Handbuch NaCoSi – Anleitung zur Entwicklung eines Nachhaltigkeitscontrollings in der Siedlungs­wasserwirtschaft

NaCoSi-Projektverbund

Erstellt durch den NaCoSi-Forschungsverbund im Rahmen des BMBF-geförderten Forschungsvorhabens „Nachhaltigkeitscontrolling siedlungswasserwirtschaftlicher Systeme – Risikoprofil und Steuerungsinstrumente“
Handbuch NaCoSi – Anleitung zur Entwicklung eines Nachhaltigkeitscontrollings in der Siedlungswasserwirtschaft

NaCoSi-Projektverbund

Autoren:

Zitiervorschlag:
URN: urn:nbn:de:tuda-tuprints-57220
URL: http://tuprints.ulb.tu-darmstadt.de/id/eprint/5722

Kontakt:
Prof. Dr. nat. techn. Wilhelm Urban, Technische Universität Darmstadt, Leiter Fachgebiet Wasserversorgung und Grundwasserschutz
Dr.-Ing. Kay Möller, aquabench GmbH

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Einleitung</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Ausgangslage und Motivation für das Nachhaltigkeitscontrolling in der Siedlungswasserwirtschaft</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2.1 Warum sollten sich Unternehmen der Siedlungswasserwirtschaft ihren Nachhaltigkeitsrisiken stellen?</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>2.2 Wie unterstützt das Nachhaltigkeitscontrolling die Unternehmen der Siedlungswasserwirtschaft?</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2.3 Wie sind die Systemgrenzen des Nachhaltigkeitscontrollings definiert?</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>2.4 Einordnung des NHC gegenüber bestehenden Managementinstrumenten</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>2.5 Vorgehensweise des Nachhaltigkeitscontrollings</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>Nachhaltigkeitsziele</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>3.1 Der Zielbezug des Nachhaltigkeitscontrollings</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>3.2 Nachhaltigkeitsziele</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>3.3 Zielkatalog für das Nachhaltigkeitscontrolling</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>3.4 Zusammenfassung</td>
<td>36</td>
</tr>
<tr>
<td>4</td>
<td>Wirkungspfadbasierte Abfrage von Risiken</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>4.1 Risikoidentifikation innerhalb des Nachhaltigkeitscontrollings</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>4.2 Ursache-Wirkung-Beziehungen</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>4.3 Elemente der Wirkungspfade</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>4.4 Mögliche Vorgehensweisen der Risikoidentifikationen</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>4.5 Komplexe Wirkungsnetze</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>4.6 Herausforderungen bei der Sammlung von Wirkungspfaden</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>Datenerhebung</td>
<td>52</td>
</tr>
<tr>
<td>6</td>
<td>Analyse-Verfahren</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>6.1 Risikoanalyse</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>6.2 Monitoring</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>6.3 Interpretation und Dokumentation der Ergebnisse der Analyse-Verfahren</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>6.4 Herausforderungen</td>
<td>93</td>
</tr>
<tr>
<td>7</td>
<td>Entwicklung von Maßnahmen und ihre Bewertung zur Risikobewältigung</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>7.1 Überblick über die Maßnahmenentwicklung</td>
<td>96</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>AW</td>
<td>Abwasser</td>
<td></td>
</tr>
<tr>
<td>BN</td>
<td>Bayes'sche Netze</td>
<td></td>
</tr>
<tr>
<td>CSB</td>
<td>Chemischer Sauerstoffbedarf</td>
<td></td>
</tr>
<tr>
<td>FMEA</td>
<td>Fehlzustands- und –auswirkungsanalyse</td>
<td></td>
</tr>
<tr>
<td>HRA</td>
<td>Human reliability assessment</td>
<td></td>
</tr>
<tr>
<td>MCDA</td>
<td>Multi-Kriterien Entscheidungsanalyse</td>
<td></td>
</tr>
<tr>
<td>MCS</td>
<td>Monte-Carlo-Simulation</td>
<td></td>
</tr>
<tr>
<td>NaCoSi</td>
<td>Forschungsprojekt „Nachhaltigkeitscontrolling siedlungswasserwirtschaftlicher Systeme – Risikoprofil und Steuerungsinstrumente“</td>
<td></td>
</tr>
<tr>
<td>NHC</td>
<td>Nachhaltigkeitscontrolling</td>
<td></td>
</tr>
<tr>
<td>RCM</td>
<td>Reliability Centered Maintenance</td>
<td></td>
</tr>
<tr>
<td>SW</td>
<td>Schwellenwert</td>
<td></td>
</tr>
<tr>
<td>TW</td>
<td>Trinkwasser</td>
<td></td>
</tr>
<tr>
<td>UA</td>
<td>Ursachenanalyse</td>
<td></td>
</tr>
<tr>
<td>VZÄ</td>
<td>Vollzeitäquivalent</td>
<td></td>
</tr>
<tr>
<td>WP</td>
<td>Wirkungspfad</td>
<td></td>
</tr>
</tbody>
</table>
Abbildungen

Abbildung 1: Schematische Darstellung der inhaltlichen Systemgrenze ………………… 16
Abbildung 2: Ablaufschema des Risikomanagements nach ISO 31000 (ISO 31000, verändert) ……………………………………………………………………… 22
Abbildung 3: Verfahrensschritte des Nachhaltigkeitscontrollings …………………………… 23
Abbildung 4: Nachhaltigkeitsziele und -kategorien (Eigene Darstellung; Projektverbund NaCoSi 2014) ……………………………………………………………… 31
Abbildung 5: Struktur der linearen Wirkungspfade ………………………………………………… 38
Abbildung 6: Beispiel Wirkungspfad …………………………………………………………………… 45
Abbildung 7: Risikoidentifikation ausgehend von einer Ursache ………………………………… 46
Abbildung 8: Risikoidentifikation ausgehend von einer Auswirkung …………………………… 46
Abbildung 9: Risikoidentifikation ausgehend von einem Nachhaltigkeitsziel …………………… 47
Abbildung 10: Risikoidentifikation ausgehend von einer Ursache in Verbindung mit einem Nachhaltigkeitsziel ………………………………………………… 49
Abbildung 11: Abbildung von Wirkungsnetzen durch Rekombination von Wirkungspfaden ……………………………………………………………………… 49
Abbildung 12: Prinzip des Basis- und Komplementmoduls …………………………………………… 52
Abbildung 13: Kategorisierung der zu erhebenden Datenarten ………………………………… 53
Abbildung 14: Übersicht und Einbindung der Analyse-Verfahren …………………………… 60
Abbildung 15: Risikomatrix mit Einteilungsbereichen ………………………………………………… 71
Abbildung 16: Beispielhafte Umsetzung der Risikomatrix im NHC …………………………… 74
Abbildung 17: Beispielhaftes Risikoprofil nach Nachhaltigkeitskategorien …………………… 79
Abbildung 18: Beispielhaftes Risikoprofil nach Nachhaltigkeitszielen …………………………… 79
Abbildung 19: Beispielhafte Risikomatrix für die Nachhaltigkeitskategorie Mitarbeitende ……………………………………………………………………… 80
Abbildung 20: Bewertungsschema für die Bewertung des Zustands (eigene Darstellung) ………………………………………………………………………… 83
Abbildung 21: Bewertungsschema für die Bewertung der Entwicklung (eigene Darstellung) ……………………………………………………………………… 84
Abbildung 22: Zeitreihe des Indikators von 2007 bis 2013 ……………………………………… 86
Abbildung 23: Zeitreihe und lineare Regression im Jahr 2008 ………………………………… 88
Abbildung 24: Zeitreihe und lineare Regression im Jahr 2009 ………………………………… 88
Abbildung 25: Zeitreihe und lineare Regression im Jahr 2012 ………………………………… 89
Abbildung 26: Zeitreihe und lineare Regression im Jahr 2013 ………………………………… 90
Abbildung 27: Visualisierung der Ergebnisse aus dem Monitoring (fiktives Beispiel) …………………………………………………………………………………… 91
Abbildung 28: Einbettung der Maßnahmenentwicklung in den NHC-Zyklus ………………… 99
Abbildung 29: Übersicht über mögliche Akteursrollen für ein Expertengremium (links) und einen internen Arbeitskreis (rechts) …………………………… 106
Abbildung 30: Übersicht – Nennung der Managementsysteme bei den 11 Partnern (aus Fragebogen zu Managementsystemen, siehe Anhang e) …………………………………………………………………………………… 111
Abbildung 31: Wasserversorgungsunternehmen nach Jahreswasserabgabe und Anzahl der Hausanschlüsse (Bickert 2016) ………………………………………… 117
Tabellen

Tabelle 1: Hauptursachen für Nachhaltigkeitsrisiken – Beispiele .. 12
Tabelle 2: Prozesse und Dienstleistungen der Trinkwasserversorgung
(Prozessmodell wurde entwickelt auf Grundlage von Möller, 2014)...... 17
Tabelle 3: Kernbotschaften von Nachhaltigkeitskonzepten .. 27
Tabelle 4: Prinzipien einer nachhaltigen Wasserwirtschaft (Kahlenborn und
Kraemer 1998, S. 4) .. 29
Tabelle 5: 5-Säulen-Modell in der Wasserwirtschaft (Deutsche Vereinigung für
Wasserwirtschaft, Abwasser und Abfall e.V. (DWA) 2008, 12,
verändert) ... 30
Tabelle 6: Wirkungspfadelemente ... 38
Tabelle 7: Ursachenkategorien der Nachhaltigkeitsrisiken .. 40
Tabelle 8: hierarchische Gliederung in System/Teilsystem/Prozess zur
eindeutigen Zuordnung der Auswirkung zu einem Prozess
(Prozessmodell wurde entwickelt auf Grundlage von Möller, 2014)...... 42
Tabelle 9: Skalierung der Eintrittswahrscheinlichkeit ... 53
Tabelle 10: Skalierung des Schadensausmaßes ... 54
Tabelle 11: Zeithorizonte in Abhängigkeit der Wirkungsdauer von
Wirkungspfaden .. 56
Tabelle 12: Vor- und Nachteile der Bewertung von Transformationspotenzialen
von Wasserversorgungstechniken .. 63
Tabelle 13: Vor- und Nachteile der Risikobewertungsmethode Ursachenanalyse 64
Tabelle 14: Vor- und Nachteile der Risikobewertungsmethode FMEA 65
Tabelle 15: Vor- und Nachteile der Risikobewertungsmethode HRA 66
Tabelle 16: Vor- und Nachteile der RCM-Methode zur Risikobewertung 66
Tabelle 17: Vor- und Nachteile der Risikobewertungsmethode MCDA 67
Tabelle 18: Vor- und Nachteile der Risikobewertungsmethode MCS 69
Tabelle 19: Vor- und Nachteile der Risikobewertungsmethode Bayes’sche Netze 70
Tabelle 20: Beispiel für Wahrscheinlichkeits- und Folgenskala (nach DIN EN
15975-2:2011) .. 73
Tabelle 21: Gewählte offene Skalierung für Eintrittswahrscheinlichkeit und
Schadensausmaß im NHC-Ansatz ... 75
Tabelle 22: Korrespondierende Tabelle zur Risikomatrix der Kategorie
Mitarbeitende .. 81
Tabelle 23: maximale Betrachtungszeiträume in Abhängigkeit des Zeithorizonts 83
Tabelle 24: Geschätzter Bedarf an Teamressourcen und Zeitbedarf (in
Kalendertagen/-monaten) je Phase der Maßnahmenentwicklung 110
Tabelle 25: Entgelte und Grundgebühren der 8 Wasserversorger (nach Bickert
2016) .. 119
Tabelle 26: Selbsteinschätzung der kleinen Unternehmen zur eigenen
Risikosituation .. 123
Einleitung

Um die Hintergründe des im Projekt NaCoSi entwickelten NHC besser zu verstehen, wird im Kapitel 2 ein Überblick über die Ausgangslage und die Motivation gegeben. In Kapitel 3 werden Nachhaltigkeitsziele beschrieben, die den Anwendungsbereich des NHC bestimmen. Sie bilden den Rahmen für die Analyse von Nachhaltigkeitsrisiken,

In der nachfolgenden Arbeit wird zur Erleichterung der Lesbarkeit nur die männliche Form angewendet. Jedoch ist stets das weibliche Geschlecht mitinbegriffen.
2 Ausgangslage und Motivation für das Nachhaltigkeitscontrolling in der Siedlungswasserwirtschaft

In den folgenden Kapiteln wird genauer dargelegt, warum sich Unternehmen der Siedlungswasserwirtschaft mit ihren Nachhaltigkeitsrisiken auseinandersetzen sollten.
2.1 Warum sollten sich Unternehmen der Siedlungswasserwirtschaft ihren Nachhaltigkeitsrisiken stellen?

Die Siedlungswasserwirtschaft hat in Deutschland eine lange und bedeutende Historie durch die originäre Aufgabe der sicheren Versorgung der Bevölkerung mit qualitativ reinem Trinkwasser sowie auch Ableitung von Abwasser und dessen Reinigung (Gujer 2007). Diese historischen Aufgaben werden in Deutschland praktisch flächendeckend erfüllt. In jüngster Vergangenheit kommen jedoch durch sich verändernde Rahmenbedingungen zahlreiche neue Herausforderungen auf die Siedlungswasserwirtschaft zu, die eine Gefahr für den nachhaltigen Erhalt, Umbau, Ausbau und auch Neubau der bestehenden Infrastrukturen – auch im Sinne der Generationengerechtigkeit – darstellen (Branchenbild der deutschen Wasserwirtschaft 2011; Grambow 2013) und die erschwingliche und sichere Dienstleistungserbringung der Daseinsvorsorge und deren Weiterentwicklung gefährden:

Ein weiterer Einflussfaktor ist die Politik. Änderungen der rechtlichen Rahmenbedingungen wie z.B. die Verpflichtung zum Phosphorrecycling (DWA-Arbeitsgruppe KEK-1.1 2013) oder die Einführung einer 4. Reinigungsstufe (Bode 2012, Gawel et al. 2015, Hillenbrand et al. 2014) und allgemein höhere Anforderungen an die Trinkwasseraufbereitung oder Abwasserbehandlung sind immer mit Kosten gebunden, für die eine nachhaltige und gerechte Lösung der Finanzierung durch die Gesellschaft gefunden werden muss (Tränckner u.a. 2013); Schließlich können sich auch wirtschaftliche Rahmenbedingungen verändern (Gawel et al. 2011; Bedtke/Gawel 2015).

Tabelle 1: Hauptursachen für Nachhaltigkeitsrisiken – Beispiele

<table>
<thead>
<tr>
<th>Ursachenkategorie</th>
<th>Beispiele potenzieller Ursachen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umwelt</td>
<td>Klimawandel, zunehmende Wetterextreme</td>
</tr>
<tr>
<td></td>
<td>Schadstoffkonzentrationen in der Umwelt (Mikroschadstoffe in Gewässern)</td>
</tr>
<tr>
<td></td>
<td>Bewirtschaftungsintensität in der Landwirtschaft (Nitrat-, Phosphorbelastung, Rückstände aus der Schädlingsbekämpfung)</td>
</tr>
<tr>
<td>Gesellschaft</td>
<td>Demografischer Wandel</td>
</tr>
<tr>
<td></td>
<td>Siedlungsstrukturelle Entwicklungen</td>
</tr>
<tr>
<td></td>
<td>Verändertes Verbraucherverhalten</td>
</tr>
<tr>
<td>Recht</td>
<td>Veränderungen beim Rechtsrahmen (Klärschlammentsorgung, 4. Reinigungsstufe, IT-Sicherheit)</td>
</tr>
<tr>
<td></td>
<td>Politische Richtungswechsel nach Kommunalwahlen</td>
</tr>
<tr>
<td>Wirtschaft</td>
<td>Fachkräfteangebot, Arbeitsmarkt</td>
</tr>
<tr>
<td></td>
<td>Energiepreisentwicklung</td>
</tr>
<tr>
<td></td>
<td>Kapitalverfügbarkeit (Gewinnrücklagen, Kapitalmarktbedingungen, Bonität)</td>
</tr>
<tr>
<td></td>
<td>Regionale Kooperationen in der Infrastrukturentwicklung</td>
</tr>
<tr>
<td>Organisation</td>
<td>Outsourcinggrad</td>
</tr>
<tr>
<td></td>
<td>Auf- und Ausbau von Fachkompetenzen, Mitarbeiterführung u.a.</td>
</tr>
<tr>
<td>Technik</td>
<td>Qualität und Abnutzung der bestehenden technischen Strukturen und Systeme</td>
</tr>
<tr>
<td></td>
<td>Alter von Aggregaten und Pumpen</td>
</tr>
</tbody>
</table>
Wichtig für das NHC ist daher eine ergebnisoffene Bestandsaufnahme der unternehmensspezifischen Ursachen. Die Wirkungspfade, die in Kapitel 4 beschrieben werden, setzen dementsprechend an konkreten Ursachen an. Einen Überblick über Hauptursachen, die beim NHC berücksichtigt wurden, sind in Tabelle 1 aufgeführt.

2.2 Wie unterstützt das Nachhaltigkeitscontrolling die Unternehmen der Siedlungswasserwirtschaft?

Controlling-Instrumente werden in Unternehmen allgemein angewandt, um Informationen zu strukturieren und Handlungsbedarf abzuleiten. Im Austausch mit den in NaCoSi beteiligten Praxispartnern hat sich gezeigt, dass die Ergebnisse von Controlling-Prozessen auch nutzbringend in der Interaktion mit Akteuren aus dem Unternehmensumfeld sein können (Kommunen als relevante föderale Ebene und Eigentümer der Aufgabenträger oder Behörden und Legislative als zentrale ziel- und rahmensetzende Akteure).
Zentrale Anwender eines NHC bleiben aber die Unternehmen:

- Die Unternehmen haben als Verantwortliche für die Ausführung/Umsetzung der Versorgung/Beseitigung die Möglichkeit, durch Anwendung des Tools auf die ermittelten Umstände zu reagieren.
- Die Unternehmen sollten ein grundlegendes Interesse daran haben die nachhaltige Existenz und Leistungsfähigkeit sicherzustellen.
- Die Unternehmen verfügen darüber hinaus über die unternehmensspezifische Informationsbasis, die zur Entwicklung und Anwendung des NHCs notwendig ist.

Damit sind die Unternehmen der Siedlungswasserwirtschaft als zentral handelnde Akteure beim Umgang mit Nachhaltigkeitsrisiken benannt. Sind solche Risiken der zentralen Gegenstand des Controllings, ist noch die Frage zu beantworten, aus wessen Sicht die Risiken bewertet werden; d.h. aus Sicht welcher Akteure sich (potenzielle) Effekte eines Nachhaltigkeitsrisikos ergeben. Denn vermutlich priorisieren Unternehmen als Aufgabenträger Nachhaltigkeitsrisiken anders als beispielsweise private oder industrielle Verbraucher oder Umweltschutzorganisationen.

Textbox: Alternative Perspektiven für das Nachhaltigkeitscontrolling

Da sich die Daseinsvorsorge an die Gesellschaft und letztendlich an die Bürger, Unternehmen und Kommunen richtet, wäre deren Bewertung von Nachhaltigkeitsrisiken ein wichtiger und relevanter Bewertungsmaßstab. Allerdings ergeben sich hierbei praktische Probleme, die die ständige Rückspiegelung von Nachhaltigkeitsrisiken auf Bedürfnisse der Bürger im Rahmen eines Controllings-Instrumentes verhindern:

Die Verbraucherperspektive ist individuell und damit sehr vielfältig und heterogen; Schlussfolgerungen für die Unternehmenssteuerung können hieraus nur schwer gezogen werden, da das Unternehmen hierfür entscheiden müsste, „welcher Bürgermeinung“ sie folgt. Die Abwägung der verschiedenen von Verbrauchern angesetzten Maßstäbe kann daher nicht allein Aufgabe eines Controlling-Systems sein; es wären weitere Instrumente hinzuzuziehen. Mit den o.g. Möglichkeiten von Controlling-Ansätzen kann die Verbraucherperspektive im NHC nur überblicksartig erfasst werden und hilft, die zu vertiefenden Bereiche zu identifizieren (siehe hierzu Kap. 3 und Kap. 4). Somit bietet die Verbraucherperspektive keine hinreichende Grundlage für das NHC. Ähnlich verhält es sich mit Ansätzen, die allein auf ökologische Belange oder andere Einzelaspekte von Nachhaltigkeit abzielen.

Durch die Ausrichtung des NHC auf die Belange und Interessen der Unternehmen in der Siedlungswasserwirtschaft soll auch die Motivation für die Auseinandersetzung mit nachhaltigkeitsbezogenen Aspekten in den Wasserbetrieben gesteigert werden. Es kann auf unmittelbarer Ebene von Struktureinheiten innerhalb der Unternehmen die Relevanz der betrachtete Aspekte und im Idealfall auch ihre Zusammenhänge mit internen und externen Veränderungsprozessen (siehe vorhergehenden Abschnitt 2.1) herstellen. Wie im Weiteren zu sehen sein wird, ist die Systematik der Datenerhebung und -auswertung an die Vorgehensweise des Benchmarking angelehnt. Darüber hinaus ergibt sich die Möglichkeit, einen Branchenvergleich durchzuführen und hierüber erste Anhaltspunkte für das Ausmaß der Nachhaltigkeitsrisiken in den Sektoren der Trinkwasserversorgung und Abwasserbeseitigung zu erhalten.

Wie sich während der Projektdurchführung gezeigt hat, ergeben sich durch die Unternehmensperspektive Vorteile für die weitere Entwicklung des NHC-Ansatzes:

- Das NHC wurde zu einem Bewertungsverfahren entwickelt, dass den Aufgabenträgern einen Nutzen generiert. Es wird erwartet, dass das Instrument durch die Aufgabenträger selbstständig aufgegriffen und weiterentwickelt wird.
- Dies zeigte sich in der hohen Bereitschaft der Praxispartner im Verbundprojekt, an der Entwicklung mitzuwirken. Die hierbei erarbeiteten und getesteten Wechselwirkungen zwischen Ursachen, Systemreaktion und Konsequenzen stellen eine notwendige Grundvoraussetzung auch für die weiterführenden Bewertungen dar.
2.3 Wie sind die Systemgrenzen des Nachhaltigkeitscontrollings definiert?

2.3.1 Inhaltliche Systemgrenzen

Das NHC umfasst alle Prozesse des „Produkt systems Trinkwasser“ von der Wassergewinnung über die Wasseraufbereitung, die Wasserverwendung beim Verbraucher bis hin zur Abwasserbehandlung.

Abbildung 1: Schematische Darstellung der inhaltlichen Systemgrenze

Das NHC umfasst damit im Wesentlichen die folgenden Prozesse und Dienstleistungen der Trinkwasserversorgung und Abwasserbeseitigung (vgl. Tabelle 2). Dieses Prozessmodell der Siedlungswasserwirtschaft dient im NHC für die Spezifizierung des Wirkungsortes von Nachhaltigkeitsrisiken (vgl. Kap. 4.3.4).
Tabelle 2: Prozesse und Dienstleistungen der Trinkwasserversorgung (Prozessmodell wurde entwickelt auf Grundlage von Möller, 2014)

<table>
<thead>
<tr>
<th>System</th>
<th>Teilsystem</th>
<th>Prozess</th>
<th>Prozessumfang</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Verwaltung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leitung, zentrale Aufgaben, Organisation</td>
<td>Strategische Planung, Rechtswesen, Innenrevision, Beauftragtenwesen, Notfall- und Krisenmanagement, Datenverarbeitung, Archivierung</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Personal- und Sozialwesen</td>
<td>Personal entwickeln und betreuen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kaufmännische Aufgaben</td>
<td>Wirtschafts- und Finanzplanung, Rechnungswesen, Betriebswirtschaft, Controlling, Planung, Einkauf und Materialwirtschaft, Steuern</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kundenservice und Öffentlichkeitsarbeit</td>
<td>Zählerablesung, Rechnungstellung, Beratung</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wasserwirtschaft</td>
<td>Wasserschutzgebiet, Flächenbewirtschaftung, Rechtliche Grundlagen zum Schutz der Ressource Wasser und zur Wasserentnahme, Messwesen und Monitoring</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wassergewinnung</td>
<td>Grundwasseranreicherung, Rohwasserentnahme, Transport und Speicherung von Rohwasser</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wasseraufbereitung</td>
<td>Aufbereitungsanlagen, Aufbereitungsschritte inklusive Reinwasserspeicherung, Anlagen zur Filterspülung</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wasserversorgung</td>
<td>Trinkwasserförderung, Trinkwasserspeicherung, Druckerhöhung inklusive zugehörige Rohrleitungen und Betriebsgebäude</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zählerwesen</td>
<td>Betreiben, Dokumentation, Wartung, Instandsetzung</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Qualitätsüberwachung und Labor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zentrale Technik</td>
<td>Betrieb: Gebäudemanagement, zentrale Werkstätten, zentraler Fuhrpark, zentrale Lager, Leitwarte; Dokumentation, Betriebsstatistik</td>
<td></td>
</tr>
</tbody>
</table>
Teil 2.3.2 Zeitliche Systemgrenzen

Da es sich bei dem untersuchten System der Siedlungswasserwirtschaft um relativ langlebige Strukturen handelt, wurden für die Risikoanalyse (Kapitel 6.1) Zeithorizonte von 5 oder 15 Jahren von der Gegenwart ausgehend in die Zukunft für das Eintreten eines Risikos gewählt.

<table>
<thead>
<tr>
<th>System</th>
<th>Teilsystem</th>
<th>Prozess</th>
<th>Prozessumfang</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verwaltung</td>
<td>Leitung, Zentrale Aufgaben, Organisation</td>
<td>IT/Ausstattung Mitarbeiterarbeitsplätze, Geodaten-service, Rechtswesen, Beauftragtenwesen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Personal- und Sozialwesen</td>
<td>Personal entwickeln und betreuen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kaufmännische Aufgaben</td>
<td>Wirtschafts- und Finanzplanung, Rechnungswesen, Betriebswirtschaft, Controlling, Planung, Einkauf und Materialwirtschaft, Energiebewirtschaftung</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kundenservice</td>
<td>Kunden betreuen, Gebührenbescheide, Bescheidung</td>
<td></td>
</tr>
<tr>
<td>Abwasserbeseitigung</td>
<td>Abwasserableitung: Grundstücksentwässerung</td>
<td>Überwachen und Betreiben</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abwasserableitung: Kanalbetrieb</td>
<td>Reinigung, Inspektion, Wartung, Instandsetzung der Kanäle, Schächte, Pumpwerke, Anlagen zur Niederschlagswasserbehandlung, Sonderbauwerke; Leerung Sammelgruben und Kleinkläranlagen; Rattenbekämpfung, Geruchsbehandlung, Abflussteuerung von Kanälen, Schadensbewertung</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abwasserableitung: Kanalbau</td>
<td>Renovierung, Erneuerung, Neubau: Planung, Bauüberwachung, Fremdvergabe, Projektmanagement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abwasserbehandlung: Kläranlagenbetrieb</td>
<td>Vorbehandlung, Mechanische Reinigung, Biologische Reinigung, Weitergehende Reinigung, Schlammmobilisierung, Schlammentwässerung, -trocknung, Eigenenergieerzeugung, Abluftbehandlung, Annahme von Schlämmen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abwasserbehandlung: Kläranlagenbau</td>
<td>Renovierung, Erneuerung, Neubau: Planung, Bauüberwachung, Fremdvergabe, Projektmanagement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abwasserbehandlung: Reststoffe entsorgen</td>
<td>Schlammverbrennung, Reststoffentsorgung</td>
<td></td>
</tr>
</tbody>
</table>
2.3.3 Räumliche Systemgrenzen
Der geographische Rahmen für die für das Monitoring erhobenen Daten (Kapitel 6.2) wird von den Einzugs- und Aufgabengebieten der Ver- und Entsorger aufgespannt.
Die als Schwellenwerte verwendeten Grenzwerte sind im NHC dazu gedacht als Basis deutschlandweit Anwendung finden.

2.4 Einordnung des NHC gegenüber bestehenden Managementinstrumenten

Folgende Managementsysteme wurden näher betrachtet:
- Technisches Sicherheitsmanagement
- Arbeitsschutzmanagement
- Qualitätsmanagement
- Umweltmanagement
- Benchmarking
- Risikomanagement
- Integriertes Management
- Nachhaltigkeitsberichterstattung in der Trinkwasserversorgung

Das Technische Sicherheitsmanagement soll eine rechtssichere Aufbau- und Ablauforganisation im Unternehmen gewährleisten, wobei der Fokus auf technischen/organisatorischen Aspekten liegt (DVGW W 1000, 2005). Es werden sowohl Anforderungen an die generelle Organisation als auch an die Qualifikation der Mitarbeiter gestellt. Hierbei überschneidet sich das Technische Sicherheitsmanagement mit dem Arbeitsschutzmanagement.

Das Arbeitsschutzmanagement dient der Sicherheit und dem Gesundheitsschutz der Mitarbeiter, in dem vor allem die Prämvention von Unfällen und arbeitsbedingten Erkrankungen eine große Rolle spielt (BMWA, 2002), (IAO, 2001).
Das **Qualitätsmanagement** fokussiert auf die Kundenzufriedenheit und die Erfüllung der Kundenwünsche (Benes und Groh, 2012), (DIN EN ISO 9001, 2008), (Piechulek, 2005). Dies soll durch eine kontinuierliche Verbesserung von Produkten und Dienstleistungen sowie von Wirksamkeit und Effizienz der Prozesse und Organisationsstrukturen erreicht werden.

Das **Benchmarking** ist ein systematischer und kontinuierlicher (turnusmäßiger) Prozess zur Identifizierung und zur Übernahme erfolgreicher Instrumente, Methoden und Prozesse. Dabei findet ein interner oder externer Vergleich zwischen Prozessen, Werken oder ganzen Unternehmen mit dem Ziel statt, die erfolgreichsten Ansätze (Best Practice) ausfindig zu machen, Verbesserungspotenziale zu ermitteln und realisierbare Maßnahmen zur Steigerung herauszuarbeiten und umzusetzen (DVGW W 1100, 2008), (Bartsch et al., 2005). Das Benchmarking ist somit ein Optimierungsinstrument, wobei diese Optimierung theoretisch in vielfältigen Teilbereichen vorgenommen werden kann. Neben ökonomischen Zielen können daher z. B. auch Qualitäts-, Umwelt- oder Arbeitsschutzprozesse untersucht und verbessert werden.

Das **Risikomanagement** ist auf Unsicherheiten ausgerichtet, die

- a) bei der Planung und strategischen Ausrichtung eines Unternehmens (strategisches Risikomanagement)
- b) bei der Planung und strategischen Ausrichtung eines Projektes oder Produktes (Projekt-, Produktrisikomanagement) oder
- c) im Rahmen des operationellen, alltäglichen Arbeitsablaufs (Notfall- und Krisenmanagement)

entstehen können. Es wird die kontinuierliche Verringerung der Risiken unternehmerischer Betätigung angestrebt, indem organisatorische Regelungen und Maßnahmen zur Risikoerkennung und zum Umgang mit den Risiken angewendet werden (Brühwiler und Romeoike, 2010), (Göntgen, 2013). Das Risikomanagement kann u.a. Qualitäts-, Umwelt- und Arbeitssicherheitsrisiken beinhalten und führt hierbei zu Überschneidungen mit den jeweiligen thematischen Managementsystemen.

Das **Integrierte Managementsystem** ist eine Zusammenfassung der Anforderungen aus verschiedenen Managementsystem-Bereichen (Gesundheit, Sicherheit, Umwelt, Qualität, etc.) in einer einheitlichen Struktur (VDI-Richtlinie 4060, 2005). Es dient der Vereinfachung des Aufwandes, der durch die parallele Unterhaltung mehrerer Managementsysteme entstehen würde. Je nach Art der integrierten Teilsysteme kann die Ausrichtung somit unterschiedlich sein.

So werden im Rahmen der Managementsysteme beispielsweise relevante Unternehmensprozesse inklusive der Wechselwirkungen analysiert und dokumentiert oder zumindest einheitlich definiert (Benchmarking). Des Weiteren werden, passend zum jeweiligen Themengebiet, bestimmte Daten erhoben und Indikatoren erstellt. Nutzt man diese ohnehin innerhalb der Managementsysteme erhobenen und bearbeiteten Informationen und Daten, so sind schon hierdurch Synergieeffekte möglich. Das NHC kann diese Informationen in die Bewertung von Risiken einbeziehen. Die Maßnahmen zu deren Behebung könnten wiederum in den jeweiligen Managementsystemen ausgearbeitet und umgesetzt werden.

Daneben ist zu vermuten, dass eine stetige Anwendung eines Managementsystems bestimmte Nachhaltigkeitsrisiken verringern und somit das Vorhandensein eines Managementsystems ein Indikator zur Risikominimierung bestimmter Nachhaltigkeitsrisiken sein könnte. Es bleibt jedoch zu berücksichtigen, dass sich die meisten Managementsysteme ausschließlich auf Teilaspekte einer nachhaltigen Unternehmenspolitik beschränken und dass sie (vor allem bei Neueinführung) mit einem erheblichen Zeit- und Kostenaufwand verbunden sind (Schulung Mitarbeiter, Entwicklung, Einführung und kontinuierliche Durchführung des Systems). Im NHC wird die Nachhaltigkeit im siedlungswasserwirtschaftlichen Unternehmen über die Nachhaltigkeitsziele ganzheitlich betrachtet und über mehrere, aufeinander aufbauende Vertiefungsstufen ist eine Einführung mit einem geringem Zeit- und Kostenaufwand möglich. Somit ergibt sich ein produktives Miteinander der verschiedenen Ansätze; insbesondere dann, wenn im NHC auf bestehende Daten, Informationen und Strukturen zurückgegriffen werden kann.

Vor diesem Hintergrund wird im nachfolgenden Abschnitt ein Überblick über die methodischen Grundlagen des im Projekt NaCoSi entwickelten Nachhaltigkeitscontrollings für die Siedlungswasserwirtschaft dargestellt. Kern ist hierbei, so weit wie möglich die in den Unternehmen existierenden Daten und Informationen aufzugreifen und in den Kontext der Sicherung einer nachhaltigen Entwicklung der Leistungserbringung in der Siedlungswasserwirtschaft zu stellen.

2.5 Vorgehensweise des Nachhaltigkeitscontrollings

Das NHC ist so konzipiert, dass es die im Unternehmen verfügbaren Informationen und Wissensstände umfassend aufgreift und auswertet. Dies erfolgt, indem beim NHC zum einen externe Analysegrundlagen bereitgestellt werden und somit den Unternehmen Informationen zugewiesen werden, auf denen sie aufbauen und spezifische Analysen vornehmen können. Zum anderen fließen in die Risikobewertung und Maßnahmenentwicklung sowohl Unternehmenskennzahlen als auch die fachspezifische Expertise der Mitarbeiter ein. Das NHC kombiniert somit externe Inputs, unternehmensspezifische Expertise und die verfügbaren Informationen.

Abbildung 2: Ablaufschema des Risikomanagements nach ISO 31000 (ISO 31000, verändert)

Das NHC umfasst, ebenso wie das Risikomanagement der DIN ISO 31000, mehrere aufeinander folgende Schritte (Abbildung 3): die Risikoidentifizierung, deren Analyse und Bewertung sowie die Maßnahmenentwicklung zum Umgang mit den Risiken:

1. **Als Analysegrundlage** (Kapitel 4) wird im NHC eine Datenbank bereitgestellt. Die in ihr enthaltenen Wirkungspfade systematisieren potenzielle Nachhaltigkeitsrisiken und beschreiben, wie die betrieblichen Nachhaltigkeitsziele gefährdet werden können. Diese Pfade sind allgemein formuliert und bilden den Ausgangspunkt für die weitere unternehmensspezifische Risikobetrachtung. Ausgangspunkt dieser Wirkungspfadsammlung bilden die Nachhaltigkeitsziele (Kapitel 3).

2. Das NHC bietet weiterhin eine **Analysemethode** (Kapitel 6) an, mit deren Hilfe ein Unternehmen seine spezifischen Risiken über den Zeitraum von bis zu 15 Jahren erfassen und bewerten kann. Ergänzend unterstützt das **Monitoring** die Trendbeobachtung zentraler Unternehmensindikatoren. Die Ergebnisse werden in einem Nachhaltigkeitsbericht zusammengefasst.

3. Für die **Maßnahmenentwicklung** zur Risikobewältigung (Kapitel 7) beschreibt das NHC einen Ansatz, um fachbereichsübergreifend Handlungsmöglichkeiten für zukünftige Entwicklungen zu erarbeiten.

Mit diesen Elementen unterstützt das NHC dabei, kontinuierlich die Lage siedlungswasserwirtschaftlicher Unternehmen zu beobachten, Veränderungen zu bewerten und hin zu einer nachhaltigeren Entwicklung zu lenken. Das NHC ist dabei als Managementprozess angelegt, der sich zyklisch wiederholt. So lassen sich Veränderungen über die Zeit hinweg betrachten und – im Idealfall – die Wirkung der ergriffenen Maßnahmen zur Risikominderung auch in der Analyse und im Monitoring erkennen.
3 Nachhaltigkeitsziele

Aufgabe des NHC für die Siedlungswasserwirtschaft ist es, Risiken, die die nachhaltige Leistungserbringung in der Trinkwasserversorgung und Abwasserbeseitigung gefährden können zu identifizieren, zu bewerten und Maßnahmen zu deren Minderung zu entwickeln. Hierbei werden die Risiken aus Sicht der Aufgabenträger bzw. den mit der Leistungserbringung beauftragten Unternehmen betrachtet. Gleichwohl soll das NHC einen wichtigen Beitrag zur nachhaltigen Siedlungswasserwirtschaft auf gesellschaftlicher Ebene leisten. Daher stellen sich folgende Fragen: Wieso benötigt das NHC einen Bezug zu Nachhaltigkeitszielen? Inwieweit ist die Sichtweise der Unternehmen auf die Nachhaltigkeitsperspektive wichtig für eine nachhaltige Entwicklung auf gesellschaftlicher Ebene? Was bedeutet Nachhaltigkeit für die Siedlungswasserwirtschaft?

Das folgende Kapitel widmet sich diesen Fragen und kategorisiert abschließend die Ziele, die in das NHC eingebunden wurden. Zur Heranführung wird im ersten Abschnitt noch einmal der Zusammenhang zwischen Risikocontrolling und Zielen der Siedlungswasserwirtschaft erläutert. Im zweiten Abschnitt wird ein kursorischer Überblick über Nachhaltigkeitsziele und deren Übertragung auf die Siedlungswasserwirtschaft gegeben. Im dritten Abschnitt werden die Ziele beschrieben, die im NHC-Analysegerüst aufgegriffen werden. Zugleich wird auf die Konsequenzen eingegangen, die sich aus Zielabweichungen ergeben.

3.1 Der Zielbezug des Nachhaltigkeitscontrollings

Der Bedarf für ein betriebliches Risikocontrolling wird damit begründet, dass unternehmerische Entscheidungen in der Regel unter Unsicherheit gefällt werden müssen (Wolf und Runzheimer, 2003; Bamberg et al., 2008). Sie werden also getroffen, obgleich die zukünftigen Rahmenbedingungen, welche das Ergebnis der Entscheidung maßgeblich mit beeinflussen, nicht vollständig bekannt sind. Es kann daher sein, dass infolge veränderter Rahmenbedingungen die realisierten Ergebnisse nicht mit den avisierten Ergebnissen übereinstimmen (Wolf und Runzheimer, 2003).

Auch das NHC bezieht sich letztendlich auf viele Entscheidungen im Unternehmen, die in der Vergangenheit getroffen wurden. Sie können aufgrund ihrer zeitlich langen Tragweite die gegenwärtige und zukünftige Leistungsfähigkeit beeinflussen und mit den sich wandelnden Leistungsanforderungen konfrontiert werden. Hierbei spielen unter anderem klimatische, soziodemografische, aber auch rechtliche und wirtschaftliche Wandlungsprozesse eine wichtige Rolle (hierzu auch Geyler/Bedtke, 2015). Beispielsweise sei hier auf die gegenläufige Entwicklung von Infrastrukturkapazitäten und ihrer Nachfrage in den neuen Bundesländern nach der Wende verwiesen (stellvertretend Schiller/Siedentop, 2005; Moss, 2008; Lux, 2009). Die Entscheidungen der Vergangenheit zeigen sich aber auch in den gegenwärtigen Organisationsstrukturen und internen Prozessabläufen, Entscheidungsregeln sowie Handlungsvorgaben, die nicht ständig hinterfragt werden. Beispielsweise können sich etablierte Rekrutierungsstrate-
gien für Mitarbeitende vor dem Hintergrund eines veränderten Arbeitsmarktes als un-wirsam erweisen.

Vor dem Hintergrund, dass eine Bewertung von Zielabweichungen der Siedlungswasserwirtschaft aus gesellschaftlicher Perspektive mit hohem Bewertungsaufwand verbunden und zugleich aufgrund von den skizzierten Interessenkonflikten zwischen den Akteursgruppen ein gesellschaftliches Risikocontrolling schwer zu etablieren wäre, wurde ein pragmatisches Vorgehen gewählt. Wie schon im Kapitel 2.2 beschrieben, wurde das NHC auf die Aufgabenträger ausgerichtet und deren Ziele und Bewertungs-perspektive auf Zielabweichungen aufgegriffen.
Dies ist möglich, weil die Unternehmen wichtige gesellschaftliche Ziele der Siedlungswasserwirtschaft „verinnerlicht“ haben:

- Schäden, die durch die Verletzung von Formalzielen gegenüber den Bürgern (Erschwinglichkeit, Verteilungsgerechtigkeit, Versorgungsstabilität) oder durch Fachkräftemangel entstehen und schwer zu monetarisieren sind, aber zu großen Akzeptanzproblemen von Unternehmen und Geschäftsführung führen, können vergleichend mit den anderen Schäden abgewogen werden.

3.2 Nachhaltigkeitsziele

| Nachhaltige Entwicklung - Brundtlandbericht (World Commission on Environment and Development 1987) | "Sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs. It contains within it two key concepts:
- the concept of 'needs', in particular the essential needs of the world's poor, to which overriding priority should be given; and
- the idea of limitations imposed by the state of technology and social organization on the environment's ability to meet present and future needs." |
- Die Sicherung der menschlichen Existenz
- Die Erhaltung des gesellschaftlichen Produktivpotenzials
Die Bewahrung der Entwicklungs- und Handlungsmöglichkeiten der Gesellschaft |

Gerade die Wasserversorgung und Abwasserbeseitigung stehen an der Schnittstelle zwischen dem ökologischen und dem sozialen System (Lux, 2009). Sie dienen sowohl dem Gewässerschutz als auch der Daseinsvorsorge der Bevölkerung und tragen zu gleichwertigen Lebensverhältnissen in Deutschland bei. Zugleich wurden die hierfür notwendigen technischen Strukturen über viele Jahrzehnte schrittweise aufgebaut und weisen als Langfristsysteme aufgrund ihrer langen Nutzungsduer weit in die Zukunft. Nicht von ungefähr wird die Siedlungswasserwirtschaft daher in einen engen Zusam-
menhang mit einer nachhaltigen Entwicklung der Gesellschaft gebracht, bedient sie doch Ziele aller drei Dimensionen der Nachhaltigkeit (ökologische, ökonomische und soziale) und zugleich intra- und intergenerationelle Aspekte.

Es wurden daher mehrfach die generellen Überlegungen einer nachhaltigen Entwicklung auf die Siedlungswasserwirtschaft angewandt (für einen Überblick siehe Reese/Bedtke, 2015). Ungeachtet der Unterschiede im Detail lassen sich hierbei Kernaspekte herausarbeiten, die regelmäßig als relevant für die Wasserversorgung und Abwasserbeseitigung angesehen werden (siehe für eine umfassende Literatursauswertung Reese/Bedtke, 2015). Demnach betrachteten Nachhaltigkeitskonzepte der Siedlungswasserwirtschaft regelmäßig:

- die Leistungsfähigkeit der Infrastrukturen in Bezug auf Umwelt-, Ressourcen- und Gewässerschutz sowie
- die Leistungsfähigkeit bzgl. Versorgungsqualität und -sicherheit gegenüber der Bevölkerung.

Weiterhin werden Ziele zur/wirkungsfähigkeit der Infrastrukturen in Bezug auf Umwelt-, Ressourcen- und Gewässerschutz sowie
- Wirtschaftlichkeit
- Erschwinglichkeit, Gebührenstabilität und -gerechtigkeit
- langfristigen Entwicklungsfähigkeit – wie ausreichende Investitionen, Flexibilität und Robustheit sowie
- Partizipation und Akzeptanz einbezogen.

Im Folgenden soll auf zwei recht unterschiedliche siedlungswasserwirtschaftliche Nachhaltigkeitskonzepte verwiesen werden, die für Deutschland bedeutsam sind. Zudem wird kurz auf die Eignung der Konzepte eingegangen, handlungsleitend für das NHC zu sein.

