TECHNISCHE

IS

%//=\ UNIVERSITAT
DARMSTADT

A/

16.05.2017

Technical Report No. TUD-CS-2017-0111
Technische Universitat Darmstadt

Telecooperation Report No. TR-19,

The Technical Reports Series of the TK Research Division, TU Darmstadt
ISSN 1864-0516
http://www.tk.informatik.tu-darmstadt.de/de/publications/




Introduction to RAW-sockets

by
Heuschkel, Jens
Hofmann, Tobias
Hollstein, Thorsten
Kuepper, Joel

May 17, 2017

Abstract

This document is intended to give an introduction into the programming with RAW-sockets and the related
PACKET-sockets. RAW-sockets are an additional type of Internet socket available in addition to the well known
DATAGRAM- and STREAM-sockets. They do allow the user to see and manipulate the information used for
transmitting the data instead of hiding these details, like it is the case with the usually used STREAM- or
DATAGRAM sockets. To give the reader an introduction into the subject we will first give an overview about
the different APIs provided by Windows, Linux and Unix (FreeBSD, Mac OS X) and additional libraries that
can be used OS-independent. In the next section we show general problems that have to be addressed by the
programmer when working with RAW-sockets. We will then provide an introduction into the steps necessary to
use the APIs or libraries, which functionality the different concepts provide to the programmer and what they
provide to simplify using RAW and PACKET-sockets. This section includes examples of how to use the different
functions provided by the APIs. Finally in the additional material we will give some complete examples that
show the concepts and can be used as a basis to write own programs. The examples are programmed in C++
and we assume that the reader has basic programming skills and networking knowledge to be able to understand
the listings and content of this document.



Contents

1 Introduction

1.1 RAW-sockets . . . . o o o e
1.2 PACKET-sockets and Data Link Layer APIs . . . . . . .. . ... ... . .. ...
2 Implementations for different Operating Systems

2.1 Windows . . . . L e
2.1.1 Winsock-API . . . . . . . e
2.1.2 WINPCAD .« .« .« v o e e e e e e e e e e e

2.2 Linux . . ... s
2.2.1 RAW-sockets . . . . . . . . e
2.2.2 PACKET-sockets . . . . . . . . e e

2.3 Unix (FreeBSD, Mac OS X) . . . . . . . . e
2.3.1 RAW-sockets . . . . . . . e
2.3.2 Berkeley Packet Filter (BPF) . . . . . . . . .. .

2.4 OSindependent . . . . . . ... e
241 PCAD . . e e e e e e e e
2.4.2 libnet . . . . L e e

3 Programming with the APIs

3.1 General . . . . e e
3.1.1 Byte Order . . . . . . . e e
3.1.2 Checksum . . . . . . . . e
3.1.3 Type-Casting . . . . . . . o . e e e e
Linux . . e e e e e e

3.1.4 Header-Positions . . . . . . . . . . . . e e

3.2 RAW-sockets . . . . . . e e
3.2.1  socket () . .o e e e e e e e
UnIX . . o e e e e e e e

3.2.2  setsoCKOPL () .« .« v i i e e
Unix . . . . s

3.2.3 getsockoplh () . . . . i e
Unix . . . . e e

3.2.4 bInd () . ..o e
UnixX . . o o e e e e e e e

3.2.5 getsockname () . . . ... e e e e e
Unix . . . .

3.2.6  connECt () . . . o i e e e e e e e e
UnIX . . o e e e e e e e e e e

3.2.7 Read . . . . . . e
read () . . oo e e e e e e e e e e e e e e e e e e e e e

TECV () v v v v e e e e e e e e e e e e e e e e e e e e e e e e e e s e s e

recVErom () . . . . e e e e e e e e e e e e e e e e e e e e e e

flags and errors for the recv ()- and recvfrom()-functions . . . . . . . ... ... ... ...

UnIX . . o e e e e e e e e

3.2.8 Write . . . . . e
Write () . o o e e e e e e e e

SENA () . . o e e e e e e e e e e e e e e e s s e e

sSendto () . . o e e e e e e e e e e e e e e e e

Flags and errnos for the send () and sendto () functions . . . . .. .. ... .. ... ....

UniX . . o o e e e e e e

3.2.9  Close () . oo e
Unix . . . . e

3.2.10 inet_ntop () . . . v v i e e e
UnIX . . o e e e e e

3.2.11 inet_pton () . . . o o i i i e e e e e
UnIX . . o e e e e e e

3.2.12 Data TYPES « v v v v vt e e e e e e e e e e e
3.213 Layer 4 . . . . oL e



Read . . . . . . e e e 28

Write . . o e 30

3.2.14 Layer 3 . . . .. e 30
Read . . . . . . o e 32

Write . . o e e 32

3.2.15 Layer 2 - PACKET-sockets . . . . . . . . . . . . . . e 36
Promiscuous Mode . . . . . . . .. e e 36
MAGC-AAAress . . . . . . o o e 36

Read . . . . . o e 36

Write . . . e 38

3.3 Berkeley Packet Filter (BPF) . . . . . . . . ... 40
3.3.1 BPF Header . . . . . . . . . . @ e e e 41
3.3.2 Buffer Modes . . . . . . . . e e e 41
3.3.3 TOCTLS . . . . o e 41
3.3.4 SYSCTL Variables . . . . . . . . . o e 42
3.3.5 Filter Maschine . . . . . . . . . . e 42
3.3.6 Read . . . . . . . e e 42
3.3.7 Write . . . . o e 44

3.4 Winsock-APL . . . . . e 44
3.4.1 Preparations and Usage . . . . . . . . . . e 46

4 Programming with the libraries 47
4.1 Tibnet . . . . .o 47
4.1.1 Preparations . . . . . . . .. 47
4.1.2 Process of packet creation . . . . . . ... L 47
Library initialization . . . . . . . . . . L e 47

Packet building . . . . . . . . e 49

Packet write . . . . ... 49

Packet destruction . . . . . . . L e e 49

4.1.3 Functions . . . . . . . . . e 51
Library initialization . . . . . . . . . .. L 51

Build Functions . . . . . . . . . . e e e 51

Write . . o e 54
Destruction . . . . . . . L e e 54

Other functions . . . . . . . . . . L 55

4.2 lbpecap. . . . oL e e 58
4.2.1 Preparation . . . . . . . . L 58
4.2.2 Process of packet capturing . . . . . . . ... 58
Interface Selection . . . . . . . . L 58

Initialize libpcap session . . . . . . . . .. L L 58

Define Filters . . . . . . . . . . e 58

Initiate Sniffing process . . . . . . . . L 59
Identification of the header size . . . . . . . . . . . . . . .. .. ... .. 59

Casting . . . . . . . e 60

Byteorder . . . . . . . 60

Close libpcap session . . . . . . . . . . o e 60

4.2.3 Functions . . . . . . . . e e 60
Interface Selection . . . . . . . . . .. e e e 60

Initialize libpcap session . . . . . . . . . L L 62

Define Filters . . . . . . . . . e e 62

Initiate Sniffing process . . . . . . .. 63

Close Session . . . . . . o oo e 65

Other functions . . . . . . . . . . L e e e 65

4.3 libpcap in Windows . . . . . . . . L e 65
4.3.1 Installation and Preparation . . . . . . . . . . . .. 66
4.3.2 Process of packet capturing . . . . . . . ..o Lo 66
4.3.3 Functions . . . . . . . .. e s 66

5 Literature 67



A Appendix: Listings 69

A1 rfcl071 checksum cpp . . . .« o L e 69
A2 winsocket Cpp . . ... 70
A3 libnet tep € . . . . . 72
A4 sendpack c. . . .. 75
AL dump c ... 76
B Appendix: Tables 80
B.1 Protocol Types of <netinet/in.h> . . . . ... .. L 80
B.2 Linux Protocol Types defined in linux if ether.h . . . . . . .. .. ... ... ... ... ... 81
B.3 Socket level options for setsocketopt() . . . . . .. 82
B.4 IP level options for setsockopt() . . . . . . . ... 83
B.5 Errno flags for connect() . . . . . . . 84
B.6 ioctl () flagsdefinedinbpfh . . . . . . . . . 85



List of Figures

0O Ui Wi

Socket provided by the operating system . . . . . . . . . ... 8
Overview over the layers and access possibilities . . . . . . . . . . .. ... 9
Structure of a RAW-socket layer 4 Read Operation . . . . . . . . . . . .. .. ... ... ... ..., 29
Structure of a RAW-socket layer 4 Write Operation . . . . . . . . . .. ... ... . .. 31
Structure of a RAW-socket layer 3 Read Operation . . . . . . . .. .. ... ... .. ... ..., 33
Structure of a RAW-socket layer 3 Write Operation . . . . . . . . . . . ... . .. ... 34
Structure of a PACKET-socket layer 2 Read Operation . . . . .. ... ... ... ... ....... 37
Structure of a PACKET-socket layer 2 Write Operation . . . . . . .. . ... . ... ... ....... 39
Structure of a BPF device layer 2 Read Operation . . . . . ... .. .. ... ... ... ...... 43
Structure of a BPF device layer 2 Write Operation . . . . . .. . .. .. ... . .. 45
Overview of the packet construction in libnet . . . . . . . . . . ... . L 48
Overview of the packet construction in libnet . . . . . . . . ... . ... ... ... ... ..., 50



List of Tables

0O Ui Wi

Byte-Order Transformation Functions [8] . . . . . . . . . . ... . . . 13
C-Header-Files for Network Headers [8] . . . . . . . . . .. .. ... . .. ... ... ... 14
Address family constants provided in <sys/socket.h>[8] . . . .. ... ... . L. 15
Errno flags for socket () as defined in <errno.h> [8] . . . . .. ... ... ... L. 15
The socket types are defined in <sys/socket.h>[8] . . .. ... ... . ... . 16
Errno flags for setsockopt () as defined in <errno.h>[8] . . . ... ... ... ... ... 17
Errno flags for getsockopt () as defined in <errno.h>[8] . . . ... ... ... ... . ... 18
Errno flags for bind () as defined in <errno.h>[8] . . . ... .. ... L 18
Errno flags for UNIX-bind () as defined in <errno.h>[8] . . . . . . . . . ... ... ... . ..... 18
Errno flags for get socketname () as defined in <errno.h>[8] . . . . . . ... ... ... ... 19
Errno flags for read () as defined in <errno.h> [8] . . . ... .. ... ..o 20
Flags for recv () and recvfrom() defined in <sys/socket.h>[8] . . ... ... . ... ... ... 21
Errno flags for recv () and recvfrom() as defined in <errno.h>[8] . . ... ... ... ... ... 21
Errno flags for write () as defined in <errno.h> [8] . . . . . . . .. . L 22
Flags for send () and sendto () as defined in <errno.h>[8] . .. ... ... ... ... ...... 24
Errno flags for send () and sendto () as defined in <errno.h> [§] . .. ... ... ... ... ... 24
Errno flags for close () as defined in <errno.h> [8] . . . . . . ... .. .. 25
Errno flags for ntop () as defined in <errno.h>[8] . . . ... .. ... o 25
Errno flags for pton () as defined in <errno.h>[8] . . . .. ... ... oL 26
ioctl () flags defined in <bpf.h>[2] . . . . . . . .. 42
Overview of libnet_init () . . . . . o o e 51
Overview of libnet_build_udp () . . . . .« o v i i e e e e e e 52
Overview of libnet_build_1pv4 () . . . . v o v i i e e e e e e e e e 52
Overview of 1libnet_build_ethernet () . . . . . o o v i i i i e e e e e e e e e e e e e 53
Overview of libnet_autobulld_ipva4 () . . . . v v v i i e e e e e e e e e e e 54
Overview of 1libnet_write () . . . . o o i i i e e e e e e 54
Overview of 1libnet_name2addrd () . . . . . v v v v v v i e e e e 55
Overview of 1libnet_addr2named () . . . . v v v v v v i e e e e e e e e e e 55
Overview of libnet_toggle_checkSum () . . . . . v v v v i v i it e e e e e e e e e e e e 56
Overview of libnet_stats () . . . . . . . i i i e 56
Overview of libnet_geterror () . . . . . v i v v v i e e e e e e e e e e e e 57
Overview of Network Layer Protocols . . . . . . . . . ... . 59
Overview of Transport Layer Protocols . . . . . . . . . ... . .. 59
Overview of pcap_lookupdev () . . . . o v i v i i e e e e e e e e e e e 60
Overview of pcap_lookupnet () . . . . . . v i i i i e e e e e e e e 61
Overview of pcap_findalldevs () . . . . v v v v v i i e e e e e e e e e e e 61
Overview of the pcap_if theader . . . . . . . . . . .. . 61
Overview of the pcap _addr header . . . . . . . . . . . 61
Overview of the sockaddr header . . . . . . . . . . . . . . . . e 62
Overview of pcap_open_1ive () . . . . o i v v i i it e e 62
Overview of pcap_compile () . . . o . v v i i i e e e e e e e e e e 63
Overview of pcap_setfilter () . . . . . . o i i i i e e e e e 63
Overview of pcap_next () . . . . . v v v i e e e e e e 64
Overview of pcap_loop () . . v v v i e e e e e e 64
Overview of callback . . . . . . . . . e 65
Common data link types . . . . . . . . L 65
Protocol Types defined in <netinet/in.h>[8] . . . . . . .. ... ... ... 80
Linux Protocol Types defined in <linux/if_ether.h> . . . . . .. . .. ... ... .. ....... 81
Socket level options for setsockopt () as defined in <errno.h>[8] . . ... ... ... .. ..... 82
IP level options for setsockopt () as defined in <errno.h> [8] . . .. ... ... ... ... .. 83
Errno flags for connect () as defined in <errno.h>[8] . . .. ... ... ... L. 84
ioctl () flags defined in <bpf.h>[2] . . . . . . . . L 85



List of Listings

0O Ui Wi

sockaddr in PP . . . . . L e e 26
sockaddr inb cpp . . . . .. e e e 26
sockaddr init cpp . . . . . L L 26
sockaddr Il cpp . . . . L. 27
Hreq CPD -« o o o e 27
ifreq init cpp . . . . . e 27
INAC CPP « + + v v e e v e e e e e e e e e e e e e e e e e e 36
bpf cpp . o e 40
bpf2 cpp . . . o 41
bpf structs cpp . . . . . . e e 41
bpf structs filter cpp . . . . . .. e e 42
rfc1071 checksum cpp . . . . . . . L e 69
Win sOCKet CPP -« - . o . e 70
libnet tep c . . . . L e 72
sendpack C. . . . L 75
dump € . .. e 76



1 Introduction

First of all we want to define the basic wordings and concepts used. Then the reader is given a short overview about
the possibilities and restrictions the available APIs impose on the user.

Internet sockets are the common way to perform network communication implemented in most operating systems.
They are usually provided by a socket API and are based upon the same principles as reading and writing a file.
A program can get a socket via a function provided by the operating system. This function then returns a socket
descriptor, usually a simple integer, similar to the ones provided by most operating systems for Read- and Write-
Operations on files. This socket descriptor then can be used to write or read data from the socket. The data written
to the socket is encapsulated by the operating system by adding headers and trailers and then the complete packet is
sent via the network interface over the network to the target host. The data that has been received from the socket
is presented to the program without the headers and trailers, only the user data is presented to the user. The sockets
that work this way are the DATAGRAM- or STREAM-sockets provided via the Berkeley socket API. The user is
unaware of the communication between the lower layers. All network communication steps, like for example the
connection establishment, are taken care of without knowledge of the user. The user is only responsible for creating
the socket and then providing the data that he wants to send to the correct function.

Host

.= L User-

[ OS : Application

I I uses

: | provides

| ||::>

| Socket

| | : :

I l — — — —|communicates ather
osts

| Netfuork K:> Network <:

[ _ _L__Drlver Interface

Figure 1: Socket provided by the operating system

The only parameters the user has to set are:

e The source socket address, a combination of IP address and port number can be set usually via the bind ()
function or defined directly with one of the send () functions.

e By choosing either the DATAGRAM- or STREAM-socket we can choose if we want to have a separate datagrams
or a byte stream. This also chooses the Transport Layer Protocol that is being used (UDP or TCP).

If we want to gain access to the data of the lower layers we have several possibilities: RAW-sockets, PACKET-sockets,
network drivers and Data Link layer APIs. The programming of Network Drivers will not be discussed further in
this work, since we want to have a look at portable solutions that work for different operating systems. What can
be accessed by the APIs we will present is shown in figure 2 on the following page.

With these APIs it is possible for an application to change and access the fields of the Network layers that are
used for sending the data. This might be seen as a break with the traditional layering model, since we can influence
the service the lower layers provide.

1.1 RAW-sockets

RAW-sockets are part of the standard Berkeley sockets and the socket API that is based upon it [1]. They are
another option in addition to the already mentioned DATAGRAM- or STREAM-sockets to create data packets with
the socket API [1]. In addition to simply sending data and defining address information the RAW-socket allows
the user to access and manipulate the header and trailer information of the lower layers, more specifically with
RAW-sockets to the Network and Transport layer (layer 3 and 4 of the OSI model). Since RAW-sockets are part of
the Internet socket API they can only be used to generate and receive IP-Packets.



Layer 2 Header Layer 3 Header Layer 4 User Data Layer 2 Trailer

(e.g. Ethernet) (e.g.1P) (e.g. TCP (e.g. Ethernet)
/7 : NV : 4 l T : N : \
LT rrrrrrrrrrfr PPl rfd
A I 4
Accessible with DATAGRAM-/STREAM-Sockets
S— I _~
Accessible with RAW-Sockets
S __—

I
Accessible with PACKET-Sockets /Data Link APIs

Figure 2: Overview over the layers and access possibilities

The biggest problem with RAW-sockets (also the PACKET-sockets we discuss later) is that there is no uniform API
for using RAW-sockets under different operating systems:

e The provided APIs differ in regard to the used byte order. Depending on the operating system the fields of the
packets have to be filled with data in network- or host-byte-order.

e Differences also exists in the types of packets and protocols that can be created using the RAW-socket API.
e The usage and functionality of the APIs is also different for each operating system.
e Some operating systems do not allow certain packet types to be received using the RAW-socket API.

e There are also differences in the definitions and paths of the necessary header files provided by each operating
system.

e The required access levels for using the RAW-socket API can also differ. However most operating systems
require root or admin access permissions to use them.

The user has to keep these things in mind if he wants to use the RAW-socket API, especially if he plans to use them
across different operating systems.

1.2 PACKET-sockets and Data Link Layer APIs

If the user also wants to access the header and trailer of the Data Link layer then a Data Link Layer API has to
be used. Under Linux (and Unix as well) this a functionality is provided by the operating system as the so called
PACKET-socket and can be seen as a special form of RAW-sockets, so the limitations and problems of the previous
section also apply to them [1]. But since this is not a standardized functionality there might be a different API
provided by the operating system to perform these operations. For example under BSD the so called BSD Packet
Filter (BPF) not the PACKET-socket API provides access to the Data Link Layer [2]. In general all of these APIs
usually allow access to the whole packet from the Data Link Layer (OSI Layer 2), the Network Layer (OSI Layer 3)
up to the Transport layer (OSI Layer 4). Not all operating systems provide a simple interface to access the Data
Link Layer. As an alternative we introduce a library that can be used to provide this functionality.



2 Implementations for different Operating Systems

First we want to give a short overview over some of the APIs and libraries that are available for RAW-socket and
Data Link Layer network programming. In general we want to split the available libraries into two parts, the APIs
provided by the operating systems and independent libraries that are available for multiple operating systems.

2.1 Windows

Windows as a operating system is pretty restricted when it comes to RAW-socket, PACKET-socket and Data Link
Layer programming. In general it is difficult to get the programs running under Windows and the available options
are pretty limited. For that reason in general 3rd party libraries are recommended if the user wants to do network
programming on Windows systems and still write portable code.

2.1.1 Winsock-API

Winsock, currently available in version 2, is the Windows implementation of the Berkeley socket. Winsock is based
on the implementation of sockets on Linux and BSD and allows both sending and receiving of RAW-Packets, but
adds additional functionality.

Nevertheless, in the latest operating system versions (Windows XP and newer), there are the some restrictions
the programmer has to consider according to the MSDN-library [3] for developers:

e Like in most operating system the Winsock-API also need admin access permits to work properly for RAW-
sockets.

e A call to the bind function with a RAW-socket for the TCP protocol is not allowed, in fact TCP data cannot
be sent over a RAW-socket at all.

e UDP datagrams with an invalid source address cannot be sent over RAW-sockets.

e The IP source address for any outgoing UDP datagram must exist on a network interface or the datagram is
dropped. This change was made to limit the ability of malicious code to create distributed denial-of-service
attacks and to limit the ability to send spoofed packets (TCP/IP packets with a forged source IP address).

e Especially receiving is much slower with RAW-sockets than using a customized driver based on the lower
network layers, since all traffic is received (this consideration is the same for any other operating system).

2.1.2 winpcap

The ability of Winsock to also manipulate the Data Link Layer was removed in the current versions. Instead Windows
does require to program a driver with the required functionality. With Network Driver Interface Specification (NDIS)
version 6.40 (currently) the Operating system provides an API to do this if needed. This is now the preferred way to
write own applications that want to access the Data Link Layer on Windows. Since want to only look at APIs and
libraries provided by the operating system, we want to point to winpcap and libnet at this point as an alternative
to the Winsock-API. Winpcap is the windows port of libpcap and allows generation and receiving of packets from
the Data Link Layer upwards. Libnet is a network programming library available for many operating systems that
allow easy sending of RAW-packets. All further details of winpcap and libnet can be found under their sections, if
there are differences using the windows versions of the libraries they will be pointed out accordingly [4].

2.2 Linux

Linux is one of the operating systems for which it is easy to do RAW-socket and Data Link Layer Programming. It
provides the APIs to do both, but the kernel has to be compiled with the option to support the options.

2.2.1 RAW-sockets

The RAW-socket is included in the socket-API as we already discussed. It allows both sending and receiving of
RAW-packets, however the following items still have to be observed:

e Due to essential nature of header information for networking functionality and security using RAW-sockets
requires root access permissions [5].

e The ports of the network layer are not endpoints anymore since RAW-sockets work on the layers below. Filtering
based on ports has to be done manually [5].

10



e The bind () and connect () functions are no longer necessary [5]. bind () and textttconnect() can still be
used to the define source address and target address to be entered automatically by the kernel [5]. Additionally
a raw socket can be bound to a network device using SO_BINDTODEVICE.

e The listen () and accept () functions are without function, since the client-Server-Semantic is no longer
present [5]. When we use RAW-sockets we are sending unconnected packets [5].

e [P-headers of RAW sockets can be manually created by the programmer if the option TP_HDRINCL is enabled
[1]. This way, Raw sockets allow a programmer to implement new IP based protocols. If IP_HDRINCL is not
enabled the IP header will be generated automatically.

e When a RAW socket is created any IP based protocol can be specified [1]. This results in a socket only receiving
messages of the type of the specified protocol.

e If a programmer does not want to specify a protocol when creating a RAW-socket he can also use the
IPPROTO_RAW protocol (which implies that the headers will be created manually) [1]. This way he can
send any IP based protocol. However this socket is not able to receive any IP packets, to receive all IP based
packets a PACKET-socket has to be used.

2.2.2 PACKET-sockets

PACKET-sockets are a special type of RAW-sockets that allow access to the fields of the Data Link Layer. To use
them there are some definitions required that not part of the socket-API, but are provided by the Linux Kernel. So
while they are integrated in the socket-API of Linux, they are dependent on our operating system [5].

Similar restrictions than for the RAW-sockets have to be considered:

e Similar to RAW-sockets, due to essential nature of header information for networking functionality and security
reasons using PACKET-sockets also requires root access permission [5].

e The ports of the Network layer are not endpoints anymore, since RAW-sockets work on the layers below [5].
Filtering based on ports has to be done manually.

e The bind () and connect () functions are no longer necessary [5]. bind () can still be used to define the
interface over which the Data Link Layer packet should be sent [5]. connect () has no function anymore [5].

e The listen () and accept () functions are no use at all since the Client-Server-Semantic is no longer present
[5]. When we use RAW-sockets we are sending unconnected packets.

2.3 Unix (FreeBSD, Mac OS X)

Like Linux under Unix operating systems there are also RAW-sockets provided with the Unix kernel. RAW-sockets
are however more restricted than under Linux. Access to the Data Link Layer is possible in Unix via the Berkeley
Packet Filters (BPF) provided by the operating system.

