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Zusammenfassung

In dieser Doktorarbeit untersuchten wir starke Wechselwirkungen im Niederenergiebereich mit Hilfe

zweier komplementärer, nichtstörungstheoretischer Ansätze: Dabei wurde das Wechselspiel zwischen

der Quantenchromodynamik (QCD) im large-Nc-Bild und der chiralen Störungstheorie erforscht.

Während die Entwicklung über den Parameter 1/Nc auf Quark- und Gluonfreiheitsgraden basiert, be-

nutzt die chirale Störungstheorie Hadronen als effektive Freiheitsgrade. Das Hauptgewicht unserer

Arbeit lag dabei auf der Erforschung der Mesonen und Baryonen, die sich aus up-, down- und strange-

Quarks zusammensetzen. Wir benutzten dabei die chirale SU(3)-Lagrangedichte mit den (J P = 1

2

+
)-

und den (J P = 3

2

+
)-Baryongrundzuständen als Bausteine. Im SU(3)-Flavourgrenzfall bilden diese Bary-

onzustände ein Oktett und entsprechend ein Dekuplett.

Untersuchungen in der chiralen Störungstheorie beinhalten eine Herausforderung: Die chirale La-

grangedichte umfaßt unendlich viele Beiträge. Die Behandlung der niederenergetischen Physik der

Quantenchromodynamik mit Hilfe einer Störungstheorie erfordert die Anordnung dieser Beiträge nach

ihrer Wichtigkeit. Wir benutzten das Wechselspiel zwischen der QCD und der chiralen Störungstheo-

rie, um Aufschluß über die Struktur der chiralen Lagrangedichte zu geben. Im Grenzfall einer großen

Farbanzahl Nc sind die Niedrigenergieparameter der chiralen Lagrangedichte miteinander verknüpft.

Beispielhaft zeigt sich diese Verknüpfung darin, daß die Massen der beiden Baryonmultipletts im SU(3)-

Flavourgrenzfall entartet sind. Diese Tatsache dient als Ausgangspunkt unserer Untersuchungen. In

dieser Arbeit analysieren wir das zeitgeordnete Produkt zweier skalarer und zweier Vektorströme im

Baryongrundzustand. Die Auswertung dieser Matrixelemente für Nc → ∞ wurde mit entsprechenden

Ergebnissen verglichen, die im Rahmen der chiralen Störungstheorie abgeleitet wurden. Daraus erhiel-

ten wir Summenregeln für einige Niederenergieparameter der chiralen Lagrangedichte. Diese Resultate

für die Vektorkorrelationsfunktion wurden genutzt, um eine phänomenologische Wechselwirkung der

leichten Vektormesonen mit den Baryongrundzuständen zu fixieren.

Im zweiten Teil dieser Doktorarbeit sprachen wir ein formales Problem, das bei der Zerlegung einer

Partialwellenfunktion von Reaktionsamplituden für Teilchen mit nichtverschwindendem Spin auftritt,

an. Dabei berücksichtigten wir im Besonderen die Vektormeson-Photoproduktion am Nukleon, wie sie

gegenwärtig in [1–3] untersucht wird. Eine Zerlegung von Produktionsamplituden in kovariante Partial-

wellenamplituden, die sowohl frei von kinematischen Beschränkungen als auch mit der Mikrokausali-

tätsbedingung verträglich sind, wurde durchgeführt. Ein Mathematica-Code unter Zuhilfenahme des

FeynCalc-Pakets [4] wurde geschrieben und auf einige Kontaktbeiträge und s-, u- und t-Kanalprozesse

angewandt.
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1 Introduction

Quantum Chromodynamics (QCD) is the accepted theory to describe the physics of strong interactions.

The strong coupling constant αS(Q), which depends on a momentum transfer Q, determines the strength

of these interactions. The running of αS(Q) can be extracted from empirical data:

Figure 1.1.: Running of the strong coupling constant [5]

As shown in Fig. 1.1, the coupling constant is sufficiently small only for a large momentum transfer.

Therefore, a strong interaction process cannot always be computed in perturbation theory. Low-energy

processes like meson-baryon scattering require a non-perturbative treatment in QCD. One possible non-

perturbative framework was introduced by ’t Hooft [6]: he considered the number of colours Nc as a free

parameter in QCD. Rather than expanding in the strong coupling constant αS, he suggested an expansion

with respect to the parameter 1/Nc. This idea requires the replacement of the SU(3) colour symmetry

group by the SU(Nc) group. ’t Hooft found out that only planar Feynman diagrams with single gluons

at the edges dominate the dynamics of QCD in this limit. There are resilient hints that the results of the

1/Nc expansion resembles the physical case Nc = 3.

A complementary approach to non-perturbative QCD at low-energies is chiral perturbation theory (χPT).

Hadrons instead of quarks and gluons are identified as the relevant degrees of freedom in χPT. Effective

field theories like χPT are based on the decoupling theorem [7,8] and Wilson’s renormalisation scheme

for a quantum field theory [9]. In this work we consider the chiral SU(3) Lagrangian constructed with

the (J P = 1

2

+
)- and the (J P = 3

2

+
)-ground state baryons. These baryons form an octet and decuplet, re-

spectively, in the SU(3) flavour limit. The target of this Lagrangian is the low-energy physics of the up-,

down- and strange quarks in QCD. The main ingredient of this effective field theory is the spontaneous

breaking of the chiral symmetry of quarks. The Goldstone theorem [10, 11] predicts the formation of

eight pseudoscalar bosons. The chiral Lagrangian consists of a hierarchy of interaction terms that are

ordered according to their relevance. At a given order a number of low-energy parameters need to be

determined either from experimental data or directly from QCD.

In this work we will correlate low-energy parameters of the chiral Lagrangian by scrutinising their

expansion in 1/Nc. A well known property of QCD at large-Nc is the degeneracy of the masses of

the octet and decuplet ground state baryons in the SU(3) flavour limit [6]. Further relations for the

low-energy parameters are expected to hold and will be studied [12]. Parts of the chiral Lagrangian

are scalar and vector external source fields which enable the computation of baryon matrix elements of

these currents [13,14]. Such matrix elements can also be studied at large-Nc QCD using the framework
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of [12, 15–18]. A comparison of the results provides the desired correlation of low-energy parameters.

In particular we consider the time-ordered product of two scalar or two vector currents in the baryon

ground states. The result from the study of the vector correlation function can also be used to correlate

phenomenological interaction vertices of vector mesons with the baryon ground states. Such terms play

an important role in coupled-channel dynamics of baryon resonances as for instance probed in photo-

production experiments [19].

In the second part of this thesis we address a formal problem that arises in the theoretical descrip-

tion of photoproduction experiments. A decomposition of reaction amplitudes into helicity-partial wave

amplitudes [20] suffers from kinematical constraints that make the application of dispersion-integral

representations cumbersome. Such constraints get more and more involved as the spin of the participa-

ting particles increases. In particular in the photoproduction of vector mesons this is a non-trivial issue.

Several authors [21–24] developed a decomposition scheme of general on-shell scattering amplitudes

into invariant amplitudes whose results are utilised to prepare covariant partial wave amplitudes com-

patible with coupled-channel unitarity and microcausality [25]. The on-shell scattering amplitudes are

decomposed into sets of Lorentz-Dirac structures as basis vectors. The corresponding coefficients are

analytic functions satisfying Mandelstam’s dispersion integral representation [26]. The covariant partial

wave amplitudes are constructed from those invariant amplitudes. The efficiency of the decomposition

scheme for photoproduction of vector mesons is illustrated via four examples.
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2 1/Nc expansion

’t Hooft proposed an approach to QCD [6] in which the number of colours Nc is assumed as a free

parameter. The physical case is identified with Nc = 3. Feynman diagrams are examined in the large-

Nc limit: diagrams with inner quark loops are highly suppressed in comparison to planar diagrams with

single quarks at the edges of them. In this work we focus on properties of baryons in a large-Nc world. We

apply a framework by Luty and March-Russell [17] supplemented by the operator reduction formalism

of Dashen, Jenkins and Manohar [12,18]. Our goal is to derive sum rules for the low-energy parameters

of the chiral Lagrangian as will be introduced in chapter 3.

2.1 Introduction to the 1/Nc expansion

The key point is that the 1/Nc expansion arranges the Feynman diagrams in such a way that additional

insight into the dynamics of strong interactions is obtained. Some experimental evidence supports the

usefulness of the large-Nc limit: this framework predicts that internal gluon loops dominate over internal

quark loops (see section 2.2). For instance, the meson-meson interaction is of the order O
�
1/Nc

�
. As a

consequence all meson states do not decay into hadrons in that limit Nc → ∞. The phenomenological

rule by Okubo, Zweig and Iizuka (OZI) [27–29] can be consistently explained by the 1/Nc expansion

[30]. ’t Hooft derived in [6] that planar diagrams with only quark loops at the edges of the diagrams

dominate diagrams with gluonic exchanges.

2.2 The order of Feynman diagrams in terms of 1/Nc

To explain ’t Hooft’s insight, we must determine a Feynman diagram’s order in terms of 1/Nc. The

determination of the order is illustrated by two examples, a gluon propagator with a gluon loop,

Figure 2.1.: Gluon propagator with gluon loop

and a gluon propagator with a quark loop:

Figure 2.2.: Gluon propagator with quark loop

First, we recall the double line notation [30]. Each colour index of the corresponding Lagrangian leads

to a solid line. A gluon is treated as a quark-antiquark (qq̄) pair with respect to colour:
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Figure 2.3.: Gluon propagator with gluon loop (double line notation)

Figure 2.4.: Gluon propagator with quark loop (double line notation)

Second, we have to determine the overall Nc-factor for a Feynman diagram. Each vertex contributes

by a factor of gs(Q) of the strong coupling constant. Each closed colour loop adds a factor of Nc. In

the last step, we multiply as many factors 1/Nc to our order factor until we keep the product g2
s
(Q)Nc

constant. This procedure is equivalent to a rescaling of the strong coupling constant like

gs(Q)→
gs(Q)
p

Nc

. (2.1)

We return to our former examples: in the case of the gluon propagator and the gluon loop, we count two

vertices and one closed colour loop. This leads us to a contribution of order 1/N0
c
= 1:

g2
s
(Q)Nc =

�

g2
s
(Q)Nc

� 1

N0
c

∼ O
�

1

N0
c

= 1

�

. (2.2)

In contrast to the first example, the gluon propagator with a quark loop does not contain of any closed

colour loop. We conclude that it is of order 1/Nc:

g2
s
(Q) =

�

g2
s
(Q)Nc

� 1

Nc

∼ O
�

1

Nc

�

. (2.3)

We ask for the purpose of this expansion.’t Hooft announced in his introductory article in 1974 [6] that

only planar Feynman diagrams with a single quark at the edges of the diagram are relevant in first order.

Planar diagrams are diagrams without any crossing propagators except at vertices. We finally conclude

that Feynman diagrams with internal quark loops are suppressed in the large-Nc limit.

2.3 Inclusion of baryons

A baryon is a particle which consists of three quarks at least. If we treat the number of colours Nc as a

free parameter, it carries Nc quarks. In contrast to mesons, combinatorial factors will arise if we describe
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a certain Feynman diagram in the 1/Nc expansion. Witten [30] suggested to proceed in two steps. First,

he determined the interaction of quarks in the large-Nc limit. Then he combined this interaction with

many-body techniques to investigate Nc-body states. The most prominent result of such an analysis is

the mass degeneracy of the baryon ground states with J P = 1

2

+
and J P = 3

2

+
quantum numbers. For

instance, back at Nc = 3 one expects similar masses for the nucleon and the ∆ resonance.