Tabelle 4: Prinzipien einer nachhaltigen Wasserwirtschaft (Kahlenborn und Kraemer 1998, S. 4)

<table>
<thead>
<tr>
<th>Prinzipienprinzip</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regionalitätsprinzip</td>
<td>Die regionalen Ressourcen und Lebensräume sind zu schützen, räumliche Umweltexternalitäten zu vermeiden.</td>
</tr>
<tr>
<td>Integrationsprinzip</td>
<td>Wasser ist als Einheit und in seinem Nexus mit den anderen Umweltmedien zu bewirtschaften. Wasserwirtschaftliche Belange müssen in die anderen Fachpolitiken integriert werden.</td>
</tr>
<tr>
<td>Kooperations- und Partizipationsprinzip</td>
<td>Bei wasserwirtschaftlichen Entscheidungen müssen alle Interessen adäquat berücksichtigt werden. Die Möglichkeit zur Selbstorganisation und zur Mitwirkung bei wasserwirtschaftlichen Maßnahmen ist zu fördern.</td>
</tr>
<tr>
<td>Ressourcenminimierungsprinzip</td>
<td>Der direkte und indirekte Ressourcen- und Energieverbrauch der Wasserwirtschaft ist kontinuierlich zu vermindern.</td>
</tr>
<tr>
<td>Vorsorgeprinzip (Besorgnisgrundsatz)</td>
<td>Extremschäden und unbekannte Risiken müssen ausgeschlossen werden.</td>
</tr>
<tr>
<td>Quellenreduktionsprinzip</td>
<td>Emissionen von Schadstoffen sind am Ort des Entstehens zu unterbinden.</td>
</tr>
<tr>
<td>Reversibilitätsprinzip</td>
<td>Wasserwirtschaftliche Maßnahmen müssen modifizierbar, ihre Folgen reversibel sein.</td>
</tr>
<tr>
<td>Intergenerationsprinzip</td>
<td>Der zeitliche Betrachtungshorizont bei wasserwirtschaftlichen Planungen und Entscheidungen muss dem zeitlichen Wirkungshorizont entsprechen.</td>
</tr>
</tbody>
</table>

Im Folgenden wird die für das NHC genutzte Zielkategorisierung vorgestellt, die wie das 5-Säulen-Konzept auf eine gute Operationalisierbarkeit auf Unternehmensebene ausgelegt ist, jedoch stärker die strategischen Anforderungen betont, die sich aus den Nachhaltigkeitszielen ergeben und hierbei die generell als wichtig erachteten Aspekte aufgreift.

3.3 Zielkatalog für das Nachhaltigkeitscontrolling

Für das NHC ist es daher wichtig, die Vielfalt der Ziele, die das Unternehmen und dessen nachhaltige Entwicklung leiten, strukturiert zu erfassen. Es bedarf hierzu einer Kategorisierung, welche zugleich auf die Ziele mit Nachhaltigkeitsbezug fokussiert.

Die Kategorien und zugeordneten Ziele werden im Folgenden erläutert.
3.3.1 Zielkategorie Umwelt und Ressourcen
Die Zielkategorie „Umwelt und Ressourcen“ umfasst zum einen die verbindlichen Aufgaben der Siedlungswasserwirtschaft in Bezug auf den Umweltschutz sowie zum anderen die von den Unternehmen darüber hinaus verfolgten Bestrebungen zum effizienten Umgang mit Umweltressourcen.

Das Ziel **Ressourceneffizienz** fordert, die Inanspruchnahme der Umweltressourcen, die im Rahmen der Aufgabenerfüllung notwendig sind, zu minimieren bzw. die Leistung bei gegebener Umweltinanspruchnahme zu maximieren. Es umfasst insbesondere Umweltziele, die sich das Unternehmen selbst stellt, ohne dass sie rechtlich verpflichtend sind. Im Zuge von Kosteneinsparungen, aber auch im Rahmen von Umweltmanagementmaßnahmen (z.B. EMAS, DIN EN ISO 14001, Energieoptimierung), kann ein Unternehmen Ziele im Sinne der Ressourceneffizienz verfolgen. Beispielsweise kann sich das Unternehmen Klimaschutzziele stellen und entsprechend versuchen, sowohl den Stromverbrauch von Aggregaten zu minimieren als auch beim bezogenen Strommix den Anteil erneuerbarer Energieressourcen zu erhöhen. Welche Konsequenzen sich aus Zielverfehlungen für das Unternehmen ergeben, hängen stark mit von der Haltung des Unternehmensführung ab. Wird die Strategie verfolgt, sich nur auf rechtlich notwendige Anforderungen zu konzentrieren, so werden die Konsequenzen einer
Zielverfehlung gering ausfallen. Wird demgegenüber durch die Unternehmensführung den Zielen der Ressourceneffizienz auf Unternehmensebene ein höherer Stellenwert eingeräumt, wären finanzielle Vermeidungsaufwendungen die Konsequenz aus Zielverfehlungen.

3.3.2 Organisation und Technik

Wirtschaftlichkeit fordert, die Aufgaben der Wasserversorgung und Abwasserbeseitigung ökonomisch verschwendungsfrei zu erfüllen, d.h. sie mit minimalem Aufwand auszuführen oder mit vorgegebenem Aufwand einen maximalen Umfang an Aufgaben und Dienstleistungen zu erbringen. Demgemäß sind die technischen und organisatorischen Strukturen sowie die Prozesse so zu gestalten, dass die Aufgaben unter den gegebenen Rahmenbedingungen und Zielstellungen möglichst kostengünstig erbracht werden. Dies bezieht sich z.B. auf Investitionsentscheidungen bezüglich der Entwicklung von Netzen, Leitungen und zentralen Anlagen, auf die Organisation der Leistungserbringung sowie auf die operative Umsetzung. Eine unzureichende Berücksichtigung der Wirtschaftlichkeit kann dazu führen, dass sich das Unternehmen wegen hoher Entgelte auf kommunaler Ebene oder, falls es sich privatwirtschaftliche Unternehmen handelt, auch vor dem Kartellamt rechtfertigen muss.

3.3.3 Mitarbeitende
Die Zielkategorie „Mitarbeitende“ befasst sich mit der Unternehmenskultur sowie dem Kompetenzpotenzial innerhalb eines Unternehmens. Die Art und Ausgestaltung des
sozialen Miteinanders sowie die Kompetenzen der Mitarbeiter bestimmen hier die Zielerreichtung.

Mit Unternehmenskultur werden die im Unternehmen vorherrschenden Werte, Normen, Regeln und Ideale bezeichnet, die das Verhalten und die Zusammenarbeit der Führungskräfte und Mitarbeiter steuern sowie die Entscheidungen, die Handlungen und das Verhalten der Organisationsmitglieder prägen. Hierbei spielen interne Transparenz, d.h. die aktive, offene und kohärente Gestaltung von Verhandlungssystemen und Entscheidungsprozessen sowie die Zustimmung der Mitarbeitenden zu Unternehmensentscheidungen (interne Akzeptanz) eine wichtige Rolle. Daneben hat auch der Arbeitsschutz einen bedeutenden Stellenwert. Durch die Unternehmenskultur wird neben der Interaktion innerhalb der Organisation auch das Auftreten nach außen hin geprägt.

Werden die Ziele der Unternehmenskultur und/oder des Kompetenzpotenzials verfehlt, kann dies die Innovations- und Anpassungskapazität mindern/negativ beeinflussen und langfristig die Leistungsfähigkeit des Unternehmens gegenüber Bürgern und Umwelt sinken.

3.3.4 Gesellschaftliche Verantwortung

kann die Strukturentwicklung (z. B. durch Bürgerbegehren gegen Bauprojekte) und das operative Geschäft (vielfältige Beschwerden) behindern.

Regionale Einbettung bezieht sich auf die regionale Ressourcennutzung (Wasser, Material), den Ort der Wertschöpfung (die Kooperation mit und die Beauftragung von regionalen Unternehmen), auf soziale Aspekte im Versorgungsgebiet und die Anpassung der siedlungswasserwirtschaftlichen Leistungserbringung an regionale Gegebenheiten.

3.3.5 Entwicklungsfähigkeit

Refinanzierbarkeit beschreibt einerseits die Fähigkeit eines Unternehmens, ausreichend Finanzmittel zu erwirtschaften, um langfristig eine Erneuerung der genutzten technischen Anlagen und somit eine Kompensation des Werteverzehrs vorzunehmen (Refinanzierung im engeren Sinne). Zugleich muss das Unternehmen darauf achten, dass es langfristig auf genügend Finanzmittel zurückgreifen kann, um Anpassungsmaßnahmen an neue Rahmenbedingungen und Innovationen finanzieren zu können (Finanzierbarkeit im engeren Sinne). Im Sinne der gerechten Verteilung zwischen den Generationen (intergenerationellen Verteilungsgerechtigkeit) dürfen hierbei z. B. keine (Re-)Finanzierungslasten in die Zukunft verlagert werden, außer wenn zugleich den zukünftigen Nutzern entsprechende Vorteile erwachsen. Ansonsten droht ein langfristiger Verlust der Leistungsfähigkeit.

Innovations- und Anpassungsfähigkeit beschreibt die Fähigkeit eines Unternehmens, u. a. technische und betriebsorganisatorische Neuerungen aktiv aufzunehmen
und diese gezielt zur Steigerung der Zukunftsfähigkeit zu implementieren. Mithin werden auch Anpassungsprozesse an sich verändernde Rahmenbedingungen (politisch, demografisch, klimatisch etc.) bewusst gestaltet, d.h. als Anlass für eigene Neuerungen aufgegriffen. Finanzressourcen, Kompetenzpotenzial und Innovationsklima innerhalb eines Unternehmens beeinflussen in hohem Maße die Innovations- und Anpassungsfähigkeit. Zielabweichungen führen hier langfristig zu einer verringerten Leistungsfähigkeit des Unternehmens.

3.3.6 Zielkonkretisierung im Rahmen des NHC

Um handlungsleitend zu sein, müssen die Ziele unternehmensspezifisch konkretisiert werden. Hierbei ist das Unternehmen in ein Governance-Netz eingebunden, da:

- gesellschaftliche Ziele mittels rechtlicher Vorgaben wirksam werden, wie z.B. die Einhaltung von rechtlichen Qualitätsanforderungen in der Abwasserbeseitigung und der Trinkwasserversorgung sowie die Berücksichtigung des Stands der Technik oder
- politische Vorgaben gegenüber dem Unternehmen formuliert werden, wie bzgl. der Erschwinglichkeit von Entgelten oder spezifische Leistungsanforderungen.

Wie im Kapitel 4 bei der Beschreibung der Wirkungspfade näher erläutert wird, werden im NHC die Nachhaltigkeitsziele in Form von Schwellenwerten zu kritischen Zielabweichungen aufgenommen. Hierbei werden im Analysegerüst zur Risikoidentifizierung Vorgaben gemacht, die erst einmal unternehmensunabhängig sind. Jedoch können die teilnehmenden Unternehmen auf drei verschiedenen Wegen ihre eigene Zielgewichtung in die Risikoanalyse einfließen lassen:

Bei der Risikobewertung und Ableitung von Handlungsoptionen sind die Unternehmen gefordert, noch einmal die Risiken zu reflektieren. Auch hierbei können einzelne Ziele noch einmal gesondert herausgestellt werden.

Schließlich können auch die Schwellenwerte, welche kritische Zielabweichungen darstellen, individuell angepasst werden.

3.4 Zusammenfassung

Abschließend soll noch einmal die hohe Bedeutung von Zieldiskussionen für eine erfolgreiche Annäherung von Unternehmen der Wasserversorgung und Abwasserbeseitigung an nachhaltige Entwicklungspfade betont werden. Diese Bedeutung spiegelt sich letztendlich im Vorgehen zur Entwicklung des NHC wieder, bei dem die Nachhaltigkeitsziele den Ausgangspunkt für die weitere Risikoanalyse darstellen.
4 Wirkungspfadbasierte Abfrage von Risiken

Dieses Kapitel ordnet die wirkungspfadbasierte Risikoidentifikation innerhalb des NHC ein, stellt das Vorgehen bei der Risikoidentifikation durch lineare Wirkungspfade dar, erläutert die Systematisierung der Wirkungspfade und geht auf Herausforderungen in diesem Zusammenhang ein.

4.1 Risikoidentifikation innerhalb des Nachhaltigkeitscontrollings

4.2 Ursache-Wirkung-Beziehungen

lichkeiten zur Verwaltung und Systematisierung dieser Ursachen-Auswirkungen-Geflechte.

Die Abbildung 5 stellt die gewählte Struktur der Wirkungspfade vor, wobei zwischen inhaltlichen Elementen (durchgezogene Linie) und Zuordnungen (gestrichelte Linie) unterschieden wird. Die Elemente werden in den nachfolgenden Abschnitten erläutert.

Abbildung 5: Struktur der linearen Wirkungspfade

4.3 **Elemente der Wirkungspfade**

Tabelle 6: Wirkungspfadelemente

<table>
<thead>
<tr>
<th>Wirkungspfadelemente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kausalzusammenhang</td>
</tr>
<tr>
<td>Ursache und Ursachenkategorie</td>
</tr>
<tr>
<td>Auswirkung</td>
</tr>
<tr>
<td>System, Teilsystem, Prozess</td>
</tr>
<tr>
<td>Nachhaltigkeitsgefahr</td>
</tr>
<tr>
<td>Indikator</td>
</tr>
<tr>
<td>Nachhaltigkeitsziel und Zielkategorie</td>
</tr>
<tr>
<td>Ausschlusskriterium</td>
</tr>
<tr>
<td>Erklärung</td>
</tr>
</tbody>
</table>
4.3.1 Ursache und Ursachenkategorie
Da sich Kausalketten häufig, Ereignis um Ereignis, beliebig weit zurückführen lassen, ist die Bestimmung einer Ausgangs-Ursache nicht möglich oder zielführend. Die Ursache eines Nachhaltigkeitsrisikos wird deshalb definiert als das letzte Ereignis einer Kausalkette, welches eine direkte Auswirkung auf das siedlungswasserwirtschaftliche System nach sich zieht. Eine Ursache kann sowohl systemintern als auch extern sein.

Beispiel:

<table>
<thead>
<tr>
<th>interne Ursache:</th>
<th>Überdimensionierung des Kanalnetzes, zu geringe Kanalsanierungsrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>externe Ursache:</td>
<td>Bevölkerungsrückgang, häufigere Starkniederschläge</td>
</tr>
</tbody>
</table>

Wie bereits erwähnt, ist es möglich, dass eine Ursache verschiedene Auswirkungen hat. Dieser Zusammenhang wird dann als separater linearer Wirkungspfad erfasst. Für die spätere Auswertung ist es wichtig, dass die Benennung der Ursachen eindeutig gewählt wird und in den unterschiedlichen Wirkungspfaden einheitlich verwendet wird (siehe 4.6.1).

Tabelle 7: Ursachenkategorien der Nachhaltigkeitsrisiken

<table>
<thead>
<tr>
<th>Ursachenkategorie</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesellschaft</td>
<td>Ursachen, die von einer Änderung in der Gesellschaft ausgehen.</td>
</tr>
<tr>
<td>Recht</td>
<td>Ursachen, die durch Veränderungen rechtlicher Rahmenbedingungen Auswirkungen auf die Nachhaltigkeitsziele haben können. Hierbei sind Veränderungen der Rechtslage als auch politisch induzierte Änderungen der Rahmenbedingungen eingeschlossen.</td>
</tr>
<tr>
<td>Wirtschaft</td>
<td>Ursachen, die durch Veränderung der wirtschaftlichen Aktivitäten Auswirkungen auf das System der Siedlungswasserwirtschaft haben. Dies umfasst das Verhalten von Akteuren, die in unmittelbarem Kontakt zum Unternehmen stehen (Fachkräfte, Zulieferer, etc.), aber auch Veränderungen der Marktbedingungen.</td>
</tr>
<tr>
<td>Technik</td>
<td>Ursachen, die durch veränderte technische Rahmenbedingungen eine Auswirkung auf das System der Siedlungswasserwirtschaft haben. Hierzu zählen Veränderungen im Bereich der Wasserleitungen und Kanäle sowie Anlagen und technisches Gerät, das zur Trinkwasserversorgung/Abwasserbeseitigung eingesetzt wird.</td>
</tr>
</tbody>
</table>
4.3.2 Kausalzusammenhang
Ereignisse in einer Kausalkette, die vor einer Ursache (siehe 4.3.1) liegen können, werden als Wirkungspfadelement „Kausalzusammenhang“ erfasst. Hierdurch wird ermöglicht, weitergehende Informationen des Nachhaltigkeitsrisikos festzuhalten und dieses somit genauer zu beschreiben. Diese Informationen dienen u.a. dazu, die Ursachenkategorie festzulegen, den Wirkungspfad zu bewerten, im Rahmen der Datenerhebung Anregungen für verschiedene Auslöser der Ursache zu benennen sowie bei der späteren Ableitung möglicher (präventiver) Maßnahmen (siehe Kapitel 7) genutzt zu werden.

Beispiel:

<table>
<thead>
<tr>
<th>Ursache:</th>
<th>zu geringe Kanalsanierungsrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kausalzusammenhang:</td>
<td>unzureichende Finanzmittel, politische Vorgaben für niedrige Entgelte</td>
</tr>
</tbody>
</table>

4.3.3 Auswirkung
Eine Auswirkung stellt den feststellbaren oder zu erwartenden Effekt einer Ursache innerhalb des Systems Siedlungswasserwirtschaft dar.

Beispiel:

<table>
<thead>
<tr>
<th>Ursache:</th>
<th>zu geringe Kanalsanierungsrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auswirkung:</td>
<td>verschlechterter Zustand des Kanalnetzes</td>
</tr>
</tbody>
</table>

Es ist möglich, dass eine Auswirkung verschiedene Ursachen hat. Dieser Zusammenhang wird dann als separater linearer Wirkungspfad erfasst. Für die spätere Auswertung ist es wichtig, dass die Benennung der Auswirkung eindeutig gewählt und in den unterschiedlichen Wirkungspfaden einheitlich verwendet wird (siehe Kapitel 4.6.1).

4.3.4 System, Teilsystem, Prozess
<table>
<thead>
<tr>
<th>System</th>
<th>Teilsystem</th>
<th>Prozess</th>
<th>Prozessumfang</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verwaltung</td>
<td>Leitung, zentrale Aufgaben, Organisation</td>
<td>Strategische Planung, Rechtswesen, Innenrevision, Beauftragtenwesen, Notfall- und Krisenmanagement, Datenverarbeitung, Archivierung</td>
<td></td>
</tr>
<tr>
<td>Verwaltung</td>
<td>Personal- und Sozialwesen</td>
<td>Personal entwickeln und betreuen</td>
<td></td>
</tr>
<tr>
<td>Verwaltung</td>
<td>Kaufmännische Aufgaben</td>
<td>Wirtschafts- und Finanzplanung, Rechnungswesen, Betriebswirtschaft, Controlling, Planung, Einkauf und Materialwirtschaft, Steuern</td>
<td></td>
</tr>
<tr>
<td>Verwaltung</td>
<td>Kundenservice und Öffentlichkeitsarbeit</td>
<td>Zählerablesung, Rechnungstellung, Beratung</td>
<td></td>
</tr>
<tr>
<td>Technik</td>
<td>Wasserwirtschaft</td>
<td>Wasserschutzgebiet, Flächenbewirtschaftung, Rechtliche Grundlagen zum Schutz der Ressource Wasser und zur Wasserentnahme, Messwesen und Monitoring</td>
<td></td>
</tr>
<tr>
<td>Technik</td>
<td>Wassergewinnung</td>
<td>Grundwasseranreicherung, Rohwasserentnahme, Transport und Speicherung von Rohwasser</td>
<td></td>
</tr>
<tr>
<td>Technik</td>
<td>Wasseraufbereitung</td>
<td>Aufbereitungsanlagen, Aufbereitungsschritte inklusive Reinwasserspeicherung, Anlagen zur Filterspülung</td>
<td></td>
</tr>
<tr>
<td>Technik</td>
<td>Wasserverteilung</td>
<td>Trinkwasserförderung, Trinkwasserspeicherung, Druckerhöhung inklusive zugehörige Rohrleitungen und Betriebsgebäude</td>
<td></td>
</tr>
<tr>
<td>Technik</td>
<td>Zählerwesen</td>
<td>Betreiben, Dokumentation, Wartung, Instandsetzung</td>
<td></td>
</tr>
<tr>
<td>Technik</td>
<td>Qualitätsüberwachung und Labor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technik</td>
<td>Zentrale Technik</td>
<td>Betrieb: Gebäudemanagement, zentrale Werkstätten, zentraler Fuhrpark, zentrale Lager, Leitwarte; Dokumentation, Betriebsstatistik</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 8: Hierarchische Gliederung in System/Teilsystem/Prozess zur eindeutigen Zuordnung der Auswirkung zu einem Prozess (Prozessmodell wurde entwickelt auf Grundlage von Möller, 2014)
<table>
<thead>
<tr>
<th>System</th>
<th>Teilsystem</th>
<th>Prozess</th>
<th>Prozessumfang</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verwaltung</td>
<td>Leitung, Zentrale Aufgaben, Organisation</td>
<td>IT/Ausstattung Mitarbeiterarbeitsplätze, Geodaten-service, Rechtswesen, Beauftragtenwesen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Personal- und Sozialwesen</td>
<td>Personal entwickeln und betreuen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kaufmännische Aufgaben</td>
<td>Wirtschafts- und Finanzplanung, Rechnungswesen, Betriebswirtschaft, Controlling, Planung, Einkauf und Materialwirtschaft, Energiebewirtschaftung</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kundenservice</td>
<td>Kunden betreuen, Gebührenbescheide, Bescheidung</td>
<td></td>
</tr>
<tr>
<td>Technik</td>
<td>Abwasserableitung: Grundstücksentwässerung</td>
<td>Überwachen und Betreiben</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abwasserableitung: Kanalbetrieb</td>
<td>Reinigung, Inspektion, Wartung, Instandsetzung der Kanäle, Schächte, Pumpwerke, Anlagen zur Niederschlagswasserbehandlung, Sonderbauwerke; Leerung Sammelgruben und Kleinkläranlagen; Rattenbekämpfung, Geruchsbehandlung, Abluftsteuerung von Kanälen, Schadensbewertung,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abwasserableitung: Kanalbau</td>
<td>Renovierung, Erneuerung, Neubau: Planung, Bauüberwachung, Fremdvergabe, Projektmanagement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abwasserbehandlung: Kläranlagenbetrieb</td>
<td>Vorbehandlung, Mechanische Reinigung, Biologische Reinigung, Weitergehende Reinigung, Schlammstabilisierung, Schlammentwässerung, -trocknung, Eigenergieerzeugung, Abluftbehandlung, Annahme von Schlämmen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abwasserbehandlung: Kläranlagenbau</td>
<td>Renovierung, Erneuerung, Neubau: Planung, Bauüberwachung, Fremdvergabe, Projektmanagement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abwasserbehandlung: Reststoffe entsorgen</td>
<td>Schlammverbrennung, Reststoffentsorgung</td>
<td></td>
</tr>
</tbody>
</table>

Beispiel:

Auswirkung: *verschlechterter baulicher Zustand des Kanalnetzes*
System: *Abwasserbeseitigung*
Teilsystem: *Technik*
Prozess: *Kanalbetrieb*
4.3.5 Nachhaltigkeitsgefahr
Die Nachhaltigkeitsgefahr beschreibt, wie ein Nachhaltigkeitsziel durch eine Auswirkung gefährdet ist bzw. verfehlt wird.

Beispiel:
<table>
<thead>
<tr>
<th>Auswirkung:</th>
<th>verschlechterter Zustand des Kanalnetzes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nachhaltigkeitsgefahr:</td>
<td>Abwasserexfiltration: Schadstoffeintrag in Grundwasser und Boden</td>
</tr>
</tbody>
</table>

4.3.6 Indikator
Ein Indikator ist eine quantitative Kennzahl oder ein qualitativer Tatbestand, durch welchen die Abweichung von einem Nachhaltigkeitsziel gemessen bzw. festgestellt werden kann. Dem Indikator werden ein unterer (gelber) und ein oberer (roter) Schwellenwert zugewiesen, sodass der Zustand des Indikators sowie dessen zeitliche Entwicklung bewertet werden kann. Die Indikatoren und Schwellenwerte werden zur späteren Risikoanalyse (siehe Kapitel 6.1) benötigt.

Beispiel:
<table>
<thead>
<tr>
<th>Auswirkung:</th>
<th>verschlechterter Zustand des Kanalnetzes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indikator:</td>
<td>sanierungsbedürftige Kanallängenrate [%]</td>
</tr>
</tbody>
</table>

4.3.7 Nachhaltigkeitsziel und Zielkategorie

Beispiel:
<table>
<thead>
<tr>
<th>Nachhaltigkeitsgefahr:</th>
<th>Abwasserexfiltration: Schadstoffeintrag in Grundwasser und Boden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nachhaltigkeitsziel</td>
<td>Umweltschutz</td>
</tr>
<tr>
<td>Zielkategorie</td>
<td>Umwelt und Ressourcen</td>
</tr>
</tbody>
</table>

4.3.8 Ausschlusskriterium
Das Ausschlusskriterium legt fest, ob ein Wirkungspfad für Unternehmen mit bestimmten Rahmenbedingungen nicht zutreffen und demnach ausgeschlossen werden kann. Ist kein Ausschlusskriterium vorhanden, so gilt der Wirkungspfad zunächst. Das Ausschlusskriterium kann dabei helfen, den Umfang der Datenerhebung zu reduzieren.
4.3.9 Erklärung
In der Erklärung eines Wirkungspfades wird dieser ausgehend von der Ursache bis zur Beeinträchtigung eines Nachhaltigkeitsziels so kurz wie möglich, jedoch vollständig beschrieben. Hierdurch sollen die durch die verkürzte Darstellung der Wirkungspfade fehlenden Informationen aufgenommen und die Interpretation erleichtert werden. In Abbildung 6 ist das Wirkungspfadschema mit einem Beispiel ausgefüllt.

Abbildung 6: Beispiel Wirkungspfad

4.4 Mögliche Vorgehensweisen der Risikoidentifikationen
Das Wirkungspfadkonzept wurde entwickelt, um unterschiedlichste Risiken technischer, ökologischer oder sozialer Art, zu identifizieren und nach einem einheitlichen Schema zu erfassen. Die so identifizierten Risiken dienen als Analysegrundlage für die folgenden Auswertungen (siehe Kapitel 6). Der Schritt der Risikoidentifikation ist essentiell im Risikomanagement, da nur die zunächst identifizierten Risiken im weiteren Fortgang berücksichtigt werden. Um eine möglichst umfangreiche Risikoidentifikation durchzuführen, die den Ansprüchen der Nachhaltigkeit gerecht wird, ist ein breites Fachwissen erforderlich. Es empfiehlt sich deshalb, an dieser Stelle in einem interdisziplinären Team zu arbeiten und relevante Vertreter aus unterschiedlichen Unternehmensbereichen einzubeziehen.

Mit Hilfe des Wirkungspfadkonzeptes kann eine systematische Risikoidentifikation erfolgen. Hierbei sind verschiedene Vorgehensweisen möglich.

4.4.1 Brainstorming
Mögliche Nachhaltigkeitsrisiken können durch Brainstorming identifiziert werden. Hierbei werden spontane Einfälle zur Ideenfindung gesammelt. In einer frei laufenden Konversation werden sachkundige Personen dazu angeregt und ermutigt, mögliche Risiken zu ermitteln. Das Brainstorming-Verfahren im Risikomanagement wird in der DIN...
EN 31010 näher beschrieben. Die so gesammelten Risiken können dann als Wirkungspfade formalisiert werden.

4.4.2 Ausgehend von Ursachen
Ausgehend von einer bestimmten Ursache oder eines Kausalzusammenhanges können deren mögliche Auswirkungen identifiziert werden, was wiederum unterschiedliche Nachhaltigkeitsziele gefährden kann. Dies entspricht von der Struktur her einer Ereignisbaumanalyse (DIN EN 31010). Zu beachten ist, dass jede Kausalkette als linearer Wirkungspfad erfasst wird. Im Beispiel in Abbildung 7 sind dementsprechend fünf Wirkungspfade dargestellt.

4.4.3 Ausgehend von Auswirkungen
Ausgehend von einer bestimmten Auswirkung können deren mögliche Ursachen sowie die durch diese Auswirkung gefährdeten Nachhaltigkeitsziele identifiziert werden (siehe Abbildung 8). Dies entspricht von der Struktur her einer Bow-Tie Analyse (DIN EN 31010). Zu beachten ist, dass jede Kausalkette als linearer Wirkungspfad erfasst wird. Im Beispiel in Abbildung 8 sind neun mögliche Wirkungspfade dargestellt.
Da die Auswirkungen einem Prozess zugeordnet werden (siehe Kapitel 4.3.4), kann auch anstatt von einer Auswirkung von einem Prozess ausgegangen werden, welcher beeinträchtigt wird.

Beispielfrage zur Risikoidentifikation ausgehend von einer Auswirkung:

Welche Ursachen können zu häufigeren Überstauereignissen (Auswirkung) führen und welche Nachhaltigkeitsziele wären davon betroffen?

4.4.4 Ausgehend von Nachhaltigkeitszielen

Ausgehend von einem Nachhaltigkeitsziel können mögliche, darauf wirkende negative Einflüsse (Auswirkungen), die dieses Ziel gefährden, identifiziert sowie deren Ursachen gemäß Kapitel 4.4.3 ergründet werden (siehe Abbildung 9). Dies entspricht von der Struktur her einer Fehlerbaumanalyse (DIN EN 31010). Zu beachten ist, dass jede Kausalkette als linearer Wirkungspfad erfasst wird, sodass im Beispiel der Abbildung 9 fünf mögliche Wirkungspfade dargestellt sind.

![Abbildung 9: Risikoidentifikation ausgehend von einem Nachhaltigkeitsziel](image)

Beispielfrage zur Risikoidentifikation ausgehend von einem Nachhaltigkeitsziel:

Welche Auswirkungen können das Nachhaltigkeitsziel Wirtschaftlichkeit des Unternehmens gefährden und welche Ursachen führen diese herbei?

4.4.5 Ausgehend von den Umweltwirkungskategorien einer Ökobilanz

In einem intensiven Diskussionsprozess innerhalb der Gruppe der Forschungspartner sowie im Austausch mit den Praxispartnern erwiesen sich folgende Umweltthemen für die Siedlungswasserwirtschaft von Bedeutung:

a) **Ressourcenverbrauch**
 1. Energetische Ressourcen
 2. Flächenbedarf
 3. Weitere mengenmäßig relevanten und/oder aus Knappheit kritischen Stoffe (z.B. Stoffe, die durch Chemikalieneinsatz bei der Abwasserreinigung und/oder Trinkwasseraufbereitung verbraucht werden)

b) **Emissionen**
 - Luft
 4. Treibhausgase (gemessen in CO₂-Äquivalenten)
 5. Weitere umweltschädliche Emissionen in die Luft (z.B. Ozonschicht abbauende Substanzen, Substanzen mit photochemischem Ozonbildungspotenzial, …)
 - Wasser
 6. Stickstoff
 7. Phosphor
 8. Schwermetalle
 9. Hormonaktive Substanzen und Arzneimittelrückstände
 10. Weitere umweltschädliche Emissionen in Gewässer
 - Boden (Eintrag z.B. über Klärschlammausbringung auf Feldern)
 11. Schwermetalle
 12. Weitere umweltschädliche Emissionen in den Boden

Auf Basis dieser relevanten Umweltthemen können systematisch Wirkungspfade erstellt werden. Dabei wird das jeweilige Umweltthema als Nachhaltigkeitsrisiko angesehen und es werden Ursache-Wirkung-Beziehungen erstellt, die zum Eintreten des Nachhaltigkeitsrisikos führen (Wirkungspfade). Diese Wirkungspfade bilden die wesentlichen umweltspezifischen Nachhaltigkeitsrisiken der Siedlungswasserwirtschaft ab.

Beispielfrage zur Risikoidentifikation ausgehend von einem Umweltthema:

Welche Wirkungskategorien oder wichtige Umweltthemen betreffen die Siedlungswasserwirtschaft?
Welches Nachhaltigkeitsziel ist von dem Umweltthema betroffen?
Über welche Ursachen und Auswirkungen ist das entsprechende Nachhaltigkeitsziel betroffen?

4.4.6 Weitere Möglichkeiten
Die Struktur der Wirkungspfade bietet vielfältige weitere mögliche Gedankenstützen bei der Risikoidentifikation. Z. B. können die Ursachen- und Zielkategorien sowie das
Prozessmodell herangezogen werden oder es kann gezielt nach Zusammenhängen zwischen zwei Wirkungspfadelementen gesucht werden (siehe Abbildung 10).

Abbildung 10: Risikoidentifikation ausgehend von einer Ursache in Verbindung mit einem Nachhaltigkeitsziel

Beispielfrage zur Risikoidentifikation ausgehend von einer Ursache in Verbindung mit einem Nachhaltigkeitsziel:
Über welche Auswirkungen können vermehrte Starkniederschläge (Ursache) die Wirtschaftlichkeit (Nachhaltigkeitsziel) des Unternehmens gefährden?

4.5 Komplexe Wirkungsnetze

Abbildung 11: Abbildung von Wirkungsnetzen durch Rekombination von Wirkungspfaden
Anhand des Beispiels in Abbildung 11 sollen Möglichkeiten der Analyse dieser Wirkungsnetze erläutert werden:

■ Ursache 1 zieht drei Auswirkungen (1, 2, 3) nach sich und gefährdet dadurch drei Nachhaltigkeitsziele (1, 2, 3).
■ Auswirkung 2 wird von drei Ursachen (1, 2, 3) herbeigeführt und gefährdet ein Nachhaltigkeitsziel (2).
■ Auswirkung 3 wird von einer Ursache (1) herbeigeführt und gefährdet drei Nachhaltigkeitsziele (1, 2, 3).
■ Nachhaltigkeitsziel 2 wird von drei Auswirkungen (1, 2, 3) gefährdet, die wiederum von drei Ursachen (1, 2, 3) herbeigeführt werden.

Diese Informationen können für die Risikoanalyse und die Ableitung von Handlungsmaßnahmen zur Risikominimierung herangezogen werden. Da die Mittel, die zur Risikominimierung zur Verfügung stehen, i. d. R. begrenzt sind, müssen diese effizient eingesetzt werden.

Im Beispiel kann untersucht werden, ob die einflussreiche Ursache 1 durch präventive Maßnahmen beeinflussbar ist (v.a. interne Ursachen sind gegenüber externen Ursachen beeinflussbar). Auch die Auswirkung 3 ist sehr einflussreich. Hier sollte versucht werden, diese Auswirkung einzudämmen oder den zugehörigen Prozess zu stabilisieren. Das Nachhaltigkeitsziel 2 ist am häufigsten gefährdet. Hierauf sollte das Augenmerk des Unternehmens gelegt werden.

Diese qualitativen Aussagen sollten mit den quantitativen Ergebnissen der Risikoanalyse (siehe Kapitel 6) abgeglichen werden.

4.6 Herausforderungen bei der Sammlung von Wirkungspfaden

4.6.1 Homogene Nomenklaturen der Wirkungspfadelemente
Die Beschreibung von Wirkungspfadelementen wie beispielsweise von Ursachen oder Auswirkungen sollte unabhängig vom jeweiligen Verfasser einer einheitlichen Nomenklatur folgen. Dies führt unter anderem dazu, dass bei vielen unterschiedlichen Wirkungspfad-Autoren die Übersichtlichkeit und Verständlichkeit der Risiko-Sammlung erhalten bleibt und ähnliche Wirkungspfade gut voneinander abgegrenzt werden können. Des Weiteren legt eine homogene Nomenklatur der Wirkungspfade den Grundstein, um gezielt die gesamte Menge an identifizierten Risiken nach definierten Ele-
menten, wie bestimmten Ursachen oder Auswirkungen, zu filtern. Zudem erleichtert es die vereinheitlichte Form der gesammelten Wirkungspfade, diese z.B. mithilfe externer Netzwerkanalyseverfahren zu untersuchen.

4.6.2 Adäquate Indikatoren und Schwellenwerte
Das Auswählen von adäquaten Indikatoren und Schwellenwerten, welche die Nachhaltigkeitsgefahren messbar machen und nachhaltige Bereiche definieren, gestaltet sich in der Praxis unter Umständen als relativ komplexe Herausforderung. Deshalb sollte an dieser Stelle ein enger Diskurs zwischen der Forschung, Anwendern und Beratungsunternehmen aufgespannt werden.

4.6.3 Detaillierungsgrad und Zuordnung der Wirkungspfadelemente

4.6.4 Abstrakte Risiken
Je nach Anwendungsbereich können Risiken identifiziert werden, welche für ein Unternehmen voraussichtlich keine Bedeutung haben werden, während andere Unternehmen dieses Risiko als relevant betrachten. Deshalb ist nicht nur der Diskurs zwischen Forschungspartnern und unterschiedlichen Praxispartnern unabdingbar, um eine ganzheitliche Risikoidentifikation zu ermöglichen, sondern auch der Diskurs zwischen verschiedenen Praxispartnern untereinander, um ein Verständnis für die heterogenen Risikoprofile der verschiedenen Unternehmen zu schaffen.
5 Datenerhebung
Im Rahmen des Nachhaltigkeitscontrollings sollen unternehmensspezifische Risikoprofile erstellt und bewertet werden. Dafür werden basierend auf der Sammlung von Wirkungspfaden und als Grundlage für die entwickelten Analyse-Verfahren (s. Kapitel 6) spezifische Unternehmensdaten erhoben und ausgewertet.

Basis- und Komplementmodul

Abbildung 12: Prinzip des Basis- und Komplementmoduls
Die zu erhebenden Daten lassen sich nach Analyse-Verfahren in drei Kategorien unterteilen (s. Abbildung 13).

Risikoanalyse
- Eintrittswahrscheinlichkeit
- Schadensausmaß

Monitoring
- Indikatorwerte

Abbildung 13: Kategorisierung der zu erhebenden Datenarten

Die Eintrittswahrscheinlichkeit wird für die Durchführung der Risikoanalyse (Kapitel 6.1) erhoben. Im NHC beschreibt sie die Möglichkeit des Auftretens eines definierten Ereignisses charakterisiert durch einen Indikator und Schwellenwerte in einem abgegrenzten Zeithorizont in der Zukunft. Da die Eintrittswahrscheinlichkeiten der abgefragten Ereignisse häufig nicht über konkrete Zahlenwerte ermittelt werden kann, erfolgt die subjektive Einschätzung der Eintrittswahrscheinlichkeit über eine qualitative Skala von 1 bis 5 (s. Tabelle 9).

Tabelle 9: Skalierung der Eintrittswahrscheinlichkeit

<table>
<thead>
<tr>
<th>Skala</th>
<th>Eintrittswahrscheinlichkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Extrem gering</td>
</tr>
<tr>
<td>2</td>
<td>Geringer als die Wahrscheinlichkeit, dass es nicht eintritt</td>
</tr>
<tr>
<td>3</td>
<td>Genauso groß wie die Wahrscheinlichkeit, dass es nicht eintritt</td>
</tr>
<tr>
<td>4</td>
<td>Größer als die Wahrscheinlichkeit, dass es nicht eintritt</td>
</tr>
<tr>
<td>5</td>
<td>Extrem groß</td>
</tr>
</tbody>
</table>

Tabelle 10: Skalierung des Schadensausmaßes

<table>
<thead>
<tr>
<th>Skala</th>
<th>Schadensausmaß</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kein Schaden</td>
</tr>
<tr>
<td>2</td>
<td>Geringer Schaden</td>
</tr>
<tr>
<td>3</td>
<td>Mittlerer Schaden, der durch interne Ausgleichsmaßnahmen zu behandeln ist</td>
</tr>
<tr>
<td>4</td>
<td>Großer Schaden, der organisatorische oder technische Umstrukturierung bedeutet bzw. deutliche entgeltrelevante Auswirkungen hat</td>
</tr>
<tr>
<td>5</td>
<td>Extrem großer Schaden, der Unternehmen in seinem Fortbestand gefährdet</td>
</tr>
</tbody>
</table>

Für weitere Details zu der Entwicklung und Festlegung der Eintrittswahrscheinlichkeits- und Schadensausmaßskalen siehe Kapitel 6.1.3.2.

Eintrittswahrscheinlichkeit und Schadensausmaß werden mithilfe eines festen Musters abgefragt. Die Fragen sollten wichtige Informationen über den zugrundeliegenden Wirkungspfad enthalten und folgendermaßen aufgebaut sein:

Musterfrage:
Wie hoch ist die Eintrittswahrscheinlichkeit/das Schadensausmaß, dass/wenn es in den nächsten \(x \) Jahren (Zeithorizont) aufgrund der Ursache zur Auswirkung kommt und der Indikator den roten Schwellenwert übersteigt?

Bei Wirkungspfaden für die kein Indikator vorliegt, sieht die Abfrage folgendermaßen aus:

Musterfrage (Wirkungspfad ohne Indikator):
Wie hoch ist die Eintrittswahrscheinlichkeit/das Schadensausmaß, dass/wenn es in den nächsten \(x \) Jahren (Zeithorizont) aufgrund der Ursache zur Auswirkung kommt?

Im Folgenden werden anhand ausgewählter Wirkungspfade Beispiele zur Datenerhebung von Eintrittswahrscheinlichkeit und Schadensausmaß gegeben.
Beispiel 1 (AW):
„geringere Verfügbarkeit funktionsfähiger Kanäle durch schlechten Kanalzustand“

<table>
<thead>
<tr>
<th>Ursache</th>
<th>Auswirkung</th>
<th>Zeithorizont</th>
<th>Indikator</th>
<th>Roter Schwellenwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verschlechterung Kanalzustand</td>
<td>Abnehmende Verfügbarkeit funktionsfähiger Kanäle</td>
<td>15 Jahre</td>
<td>Kurzfristig sanierungsbedürftige Kanallängenrate</td>
<td>10 %</td>
</tr>
</tbody>
</table>

Eintrittswahrscheinlichkeit
Wie hoch ist die Wahrscheinlichkeit, dass es in den nächsten 15 Jahren aufgrund eines verschlechterten Kanalzustands zu einer abnehmenden Verfügbarkeit funktionsfähiger Kanäle kommt und die kurzfristig sanierungsbedürftige Kanallängenrate 10% überschreitet?

Schadensausmaß
Wie hoch ist das Schadensausmaß, wenn es in den nächsten 15 Jahren aufgrund eines verschlechterten Kanalzustands zu einer abnehmenden Verfügbarkeit funktionsfähiger Kanäle kommt und die kurzfristig sanierungsbedürftige Kanallängenrate 10% überschreitet?

Beispiel 2 (TW):
„Abnahme Trinkwasserqualität durch Nitratanstieg Rohwasser“

<table>
<thead>
<tr>
<th>Ursache</th>
<th>Auswirkung</th>
<th>Zeithorizont</th>
<th>Indikator</th>
<th>Roter Schwellenwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konzentrationsanstieg von Nitrat im Rohwasser</td>
<td>Abnehmende Trinkwasserqualität</td>
<td>15 Jahre</td>
<td>Nitrat Reinwasser</td>
<td>50 mg/l</td>
</tr>
</tbody>
</table>

Eintrittswahrscheinlichkeit
Wie hoch ist die Wahrscheinlichkeit, dass es in den nächsten 15 Jahren aufgrund eines Nitratanstiegs im Rohwasser zu einer Abnahme der Trinkwasserqualität kommt und die Nitratkonzentration im Reinwasser 50 mg/l übersteigt?

Schadensausmaß
Wie hoch ist das Schadensausmaß, wenn es in den nächsten 15 Jahren aufgrund eines Nitratanstiegs im Rohwasser zu einer Abnahme der Trinkwasserqualität kommt und die Nitratkonzentration im Reinwasser 50 mg/l übersteigt?

Tabelle 11: Zeithorizonte in Abhängigkeit der Wirkungsdauer von Wirkungspfaden

<table>
<thead>
<tr>
<th>Wirkungsdauer</th>
<th>Zeithorizont</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kurzfristig</td>
<td>5 Jahre</td>
</tr>
<tr>
<td>Mittelfristig</td>
<td>15 Jahre</td>
</tr>
<tr>
<td>langfristig</td>
<td>50 Jahre</td>
</tr>
</tbody>
</table>

Zu beachten ist hierbei, dass im NHC trotz teilweise unterschiedlicher Zeithorizonte Aggregationen und Vergleiche bei den Analyse-Verfahren vorgenommen wurden.

57
che Bemessungsgrundlagen für die Indikatoren gelten oder Hinweise über ursächliche Hintergründe von Risiken.

Die beschriebene Vorgehensweise der Datenerhebung hat sich während des Forschungsprojektes bewährt und wird in dieser Form auch nach Projektende von dem Forschungs[part]ner aquabench für das Nachhaltigkeitscontrolling angeboten.
6 Analyse-Verfahren

Im Folgenden werden die Analyse-Verfahren des Nachhaltigkeitscontrollings in ihrer Funktionsweise und Anwendung ausführlich erläutert (Abbildung 14). Dafür werden zuerst die Risikoanalyse und das Monitoring detailliert vorgestellt sowie auf die Entwicklung und Hintergründe der Verfahren eingegangen. Anschließend folgt ein Kapitel...

6.1 Risikoanalyse

Die Risikoanalyse stellt im NHC-Ansatz neben dem Monitoring ein zentrales Analyseverfahren dar. Durch die Risikoanalyse im Speziellen werden die im Rahmen der Datenerhebung bei den Praxispartnern generierten Daten hinsichtlich der Risikohöhen der einzelnen Wirkungspfade je Nachhaltigkeitskategorie und Nachhaltigkeitsziel ausgewertet und in aggregierter Form über Netzdiagramme und Risikomatrizen abgebildet.

Im vorliegenden Kapitel soll zunächst aufgezeigt werden wie der Begriff Risiko definiert ist und wie man über die erhobenen Daten zu Schadensausmaß und Eintrittswahrscheinlichkeit der Wirkungspfade die jeweilige Risikohöhe berechnen kann.