2.3.1 RAW-sockets

RAW-sockets are included in the socket-API in Unix like they are in Linux. In Unix there are different header files
available and needed than in Linux, that makes some considerations necessary to keep code portable between these
two operating systems [1]. Also there are some differences to the functionality.

Similar to Linux there are some restrictions to take into consideration:

e It is not possible to read packets for anything that has a handler (like TCP or UDP), but it is possible to read
packets for other protocols like ICMP [6].

e For BSD and its ports it could be that the Packets are modified by the operating system before sending. For
example with the release 10 the IP length is modified to the actual size of the IP header regardless of what is
set by the programmer.

e Due to essential nature of header information for networking functionality and security reasons using RAW-
sockets requires root access permission [5].

e The ports of the Network layer are not endpoints anymore, since RAW-sockets work on the layers below [5].
Filtering based on ports has to be done manually.

e The bind () and connect () functions are no longer necessary [5]. bind () and connect () can still be used
to define source address and target address to be entered automatically by the kernel [5].

11



e The listen () and accept () functions are no use at all since the Client-Server-Semantic is no longer present
[5]. When we use RAW-sockets we are sending unconnected packets.

2.3.2 Berkeley Packet Filter (BPF)

The Berkeley Packet Filter is the API provided by Unix operating systems to allow the user access to the Data
Link Layer. It is compiled into the kernel of Unix-like hosts and allows access to all packets received at the Network
Interface Controller (NIC) [7]. It has a built in filtering mechanism that allows the user to filter the received traffic
for the packets he is interested in [7]. Since the RAW-socket implementation does not support receiving of packets
that have a handler (like TCP or UDP) the Berkeley Packet Filter has to be used if the user wants to receive these
packets [7].

2.4 OS independent

Other than the OS dependent APIs and the standard APIs provided by the standard Berkey socket API there are
also universal packet capturing and creation libraries. Of those we want to introduce two libraries, namely libpcap
and libnet which are available for many operating systems (e.g. Windows, OS X, BSD, Linux) and therefore can
make programming with RAW-sockets more portable. The libraries complement each other pcap is usually used to
receive the packets while libnet provides easy mechanisms to send packets.

2.4.1 pcap

Pcap is an open library for packet capture. It allows the user to receive and filter all packets received at the network
interface from the Data Link Layer upwards. It is available across different platforms, for Unix and Linux systems
there exists libpcap (library for packet capture), the library for Windows is called Winpcap. It also supports injection
of layer 2 packets, but the use of this functionality is very limited and not very comfortable. The use of the library
might require admin or root permissions to work, depending on the operating system. One of the most well known
programs that uses pcap is Wireshark.

2.4.2 libnet

Libnet is a library for constructing and sending packets from the Data Link Layer upwards. It is intended as the
counterpart for pcap. What it does provide is a simple, modular interface for packet construction and injection. It
gives programmers many helpful functions to make the construction of own packets very easy. Currently over 30+
protocols are supported by the library and it is available for many operating systems.

12



3 Programming with the APIs

3.1 General

We start by discussing some general topics that have to be considered for the development with any of the following
APIs. Other than the topics presented here, it should be noted that the programmer also has to observe the
particularities of the network protocols he wants to use. If these are not observed, like for example the correct order
in that protocol information has to be exchanged, it cannot be ensured that we are able to communicate with the
other host since the results than can be very different based on the implementation of the the target host.

3.1.1 Byte Order

In network communication the byte-order, also known as endianness, is essential for setting and interpreting the
fields correctly. It comes into play whenever a value does need more than 1 byte of storage space. Whenever this
is the case we have to translate between network-byte-order and host-byte-order. The network-byte-order and host-
byte-order may may be different depending on the used protocol and operating system. For the IP-protocol the
network-byte-order is big-endian, so we have to translate whenever the byte-order of the host is not big-endian [5].
So we have two cases:

e When we send network packets all data that needs more than 1 byte it has to be translated from host-byte-order
to network-byte-order.

e When we receive data on a socket all data that needs more than 1 byte it has to be translated from network-
byte-order to host-byte-order.

For the transformations used for the IP-protocol the Berkeley socket API provides a set of standard functions
which are available in the header file <arpa/inet .h>:

Function Description

uint32_t htonl (uint32_t hostlong) host-to-network

uintlé_t htons(uintlé_t hostshort) host-to-network

uint32_t ntohl (uint32_t netlong) network-to-host

uintlé_t ntohs (uintlé_t netshort) network-to-host
Table 1: Byte-Order Transformation Functions [8]

With Linux we can be sure that the data receive/sent over a socket always is in network-byte-order [5].

For Unix it can be the case that some fields of the header are in host-byte-order depending of the release (for
example BSD) [5].

3.1.2 Checksum

Many protocols used for network communication use a checksum to be able to detect transmission errors. There are
different ways to calculate a checksum. If we choose to generate the packet headers completely by our self we have
to calculate and set the applicable header fields manually. There are some points to take into consideration if we do
this:

Which algorithm has to be used to compute the checksum.

Which fields of the header, sometimes even of multiple headers, have to be included in the calculation of the
checksum [5]. Of course the user data might have to be included in the calculation as well.

e If we want to calculate the checksum all header information already has to be set with the correct data.

Do we have to calculate the checksum or can it be calculated automatically by the network driver/hardware
(for example the Ethernet checksum), the operating system or a predefined function call [5].

As a possible code example for the calculation of a checksum here is the listing for computing the Internet-checksum
which was provided with the RFC 1071 which can be found in the appendix.

13



3.1.3 Type-Casting
One of the basic functionalities of the C programming language is that it supports Type-Casting. The ability to

cast binary data to a data structure struct in C is essential to make working with header data easier for the
programmer. To perform type casting we simply create a pointer to the desired structure:

struct headerx protocolHeader;

Then we do need a pointer to the memory space where the binary data of the packet is stored, in our examples
mostly a char-Array with a fixed SIZE[5]:

char buffer[SIZE];

Finally we can cast the binary data to our struct and afterwards are able to access the header fields[5]:

protocolHeader = (struct headerx) buffer;

When accessing the header-field we still have to take care of the byte order like mentioned before. For the majority
of the well known protocols there are predefined structs available in the header files included in the libraries. Some

of the available headers are shown in the table below, but it does only show a part of the available header structures.
More headers may be available depending on the operating system and the library.

Linux Under Linux typically the following header files are available:

Header-File Description

<netinet/ip.h> Defines macros, variables, and structures for IP.
<netinet/ip_icmp.h> Defines macros, variables, and structures for ICMP.
<netinet/udp.h> Defines macros, variables, and structures for UDP.
<netinet/tcp.h> Defines macros, variables, and structures for TCP.
<netns/idp.h> Defines IPX packet headers.

<netns/sp.h> Defines SPX packet header.

<ssl.h> Defines SSL prototypes, macros, variables, and structures.

Table 2: C-Header-Files for Network Headers [§]

3.1.4 Header-Positions

Another issue that has to be taken into consideration is the position of the packet headers in the binary data. The
following has to be taken into consideration:

e Like it was shown in the beginning the header of a lower layer always encapsulate the header of the higher
layers and the data.

e The header of the lowest layer can always be found at the beginning of the binary data packet. It might be
the case that not all fields are present, for example this is the case for the Ethernet-Protocol in the Data Link
layer. For the Ethernet-Protocol the preamble, start of frame delimiter and the frame checksum are removed
by the network driver since they do belong more to the Physical Layer (OSI Layer 1)[5].

e If we type cast binary data to structs we have to add the length of the last header to the data pointer to get
the beginning of the next header [5]:

next_header = (struct header*) (buffer + sizeof (struct header));

e To find the correct start position might be a bit more difficult than a simple add operation as shown here if
the last header has a variable length with optional fields (like for example the IP-header or the TCP-header).
In that case we must first get the fixed part of the header, then access the length field and finally compute the
length of the optional header. Only after doing this we are able to find the start of the next header. If we are
interested in the content of the optional fields we also have to access the header field containing the type of
optional fields and cast it to the correct type accordingly.

14



3.2 RAW-sockets

The first API discussed here is the RAW-socket. It is available on Linux and Unix Systems. As already mentioned
the PACKET-sockets can be seen as a specialized form of RAW-sockets and just allow access a lower layer then the
normal RAW-socket. RAW-sockets allow access to the Network (OSI layer 4) and Internet (OSI layer 3) layer of the
network stack [5]. The use of RAW-sockets is limited to processes with an effective user ID of 0 or the CAP_NET_RAW
capability since they require root-access permissions [1]. In the following we will start by giving a generic overview
over the functions available and necessary to create and work with RAW-sockets. After that we show the structure
of different protocol level write and read operations.

3.2.1 socket ()
Both the read and write to a RAW-socket require the socket to be created first. For the creation of a socket the

same function as for normal sockets is used. It is available in the <netinet/in.h> header and has the following
form [8]:
int socket (int family, int type, int protocol)

The following parameters have to be defined:

e family expects a constant value that describes the used address family [8]. The following values are defined
in <sys/socket.h>:

Constant Description

AF_LOCAL Local communication
AF_UNIX Unix domain sockets
AF_INET IP version 4

AF_INET6 IP version 6

AF_TIPX Novell IPX

AF _NETLINK Kernel user interface device
AF_X25 Reserved for X.25 project
AF_AX25 Amateur Radio AX.25
AF_APPLETALK Appletalk DDP
AF_PACKET Low level packet interface
AF_ALG Interface to kernel crypto API

Table 3: Address family constants provided in <sys/socket .h>

18]

The function only passes errors originating from the network to the user when the socket is connected. In that
case only EMSGSIZE and EPROTO are passed for compatibility. If the IP_RECVERR flag is enabled, all network
errors are saved in the error queue. It returns a non-negative socket-descriptor if it was created successful and
-1 if an error occurred during creation of the socket. Additionally the variable errno defined in <errno.h>
is set and can have the following values [§]:

Flag Description

EACCES User tried to send to a broadcast address without having the broadcast flag set on the
socket.

EFAULT An invalid memory address was supplied.

EINVAL Invalid argument.

EMSGSIZE Packet too big. Either Path MTU Discovery is enabled or the packet size exceeds the
maximum allowed IPv4 packet size of 64KB.
EOPNOTSUPP Invalid flag has been passed to a socket call.
EPERM The user doesn’t have permission to open raw sockets.
EPROTO An ICMP error has arrived reporting a parameter problem.
Table 4: Errno flags for socket () as defined in <errno.h> [§]

Users have to be aware that setting the £amily of course also influences which protocol can be chosen later.
The usual option to use with RAW-sockets is the AF_INET to send and receive IP version 4 packets.

15



e type defines the socket type. The following values are defined in <sys/socket.h>:

Constant Description

SOCK_STREAM Stream (connection) socket

SOCK_DGRAM Datagram (connection-less) socket

SOCK_RAW RAW socket

SOCK_RDM Reliably-delivered message

SOCK_SEQPACKET Sequential packet socket

SOCK_PACKET Linux specific way of getting packets at the dev level.

Table 5: The socket types are defined in <sys/socket .h>[§]

Since we want to work with RAW-sockets we only use the SOCK_RAW constant in the following sections.
From Linux kernel 2.6.27, there is a second purpose for the type argument, it additionally allows to modify the
behavior of the socket by including the following options with bit-wise OR [8]:

— SOCK_NONBLOCK: Sets the O_NONBLOCK file status flag on the new open socket descriptor. Using this
changes the socket to a non-blocking one.

— SOCK_CLOEXEC: Sets the close-on-exec flag for the new socket descriptor. Useful if the program creates
child processes which use exec () to run another program. In that case this flag will prevent the other
program from using this socket descriptor.

e protocol defines like the name implies the protocol of the packets that can be sent and received with the
socket [8]. The protocol numbers are defined by the ITANA (Internet Assigned Numbers Authority) and a
complete list can be found on their website. The table 7?7 shows the constants for protocols which are defined
in the <netinet/in.h> header file.

Again, users have to be aware of which £amily was chosen for the first option, since only protocols of that
family can be chosen as protocol. So with our usual AF_INET option selected we can only use IP-based
protocols [8].

Also it should already be noted here that the IPPROTO_RAW constant in for most operating system (depends
on the Linux/Unix distribution) does imply that the socket also expects an IP header to be manually created
by the user [8]. If we chose this constant we have layer 3 write access as a result. The regular way to do
this is to use another constant and then to change the socket options with setsockopt () as described in
section 3.2.3 on the next page.

In addition to these constants we could also use constants that are defined for layer 2 (PACKET-sockets) to
access their protocol information. These constants are operating system dependent and therefore code that uses
them cannot be ported as easy as the general constants from the previous table. As an example, table 48 in the
appendix shows the constants in Linux for Ethernet protocols which are defined in the <linux/if_ether.h>
header.

Unix The socket () function is POSIX and 4.4BSD conform [8]. The SOCK_NONBLOCK and SOCK_CLOEXEC
flags are Linux-specific [8]. The function is generally portable to BSD systems, but some systems require the
<sys/types.h> header to work [8]. The manifest constants might also be different under some BSD versions.

3.2.2 setsockopt ()

The setsockopt () function like the name implies can be used to change the options that are selected for the
socket. The function can manipulate the options for different protocol levels such as IP or TCP, but also for the
sockets level API by setting the level to SOL_socket. The function which is defined in the <sys/socket.h>
header has the following form [8]:

int setsockopt (int sockfd, int level, int optname, const void * optval, socklen t
optlen)

The following parameter can be set [8]:

e sockfd - Specifies the socket for which the options should be set.

e level - The protocol level of the option we want to set.

16



optname - The name of the option we want to set. Together with the optval and optlen it is passed
uninterpreted to the protocol module for processing.

optval - The buffer for the option we want to specify, usually an Integer. It should then be non-zero to enable
a Boolean option and zero to disable it.

optlen - The length of the buffer that optval points to in bytes.

We want to only give an short overview over the most interesting options for us, the socket level and the IP
protocol level, which can be set with the setsockfunction () function. Additional information about the use
and meaning of the options can be found in the programmer manuals for the protocols. They exist for all protocols
available for the respective operating system or distribution.

For the socket level API that can be accessed with SOIL_socket as the level, the options in table 49 in the
appendix are supported and already included in the <sys/socket .h> header.

For the IP level API that can be accessed with IPPROTO_IP as the level, table 50 in this appendix shows the
following options supported and already included in the <netinet/ip.h> header.

The function returns zero on success and -1 on an error [8]. Additionally the variable errno defined in
<errno.h> is set and can have the following values:

Flag Description
EBADF The argument sockfd is not a valid descriptor.
EFAULT The address pointed to by optval is not in a valid part of the process address space.
EINVAL optlen invalid or invalid optval.
ENOPROTOOPT The option is unknown at the level indicated.
ENOTSOCK The argument sockfd is a file, not a socket.
Table 6: Errno flags for setsockopt () as defined in <errno.h>
(8]

Unix The function is POSIX and 4.4BSD conform [8]. According to the POSIX-standard the use of setsockopt ()
does only require to include <sys/socket .h> header, so under Linux it can be used by only including this single
header [8]. To use it under Unix also require the <sys/types.h> header to be included [8]. For portability it is
generally recommended to include both.

3.2.3 getsockopt ()

For retrieving an specified option of the socket the get sockopt () function defined in the <sys/socket .h> header
can be used [§]:

int getsockopt (int sockfd, int level, int optname, void * optval, socklen t =
optlen)

The following parameter have to be set [8]:

sockfd - Specifies the socket for which the options should be retrieved.
level - The protocol level of the option we want to retrieve.

optname - The name of the option we want to retrieve. Together with the optval and optlen it is passed
uninterpreted to the protocol module for processing.

optval - The buffer for the option we want to retrieve.

optlen - The length of the buffer that optwval points to in bytes. Initially it should contain the length of the
buffer, after the call it indicates the actual size of the value returned. In case no value is supplied or returned
it might return NULL.

The function returns zero on success and -1 on an error [8]. Additionally the variable errno defined in
<errno.h> is set and can have the following values:

17



Flag Description

EBADF The argument sockfd is not a valid descriptor.
EFAULT The address pointed to by optval or optlen is not in a valid part of the process address space.
EINVAL optlen invalid or invalid optval.
ENOPROTOOPT The option is unknown at the level indicated.
ENOTSOCK The argument sockfd is a file, not a socket.
Table 7: Errno flags for get sockopt () as defined in <errno.h>
(8]

Unix The function is POSIX and 4.4BSD conform [8]. According to the POSIX-standard the use of get sockopt ()
does only require to include <sys/socket .h> header, so under Linux it can be used by only including this single
header [8]. To use it under Unix also require the <sys/types.h> header to be included [8]. For portability it is
generally recommended to include both.

3.2.4 bind()

After creating a socket like discussed in the previous section 3.2.1 on page 15, we can bind the created socket to
a specific address. Traditionally this is also called assigning a name to a socket. For RAW-sockets and PACKET-
sockets this is optional, but we use it to define the source address of our packets with it and also define from which
network-interface we want to read packets. Other socket types might require to be bound to a specific address before
they can be used. For binding the socket to an IP-address we can use the bind () function which is defined in the
<sys/socket .h> header and has the following form [8]:

int bind(int sockfd, const struct sockaddr * addr, socklen t addrlen)

The following parameters can be set [8]:

e sockfd - Specifies the socket for which the address should be set.
e addr - The address structure containing the address to be set.

e addrlen - The length of the address structure in bytes.

The function returns zero on success and -1 on an error [8]. Additionally the variable errno defined in
<errno.h> is set and can have the following values:

Flag Description

EACCES The address is protected, and the user is not the superuser.
EADDRINUSE The given address is already in use.

EADDRINUSE All port numbers in the port range are currently in use.

EBADF sockfd is not a valid file descriptor.

EINVAL The socket is already bound to an address.

EINVAL addrlen is wrong, or addr is not a valid address for this socket’s domain.
ENOTSOCK The file descriptor sockfd does not refer to a socket.

Table 8: Errno flags for bind () as defined in <errno.h> [§]

Unix According to the POSIX-standard the use of bind () does only require to include <sys/socket . h> header,
so under Linux it can be used by only including this single header [8]. To use it under Unix also requires the
<sys/types.h> header to be included [8]. For portability it is generally recommended to include both. For a
UNIX domain (AF_UNIX) the following errno are additionally defined [8]:

Flag Description
EADDRNOTAVAILA Nonexistent interface was requested or the requested address was not local.
ENAMETOOLONG addr is too long.
ENOMEM Insufficient kernel memory was available.
Table 9: Errno flags for UNIX-bind () as defined in <errno.h>
(8]

18



3.2.5 getsockname ()

To get the currently defined name of a socket the getsocketname () function can be used. It is defined in the
<sys/socket .h> and has the following form [8]:

int getsocketname (int sockfd, struct sockaddr + addr, socklen_t * addrlen)

The following parameters can be set [8]:
e sockfd - Specifies the socket for which the address should be retrieved.

e addr - The address structure for the returned address that is set for the socket. The returned address is
truncated if the buffer is too small.

e addrlen - The length of the address structure in bytes. It should be initialized to the size of the buffer pointed
to by addr. Contains the actual size of the socket address after return.

The function returns zero on success and -1 on an error [8]. Additionally the variable errno defined in
<errno.h> is set and can have the following values:

Flag Description

EBADF The argument sockfd is not a valid file descriptor.

EFAULT The addr argument points to memory not in a valid part of the process address space.
EINVAL addrlen is invalid.

ENOBUFS Insufficient resources were available in the system to perform the operation.
ENOTSOCK The file descriptor sockfd does not refer to a socket.
Table 10: Errno flags for getsocketname () as defined in
<errno.h> [§]

Unix The function is compliant to POSIX and 4.4BSD [8]. In some distributions the third argument is in reality
a pointer to an int[8]. This could still be the case in some distributions.
3.2.6 connect ()

This function can be used to initiates a connection to a specific destination host and is required for the write (),
send (), read () and recv () functions. For connection based protocols like SOCK_STREAM this function also will
try to connect to the host on the other side [8]. For Datagram based protocols only the default destination is defined
with this function [8]. To use this function the header <sys/socket .h> (for the function) has to be included. The
function is called like this [8]:

int connect (int sockfd, const struct sockaddr * addr, socklen_ t addrlen)

With the following parameters that can be set [8]:
e sockfd - Specifies the socket for which the address should be set.

e addr - The function specifies a struct sockaddr * with this parameter that contains the socket address
family and the protocol address for that family. With this the address to connect to can be defined.

e addrlen - Defines how long the address that is passed to the function is.

The function returns zero on success and -1 on an error [8]. Additionally the variable errno defined in <errno.h>
is set and can have the values sown in table 51 in the appendix.

Unix The connect () function might require the <sys/types.h> header for some BSD systems [8]. Also the
third argument might be an int depending on the system version [8].
3.2.7 Read

We can access the socket with three different function to retrieve data from it. For the read () and recv () usually
the source address is defined by connecting the socket to a specific host. This can be done by using the connect ()
function as described in section 3.2.6.

19



read () The read function works identical to the read () on a file. As already said the the socket can be con-
nected to a specific host first by using the connect function as described in section 3.2.6 on the preceding page. For
the read () function the definitions can be found in the <unistd.h> header. The function has the following form [8]:

int read(int £d, char » Buff, int NumBytes)

The following parameters have to be set [§]:

e £d - Takes a file descriptor from which the data should be read, for RAW-sockets we can use the socket
descriptor instead.

e Buff - Defines the memory space for the binary data we want to read from the socket.

e NumBytes - How many bytes should be read from the socket, usually initialized with the size of our memory
space.

A usual call of the read function for our purposes would look like this:
ssize t = read(socket, packet, sizeof (packet));

On success the number of bytes is returned and on an error -1 [8]. Additionally the variable errno defined in
<errno.h> is set and can have the following values:

Flag Description

EAGAIN The file descriptor fd refers to a file other than a socket and has been marked non-blocking
(O_NONBLOCK) and the read would block.

EWOULDBLOCK The file descriptor fd refers to a socket and has been marked non-blocking (O_NONBLOCK) and
the read would block.

EBADF fd is not a valid file descriptor or is not open for reading.

EFAULT buf is outside your accessible address space.

EINTR The call was interrupted by a signal before any data was read.

EINVAL fd is attached to an object which is unsuitable for reading or the file was opened with the
O_DIRECT flag.

EIO I/0O error.

Table 11: Errno flags for read () as defined in <errno.h> [§]

The possible return values and error flags can be found in section 13 on the next page.

recv () The recv ( function is another possibility to to retrieve data from a socket and does not require an address
to be defined as well. As already said the the socket can be connected to a specific host first by using the connect ()
function as described in section 3.2.6 on the preceding page.To use the recv () function the headers <sys/types.h>
(for the data types) and <sys/socket .h> (for the function) have to be included. The function is called like this [8]:

ssize_t recv(int sockfd, void * buf, size t len, int flags)

The recv () function normally is used on a connected socket (after connecting with the connect () function),
but also works with RAW-sockets. Similar parameters to the read function have to be set [8]:

e sockfd - Specifies the socket from which data should be read.
e buf - Defines the memory space for the binary data we want to read from the socket.
e len - How many bytes should be read from the socket, usually initialized with the size of our memory space.

e flags - The flags that can be set for the function are listed in table 12 on the next page.

recvfrom() The recvfrom() function also allows us to define the address of a host we want to receive data
from. To use this function the headers <sys/types.h> (for the data types) and <sys/socket .h> (for the func-
tion) have to be included. The function is called like this [8]:

20



ssize_t recvfrom(int sockfd, void x buf, size t len, int flags, struct sockaddr =
src_addr, socklen_t #* addrlen)

The parameters are identical to the recv () function, it only has two additional parameters [8]:

e sockfd - Specifies the socket from which data should be read.

e buf - Defines the memory space for the binary data we want to read from the socket.

e len - How many bytes should be read from the socket, usually initialized with the size of our memory space.

e src_addr - The function returns a struct sockaddr = with this parameter that contains the socket
address family and the protocol address for that family. The address is filled in by the called protocol and
contains the source address of the packet received. The address will be truncated in case it is too long for the
provided buffer. The parameter can be set to NULL, then it will not be filled by the protocol.

e addrlen - The length of the address. In case the srec_addr parameter was too small for the returned address
an address length greater than the one provided to the function will be returned.

e flags - The flags that can be set for the function are listed in table 12.

The possible return values and error flags can be found in section 13.

flags and errors for the recv ()- and recvfrom()-functions Here are the possible flags for the revec () and
recvfrom () functions:

Flag Description

MSG_DONTWAIT FEnables non-blocking operation, if the operation would block the call fails with the error
EAGAIN or EWOULDBLOCK.