We will follow a more recent formalism by [17, 18]. A scalar mean field is assumed that will localise

three bare quarks into a finite region in space. The QCD-Hamiltonian HQCD is reorganised into a mean-

field part H0 and into an interaction part V :

HQCD = H0+ V. (2.4)

It is then easier to study baryon matrix elements at large Nc. To do so it is necessary to construct the states

of lowest energy in the scalar potential wall, that carry quantum numbers of the baryons with J P = 1

2

+

and J P = 3

2

+
, i.e. with angular momentum L = 0. The properties of those states will be correlated by

the large-Nc analysis. It is emphasised that the mean field is needed for bookkeeping purposes only.

It is important to construct the spin-flavour structure of the baryon ground state |B0〉:

|B0〉=B s1 f1...sNc
fNc εc1...cNc a

†

s1 f1c1
· · · a†

sNc
fNc

cNc
|0〉. (2.5)

A tensor product of creation operators a† with the definite spin index si ∈ {1, 2}, the flavour index

fi ∈ {1, . . . , NF} and the colour index ci ∈ {1, . . . , Nc} acts on the perturbative vacuum |0〉, the ground

state of H0. The baryon tensor B will provide the one-baryon state with a fixed angular momentum L

and flavour quantum numbers. The creation operators a† are directly related to the eigenmode expansion

of the “free” field operators ψI(t, ~x) in the interaction picture [18]:

ψI(t, ~x) =

∞∑

i=0

2∑

s=1

�

ui,s(~x)e
−iEi t ai,s + v i,s(~x)e

iEi t d
†
i,s

�

, (2.6)

where we identify a† with a
†
i=0

.

We proceed with the time evolution of these baryon ground states as determined in the interaction

picture. The unitary transformation between Heisenberg and interaction picture is given in the following

way:

ψ(t, ~x) = U†(t)ψI(t, ~x)U(t),

U(t) = eiH0 t e−iHQCD t = T exp




−i

∫ t

0

dt ′ eiH0 t′Ve−iH0 t′
︸ ︷︷ ︸

=VI (t
′)




 . (2.7)

The baryon ground states evolve to the eigenstates of the QCD-Hamiltonian HQCD with a non-zero over-

lap between |B0〉 and |B〉 (t → (1− iε)∞):

e−iHQCD |B0〉= 〈B|B0〉e−iEB t |B〉+ . . . (2.8)
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These states |B〉 have the same quantum numbers like |B0〉. The states |B〉 are the eigenstates of the

complete Hamiltonian HQCD.

The previous discussion enables us to calculate important baryon properties. We commence with the

matrix elements of an arbitrary time-ordered product of space-time dependent operators Ĵi(x i) in the

Heisenberg picture:

〈B ′|T ˆJ1(x1) · · · ˆJm(xm)|B〉. (2.9)

The corresponding matrix elements for the states |B̂〉 are traced back to matrix elements of the unper-

turbed ground states |B̂0〉 in the interaction picture with the help of the expression UI :

〈B ′|T ˆJ1(x1) · · · ˆJm(xm)|B〉=
〈B ′

0
|T ˆJI1(x1) · · · ˆJIm(xm)UI |B0〉
p

〈B ′0|UI |B ′0〉
p

B0|UI |B0〉
, (2.10)

UI = T exp



−i

∫ +T

−T

dt ′ eiH0 t′Ve−iH0 t′



 , (2.11)

U(−T)|B〉=
|B0〉

〈B0|UI |B0〉
1
2

+ . . . (2.12)

Here, the last equation refers to the unitary transformation of Eq. (2.7). The numerator of the right-hand

side of the first equation consists of the sum of all possible diagrams with operators ˆJ in the interaction

picture. The denominator is constructed by the sum of all diagrams with combinatorial factors which

are derived by the expansions of both
p

〈B ′0|UI |B ′0〉 and
p

〈B0|UI |B0〉. We illustrate the diagrammatic

expansion by the expression ψ̄(t, ~x)Γψ(t, ~x) for a one-quark operator. The quantity Γ is the substitution

for a general Dirac and flavour matrix. The calculation of the matrix elements of ψ̄(t, ~x)Γψ(t, ~x) can

be illustrated by the placement of this operator on each of the Nc quark lines [16]. Dashen, Jenkins and

Manohar [16] pointed out that all diagrams with an arbitrary number of planar gluons have to be taken

into account at a given order O
�

1/N n
c

�

.

The decomposition of ψ̄(t, ~x)Γψ(t, ~x) into a sum of products of n-body operators O (n), coefficients

c
(n)

k
and a factor of 1/N n−1

c
reads [16]:

ψ̄(t, ~x)Γψ(t, ~x) =

Nc∑

n=0

∑

k

c
(n)

k

1

N n−1
c

Ô (n)
k

. (2.13)

The identity holds in the one-baryon states of Eq. (2.5). An operator Ô (n)
k

consists of a normal-ordered

product of 2 n one-body operators a† and a as introduced in Eq. (2.5). The number of a† and a involved

is equal. The higher eigenmode operators ai of Eq. (2.6) with i > 0 can contribute to the scalar coeffi-

cients c
(n)

k
only. At finite Nc, a finite number of operators contribute only. In general for a given index

n there are various operators possible. The index k runs through all possible spin and flavour combi-

nations. The Feynman diagrams with a specific one-quark QCD operator and planar gluons illustrate

the above decomposition scheme: each planar gluon adds a two-body operator with an additional factor

1/Nc to the decomposition.

The result (2.13) is easily generalised for the case of time-ordered products of current operators. The
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combination of numerator and denominator in Eq. (2.10) leads to the following diagrammatic expan-

sion:

〈B ′|T ˆJ1(x1) · · · ˆJm(xm)|B〉=
Nc∑

n=1

∑

k

F k
n
(x1, . . . , xm)〈B ′0|Ô

(n)

k
|B0〉. (2.14)

Here, the index Nc runs from 1 to Nc in contrast to Eq. (2.13) because we will not consider the effect

of zero-body operators in our further calculations. The dependence on the spatial coordinates of the

operators is explicitly stated. The coefficients F k
n

include the complete kinematical information. The

second factor of this form factor is a matrix element of an n-body operator which is independent of any

kinematics.

In principal the functions F k
n

can be determined from quark-gluon diagrams in QCD. Only connected

diagrams contribute. Unfortunately, they are difficult to compute explicitly. Without explicit computa-

tions the large-Nc scaling of the functions F k
n

can be determined [17]. This goes in two steps: every

Heisenberg operator needs at least (n−1) quark-gluon exchanges, so that F k
n

is at most of order 1/N n−1
c

.

In addition the minimal number of quark loops, L, that are needed to form the matrix element enters.

We remember ’t Hooft’s article [6] in which he concluded that every internal quark loop is suppressed

by 1/Nc. Thus it holds:

F k
n
®

1

N n−1+L
c

. (2.15)

We come back to the diagrammatic expansion in Eq. (2.14). In the following we study the general

structure of the n-body operators Ô (n)
k

by applying a framework developed by Dashen, Jenkins and

Manohar [16]. While the large-Nc scaling of a normal-ordered n-body operators is known to be 1/N n
c

,

this is more difficult to determine for products of two normal-ordered operators. On the other hand

for the evaluation of matrix elements the former are more convenient, in particular for spin and flavour

properties. Therefore it is useful to work out the scaling behaviour of such products. The quintessence

of [16] is that the Ô (n)
k

-operators can be expressed as sums over products of one-body operators. We

note that such products are not normal ordered a priori. Only after a suitable linear combination normal

ordering can be achieved and therewith a scaling power can be assigned to such a term. The scaling

power N−n+1
c

holds only for a normal ordered n-body operator.

In order to facilitate such an analysis it is useful to introduce effective boson-type operators q and

q† that do not carry colour quantum numbers. Since the baryon state is totally antisymmetric and a

colour singlet, the spin-flavour part of the wave-function must be totally symmetric. The latter will be

generated by spin-flavour operators qs f and q
†

s f
with spin s and flavour f indices. These operators act

on the vacuum |0) of the spin-flavour Fock space. In contrast to the operators Ô (n)
k

and the baryon state

|B0〉, which are expressed in terms of the operators a and a†, the effective n-body operators O (n)
k

and

the effective baryon state |B) are expressed in terms of the bosonic operators q and q†. It holds:

|B) =B s1 f1...sNc
fNc q

†

s1 f1
· · ·q†

sNc
fNc
|0), (2.16)

〈B ′
0
|Ô (n)

k
|B0〉= (B ′|O (n)k

|B). (2.17)
h

qsi fi
, q

†

s j f j

i

= δsis j
δ fi f j

,
h

qsi fi
, qs j f j

i

=
h

q
†

si fi
, q

†

s j f j

i

= 0. (2.18)
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We summarise the substitution rules from the fermionic to the effective bosonic quark operators:

asi fi ci
→ qsi fi

, a
†

s j f j c j
→ q

†

s j f j
, | 〉 → | ), Ô (n)→O (n),

O (n) = q
†

s j,1 f j,1
· · ·q†

s j,n f j,n
O (s j,1 f j,1...s j,n f j,n)

(si,1 fi,1...si,n fi,n)
qsi,1 fi,1

· · ·qsi,n fi,n
. (2.19)

2.4 The spin-flavour structure of baryons in the 1/Nc expansion

The last section concludes with the diagrammatic expansion of the time-ordered product of QCD cur-

rents, properly expanded in powers of 1/Nc. Further progress requires a systematic analysis of normal

ordered n-body operators constructed in terms of effective boson-type operators q and q†. To investigate

the spin-flavour structure of such n-body operators it is instrumental to construct irreducible represen-

tations of the contracted SU(2NF) spin-flavour symmetry group [16]. They lead to a set of operators

identities, which hold in matrix elements of the baryon states. Dashen, Jenkins and Manohar [16]

developed an approach which includes an arbitrary number of flavours and colours in the quark rep-

resentation. It is based on the boson commutation algebra (Eq. (2.18)) with quark annihilation and

creation operators. The classification of the quark operators is done with respect to the number of these

single annihilation and creation operators. The following discussion focuses on the case NF = 3 because

the investigations of baryons in this thesis only cover particles with up-, down- and strange quarks. We

make use of a basis in the decomposed representation SU(2)×SU(3) of the contracted SU(6) group and

introduce the unity operator 1, the spin generators J i, the flavour generators T a and the spin-flavour

generators Ga
i

[16]:

1= q† (1⊗ 1)q, J i = q†

�

σ(i)

2
⊗ 1

�

q,

T a = q†

�

1⊗
λ(a)

2

�

q, Ga
i
= q†

�

σ(i)

2
⊗
λ(a)

2

�

q. (2.20)

Here, the Pauli matrices σ(i) operate in the spin space and are explicitly defined in section A.3. The Gell-

Mann matrices λ(a) as generators of the SU(3) flavour symmetry group are specified in Eq. (A.19). The

transformation properties of 1, J i, T a and Ga
i

under the SU(2)× SU(3) spin-flavour symmetry group

are given by [16]:

1→ (0, 0), J i → (1, 0),

T a→ (0, adj), Ga
i
→ (1, adj). (2.21)

The expression ”adj“ refers to the adjoint representation of the SU(3) group.

We return at this point of the discussion to the quark operator identities which were mentioned in

section 2.3. As already mentioned, Dashen, Jenkins and Manohar [16] found out that we will only

have to decompose two-body operators into one- and zero-body operators to obtain the complete set of

independent operator identities.