6.1.1 Risikodefinition

Die Einheit des Schadensausmaßes hängt vom jeweiligen Sachgebiet ab. Es können Werte sein, die sich in Geldgrößen ausdrücken lassen, es kann sich aber auch um befürchtete Tote, potenziell schwer Betroffene oder den Totalverlust eines gesunkenen Schiffes handeln. Selbstverständlich lässt sich nicht jedes Schadensausmaß monetär ausdrücken, letztendlich ist die Bewertung mangels einheitlicher Definitionen für "Schaden" oft subjektiv (BBK, 2010). Um eine sinnvolle Risikobewertung vornehmen zu können, ist ein konsequenter auf alle Risiken gleichartig angewendetes Risikomaß (neben im Idealfall objektiv nachvollziehbaren Ausgangsdaten mit empirischen Belegen und möglichst geringer Unsicherheit) notwendig. Da diese objektiven Daten in der Praxis häufig fehlen, muss in der Regel die subjektive Einschätzung von fachlich kompe-
tenten Experten genutzt werden. Diese Schätzungen können als akzeptabel bezeich-
et werden, wenn die Daten der Experten diskutiert und im Detail begründet werden,
sowie alle Schätzungen im Nachgang nochmals auf Plausibilität geprüft werden (Gleis-
nner, 2001).

Beispiele für mögliche Risikomaße/Schadensparameter sind nach BBK (2010):
- Monetäre/wirtschaftliche Maße (in € Schadensumme)
- Umweltbezogene Parameter (z.B. Schädigung Schutzgebiete, Grundwasser)
- Risikomaße in Hinsicht auf das Schutzgut Mensch (z.B. Tote, Verletzte, etc.)
- Ver-/Entsorgungssicherheitsbezogene Parameter (z.B. Anzahl oder Dauer der Unter-
 berbrechungen TW-Versorgung bzw. Störungen bei Ableitung)
- Immaterielle Risikomaße (z.B. öffentliche Sicherheit und Ordnung, psychologische
 Auswirkungen, Schäden an Kulturgütern)

Des Weiteren muss für den betrachteten Risikobereich die bisherige Eintrittshäufigkeit
or zukünftige Eintrittswahrscheinlichkeit ebenfalls in einer Skala festgelegt werden,
mit der ein Ereignis innerhalb eines bestimmten Zeitintervalls eintritt. 0,01 Ereignisse
pro Jahr bedeuten, dass im Mittel ein Schadensereignis einmal in 100 Jahren beobach-
tet werden konnte. Diese Einschätzungen sind abhängig von den verfügbaren statisti-
schen Daten und Erfahrungen aus der Vergangenheit. Sie sind nur dann verlässlich,

Risikosituationen können weiter unterschieden werden in Situationen mit objektiv ge-
ggebenen Wahrscheinlichkeiten (z.B. im Glücksspiel) und Situationen, in denen Wahr-
scheinlichkeiten subjektiv sind (Weber, 2013). Letztere sind typisch für wirtschaftliche,
umweltrelevante oder soziale Entscheidungssituationen, die im Rahmen des NaCoSi-
Vorhabens betrachtet werden sollen.

Für das NHC ist somit ein Risiko als eine Zielabweichung mit negativen Auswirkungen
für die Nachhaltigkeit eines siedlungswasserwirtschaftlichen Unternehmens definiert
(vgl. Kapitel 3). Allen Risiken ist gemein, dass sie eine Gefahr für eine der fünf Nach-
haltigkeitskategorien darstellen.

Die Höhe eines Risikos (auch Risikopotenzial) ergibt sich je nach Skalierung für Ein-
trittswahrscheinlichkeit und Schadensausmaß folgendermaßen:

\[\text{Eintrittswahrscheinlichkeit} \times \text{Schadensausmaß} = \text{Risikohöhe} \]

Die Gestaltung der Skalierung für das Nachhaltigkeitscontrolling wird in Kapitel 6.1.3.2
vertieft erörtert.

6.1.2 Untersuchte Methoden zur Risikobewertung

Im Risikomanagement existieren bereits verschiedene Methoden der Bewertung. Die
Norm ISO 31000 „Risikomanagement - Allgemeine Anleitung zu den Grundsätzen und
zur Implementierung eines Risikomanagements“ in der ergänzenden ISO Norm 31010
„Risikomanagement - Verfahren zur Risikobeurteilung“ ist hier wichtige Referenz. Ne-
ben den dort empfohlenen acht Risikobeurteilungsverfahren, wurde im Rahmen von
NaCoSi auch der Analyseansatz zur Bewertung von Transformationspotenzialen von

6.1.2.1 Bewertung von Transformationspotenzialen von Wasserversorgungstechniken

In Tabelle 12 sind die Vor- und Nachteile der Bewertung von Transformationspotenzialen von Wasserversorgungstechniken nach Zimmermann (2013) dargestellt.

<table>
<thead>
<tr>
<th>Vorteile der Methode</th>
<th>Nachteile der Methode</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ Qualitative Methode.</td>
<td>▪ Häufigkeit der Nennung einer Variablen ungleich der tatsächlichen Bedeutung.</td>
</tr>
<tr>
<td>▪ Geringer Aufwand der erforderlichen Datenbeschaffung.</td>
<td>▪ Subjektive Aussage der Interviews.</td>
</tr>
</tbody>
</table>

Innerhalb des Projektes NaCoSi war eine Überlegung mit Hilfe des Analyse-Ansatzes von Martin Zimmermann zu prüfen, welche Systemelemente häufig in Wirkungspfaden genannt und dadurch kritisch auffallen und ob es Wechselwirkungen oder Rückkopplungen gibt. Da dieser Ansatz auf der Durchführung von Interviews basiert und dies als Umsetzung für die Praxis nicht gut praktizierbar ist, wurde er nicht weiter verfolgt.

6.1.2.2 Ursachenanalyse

Die UA kann in den Bereichen Sicherheit, Gesundheit, Umwelt, Qualität, Betriebssicherheit und Produktionsabläufe eingesetzt werden.

Ziel des Instruments ist nicht nur zu identifizieren was passiert ist, sondern wie und warum. Durch das Entwerfen einer visuellen Karte – dem sogenannten Fischgräten-Diagramm, werden definierte Ursachen mit einem bestimmten Effekt verbunden, um letztendlich umsetzbare Verbesserungsmaßnahmen zu identifizieren mit dem Ziel ähn-
liche/gleiche Fälle in der Zukunft zu verhindern. Die Karte erzeugt eine Momentaufnahme des kollektiven Wissens oder der Wissenslücken zu einem bestimmten Problem und stellt somit graphisch die Beziehung von einem Problem, den Ursachen und den Effekten dar (Kraus und Partner, 2011).

Gegenwärtig wird die UA vorwiegend eingesetzt, um mit Expertenwissen zu Situationen und deren Zusammenhängen schon vorhandener Effekte im Hinblick auf deren Ursachen zu analysieren (Rooney und Venden Heuvel, 2004). Im Rahmen des Nachhaltigkeitscontrollings wird demgegenüber mit Einschätzungen gearbeitet, die in Zukunft unter bestimmten Voraussetzungen zu erwarten sind, aber möglichst vermieden werden sollen.

In Tabelle 13 sind stichpunktartig die Vor- und Nachteile der UA zusammengestellt.

<table>
<thead>
<tr>
<th>Vorteile der Methode</th>
<th>Nachteile der Methode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ermöglichung einer vielseitigen Betrachtungsweise.</td>
<td>Unübersichtlichkeit bei komplexen Problemstellungen.</td>
</tr>
<tr>
<td>Visuelle und strukturierte Aufbereitung möglich.</td>
<td></td>
</tr>
</tbody>
</table>

6.1.2.3 Fehlzustands- und -auswirkungsanalyse

und helfende Maßnahmenstrategien möglich machen und einen Schutz gegen eventuelle Vorwürfe oder Schadensansprüche darstellen (Werdich, 2012).

In Tabelle 14 sind stichpunktartig die Vor- und Nachteile der FMEA zusammengestellt.

Tabelle 14: Vor- und Nachteile der Risikobewertungsmethode FMEA

<table>
<thead>
<tr>
<th>Vorteile der Methode</th>
<th>Nachteile der Methode</th>
</tr>
</thead>
<tbody>
<tr>
<td>■ Anwendbar in vielen Bereichen.</td>
<td>■ Die Methode identifiziert nur Ausfallsart, keine Kombinationen von Ausfallarten.</td>
</tr>
<tr>
<td>■ Aufarbeitung der Ergebnisse in einem einfach zu lesendem Format.</td>
<td>■ Wenn nicht kontrolliert und fokussiert angewendet (Person mit Methodenkenntnissen), sehr zeit- und kostenintensiv.</td>
</tr>
<tr>
<td>■ Vermeidung von zusätzlichen Kosten im (Entwicklungs-) Prozess durch Fehlerfrüherkennung.</td>
<td>■ Schwierigkeiten bei der Anwendung auf komplexe Systeme.</td>
</tr>
<tr>
<td>■ Möglichkeit zur Sammlung von Monitoringdaten, welche besonders relevant sind.</td>
<td></td>
</tr>
</tbody>
</table>

Für das NHC und das Nachhaltigkeitscontrolling waren insbesondere die breite thematisiche Anwendbarkeit und die Möglichkeit mit einem Datenmonitoring zu arbeiten durchaus attraktiv. Gründe diese Methode jedoch nicht zu wählen, waren der schwer kontrollierbare Kosten- und Zeitaufwand und die Schwierigkeiten komplexe Systeme detailliert abzubilden.

6.1.2.4 Beurteilung der menschlichen Zuverlässigkeit

Das Verfahren der HRA kann sowohl qualitativ als auch quantitativ angewendet werden:

■ Qualitativ: Identifizierung des Potenzials menschlichen Fehlverhaltens und dessen Ursachen; Ziel: Reduzierung der Häufigkeit des Fehlverhaltens
■ Quantitativ: Durchführung, wenn für weiterführende Analysenverfahren Daten über das menschliche Versagen benötigt werden.

Folgende Informationen werden nach ISO 31010 zur Durchführung der HRA benötigt:

■ Angaben zu den von den Personen auszuführenden Arbeiten,
■ Erfahrung über Art des Fehlverhaltens von praktisch vorkommenden Irrtümern sowie Irrtumspotenzial,
■ Fachwissen zu menschlichem Fehlverhalten und darüber, wie man dieses Verhalten quantifizieren kann.
Der typische Anwenderkreis der HRA ist im militärischen Umfeld angesiedelt, da dort die höchsten Risiken (u.a. mit Todesfolge) durch menschliches Fehlverhalten im Umgang mit technischen Systemen erwachsen können.

In Tabelle 15 sind stichpunktartig die Vor- und Nachteile der HRA zusammengestellt.

Tabelle 15: Vor- und Nachteile der Risikobewertungsmethode HRA

<table>
<thead>
<tr>
<th>Vorteile der Methode</th>
<th>Nachteile der Methode</th>
</tr>
</thead>
<tbody>
<tr>
<td>■ Durch Identifizierung menschlichen Fehlverhaltens können Lösungsmöglichkeiten aufgezeigt werden.</td>
<td>■ Verfahren benötigt Input in Form von Erfahrung über die Art des Fehlverhaltens und Irrtümern aus der Praxis.</td>
</tr>
<tr>
<td>■ Wahrscheinlichkeit des Ausfalls des Gesamtsystems kann reduziert werden.</td>
<td>■ Fachwissen zur Quantifizierung der Ergebnisse erforderlich.</td>
</tr>
</tbody>
</table>

Da es beim Nachhaltigkeitscontrolling nicht nur um Risiken geht, die allein durch menschliches Fehlverhalten erwachsen und zudem die Methode der HRA sehr komplex und die Ergebnisse schwer zu bewerten sind, kommt sie nicht für den NHC-Ansatz in Frage.

6.1.2.5 Auf die Funktionsfähigkeit bezogene Instandhaltung

Tabelle 16 stellt stichpunktartig die wesentlichen Vor- und Nachteile der RCM dar.

Tabelle 16: Vor- und Nachteile der RCM-Methode zur Risikobewertung

<table>
<thead>
<tr>
<th>Vorteile der Methode</th>
<th>Nachteile der Methode</th>
</tr>
</thead>
<tbody>
<tr>
<td>■ Kosten-Aufwand-Gegenüberstellung.</td>
<td>■ Fokus eingeschränkt; nur Instandhaltung.</td>
</tr>
<tr>
<td>■ Anwendung mehrere Bewertungskriterien zur Objektivierung.</td>
<td>■ Monetäre Bewertung; nicht monetäre Aspekte werden z.T. nicht berücksichtigt.</td>
</tr>
</tbody>
</table>

Im Rahmen von NaCoSi spielt die Frage der Instandhaltung aus Sicht der Unternehmen eine bedeutende Rolle. Jedoch kann der Fokus des Nachhaltigkeitscontrollings
nicht nur auf diesem Aspekt aufbauen. Eine Instandhaltung entspräche hier einer Handlungsoption, durch welche die Nachhaltigkeitsrisiken beherrscht werden können. Da die zur Risikobewertung nach dem Prinzip der RCM herangezogenen Kriterien durch die Nachhaltigkeitsziele abgebildet werden können, ist die RCM-Methode für den NHC nicht in Frage gekommen.

6.1.2.6 Multi-Kriterien Entscheidungsanalyse

Tabelle 17 stellt stichpunktartig die wesentlichen Vor- und Nachteile der MCDA dar.

<table>
<thead>
<tr>
<th>Vorteile der Methode</th>
<th>Nachteile der Methode</th>
</tr>
</thead>
<tbody>
<tr>
<td>■ Die Entscheidung für die optimale Alternative ist transparent.</td>
<td>■ Die Modelle zur Bewertung gehen davon aus, dass die Ausprägung eines Kriteriums nicht von dem Wert eines anderen Kriteriums abhängig ist.</td>
</tr>
<tr>
<td>■ Die Methode ist flexibel hinsichtlich der Kriterien, so können auch qualitative Aussagen bewertet werden.</td>
<td>■ Bei sehr vielen Kriterien wird die Berechnungsformel sehr komplex.</td>
</tr>
<tr>
<td>■ Bei der Erarbeitung der Kriterien und deren Wichtung werden unterschiedliche Maßstäbe der Fachleute transparent.</td>
<td>■ Es ist Fachwissen zur Bestimmung der Berechnungsformel notwendig.</td>
</tr>
<tr>
<td></td>
<td>■ Eine eindeutige Skalenbestimmung ist schwierig und das Ergebnis kann je nach Anwender subjektiv und verschieden ausfallen.</td>
</tr>
</tbody>
</table>

6.1.2.7 Monte-Carlo-Simulation

Der Einsatzbereich einer Monte-Carlo-Simulation (MCS) liegt in der Bewertung und Quantifizierung von Risiken und kann in dem Bereich eines Risikomanagementsystems eingesetzt werden. Sie kann generell für zwei Zwecke angewendet werden: Erstens für die Ausbreitung der Ungewissheit bei konventionellen analytischen Methoden; zweitens für Wahrscheinlichkeitsberechnungen, wenn analytische Techniken versagen.

- Mengenunsicherheiten und Preisunsicherheiten (Marktwirtschaft)
- Risikopositionen wie Zusatzleistungen (Versicherungswirtschaft)
- Währungsrisiken oder Eigenkapitalauslastung (Finanzwirtschaft)

Die MCS kann dann zum Einsatz kommen, wenn nicht nur Best-Case oder Worst-Case Szenarien betrachtet werden sollen, sondern auch der Raum zwischen den Extremen im Sinne von Wahrscheinlichkeitsverteilungen bei der Ausprägung der zu untersuchenden Effekte. Sie dient der weitergehenden Analyse, welche Auswirkungen mehrere identifizierte und bewertete Einzelrisiken auf Gesamtprojekte haben können, wenn sie sich überlagern. Durch die Monte Carlo-Simulation bzw. die statistische Auswertung der MSC-Ergebnisse, kann der Entscheidungsträger erkennen, welche Ergebnisse eine gewisse Handlungsweise mit sich bringen könnte und was die Eintrittswahrscheinlichkeit solcher Ergebnisse ist.

Prinzipiell verfolgt die praktische Anwendung der MCS das Ziel der Generierung von einer großen Anzahl von Einzelszenarien, die sich alle im Hinblick auf die Ursachenausprägung unterscheiden. Eingaben, die zur Durchführung der MSC notwendig sind, sind einerseits ein gutes Modell des Systems sowie Angaben zur Art der Eingaben, Quellen der Ungewissheit, die dargestellt werden sollen und die erwartete Art der Ausgabe (ISO 31010).

Tabelle 18 stellt stichpunktartig die wesentlichen Vor- und Nachteile der MCS dar.

Tabelle 18: Vor- und Nachteile der Risikobewertungsmethode MCS

<table>
<thead>
<tr>
<th>Vorteile der Methode</th>
<th>Nachteile der Methode</th>
</tr>
</thead>
<tbody>
<tr>
<td>■ Relativ schnell zu realisierren</td>
<td>■ Vorhandensein von gemessenen Kennzahlen muss gegeben sein</td>
</tr>
<tr>
<td>■ Leicht zugänglich und erweiterbar bei Bedarf</td>
<td>■ Scheingenauigkeit aufgrund der Benutzung von Schätzwerten in der Risikodarstellung; dies führt relativ unge nau ermittelte Werte einer vergleichsweise exakten Auswertung zu</td>
</tr>
<tr>
<td>■ Kann dazu dienen ein Risikobewusstsein zu schärfen und den Umgang mit Risiken zu professionalisieren</td>
<td>■ Es werden zufällige Randbedingungen vorausgesetzt</td>
</tr>
<tr>
<td>■ großes Potenzial bei der Anwendung statistisch gut auswertbarer Daten, wie z. B. Kursentwicklungen, Preisspiegel etc.</td>
<td>■ Alle Daten und Einschätzungen müssen einheitlich aufbereitet sein</td>
</tr>
</tbody>
</table>

Da die MCS eine Risikobewertung aufgrund einer Wahrscheinlichkeits-Verteilung anhand von tatsächlich gemessenen Kennzahlen darstellt, ist sie als Ansatz für das NHC nicht geeignet, bzw. nur teilweise anwendbar, sowie es sich um Kennzahlen handelt, die bereits z.B. im Zuge von Benchmarking oder anderen Managementansätzen erhoben werden. Zudem ist das Ergebnis der MCS gerade durch die Ausgabe als Wahrscheinlichkeitsverteilung für die Anwender nicht selbsterklärend.

6.1.2.8 Bayes’sche Netze

Tabelle 19 stellt stichpunktartig die wesentlichen Vor- und Nachteile der BNs dar.

Tabelle 19: Vor- und Nachteile der Risikobewertungsmethode Bayes'sche Netze

<table>
<thead>
<tr>
<th>Vorteile der Methode</th>
<th>Nachteile der Methode</th>
</tr>
</thead>
<tbody>
<tr>
<td>■ Geringe Ansprüchen, die das Modell an die Modellierung komplexer Systeme mit einer großen Anzahl von Variablen stellt</td>
<td>■ Rückkopplungsmechanismen nicht im Modell darstellbar</td>
</tr>
<tr>
<td>■ BNs lassen sich anpassen, ergänzen und verändern</td>
<td>■ Kontinuierliche Daten werden nicht optimal erfasst</td>
</tr>
<tr>
<td>■ BNs sind schnell, sowie die kausale Struktur erstellt worden ist</td>
<td>■ Selbst für Experten schwer alle Kombinationsmöglichkeiten der Einflussfaktoren für die bedingten Wahrscheinlichkeiten abzuschätzen</td>
</tr>
</tbody>
</table>

Aufgrund der Schwierigkeit Wechselwirkungen und Rückkopplungen der Einflussfaktoren dazustellen, sowie der Nicht-Erfassung von Daten aus weitergehenden Erhebungen zum Nachhaltigkeitscontrolling, haben BNs keine Berücksichtigung im NHC-Ansatz gefunden.

6.1.3 Für das NHC gewählte Methode zur Risikobewertung

Nachdem diverse Methoden auf Ihre Eignung für die Risikobewertung im Rahmen des Nachhaltigkeitscontrollings geprüft worden sind, ist die Entscheidung der Forschungsgruppe auf die Methode der Risikomatrix gefallen. Wesentliche Gründe für die Wahl dieser Methode waren die einfache Durchführbarkeit und die leicht erschließbare Visualisierung. Die Methode der Risikomatrix wird im Folgenden mit Vor- und Nachteilen und der Ausgestaltung für das NHC vorgestellt.

6.1.3.1 Risikomatrix (Folgen-/Wahrscheinlichkeitsmatrix)

Eine Risikomatrix wird oft in drei Bereiche unterteilt:

- Allgemein vertretbarer Bereich; hier ist kein Handlungsbedarf abzuleiten.
- ALARP-Bereich (As Low As Reasonable Practicable); hier ist Aufmerksamkeit erforderlich, um zu verhindern, dass ein Risiko eine höhere Wahrscheinlichkeit oder weitreichendere Folgen entwickelt.
- Unvertretbarer Bereich; absoluter und akuter Handlungsbedarf.

Jedoch weist das Verfahren der Risikomatrix auch einige Einschränkungen und Nachteile auf:

- Abhängigkeiten und Wirkungszusammenhänge der Risiken werden nicht betrachtet.
- Es ist schwer die Skalen eindeutig zu bestimmen und die Anwendung kann je Anwender subjektiv und verschieden ausfallen.

Tabelle 20: Beispiel für Wahrscheinlichkeits- und Folgenskala (nach DIN EN 15975-2:2011)

Definition der Wahrscheinlichkeitsskala

<table>
<thead>
<tr>
<th>Wahrscheinlichkeit</th>
<th>Definition</th>
<th>Einstufung</th>
<th>Folgen</th>
<th>Definition</th>
<th>Einstufung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höchst-unwahrscheinlich</td>
<td>In der Vergangenheit nicht vorgekommen; unwahrscheinlich in den nächsten 10 Jahren</td>
<td>1</td>
<td>Gesund</td>
<td>Gesundes Wasser</td>
<td>1</td>
</tr>
<tr>
<td>Unwahrscheinlich</td>
<td>In der Vergangenheit nicht vorgekommen; kann für die nächsten 5 Jahre nicht ausge- schlossen werden</td>
<td>2</td>
<td>Vermeintlich unge- sund</td>
<td>Vertrauen untergraben – nicht trinkbar</td>
<td>2</td>
</tr>
<tr>
<td>Mittel</td>
<td>Eintrittswahrscheinlichkeit > 1/5 Jahre</td>
<td>3</td>
<td>Möglicherweise schädlich</td>
<td>Mögliche Gesundheitsbeeinträchtigungen</td>
<td>3</td>
</tr>
<tr>
<td>Wahrscheinlich</td>
<td>Eintrittswahrscheinlichkeit > 1/Jahr</td>
<td>4</td>
<td>Mögliche Erkran- king</td>
<td>Chronische/lang an- haltende Erkrankung</td>
<td>4</td>
</tr>
<tr>
<td>Nahezu sicher</td>
<td>Eintrittswahrscheinlichkeit > 1/6 Monate</td>
<td>5</td>
<td>Erkran- king</td>
<td>Tödlich (sofort o. Spätfolgen), akute Erkrankung</td>
<td>5</td>
</tr>
</tbody>
</table>

Beispiel 1: Wahrscheinlichkeit für die Gefährdung der öffentlichen Gesundheit

Höchst-unwahrscheinlich	Vorstellbar, jedoch sehr geringe Wahrscheinlichkeit	1	Unbedeutend	Unterbrechung > 6 h; minimale ästhetische Beeinträchtigung	1
Unwahrscheinlich	Möglich; kann im nächsten Jahr nicht ausge- schlossen werden	2	Gering	Unterbrechung 6-12 h; geringes Druck-/Geruchsproblem	2
Mittel	Im nächsten Jahr wahrscheinlich	3	Mittel	Unterbrechung 12-24 h; Problem mit Druck/Geruch/Ästhetik	3
Wahrscheinlich	Wird im nächsten Jahr erwartet	4	Bedeutend	Unterbrechung 24-48 h; großes Problem mit Druck/Geruch/Ästhetik	4
Nahezu sicher	Gewiss, dass es im nächsten Jahr vorkommt	5	Sehr schwer	Unterbrechung > 48 h; große Probleme in erheblichen Teilen des Versorgungssystems	5
6.1.3.2 Umsetzung der Risikomatrix und Festlegung der Skalen

Für das NHC wurde die Verwendung einer 5×5 Matrix gewählt (s. Abbildung 16). Über diese Risikomatrix können für Risiken, die sich aus den Wirkungspfaden ableiten lassen, spezifische Risikohöhen zugeordnet werden. Diese ergeben sich aus der Multiplikation der Eintrittswahrscheinlichkeit (Werte von 1 bis 5) mit dem Schadensausmaß (Werte von 1 bis 5).

Risikohöhen - auch Risikopotenzial genannt - von 1 bis 8 stellen dabei den Bereich der Matrix dar, wo kein Handlungsbedarf abzuleiten ist. Risikopotenziale von 8 bis 12 bilden die mittlere Risikohöhe. Hier ist Aufmerksamkeit erforderlich, um zu verhindern, dass ein Risiko eine höhere Wahrscheinlichkeit oder weitreichendere Folgen entwickelt. Im Bereich von 15 bis 25 ist absoluter und akuter Handlungsbedarf abzuleiten.

![Gesellschaftl. Verantwortung](image)

Abbildung 16: Beispielhafte Umsetzung der Risikomatrix im NHC

Tabelle 21: Gewählte offene Skalierung für Eintrittswahrscheinlichkeit und Schadensausmaß im NHC-Ansatz

<table>
<thead>
<tr>
<th>Skala</th>
<th>Eintrittswahrscheinlichkeit</th>
<th>Skala</th>
<th>Schadensausmaß</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Extrem gering</td>
<td>1</td>
<td>Kein Schaden</td>
</tr>
<tr>
<td>2</td>
<td>Geringer als die Wahrscheinlichkeit, dass es nicht eintritt</td>
<td>2</td>
<td>Geringer Schaden</td>
</tr>
<tr>
<td>3</td>
<td>Genauso groß wie die Wahrscheinlichkeit, dass es nicht eintritt</td>
<td>3</td>
<td>Mittlerer Schaden, der durch interne Ausgleichsmaßnahmen zu behandeln ist</td>
</tr>
<tr>
<td>4</td>
<td>Größer als die Wahrscheinlichkeit, dass es nicht eintritt</td>
<td>4</td>
<td>Großer Schaden, der organisatorische oder technische Umstrukturierung bedeutet bzw. deutliche entgeltrelevante Auswirkungen hat</td>
</tr>
<tr>
<td>5</td>
<td>Extrem groß</td>
<td>5</td>
<td>Extrem großer Schaden, der Unternehmen in seinem Fortbestand gefährdet</td>
</tr>
</tbody>
</table>

Im Rahmen der Literaturrecherche zum Umgang mit Risikomatrizen konnten häufig auftretende Schwierigkeiten bei der Anwendung des Verfahrens ausgemacht werden. Diese Aspekte hätten auch für das NaCoSi-Projekt Relevanz haben können und wurden daher kritisch überprüft.

Subjektivität

Wahl der Skalen

Eine eindeutige Bestimmung der Skalen für Eintrittswahrscheinlichkeit und Schadensausmaß stellte sich bei der Entwicklung des NHC im NaCoSi-Projekt als schwierig heraus. Zusätzlich kann die Anwendung der Skalen je Anwender subjektiv und somit verschieden ausfallen. Das macht die Risiken unter Umständen schwer untereinander

Schwierigkeiten bei der Bewertung von strategischen Risiken

Kurzfristigkeit des Zeithorizonts und Schwierigkeiten der Risikoaggregation

Die Beziehungen zwischen Risikofaktoren und Unternehmenszielen sind häufig zeitlich instabil, was bei Risikomatrizen eine ständige Modifikation des Messmodells (Schätzung des Produkts von Wahrscheinlichkeit und Schaden) erfordert. Der unterschiedliche Zeithorizont der Auswirkungen der Risikofaktoren auf die Unternehmensziele erschwert zudem die Aggregation der einzelnen Risikohöhen zu einem Gesamtunternehmensrisiko. Daher werden im NHC verschiedene Analyseverfahren (Risikoanalyse und Monitoring) parallel angewendet, um durch gleiche Aussagen eine Bestätigung von Risiken zu erhalten und bei Abweichungen eine vertiefte Prüfung vornehmen zu können.

Grenzproblematik von Klassen vs. nur mittige Werte

6.1.4 Visualisierung und Aggregation

Um die Daten übersichtlich zu visualisieren und Aussagen zu spezifischen Themen oder Bereichen mit besonders hohem Risikopotenzial treffen zu können, ist eine Aggregation der erhobenen Daten notwendig, welche aus den verschiedenen Eintrittswahrscheinlichkeiten und Schadensausmaßen der Wirkungspfade bestehen. Durch diese Aggregation und Visualisierung wird es den Unternehmen zudem ermöglicht sich auf einer einfachen Ebene mit Stakeholdern der eigenen Gemeinde, aber auch mit anderen Unternehmen auszutauschen. Dies liegt sowohl an der übersichtlichen Visualisierung als auch an den selbsterklärenden Ampelfarben zur Bewertung. Für eine
sinnvolle Aggregation bietet es sich an, die Daten jeweils nach den übergeordneten Risikokategorien und ggf. nach den Nachhaltigkeitszielen zu gruppieren.

Im Folgenden sind verschiedene Aggregationsmethoden, die im Laufe der Datenerhebungen, Analyse und Auswertungen getestet wurden, dargestellt. Da es für die Ergebnisdarstellung gut nachvollziehbar ist Resultate in Form einer leicht verständlichen Visualisierung aufzuführen, sind anschließend die im Rahmen von NaCoSi für die Risikoanalyse entwickelten graphischen Methoden erläutert.

Aggregationsmethoden

Für die NHC-Risikoanalyse wurde zur Aggregation und Visualisierung der Risiken in den Nachhaltigkeitskategorien und Zielen der Median gewählt. Da jedoch auch andere Ansätze getestet wurden, sollen diese im Folgenden aufgeführt werden.

Generell wurden für die Auswertung der Daten zur Risikoanalyse die Aggregationsmethoden des arithmetischen Mittelwertes, des Medians und einer von dem Softwarehersteller SAP AG erstellten Methode, welche im Folgenden als SAP-Methode bezeichnet wird, in Betracht gezogen.

Die Auswertung der Daten erfolgte für jedes Unternehmen separat. Demensprechend wurde für jedes Unternehmen eine eigene Risikoaggregation der einzelnen Nachhaltigkeitskategorien und -ziele durchgeführt.

Das arithmetische Mittel

Der Mittelwert beschreibt die mittlere Datenlage der zur Verfügung stehenden Daten. Daher wird er gebildet, indem zunächst alle Datenwerte addiert werden, um diese im Anschluss durch die Anzahl der Datenwerte zu teilen. Der Mittelwert ist somit der mittlere Wert einer Datenreihe. Der Vorteil des Mittelwertes liegt darin, dass alle Daten berücksichtigt werden. Jedoch ist der Mittelwert empfindlich gegenüber Ausreißern (Köhler et al., 2007).

\[
\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{x_1 + x_2 + x_3 + \ldots + x_n}{n}
\]

Der Median

Die SAP-Methode

Die folgende Beschreibung stellt eine Möglichkeit dar das Risikoniveau für qualitativ bewertete Risiken zu aggregieren. Dazu werden alle Risiken eines Bereiches betrachtet. Die Bestimmung des Risikoniveaus erfolgte bei der SAP bis September 2006 nach folgenden Bedingungen:

1. Das Risiko des Bereiches (also im NHC des Nachhaltigkeitszieles bzw. der Nachhaltigkeitskategorie) bestimmt sich aus dem höchsten Risikoniveau der einzelnen Risiken.

2. Von der ersten Regel gibt es die folgenden Ausnahmen bzw. Abweichungen:
 a. Wenn die Anzahl der „hohen“ Risiken, also rote Kategorie nach dem Bewertungsmaßstab im NHC-Projekt, im Aggregat also in der Nachhaltigkeitskategorie weniger als 5 % ausmacht, ist die Nachhaltigkeitskategorie mit „mittel“, also gelbe Kategorie nach dem Bewertungsmaßstab im NHC-Projekt, zu bewerten.

Sind keine „hohen“ Risiken in der roten Kategorie, vorhanden und dazu weniger als 40 % der Risiken der gelben Kategorie zuzuordnen, ist das Risiko als „niedrig“, somit grüne Kategorie, einzustufen. Die Methode wurde für das NHC nicht ausgewählt, da die Ergebnisse nur schwer über die Unternehmen hinweg vergleichbar sind.

6.1.4.1 Visualisierung
Ziel der Visualisierung ist es durch leicht verständliche und übersichtliche Darstellungen der Ergebnisse des Nachhaltigkeitscontrollings auch für Außenstehende einen schnellen Überblick über die Risikosituation des jeweiligen Unternehmens zu schaffen.

Netzdiagramm zur Risikoprofildarstellung
Als schwarze Linie ist der Median der Risikohöhen je Zielkategorie abgebildet. Die roten Punkte zeigen die maximale Risikohöhe je Kategorie an und die gelben Punkte die minimale Risikohöhe je Kategorie. Daraus wird die Streuweite der Risikohöhen innerhalb der jeweiligen Kategorie ersichtlich.

Bei Betrachtung der Grafik wird schnell ersichtlich, wo Kategorien mit auffälligen Risikohöhen sind und wie die Streuung zwischen dem Minimal- und dem Maximalwert ist.
Das Risikoprofil greift in der farblichen Gestaltung der Zielarme jeweils die Farben aus der Übersichtsgrafik zu den Nachhaltigkeitskategorien und -zielen auf (vgl. Abbildung 4).
Es kann vorkommen, dass die Aussage durch Aggregation der Ziele in den Kategorien nicht eindeutig ist. Dies zeigt sich beispielsweise im gewählten Risikoprofil nach Kategorien (Abbildung 17). Die Mediane aller Zielkategorien liegen auf fast gleicher Höhe. Das Netzdiagramm kann für solche Fälle auch in höherer Detaillierung mit Aggregation je Nachhaltigkeitsziel dargestellt werden (s. Abbildung 18).
Risikomatrizen und Tabellen zur detaillierteren Risikobetrachtung

Um von den als rot bzw. kritisch identifizierten Risiken zu den dahinter liegenden Wirkungspfaden und den Ursachen gelangen zu können, wurde für die Praxispartner in NaCoSi zu jeder Risikomatrix eine korrespondierende Tabelle erzeugt, die neben den Risikohöhen jeweils die Wirkungspfadkurzbezeichnung und auch das gefährdete Nachhaltigkeitsziel beinhaltet (Tabelle 22). Die Risikohöhen sind zur einfachen Zuordnung jeweils an die Farben der Risikomatrix angelehnt.
6.1.5 Auswertung der Risikoanalyse und Ergebnisse

6.2 Monitoring

Während die Risikoanalyse auf subjektiven Risikoeinschätzungen der Anwender zu den Wirkungspfaden basiert, werden für das Monitoring die konkreten Indikatoren der Wirkungspfade zugrunde gelegt. Das Monitoring stellt somit eine Ergänzung der Risikoanalyse dar. Durch die Bewertung der zeitlichen Entwicklung der Indikatorwerte kön-
nen nicht nachhaltige Entwicklungen im Unternehmen Identifiziert werden, die möglicherweise bei der Risikoanalyse nicht erkannt werden.

Das Monitoring basiert auf empirisch erhobenen Indikatorwerten. Diese werden mit den entwickelten Schwellenwerten (siehe Kapitel 4.6.2) verglichen und bewertet. Zusätzlich werden die Zeitreihen der Indikatoren in die Beurteilung miteinbezogen um die zeitliche Entwicklung der Indikatoren zu analysieren.

6.2.1 Methodik

6.2.1.1 Bewertung des Zustands
Der Zustand eines Indikators lässt Rückschlüsse auf die gegenwärtige Situation und die Nachhaltigkeit eines Unternehmens zu. Für die Bewertung wird der Indikatorwert des aktuellen Erhebungsjahres (Ist-Wert) mit den zuvor festgelegten Schwellenwerten verglichen und anhand des in Abbildung 20 dargestellten Bewertungsschemas eingeordnet. Das hier gezeigte Bewertungsschema für die Bewertung des Zustands gilt für Indikatoren, deren Optimum ein niedriger Wert ist (z.B. Anzahl Beschwerden oder sanierungsbedürftige Kanallänge). Für Indikatoren, bei denen ein hoher Wert angestrebt wird (z.B. Erfüllungsgrad Trinkwasseranalyse in % oder Kanalsanierungsrate) müssen die Operatoren umgedreht werden.

6.2.1.2 Bewertung der Entwicklung

Für die Bewertung der Entwicklung der Indikatorwerte wird allerdings nicht die gesamte verfügbare Zeitreihe eines Indikators betrachtet, sondern die Entwicklung eines festgelegten maximalen Betrachtungszeitraums (der Vergangenheit bis zum aktuellen Indikatorwert des Erhebungsjahres) beurteilt. Das Festlegen eines maximalen Betrachtungszeitraums soll verhindern, dass eine mögliche Trendumkehr bei der Regressionsgeraden durch sehr lange Zeitreihen nicht wieder gegeben wird. Der maximale Betrachtungszeitraum hängt dabei vom Zeithorizont eines Indikators bzw. des dazugehörigen Wirkungspfades ab:

<table>
<thead>
<tr>
<th>Zeithorizont [a]</th>
<th>Max. Betrachtungszeitraum [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>50</td>
<td>15</td>
</tr>
</tbody>
</table>

Abbildung 21: Bewertungsschema für die Bewertung der Entwicklung (eigene Darstellung)

Die Berechnungen des Gradienten und der Schwellengradienten basieren hierbei auf der Indikatorzeitreihe, dem Indikatorwert des Erhebungsjahres sowie auf dem zugrunde gelegten gelben und roten Schwellenwert.

Berechnung des Schwellengradienten

Der gelbe und rote Schwellengradient werden für jedes Erhebungsjahr neu berechnet. Die Berechnung basiert auf dem gelben bzw. roten Schwellenwert, dem Indikatorwert des aktuellen Erhebungswerts sowie dem Zeithorizont:

\[
\text{Schwellengradient}_{\text{gelb/rot}} = \frac{\text{Schwellenwert}_{\text{gelb/rot}} - \text{aktueller Indikatorwert}}{\text{Zeithorizont}}
\]

Der Schwellengradient beschreibt somit, wie sich der aktuelle Indikatorwert des Erhebungsjahres verändern müsste um innerhalb des Zeithorizontes die Grenze des Schwellenwertes zu über- bzw. unterschreiten.

Ein Ergebnis der Entwicklung im grünen Bereich beschreibt grundsätzlich eine positive Entwicklung und kann grundlegend in zwei Wegen begründet werden:

1. Der aktuelle Indikatorwert weist einen grünen Zustand auf und auch die Zeitreihe zeigt, dass sich der Wert konsequent im grünen Bereich befunden hat. Somit weist zum Zeitpunkt der letzten Erhebung nichts darauf hin, dass sich der Zustand innerhalb des Zeithorizontes ändern und dadurch verschlechtern könnte.
2. Der Zustand des Indikators befindet sich gegenwärtig im gelben oder roten Bereich. Die Zeitreihen des Indikators zeigen aber, dass eine positive Entwicklung in der Vergangenheit stattgefunden hat, die bei gleichbleibenden Rahmenbedingungen dazu führen könnte, dass innerhalb des Zeithorizonts ein grüner Zustand erreicht wird.

Eine gelbe Entwicklung kann drei mögliche Szenarien darstellen.

2. Befindet sich sowohl der aktuelle Indikatorwert als auch die Entwicklung des Indikators im gelben Bereich bedeutet dies, dass die Zeitreihe weder einen starken positiven noch negativen Trend aufweist und innerhalb des Zeithorizonts
bei gleichbleibenden Bedingungen der Zustand des Indikators weiterhin im gelben Bereich liegen würde.

Wird die Entwicklung eines Indikators mit rot bewertet, kann dies folgende Ursachen haben:

6.2.1.3 Berechnungsbeispiel

Ziel des Monitorings ist die Bewertung des Ist-Zustandes und der zeitlichen Entwicklung der Indikatorwerte, um Rückschluss auf mögliche Verfehlungen von Nachhaltigkeitszielen ziehen zu können und Tendenzen ableiten zu können.

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>650</td>
</tr>
<tr>
<td>2008</td>
<td>720</td>
</tr>
<tr>
<td>2009</td>
<td>750</td>
</tr>
<tr>
<td>2010</td>
<td>730</td>
</tr>
<tr>
<td>2011</td>
<td>710</td>
</tr>
<tr>
<td>2012</td>
<td>680</td>
</tr>
<tr>
<td>2013</td>
<td>645</td>
</tr>
</tbody>
</table>

Abbildung 22: Zeitreihe des Indikators von 2007 bis 2013
Die Schwellenwerte des Indikators wurden mit 410 für den gelben und 640 für den roten Schwellenwert festgelegt. Basierend auf diesen Rahmenbedingungen lassen sich für die einzelnen Jahre von 2007 bis 2013 folgende Bewertung des Ist-Zustandes und der zeitlichen Entwicklung der Indikatorwerte vornehmen:

\[
\text{Schwellengradient} = \frac{\text{Schwellenwert} - \text{aktueller Indikatorwert}}{\text{Zeithorizont}}
\]

Für das Jahr 2008 ergeben sich somit folgende Schwellengradienten:

\[
\text{Schwellengradient}_{\text{gelb}} = \frac{410 - 720}{5 \cdot a} = -62/a
\]

\[
\text{Schwellengradient}_{\text{rot}} = \frac{640 - 720}{5 \cdot a} = -16/a
\]

Die Schwellengradienten besagen also, dass der Indikatorwert, welcher sich aktuell im roten Bereich befindet, um 16 Einheiten pro Jahr sinken müsste, um in den nächsten 5 Jahren vom roten in den gelben Bereich zu gelangen oder um 62 Einheiten innerhalb eines der Jahre innerhalb des Zeithorizontes sinken müsste, um den grünen Bereich zu erreichen.

Der berechnete Gradient der Regressionsgeraden wird in einem dritten Schritt mit den Schwellengradienten verglichen und bewertet. In diesem Fall liegt der Gradient deutlich abseits der Schwellengradienten und resultiert somit in einer roten Bewertung der Entwicklung.

\[
\begin{align*}
\text{Schwellengradient}_{\text{gelb}} &= \frac{410 - 750}{5}a = -68/a \\
\text{Schwellengradient}_{\text{rot}} &= \frac{640 - 750}{5}a = -22/a
\end{align*}
\]

\[Schwellengradient_{gelb} = \frac{410 - 680}{5 a} = -54/a \]
\[Schwellengradient_{rot} = \frac{640 - 680}{5 a} = -8/a \]

Abbildung 25: Zeitreihe und lineare Regression im Jahr 2012

Die Schwellengradienten berechnen sich wie bereits beschrieben und ergeben folgende Werte:

\[Schwellengradient_{gelb} = \frac{410 - 645}{5 a} = -47/a \]
\[Schwellengradient_{rot} = \frac{640 - 645}{5 a} = -1/a \]

Für zukünftige Erfassungsjahre wird die Berechnung wie erläutert fortgesetzt. Für die Entwicklung werden somit immer nur der aktuelle Indikatorwert sowie die fünf letzten in der Vergangenheit liegenden Indikatorwerte berücksichtigt.

6.2.2 Visualisierung

Die Visualisierung der Ergebnisse aus dem Monitoring spielt eine wichtige Rolle. Sie soll ermöglichen auf einen Blick die wesentlichen Erkenntnisse aus dem Monitoring, also den Zustand und den Trend der Indikatoren, zu erfassen und somit die Ergebnisse mit den siedlungswasserwirtschaftlichen Unternehmen zu kommunizieren.

Abbildung 27: Visualisierung der Ergebnisse aus dem Monitoring (fiktives Beispiel)

Jeder Strahl der Grafik repräsentiert einen der erhobenen Indikatoren. Die Lage des Punktes auf einem Strahl beschreibt den gegenwärtigen Zustand des Indikators. Liegt der Punkt beispielsweise im Inneren der Scheibe, also im grünen Bereich, ist der Indikatorwert unterhalb des gelben und roten Schwellenwertes und kann somit als unkritisch angesehen werden. Befindet sich der Punkt jedoch im Äußeren der Scheibe, also im roten Bereich, liegt der Indikatorwert oberhalb des roten Schwellenwertes. Die Färbung der Punkte stellt die Bewertung bezüglich der Entwicklung des Indikatorwertes dar. Liegt ein Wert zum Beispiel im grünen Bereich, hat aber eine rote Füllung bedeutet dies, dass der Wert sich gegenwärtig unterhalb des gelben Schwellenwertes im unkritischen Bereich befindet, also der Zustand mit Grün bewertet wurde. Jedoch weist die Entwicklung der letzten Jahre einen Trend in Richtung des roten Schwellenwertes auf und ist somit kritisch zu sehen. Die Punkte von Indikatoren für die keine Zeitreihen vorliegen und somit die Entwicklung des Indikators nicht bewertet werden kann haben keine bzw. eine weiße Füllfarbe.

rzontaln von 15 Jahren ein guter (grüner) Zustand erreicht wird. Der Indikator „Reinvestitionsquote Abwasserbeseitigung“ liegt gegenwärtig im grünen Bereich (Zustand). Die Füllung des Punktes zeigt aber an, dass die Entwicklung der Zeitreihe einen negativen Trend aufweist, der so stark ist, dass der Wert zukünftig in den roten Bereich abfallen könnte.

6.3 Interpretation und Dokumentation der Ergebnisse der Analyse-Verfahren
Durch die Anwendung der Analyse-Verfahren werden sowohl kritische Wirkungspfade als auch kritische Indikatoren für das Unternehmen identifiziert. Im folgenden Abschnitt soll erläutert werden, wie weiter mit diesen Ergebnissen umgegangen werden sollte und wie diese zu interpretieren und zu dokumentieren sind.

