for rotating flows it seems therefore quite
promising to investigate the given flow case in more detail.
What can not be found is the quadratic decreasing behavior given by equation 5.36 and
the constant integral time-scale predicted by the invariant solutions. Assuming that the
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Figure 5.7: Decay of turbulent kinetic energy using the K − ε model (3.17)/(5.70) aug-
mented by εω calculated with the 1D solver: − − −Ω1 = 0.5, − · −Ω1 = 1,
· · · Ω1 = 2.

theoretical results are correct and thus inserting the invariant solutions (5.36) into the
model equations leads to the condition

0 = −Cε2σε + σK + 2Cε4(σK − Cε2σε)− Cε3σε, (5.71)

which is not satisfied by the standard model constants. To fix this constraint for the
Shimomura model one either has to add the rotation-dependent term in the ε-equation,
instead of subtracting it or to subtract a further rotation-dependent term in the K-
equation. Both modifications would lead to a faster decay of the turbulent kinetic energy
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for increasing rotation rates what is in contradiction to the flow physics. Therefore it is
found that this model is not capable to reproduce the results from the symmetry analysis
with its standard model constants.

5.5.3 Modeling of the rotating turbulent diffusion with second-moment-

closure models

”New” modeling approach for the pressure strain correlation

There appears to be one second-moment-closure model which may account for system
rotation for this type of flow. It is the model by Sjögren & Johansson (2000) which
includes non-linearity of the mean velocity gradient ∇ū in the rapid part of the pressure
strain model or in other words: M may also depend on ∇ū which is in clear contrast to all
other pressure strain models. Therefore to account for the rotation in the given flow case
a new modeling approach for the pressure strain correlation has been developed along
the lines of the model from Sjögren and Johansson (2000). This approach is based on the
assumption, that the pressure strain term depends on the mean shear tensor Sij:

Sij =
1

2

(
∂ūi
∂xj

+
∂ūj
∂xi

)
, (5.72)

and the mean rotation tensor Wj:

Wij =
1

2

(
∂ūi
∂xj
− ∂ūj
∂xi

)
+ ejimΩm (5.73)

and the Reynolds stress anisotropy tensor aij:

aij =
u′iu

′
j

K
− 2

3
δij , (5.74)

which are normalized by using the two scaling parameters K and ε according to (3.20)-
(3.22). Furthermore this term can be split up into three parts which are the classical return
and rapid term and a new term which will be called non-linear scrambling (nls) term. For
the model of the return and rapid term the linearity of the gradient of the mean velocity
and the Cayley-Hamilton theorem is applied, leading to an approach which is non-linear
in aij only (see section 3.2.3). Finally for a non-linear term accounting for the rotation
the nls term is adopted. This term is developed with the help of tensor invariant theory.
It is built up from tensor invariants and coefficients depending on the scalar invariants.
With the condition of no mean flow velocity for the present flow case the model consists
of five tensor invariants since Sij is zero and Wij contains only ejimΩm. Introducing the
variables

φnls
∗

ij =
φnlsij
ε

(5.75)
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the nls term can be written in dimensionless form:

φnls
∗

ij = α1

(
W ∗2
ij −

1

3
W ∗2
ll δij

)
+ α2

(
W ∗2
ik a

∗
kj −

1

3
W ∗2
lk a

∗
klδij

)

+ α3

(
W ∗2
ik a

∗2
kj −

1

3
W ∗2
lk a

∗2
kl δij

)
+ α4

(
W ∗2
ik a

∗
klW

∗
lj −

1

3
W ∗2
hka

∗
klW

∗
lhδij

)

+ α5

(
W ∗2
ik a

∗2
klW

∗
lj −

1

3
W ∗2
hka

∗2
klW

∗
lhδij

)
,

(5.76)

with

αi =f
[
{a∗ij}, {a∗2ij }, {a∗3ij }, . . . , {W ∗2

ij a
∗2
jk}, {W ∗2

ij a
∗
jkW

∗
kla

∗2
lh}
]
, (5.77)

where {·} denotes the trace. For the present flow case the mean rotation tensor only
consists of the components W23 = −Ω1 and W32 = Ω1. The other components become
zero because the mean flow velocity is zero and only rotation about x1 is considered
(Ω2 = Ω3 = 0).

Existing extension of the pressure strain correlation

In the approach of Sjögren & Johansson (2000) a term which is quadratic in the rotation
tensor Wij is added to the rapid term of the pressure strain correlation (see section 3.2.3).
This term is scaled with

√
−IIW , (IIW = WijWji) in order to be linearly dependent on

the magnitude of the rotation. It corresponds to the nls term with all coefficients except
β2 being zero. Thus this model can be written as

Nij =
1√
−IIW

(
aikWklWlj +WikWklalj −

2

3
IaWW δij

)
, (5.78)

whereby Sjögren and Johansson put the coefficient of this term β2 = 0.5 .

Capability of the given model to model the rotating turbulent diffusion problem

Classical Reynolds stress transport models augmented by the nls term have been inves-
tigated for their capability to account for system rotation for the given flow geometry. In
the following the Launder-Reece-Rodi model (Launder et al., 1975) (lrr) is used as an
example. Introducing the nls term, the model equations for the Reynolds stresses and the
dissipation respectively are

∂u′iu
′
j

∂t
=C4K (bikWjk + bjkWik)− C1bijε−

2

3
δijε+ εφnls

?

ij

+ Cs
∂

∂xk

(
K

ε

(
u′iu

′
l

∂u′ju
′
k

∂xl
+ u′ju

′
l

∂u′ku
′
i

∂xl
+ u′ku

′
l

∂u′iu
′
j

∂xl

))

− 2Ωk

[
ekliu′ju

′
l + eklju′iu

′
l

]
,
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∂ε

∂t
= −Cε2

ε2

K
+ Cε

∂

∂xk

(
K

ε
u′ku

′
l

∂ε

∂xl

)
, (5.79)

whereby bij = aij/2. These equations are further simplified by the homogeneity in the
x2 − x3 plane and the fact that there are no shear stresses occurring in the given flow.
Therefore u′2u

′
2 becomes equal to u′3u

′
3 and all off-diagonal elements of the Reynolds stress

tensor become zero. Taking a closer look at the model equations it turns out that the rapid
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Figure 5.8: Decay of turbulent kinetic energy using the lrr model augmented by the nls
term calculated with the 1D solver: −−−Ω1 = 0.5, − ·−Ω1 = 1, · · · Ω1 = 2
.

term of the pressure strain correlation as well as the advection term do not contribute to
the solutions for the present flow geometry. Therefore in the pressure strain term only the
nls term accounts for rotation.
The lrr model augmented by the nls term has been investigated numerically for the
given flow geometry with the help of the 1D solver ( c© S. Wallin, foi). Thereby the
coefficients in the nls term have all been put to zero except for β2 which has been set
to 0.5 (see Sjögren & Johansson, 2000). It has thus been found that as a consequence of
the nls term the questionable result of a finite domain diffusion is predicted once again.
The turbulent kinetic energy K decreases to zero at a finite value of x1. In addition it is
found that the position of the fixed point depends on the rotation rate as can be taken
from figure 5.8. The higher the rotation rate the closer the fixed point lies towards the
turbulence source at the grid. However, again the model fails in predicting the quadratic
decreasing behavior and the constant integral time-scale which are given by the invariant
solutions (5.36). To predict the quadratic decreasing behavior the model constants would
have to obey the condition

114CεC1CsCε2 − 9C2
1C

2
ε + 18C1C

2
ε + 135CεCsCε2 − 216C2

sC
2
ε2 = 0 , (5.80)
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which was obtained from substituting (5.36) into (5.79)/(5.79).
Assuming the quadratic decreasing behavior one receives solutions for the Reynolds stresses
which are not realizable. This failing depends on the model, respectively the model con-
stants of the diffusion and the dissipation term. For the model constants we receive the
condition Cε < 3CsCε2 < 3Cε for which the Reynolds stresses would become positive.
Therefore these solutions can not be obtained using physical reasonable boundary condi-
tions. Since it is arguable to change the values for the model constants a better option
for rectifying this problem is to introduce an improved model for the diffusion term, for
example

∂

∂xk

[
Cs1

K

ε

(
u′iu

′
l

∂u′ju
′
k

∂xl
+ u′ju

′
l

∂u′ku
′
i

∂xl

)
+ Cs2

K

ε

(
u′ku

′
l

∂u′iu
′
j

∂xl

)]
(5.81)

with Cs1 > 0.00048 and Cs2 < 0.081. The model further gives a faster decay of the turbu-
lent kinetic energy for increasing rotation rates, what is in contradiction to our findings
in section (5.5.1).
It should further be noted that the non-linear term disappears from the model equa-
tions for isotropic boundary conditions at the grid. Hence the numerical solution becomes
independent of the rotation rate if isotropic turbulence is considered.

5.5.4 Modeling of the rotating turbulent diffusion with the M-tensor

model

The M -tensor model, introduced by Johansson (2003) (see section 3.3) has been applied
to the given flow case and the results were compared with the results of the second-
moment-closure model by Sjögren & Johansson (2000). The analysis was carried out for
isotropic as well as for anisotropic boundary conditions.
Since the given flow is also axisymmetric the M -tensor can once again be described by
the five scalars given in (3.65). Therefore we derive from (3.48) the corresponding five
model equations which describe the turbulent diffusion in a rotating frame:

∂K

∂t
= −ε+ Cs

∂

∂x1

(
R11K

ε

∂K

∂x1

)
, (5.82)

∂R11

∂t
= 4Ω1M2 − C1

ε

K

(
R11 −

2

3
K

)
− 2

3
ε+ Cs

∂

∂x1

(
R11K

ε

∂R11

∂x1

)
, (5.83)

∂Y11
∂t

= −C1
ε

K

(
Y11 −

2

3
K

)
− 2

3
ε+ Cs

∂

∂x1

(
R11K

ε

∂Y11
∂x1

)
, (5.84)

∂M1

∂t
=

4

3
Ω1M2 − C1

ε

K

(
M1 −

2

5
K

)
− 2

5
ε+ Cs

∂

∂x1

(
R11K

ε

∂M1

∂x1

)
, (5.85)
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∂M2

∂t
= Ω1

(
−4M1 + 2Y11 − 2

(
−2

5
K

(
110α− 101

147

)

+ R11

(
110α +

38

147

)
+ Y11

(
110α +
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147

)
−M1

(
770α +

38

21

)))

− C1
ε

K
M2 −

2

5
ε+ Cs

∂

∂x1

(
R11K

ε

∂M2

∂x1

)
,

(5.86)

with M1 =M1111 and M2 =Mi1p1e1ip and Cs, C1 and α being the model constants.