The only operator which is classified into the group of zero-body operators is the unity operator 1 ∼
O
�

1/N0
c

�

= O (1). Hence no operator identities are obtained in this case. The unity operator transforms

as a singlet under the SU(2)× SU(3) group.

12



The category of one-body operators only consists of the quark number operator q†q. Dashen, Jenkins

and Manohar derived the following operator identity [16]:

q†q = Nc 1. (2.22)

The operator q†q transforms as a tensor product of a quark and an antiquark representation under the

SU(6) group.

Every two-body operator shows a transformation pattern as a tensor product of a two-quark and a two-

antiquark state under the SU(6) group. Using the operator identity in Eq. (2.22), only bilinear operators

q†ΛAq with ΛA = J i, T a, Ga
i

contribute to the decomposition of two-body operators. Every product of two

operators A and B can be expressed by a commutator and an anticommutator:

AB =
1

2
([A, B] + {A, B}) . (2.23)

The commutator is simplified via the SU(6) commutation relations [16]:

[Ji, J j] = iεi jkJk, [Ta, Tb] = i fabc Tc, [Ji, Ta] = 0,

[Ji, G ja] = iεi jkGka, [Ta, Gi b] = i fabcGic,

[Gia, G j b] =
i

4
δi j fabc Tc +

i

6
δabεi jkJk +

i

2
εi jkdabcGkc. (2.24)

These relations can be concluded directly by the application of Eq. (2.18) to the operator basis in Eq.

(2.20). On the other hand, one can distinguish between three different kinds of two-body operator iden-

tities for the anticommutator [16]. We state the complete set of the SU(2)× SU(3) two-body identities

in the appendix C.

The study of the 1/Nc expansion for the baryon ground states by Dashen, Jenkins and Manohar [16]

provides us with the following insights: the baryon ground states have the same mass at the order Nc

and are combined to irreducible representations of the contracted SU(6) group. Hence, there are 1/Nc

corrections which are proportional to J2 and destroy the degeneracy. Here, J refers to the one-body

operator of the basis in Eq. (2.20). These results help us to describe the baryon mass spectrum and to

determine the area of application of the 1/Nc expansion: the degenerate SU(6) baryon multiplet, that

is of order Nc, consists of Nc spin states. If we order these spin states from the bottom to the top with

increasing spin, we obtain a mass spectrum with corrections at the top of the order O
�

1/N0
c

�

= O (1)
and corrections at the bottom of the order O

�
1/Nc

�
. Additional corrections from the bottom to the top

of the spectrum are of the order O (Nc) [16]. These observations lead us to the conclusion that the 1/Nc

expansion is only applicable to baryon ground states with a low spin value Sp ∈
¦

1

2
, . . . ,

Nc

2

©

.

We turn to the 1/Nc expansion of a general n-body operator as on the right-hand side of Eq. (2.14)

in combination with Eq. (2.16). Our operator basis (Eq. (2.20)) enables us to decompose our n-body

operators in polynomials with the components clm:

O (n) =
∑

m

∑

l

clm(J
i)m(T a)l(Ga

j
)n−m−l , m, l ∈ N. (2.25)
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The usage of some of the already discussed operator identities (see appendix C) for the three-flavour

case simplifies this decomposition. The application of the relevant operator identities make it possible to

formulate an operator reduction rule [16]:

“All operator products in which two flavour indices are contracted using δab, dabc or fabc or two spin indices

on G′s are contracted using δi j or εi jk can be eliminated.”

This operator reduction rule will be applied during the derivation of sum rules for the chiral SU(3)

Lagrangian in the following sections. The main idea behind these sum rules is the following: the last

sections enabled us to derive a 1/Nc expansion of matrix elements of quark operators. On the other

hand, we will introduce χPT as a complementary framework to QCD later in this work. Effective field

theories such like χPT can be used to determine matrix elements of spin-flavour quark operators. Thus,

it is possible to connect our results of the 1/Nc expansion with those of chiral perturbation theory. We

will derive sum rules for one scalar current, two scalar currents and the two vector currents by a large-Nc

operator analysis in combination with the chiral SU(3) Lagrangian in the sections 3.3, 3.4, and 4.3, re-

spectively. Now, the previous analysis is used to derive correlations between the low-energy parameters

of the chiral and the 1/Nc expansion. Sum rules according to the spin-structure of the effective operators

will be deduced via these correlations in the second step. Therefore, we calculate the matrix elements

of our spin-flavour quark operators O (n) both in the 1/Nc- and in the chiral expansion. The coefficients

of equivalent quark operators will be matched in a second step. To connect both kinds of expansion, we

determine the action of the basis operators J , T and G from (2.20) on the baryon states |B) in the Fock

space. The spin-flavour states for (J P = 1

2

+
)-baryons are denoted by

|p, a,χ), (2.26)

while the decuplet baryon states read

|p, klm,χ). (2.27)

The four-momentum of the initial baryon states is denoted by p. The three flavour indices k, l, m ∈
{1, 2, 3} coincide with those in our representation of the (J P = 3

2

+
)-baryons in Eq. (3.13). Due to the

SU(3) flavour symmetry, the flavour index a equals a natural number from 1 to 8. The projection of

the baryon’s spin χ on the z-direction of the spin space consists of two possible values (χ1/2 ∈ {−1

2
, 1

2
})

and of 4 possible values (χ3/2 ∈ {−3

2
,−1

2
, 1

2
, 3

2
}) for the octet and decuplet baryons, respectively. Hence,

χ1/2 = 1, 2 and χ3/2 = 1, 2, 3, 4. The sought actions obey the following relations [21,31]:

1|p, a,χ) = 3|p, a,χ), 1|p, klm,χ) = 3|p, klm,χ),

Ji|p, a,χ) =
1

2
σ
(i)

χ̄χ |p, a, χ̄), Ji|p, klm,χ) =
3

2

�
~Sσi
~S†
�

χ̄χ
|p, klm, χ̄),

T a|p, b,χ) = i fbca|p, c,χ), T a|p, klm,χ) =
3

2
Λ

a,nop

klm
|p, nop,χ),

Ga
i
|p, b,χ) = σ

(i)

χ̄χ

�
1

2
dbca +

i

3
fbca

�

|p, c, χ̄) +
1

2
p

2
S
(i)

χ̄χΛ
klm
ab
|p, klm, χ̄),

Ga
i
|p, klm,χ) =

3

4

�
~Sσi
~S†
�

χ̄χ
Λ

a,nop

klm
|p, nop, χ̄) +

1

2
p

2

�

S
†
i

�

χ̄χ
Λab

klm
|p, b, χ̄). (2.28)
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The explicit representations of the Pauli matrices σ(i) of Eq. (A.3) and the “spin-1

2
-to-spin-3

2
”-transition

matrices of Eq. (B.6) are used to extract the relevant matrix elements. We make use of the totally

symmetric and antisymmetric tensors dabc and fabc, respectively, which are introduced in the Eqs. (A.27)

and (A.26) in the appendix. Some often recurring combinations of the matrix elements of the Kronecker

delta δi j, the Gell-Mann matrices λ(a) and the Levi-Civita tensor εi jk are given by

δ
nop

klm
=
�

δknδloδmp

�

sym(klm)
=
�

δknδloδmp

�sym(nop)
, Λklm

ab
=
�

εi jkλ
(a)

l i
λ
(b)

mj

�

sym(klm)
,

Λ
a,nop

klm
=
�

λ
(a)

nk
δolδpm

�

sym(klm)
, Λab

klm
=
�

εi jkλ
(a)

il
λ
(b)

jm

�

sym(klm)
. (2.29)

We will introduce the (J P = 3

2

+
)-states of the baryon decuplet in section 3.1 of this thesis. All symmetric

permutations of three particular flavour indices k, l, m refer to the same baryon state in this represen-

tation. Hence, the appropriate treatment of these baryons in a large-Nc operator analysis requires the

symmetrisation of the quantities in Eq. (2.29) with respect to k, l, m. The symmetrisation of a general

expression A is defined by

�
Aklm

�

sym(klm) :=
1

6

�
Aklm+ Almk + Amkl + Alkm+ Amlk + Akml

�
. (2.30)

Our examination of the 1/Nc expansion of the baryon matrix elements (Eq. (2.16)) will require the

symmetrisation with respect to both the initial and the final baryon state with the flavour indices k, l, m

and n, o, p, respectively. To be able to use the transparent notation from (2.29) throughout the entire

analysis we express those combinations with two sets of flavour indices by

�

δ
nop

klm

�sym(nop)

sym(klm)
= δnop

x yz
δ

x yz

klm
= δ

nop

klm
,

�

Λ
a,nop

klm

�sym(nop)

sym(klm)
= δnop

x yz
Λ

a,x yz

klm
(2.31)

where we add up over all possible internal flavour indices x , y, z ∈ {1, 2, 3} according to the Einstein

convention. The derivation of baryon matrix elements of one scalar current, two scalar currents and

two vector currents in the three sections 2.6, 2.7 and 2.8 requires the introduction of external fields.

Therefore we present the approach of external fields by Gasser and Leutwyler in the next section of this

chapter.

2.5 Approach of external fields

We traditionally investigate scattering processes and related amplitudes with the help of Green functions.

Green functions are the vacuum expectation values of time-ordered products of operators. Lehmann,

Symanzik and Zimmermann derived how scattering amplitudes are connected to Green functions ac-

cording to the Lehmann-Symanzik-Zimmermann (LSZ) reduction formalism [32]. Here, we will present

the approach of external fields by Gasser und Leutwyler [13,14]. Both authors introduce the coupling to

external fields. They distinguish between a vector current vµ(x), an axial vector current aµ(x), a scalar

density s(x) and a pseudoscalar density p(x). We indicate that we will denote all four kinds of external

fields by the term “current” in this thesis for simplification purposes. It is possible to calculate Green
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functions which are related to vector, axial vector, scalar and pseudoscalar quark currents by functional

differentiation of the generating functional

Z(v , a, s, p) = 〈0out|0in〉v ,a,s,p = 〈0|T exp

�

i

∫

d4 x
�

LQCD,0(x) +Lext(x)
�
�

|0〉. (2.32)

The generating functional Z(v , a, s, p) depends on the previously mentioned external fields. We denote

the vacuum-to-vacuum transition amplitude in the presence of external fields by 〈0out|0in〉v ,a,s,p. The

QCD-Lagrangian LQCD,0(x) in the chiral limit is defined via the general QCD-Lagrangian

LQCD(x) = q̄(x)
�

iγµDµ(x)−Mq

�

q(x)−
1

4
Gµν ,a(x)G

µν ,a(x),

Dµ(x) = ∂µ− gSGa
µ(x)

λa

2
,

Mq = diag(mu, md , ms),

Gµν ,a(x) = ∂µGν ,a(x)− ∂νGµ,a(x) + gS fabcG
b
µ(x)G

c
ν(x). (2.33)

We remind the reader that the investigations in this thesis only consider u-, d- and s-quarks. Therefore,

q̄(x) and q(x) consist of only three flavour components while the mass matrix Mq is a 3× 3-matrix in

our work. LQCD contains the quark field operator q(x) and the adjoint quark field operator q̄(x). Both

quantities are vectors with six components related to the quark flavours up (u), down (d), strange (s),

charm (c), botton (b) and top (t). The introduction of the covariant derivative Dµ requires the strong

coupling strength gS. It is related to the strong coupling constant αS of Fig. 1.1 via αS(Q) = g2
S
(Q)/(4π).