Auch abweichende Ergebnisse von Risikoanalyse und Monitoring bringen wichtige Erkenntnisse für das Nachhaltigkeitscontrolling. Häufigste Diskrepanz ist eine geringe Risikohöhe, jedoch ein entsprechender kritischer Indikatorwert. Da die Indikatoren nicht sowohl an Ursache als auch Wirkung eines Wirkungspfades geknüpft sind, können viele der Indikatoren auch durch andere Bedingungen beeinflusst werden, was zu eben diesen Diskrepanzen in den Ergebnissen führen kann. Folgende drei Möglichkeiten der Ursache von Diskrepanzen sind denkbar:

1. Das Risiko könnte für das Unternehmen unbekannt sein und damit bei der Beantwortung der Fragen zu Eintrittswahrscheinlichkeit und Schadensausmaß unterschätzt werden.
2. Das Unternehmen könnte den Grund für den schlechten Zustand eines Indikatorwerts in einer anderen Ursache, als im Wirkungspfad beschrieben, begründet sehen.
3. Das Risiko könnte bereits erkannt und Maßnahmen bereits eingeleitet worden sein, sodass das Problem im abgefragten Zeithorizont voraussichtlich nicht mehr vorliegen wird.

Es wird empfohlen solche Fälle bei den persönlichen Feedback-Runden näher zu analysieren und die eventuellen Ursachen für die negativen Bewertungen des Indikators gemeinsam mit dem Unternehmen zu erörtern.

Aus der Anwendung der Risikoanalyse, des Monitorings, dem Vergleich der beiden Analyse-Verfahren sowie aus den persönlichen und individuellen Feedback-Gesprächen mit den Unternehmen erhält man zuletzt ein Set individuellen Risiken für

Nachhaltigkeitsberichte

Der Nachhaltigkeitsbericht ist das Produkt des NHC für das siedlungswasserwirtschaftliche Unternehmen. Er umfasst auf wenigen Seiten die wichtigsten Ergebnisse und Erkenntnisse aus dem NHC und gliedert sich in folgende Kapitel:

- **Das Wichtigste auf einen Blick**
 In diesem Abschnitt werden auf einer Seite die wichtigsten Erkenntnisse durch das NHC zusammengefasst
- **Nachhaltigkeitscontrolling**
 Eine Kurzdarstellung des NHCs und der verwendeten Methodik schafft Transparenz für den Anwender
- **Datenauswertung**
 Im Hauptteil des Nachhaltigkeitsberichts werden die Ergebnisse der Datenauswertung mithilfe der Analyseverfahren, Risikoanalyse und Monitoring, ausführlich beschrieben.
- **Ausblick und Auswahl der individuellen Komplemente**
 Zuletzt werden dem Anwender Empfehlungen für weitergehende Analysen ausgesprochen. Hierfür wird anhand der identifizierten kritischen Wirkungspfade eine Liste mit Schlagworten bereitgestellt, die für die Auswahl weiterer Wirkungspfade aus dem Komplementmodul dienen soll.

Zusätzlich sollten die identifizierten Risiken dazu genutzt werden, tiefergehende Untersuchungen anhand des Komplementmoduls vorzunehmen. Hierzu wurden alle Wirkungspfade anhand deren wichtiger Elemente indexiert. Die Schlagworte der identifizierten Risiken können herangezogen werden, um aus dem Komplementmodul der Wirkungspfade die entsprechenden Pfade herauszusuchen, die speziell die im Unternehmen kritischen Punkte thematisieren.

Nicht zuletzt dienen die Ergebnisse der Analyse-Verfahren den Vorbereitungen für die Entwicklung von Maßnahmen zur Risikobewältigung (Kapitel 7).

6.4 Herausforderungen

6.4.1 Wahl geeigneter Indikatoren

Die Identifizierung geeigneter Indikatoren für die einzelnen Wirkungspfade stellte sich im Laufe des Projektes und der Entwicklung des Verfahrens als große Herausforderung dar. Anforderung an die Indikatoren war ursprünglich je Wirkungspfad einen indi-
viduellen Indikator zu finden, der zudem auch noch eine messbare Größe der Auswirkung auf ein Nachhaltigkeitsziel innerhalb eines Wirkungspfades und somit Risikos darstellen sollte. Des Weiteren war das Ziel möglichst gängige Indikatoren zu wählen, welche in vielen Unternehmen bereits erfasst werden und somit vorliegen. Dadurch sollte der Aufwand für die Anwender gering gehalten und die Machbarkeit des Verfahrens gewährleistet werden.

Bei der Umsetzung zeigte sich, dass nicht für jeden Wirkungspfad ein individuell passender Indikator gefunden werden konnte, da einige Wirkungspfade Risiken beschreiben, die mit keinem der bereits erfassten Indikatoren gemessen werden können. Für andere Wirkungspfade konnten lediglich Indikatoren gefunden werden, welche eher die Ursache des Wirkungspfades aufzeigen, als eine messbare Größe der Auswirkung darstellen.

Auch der Versuch in der ersten Pilotanwendung nur bereits etablierte Indikatoren, mit bekannten und bereits genutzten Kennziffern zu verwenden, konnte aus den bereits genannten Schwierigkeiten nicht umgesetzt werden.

Im Laufe der ersten Pilotanwendung, zeigte sich zudem, dass einige der gewählten Indikatoren noch besser an die entsprechenden Wirkungspfade angepasst werden müssen. Für die zweite Pilotphase des Nachhaltigkeitscontrollings wurde entschieden, ausschließlich Indikatoren zu erheben, die sowohl aus wissenschaftlicher als auch praktischer Sicht als valide anzusehen sind. Die Entwicklung neuer, aussagekräftiger Indikatoren für die übrigen Wirkungspfade bleibt als Desiderat aus der Arbeit von NaCoSi. Dies hatte zur Folge, dass das Monitoring nicht für alle Basiswirkungspfade angewendet werden konnte, sondern lediglich für die Wirkungspfade für die ein bereits erprobter Indikator vorlag.

Langfristig ist zu empfehlen, sich intensiv mit der Thematik der Indikatoren auseinanderzusetzen.

6.4.2 Festlegung der Schwellenwerte
Ähnlich wie bei der Identifizierung der Indikatoren stellte sich auch die Festlegung geeigneter Schwellenwerte als aufwändig dar und machte mehrere schrittweise Optimierungen erforderlich. Die Schwellenwerte beschreiben, wie in Kapitel 4 ausführlich dargestellt, die Grenzen einer nachhaltigen Entwicklung und bilden die Grundlage für die Analyse-Verfahren bzw. der Bewertung. Größte Herausforderung bei der Festlegung der Schwellenwerte war vor allem die Heterogenität der siedlungswasserwirtschaftlichen Unternehmen im Projekt NaCoSi aber auch deutschlandweit. Die unterschiedlichen Größen, Rechtsformen, Rahmenbedingungen etc. der Unternehmen macht eine Normierung der Indikatoren unabdingbar.

Doch trotz einer Normierung stellte sich die Festlegung von allgemeingültigen Schwellenwerten als sehr schwer und teilweise nicht realistisch heraus. Während die Normierung von Indikatoren die Unterschiede zwischen Unternehmen auszulösen vermag, stellt sich dies hinsichtlich der Schwellenwerte als schwieriger dar, da sich z.B. manche Indikatoren nicht direkt proportional zur Größe des Unternehmens verändern und somit die Schwellenwerte auch nicht allgemeingültig für alle Unternehmensformen gewählt werden können. Dies hatte zur Folge, dass letztendlich nicht für alle verfügbaren Indikatoren Schwellenwerte festgelegt werden konnten, was wiederum die Anzahl der bewertbaren Indikatoren eingeschränkte. Die Anwendung des Monitorings ist daher aktuell
nur für Wirkungspfade möglich, für die sowohl ein Indikator als auch ein Schwellenwert vorliegt.

Für die zukünftige Anwendung des NHC-Ansatzes wird empfohlen, eine Kategorisierung siedlungswasserwirtschaftlicher Unternehmen zu entwickeln, die es ermöglicht, allgemeine Schwellenwerte für Unternehmensgruppen zu entwickeln. Eine individuelle Festlegung der Schwellenwerte für jedes einzelne Unternehmen wird als zu aufwändig (auch im Hinblick auf die damit verbundenen Kosten) und damit als nicht sinnvoll erachtet.

6.4.3 Verknüpfung der Indikatoren mit den Wirkungspfaden

7 Entwicklung von Maßnahmen und ihre Bewertung zur Risikobewältigung

Mit den in den vorhergehenden Kapiteln vorgestellten Vorgehensweisen und Verfahren lassen sich die Nachhaltigkeitsrisiken in siedlungswasserwirtschaftlichen Unternehmen identifizieren und bewerten. In den Nachhaltigkeitsberichten sind diese so aufbereitet, dass Handlungsbedarfe bereits erkennbar werden: Durch die Kombination von Eintrittswahrscheinlichkeit und Schadenausmaß für die relevanten Wirkungspfade lassen sich eine umfassende Situationsanalyse und Aussagen über mögliche zukünftige Nachhaltigkeitsrisiken ableiten. Dies ermöglicht es auch, die Risiken hinsichtlich des Handlungsbedarfs zu priorisieren. Das Ergebnis dieser Betrachtungen wird im NHC eng an die Entwicklung von Maßnahmen zur Milderung oder gar Vermeidung der möglichen Risiken gebunden. Die kritischen Wirkungspfade aus der Risikoanalyse müssen aber noch zusammengefasst werden. Können sich kritische Situationen aus mehreren Nachhaltigkeitsrisiken ergeben und was bedeutet dies für die nachhaltige Entwicklung eines Unternehmens? Hierfür werden Szenarien als Hilfsmittel bei der Maßnahmenentwicklung genutzt.

7.1 Überblick über die Maßnahmenentwicklung

Die Maßnahmenentwicklung zielt darauf ab, die Ergebnisse der Analyseverfahren auf ursachenübergreifende Entwicklungen zu beziehen. Hierbei werden die Handlungsalternativen der Ver- und Entsorgungsunternehmen stärker in den Blick gerückt. Diese Komponente des NHC ist als ein kommunikativer Prozess zu verstehen, der durch partizipativ entwickelte, narrative Szenarien unterstützt wird. Durch einen erweiterten Blick auf das zukünftige Unternehmensumfeld, auf mögliche (oder wahrscheinliche) Zukünfte, wird das Risikomanagement unterstützt. Der Gesamtprozess der Maßnahmenentwicklung kann dabei in fünf Schritte unterteilt werden (abgeleitet aus Habegger, 2010; Voros, 2003) Diese werden für die Maßnahmenentwicklung im NHC aufgegriffen:

a) Identifikation relevanter Treiber und aktueller Veränderungen
b) Interpretation der Systemzusammenhänge zwischen gegenwärtigen Strukturen und der sich abzeichnenden Dynamiken
c) Erkundung möglicher (oder wahrscheinlicher) zukünftiger Umfeldbedingungen, denen die Unternehmen der Siedlungswasserwirtschaft „ausgesetzt“ sind
d) Ableitung von möglichen Handlungsoptionen (als Einzelmaßnahmen oder Maßnahmenbündel)
e) Evaluierung der Handlungsoptionen hinsichtlich erwünschter Effekte und nicht-intendierter „Nebenwirkungen“
Die Maßnahmenentwicklung bereitete Entscheidungsgrundlagen für das Unternehmen vor, wobei diese fünf Schritte in drei Arbeitsphasen gebündelt werden: Szenario-Phase, Brainstorming-Phase und Planspielphase. Diese bauen aufeinander auf und sind in eine Abfolge von Workshops eingebunden. Getragen wird der Gesamtprozess der Maßnahmenentwicklung durch eine kleinere Arbeitsgruppe, die die jeweiligen Workshop-Ergebnisse zusammenführt und weiter bearbeitet, Zukunftsszenarien ausformuliert, die Brainstorming-Ergebnisse bündelt sowie die Planspiele vorbereitet und auswertet. Auf diese Weise entsteht eine Vorlage, die in einen Entscheidungs- und Umsetzungsprozess überführt werden kann. Die Umsetzung erfolgt unternehmensindividuell nach den betriebsinternen etablierten Verfahren und ist nicht mehr Teil des NHC.

Um die Leistungsfähigkeit eines Unternehmens nachhaltig zu stärken, zeigte sich im Projekt, dass die technischen und betriebswirtschaftlichen Belange bei der Maßnahmenentwicklung konsequent zu verbinden und mit ökologischen und sozialen Perspektiven zusammenzubringen sind. Dies wird durch die Szenarien unterstützt, die abteilungsübergreifend entwickelt werden.

Grundlage hierfür bildet eine fundierte Auseinandersetzung mit den spezifischen Ursachen für nicht-nachhaltige Entwicklungen aus der Risikoanalyse und den darüber hinaus vorhandenen Kenntnissen und Erfahrungen im Unternehmen. Dabei kann auch auf das Ergebnis der Risikoanalyse und -bewertung zurückgegriffen werden:

- Identifizieren relevanter Ursachen, Ursachenkategorien und Veränderungen für Nachhaltigkeitsrisiken,
- Aufzeigen möglicher Systemzusammenhänge und Problemfelder sowie
- Priorisieren der gesammelten Ursachen.

Aufbauend auf den priorisierten Ursachen und Problemfeldern kann dann die Zukunftssituation skizziert werden. Das heißt, die konkrete Szenarioerstellung beginnt mit der Frage, in welcher Situation sich ein Unternehmen zukünftig befinden kann? Das entwickelte Szenario soll dann in einem nächsten Schritt allen Beteiligten präsentiert und mit ihnen gemeinsam diskutiert und präzisiert werden. Dabei gilt es, zukünftige Umfeldbedingungen auszuloten, denen die Unternehmen der Siedlungswasserwirtschaft mit einer mittel- bis langfristigen Perspektive ausgesetzt sein könnten. Es geht darum, eine Geschichte über eine mögliche Zukunft zu erzählen - darum spricht man auch von „narrativen Szenarien“.

Mit der Maßnahmenentwicklung wird ein Element im NHC verankert, das die Ergebnisse der Analyseverfahren in den Unternehmenskontext setzt und auch Aspekte, die in den Wirkungspfaden nicht erfasst waren, bei der Risikobewältigung aufgreifen kann. Es wird mit dem hier skizzierten Vorgehen deutlich, dass der Umgang mit Nachhaltigkeitsrisiken sehr tief in die Organisationsentwicklung eingreifen kann. Um nicht zu hohen Aufwand für nur sehr geringe Effekte zu betreiben, ist die Eingriffstiefe bei der Strategieentwicklung vorher im Abgleich mit den Analyseergebnissen und Nachhaltigkeitsberichten zu bestimmen. Im Idealfall lassen sich dann in den folgenden Zyklen des NHC die Effekte der ergriffenen Maßnahmen in den Risikoprofilen, den Risikomatrizen und im Monitoring ablesen.

Die einzelnen Phasen der Maßnahmenentwicklung und die darin verwendeten Verfahren und Methoden haben sich in der Umsetzung als praktikabel erwiesen und haben den gesamten Prozess des NHC harmonisch abgerundet. Dennoch soll die beschrie-

7.2 Herangehensweise in der Szenario-Phase
Am Anfang des Prozesses der Maßnahmenentwicklung steht die Entwicklung und Diskussion möglicher Szenarien. Diese sollen die Hauptursachen für die Risiken bündeln. Da mithilfe der Risikoanalyse unternehmensspezifische Risikoprofile erstellt wurden, wird im Rahmen des NHC empfohlen, in den Szenarien darauf aufbauend die mittel- bis langfristig problematischen, eher negative Umfeldbedingungen für die Unternehmen der Siedlungswasserwirtschaft zu beschreiben („worst-case-Szenario“). Durch diesen negativen Kontrast können Szenarien helfen, Zielvorstellungen zu „Wo wollen wir hin?“ und „Was wollen wir erreichen?“ zu konkretisieren. Damit erlauben Szenarien den Blick in eine mögliche Zukunft, vor deren Hintergrund dann in der nächsten Phase konkrete Handlungsmaßnahmen entwickelt werden können. Im Mittelpunkt steht dann die Frage, was die Akteure in den Unternehmen tun können, um möglichst gut in diesem, negativ gezeichneten Bild zu bestehen? Die Entwicklung der Szenarien soll partizipativ erfolgen und Entscheider und andere wichtige Akteure aus dem Unternehmen beteiligen. Dabei können gemeinsam Ideen entwickelt und ggf. bekannte Denkmuster hinterfragt werden. Die Beteiligung an der Szenarioentwicklung schafft nicht nur eine Vertrautheit mit den Annahmen im Szenario, sondern lässt auch durch die Erfahrungen und das Praxiswissen der verschiedenen Personen ein möglichst realitätsnahes Zukunftsbild entstehen (Kerber et al., 2014).

Die Vorbereitung dient dazu den Problemfokus für die Szenarien und die späteren Phasen der Maßnahmenentwicklung festzulegen. Hier werden relevante Ursachen und prioritäre Risiken identifiziert, auf deren Basis die Zukunftssituation skizziert werden kann. Das entwickelte Szenario sollte dann in einem nächsten Schritt allen Beteiligten präsentiert und mit ihnen gemeinsam diskutiert und präzisiert werden. Die einzelnen Schritte der Szenarioentwicklung und die dazu notwendigen Methoden werden nachfolgend detailliert beschrieben.

7.2.1 Identifizierung der relevanten Treiber für das Szenario
Die Vorbereitung dient dazu, den Szenariorahmen festzulegen und den Problemfokus für die Szenarien und die späteren Planspiele zu ermitteln. Dazu werden in einem ersten Schritt relevante Ursachen und Veränderungen für Nachhaltigkeitsrisiken identifiziert. Ergänzend zu den Ergebnissen der Risikoanalyse sollen möglichst viele verschiedene Perspektiven und Erwartungen einbezogen werden, d.h. es sind verschiedene Funktionsträger und Repräsentant aus verschiedenen Fachabteilungen des Unternehmens zu beteiligen. Hierzu bietet sich die 6-3-5-Methode an. Dabei handelt es sich um eine sogenannte Brainwriting-Technik, durch die Ideen gesammelt werden können, ohne dass dabei direkt eine Bewertung stattfindet. Der Name 6-3-5 steht für 6 Teilnehmer oder 6 Gruppen, 3 Ideen, 5 Weitergaben und beschreibt den Ablauf der Methode (siehe Rohrbach, 1969 und Higgins et al., 1996 für Details hierzu). Je nach der Höhe der Teilnehmerzahl können entweder zwei bis drei Personen in einer Gruppe gemeinsam die Ursachen identifizieren oder aber auch nur eine Person. Es ist sinnvoll, einen Moderator einzusetzen, der die Teilnehmer in die Methode einführt. Dies kann entweder eine Person aus dem Unternehmen sein, die sich vorab mit der Methode
vertraut gemacht hat, oder aber auch ein externer Moderator. Dieser erklärt zu Beginn die Regeln der 6-3-5-Methode, erläutert den Teilnehmern die Ausgangsfraue und ist im Folgenden für das Einhalten der Zeit verantwortlich.

Textbox: Konkrete Durchführungsschritte der 6-3-5-Methode

1. Erläuterung der Vorgehensweise und der Regeln (durch einen Moderator)
2. Erläuterung des Themas/der Problemstellung
3. Jeder Teilnehmer/jede Gruppe notiert auf dem Flipchart 3 Ursachen
4. Jeder Teilnehmer/jede Gruppe wechselt zum nächsten Flipchart
5. Notieren von 3 weitere Ursachen, indem vorhandene Ursachen aufgegriffen, erweitert oder neue Ideen entwickelt werden
6. Jeder Teilnehmer/jede Gruppe wechselt zum nächsten Flipchart und es wiederholt sich der vorausgegangene Schritt bis fünfmal gewechselt wurde

Das Sammeln von relevanten Ursachen erfolgte in der Umsetzung von NaCoSi anhand der Ausgangsfraue „Was kann das jeweils genannte Ziel gefährden?“, also entlang der Nachhaltigkeitsziele (siehe Abbildung 4). Alternativ wäre aber auch eine Identifikation von Ursachen anhand der Nachhaltigkeitskategorien (Umwelt & Ressourcen etc. siehe Abbildung 4) oder einer anderen Systematik denkbar.

7.2.2 Szenarioerstellung und -diskussion

Textbox: Hintergrund für die Szenarioentwicklung

Für die Maßnahmenentwicklung im NHC wird empfohlen, ein negatives Extremszenario zu erarbeiten, das erzählend eine nicht wünschenswerte Zukunft aufspannt. Hierfür werden die vorab identifizierten Problemfelder und Ursachen hinsichtlich der Frage sondiert: Was sind Entwicklungen, die durch das Szenario abgebildet werden sollen? Entlang der ausgewählten Ursachen werden dann konkrete Entwicklungslinien des Szenarios ausgearbeitet (vgl. Textbox „Beispiel für die Entwicklungslinien eines Szenarios „Demografischer Wandel““). Sind die einzelnen Entwicklungslinien konkretisiert, kann darum das „Drehbuch“ aufgespannt werden.

Textbox:
Beispiel für die Entwicklungslinien eines Szenarios „Demografischer Wandel“
- Bevölkerungsentwicklung: Rückgang Einwohnerzahl um 15 % und Zunahme an Hochbetagten
- Siedlungsentwicklung: Leerstand im Neubaugebiet
- Zustandsbeschreibung Infrastruktur: Sanierungswelle, bzw. dringend notwendige Reparaturen im älteren Kanal- und Leitungsnetz
- Politische Dimension: Politische Restriktionen, gedeckelte Haushalte
- Kommunale Zusammenarbeit: Unerwartetes Scheitern
- Einführung neuer Techniken (4. Reinigungsstufe): Herausforderung Finanzierung und Fachkräftemangel

(Quelle: NaCoSi-Workshop am 19./29. Mai 2015)
Das Schreiben des Szenarios kann entweder durch einen externen Experten erfolgen oder aber auch im Unternehmen selbst vorgenommen werden, indem entsprechendes Wissen und Methodenkompetenz angemessen werden.

Textbox: Mögliche Wildcards der Wasserinfrastruktur

- Starke Bedeutung dezentraler Systeme oder konsequente Entwicklung in Richtung wasserautarker Häuser
- Neue, anpassungsfähige oder gentechnisch veränderte Keime
- Gentechnik zur Erhöhung der Reinigungsleistung in KA durch Bakterien
- Strukturelle Rahmenbedingungen: z.B. Klimawandel, neue Rechtsprechung, soziale Spaltung, verbindliche Nachhaltigkeitspolitik, extremem Wechsel der politischen Leitlinien ((Wirtschafts-)liberale vs. „grüne“ Politik)
- Naturgewalten (Erdbeben)
- Krieg
- Infrastrukturelle Änderungen z.B. durch Abkehr vom innerstädtischen motorisierten, Individualverkehr, Konkurrierende Trends: Dezentralisierung vs. Zentralisierung

(Quelle: NaCoSi-Workshop am 19./29. Mai 2015)

7.3 Herangehensweise in der Brainstorming-Phase

In den Szenarioskizzen selbst finden konkrete Maßnahmen noch keine Berücksichtigung. Diese werden in einem eigenen Schritt entwickelt. Aufgabe der Brainstorming-Phase ist es, mögliche Maßnahmen zur Vermeidung oder Bewältigung identifizierter Nachhaltigkeitsrisiken innerhalb des vorher entwickelten Szenarios zu entwerfen. Ausgehend vom negativen Szenario erfolgt die Sammlung möglicher Maßnahmen aus zwei Perspektiven: (a) Welche Handlungsoptionen gibt es, die im Szenario beschriebene Situation zu verhindern und (b) Welche Lösungswege sind denkbar, um die in den Szenarien fokussierten Risiken zu mildern. Ziel ist es, ein breites Portfolio an Maßnahmen zu identifizieren. In der Diskussion sollte darauf geachtet werden, dass der Bezug zum Szenario erhalten bleibt, indem hinterfragt wird, wie die jeweilige Maß-
nahme zur Lösung des Problems des Szenarios beiträgt. Zur Unterstützung können wichtige Eckpunkte des Szenarios, zum Beispiel in Form der Entwicklungslinien, nochmal aufgegriffen werden. Um den Fokus der Diskussion auch auf die Situation/Prozesse der Unternehmen zu lenken, bieten folgende drei Fragen einen guten Ausgangspunkt:

- Welche Handlungsmöglichkeiten sind im Unternehmen denkbar?
- Wer könnte im Unternehmen in die Umsetzung der Handlungsmöglichkeiten eingebunden werden?
- Wie werden im Unternehmen Entscheidungsprozesse über Anpassungsmaßnahmen getroffen?

7.4 Herangehensweise in der Planspiel-Phase

Textbox:
Unterstützung der Maßnahmenentwicklung durch Positivbeispiele aus der Praxis

Für die zwei identifizierten Handlungsoptionen werden nun konkrete Umsetzungsschritte in einem Planspiel erarbeitet. Das heißt die Handlungsoptionen werden in Form eines kleinen „Rollenspiels“ konkretisiert – es werden verschiedene Perspektiven berücksichtigt, die eine Umsetzung der Optionen befördern oder verhindern können. Umsetzungsschritte werden diskutiert und auf ihre Eignung geprüft. Dabei nehmen die Teilnehmer bestimmte Rollen ein, die nicht unbedingt ihren professionellen Positionen

Textbox: Zum Hintergrund der Planspielmethode

Ein Planspiel zur Konkretisierung der erarbeiteten Handlungsoptionen kann entweder extern erworbeneMethodenwissen in das Unternehmen geholt werden. Oder es kann im Unternehmen selbst entwickelt werden. Bei der Entwicklung und Umsetzung des Planspiels wird ein weites Verständnis von Planspielis gesetzt, d.h. es wird eine deutlich reduzierte Form eines Planspiels durchgeführt. Der Grund dafür ist, dass es zum einen in der Vorbereitung zu zeitaufwendig wäre, wenn sich das Planspiel, wie es bei klassischer Durchführung häufig der Fall ist, über mehrere Tage erstrecken würde. Zum anderen geht es vielmehr darum, die Handlungsmöglichkeiten gemeinsam in der Gruppe zu konkretisieren und aus verschiedenen Perspektiven zu bewerten. Hierbei sollte das Planspiel nach drei Schritten strukturiert werden: Vorbereitung (Kap 7.4.1), Interaktion und Dialog (Kap 0) sowie Auswertung (Kap 0).

7.4.1 Vorbereitung
Die Planspiele im NHC bauen ganz wesentlich auf den Ergebnissen der Szenario- und Brainstorming-Phase auf. Denn durch das entwickelte Szenario und das Identifizieren
und Auswählen von Handlungsoptionen wird bereits in das Thema des Planspiels eingeführt und das zu lösende Problem beschrieben. Wichtige Aufgabe der Vorbereitung ist es, die Spielregeln des Planspiels für die konkrete Anwendung zu definieren und das eigentliche Rollenspiel vorzubereiten.

Zunächst muss festgelegt werden, welche Art von Rollenspiel mit welchen Akteursrollen durchgeführt werden soll. Der Literatur zu Planspielen können zahlreiche verschiedene Arten entnommen werden. Um konkrete Umsetzungsschritte der identifizierten Handlungsoptionen zu erarbeiten, bieten sich besonders folgende zwei Rollenspielansätze an:

- Ein unternehmensinterner Arbeitskreis zur Strategieentwicklung: Mögliche Akteursrollen sind hierbei technische Mitarbeiter, kaufmännische Mitarbeiter, Geschäftsführer, Aufsichtsratsmitglied (z.B. Bürgermeister), Pressesprecher, Controller oder eine Person aus dem Personalrat. Zusätzlich kann noch ein externer Experte als weitere Rolle vertreten sein.

Ist die Art des Rollenspiels festgelegt, werden in einem nächsten Schritt die einzelnen Rollenprofile konkretisiert. Dazu müssen für jeden Akteur Informationen zu dessen Position, Interessen und Zielen erarbeitet werden. Damit die Teilnehmer ihre jeweilige Rolle gut vertreten können, ist es wichtig, die einzelnen Rollen klar auszudifferenzieren (z.B. wie konstruktiv oder widerspenstig sind die typischen Vertreter, die hinter den Rollenbildern stehen). Die ausgearbeiteten Rollenprofile werden dann auf Karten notiert und den Teilnehmern zur Vorbereitung zur Verfügung gestellt.

Die Aufteilung der Rollen kann nach Interesse, per Los oder nach Zuteilung erfolgen. Auch sind Mischformen dieser Varianten denkbar. Die Teilnehmer erhalten ausrei-

7.4.2 Interaktion und Dialog
Die Interaktionsphase bildet den Kern des Planspiels und umfasst die Durchführung des Rollenspiels. Dazu kommen die Teilnehmer in ihrer jeweiligen Akteursrolle im Expertengremium oder internen Arbeitskreis zusammen und diskutieren für jeweils eine der beiden Handlungsmassnahmen notwendige Schritte zur Umsetzung. Die Teilnehmer argumentieren aus Sicht der jeweiligen Rollen. Der Einstieg erfolgt, indem die einzelnen Akteure kurz ihre wichtigsten Positionen und Argumente darlegen. Die Diskussion kann mittels folgender Leitfragen strukturiert werden:

- Was kann jeder Akteur aus Sicht seiner Rolle dazu beitragen, dass die Maßnahmen umgesetzt werden?
- Wer muss den Prozess unterstützen, wer muss ggf. noch gewonnen werden?
- Wer muss den Prozess leiten? Wer wird den Prozess verhindern wollen?
- Wie können die Maßnahmen implementiert werden? Und welche Umsetzungsschritte braucht es dazu?

7.4.3 Auswertung

- Welche Expertise ist für die Planung und Umsetzung der Maßnahme notwendig? Besteht die Expertise im Unternehmen oder bedarf es externer Beratung? Falls externe Beratung notwendig wird, ist es sinnvoll, hier eigene Expertise aufzubauen?
- Welche Ressourcen (finanzielle, personelle, zeitliche) sind für die Planung, Umsetzung und ggf. Fortführung notwendig?
- Wann entfaltet die Maßnahme ihre Wirkung? Wie lange wirkt die Maßnahme?
- Sind Widerstände zu erwarten? Falls ja, welche, bzw. von wem sind sie zu erwarten?
- Welche unerwünschten Nebeneffekte können mit der Maßnahme verbunden sein?
Das Beantworten der Fragen ist ein wichtiger Schritt der Entscheidungsvorbereitung. Die Antworten sind anschließend in unternehmensinterne Verfahren zu übersetzen. Die Entscheidung selbst sowie die Umsetzung der Maßnahme(n) ist Aufgabe der Entscheidungsträger. Wichtig ist, dass Nachhaltigkeit mehr umfasst als die Einzelmaßnahmen; es sind immer auch die Effekte zwischen den Maßnahmen einer Strategie zu erfassen: Inwiefern verstärken sie sich gegenseitig oder laufen sie gegebenenfalls gegeneinander? Diese Frage ist von großer Bedeutung für die Auswertung.

7.5 Praktische Hinweise für die Arbeitsphasen bei der Maßnahmenentwicklung

Grundsätzlich ist denkbar, die stärkere Verknüpfung der verschiedenen Funktionsbereiche im Unternehmen in den Mittelpunkt zu stellen. Dieser Blick kann auf die kommunale Ebene erweitert werden, wenn die Interaktion mit Auftraggebern/Bestellern...

7.6 Zusammenfassung: Arbeitsschritte und Ressourcenbedarf

Es ist denkbar, die Aufgaben auf fünf Teams zu verteilen. Personengleichheiten sind hierbei zu einem gewissen Grad sinnvoll, sollten aber gegenüber der damit verbundenen Arbeitsbelastung – auch im Abgleich mit weiteren Tätigkeiten der Personen – abgewogen werden:

- Prozessverantwortliche: 1-2 Personen, ggf. mit externer Unterstützung für Methodenauswahl, Vorbereitung, Moderation, Dokumentation etc.
- AG „Gesamt“: Umfasst alle Personen aus dem Unternehmen und ggf. seinem Umfeld, die an der Maßnahmenentwicklung beteiligt werden sollen. Effektiv sind Gruppengrößen von 5 bis maximal 20 Personen. Die Beteiligten der nachfolgenden drei AGs sind auch Teil der AG „Gesamt“.
- AG „Szenarioentwicklung“: Team von 1-3 Personen (ggf. inkl. Prozessverantwortlichen), welches das Szenario in seiner ersten Fassung erarbeitet und die Ergebnisse der Diskussion wieder zusammenführt.
- AG „Rollenspiele“: Team von 2-3 Personen, (ggf. inkl. Prozessverantwortlichen), das die Regeln des Rollenspiels festlegt und die Rollenbilder entwirft.
- AG „Maßnahmen“: Team von 2-3 Personen (auf jeden Fall inkl. Repräsentant der Prozessverantwortlichen), welches bei der Auswertung Planspielphase die Ergebnisse sichert und in ein Format bringt, das in den Organisationsstrukturen des Unternehmens weiter bearbeitet werden kann.
Tabelle 24: Geschätzter Bedarf an Teamressourcen und Zeitbedarf (in Kalendertagen/-monaten) je Phase der Maßnahmenentwicklung

<table>
<thead>
<tr>
<th>Phase</th>
<th>Teamressourcen</th>
<th>Dauer der Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ausarbeitung des Gesamtprozesses und Definition der Zielstellung; Gewinnung der einzelnen Teammitglieder</td>
<td>Prozessverantwortliche</td>
<td>2-4 Wochen (zzgl. Abstimmung mit Leitung, weiteren Entscheidungsträgern und internen Auftraggebern)</td>
</tr>
<tr>
<td>Szenario-Phase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vorbereitung Urtsachenanalyse</td>
<td>Prozessverantwortliche</td>
<td>Wenige Tage, ggf. mit externer Unterstützung</td>
</tr>
<tr>
<td>Durchführung Urtsachenanalyse</td>
<td>Prozessverantwortliche AG Gesamt AG Szenarioentwicklung</td>
<td>1-2 Tage</td>
</tr>
<tr>
<td>Auswertung Urtsachenanalyse</td>
<td>Prozessverantwortliche AG Szenarioentwicklung</td>
<td>Bis zu 3 Wochen (inkl. Feedback mit Beteiligten)</td>
</tr>
<tr>
<td>Erarbeitung des Szenarios</td>
<td>AG Szenarioentwicklung</td>
<td>Wenige Tage bis zu 4 Wochen (je nach Kapazität und weiteren Arbeitsaufgaben der Beteiligten)</td>
</tr>
<tr>
<td>Diskussion und Verfeinerung des Szenarios</td>
<td>Prozessverantwortliche AG Szenarioentwicklung AG Gesamt</td>
<td>1 Tag zzgl. möglicher Nacharbeiten der AG Szenarioentwicklung (2-5 Tage)</td>
</tr>
<tr>
<td>Brainstorming-Phase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vorbereitung Brainstorming-Workshop</td>
<td>Prozessverantwortliche</td>
<td>Wenige Tage, ggf. mit externer Unterstützung</td>
</tr>
<tr>
<td>Brainstorming Handlungsoptionen und Priorisierung</td>
<td>Prozessverantwortliche AG Gesamt</td>
<td>1-2 Tage</td>
</tr>
<tr>
<td>Auswertung der Brainstorming-Phase</td>
<td>Prozessverantwortliche AG Maßnahmen</td>
<td>Wenige Tage bis zu 4 Wochen (je nach Kapazität und weiteren Arbeitsaufgaben der Beteiligten)</td>
</tr>
<tr>
<td>Planspiel-Phase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vorbereitung Planspiele</td>
<td>Prozessverantwortliche AG Rollenspiele</td>
<td>1-6 Wochen (je nach Kapazität und weiteren Arbeitsaufgaben der Beteiligten)</td>
</tr>
<tr>
<td>Einstimmung der Teilnehmenden auf die Planspielphase</td>
<td>AG Gesamt</td>
<td>2-3 Wochen; den Teilnehmenden sollte die Möglichkeit gegeben werden, die Ergebnisse der vorherigen Phasen sowie die geplanten Rollen rechtzeitig zur Vorbereitung durchzuarbeiten.</td>
</tr>
<tr>
<td>Durchführung der Planspiele</td>
<td>Prozessverantwortliche AG Rollenspiele AG Gesamt</td>
<td>1-2,5 Tage (je nach Umfang der Ausarbeitung der einzelnen Handlungsoptionen/Maßnahmenbündel)</td>
</tr>
<tr>
<td>Auswertung der Planspiele und ggf. Aufarbeitung für weitere Umsetzungen</td>
<td>Prozessverantwortliche AG Maßnahmen</td>
<td>Wenige Tage bis zu 4 Wochen (je nach Kapazität und weiteren Arbeitsaufgaben der Beteiligten)</td>
</tr>
</tbody>
</table>
8 Implementierung des NHC

8.1 Anknüpfungspunkte eines Nachhaltigkeitscontrollings an Gegebenheiten in siedlungswasserwirtschaftlichen Unternehmen

Abbildung 30 zeigt die aggregierten Ergebnisse der Abfrage bezüglich der eingesetzten Managementsysteme von 11 Praxispartnern auf.

Abbildung 30: Übersicht – Nennung der Managementsysteme bei den 11 Partnern (aus Fragebogen zu Managementsystemen, siehe Anhang e)
Demnach werden in den meisten Unternehmen mehrere Managementsysteme gleichzeitig eingesetzt. Es wird in allen beteiligten Unternehmen ein Risikomanagementsystem sowie bei 10 der 11 Partner ein Benchmarkingsystem verwendet.

Ausgehend hiervon wurde entscheiden, den Prototypen für ein NHC an den etablierten Prozessen des Risikomanagements zu orientieren (Kapitel 2.5). Das NHC sieht zudem vor, durch die Verwendung von etablierten Benchmarkingdaten weitere Synergieeffekte nutzen zu können. Die Abfrage bei den Praxispartnern bestätigte in einer frühen Projektphase, dass in dieser Vorgehensweise ein großes Potenzial liegt, da das NHC somit an zwei wichtige und bereits vorhandene Managementsysteme der siedlungswasserwirtschaftlichen Unternehmen ankniipf.

8.2 Typisches Vorgehen bei der Implementierung des Nachhaltigkeitscontrollings im siedlungswasserwirtschaftlichen Unternehmen

Bei der Umsetzung des NHC im Unternehmen können die durch das NaCoSi-Projektteam vorbereiteten Verfahrensteile aufgegriffen und angewendet werden. Wie in Kapitel 2.5 beschrieben, stehen den Unternehmen

- die Sammlung der Wirkungspfade mit den zugeordneten Schwellenwerten für kritische Zielabweichungen, die Empfehlungen zur Vorgehensweise zur Beurteilung von Risiken und nicht nachhaltigen Trends sowie die zugehörigen Analyseverfahren,
- außerdem Empfehlungen zur Erarbeitung von Maßnahmen zur Risikominderung zur Verfügung.

Die Sammlung der Wirkungspfade enthält zugleich die in einem breiten, inter- und transdisziplinären Diskurs erarbeiteten Vorschläge für kritische Indikatorwerte. Hierdurch werden die Nachhaltigkeitsziele dahin gehend konkretisiert, dass nicht nachhaltige Ausprägungen benannt werden. Die Unternehmen können dieses Analysegerüst einschließlich der Schwellenwerte so aufgreifen. Sie können aber auch ihre unternehmensspezifischen Zielvorstellungen in die Risikoanalyse einbringen (vgl. Kapitel 3.3.6), indem sie zum Beispiel die Schwellenwerte unternehmensspezifisch anpassen.

Die Kategorisierung nach Nachhaltigkeitszielen ermöglicht es hierbei, einen umfassenden Blick auf das Unternehmen zu werfen, während viele andere Managementsysteme jeweils nur Teilaspekte des Unternehmens berücksichtigen.

Hierbei ist sicherlich zu beachten, inwieweit das NHC unternehmensintern oder für einen Quervergleich genutzt werden soll. Wie an anderer Stelle bereits erläutert (Kapitel 6), sind die unternehmensspezifischen Risikoprofile, die in der Risikobeurteilung erstellt werden, zwar individuell verschieden. Es ist trotzdem davon auszugehen, dass diese in ihrer Gesamtheit, wie beispielsweise Kennzahlen in Benchmarkingprojekten, mit anderen Unternehmen verglichen werden können. So zeigten erste Ergebnisse innerhalb der Projektdauer, dass trotz der Individualität der Profile ähnliche Risiken für bestimmte Nachhaltigkeitsziele in vielen Unternehmen vorhanden sind. Unternehmensübergreifend einheitliche Indikatorwerte können hier die Vergleichbarkeit fördern. Werden daher die vorgegebenen Nachhaltigkeitsziele von einem Unternehmen genutzt, wird hierdurch ein späterer Quervergleich mit anderen Unternehmen für genau solche Risiken erleichtert.

Grundlage der Risikoidentifikation bildet die Kategorisierung der Nachhaltigkeitsrisiken nach Nachhaltigkeitszielen und das Konzept der Wirkungspfade. Das offene System der Wirkungspfade ermöglicht es hierbei, zum einen die vordefinierten Wirkungspfade der Basis (siehe Anhang) zu verwenden, zum anderen aber auch eigene, unternehmensspezifische Wirkungspfade zu integrieren. Über die Anzahl der Wirkungspfade und damit der Indikatoren definiert sich sowohl die Tiefe der Risikoanalyse als auch der Aufwand für die Datenerhebung im Unternehmen. Während des Implementierungsprozesses kann darüber entschieden werden, in welchem Umfang die Datenerhebung erfolgen soll und entweder das Basismodul herangezogen oder die darüber hinaus die komplementären Erweiterungen gewählt werden. Da die Module „Basis“ und „Erweiterung“ aufeinander aufbauen, ist eine Erweiterung oder Veränderung im NHC zu Beginn jedes Zyklus möglich. Auf Grundlage der Wirkungspfade erfolgt dann die konkrete Abfrage von Indikatoren im Unternehmen, die schließlich die Risikoanalyse und -bewertung ermöglichen und deren Ergebnisse in einem übersichtlichen Nachhaltigkeitsbericht zusammengefasst werden.

Die Maßnahmenentwicklung erfolgt in jedem Unternehmen individuell. Hier bietet das NHC eine pragmatische und erprobte Vorgehensweise an. Die Unternehmen können hier jedoch auch individuelle Herangehensweisen verfolgen.

Im nachfolgenden Kapitel wird auf Projekterfahrungen und mögliche Nutzungswege eingegangen.

8.3 Wege der Nutzung des NHC

Bei allen Praxispartnern sind in individuellen Workshops die bisherigen Erfahrungen und Ergebnisse des NHC rekapituliert und bewertet worden. Insbesondere die jeweiligen Stärken und Handlungsbedarfe der Unternehmen sind im Kontext der individuellen Rahmenbedingungen diskutiert worden. Grundlage der Diskussion sind die methodischen Bestandteile:

- Risikoprofil
- Monitoring
- individueller Bericht
- ggf. in den Planspiel-Workshops erarbeiteten Maßnahmen zur Beherrschung der Nachhaltigkeitsrisiken

Eine Übertragung und Formalisierung der Prozesse des NHC in den Unternehmen ist über folgende Leitfragen erfolgt:

- Welche Indikatoren werden in welchen Rhythmen überwacht?
- Welche Überwachung wird durch welche bestehenden Instrumente geleistet?
- Welche Vorteile werden durch das NHC erwartet?
- In welchem Turnus sind Quervergleiche mit Partnern sinnvoll?

Abgesehen von der Implementierung in einzelnen Unternehmen, die immer individuell erfolgen muss, ist die Verknüpfung des NHC mit Benchmarkingprojekten möglich, um das Instrument Benchmarking zu unterstützen. Hier stehen vor allem die landesweiten Projekte im Fokus. Denn will man auf den Weg der Verpflichtung zur Teilnahme am Benchmarking verzichten (Ottlinger 2012), können positive Teilnehmerentwicklungen hauptsächlich über Steigerungen des Nutzens und über Weiterentwicklungen dieses Instrumentes für die einzelnen Betreiber erreicht werden (Möller et al. 2012a, Möller et al. 2012b). Die im Vorhaben erarbeiteten Ergebnisse können in allen sogenannten Landesprojekten der aquabench Anwendung finden und tragen damit zur Verstetigung von Beteiligungen an den Projekten bei. Die Erfahrungen der Benchmarkingprojekte zeigen, dass solche standardisierten Dienstleistungen durch Kommunen nachgefragt werden und gleichzeitig die Effizienz der Benchmarkingprojekte erhöhen (Bertzbach und Franz 2011). Die Ergebnisse stellen somit Nutzen sowohl für die Teilnehmer der Projekte, also für die Unternehmen der Siedlungswasserwirtschaft, als auch für die sogenannten Projektträger aus Politik (Ministerien, Städtetag, Gemeindebund etc.) und Fachverbänden (DVGW, DWA, VkU, bdew etc.) dar.
9 Nachhaltigkeitscontrolling bei kleinen Unternehmen

Im Rahmen des NaCoSi-Projekts war daher eine wichtige Fragestellung, ob das entwickelte Nachhaltigkeitscontrolling auch für kleine Unternehmen der Siedlungswasserwirtschaft umsetzbar ist. Der NHC-Ansatz soll dem Gesamtsystem der Siedlungswasserwirtschaft und somit auch kleinen Unternehmen eine Hilfestellung bieten, frühzeitig gegen Risiken Maßnahmen zu ergreifen, die mit einer Langfristperspektive negative Auswirkungen für die Nachhaltigkeit eines Unternehmens haben können.

9.1 Vorgehen bei kleinen Unternehmen im Rahmen von NaCoSi

Um entsprechende Aussagen zu Anforderungen kleiner Unternehmen an das Nachhaltigkeitscontrolling zu erhalten, wurde ein Vorgehen gewählt, bei dem zunächst Abgrenzungskriterien für kleine Unternehmen festgelegt wurden. Anhand dieser Kriterien konnten spezifisch Unternehmen gesucht werden, die Interesse hatten, sich mit dem Thema Nachhaltigkeit vertieft auseinander zu setzen.