MSG_ERRQUEUE Specifies that queued errors should be received from the socket error queue, the buffer has to
be supplied by the user.

MSG_OOB This flag requests receipt of out-of-band data that would not be received in the normal data
stream.

MSG_PEEK This flag causes the receive operation to return data from the beginning of the receive queue
without removing that data from the queue.

MSG_TRUNC For raw (AF_PACKET), Internet datagram, netlink and UNIX datagram: return the real length

of the packet or datagram even when it was longer than the passed buffer.

MSG_WAITALL This flag requests that the operation block until the full request is satisfied. However the call
may still return less data than requested if a signal is caught, an error or disconnect occurs or
the next data to be received is of a different type than that returned.

Table 12: Flags for recv() and recvfrom() defined in
<sys/socket.h> [§]

The functions recv and recvfrom () returns the count of bytes read on success and -1 on an error [8]. Addi-
tionally the variable errno defined in <errno.h> is set and can have the values shown in the following table:

Flag Description

EAGAIN The socket is marked non-blocking and the receive operation would block, or a receive timeout
had been set and the timeout expired before data was received.

EWOULDBLOCK The socket is marked non-blocking and the receive operation would block, or a receive timeout
had been set and the timeout expired before data was received.

EBADF The argument sockfd is an invalid descriptor.

EFAULT The receive buffer pointer(s) point outside the processes address space.

EINTR The receive was interrupted by delivery of a signal before any data were available.
EINVAL Invalid argument passed.

ENOTSOCK The argument sockfd does not refer to a socket.

Table 13: Errno flags for recv () and recvfrom () as defined in
<errno.h> [§]

21



Unix The read () function is POSIX and 4.3BSD conform and should be available as described [8]. The recv ()
and recvfrom() are also conform to POSIX, but only the MSG_OOB, MSG_PEEK and MSG_WAITALL flags are de-
scribed in the standard [8]. It is also conform to 4.4BSD, but there might be differences in the data types depending
on the library used in the system [8].

3.2.8 Write

We can send data over the socket with three different functions. The write () and send () functions we discuss
in the beginning both require a destination address to be defined first. This can be done by using the connect ()
function described section 3.2.6 on page 19. The last function we discuss, sendto (), has the option to define the
destination address, but it can also be set by using the connect () function. For all functions we must take the
buffer constraints into consideration, since otherwise the write connection will be closed before all data is transferred
completely.

write () Identical to how we use a the read () function to get data from a socket descriptor instead of a file
descriptor, we can also use the write () function that is usually used for data output to a file for sending data over
a socket. As already mentioned to use write () with a socket a valid destination address has to be provided to the
socket first for it to work. That can be done by using the connect () function which is discussed in section 3.2.6
on page 19. The write () function is defined in <unistd.h> and has the following from [8]:

ssize t write(int £d, const void x buf, size_ t count)

The parameters are:
e £d - In our case specifies the socket to which we want to write data.
e buf - Defines the memory space for the binary data we want to write.

e count - How many bytes should be written from the buffer to the socket. If there is not enough free space on
the physical medium used, less bytes might be written. Also if the process is interrupted by a signal, there also
might be less bytes written than specified.

The function returns the amount of bytes written on success and -1 on an error [8]. Additionally the variable
errno defined in <errno.h> is set and can have the following values:

Flag Description

EAGAIN The file descriptor refers to a file other than a socket and has been marked non-blocking, and
the write would block.

EWOULDBLOCK The file descriptor fd refers to a socket and has been marked non-blocking (O0_NONBLOCK),
and the write would block.

EBADF fd is not a valid file descriptor or is not open for writing.

EDESTADDRREQ fd refers to a datagram socket for which a peer address has not been set using connect ().
EFAULT buf is outside your accessible address space.

EINTR The call was interrupted by a signal before any data was written.

EINVAL fd is attached to an object which is unsuitable for writing or the file was opened with the

O_DIRECT flag and either the address specified in buf, the value specified in count or the
current file offset is not suitably aligned.

EIO A low-level I/O error occurred while modifying the inode.
ENOSPC The device containing the file referred to by fd has no room for the data.
EPIPE fd is connected to a pipe or socket whose reading end is closed.

Table 14: Errno flags for write () as defined in <errno.h> [§]

send () The send () function is another function to send data over a socket. Like write () it does require that
a destination address is specified first before it can be used, since it does require the socket to be in a connected
state [8]. This can be achieved by using the connect () function discussed in section 3.2.6 on page 19. There is no
indication of a failure implicitly shown when using send (), only locally detected errors are indicated by returning
-1 [8]. If send () is used to transmit messages, then it will block (if not set otherwise) if a message does not fit in
the buffer [8]. To use this function the headers <sys/types.h> (for the data types) and <sys/socket.h> (for

22



the function) have to be included. The function is called like this [8]:
ssize_t send(int sockfd, void * buf, size t len, int flags)

With the following parameters that can be set [8]:

e sockfd - Specifies the socket over which the data should be sent.

e buf - Defines the memory space for the binary data we want to send over the socket.

e len - How many bytes should be read from the memory space given by the parameter buffer.
e flags - The flags that can be set for the function are listed in table 15 on the next page

Like already mentioned, the function only indicates local errors by setting the return value to -1 on an error
and returning the number of characters (bytes) sent on success [8]. Additionally the variable errno defined in
<errno.h> is set and can have the values described in the table 16 on the following page. Other errors might be
reported by the used protocol modules.

sendto () In comparison to the possibilities to send data we discussed so far, the sendto () function allows us
to define a specific address to which the data should be sent without having to call connect () first to set the
destination address [8]. It should be noted that if the sendto () function is used on a connection-mode socket the
additional address information is ignored and an EISCONN error might be returned in errno, if they are not set
to NULL and zero respectively [8]. This is the case since for such a socket the destination is already implied by the
connection type. To use this function the headers <sys/types.h> (for the data types) and <sys/socket.h>
(for the function) have to be included. The function is called like this [8]:

ssize_t sendto(int sockfd, void x buf, size t len, int flags, struct sockaddr =
dest_addr, socklen t addrlen)

With the following parameters that can be set [8]:

e sockfd - Specifies the socket over which the data should be sent.
e buf - Defines the memory space for the binary data we want to send over the socket.
e len - How many bytes should be read from the memory space given by the parameter buffer.

e dest_addr - The function defines a struct sockaddr = with this parameter that contains the socket
address family and the protocol address for that family. The parameter can be set to NULL, then it will not
be filled in.

e addrlen - The length of the address provided to the socket.
e flags - The flags that can be set for the function are listed in table 15 on the next page.

Like already mentioned, the function only indicates local errors by setting the return value to -1 on an error and
returning the number of characters sent on success [8]. Additionally the variable errno defined in <errno.h> is
set and can have the values described in the table 16 on the following page. Other errors might be reported by the
used protocol modules.

Flags and errnos for the send () and sendto () functions The following flags can be set for both the send ()
and sendto () functions:

23



Flag Description

MSG_CONF IRM Only valid on SOCK_DGRAM and SOCK_RAW. Tell the layer 2 that you got a successful reply
from the other side.

MSG_DONTROUTE Don’t use a gateway to send out the packet, only send to hosts on directly connected networks.

MSG_DONTWAIT Enables non-blocking operation, if the operation would block EAGAIN or EWOULDBLOCK is

returned.
MSG_EOR Terminates a record (when this notion is supported).
MSG_MORE The caller has more data to send. This flag is used with UDP/TCP sockets.

MSG_NOSIGNAL Requests not to send SIGPIPE on errors on stream oriented sockets when the other end
breaks the connection. The EPIPE error is still returned.
MSG_OOB Sends out-of-band data on sockets that support this notion, the underlying protocol must
also support out-of-band data.
Table 15: Flags for send() and sendto() as defined in
<errno.h> [§]

The following errno constants are defined in <errno.h> for both the send () and sendto () functions:

Flag Description

EAGAIN The socket is marked non-blocking and the requested operation would block.

EWOULDBLOCK The socket is marked non-blocking and the requested operation would block.

EBADF An invalid descriptor was specified.

ECONNRESET Connection reset by peer.

EDESTADDRREQ The socket is not connection-mode, and no peer address is set.

EFAULT An invalid user space address was specified for an argument.

EINTR A signal occurred before any data was transmitted.

EINVAL Invalid argument passed.

EISCONN The connection-mode socket was connected already but a recipient was specified.

EMSGSIZE The socket type requires that message be sent atomically, and the size of the message to be
sent made this impossible.

ENOBUF'S The output queue for a network interface was full. This generally indicates that the interface
has stopped sending, but may be caused by transient congestion.

ENOMEM No memory available.

ENOTCONN The socket is not connected, and no target has been given.

ENOTSOCK The argument sockfd is not a socket.

EOPNOTSUPP Some bit in the flags argument is inappropriate for the socket type.

EPIPE The local end has been shut down on a connection oriented socket. In this case the process

will also receive a SIGPIPE unless MSG_NOSIGNAL is set.
Table 16: Errno flags for send () and sendto () as defined in
<errno.h> [§]

Unix The write () function is POSIX and 4.3BSD compliant, so it should work in BSD based systems without
any changes [8]. The send () and sendto () are also conform to POSIX, but only the MSG_00B, MSG_PEEK and
MSG_WAITALL flags are described in the standard [8]. It is also conform to 4.4BSD, but there might be differences
in the data types depending on the library used in the system [8].

3.2.9 close()

After we are finished with our network communication, we can close the socket like we would do it for a file. The
close () function is defined in the <unistd.h> and looks like this [8]:

int close(int £d)
The only parameter is the socket descriptor that should be closed [8]. All locks held by the associated process

are released as well [8]. The function returns zero on success and -1 on an error [8]. Additionally the variable errno
defined in <errno.h> is set and can have the following values:

24



Flag Description
EBADF fd is not a valid file descriptor.
EINTR The close () call was interrupted by a signal.
EIO An I/0 error occurred.
Table 17: Errno flags for close () as defined in <errno.h> [§]

Unix Since the close () function is part of the POSIX-standard there is no difference to the call between Linux-
distributions and Unix-systems [8].
3.2.10 inet_ntop()

inet_ntop () is a helper function to convert from a network address to a human readable character string. It
currently supports IP version 4 and version 6 addresses [8]. The function is defined in the <arpa/inet.h> and
looks like this [8]:

const char * inet_ntop(int af, const void x src, char *dst, socklen t size)

With the following parameters that can be set [§]:

e af - The address family we want to convert from. Currently only AF_INET for IP version 4 and AF_INET6
for IP version 6 addresses are supported.

src - The network address structure we want to convert.

dst - A pointer to a buffer for the resulting character string.
e size - The size of the buffer.

On success the dst parameter will contain the human readable form of the address [8]. If an error occurs NULL
is returned [8]. Additionally the variable errno defined in <errno.h> is set and can have the following values:

Flag Description
EAFNOSUPPORT The parameter af was not a valid address family.
ENOSPC The converted address string would exceed the size given by size.

Table 18: Errno flags for ntop () as defined in <errno.h> [§]

Unix The function is a part of the POSIX standard and should work as described on all Linux and Unix systems
(8]
3.2.11 inet_pton|()

inet_pton () is a helper function to convert from a human readable character string to a network address. It
currently supports IP version 4 and version 6 addresses [8]. The function is defined in the <arpa/inet.h> and
looks like this [8]:

int inet_ntop(int af, const char » src, void =#dst)

With the following parameters that can be set [8]:

e af - The address family we want to convert from. Currently only AF_INET for IP version 4 and AF_INET6
for IP version 6 addresses are supported.

e src - The character string we want to convert. For the AF_INET address family the preferred format is the
dotted-decimal format, "ddd.ddd.ddd.ddd". For the AF_INET6 address family the preferred format is the
hexadecimal format "x:x:x:x:x:x:x:x”, but the usual abbreviation forms are also supported.

e dst - A pointer to the resulting network address structure.

25



On success the dst parameter will contain the network address structure and the return value is set to 1 [8]. If
the sre parameter did not contain a valid address string 0 is returned [8]. If an error occurred -1 is returned and
additionally the variable errno defined in <errno.h> is set and can have the following values:

Flag Description
EAFNOSUPPORT The parameter af was not a valid address family.
Table 19: Errno flags for pton () as defined in <errno.h> [§]

Unix The function is a part of the POSIX standard and should work as described on all Linux and Unix systems

I8].

3.2.12 Data Types

There are several structures that we use for all system calls and functions we use when working with network func-
tions. Here we want to show these structures and show a way to initialize them. The first stucts we want to introduce
are the sockaddr structs that are use to hold a layer 3 address and are defined in the <netinet/in.h> header.
The struct sockaddr is the basic definition of an address that many of the functions discussed so far take as a
parameter. It is possible to cast a pointer to one of these structures into each other without any harm [9].

See listing 77 in the appendix.

The struct sockaddr_in is the struct we use to hold an IP version 4 address. Note the sin_zero field, for
which it sometimes recommended is that it should be set to zero, even though it is not even mentioned in the Linux
programmer’s manual [9]. We recommend to initialize the whole struct with 0 using the memset () function. The
other fields are usual information for IP version 4 addresses.

Listing 1: sockaddr in cpp

N O U W N

struct sockaddr_in {

short sin_family; // e.g. AF_INET, AF_INET6
unsigned short sin_port; // e.g. htons (3490)

struct in_addr sin_addr; // see struct in_addr, below
char sin_zero[8]; // zero this if you want to

The struct sockaddr_in is the struct we use to hold an IP version 6 address. Similar to the struct for the
IP version 4 address it contains all the required fields for the protocol information.

Listing 2: sockaddr in6 cpp

N O Ut WN

struct sockaddr_in6 {

u_intlé6_t sin6_family; // address family, AF_INET6
u_intl6_t sin6_port; // port number, Network Byte Order
u_int32_t sin6_flowinfo; // IPvé flow information

struct in6_addr sin6_addr; // IPv6 address

u_int32_t sin6_scope_id; // Scope ID

bi

The following example adapted from [9] shows exemplary how to init an IP version 4 address:

Listing 3: sockaddr init cpp

= O © 000 Utk Wi

— =

// the struct for the socket-address
struct sockaddr_in ipdaddr;

// init the address family to internet addresses
ip4addr.sin_family = AF_INET;

// fill out the port
ip4addr.sin_port = htons(3490);

// fill in the ethernet address
inet_pton (AF_INET, "10.0.0.1", &ip4addr.sin_addr);

26




© 00O U WN -

© 00O U WN -

e el el e el
00O Uk WN O

0O Uk WN -

There is also a structure we can use to define a layer 2 address, for example a MAC-address or an index for one
of the network interfaces of the host. It is available in the <linux/if_packet.h> header.

Listing 4: sockaddr 11 cpp

struct sockaddr_11 {

unsigned short sll_family; // family is always AF_PACKET
unsigned short sll_protocol; // physical layer protocol
int sll_ifindex; // interface number

unsigned short sll_hatype; // header type

unsigned char sll_pkttype; // packet type

unsigned char sll_halen; // length of the address
unsigned char sll_addr([8]; // physical layer address

bi

Many ioctl () calls we use to get network device information return an i freq structure [10]. We usually specify
which device to affect by setting ifr name to the name of the interface [10]. It is defined in the <net/if.h>

header.

Listing 5: ifreq cpp

struct ifreqg {
char ifr_name[IFNAMSIZ]; /* Interface name */
union {
struct sockaddr ifr_addr;
struct sockaddr ifr_dstaddr;
struct sockaddr ifr_broadaddr;
struct sockaddr ifr_netmask;
struct sockaddr ifr_hwaddr;

short ifr flags;

int ifr_ifindex;

int ifr_metric;

int ifr_mtu;

struct ifmap ifr_map;

char ifr_slave[IFNAMSIZ];
char ifr_newname [IFNAMSIZ];
char +*1fr_dataj;

bi
bi

One example is the use of the i freq for getting the device index of an network interface as shown in the following

code:

Listing 6: ifreq init cpp

// struct for the interface definition
struct ifreq ifr;

// the name of the device we want to use
char x device = "wlanO";

// set the structs to zero
bzero(&ifr , sizeof (ifr));

// define the name of the interface we want to set
strncpy ((char x)ifr.ifr_name ,device , IFNAMSIZ);

// get device index
ioctl (sockfd , SIOCGIFINDEX , &ifr)

27




3.2.13 Layer 4

Now we can start with describing the different layers we can access and write with the RAW-sockets. We start by
discussing working with RAW-sockets for Transport layer (OSI layer 4) access. The basic operation is generally very
similar for all layers we want to work with. For example the basic call to create a RAW-socket for IP looks like this

[5]:
sockfd = socket (AF_INET, SOCK _RAW, int protocol )

In this example the AF__INET specifies IP as the protocol, the SOCK_RAW defines the socket type as a RAW-Socket
and the protocol can be used to specify any layer 4 protocol we want to use, so for example TPPROTO_IP is not
supported as the protocol since it is a dummy layer 3 protocol. Note that we can only send and receive a single
protocol using this, it is not possible to receive data for all protocols with a RAW-socket [1]. We also have to be
aware that the kernel still also receives all protocol data and will act accordingly [1]. If we do not want the kernel to
also react to the packets we have to take additional steps to prevent this.

Unix RAW-sockets work as described in Linux distributions. For Unix based systems there are some limitations
we have to observe.

e The Write-commands work for layer 3 and 4 work for Unix as well.

e The Read-commands for layer 3 and 4 only work with some limitations. TCP and UDP packets cannot be
received with RAW-sockets, they are only delivered to the kernel [6]. Copies of ICMP packets are delivered to
the RAW-socket as well as to the kernel [6]. All IGMP packets are delivered to the RAW-socket, as well as any
other protocol packets [6].

e Unix does not support the PACKET-socket as described for layer 2 later. Instead Unix has the Berkeley Packet
Filter (BPF) interface that can be used for layer 2 communication [2]. We will give a short introduction in a
later section.

e Some of the functions that are used in this section are requiring additional headers to work under Unix. The
additional headers are noted in the last section were the functions were introduced.

e Other than these limitations we can work with the RAW-socket under Unix in the same way as in Linux [§].

Read The structure of the complete Read operation for a basic layer 4 RAW-socket is shown in figure 3 on the
next page.

e We first have to create the socket as it was discussed in section 3.2.1 on page 15. Like mentioned, if we only
want to create layer 4 headers later we can choose any protocol family we want to receive data for except the
IPPROTO_RAW [1]. Also even if we just read data to the buffer it makes sense to also reserve buffer space and
initialize it with zero to have defined data in the buffer.

e As an optional step we can define the interface we want to receive the network data from by defining the source
address using the bind () function.

e Additionally we can, as an option, use the connect () function to define a standard source we want to receive
data from or we want to connect to in case of connection-oriented protocols [8].

e Then we can read binary data from the socket with one of the function described in section 3.2.7 on page 19. We
can either read data using the read () or recv () functions. As an alternative we can use the revcfrom ()
function which also returns the source address of the packet we did receive. It is recommended to check the
return value to know how many bytes were received to be able to react accordingly.

e Optionally we can close () the socket now if we received all the data we want to receive.

e Then we can type-cast the binary data onto our headers as it is described in section . We have to be aware
that the Buffer of a RAW-socket includes the headers as well as the data . The included headers start at the
Network layer (OSI layer 3) [1]. Since we do not want to use the information of the Network layer at this point,
we have to add the length of its header to the data pointer to get the Transport layer (OSI layer 4) header
information [5]. When doing this we have to be aware that there can be variable network layer headers as
described in section 3.1.4 on page 14. Depending on the protocol and possibly additional variable headers we
can compute the start positions of the next header (or headers) and type-cast them into structures.

28



Initialize

create socket:
socket(...)
and
reserve and initialize buffer space
memset(...

l_ Define Destination Address:

)
Jsocket available

connect(...)

— -l
—I Destination address defined

v

v

Read

Read from socket:
read(...)
or
recv(...)

Read
Read from socket:
recvfrom(...)
binary data

Close socket if no longer needed:
close(...)

_— —_—— e —

connection closed

Type-Casting

Consider Header

Type-Cast to network header:
header = (struct hdr *) data

< Length & Position

l struct header

Get Data

Consider Header

Calculate Data Start Address:
data = packetStart + sizeOf{struct hdr)

Length & Position

<

l data

Access Data

Consider

Access Header

Access Data

< Byte-Order of Header

Figure 3: Structure of a RAW-socket layer 4 Read Operation

29



e After all headers are handled the remainder of the packet is the user data and can also be extracted.

e Then we can access the extracted headers or data. When accessing the headers we have to observer the
byte-order, as discussed in the section 3.1.1 on page 13.

As the general programming paradigms suggest, the user should handle possible errors that might occur in the steps.
Possible error values are presented in the introductions of the available functions. This is even more important when
working with RAW-sockets, since working with them is very error prone.

Write When we use the layer 4 Write access, the operating system will take over most function required to send
the packet. We only have to start to create our packet at layer 4 and supply the required destination address to the
API to send the packet. All layer 3 headers will be filled in by the operating system accordingly [1].

e We first have to create the socket as it was discussed in section 3.2.1 on page 15. Like mentioned if we only
want to create layer 4 headers, we can choose any protocol family except the IPPROTO_RAW[1]. Also we reserve
buffer space for the packet we want to create and initialize it with zero to have defined data in the buffer [5].

e As an optional step we can define the interface we want to use to send the network data from by defining the
source address using the bind () function.

e Then we can type-cast the buffer to our layer 4 headers like it is described in section 3.3.7 on page 44. We
have to take into consideration variable header lengths if we want to use optional fields and compute the start
of the next header accordingly as described in section 3.1.4 on page 14. The remaining buffer can be used for
the user data we might want to pass along.

e As the next step we set the data of our header as required. We have to consider the byte-order in case of fields
that span multiple bytes and change the byte-order according to the requirements of the protocol we want to
use [5]. Additional information about this can be found in section 3.1.1 on page 13.

e If the protocol does use a checksum to protect the header from changes we also have to compute the checksum
for the layer 4 ourselves [5]. Only for the layers below, the operating system will take care of computing the
checksum. We have to see in the documentation which kind of checksum is required by the protocol we want
to use. Additional information about checksum computation can be found in the section 3.1.2 on page 13.

e In the next step we have the choice to use one of two possibilities. We can use the sendto () function, which
allows us to pass a destination address along with the data. Optionally we can as an option use the connect ()
function to define a standard source we want to send data to or want to connect to in case of connection-oriented
protocols. If we define the destination with connect () the destination address of sento () might be left
empty, then the already defined address is used [8]. The other possibility is to use write () or send () which
both require the socket to be in a connected state, so we have to call connect () first to use one of these
functions [8]. All functions have the same result, the data is being sent. The result these functions return is
the number of bytes that were sent. It is recommended to check the return value and match it with the length
of the data that should have been sent to make sure the function was not interrupted during the call and all
data has been sent as intended |[§].

e Optionally we can close () the socket now if we already sent all the data we want to transmit.

3.2.14 Layer 3

Using RAW-sockets to also access the layer 3 of a network packet is very similar to the layer 4 access we discussed
in the previous section. The most significant differences are that we need to set a different option to get write
access to the complete layer 3 header. We also now have to take the structure and lengths of multiple headers into
consideration. For example the basic call to create a raw-socket for IP could look like this [5]:

sockfd = socket (AF_INET, SOCK_RAW, IPPROTO_RAW)

In this example the AF__INET specifies IP as the protocol, the SOCK_RAW defines the socket type as a RAW-Socket
and the TPPROTO_RAW specifies that we are interested in sending any type of protocol with this socket. Note that
we can only send any protocol with this, it is not possible to receive any data with this socket [1]. If we want to still
receive packets we could specify a single protocol in the last parameter of the socket () call and then have to set
the IP_HDRINCL with the setsockopt () function to be able to write and receive with the same socket. We also
have to be aware that the kernel still also receives all protocol data and will act accordingly [1]. If we do not want
the kernel to also react to the packets we have to take additional steps to prevent this.

30



Initialize

create socket:
socket(...)
and
reserve and initialize buffer space

memset(...)

| Optional: Interface

|
I_ Define Source Address: |
bind(...)

Source address defined

Type-Casting Consider Header
Length & Position

Type-Cast to network header:
header = (struct hdr *) data

lstru ct header

Set Header & User Data Consider

Fill out header struct fields

Add user data we want to send

header fields defined

< Byte-Order of Header

B If required: Checksum I Consider

r Compute the checksum as required by

‘*—'-|< Fields for Checksum
I

the protocol

v

Target Host

connectf...)