The fields of the gluons Ga
µ(x) depend on the colour index a ∈ {1, . . . , 8}. We also denote the Gell-

Mann matrices λa of the SU(3) group (Appendix A.6) with such an index a. Each matrix element mi is

identified with the current quark mass of the corresponding quark flavour i. Gµν ,a(x) are the eight gluon

tensors. The totally antisymmetric structure constant of the SU(3) group fabc is defined in Eq. (A.26).

Then, the QCD-Lagrangian LQCD,0 in the chiral limit is related to the former results such as follows:

LQCD,0(x) =LQCD(x)

�
�
�
Mq=0

. (2.34)

The external Lagrangian Lext(x) may be expressed by [14]

Lext(x) = q̄(x)γµ(vµ(x) + γ5aµ(x))q(x) + q̄(x)(s(x)− iγ5p(x))q(x). (2.35)

The Dirac matrices γ5 and γµ are defined in the appendix A.5.

The chiral SU(3) symmetry is explicitly broken via the quantity [33,34]

χ±(x) =
1

2
u(x)χ0(x)u(x)±

1

2
u†(x)χ0(x)u

†(x). (2.36)

We will discuss the non-linear parametrisation of the pseudoscalar mesons via the quantity u(x) in
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section 3.1. We expand the objects u(x) and u†(x) of section 3.1 with respect to the pseudoscalar meson

fields Φ(x) (Eq. (3.7)) and receive

χ+(x) = χ0(x)−
1

8 f 2

�
Φ(x),

�
Φ(x),χ0(x)

		
+ O (Φ4(x)), (2.37)

χ−(x) =
i

2 f

�
χ0(x),Φ(x)

	
+ O (Φ3(x)). (2.38)

The diagonal matrix χ0(x) is connected with the scalar and the pseudoscalar current in the following

way [31]:

χ0(x) = 2B0

�
s(x) + ip(x)

�
. (2.39)

The order parameter of the chiral symmetry breaking in QCD determines the parameter B0 via [31]

B0 = −
〈0|q̄(x)q(x)|0〉

3 f
, (2.40)

where the pion-decay constant f can be related to the pion decay π+→ µ+νµ [35] with f = 92.4 MeV at

leading order [34]. Later, we will identify the scalar current with the mass matrix Mq = diag(mu, md , ms)

(s = Mq). Therefore, we express χ0(x) under the assumption (2.42) by [33,34]:

χ0(x) = 2B0






mu 0 0

0 md 0

0 0 ms




 =






m2
π 0 0

0 m2
π 0

0 0 2m2
K
−m2

π




 . (2.41)

The expression of χ0(x) in terms of the pion mass mπ and the kaon mass mK at leading order underlines

that we assume perfect isospin symmetry.

A simplification is done at this step in our thesis: we only consider the scalar and the vector current in

our further calculations, so we assume:

p(x) = aµ(x) = 0. (2.42)

In the case of photoproduction, the space-time dependent vector current reads [35]

vµ(x) = −eQAµ(x). (2.43)

This vector current is introduced by a right- and a left-handed current [35]:

vµ(x) =
1

2

�

rµ(x) + lµ(x)
�

, rµ(x) = lµ(x) = −eQAµ(x). (2.44)
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The current is related to the covariant electromagnetic four-potential Aµ(x). While e describes the

positive elementary electric charge, the charge matrix Q contains the relevant quark charges qu, qd and

qs as multiples of e [35]:

Q =







2

3
0 0

0 −1

3
0

0 0 −1

3







. (2.45)

We will include all relevant meson and baryon fields for the investigation of photoproduction on tree-

level in chapter 3.

2.6 Baryon matrix elements of one scalar current (s) via the 1/Nc expansion

We examine the matrix elements of one scalar current S(a)(q) with a flavour index a between two (J P =
1

2

+
)-baryons by a large-Nc expansion. The expansion is done at leading large-Nc order. We apply the

large-Nc counting scheme of Eq. (2.15) and derive the baryon matrix elements’ general order in this

picture [12,17]:

(B ′|Ji|B)∼ N0
c
, (B ′|T a|B)∼ Nc, (B ′|Ga

i
|B)∼ Nc. (2.46)

We obtain the following four contributions with the Nc-parameters b̂1− b̂4:

(p̄, . . . , χ̄ |S(a)(q)|p, . . . ,χ) = (p̄, . . . , χ̄ |δa0

�

b̂1 1+ b̂2 J2
�

+ b̂3 T a + b̂4 {J i, Ga
i
}|p, . . . ,χ). (2.47)

The large-Nc coefficients with hats are easier distinguishable from the chiral constants in Eq. (3.28).

The evaluation of all four contributions requires the matrix elements of the ten symmetric two one-body

operator’s combinations in appendix D. We point out that the flavour index in the decomposition scheme

for s (Eq. (3.29)) runs from 0 to 8. To enable a complete matching between the chiral and the large-Nc

parameters, we specify the zeroth flavour component of both T a and Ga
i

by

T 0 :=

r

1

6
1, G0

i
:=

r

1

6
Ji (2.48)

and receive the matrix elements of one scalar current S(a)(q) between two (J P = 1

2

+
)- and two (J P = 3

2

+
)-

baryons via the large-Nc operator analysis:

(p̄, c, χ̄ |S(a)(q)|p, b,χ) = δχ̄χ

 

δa0δbc



3b̂1+
3

4
b̂2+

r

3

2
b̂3−

1

2

r

3

2
b̂4





+i fabc

�

b̂3+ b̂4

�

+ dabc

�
3

2
b̂4

��

, (2.49)

(p̄, nop, χ̄ |S(a)(q)|p, klm,χ) = δχ̄χ

�

δa0δ
nop

klm

�

3b̂1+
15

4
b̂2

�

+δnop
x yz
Λ

a,x yz

klm

�
3

2
b̂3+

15

4
b̂4

��

. (2.50)
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The object S(a)(q) is defined via

S(a)(q) = i

∫

d4 x e−iq·xS(a)(x), q ≡ p̄− p. (2.51)

2.7 Baryon matrix elements of two scalar currents (ss) via the 1/Nc expansion

The operator ansatz for the time-ordered product of two scalar currents at leading order provided by the

large-Nc expansion reads

(p̄, d, χ̄|S(ab)(q)|p, c,χ) = (p̄, . . . , χ̄ |ĉ1 δa0δb01+ ĉ2 δab1+ ĉ3

�

T aδb0+δa0T b
�

+ ĉ4

�

dabeT e + dab0T 0
�

+ ĉ5 {T a, T b}+ ĉ6 δa0δb0J2+ ĉ7

�

{J i, Ga
i
}δb0+δa0{J i, Gb

i
}
�

|p, . . . ,χ) (2.52)

with

S(ab)(q) = i

∫

d4 x e−iq·xT S(a)(x)S(b)(0), q ≡ p̄− p. (2.53)

The flavour indices a, b, c and d run from 0 to 8. In contrast, the internal index e only runs from 1 to

8. Again, we identify the initial and final spin projection with χ and χ̄ , respectively. To distinguish the

large-Nc coefficients from the chiral constants in Eq. (3.41), we add hats to the former ones (ĉ1− ĉ7). The

symmetric two one-body operator’s products of appendix D are utilised to perform the large-Nc operator

analysis for the baryon octet’s states:

(p̄, d, χ̄ |S(ab)(q)|p, c,χ) = δχ̄χ

�

δabδcd

�
3ĉ2+ ĉ4+ ĉ5

�
+
�
δadδbc +δacδbd

��
−ĉ5

�

+δa0δb0δcd



3ĉ1+
p

6ĉ3+ 6ĉ5+
3

4
ĉ6−

r

3

2
ĉ7





+
�
dacdδb0+δa0dbcd

�
�

−
p

6ĉ5+
3

2
ĉ7

�

+
�
i facdδb0+δa0i fbcd

�
h

ĉ3+
p

6ĉ5+ ĉ7

i

+ dabedecd

�
3ĉ5

�
+ dabe i fecd

�
ĉ4

�

�

. (2.54)

Corresponding matrix elements for this time-ordered current including the states of the baryon decuplet

are obtained analogously:

(p̄, nop, χ̄|S(ab)(q)|p, klm,χ) = δχ̄χδ
nop
x yz

�

δabδ
x yz

klm

�
3ĉ2+ ĉ4

�
+δa0δb0δ

x yz

klm

�

3ĉ1+
15

4
ĉ6

�

+
�

Λ
a,x yz

klm
δb0+δa0Λ

b,x yz

klm

��3

2
ĉ3+

15

4
ĉ7

�

+
�

Λ
a,x yz
rst Λ

b,rst

klm
+Λ

b,x yz
rst Λ

a,rst

klm

��9

4
ĉ5

�

+ dabeΛ
e,x yz

klm

�
3

2
ĉ4

��

. (2.55)
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2.8 Baryon matrix elements of two vector currents (v v ) via the 1/Nc expansion

Now we turn to the 1/Nc expansion of the baryon matrix elements of the time-ordered product of two

vector currents. The Fourier transform of such a product leads to the following ansatz as an appropriate

starting point:

i

∫

d4 x e−iq·x
�

p̄, . . . , χ̄

�
�
�T V

(a)

i
(x)V

(b)

j
(0)

�
�
� p, . . . ,χ

�

= −δi j

�

p̄, . . . , χ̄

�
�
�
�
ĝ1

�
1

3
δab1+ dabeT e

�

+
1

2
ĝ2{T a, T b}

�
�
�
�
p, . . . ,χ

�

+
(p̄+ p)i(p̄+ p) j

4M

�

p̄, . . . , χ̄

�
�
�
�
ĝ3

�
1

3
δab1+ dabeT e

�

+
1

2
ĝ4{T a, T b}

�
�
�
�
p, . . . ,χ

�

+ εi jk fabe

�

p̄, . . . , χ̄
�
� ĝ5Ge

k

�
� p, . . . ,χ

�

+

�

p̄, . . . , χ̄

�
�
�
�

1

2
ĝ6{Ga

i
, Gb

j
}
�
�
�
�
p, . . . ,χ

�

+

�

p̄, . . . , χ̄

�
�
�
�

1

2
ĝ7{Ga

j
, Gb

i
}
�
�
�
�
p, . . . ,χ

�

+ O (1/Nc). (2.56)

We restrict ourselves to the examination of the spatial contributions i, j ∈ {1, 2, 3} instead of the general

Lorentz indices µ,ν . To obtain an appropriate result to leading order N0
c

the large-Nc parameters gi, i ∈
{1, . . . , 7} have to belong to different large-Nc orders. We take our operator basis (Eq. (2.20)) into

account and determine the large-Nc order of the one-body operator’s matrix elements via Eq. (2.46).

All three parameters ĝ1, ĝ3 and ĝ5 which are connected to one-body operators only are of order Nc. In

contrast, the parameters ĝ2, ĝ4, ĝ6 and ĝ7 are counted to the order 1/Nc. Hence, the contributions of ĝ1,

ĝ3 and ĝ5 will dominate in the large-Nc limit. The specific composition of the ansatz in Eq. (2.56) arises

as follows: quark-gluon diagrams where each of the flavour matrices λa and lambdab is connected to

only a single quark line establish the one-body operator terms. This kind of diagrams is connected to the

product

λaλb =
2

3
δab1+

�
dabe + i fabe

�
λe (2.57)

that directly follows from the commutation relationships of the SU(3) group’s Lie algebra (Eq. (A.23)).

Since the large-Nc expansion only consists of symmetric contributions by the one-body operators, a com-

bination of δab1 and dabeλe will always occur.