9.1.1 Abgrenzung kleine Wasserversorgungsunternehmen

Für die Größe eines Wasserversorgungsunternehmens wurden die spezifische Kenngröße der Jahreswasserabgabe und die Anzahl der versorgten Kunden (in Einwohnerwert: EW) gewählt. Die maximale Jahreswasserabgabe für ein Unternehmen wurde nach Hulsman und Smeets (2011), Biedermann (2014) und Platschek (2015) auf 300.000 m³ bzw. auf 5.000 EW festgelegt. Es wird bewusst auf eine Berücksichtigung der Einteilung nach Mitarbeitern, nach Art der Wasserverteilung oder Anzahl der Hausanschlüsse verzichtet, um eine einfache erste Zuordnung kleiner Unternehmen vornehmen zu können.
9.1.2 Abgrenzung kleine Abwasserbeseitigungsunternehmen

Für die Größe der Abwasserbeseitigungsunternehmen wurden als Maßkriterien zum einen die Größenklasse der Aufbereitungsanlage und zum anderen die an das Abwassernetz angeschlossenen Einwohner (in EW) genutzt. Die Aufbereitungsanlagen sollten gemäß der Abwasserverordnung (AbwV. 1997; Anhang 1) eine Kläranlagen-Größenklasse zwischen 1 und 3 besitzen. Das entspricht einer angeschlossenen Einwohnerzahl bis maximal 10.000 EW. Entsprechend wird auch die tägliche maximale BSB₅-Rohwasserfracht auf 600 kg/d begrenzt (BSB₅: Biochemische Sauerstoffbedarf in 5 Tagen).

Neben dem Kriterium der Größe wurde bei der Suche nach interessierten kleinen Unternehmen darauf geachtet, räumlich möglichst weit verbreitet Kleinstunternehmen der Siedlungswasserwirtschaft zu gewinnen, um auf diese Weise auch unterschiedliche Rahmenbedingungen wie z.B. Topografie, Geologie und Hydrologie, Bundesland oder auch Rechtsform betrachten zu können.

Über E-Mail-Verteiler und direkte Ansprache von kleinen Unternehmen, mit denen von Seiten der UniBwM bereits bei anderen Projekten zusammengearbeitet wurde, konnten acht Wasserversorger und zwei Abwasserbeseitiger gefunden werden, die für Interviews und Erhebungen zur Verfügung standen.

Inhaltlich decken die Fragebögen drei Themenbereiche ab: Im ersten Teil werden Basisdaten zu den Unternehmen abgefragt, Teil zwei befasst sich mit der Nutzung von Managementsystemansätzen und Teil drei konzentriert sich auf Fragen zum Nachhaltigkeitscontrolling-Instrument, erhebt Anforderungen kleiner Unternehmen an einen solchen Ansatz und fragt nach möglichen Implementierungshemmnissen. Die als digitale ausfüllbare PDF-Datei konzipierten Fragebögen für kleine Wasserversorger und Abwasserbeseitiger befinden sich im Anhang unter f und 0.

Nachhaltigkeitscontrolling (Kapitel 9.4) dokumentiert und ausgewertet werden. Des Weiteren konnten Anforderungen an ein Nachhaltigkeitscontrolling durch kleine Unternehmen sowie mögliche Hemmnisse der Durchführung und Anpassungserfordernisse abgeleitet werden (Kapitel 9.5).

9.2 Situationsanalyse

9.2.1 Situationsbeschreibung der 8 Wasserversorger

![Abbildung 31: Wasserversorgungsunternehmen nach Jahreswasserabgabe und Anzahl der Hausanschlüsse (Bickert 2016)](image)

Unternehmen 1 und 5 sind von der Rechtsform her Wasserbeschaffungsverbände, alle anderen Unternehmen sind Körperschaften des öffentlichen Rechts.

Fast alle befragten Unternehmen sind mit konkurrierenden Nutzungsansprüchen an die Einzugsgebiete der Trinkwasserbrunnen oder mit landnutzungsbedingten Gefährdungen betroffen.

2 Die im Folgenden beschriebenen Ergebnisse zu den Unternehmensbesuchen und Erhebungen beruhen auf der Masterarbeit von Bickert (2016).

Bei Unternehmen 3, 7 und 8 wurden im letzten Jahrzehnt die Wasserspeicher saniert. Unternehmen 1 und 4 planen in den kommenden Jahren ihre Speicher erneuern zu lassen. Eine Sanierung der Wasserspeicherbecken stellt für kleine Wasserversor-
gungsunternehmen mit den genannten Rahmenbedingungen eine der größten Investitionen dar.

Einen weiteren Kostenfaktor für die Unternehmen bildet deren Wasserverteilungsnetz. Bei fast allen besuchten Unternehmen liegt die Erneuerungsrate bei rund 2 % pro Jahr. In dieser Hinsicht arbeiten diese kleinen Unternehmen vorbeugend und fortschrittlich.

Die Altersstruktur lag in allen Unternehmen durchschnittlich bei 40 Jahren. Das Anwenden sowie auch Halten junger Nachwuchsfachkräfte wird insbesondere für dezentrale Regionen als wichtig erachtet.

Kommunale Unternehmen der Wasserversorgung sind nach Wasserhaushaltsgesetz (WHG Kapitel 2 Ansnchnit 1 §13 Absatz 2 Nummer 3) an das Prinzip der Kostendeckung gebunden. Entstandene Kosten durch getätigte Investitionen müssen demnach entsprechend durch Umsätze wieder erwirtschaftet werden. Um dies auch weiterhin nach größeren Investitionen bewerkstelligen zu können, sind die Unternehmen gezwungen, ihre gebrauchssabhängigen Wasserpreise bzw. Entgelte gegenüber den Kunden anzupassen, um kostendeckend zu bleiben. Bei den 8 Unternehmen stellt sich die Entgelt- und Grundgebührensituation wie in Tabelle 25 dar.

<table>
<thead>
<tr>
<th>Unternehmen</th>
<th>Entgelt pro m³ (netto)</th>
<th>Entwicklungstendenz Entgelt</th>
<th>Grundgebühr (netto)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,70 €</td>
<td>Steigerung</td>
<td>25 €</td>
</tr>
<tr>
<td>2</td>
<td>0,70 €</td>
<td>Steigerung</td>
<td>18 €</td>
</tr>
<tr>
<td>3</td>
<td>1,10 €</td>
<td>Steigerung</td>
<td>75 €</td>
</tr>
<tr>
<td>4</td>
<td>0,55 €</td>
<td>Gleichbleibend</td>
<td>12 €</td>
</tr>
<tr>
<td>5</td>
<td>Noch keine Zähler installiert</td>
<td></td>
<td>55 €</td>
</tr>
<tr>
<td>6</td>
<td>2,51 €</td>
<td>Gleichbleibend</td>
<td>60 €</td>
</tr>
<tr>
<td>7</td>
<td>1,45 €</td>
<td>Gleichbleibend</td>
<td>12,50 €</td>
</tr>
<tr>
<td>8</td>
<td>1,25 €</td>
<td>Steigerung</td>
<td>15 €</td>
</tr>
</tbody>
</table>

Bei Unternehmen 1 wird das bisherige Entgelt zukünftig angehoben werden müssen, da neben einer Sanierung des Hochbehälters in absehbarer Zeit mehrere Kilometer Rohrleitungen zu erneuern sowie Entschädigungszahlungen zu leisten sind. Unternehmen 2 wird ebenfalls aufgrund einer kürzlich vollzogenen Hochbehältersanierung den Wasserpreis erhöhen müssen. Unternehmen 3 hat 2008 einen Großteil der Anlagen saniert und/oder erneuert. Das derzeitige Entgelt von 1,10 € wird voraussichtlich

9.2.2 Situationsbeschreibung der 2 Abwasserbeseitiger

Unternehmen 9 ist zuständig für die Entsorgung in sieben, zur Gemeinde gehörenden Ortsteilen, mit 950 Hausanschlüssen und insgesamt etwa 2.450 Einwohnern sowie die Reinigung des Abwassers in sechs Kläranlagen. Im Jahr 2014 wurden knapp 467.000 m³ angefallenes Abwasser geklärt.

Unternehmen 10 ist zuständig für die Abwasserbeseitigung in neun zur Gemeinde gehörenden Ortsteilen, mit knapp 950 Hausanschlüssen und insgesamt 2.934 Einwohnern. Die Behandlung des Abwassers findet in acht Teichkläranlagen statt, wovon drei mit Belüftung und die anderen fünf mit einer nachgeschalteten Tauchkörperklärung sstufe ausgestattet sind. Im Jahr 2014 wurden darin insgesamt 426.200 m³ anfallendes Abwasser geklärt.

Bei beiden Unternehmen wurden bei Kamera-Befahrungen des Kanalisationssnetzes nach hessischer Eigenkontrollverordnung große Mängel festgestellt, die über kostenintensive Sanierungsprogramme behoben werden sollen. Auch die Fremdwasserproblematik bei beiden Unternehmen soll so beseitigt werden.
Unternehmen 9 muss besondere Einleitungsbestimmungen beachten, da der Vorfluter innerhalb eines ausgewiesenen Flora-Fauna-Habitats liegt. Für die Einleitererlaubnis muss nachgewiesen werden, welche genauen Auswirkungen und Gefährdungen für die Ökologie des Vorfluters zu erwarten sind.

Aufgrund hoher Investitionen zum Beispiel in die Nachrüstung von Kläranlagen oder Sanierung der Kanäle besteht für Unternehmen 9 eine hohe finanzielle Belastung. Das Abwasserentgelt ist zur Kostendeckung mit 6 €/m³ entsprechend hoch angesetzt. Als Reaktion auf die Erhebung eines Abwassererneuerungsbeitrags zum Ausgleich der Investitionen kam es zu Beschwerden aus der Bevölkerung.

Unternehmen 9 und 10 sind neben den bereits genannten finanziellen Belastungen auch demografischen Veränderungen ausgesetzt. Auch in Zukunft werden große Herausforderungen auf die Unternehmen zukommen, um die finanziellen Belastungen zu senken und kostendeckend zu bleiben.

Beide Betriebe arbeiten seit längerer Zeit eng mit umliegenden Gemeinden zusammen. Die Zusammenarbeit erfolgt unter einem sogenannten G9-Gemeindeverbund. Themen
sind dort z.B. die Organisation der Klärschlambeseitigung, gemeinsame Ausschreibungen und Nutzung von Personal und Maschinen.

9.3 **Identifizierte Risiken und aktueller Umgang**

Aus der Erhebung lassen sind folgende Gemeinsamkeiten in der Risikosituation kleiner Unternehmen ableiten:

- **Finanzielle Belastungen**: Investitionen müssen aufgrund notwendiger Sanierungs- oder Erneuerungsmaßnahmen getätigt werden, jedoch erfordert dies auch eine Erhöhung der Einnahmen, um weiterhin kostendeckend zu bleiben. Insbesondere bei deutlichem Bevölkerungsrückgang und der Erschwinglichkeitsproblematik steigender Entgelte kann sich die Einnahmensituation kritisch gestalten.

- **Unterstützung durch die Gemeinde**: Durch Abstimmungsschwierigkeiten mit den Bürgermeistern und Gemeinderäten hinsichtlich der Finanzmittel wird der Handlungsspielraum für notwendige Investitionen eingeschränkt und die Umsetzung von Maßnahmen zur Sicherung einer nachhaltigen Leistungs- oder Zukunftsfähigkeit erschwert.

- **Personalmangel**: Bereits jetzt haben viele Unternehmen Schwierigkeiten Ersatz bei Personalausfällen zu finden. Auch die Gewinnung zukünftiger technischer Führungs- und Fachkräfte gestaltet sich schwierig.

- **Unterstützung durch staatliche Gremien**: Viele Unternehmen fühlen sich durch den Wegfall der in der Vergangenheit guten Betreuung durch die Landeswasserämter mit ihren Problemen allein gelassen.

- **Rechtliche Anforderungen**: Bereits jetzt sehen sich die kleinen Unternehmen durch Veränderungen der rechtliche Rahmenbedingungen starkem Druck ausgesetzt. Vor allem die kleinen Abwasserbeseitiger sehen Schwierigkeiten hinsichtlich der Einhaltung der zukünftigen Reinigungsanforderungen.
Tabelle 26: Selbsteinschätzung der kleinen Unternehmen zur eigenen Risikosituation

<table>
<thead>
<tr>
<th>Unternehmen</th>
<th>Sparte</th>
<th>Größte Risiken aus Sicht der Kleinen Unternehmen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Trinkwasser</td>
<td>Unternehmen 1 sieht das Risiko des Verlustes des Wasserentnahmerechts durch konkurrierende Nutzungen im Wassereinzugsgebiet und Schwierigkeit der Schutzgebietsausweisung als die größten Gefahren für die Nachhaltigkeit des Betriebes.</td>
</tr>
<tr>
<td>2</td>
<td>Trinkwasser</td>
<td>Unternehmen 2 fühlt sich Risiken gegenüber gut aufgestellt.</td>
</tr>
<tr>
<td>3</td>
<td>Trinkwasser</td>
<td>Hier werden die größten Risiken im Bereich Personalmangel in der Region, Entgeltsteigerungen und Ausweitung des Energiepflanzenanbaus (Monokultur) gesehen - insgesamt sieht man sich mittel bis gut gegenüber Risiken aufgestellt.</td>
</tr>
<tr>
<td>5</td>
<td>Trinkwasser</td>
<td>Unternehmen 5 sieht sich gegenüber Risiken gut aufgestellt. Als leichte Risiken werden hier die nicht existierende Notversorgung zur Nachbargemeinde, nicht installierte Wasserzähler und Schwierigkeiten bei der Entgeltberechnung gesehen.</td>
</tr>
<tr>
<td>6</td>
<td>Trinkwasser</td>
<td>Langfristige Veränderungen der Wasserqualität und die Abhängigkeit von einem Brunnen, sowie Klimawandel bedingte Spitzenverbräuche in den Sommermonaten stellen für Unternehmen 6 die größten Risiken dar.</td>
</tr>
<tr>
<td>7</td>
<td>Trinkwasser</td>
<td>Unternehmen 7 sieht sich bislang mit keinen Risiken konfrontiert.</td>
</tr>
<tr>
<td>8</td>
<td>Trinkwasser</td>
<td>Verfügbarkeit und Gewinnung von Fachpersonal sowie das Thema Schutzgebietsausweisung bilden für Unternehmen 8 die größten Risiken.</td>
</tr>
<tr>
<td>10</td>
<td>Abwasser</td>
<td>Unternehmen 10 sieht ebenfalls große Risiken im demografischen Wandel, steigenden Klärschlammensorgungskosten und durch den klimawandelbedingten Hochwasserereignissen.</td>
</tr>
</tbody>
</table>

9.4 Anforderungen, Hemmnisse und Anpassungserfordernisse kleiner Unternehmen

Folgende Anforderungen an den Nutzen des Nachhaltigkeitscontrollings konnten aus Sicht kleiner Unternehmen identifiziert werden:

Das Nachhaltigkeitscontrolling soll…

- beraten und zu der Optimierung der Organisation beitragen
- die Identifizierung, Bewertung und Dokumentation von Risiken übernehmen
- einen Ausblick auf die Zukunft liefern können und damit Planungssicherheit schaffen
- sich positiv auf die Versorgungssicherheit auswirken
- Risiken erkennbar machen
- einfach in der Anwendung (überwiegend Teilzeitkräfte) und erschwinglich (geringe finanzielle Spielräume kleiner Unternehmen) sein
- bei dauerhafter Anwendung die Dokumentation von Unternehmensdaten und Weitergabe von Wissen (Personalwechsel) verbessern.
Hemmnisse gegenüber einer Anwendung des Nachhaltigkeitscontrollings erwachsen für kleine Unternehmen insbesondere durch folgende Aspekte:

- **Hoher Aufwand:**

 Da kleine Unternehmen in der Regel wenig bis gar keine Erfahrung in der Nutzung von standardisierten Managementsystemen in Bezug auf Einführung, Einarbeitung und Pflege haben, stellt der Aufwand das größte Hemmnis gegenüber dem Nachhaltigkeitscontrolling dar. Unterschieden werden kann hierbei nach:

 ▪ **Kostenaufwand:** Um einen Preis für das Instrument ermessen zu können, fehlte dem Großteil der Interviewpartner der Abgleich zum Nutzen, den das Instrument bringen kann. Da viele der Kleinunternehmen bereits einer erhöhten finanziellen Belastung ausgesetzt sind, sollte das Instrument nur so wenig wie möglich kosten. Daraus kann die Forderung abgeleitet werden, dass das Instrument erschwinglich sein und einen an Kleinunternehmen angepassten Preis haben muss. Insbesondere auch Kosten durch einen erhöhten Personalaufwand werden kritisch gesehen.

 ▪ **Personalaufwand:** Alle kleinen Unternehmen sehen sich bereits ohne Sonderaufgaben personell stark überlastet. Daher muss der mit dem Nachhaltigkeitscontrolling verbundene Arbeitsaufwand gering und einfache Bedienbarkeit, Handhabung sowie eine leichte Verständlichkeit gegeben sein.

 ▪ **Zeitaufwand:** Befürchtet wird, dass die Einführung, Auseinandersetzung und Nutzung des Nachhaltigkeitscontrollings sehr zeitaufwändig ist. Bei allen befragten Unternehmen besteht jedoch die Bereitschaft 1-2 Tage im Jahr zu investieren.

- **Hemmnisse durch Skepsis und Befürchtungen:**

 ▪ Es wird die Aufdeckung gravierender Probleme befürchtet, gegen die es keine Abhilfe gibt.

 ▪ Allgemein herrscht Skepsis gegenüber der Nützlichkeit des Controlling-Ansatzes und auch der Einführung von etwas „Neuem“.

 ▪ Befürchtet wird auch, dass es durch noch mehr Transparenz ein schlechtes Bild des eigenen Unternehmens im Vergleich zu anderen Betrieben entsteht.

 ▪ Zudem glaubt man nicht, dass das Instrument Risiken aufdecken kann, die man nicht selbst schon kennt.

Anpassungserfordernisse an das Nachhaltigkeitscontrolling um für kleine Unternehmen attraktiv zu sein:

- Stärkste Herausforderung an die Anpassung des Nachhaltigkeitscontrollings ist es, den Aufwand für die Kleinunternehmen gering zu halten und dabei trotzdem in Bezug auf eine nachhaltige Entwicklung aussagekräftige Ergebnisse zu erhalten.

- Ebenso sollte der finanzielle Aufwand möglichst gering gehalten werden.

- Die Durchführung muss ohne viel Einarbeitung intuitiv verständlich sein und schnell verständliche und aussagekräftige Ergebnisse liefern.

9.5 Fazit Nachhaltigkeitscontrolling bei kleinen Unternehmen

Die Untersuchung bei kleinen Unternehmen hat gezeigt, dass eine spezifische Betrachtung und Anpassung des Nachhaltigkeitscontrollings für Kleinunternehmen sinnvoll ist, da sie aufgrund ihrer Größe im Vergleich zu Großunternehmen der Siedlungswasserwirtschaft andere Voraussetzungen für eine Anwendung des Instruments mitbringen.

Um generell kleinen Unternehmen einen ersten Zugang zum komplexen Thema Nachhaltigkeit zu ermöglichen, ist es denkbar, eine allgemeine Diskussion z.B. bei Nachbar-
schaftstagen der DWA und des DVGW zu Nachhaltigkeitsrisiken zu entfachen. Dadurch kann das Bewusstsein für die Brisanz des Themas geweckt und die Idee des NHC-Ansatzes diskutiert werden. Dies kann einen ersten Schritt in Richtung einer umfassenden Nachhaltigkeitsbewertung auch für Kleinstunternehmen der Siedlungswasserwirtschaft darstellen.

Auffällig und interessant ist die Beobachtung, dass sich die Anforderungen, die sowohl große Unternehmen, als auch kleine Unternehmen an ein Nachhaltigkeitscontrolling haben, vollständig decken: Der Nutzen eines Nachhaltigkeitscontrollings muss klar beschreibbar sein, die Einführung und Anwendung darf nur wenig Aufwand in finanzieler, personeller und technischer Hinsicht binden und es muss nachweisbare Erfolge durch Findung und Umsetzung geeigneter Maßnahmen schaffen.
10 Zusammenfassung und Ausblick

Das Hauptziel des Verbundprojektes NaCoSi war es, eine Vorgehensweise zu entwickeln, um Risiken, die eine nachhaltige Leistungserbringung siedlungswasserwirtschaftlicher Unternehmen gefährden können, systematisch zu erfassen und zu bewerten. Zugleich sollten hierbei Wege aufgezeigt werden, wie Handlungsoptionen zur Risikominderung abgeleitet werden können.

Die lokale Verankerung der Aufgabenerfüllung zur Wasserversorgung und Abwasserbeseitigung in Deutschland bringt es mit sich, dass Aufgabenträger und Unternehmen unterschiedlicher Größe existieren. Sie unterscheiden sich auch im Hinblick auf ihren Informationsbedarf und ihren Kapazitäten zur Auseinandersetzung mit Nachhaltigkeitsrisiken. Im Zuge der Erprobung des Instrumentes wurde daher untersucht, inwieweit das NHC den spezifischen Bedürfnissen kleiner Unternehmen Rechnung trägt. Neben einem grundlegenden Interesse am NHC haben die Untersuchungen bei kleinen Un-
ternehmen ergeben, dass die vereinfachte Basisabfrage des NHCs auch für diese Zielgruppe geeignet zu sein scheint, um trotz geringerer Kapazitäten die Chancen des NHC zur strategischen Kontrolle aufzugeben. Als unterstützende Maßnahmen zur Etablierung des NHCs bei dieser Zielgruppe ist zu wünschen, dass verstärkt Möglichkeiten zum Austausch zu diesem Thema „Nachhaltigkeit und Nachhaltigkeitsrisiken“ angeboten werden; z.B. im Rahmen von Nachbarschaftstagen.

Darüber hinaus dient das NHC auch der Kommunikation der Unternehmen mit lokalen Akteuren in Politik und Verwaltung, indem die kommunale Einbettung der Unternehmen verdeutlicht und die Notwendigkeit von Anpassungsmaßnahmen auf neue Weise begründet werden. So kann beispielsweise aufgezeigt werden, was ausbleibende Investitionen in den Erhalt und Ausbau der Infrastrukturen für die nachhaltige Leistungsfähigkeit der Unternehmen bedeutet. Dabei geht es nicht nur um technische oder betriebswirtschaftliche Perspektiven der Anpassung. Mit den Arbeiten im NaCoSi-Projekt lässt sich zeigen, dass für eine nachhaltige Unternehmensentwicklung auch gezielt die Beziehungen zwischen den Unternehmen, Gemeinden, Kunden und Behörden überprüft und weiterentwickelt werden sollten.

Es ist davon auszugehen, dass der innerhalb des NaCoSi Verbundprojektes entwickelte Prototyp eines NHC im Zuge seiner Anwendung weiterentwickelt und angepasst
<table>
<thead>
<tr>
<th>11 Glossar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis</td>
</tr>
<tr>
<td>Die Basis ist ein grundlegendes Set an Wirkungspfaden. Aus der Erhebung dieser Basiswirkungspfade soll ein erster vereinfachter Einstieg und Überblick über die kritischen Bereiche im jeweiligen Unternehmen geschaffen werden.</td>
</tr>
<tr>
<td>Brainstorming</td>
</tr>
<tr>
<td>DatenvARIABLE</td>
</tr>
<tr>
<td>Technische oder kaufmännische Größe zur Beschreibung eines Prozesses oder eines Betrachtungsobjektes als Basis zur Berechnung von Kennzahlen oder Indikatoren, z. B. Energie in kWh/a oder Kosten in €/a.</td>
</tr>
<tr>
<td>Eintrittswahrscheinlichkeit</td>
</tr>
<tr>
<td>Im Rahmen des Verbundprojektes „NaCoSi“ ist die Eintrittswahrscheinlichkeit eine subjektive Einschätzung über die Möglichkeit des Auftretens eines definierten Ereignisses in einem abgegrenzten Zeitraum in der Zukunft. Die Eintrittswahrscheinlichkeiten wird wie folgt gegliedert:</td>
</tr>
<tr>
<td>1 - extrem gering</td>
</tr>
<tr>
<td>2 - geringer als die Wahrscheinlichkeit, dass es nicht eintritt</td>
</tr>
<tr>
<td>3 - genauso groß wie die Wahrscheinlichkeit, dass es nicht eintritt</td>
</tr>
<tr>
<td>4 - größer als die Wahrscheinlichkeit, dass es nicht eintritt</td>
</tr>
<tr>
<td>5 - extrem groß.</td>
</tr>
<tr>
<td>Indikator</td>
</tr>
<tr>
<td>Ein Indikator ist eine qualitative bzw. quantitative Kennzahl, welche Rückschlüsse auf Eigenschaften von Auswirkungen eines Kausalzusammenhangs gibt.</td>
</tr>
<tr>
<td>Komplement</td>
</tr>
<tr>
<td>Komplemente sind individuell zusammenstellbare weitere Wirkungspfad-Sets, über die eine intensivere Auseinandersetzung mit potentiellen Risiken möglich wird.</td>
</tr>
<tr>
<td>Maßnahmenentwicklung</td>
</tr>
</tbody>
</table>
Monitoring Verfahren

Nachhaltigkeitsrisiko
Aus der Verfehlung von Nachhaltigkeitszielen entstehen Nachhaltigkeitsrisiken für Unternehmen.

Nachhaltigkeitsziel

Ökobilanz
Die Ökobilanz oder Lebenszyklusanalyse ("Life Cycle Assessment", LCA) ist eine Methode, um die Auswirkungen menschlicher Tätigkeiten auf die Umwelt zu erfassen, zu quantifizieren und zu beurteilen. Dabei bezieht die Ökobilanz den Lebensweg eines Produktes von der Rohstoffgewinnung über Produktion, Anwendung, Abfallbehandlung, Recycling bis zur endgültigen Beseitigung mit ein (d. h. „von der Wiege bis zur Bahre“).

Die Methode der Ökobilanz ist in den Normen DIN EN ISO 14040/14044 festgeschrieben.

Planspiel
Planspiele sind – ursprünglich dem militärischen Bereich entstammend – eine Methode zur Abwägung der Vor- und Nachteile unterschiedlicher Handlungsalternativen. Im Mittelpunkt stehen dabei Lernprozesse durch Perspektivenwechsel. Somit sind Rollenspiele zentral, in denen die Teilnehmer eine andere Argumentationsweise als in ihrer üblichen Funktion annehmen (z.B. wird so der Bürgermeister zur Umweltaktivistin oder ein Fachangestellter zum Geschäftsführer).

Die Planspiel-Phase im Nachhaltigkeitscontrolling dient dazu, die im Brainstorming aufgeworfenen Ideen zur Bewältigung von Nachhaltigkeitsrisiken hinsichtlich ihrer Umsetzbarkeit bzw. der bei der Umsetzung zu berücksichtigenden Faktoren zu bewerten.

Risikoanalyse
Die Risikoanalyse beschäftigt sich mit der differenzierten Betrachtung von Nachhaltigkeitsrisiken auf unterschiedlichen Aggregationsebenen und stützt sich auf die Risikoprofile und Risikomatrizen.

Risikohöhe/Risikopotential
Die Risikohöhe ist das Produkt aus der Eintrittswahrscheinlichkeit mal dem Schadensausmaß und ist ein Maß für die Gefahr, welche von einem Wirkungspfad ausgeht.
Risiko = Schadensausmaß * Eintrittswahrscheinlichkeit

Risikomatrix
Im Rahmen des Verbundprojektes NaCoSi wird der Begriff Risikomatrix zur Beschreibung einer zusammengefassten, visuellen Darstellung von Eintrittswahrscheinlichkeiten und Schadensausmaß verschiedener Wirkungspfade innerhalb eines Nachhaltigkeitsziels genutzt.

Risikoprofil
Das Risikoprofil ist eine Zusammenstellung von durchschnittlichen und maximalen Risikohöhen je Nachhaltigkeitsziel und soll eine unternehmerische Übersicht der Risikoverteilung darstellen.

Rollenspiel
Rollenspiele sind wesentlicher Bestandteil in Planspielen (siehe dort mehr dazu).

Schadensausmaß
Das Schadensausmaß charakterisiert die bei einem Unternehmen entstehende negative Auswirkung aufgrund eines definierten Ereignisses. Im Rahmen des Verbundprojektes „NaCoSi“ wird das Schadensausmaß wie folgt gegliedert:

1 - kein Schaden
2 - geringer Schaden
3 - mittlerer Schaden, der durch interne Ausgleichsmaßnahmen zu behandeln ist
4 - großer Schaden, der organisatorische oder technische Umstrukturierung bedeutet bzw. deutliche entgeltrelevante Auswirkungen hat
5 - extrem großer Schaden, der Unternehmen in seinem Fortbestand gefährdet

Szenarien

Die Szenario-Phase im Nachhaltigkeitscontrolling dient dazu, mögliche zukünftige Entwicklungen, die für das Entstehen von Nachhaltigkeitsrisiken relevant sind, zusammenzufassen. Dabei werden vorrangig narrative (erzählende) Szenarien eingesetzt, um grundsätzliche Zusammenhänge aufzeigen zu können. Sie unterscheiden sich von sog. quantitativen Szenarien in ihrem Aufwand der externen Datenrecherche und internen Datenerhebung; sie enthalten keine mathematischen Modellierungen zur Prognose der Zukunft.

Wirkungspfad
Wirkungspfade sind lineare Ursache-Wirkung-Beziehungen, die zur systematisierten Risikoidentifikation dienen.
12 Literaturverzeichnis

BBK, Bundesamt für Bevölkerungsschutz und Katastrophenhilfe (Hrsg.) (2010): Methode für die Risikoanalyse im Bevölkerungsschutz, Bonn: BBK.

BMWA, Bundesamt für Arbeitsschutz und Arbeitsmedizin (2002): Leitfaden für Arbeitsschutzmanagementsysteme, online verfügbar unter

DIN EN ISO 9001:2008: Qualitätsmanagementsysteme – Anforderungen
DVGW W 1000 (2005): *Anforderungen an die Qualifikation und die Organisation von Trinkwasserversorgern.*

http://www.umweltbundesamt.de/publikationen/mikroverunreinigungen-abwasserabgabe.

Kraus und Partner (Hrsg.) (2011): Fischgräten- oder Ursachenanalyse, online verfügbar unter http://www.kraus-und-
partner.de/projektmanagement/downloads/fischgr%C3%A4ten-oder-ursachenanalyse, zuletzt abgerufen am 17.01.2014.

Reese, M., Bedtke, N. (2015): „Was ist ‚Nachhaltigkeit’ und was ist ‚nachhaltige Wassernwirtschaft’? Allgemeine Nachhaltigkeitskonzeptionen und Ableitungen für die

13 Anhang

a. Basiswirkungspfade: System: Abwasserbeseitigung

Zielkategorie: Umwelt und Ressourcen

<table>
<thead>
<tr>
<th>Nachhaltigkeitsziel</th>
<th>Kausalzusammenhang</th>
<th>Ursache</th>
<th>Auswirkung</th>
<th>Teilsystem</th>
<th>Prozess</th>
<th>Nachhaltigkeitsgefahr</th>
<th>Indikator</th>
<th>Einheit</th>
<th>Zeithorizont</th>
<th>SW gelb</th>
<th>SW rot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ressourceneffizienz</td>
<td>Änderung der Rechtslage, Einführung (neuer) energieintensiverer Reinigungsverfahren/Anlagen, Abwasser-</td>
<td>aufwändigere Prozesse+</td>
<td>Energieverbrauch+</td>
<td>Technik</td>
<td></td>
<td>Energieeffizienz-</td>
<td>Spez. Gesamtenergieverbrauch</td>
<td>[kWh / EW]</td>
<td>15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>menge+, ineffiziente Anlagen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Abwasserbehandlung</td>
<td>Abwasserbehandlungs-</td>
<td>gelb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[kWh / EW]</td>
<td></td>
<td>rot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ressourceneffizienz</td>
<td>Auswahl des Energiemixes kurzfristig ökonomisch angelegt - ökologische, politische,</td>
<td>Anteil fossiler Energieträger+</td>
<td>Verbrauch fossiler Energieträger+</td>
<td>Technik</td>
<td></td>
<td>Verbrauch fossiler</td>
<td>Anteil regenerativer Energien</td>
<td>[%]</td>
<td>15</td>
<td>50</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>langfristige wirtschaftliche Aspekte nicht berücksichtigt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Energieträger+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ressourceneffizienz</td>
<td>Mögliche Erhöhung des Rohstoffverbrauchs z.B. durch Intensivierung der Reinigungsleistung oder Einführung neuer Reinigungsverfahren</td>
<td>Rohstoffverbrauch (mit Intensivierung der Reinigungsleistung oder Einführung neuer Reinigungsverfahren)+</td>
<td>Ressourcenverbrauch (Roh-, Hilfs- und Betriebsstoffe)+</td>
<td>Technik</td>
<td></td>
<td>Ressourcenverbrauch (Roh-, Hilfs- und Betriebsstoffe)+</td>
<td>-</td>
<td>[%]</td>
<td>15</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Nachhaltigkeitsziel</td>
<td>Kausalzusammenhang</td>
<td>Ursache</td>
<td>Auswirkung</td>
<td>Teilsystem</td>
<td>Prozess</td>
<td>Nachhaltigkeitsgefahr</td>
<td>Indikator</td>
<td>Einheit</td>
<td>Zeithorizont</td>
<td>SW gelb</td>
<td>SW rot</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------</td>
<td>---------</td>
<td>------------</td>
<td>------------</td>
<td>---------</td>
<td>----------------------</td>
<td>----------</td>
<td>--------</td>
<td>--------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>Umweltschutz</td>
<td>Demografischer Wandel u.a. gesellschaftliche Alterung+, Zunahme Volkskrankheiten, Veränderter gesellschaftlicher Umgang mit Medikamenten (d.h. erhöhte Bereitschaft zum Medikamentenkonsum u.a. Over the counter Präparate, hormonelle Verhütungsmittei usw.)</td>
<td>Medikamenteneinsatz in der Bevölkerung+ Medikamentenrückstände im Abwasser+</td>
<td>Technik</td>
<td>Abwasserbehandlung: Kläranlagenbetrieb</td>
<td>Schadstoffeintrag in Gewässer+</td>
<td>-</td>
<td>[-]</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Umweltschutz</td>
<td>Änderung der Rechtslage</td>
<td>unzureichende strategische Planung bzgl. sich ändernder Rechtslage zu späte Reaktion auf sich ändernde Rechtslage</td>
<td>Verwaltung</td>
<td>Leitung, Zentrale Aufgaben, Organisation</td>
<td>neue Umweltstandards werden nicht eingehalten</td>
<td>-</td>
<td>[-]</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Umweltschutz</td>
<td>Auswahl des Energiemix kurzfristig ökonomisch angelegt - ökologische, politische, langfristige wirtschaftliche Aspekte nicht berücksichtigt</td>
<td>Anteil fossiler Energieträger+ CO2-Emissionen+</td>
<td>Technik</td>
<td>Emission klimaschädlicher Stoffe in die Luft+</td>
<td>-</td>
<td>[-]</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Zielkategorie: Organisation und Technik

<table>
<thead>
<tr>
<th>Nachhaltigkeitsziel</th>
<th>Kausalzusammenhang</th>
<th>Ursache</th>
<th>Auswirkung</th>
<th>Teilsystem</th>
<th>Prozess</th>
<th>Nachhaltigkeitsgefahren</th>
<th>Indikator</th>
<th>Einheit</th>
<th>Zeithorizont</th>
<th>SW gelb</th>
<th>SW rot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prozessqualität</td>
<td>fehlende Ressourcen: personelle und finanzielle Mittel nicht (ausreichend) vorhanden, fehlendes Kanalkataster</td>
<td>Lage, Material, Alter der Kanäle unbekannt</td>
<td>Technik</td>
<td>Abwasserbehandlung: Kanalbetrieb</td>
<td>Aufwand bei Instandhaltungsmaßnahmen+</td>
<td>-</td>
<td>[]</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Prozessqualität</td>
<td>Budget Substanzerhaltung-, Kanalsanierung-</td>
<td>Fremdwasser+</td>
<td>Verdünnungseffekt Abwasser durch Fremdwasser</td>
<td>Technik</td>
<td>Abwasserbehandlung: Kläranlagenbetrieb</td>
<td>Reinigungsleistung</td>
<td>Reinigungsleistung CSB</td>
<td>[%]</td>
<td>15</td>
<td>92,5</td>
<td>80</td>
</tr>
<tr>
<td>Prozessqualität</td>
<td>Änderung der Rechtslage, mögliche Änderungen: verpflichtende Phosphorrhückgewinnung, verpflichtende Medikamentenbeseitigung, verpflichtende stoffliche Klärschlammvwertung.</td>
<td>Änderung der Rechtslage</td>
<td>neue Grenzwerte können mit aktueller Technik nicht mehr eingenhalten werden</td>
<td>Technik</td>
<td>Abwasserbehandlung: Kläranlagenbetrieb</td>
<td>Grenzwerte können nicht eingenhalten werden</td>
<td>-</td>
<td>[]</td>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Prozessqualität</td>
<td>industrielle Indirekte einleiter+, technische Fortschritte</td>
<td>Einleitung neuer, unbekannter Schad-/ Stoffe+</td>
<td>Klärsprozesse Funktionsprobleme+</td>
<td>Technik</td>
<td>Abwasserbehandlung: Kläranlagenbetrieb</td>
<td>Beeinträchtigung der Reinigungsprozesse der Kläranlage</td>
<td>-</td>
<td>[]</td>
<td>15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nachhaltigkeitsziel</td>
<td>Kausalzusammenhang</td>
<td>Ursache</td>
<td>Auswirkung</td>
<td>Teilsystem</td>
<td>Prozess</td>
<td>Nachhaltigkeitsgefahr</td>
<td>Indikator</td>
<td>Einheit</td>
<td>Zeit-Horizont</td>
<td>SW</td>
<td>SW rot</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>------------------------</td>
<td>---</td>
<td>----------------------------</td>
<td>--</td>
<td>-----------------------</td>
<td>------------</td>
<td>---------</td>
<td>---------------</td>
<td>----</td>
<td>--------</td>
</tr>
<tr>
<td>Steuerbarkeit</td>
<td>fehlendes Wissensmanagement</td>
<td>fehlende Regelkommu-</td>
<td>Absprache/Transparenz zwischen Unterneh-</td>
<td>Verwaltung</td>
<td>Leitung, Zentrale Aufgaben, Organisation</td>
<td>inefektives Arbei-</td>
<td>-</td>
<td>[]</td>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nikation</td>
<td>malen Unternehmen, Organisation</td>
<td></td>
<td></td>
<td>teiten</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steuerbarkeit</td>
<td>Gründe für Zunahme Outsourcing: Kosteneinsparung, Rechtsformänderung</td>
<td>Outsourcing+</td>
<td>Kontrollmöglichkeiten-</td>
<td>beides</td>
<td>mehrere Abhängigkeit von Dritten</td>
<td>Outsourcinggrad</td>
<td>Out-</td>
<td>[%]</td>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>wassersbe-</td>
<td>sourcinggrad</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>neinheit (ohne Be-</td>
<td>Abwasserbezie-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>handlung durch</td>
<td>higung (ohne Be-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dritte)</td>
<td>handlung durch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dritte)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wirtschaftlichkeit</td>
<td>Demografischer Wandel u.a. Wandlungs-</td>
<td>Überdimensionierung</td>
<td>spezifische Kosten+</td>
<td>Verwaltung</td>
<td>Kaufmännische Aufgaben</td>
<td>spezifische Kosten</td>
<td>Betriebskosten</td>
<td>[€/km]</td>
<td>15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>rungsbewegungen (z.B. von der Peripherie in Agglomera-</td>
<td>Anlagen</td>
<td></td>
<td></td>
<td></td>
<td>höher als nötig</td>
<td>Abwasserablei-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>tionsräumen, Wegzug aus unattraktiven Gebieten),</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tung (inkl. Ab-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Siedlungsdichte-, Siedlungsentwicklung nicht im Blick,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>schreibung)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>strukturelle Fehlerentscheidungen</td>
<td></td>
</tr>
<tr>
<td>Wirtschaftlichkeit</td>
<td>Anlagenalter+</td>
<td>Energieverbrauch+</td>
<td>Energiekosten+</td>
<td>Technik</td>
<td>spezifische Kosten Abwasser+</td>
<td>Spez. Aufwand</td>
<td>[€/€w]</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Abwasserbehandlung</td>
<td>eigen)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(EW eigen)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nachhaltigkeitsziel</td>
<td>Kausalzusammenhang</td>
<td>Ursache</td>
<td>Auswirkung</td>
<td>Teilsystem</td>
<td>Prozess</td>
<td>Nachhaltigkeitsgefahr</td>
<td>Indikator</td>
<td>Einheit</td>
<td>Zeithorizont</td>
<td>SWgelb</td>
<td>SWrot</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------------------</td>
<td>---------</td>
<td>------------</td>
<td>------------</td>
<td>--------</td>
<td>----------------------</td>
<td>-----------</td>
<td>--------</td>
<td>--------------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>Wirtschaftlichkeit</td>
<td>Budget Substanzerhaltung</td>
<td>Kanalsanierung-Sanierung</td>
<td>Sanierungsstau</td>
<td>Technik</td>
<td>Abwasserbeleitung: Kanausbau</td>
<td>Gesamtkosten+</td>
<td>Mittlere jährliche Kanalsanierungsrate (10-Jahres Mittel)</td>
<td>[%]</td>
<td>15</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Wirtschaftlichkeit</td>
<td>strukturelle Fehlentscheidungen, Anlagenalter+</td>
<td>ineffiziente Abwasserbeseitigung</td>
<td>spezifische Kosten Abwasser+</td>
<td>Verwaltung</td>
<td>Kaufmännische Aufgaben</td>
<td>spezifische Kosten höher als nötig</td>
<td>Spez. Gesamt- aufwand Abwasserbeseitigung</td>
<td>[€/EW]</td>
<td>15</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Zielkategorie: Mitarbeitende

<table>
<thead>
<tr>
<th>Nachhaltigkeitsziel</th>
<th>Kausalzusammenhang</th>
<th>Ursache</th>
<th>Auswirkung</th>
<th>Teilsystem</th>
<th>Prozess</th>
<th>Nachhaltigkeitsgefahr</th>
<th>Indikator</th>
<th>Einheit</th>
<th>Zeit- horizont</th>
<th>SW gelb</th>
<th>SW rot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kompetenzpotential</td>
<td>Gründe für Zunahme Outsourcing: neoliberales Wirtschaftsverständnis, Kosteneinsparung, Rechtsformänderung</td>
<td>Outsourcing+</td>
<td>Fachpersonal-</td>
<td>Verwaltung</td>
<td>Personal- und Sozialwesen</td>
<td>Fachkompetenz-</td>
<td>Outsourcinggrad Abwasserbeseitigung</td>
<td>[-]</td>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kompetenzpotential</td>
<td>Demografischer Wandel u.a. Bevölkerungsgröße-, gesellschaftliche Alterung+, Wanderungsbewegungen+ (z.B. von der Peripherie in Agglomerationsräume), Unternehmensstruktur/Tarifrrech</td>
<td>Verfügbarkeit Fachkräfte-</td>
<td>Fachpersonal-</td>
<td>Verwaltung</td>
<td>Personal- und Sozialwesen</td>
<td>Fachkompetenz-</td>
<td>Anteil länger unbesetzte Stellen (AW)</td>
<td>[%]</td>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unternehmenskultur</td>
<td>Keine/ kaum Möglichkeit der Teilnahme an Fortbildungsveranstaltungen</td>
<td>Fortbildung-</td>
<td>Mitarbeiterzufriedenheit-</td>
<td>Verwaltung</td>
<td>Leitung, Zentrale Aufgaben, Organisation</td>
<td>Mitarbeiterfluktuation+</td>
<td>Fort- und Weiterbildungsmaßnahmen je VZÄ</td>
<td>[d/VZÄ]</td>
<td>15</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Nachhaltigkeitsziel</td>
<td>Kausalzusammenhang</td>
<td>Ursache</td>
<td>Auswirkung</td>
<td>Teilsystem</td>
<td>Prozess</td>
<td>Nachhaltigkeitsgefahr</td>
<td>Indikator</td>
<td>Einheit</td>
<td>Zeithorizont</td>
<td>SW gelb</td>
<td>SW rot</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td>--</td>
<td>------------</td>
<td>------------</td>
<td>-------------------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>---------------</td>
<td>--------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>Unternehmenskultur</td>
<td>mangelhafte Arbeitssicherheit/Gesundheitsschutz, Terminstress, zu wenige Mitarbeiter</td>
<td>unzureichende Arbeitssicherheit</td>
<td>Arbeitssicherheit-Verwaltung</td>
<td>Personal- und Sozialwesen</td>
<td>Arbeitsunfälle+ Meldepflichtige Arbeitsunfälle je 100 VZÄ</td>
<td>[Anzahl/10]</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Zielkategorie: Gesellschaftliche Verantwortung