Define Destination Address:

Destination address defined
and/or socket connected

e — e — s —
header completed
| Optional: Target Host |
r_ Define Destination Address: I
connect(...)

Destination address defined
and/or socket connected

Send

Send

Read from socket:
write(...)

sen_d{...}

Read from socket:
sendto(...)

data sent

Figure 4: Structure of a RAW-socket layer 4 Write Operation

31



Read For the Read operation the structure and commands are the same as for the layer 4 read access. As already
discussed we simply ignored the layer 3 information before since we did not want to use it. Nevertheless the same
command already gave us the possibility to read-out the header information. Also if we also want to have write
access to the layer 3 headers for the write operation later it is a possible simplification to create a socket and then
set the IP_HDRINCL flag as already discussed. This is not necessary for the Read operation we want to discuss first
only for the Write later. Details on this option will follow in the layer 3 Write section. It should be noted again that
receiving data of all IP-protocols is not possible with with RAW-sockets, only the data for a single protocol can be
received at a time [1]. A possible solution for this are the PACKET-sockets discussed in the next section.

The structure of the complete Read operation for a basic layer 3 RAW-socket is shown in figure 5 on the next page.

As already mentioned there are only slight differences due to the handling of multiple layers in comparison to the
layer 4 read.

e We first have to create the socket as it was discussed in section 3.2.1 on page 15. Like mentioned if we want to
create layer 3 headers we can additionally set the ITP_HDRINCL flag with the setsockopt () function. Also
even if we just read data to the buffer it makes sense to also reserve buffer space and initialize it with zero to
have defined data in the buffer [5].

e As an optional step we can define the interface we want to receive the network data from by defining the source
address using the bind () function.

e Additionally we can as an option use the connect () function to define a standard source we want to receive
data from or we want to connect to in case of connection-oriented protocols.

e Then we can read binary data from the socket with one of the function described in section 3.2.7 on page 19. We
can either read data using the read () or recv () functions. As an alternative we can use the revcfrom()
function which also returns the source address of the packet we received. It is recommended to check the return
value to know how many bytes were received to be able to react accordingly [8].

e Optionally we can close () the socket now, if we received all the data we want to receive.

e Then we can type-cast the binary data into our headers like it is described in section 3.3.7 on page 44. We
have to be aware that the buffer of a RAW-socket includes the headers as well as the data [1]. The included
headers start at the network layer (OSI layer 3). Since we want to use the information of the network layer
at this point, we can typecast the header onto a struct to get access to all the fields. We still have to add the
length of its header to the data pointer to get the Transport layer (OSI layer 4) header information. When
doing this we have to be aware that there can be variable network layer headers as described in section 3.1.4 on
page 14. Also depending on which functions we used for reading data from the socket, we might want to filter
from which source and/or for which target address we want to receive data from. Depending on the protocol
and possibly additional variable headers we can compute the start positions of the next header (or headers)
and type-cast them into structs.

e After all headers are handled the remainder of the packet is the user data that can also be extracted.

e Then we can access the extracted headers or data. When accessing the headers we have to observer the
byte-order, as discussed in the section 3.1.1 on page 13.

Write Like already noted, to get write access to the layer 3, we have to either create an TPPROTO_RAW socket when
choosing our protocol for the socket () function or set the IP_ HDRINCL with the setsockopt () to deactivate
automatic IP-header generation by the operating system and be able to manually fill the fields [5]. It should be
noted here that TPPROTO_RAW socket does not include the TP_HDRINCL flag for all operating systems since this is
not defined in the POSIX-Standard [11]. So if you want to be sure that the code works regardless of the distribution
used, it is recommended to set the protocol option to the protocol that can be found in the layer 3 protocol header
and use setsockopt () to tell the OS that we want to generate the header manually [11].
The Structure of the complete Write operation for a basic layer 3 RAW-socket is shown in figure 6 on page 34.

e We first have to create the socket as it was discussed in section 3.2.1 on page 15. Like mentioned we have to
use either TPPROTO_RAW when choosing our protocol for the socket () function, or set the IP_HDRINCL
with the setsockopt () function to deactive automatic IP-header generation as already discussed [5]. Also
we reserve buffer space and initialize it with zero to have definded data in the buffer [5].

32



Initialize

create socket:

socket(...)
and
reserve and initialize buffer space
memset(...)
Jsocket available
| Optional: Interface |
Define Source Address: I
bind(...)

I— Define Destination Address: |
connectf...)

— N
_[ Destination address defined

v v

Read Read
Read from socket: Read from socket:
read(...) recvfrom(...)
or
recv(...)
binary data
_____ N
| Optional: Close Socket |
Close socket if no longer needed: I

connection closed

Type-Casting Consider Headers
Length & Position
Type-Cast to network headers: |< |

header = (struct hdr *) data

l struct headers

Get Data Consider Headers

Length & Position
Calculate Data Start Address: < |

data = packetStart + sizeOf{struct hdr)

l data

Access Data Consider
Byte-Order of Headers

Access Headers <

Access Data

Figure 5: Structure of a RAW-socket layer 3 Read Operation

33



Initialize Create socket as

IPPROTO_RAW

create socket: OR

socket(...) Use Setsockopt()

and i
IPHDRINCL option

reserve and initialize buffer space Pt

memset(...) < |

| Optional: Interface |

| Define Source Address: |
bind(...)

Source address defined

Consider Headers
Length & Position

Type-Casting

Type-Cast to network headers:
header = (struct hdr *) data |
Consider
lstr’uct headers Byte-Order of Headers
AND

fields filled automatically
by the Operating System
Fill out headers struct fields < ]

Add user data we want to send

headers fields defined

Set Header & User Data

r If required: Checksum | Consider
l‘ —j Fields for Checksums
Compute the checksums as required by < ]
L .— . theprotocols .~ |
headers completed
Target Host | Optional: Target Host |
Define Destination Address: Define Destination Address: |
connecty...) connecty...)
Destination address defined Destination address defined
and/or socket connected and/or socket connected
Send Send
Read from socket: Read from socket:
write(...) sendtof...)
sen_d{...}
| data sent
I Optional: Close Socket |
Close socket if no longer needed: I
I close(...) 3

Figure 6: Structure of a RAW-socket layer 3 Write Operation

34



As an optional step we can define the interface we want to use to send the network data with by defining the
source address using the bind () function.

Then we can type-cast the buffer to our headers like it is described in section 3.3.7 on page 44. The included
headers start at the Network layer (OSI layer 3). We have to take into consideration variable header lengths,
if we want to optional fields and compute the start of the next header accordingly as described in section 3.1.4
on page 14. The remaining buffer is reserved for the user data we might want to pass along.

As the next step we set the data of our headers as required. However, we do not need to fill the checksum and
total length of the IP-packets, since the operating system will fill in the values automatically [1]. Optionally
we can also fill in zero in the fields source address and packet ID [1]. If we do this then the operating system
also will fill in the values automatically. When we fill in the values of the header fields we have to consider the
byte-order in case of fields that span multiple bytes and change the byte-order according to the requirements
of the protocol we want to use. Additional information about this can be found in section 3.1.1 on page 13.

If the protocol does use a checksum to protect the header from changes, we also have to compute the checksum
for the layer 4 ourselves [5]. Only for the layers below, the operating system will take care of computing them.
For the IP-Protocol for example the Operating System will always fill in the value for the checksum. We have
to see in the documentation which kind of checksum is required by the protocol we want to use. Additional
information about computing the checksum can be found in the section 3.1.2 on page 13.

In the next step we have the choice to use one of two possibilities. We can use the sendto () function, which
allows us to pass a destination address along with the data. Optionally we can as an option use the connect ()
function to define a standard source we want to send data to, or want to connect to in case of connection-
oriented protocols. If we define the destination with connect () the destination address of sento () might
be left empty, then the already defined address is used. The other possibility is to use write () or send()
which both require the socket to be in a connected state, so we have to call connect () first to use one of
these functions [8]. All functions have the same result, the data is being sent. It is recommended to check the
return value and match it with the length of the data that should have been sent to make sure the function
was not interrupted during the call and all data has been sent as intended [8].

Optionally we can close () the socket now, if we already sent all the data we want to transmit.

35



0O Utk WN

3.2.15 Layer 2 - PACKET-sockets

In addition to the layers we discussed so far, it is also possible under Linux to access the Data-Link-layer with RAW-
sockets. In earlier versions there was a special type of sockets for this, the PACKET _socket[5]. Nowadays the use
of packet sockets is no longer recommended, instead we can use a normal RAW socket with a different protocol
supplied to the socket () function, like shown in section 3.2.1 on page 15[5]. The possible socket types we can use
are the SOCK_RAW to get access to the whole packet including the Data-Link-layer header or the SOCK_DGRAM which
operates on the Data-Link-layer packet without the headers [12]. The protocols for Ethernet we can use in Linux are
shown in the table 48 on page 81. One common option might be the ETH_P_ALL protocol constant which results in
all incoming and outgoing Ethernet packets to be accessed with the RAW-socket. A typical call looks like this, note
the htons function used to change the byte-order of the supplied protocol constant since it is a multi-byte constant [5]:

s = socket (AF_PACKET, SOCK_RAW, htons(ETH_P_ALL));

With this all headers down to the Data-Link-layer can now be accessed and all data received on all interfaces
can be received. However as already mentioned, parts of the Data-Link-layer header might not be accessible, for
example for the Ethernet frames the CRC (Cyclic Redundancy Check) checksum, the Preamble and the Start-of-
Frame Delimiter are not accessible since these fields are more part of the Physical-layer and therefore handled by
the network driver [5]. Also with PACKET-socket the connect () function has lost its purpose, only the bind ()
function still makes sense to define the network interface [5]. We have to be aware that the kernel still also receives
all protocol data and will act accordingly [1].

Promiscuous Mode The promiscuous mode is a special mode of a network card in which all network traffic of
an interface is received, in contrast to the usual case where only the traffic addressed to the interface is received [5].
PACKET-sockets work similar to the promiscuous mode, but receive all traffic for all interfaces of the host, but can
be configured to only receive the traffic on a single interface by using the bind () function [5]. If it is necessary to
activate the promiscuous mode for some reason it can be done by setting the IFF_PROMISC using the ioctl ()
systemcall [5].

MAC-Address Since we now work on the layer 2 we also have to work with the addresses of the layer, for example
the MAC-addresses used for example in Ethernet. The MAC-address of the interface we want to use as a source can
be accessed with a call of the 1octl function. We demonstrate the call in the following listing. Note that the listing
does not include any protection against errors.

Listing 7: mac cpp

struct ifreq ifr; // struct for the interface information
char * eth = "wlanO"; // name of the interface

// copy the name to the struct
memcpy (ifr.ifr_name, if_name, IFNAMSIZ) ;

//create a socket descriptor
int sockfd = socket ( AF_PACKET , SOCK_RAW , htons(ETH_P_ALL)) ;

//get the information
ioctl (sockfd, SIOCGIFHWADDR, &ifr)

//extract the mac
const unsigned charx mac = (unsigned charx) ifr.ifr hwaddr.sa_data;

Read Except for the creation of the packet socket, the missing connect () statements and the handling of more
layers, the layer 2 read is not much different from the other read operations and share the same basic structure.
The Structure of the complete Read operation for a basic layer 2 PACKET-socket is shown in figure 7 on the next page.

For a read of the layer 2 the general structure we discussed until now is the same, only some steps are different
due to different initialization we need and the handling of Data-Link-layer data:

e We first have to create the socket as it was discussed in section 3.2.1 on page 15. As already discussed the
possible socket types we can use are the SOCK_RAW or the SOCK_DGRAM. The protocols for Ethernet we can

36




Initialize Create socket

create socket: with OS5 dependent
socket(...) Protocol Constant
and for Device

reserve and initialize buffer space
memset{...)

Source address defined

v v

Read Read
Read from socket: Read from socket:
read|...) recvfrom(...}
or
recv(...)
binary data
_____ N _
| Optional: Close Socket |
Close socket if no longer needed: I

| close(...) .

connection closed  Consider Headers
Length & Position

- AND
Type-Casting Use special functions

for Layer 2 headers

Type-Cast to network headers:
header = (struct hdr *) data <

l struct headers

Get Data Consider Headers

Length & Position
Calculate Data Start Address: < |

data = packetStart + sizeOf(struct hdr)

¢ data

Access Data Consider
Byte-Order of Headers

Access Headers <

Access Data

Figure 7: Structure of a PACKET-socket layer 2 Read Operation

37



use in Linux are shown in the table 48 on page 81. Since they could be multi-byte constants we have to use
functions to change the byte-order as discussed in the section 3.1.1 on page 13. Also even if we just read data
to the buffer it makes sense to also reserve buffer space and initialize it with zero to have defined data in the
buffer [5].

As an optional step we can define the interface we want to receive the network data from by defining the source
address using the bind () function.

Then we can read binary data from the socket with one of the function described in section 3.2.7 on page 19.
We can either read data using the read (), recv () functions, or we can use the revcfrom () function which
also returns the source address of the packet we did receive. It is recommended to check the return value to
know how many bytes were received to be able to adapt accordingly [8].

Optionally we can close () the socket now, if we received all the data we want to receive.

Then we can type-cast the binary data into our headers like it is described in section . Since we did start at
the Data-Link-layer, there could be different layer 3 protocols included in the frame. This is why we have to
access the correct field in the header to find out what is encapsulated in the frame and which header structure
we have to handle. When doing this we have to be aware that there can be variable network layer headers
as described in section 3.1.4 on page 14. Also depending on which functions we used for reading data from
the socket we need to filter from which source and/or for which target address we want to receive data from.
Depending on the protocol and possibly additional variable headers we can compute the start positions of the
next header (or headers) and type-cast them into structs.

After all headers are handled the remainder of the packet is the user data that can also be extracted.

Then we can access the extracted headers or data. When accessing the headers we have to observer the
byte-order, as discussed in the section 3.1.1 on page 13.

Write The Write on a PACKET-socket differs from from the Write on a RAW-socket in some important parts.
The IP-header fields that were filled by the operating system when using a RAW-socket have to be filled in manually
when using a PACKET-socket. The only layer where the operating system still helps the user is on the Data Link
Layer, were some fields are automatically generated [5]. That is the case for example when creating Ethernet frames,
then the Padding field of the frame, the Preamble, the Start-of-Frame Delimiter and the CRC checksum [5]. These
fields are still generated automatically by the network driver.

The Structure of the complete Write operation for a basic layer 2 PACKET-socket is shown in figure 8 on the
following page.

e We first have to create the socket as it was discussed in section 3.2.1 on page 15. As already discussed the
possible socket types we can use are the SOCK_RAW or the SOCK_DGRAM. The protocols for Ethernet we can
use in Linux are shown in the table 48 on page 81. Since they could be multi-byte constants we have to use
functions to change the byte-order as discussed in the section 3.1.1 on page 13. Also we reserve buffer space
and initialize it with zero to have defined data in the buffer.

Even if packets sent over PACKET-sockets have to be generated completely manual it is still required for
the send functions to define a socket-address. The necessary struct sockaddr Il can be found in the header
<linux/if_packet.h>. The only part of the struct we have to fill in is the network interface s11_ifindex|5].
Now to find the network interface, in Linux usually denoted as f.e. eth! we can use the so called Netdevice-
Interface [10]. It describes the ioct1 ()-system calls that can be used to access different properties of network
interfaces in Linux, for example the callcode STOCGIFINDEX has to be used to get the desired information. The
access can be done on all socket types with the data structure i freq that is defined in <linux/net/if.h>.
The complete call we have to use looks like this [5]:

ioctl (socketfd, SIOCGIFINDEX, &ifr)

The socket fd again is our socket descriptor, the STOCGIFINDEX is the parameter to retrieve the information
we need and ifr is the ifreq that after the call has the information we need. With the information we can
later call the bind () or sendto ().

Then we can type-cast the buffer to our headers like it is described in section . The included headers start at
the Data-Link-layer (OSI layer 2). It is necessary to include or define additional headers to have structs for
the Data-Link-layer header. We have to take into consideration variable header lengths, if we want to optional
fields and compute the start of the next header accordingly as described in section 3.1.4 on page 14. The
remaining buffer is reserved for the user data we might want to pass along.

38



Initialize

create socket:
socket(...)
and
reserve and initialize buffer space
memset(...)

Create socket
with OS dependent
Protocol Constant
for Device

$

lsocket available

Interface Definiton

Get Interface Information
fill struct with the required data

llnterface defined

Type-Casting

Type-Cast to network headers:
header = (struct hdr *) data

Consider Headers
Length & Position

lstru ct headers

Set Header & User Data

Fill out headers struct fields

Add user data we want to send

Consider
Byte-Order of Headers

l headers fields defined

[" i required: Checksum |

——
I. Compute the checksums as required by <

the protocols I

v

Interface

bind(...)

Define Source Address:

Source interface defined 1

| Optional: Interface |
T_ Define Source Address: I
| bind(...) 3

Consider
Fields for Checksums

Source interface defined

Send Send
Read from socket: Read from socket:
write(...) sendto(...)
sen_dl[...}
data sent
_____ Yy

| Optional: Close Socket |

Figure 8: Structure of a PACKET-socket layer 2 Write Operation

39



— =

= O © 000 Utk W

e As the next step we set the data of our headers as required. We have to fill in all fields since the operating
system does not automatically create fields for PACKET-sockets [5]. When we fill in the values of the header
fields have to consider the byte-order in case of fields that span multiple bytes and change the byte-order
according to the requirements of the protocol we want to use. Additional information about this can be found
in section 3.1.1 on page 13.

e If the protocol does use a checksum to protect the header from changes, we have to compute them and set the
fields accordingly [5]. We have to see in the documentation which kind of checksum is required by the protocol
we want to use. Additional information about computing a checksum can be found in the section 3.1.2 on
page 13.

e In the next step we have the choice to use one of two possibilities. We can use the sendto () function, which
allows us to pass the socket address of the interface we created along with the data. Optionally we can as an
option use the bind () function to define a standard socket address for the interface we want to send data
with. If we define the destination with bind () the destination address of sento () might be left empty, then
the already defined address is used [8]. The other possibility is to use write () or send () which both require
a call of bind () first. All functions have the same result, the data is being sent. It is recommended to check
the return value and match it with the length of the data that should have been sent to make sure the function
was not interrupted during the call and all data has been sent as intended [§].

e Optionally we can close () the socket now, if we already sent all the data we want to transmit.

3.3 Berkeley Packet Filter (BPF)

The Berkeley Packet Filter (BPF) provides us with the same functionality we have introduced for the PACKET-
socket in Linux, it provides full access to the data link layer for read and write [2]. So as it is the case for the
PACKET-socket we can receive any packet received by any interface regardless if it is meant for our host or not
[2]. Additionally to these functions the BPF also includes an advanced filtering mechanism that we can use to filter
incoming packets according to different criteria [2]. We will only give a short overview over this function since our
main focus is not to give an introduction on how to program a network sniffer, but how to send and receive data
including the protocol headers.

To use the BPF we have to use a distribution that has the device bpf in its kernel [7]. Only than can we
create a BPF device. The BPF appears as a special character device /dev/bpf. To open it we have to use the well
known open () function which is defined in <fnctl.h> and looks like this:

int open(const char * pathname, int flags)

We have to set the following parameters:

e pathname takes the path of a file. In our case the path has to be /dev/bpfn where n is the number of the
device depending on how many other programs use a BPF [7].

e flags takes a flag as the name implies, the most useful for us is the O_RDWR flag that gives us read and write
access.

e After we have done this we have to associate the BPF device to a network interface [7]. This works similar to
the bind () function used for the RAW- or PACKET-socket, but is realized with a ioctl () call with the flag
BIOCSETIF. The completed command looks like this, note the i freq structure:

Listing 8: bpf cpp

// define the name of the interface
const charx interface = "fxp0";

// create the struct for the interface
struct ifreq bound_if;

// copy the name into the struct
strcpy (bound_if.ifr_name, interface);

// associate the bpf to the interface
ioctl( bpf, BIOCSETIF, &bound_if )

Afterwards we just have to set the BPF to immediate mode, since a read () would otherwise block until the
kernel buffer becomes full or a timeout occurs [2]. We also have to get the buffer size, since the BPF might return
us more than one packet at a time [7]. The code for this is shown in the listing below:

40




0O Utk WN

00O~ O Ui W

= = e
Tk W N = O ©

Listing 9: bpf2 cpp

// initialize buffer length
int buf_len = 1;

// activate immediate mode
ioctl( bpf, BIOCIMMEDIATE, &buf_len )

// request buffer length
ioctl( bpf, BIOCGBLEN, &buf_len )

After this we can read and write to the BPF like we did it before. Note that we only can use the read () and
write () functions since the BPF is handled like a file. Before we introduce these operations we want to show some
BPF specialties and give an overview over some preferences that can be set for the BPD subsystem.

3.3.1 BPF Header

The BPF device adds an additional header with information about the received packet [2]. One of the headers shown
in the following listing is appended to each packet, bpf_xhdr is used by default, bpf_hdr is used only when the
timestamp format is set to certain values using the ioctl () function [2].

Listing 10: bpf structs cpp

struct bpf_xhdr {

struct bpf_ts bh_tstamp; /+ time stamp */

uint32_t bh_caplen; /+ length of captured portion #*/
uint32_t bh_datalen; /* original length of packet x/
u_short bh_hdrlen; /+ length of bpf header (this struct

plus alignment padding) */
i

struct bpf_ hdr {

struct timeval bh_tstamp; /* time stamp */

uint32_t bh_caplen; /+ length of captured portion #*/
uint32_t bh_datalen; /+ original length of packet */
u_short bh_hdrlen; /+ length of bpf header (this struct

plus alignment padding) =/
i

The bh_hdrlen is used for padding between the header and the link layer protocol, additionally each packet is
padded so that it starts on a word [2]. A macro BPF_WORDALIGN () is defined in the header that allows us to
compute the header-position correctly when we compute the header-positions.

3.3.2 Buffer Modes

BPF devices can deliver packet data to the applications in two different modes, Buffered read mode and Zero-copy
mode [2]. The mode can be set by using the ioctl () function using the BIOCSETBUFMODE flag. The default mode
is the Buffered read mode which can also be set using the BPF_BUFFMODE_BUFFER flag. In this mode the packet
data can be accessed by explicitly call the read () function. A fixed buffer size is used for all internal buffers as well
as for the read () function which can be queried using the BIOOCGBLEN flag for the ioctl () call and set by using
the BIOCSBLEN flag in the iot1 () call [2]. Note that packets longer than this buffer size are truncated. The other
mode is the Zero-copy buffer mode that can be set using the ioct1 () call and the BPF_BUFMODE_ZEROCOPY
flag. In this mode the user process registers two equal sized buffers using the BIOSETZBUF flag with the ioctl
function in which the packet data is directly stored [2]. The user process than has to use atomic operations to check
if it can read data from a buffer and than return it to the kernel for storing the next data as fast as possible [2]. See
the Unix MAN-pages for detailed information how to use this mode.

3.3.3 IOCTLS

The following flags can be used to change the behavior of the BPF device. All constants are defined in the <bpf.h>
header, except for the BIOGETIF and BIOSETIF which also require the <sys/socket.h> and <net/if.h>
headers. They can be set using the ioctl () function for any open BPF file, with the type indicated as the third
argument of the function. See table 52 in the appendix.

41




QU W N

3.3.4 SYSCTL Variables
A set of sysctl-Variables for controlling the behavior of the BPF subsystem exist [2]:

Variable Description
net .bpf.optimize_writers Turning this option on makes new BPF users to be attached to write-only
interface list until program explicitly specifies read filter via pcap _set _filter().

net.bpf.stats Binary interface for retrieving general statistics.

net .bpf.zerocopy_enable Permits zero-copy to be used with net BPF readers.

net .bpf.maxinsns Maximum number of instructions that BPF program can contain.
net.bpf.maxbufsize Maximum buffer size to allocate for packets buffer.
net.bpf.bufsize Default buffer size to allocate for packets buffer.

Table 20: ioctl () flags defined in <bpf.h> [2]

3.3.5 Filter Maschine

An additional capability we have is the Filter machine we want to just show here. It allows to filter the incoming
packets for specific packet types. To do this we can define an array of instructions which is executed for every received
packet and which does consists of an accumulator, index register, scratch memory store, and implicit program counter
[2]. The following listing shows the struct:

Listing 11: bpf structs filter cpp

struct bpf_insn {
u_short code;
u_char Jjt;
u_char Jf;
u_long k;

bi

The k field is used in different ways by different instructions, and the jt and jf fields are used as offsets by the
branch instructions [2]. There are eight classes of instructions like for example jump and value copy [2]. Various
other mode and operator bits are inserted into the class to give the actual instructions [2]. Further information about
the filters can be found in the Unix manpages.