Every product of two one-body operators is able to be expressed as a sum of the commutator and the

anticommutator of the two operators. The SU(6) Lie algebra (Eq. (2.24)) allows us to trace back every

commutator of two one-body operators to a one-body operator. Lutz and Semke [18] identified in ac-

cordance with the reduction rules by Dashen, Jenkins and Manohar [12] those symmetric combinations

which provide a basis for the evaluation of the matrix elements of the baryon ground state tower. All

relevant symmetric combinations consist of either two T -operators, or one T - and one G-operator, or

two G-operators. Hence, the terms connected to the large-Nc parameters ĝ2, ĝ4, ĝ6 and ĝ7 result from

these considerations. However, combinations of one T - and one G-operator seem to be missing in our

ansatz in Eq. (2.56). It is possible to prove with the help of the identity [18]

{Ga
i
, Gb

j
} − {Ga

j
, Gb

i
}= εi jkεklm{Ga

l
, Gb

m
} (2.58)
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that a linear combination of the ĝ6- and ĝ7-terms replaces the missing combination up to leading order.

The one-body operator’s actions on both the octet and decuplet baryon states (Eq. (2.28)) lead us to

the baryon matrix elements of symmetric two one-body operator’s products (see appendix D). Together

with the identities (B.7) - (B.11) including the Pauli matrices σi and the “spin-1

2
-to-spin-3

2
”-transition

matrices, these results enable us to finalise the evaluation of Eq. (2.56).

We introduce the object

C
(ab)

i j
(q) = i

∫

d4 x e−iq·xT V
(a)

i
(x)V

(b)

j
(0), q ≡ p̄− p. (2.59)

and commence with the results of the large-Nc operator analysis for the states of the baryon octet:

�

p̄, d, χ̄

�
�
�C
(ab)

i j
(q)

�
�
� p, c,χ

�

= δχ̄χδi j

�

δabδdc

�

− ĝ1−
1

2
ĝ2+

5

24
ĝ6+

5

24
ĝ7

�
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�
1

2
ĝ2−

1

24
ĝ6−

1

24
ĝ7

�

+δbdδca

�
1

2
ĝ2−

1
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ĝ6−

1

24
ĝ7

�

+dabe i fecd

�
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1

3
ĝ6+

1
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ĝ7

�

+ dabedecd

�

−
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2
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1

8
ĝ6−

1

8
ĝ7

�
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r

3

2
ĝ2+

1

4

r

2

3
ĝ6+

1

4

r

2

3
ĝ7



+ dbcdδa0





r

3

2
ĝ2+

1

4

r

2

3
ĝ6+

1

4

r

2

3
ĝ7





+i facdδb0



−
r

3

2
ĝ2−

1

4

r

2
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1

4

r

2

3
ĝ7



+ i fbcdδa0



−
r

3

2
ĝ2−

1

4

r

2

3
ĝ6−

1

4

r

2

3
ĝ7





+δa0δb0δdc

�

−3 ĝ2−
1

2
ĝ6−

1

2
ĝ7

��

+δχ̄χ
(p̄+ p)i(p̄+ p) j

4M

�

δabδdc

�

ĝ3+
1

2
ĝ4

�

+δadδbc

�

−
1

2
ĝ4

�

+δbdδca

�

−
1

2
ĝ4

�

+dabe i fecd

�
ĝ3
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+ dabedecd

�
3

2
ĝ4

�
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−
r

3
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+ dbcdδa0
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3

2
ĝ4
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r
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2
ĝ4
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r

3

2
ĝ4
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�
3 ĝ4

�

!

+
�
σk

�

χ̄χ iεi jk

�

δacδbd

�
1

8
ĝ6−

1

8
ĝ7

�

+δadδbc

�

−
1

8
ĝ6+

1

8
ĝ7

�

+i fabedecd

�

−
1

2
ĝ5+

1

4
ĝ6−

1

4
ĝ7

�

+ fabe fecd

�
1

3
ĝ5−

5

24
ĝ6+

5

24
ĝ7

��

. (2.60)

The non-diagonal baryon matrix elements for two vector currents in the 1/Nc picture do not vanish in

contrast to the two latter sections and read:
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�

p̄, nop, χ̄

�
�
�C
(ab)

i j
(q)

�
�
� p, c,χ

�

=
�

Siσ j + S jσi

�

χ̄χ

��
dace + i face

�
Λ

nop

be
+
�
dbce + i fbce

�
Λnop

ae

�
�

1

16
p

2
ĝ6+

1

16
p

2
ĝ7

�

+
�
Sk

�

χ̄χ εi jk fabeΛ
nop
ce

�

−
1

2
p

2
ĝ5+

1

8
p

2
ĝ6−

1

8
p

2
ĝ7
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Sk

�

χ̄χ εi jk
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�
Λ

nop
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�
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�
Λnop

ae

�
�
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3

16
p

2
ĝ6+

3

16
p
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ĝ7

�
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�
Sk

�

χ̄χ εi jk

�

δa0iΛ
nop
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+δb0iΛnop
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�
�

1

8
p

3
ĝ6−

1

8
p

3
ĝ7

�

. (2.61)

We complete this section with the corresponding results for the baryon decuplet’s states:

�

p̄, nop, χ̄

�
�
�C
(ab)

i j
(q)

�
�
� p, klm,χ

�

= δχ̄χδi j

�
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9
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ĝ6+

9

32
ĝ7
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Λ
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Λ
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ĝ6+

3

16
ĝ7

�

+
�

SiS
†
j
+ S jS

†
i

�

χ̄χ

�

δabδ
nop

klm

�
1

8
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16
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3

16
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3 Chiral perturbation theory & chiral SU(3) Lagrangian

We will give a short introduction to chiral perturbation theory (χPT) in this chapter. The parts of the

chiral SU(3) Lagrangian which are relevant for the studies in this PhD thesis are introduced step by step.

We present the building blocks of the meson ground states, the octet and the decuplet baryon fields and

the photon field. The inclusion of the photon fields demands a systematic method to include external

fields into the chiral Lagrangian. The approach of external fields by Gasser and Leutwyler [13,14] serves

as a starting point for the derivation of the chiral Lagrangian.

Chiral perturbation theory is based on the chiral Lagrangian. The infinite number of parameters

and interaction terms requests an estimate of the relevance of each term. This can be achieved by a

scale separation. Hence, we need to identify a hard and a soft scale. A small quark mass or a small

momentum is considered as a soft scale Qχ . Further soft scales are the masses of the Goldstone bosons.

Various authors have attempted to determine the coupling constants of the chiral SU(3) Lagrangian [13,

14,36–47]. Some of their investigations are based on quark [42–47] or hadronic models [36,37,40,41]

or use QCD lattice calculations [38] as a theoretical framework. Most of these examinations also use

data from several experiments to fix the masses and coupling constants of χPT.

3.1 Baryon and meson fields

Our investigations require the (J P = 1

2

+
)- and the (J P = 3

2

+
)-baryons. The former are organised in a

SU(3) octet B via

B =







1p
2
Σ0+ 1p

6
Λ Σ+ p

Σ− − 1p
2
Σ0+ 1p

6
Λ n

−Ξ− Ξ0 − 2p
6
Λ







. (3.1)

This matrix representation is equivalent to the decomposition of the (J P = 1

2

+
)-baryon fields into isospin

multiplets:

B =
1
p

2

�

~τ · ~Σ(1195) +α† · N(939) +ΞT (1315)iσ2 ·α+λ8Λ(1115)
�

,

~Σ =
�
Σ1,Σ2,Σ3

�T
, N =

�
p, n
�T

, Ξ =
�

Ξ0,Ξ−
�T

,

α† =
1
p

2

�
λ4+ iλ5,λ6+ iλ7

�
, ~τ=

�
λ1,λ2,λ3

�T
. (3.2)

We introduced the three real fields of the ~Σ baryon triplet via Σ1, Σ2 and Σ3. The nucleon doublet

N contains the proton and the neutron field. Analogously, the Ξ baryon doublet is composed of the

particle fields Ξ0 and Ξ−. The Lambda baryon is connected to the isospin singlet field Λ. We denote

the transpose of the corresponding quantity by T . The auxiliary quantities α, α† and ~τ are composed of

some Gell-Mann matrices λi which are the generators of the SU(3) group (Appendix A.6). Each number

in parentheses specifies the mass of the particles in the corresponding multiplet in MeV.

The behaviour of the decuplet baryon fields under the chiral transformation is not fixed or unique. We

choose the following transformation pattern:
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B→ B′ = RBR†. (3.3)

The chiral transformation uses the elements of the chiral group SU(3)R×SU(3)L×U(1)V and is denoted

by the arrow → in this section. The indices R and L refer to right- and left-handed with respect to the

concept of chirality (see e.g. [35]). The matrix R is fixed by the transformation of the quantity u under

the chiral transformation [31]:

u→ u′ = hRuR† = Ruh
†
L, hL ∈ SU(3)L × U(1)V , hR ∈ SU(3)R× U(1)V . (3.4)

The quantity u is connected to a nonlinear parametrisation of the pseudoscalar meson octet Φ:

u= exp

�
iΦ

2 f

�

. (3.5)

The free parameter f is identical with the pion-decay constant of Eq. (2.40). Similarly to Eq. (3.2), we

introduce the fields of the pseudoscalar meson octet with the help of the following isospin decomposition:

Φ = ~τ · ~π(140) +α† · K(494) + K†(494) ·α+λ8η(547),

~π=
�
π1,π2,π3

�T
, K =

�

K+, K0
�T

. (3.6)

The pion triplet ~π is organised with the real fields π1, π2 and π3 analogously to ~Σ in Eq. (3.2). The kaon

isospin doublet K consists of the K+- and the K0 particle field. We further use the isospin singlet field η.

The remaining expressions are already introduced in Eq. (3.2). The fields of the pions, kaons, anti-kaons

and the η-meson are arranged in a matrix representation as the approximate Goldstone bosons:

Φ =







π0+ 1p
3
η

p
2π+

p
2K+p

2π− −π0+ 1p
3
η
p

2K0

p
2K−

p
2K̄0 − 2p

3
η







. (3.7)

The invariance of the chiral Lagrangian under the SU(3)L × SU(3)R × U(1)V symmetry requires the

definition of covariant derivatives. The coupling of the photon to our octet baryons in combination with

the Goldstone bosons is organised by the following covariant derivative:

DµB = ∂µB+ [Γµ, B]. (3.8)

For this purpose, we introduce the chiral connection Γµ in terms of the left- and right-handed current of

Eq. (2.44) [31]:

Γµ =
1

2

�

u†(∂µ− irµ)u+ u(∂µ− ilµ)u
†
�

. (3.9)
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The transformed chiral connection Γµ is also connected to the transformation matrix R:

Γµ→ Γ′µ = RΓµR†+ R∂µR†. (3.10)

The incoming photon may couple to either the baryons or the mesons. We ask for a representation of

the pseudoscalar mesons which transforms similarly to the octet baryon fields. The vielbein Uµ with the

electromagnetic four-potential Aµ satisfies this condition [34,48]:

Uµ =
1

2
u†

�

∂µ exp

�
iΦ

f

�

+ ieAµ

�

Q, exp

�
iΦ

f

���

u†. (3.11)

The covariant derivative DµUν is constructed in a similar manner to DµB [34,48]:

DµUν = ∂µUν + [Γµ, Uν]. (3.12)

The (J P = 3

2

+
)-baryons build a decuplet Bτ

i jk
where the real particle fields are connected to it as follows:

Bτ
111
=∆++,τ, Bτ

112
=
∆+,τ

p
3

, Bτ
122
=
∆0,τ

p
3

, Bτ
222
=∆−,τ,

Bτ
113
=
Σ+,τ

p
3

, Bτ
123
=
Σ0,τ

p
6

, Bτ
223
=
Σ−,τ

p
3

,

Bτ
133
=
Ξ0,τ

p
3

, Bτ
233
=
Ξ−,τ

p
3

,

Bτ
333
= Ω−,τ. (3.13)

Again, we organise the coupling to the photon field and the Goldstone bosons with the help of a covariant

derivative:

DµBτ
i jk
= ∂µBτ

i jk
+ (ΓB

µ)
l
i
Bτ

l jk
+ (ΓB

µ)
l
j
Bτ

ilk
+ (ΓB

µ)
l
k
Bτ

i jl
. (3.14)

The description of the baryon decuplet under the chiral transformation can be stated in many ways.