<table>
<thead>
<tr>
<th>Nachhaltigkeitsziel</th>
<th>Kausalzusammenhang</th>
<th>Ursache</th>
<th>Auswirkung</th>
<th>Teilsystem</th>
<th>Prozess</th>
<th>Nachhaltigkeitsgefahren</th>
<th>Indikator</th>
<th>Einheit</th>
<th>Zeithorizont</th>
<th>SW gelb</th>
<th>SW rot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akzeptanz</td>
<td>Demografischer Wandel u.a. Bevölkerungsgröße-, Siedlungsichte-</td>
<td>Abwassermenge-</td>
<td>Abwasserentgelt+</td>
<td>Verwaltung</td>
<td>Kunden- service</td>
<td>Akzeptanz der KundInnen-, Unternehmensimage-</td>
<td>Beschwerden zu Gebührenbescheiden je 1.000 Kunden</td>
<td>[Anzahl/1.000 Kunden]</td>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Akzeptanz</td>
<td>Budget Substanzerhaltung-</td>
<td>Kanalsanierung-</td>
<td>Kanalzustand-</td>
<td>Technik</td>
<td>Abwasserableitung: Kanalbau</td>
<td>externe Schäden+</td>
<td>Kurzfristige Sanierungsbedürftige Kanallängenrate (bez. auf zustandsklassifizierte Kanäle)</td>
<td>[%]</td>
<td>5</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Erschwinglichkeit</td>
<td>Änderung der Rechtslage bzgl. Klärschlammensorgung</td>
<td>Verwertung von Klär- schlamm in der Landwirtschaft rechtlich untersagt</td>
<td>Kosten Klär- schlammensorgung+</td>
<td>Verwaltung</td>
<td>Kaufmännische Aufgaben</td>
<td>Abwasserentgelt+</td>
<td>-</td>
<td>[-]</td>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Erschwinglichkeit</td>
<td>Änderung der Rechtslage, mögliche Änderungen: verpflichtende Phosphorrückgewinnung, Medikamentenbeseitigung oder stoffliche Klär- schlammverwertung. Dazu sind jeweils neue Verfahren und somit Investitionen nötig.</td>
<td>Änderung der Rechtslage</td>
<td>Investitions- bedarf+</td>
<td>Verwaltung</td>
<td>Kaufmännische Aufgaben</td>
<td>Abwasserentgelt+</td>
<td>-</td>
<td>[-]</td>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nachhaltigkeitsziel</td>
<td>Kausalzusammenhang</td>
<td>Ursache</td>
<td>Auswirkung</td>
<td>Teilsystem</td>
<td>Prozess</td>
<td>Nachhaltigkeitsgefahren</td>
<td>Indikator</td>
<td>Einheit</td>
<td>Zeithorizont</td>
<td>SW gelb</td>
<td>SW rot</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>--</td>
<td>----------------</td>
<td>------------</td>
<td>-----------------------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>---------</td>
<td>--------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>Erschwinglichkeit</td>
<td>Demografischer Wandel u.a. Siedlungsstrukturrelle Entdichtung und Suburbanisierung > Zersiedlungseffekte (neue Verbrauchsschwerpunkte), Neu zu erschließende Flächen vergrößern die Netze und somit langfristig Betriebs-, Reparatur- und Erneuerungskosten</td>
<td>Nutzungsdichte-absolute Kosten Abwasserbeseitigung+</td>
<td>Technik</td>
<td>Abwasserentgelt+</td>
<td>-</td>
<td>[]</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Kostengerechtigkeit</td>
<td>Budget Substanzerhaltung-</td>
<td>Sanierung-</td>
<td>Investitionsbedarf+</td>
<td>Technik</td>
<td>Abwasserentgelt+</td>
<td>-</td>
<td>[]</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Leistungsqualität</td>
<td>Budget Substanzerhaltung-, Kanalreinhaltung-</td>
<td>Kanalzustand-Verfügbarkeit funktionsfähiger Kanäle-</td>
<td>Technik</td>
<td>Abwasserentgelt+</td>
<td>Abwasser wird nicht ordentlich abgeführt</td>
<td>Fremdwasseranteil [%]</td>
<td>15</td>
<td>25</td>
<td>50</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nachhaltigkeitsziel</td>
<td>Kausalzusammenhang</td>
<td>Ursache</td>
<td>Auswirkung</td>
<td>Teilsystem</td>
<td>Prozess</td>
<td>Nachhaltigkeitsgefahren</td>
<td>Indikator</td>
<td>Einheit</td>
<td>Zeithorizont</td>
<td>SW gelb</td>
<td>SW rot</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------</td>
<td>---------</td>
<td>------------</td>
<td>------------</td>
<td>---------</td>
<td>-------------------------</td>
<td>-----------</td>
<td>--------</td>
<td>-------------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Regionale Einbettung</td>
<td>Wirtschaftliche Attraktivität der Region sinkt</td>
<td>regionale Zulieferer/Dienstleister-</td>
<td>Einkauf regionaler Produkte/Dienstleistungen-</td>
<td>Verwaltung</td>
<td>Kaufmännische Aufgaben</td>
<td>Wertschöpfung vor Ort-</td>
<td>Anteil regionaler Fremdleistung</td>
<td>[%]</td>
<td>15</td>
<td>67</td>
<td>50</td>
</tr>
</tbody>
</table>
Zielkategorie: Entwicklungsfähigkeit

<table>
<thead>
<tr>
<th>Nachhaltigkeitsziel</th>
<th>Kausalzusammenhang</th>
<th>Ursache</th>
<th>Auswirkung</th>
<th>Teilsystem</th>
<th>Prozess</th>
<th>Nachhaltigkeitsgefahr</th>
<th>Indikator</th>
<th>Einheit</th>
<th>Zeithorizont</th>
<th>SW gelb</th>
<th>SW rot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Innovations- und Anpassungsfähigkeit</td>
<td>kein Innovationsmanagement, kein Verfolgen von rechtlichen Änderungen für die langfristige Planung</td>
<td>fehlende Kompetenzen "Innovation & Recht"</td>
<td>falsche Weichenstellung bei Planungen</td>
<td>Verwaltung</td>
<td>Leitung, Zentrale Aufgaben, Organisation</td>
<td>Innovationen</td>
<td>-</td>
<td>[-]</td>
<td>15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Innovations- und Anpassungsfähigkeit</td>
<td>fehlende integrierte Planung</td>
<td>fehlende Kommunikation mit anderen Infrastrukturanbietern</td>
<td>keine gemeinsame Entwicklung zukunftsfähiger aufeinander abgestimmter (Infrastrukturlösungen</td>
<td>beides</td>
<td>mehrere</td>
<td>keine/ zu geringe Investitionen in Zukunftsfähigkeit</td>
<td>-</td>
<td>[-]</td>
<td>15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Innovations- und Anpassungsfähigkeit</td>
<td>Entscheidung zu riskanten Transaktionen und/oder Fehlinvestitionen, Verpflichtung zu Rückzahlung und/oder Gewinnabführung</td>
<td>Kapital-</td>
<td>Investitionen in Innovationen</td>
<td>beides</td>
<td>mehrere</td>
<td>Anpassung an neue Rahmenbedingungen</td>
<td>Eigenkapitalquote Abwasserbeseitigung</td>
<td>[%]</td>
<td>15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Refinanzierbarkeit</td>
<td>Steigende Kosten werden nicht auf Gebühren umgelegt</td>
<td>keine Gebührenanpassung</td>
<td>verfügbares Budget für Sanierung und Substanzerhalt</td>
<td>Verwaltung</td>
<td>Leitung, Zentrale Aufgaben, Organisation</td>
<td>Substanzerhalt</td>
<td>Reininvestitionssquote Abwasserbeseitigung</td>
<td>[%]</td>
<td>15</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>Nachhaltigkeitsziel</td>
<td>Kausalzusammenhang</td>
<td>Ursache</td>
<td>Auswirkung</td>
<td>Teilsystem</td>
<td>Prozess</td>
<td>Nachhaltigkeitsgefahren</td>
<td>Indikator</td>
<td>Einheit</td>
<td>Zeithorizont</td>
<td>SW gelb</td>
<td>SW rot</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>---</td>
<td>------------------------------</td>
<td>------------</td>
<td>---</td>
<td>------------------------</td>
<td>-----------</td>
<td>---------</td>
<td>--------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>Refinanzierbarkeit</td>
<td>Änderung der Rechtslage, mögliche Änderungen: verpflichtende Phosphorrückgewinnung, verpflichtende Medikamentenbeseitigung, verpflichtende stoffliche Klärschlammverwertung. Dazu sind jeweils neue Verfahren und somit Investitionen nötig.</td>
<td>Änderung der Rechtslage</td>
<td>Kosten > geplante Kosten</td>
<td>Technik</td>
<td>Abwasserbehandlung: Kläranlagengeschäft</td>
<td>Rücklagen für ungeplante Investitionen-</td>
<td>-</td>
<td></td>
<td>15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Robustheit</td>
<td>Entscheidung zum Abbau von Anlagenkapazitäten aufgrund eines (erwarteten) Rückgangs in der Abwassermenge. Wirtschaftlichkeitserswägungen oder bewusster Entscheidung für Nicht-Erneuerung technischer Anlagen</td>
<td>Kapazitäten-</td>
<td>Auslastung (verbleibender Anlagen+)</td>
<td>Technik</td>
<td>Pufferkapazität der Anlagen (25%-Perzentil)</td>
<td>85%-Perzentil-Auslastungsgrad Kläranlagen (CSB)</td>
<td>[%]</td>
<td>15</td>
<td>90 100</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Basiswirkungspfade: System: Trinkwasserversorgung

Zielkategorie: Umwelt und Ressourcen

<table>
<thead>
<tr>
<th>Nachhaltigkeitsziel</th>
<th>Kausalzusammenhang</th>
<th>Ursache</th>
<th>Auswirkung</th>
<th>Teilsystem</th>
<th>Prozess</th>
<th>Nachhaltigkeitsgefahr</th>
<th>Indikator</th>
<th>Einheit</th>
<th>Zeithorizont</th>
<th>SW gelb</th>
<th>SW rot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ressourceneffizienz</td>
<td>Änderung der Rechtslage, Einführung (neuer) energieintensiverer Reinigungsverfahren/Anlagen, Trinkwassermenge+, ineffiziente Anlagen</td>
<td>Prozessaufwand+</td>
<td>Energieverbrauch+</td>
<td>Technik</td>
<td>Energieeffizienz-</td>
<td>Normierter Gesamtenergieeinsatz</td>
<td>[kWh/m³]</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Ressourceneffizienz</td>
<td>Betriebswasserverluste in Gewinnung und Aufbereitung durch Alterung der technischen Anlagen+</td>
<td>Wasserverluste+</td>
<td>Rohwasserentnahme+</td>
<td>Technik</td>
<td>Wassergewinnung</td>
<td>Wasserversorger</td>
<td>Wasserverluste je Leitungslänge</td>
<td>[m³/km/h]</td>
<td>15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ressourceneffizienz</td>
<td>Auswahl des Energiemixes kurzfristig ökonomisch angelegt- ökologische, politische, langfristige wirtschaftliche Aspekte nicht berücksichtigt</td>
<td>Anteil fossiler Energieträger+</td>
<td>Verbrauch fossiler Energieträger+</td>
<td>Technik</td>
<td>Verbrauch fossiler Energieträger+</td>
<td>Regenerative Energien</td>
<td>[%]</td>
<td>15</td>
<td>50</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Ressourceneffizienz</td>
<td>Mögliche Erhöhung des Rohstoffverbrauchs z.B. durch Intensivierung der Aufbereitungsleistung oder Einführung neuer Aufbereitungsverfahren</td>
<td>Rohstoffverbrauch (mit Intensivierung der Reinigungsleistung oder Einführung neuer Reinigungsverfahren)+</td>
<td>Ressourcenverbrauch (Roh-, Hilfs- und Betriebsstoffe)+</td>
<td>Technik</td>
<td>Ressourcenverbrauch (Roh-, Hilfs- und Betriebsstoffe)+</td>
<td>-</td>
<td>[\texttt{_}]</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Nachhaltigkeitsziel</td>
<td>Kausalzusammenhang</td>
<td>Ursache</td>
<td>Auswirkung</td>
<td>Teilsystem</td>
<td>Prozess</td>
<td>Nachhaltigkeitsgefährt</td>
<td>Indikator</td>
<td>Einheit</td>
<td>Zeithorizont</td>
<td>SW gelb</td>
<td>SW rot</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>----------------</td>
<td>-------------------------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>---------</td>
<td>-------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Umweltschutz</td>
<td>Änderung der Rechtslage</td>
<td>unzureichende strategische Planung bzgl. sich ändernder Rechtslage</td>
<td>zu späte Reaktion auf sich ändernde Rechtslage</td>
<td>Verwaltung</td>
<td>Leitung, Zentrale Aufgaben, Organisation</td>
<td>neue Umweltstandards werden nicht eingehalten</td>
<td>-</td>
<td>[]</td>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Umweltschutz</td>
<td>Auswahl des Energiemixes kurzfristig ökonomisch angelegt- ökologische, politische, langfristige wirtschaftliche Aspekte nicht berücksichtigt</td>
<td>Anteil fossiler Energie-träger+ CO2-Emissionen+</td>
<td>Technik</td>
<td>Emission klimaschädlicher Stoffe in die Luft+</td>
<td>-</td>
<td>[]</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Nachhaltigkeitsziel</td>
<td>Kausalzusammenhang</td>
<td>Ursache</td>
<td>Auswirkung</td>
<td>Teilsystem</td>
<td>Prozess</td>
<td>Nachhaltigkeitsgefahren</td>
<td>Indikator</td>
<td>Einheit</td>
<td>Zeithorizont</td>
<td>SW gelb</td>
<td>SW rot</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------</td>
<td>---------</td>
<td>------------</td>
<td>------------</td>
<td>---------</td>
<td>-----------------------</td>
<td>-----------</td>
<td>--------</td>
<td>--------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>Prozessqualität</td>
<td>Demografischer Wandel u.a. Bevölkerungsgröße-Veränderung Verbraucherverhalten (Wasserverbrauch-)</td>
<td>Trinkwasserverbrauch-</td>
<td>Wiederverkeimung im Wassernetz+</td>
<td>Technik</td>
<td>Wasser-verteilung</td>
<td>Trinkwasserqualität</td>
<td>Durchschnittliche Gesamtkeimzahl Verbraucher (Zapfhahn)</td>
<td>[KbE/m l]</td>
<td>15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Prozessqualität</td>
<td>Klimawandel, heißere Sommer, längere Trockenperioden, Niederschlag-, Trinkwasserverbrauch+</td>
<td>Erneuerung Wasserres-</td>
<td>Wasserreserven-</td>
<td>Technik</td>
<td>Wasserwirtschaft</td>
<td>Versorgungssicherheit</td>
<td>Wasserförderung/Langjährige mittlere Grundwasserneubildungsraten</td>
<td>[-]</td>
<td>15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Prozessqualität</td>
<td>erhöhter Düngemitteleinsatz, Remobilisierung durch GW-Anstieg, schadhaftes Kanalnetz etc.</td>
<td>Konzentrationsanstieg</td>
<td>Nitrat im Rohwasser</td>
<td>Technik</td>
<td>Wasser-aufbereitung</td>
<td>Trinkwasserqualität</td>
<td>Nitrat Rohwasser (Median)</td>
<td>[mg/L]</td>
<td>15</td>
<td>37,5</td>
<td>50</td>
</tr>
<tr>
<td>Prozessqualität</td>
<td>Änderung der Rechtslagen, mögliche Änderung: Verschärfung von Grenzwerten</td>
<td>Änderung der Rechtslage</td>
<td>neue Grenzwerte können mit aktueller Technik nicht mehr eingehalten werden</td>
<td>Technik</td>
<td>Wasser-aufbereitung</td>
<td>Grenzwerte können nicht eingehalten werden</td>
<td>Qualitativer Erfüllungsgrad Trinkwasseranalysen</td>
<td>[%]</td>
<td>15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nachhaltigkeitsziel</td>
<td>Kausalzusammenhang</td>
<td>Ursache</td>
<td>Auswirkung</td>
<td>Teilsystem</td>
<td>Prozess</td>
<td>Nachhaltigkeitsgefahr</td>
<td>Indikator</td>
<td>Einheit</td>
<td>Zeithorizont</td>
<td>SW gelb</td>
<td>SW rot</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------</td>
<td>---------</td>
<td>------------</td>
<td>------------</td>
<td>---------</td>
<td>----------------------</td>
<td>----------</td>
<td>--------</td>
<td>-------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>Steuerbarkeit</td>
<td>fehlendes Wissensmanagement</td>
<td>fehlende Regelkommunikation</td>
<td>Absprache/Transparenz zwischen Unternehmensbereichen</td>
<td>Verwaltung</td>
<td>Leitung, Zentrale Aufgaben, Organisation</td>
<td>ineffektives Arbeiten</td>
<td>-</td>
<td>[-]</td>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Steuerbarkeit</td>
<td>Gründe für Zunahme Outsourcing: Kosteneinsparung, Rechtsformänderung</td>
<td>Outsourcing+</td>
<td>Kontrollmög- lichkeiten-</td>
<td>beides</td>
<td>mehrere</td>
<td>nicht kalkulierbare Abhängigkeit von Dritten</td>
<td>Outsourcinggrad gesamt (ohne Fremdbezug)</td>
<td>[%]</td>
<td>15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Wirtschaftlichkeit</td>
<td>Demografischer Wandel u.a. Wanderungsbewegungen (z.B. von der Peripherie in Agglomerationsräume, Wegzug aus unattraktiven Gebieten), Siedlungsdichte-, Siedlungsentwicklung nicht im Blick, strukturelle Fehlentscheidungen</td>
<td>Überdimensionierung Anlagen</td>
<td>spezifische Kosten+</td>
<td>Verwaltung</td>
<td>Kaufmännische Aufgaben</td>
<td>spezifische Kosten höher als nötig</td>
<td>Normierter Gesamtaufwand</td>
<td>[ct/m³]</td>
<td>15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Wirtschaftlichkeit</td>
<td>Anlagenalter+</td>
<td>Energieverbrauch+</td>
<td>Energiekosten+</td>
<td>Technik</td>
<td>spezifische Kosten Trinkwasser+</td>
<td>Normierter Aufwand Energiebezug</td>
<td>[-]</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Wirtschaftlichkeit</td>
<td>strukturelle Fehlentscheidungen, Anlagenalter+</td>
<td>ineffiziente Wasserversorgung</td>
<td>spezifische Kosten Trinkwasser+</td>
<td>Verwaltung</td>
<td>Kaufmännische Aufgaben</td>
<td>spezifische Kosten höher als nötig</td>
<td>Normierter Gesamtaufwand</td>
<td>[ct/m³]</td>
<td>15</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Zielkategorie: Mitarbeitende

<table>
<thead>
<tr>
<th>Nachhaltigkeitsziel</th>
<th>Kausalzusammenhang</th>
<th>Ursache</th>
<th>Auswirkung</th>
<th>Teilsystem</th>
<th>Prozess</th>
<th>Nachhaltigkeitsgefahr</th>
<th>Indikator</th>
<th>Einheit</th>
<th>Zeit-</th>
<th>SW</th>
<th>SW</th>
<th>SW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kompetenzpotential</td>
<td>Gründe für Zunahme Outsourcing: neoliberales Wirtschaftsverständnis, Kosteneinsparung, Rechtsformänderung</td>
<td>Outsourcing+</td>
<td>Fachpersonal-</td>
<td>Verwaltung</td>
<td>Personal- und Sozialwesen</td>
<td>Fachkompetenz-</td>
<td>Outsourcinggrad gesamt (ohne Fremdbezug)</td>
<td>[%]</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unternehmenskultur</td>
<td>Keine/ kaum Möglichkeit der Teilnahme an Fortbildungsveranstaltungen</td>
<td>Fortbildung-</td>
<td>Mitarbeiterzufriedenheit-</td>
<td>Verwaltung</td>
<td>Leitung, Zentrale Aufgaben, Organisation</td>
<td>Mitarbeiterfluktuation+</td>
<td>Gesamte Fort- und Weiterbildungsmaßnahmen</td>
<td>[h/VZÄ]</td>
<td>15</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Nachhaltigkeitsziel</td>
<td>Kausalzusammenhang</td>
<td>Ursache</td>
<td>Auswirkung</td>
<td>Teilsystem</td>
<td>Prozess</td>
<td>Nachhaltigkeitsgefahr</td>
<td>Indikator</td>
<td>Einheit</td>
<td>Zeithorizont</td>
<td>SW gelb</td>
<td>SW rot</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------</td>
<td>--------</td>
<td>-----------</td>
<td>------------</td>
<td>---------</td>
<td>---------------------</td>
<td>-----------</td>
<td>--------</td>
<td>--------------</td>
<td>---------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>Unternehmenskultur</td>
<td>mangels Arbeitssicherheit/Gesundheitsschutz, Terminstress, zu wenige Mitarbeiter</td>
<td>unzureichende Arbeitssicherheit</td>
<td>Arbeitssicherheit</td>
<td>Verwaltung</td>
<td>Personal- und Sozialwesen</td>
<td>Arbeitsunfälle+</td>
<td>Meldepflichtige Unfälle je 1.000 Arbeitnehmer</td>
<td>[1.000 VZÄ]</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Nachhaltigkeitsziel</td>
<td>Kausalzusammenhang</td>
<td>Ursache</td>
<td>Auswirkung</td>
<td>Teilsystem</td>
<td>Prozess</td>
<td>Nachhaltigkeitsgefahren</td>
<td>Indikator</td>
<td>Einheit</td>
<td>Zeithorizont</td>
<td>SW gelb</td>
<td>SW rot</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>---</td>
<td>--------------------</td>
<td>--------------</td>
<td>------------------------------</td>
<td>------------------------</td>
<td>---</td>
<td>----------------</td>
<td>--------------</td>
<td>---------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Akzeptanz</td>
<td>Demografischer Wandel u.a. Bevölkerungsgröße-, Siedlungsdichte-, Veränderung Verbraucherverhalten</td>
<td>Trinkwasserverbrauchentgelt+</td>
<td>Trinkwasserentgelt+</td>
<td>Verwaltung</td>
<td>Kunden- und Öffentlichkeitsarbeit</td>
<td>Akzeptanz der KundInnen-, Unternehmen- simage-</td>
<td>Rechnungsbeschwerden je 1.000 Kunden</td>
<td>[(1.000) Kunden]</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Erschwinglichkeit</td>
<td>Änderung der Rechtslage, mögliche Änderung: Verschärfung von Grenzwerten, neue Techniken zur Wasseraufbereitung sind erforderlich, damit verbunden sind Investitionskosten</td>
<td>Änderung der Rechtslage</td>
<td>Investitionsbedarf+</td>
<td>Verwaltung</td>
<td>Kaufmännische Aufgaben</td>
<td>Trinkwasserentgelt+</td>
<td></td>
<td>[-]</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Erschwinglichkeit</td>
<td>Preissteigerung der verwendeten Energieträger oder Rohstoffe</td>
<td>Energie-/Rohstoffpreise+</td>
<td>Betriebskosten+</td>
<td>Verwaltung</td>
<td>Kaufmännische Aufgaben</td>
<td>Trinkwasserentgelt+</td>
<td></td>
<td>[-]</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Erschwinglichkeit</td>
<td>Demografischer Wandel u.a. Siedlungsstrukturelle Entdichtung und Suburbanisierung > Zersiedlungsefekte (neue Verbrauchsschwerpunkte), Neu zu erschließende Flächen vergrößern die Netze und somit langfristig Betriebs-, Reparatur- und Erneuerungskosten</td>
<td>Nutzungsichte-</td>
<td>absolute Kosten Trinkwasserversorgung+</td>
<td>Technik</td>
<td>Wasserbelieitung</td>
<td>Trinkwasserentgelt+</td>
<td></td>
<td>[-]</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Kostenechrichtigkeit</td>
<td>Budget Substanzerhaltung-</td>
<td>Sanierung-</td>
<td>Investitionsbedarf+</td>
<td>Technik</td>
<td>Trinkwasserentgelt+</td>
<td></td>
<td></td>
<td>[-]</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

163
<table>
<thead>
<tr>
<th>Nachhaltigkeitsziel</th>
<th>Kausalzusammenhang</th>
<th>Ursache</th>
<th>Auswirkung</th>
<th>Teilsystem</th>
<th>Prozess</th>
<th>Nachhaltigkeitsgefahren</th>
<th>Indikator</th>
<th>Einheit</th>
<th>Zeithorizont</th>
<th>SW gelb</th>
<th>SW rot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungsqualität gegenüber den Kunden</td>
<td>Klimawandel, Niederschlag+, Hochwasserereignisse</td>
<td>Teilausfall Anlagen</td>
<td>Auslastung verbleibender Anlagen+</td>
<td>Technik</td>
<td>Wasserwirtschaft</td>
<td>Trinkwassermenge-, Druck-, Geschmack-</td>
<td>-</td>
<td>[]</td>
<td>15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Leistungsqualität gegenüber den Kunden</td>
<td>Intensivierung der Landwirtschaft, Monokulturen+, Biokraftstoffe+</td>
<td>Stoffeinträge (anthropogen, geogen)+</td>
<td>Rohwasserqualität-</td>
<td>Technik</td>
<td>Wasserwirtschaft</td>
<td>Trinkwasserqualität-</td>
<td>Qualitativ Erfüllungsgrad Trinkwasseranalysen</td>
<td>[%]</td>
<td>15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Regionale Einbettung</td>
<td>Wirtschaftliche Attraktivität der Region sinkt</td>
<td>regionale Zulieferer/Dienstleister-</td>
<td>Einkauf regionaler Produkte/Dienstleistungen-</td>
<td>Verwaltung</td>
<td>Kaufmännische Aufgaben</td>
<td>Wertschöpfung vor Ort-</td>
<td>Anteil regionaler Fremdleistung</td>
<td>[%]</td>
<td>15</td>
<td>67</td>
<td>50</td>
</tr>
<tr>
<td>Regionale Einbettung</td>
<td>Klimawandel, heißere Sommer, längere Trockenperioden, Niederschlag-, Trinkwasserbezug+</td>
<td>Erneuerung Wasserressource-, Wasserressourcen-</td>
<td>Technik</td>
<td>Wasserwirtschaft</td>
<td>Fernwasserbezug+</td>
<td>Anteil Fremdbezug</td>
<td>[%]</td>
<td>15</td>
<td>33</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>
Zielkategorie: Entwicklungsfähigkeit

<table>
<thead>
<tr>
<th>Nachhaltigkeitsziel</th>
<th>Kausalzusammenhang</th>
<th>Ursache</th>
<th>Auswirkung</th>
<th>Teilsystem</th>
<th>Prozess</th>
<th>Nachhaltigkeitsgefahren</th>
<th>Indikator</th>
<th>Einheit</th>
<th>Zeithorizont</th>
<th>SW gelb</th>
<th>SW rot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Innovations- und Anpassungsfähigkeit</td>
<td>kein Innovationsmanagement, kein Verfolgen von rechtlichen Änderungen für die langfristige Planung</td>
<td>fehlende Kompetenzen "Innovation & Recht"</td>
<td>falsche Weißenstellung bei Planungen</td>
<td>Verwaltung</td>
<td>Leitung, Zentrale Aufgaben, Organisation</td>
<td>Innovationen-</td>
<td>[-]</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Innovations- und Anpassungsfähigkeit</td>
<td>fehlende integrierte Planung mit anderen Infrastrukturanbietern</td>
<td>fehlende Kommunikation</td>
<td>keine gemeinsame Entwicklung zukunftsfähiger aufeinander abgestimmer (Infrastruktur-)lösungen</td>
<td>beides</td>
<td>mehrere</td>
<td>keine/ zu geringe Investitionen in Zukunftsfähigkeit</td>
<td>[-]</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Innovations- und Anpassungsfähigkeit</td>
<td>Entscheidung zu riskanten Transaktionen und/oder Fehlinvestitionen, Verpflichtung zu Rückzahlung und/oder Gewinnabführung</td>
<td>Kapitalinvestitionen in Innovationslösungen</td>
<td>alle</td>
<td>beides</td>
<td>mehrere</td>
<td>Anpassung an neue Rahmenbedingungen</td>
<td>Eigenkapitalquote</td>
<td>[%]</td>
<td>15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Refinanzierbarkeit</td>
<td>Steigende Kosten werden nicht auf Gebühren umgelegt</td>
<td>keine Gebührenanpassung</td>
<td>verfügbares Budget für Sanierung und Substanzerhalt</td>
<td>Verwaltung</td>
<td>Leitung, Zentrale Aufgaben, Organisation</td>
<td>Substanzerhaltquote</td>
<td>Reinvestitionsquote</td>
<td>[%]</td>
<td>15</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>Nachhaltigkeitsziel</td>
<td>Kausalzusammenhang</td>
<td>Ursache</td>
<td>Auswirkung</td>
<td>Teilsystem</td>
<td>Prozess</td>
<td>Nachhaltigkeitsgefahren</td>
<td>Indikator</td>
<td>Einheit</td>
<td>Zeithorizont</td>
<td>SW gelb</td>
<td>SW rot</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>--</td>
<td>-----------------------------------</td>
<td>------------</td>
<td>----------------------------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>---------</td>
<td>-------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>Refinanzierbarkeit</td>
<td>Änderung der Rechtslage, mögliche Änderung: Verschärfung von Grenzwerten</td>
<td>Änderung der Rechtslage</td>
<td>Kosten > geplante Kosten</td>
<td>Technik</td>
<td>Wasseraufbereitung</td>
<td>Rücklagen für ungeplante Investitionen-</td>
<td>-</td>
<td>[]</td>
<td>15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Robustheit</td>
<td>Demografischer Wandel u.a. Bevölkerungsgröße-, gesellschaftlicher Alterung+, Wanderungsbewegungen+ (z.B. von der Peripherie in Agglomerationsräume, Wegzug aus unattraktiven Gebieten)</td>
<td>Verfügbarkeit Fachkräfte-</td>
<td>Fachkompetenz-</td>
<td>Verwaltung</td>
<td>Personal- und Sozialwesen</td>
<td>Handlungsfähigkeit in Krisensituationen-</td>
<td>-</td>
<td>[]</td>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Robustheit</td>
<td>Entscheidung zum Abbau von Anlagekapazitäten aufgrund von (erwartetem) Nachfragerückgang, Wirtschaftlichkeitsveränderungen oder bewusster Entscheidung für Nicht-Erneuerung technischer Anlagen</td>
<td>Kapazitäten-</td>
<td>Auslastung (verbleibender Anlagen+)</td>
<td>Technik</td>
<td>Pufferkapazität der Anlagen-</td>
<td>MaximaleAuslastung Wasseraufbereitung</td>
<td>[%]</td>
<td>15</td>
<td>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Robustheit</td>
<td>Intensivierung der Landwirtschaft, Monokulturen+, Biokraftstoffe+</td>
<td>Stoffeinträge (anthropogene, geogene)</td>
<td>Rohwasserqualität-</td>
<td>Technik</td>
<td>Wasserschicht</td>
<td>unabhängige Gewinnungsmöglichkeiten-</td>
<td>-</td>
<td>[]</td>
<td>15</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Komplementwirkungspfade: System: Abwasserbeseitigung

Zielkategorie: Umwelt und Ressourcen

<table>
<thead>
<tr>
<th>Nachhaltigkeitsziel</th>
<th>Kausalzusammenhang</th>
<th>Ursache</th>
<th>Auswirkung</th>
<th>Teilsystem</th>
<th>Prozess</th>
<th>Nachhaltigkeitsgefahren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ressourceneffizienz</td>
<td>Abwassermenge-, demografischer Wandel, Bevölkerung-, Wasserverbrauch-, Trockenwetterperioden+, Abwasserbeschaffenheit, Abwassertemperatur</td>
<td>Ablagerungen im Kanal+</td>
<td>Spülbedarf+</td>
<td>Technik</td>
<td>Abwasserableitung: Kanalbetrieb</td>
<td>Frischwasserverbrauch+</td>
</tr>
<tr>
<td>Ressourceneffizienz</td>
<td>demografischer Wandel, Klimawandel, Änderung der Abwassermenge</td>
<td>ineffizienter Betriebspunkt Pumpe/ Rohr</td>
<td>Energieverbrauch+</td>
<td>Technik</td>
<td>Abwasserableitung: Kanalbetrieb</td>
<td>Energieverbrauch+</td>
</tr>
<tr>
<td>Ressourceneffizienz</td>
<td>Fehlende Mittel</td>
<td>Entscheidung gegen freiwillige Phosphorrückgewinnung</td>
<td>keine Phosphorrückgewinnung</td>
<td>Technik</td>
<td>Abwasserbehandlung: Kläranlagenbetrieb</td>
<td>Verknappung der Ressource Phosphor</td>
</tr>
<tr>
<td>Nachhaltigkeitsziel</td>
<td>Kausalzusammenhang</td>
<td>Ursache</td>
<td>Auswirkung</td>
<td>Teilsystem</td>
<td>Prozess</td>
<td>Nachhaltigkeitsgefahr</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------------------</td>
<td>---------</td>
<td>------------</td>
<td>------------</td>
<td>---------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Umweltschutz</td>
<td>Klimawandel, Niederschlag-</td>
<td>Trockenwetterperioden+</td>
<td>Ablagerungen, die bei Niederschlagsereignissen "First Flush" Effekt haben</td>
<td>Technik</td>
<td>Abwasserableitung: Kanalbetrieb</td>
<td>Schadstoffeintrag in Gewässer+</td>
</tr>
<tr>
<td>Umweltschutz</td>
<td>Starkniederschlagsereignisse+, Klimawandel, Flächenversiegelung+</td>
<td>Mischwasseranfall+</td>
<td>Abschlag über Mischwasserentlastung in Vorfluter+</td>
<td>Technik</td>
<td>Abwasserbehandlung: Kläranlagen-betrieb</td>
<td>Schadstoffeintrag in Gewässer+</td>
</tr>
<tr>
<td>Umweltschutz</td>
<td>Fehleinschätzung bei Planung, Starkniederschlagsereignisse+, Klimawandel, Flächenversiegelung+, Mischwasseranfall+</td>
<td>Unterdimensionierung Abwassersystem</td>
<td>Abschlag über Mischwasserentlastung in Vorfluter+</td>
<td>Technik</td>
<td>Abwasserableitung: Kanalbetrieb</td>
<td>Schadstoffeintrag in Gewässer+</td>
</tr>
<tr>
<td>Umweltschutz</td>
<td>Abwassermenge-, demografischer Wandel, Bevölkerung-, Wasserverbrauch-, Trockenwetterperioden+, Abwasserbeschaffenheit, Abwassertemperatur, Ablagerungen im Kanal+</td>
<td>Spülbedarf+</td>
<td>Reinigungsleistung biologische Stufe-</td>
<td>Technik</td>
<td>Abwasserableitung: Kanalbetrieb</td>
<td>Schadstoffeintrag in Gewässer+</td>
</tr>
<tr>
<td>Umweltschutz</td>
<td>Wärmerückgewinnung Abwasser+, Klimawandel, Lufttemperatur-</td>
<td>Abwassertemperatur im Winter-</td>
<td>Reinigungsleistung biologische Stufe-</td>
<td>Technik</td>
<td>Abwasserableitung: Kanalbetrieb</td>
<td>Schadstoffeintrag in Gewässer+</td>
</tr>
<tr>
<td>Umweltschutz</td>
<td>Intensivierung der Landwirtschaft, Monokulturen+, Biokraftstoffe+, Privatgebrauch PBSM+</td>
<td>Stoffeinträge aus Landwirtschaft+</td>
<td>Konzentration an Pesticiden und deren Abbauprodukten im Abwasser+</td>
<td>Technik</td>
<td>Abwasserbehandlung: Kläranlagen-betrieb</td>
<td>Schadstoffeintrag in Gewässer+</td>
</tr>
<tr>
<td>Nachhaltigkeitsziel</td>
<td>Kausalzusammenhang</td>
<td>Ursache</td>
<td>Auswirkung</td>
<td>Teilsystem</td>
<td>Prozess</td>
<td>Nachhaltigkeitsgefahr</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>--</td>
<td>-----------------------------------</td>
<td>------------</td>
<td>--------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Umweltschutz</td>
<td>Auswahl des Energieträgermix, Energieverbrauch+</td>
<td>Anteil fossiler Energieträger+, Energieverbrauch+</td>
<td>CO2-Emissionen+</td>
<td>Technik</td>
<td>Abwasserbehandlung; Kläranlagenbetrieb</td>
<td>Schadstoffeintrag in Gewässer+</td>
</tr>
<tr>
<td>Umweltschutz</td>
<td>industrielle Indirekteinleiter+, technische Fortschritte</td>
<td>Einleitung neuer, unbekannter Schad-/Stoffe+</td>
<td>unbekannte Schad-/Stoffe können nicht beseitigt werden, da (noch) keine Behandlungsmöglichkeit vorhanden ist</td>
<td>Technik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Zielkategorie: Organisation und Technik

<table>
<thead>
<tr>
<th>Nachhaltigkeitsziel</th>
<th>Kausalzusammenhang</th>
<th>Ursache</th>
<th>Auswirkung</th>
<th>Teilsystem</th>
<th>Prozess</th>
<th>Nachhaltigkeitsgefahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prozessqualität</td>
<td>Bevölkerung-, Standzeit Abwasser im Kanal+, Entwicklung anaerober Bedingungen+, Ablagerungen im Kanal+, Abwasserwärmpumpen+, Abwasserzusammensetzung, Abwassertemperatur, mangelhaftes Instandhaltsmanagement</td>
<td>Kanalkorrosion+</td>
<td>Kanalzustand-</td>
<td>Technik</td>
<td>Abwasserableitung: Kanalbetrieb</td>
<td>Verfügbarkeit funktionsfähiger Kanäle-</td>
</tr>
<tr>
<td>Prozessqualität</td>
<td>Abwasser, demografischer Wandel, Bevölkerungs-, Wasserverbrauch-, Trockenwetterperioden+, Abwasserbeschaffenheit, Abwassertemperatur</td>
<td>Ablagerungen im Kanal+</td>
<td>Minderung Gefälle im Kanal+</td>
<td>Technik</td>
<td>Abwasserableitung: Kanalbetrieb</td>
<td>Abwasser wird nicht ordentlich abge- führt</td>
</tr>
<tr>
<td>Prozessqualität</td>
<td>Abwasser, demografischer Wandel, Bevölkerungs-, Wasserverbrauch-, Trockenwetterperioden+, Abwasserbeschaffenheit, Abwassertemperatur</td>
<td>Ablagerungen im Kanal+</td>
<td>Spülibedarf+</td>
<td>Technik</td>
<td>Abwasserableitung: Kanalbetrieb</td>
<td>Einschränkungen Kanalbetrieb+</td>
</tr>
<tr>
<td>Prozessqualität</td>
<td>Änderung der Rechtslage, neue Technologien verfügbar</td>
<td>Einsatz NASS+</td>
<td>Veränderung Abwassermenge und Qualität</td>
<td>Technik</td>
<td>Abwasserbehandlung: Kläranlagenbetrieb</td>
<td>bestehende Anlagenkonzeption ungeeignet, Reinigungsleistung-</td>
</tr>
<tr>
<td>Prozessqualität</td>
<td>Starkniederschlagsereignisse+, Klimawandel, Flächenversiegelung+</td>
<td>Mischwasseranfall+</td>
<td>Abschlag über Mischwasserentlastung in Vorfluter+</td>
<td>Technik</td>
<td>Abwasserableitung: Kanalbetrieb</td>
<td>Schadstoffeintrag in Gewässer+</td>
</tr>
<tr>
<td>Nachhaltigkeitsziel</td>
<td>Kausalzusammenhang</td>
<td>Ursache</td>
<td>Auswirkung</td>
<td>Teilsystem</td>
<td>Prozess</td>
<td>Nachhaltigkeitsgefahr</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------</td>
<td>---------</td>
<td>------------</td>
<td>------------</td>
<td>---------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Prozessqualität</td>
<td>Fehlenschätzung bei Planung, Starkniederschlagsereignisse+, Klimawandel, Flächenversiegelung+, Mischwasseranfall+</td>
<td>Unterdimensionierung Abwassersystem</td>
<td>Abschlag über Mischwasserentlastung in Vorfluter+</td>
<td>Technik</td>
<td>Abwasserableitung: Kanalbetrieb</td>
<td>Schadstoffeintrag in Gewässer+</td>
</tr>
<tr>
<td>Prozessqualität</td>
<td>Abwassermenge-, demografischer Wandel, Bevölkerung-, Wasserverbrauch-, Trockenwetterperioden+, Abwasserbeschaffenheit, Abwassertemperatur</td>
<td>Ablagerungen im Kanal+</td>
<td>Spilbedarf+</td>
<td>Technik</td>
<td>Abwasserableitung: Kanalbetrieb</td>
<td>Reinigungsleistung biologische Stufe-</td>
</tr>
<tr>
<td>Prozessqualität</td>
<td>Wärmerückgewinnung Abwasser+, Klimawandel, Lufttemperatur-</td>
<td>Abwassertemperatur im Winter-</td>
<td>Reinigungsleistung biologische Stufe-</td>
<td>Technik</td>
<td>Abwasserableitung: Kanalbetrieb</td>
<td>Reinigungsleistung biologische Stufe-</td>
</tr>
<tr>
<td>Prozessqualität</td>
<td>Intensivierung der Landwirtschaft, Monokulturen+, Biokraftstoffe+, Privatgebrauch PBSM+</td>
<td>Stoffeinträge aus Landwirtschaft+</td>
<td>Konzentration an Pestiziden und deren Abbauprodukten im Abwasser+</td>
<td>Technik</td>
<td>Abwasserbehandlung: Kläranlagenbetrieb</td>
<td>Kläranlage kann erhöhten Reinigungsbedarf nicht erbringen</td>
</tr>
<tr>
<td>Steuerbarkeit</td>
<td>Starkniederschlagsereignisse+, Klimawandel, Flächenversiegelung+</td>
<td>Überflutung von Grundstücken+</td>
<td>Kosten für Hochwasserschutz+</td>
<td>Verwaltung</td>
<td>Kaufmännische Aufgaben</td>
<td>finanzielle Mittel für strategische Maßnahmen-</td>
</tr>
<tr>
<td>Steuerbarkeit</td>
<td>Keine/ kaum Möglichkeit der Teilnahme an Fortbildungsveranstaltungen</td>
<td>Fortbildung-</td>
<td>Fehlentscheidungen+, Fehlende Kompetenz</td>
<td>Verwaltung</td>
<td>Personal- und Sozialwesen</td>
<td>Fehler bei organisatorischen/ kaufmännischen/ technischen Fragen+</td>
</tr>
<tr>
<td>Nachhaltigkeitsziel</td>
<td>Kausalzusammenhang</td>
<td>Ursache</td>
<td>Auswirkung</td>
<td>Teilsystem</td>
<td>Prozess</td>
<td>Nachhaltigkeitsgefahr</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>--</td>
<td>----------------------</td>
<td>------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Wirtschaftlichkeit</td>
<td>Abwassermenge-, demografischer Wandel, Bevölkerung-, Wasserverbrauch-, Trockenwetterperioden+, Abwasserbeschaffenheit, Abwassertemperatur</td>
<td>Ablagerungen im Kanal+</td>
<td>Spülibedarf+</td>
<td>Technik</td>
<td>Abwasserableitung: Kanalbetrieb</td>
<td>Kosten für Spülbetrieb+</td>
</tr>
<tr>
<td>Wirtschaftlichkeit</td>
<td>demografischer Wandel</td>
<td>alternende Belegschaft+</td>
<td>Ausgaben Gehälter+</td>
<td>Verwaltung</td>
<td>Personal- und Sozialwesen</td>
<td>zu hohe Personalkosten</td>
</tr>
<tr>
<td>Wirtschaftlichkeit</td>
<td>strukturelle Fehlentscheidungen</td>
<td>Überdimensionierung Kanalnetz</td>
<td>spezifische Kosten+</td>
<td>Verwaltung</td>
<td>Kaufmännische Aufgaben</td>
<td>spezifische Kosten höher als nötig</td>
</tr>
<tr>
<td>Wirtschaftlichkeit</td>
<td>Abwassermenge-, demografischer Wandel, Bevölkerung-, Wasserverbrauch-, Trockenwetterperioden+</td>
<td>Abwassermenge- abswasserbehandlung außer Betrieb</td>
<td>Technik</td>
<td>Abwasserbehandlung: Kläranlagenbetrieb</td>
<td>Stilllegung von Anlagenteilen+</td>
<td></td>
</tr>
<tr>
<td>Wirtschaftlichkeit</td>
<td>Abwassermenge-, demografischer Wandel, Bevölkerung-, Wasserverbrauch-, Trockenwetterperioden+</td>
<td>Abwassermenge- Belüftung stärker als nötig</td>
<td>Technik</td>
<td>Abwasserbehandlung: Kläranlagenbetrieb</td>
<td>Kosten für Belüftung+</td>
<td></td>
</tr>
</tbody>
</table>