For isotropic boundary conditions M1 has to be 2
15
K and M2 becomes zero. The new

model has been investigated numerically for the given flow geometry with the help of the
1D solver. The results have then been compared to the results received with the mentioned
model given by Sjögren & Johansson (2000) and the Launder-Reece-Rodi model (lrr)
(Launder et al., 1975).
Only the lrr model augmented by the nls term predicts the finite domain diffusion
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Figure 5.9: Decreasing of the turbulent kinetic energy for Ω1 = 2 calculated with the 1D
solver: Comparison between the M tensor model, the standard lrr model
and the lrr model augmented by the nls term for isotropic and anisotropic
bcs: - - - lrr model + nls term (isotr. bcs) , − · − lrr model + nls term
(anisotr. bcs) , · · · lrr model (anisotr. bcs), M -tensor model (isotr.
and anisotr. bcs).

and only for anisotropic bcs. For isotropic boundary conditions theM -tensor model gives
lower values for the turbulent kinetic energy with the same departure from the turbulence
source as the non-linear model. The lrr model gives nearly the same behavior whereby
the values for K are again a bit higher, than for the M -tensor model. In contradiction
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to the standard lrr model is the M -tensor model sensitive to rotation for the given
flow case. Being sensitive to rotation, while not predicting the questionable finite domain
diffusion makes the M -tensor model superior to the standard lrr model and the lrr

model, augmented by the nls-term.
The decreasing behavior given by all three models is not quadratic and the integral time-
scale is not even constant, as predicted by the Lie group analysis.
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6 Parallel turbulent shear-flow

- exponential scaling law

In the following the results of investigations of parallel turbulent shear-flow performed by
Guenther & Oberlack (2005a) are presented.

6.1 Introduction

Analyzing the multi point correlation equations for parallel turbulent shear-flows, and zero
pressure gradient (zpg) turbulent boundary layer flows with the help of Lie symmetry
methods a new exponential scaling law has been derived in Oberlack (2001).
From experiments (e.g. Lindgren et al., 2004) and direct numerical simulations (dns) (e.g
Khujadze & Oberlack, 2004) the exponential velocity profile was clearly validated in the
mid-wake region of high Reynolds number flat-plate boundary layers. It was identified as
an explicit analytic form of the velocity defect law.
Implementing the latter invariant solution into various Reynolds stress models it was
found that none of the investigated models is in accordance with the exponential velocity
law.

6.2 Symmetry analysis

In Oberlack (2001) a Lie group analysis of the two-point correlation (tpc) equations has
been performed for plane shear-flows including a zpg turbulent boundary layer flow. For
the analysis it was assumed that all statistical quantities depend only on the wall nor-
mal coordinate (ū1 = ū1(x2)) and an infinite Reynolds number was assumed. Hence only
large-scale quantities such as the mean velocities or the Reynolds stresses are determined.
The tpc equations have been considered in the outer part of the boundary layer flow
where viscosity can be neglected. The analysis was further limited to flows without sys-
tem rotation (Ω = 0).
Focusing only on scaling symmetries (Gs1, Gs2, Gs3), Galilean invariance (GGali) and the
translation group (GTrans) the analysis gives the following global transformations (Khu-
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jadze & Oberlack, 2004):

Gs1 : x̃2 = x2e
a1 , r̃i = rie

a1 , ˜̄u1 = ū1e
a1 , R̃ij = Rije

2a1 , p̃′u′i = p′u′ie
3a1 ,

ũ′ip
′ = u′ip

′e3a1 , . . .

Gs2 : x̃2 = x2, r̃i = ri, ˜̄u1 = ū1e
−a2 , R̃ij = Rije

−2a2 , p̃′u′i = p′u′ie
−3a2 ,

ũ′ip
′ = u′ip

′e−3a2 , . . .

Gs3 : x̃2 = x2, r̃i = ri, ˜̄u1 = ū1, R̃ij = Rije
−a3 , p̃′u′i = p′u′ie

−a3 , (6.1)

ũ′ip
′ = u′ip

′e−a3 , . . .

GTrans : x̃2 = x2 + a4, r̃i = ri, ˜̄u1 = ū1, R̃ij = Rij, p̃′u′i = p′u′i, ũ
′
ip

′ = u′ip
′, . . .

GGali : x̃2 = x2, r̃i = ri, ˜̄u1 = ū1 + a5, R̃ij = Rij, p̃′u′i = p′u′i, ũ
′
ip

′ = u′ip
′, . . . ,

where x2 is the wall normal coordinate, ri the correlation length and ū1 corresponds to
the streamwise velocity component. The correlation vectors and tensors are defined as:

Rij = u′i(x, t)u
′
j(x+ r, t), u′ip

′ = u′i(x, t)p
′(x+ r, t), p′u′i = p′(x, t)u′i(x+ r, t) .

The variables a1−a5 are group parameters of the corresponding transformations. Accord-
ing to the definition of symmetries all ˜ -quantities refer to transformed variables which,
introduced into the tpc equations, leave the equation invariant, that is unchanged in the
new variables. The corresponding characteristic equations for the invariant solutions read:

dx2
a1x2 + a4

=
dri
a1ri

=
dū1

(a1 − a2)ū1 + a5
=

dRij

[2(a1 − a2) + a3]Rij

=

dp′u′i
[3(a1 − a2) + a3]p′u′i

=
du′ip

′

[3(a1 − a2) + a3]u′ip
′
, . . . .

(6.2)

From Gs1 we find that imposing a symmetry breaking of space means a1 = 0. Correspond-
ingly setting in equation (6.2) a1 to zero and integrating the corresponding equations a
new exponential scaling law is received as it is shown by Oberlack (2001):

ū1(x2) = k1 + k2e
−k3x2 , (6.3)

with

k1 ≡
a5
a2
≡ ū∞, k3 ≡

a2
a4
≡ β

∆
,

and k2 ≡ −αuτ being a constant of integration. The physical assignments for k1 − k3 are
according to Oberlack (2001) to be defined below. For the present case the correlation
length ri becomes constant, that is an invariant or physically interpreted the integral
length-scale `t = K3/2/ε is constant (see equation (6.5) below).
Scaling the wall-normal coordinate in the outer region with the Clauser-Rotta length-
scale (∆ = (δ∗ū∞)/ūτ , where δ∗ is the displacement thickness) the exponential law may
be written in general wake form as

ū∞ − ū1
ūτ

= F (η) = α exp(−βη) , (6.4)

where η = x2/∆ and α, β are universal parameters.
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6.3 Evaluation of the exponential law by experiments

Recently the theory has been carefully tested against very high quality experimental data
from the kth database (Lindgren et al., 2004) and the Laminar Wind Tunnel (LaWiKa) of
the Hermann-Föttinger-Institute in Berlin (Knobloch & Fernholz, 2003). The experiments
have been performed at very high Reynolds numbers where for the large-scale quantities
the viscous terms are negligible small compared to the other terms. Thus the assumption
of the infinite Reynolds number limit made for the Lie group analysis and therefore the
findings received from the analysis are supported by the data. It could further be found
that the exponential region increases for increasing Reynolds numbers respectively de-
creasing shape factors.
At kth experiments for a range of Reynolds numbers from 22579 to 27320 have been
performed. These Reynolds numbers are based on the momentum-loss thickness. In figure
6.1 six profiles from the kth database are plotted in outer scaling showing a very good
collapse of the data. It can be shown that the exponential law fits the experimental data
very well in the range of about 0.03 ≤ x2/∆ ≤ 0.10, corresponding to almost half of
the boundary layer thickness. The exponential region is thus substantially larger than
the region in which the log-law is valid. The constants are determined to α = 10.6 and
β = 9.34. Figure 6.2 shows the results of experiments performed at Rθ = 11840 in the

ū∞ − ū1
ūτ
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Figure 6.1: Mean velocity profiles from experiments at different Reynolds numbers Reθ =
22 579, 23 119, 23 870, 25 779, 26 612, 27 320, performed at KTH (Stockholm),
Lindgren et al. (2004), - - - exponential law.

LaWiKa. These experimental results show as well a good fit with the exponential law in
the region 0.03 ≤ x2/∆ ≤ 0.10.
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ūτ
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Figure 6.2: Mean velocity profiles from experiments with Reθ = 11840, Knobloch & Fern-
holz (2003), - - - exponential law.

Figure 6.3 shows the results of a direct numerical simulation (dns) of a zpg boundary
layer performed for Rθ = 2240 (see Khujadze & Oberlack, 2004). The dns results show
an exponential law in the region 0.025 ≤ x2/∆ ≤ 0.15.

In the outermost part of the boundary layer the velocity decreases more rapidly than
the exponential law. The reason for this is not clear yet. In Lindgren et al. (2004) two
possible reasons are discussed: One possible explanation is that the relative influence
of viscosity may be higher in this region than otherwise in the outer region. Another
explanation is that the undisturbed free-stream fluid penetrates the boundary layer to
give an intermittent behavior. Since the fluid has a higher velocity than the local mean of
the turbulent flow, the mean velocity increases and thereby the velocity defect decreases.
These non-parallel effects which might become dominant are not taken into account in
the derivation of the exponential law.

6.4 Turbulence model implications

Since a remarkable good agreement between theory, experiments and numerical simula-
tions is observed it should also be demanded from the Reynolds stress models to be in
accordance with the theory. Thus a further symmetry analysis of the K− ε model for zpg
boundary layer flows has been performed. Imposing here as well the symmetry breaking
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Figure 6.3: Mean velocity profiles from dns at Reθ = 2240, (Khujadze and Oberlack,
2004); - - - exponential law (Oberlack, 2001).

of scaling of space we obtain besides (6.4) the following set of invariant solutions:

K = C exp(−2βη) , ε = D exp(−3βη) , ` = C3/2

D
(6.5)

whereby C and D are again combinations of the group parameter. Implementing the
invariant solution (6.4) and (6.5) into the model equations it has to be analyzed if the
models admit the new exponential scaling law.
The models which have been tested concerning this requirement are the one-equation
model of Spalart & Allmaras (1992), the classical K − ε model of Hanjalić & Launder
(1976), the K − ω model of Wilcox (1993), the v2f model of Durbin (1991), the sst

model of Menter (1994), the
√
K` model of Menter & Egorov (2004), the K −K` model

of Rotta (1968) and as an example for a Reynolds stress second moment closure model
the lrr model of Launder et al. (1975). Thereby it was found that all these models are
in contradiction to the theory.
For our investigations we assumed that the exponential region is characterized by an
equilibrium between production, diffusion and dissipation (see Fig. 6.4). The diffusion
term can thus not be neglected as it is done at the calibration of the turbulence models
with the logarithmic velocity law.

All statistical quantities depend only on the wall-normal coordinate leading to a simpli-
fication of the model equations. Introducing the invariant solutions (6.4) and (6.5) into
these simplified model equations we find that any exponential dependence on x2 cancels
out. Hence a set of algebraic equations is retained, connecting the model coefficients, as
well as α and β. Interesting enough solving these equations we obtain coefficients for the
exponential law, which are in contradiction to common model values.
In the following we will exemplary point out the problems appearing in the Spalart-
Almaras, the K − ε and the lrr model. Replacing the dependent variable ν̃ in the
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Figure 6.4: The turbulent-kinetic-energy budget in a turbulent boundary layer at
Reθ=1410, Spalart (1988); production, - - - dissipation, · · · diffusion.