Similar to the baryon octet, the transformation matrix R serves for this purpose:

Bτ
i jk
→ Bτ

′
i jk
= Rl

i
Rm

j
Rn

k
Bτ

lmn
. (3.15)

We do not only consider pseudoscalar but also vector mesons for the construction of an effective hadronic

interaction. One important reason for this additional inclusion is our investigation of the photon’s decay

into a vector meson under vector dominance. To implement the symmetries which connect QCD with

χPT, we will introduce the vector meson nonet in the vector representation in section 4.2.

25



3.2 Construction of the chiral Lagrangian

We exclusively use the fields and mathematical structures, the building blocks, which were introduced in

the former section to derive the most general chiral Lagrangian. We organise these ingredients to traces

of products which are SU(3) scalars [31]. So, their invariance under the chiral transformation is secured.

Additionally, the chiral SU(3) Lagrangian obeys the conservation under parity transformation (P), charge

conjugation (C) and time reversal (T) seperately. However, the most general chiral Lagrangian would

still consist of an infinite number of contributions if these were the only restrictions. Chiral symmmetry

is only approximately conserved in addition.

We introduce the parameter Qχ that is of the size of a small hadron momentum or mass as a comple-

mentary expansion parameter [31]. The generating functionals are expanded in terms of the expansion

parameter Qχ . Both the pure meson fields Φ and the baryon fields B and Bµ do not explicitly contain any

hadron momentum or mass:

Φ, B, Bτ ∼ O (Q0
χ). (3.16)

The same applies to our quantities u and u†:

u, u† ∼ O (Q0
χ). (3.17)

The derivative of each of these building blocks provides us with a small boson or fermion momentum in

first approximation:

DµΦ, Dµu, Dµu† ∼ O (Q1
χ). (3.18)

We point out that the masses of the (J P = 1

2

+
)- and the (J P = 3

2

+
)-baryons are huge in comparison to

the Goldstone bosons’ mass. The covariant derivative of both baryon multiplets is of the following chiral

order:

DµB, DµBτ ∼ O (Q0
χ). (3.19)

The two conclusions in the Eqs. (3.17) and (3.18) directly lead us to the order of the chiral connection

Γµ:

Γµ ∼ O (Q1
χ). (3.20)

The vielbein Uµ contains the quantity ∂µu and the photon field Aµ each in one summand. It follows:

Uµ ∼ O (Q1
χ). (3.21)
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We use the scalar density and the vector current for the calculation in the sections 3.3, 3.4 and 4.3. The

scalar source s is linearly connected with χ+ (Eqs. (2.37) and (2.39)). The explicit symmetry breaking

term χ+ consists of the squared pion and kaon masses (Eq. (2.39)). Since the pion and kaon mass are

identified with small hadron masses, the scalar density obeys the following chiral order:

s ∼ O (Q2
χ). (3.22)

The chiral connection Γµ contains both the left- and right-handed currents lµ and rµ, respectively, and

the partial derivatives ∂µu and ∂µu† (Eq. (3.9)). Hence, we make the assumption that the left- and

right-handed currents are counted with the same order like Dµu and Dµu†:

lµ, rµ ∼ O (Q1
χ). (3.23)

The vector current vµ can be written as the linear composition in Eq. (2.44) which directly leads us to

the conclusion:

vµ ∼ O (Q1
χ). (3.24)

The external electromagnetic field does contribute both via the four-potential Aµ and via the electro-

magnetic strength tensor Fµν = ∂µAν − ∂νAµ to the chiral Lagrangian. Due to (2.43) and (2.44), it

holds:

Aµ ∼ O (Q1
χ), Fµν ∼ O (Q2

χ). (3.25)

We conclude straightforwardly for the covariant derivative DµUν :

DµUν ∼ O (Q2
χ). (3.26)

3.3 Sum rules for one scalar current

To carry out an explicit matching between the large-Nc and the free parameters of the chiral Lagrangian,

we have to perform a low-momentum expansion of its relevant terms. We remember section 2.5: the

scalar current s enters the Lagrangian via the explicit symmetry breaking of the chiral symmetry. The

explicit symmetry breaking enters the chiral Lagrangian via the quantities χ+ and χ− which are related

to the non-linear representation u of Eq. (3.5) through 1

χ± =
1

2
uχ0u±

1

2
u†χ0u†, (3.27)

1 The space dependence of all relevant quantities will be omitted for simplification.
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where χ0 is defined by Eq. (2.39). We identify five chiral symmetry breaking terms

L (2)χ = 2b0 t r(B̄B) t r(χ+) + 2bD t r(B̄{χ+, B}) + 2bF t r(B̄[χ+, B])

− 2d0 t r(B̄µ · Bµ) t r(χ+)− 2dD t r((B̄µ · Bµ)χ+) (3.28)

of the chiral Lagrangian at order Q2
χ . We make use of the Gell-Mann matrices (Eq. (A.19)) as the

generators of the SU(3) group and establish the following decomposition scheme:

B =
1
p

2

8∑

a=1

Baλa, s =
1

2

8∑

a=0

saλa. (3.29)

The singlet case of the scalar current (a = 0) is organised with the additional matrix λ0 of Eq. (A.29). It

is our goal to compute the baryon matrix elements of the scalar current

S(a)(x)≡ q̄(x)
λa

2
q(x). (3.30)

Here, the Heisenberg quark-field operator is denoted with q(x). The quantity of our interest is the

Fourier transform

S(a)(q) = i

∫

d4 x e−iq·x S(a)(x), q ≡ p̄− p. (3.31)

To investigate the low-momentum behaviour of baryon matrix elements of S(a)(q), we make use of the

following functional derivative of the baryon transition amplitude F with respect to the scalar source

function s(x):

〈p̄, . . . |S(a)(x)|p, . . . 〉= −i
δ

δsa(x)
F (p̄, p; v , a, s, p)

�
�
�
�
�

v=0,a=0,s=Mq ,p=0

. (3.32)

Here, we identify Mq with the mass matrix Mq = diag(mu, md , ms) (see section 2.5). This functional

derivative requires the transition amplitude between two baryon states evaluated with external fields:

F (p̄, p; v , a, s, p)≡ 〈~̄pout|~pin〉connected
v ,a,s,p

. (3.33)

This transition amplitude is calculated via the approach with external fields from section 2.5. The three-

momenta ~̄pout and ~pin denote the incoming and outgoing state, respectively. Here, we utilise the gene-

rating functional 〈~̄pout|~pin〉connected
v ,a,s,p

which is equivalent to the vacuum-to-vacuum transition amplitude in

Eq. (2.32). It enables us to calculate baryon matrix elements of certain combinations of quark field

operators. We introduce the baryon octet and the baryon decuplet states
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|p, b,χ〉, |p, klm,χ〉 (3.34)

analogously to the corresponding states in the large-Nc picture (Eqs. (2.26) and (2.27)): While the

former state is specified by the flavour index b ∈ {1, . . . , 8}, the latter carries the flavour numbers k, l, m ∈
{1, 2, 3}. Again, the polarisation of the (J P = 1

2

+
)-baryon’s spin χ1/2 runs from 1 to 2. It holds χ3/2 ∈

{1, 2, 3, 4} in the case of the decuplet state. The matrix elements of one scalar current Sa(0) between

(J P = 1

2

+
)-baryon states are evaluated by chiral expansion in the first step:

〈p̄, c, χ̄ |S(a)(q)|p, b,χ〉= ū(p̄, χ̄)
�p

6b0 δa0δbc + 2bD dabc + 2bF i fabc

�

u(p,χ)

= δχ̄χ

�p

6b0 δa0δbc + 2bD dabc + 2bF i fabc

�

. (3.35)

To obtain this result, we utilise the relationships in Eq. (A.23) which constitute the Lie algebra structure

of the SU(3) group. The non-relativistic expansion in the Dirac representation of the product of ū(p̄, s̄)

and u(p, s) (Eq. (F.11)) provides us with the normalization condition ū(p, χ̄)u(p,χ) = δχ̄χ for the baryon

octet states. A similar calculation is performed for the matrix elements between two decuplet baryon

states:

〈p̄, nop, χ̄|S(a)(q)|p, klm,χ〉= −ūα(p̄, χ̄)
�p

6d0 δa0δ
nop

klm
+ dDδ

nop
x yz
Λ

a,x yz

klm

�

uα(p,χ)

= δχ̄χ

�p

6d0 δa0δ
nop

klm
+ dDδ

nop
x yz
Λ

a,x yz

klm

�

. (3.36)

This calculation requires the completely symmetrised expressions δ
nop

klm
and δnop

x yz
Λ

a,x yz

klm
of Eq. (2.29) and

(2.31), respectively. The normalisation condition for the spinors of the (J P = 3

2

+
)-baryon states reads

ūα(p, χ̄)uα(p,χ) = −δχ̄χ and results from the non-relativistic expansion in the Eqs. (F.12) - (F.18).

The comparison of both Eq. (3.35) and Eq. (3.36) with Eq. (2.49) leads us to relationships between

both kind of parameters:

b0 =
1
p

6

�

3b̂1+
3

4
b̂2

�

+
1

2
b̂3−

1

4
b̂4, bD =

3

4
b̂4, bF =

1

2

�

b̂3+ b̂4

�

,

d0 =
1
p

6

�

3b̂1+
15

4
b̂2

�

, dD =
3

2
b̂3+

15

4
b̂4. (3.37)

The correlation of the chiral parameters implies the sum rules [49]

bD = 0, d0− b0 = −
1

3
dD, dD = 3bF (3.38)

at leading order ( b̂1,3 6= 0, b̂2,4 = 0), the two relations [49]

1

2

�
b0− d0

�
+ bD =

1

6
dD, dD = 3(bD + bF). (3.39)
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at next-to-leading order ( b̂1,3,4 6= 0, b̂2 = 0) and [49]

bF + bD =
1

3
dD (3.40)

at next-to-next-to-leading order ( b̂1,2,3,4 6= 0).

3.4 Sum rules for two scalar currents

The following twelve symmetry-breaking terms from the chiral Lagrangian at order Q4
χ serve as the basis

of the calculation of sum rules for two scalar currents:

L (4)χ = c0 t r(B̄B) t r(χ2
+
) + c1 t r(B̄χ+) t r(χ+B) + c2 t r(B̄{χ2

+
, B})

+ c3 t r(B̄[χ2
+

, B]) + c4 t r(B̄{χ+, B}) t r(χ+)

+ c5 t r(B̄[χ+, B]) t r(χ+) + c6 t r(B̄B)(t r(χ+))
2

− e0 t r(B̄µ · Bµ) t r(χ2
+
)− e1 t r((B̄µ ·χ+)(χ+ · Bµ))

− e2 t r((B̄µ · Bµ)χ2
+
)− e3 t r((B̄µ · Bµ)χ+) t r(χ+)

− e4 t r(B̄µ · Bµ)(t r(χ+))
2. (3.41)

We study the baryon matrix elements of the time-ordered product of two scalar currents

S(ab)(q) = i

∫

d4 x e−iq·xT S(a)(x)S(b)(0), q ≡ p̄− p. (3.42)

To investigate the low-momentum behaviour of these baryon matrix elements, they are obtained with

the help of the second functional derivative with respect to the scalar source function s(x):

〈p̄, . . . |T S(a)(x)S(b)(y)|p, . . . 〉= (−i)2
δ

δsa(x)

δ

δsb(y)
F (p̄, p; v , a, s, p)

�
�
�
�
�

v=0,a=0,s=Mq ,p=0

. (3.43)

Again, we identify Mq with the mass matrix Mq = diag(mu, md , ms) of section 2.5. Analogously to Eq.