172
Zielkategorie: Mitarbeitende

<table>
<thead>
<tr>
<th>Nachhaltigkeitsziel</th>
<th>Kausalzusammenhang</th>
<th>Ursache</th>
<th>Auswirkung</th>
<th>Teilsystem</th>
<th>Prozess</th>
<th>Nachhaltigkeitsgefahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kompetenzpotential</td>
<td>demografischer Wandel</td>
<td>Veränderung Bevölkerungsstruktur</td>
<td>Qualitätsniveau (Ausbildung, Erfahrung, Fähigkeiten) Bewerber-Verwaltung</td>
<td>Verwaltung</td>
<td>Personal- und Sozialwesen</td>
<td>Fachkompetenz-</td>
</tr>
<tr>
<td>Kompetenzpotential</td>
<td>demografischer Wandel</td>
<td>Veränderung Bevölkerungsstruktur</td>
<td>Qualitätsniveau (Ausbildung, Erfahrung, Fähigkeiten) Bewerber-Verwaltung</td>
<td>Verwaltung</td>
<td>Personal- und Sozialwesen</td>
<td>Fachkompetenz-</td>
</tr>
<tr>
<td>Kompetenzpotential</td>
<td>Bevölkerung-, Demografischer Wandel, Wegzug aus unattraktiven Gebieten, weniger Kinder</td>
<td>Unternehmensgröße- Fachpersonal-Verwaltung</td>
<td>Verwaltung</td>
<td>Personal- und Sozialwesen</td>
<td>Mitarbeiterzahl bei ähnlicher Auftragslage-</td>
<td></td>
</tr>
<tr>
<td>Kompetenzpotential</td>
<td>Bevölkerung-, Demografischer Wandel, Wegzug aus unattraktiven Gebieten, weniger Kinder</td>
<td>Unternehmensgröße- Fachpersonal-Verwaltung</td>
<td>Verwaltung</td>
<td>Personal- und Sozialwesen</td>
<td>Mitarbeiterzahl bei ähnlicher Auftragslage-</td>
<td></td>
</tr>
<tr>
<td>Kompetenzpotential</td>
<td>Änderung politischer Rahmenbedingungen</td>
<td>Eingemeindung</td>
<td>Abgabe Kompetenzpotential-Verwaltung</td>
<td>Verwaltung</td>
<td>Leitung, Zentrale Aufgaben, Organisation</td>
<td>Fachkompetenz-</td>
</tr>
<tr>
<td>Nachhaltigkeitsziel</td>
<td>Kausalzusammenhang</td>
<td>Ursache</td>
<td>Auswirkung</td>
<td>Teilsystem</td>
<td>Prozess</td>
<td>Nachhaltigkeitsgefahr</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>--</td>
<td>--------------------------------</td>
<td>------------</td>
<td>--</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Kompetenzpotential</td>
<td>Keine/ kaum Möglichkeit der Teilnahme an Fortbildungsveranstaltungen</td>
<td>Fortbildung-</td>
<td>Mitarbeiterzufriedenheit-</td>
<td>Verwaltung</td>
<td>Leitung, Zentrale Aufgaben, Organisation</td>
<td>Mitarbeiterfluktuation+</td>
</tr>
<tr>
<td>Kompetenzpotential</td>
<td>mangelhafte Arbeitssicherheit/Gesundheitsschutz, Terminstress, zu wenige Mitarbeiter</td>
<td>unzureichende Arbeitssicherheit</td>
<td>Mitarbeiterzufriedenheit-</td>
<td>Verwaltung</td>
<td>Personal- und Sozialwesen</td>
<td>Mitarbeiterfluktuation+</td>
</tr>
<tr>
<td>Kompetenzpotential</td>
<td>Mitarbeiterfluktuation+</td>
<td>fehlendes Wissensmanagement</td>
<td>Know-How & Verbindung in Netzwerke-</td>
<td>Verwaltung</td>
<td>Personal- und Sozialwesen</td>
<td>Fachkompetenz-</td>
</tr>
<tr>
<td>Kompetenzpotential</td>
<td>neue Verwaltungseinheiten, Versuch der Kosteneinsparung durch Zentralisierung</td>
<td>Zusammenlegung von Kommunen/ kommunalen Einrichtungen</td>
<td>Stellenabbau/-umbesetzung+</td>
<td>Verwaltung</td>
<td>Leitung, Zentrale Aufgaben, Organisation</td>
<td>Fachkompetenz-</td>
</tr>
<tr>
<td>Unternehmenskultur</td>
<td>Bevölkerung-, Demografischer Wandel, Wegzug aus unattraktiven Gebieten, weniger Kinder</td>
<td>Anschlussgrad-</td>
<td>Unternehmensgröße-</td>
<td>Verwaltung</td>
<td>Personal- und Sozialwesen</td>
<td>Kündigungen+, Neueinstellung-, Personal-</td>
</tr>
<tr>
<td>Unternehmenskultur</td>
<td>demografischer Wandel</td>
<td>Veränderung Bevölkerungsstruktur</td>
<td>Veränderungen der Wünsche und Erwartungen der Mitarbeiter an ein Unternehmen</td>
<td>Verwaltung</td>
<td>Personal- und Sozialwesen</td>
<td>Konfliktpotential+, Mitarbeiterzufriedenheit-</td>
</tr>
<tr>
<td>Nachhaltigkeitsziel</td>
<td>Kausalzusammenhang</td>
<td>Ursache</td>
<td>Auswirkung</td>
<td>Teilsystem</td>
<td>Prozess</td>
<td>Nachhaltigkeitsgefahr</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>--------------</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Unternehmenskultur</td>
<td>demografischer Wandel</td>
<td>Veränderung Bevölkerungsstruktur</td>
<td>Qualitätsniveau (Ausbildung, Erfahrung, Fähigkeiten) Bewerber-Verwaltung</td>
<td>Verwaltung</td>
<td>Personal- und Sozialwesen</td>
<td>Konfliktpotential+, Schaden</td>
</tr>
<tr>
<td>Unternehmenskultur</td>
<td>Rechtsform des Unternehmens</td>
<td>Einflussnahme des Kommunal-/ Rates</td>
<td>Richtungsinunsicherheit der Führungsebene & Mitarbeitende</td>
<td>Verwaltung</td>
<td>Leitung, Zentrale Aufgaben, Organisation</td>
<td>stark eingeschränkte Entscheidungskompetenzen im Unternehmen, Verlust Loyalität</td>
</tr>
<tr>
<td>Unternehmenskultur</td>
<td>Gründe für Zunahme Outsourcing: neoliberales Wirtschaftverständnis, Kosteneinsparung, Rechtsformänderung</td>
<td>Outsourcing+</td>
<td>Arbeitsplatzsicherheit-Verwaltung</td>
<td>Verwaltung</td>
<td>Personal- und Sozialwesen</td>
<td>Mitarbeiterzufriedenheit-, Verlust Loyalität & Motivation, Mitarbeiterfluktuation+</td>
</tr>
<tr>
<td>Unternehmenskultur</td>
<td>neue Verwaltungseinheiten, Versuch der Kosteneinsparung durch Zentralisierung</td>
<td>Zusammenlegung von Kommunen/ kommunalen Einrichtungen</td>
<td>Arbeitsplatzsicherheit-Verwaltung</td>
<td>Verwaltung</td>
<td>Leitung, Zentrale Aufgaben, Organisation</td>
<td>Verlust Loyalität & Motivation</td>
</tr>
<tr>
<td>Unternehmenskultur</td>
<td>mangelhafte Arbeitssicherheit/Gesundheitsschutz, Terminstress, zu wenige Mitarbeiter</td>
<td>unzureichende Arbeitssicherheit</td>
<td>Arbeitsunfälle+</td>
<td>Verwaltung</td>
<td>Personal- und Sozialwesen</td>
<td>Überlastung der verbliebenen Mitarbeiter</td>
</tr>
<tr>
<td>Unternehmenskultur</td>
<td>Änderung der Rechtslage</td>
<td>unzureichende strategische Planung bzgl. sich ändernder Rechtslage</td>
<td>zu späte Reaktion auf sich ändernde Rechtslage</td>
<td>Verwaltung</td>
<td>Leitung, Zentrale Aufgaben, Organisation</td>
<td>Akzeptanzverlust wegen Rechtsbruch</td>
</tr>
<tr>
<td>Nachhaltigkeitsziel</td>
<td>Kausalzusammenhang</td>
<td>Ursache</td>
<td>Auswirkung</td>
<td>Teilsystem</td>
<td>Prozess</td>
<td>Nachhaltigkeitsgefahr</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------</td>
<td>---------</td>
<td>------------</td>
<td>------------</td>
<td>---------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Akzeptanz</td>
<td>Abwassermenge-, demo-</td>
<td>Ablagerungen im Kanal+</td>
<td>Geruchsbelästigung+</td>
<td>Verwal-</td>
<td>Kundenservice</td>
<td>Akzeptanz der KundInnen-, Unternehmen-</td>
</tr>
<tr>
<td></td>
<td>grafischer Wandel, Bevöl-</td>
<td></td>
<td></td>
<td>tung</td>
<td>tung</td>
<td>simage-</td>
</tr>
<tr>
<td></td>
<td>kerung-, Wasserverbrauch-,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trockenwetterperioden+,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abwasserbeschaffenheit,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abwassertemperatur</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akzeptanz</td>
<td>Forderung WHG Wechsel</td>
<td>rechtlich geforderte</td>
<td>Abwasserentgelt+</td>
<td>Verwal-</td>
<td>Kundenservice</td>
<td>Akzeptanz der KundInnen-, Unternehmen-</td>
</tr>
<tr>
<td></td>
<td>von Misch- zu Trennsys-</td>
<td>Neuinvestitionen+</td>
<td></td>
<td>tung</td>
<td>tung</td>
<td>simage-</td>
</tr>
<tr>
<td></td>
<td>tem, Ausbau Kanalnetz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Kanalnetzlänge/Einwohner+)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akzeptanz</td>
<td>Starkniederschlagsereignisse+,</td>
<td>Unterdimensionierung Abwassersystem</td>
<td>Abwasser wird nicht ordentlich abgeführt</td>
<td>Technik</td>
<td>Abwasserableitung: Kanausbetrieb</td>
<td>Akzeptanz der KundInnen-, Unternehmen-</td>
</tr>
<tr>
<td></td>
<td>Klimawandel, Flächenversiegelung+,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ablagerungen im Kanal+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akzeptanz</td>
<td>fehlendes Konfliktmanage-</td>
<td>fehlende Kommunika-</td>
<td>Konflikte mit Stakeholdern+</td>
<td>Verwal-</td>
<td>Kundenservice und</td>
<td>Vertrauensverlust, Kooperationsbereitschaft-</td>
</tr>
<tr>
<td></td>
<td>ment</td>
<td>tion mit Stakeholdern</td>
<td></td>
<td>tung</td>
<td>Öffentlichkeitsarbeit</td>
<td>-, Unternehmensimage-</td>
</tr>
<tr>
<td>Akzeptanz</td>
<td>neue Verwaltungseinheiten,</td>
<td>Zusammenlegung von Kommunen/ kommunalen Einrichtungen</td>
<td>negative Einstellung der BürgerInnen gegenüber dem Unternehmen, Kooperationsbereitschaft, negatives Unternehmen-</td>
<td>Verwal-</td>
<td>Leitung, Zentrale Aufgaben, Organisation</td>
<td>Akzeptanzverlust in der Öffentlichkeit</td>
</tr>
<tr>
<td></td>
<td>Versuch der Kosteneinsparung durch Zentralisierung</td>
<td></td>
<td></td>
<td>tung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nachhaltigkeitsziel</td>
<td>Kausalzusammenhang</td>
<td>Ursache</td>
<td>Auswirkung</td>
<td>Teilsystem</td>
<td>Prozess</td>
<td>Nachhaltigkeitsgefahr</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------</td>
<td>---------</td>
<td>------------</td>
<td>------------</td>
<td>---------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Akzeptanz</td>
<td>Änderung der Rechtslage, Neue Qualitätsanforderungen</td>
<td>unzureichende strategische Planung bzgl. sich ändernder Rechtslage</td>
<td>neue Qualitätsstandards werden nicht eingehalten</td>
<td>Verwaltung</td>
<td>Leitung, Zentrale Aufgaben, Organisation</td>
<td>Akzeptanzverlust wegen Rechtsbruch</td>
</tr>
<tr>
<td>Erschwinglichkeit</td>
<td>Abwassermenge-, demografischer Wandel, Bevölkerung-, Wasserverbrauch-, Trockenwetterperioden+, Abwasserbeschaffenheit, Abwassertemperatur</td>
<td>Ablagerungen im Kanal+</td>
<td>Spülbedarf+</td>
<td>Technik</td>
<td>Abwasserableitung: Kanalbetrieb</td>
<td>Abwasserentgelt+</td>
</tr>
<tr>
<td></td>
<td>Starkniederschlagsereignisse+, Klimawandel, Flächenversiegelung+</td>
<td>Überflutung von Grundstücken+</td>
<td>Kosten für Hochwasserschutz+</td>
<td>Verwaltung</td>
<td>Kaufmännische Aufgaben</td>
<td>Abwasserentgelt+</td>
</tr>
<tr>
<td></td>
<td>durch politische Entscheidung veranlasste Änderung, z.B. erhöhte Abwasserabgaben</td>
<td>Abwasserabgabe+</td>
<td>Abwasserentgelt+</td>
<td>Verwaltung</td>
<td>Kaufmännische Aufgaben</td>
<td>Abwasserentgelt+</td>
</tr>
<tr>
<td></td>
<td>strukturelle Fehlentscheidungen</td>
<td>Überdimensionierung Kanalnetz</td>
<td>spezifische Kosten+</td>
<td>Verwaltung</td>
<td>Kaufmännische Aufgaben</td>
<td>Abwasserentgelt+</td>
</tr>
<tr>
<td></td>
<td>Bevölkerung-, Standzeit Abwasser im Kanal+, Entwicklung anaeroben</td>
<td>Kanalkorrosion+</td>
<td>Investitionsbedarf+</td>
<td>Technik</td>
<td>Abwasserableitung: Kanalbau</td>
<td>Abwasserentgelt+</td>
</tr>
<tr>
<td>Nachhaltigkeitsziel</td>
<td>Kausalzusammenhang</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bedingungen+, Ablagerungen im Kanal+, Abwasserwärmepumpen+, Abwasserzusammensetzung, Abwassertemperatur, mangelhaftes Instandhaltungsmanagement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erschwinglichkeit</td>
<td>Intensivierung der Landwirtschaft, Monokulturen+, Biokraftstoffe+, Privatgebrauch PBSM+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stoffeinträge aus Landwirtschaft+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Konzentration an Pestiziden und deren Abbauprodukten im Abwasser+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Technik</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abwasserbehandlung: Kläranlagenbetrieb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abwasserentgelt+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erschwinglichkeit</td>
<td>Preissteigerung der verwendeten Energieträger oder Betriebsmittel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Energie-/Rohstoffpreise+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Betriebskosten+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Verwaltung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kaufmännische Aufgaben</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abwasserentgelt+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erschwinglichkeit</td>
<td>Mögliche Erhöhung des Energie- oder Betriebsmittelverbrauchs z.B. durch Intensivierung der Reinigungsleistung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Energie-/Rohstoffverbrauch+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Betriebskosten+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Verwaltung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kaufmännische Aufgaben</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abwasserentgelt+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nachhaltigkeitsziel</td>
<td>Kausalzusammenhang</td>
<td>Ursache</td>
<td>Auswirkung</td>
<td>Teilsystem</td>
<td>Prozess</td>
<td>Nachhaltigkeitsgefahr</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------</td>
<td>---------</td>
<td>------------</td>
<td>------------</td>
<td>---------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Erschwinglichkeit</td>
<td>Abwassermenge-, demografischer Wandel, Bevölkerung-, Wasserverbrauch-, Trockenwetterperioden+, falsch Prognosen bei Planung</td>
<td>Überdimensionierung Kanalnetz</td>
<td>Spülabbedarf+</td>
<td>Technik</td>
<td>Abwasserableitung: Kanalbetrieb</td>
<td>Abwasserentgelt+</td>
</tr>
<tr>
<td></td>
<td>demografischer Wandel, Bevölkerung-, dünn besiedelte Gebiete</td>
<td>Anschlussgrad-</td>
<td>spezifische Kosten Abwasser+</td>
<td>Verwaltung</td>
<td>Kaufmännische Aufgaben</td>
<td>Abwasserentgelt+</td>
</tr>
<tr>
<td></td>
<td>industrielle Indikteinleiter+, technische Fortschritte</td>
<td>Einleitung neuer, unbekannter Schad-/Stoffe+</td>
<td>Kosten Indirektineinleiterüberwachung+</td>
<td>Technik</td>
<td>Unterstützende Prozesse: Fuhrpark, zentrale Werkstatt, Betriebsstätte, Lager, Labor, Indirektineinleiterüberwachung</td>
<td>Abwasserentgelt+</td>
</tr>
<tr>
<td>Kostengerechtigkeit</td>
<td>Bevölkerung-, demografischer Wandel, Wegzug aus unattraktiven Gebieten, weniger Kinder</td>
<td>Einwohner im Versorgungsgebiet-</td>
<td>Umlagerung von Kosten auf im Gebiet verbleibende Bevölkerung</td>
<td>Verwaltung</td>
<td>Kaufmännische Aufgaben</td>
<td>Abwasserentgelt+</td>
</tr>
<tr>
<td>Kostengerechtigkeit</td>
<td>Steigerung der verbrauchsunabhängigen Entgeltkomponente des Abwassergüterpreismodells durch externe (gesetzliche) oder interne (neue</td>
<td>verbrauchsunabhängigen Entgeltkomponente+</td>
<td>verbrauchsunabhängiges Abwasserentgelt</td>
<td>Verwaltung</td>
<td>Kaufmännische Aufgaben</td>
<td>inadäquate Kostenzuordnung</td>
</tr>
<tr>
<td>Nachhaltigkeitsziel</td>
<td>Kausalzusammenhang</td>
<td>Ursache</td>
<td>Auswirkung</td>
<td>Teilsystem</td>
<td>Prozess</td>
<td>Nachhaltigkeitsgefahr</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------</td>
<td>---------</td>
<td>------------</td>
<td>------------</td>
<td>--------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Geschäftsführung) Änderung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kostengerechtigkeit</td>
<td>Steigerung der Baukostenzuschüssen (nutzungsunabhängige Entgeltkomponente) durch externe (gesetzliche) oder interne (neue Geschäftsführung) Änderung</td>
<td>Baukostenzuschüsse+</td>
<td>verbrauchsunabhängiges Abwasserentgelt</td>
<td>Verwaltung</td>
<td>Kaufmännische Aufgaben</td>
<td>inadäquate Kostenzuordnung</td>
</tr>
<tr>
<td>Leistungsqualität gegenüber den Kunden</td>
<td>Starkniederschlagsereignisse+, Klimawandel, Flächenversiegelung+</td>
<td>Hochwasserereignisse+</td>
<td>Überlastung Hochwasserentlastung+</td>
<td>Technik</td>
<td>Abwasserableitung: Kanalbetrieb</td>
<td>Hochwasserschäden+</td>
</tr>
<tr>
<td>Leistungsqualität gegenüber den Kunden</td>
<td>Starkniederschlagsereignisse+, Klimawandel, Flächenversiegelung+</td>
<td>Mischwasseranfall+</td>
<td>Abwasser wird nicht ordentlich abgeführt</td>
<td>Technik</td>
<td>Abwasserableitung: Grundstücksentwässerung</td>
<td>Abwasser wird nicht ordentlich abgeführt</td>
</tr>
<tr>
<td>Leistungsqualität gegenüber den Kunden</td>
<td>Intensivierung der Landwirtschaft, Monokulturen+, Biokraftstoffe+, Privatgebrauch PBSM+</td>
<td>Stoffeinträge aus Landwirtschaft+</td>
<td>Konzentration an Pestiziden und deren Abbauprodukten im Abwasser+</td>
<td>Technik</td>
<td>Abwasserbehandlung: Kläranlagenbetrieb</td>
<td>Kläranlage kann erhöhten Reinigungsbedarf nicht erbringen</td>
</tr>
</tbody>
</table>
Zielkategorie: Entwicklungsfähigkeit

<table>
<thead>
<tr>
<th>Nachhaltigkeitsziel</th>
<th>Kausalzusammenhang</th>
<th>Ursache</th>
<th>Auswirkung</th>
<th>Teilsystem</th>
<th>Prozess</th>
<th>Nachhaltigkeitsgefahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Innovations- und Anpassungsfähigkeit</td>
<td>Budget Substanzerhaltung</td>
<td>Finanzmittel</td>
<td>Sanierungsstau</td>
<td>Technik</td>
<td>Abwasserbehandlung: Kläranlagenbetrieb</td>
<td>Finanzmittel für Anpassungsmaßnahmen</td>
</tr>
<tr>
<td>Innovations- und Anpassungsfähigkeit</td>
<td>Änderung der Rechtslage bzgl. Klärschlammensorgung</td>
<td>Klärschlammensorgung in der Landwirtschaft untersagt</td>
<td>Kosten Schlammensorgung+</td>
<td>Technik</td>
<td>Abwasserbehandlung: Reststoffe entsorgen</td>
<td>Finanzmittel für Investitionsplanung</td>
</tr>
<tr>
<td>Innovations- und Anpassungsfähigkeit</td>
<td>fehlendes Diversity Management</td>
<td>nicht Ausschöpfen von Mitarbeiterpotentialen</td>
<td>Mitarbeitermotivation</td>
<td>Verwaltung</td>
<td>Personal- und Sozialwesen</td>
<td>Innovationen</td>
</tr>
<tr>
<td>Innovations- und Anpassungsfähigkeit</td>
<td>Es wird versucht Kosten zu sparen indem Regelkommunikation & Maßnahmen des Wissensmanagement reduziert werden d.h. Besprechungen, Jours fixes, Übergangsphasen bei Mitarbeiterwechsel etc. finden nicht mehr statt</td>
<td>Kapital</td>
<td>Absprache/ Transparenz zwischen Unternehmensbereichen</td>
<td>Verwaltung</td>
<td>Leitung, Zentrale Aufgaben, Organisation</td>
<td>ineffektives Arbeiten</td>
</tr>
</tbody>
</table>

181
<table>
<thead>
<tr>
<th>Nachhaltigkeitsziel</th>
<th>Kausalzusammenhang</th>
<th>Ursache</th>
<th>Auswirkung</th>
<th>Teilsystem</th>
<th>Prozess</th>
<th>Nachhaltigkeitsgefahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refinanzierbarkeit</td>
<td>Abwassermenge-, demografischer Wandel, Bevölkerung-, Wasserverbrauch-, Trockenwetterperioden+</td>
<td>Abwassermenge-</td>
<td>Stilllegung noch nicht abgeschriebener Anlagen</td>
<td>Technik</td>
<td>Abwasserbehandlung: Kläranlagenbetrieb</td>
<td>Kapitalverlust+, "sunk costs"</td>
</tr>
<tr>
<td>Refinanzierbarkeit</td>
<td>fehlende integrierte Planung</td>
<td>fehlende Kommunikation mit anderen Infrastrukturanbietern</td>
<td>Kosteneinsparungen-</td>
<td>beides</td>
<td>mehrere</td>
<td>mögliche Kosteneinsparung ungenutzt</td>
</tr>
<tr>
<td>Robustheit</td>
<td>biogene Schwefelsäure-Korrosion+, allgemeiner Verfall durch Alterungsprozesse+</td>
<td>Verfügbarkeit funktionsfähiger Kanäle-</td>
<td>Spielraum bei der Nutzung von Kanälen-</td>
<td>Technik</td>
<td>Abwasserableitung: Kanalbetrieb</td>
<td>Ableitungskapazität Abwasser-</td>
</tr>
<tr>
<td>Robustheit</td>
<td>Änderung der Rechtslage bzgl. Klärschlammensorgung</td>
<td>Verwertung von Klärschlam in der Landwirtschaft rechtlich unsagt</td>
<td>Klärschlammentsorgungsmöglichkeiten-</td>
<td>Technik</td>
<td>Abwasserbehandlung: Reststoffe entsorgen</td>
<td>Handlungsfreiheit Klärschlammentsorgung-</td>
</tr>
</tbody>
</table>
Komplementwirkungspfade: System: Trinkwasserversorgung

Zielkategorie: Umwelt und Ressourcen

<table>
<thead>
<tr>
<th>Nachhaltigkeitsziel</th>
<th>Kausalzusammenhang</th>
<th>Ursache</th>
<th>Auswirkung</th>
<th>Teilsystem</th>
<th>Prozess</th>
<th>Nachhaltigkeitsgefahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ressourceneffizienz</td>
<td>Betriebswasserverluste in Gewinnung und Aufbereitung durch Alterung der technischen Anlagen+</td>
<td>Wasserverluste+</td>
<td>Rohwasserentnahme+</td>
<td>Technik</td>
<td>Wassergewinnung</td>
<td>Grundwasserreserven-</td>
</tr>
<tr>
<td>Ressourceneffizienz</td>
<td>Prozessaufwand+, Prozessstufen+, Pumpen laufen nicht auf Optimum</td>
<td>Energieverbrauch+</td>
<td>Energieverbrauch+</td>
<td>Technik</td>
<td>Wassergewinnung</td>
<td>Energieverbrauch+</td>
</tr>
<tr>
<td>Ressourceneffizienz</td>
<td>demografischer Wandel, Bevölkerung+, Verbraucherverhalten</td>
<td>Trinkwasserverbrauch+</td>
<td>Rohwasserentnahme+</td>
<td>Technik</td>
<td>Wasserwirtschaft</td>
<td>Grundwasserreserven-</td>
</tr>
<tr>
<td>Ressourceneffizienz</td>
<td>Unkenntnis über technische Zusammenhänge rund die um Rohwasserpumpen</td>
<td>Unkenntnis über Stromverbrauch</td>
<td>ineffizienter Betriebspunkt Pumpe/ Rohr</td>
<td>Technik</td>
<td>Wassergewinnung</td>
<td>Energieverbrauch+</td>
</tr>
<tr>
<td>Ressourceneffizienz</td>
<td>demografischer Wandel, Bevölkerung-, Verbraucherverhalten</td>
<td>Trinkwasserverbrauch-</td>
<td>ineffizienter Betriebspunkt Pumpe/ Rohr</td>
<td>Technik</td>
<td>Wasserverteilung</td>
<td>Ressourcenverbrauch+</td>
</tr>
<tr>
<td>Umweltschutz</td>
<td>Auswahl des Energieträgermix, Energieverbrauch+</td>
<td>Anteil fossiler Energieträger+</td>
<td>CO2-Emissionen+</td>
<td>Technik</td>
<td></td>
<td>Emission klimaschädlicher Stoffe in die Luft+</td>
</tr>
</tbody>
</table>
Zielkategorie: Organisation und Technik

<table>
<thead>
<tr>
<th>Nachhaltigkeitsziel</th>
<th>Kausalzusammenhang</th>
<th>Ursache</th>
<th>Auswirkung</th>
<th>Teilsystem</th>
<th>Prozess</th>
<th>Nachhaltigkeitsgefahren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prozessqualität</td>
<td>Erlaubte Stoffeintragen durch Umweltrecht (z.B. Klärschlammverordnung)+</td>
<td>Schad-Stoffeintragen in Wasserressource+</td>
<td>Rohwasserqualität-</td>
<td>Technik</td>
<td>Wasserwirtschaft</td>
<td>Trinkwasserqualität-</td>
</tr>
<tr>
<td>Prozessqualität</td>
<td>Mitarbeiter-</td>
<td>Wartungsintervall-</td>
<td>Rohrleitungsduermesser (Korrosion)-</td>
<td>Technik</td>
<td>Wasserverteilung</td>
<td>Versorgungsdruck-</td>
</tr>
<tr>
<td>Prozessqualität</td>
<td>Klimawandel</td>
<td>Meeresspiegel+</td>
<td>Salzgehalt Grundwasserressource+</td>
<td>Technik</td>
<td>Wasserwirtschaft</td>
<td>Grundwasserqualität-</td>
</tr>
<tr>
<td>Prozessqualität</td>
<td>Lufttemperatur-, Klimawandel</td>
<td>Rohwassertemperatur-</td>
<td>biologische Aktivität bei Trinkwasseraufbereitung-</td>
<td>Technik</td>
<td>Wasseraufbereitung</td>
<td>Trinkwasserqualität-</td>
</tr>
<tr>
<td>Prozessqualität</td>
<td>Klimawandel, Starkniederschläge+, Schneeschmelze+, Landwirtschaft</td>
<td>Erosion+</td>
<td>Oberflächenwasserqualität-</td>
<td>Technik</td>
<td>Wasserwirtschaft</td>
<td>Rohwasserqualität-</td>
</tr>
<tr>
<td>Prozessqualität</td>
<td>Nährstoffgehalt+, Temperatur+, Klimawandel</td>
<td>Cyanobakterien im Rohwasser+</td>
<td>Rohwasserqualität-</td>
<td>Technik</td>
<td>Wasseraufbereitung</td>
<td>Trinkwasserqualität-</td>
</tr>
<tr>
<td>Prozessqualität</td>
<td>Nährstoffgehalt+, Temperatur+, Klimawandel</td>
<td>desinfektionsresistente parasitäre Zoonosen im Rohwasser+</td>
<td>Rohwasserqualität-</td>
<td>Technik</td>
<td>Wasseraufbereitung</td>
<td>Trinkwasserqualität-</td>
</tr>
<tr>
<td>Prozessqualität</td>
<td>demografischer Wandel, Bevölkerung+, Verbraucherhalten</td>
<td>Trinkwasserverbrauch+</td>
<td>Grundwasserentnahme+</td>
<td>Technik</td>
<td>Wasserwirtschaft</td>
<td>Grundwasserresserven-</td>
</tr>
<tr>
<td>Prozessqualität</td>
<td>Kanalzustand-, Fehlfunktion bei der Abwasserbeseitigung</td>
<td>Exfiltration (Eintrag von Abwasser in Wasserressource)+</td>
<td>Rohwasserqualität-</td>
<td>Technik</td>
<td>Wasserwirtschaft</td>
<td>Grundwasserqualität-</td>
</tr>
<tr>
<td>Nachhaltigkeitsziel</td>
<td>Kausalzusammenhang</td>
<td>Ursache</td>
<td>Auswirkung</td>
<td>Teilsystem</td>
<td>Prozess</td>
<td>Nachhaltigkeitsgefahr</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>------------</td>
<td>---------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Prozessqualität</td>
<td>Klimawandel, heißere Sommer, längere Trockenperioden, Niederschlag-, Trinkwasserstrom+</td>
<td>Grundwasserneubildung-</td>
<td>Grundwasserreserven-</td>
<td>Technik</td>
<td>Wasserwirtschaft</td>
<td>Grundwasserreserven-</td>
</tr>
<tr>
<td>Prozessqualität</td>
<td>demografischer Wandel, Bevölkerung+, Verbraucherverhalten</td>
<td>Grundwasserentnahme+</td>
<td>Salzgehalt Groundwasserresource+</td>
<td>Technik</td>
<td>Wasserwirtschaft</td>
<td>Grundwasserreserven-</td>
</tr>
<tr>
<td>Prozessqualität</td>
<td>GW-Anstieg, Pestizideinsatz LW+, Schneeschmelze etc.</td>
<td>PBSM-Konzentration im Rohwasser+</td>
<td>Rohwasserqualität-</td>
<td>Technik</td>
<td>Wasseraufbereitung</td>
<td>PBSM Konzentration Reinwasser+</td>
</tr>
<tr>
<td>Prozessqualität</td>
<td>Entnahme-, Bergbaufolge, dezentrale Regenwasserversickerung+, Infiltration+, Klimawandel, Bebauung in Überflutungsgebiet, Flussbau und daraus folgender GW Anstieg,</td>
<td>Remobilisierung von Altlasten aus dem Untergrund</td>
<td>Schadstoffe in Wasserresource+</td>
<td>Technik</td>
<td>Wasserwirtschaft</td>
<td>Schadstoffe in Wasserresource+</td>
</tr>
<tr>
<td>Prozessqualität</td>
<td>Intensivierung der Landwirtschaft, Monokulturen+, Biokraftstoffe+</td>
<td>Stoffeinträge aus Landwirtschaft+</td>
<td>Rohwasserqualität-</td>
<td>Technik</td>
<td>Wasserwirtschaft</td>
<td>Trinkwasserqualität-</td>
</tr>
<tr>
<td>Steuerbarkeit</td>
<td>Keine/ kaum Möglichkeit der Teilnahme an Fortbildungsveranstaltungen</td>
<td>Fortbildung-</td>
<td>Fehlentscheidungen+, Fehlende Kompetenz</td>
<td>Verwaltung</td>
<td>Personal- und Sozialwesen</td>
<td>Fehler bei organisatorischen/ kaufmännischen/ technischen Fragen+</td>
</tr>
<tr>
<td>Steuerbarkeit</td>
<td>Niederschlag-, Klimawandel, Verbrauch+</td>
<td>lokale Wasserressourcen-</td>
<td>Fernwasserbezug+</td>
<td>Technik</td>
<td>Wassergewinnung</td>
<td>Abhängigkeit+</td>
</tr>
<tr>
<td>Steuerbarkeit</td>
<td>Änderung möglicher Wettbewerbsbedingungen aufgrund aktueller politischer Debatten auf EU- oder nationaler Ebene (z.B. Folgen des TTIP)</td>
<td>öffentliche Privatisierungsdebatte+</td>
<td>langfristige Planungsbeides</td>
<td>beides</td>
<td>mehrere</td>
<td>Entscheidungsspielraum-</td>
</tr>
<tr>
<td>Nachhaltigkeitsziel</td>
<td>Kausalzusammenhang</td>
<td>Ursache</td>
<td>Auswirkung</td>
<td>Teilsystem</td>
<td>Prozess</td>
<td>Nachhaltigkeitsgefahr</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------------</td>
<td>---------</td>
<td>------------</td>
<td>-----------</td>
<td>---------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Abkommen), zunehmende Konkurrenz zw. Unternehmen/ Verdrängungswettbewerb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steuerbarkeit</td>
<td>neue Verwaltungseinheiten, Versuch der Kosteneinsparung durch Zentralisierung</td>
<td>Zusammenlegung von Kommunen/ kommunalen Einrichtungen</td>
<td>unklare Zuständigkeiten+</td>
<td>Verwaltung</td>
<td>Leitung, Zentrale Aufgaben, Organisation</td>
<td>administrativer Aufwand > vorhandene Kapazitäten, Abhängigkeiten</td>
</tr>
<tr>
<td>Wirtschaftlichkeit</td>
<td>Betriebswasserverluste in Gewinnung und Aufbereitung durch Alterung der technischen Anlagen+, Nicht in Rechnung gestellte Wassermengen an autorisierte Verbraucher+, Gemessene Trinkwasserverluste (scheinbare und reale) im Rohrnetz+</td>
<td>Wasserverluste+</td>
<td>spezifische Kosten Trinkwasser+</td>
<td>Verwaltung</td>
<td>Kaufmännische Aufgaben</td>
<td>spezifische Kosten Trinkwasser+</td>
</tr>
<tr>
<td>Wirtschaftlichkeit</td>
<td>Anlagenalter+</td>
<td>Energieverbrauch+</td>
<td>spezifische Kosten Trinkwasser+</td>
<td>Technik</td>
<td>Wassergewinnung</td>
<td>spezifische Kosten Trinkwasser+</td>
</tr>
<tr>
<td>Wirtschaftlichkeit</td>
<td>Anlagenalter+</td>
<td>Energieverbrauch+</td>
<td>spezifische Kosten Trinkwasser+</td>
<td>Technik</td>
<td>Wasserverteilung</td>
<td>spezifische Kosten Trinkwasser+</td>
</tr>
<tr>
<td>Wirtschaftlichkeit</td>
<td>Unkenntnis über technische Zusammenhänge rund um die Rohwasserpumpen</td>
<td>Unkenntnis über Stromverbrauch</td>
<td>ineffizienter Betriebspunkt Pumpe/ Rohr</td>
<td>Technik</td>
<td>Wassergewinnung</td>
<td>Energiekosten+</td>
</tr>
<tr>
<td>Wirtschaftlichkeit</td>
<td>demografischer Wandel, Bevölkerung- , Verbraucherverhalten</td>
<td>Trinkwasserverbrauch-</td>
<td>ineffizienter Betriebspunkt Pumpe/ Rohr</td>
<td>Technik</td>
<td>Wasserverteilung</td>
<td>Energiekosten+</td>
</tr>
</tbody>
</table>

186
<table>
<thead>
<tr>
<th>Nachhaltigkeitsziel</th>
<th>Kausalzusammenhang</th>
<th>Ursache</th>
<th>Auswirkung</th>
<th>Teilsystem</th>
<th>Prozess</th>
<th>Nachhaltigkeitsgefahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wirtschaftlichkeit</td>
<td>Mögliche Änderung: Verschärfung von Grenzwerten</td>
<td>Änderung der Rechtslage</td>
<td>Investitionsbedarf+</td>
<td>Technik</td>
<td>Wasseraufbereitung</td>
<td>Kosten+</td>
</tr>
</tbody>
</table>
Zielkategorie: Mitarbeitende

<table>
<thead>
<tr>
<th>Nachhaltigkeitsziel</th>
<th>Kausalzusammenhang</th>
<th>Ursache</th>
<th>Auswirkung</th>
<th>Teilsystem</th>
<th>Prozess</th>
<th>Nachhaltigkeitsgefahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kompetenzpotential</td>
<td>demografischer Wandel</td>
<td>Veränderung Bevölkerungsstruktur</td>
<td>Qualitätsniveau (Ausbildung, Erfahrung, Fähigkeiten) Bewerber-</td>
<td>Verwaltung</td>
<td>Personal- und Sozialwesen</td>
<td>Fachkompetenz-</td>
</tr>
<tr>
<td>Kompetenzpotential</td>
<td>demografischer Wandel</td>
<td>Veränderung Bevölkerungsstruktur</td>
<td>Qualitätsniveau (Ausbildung, Erfahrung, Fähigkeiten) Bewerber-</td>
<td>Verwaltung</td>
<td>Personal- und Sozialwesen</td>
<td>Fachkompetenz-</td>
</tr>
<tr>
<td>Kompetenzpotential</td>
<td>Bevölkerung-, Demografischer Wandel, Wegzug aus unattraktiven Gebieten, weniger Kinder, geeignete Bewerber-</td>
<td>Mitarbeiterzahl-</td>
<td>Mitarbeiterzahl bei ähnlicher Auftragslage-</td>
<td>Verwaltung</td>
<td>Personal- und Sozialwesen</td>
<td>Überlastung der verbliebenen Mitarbeiter</td>
</tr>
<tr>
<td>Kompetenzpotential</td>
<td>Keine/ kaum Möglichkeit der Teilnahme an Fortbildungsveranstaltungen</td>
<td>Fortbildung-</td>
<td>Mitarbeiterzufriedenheit-</td>
<td>Verwaltung</td>
<td>Leitung, Zentrale Aufgaben, Organisation</td>
<td>Mitarbeiterfluktuation+</td>
</tr>
<tr>
<td>Kompetenzpotential</td>
<td>mangelhafte Arbeitssicherheit/Gesundheitsschutz, Terminstress, zu wenige Mitarbeiter</td>
<td>unzureichende Arbeitsicherheit</td>
<td>Mitarbeiterzufriedenheit-</td>
<td>Verwaltung</td>
<td>Personal- und Sozialwesen</td>
<td>Mitarbeiterfluktuation+</td>
</tr>
<tr>
<td>Kompetenzpotential</td>
<td>Mitarbeiterfluktuation+</td>
<td>fehlendes Wissensmanagement</td>
<td>Know-How- & Verbindung in Netzwerke-</td>
<td>Verwaltung</td>
<td>Personal- und Sozialwesen</td>
<td>Fachkompetenz-</td>
</tr>
<tr>
<td>Kompetenzpotential</td>
<td>Änderung möglicher Wettbewerbsbedingungen aufgrund aktueller politischer Debatten auf EU- oder nationaler Ebene (z.B. Folgen des TTIP-Abkomme), zunehmende Konkurrenz zw. Unternehmen/Verdrängungswettbewerb</td>
<td>öffentliche Privatisierungsdebatte+</td>
<td>Arbeitsplatzsicherheit-Verwaltung</td>
<td>Leitung, Zentrale Aufgaben, Organisation</td>
<td>Mitarbeiterzufriedenheit-, Verlust Loyalität & Motivation, Fachkompetenz-</td>
<td>Fachkompetenz-</td>
</tr>
<tr>
<td>Kompetenzpotential</td>
<td>Reaktion auf Preisaufsicht, Abbau von Stellen, restriktivere Gehaltsstruktur</td>
<td>Rekommunalisierung</td>
<td>Vergütungsverwaltung</td>
<td>Personal- und Sozialwesen</td>
<td>Fachkompetenz-</td>
<td>Fachkompetenz-</td>
</tr>
<tr>
<td>Kompetenzpotential</td>
<td>neue Verwaltungseinheiten, Versuch der Kosteneinsparung durch Zentralisierung</td>
<td>Zusammenlegung von Kommunen/kommunalen Einrichtungen</td>
<td>Stellenabbau/-umbesetzung+</td>
<td>Verwaltung</td>
<td>Leitung, Zentrale Aufgaben, Organisation</td>
<td>Fachkompetenz-</td>
</tr>
<tr>
<td>Unternehmenskultur</td>
<td>demografischer Wandel</td>
<td>Veränderung Bevölkerungsstruktur</td>
<td>Veränderungen der Wünsche und Erwartungen der Mitarbeiter an ein Unternehmen</td>
<td>Verwaltung</td>
<td>Personal- und Sozialwesen</td>
<td>Konfliktpotential+, Mitarbeiterzufriedenheit-</td>
</tr>
<tr>
<td>Unternehmenskultur</td>
<td>demografischer Wandel</td>
<td>Veränderung Bevölkerungsstruktur</td>
<td>Qualitätsniveau (Ausbildung, Erfahrung, Fähigkeiten) Bewerber-Verwaltung</td>
<td>Personal- und Sozialwesen</td>
<td>Konfliktpotential+, Schaden Unternehmenskultur+</td>
<td>Konfliktpotential+, Schaden Unternehmenskultur+</td>
</tr>
<tr>
<td>Unternehmenskultur</td>
<td>Rechtsform des Unternehmens</td>
<td>Einflussnahme des Kommunal-/ Rates</td>
<td>Richtungsunsicherheit der Führungs ebene & Mitarbeitende Verwaltung</td>
<td>Leitung, Zentrale Aufgaben, Organisation</td>
<td>stark eingeschränkte Entscheidungskompetenzen im Unternehmen, Verlust Loyalität</td>
<td>stark eingeschränkte Entscheidungskompetenzen im Unternehmen, Verlust Loyalität</td>
</tr>
<tr>
<td>Unternehmenskultur</td>
<td>Änderung möglicher Wettbewerbsbedingungen aufgrund aktueller politischer Debatten auf EU- oder nationaler Ebene</td>
<td>öffentliche Privatisierungsdebatte+</td>
<td>Arbeitsplatzsicherheit-Verwaltung</td>
<td>Personal- und Sozialwesen</td>
<td>Mitarbeiterzufriedenheit-, Verlust Loyalität & Motivation, Fachkompetenz-</td>
<td>Fachkompetenz-</td>
</tr>
<tr>
<td>Nachhaltigkeitsziel</td>
<td>Kausalzusammenhang</td>
<td>Ursache</td>
<td>Auswirkung</td>
<td>Teilsystem</td>
<td>Prozess</td>
<td>Nachhaltigkeitsgefahr</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------</td>
<td>---------</td>
<td>------------</td>
<td>------------</td>
<td>--------</td>
<td>----------------------</td>
</tr>
<tr>
<td></td>
<td>(z.B. Folgen des TTIP-Abkommen), zunehmende Konkurrenz zw. Unternehmen/Verdrängungswettbewerb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unternehmenskultur</td>
<td>Gründe für Zunahme Outsourcing: neoliberales Wirtschaftsverständnis, Kostenreduktion, Rechtsformänderung</td>
<td>Outsourcing+</td>
<td>Arbeitsplatzsicherheit-</td>
<td>Verwaltung</td>
<td>Personal- und Sozialwesen</td>
<td>Mitarbeiterzufriedenheit-, Verlust Loyalität & Motivation,</td>
</tr>
<tr>
<td>Unternehmenskultur</td>
<td>Reaktion auf Preisaufsicht, restriktive Finanzierungs- und Anlägermöglichkeiten</td>
<td>Rekommunalisierung</td>
<td>Arbeitsplatzsicherheit-</td>
<td>Verwaltung</td>
<td>Personal- und Sozialwesen</td>
<td>Mitarbeiterzufriedenheit-, Verlust Loyalität & Motivation, Mitarbeiterfluktuation+</td>
</tr>
<tr>
<td>Unternehmenskultur</td>
<td>neue Verwaltungseinheiten, Versuch der Kosteneinsparung durch Zentralisierung</td>
<td>Zusammenlegung von Kommunen/ kommunalen Einrichtungen</td>
<td>Arbeitsplatzsicherheit-</td>
<td>Verwaltung</td>
<td>Leitung, Zentrale Aufgaben, Organisation</td>
<td>Verlust Loyalität & Motivation</td>
</tr>
<tr>
<td>Unternehmenskultur</td>
<td>mangelhafte Arbeitssicherheit/Gesundheitsschutz, Terminstress, zu wenige Mitarbeiter</td>
<td>unzureichende Arbeits sicherheit</td>
<td>Arbeitsunfälle+</td>
<td>Verwaltung</td>
<td>Personal- und Sozialwesen</td>
<td>Überlastung der verbliebenen Mitarbeiter</td>
</tr>
<tr>
<td>Unternehmenskultur</td>
<td>Änderung der Rechtslage</td>
<td>unzureichende strategische Planung bzgl. sich ändernder Rechtslage</td>
<td>zu späte Reaktion auf sich ändernde Rechtslage</td>
<td>Verwaltung</td>
<td>Leitung, Zentrale Aufgaben, Organisation</td>
<td>Akzeptanzverlust wegen Rechtsbruch</td>
</tr>
</tbody>
</table>
Zielkategorie: Gesellschaftliche Verantwortung