3.3.6 Read

The read of a packet using an BPF device is similar to the same operation in a packet socket. The basic structure
is shown in figure 9 on the next page.
For a read operation with the BPF we have to do the following:

e We first have to create the BPF device as discussed in the beginning of this section. Also even if we just read
data to the buffer it makes sense to also reserve buffer space and initialize it with zero to have defined data in
the buffer.

e We then have to attach the BPF device to a interface as discussed in the beginning of this chapter to be able
to receive frames [7]. We use a ioctl () call to achieve this.

e Then we can set options, like the BIOCIMMEDIATE mode which was discussed earlier, using ioctl () calls
[7]. We also could set a filter to only receive certain packets we are interested in [2].

e As the next step we retrieve the buffer length from the kernel to know how many bytes are received per packet
[7]. That is necessary since the received packet also includes a BPF header containing information about the
packet received as discussed in the earlier sections.

e Then we can read binary data from the socket with the read function described in section 3.2.7 on page 19. It is
recommended to check the return value to know how many bytes were received to be able to adapt accordingly
[7]. If we want to read multiple packets from the BPF device we have to use the BPF_WORDALIGN () -macro
to align the pointer for the next header correctly [7].

e Optionally we can close () the BPF device now, if we received all the data we want to receive.

42




Initialize

create BPF device:
open(...)
and
reserve and initialize buffer space
memset(...)

ldevice available

Associate Interface

Associate interface
ioctl(..., BIOCSETIF, ...)

l Interface associated

Set Options

Set Options like Immediate mode:
ioctl(..., BIOCIMMEDIATE, ...)

¢ Options set

Get Buffer Length

Get Buffer Length:
ioctl(..., BIOCGBLEN, ...)

i Buffer Length known

Read

Read from device:
recvfrom(...)

binary data

| Optional: Close File |

Close BPF device if no longer needed: | Retrieve BPE Header

close(...) AND

| — el

connection closed  Consider Headers
Length & Position

. AND
Type-Casting Use special functions

for Layer 2 headers

header = (struct hdr *) data

Type-Cast to network headers: <

l struct headers

Get Data Consider Headers
Length & Position

Calculate Data Start Address:
data = packetStart + sizeOf(struct hdr)

i data

Access Data Consider
Byte-Order of Headers

Access Headers <
]

Access Data

Figure 9: Structure of a BPF device layer 2 Read Operation

43



Then we can type-cast the binary data into our headers like it is described in section . We have to take into
consideration that there is an additional BPF header attached to the received packet which has to be retrieved
first [7]. Since we did start at the Data-Link-layer, there also could be different layer 3 protocols included in
the frame. This is why we have to access the correct field in the header to find out what is encapsulated in the
frame and which header structure we have to handle. When doing this we have to be aware that there can be
variable network layer headers as described in section 3.1.4 on page 14. Also depending on which functions we
used for reading data from the socket we need to filter from which source and/or for which target address we
want to receive data from. Depending on the protocol and possibly additional variable headers we can compute
the start positions of the next header (or headers) and type-cast them into structs.

After all headers are handled the remainder of the packet is the user data that can also be extracted.

Then we can access the extracted headers or data. When accessing the headers we have to observer the
byte-order, as discussed in the section 3.1.1 on page 13.

3.3.7 Write

As figure 9 on the previous page shows the basic structure, the write operation of a packet using an BPF device is
also similar to the same operation in a packet socket.

3.4

We first have to create the BPF device as discussed in the beginning of this section [7]. Also even if we just
read data to the buffer it makes sense to also reserve buffer space and initialize it with zero to have defined
data in the buffer.

We then have to attach the BPF device to a interface as discussed in the beginning of this chapter to be able
to receive frames [7]. We use a ioctl () call to achieve this.

Then we can set options, like the BIOCIMMEDIATE mode which was discussed earlier, using ioctl () calls.
It also is possible to set the BIOCGHDRCMPLT option, which select if the operating system should auto fill in
the data link headers|2].

Then we can type-cast the buffer to our headers like it is described in section . The included headers start at
the Data-Link-layer (OSI layer 2). It is necessary to include or define additional headers to have structs for the
Data-Link-layer header. We have to take into consideration variable header lengths if we want to optional fields
and compute the start of the next header accordingly as described in section 3.1.4 on page 14. The remaining
buffer is reserved for the user data we might want to pass along.

As the next step we set the data of our headers as required. We can have the kernel auto fill the data link layer
addresses if we used the BIOCGHDRCMPLT option [2]. When we fill in the values of the header fields have to
consider the byte-order in case of fields that span multiple bytes and change the byte-order according to the
requirements of the protocol we want to use. Additional information about this can be found in section 3.1.1
on page 13.

If the protocol does usea checksum to protect the header from changes, we have to compute them and set the
fields accordingly [5]. We have to see in the documentation which kind of checksum is required by the protocol
we want to use. Additional information about computing a checksum can be found in the section 3.1.2 on
page 13.

In the next step we send the data using the write () function as discussed earlier.

Optionally we can close () the BPF device now, if we already sent all the data we want to transmit.

Winsock-API

As mentioned in section 2.1.1 on page 10 the Winsock-API does not allow any user interaction by itself, which would
justify the usage of RAW-sockets. The rolled out Winsock-API is designed to be used with usual sockets using
predefined protocols. Indeed, there is the possibility to use SOCKET_RAW, but it is mostly used for diagnostics. The
limits, as also shown above are limiting to internet procotols IP, UDP and SCTP.

To write own protocols using Windows, or to receive packtes, which are netiher known or specified, there is the
need to used libraries (npcap, libnet) to be able to support the Windows infrastructure. Otherwise the invalid or
more falsely marked as invalid packtes will be dropped by driver and OS.

44



Initialize

create BPF device:
open(...)
and
reserve and initialize buffer space
memset(...)

ldevice available

Associate Interface

Associate interface
ioctl(..., BIOCSETIF, ...)

l Interface associated

Set Options

Set Options like Immediate mode:
ioctl{..., BIOCIMMEDIATE, ...)

l Options set

Type-Casting

Type-Cast to network headers:
header = (struct hdr *) data

lstruct headers

Set Header & User Data

Fill out headers struct fields
Add user data we want to send

r

...... Ny - .
If required: Checksum I

the protocaols

—
r Compute the checksums as required by <

lheaders completed

Write
Read from device:
Write(...)
binary data
I Optional: Close File |
Close BPF device if nolonger needed: |
I close(...) 3

Consider Headers
Length & Position

Consider
Byte-Order of Headers

headers fields defined

Consider
Fields for Checksums

Figure 10: Structure of a BPF device layer 2 Write Operation

45



3.4.1 Preparations and Usage

If anyway there is no possibility to use the libraries, sockets of type SOCK_RAW can be created, despite being
restricked as mentioned. A call to the socket function with address family set to AF_INET or AF_IP6 and type to
SOCK_RAW will return a raw ip socket. For the netork layer one of the mentioned rescricted protocols need to be set
in protocol parameter. The following listing provides an extended example of this socket-function call. It also gives
valid example values for the type, family and protocol. Complete descreption of the socket-function is found at msdn:
https://msdn.microsoft.com/en-us/library/windows/desktop/ms740506 (v=vs.85) .aspx

See listing 13 in the appendix.

46


https://msdn.microsoft.com/en-us/library/windows/desktop/ms740506(v=vs.85).aspx

4 Programming with the libraries

This chapter will cover the two libraries that provide packet injection and capturing mechanisms for the most common
operating systems. First, libnet, which is used for the packet injection, is introduced then we continue with the packet
capture library, called pcap.

4.1 Libnet

Libnet is a library, mainly written in C, that defines an high-level portable interface for low-level network packet
construction and injection. When libnet was designed the goal was to abstract out the pedantic architecture-specific
details of low-level network packet tasks and provide some kind of platform-independent standard. It is under the
BSD Licence and offers the ability to create and manipulate network packets from the link layer upwards. For
each network layer libnet supports the manipulation of a set of protocols which are listed in figure 11. Libnet only
supports the creation and sending of packets. It does not provide any functionalities to receive these packets. For
latter purpose, one has to rely on an additional library called pcap.

The list of supported Operating Platforms is unfortunately no longer maintained. The latest state was that libnet
supports the following OS [13]:

e Linux
e Windows
e FreeBSD
e OS X
e Solaris

The current version of libnet is 1.2. It is important to note that code from version 1.0.x will not work anymore
as the syntax was simplified with version 1.1. Libnet was originally maintained on packetfactory.net by Mike D.
Schiffman until 2004. However this page does not exist anymore and the author is also unreachable.

Since 2009 Sam Roberts maintains libnet on GitHub. As of today (December, 2016) the latest release is already
four years ago but is still actively used [14].

4.1.1 Preparations

Libnet can be downloaded from the official libnet GitHub repository [14]. Alternatively, the currently latest version
1.2 is also available at sourceforge [15]. To install libnet, go to the directory, unzip it and run the following commands:

1. ./configure

2. make

3. make install (might require root permissions)

Now <libnet.h>can be included in a C program. In order to successfully compile the program, run:
1. gcc -Wall -g ‘libnet-config —defines' -¢ foo.c

2. gcc -Wall foo.o -0 output ‘libnet-config —libs

4.1.2 Process of packet creation
In order to build and inject a network packet in libnet, there is a standard order of four operations:

1. Library initialization

2. Packet Building

3. Packet Writing

4. (Optional) Packet destruction
Library initialization The first step is to initialize the libnet library and to set up the environment. Doing so,
the programmer receives a so called libnet context. This context maintains the state for the entire session which
tracks all memory usage and packet construction. The libnet context is also often required as parameter for several

functions such as packet building or injection.
Note that, the libnet library initialization can only be successfully executed with root permissions.

47



Layer

Transport Layer
[ RIP ‘[ OSPF ‘ OSPFv2 [ GRE ‘[ IPsec ‘ Network Layer
‘ iomP ‘[ VRR? H Py H Pyt ‘[ 6P ‘
Token 802.1Q
Ring

Figure 11: Overview of the packet construction in libnet

48




Packet building The second step is about the core functionality of libnet - the packet creation. In this phase the
programmer calls a set of functions which are all of the structure 1ibnet_build_=*.

For every protocol header that libnet supports there is an own build function. Each libnet build() function
builds just a piece of the whole packet - namely the header of a single protocol. While it is possible to build an entire,
ready-to-transmit packet with a single call to a 1ibnet_build () function, normally more than one builder-class
function call is required to construct a full packet. Every build function takes a series of arguments corresponding
to the protocol header values as they appear on the wire. Thus, a programmer does not have to worry too much
about low-level network details such as putting the bytes at the correct header position as this is done by the build
function internally. Instead, he simply has to fill in the parameters of the function correctly. This process is very
straight-forward but leads to 1ibnet_build () functions which sometimes have a huge number of parameters which
most of can be filled in with default values.

One important fact is that these build functions must be called in order, corresponding to how they should appear
on the OSI layer model (from the highest protocol layer downwards). For example, to build a Network Time Protocol
(NTP) packet, the programmer would call the 1ibnet_build () functions in the following order:

1. libnet_build_ntp ()

2. libnet_build_udp ()

3. libnet_build_ipvi4 ()

4. libnet_build_ethernet ()

This process is also illustrated in figure 12. This ordering was not required until version 1.1.x where it became
essential to properly link together the packet internally. Thus, source code of libnet before version 1.1.x is outdated
and cannot be used anymore.

In case old source code shall be easily and quickly refactored one can refer to the MIGRATION file within the
GitHub repository which gives instructions on how to update outdated source code.[16]

Packet write After having initialized the libnet session and built the packet, the programmer can send it to the
network.

Packet destruction The last step is optional. The programmer can decide to shut down the libnet session he
created with the init function. Doing so, he closes the network interface and frees all internal memory structures
used by the created packets.

49



Application

Presentation

Transport

Physical

W o e o - ——
] e o — o — -

] o ——— -
o —— o -

libnet build_ntp() libnet build_udp() libnet_build_ipwa()

Figure 12: Overview of the packet construction in libnet

50



4.1.3 Functions

This section will have a deeper look at the exact syntax of the functions which perform the steps mentioned above.
The definition of the functions is mainly retrieved from the official documentation of libnet.[17]

Library initialization The function to initialize the libnet environment is defined as follows:

libnet_tx libnet_init (int injection_type, char+ device, charx err_buf)

Argument Description

@SUCCESS Returns libnet context.

@FAILURE Returns NULL, err _buf will contain the reason.

int injection type The type of socket that will be used.

char* device Use the specified network device for packet injection.
char* err _buf Error message. Will only be filled in if function fails.

Table 21: Overview of libnet_init ()

libnet_init () initializes the libnet library and creates the environment to work in. One important decision
that the programmer has to make during this step is to decide whether libnet shall work with Link Layer sockets or
Network-layer sockets (also called raw sockets). For this purpose the argument injection type must be filled in
with one of the following possible values: (values are all defined in libnet’s header file[18])

e LIBNET_LINK for Link Layer sockets
e LIBNET_RAW4 for raw sockets using [Pv4
e LIBNET_RAWG6 for raw sockets using IPv6

If the programmer decides to use link layer sockets, he must later ensure to manually build a protocol header
(such as Ethernet) in the link layer for his packet. In case he chooses raw sockets he can skip building a protocol
header in the link layer and must only build headers down to the network layer.

In case of success 1ibnet_init () returns the so-called libnet context which is important to save in a variable
as it is required as an argument for nearly all the other functions of libnet.

For choosing the desired network device (char* device) following formats are possible:

e Canonical string that references the device (such as ethO or fxp0).
e A dots and decimals representation of the device’s IP address (such as 192.168.0.1).
e NULL. In this case the function will select the first device available.

For the creation of err _buf the constant LIBNET_ERRBUF_SIZE (defined in the libnet headerfile) can be used
to ensure a fitting size of the character array.

Build Functions As already stated there is one build function for each protocol that libnet supports. Sometimes a
protocol has different types which results in a protocol having more than one build function. For example for ICMP
there are the following build functions available:

e libnet_build_icmpv4_echo ()
e libnet_build_icmpv4_mask ()

e libnet_build_icmpv4_unreach ()

libnet_build_icmpv4_redirec()
e libnet_build_icmpv4_timeexceed ()
e libnet_build_icmpvé4_timestamp ()

As it would be simply too much to introduce each of the available build functions we will cover just three of the
most frequently used. If the reader wants to learn more about how to use a specific build function he can refer to
the libnet-functions.h file under libnet/include/libnet/ where each build function is documented. For now, let’s
further investigate on how to build a UDP, IPv4 and an Ethernet packet.

51



The UDP build function is defined as follows:

libnet_ptag_t libnet_build_udp(u_intlé_t sp, u_intlé_t dp, u_intlé6_t len,
u_intlé_t sum, u_int8 tx payload, u_int32 t payload_s, libnet_tx 1, libnet_ptag t
ptag)

Argument Description

@SUCCESS Returns a ptag identifier referring to the UDP packet.

@FAILURE Returns -1 and libnet_get_error () returns the error reason.
u_intl6_t sp The UDP port of the source.

u_intl6 _t dp The UDP port of the destination.

u_intl6 tlen The length of the UDP packet (including payload).

u_intl6 ¢ sum The checksum of the packet. If 0, libnet will autofill.

u_int8 t* payload The optional payload. Can be NULL.

u_int32_t payload s The length of the payload. Is 0 if payload is NULL.

libnet_t* 1 The pointer to a libnet context

libnet_ptag t ptag The protocol tag of the packet. It must be 0 if this is a new packet

Table 22: Overview of 1ibnet_build_udp ()

The IPv4 build function is defined as follows:

libnet_ptag_t libnet_build_ipvé4 (uintlé_t ip_len, uint8 t tos, uintlé_t id,
uintlé_t frag, uint8 t ttl, uint8_t prot, uintlé_t sum, uint32 _t sre, uint32_t dst,
const uint8 tx payload, uint32_t payload_s, libnet_tx* 1, libnet_ptag_t ptag)

Argument Description

@SUCCESS Returns a ptag identifier referring to the IPv4 packet.
@FAILURE Returns -1 and libnet _get error() can tell you why
uint16_t ip_len The length of the IPv4 packet (including payload)
uint8_t tos The type of service bits

wintl6 tid IP identification

wint16_t frag Fragmentation bits

wint8_t ttl Time to live

wint8_t prot The upper layer protocol (above the ip header)
wintl6 t sum The checksum, 0 for libnet autofill

wint32 _t src The source IP address (in little endian)

wint32_t dst The destination IP address (in little endian)

const wint8_t* payload The optional payload. Can be NULL.

uwint32_t payload s The length of the payload. Is 0 if payload is NULL.

libnet_t* 1 The pointer to the libnet context.

libnet_ptag t ptag The protocol tag of the packet. It must be 0 if this is a new packet
Table 23: Overview of 1ibnet_build_ipv4 ()

The Ethernet build function is defined as follows:
libnet_ptag t libnet_build_ethernet (const uint8_tx dst, const uint8_t«

src, uintlé_t type, const uint8 t+ payload, uint32_ t payload_s, Iibnet_tx 1,
libnet_ptag_t ptag)

52



Argument Description

@SUCCESS Returns a ptag identifier referring to the IPv4 packet.
@FAILURE -1 and libnet _get error() can tell you why

const wint8_t* dst The destination MAC address

const wint8_t* src The source MAC address

wintl6_t type The upper layer protocol type

const wint8_t* payload The optional payload. Can be NULL.

uwint32_t payload s The length of the payload. Is 0 if payload is NULL.

libnet_t* 1 The pointer to a libnet context.

libnet _ptag t ptag The protocol tag of the packet. It must be 0 if this is a new packet.
Table 24: Overview of libnet_build_ethernet ()

When examining these three 1ibnet_build () function examples, we discover the following:

All build functions return a protocol tag ptag on success and have an argument for this ptag. Ptag is used
to identify a packet header after being created. The programmer must save this ptag if he intends to modify the
packet later. To do so, he must call the same build function but with the respective ptag as argument. The
libnet_build () function will then search for the existing packet and override the old values rather than creating
a new one. In case the programmer wants to create a new packet he simply puts a "0" as argument for ptag.

Each build function contains an argument field for the libnet context which is usually the second last argument of
the function. This field simply has to be filled in with the libnet context that is returned after the 1ibnet_init ()
function.

Also, each build function has an argument for the payload that comes after the header data and, respectively,
an argument for the size of that payload data. It is a simple interface to append arbitrary payloads to packets. It
is completely up to the user to define which data exactly he or she wants to add to the packet header. Hence, the
payload argument is a good possibility to implement an own type of protocol header. There is even an own build
function for just adding raw payload data. It is defined as:

libnet_ptag_t libnet_build_data(const uint8_ tx* payload, uint32_ t payload_s,
libnet_tx 1, libnet_ptag t ptagqg)

The build_data () function can be used at any place to create additional, user-defined payload in between the
other build functions.

Some functions contain an argument for the checksum. By default, checksums will be automatically calculated if
"0" is put as parameter. In case it is desired to compute the checksum manually, please refer to function
libnet_toggle_checksum () under section 4.1.3.

Some build functions require a length argument which indicates the whole length of the packet. The length of
the whole packet is defined as the sum of the following components:

e Length of the header itself
e Length of the additional payload size
e Length of the encapsulated packets

For example, an IPv4 Packet which encapsulates a UDP header has the following size: the size of the IPv4 Header
(20 bytes) + the size of its own payload (if it exists) + the size of the UDP header (8 bytes) + the size of the payload
of UDP (if it exists).

In order to avoid to look up the size of each protocol header, libnet offers constants for the size of each header
that it supports. They are saved in libnet-headers.h inside the libnet repository. The structure of the constant is
LIBNET_name_of_protocol_H, e.g. LIBNET_UDP_H for the size of a UDP header or LIBNET IPV4 H for the
size of an IPv4 header respectively.

Some functions, such as 1ibnet_build_ipv4 () or libnet_build_ethernet (), require an argument that
specifies the upper-layer protocol. Once again, there are constants available for this purpose. For example, TP
Protocol types can be IPPROTO_ICMP, TPPROTO_UDP and IPPROTO_TCP. Libnet itself does not have a headerfile
in its repository which defines these constants. Instead it retrieves them from a file called netinet/in.h. So, in
order to retrieve a full list of available constants, please refer to this file. The same approach is used for the Ethernet
protocol types which is required by the 1ibnet_build_ethernet (). This time the respective headerfile with the
constants is netinet/if ether.h. If, for instance, the IP protocol is used above the link layer interface then the
argument would be ETHERTYPE_IP.

53



There are also so-called auto-build functions. These are simply build function which require less parameters than
the normal build functions. These functions are useful when one intends to build a header quickly because a granular
level of control is not desired or required. Auto-build functions exist for the following header packets:

e Ethernet
e FDDI

e ARP

o IPv4

e IPv6

e Tokenring

e LinkLayer

As an example the autobuild function of IPv4 looks as follows:

libnet_ptag_t libnet_autobuild_ipv4d (uintlé_t len, uint8_t prot, uint32_t dst,
libnet_t#* 1)

Argument Description
@SUCCESS Returns a ptag identifer.
@FAILURE Returns -1.

wint16 t len, Total length of the IP packet including all subsequent data
wint8_t prot  Upper layer protocol
wint32_t dst Destination IPv4 address in little endian
libnet_t* 1 Pointer to a libnet context
Table 25: Overview of libnet_autobuild_ipv4 ()

Comparing this function to the normal IPv4 we can see that the function takes the same length, protocol, and
destination arguments as libnet_build_ipv4 (). The function does not accept a ptag argument, but it does
return a ptag. Thus, it can be used to build a new IP header but not to modify an existing one.

For more information on how the other autobuild functions look like, please refer to the libnet-functions.h file
under the GitHub repository.[17]

Write The write function is defined as follows:

int libnet_write(libnet_t* 1)

Argument  Description
@SUCCESS Returns the number of bytes written
@FAILURE Returns -1
libnet_t* 1 Pointer to a libnet context
Table 26: Overview of 1ibnet_write ()

The function assumes that a libnet context has been properly initialized with 1ibnet_init () and that a
previously constructed packet has been built inside this context via one or more calls to the 1ibnet_build()
functions. The write-function will then assemble the packet from the protocol blocks and send the packet either to
the IP address for an injection at the LIBNET_RAW level or to a network hardware address if the LIBNET_LINK
level was chosen during the initialization step.

Destruction The command to shut down a libnet context looks as follows:
void libnet_destroy (libnet_tx 1)

It shuts down the libnet session referenced by 1. It closes the network interface and frees all internal memory
structures associated with 1.

54



Other functions Besides the core functions introduced above, there are other interesting functions which can be
useful. These are:

e Address resolution functions: When building the IP protocol header, it requires both a source and a destination
IP address in little endian order with decimal values. As a programmer usually works with IP addresses in
octet format and Big Endian order (such as 192.168.1.100) the addresses have to be converted beforehand. For
this purpose, there are specific functions provided by libnet.

The definition of the function which converts from presentation format to address format is:

uint32_t libnet_name2addr4 (libnet_tx 1, char* host_name, uint8 t use_name)

Argument Description

@SUCCESS An IP number suitable for use with 1ibnet_build () functions.
@FAILURE Returns -1, which is technically “255.255.255.255”

libnet_t* 1 The libnet context pointer

char* host name  The presentation format address.
uint8_t use _name Turn on/off address resolution (LIBNET_RESOLVE, LIBNET_DONT_RESOLVE)
Table 27: Overview of 1ibnet_name2addr4 ()

This function takes a dotted decimal string (such as 192.168.19.1) or a canonical DNS name as argument for
host name and returns a decimal, little-endian ordered IPv4 address. In the official documentation, it says
that the return value is network byte ordered. Network byte order however nearly always corresponds to big
endian which is not the case here. A test of 1ibnet_name2addr4 () resulted in converting the IPv4 address
192.168.1.100 into 1677830336 which corresponds to a little endian order of previous IPv4 address. So the
official documentation is misleading at this point.

If a DNS name is used, then LIBNET_RESOLVE must be used as argument for use_name so that a DNS
lookup is performed. The function can fail if DNS lookup fails or if mode is set to LIBNET_DONT_RESOLVE
and host name refers to a canonical DNS name.