(3.33), the second functional derivative requires the transition amplitude between two baryon states

evaluated with external fields:

F (p̄, p; v , a, s, p)≡ 〈~̄pout|~pin〉connected
v ,a,s,p

. (3.44)

The chiral expansion provides us via the Lie algebra of the SU(3) group (Eq. (A.23)) with the matrix

elements
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〈p̄, d, χ̄ |S(ab)(q)|p, c,χ〉= δχ̄χ
�

δabδcd

�

c0+
2

3
c2

�

+
�
δacδbd +δadδbc

�
�

1

2
c1

�

+δa0δb0δcd

�
3c6

�

+
�
dacdδb0+δa0dbcd

�





r

3

2
c4



+
�
i facdδb0+δa0i fbcd

�





r

3

2
c5





+ dabedecd

�
c2

�
+ dabe i fecd

�
c3

�

�

(3.45)

between two octet baryons with the initial flavour index c = 1, . . . , 8 and the final flavour index d within

the same range of numbers. The spin projections χ and χ̄ were introduced in the Eqs. (2.26) and

(2.27). The examination of the current-current correlation function S(ab)(q) (Eq. (3.42)) between two

decuplet baryon states with the initial flavour indices k, l, m ∈ {1, 2, 3} and the final flavour indices

n, o, p ∈ {1, 2, 3} leads to

〈p̄, nop, χ̄|S(ab)(q)|p, klm,χ〉= δχ̄χδnop
x yz

�

δabδ
x yz

klm

�

e0+
1

2
e1+

1

3
e2

�

+δa0δb0δ
x yz

klm

�
3e4

�

+
�

Λ
a,x yz

klm
δb0+δa0Λ

b,x yz

klm

�



1

2

r

3

2
e3



+ dabeΛ
e,x yz

klm

�
3

4
e1+

1

2
e2

�

+
�

Λ
a,x yz
rst Λ

b,rst

klm
+Λ

b,x yz
rst Λ

a,rst

klm

��

−
3

8
e1

��

. (3.46)

We follow the Einstein summation convention and add up all possible expressions of a certain term if the

index variables x , y, z ∈ {1, 2, 3} appear twice in this term. The investigation of scalar currents and the

conservation of the spin prevent the existence of non-vanishing off-diagonal transition matrix elements:

〈p̄, d, χ̄|S(ab)(q)|p, klm,χ〉= 〈p̄, nop, χ̄|S(ab)(q)|p, c,χ〉= 0. (3.47)

We match both the matrix elements from the explicit chiral symmetry breaking (left-hand side) and our

large-Nc operator analysis (right-hand side):

3c6 = 3ĉ1+
p

6ĉ3+ 6ĉ5+
3

4
ĉ6−

r

3

2
ĉ7, c0+

2

3
c2 = 3ĉ2+ ĉ4+ ĉ5, c3 = ĉ4,

r

3

2
c5 = ĉ3+

p

6ĉ5+ ĉ7,
1

2
c1 =−ĉ5, c2 = 3ĉ5,

r

3

2
c4 = −

p

6ĉ5+
3

2
ĉ7,

3e4 = 3ĉ1+
15

4
ĉ6, e0+

1

2
e1+

1

3
e2 = 3ĉ2+ ĉ4,

1

2

r

3

2
e3 =

3

2
ĉ3+

15

4
ĉ7,

−
3

4
e1 =

9

4
ĉ5,

3

4
e1+

1

2
e2 =

3

2
ĉ4. (3.48)

The elimination of the large-Nc constants gives rise to the seven sum rules [49]
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c1 = −
2

3
c2 = c4 =

1

3
e1, c3 =

1

2
e1+

1

3
e2, c1+ c6 =

1

3
e3+ e4,

c0−
1

2
c1 = c3+ e0, c1+ c5 =

1

3
e3 (3.49)

at leading order (ĉ1,2,3,4,5 6= 0, ĉ6,7 = 0) and the six relationships [49]

c1 = −
2

3
c2 =

1

3
e1, c0+

1

3
c2 = c3+ e0,

1

3
c2+ c4+

1

2
c6 =

1

6
e3+

1

2
e4,

c4+ c5 =
1

3
e3, c3 =

1

2
e1+

1

3
e2 (3.50)

at next-to-leading order (ĉ1,2,3,4,5,7 6= 0, ĉ6 = 0). At next-to-next-to-leading order (ĉ1,2,3,4,5,6,7 6= 0) the

sum rules [49]

c1 = −
2

3
c2 =

1

3
e1, c0+

1

3
c2 = c3+ e0,

c4+ c5 =
1

3
e3, c3 =

1

2
e1+

1

3
e2 (3.51)

are obeyed.
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4 Phenomenology of vector mesons

Our ultimate goal is to explore two-body scattering processes with baryons like photoproduction. Ac-

cording to Sakurai [50], the initial photon can also couple directly to a vector meson before interacting

with the initial baryon. The conversion of a photon into a neutral vector meson is motivated by the phe-

nomenological vector-meson dominance model (VMD). The vector mesons with neutral electromagnetic

charge dominate processes where photons can couple directly to vector mesons [51]. An appropriate

tool to explore systematically the validity of the VMD hypothesis and to explain why it is valid under

particular circumstances would be an effective field theory formulated with vector mesons.

Ecker, Gasser, Pich and de Rafael [36] pointed out that the exchange of vector meson resonances

has got a major impact on the low-energy parameters of the chiral Lagrangian. Chiral Lagrangians with

vector meson fields have been constructed by several authors [15,52–55]. Such effective Lagrangians can

be successfully applied to hadronic and dileptonic decays in a resonance saturation approach [36,37,40].

All this points to the high relevance of vector mesons as active degrees of freedom in low-energy QCD.

4.1 Hadrogenesis conjecture

Is it possible to construct a systematic chiral Lagrangian with vector mesons? The ordering of the infinite

number of interaction terms requests a scale separation. Hence, we need to identify a hard and a soft

scale. A small quark mass or a small momentum is considered as a soft scale Qχ . Further soft scales

are the masses of the Goldstone bosons. However, the identification of the hard scale is difficult in

the case of coupled-channel dynamics. The investigation of coupled-channel dynamics requires a non-

perturbative treatment of the chiral Lagrangian. As a result, dynamic scales may appear and complicate

the identification of a hard scale. Here, we rely on the hadrogenesis conjecture: only the pseudoscalar

meson octet as Goldstone bosons and the light vector meson nonet serve as meson basis states in the

chiral Lagrangian. All other mesons are generated dynamically out of these (J P = 0−)- and (J P = 1−)-
states [56]. The hadrogenesis conjecture may be justified by the appearance of a specific mass gap in

the chiral limit: as the number of colours Nc in QCD increases the masses of the remaining meson states

could be much larger than the masses of the light vector mesons.

Figure 4.1.:Meson spectrum of QCD predicted by the hadrogenesis conjecture [56]

Terschluesen, Leupold and Lutz [56] estimate
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Λhard ≥ (2− 3)GeV (4.1)

if the pseudoscalar and vector meson mass mP and mV , respectively, is of order Q1
χ . We adopt this

estimation in this thesis and integrate the heavy meson states beyond the mass gap in the large-Nc limit

out.

The hadrogenesis conjecture makes use of both the (J P = 0−)- and the (J P = 1−)-boson fields as

ground states. A counting scheme for vector meson fields in the tensor representation was suggested by

Terschluesen, Leupold and Lutz [56]. It is pointed out that both a consistent counting scheme for vector

mesons and baryons is not developed yet and that the following discussion is of phenomenological

nature.

4.2 Chiral interactions with vector mesons

In the following we will study the phenomenology of two-body interaction terms with vector mesons. The

various parameters will be correlated later on by a matching to the large-Nc analysis of the two-vector

current correlator of section 2.8. Such interactions are highly relevant for coupled-channel studies of

baryon resonances [19]. The isospin decomposition of the vector meson nonet into the corresponding

isospin multiplets is given by:

Vµ = ~τ · ~ρµ(770) +α† · Kµ(892) + K†
µ(892) ·α

+

�
2

3
1(3×3)+

1
p

3
λ8

�

ωµ(782) +

 p
2

3
1(3×3)−

r

2

3
λ8

!

φµ(1020),

~ρµ = (ρµ,1,ρµ,2,ρµ,3)
T , Kµ = (K

+
µ , K0

µ)
T ,

α† =
1
p

2

�
λ4+ iλ5,λ6+ iλ7

�
, ~τ=

�
λ1,λ2,λ3

�T
. (4.2)

As defined in Eq. (3.2), the numbers in parentheses denote the masses of the degenerate multiplets in

the unit MeV. We use the real fields ρµ,i, i = 1, 2, 3 while the vector kaon doublet fields Kµ are given

via particle fields. The auxiliary quantities α, α† and ~τ are defined in Eq. (3.2). The ωµ- and φµ fields

are identified with isospin singlet fields. The matrix form of the vector meson nonet in the vector field

representation is directly derived from the isospin decomposition:

Vµ =







ρ0
µ+ωµ

p
2ρ+µ

p
2K+µp

2ρ−µ −ρ0
µ+ωµ

p
2K0

µp
2K−µ

p
2K̄0

µ

p
2φµ







. (4.3)

The vector meson nonet transforms under chiral transformations like the vielbein [34,48]. The covariant

derivative DµVα, that can be explicitly written like

DµVα = ∂µVα+ [Γµ, Vα] + ieAµ[Q, Vα], (4.4)

uses the chiral connection and preserves the validity of the chiral Ward identities in χPT.
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We begin with interaction terms involving two vector fields Vµ with two (J P = 1

2

+
)-baryon fields. The

contributions are organised into scalar (S), tensor (T) and vector (V ) parts. The scalar parts read:

L (S)4,+[V, V ] =
g
(S)

0,V V

4
t r(B̄B) t r({Vµ, Vµ})

+
g
(S)

F,V V

4
t r(B̄[{Vµ, Vµ}, B]) +

g
(S)

D,V V

4
t r(B̄{{Vµ, Vµ}, B})

+
g
(S)

1,V V

4

�

t r(B̄Vµ) t r(VµB) + t r(B̄Vµ) t r(VµB)
�

+
g
(S)

2,V V

4

�

t r(B̄{Vµ, B}) t r(Vµ) + t r(B̄{Vµ, B}) t r(Vµ)
�

+
g
(S)

3,V V

4

�

t r(B̄[Vµ, B]) t r(Vµ) + t r(B̄[Vµ, B]) t r(Vµ)
�

+
g
(S)

4,V V

4
t r(B̄B)

�

t r(Vµ) t r(Vµ) + t r(Vµ) t r(Vµ)
�

. (4.5)

The tensor part L (T )4,− [V, V ] contains of the following terms:

L (T )4,− [V, V ] =
g
(T )

0,V V

4
t r(B̄iσµνB) t r([Vµ, Vν])

+
g
(T )

F,V V

4
t r(B̄iσµν[[Vµ, Vν], B]) +

g
(T )

D,V V

4
t r(B̄iσµν{[Vµ, Vν], B})

+
g
(T )

1,V V

4

�

t r(B̄iσµνVµ) t r(VνB)− t r(B̄iσµνVν) t r(VµB)
�

+
g
(T )

2,V V

4

�

t r(B̄iσµν{Vµ, B}) t r(Vν) + t r(B̄iσµν{Vν , B}) t r(Vµ)
�

+
g
(T )

3,V V

4

�

t r(B̄iσµν[Vµ, B]) t r(Vν) + t r(B̄iσµν[Vν , B]) t r(Vµ)
�

. (4.6)

Finally, we present the important vector parts of the chiral SU(3) Lagrangian:

L (V )4,+ [V, V ] =
g
(V )

0,V V

8
t r(B̄iγµ(DνB)) t r({Vµ, Vν}) + h.c.