Spalart-Almaras model by the invariant solution

ν̃ = E exp(−βx2) (6.6)

and neglecting molecular viscosity we receive the coefficient

E = − Cb1σαuτ∆

2β(2 + Cb2)
, (6.7)

whereby Cb1, σ and Cb2 are model constants. We can thus derive the condition

Cb1σ

2(2 + Cb2)
< 0 , (6.8)

under which a proper modeling of the exponential region is assured. Since Cb1, σ and Cb2
are positive, changing the algebraic sign of one of the coefficients would probably lead to
a deficient modeling if other flow cases are considered.
The same problem appears if the invariant solutions (6.4) and (6.5) are introduced into
the K − ε model. Here we receive the following dependence of the coefficients in the
exponential law on the model constants:

C =
σKσε(Cε1 − Cε2)α2u2τ

6Cε2σε − 12σK
,

D =

√√√√Cµσ2Kσ
2
ε(Cε1 − Cε2)2

(
1 + σε(Cε1−Cε2)

Cε2σε−2σK

)

(6Cε2σε − 12σK)2
α3u3τβ

∆
,

(6.9)
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leading with the standard model constants (see chapter 3) to

C = −0.21α2u2τ , D = 0.03
√
−1α

3u3τβ

∆
, (6.10)

which apparently is completely unphysical. From equation (6.9) various conditions for the
model constants of the K − ε model can be derived, guaranteeing a proper modeling of
the exponential velocity law:

Cε1 < Cε2 ,
Cε2σε
σK

< 2 . (6.11)

Thus changing for example σε to 1.04 which comes from the second condition σε < 2 σK
Cε2

and keeping the numerical value of the other model constants would give positive values
for C and D. Since the model constants are related by

κ2 = σεC
1/2
µ (Cε2 − Cε1) (6.12)

due to the balance of production and dissipation in the log-law region a change of σε
to 1.04 demands an adjustment of the von Karman constant to 0.38. In the literature
the values for κ range from 0.38 to 0.43. Therefore κ = 0.38 is an acceptable choice and
guarantees together with σε = 1.04 a correct reproduction of the log-law region.
For the lrr model such a discrepancy appears in the model constants that all coefficients
of the scaling laws become zero if the invariant solutions are introduced into the model
equations.
The reason for these mismatches seems to be due to the fact that the given models are all
calibrated employing the classical flow cases. A calibration of the models using symmetry
methods would probably improve the described shortcomings.
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7 Fully developed axially rotating
turbulent pipe flow

The investigations on the fully developed axially rotating turbulent pipe flow have been
carried out by Guenther & Oberlack (2005b).

7.1 Introduction and review

Axially rotating turbulent pipe flow is an example where rotation strongly affects turbu-
lence and thereby the Reynolds stresses and the mean flow properties i.e. the axial and
azimuthal mean velocity. For almost two decades this flow has been a popular benchmark
for the testing and evaluation of turbulence theories and models.

The present investigations are based on the work of Oberlack (1999) in which he derived
new scaling laws for the non-rotating and rotating turbulent pipe flow based on the mean
and fluctuation momentum equation (see also §7.3). From a symmetry analysis of the
Navier-Stokes equations an algebraic scaling law for the axial and azimuthal mean velocity
is obtained for the most general case of no symmetry breaking. If an external velocity
scale is dominantly acting on the flow, a logarithmic mean velocity profile is received
for the axial velocity component. From comparison with numerical and experimental
data Oberlack could validate the theoretical results, both for the algebraic and the new
logarithmic scaling law.

Eggels, Boersma & Nieuwstadt (1994) performed a direct numerical simulations (dns)
and a large eddy simulations (les) considering the turbulent rotating pipe flow. From
their simulations they found that the mean axial velocity profile is considerably deformed
due to rotation and that the skin friction coefficient is reduced significantly. The mean cir-
cumferential velocity profile appears to be close to parabolic for sufficiently high rotation
rates and nearly independent of the Reynolds number. It is further shown, that any closure
model, based on the gradient hypothesis will provide an incorrect mean circumferential
velocity profile, namely a solid body rotation.

Turbulent flow in a circular pipe with and without rotation about its axis has also been
numerically investigated by Orlandi & Fatica (1997). A comparison between the vorticity
in the non-rotating and in the high rotation case has shown a spiral motion leading to the
transport of streamwise vorticity far from the wall. It was also found that the rotation
produces drag reduction and that at high rotation rates the mean streamwise velocity
tends to a parabolic laminar-like Poiseuille profile.

The effects of rotation on the helicity density fluctuation in a turbulent pipe flow have
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been investigated by Orlandi (1997). Orlandi also confirmed a drag reduction due to the
imposed rotation on the turbulent pipe flow and a reduction of the turbulent kinetic
energy near the wall.

Orlandi & Ebstein (2000) performed direct numerical simulations placing particular in-
terest on the near wall region. Their data shows that the friction factor decreases with
about 15% when the rotation number N is increased from 0 to 2. For N = 5 the friction
factor increases again and interesting enough at N = 10 it is actually higher than for the
non-rotating case. This has not been confirmed by an experiment so far.

Early experimental results concerning the flow pattern and hydraulic resistance in a ro-
tating pipe are described by Murakami & Kikuyama (1980). They also found that an
increase of the rotation rate reduces the hydraulic loss due to a swirling flow component.
The reduction in the hydraulic loss is thereby a function of the rotation rate and the pipe
length.

Kikuyama, Murakami & Nishibori (1983a) measured the mean velocities and the turbulent
fluctuations inside the turbulent boundary layer which developed in an axially rotating
pipe. It is found that the pipe rotation gives rise to two counter effects on the flow: one is
a destabilising effect due to a large shear caused by the rotating pipe wall and the other
is a stabilising effect due to the centrifugal force of the swirling velocity component of the
flow. The destabilising effect prevails in the inlet region, but the stabilising effect becomes
dominant in the downstream sections.

Reich (1988) also experimentally investigated turbulent flow as well as the heat transfer
in a rotating pipe. Reich found that there is almost no dependence of the exponent in the
algebraic scaling law on the axial and azimuthal Reynolds number when the velocity is
normalized with the wall friction velocity. Furthermore Reich confirmed that the algebraic
azimuthal mean velocity profile is in sharp contrast to the laminar flow in a rotating pipe
where solid-body rotation occurs.

A further experimental study of the instability of a flow in an axially rotating pipe is
performed by means of ldv and flow visualisation technique in Imao, Itoh & Zhang (1992).
Therein it is also confirmed that pipe rotation destabilizes the flow and spiral waves appear
in the developing region. Owing to the occurrence of spiral waves, the velocity initially
fluctuates like a sine wave, while further downstream a somewhat sawtooth-like wave form
occurs.

In a recent study Facciolo (2003) experimentally investigated rotating pipe and jet flow.
The flow data have been compared with the scaling laws derived in Oberlack (1999) and it
is found that the experimental results closely follow the theoretical results of the algebraic
and the logarithmic scaling law.

Besides dns and experimental studies calculations of axially rotating pipe flow, using a
variety of turbulence closure models have been reported by several authors.

The most simple approaches have been based on the mixing-length model introduced by
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Kikuyama et al. (1983b):
`

`0
= 1− βRi, (7.1)

where β is a constant and Ri is the Richardson number defined by

Ri =
2
uφ
r2

∂ruφ
∂r

(
∂uz
∂r

)2
+
(
r
∂uφr

∂r

)2 . (7.2)

Kikuyama et al. (1983b) found that the mixing-length decreases with an increase of the
rotation number N . Finally the mixing-length becomes essentially zero when N exceeds
3.5. At that point the axial velocity profile changes into a nearly laminar-like profile.

Hirai, Takagi & Matsumoto (1988) tested three different turbulence models, the standard
K − ε model, the K − ε model modified by the Richardson number and a Reynolds
stress transport model (rstm). The results of the numerical calculations have then been
compared with experiments. It was found that the stress equation model behaves fairly
well for this kind of flow whereby the standard K− ε model is unaffected by the rotation.
The modified K − ε model accounts for system rotation but is not able to capture any
of the correct physical trends for the mean flow found in experiments. Further inquiries
concerning the modified model can be found in §7.4.

Kurbatskii & Poroseva (1995) present a gradient transfer model for calculating the turbu-
lent velocity field in a rotating pipe and found an adequate agreement of their numerical
results with experiments from Pilipchuk (1986), Zaets, Safarov & Safarov (1985) and
Safarov (1986).

In Kurbatskii & Poroseva (1999) and Poroseva (2001) it is stated that at present the
tensor-invariant model of Hanjalić & Launder (1976) for the diffusion term and the linear
ssg model (Speziale et al., 1991) for the pressure-strain term are the best choices to model
turbulent rotating pipe flow. By testing two different diffusion and five different pressure
strain models Kurbatskii and Poroseva found that with increasing Reynolds number the
difference between the profiles calculated with the different models becomes negligible.
In Poroseva (2001) it is further shown that all models need additional wall corrections to
describe the turbulent kinetic energy and its partition between components near a wall
adequately.

Zaets et al. (1998) compared three different models for their performance in rotating pipe
flow. Thereby the lrr gave a better match with the experimental data than the models
with algebraic relationships for second-order moments. The model with a non-equilibrium
relationship for normal stresses (Rodi, 1980 and Hossain, 1980) allows a better calculation
of the behaviour of the turbulence energy and its components in the axial flow region at
a moderate pipe rotation than the model introduced by Gibson & Launder (1978) and So
& Yoo (1986).

Pettersson, Andersson & Brunvoll (1998) as well as Speziale, Younis & Berger (2000) found
from comparison with the results from physical and numerical experiments that the best
overall performance rstm at modeling fully developed turbulent pipe flow is obtained
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by a pressure strain model that retains terms which are quadratic in the Reynolds stress
tensor (e.g. ssg, Speziale et al., 1991) whereby highly non-linear pressure strain models
fail in the present case. The stabilising effect of the imposed rotation on the turbulence is
generally overpredicted by the models and the adoption of a particular gradient diffusion
model seems to be of minor influence on the results.

In Poroseva et al. (2002) the structure based model suggested by Kassinos et al. (2000)
has been evaluated in a rotating pipe. It was observed that this model is able to predict
the flow more accurately at various Reynolds numbers and under stronger rotation than
it was possible with any of the rstm. Most important, the structure based model is
able to reproduce the correct behaviour of flow characteristics at relatively high rotation
rates, whereas the rstms predict flow relaminarization in contrast to experiments (see
also Poroseva, 2001).

Rubinstein & Zhou (2004) developed a non-linear single-point eddy viscosity model based
on two-point closure theory. The developed model focuses on the diminished energy trans-
fer due to rotation which might not be the dominant physical effect of rotation and thus
discrepancies between the model predictions and the numerical and experimental results
appear.

Grundestam et al. (2004) investigated the differences between two explicit algebraic
Reynolds stress models (earsm), the earsm by Wallin & Johansson (2000) and the
extension of this model to a non-linear pressure strain rate model proposed by Grun-
destam et al. (2003) and their corresponding differential Reynolds stress models (drsm),
studying fully developed rotating turbulent pipe flow. Thereby they found for all models
a quite good agreement with experimental results for the mean velocity profiles. Grun-
destam et al. (2003) found that the predictions obtained with the earsms closely follow
those of the corresponding drsms.
The non-linear terms have a significant positive influence on the flow predictions, which
is more profound for the earsms than for the drsms. It is further demonstrated that the
predictions for the turbulent kinetic energy vary dramatically with the applied diffusion
model and that this is closely related to the model for the evolution of the length-scale
determining quantity, such as ε or ω. Thereby Grundestam et al. (2003) found that it
is important to choose a Daly-Harlow type of diffusion model for a reasonably correct
prediction of the kinetic energy levels.