The counterpart to the previous function is the address to name conversion:

char* libnet_addr2named (uint32_ t in, uint8_t use_name)

Argument Description

@SUCCESS Returns a string of dots and decimals or a hostname
@FAILURE This function cannot fail

wint32_t in IPv4 address

uint8_t use _name Turn on/off address resolution LIBNET_RESOLVE, LIBNET_DONT_RESOLVE
Table 28: Overview of 1ibnet_addr2name4 ()

This function takes a little-endian ordered IPv4 address (e.g. the output of the previous function) and returns
a string to either a canonical DNS name (if it has one) or a string of dotted decimals. This may incur a DNS
lookup if the hostname and mode is set to LIBNET_RESOLVE. If mode is set to LIBNET_DONT_RESOLVE, no
DNS lookup will be performed and the function will return a pointer to a dotted decimal string. The function
cannot fail even if no canonical name exists. In this case it will simply return the dotted decimal string.

Address resolution functions do not only exist for IP addresses but also for MAC addresses. The function
libnet_hex_aton () converts a colon separated hexadecimal address MAC address and returns a byte string
suitable for use in a 1ibnet_build () function.

uint8 t+ libnet_hex_aton(const charx s, 1int* len)

The argument s corresponds to a MAC address such as 00:80:41:ae:fd:7e, and len defines the length of
the MAC address.

e The possibility to let the checksum of a packet calculate automatically or manually. The respective function
for this purpose is defined as follows:

95



int libnet_toggle_checksum(libnet_t+ 1, libnet_ptag_t ptag, int mode)

Argument Description

@SUCCESS Returns 1

@FAILURE Returns -1

libnet_ t* 1 Pointer to a libnet context
libnet_ptag t ptag The ptag reference number
int mode LIBNET_ON or LIBNET_OFF

Table 29: Overview of 1ibnet_toggle_checksum ()

By default, if a given protocol header contains the checksum field and it is set to "0", libnet will calculate
the header checksum prior to injection. If the header is set to any other value, libnet will not calculate
the header checksum. Libnet_toggle_checksum() enables the programmer to over-ride this behavior.
Mode LIBNET_ON switches auto-checksumming on for the specified ptag whereas LIBNET_OFF turns auto-
checksumming off for the specified ptag. This assumes that the ptag of course refers to a protocol that has a
checksum field. If the mode is set to LIBNET_OFF, libnet will clear the checksum flag and no checksum will
be computed prior to injection. This assumes that the programmer will assign a value (zero or otherwise) to
the checksum field. Often times this is useful if a precomputed checksum or some other predefined value is
going to be used. Please note that when libnet is initialized with LIBNET_RAW4, the IPv4 header checksum
will always be computed by the kernel prior to injection, regardless of what the programmer sets.

Retrieve the total size of the constructed packet:
uint32_t libnet_getpacket_size (libnet_t+ 1)

This function returns the sum of the size of all of the headers that were built inside of 1.

Determine the name of the network device:
const char#* libnet_getdevice (libnet_t#* 1)

This function will return the name of the network device which was used for packet injection. This function is
especially useful if NULL was set as device parameter for the init function and the programmer wants to know
which device has been selected now. Note it can be NULL without being an error. In this case there was no
interface found.

It is not only possible to retrieve the name of network device. For instance, one can also retrieve the IP-address
(both IPv4 and IPv6) of the device libnet was initialized with:
uint32_t libnet_get_ipaddrd (libnet_t+ 1)

The return value of 1ibnet_get_ipaddr4 () is in Big Endian order.

A similar function exists for the retrieval of the MAC address: struct libnet_ether addrx*
libnet_get_hwaddr (libnet_tx* 1)

Retrieve information about statistics.

void libnet_stats(libnet_t»* 1, struct libnet_stats* ls)

Argument Description

libnet_t* 1 Pointer to a libnet context

struct libnet_stats* 1s  Pointer to a libnet statistics structure
Table 30: Overview of 1ibnet_stats ()

56



In libnet there is a way to get statistics about the libnet context. These information cover the amount of
packets written, amount of bytes written and the number of packet sending errors. These information will be
retrieved in a structure which is passed as a pointer to the function. The structure is called 1ibnet_stats ()
and is defined under libnet-structures.h.

e Retrieve the error message:

char+ libnet_geterror (libnet_t+ 1)

Argument  Description
@SUCCESS Returns an error string, NULL if none occurred
@FAILURE This function cannot fail
libnet_t* 1  Pointer to a libnet context
Table 31: Overview of 1ibnet_geterror ()

Returns the last error message that occurred during a 1ibnet_build () function call. Remember there is a

constant (LIBNET ERRBUF _SIZE) that can be used to determine the optimal size for the array in which
the error message shall be stored in.

o7



4.2 libpcap

Libpcap is a portable library for network packet capturing written in C/C++. Similar to libnet, the goal of libpcap
was to provide system-independent tools for packet filtering and capturing as almost every single OS-vendor had its
own interface for this task. Captured packets via libpcap can be read from the data link layer upwards. Although it
is written in C/C++ there are also wrappers for other common programming languages such as Java or Python.[19]

Libpcap is maintained by the developers behind tcdump.org. It has an own GitHub repository where the whole
source code is available as well as very detailed manpage where each function is documented.[20]

The latest release of libpcap is version 1.8.1 which was published in October 2016. Although libpcap considers
itself to be system-independent it only supports UNIX-like operating systems including Linux, BSD and MacOS. For
Windows there are special implementations of libpcap to ensure compatibility. Basically, they work very similar to
libpcap however there are some minor differences. This topic will be covered in section 4.3. For now, we will focus
on the basic libpcap implementation.

4.2.1 Preparation

To download libpcap go to the official site of tcdump.org and unzip the file after the download.[21] To be able to
use the functions provided by libpcap, include the headerfile pcap/pcap.h inside your C/C++ program. Libpcap
requires root permission. Further details for each OS to take care of are mentioned in the README files in the GitHub
repository.

4.2.2 Process of packet capturing

The structure of a libpcap program can be divided into five stages:

—_

. Interface Selection

. Initialize libpcap session

2

3. Define Filters

4. Initiate Sniffing process
5

. Close libpcap session

Interface Selection First of all the programmer must determine an interface where packets shall be captured.
The selection can either be done manually by a user or automatically by libpcap. In latter case there is a function in
libpcap which will simply choose the first network device that is suitable to be sniffed on. Interfaces in Linux usually
have a name such as ethO or wlanO.

Initialize libpcap session In order to sniff for packets, a programmer must first initialize a libpcap session. During
this initialization a network device is defined where the programmer actually wants to sniff for packets. However,
it is also possible to listen to all available devices of the host at once. (on Linux systems with 2.2 or later kernels)
Usually the initialized device corresponds with the selected interface in the previous step.

On top of that further decisions are made such as the maximum size that shall be received per packet or whether
we want to capture all packets on the selected network interface or only those that are destined to the host. It is no
problem to initialize more than one libpcap session for different network devices at the same time. The initialization
step can be compared to the opening of a file for read/write operations.

Define Filters Sniffing on a network interface can result in receiving a lot of packets where many are not of
interest for the user. Thus, there is the possibility to filter incoming packets. The filtering is done inside the kernel
which makes the filtering process very efficient. Reason behind this that a kernel has to copy a received packet from
kernel space to user space for further processing. This copy process however is very CPU intensive. With in-kernel
filtering this process can be skipped. So if a programmer sets an in-kernel filter only the packets that pass the filter
requirements will be copied to the user space resulting in a much faster performance. Setting filters is optional and
not required if a programmer intends to receive all packets on the specified network device.

Every OS has its own packet filtering mechanism however many rely on the BSD Packet Filter (BPF) architecture.
[22] Platforms that use this architecture are for example: BSD Operating Systems, MacOS and Linux. Libpcap also
relies on BPF to filter its packets. In case a platform does not support BPF the packets can still be manually filtered
by the programmer in the user space which results in much higher overhead.

Setting a filter in libpcap consists of three steps:

1. Constructing filter expression

58



2. Compiling filter expression into BPF program
3. Applying filter to libpcap session

Normally, one has to write a BPF program, whose language is similar to assembly, to define a filter expression.
However libpcap provides a high-level language that abstracts the actual language and makes the creation of the
filter much easier. The exact syntax of the BPF Filter expression will be covered in the functions section. For now,
it is sufficient to know that the filter expression is just a simple string. As the computer cannot understand this, it
must be compiled into a BPF program afterwards. In order for the filter to come into action, it must be applied to
a libpcap session as the final step.

Initiate Sniffing process After having done all the pre-requirements one is now ready to start waiting for and
receiving packets. By default, libpcap both captures the incoming as well as the outgoing packets of the host machine.
There are two possibilities to capture packets in libpcap:

1. Possibility is to call a function that simply checks if there is a packet available and returns the content of this
packet.

2. Possibility is to run a loop that processes each packet that will be received. It will not stop until a user defined
amount of packets has been processed. It is also possible to let the loop run indefinitely.

Independently from what possibility the programmer chooses, the data inside the packets must be somehow
read. However, when a packet is captured, all what the application has got, is just one big array of character bytes
and along with that a few information such as the time of reception and the total size of captured bytes. For this
reason the programmer must work through the single OSI layers starting from the Data Link Layer and identify the
protocols used in each layer. It is important to note that the captured bytes always start from the data link layer,
e.g. Ethernet or Wi-Fi 802.11.

In order to deal with the packets in a proper way the programmer must take care of the following:

e Identify the size of each header so that he or she can jump to the beginning of each header
e Cast the bytes to a struct which corresponds to the protocol header.

e In case the bytes of the packets shall be printed it must be taken care that the bytes are converted from network
byte order to host byte order.

Identification of the header size Normally, the programmer expects to receive a specific type of packet
because he has set a filter and therefore does not need to "blindly" read a packet. However, in some cases this might
be inevitable. Then the following approach can be used to safely identify the single headers that are hiding inside
the packet.

For the Data Link Layer the programmer can most of the time assume that it will be Ethernet but this is not
always given since not all devices provide the same type of Data Link Layer headers. For this purpose libpcap
provides a function (pcap datalink()) that returns the Link Layer type of the device which was used for the
initialization in the second step (Initialize libpcap session).

Assuming the Data Link layer type was Ethernet the identification of the upper layer protocols is straight-forward.
The Ethernet header has a field called ethertype which is a 16-bit long value that specifies the upper-layer protocol
such as IPv4. Table 32 contains a list of the three most common values. For a full list, please refer to:[23]

Network Layer Protocol Ethertype Value
1Pv4 0x0800
1Pv6 0x86DD

Address Resolution Protocol (ARP)  0x0806
Table 32: Overview of Network Layer Protocols

If the network layer of the received packet is IPv4, the specification of the next higher layer (transport layer) is
also easy. In this case there is a protocol field which contains a hexadecimal value. Again, the three most common
ones can be found in table 33.[24]

Protocol Value

ICMP 0x01
TCP 0x06
UDP 0x11

Table 33: Overview of Transport Layer Protocols

59



Casting Once a header has been identified, it is much more convenient to work with it when the bytes are
cast so that they match with the structure of the header protocol. This way a programmer is able to easily access a
specific field of the header. A programmer can decide to write its own structure in case he already knows how the
header will look like or he can refer to predefined structures which usually exist for all common protocols, such as
TCP, IPv4, or Ethernet. In Linux/Unix for instance there are a couple of header files already available that contain
these common structures. For example, netinet/tcp.h has a structure for the TCP header. netinet/if ether.h
for Ethernet header.

Byte order The received bytes inside the packets are always in network byte order. When working with bytes,
it is more convenient for them to be in host byte order. In the arpa/inet.h or netinet/in.h header files which are
by default available in Linux/Unix, there are four functions which can be used for the conversion from network byte
order into host byte order or vice versa. They are:

e htonl() and htons(): from host to network byte order whereas the function ending with [ is for 32 bits and s
for 16.

e ntohs() and ntohl(): from network to host byte order whereas the function ending with [ is for 32 bits and s
for 16.

During this step it might also be necessary to filter the packets in case one chooses to not use the BPF Filter for
any reason such as the OS does not support BPF.

When working with raw packets one must always keep in mind that the packets might be malformed which
means that the data inside is not reliable. Dealing with these malformed packets can quickly lead to errors such as
segmentation fault. To avoid these errors as best as possible one can perform the following checks for a packet:

e Check the whole size of the packet and compare it to the expected size.
e If the packets are TCP/IP, one can check the checksum.

e Any data inside the packet that is intended to be used (like an IP address) should be checked beforehand.
Close libpcap session in the last step the libpcap session can be closed once sniffing is completed.

4.2.3 Functions

After having covered the basic flow of how a libpcap program works, we will now have a deeper look at the functions.

Interface Selection For the interface selection it might be the case that no function provided by libpcap is re-
quired if the user decides to set the device by himself. In general, it is better practice to let libpcap choose a suitable
interface to ensure portability across different platforms. For this purpose, there is the function:

char+ pcap_lookupdev (char* errbuf)

Argument Description
@SUCCESS Returns a network interface name
@FAILURE Returns NULL, reason is in errbuf.

char* errbuf Buffer in which in case of an error the reason is filled in
Table 34: Overview of pcap_lookupdev ()

pcap_lookupdev () will return an interface suitable for packet sniffing which is not a loopback device. In
case of an error the return value will be NULL and the error buffer will contain the reason. In the pcap headerfile
(pcap.h) there is the constant PCAP_ERRBUF_SIZE which contains the optimal size for the error buffer.

As soon as the network device is selected, one can call another useful function which is:

int pcap_lookupnet (const charx device, bpf u_int32x netp, bpf u int32x maskp,
char+ errbuf)

60



Argument Description
@SUCCESS Returns 0
@FAILURE Returns -1, reason is in errbuf

char* device

Name of the network device

bpf u_int32* netp Buffer for the IP address
bpf u_int32* maskp Buffer for the network mask

char* errbuf

Buffer in which in case of an error the reason is filled in

Table 35: Overview of pcap_lookupnet ()

This function saves the network IP address and the network mask of the selected device in two extra buffers.
If it fails, it will fill in the error buffer just like the function pcap_lookupdev (). Especially the network mask
buffer can be useful later when we want to set the filter so that it will only receive packets addressed to the host’s
network mask. Note that the order of the network mask and IP address is not in human readable form. See the code
examples on how to convert it properly.

Another possibility is to retrieve a full list of all available devices with:

int pcap_findalldevs (pcap_if_tx*x alldevsp, charx errbuf)

Argument Description
@SUCCESS Returns 0
@FAILURE Returns -1. Reason is inside errbuf

peap if t** alldevsp Pointer to a linked list containing all found devices
char* errbuf Buffer to save the error message in case of failure

Table 36: Overview of pcap_findalldevs ()

On success it returns 0 and it fills the buffer alldevsp with elements of type: pcap if ¢ that represent one
discovered device. It can occur that a program is not able to find all the available devices because it lacks of
sufficient permission to open them for capturing. In this case they will not even be displayed in the list. The
returned list of devices can also be NULL if no device has been found. The pcap if ¢ structure contains four fields:

Member of Header

Description

struct peap_if* next

char* name

char* description

struct pcap__addr* addresses

bpf u_int32 flags

Points to the next device in the list unless its NULL.

A character array containing the name of the device (e.g. eth0)

A human-readable description of the device. If there is none provided, it is NULL.
A pointer to the first element of a list of network addresses for the device, it can
be NULL if the device has no address.

One of three possible device flags: PCAP_TIF_LOOPBACK if device is a loopback
interface, PCAP_IF_UP if device is up or PCAP_IF_RUNNING if the device is
running.

Table 37: Overview of the pcap if t header

The field address itself has a specific structure type defined within pcap.h.[25] It contains the following fields:

Member of Header

Description

struct pcap_addr® next
struct sockaddr* addr
struct sockaddr* netmask

struct sockaddr* broadaddr

struct sockaddr* dstaddr

Points to the next device in the list unless its NULL.

Points to a struct sockaddr containing an address.

Points to a struct sockaddr that contains the netmask corresponding to the
address pointed to by addr

Points to a struct sockaddr that contains the broadcast address corresponding
to the address pointed to by addr. It may be NULL if the device does not support
broadcasts.

Points to a struct sockaddr that contains the destination address corresponding
to the address pointed to by addr. It may be NULL if the device is not a point-

to-point interface.

Table 38: Overview of the pcap addr header

The structure sockaddr is defined in netinet.h/in.h:

61



Member of Header Description
unsigned short sa_family The address family (usually of type AF_XXX)
char sa_data[14] 14 bytes of protocol address

Table 39: Overview of the sockaddr header

It is important to note that the addresses in the list of addresses might be any type of address such as IPv4 or
IPv6. For this reason it is necessary to check the sa_ family member of the struct sockaddr before working with
the content. IPv4 addresses have the sa_ family value AF_INET, IPv6 addresses have AF_INET6. Also, one should
not forget that the addresses are received in network byte order and might need to be converted to host byte order.

If the data about the devices is no longer required it can be deleted with:

void pcap_freealldevs (pcap_if_ tx* alldevs)
where alldevs is a pointer to the list of devices that was returned by pcap_findalldevs ().
Initialize libpcap session To initialize a libpcap session the following function has to be called:

pcap_tx* pcap_open_live (const charx device, int snaplen, int promisc, int to_ms,
char+ errbuf)

Argument Description

@SUCCESS Returns pcap_ t* handler

@FAILURE Returns NULL

const char* device Name of the network device

int snaplen Specifies the snapshot length to be set on the handle
int promisc Flag to set the promiscuous mode on/off

int to__ms Read timeout in milliseconds

char* errbuf Buffer in which in case of an error the reason is filled in

Table 40: Overview of pcap_open_live ()

On success, the function returns a handler which is used for setting the filter and to start reading packets from
the interface. Therefore it is important to save the return value of the function. If the function however fails, the
error buffer will contain the reason and NULL is returned. The device argument contains the name of the selected
device which was either returned by pcap_lookupdev () or which was entered manually. If the value NULL or
any is chosen for this argument, then all packets from all interfaces are captured.

The snaplen argument specifies how many bytes shall be captured at most per packet. To ensure that the size
is sufficient one can define a size of 2048 bytes. That should be sufficient for each captured packet. The promiscuous
mode is turned off for the value 0 and turned on for each other value (usually 1). When the session is initialized in
promiscuous mode it will also accept all packets that are not destined to the network card.

The argument to_ ms specifies how many milliseconds the kernel should wait before copying captured information
from kernel space to user space. 0 will wait until enough packets have arrived to the network interface. A list of
common values are: 1000, 512, 10 or 0.

Define Filters As already outlined the definition and applying of filters consists of three steps. The first step is
the construction of a filter expression which has a specific syntax.

One filter expression is made out of three parts called qualifiers. These qualifiers describe an identifier. An
identifier is a value which usually is a IP address or a portnumber depending on the kind of qualifiers used. The
three qualifiers that exist are:[26]

e Type: specifies the kind of thing the ID name or number refers to. Possible values are: host, net, port and
portrange. Default is host.

e Dir: specifies a particular transfer direction to and/or from id. Possible values are: src, dst, src or dst,
src and dst. Default is src or dst which means that all packets are captured that go to the identifier (dst)
and all packets that come from the identifier (src). If IEEE 802.11 Wireless LAN link layers are used then the
following headers are also valid: ra, ta, addrl, addr2, addr3, and addr4.

e Proto: this qualifier ensures that only packets of a specific protocol are captured. Possible protos are: ether,
fddi, tr, wlan, ip, ip6, arp, rarp, decnet, tcp and udp. Default is that all protocols are captured.

62



The structure of the filter expression looks as follows: [proto] + [dir] + [type] + identifier whereas the
identifier usually is an IP address or a port number. Note that not every qualifier must be used. If a qualifier is not
specified in the filter expression the default values mentioned above are simply used.

To get a better understanding of how to construct a filter expression, here is a list of a few examples:

e src host 192.168.1.77: This filter returns packets whose source address is 192.168.1.71.
e dst port 80: This filter returns all packets that are sent to port 80.
e ip[8]==5: This filter returns packets whose IP TTL value equals 5.

e tcp[13]==0x02 and (dst port 22 or dst port 23): This filter returns TCP packets with SYN Flag and whose
destination is either port 22 or 23.

Note that the last example uses logical operators to combine multiple filter expressions. Allowed logical operator
are: and, or, not. A filter expression is always saved in a character buffer. For more information about the
construction of filter expression and more examples one can refer to the pcap filter man page.|26]

The next step is to compile that character buffer into the BPF format which libpcap is able to read. The partic-
ular function is:

int pcap_compile(pcap tx* p, struct bpf programx* fp, const charx* str, int
optimize, bpf u_ int32 netmask)

Argument Description

@SUCCESS Returns 0

@FAILURE Returns -1.

peap _t* p Pointer to libpcap session

struct bpf program™* fp  Buffer where the compiled program will be filled in
const char* str Filter expression which shall be compiled

int optimize Flag to optimize the resulting code or not.

bpf u_int32 netmask IPv4 netmask on which packets shall be captured
Table 41: Overview of pcap_compile ()

The first argument is the field for the pointer that is returned after having initiated a libpcap session successfully
with pcap_open_live. The second argument is the buffer where the compiled code will be put in. The string
argument is the filter expression. The optimize flag will optimize the compiled BPF program during compilation if
set to true (any value other than 0). The last argument is the IPv4 netmask of the network on which the packets
shall be captured. The pcap_lookupnet () function returns the netmask of a device in the appropriate type. If
no network mask filtering is desired, then this parameter can simply set to PCAP_NETMASK_UNKNOWN which is a
constant defined in the pcap header. It equals the netmask 255.255.255.255. On success the fp buffer will contain a
compiled version of the filter. Otherwise the function pcap_geterr () can be called to learn about the failure.

With a compiled BPF filter we can apply the filter to the pcap session with:

int pcap_setfilter(pcap t* p, struct bpf program™* fp)

Argument Description

@SUCCESS Returns 0

@FAILURE Returns -1.

peap t* p Pointer to libpcap session

struct bpf program* fp  Buffer where the compiled program will be filled in
Table 42: Overview of pcap_setfilter ()

The two arguments are the fp buffer which is the compiled version of the filter expression as well as the pointer
to the pcap session to which the filter shall be applied. Once again, if anything fails, the error message can be found
with the pcap_geterr () function.

Of course, it is possible to set more than one filter for one pcap session by calling the pcap setfilter function
more than once.

Initiate Sniffing process As already mentioned there are two possibilities to receive and process the incoming
packets. The first one is to call a function which simply reads the next available packet and returns it. This function is:

63



const u_char+ pcap_next (pcap_t+ p, struct pcap_pkthdrx* h)

Argument Description

@SUCCESS Returns the packet
@FAILURE Returns NULL

peap _t* p Pointer to libpcap session

struct pcap _pkthdr* h  Pointer to packet header structure
Table 43: Overview of pcap_next ()

The first argument is the libpcap session which the packet shall be read from. The second argument is the
peap _ pkthdr structure which is defined within the pcap header file pcap/pcap.h as follows:

o struct timeval ts: the timestamp when the packet was received.
e bpf u_int32 caplen: the length of the information captured.
e bpf u_int32 len: the length of the total packet.

The difference between caplen and len is that len is the size of the full packet whereas caplen is only the part
of the packet that was really captured and therefore is available. This could be the case if during the initialization
of the pcap session a small value for the maximum size per packet was chosen.

On success the packet is returned as a string of character values. On failure NULL is returned. Unfortunately,
there is no way to figure out the exact reason of failure. Reasons could be:

e Packet was discarded because it did not pass the filter
e The system has a standard read timeout which was triggered
e The system is non-blocking and there simply was no packet available at the time of the function call.

The second possibility to capture packets is with the help of the loop. This way, the capture does not need
to be called over and over again if it is intended to receive a larger amount of packets. The respective function is
peap_loop:

int pcap_loop(pcap t* p, int cnt, pcap handler callback, u_charx user)

Argument Description

@SUCCESS Returns 0

@FAILURE Returns -1

peap t* p Pointer to libpcap session

int cnt Number of packets to be captured
peap _handler callback Callback for each captured packet
u_ char* user Arguments for the callback function

Table 44: Overview of pcap_loop ()

The first difference between the loop function and pcap_next () is that it does not directly return the packets’
contents. Instead an integer value is returned which is 0 if the loop finished because the number of packets to be
received represented by cnt was reached. Other return values are -1 if an error interrupted the loop or -2 if the loop
was shut by a call of the function:

void pcap_breakloop (pcap tx* p).

(Argument is the handler of the pcap session) If pcap_loop shall run infinitely then cnt must be set to -1.