<table>
<thead>
<tr>
<th>Nachhaltigkeitsziel</th>
<th>Kausalzusammenhang</th>
<th>Ursache</th>
<th>Auswirkung</th>
<th>Teilsystem</th>
<th>Prozess</th>
<th>Nachhaltigkeitsgefahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akzeptanz</td>
<td>Summe der gemessenen Trinkwasserverlust (scheinbar und real)+, Nicht in Rechnung gestellte Wassermengen+</td>
<td>Verluste an Trinkwasser im Rohrnetz+</td>
<td>Kosten pro geliefertem m³ Trinkwasser+</td>
<td>Verwaltung</td>
<td>Kaufmännische Aufgaben</td>
<td>Akzeptanz der KundInnen-, Unternehmensimage-</td>
</tr>
<tr>
<td>Akzeptanz</td>
<td>fehlendes Konfliktmanagement</td>
<td>fehlende Kommunikation mit Stakeholdern</td>
<td>Konflikte mit Stakeholdern+</td>
<td>Verwaltung</td>
<td>Kundenservice und Öffentlichkeitsarbeit</td>
<td>Vertrauensverlust, Kooperationsbereitschaft-, Unternehmensimage-</td>
</tr>
<tr>
<td>Akzeptanz</td>
<td>neue Verwaltungseinheiten, Versuch der Kostenreinsparung durch Zentralisierung</td>
<td>Zusammenlegung von Kommunen/ kommunalen Einrichtungen</td>
<td>negative Einstellung der BürgerInnen gegenüber dem Unternehmen, Kooperationsbereitschaft-, negatives Unternehmensimage</td>
<td>Verwaltung</td>
<td>Leitung, Zentrale Aufgaben, Organisation</td>
<td>Akzeptanzverlust in der Öffentlichkeit</td>
</tr>
<tr>
<td>Akzeptanz</td>
<td>Änderung der Rechtslage, Neue Qualitätsanforderungen</td>
<td>unzureichende strategische Planung bzgl. sich ändernder Rechtslage</td>
<td>neue Qualitätsstandards werden nicht eingehalten</td>
<td>Verwaltung</td>
<td>Leitung, Zentrale Aufgaben, Organisation</td>
<td>Akzeptanzverlust wegen Rechtsbruch</td>
</tr>
<tr>
<td>Erschwinglichkeit</td>
<td>demografischer Wandel, Bevölkerung-, Verbraucherverhalten</td>
<td>Trinkwasserbedarf</td>
<td>Auslastung der Wasserverteilungsanlage+</td>
<td>Verwaltung</td>
<td>Kaufmännische Aufgaben</td>
<td>Trinkwasserentgelt+</td>
</tr>
<tr>
<td>Nachhaltigkeitsziel</td>
<td>Kausalzusammenhang</td>
<td>Ursache</td>
<td>Auswirkung</td>
<td>Teilsystem</td>
<td>Prozess</td>
<td>Nachhaltigkeitsgefahr</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>--------------------------------------</td>
<td>--------------------------------------</td>
<td>--------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Erschwinglichkeit</td>
<td>Gemessene Trinkwasserterverluste (scheinbare und reale) im Rohrnetz+</td>
<td>Trinkwasserterverbrauch+</td>
<td>spezifische Kosten Trinkwasser+</td>
<td>Verwaltung</td>
<td>Kaufmännische Aufgaben</td>
<td>Trinkwasserentgelt+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wasserverluste+</td>
<td>spezifische Kosten Trinkwasser+</td>
<td>Verwaltung</td>
<td>Kaufmännische Aufgaben</td>
<td>Trinkwasserentgelt+</td>
</tr>
<tr>
<td></td>
<td>Betriebswasserverluste in Gewinnung und Aufbereitung durch Alterung der technischen Anlagen+</td>
<td>Energieverbrauch+</td>
<td>spezifische Kosten Trinkwasser+</td>
<td>Technik</td>
<td>Wassergewinnung</td>
<td>Trinkwasserentgelt+</td>
</tr>
<tr>
<td></td>
<td>Anlagenalter+</td>
<td>Energieverbrauch+</td>
<td>spezifische Kosten Trinkwasser+</td>
<td>Technik</td>
<td>Wasseraufbereitung</td>
<td>Trinkwasserentgelt+</td>
</tr>
<tr>
<td></td>
<td>Intensivierung der Landwirtschaft, Monokulturen+, Biokraftstoffe+</td>
<td>Stoffeinträge aus Landwirtschaft+</td>
<td>Rohwasserqualität-</td>
<td>Technik</td>
<td>Wasserwirtschaft</td>
<td>Trinkwasserentgelt+</td>
</tr>
<tr>
<td></td>
<td>Mögliche Erhöhung des Energie- oder Betriebsmittelverbrauchs z.B. durch Intensivierung der Reinigungsleistung</td>
<td>Energie-/Rohstoffverbrauch+</td>
<td>Betriebskosten+</td>
<td>Verwaltung</td>
<td>Kaufmännische Aufgaben</td>
<td>Trinkwasserentgelt+</td>
</tr>
<tr>
<td>Nachhaltigkeitsziel</td>
<td>Kausalzusammenhang</td>
<td>Ursache</td>
<td>Auswirkung</td>
<td>Teilsystem</td>
<td>Prozess</td>
<td>Nachhaltigkeitsgefahr</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
<td>---------</td>
<td>------------</td>
<td>------------</td>
<td>---------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Kostengerechtigkeit</td>
<td>Aufgabe von regionalen Wassergewinnungsanlagen</td>
<td>Fernwasserbezug+</td>
<td>Verlagerung von nicht kompensierten Ressourcen- schutzkosten nach außen</td>
<td>Verwaltung</td>
<td>Kaufmännische Aufgaben</td>
<td>Anteil der Kosten der Nicht-Fernwassernutzer+</td>
</tr>
<tr>
<td>Leistungsqualität gegenüber den Kunden</td>
<td>Lufttemperatur+, Bodentemperatur</td>
<td>Trinkwassertemperatur+</td>
<td>Rohrleitungsdurchmesser (Korrosion)-</td>
<td>Technik</td>
<td>Wasserverteilung</td>
<td>Versorgungsdruck-</td>
</tr>
<tr>
<td>Leistungsqualität gegenüber den Kunden</td>
<td>Niederschlag-, Klimawandel, Verbrauch+</td>
<td>Grundwasserneubildung-</td>
<td>Grundwasserreserven-</td>
<td>Technik</td>
<td>Wasserwirtschaft</td>
<td>Trinkwassermenge-</td>
</tr>
<tr>
<td>Leistungsqualität gegenüber den Kunden</td>
<td>Bevölkerung-, Verbraucherverhalten, Eigenwasserbedarf-, Wasserverluste bei Wasserversorgung</td>
<td>Trinkwasserverbrauch-</td>
<td>Wiederverkeimung im Wassernetz+</td>
<td>Technik</td>
<td>Wasserverteilung</td>
<td>Trinkwasserqualität-</td>
</tr>
<tr>
<td>Leistungsqualität gegenüber den Kunden</td>
<td>Klimawandel, Lufttemperatur+</td>
<td>Schwankungen Trinkwasser- verbrauch+</td>
<td>Durchfluss- und Druckschwankungen im Netz+</td>
<td>Technik</td>
<td>Wasserverteilung</td>
<td>Lebensdauer Leitungsnetz-</td>
</tr>
<tr>
<td>Leistungsqualität gegenüber den Kunden</td>
<td>demografischer Wandel, Bevölkerung+, Verbraucherverhalten</td>
<td>Trinkwasserverbrauch+</td>
<td>Rohwasserentnahme+</td>
<td>Technik</td>
<td>Wasserwirtschaft</td>
<td>Auslastung Wasserentnahmevermögen+</td>
</tr>
<tr>
<td>Nachhaltigkeitsziel</td>
<td>Kausalzusammenhang</td>
<td>Ursache</td>
<td>Auswirkung</td>
<td>Teilsystem</td>
<td>Prozess</td>
<td>Nachhaltigkeitsgefahren</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
<td>------------------</td>
<td>----------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Leistungsqualität</td>
<td>demografischer Wandel, Bevölkerung+, Verbraucherverhalten</td>
<td>Trinkwasserverbrauch+</td>
<td>Grundwasserreserven-</td>
<td>Technik</td>
<td>Wasserwirtschaft</td>
<td>Trinkwassermenge-</td>
</tr>
<tr>
<td>gegenüber den Kunden</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leistungsqualität</td>
<td>demografischer Wandel, Bevölkerung+, Verbraucherverhalten</td>
<td>Trinkwasserverbrauch+</td>
<td>Auslastung Wasseraufbereitungsanlage+</td>
<td>Technik</td>
<td>Wasseraufbereitung</td>
<td>Trinkwasserqualität-</td>
</tr>
<tr>
<td>gegenüber den Kunden</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leistungsqualität</td>
<td>demografischer Wandel, Bevölkerung+, Verbraucherverhalten</td>
<td>Trinkwasserverbrauch+</td>
<td>Auslastung Wasserverteilungsanlage+</td>
<td>Technik</td>
<td>Wasserverteiung</td>
<td>Versorgungsdruck-, Trinkwassermenge-</td>
</tr>
<tr>
<td>gegenüber den Kunden</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leistungsqualität</td>
<td>Niederschlag-, Klimawandel</td>
<td>Oberflächenwasserneubildungsrate (Seen, Talsperren)-</td>
<td>nutzbares Oberflächenwasservolumen-</td>
<td>Technik</td>
<td>Wasserwirtschaft</td>
<td>Trinkwassermenge-</td>
</tr>
<tr>
<td>gegenüber den Kunden</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leistungsqualität</td>
<td>Erlaubte Stoffeintriegung durch Umweltrecht (z.B. Klärschlammmverordnung)+</td>
<td>Schad-/ Stoffeintrag in Wasserressource+</td>
<td>Rohwasserqualität-</td>
<td>Technik</td>
<td>Wasserwirtschaft</td>
<td>Trinkwasserqualität-</td>
</tr>
<tr>
<td>gegenüber den Kunden</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leistungsqualität</td>
<td>Stoffeintrührung durch Landwirtschaft+</td>
<td>Schad-/ Stoffeintrag in Wasserressource+</td>
<td>Rohwasserqualität-</td>
<td>Technik</td>
<td>Wasserwirtschaft</td>
<td>Trinkwasserqualität-</td>
</tr>
<tr>
<td>gegenüber den Kunden</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leistungsqualität</td>
<td>Niederschlag+, Klimawandel</td>
<td>Hochwasserereignisse+</td>
<td>Sediment- und Stoffkonzentration Wasserdargebot+</td>
<td>Technik</td>
<td>Wasserwirtschaft</td>
<td>Trinkwassermenge-</td>
</tr>
<tr>
<td>gegenüber den Kunden</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nachhaltigkeitsziel</td>
<td>Kausalzusammenhang</td>
<td>Ursache</td>
<td>Auswirkung</td>
<td>Teilsystem</td>
<td>Prozess</td>
<td>Nachhaltigkeitsgefahr</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------</td>
<td>---------</td>
<td>------------</td>
<td>------------</td>
<td>--------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Leistungsqualität gegenüber den Kunden</td>
<td>Niederschlag-, Klimawandel</td>
<td>Niedrigwasserereignisse+</td>
<td>Stoffkonzentration Wasser-</td>
<td>Technik</td>
<td>Wasserwirtschaft</td>
<td>Trinkwassermenge-</td>
</tr>
<tr>
<td>Leistungsqualität gegenüber den Kunden</td>
<td>Versorgung mit unterschiedlichen Trinkwässern, lokale Wasserknappheit, extern bezogenes Trinkwasser+</td>
<td>Fernwasserbezug+</td>
<td>Stoffkonzentration im Trinkwasser+</td>
<td>Technik</td>
<td>Wasserverteilung</td>
<td>Trinkwasserqualität-</td>
</tr>
<tr>
<td>Leistungsqualität gegenüber den Kunden</td>
<td>Mitarbeiter-</td>
<td>Wartungsintervall-</td>
<td>Rohrleitungsdurchmesser (Korrosion)-</td>
<td>Technik</td>
<td>Wasserverteilung</td>
<td>Versorgungsdruck-</td>
</tr>
<tr>
<td>Leistungsqualität gegenüber den Kunden</td>
<td>Mögliche Änderung: Verschärfung von Grenzwerten</td>
<td>Änderung der Rechtslage</td>
<td>neue Grenzwerte können mit aktueller Technik nicht mehr eingehalten werden</td>
<td>Technik</td>
<td>Wasseraufbereitung</td>
<td>neue Grenzwerte können mit aktueller Technik nicht mehr eingehalten werden</td>
</tr>
<tr>
<td>Leistungsqualität gegenüber den Kunden</td>
<td>Intensivierung der Landwirtschaft, Monokulturen+, Biokraftstoffe+</td>
<td>Stoffeinträge aus Landwirtschaft+</td>
<td>Rohwasserqualität-</td>
<td>Technik</td>
<td>Wasserwirtschaft</td>
<td>Trinkwasserqualität-</td>
</tr>
<tr>
<td>Regionale Einbettung</td>
<td>Niederschlag-, Klimawandel, Verbrauch+</td>
<td>Oberflächenwasserneubildungsraten (Seen, Talsperren)-</td>
<td>nutzbare Oberflächenwasservolumen-</td>
<td>Technik</td>
<td>Wasserwirtschaft</td>
<td>Fernwasserbezug+</td>
</tr>
<tr>
<td>Nachhaltigkeitsziel</td>
<td>Kausalzusammenhang</td>
<td>Ursache</td>
<td>Auswirkung</td>
<td>Teilsystem</td>
<td>Prozess</td>
<td>Nachhaltigkeitsgefahr</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------</td>
<td>---------</td>
<td>------------</td>
<td>------------</td>
<td>---------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Regionale Einbettung</td>
<td>Versorgung mit unterschiedlichen Trinkwassern, lokale Wasserknappheit, extern bezogenes Trinkwasser+</td>
<td>Fernwasserbezug+</td>
<td>Regionale Wassernutzung-</td>
<td>Technik</td>
<td>Wasserverteilung</td>
<td>regionale Wertschöpfung-</td>
</tr>
</tbody>
</table>
Zielkategorie: Entwicklungsfähigkeit

<table>
<thead>
<tr>
<th>Nachhaltigkeitsziel</th>
<th>Kausalzusammenhang</th>
<th>Ursache</th>
<th>Auswirkung</th>
<th>Teilsystem</th>
<th>Prozess</th>
<th>Nachhaltigkeitsgefahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Innovations- und Anpassungsfähigkeit</td>
<td>fehlendes Diversity Management</td>
<td>nicht Ausschöpfen von Mitarbeiterpotentialen</td>
<td>Mitarbeitermotivation</td>
<td>Verwaltung</td>
<td>Personal- und Sozialwesen</td>
<td>Innovationen-</td>
</tr>
<tr>
<td>Innovations- und Anpassungsfähigkeit</td>
<td>Es wird versucht Kosten zu sparen indem Regelkommunikation & Maßnahmen des Wissensmanagement reduziert werden d.h. Besprechungen, Jours fixes, Übergangsphasen bei Mitarbeiterwechsel etc. finden nicht mehr statt</td>
<td>Kapital-</td>
<td>Absprache/ Transparenz zwischen Unternehmensbereichen-</td>
<td>Verwaltung</td>
<td>Leitung, Zentrale Aufgaben, Organisation</td>
<td>ineffektives Arbeiten</td>
</tr>
<tr>
<td>Innovations- und Anpassungsfähigkeit</td>
<td>Reaktion auf Preisauflösung, restriktivere Finanzierungs- und Anlagemöglichkeiten</td>
<td>Rekommunalisierung</td>
<td>Handlungspielraum-</td>
<td>beides</td>
<td>mehrere</td>
<td>Entwicklungspotenzial-</td>
</tr>
<tr>
<td>Refinanzierbarkeit</td>
<td>demografischer Wandel, Bevölkerung-, Verbraucherverhalten</td>
<td>Trinkwasser-</td>
<td>verfügbares Kapital-</td>
<td>Verwaltung</td>
<td>Kaufmännische Aufgaben</td>
<td>Kostendeckungsgrad < 1, Substanzerhalt-</td>
</tr>
<tr>
<td>Nachhaltigkeitsziel</td>
<td>Kausalzusammenhang</td>
<td>Ursache</td>
<td>Auswirkung</td>
<td>Teilsystem</td>
<td>Prozess</td>
<td>Nachhaltigkeitsgefahr</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------</td>
<td>---------</td>
<td>------------</td>
<td>------------</td>
<td>---------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Refinanzierbarkeit</td>
<td>fehlende integrierte Planung</td>
<td>fehlende Kommunikation mit anderen Infrastrukturanbietern</td>
<td>Kosteneinsparungen-</td>
<td>beides</td>
<td>mehrere</td>
<td>mögliche Kosteneinsparung ungenutzt</td>
</tr>
<tr>
<td>Refinanzierbarkeit</td>
<td>Reaktion auf Preisaufsicht, restriktivere Finanzierungs- und Anlagemöglichkeiten</td>
<td>Rekommunalisierung</td>
<td>Rücklagen-</td>
<td>Verwaltung</td>
<td>Kaufmännische Aufgaben</td>
<td>fehlende Möglichkeit zum Aufbau von Eigenkapital</td>
</tr>
<tr>
<td>Robustheit</td>
<td>Niederschlag-, Klimawandel</td>
<td>Grundwasserneubildung-</td>
<td>Verlust Gewinnungsmöglichkeiten+</td>
<td>Technik</td>
<td>Wasserwirtschaft</td>
<td>unabhängige Gewinnungsmöglichkeiten-</td>
</tr>
<tr>
<td>Robustheit</td>
<td>demografischer Wandel, Bevölkerung+, Verbraucherhalten</td>
<td>Trinkwasserverbrauch+</td>
<td>Rohwasserentnahme+</td>
<td>Technik</td>
<td>Wasserwirtschaft</td>
<td>Auslastung Wasserenhnahmerekte+</td>
</tr>
<tr>
<td>Robustheit</td>
<td>demografischer Wandel, Bevölkerung+, Verbraucherhalten</td>
<td>Trinkwasserverbrauch+</td>
<td>Auslastung Wasseraufbereitungsanlage+</td>
<td>Technik</td>
<td>Wasseraufbereitung</td>
<td>Pufferkapazität der Wasseraufbereitungsanlage-</td>
</tr>
<tr>
<td>Robustheit</td>
<td>Niederschlag-, Klimawandel (Seen, Talsperren)-</td>
<td>Oberflächenwasserneubildungsrate</td>
<td>nutzbares Oberflächenwasservolumen-</td>
<td>Technik</td>
<td>Wasserwirtschaft</td>
<td>Trinkwassermenge-</td>
</tr>
</tbody>
</table>
Fragebogen zu Managementsystemen

Sehr geehrte Damen und Herren,

Auf dem 1. NaCoSi Workshop vereinbarten die Konzeptgruppe und die Praxispartner der Kerngruppe, einen Fragebogen zu erstellen, der die bestehenden Managementsysteme in Ihrem Unternehmen im Bereich der Trinkwasserversorgung/Abwasserentsorgung abfragt. Bei der Bearbeitung des Nachhaltigkeitsrisiko-Controllings soll soweit wie möglich auf bestehenden und Ihnen vertrauten Ansätzen aufgebaut werden, insbesondere auf solchen, die Sie schon gegenwärtig als hilfreich empfinden.

Die Informationen, die Sie uns durch diesen Fragebogen zur Verfügung stellen, dienen uns als erste Orientierung. Die im Folgenden von Ihnen ermittelte Bewertung der Bedeutung der Systeme ist nicht zur Veröffentlichung bestimmt. Grundsätzlich gilt, dass vor einer Veröffentlichung der Projektkoordinator, Dr. Sonneng, eine schriftliche Anfrage an Sie stellt, bevor Informationen nach außen kommuniziert werden. Auf jeden Fall werden Informationen, die wir nach außen kommunizieren möchten, anonymisiert und aggregiert.

Hier eine Erklärung und Anleitung zum Ausfüllen des Fragebogens:

Anbei finden Sie im ersten Teil die Managementsysteme aufgelistet, die von der Konzeptgruppe bisher als relevant betrachtet wurden. Kreuzen Sie bitte die bei Ihnen angewandten Systeme an und/oder ergänzen Sie die Liste, falls Ihnen diese unvollständig erscheint. Bezüglich der von Ihnen genutzten Systeme wäre es außerdem hilfreich, wenn Sie deren tatsächliche Bedeutung einschätzen könnten; sowohl im Hinblick auf die externe Strategiefindung als auch zur Außendarstellung Ihres Unternehmens.

Angestrebt hieran ist die Frage, welche Hilfsmittel/Werkzeuge Sie zur Durchführung des Managementsystems einsetzen, wie beispielsweise Leitfäden, Kennzahlensystem, spezielle Software etc. Bitte tragen Sie Ihre Anmerkungen in das dafür vorgesehene Feld ein.

Wenn das System auf einer Norm basiert (ISO, DWA, DGUV, IWA, ÖKOPROFIT o.a.) nennen Sie bitte die jeweilige Norm. Sie finden auch eine Nachfrage zu der verantwortlichen Person, die das Managementsystem in Ihrem Unternehmen durchführt. Diese Angabe wird ggf. von uns für Nachfragen genutzt.

Im zweiten Teil finden Sie eine Liste von Instrumenten, die unterstützend zu Managementsystemen eingesetzt werden können. Auch hier möchten wir Sie bitten anzukreuzen, welche In-
Sie in Ihrem Unternehmen nutzen. Wenn Sie andere Methoden als die hier aufgeführten nutzen, bspw. weil Sie eigene, unternehmensinterne Instrumente entwickelt haben, ergänzen Sie diese doch bitte unter „Andere“.

Bitte senden Sie den Fragebogen bis zum xx.03.2014 an den Projektkoordinator A. Sonnenburg (A.Sonnenburg@iwar.tu-darmstadt.de).

Für Fragen und Rückmeldungen können Sie sich jederzeit gerne an den Projektkoordinator wenden.

Herzlichen Dank für Ihre Teilnahme!
Managementsysteme

Werden folgende Managementsysteme in Ihrem Unternehmen eingesetzt? Wenn ja, wie beurteilen Sie deren reale Bedeutung und wie ist das System ausgestaltet? Wer ist eventuell Ansprechpartner bei Nachfragen?

☐ Technisches Sicherheitsmanagement

<table>
<thead>
<tr>
<th>Reale Bedeutung</th>
<th>keine</th>
<th>eher keine</th>
<th>eher hoch</th>
<th>hoch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interne Strategiefindung</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Außendarstellung</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Welche unterstützenden Hilfsmittel/Werkzeuge setzen Sie ein (Leitfaden, Kennzahlensystem, spezielle Software, weitere?)

Basierend das Managementsystem auf einer Norm (ISO, DWA, DVGW, IWA, o.a.)?
☐ Nein ☐ Ja, und zwar auf: ☐ Sonstiges, und zwar:

Wenn ja, ist es zertifiziert?
☐ Ja ☐ Nein ☐ in Planung

Wer kann bei Nachfragen zu diesem Managementsystem – außer Ihnen – kontaktiert werden?
<table>
<thead>
<tr>
<th>Arbeitsschutzmanagementsystem</th>
<th>Reale Bedeutung</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Interne Strategiefindung</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Außendarstellung</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Welche unterstützenden Hilfsmittel/Werkzeuge setzen Sie ein (Leitfaden, Kennzahlensystem, spezielle Software, weitere?)

Basiert das Managementsystem auf einer Norm (ISO, DWA, DVGW, IWA, o.a.)? Wann ja, ist es zertifiziert?

☐ Nein | ☐ Ja, und zwar auf: | ☐ Sonstiges, und zwar: |

Wenn ja, ist es zertifiziert?

☐ Ja | ☐ Nein | ☐ in Planung |

Wer kann bei Nachfragen zu diesem Managementsystem – außer Ihnen – kontaktiert werden?
Risikomanagementsystem

<table>
<thead>
<tr>
<th>Keine Bedeutung</th>
<th>keine</th>
<th>eher keine</th>
<th>eher hoch</th>
<th>hoch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internes Strategietragend</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Außendarstellung</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Welche unterstützenden Werkzeuge setzen Sie ein (Leitfaden, Kennzahlen, spezielle Software, etc.)?

Basiert das Managementsystem auf einer Norm (ISO, DWA, DvGW, IWA, o.a.)? Wenn ja, ist es zertifiziert?

- ☐ Nein
- ☐ Ja, und zwar auf:
- ☐ Sonstiges, und zwar:

Wenn ja, ist es zertifiziert?

- ☐ Ja
- ☐ Nein
- ☐ in Planung

Wer kann bei Nachfragen zu diesem Managementsystem – außer Ihnen – kontaktiert werden?
Qualitätsmanagementsystem

<table>
<thead>
<tr>
<th>Realbedeutung</th>
<th>keine</th>
<th>eher keine</th>
<th>eher hoch</th>
<th>hoch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intensive Strategiefindung</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
<td>☐</td>
</tr>
<tr>
<td>Außendarstellung</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
<td>☐</td>
</tr>
</tbody>
</table>

Welche unterstützenden Hilfsmittel/Workzüge setzen Sie ein (Leitfaden, Kennzahlensystem, spezielle Software, weitere)?

Basieren Sie das Managementsystem auf einer Norm (ISO, DWA, DvGW, IWA, o.a.)? Wenn ja, ist es zertifiziert?

☐ Nein ☐ Ja, und zwar auf: ☐ Sonstiges, und zwar:

Wenn ja, ist es zertifiziert?

☐ Ja ☐ Nein ☐ in Planung

Wer kann bei Nachfragen zu diesem Managementsystem – außer Ihnen – kontaktiert werden?
Umweltmanagementsystem

<table>
<thead>
<tr>
<th>Rolle</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>keine</td>
</tr>
<tr>
<td>Inteme Strategiefindung</td>
<td>□</td>
</tr>
<tr>
<td>Außendarstellung</td>
<td>□</td>
</tr>
</tbody>
</table>

Welche unterstützenden Hilfsmittel/Werkzeuge setzen Sie ein (Leitfaden, Kennzahlsystem, spezielle Software, weitere?)

Basiert Sie das Managementsystem auf einer Norm (ISO, DWA, DVGW, IWA, o. a.)? Wann ja, ist es zertifiziert?

- [] Nein
- [] Ja, und zwar auf: □ Sonstiges, und zwar:

Wenn ja, ist es zertifiziert?

- [] Ja
- [] Nein
- [] in Planung

Wer kann bei Nachfragen zu diesem Managementsystem – außer Ihnen – kontaktiert werden?
Integriertes Managementsystem

<table>
<thead>
<tr>
<th>Relevante Dauerhaftigkeit</th>
<th>keine</th>
<th>eher keine</th>
<th>eher hoch</th>
<th>hoch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intem Strategie-</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>findung</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Außendarstellung</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Welche unterstützenden Hilfsmittel/Tools setzen Sie ein (Leitfaden, Kennzahlenystem, spezielle Software, weitere?)

Basieren Sie das Managementsystem auf einer Norm (ISO, DWA, DvGW, IWA, o.a.)? Wenn ja, ist es zertifiziert?

- ☐ Nein
- ☐ Ja, und zwar auf: ☐ Sonstiges, und zwar:

Wenn ja, ist es zertifiziert?

- ☐ Ja
- ☐ Nein
- ☐ in Planung

Wer kann bei Nachfragen zu diesem Managementsystem – außer Ihnen – kontaktiert werden?
Benchmarking

<table>
<thead>
<tr>
<th>Reale Bedeutung</th>
<th>keine</th>
<th>eher keine</th>
<th>eher hoch</th>
<th>hoch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intern Strategiefindung</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Außendarstellung</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

Welche unterstützenden Hilfsmittel/Werkzeuge setzen Sie ein (Leitfadens, Kennzahlensystem, spezielle Software, weitere?)

Basiert Sie das Managementsystem auf einer Norm (ISO, DWA, DVGW, IWA, o.a.)?
Wenn ja, ist es zertifiziert?

- □ Nein
- □ Ja, und zwar auf:
- □ Sonstiges, und zwar:

Wenn ja, ist es zertifiziert?
- □ Ja
- □ Nein
- □ in Planung

Wer kann bei Nachfragen zu diesem Managementsystem – außer Ihnen – kontaktiert werden?
Nachhaltigkeitsberichte

<table>
<thead>
<tr>
<th>Reale Bedeutung</th>
<th>keine</th>
<th>eher keine</th>
<th>eher hoch</th>
<th>hoch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internes Strategiefindung</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Außendarstellung</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Welche unterstützenden Hilfsmittel/Werkzeuge setzen Sie ein (Leitfaden, Kennzahlenystem, spezielle Software, weitere?)

Basiert das Managementsystem auf einer Norm (ISO, DWA, DVGW, IWA, o.a.)? Wenn ja, ist es zertifiziert?

☐ Nein ☐ Ja, und zwar auf: ☐ Sonstiges, und zwar:

Wenn ja, ist es zertifiziert?

☐ Ja ☐ Nein ☐ in Planung

Wer kann bei Nachfragen zu diesem Managementsystem – außer Ihnen – kontaktiert werden?
<table>
<thead>
<tr>
<th>Ökobilanzierung</th>
<th>Reale Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>keine</td>
</tr>
<tr>
<td>Interne Strategie-</td>
<td>□</td>
</tr>
<tr>
<td>findung</td>
<td></td>
</tr>
<tr>
<td>Außendarstellung</td>
<td>□</td>
</tr>
</tbody>
</table>

Welche unterstützenden Hilfsmittel/Werkzeuge setzen Sie ein (Leitfaden, Kennzahlensystem, spezielle Software, weitere?)

<table>
<thead>
<tr>
<th>Basiert das Managementsystem auf einer Norm (ISO, DWA, DVGW, IWA, o.a.)? Wenn ja, ist es zertifiziert?</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Nein</td>
</tr>
</tbody>
</table>

Wenn ja, ist es zertifiziert?

| □ Ja | □ Nein | □ in Planung |

Wer kann bei Nachfragen zu diesem Managementsystem – außer Ihnen – kontaktiert werden?
☐ Andere Managementsysteme, die hier nicht aufgelistet sind:

<table>
<thead>
<tr>
<th>Reale Bedeutung</th>
<th>keine</th>
<th>eher keine</th>
<th>eher hoch</th>
<th>hoch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interne Strategiefindung</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>Außendarstellung</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

Welche unterstützenden Hilfsmittel/Workzeuge setzen Sie ein (Leitfaden, Kennzahlen-System, spezielle Software, weitere?)

Basieren Sie das Managementsystem auf einer Norm (ISO, DWA, DVGW, IWA, o.a.)? Wenn ja, ist es zertifiziert?

☐ Nein ☐ Ja, und zwar auf: ☐ Sonstiges, und zwar: ☐

Wenn ja, ist es zertifiziert?

☐ Ja ☐ Nein ☐ in Planung

Wer kann bei Nachfragen zu diesem Managementsystem – außer Ihnen – kontaktiert werden?
Instrumente zur Managementunterstützung

Welche Instrumente nutzen Sie zur Unterstützung von Managementsystemen? Nutzen Sie diese für die oben genannten Systeme und/oder in einem anderen Zusammenhang?

Die hier aufgeführten Instrumente sind an die ISO 31010 angelehnt. Bitte ergänzen Sie die Liste, falls Sie andere Instrumente nutzen.

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Für oben genanntes Managementsystem</th>
<th>In anderen Zusammenhängen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suchverfahren</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Prüflisten</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Voraussichtliche Gefährdungsanalyse</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Unterstützende Verfahren</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Brainstorming</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Strukturiertes "Was-Wenn" Verfahren (SWIFT-Technik)</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Beurteilung der menschlichen Zuverlässigkeit</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Ursachenanalyse (Root Cause Analysis)</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Szenarioanalysen</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Szenario-Analyse</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Analyse der geschäftlichen Auswirkungen (Business Impact Analysis)</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Ereignisbaumanalyse</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Ursache- und Wirkungsanalyse</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Ursache-/Folgenanalyse</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Funktionsanalysen</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Fehlzustandsart- und -auswirkungsanalyse (FMEA)</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Beurteilung von Überwachungsmaßnahmen</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Bow-Tie Analyse (Kragen-Fliegen-Analyse)</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Statistische Analysen</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Instrument</td>
<td>Für oben genanntes Managementsystem</td>
<td>In anderen Zusammenhängen</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-------------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Markov Analyse</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Monte-Carlo Analyse</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Bayessiche Analyse</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Weitere Methoden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ampel-Methode</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Folgen-Wahrscheinlichkeitsmatrix (Risikomatrix)</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Balanced Scorecards</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Boxplots</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Netz-Darstellung</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Andere</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
f. Erhebungsbogen für kleine Wasserversorger

Kontakt: Christina Tocha
Telefon: 089-6004-2474
Fax: 069 60043858
E-Mail: christina.tocha@unibw.de

An:
Christina Tocha
Institut für Wassernesen
Siedlungswasserwirtschaft und Abfalltechnik
Universität der Bundeswehr München
W.-Heisenberg-Weg 39
85577 Neubiberg

Rückantwort zum Erhebungsbogen –
Nachhaltigkeitscontrollingansatz für kleine Unternehmen der SWW

Absender:

Platz für Anmerkungen des Unternehmens:

Vielen Dank, dass Sie sich an diesem Projekt beteiligen!
Fragebogenerhebung

BMBF-gefördertes Forschungsprojekt:
Nachhaltigkeitscontrolling
siedlungswasserwirtschaftlicher Systeme –
Risikoprofil und Steuerungsinstrument

Nachhaltigkeitscontrollingansatz für kleine Unternehmen der SWW – Umsetzungshemmnisse und Anpassungserfordernisse

Fragebogenerhebung im Rahmen der Masterarbeit:
„Nachhaltigkeitscontrolling in der Siedlungswasserwirtschaft – Implementierung mit besonderem Fokus auf erforderliche Anpassungen für kleine Betriebe“

Von Christopher Bickert, TU Darmstadt, Studiengang M.Sc. Bauingenieurwesen, Spezialisierung: Wasser und Umwelt

Bearbeitungszeitraum: August 2015 – Februar 2016

Erhebungsjahr 2015

Kontakt:
Christina Toche
Institut für Wasserwesen
Siedlungswasserwirtschaft und Abfalltechnik
Universität der Bundeswehr München
IW-Heisenberg-Weg 39
85577 Neubiberg
Fragebogen

Die Antworten auf die folgenden Fragen werden vertraulich behandelt und werden in der Masterarbeit von Herrn Bickert nur unter anonymer Nennung erwähnt.

Unternehmen:
Anschrift:
Telefonnummer:
E-Mail Adresse:
Ansprechpartner für Rückfragen:

1 Nachhaltigkeitscontrolling – Was ist das?

Im Rahmen der Masterarbeit von Herrn Bickert soll untersucht werden, wie die im NaCoSi-Projekt entwickelten Bausteine für ein Nachhaltigkeitscontrolling langfristig auch in kleinen siedlungswasserwirtschaftlichen Betrieben implementiert werden können. Dabei gilt es herauszufinden, ob – und wenn erforderlich – welche Anpassungen vorgenommen werden müssen, damit die Anwendung für kleine Betriebe attraktiv und durchführbar ist.
2 Allgemeine Fragen

1. Welche Rechtsform besitzt Ihr Unternehmen?

2. Wie viele Mitarbeiter sind in Ihrem Unternehmen tätig/eingestellt (Vollzeit/Teilzeit)?

3. Wie hoch war die Jahreswasserabgabe 2014?

4. Wie viele Hausanschlüsse befinden sich im Versorgungsgebiet?

5. Gibt es Großkunden aus Industrie oder Gewerbe?
 Ja □ Nein □

6. Welche Wassergewinnungsmethode wird genutzt?
 Quelle?
 Brunnen?
 Uferfiltrat?
 Oberflächenwasser?

7. Welche geologischen Besonderheiten sind gegeben, die einen Einfluss auf die Wasserqualität haben können (z. B. Ausprägung der Deckschichten, Karstkluftgrundwasserleiter, etc.)?

8. Sind in Bezug auf die Rohwasserqualität Einflüsse aus Landwirtschaft oder Industrie vorhanden?

9. Wie hoch ist das verbrauchsabhängige Entgelt pro Kubikmeter?

10. Wie hoch ist das Grundentgelt??
11. Sind größere Investitionen in den kommenden 4 Jahren notwendig?
 • Wenn ja, welcher Art sind diese Investitionen?
 • Wie hoch werden die Kosten eingeschätzt?
 • Wie ist die Umsetzung geplant?

12. Gibt es Kooperationsmöglichkeiten zu umliegenden Versorgern, beziehungsweise wurde eine Kooperation bei Ihnen schon einmal in Erwägung gezogen?
 Betriebsorganisatorisch (z.B. Personal, Meldestelle, Managementsysteme)
 Ja □ Nein □
 Technisch (z.B. gemeinsame Hochbehälter oder Versorgungsleitung)
 Ja □ Nein □

3 Nachhaltigkeitsrisiken

13. Welche allgemeinen Risiken sehen Sie in der Zukunft auf Ihr Unternehmen zu­kommen?
14. Wo sehen Sie die wesentlichen Ursachen für Risiken in Ihrem Unternehmen?
 • Technik,
 • Organisation,
 • Finanzen,
 • Demographie,
 • Klimawandel,
 • andere Veränderungen im Einzugsgebiet.

15. Werden Risiken in Ihrem Unternehmen regelmäßig und systematisch erfasst?
 Ja [] Nein []

16. Wie würden Sie einschätzen, ist Ihr Unternehmen gegenüber Risiken aufgestellt?

17. Nutzen Sie ein Risikomanagementsystem?
 Ja [] Nein []

18. Können Sie sich etwas unter dem Begriff Nachhaltigkeitsrisiken vorstellen?

4 NaCoSi-Controlling Tool

19. Nutzen Sie bereits Managementsysteme in Ihrem Betrieb
 • ISO 9001,
 • ISO 14001,
 • ISO 31000,
 • ISO 50001,
 • EMAS,
 • OSHAS,
 • TSM.

Christopher Bickert - TU Darmstadt - Studiengang M.Sc. Bauingenieurwesen
E-Mail: christine.tocha@unitbw.de - Tel.: 098-6004-3474 - Telefax: 098 6004 3058
20. Welche Vorstellungen oder Erwartungen verbinden Sie mit einem Nachhaltigkeitscontrolling-Instrument?

21. Welche Aufgaben soll dieses Instrument aus Ihrer Sicht für Ihr Unternehmen leisten können und welche Vorteile sollte es mit sich bringen?

22. Aufbauend auf Ihren vorhergehenden Antworten. Wären Sie bereit ein Nachhaltigkeitscontrolling-Instrument in Ihrem Unternehmen einzuführen und zu pflegen?
 - Wenn ja, wieso?
 - Wenn nein, wieso nicht?
23. Glauben Sie das Tool mit Hilfe von Leitfäden eigenständig einführen zu können oder wäre eine externe Hilfe erforderlich?

• Wenn ja, was dürfte das maximal kosten?

24. Wie viele Arbeitsstunden würden Sie für die Nutzung eines solchen Controlling-Instrumentes monatlich aufbringen können?

25. In welcher Form sollte Ihnen das Tool zur Verfügung gestellt werden? Als:

• Papierausdruck,
• digital über Excel oder
• PDF-Fragebögen.

Vielen Dank, dass Sie sich Zeit genommen haben, den Fragebogen vollständig auszufüllen!
g. Erhebungsbogen für kleine Abwasserbeseitiger

Kontakt: Christina Tocha
Telefon: 069 6004 2474
Fax: 069 6004 3658
E-Mail: Christina.tocha@unibw.de

An:
Christina Tocha
Institut für Wassernesen
Siedlungswasserwirtschaft und Abfalltechnik
Universität der Bundeswehr München
W.-Heisenberg-Weg 39
85577 Neubiberg

Rückantwort zum Erhebungsbogen – Nachhaltigkeitscontrollingansatz für kleine Unternehmen der SWW

Absender:

Platz für Anmerkungen des Unternehmens:

Vielen Dank, dass Sie sich an diesem Projekt beteiligen!
Fragebogenerhebung

BMBF-gefördertes Forschungsprojekt:
Nachhaltigkeitscontrolling
siedlungswasserwirtschaftlicher Systeme –
Risikoprofil und Steuerungsinstrument

Nachhaltigkeitscontrollingansatz für kleine Unternehmen der SWW – Umsetzungshemmnisse und Anpassungserfordernisse

Fragebogenerhebung im Rahmen der Masterarbeit:
„Nachhaltigkeitscontrolling in der Siedlungswasserwirtschaft – Implementierung mit besonderem Fokus auf erforderliche Anpassungen für kleine Betriebe“

Von Christopher Bickert, TU Darmstadt, Studiengang M.Sc. Bauingenieurwesen, Spezialisierung: Wasser und Umwelt

Bearbeitungszeitraum: August 2015 – Februar 2016

Erhebungsjahr 2015

Kontakt:
Christina Tocha
Institut für Wasserwesen
Siedlungswasserwirtschaft und Abfalltechnik
Universität der Bundeswehr München
W.-Heisenberg-Weg 39
85577 Neubiberg

Christopher Bickert - TU Darmstadt - Studiengang M.Sc. Bauingenieurwesen
E-Mail: christina.tocha@unibw.de - Telefon: 089 6004 2474 - Telefax: 089 6004 3858
Fragebogen

Die Antworten auf die folgenden Fragen werden vertraulich behandelt und werden in der Masterarbeit von Herrn Bickert nur unter anonymer Nennung erwähnt.

Unternehmen:
Anschrift:
Telefonnummer:
E-Mail Adresse:
Ansprechpartner für Rückfragen:

1 Nachhaltigkeitscontrolling – Was ist das?

Im Rahmen der Masterarbeit von Herrn Bickert soll untersucht werden, wie die im NaCoSi-Projekt entwickelten Bausteine für ein Nachhaltigkeitscontrolling langfristig auch in kleinen siedlungswasserwirtschaftlichen Betrieben implementiert werden können. Dabei gilt es herauszufinden, ob – und wenn erforderlich – welche Anpassungen vorgenommen werden müssen, damit die Anwendung für kleine Betriebe attraktiv und durchführbar ist.

Christopher Bickert · TU Darmstadt · Studiengang M.Sc. Bauingenieurwesen
E-Mail: christina.tocha@uni-bw.de · Telefon: 089 6004 2474 · Telefax: 089 6004 3859
2 Allgemeine Fragen

1. Wie viele Mitarbeiter sind in Ihrem Unternehmen tätig/ange stellt (Voll- zeit/Teilzeit)?

2. Wie hoch war die Jahresschmutzwasserabgabe 2014?

3. Wie viele Einwohner (EW als BS B) sind an das Entsorgungsgebiet angeschlossen?

4. Welche Größenklasse und Ausbaugröße hat die Kläranlage?

5. Gibt es industrielle Einleiter?
 Ja ☐ Nein ☐

6. Welche Art der Abwasserbehandlung wird genutzt?
 - Teichkläranlage ☐
 - Pflanzenkläranlage ☐
 - Belebungsverfahren ☐
 - Tropfkörper ☐

7. Sind in Hinsicht auf die Reinigungsleistung Besonderheiten zu beachten (z.B. Vorfluter im Naturschutzgebiet o.a.)?

8. Welche Art der Klärschlammbehandlung wird genutzt?
 - Simultane Schlammstabilisierung ☐
 - Aerobe Stabilisierung ☐
 - Anaerobe Stabilisierung ☐

9. Auf welche Art wird der Klärschlamm entsorgt?
 - Landwirtschaft ☐
 - Verbrennung ☐
 - Tagebau ☐
 - Sonstiges ☐

10. Wie hoch ist die Abwasserabgabe pro Kubikmeter?
 Angabe in ☐ Netto ☐ oder Brutto ☐
11. Sind größere Investitionen in den kommenden 4 Jahren notwendig?
 - Wenn ja, welcher Art sind diese Investitionen?

 Wie hoch werden die Kosten eingeschätzt?

 Wie ist die Umsetzung geplant?

12. Gibt es Kooperationsmöglichkeiten zu umliegenden Versorgern, beziehungsweise wurde eine Kooperation bei Ihnen schon einmal in Erwägung gezogen?

 Betriebsorganisatorisch (z.B. Personal, Meldestelle, Managementsysteme)
 Ja Nein

 Technisch (z.B. gemeinsame Hochbehälter oder Versorgungsleitung)
 Ja Nein

3 Nachhaltigkeitsrisiken

13. Welche allgemeinen Risiken sehen Sie in der Zukunft auf Ihr Unternehmen zu-
 kommen?
14. Wo sehen Sie die wesentlichen Ursachen für Risiken in Ihrem Unternehmen?
- Technik,
- Organisation,
- Finanzen,
- Demographie,
- Klimawandel,
- andere Veränderungen im Einzugsgebiet.

15. Werden Risiken in Ihrem Unternehmen regelmäßig und systematisch erfasst?
Ja ☐ Nein ☐

16. Wie würden Sie einschätzen, ist Ihr Unternehmen gegenüber Risiken aufgestellt?

17. Nutzen Sie ein Risikomanagementsystem?
Ja ☐ Nein ☐

18. Können Sie sich etwas unter dem Begriff Nachhaltigkeitsrisiken vorstellen?

4 NaCoSi-Controlling Tool

19. Nutzen Sie bereits Managementsysteme in Ihrem Betrieb
- ISO 9001,
- ISO 14001,
- ISO 31000,
- ISO 50001,
- EMAS,
- OSHAS,
- TSM.
20. Welche Vorstellungen oder Erwartungen verbinden Sie mit einem Nachhaltigkeitscontrolling-Instrument?

21. Welche Aufgaben soll dieses Instrument aus Ihrer Sicht für Ihr Unternehmen leisten können und welche Vorteile sollte es mit sich bringen?

22. Aufbauend auf Ihren vorhergehenden Antworten. Wären Sie bereit ein Nachhaltigkeitscontrolling-Instrument in Ihrem Unternehmen einzuführen und zu pflegen?
 - Wenn ja, wieso?

 - Wenn nein, wieso nicht?
23. Glauben Sie das Tool mit Hilfe von Leitfäden eigenständig einführen zu können oder wäre eine externe Hilfe erforderlich?

- Wenn ja, was dürfte das maximal kosten?

24. Wie viele Arbeitsstunden würden Sie für die Nutzung eines solchen Controlling-Instrumentes monatlich aufbringen können?

25. In welcher Form sollte Ihnen das Tool zur Verfügung gestellt werden? Als:

- Papierausdruck,
- digital über Excel oder
- PDF-Fragebögen.

Vielen Dank, dass Sie sich Zeit genommen haben, den Fragebogen vollständig auszufüllen!
Der Projektverbund NaCoSi bedankt sich bei den Praxispartnern für die sehr gute Zusammenarbeit. Ihr Engagement hat der Entwicklung des NHC wichtige Impulse gegeben, um ein praxisnahes Konzept zu entwickeln.