7.2 Governing equations

Analyzing the flow in a circular axially rotating pipe the examined equations have to be
transferred into cylindrical coordinates. Since we are interested in the turbulence modeling
aspects of the given flow problem we will consider the Reynolds-averaged form of the
Navier-Stokes equations. There are two possibilities to account for the rotation. The first
one is to consider the equations in an inertial frame whereby the boundary conditions
account for the rotation. The second choice is to use a rotating frame and to introduce
centrifugal and Coriolis effects to the equations while the boundaries are non-rotating in
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Figure 7.1: Flow geometry

this frame. In the following we restrict to the first possibility being the more facile one
since the determined equations consist of less terms.
Corresponding to figure 7.1 we denote the radial, azimuthal and axial direction with
(r, φ, z) and the respective velocity components with (ur, uφ, uz).

Since we confine our considerations to fully developed flow with azimuthal symmetry
there is no streamwise and azimuthal dependence of the mean flow. Thus the continuity
equation (2.1), written in cylindrical coordinates reduces to

1

r

∂

∂r
(rūr) = 0, (7.3)

which has the only solution ūr =
C1

r
where C1 is a constant. The no-slip boundary con-

dition ūr(r = R) = 0 along with the condition of regularity of the velocity field at r = 0
yields C1 = 0 and hence

ūr = 0. (7.4)

Taking this as well as the above mentioned restrictions into account the Reynolds-averaged
Navier-Stokes equations (2.2) for the radial, azimuthal and axial components respectively
reduce to

∂ūr
∂t
−
ū2φ
r

=
∂p

∂r
− 1
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∂
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(
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′
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+
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r
, (7.5)

∂ūφ
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=
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r2
∂

∂r

(
r3ν

∂
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( ūφ
r

)
− r2u′ru′φ

)
, (7.6)

∂ūz
∂t

= −∂p
∂z

+
1

r

∂

∂r

(
rν
∂ūz
∂r
− ru′ru′z

)
. (7.7)

Restricting to stationary high Reynolds-number flow (ν = 0) equation (7.6) and (7.7)
further reduce to

0 =
1

r2
∂

∂r

(
−r2u′ru′φ

)
, (7.8)
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0 = −∂p
∂z

+
1

r

∂

∂r

(
−ru′ru′z

)
. (7.9)

Integration of (7.8) gives u′ru
′
φ = C2

r2
, with C2 being the constant of integration. Due

to symmetry conditions u′ru
′
φ must become zero at the centre of the pipe. Therefore we

receive C2 = 0 and hence
u′ru

′
φ = 0. (7.10)

In the dns data of Orlandi & Fatica (1997) and Eggels et al. (1994) it is indicated that
u′ru

′
φ is unequal zero. Still, as can be taken from Orlandi & Fatica (1997), its value is one

order of magnitude lower than the other Reynolds stresses, e.g. u′φu
′
z due to its viscous

origin. Since we are considering the large Reynolds number limit, u′ru
′
φ is set to zero in

the following.
Integrating the reduced axial Reynolds-averaged Navier-Stokes equation (7.9) gives:

u′ru
′
z =

1

r

∫
r
∂p̄

∂z
dr + C3. (7.11)

The pressure gradient in z direction is independent of the radius and for the fully developed
flow known to be a constant. Since u′ru

′
z must be zero at r = 0 we receive C3 = 0 and

therewith

u′ru
′
z =

r

2

∂p̄

∂z
. (7.12)

7.3 Symmetry analysis for the turbulent pipe flow

In Oberlack (1999) new scaling laws for high Reynolds number turbulent pipe flow are
derived by using symmetry methods. For the analysis an infinite Reynolds number was
assumed and viscosity has been neglected. Hence only large-scale quantities such as the
mean velocities are determined.
From a Lie group analysis of the two-point correlation equations Oberlack receives the
following symmetries:

Ts1 : r∗ = rea1 , ū∗z = ūze
a1 , ū∗φ = ūφe

a1 , (7.13)

Ts2 : r∗ = r, ū∗z = ūze
−a2 , ū∗φ = ūφe

−a2 , (7.14)

Tuz : r∗ = r, ū∗z = ūz + a3, ū
∗
φ = ūφ. (7.15)

(7.16)

From the infinitesimal form of (7.13) to (7.15) the characteristic equation for the invariant
solutions can be derived:

dr

a1r
=

dūz
[a1 − a2]ūz + b1

=
dūφ

[a1 − a2]ūφ
, (7.17)

where a1, a2 and b1 are group parameters of the corresponding transformations, scaling
of space and time and Galilean invariance in z-direction. Integration of (7.17) gives the



Symmetry analysis for the turbulent pipe flow 109

invariant solutions whereby all scaling laws have their origin at the pipe centre. Thereby
two cases each one referring to a broken symmetry can be distinguished.

The first case is the most general case since no symmetry breaking is imposed on the flow,
meaning that a1, a2 and b1 are arbitrary and unequal zero. Integration of (7.17) gives then
an algebraic scaling law for the axial and azimuthal mean velocity profile:

ūz = Cuzr
1−a2/a1 − b1

a1 − a2
, (7.18)

ūφ = Cuφr
1−a2/a1 , (7.19)

whereby Cuz and Cuφ are constants. In Oberlack (1999) experimental and direct numerical
simulation (dns) data are used to verify the equations (7.18) and (7.19) giving the velocity
defect law for the axial mean velocity

ūc − ūz
ūτ

= χ

(
uw
ūτ

)( r
R

)ψ
. (7.20)

Therein χ is a function of the velocity ratio uw/ūτ where uw and ūτ are respectively the
wall velocity of the rotating pipe uw = RΩ and ūτ =

√
τw/ν is the friction velocity and

ūc is the centerline velocity. ψ is defined as a combination of the group parameter a1 and
a2:

ψ = 1− a2
a1
. (7.21)

Experiments suggest ψ ≈ 2, which is interesting enough, close to the value for the laminar
flow.

The algebraic scaling law for the azimuthal velocity component is apparent in many
experimental and dns data. It can be rewritten as

ūφ
uw

= ζ
( r
R

)ψ
. (7.22)

From the symmetry analysis we know that the exponent in (7.20) and (7.22) should have
the same value. For ζ Oberlack gives a value close to unity.
The corresponding scaling laws for the Reynolds stresses, respectively the turbulent kinetic
energy if the Reynolds stress tensor is contracted and the dissipation rate are:

u′iu
′
j

ū2τ
= C1u′iu

′
j

( r
R

)2ψ
, (7.23)

K

ū2τ
= C1k

( r
R

)2ψ
, (7.24)

εR

ū3τ
= C1ε

( r
R

)3ψ−1

. (7.25)

Experiments suggest that the algebraic scaling laws (7.20) and (7.25) only apply for a
moderate rotation number. As the rotation number increases, the rotating wall velocity
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uw becomes the dominant velocity scale and the axial velocity changes drastically. For the
algebraic law for the axial velocity Oberlack found from comparison with dns data from
Orlandi & Fatica (1997) that it is only valid up to r/R ≈ 0.5 for this case. The algebraic
law for the azimuthal velocity is valid for 0.3 6 r/R 6 0.6. Below r/R ≈ 0.1 solid-body
rotation is present. These findings are also confirmed in Facciolo (2003).

The second scaling to be taken from (7.17) is derived for a1 = a2 6= 0. The parameter
b1 is left arbitrary. This combination of parameters applies if an external velocity scale
acts on the flow. For this case a logarithmic mean velocity profile for the axial velocity is
received:

ūz =
b1
a1

ln(r) + Cuz , (7.26)

with C2uz being constant.

For this scaling law the singularity appears on the pipe axis, not at the wall (y+ = 0) as it
is in the classical law of the wall. Oberlack found that (7.26) applies in some section of the
radius for rapidly rotating pipes in which the wall velocity dominates the friction velocity
ūτ and is therefore the symmetry breaking velocity scale. The corresponding azimuthal
velocity is given by

ūφ = C2uφ , (7.27)

with C2uφ being a constant. From (7.26) Oberlack suggests the scaling law

ūz
uw

= λ ln
( r
R

)
+ ω. (7.28)

For the region of applicability of this new log-law it appears to be valid in the region
0.5 6 r/R 6 0.8, using data from Orlandi & Fatica (1997). The coefficient λ is negative
and approximately equal to −1 and the additive constant ω has been fitted to 0.354.
Facciolo (2003) found from his experiments that either the logarithmic region or the
value of the coefficient λ differ with the rotation rate. Facciolo performed experiments for
the rotation numbers N = 0.5, 1.0 and 1.5 and found for 0.5 6 r/R 6 0.8 corresponding
to the three rotation numbers three different values for λ being −2.6, −1.5 and −1.1
respectively. Putting λ for all three rotation numbers equal to −1 he found three different
regions of fit for the three different rotation numbers, reaching from 0.3 6 r/R 6 0.5 to
0.5 6 r/R 6 0.8.
The corresponding scaling laws for the Reynolds stresses, the turbulent kinetic energy
and the dissipationrate are:

u′iu
′
j

ū2τ
= C2u′iu

′
j
, (7.29)

K

ū2τ
= C2k, (7.30)

εR

ū3τ
= C2ε

R

r
. (7.31)
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7.4 Model performance for axially rotating pipe flow

In the past decades turbulent scaling laws such as for isotropic or homogeneous flows,
as well as for inhomogeneous flows, e.g. the logarithmic law of the wall have been the
key benchmarks for the model development. Nowadays streamline curvature and rotation
became an important modeling issue and hence the rotating pipe is an important new
benchmark. Thus, in the present subsection we incorporate the scaling laws mentioned
in section 7.3 into linear and non-linear eddy viscosity models as well as into rstm. The
intention is not to discredit any of the models analyzed below but rather to analyti-
cally investigate model performance in detail and extract information on necessary model
structure for future turbulence modeling.

7.4.1 Linear eddy viscosity models

Modelling the rotating pipe flow with linear eddy viscosity models bears a couple of prob-
lems which will be illustrated in the following using the standard K − ε model.
Introducing Boussinesque’s eddy viscosity model (3.1) the momentum equations in az-
imuthal and axial direction are
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and (7.32)
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)
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with νt = Cµ
K2

ε
.

Writing the K − ε model (3.17) - (3.19) in cylindrical coordinates and invoking the sim-
plifications pertinent for the present test case we obtain

0 = νt

[(
r
d

dr

( ūφ
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The empirical constants are Ck = 1, Cε1 = 1.44, Cε2 = 1.92 and Cε = 1/1.3. It is easy to
see that these equations do not contain the rotation rate Ω due to the lack of the Coriolis
term. The K − ε model alone is therefore not able to distinguish between a rotating and
an inertial system. System rotation may only enter due to boundary conditions.

One can show that the model equations above contain all symmetries given in (7.13) to
(7.15). Oberlack (2000b) found that the system (7.32)-(7.35) even has one more symme-
try which is not contained in the two- and multi-point equations leading to non-physical
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behaviour under certain flow conditions such as rotation or streamline curvature. A com-
plete group analysis of the K − ε equations in cylinder coordinates, i.e. the equations
(7.32)-(7.35), discloses an additional symmetry of the form:

r∗ = r , ū∗z = ūz , ū∗φ = ūφ + br , K∗ = K , ε∗ = ε , (7.36)

where b represents the group parameter. This additional symmetry allows to add a solid-
body rotation to the azimuthal velocity without any change to the remaining flow quan-
tities. Obviously this is unphysical since turbulence is highly sensitive to rotation. This
additional unphysical symmetry leads to solid-body-like azimuthal mean velocity to be
shown below.