Since the return value does not provide the content of a packet anymore, there is another way how to retrieve
the packet’s content. This is the purpose of the callback argument which will be called every time a packet is ready
to be read. The problem with callbacks is that the user cannot pass any arguments. This is the reason why the last
argument (user) exists which enables the programmer to include arguments for the callback function. The callback
function must have a specific prototype because otherwise pcap_loop () would not know how to deal with it. It
looks as follows:

void function_name (u_char+ userarg, const struct pcap_pkthdr pkthdr, const u_charx
packet)

64



Argument Description

u_ char* userarg Pointer to the user arguments
const struct pcap pkthdr* pkthdr Pointer to packet header
const u_ char* packet Pointer to the captured packet

Table 45: Overview of callback

The first argument of the callback function is identical to the user pointer of pcap_loop (). The second one
is the same packet header structure that is also used in pcap_next (). It contains information about the captured
packet. The last argument is the captured packet itself. It is important to note that the usearg pointer is of type
u_ char. This means that the pointer must most likely be cast two times: One time when calling the pcap_loop ()
function and once again when using the argument inside the callback function. See the sample code section for an
example which shows how to use pcap_loop () along with the user arguments. See line 143 of listing 16 in the
appendix.

During the procession of the packets a programmer must additionally call the pcap _datalink() function in case
he does not know for sure which type of packet was received. This function returns the link layer type of the packet.
This way, the programmer can safely read the packet as he knows the structure of the received packet. The full
specification of the function is: int pcap_datalink (pcap_t+ p) where p is the handler of the pcap session.
It returns an integer value which identifies the type of link layer header. Libpcap can distinguish more than 180
different link types. As it would be too much to list all of them here, the table 46 lists the two most common types.
For a full list, please refer to URL.|27]

Data Link Type Returned Integer value Pcap Alias
Ethernet 10/100/1000 Mbs 1 DLT_EN10MB
Wi-Fi 802.11 6 DLT_IEEE802

Table 46: Common data link types

The field pcap alias refers to the name of constants representing the integer value which are defined within pcap.

Close Session Last but not least a programmer can close the session when no more packets shall be captured.
This can be done with:

void pcap_close (pcap_tx* p)

where p is the session handler. It frees all resources that were allocated by the session.

Other functions The functions above can be seen as libpcap’s main routines that are mainly used. However there
are some further functions which provide depending on the intended use useful functions. These include:

e Packet injection: Libpcap also provides packet injecting methods. However these are limited to two functions
only where simply one large string is sent. In other words libpcap does not provide any functions to build the
packets layer-by-layer as libnet does which makes packet injection in libpcap much harder. Therefore in our
opinion it makes no sense to use the libpcap methods if you can also rely on libnet.

e Statistics: Libpcap provides a function which returns capture statistics of a pcap session. The function is
defined as:

int pcap_stats(pcap_t* p, Struct pcap_statx* ps)

The required structure pcap stat is defined in pcap/pcap.h. It contains information like number of packets
received /dropped or lost.

e Saving Packets: The content of a packet can be written to a so called savefile to preserve it for later use.
The advantage of saving packets this way is that it can be read again with the same functions introduced above.

For a full list of all the available functions and their documentation, please refer to the official manpage of
libpcap.[28§]

A slightly modified example of an example-file, which shows the basic usage of the send-operation is in listing 14
in the appendix.

4.3 libpcap in Windows

When searching for libpcap under Windows one will quickly discover WinPcap. WinPcap is a special adaption of
libpcap to also work on Windows. On its official site WinPcap even claims to be the "industry-standard windows

65



packet capture library".[29] The problem with Winpcap however is that its latest release was published in March
2013 (version 4.1.3). In this release the developers added support for Windows 8 and Windows Server 2012. However
for the currently latest Windows 10 there is no official support which leads to the situation that WinPcap does
not work on some builds under Windows 10 because the outdated NDIS5 API (which WinPcap relies on) has been
removed. On top of that the developers of Winpcap stated in one of the last published announcements that they have
little time to continue work on Winpcap. Although Winpcap considers itself as the industry standard, it is unsure
whether the work on WinPcap will be continued in the near future.[29] For this reason, it makes more sense to focus
on Npcap which is a codefork from WinPcap and still actively maintained. Npcap solves some of the disadvantages
with Winpcap and provides new features including:

e Windows10 support: Npcap relies on the new NDIS 6 instead of the deprecated NDIS 5. Therefore Npcap also
works on Windows 10.

e Raw 802.11 packet capture: Npcap is able to capture Wi-Fi packets which was not possible under WinPcap.
e Security: Npcap can be restricted so that only administrators can sniff packets.

e WinPcap Compatibility: Older programs that were written for WinPcap are still compatible and can be run
in Npcap as well.

e Loopback Packet Capture: Npcap is able to capture packets from the loopback interface. For this purpose
Npcap will create an adapter named Npcap Loopback Adapter after installation.

e Performance: Overall better performance than WinPcap.

4.3.1 Installation and Preparation

The installation of the npcap library is straightforward. An executatble and an SKD can be found here: https:
//nmap.org/npcap/. The executable will place the required files on the system and a precompiled example (some
can be found in the SDK examples folder) can be run. For developing applciations, the SDK must be downloaded,
extracted and be included into the C/C++ Project. Using an IDE, it is enough to point to the = .1ib and *.h files
for compiling and linking. Note: to be sure, that no packets are filteres by the Windows-Firewall it is recommended
to disable it, since packets wich are not usual TCP/IP packets, are seen as invalid and being dropped.

Installing the npcap executable is recommended here, because it will not interfere with a possible installation of
Wireshark. Modified examples of an showing the basic usage of the send-operation is in listing 15 and showing the
receive / dump option in listing 16 in the appendix.

4.3.2 Process of packet capturing
The process of packet capturing is entirely identical to the libnet process. Refer to 4.2.2.

4.3.3 Functions

The syntax of Npcap is identical to the syntax of Winpcap, e.g. Winpcap and Npcap provide the exact same
functions. The syntax of WinPcap in turn relies on libpcap. So libpcap programs that are written under Linux/Unix
are also portable to Windows. Because of this nearly all functions are identical to those that were introduced in
the previous libpcap section. In fact, all of the above mentioned functions can be used in Winpcap as well. On
top of that Npcap/WinPcap offer some extended functions that only work on Windows. These functions extends
the capability of libpcap by providing remote packet capture, packet buffer size variation or high-precision packet
injection. To learn about these functions in detail please visit:[4]

66


https://nmap.org/npcap/
https://nmap.org/npcap/

5 Literature
References
[1] Linux man pages - raw-sockets. http://man7.org/linux/man-pages/man7/raw.7.html, 2014. visited
on 2017-01-02.
[2] Bpf manpage. https://www.freebsd.org/cgi/man.cgi?bpf (4), 2010. visited on 2017-01-21.
[3] Tcp / ip raw sockets. https://msdn.microsoft.com/en-us/library/windows/desktop/
ms740548 (v=vs.85) .aspx. visited on 2017-03-15.
mpcap’s user manual. http://www.winpcap.org/docs/docs_412/html/group__wpcapfunc.
4] Wi ’ 1 // i / / 2/ /
html, 2009. visited on 2017-03-20.
[5] André Volk. RAW Socket Programmierung und Einsatzfelder. Master’s thesis, Universitdt Koblenz, the Nether-
lands, 2008.
[6] Ip spoofing with bsd raw sockets interface. http://www.enderunix.org/docs/en/rawipspoof/, 2007.
visited on 2017-01-21.
[7] Using freebsd’s bpf device with ¢/c++. http://bastian.rieck.ru/howtos/bpf/, 2010. visited on 2017-
01-21.
[8] Linux man pages. https://linux.die.net/man/, 2014. visited on 2017-01-02.
eej’s networ rOgramimin uide. http://beej.us/guide/bgnet/output/html/multipage
[9] Beej’ k prog ing guid p://beej.us/guide/bgnet/output/ / ipage/
sockaddr_inman.html, 2017. visited on 2017-01-21.
[10] Linux man pages - netdevice. http://man7.org/linux/man-pages/man7/netdevice.7.html, 2014.
visited on 2017-01-02.
[11] Micro howto. http://www.microhowto.info/howto/send_an_arbitrary_ipv4_datagram_using_
a_raw_socket_in_c.html, 2017. visited on 2017-01-21.
[12] Linux man pages - packet-sockets. http://man7.org/linux/man-pages/man7/packet.7.html, 2014.
visited on 2017-01-02.
[13] Libnet supported os. https://github.com/sam-github/libnet/blob/master/libnet/doc/
PORTED, 2012. visited on 2017-03-12.
[14] Libnet github repository. https://github.com/sam-github/libnet, 2016. visited on 2017-03-12.
[15] Libnet download sourceforge. https://sourceforge.net/projects/libnet-dev/, 2014. visited on
2017-03-12.
[16] Libnet migration instructions. https://github.com/sam-github/libnet/blob/master/libnet/
doc/MIGRATION, 2013. visited on 2017-03-12.
[17] Libnet function file. https://github.com/sam-github/libnet/blob/master/libnet/include/
libnet/libnet-functions.h, 2013. visited on 2017-03-12.
[18] Libnet header file. https://github.com/sam-github/libnet/blob/master/libnet/include/
libnet/libnet-headers.h, 2012. visited on 2017-03-12.
[19] Pcap supported libraries. https://wiki.wireshark.org/Development/LibpcapFileFormat#
Libraries, 2015. visited on 2017-03-12.
[20] Pcap github. https://github.com/the-tcpdump-group/libpcap, 2017. visited on 2017-03-12.
[21] Tecpdump homepage. http://www.tcpdump.org/, 2017. visited on 2017-03-12.
[22] S. McCanne and V. Jacobson. The bsd packet filter: A new architecture for user-level packet capture. http:
//www.tcpdump.org/, 1992. visited on 2017-03-12.
[23] Ethernet types. http://www.lana.org/assignments/ieee-802-numbers/ieee-802-numbers.

xhtml#ieee-802-numbers—-1, 2017. visited on 2017-03-12.

67


http://man7.org/linux/man-pages/man7/raw.7.html
https://www.freebsd.org/cgi/man.cgi?bpf(4)
https://msdn.microsoft.com/en-us/library/windows/desktop/ms740548(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms740548(v=vs.85).aspx
http://www.winpcap.org/docs/docs_412/html/group__wpcapfunc.html
http://www.winpcap.org/docs/docs_412/html/group__wpcapfunc.html
http://www.enderunix.org/docs/en/rawipspoof/
http://bastian.rieck.ru/howtos/bpf/
https://linux.die.net/man/
http://beej.us/guide/bgnet/output/html/multipage/sockaddr_inman.html
http://beej.us/guide/bgnet/output/html/multipage/sockaddr_inman.html
http://man7.org/linux/man-pages/man7/netdevice.7.html
http://www.microhowto.info/howto/send_an_arbitrary_ipv4_datagram_using_a_raw_socket_in_c.html
http://www.microhowto.info/howto/send_an_arbitrary_ipv4_datagram_using_a_raw_socket_in_c.html
http://man7.org/linux/man-pages/man7/packet.7.html
https://github.com/sam-github/libnet/blob/master/libnet/doc/PORTED
https://github.com/sam-github/libnet/blob/master/libnet/doc/PORTED
https://github.com/sam-github/libnet
https://sourceforge.net/projects/libnet-dev/
https://github.com/sam-github/libnet/blob/master/libnet/doc/MIGRATION
https://github.com/sam-github/libnet/blob/master/libnet/doc/MIGRATION
https://github.com/sam-github/libnet/blob/master/libnet/include/libnet/libnet-functions.h
https://github.com/sam-github/libnet/blob/master/libnet/include/libnet/libnet-functions.h
https://github.com/sam-github/libnet/blob/master/libnet/include/libnet/libnet-headers.h
https://github.com/sam-github/libnet/blob/master/libnet/include/libnet/libnet-headers.h
https://wiki.wireshark.org/Development/LibpcapFileFormat#Libraries
https://wiki.wireshark.org/Development/LibpcapFileFormat#Libraries
https://github.com/the-tcpdump-group/libpcap
http://www.tcpdump.org/
http://www.tcpdump.org/
http://www.tcpdump.org/
http://www.iana.org/assignments/ieee-802-numbers/ieee-802-numbers.xhtml#ieee-802-numbers-1
http://www.iana.org/assignments/ieee-802-numbers/ieee-802-numbers.xhtml#ieee-802-numbers-1

24]

[25]

[26]

27]
(28]
29]

Assigned internet protocol numbers. https://www.iana.org/assignments/protocol-numbers/
protocol-numbers.xhtml, 2016. visited on 2017-03-12.

Pcap header file. https://github.com/the-tcpdump—-group/libpcap/blob/master/pcap/pcap.h,
2017. visited on 2017-03-12.

Pcap filter mechanism. http://www.tcpdump.org/manpages/pcap—filter.7.html, 2015. visited on
2017-03-12.

Link-layer header types. http://www.tcpdump.org/linktypes.html, 2015. visited on 2017-03-12.
Pcap man page. http://www.tcpdump.org/manpages/pcap.3pcap.html, 2017. visited on 2017-03-12.

Winpcap homepage. http://www.winpcap.org/, 2013. visited on 2017-03-12.

68


https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
https://github.com/the-tcpdump-group/libpcap/blob/master/pcap/pcap.h
http://www.tcpdump.org/manpages/pcap-filter.7.html
http://www.tcpdump.org/linktypes.html
http://www.tcpdump.org/manpages/pcap.3pcap.html
http://www.winpcap.org/

© 00O U bW -

A Appendix: Listings

A.1 rfcl1071 checksum cpp

Listing 12: rfc1071 checksum cpp

unsigned short comp_chksum( unsigned short xaddr, int len )

Quelle: RFC 1071
Calculates the Internet-checksum
Valid for the IP, ICMP, TCP or UDP header

(Checksummenfeld muss Null sein)

*
*
*
*
* xaddr : Pointer to the Beginning of the data
*
* len : length of the data (in bytes)

*

*

Return : Checksum in network-byte-order

long sum = 0;

while( len > 1 ) {
sum += * (addr++);
len -= 2;

}

if( len > 0 )
sum += * addr;

while (sum >> 16)

sum = ( ( sum & Oxffff ) + ( sum >> 16 ) );
sum = ~sum;
return ( ( u_short ) sum );

}

69




0O Utk WN -

A.2 win socket cpp

Listing 13: win socket cpp

#ifndef UNICODE
#define UNICODE 1
#endif

// link with Ws2_32.1ib
#pragma comment (lib, "Ws2_32.1ib")

#include <winsock2.h>

#include <ws2tcpip.h>

#include <stdio.h>

#include <stdlib.h> // Needed for _wtoi

int _ cdecl wmain (int argc, wchar_t xxargv)

{

// Declare and initialize variables
WSADATA wsaData = {0};
int iResult = 0;

// int 1 = 1;
SOCKET sock = INVALID_SOCKET;
int iFamily = AF_UNSPEC;
int iType = 0;

int iProtocol = 0;

// Validate the parameters

if (argc != 4) {
wprintf (L"usage: %s <addressfamily> <type> <protocol>\n", argv[0]);
wprintf (L"socket opens a socket for the specified family, type, & protocol\n");
wprintf (L"%ws example usage\n", argv([0]);
wprintf (L" $ws 0 2 17\n", argv[0]);
wprintf (L" where AF_UNSPEC=0 SOCK_DGRAM=2 IPPROTO_UDP=17\n", argv[0]);
return 1;

}

iFamily = _wtoi(argv([1l]);

iType = _wtoi (argv[2]);

iProtocol = _wtoi(argv[3]);

// Initialize Winsock
iResult = WSAStartup (MAKEWORD (2, 2), &wsaData);

if (iResult != 0) {
wprintf (L"WSAStartup failed: %d\n", iResult);
return 1;

}

wprintf (L"Calling socket with following parameters:\n");
wprintf (L" Address Family = ");
switch (iFamily) {
case AF_UNSPEC:
wprintf (L"Unspecified");
break;
case AF_INET:
wprintf (L"AF_INET (IPv4)");
break;
case AF_INETG6:
wprintf (L"AF_INET6 (IPv6)");
break;
case AF_NETBIOS:
wprintf (L"AF_NETBIOS (NetBIOS)");
break;
case AF_BTH:
wprintf (L"AF_BTH (Bluetooth)");
break;
default:
wprintf (L"Other");
break;
}
wprintf (L" (%d)\n", iFamily);

70




73

74 wprintf (L" Socket type = ");

75 switch (iType) {

76 case 0:

T wprintf (L"Unspecified");

78 break;

79 case SOCK_STREAM:

80 wprintf (L"SOCK_STREAM (stream)");

81 break;

82 case SOCK_DGRAM:

83 wprintf (L"SOCK_DGRAM (datagram)");

84 break;

85 case SOCK_RAW:

86 wprintf (L"SOCK_RAW (raw)");

87 break;

88 case SOCK_RDM:

89 wprintf (L"SOCK_RDM (reliable message datagram)");
90 break;

91 case SOCK_SEQPACKET:

92 wprintf (L"SOCK_SEQPACKET (pseudo-stream packet)");
93 break;

94 default:

95 wprintf (L"Other");

96 break;

97 }

98 wprintf (L" (%d)\n", iType);

99

100 wprintf (L" Protocol = %d = ", iProtocol);

101 switch (iProtocol) {

102 case 0:

103 wprintf (L"Unspecified");

104 break;

105 case IPPROTO_ICMP:

106 wprintf (L"IPPROTO_ICMP (ICMP)");

107 break;

108 case IPPROTO_IGMP:

109 wprintf (L"IPPROTO_IGMP (IGMP)");

110 break;

111 case IPPROTO_TCP:

112 wprintf (L"IPPROTO_TCP (TCP)");

113 break;

114 case IPPROTO_UDP:

115 wprintf (L"IPPROTO_UDP (UDP)");

116 break;

117 case IPPROTO_ICMPV6:

118 wprintf (L"IPPROTO_ICMPV6 (ICMP Version 6)");
119 break;

120 default:

121 wprintf (L"Other");

122 break;

123 }

124 wprintf (L" (%d)\n", iProtocol);

125

126 sock = socket (iFamily, iType, iProtocol);

127 if (sock == INVALID_SOCKET)

128 wprintf (L"socket function failed with error = %d\n", WSAGetLastError() );
129 else {

130 wprintf (L"socket function succeeded\n");

131

132 // Close the socket to release the resources associated
133 // Normally an application calls shutdown () before closesocket
134 // to disables sends or receives on a socket first
135 // This isn’t needed in this simple sample
136 iResult = closesocket (sock);

137 if (iResult == SOCKET_ERROR) {

138 wprintf (L"closesocket failed with error = %d\n", WSAGetLastError() );
139 WSACleanup () ;

140 return 1;

141 }

142 }

143

144 WSACleanup () ;

145

146 return 0;

147 |}

71



0O Utk WN -

A.3 libnet tcp c

Listing 14: libnet tcp ¢

#include "libnet_test.h"

int

main (int argc, char xargv([]) {
int c;
char xcp;
libnet_t «1;
libnet_ptag_t t;
char xpayload;
u_short payload_s;
u_long src_ip, dst_ip;
u_short src_prt, dst_prt;
char errbuf [LIBNET_ERRBUF_SIZE];

printf ("libnet 1.1 packet shaping: TCP + options[link]\n");

/%
* Initialize the library. Root priviledges are required.
*/
1 = libnet_init (
LIBNET_LINK, /+ injection type */
NULL, /+ network interface */
errbuf) ; /% error buffer */
if (1 == NULL) {
fprintf (stderr, "libnet_init () failed: %s", errbuf);
exit (EXIT_FAILURE);
}
src_ip 0;
dst_ip = 0;
src_prt = 0;

dst_prt = 0;

payload = NULL;

payload_s = 0;

while ((c = getopt (argc, argv, "d:s:p:")) != EOF) {
switch (c)

{

* We expect the input to be of the form ‘ip.ip.ip.ip.port'. We
* point cp to the last dot of the IP address/port string and
* then seperate them with a NULL byte. The optarg now points to
* just the IP address, and cp points to the port.
*/
case ’'d’:
if (! (cp = strrchr(optarg, '.7)))

usage (argv[0]);
}
*cp++ = 0;
dst_prt =
if ((dst_ip
{

(u_short)atoi (cp);
= libnet_name2addrd4 (1, optarg, LIBNET_RESOLVE)) == -1)

fprintf (stderr, "Bad destination IP address: %$s\n", optarg);
exit (EXIT_FAILURE) ;

}

break;

case ’'s’:

if (! (cp = strrchr(optarg, ’.7)))

{
usage (argv[0]);

}

*cp++ = 0;

src_prt (u_short)atoi (cp);
if ((src_ip = libnet_name2addr4 (1, optarg, LIBNET_RESOLVE)) == -1)
{

fprintf (stderr, "Bad source IP address: %s\n", optarg);

exit (EXIT_FAILURE);
}
break;
case 'p’:
payload = optarg;

72




73 payload_s = strlen(payload);

74 break;

75 default:

76 exit (EXIT_FAILURE) ;

7 }

78 }

79

80 if (!src_ip || !src_prt || !dst_ip || !dst_prt)

81 {

82 usage (argv[0]);

83 exit (EXIT_FAILURE);

84 }

85

86 t = libnet_build_tcp_options (

87 (uint8_t) "\003\003\012\001\002\004\001\011\010\012\077\077\077\077\000\000\000\000\000\000O™",
88 20,

89 1,

90 0);

91 if (t == -1)

92 {

93 fprintf (stderr, "Can’t build TCP options: %s\n", libnet_geterror(l));
94 goto bad;

95 }

96

97 t = libnet_build_tcp(

98 src_prt, /* source port #*/

99 dst_prt, /+ destination port x/
100 0x01010101, /* sequence number */
101 0x02020202, /# acknowledgement num */
102 TH_SYN, /* control flags #/
103 32767, /% window size */

104 0, /% checksum */

105 10, /% urgent pointer =*/
106 LIBNET_TCP_H + 20 + payload_s, /+ TCP packet size #*/
107 (uint8_t«)payload, /* payload */

108 payload_s, /% payload size */

109 1, /+ libnet handle =/
110 0); /% libnet id =/

111 if (t == -1)

112 {

113 fprintf (stderr, "Can’t build TCP header: %s\n", libnet_geterror(l));
114 goto bad;

115 }

116

117 t = libnet_build_ipv4 (

118 LIBNET_IPV4_H + LIBNET_TCP_H + 20 + payload_s,/* length */

119 0, /% TOS */

120 242, /% IP ID #/

121 0, /* IP Frag */

122 64, /* TTL */

123 IPPROTO_TCP, /* protocol */

124 0, /* checksum */

125 src_ip, /% source IP x*/

126 dst_ip, /* destination IP =/
127 NULL, /* payload */

128 0, /% payload size */

129 1, /+ libnet handle */
130 0); /* libnet id #*/

131 if (t == -1)

132 {

133 fprintf (stderr, "Can’t build IP header: %s\n", libnet_geterror(l));
134 goto bad;

135 }

136

137 t = libnet_build_ethernet (

138 enet_dst, /% ethernet destination #*/
139 enet_src, /+ ethernet source #*/
140 ETHERTYPE_IP, /# protocol type x/
141 NULL, /% payload =/

142 0, /% payload size */

143 1, /+ libnet handle */
144 0); /* libnet id =*/

145 if (t == -1)

146 {

147 fprintf (stderr, "Can’t build ethernet header: %$s\n", libnet_geterror(l));
148 goto bad;

73




149 }
150
151 /*

152 * Write it to the wire.