Hirai et al. (1988) performed numerical calculations with two two-equation models and
one rstm. In their calculations with the standard K − ε model Hirai et al. found a
physically wrong linear profile for the azimuthal velocity.

Furthermore Hirai et al. performed numerical calculations with a modified K − ε model
proposed by Launder, Priddin & Sharma (1977). In their modified K − ε model Launder
et al. introduced a correction of the source term in the dissipation rate equation by the
Richardson number Ri. The modified transport equation for the dissipation rate is then
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where

Ri =
K2

ε2
ūφ
r2

d

dr
(rūφ). (7.38)

Due to the additional term in the ε−equation the unphysical symmetry (7.36), admitted
by the standard K − ε model is broken.

For their numerical calculations Hirai et al. put β = 0.005. Though the unphysical sym-
metry (7.36) is broken the calculations still give straight line profiles for the azimuthal
velocity component which are in contradiction to the parabolic profiles, which are received
from experiments. Interesting enough the calculations with the modified model show an
increasing axial velocity ūz near the centerline with increasing swirl strength. Nevertheless
the predicted radial profile of ūz becomes rectilinear when the swirl is sufficiently strong
and can not predict the experimental results of the algebraic laminar-like velocity profile
(see figure 7.2). This is due to the fact that a symmetry breaking of the scaling of time is
imposed due to the structure of the ε−equation.
If we introduce the invariant solution (7.20) - (7.25) into the azimuthal momentum equa-
tion (7.32) we receive:

0 = 2(ψ − 1)(ψ + 1)Cµ
C2
1k

C1ε

ζuw. (7.39)

This shows that the linear law, received from the standard K − ε model represents a
solution since b, representing the group parameter of the unphysical symmetry of the
K − ε model, is cancelled completely out of the equation. The algebraic law is just a
solution if ψ = ±1. Here only the positive sign makes sense since the azimuthal velocity
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Figure 7.2: Axial velocity profiles calculated with the modified K − ε model Hirai et al.
(1988) (lines=calculations, plots=experiments from Kikuyama et al. (1983a))
for N = 0 : • , ; N = 0.5 : ¥ , − − − ; N = 1 : N , · · · and N = 1.5 :
∗ , − · − .

increases from the axis to the wall. With ψ = 1 we receive a2 = 0 corresponding to a
symmetry breaking of time in (7.17). This constitutes the linear azimuthal profile which
the standard, as well as the modified K − ε model give.
If we now introduce the invariant solutions (7.20) - (7.25) with ūφ = ζuwr/R into the
model equations the azimuthal and the axial velocity components decouple completely in
the standard model. In the modified model a coupling is received due to the additional
term which contains the Richardson number. The Richardson number is then given by

Ri = 2
C2
1k

C2
1ε

ζ2
u2w
u2b
r(−2ψ+2)R(−2ψ+2). (7.40)

Since Ri has to be nondimensional ψ must equal 1 so that the r−dependence cancels out.
Thus we receive a rectilinear profile for the axial profile too, which becomes more recti-
linear for higher rotation rates, since then the influence of the additional term increases
(see figure 7.2).

7.4.2 Non-linear eddy viscosity models

In recent years many non-linear stress-strain relations have been proposed to extend
the applicability of linear eddy viscosity models to streamline curvature and rotation at
modest computational costs. Pope (1975) was probably the first who suggested a general
form of the effective-viscosity formulation in form of a tensor polynomial. Using non-linear
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eddy viscosity models guarantees a physically improved modeling of the Reynolds stress
tensor and an incorporation of the influence of streamline curvature on the Reynolds
stresses. Thus it seems to be promising to apply a non-linear eddy viscosity model to the
fully developed rotating pipe flow. Craft, Launder & Suga (1996) as well as Shih, Zhu
& Liou (1997) applied a non-linear eddy viscosity model to the rotating pipe flow with
good results. The basic assumption behind a non-linear eddy viscosity model is that the
Reynolds stresses are uniquely related to the rates of strain (3.21), the rate of rotation
(3.22) and scalar quantities. The basic idea of non-linear eddy viscosity models as well as
the full tensor basis and the scalar invariants may be taken from section 3.1.4. For the
rotating pipe flow the mean strain and rotation rate tensor read

S =
1

2




0
dūφ
dr
− ūφ

r
dūz
dr

dūφ
dr
− ūφ

r
0 0

dūz
dr

0 0


 , (7.41)

W =
1

2




0 −dūφ
dr
− ūφ

r
−dūz

dr
dūφ
dr

+
ūφ
r

0 0
dūz
dr

0 0


 . (7.42)

In the following the tensors T λ and the invariants Iλ are corresponding the tensors, re-
spectively invariants, build from S andW and are thus not dimensionless. These tensors
and invariants are given in cylindrical coordinates in appendix D.

Special attention is turned in the following to constrains which break the unphysical
symmetry (7.36) which is admitted by linear two-equation models in order to be sensitive
to rotation in a physically correct manner.

For a fully developed, rotating, turbulent pipe flow the production term reduces to

P = −u′ru′z
∂ūz
∂r

= brz2K(S[3,1] +W[3,1]). (7.43)

Thus only the [r, z] component of the tensors T 1 − T 10 gives a contribution. If the ten
tensors are written in cylindrical coordinates and the simplifications mentioned in section
7.2 are introduced only the tensors T 1,T 5,T 6 and T 10 have a [r, z] component which is
unequal to zero (see appendix D). Considering these four tensors it has been found that
the linear solution for the azimuthal velocity is not admitted by T 5,T 6 and T 10. Only
these tensors contain a term of the form r

dūφ
dr

+ ūφ which is not invariant under (7.36) and
hence make them sensitive to rotation.

Lets e.g. consider the cubic model introduced by Shih et al. (1997), which can be written
in terms of the mean strain and rotation rates as

−u′iu′j =−
2

3
Kδij + Cµ

K2

ε
2

[
Sij −

1

3
Skkδij

]
+ 2B1

K3

ε2
[SikWkj −WikSkj]−

2B2
K4

ε3

[
WikS

2
kj − S2

ikWkj +WikSkmWmj −
1

3
WklSlmWmkδij + IIS(Sij −

1

3
Skkδij)

]
,

(7.44)
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with IIS = SijSji. Thus this model contains the tensors T 5 and T 6 due to which the
unphysical symmetry (7.36) of the standard K − ε model is broken.
Interesting enough models containing T 5, T 6 and T 10 such as (7.44) may be used to derive
the unknown rotation rate dependence of (7.20) due to χ (uw/ūτ ).
Using the fundamental condition u′ru

′
φ = 0 (see 7.10) we solely consider the [r, φ] com-

ponent of equation (7.44). Introducing into this equation the invariant solutions (7.20) -
(7.25) equation (7.44) reduces to an algebraic equation, which can be solved easily for the
coefficient of the axial velocity component χ (uw/ūτ ), giving

χ

(
uw
ūτ

)
=

√
C1
u2w
ū2τ

+ C2, (7.45)

with C1 and C2 being constants respectively combinations of the model constants, the
exponent ψ and the coefficients ζ, C1k and C1ε.
If we now introduce (7.45) into the expression for the axial velocity component (7.20), we
receive the dependence of the axial velocity component on the rotation rate:

uc − ūz
ūτ

=

√
C1
R2Ω2

ū2τ
+ C2

( r
R

)ψ
, (7.46)

whereby uw = RΩ has been used. This dependence is confirmed by the numerical calcu-
lations done by Shih et al. (1997) with their cubic model.

It can be taken from figure 7.3 that this finding is also confirmed by experiments since
the profile for ūz becomes steeper or in other words χ (uw/ūτ ) increases for increasing
rotation rates. Using the experiments from Kikuyama et al. (1983a) the coefficients may
be fitted to C1 = −0.59, C2 = 0.43 and ψ = 2.

For the second case described in §7.3 for which a logarithmic law for the axial velocity
component is received Oberlack (1999) did not comment on the form of the coefficient λ in
(7.28). A mathematical term for λ can be received, by following the steps described above.
We thus introduce the invariant solutions (7.28)-( 7.31) into the non-linear eddy viscosity
model and solve then the [r, φ] component of equation (7.44) for λ. Interesting enough
gives this the same expression for λ, which we already received for χ (7.45), whereby
the constants are slightly different. Thus the axial velocity component depends on the
rotationrate for the second case described in section 7.3 as well. We might then rewrite
(7.28) in the following form

ūz
uw

=

√
C3
R2Ω2

ū2τ
+ C4ln

( r
R

)
+ ω. (7.47)

From appendix D it may be taken that the term r
dūφ
dr

+ ūφ due to which the unphysical
symmetry (7.36) of the K − ε model is broken also appears in the invariant I2 being the
only scalar invariant having this property. Furtheron the number of independent invariants
reduces to 2, since I3 and I4 become zero and I5 equals 1/2I21 for the given flow case, as
can be taken from appendix D .
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Figure 7.3: Plot of the axial mean velocity in dependence of the rotation rate; Experimen-
tal data from Kikuyama et al. (1983a) for Re = 20000 and fits corresponding
to equation (7.46): N = 0 : • , ; N = 0.5 : ¥ , −−− ; N = 1 : N , · · · and
N = 1.5 : ∗ , − · − .

This finding may suggest a new model for the eddy viscosity depending on I2.

Rung (1999) as well as Pettersson Reif et al. (1999) proposed modified models for the
eddy viscosity which account for streamline curvatures and rotation. The model by Rung
is given by

Cµ∗ =
√
IIb
I1
. (7.48)

where Cµ∗ replaces the usual Cµ and IIb = bijbji. This model implies the dependence of
the eddy viscosity on the anisotropy of the Reynolds stresses. Its validity is limited to
axisymmetric flows. The same model has been proposed by Jovanović (2002) in order to
confirm, that a linear relationship between u′iu

′
j and S̄ij holds for axisymmetric strained

turbulence. In his derivation of (7.48) Jovanović argued that the effective viscosity grows
proportional to the anisotropy of turbulence defined by bij and the length-scale based on
the magnitude of the mean strain rate. However, since only the invariant I1 is employed
in the model for νt no symmetry breaking of the unphysical symmetry (7.36) is received
and the model does not lead to any improvements for the considered flow case.

Whereas Pettersson Reif et al. (1999) proposed a model which encloses the symmetry
breaking invariant I2:

C∗∗
µ = Cµ

1 + α2 | I3 | +α3I3
1 + α4 | I3 |

(√
1 + α5I1
1 + α5I2

+ α1

√
I2
√
| I3 | −I3

)−1

. (7.49)

C∗∗
µ is thereby the modified coefficient, which approaches the original value of 0.09 if

the streamline curvature or rotation becomes small. Thus this model should account for



Model performance for axially rotating pipe flow 117

rotation but reduce to the standard model for parallel shear flows in an inertial frame of
reference. It has been calibrated with reference to the bifurcation diagram for the v̄2 − f
model. For the model coefficients αi Pettersson Reif et al. proposed a dependence on
the wall damping function fµ. The invariants are written in cylindrical coordinates in
appendix D. The dependence of the coefficient on the rotation tensor allows to account
for system rotation. Since the invariant I3 becomes zero for the given flow case (7.49)
reduces to

C∗∗
µ =

(
Cµ

√
1 + α5I1
1 + α5I2

)−1

. (7.50)

If we introduce the invariant solutions into the invariants I1 and I2 we receive:

I1 = ζ2
u2w
ū2τ

[
(ψ − 1)2 +

1

2
ψ2

]( r
R

)2ψ
(7.51)

and

I2 = −
1

2
χ2
[
(ψ − 1)2 + ψ2

] ( r
R

)2ψ
. (7.52)

Due to (7.51) and (7.52) the constant C∗∗
µ varies with the ratio of the velocities uw and

ūτ and is thus not a pure constant.

From dimensional arguments the most simple eddy viscosity model which encloses the
invariant I2 and breaks therefore the unphysical symmetry (7.36) is given by:

νt = Cµ
K2

ε
f (I∗2 ) . (7.53)

The function f should thereby reduce to 1 if flow cases without rotation are considered,
so that the calibration of the classical K − ε model with the law of the wall as well as
with homogeneous shear is retained. The new model for the eddy viscosity should thus
account for shear and rotation, while keeping the standard calibration.

The calibration should be conducted with the help of the invariant solutions (7.20) -
(7.25), which are received from the symmetry analysis.

Two different models for the eddy viscosity are used for the production and the diffusion
term, since otherwise two different, mutually contradictory expressions for the function f
are received from the K- and the ε-equation. Hence we use:

νtP = Cµ
K2

ε
f (I∗2 ) (7.54)

and

νtDiff = Cµ
K2

ε
g (I∗2 ) . (7.55)

Introducing the invariant solutions (7.20) - (7.25) into the K − ε model, where the eddy
viscosities are given by equation (7.54) and (7.55) and solving for the model functions
gives for the function f in (7.54)

f (I∗2 ) =
K1

ζI∗22 + χ2
(7.56)
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and together with (7.45)

f (I∗2 ) =
C3

I∗22 + C4

, (7.57)

whereby C3 and C4 are constants, which are composed of the model constants, and the
coefficients ζ, C1k, and C1ε and the exponent ψ in the invariant solutions (7.20) - (7.25).
For the function g a constant, composed of the above mentioned parameters is received,
so that (7.55) reduces to

νtDiff = C??
µ

K2

ε
, (7.58)

where C??
µ has a unknown value so far. Keeping in mind, that the calibration with the

logarithmic law should be retained, we consider the invariant I∗2 in the logarithmic region.
In the logarithmic region I∗2 reduces to

{W ∗2} =
(
K

ε

)2
ū2τ

4κ2x22
. (7.59)

Since the K and ε scale as

ε =
ū3τ
κx2

and K ' ū2τ
0.32

(7.60)

in the logarithmic region a constant value of I∗2 = 30.86 is received. Since the functions
f and g should reduce to 1 for flows without rotation the constrains f(30.86) = 1 and
g(30.86) = 1 need to be imposed. From this we receive C1k = 7.17 and C1ε = 6.23 in
the equations (7.24) and (7.25). It should be noted that the modified model is in fact
also consistent with homogeneous shear since the value for P/ε is kept but the growth
rate is slightly increased. Using the models (7.58) and (7.54) with (7.57) in the standard
K − ε model leads insofar to a structural improvement for the given flow case, that the
unphysical symmetry (7.36) of the standard K − ε model is not admitted anymore and
hence the scaling laws of the rotating pipe flow (7.20) and (7.22) are observed.

7.4.3 Reynolds stress models

As it is mentioned in section 7.1 there are a couple of Reynolds stress models which
perform quite well at modelling the rotating turbulent pipe flow.

Hirai et al. (1988) adopted the Reynolds stress model from Launder, Reece & Rodi
(1975) (lrr) for their numerical calculations and compared the results with experiments.
Thereby they found that the lrr model quite well predicts the azimuthal mean velocity
as well as the dependence of the axial velocity component ūz on the rotation rate. In the
following this coherence of the lrr model will be derived using the symmetry methods
and tensor invariant theory.

For the subsequent analysis it is convenient to rewrite the Reynolds stress transport
equation 2.13, which is based on the variables u′iu

′
j and ε into a set of equations for K, ε
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and bij. Rewriting (2.13) in classical notation we obtain

∂bij
∂t

+ ūk
∂bij
∂xk

=
1

2K
(Pij +Πij +Dt

ij +Dν
ij)−

1

k

(
bij +

2

3
δij

)
(P − ε+Dt +Dν),

(7.61)

where
Πij = φij − εDij , (7.62)

extended by the usual K- and ε equation.

Besides the usual closure from the lrr model we adopt a simplified model for the diffusion
term

Dij = Cs
∂

∂xk

(
Cµ
K2

ε

∂u′iu
′
j

∂xk

)
(7.63)

in order to straighten the subsequent analysis. Taking this simplified model (7.63) for the
diffusion term has the advantage, that the diffusion model as well as the convection term
in equation (7.61) cancel by introducing the invariant solutions (7.20) - (7.25). Hence the
concept of explicit algebraic stress models earsm (e.g. Gatski & Speziale, 1993), described
in chapter 3.4 may be used to express the anisotropy tensor bij explicitly in terms of the
mean velocity gradients to derive a solution for ūz in terms of the rotation rate Ω.
For the pressure strain correlation a in bij tensorially linear model is used (see Gatski &
Speziale, 1993) so that an explicit expression for bij in terms of the mean velocity gradients
is obtained.
The tensors T λ and the scalar invariants Iλ are given in cylindrical coordinates in appendix
D. We now make use of the fact (7.10) that u′ru

′
φ = 0 or brφ = 0 and thus take only the

[r, φ] component of equation (3.23). Only the tensors T̂
1
, T̂

5
, T̂

6
and T̂

10
have a [r, φ]

component so that we receive:

brφ = 0 = G1T̂
1

[r,φ] +G5T̂
5

[r,φ] +G6T̂
6

[r,φ] +G10T̂
10

[r,φ], (7.64)

whereby the solutions for Gλ are given by (3.87).
The full equation (7.64) is quite lengthy and thus not presented here. Nevertheless, intro-
ducing the invariant solutions (7.20) - (7.25) into equation (7.64) gives an equation, which
can be solved easily for the coefficient of the axial velocity component χ (uw/ūτ ), giving
the same expression (7.45), which we already received for the non-linear eddy viscosity
models. If this solution is then introduced into the invariant solution for the axial velocity
component (7.20) the same dependence (7.46) of the axial velocity on the rotation rate Ω
as for the non-linear eddy viscosity models obtained.

The same procedure can be carried out introducing the invariant solutions of the second
case described in section 7.3 for which a logarithmic law for the axial velocity component
is derived. Insertion of (7.26) - (7.31) into equation (7.64) gives again a reduced equation,
which is then solved for λ. This solution is then introduced into (7.28), giving qualitatively
the same dependence (7.47) on the rotationrate Ω, which has been derived for the nonlinear
eddy viscosity models.
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8 Summary and conclusions

In the given thesis symmetry methods are used for the investigation of turbulence models.
Hereby three different flow cases are investigated: 1) The shear-free turbulent diffusion
with rotation, without rotation and with a constant integral length-scale; 2) The zero-
pressure gradient (zpg) turbulent boundary layer flow; 3) The fully developed rotating
turbulent pipe flow. To illustrate the approach to symmetry analysis the Bragg-Hawthorne
equation, which is equivalent to the incompressible stationary axisymmetric Euler equa-
tions with swirl is investigated.

Thereby it is demonstrated that although the Bragg-Hawthorne equation is an equivalent
representation of the incompressible stationary axisymmetric Euler equations with swirl,
it is not fully equivalent on the basis of a Lie symmetry analysis. The fully equivalent
counterpart is derived, the so called intermediate Euler equations, in general having the
structure of integro-differential equations. A local Lie point symmetry analysis of the
Bragg-Hawthorne equation, when transformed back to its primitive variables, allows us to
see in a very natural way how an integro-differential equation can admit a local symmetry
and how a differential equation can admit a non-local symmetry.

For the turbulent diffusion problem a set of three different invariant solutions are con-
structed based on Lie group analysis of the multi-point correlation equations. The so-
lutions cover classical diffusion-like solution (heat-equation-like) with algebraic spatial
decay, decelerating diffusion-wave solution with exponential spatial decay and finite do-
main diffusion due to rotation. Two-equation model equations and full Reynolds stress
equations are investigated whether they capture any of the invariant solutions. Partic-
ularly the classical K-ε and the lrr model are investigated. All models comply with
the diffusion-like solution with algebraic spatial decay. The decay exponent is determined
by the model constants while multiple decay exponents are observed. The exponential
solution is only admitted by the model equations if the model constants obey certain al-
gebraic relations. For a given set of model constants either the algebraic or the exponential
solution is admitted.

It is important to note that the discrepancy between the admitted invariant solutions
for the multi-point correlation equations and the one-point model equations lies in the
reduced dimensionality of the one-point equations. For the set of classical model constants
only the algebraic solution is obtained. Nevertheless, we may not conclude from the one-
dimensional case that with the classical model constants exponential solutions are not
admitted for the two- or three-dimensional case. In fact it appears to be very likely that
these solutions exist for probably all Reynolds stress models at dimensions higher than
one.

Additional unresolved problems arise from the experimental verification of the scaling laws
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and its Reynolds number dependency. Essentially nothing exists which clearly supports
the presented analytical results going beyond the classical law K ∼ x−n1 . Reynolds number
dependency is an unresolved question even from an analytical point of view. Up to this
point group theoretical methods have not been able to unravel this problem.

The case of turbulent diffusion with rotation is very difficult to model. Investigating this
flow case using symmetry methods, it can be found, that the decay of the turbulent
kinetic energy is described by a quadratic equation, meaning that the turbulent diffusion
only influences a finite domain for t → ∞. These results can only partly be reproduced
by performing large eddy simulations. Here further investigations have to be carried out
concerning the scaling of the boundary conditions with the rotation rate. Two models are
thoroughly analyzed for the given flow case. One investigated model is the one by Sjögren
& Johansson (2000), in which the pressure strain term is modeled as a non-linear function
of the mean velocity gradient. This is in contrast to classical approaches where this term
is linearly modeled. The other investigated model is the one by Shimomura (1993), where
an extension of the ε-equation depending on the rotation rate Ω is introduced. Both
models predict a finite domain diffusion in which the fixed point depends on the rotation
rate. Concerning the results of the large eddy simulation, the model from Shimomura
Though both models fail in predicting the quadratic decreasing behavior and the constant
turbulent time-scale given by the invariant solutions. Hence further investigations have to
be carried out in regard of this special flow case.

Investigating parallel turbulent shear-flow, a wide spectrum of Reynolds stress models are
tested for their ability to properly capture the new exponential scaling law derived by
Oberlack (2001). This scaling law has recently been validated in the mid wake region of
high Reynolds number flat-plate boundary layers using experimental data. Thus it should
be required that the exponential velocity law is also admitted by the model equations of
Reynolds stress models. Implicating the invariant solutions into the model equations it is
found that none of the tested models is in accordance with the exponential velocity law.
Though from some models we receive conditions for the model constants under which a
proper modeling of this scaling law would be possible.

As an example for a flow with rotation, the fully developed rotating turbulent pipe flow
is investigated. Using symmetry methods, linear and non-linear eddy viscosity models as
well as Reynolds stress models are investigated on their ability to reproduce the scaling
laws derived in Oberlack (1999) for this very important testcase in the field of turbulence
modeling.