153 */

154 c = libnet_write(1l);

155 if (c == -1)

156 {

157 fprintf (stderr, "Write error: %s\n", libnet_geterror(l));

158 goto bad;

159 }

160 else

161 {

162 fprintf (stderr, "Wrote %d byte TCP packet; check the wire.\n", c);
163 }

164
165 libnet_destroy(l);

166 return (EXIT_SUCCESS) ;
167 |bad:

168 libnet_destroy (1) ;

169 return (EXIT_FAILURE);
170 |}
171
172 | void

173 | usage (char xname)
174 | {
175 fprintf (stderr,

176 "usage: %s -s source_ip.source_port -d destination_ip.destination_port"
177 " [-p payload]\n",

178 name) ;

179 |}

74



© 00O U WN -

A.4 sendpack c

Listing 15: sendpack ¢

#include <stdlib.h>
#include <stdio.h>
#include <pcap.h>

int main(int argc, char xxargv) {
pcap_t *fp;

char errbuf [PCAP_ERRBUF_SIZE];
u_char packet[100];

int i;

/+* Check the validity of the command line */
if (argc !'= 2){

printf ("usage: %s interface", argv[0]);
return 1;

}

/+* Open the adapter x/
if ((fp = pcap_open_live(
argv[l], // name of the device
65536, // portion of the packet to capture. It doesn’t matter in this case
1, // promiscuous mode (nonzero means promiscuous)
1000, // read timeout
errbuf // error buffer
)) == NULL) {

fprintf (stderr, "\nUnable to open the adapter. %s is not supported by WinPcap\n",

return 2;

}

/+ Setting DMAC to B4 - B6 — 76 — D1 - OF - C9
This is an example and does not need to be a valid MAC x/

packet [0]=0xB4;
packet [1]=0xB6;
packet [2]=0x76;
packet [3]=0xD1;
packet [4]=0x0F;
packet [5]=0xC9;

/* set SMAC to 2:2:2:2:2:2 #/
packet[6]=

packet [7]=

packet [8]=

packet [
packet [
packet [

7
8
9]=2,
10]=2;
111=2;
/% Fill the rest of the packet with data */
for(i = 12; 1 < 100; i++){
packet[i]= (u_char)i;
}

/% Send down the packet =/
if (pcap_sendpacket (
fp, // Adapter
packet, // buffer with the packet
100 // size
) = 0){
fprintf (stderr, "\nError sending the packet: %s\n", pcap_geterr (fp));
return 3;
}
printf ("Packet sent.");
pcap_close (fp) ;
return 0;

argv |

11);

(0]




0O Utk WN -

63
64
65
66
67
68
69
70
71

A.5 dump c

Listing 16: dump ¢

#ifdef _MSC_VER

/%
* we do not want the warnings about the old deprecated and unsecure CRT functions
* since these examples can be compiled under #*nix as well
*/

#define _CRT_SECURE_NO_WARNINGS

#fendif

#include "pcap.h"

/% 4 bytes IP address =/
typedef struct ip_address{
u_char bytel;

u_char byte2;

u_char byte3;

u_char byte4;
}ip_address;

/+ IPv4 header */

typedef struct ip_header{

u_char ver_ihl; // Version (4 bits) + Internet header length (4 bits)
u_char tos; // Type of service

u_short tlen; // Total length

u_short identification; // Identification

u_short flags_fo; // Flags (3 bits) + Fragment offset (13 bits)
u_char ttl; // Time to live

u_char proto; // Protocol
u_short crc; // Header checksum
ip_address saddr; // Source address

ip_address daddr; // Destination address
u_int op_pad; // Option + Padding
}ip_header;

/* UDP headerx/
typedef struct udp_header{

u_short sport; // Source port
u_short dport; // Destination port
u_short len; // Datagram length
u_short crc; // Checksum
}udp_header;

/* UDP header*/
typedef struct eth_header({
u_char hwdes[6]; // Destination MAC
u_char hwsrc([6]; // Source MAC
u_char etherType([2]; // Ether Type 08 00 for ipv4

}eth_header;
enum FORMAT ({BIN, DEC, HEX}; //For custom print function

/* prototype of the packet handler */
void packet_handler (u_char *param, const struct pcap_pkthdr xheader, const u_char xpkt_data);

/* protortypes for printfunctions */
void print_bytes (charx text, wvoid xobject, size_t size, enum FORMAT f);
void print_bytes_nolInc (charx text, void xobject, size_t size, enum FORMAT f);

int main () {

struct sockaddr_in xsaServer;

char errbuf [PCAP_ERRBUF_SIZE];

char packet_filter[] = ""; //kernel packet filter, "ip and udp" would be valid, iff only valid ip/udp
packets are sent

u_int netmask;

pcap_t *adhandle; //for initializing device, whill hold the chosen one

pcap_if_t =xalldevs; //for initializing device, will hold all

pcap_if_t *d; //for initializing device, iterator

int inum, 1=0; //for initializing device, iterator for printing, choosing

struct bpf_program fcode;

/+ Retrieve the device list #*/

76




72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

if (pcap_findalldevs (&alldevs, errbuf) == -1){
fprintf (stderr, "Error in pcap_findalldevs: %s\n", errbuf);
exit (1);

}

/% Print the list x/

for (d=alldevs; d; d=d->next) {
printf ("%d. %s", ++i, d->name);
if (d->description)

printf (" (%s)\n", d->description);

else

printf (" (No description available)\n");
}
if (i==0) {

printf ("\nNo interfaces found! Make sure WinPcap is installed.\n");
return -1;

}

printf ("Enter the interface number (1-%d):",1i);
scanf ("%d", &inum);

/+ Check if the user specified a valid adapter x/
if(inum < 1 || inum > 1) {

printf ("\nAdapter number out of range.\n");
pcap_freealldevs (alldevs); /+ Free the device list #*/
return -1;

}

/+ Jump to the selected adapter #*/
for (d=alldevs, i=0; i< inum-1 ;d=d->next, i++);

/% Open the adapter x/
if ((adhandle= pcap_open_live (d->name, // name of the device

65536, // portion of the packet to capture: 65536 grants that the whole packet will be captured on
all the MACs.
1, // promiscuous mode (nonzero means promiscuous)
1000, // read timeout
errbuf // error buffer
)) == NULL) {

fprintf (stderr, "\nUnable to open the adapter. %s is not supported by WinPcap\n");
pcap_freealldevs (alldevs);
return -1;

}

if (d->addresses != NULL)
/* Retrieve the mask of the first address of the interface #*/
netmask=( (struct sockaddr_in x) (d—>addresses->netmask))->sin_addr.S_un.S_addr;
else
/+ If the interface is without addresses we suppose to be in a C class network */
netmask=0xffffff;

/+ compile the filter */
if (pcap_compile (adhandle, &fcode, packet_filter, 1, netmask) <0 ) {

fprintf (stderr, "\nUnable to compile the packet filter. Check the syntax.\n");
pcap_freealldevs (alldevs);

return -1;

}

/% set the filter =/
if (pcap_setfilter (adhandle, &fcode)<0) {

fprintf (stderr, "\nError setting the filter.\n");
pcap_freealldevs (alldevs);

return -1;

}
printf ("\nlistening on %s...\n", d->description);

/# At this point, we don’t need any more the device list. Free it #*/
pcap_freealldevs (alldevs);

/% start the capture */

pcap_loop (adhandle, 0, packet_handler, NULL);
return 0;

7




147 | /* Callback function invoked by libpcap for every incoming packet #*/

148 | void packet_handler (u_char sparam, const struct pcap_pkthdrx header, const u_char *pkt_data) {
149
150 /# bufers for time x/
151 struct tm *ltime;

152 char timestr[16];

153 time_t local_tv_sec;
154
155 /# buffers for header data =/
156 ip_header =ih;

157 udp_header =*uh;

158 eth_headerx eh;

159 u_int ip_len;

160 u_short sport, dport;

161

162 (VOID) (param); //unused parameter

163

164 /+* convert the timestamp to readable format #*/

165 local_tv_sec = header->ts.tv_sec;

166 ltime = localtime (&local_tv_sec);

167 strftime( timestr, sizeof timestr, "%H:%M:%S", ltime);
168

169 /% print timestamp and length of the packet */

170 printf ("$s.%.6d len:%d Ethernet Data:\n", timestr, header->ts.tv_usec, header->len);
171 print_bytes ("Whole Data", pkt_data, header->len, HEX);

172 eh = (eth_headerx)pkt_data;

173
174 /% Ethernet (DLL) Header +*/

175 print_bytes ("\nMAC Dest\t\t", & (eh->hwdes), 6, HEX);
176 print_bytes ("MAC Source\t\t", & (eh->hwsrc), 6, HEX);

177 print_bytes ("Ethertype\t\t", & (eh->etherType), 2, HEX);

178

179 ih = (ip_header x) (pkt_data + 14); //length of ethernet header
180

181 /+ position of udp (Network) header x/

182 ip_len = (ih->ver_ihl & Oxf) = 4;

183 uh = (udp_header *) ((u_charx)ih + ip_len);

184

185 /+* convert network to host byte order x/
186 sport = ntohs( uh->sport );

187 dport = ntohs( uh->dport );

188
189
190 /+* Transport (IP) Header x/

191 print_bytes_nolInc ("\nVersion (H), IHL (L)\t", &(ih->ver_ihl), 1, BIN);
192 print_bytes_nolInc ("TypeOfService DSCP:6; ECN:2", &(ih->tos), 1, BIN);
193 print_bytes_nolInc ("Total Lenth\t\t", &(ih->tlen), 2, DEC);

194 print_bytes_nolInc ("Identification\t\t", & (ih->identification), 2, HEX);
195 print_bytes_noInc("Flags:3, FragOff:13\t", & (ih->flags_fo), 2, BIN);
196 print_bytes_noInc ("TTL\t\t\t", &(ih->ttl), 1, DEC);

197 print_bytes_noInc ("Protocol\t\t", & (ih->proto), 1, BIN);

198 print_bytes_nolInc ("Checksum\t\t", & (ih->crc), 2, DEC);

199
200 /+* print ip addresses and udp ports x/

201 printf ("Source IP \t\t\t[ %d.%d.%d.%d ]\n",

202 ih->saddr.bytel,
203 ih->saddr.byte?2,
204 ih->saddr.byte3,
205 ih->saddr.byted) ;
206 printf ("Destination IP\t\t\t[ %d.%d.%d.%d ]1\n",
207 ih->daddr.bytel,
208 ih->daddr.byte2,
209 ih->daddr.byte3,
210 ih->daddr.byted);

211 print_bytes_noInc ("\nSource Port\t\t", &sport, 2, DEC);

212 print_bytes_noInc ("Destination Port\t", &dport, 2, DEC);

213 print_bytes_nolInc ("datagram Length\t\t", & (uh->len), 2, DEC);
214
215 printf ("\n\n");
216 |}

217
218 |void print_bytes (char* text, void *object, size_t size, enum FORMAT f) {
219 /+* buffers #*/

220 const u_char » const bytes = object;

221 size_t 1i;

222

78




223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258

printf ("$s \t[ ", text);
switch (f) {
case BIN:
for (i = 0; 1 < size; i++){
for (int j = 128; j > 0; j >>= 1)
printf("sd", (bytes[i] & J) == 3
if(j == 16)
printf(" ");
}
printf (" ");
}
break;
case DEC:
if (size == 1){
printf("sd ",
break;
}
for (i = 0; i+l < size; i+=2)
printf("%d ", bytes[i + 1] + bytes[i] * 265);
break;
case HEX:
for (i = 0; 1 < size; i++){
printf ("$02X ", bytes[i]);
}
break;
default:
break;
}
printf("]J\n");
}

bytes[0]);

/# this function will not increase the pointer */

void print_bytes_nolInc (charx text, wvoid xobject, size_t size,

voidx obj = object; //copying the data, and passing
print_bytes (text, obj, size, £f);
}

enum FORMAT f)

{

79




B Appendix: Tables

B.1 Protocol Types of <netinet/in.h>

Constant Description

IPPROTO_IP Dummy protocol.

IPPROTO_HOPOPTS IPv6 Hop-by-Hop options.
IPPROTO_ICMP Internet Control Message Protocol.
IPPROTO_IGMP Internet Group Management Protocol.
IPPROTO_IPIP IPIP tunnels (older KA9Q tunnels use 94).
IPPROTO_TCP Transmission Control Protocol.
IPPROTO_EGP Exterior Gateway Protocol.
IPPROTO_PUP PUP protocol.

IPPROTO_UDP User Datagram Protocol.
IPPROTO_IDP XNS IDP protocol.

IPPROTO_TP SO Transport Protocol Class 4.
IPPROTO_IPV6 IPv6 header.

IPPROTO_ROUTING IPv6 routing header.
IPPROTO_FRAGMENT IPv6 fragmentation header.

IPPROTO_RSVP Reservation Protocol.
IPPROTO_GRE General Routing Encapsulation.
IPPROTO_ESP Encapsulating security payload.
IPPROTO_AH Authentication header.
IPPROTO_ICMPVG ICMPv6.

IPPROTO_NONE IPv6 no next header.
IPPROTO_DSTOPTS IPv6 destination options.
IPPROTO_MTP Multicast Transport Protocol.
IPPROTO_ENCAP Encapsulation Header.
IPPROTO_PIM Protocol Independent Multicast.
IPPROTO_COMP Compression Header Protocol.
IPPROTO_SCTP Stream Control Transmission Protocol.
IPPROTO_RAW Raw IP packets.

IPPROTO_MAX No description.

Table 47: Protocol Types defined in <netinet/in.h> [§]

80



B.2 Linux Protocol Types defined in linux if ether.h

Flag Description

ETH_P_LOOP Ethernet Loopback packet

ETH_P_PUP Xerox PUP packet

ETH_P_PUPAT Xerox PUP Addr Trans packet

ETH P _IP Internet Protocol packet

ETH_P_X25 CCITT X.25

ETH_P_ARP Address Resolution packet

ETH_P_BPQ G8BPQ AX.25 Ethernet Packet | not officially registered |

ETH_P_IEEEPUP
ETH_P_IEEEPUPAT
ETH_P_DEC
ETH_P_DNA_DL
ETH_P_DNA_RC
ETH_P_DNA_RT
ETH_P_LAT
ETH_P_DIAG
ETH_P_CUST
ETH_P_SCA
ETH_P_RARP
ETH_P_ATALK
ETH_P_AARP
ETH_P_8021Q
ETH_P_IPX

ETH P_IPV6
ETH_P_WCCP
ETH_P_PPP_DISC
ETH_P_PPP_SES
ETH_P_MPLS_UC
ETH_P_MPLS_MC
ETH_P_ATMMPOA
ETH_P_ATMFATE
ETH_P_AOE
ETH_P_802_3
ETH_P_AX25

ETH P_ALL
ETH_P_802_2
ETH_P_SNAP
ETH_P_DDCMP
ETH_P_WAN_PPP
ETH P_PPP_MP
ETH_P_LOCALTALK
ETH_P_PPPTALK
ETH_P_TR_802_2
ETH_P_MOBITEX
ETH_P_CONTROL
ETH _P_TIRDA
ETH_P_ECONET

Xerox IEEE802.3 PUP packet

Xerox IEEE802.3 PUP Address Transport packet

DEC Assigned protocol

DEC DNA Dump/Load

DEC DNA Remote Console

DEC DNA Routing

DEC LAT

DEC Diagnostics

DEC Customer use

DEC Systems Communications Architecture
Reverse Address Resolution packet
Appletalk DDP

Appletalk AARP

802.1Q VLAN Extended Header
IPX over DIX

IPv6 over bluebook

Web-cache coordination protocol
PPPoE discovery messages
PPPoE session messages

MPLS Unicast traffic

MPLS Multicast traffic
MultiProtocol Over ATM
Frame-based ATM Transport over Ethernet
ATA over Ethernet

Dummy type for 802.3 frames
Dummy protocol id for AX.25
Every packet

802.2 frames

Internal only

DEC DDCMP: Internal only
Dummy type for WAN PPP frames
Dummy type for PPP MP frames
Localtalk pseudo type

Dummy type for Atalk over PPP
802.2 frames

Mobitex

Card specific control frames
Linux-IrDA

Acorn Econet

ETH_P_HDILC HDLC frames
ETH_P_ARCNET ArcNet
Table  48: Linux  Protocol = Types  defined in

<linux/if_ether.h>

81



B.3 Socket level options for setsocketopt()

Flag

Description

SO_ACCEPTCONN
SO_BINDTODEVICE
SO_BROADCAST
SO_BSDCOMPAT
SO_DEBUG

SO_DONTROUTE

SO_KEEPALIVE

SO_LINGER

SO_MARK

SO_OOBINLINE

SO_PASSCRED

SO_PRIORITY

SO_RCVBUF

SO_RCVBUFFORCE

SO_RCVLOWAT

SO_SNDLOWAT

SO_RCVTIMEO

SO_SNDTIMEO

SO_REUSEADDR

SO_SNDBUF

SO_SNDBUFFORCE

SO_TIMESTAMP

Indicates whether or not this socket has been marked to accept connections.

Bind this socket to a particular device like ‘eth0°.

Set or get the broadcast flag.

Enable BSD bug-to-bug compatibility. If enabled ICMP errors received for a UDP socket
will not be passed to the user program.

Enable socket debugging. Only allowed for processes with the CAP_NET_ADMIN capability
or an effective user ID of 0.

Don’t send via a gateway, only send to directly connected hosts. The same effect can be
achieved by setting the MSG_DONTROUTE flag on a socket send() operation. Expects an
integer boolean flag.

Enable sending of keep-alive messages on connection-oriented sockets. Expects an integer
Boolean flag.

When enabled, a close() or shutdown() will not return until all queued messages for the
socket have been successfully sent or the linger timeout has been reached.

Set the mark for each packet sent through this socket.

If this option is enabled, out-of-band data is directly placed into the receive data stream.
Enable or disable the receiving of the SCM_CREDENTIALS control message

Set the protocol-defined priority for all packets to be sent on this socket. Linux uses this
value to order the networking queues. Setting a priority outside the range 0 to 6 requires
the CAP_NET_ADMIN capability.

Sets or gets the maximum socket receive buffer in bytes. The kernel doubles this value.
The minimum (doubled) value for this option is 256.

Using this socket option, a privileged process can perform the same task as SO_RCVBUF,
but the rmem max limit can be overridden.

Specify the minimum number of bytes in the buffer until the socket layer will pass the data
to the user on receiving.

Specify the minimum number of bytes in the buffer until the socket layer will pass the data
to the user on receiving.

Specify the receiving or sending timeouts until reporting an error. The argument is a struct
timeval.

Specify the receiving or sending timeouts until reporting an error. The argument is a struct
timeval.

Indicates that the rules used in validating addresses supplied in a bind () call should allow
reuse of local addresses.

Sets or gets the maximum socket send buffer in bytes. The kernel doubles this value when
it is set.

Privileged process can perform the same task as SO_SNDBUF, but the wmem max limit
can be overridden.

Enable or disable the receiving of the SO_TIMESTAMP control message.

Table 49: Socket level options for setsockopt () as defined in
<errno.h> [§]

82



B.4 1IP level options for setsockopt()

Flag

Description

IP_ADD_MEMBERSHIP
IP_ADD_SOURCE_MEMBERSHIP
IP_BLOCK_SOURCE
IP_DROP_MEMBERSHIP
IP_DROP_SOURCE_MEMBERSHIP
IP_FREEBIND

IP_HDRINCL
IP_MSFILTER
IP_MTU_DISCOVER
IP_MULTICAST_IF
IP_MULTICAST_LOOP

IP_MULTICAST_TTL
IP_NODEFRAG

IP_OPTIONS
IP_PKTINFO

IP_RECVERR

IP_RECVTOS
IP_RECVTTL

IP_RETOPTS

IP_ROUTER_ALERT

IP_TOS

IP_TRANSPARENT
IP_TTL

IP_UNBLOCK_SOURCE

Join a multicast group. Argument is an ip_mregn structure.

Join a multicast group and allow receiving data only from a specified source.
Stop receiving multicast data from a specific source in a given group.

Leave a multicast group.

Leave a source-specific group-that.

If enabled, this boolean option allows binding to an IP address that is non-
local/does not exist.

If enabled, the user supplies an IP header in front of the user data. Only
valid for SOCK_RAW sockets.

This option provides access to the advanced full-state filtering API.

Set or receive the Path MTU Discovery setting for a socket.

Set the local device for a multicast socket.

Set or read an argument that determines if multicast packets should be looped
back to the local sockets.

Set or read the time-to-live value of outgoing multicast packets for this socket.
If enabled (nonzero), the reassembly of outgoing packets is disabled in the
netfilter layer.

Set or get the IP options to be sent with every packet from this socket.
Pass an IP_PKTINFO ancillary message that supplies information about the
incoming packet.

Enable extended reliable error message passing. On a datagram socket, all
generated errors are stored in a per-socket error queue.

If enabled the TP_TOS ancillary message is passed with incoming packets.
If set, pass a TP_TTL control message with the received packets TTL. Not
supported for SOCK_STREAM sockets.

Identical to IP_RECVOPTS, but returns raw unprocessed options with times-
tamp and route record options not filled in for this hop.

Pass all to-be forwarded packets with the IP Router Alert option set to this
socket. Only valid for raw sockets.

Set or get the TOS field that is sent with every IP packet originating from
this socket.

Setting this boolean option enables transparent proxying on this socket.

Set or get the current time-to-live field that is used in every packet sent from
this socket.

Unblock previously blocked multicast source.

Table 50:

IP level options for setsockopt () as defined in

<errno.h> [§]

83



B.5 Errno flags for connect()

Flag Description

EACCES For UNIX domain sockets, which are identified by path-name: Write permission is denied on
the socket file, or search permission is denied for one of the directories in the path prefix.

EACCES The user tried to connect to a broadcast address without having the socket broadcast flag
enabled or the connection request failed because of a local firewall rule.

EPERM The user tried to connect to a broadcast address without having the socket broadcast flag
enabled or the connection request failed because of a local firewall rule.

EADDRINUSE Local address is already in use.

EAFNOSUPPORT The passed address didn’t have the correct address family in its source address family field.

EAGAIN No more free local ports or insufficient entries in the routing cache.

EALREADY The socket is non-blocking and a previous connection attempt has not yet been completed.

EBADF The file descriptor is not a valid index in the descriptor table.

ECONNREFUSED No-one listening on the remote address.

EFAULT The socket structure address is outside the user’s address space.

EINPROGRESS The socket is non-blocking and the connection cannot be completed immediately.

EINTR The system call was interrupted by a signal that was caught.

EISCONN The socket is already connected.

ENETUNREACH Network is unreachable.

ENOTSOCK The file descriptor is not associated with a socket.

ETIMEDOUT Timeout while attempting connection.

Table 51: Errno flags for connect () as defined in <errno.h>

18]

84



B.6 ioctl() flags defined in bpf.h

Constant Description

BIOCGBLEN (u_int) Returns the required buffer length for reads on bpf files.

BIOCSBLEN (u_int) Sets the buffer length for reads on bpf files.

BIOCGDLT (u_int) Returns the type of the data link layer underlying the attached interface.

BIOCPROMISC (u_int) Forces the interface into promiscuous mode.

BIOCFLUSH (u_int) Flushes the bufferof incoming packets, and resets the statistics that are returned
by BIOCGSTATS.

BIOCGETIF (struct ifreq) Returns the name of the hardware interface that the file is listening on.

BIOCSETIF (struct ifreq) Sets the hardware interface associate with the file.

BIOCGRTIMEOUT (struct timeval) Set or get the read timeout parameter.

BIOCGSTATS (struct bpf stat) Returns packet statistics.

BIOCIMMEDIATE (u_int) Enable or disable immediate mode, based onthe truth value of the argument. When
immediate mode is enabled, reads return immediately upon packet reception. Otherwise,
a read will block untileither the kernel buffer becomes full or a timeout occurs.

BIOCSETFNR (struct bpf program) Sets the read filter program used bythe kernel to discard uninter-
esting packets.

BIOCSETWF (struct bpf program) Sets the write filter program used by the kernel to control what type
of packets can be written to the interface.

BIOCVERSION (struct bpf version) Returns the major and minor version numbers of the filter language
currently recognized by the kernel.

BIOCGHDRCMPLT (u_int) Set or get the status of the header complete flag. Set to zero if the link level source
address should be filled in automatically by the interface output routine.

BIOCGDIRECTION (u_int) Set or get the setting determining whether incoming, outgoing, or all packets on
the interface should be returned by BPF ( BPF_D_IN = only incoming, BPF_D_INOUT
= packets originating locally and remotely, BPF_D_OUT = only outgoing packets).

BIOCGTSTAMP (u_int) Set or get format and resolution of the time stamps returned by BPF. See Manpage
for further details.

BIOCFEEDBACK (u_int) Set packet feedback mode. This allows injected packets to be fed back as input to
the interface when output via the interface is successful.

BIOCLOCK Set the locked flag on the bpf descriptor. This prevents the execution of ioctl commands
which could change the underlying operating parameters of the device.

BIOCSETBUFMODE  (u_int) Get or set the current bpf buffering mode.

BIOCSETZBUF (struct bpf zbuf) Set the current zero-copy buffer locations.

BIOCGETZMAX (size_t) Get the largest individual zero-copy buffer size allowed.

BIOCROTZBUF Force ownership of the next buffer to be assigned to userspace, if any data present in the

buffer.

Table 52: ioctl () flags defined in <bpf.h> [2]

85