Thereby it is demonstrated why the standard as well as the modified K − ε model do not
correctly predict the flow pattern, found in a fully developed rotating pipe flow.
In particular an additional unphysical symmetry of the standard K − ε and other two-
equation models is obtained which gives rise to a linear profile for the azimuthal velocity
component. This profile is furthermore independent of the rotation rate since the K − ε
model does not contain the Coriolis term and is therefore unable to distinguish between
a rotating and an inertial system.
Investigating the modified K − ε model proposed by Launder et al. (1977) it is shown
that this model gives a rectilinear velocity profile for the axial velocity component for
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increasing rotation rates because of a symmetry breaking due to the structure of the
ε−equation.
Considering non-linear eddy viscosity models it is found, that only three tensors of the
tensor basis do not admit the additional unphysical symmetry, which is admitted by
the standard K − ε model. Furthermore an equation describing the dependence of the
axial velocity component on the rotation rate is received from the cubic eddy viscosity
model introduced by Shih et al. (1997). This dependence is confirmed by the numerical
calculations from Shih et al. (1997).

Considering the tensor invariants it is found, that only the invariant I2 = {W 2} breaks
the unphysical symmetry. Based on this finding a new model for the eddy viscosity is
proposed due to which the unphysical symmetry adopted by the standard K − ε model is
broken. Using this new model gives qualitatively correct results for the azimuthal velocity
components. The invariant solutions can further be used for a calibration of the new model
constant C∗

µ. It seems thus to be sufficient to introduce a dependence of one of the model
constants onto this invariant. Based on this finding different models for the eddy viscosity
introduced by Rung (1999) and Pettersson Reif et al. (1999) are investigated.

Finally using the lrr model the same dependency of the axial velocity component on
the rotation rate, given by the non-linear eddy viscosity model is derived. Therefore the
method of explicit algebraic stress models is adopted. Here the question arises, if it is also
possible to derive this coherence from the two-point correlation equations. This should be
the subject of future research.

Based on the findings mentioned above, the importance of the symmetry conditions for
Reynolds averaged turbulence models derived in Oberlack (2000b) are emphasized in the
given thesis. It could be shown that the symmetry methods provide a very useful tool for
the improvement of existing turbulence models or may be a guideline for the development
of new models from first principles.

In the near future more research should be carried out with the purpose to develop new
turbulence models and calibrate old ones using symmetry methods. Using this approach
leads to turbulence models based on first principles and thus provides a way to ”model
the physics and not the equations”.
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Sadiki, A., Jakirlić, S. & Hanjalić, K. 2003 Towards a thermodynamically consis-
tent, anisotropy-resolving turbulence model for conjugate flow, heat and mass transfer.
In 4th Int. Symp. on Turbulence, Heat and Mass Transfer, Antalya, Turkey .

Safarov, N. 1986 Dissertation. PhD thesis, Moscow Physicotechnical Inst.

Saffman, P. G. 1970 A model for inhomogenous turbulent flows. Proc R. Soc. Lond.
A317, 417–433.

Sambasivam, A., Girimaji, S. & Poroseva, S. 2004 Realizability of the Reynolds
stress and rapid pressure-strain correlation in turbulence modelling. Journal of Turbu-
lence .

Sarkar, S. & Speziale, C. 1990 A simple nonlinear model for return to isotropy of
turbulence. Phys. Fluids A 2, 84–93.

Schumann, U. 1977 Realizability of Reynolds stress turbulence models. Phys. Fluids 20,
721–725.

Shih, T.-H. & Lumley, J. 1985 Tech. Rep. 85-3. FDA, Cornell University.

Shih, T.-H., Zhu, J. & Liou, W. W. 1997 Modeling of turbulent swirling flows. In
Proc. eleventh symposium on turbulent shear flows , , vol. 3.

Shimomura, Y. 1989 A statistically derived two-equation model of turbulent flows in a
rotating system. Journal of the Physical Society of Japan 58, 352–355.

Shimomura, Y. 1993 Near-wall turbulent flows. In Proceedings of the In- ternational
Conference on Near-Wall Turbulent Flows . Tempe, Arizona, U.S.A.

Shy, S. S. & Beidenthal, R. E. 1991 Turbulent stratified interfaces. Phys. Fluids 5,
1278–1285.

Shy, S. S., Tang, C. Y. & Fann, S. Y. 1997 A nearly isotropic tubulence generated
by a pair of vibrating grids. Exp. thermal Fluid Sci. 14, 251–262.
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A Navier-Stokes equations in a ro-
tating frame

Since rotating flows play a very important role in engineering applications as e.g. tur-
bomachinery or aeronautics and are thus frequently used as testcases for every kind of
turbulence model, the Navier-Stokes equations in a rotating frame have been written down
here Oberlack (2005).

Introduced variables:

x∗k = Qklxl ⇒ xk = QT
klx

∗
l

u∗i = Qikuk + Q̇inxu ⇒ ui = QT
ik [u

∗
k − elkmΩlx

∗
m]

where

QikQ
T
kj = QT

ikQkj = δij and |Q| = 1

Q̇ikQjk = ekijΩk ⇒ d

dt

(
Q̇ikQjk

)
= ekijΩ̇k

Derivatives:

∂

∂xk
= QT

kl

∂

∂x∗l
⇒ ∂2

∂x2k
= QT

klQ
T
km

∂2

∂x2k∂x
2
m

=
∂2

∂x∗k
∂

∂t
=

∂

∂t
+ Q̇klQ

T
lmx

∗
m

∂

∂x∗k
=

∂

∂t
+ elKmΩlx

∗
m

∂

∂x∗k

Navier-Stokes in an initial frame:

∂ui
∂t

+ uk
∂ui
∂xk

= − ∂p

∂xi
+ ν

∂2ui
∂x2k

Navier-Stokes in a rotating frame:

[
∂

∂t
+ elkmΩlx

∗
m

∂

∂x∗k

] [
QT
ip

(
u∗p − eqprΩqx

∗
r

)]

+
[
QT
sp

(
u∗p − eqprΩqx

∗
r

)]
QT
st

∂

∂x∗t

[
QT
ik (u

∗
k − elkmΩlx

∗
m)
]

= −QT
ik

∂p

∂x∗k
+ ν

∂2

∂x∗
2

k

[
QT
ik (u

∗
k − elkmΩlx

∗
m)
]



139

⇒ Q̇T
ip

(
u∗p − eqprΩqx

∗
r

)
+QT

ip

(
∂u∗p
∂t
− eqprΩ̇∗

qx
∗
r

)

+QT
ipelkmΩlx

∗
m

∂u∗p
∂x∗k
−QT

ipelkmΩlx
∗
meqprΩqδkr

+QT
ik

[
u∗p
∂u2k
∂x∗p
− u∗pelkmΩlδpm − eqprΩqx

∗
r

∂u∗k
∂x∗p

+ eqprΩqx
∗
relkmΩlδpm

]

= −QT
ik

∂p

∂x∗k
+ νQT

ik

∂2u∗k
∂x∗2n

|Qai

⇒ ∂u∗a
∂t

+ u∗p
∂u∗a
∂x∗p

= − ∂p

∂x∗a
+ ν

∂2u∗a
∂x∗2n

− eipaΩi

(
u∗p − eqprΩqx

∗
r

)
+ eqarΩ̇qx

∗
r + u∗melamΩl

+ elkmΩlx
∗
meqakΩq − eqmrΩqx

∗
relamΩl

⇒ ∂u∗a
∂t

= − ∂p

∂x∗a
+ ν

∂2u∗a
∂x∗

2

k

− eklaΩ̇kx
∗
l − 2eklaΩku

∗
l

+ eklaΩkeplqΩpx
∗
q + ekalΩkeplqΩpx

∗
q − ekalΩkeplqΩpx

∗
q

⇒ ∂u∗i
∂t

= − ∂p
∂x∗i

+ ν
∂2u∗i
∂x∗2

k

− ekliΩ̇kx
∗
l − 2ekliΩku

∗
l − ekliΩkepqlΩpx

∗
q

with

− ekliΩkepqlΩpx
∗
q

= − (δipδkq − δiqδkp) ΩkΩpx
∗
q

= − (ΩiΩkx
∗
k − x∗iΩkΩk)
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2D Navier Stokes equation in a rotating frame about x3: u = u(x1x2 · t)

∂u∗

∂t
=− ∂p

∂x∗i
+ ν

∂2u∗i
∂x∗

2

k

− 2e3liΩ3u
∗
l + δi1Ω

2
3x

∗
1 + δi2Ω

2
3x

∗
2

Stream function:

u∗1 =
∂Ψ∗

∂x∗2
;u∗2 = −

∂Ψ2

∂x∗1
⇒ Ψ∗ =

∫

s

(u∗1dx
∗
2 − u∗2dx∗1) + Ψ0

⇒ ∂u∗

∂t
=− ∂p

∂x∗i
+ ν

∂2u∗i
∂x∗

2

k

+ δi1
[
2Ω3u

∗
2 + Ω2

3x
∗
1

]
+ δi2

[
−2Ω3u

∗
1 + Ω2

3x
∗
2

]

=ν
∂2u∗i
∂x∗2u

− ∂p

∂x∗i
+ δi1

[
−Ω32

∂Ψ∗

∂x∗1
+ Ω2

3

∂

∂x∗1

(
1

2
x∗

2

1

)]

+ δi2

[
−Ω32

∂Ψ∗

∂x∗2
+ Ω2

3

∂

∂x∗2

(
1

2
x∗

2

2

)]

=ν
∂2u∗i
∂x2k

− ∂

∂x∗i

[
p+ Ω32Ψ

∗ − Ω2
3

1

2

(
x∗

2

1 + x∗
2

2

)]

︸ ︷︷ ︸
p∗

p∗ =p+ 2Ω3Ψ
∗ − Ω∗

3

1

2

(
x∗

2

1 + x∗
2

2

)

⇒ p∗ =p+ 2Ω3Ψ− Ω2
3

3

2

(
x∗

2

1 + x∗
2

2

)
to be shown!
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Auxiliary calculation:

2

∫
u∗1dx

∗
2 − 2

∫
u∗2dx

∗
1 − Ω

1

2

(
x∗

2

1 + x∗
2

2

)

=2

∫ (
Q11u1 +Q12u2 + Q̇11x1 + Q̇12x2

)
d (Q21x1 +Q22x2)

−
∫ (

Q21u1 +Q22u2 + Q̇21x1 + Q̇22x2

)
d (Q11x1 +Q12x2)

− 1

2
Ω
(
(Q11x1 +Q12x2)

2 + (Q21x1 +Q22x2)
2)

=2

∫
(cos(·)u1 − sin(·)u2 − Ω sin(·)x1 − Ωcos(·)x2) d (sin(·)x1 + cos(·)x2)

− 2

∫
(sin(·)u1 + cos(·)u2 + Ωcos(·)x1 − Ω sin(·)x2) d (cos(·)x1 − sin(·)x2)

− 1

2

[
(cos(·)x1 − sin(·)x2)2+ (sin(·)x1 + cos(·)x2)2

]
Ω

=2

∫ 
(cos(·) sin(·)− sin(·) cos(·))︸ ︷︷ ︸

=0

u1 +
(
− sin2(·)− cos2(·)

)
u2

+ Ω
(
− sin2(·)− cos2(·)

)
x1 +Ω


− cos(·) sin(·) + sin(·) cos(·)︸ ︷︷ ︸

=0


 x2


 dx1

+ 2

∫ [(
cos2(·) + sin2(·)

)
u1 +


− sin(·) cos(·) + cos(·) sin(·)︸ ︷︷ ︸

=0


 u2

+ Ω(− sin(·) cos(·) + cos(·) sin(·))x1 +Ω
(
− cos2(·)− sin2(·)

)
x2
]
dx2

− Ω

2

[(
cos2(·) + sin2(·)

)
x21 +(. . .)x22

]

=− 2

∫
[u2 + Ωx1] dx1 + 2

∫
[u1 − Ωx2] dx2

− Ω

2

[
x21 + x22

]

=2

∫
u1x2 − 2

∫
u2dx1 −

Ω

2

(
x1 + x22

)
3
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B Attempt to solve the linear Bragg-
Hawthorne equation

In this appendix we try to determine the general analytical solution of the linear Bragg-
Hawthorne equation

ψzz + ψrr −
1

r
ψr = r2(αψ + β) + (γψ + δ). (B.1)

The general solution of this linear pde can be split into a homogeneous and an inhomo-
geneous part

ψ(r, z) = ψH(r, z) + ψI(r, z). (B.2)

The general solution of the homogeneous equation (β = 0, δ = 0) is constructed by the
method of separation of variables by writing

ψH(r, z) = f(r) · g(z), (B.3)

where g(z) can be easily determined as

g(z) = c1 sin
(
z
√
λ− γ

)
+ c2 cos

(
z
√
λ− γ

)
, (B.4)

where λ is a real arbitrary constant. The function f(r) obeys the following ordinary
differential equation

frr −
1

r
fr − (λ+ αr2)f = 0. (B.5)

Depending on the value of α we obtain the following set of solutions

• α = 0: the substitution of the expression f(r) = r · F
(
r
√
−λ
)
turns equation (B.5)

into Bessel’s differential equation

x2F ′′(x) + xF ′(x) + (x2 − 1)F (x) = 0, (B.6)

with its general solution

F (x) = c3 · J1(x) + c4 · Y1(x), (B.7)

where J and Y represent the linear independent Bessel functions of the first and
second kind respectively (Abramowitz & Stegun, 1968), with x = r

√
−λ.

• α 6= 0: the substitution of the expression f(r) = r2
√
αe−

1
2
r2
√
αF
(
r2
√
α
)
turns equa-

tion (B.5) into Kummer’s differential equation

xF ′′(x) + (2− x)F ′(x)−
(
1 +

λ

4
√
α

)
F (x) = 0, (B.8)
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with its general solution

F (x) = c3 ·M1+ λ

4
√
α
, 2(x) + c4 · U1+ λ

4
√
α
, 2(x), (B.9)

where M and U represent the linear independent confluent hypergeometric func-
tions being at the origin regular and irregular respectively (Abramowitz & Stegun,
1968), with x = r2

√
α. The corresponding functions f(r) as given above are called

Whittaker functions (Abramowitz & Stegun, 1968).

This completes the general investigation of the homogeneous part of the linear Bragg-
Hawthorne equation (B.1). Depending on whether α is zero or not, the homogeneous
solutions are either proportional to Bessel functions or to Whittaker functions respec-
tively.
The most difficult part of determining the general solution of (B.1) is now to construct a
special solution of the inhomogeneous part. By taking care not to end up in a contradic-
tion, we will look for a special solution which only depends on the radius ψI(r, z) = w(r),
obeying

wrr −
1

r
wr − (αr2 + γ)w = βr2 + δ. (B.10)

For this ordinary linear differential equation of second order for w(r), it is everything but
easy to find a special solution. A reasonable way is to split it up again into a homogeneous
and a inhomogeneous part

w(r) = wH(r) + wI(r). (B.11)

From the theory of ordinary linear differential equations of second order, it is always
possible to construct the inhomogeneous solution out of the knowledge of the general
homogeneous solution. If the homogeneous solution is given as

wH(r) = c5 · h1(r) + c6 · h2(r), (B.12)

the inhomogeneous solution in our case takes on the structure (Bronstein & Semendjajew,
1981)

wI(r) = h2(r)

∫
F (r)

r
h1(r)dr − h1(r)

∫
F (r)

r
h2(r)dr, (B.13)

with F (r) = βr2 + δ being the inhomogeneous term of equation (B.10). Since its homo-
geneous part is the same as in equation (B.5), the functions hi(r) will be proportional
either to Bessel or to Whittaker functions depending on whether α is zero or not, leading
to solutions (B.13) of great complexity. Especially for integrals over Whittaker functions
there exists no analytical nor a numerical theory to simplify or calculate a quantity like
(B.13) properly. For achieving progress, the only reasonable way is to solve the differential
equation (B.10) directly in the usual numerical fashion.
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C The B-tensor model

The complete ansatz for the sixth rank B-tensor can be written

Bijpqrs =c12KδijNpqrs + c22K [δipNjrsq + δiqNjprs + δirNjpqs + δisNjpqr]

+ (c3Rij + c4Yij)Npqrs

+ c5 (RmpNnqrs +RmqNnprs +RmrNnpqs +RmsNnpqr) (δimδjn + δinδjm)

+ c6 (YmpNnqrs + YmqNnprs + YmrNnpqs + YmsNnpqr) (δimδjn + δinδjm)

+ c7δij (δpqRrs + δprRqs + δqrRps + δpsRqr + δqsRpr + δrsRpq)

+ c8δij (δpqYrs + δprYqs + δqrYps + δpsYqr + δqsYpr + δrsYpq)

+ c9 (RpqNijrs +RprNijqs +RpsNijqr +RqrNijps +RqsNijpr +RrsNijpq)

+ c10 (YpqNijrs + YprNijqs + YpsNijqr + YqrNijps + YqsNijpr + YrsNijpq)

+ c11δij (Mrspq +Mpsrq +Mqspr +Mpqsr +Mprsq +Mqrps)

+ c12 (δqrMijps + δqsMijpr + δrsMijpq + δprMijqs + δpsMijqr + δpqMijrs)

+ c13 (δqrMpsij + δqsMprij + δrsMpqij + δprMpsij + δpsMqrij + δpqMrsij)

+ c14
(
δqrM

h1
ispj + δqsM

h1
iprj + δrsM

h1
ipqj + δprM

h1
iqsj + δpsM

h1
iqrj + δpqM

h1
irsj

)

+ c15
(
δipM

h2
jqrs + δjpM

h2
iqrs + δiqM

h2
jprs + δjqM

h2
iprs + δirM

h2
jpqs + δjrM

h2
ipqs

+δisM
h2
jpqr + δjsM

h2
ipqr

)

+ c16
(
δipM

h3
jqrs + δjpM

h3
iqrs + δiqM

h3
jprs + δjqM

h3
iprs + δirM

h3
jpqs + δjrM

h3
ipqs

+δisM
h3
jpqr + δjsM

h3
ipqr

)
,

where, for brevity of notation

Mh1
ipqj =Mipqj +Mjpqi +Miqpj +Mjqpi,

Mh2
ipqr =Mipqr +Mirpq +Miqrp,

Mh3
ipqr =Mpqri +Mrpqi +Mqrpi

has been introduced.
The fourth rank isotropic tensor is defined as

Nijpq =
1

15
(δijδpq + δipδjq + δiqδjp) ,

so that contraction of any index pair leaves one third times the Kronecker delta.
The coefficients above are related as (derived by use of maple)
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c1 = −650a− 25
49
, c5 = −155a− 3

49
, c9 = −70a− 5

42
, c13 = −28a− 8

315
,

c2 = 160a+ 23
196

, c6 = −155a− 13
98
, c10 = −70a− 1

28
, c14 = 0,

c3 = 600a− 11
147

, c7 = 37a+ 61
1470

, c11 = −259a− 41
315

, c15 =
49
3
a,

c4 = 600a+ 22
40
, c8 = 37a+ 301

2940
, c12 = −28a+ 41

315
, c16 =

49
3
a+ 1

45
.
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D Tensor basis and scalar invariants

in cylindrical coordinates

Relevant tensors in cylindrical coordinates

The four tensors giving a non-zero contribution to non-linear eddy viscosity models for
the fully developed rotating turbulent pipe flow are in cylindrical coordinates:

T 1 =




0
dūφ

dr
r−ūφ
2r

1
2
dūz
dr

dūφ

dr
r−ūφ
2r

0 0
1
2
dūz
dr

0 0


 ,

T 5[1, 1] = 0,

T 5[1, 2] = T 5[2, 1] = −( dūzdr )
2

8r

((
dūφ
dr
r − ūφ

)
+
(
dūφ
dr
r + ūφ

))
,

T 5[1, 3] = T 5[3, 1] = −( dūzdr )
8r2

((
dūφ
dr
r − ūφ

)(
dūφ
dr
r + ūφ

)
−
(
dūφ
dr
r − ūφ

)2)
,

T 5[2, 2] = 0,
T 5[2, 3] = T 5[3, 2] = 0,

T 5[3, 3] = 0,

T 6[1, 1] = 0,

T 6[1, 2] = T 6[2, 1] = −3( dūzdr )
2

8r

((
dūφ
dr
r − ūφ

)
+
(
dūφ
dr
r + ūφ

))
− 3

4r3

(
dūφ
dr
r − ūφ

)(
dūφ
dr
r + ūφ

)2
,

T 6[1, 3] = T 6[3, 1] = −3( dūzdr )
8r2

((
dūφ
dr
r − ūφ

)(
dūφ
dr
r + ūφ

)
+
(
dūφ
dr
r + ūφ

)2)
− 3

4

(
dūz
dr

)3
,

T 6[2, 2] = 0,
T 6[2, 3] = T 6[3, 2] = 0,

T 6[3, 3] = 0,
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and

T 10[1, 1] = 0,

T 10[1, 2] = T 10[2, 1] = −( dūzdr )
2

32r3

((
dūφ
dr
r − ūφ

)2 (
dūφ
dr
r + ūφ

)
+
(
dūφ
dr
r + ūφ

)3

− 2
(
dūφ
dr
r − ūφ

)(
dūφ
dr
r + ūφ

)2)
,

T 10[1, 3] = T 10[3, 1] = −( dūzdr )
3

32r2

((
dūφ
dr
r − ūφ

)2
+
(
dūφ
dr
r + ūφ

)2

− 2
(
dūφ
dr
r − ūφ

)(
dūφ
dr
r + ūφ

))
,

T 10[2, 2] = 0,
T 10[2, 3] = T 6[3, 2] = 0,

T 10[3, 3] = 0.

Relevant scalar invariants in cylindrical coordinates

The five scalar invariants for the fully developed rotating pipe flow are in cylindrical
coordinates:

I1 =
1

2

(
dūφ
dr
− ūφ

r

)2

+
1

2

(
dūz
dr

)2

,

I2 =
1

2

(
dūφ
dr

+
ūφ
r

)2

+
1

2

(
dūz
dr

)2

,

I3 = 0,

I4 = 0,

and

I5 =
1

8

[(
dūφ
dr
− ūφ

r

)2

+

(
dūz
dr

)2
]2

=
1

2
I21 .