+
g
(V )

F,V V

8
t r(B̄iγµ[{Vµ, Vν}, (DνB)]) + h.c.

+
g
(V )

D,V V

8
t r(B̄iγµ{{Vµ, Vν}, (DνB)}) + h.c.

+
g
(V )

1,V V

8

�

t r(B̄iγµVµ) t r(Vν(D
νB)) + t r(B̄iγµVν) t r(Vµ(D

νB))
�

+ h.c.

+
g
(V )

2,V V

8

�

t r(B̄iγµ{Vµ, (DνB)}) t r(Vν) + t r(B̄iγµ{Vν , (DνB)}) t r(Vµ)
�

+ h.c.
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+
g
(V )

3,V V

8

�

t r(B̄iγµ[Vµ, (DνB)]) t r(Vν) + t r(B̄iγµ[Vν , (D
νB)]) t r(Vµ)

�

+ h.c.

+
g
(V )

4,V V

8
t r(B̄iγµ(DνB))

�

t r(Vµ) t r(Vν) + t r(Vµ) t r(Vν)
�

+ h.c. (4.7)

The signs ’+’ and ’-’ refer to the behaviour of the terms under charge conjugation. The examination

of the transition baryon matrix elements require the axial vector part L (A)4,+[V, V ] of the chiral SU(3)

Lagrangian:

L (A)4,+[V, V ] = −
h
(A)

1,V V

4

�

t r((B̄µ · γ5γ
νB)) t r({Vµ, Vν}) + h.c.

�

−
h
(A)

2,V V

4

�

t r((B̄µ · γ5γ
νB){Vµ, Vν}) + h.c.

�

−
h
(A)

3,V V

4

�

t r((B̄µ · Vµ)γ5γ
ν(VνB)) + t r((B̄µ · Vν)γ5γ

ν(VµB)) + h.c.
�

−
h
(A)

4,V V

4

�

t r((B̄µ · γ5γ
νB)Vµ) t r(Vν) + t r((B̄µ · γ5γ

νB)Vν) t r(Vµ) + h.c.
�

−
h
(A)

5,V V

4
t r((B̄µ · γ5γ

νB))
�

t r(Vµ) t r(Vν) + t r(Vν) t r(Vµ) + h.c.
�

. (4.8)

The relevant parts of the chiral SU(3) Lagrangian which consist of two (J P = 3

2

+
)-baryon states are

organised in a similar way. The scalar, vector and tensor part are presented below:

L (S)4,+[V, V ] = −
h
(S)

1,V V

4
t r((B̄µ · Bµ)) t r({Vν , V ν})−

h
(S)

2,V V

4
t r((B̄µ · Bµ){Vν , V ν})

−
h
(S)

3,V V

4

�

t r((B̄µ · Vν)(V ν · Bµ)) + t r((B̄µ · V ν)(Vν · Bµ))
�

−
h
(S)

4,V V

4

�

t r((B̄µ · Bµ)Vν) t r(V ν) + t r((B̄µ · Bµ)v ν) t r(Vν)
�

−
h
(S)

5,V V

4
t r((B̄µ · Bµ))

�
t r(Vν) t r(V ν) + t r(V ν) t r(Vν)

�

−
h
(S)

8,V V

4
t r((B̄µ · Bν)) t r({Vµ, V ν})

−
h
(S)

9,V V

4
t r((B̄µ · Bν){Vµ, V ν})

−
h
(S)

10,V V

4

�

t r((B̄µ · Vµ)(V ν · Bν)) + t r((B̄µ · V ν)(Vµ · Bν))
�

−
h
(S)

11,V V

4

�

t r((B̄µ · Bν)Vµ) t r(V ν) + t r((B̄µ · Bν)V ν) t r(Vµ)
�

−
h
(S)

12,V V

4
t r((B̄µ · Bν)) (t r(Vµ) t r(V ν) + t r(V ν) t r(Vµ)) , (4.9)
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L (V )4,+ [V, V ] = −
h
(V )

1,V V

4
t r((B̄α · iγµ(DνBα))) t r({Vµ, Vν}) + h.c.

−
h
(V )

2,V V

4
t r((B̄α · iγµ(DνBα)){Vµ, Vν}) + h.c.

−
h
(V )

3,V V

4

�

t r((B̄α · Vµ)iγµ(Vν · (DνBα))) + t r((B̄α · Vν)iγµ(Vµ · (DνBα)))
�

+ h.c.

−
h
(V )

4,V V

4

�

t r((B̄α · iγµ(DνBα))Vµ) t r(Vν) + t r((B̄α · iγµ(DνBα))Vν) t r(Vµ)
�

+ h.c.

−
h
(V )

5,V V

4
t r((B̄α · iγµ(DνBα)))

�

t r(Vµ) t r(Vν) + t r(Vν) t r(Vµ)
�

+ h.c., (4.10)

L (T )4,− [V, V ] = −
h
(T )

1,V V

4
t r((B̄α · iσµνBα)) t r([Vµ, Vν])

−
h
(T )

2,V V

4
t r((B̄α · iσµνBα)[Vµ, Vν])

−
h
(T )

3,V V

4

�

t r((B̄α · Vµ)iσµν(Vν · Bα))− t r((B̄α · Vν)iσµν(Vµ · Bα))
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. (4.11)

4.3 Sum rules for two vector currents

We derive sum rules for the phenomenological Lagrangian of the previous section. We start with the

analysis of baryon matrix elements of two vector currents. The vector quark current

V (a)µ (x)≡ q̄(x)γµ
λ(a)

2
q(x) (4.12)

is utilised to derive the baryon matrix elements of the time-ordered product of two vector currents

〈p̄, χ̄ , d|C (ab)
µν (p̄− p)|p,χ , c〉, 〈p̄, χ̄ , nop|C (ab)

µν (p̄− p)|p,χ , c〉, 〈p̄, χ̄ , nop|C (ab)
µν (p̄− p)|p,χ , klm〉

(4.13)

with

C (ab)
µν (q) = i

∫

d4 x e−iq·xT V (a)µ (x)V
(b)
ν (0), q ≡ p̄− p. (4.14)

We remember that the quark spinor q(x) consists of the u-, d- and s-quark fields. The Gell-Mann matrices
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λa with the flavour index a are given in the appendix A.6. The baryon states |p,χ , a〉 and |p,χ , i jk〉 are

already defined in (3.34). To investigate the low-momentum behaviour of the baryon matrix elements

(Eq. (4.13)), these baryon matrix elements are obtained with the help of the second functional derivative

with respect to the vector source function vµ(x), analogously to the Eqs. (3.43) and (3.44):

〈p̄, . . . |T Vµ,(a)(x)V ν ,(b)(y)|p, . . . 〉= (−i)2
δ

δv
a
µ(x)

δ

δv
b
ν (y)
F (p̄, p; v , a, s, p)

�
�
�
�
�

v=0,a=0,s=Mq ,p=0

. (4.15)

The connection between the vector field Vµ and the vector current vµ is given by 1

Vµ ∋ vµ, (4.16)

i. e. we simply substitute the vector meson field Vµ by the vector current vµ in our computations.

We calculate all leading order contributions to the octet baryon matrix elements of Eq. (4.14) for two

baryon octet states
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+ ū(p̄, χ̄)iσµνu(p,χ)






fabe fecd

h

−1

2
g
(T )

F,V V

i

+ i fabedecd

h
1

2
g
(T )

D,V V

i

+
�
δdaδbc −δd bδac

�
h

1

4
g
(T )

1,V V

i




 , (4.17)

for one baryon octet and one baryon decuplet state

1 The space dependence of all relevant quantities will be omitted for simplification.
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〈p̄, χ̄ , nop|C (ab)
µν (p̄− p)|p,χ , c〉

= ūµ(p̄, χ̄)γνγ5u(p,χ)
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(4.18)

and for two baryon decuplet states

〈p̄, χ̄ , nop|C (ab)
µν (p̄− p)|p,χ , klm〉

= −ūα(p̄, χ̄)gµνu
α(p,χ)
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 . (4.19)

The symmetrised flavour-transition tensors of Eq. (2.29) are utilised in the two latter calculations.

The baryon flavour indices c and d run from 1 to 8. Although we consider both the octet and

singlet contributions of two vector currents (a, b ∈ {0, . . . , 8}), the summation over the internal in-

dex e only covers the natural numbers from 1 to 8. Furthermore, the decuplet flavour indices obey

k, l, m, n, o, p, r, s, t ∈ {1, 2, 3}. We normalise the Dirac spinors u(p,χ) and the uα(p,χ) by the conditions
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ū(p, χ̄)u(p,χ) = δχ̄χ and ūα(p, χ̄)uα(p,χ) = −δχ̄χ . Before we derive the sum rules for the vector cur-

rent correlation function, the products ū(p̄, χ̄) Γ u(p,χ) and ūµ(p̄, χ̄) Γ uν(p,χ) with Γ = 1, γµ, σµν of

the chiral expansion have to be expanded non-relativistically up to the order O
�

Q2
χ

M2

�

. The order is de-

termined by the baryon three-momenta ~̄p,~p via |~̄p|, |~p| ∼ O (Q1
χ). The derivation and the final results for

the relevant products are given in the appendix F. We include these results and proceed with the leading

order contributions (Eqs. (4.17), (4.18), (4.19)) in the nonrelativistic case for two (J P = 1

2

+
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for one (J P = 1

2

+
)- and one (J P = 3
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)-baryon
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and for two (J P = 3
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The coefficients of corresponding flavour structures from both the chiral and the large-Nc expansion are

matched and provide us with the following set of equations for two octet baryon states
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ĝ+,

g
(S)

D,V V = 3 ĝ2+
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for one octet and one decuplet baryon state

41



h
(A)

2,V V = 0, h
(A)

3,V V = 2 ĝ+,
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and for two decuplet baryon states
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Here, we make use of the quantity

ĝ± =
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�
(4.26)

for simplification purposes.

We eliminate the large-Nc parameters and obtain a set of sum rules which relate the chiral parameters

to each other:
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(S)

10,V V , g
(T )

D,V V =
1

3
h
(T )

2,V V −
3

8
h
(A)

4,V V ,

g
(V )

D,V V = −h
(V )

3,V V , g
(S)

F,V V =
1

3
h
(S)

2,V V +
1

2
h
(S)

3,V V +
2

9
h
(S)

10,V V , g
(T )

F,V V =
2

9
h
(T )

2,V V −
3

8
h
(A)

4,V V ,

g
(V )

F,V V =
2

3
h
(V )

2,V V + h
(V )

3,V V , h
(S)

9,V V = −h
(S)

10,V V = 3h
(A)

3,V V ,

h
(S)

1,V V = h
(S)

4,V V = h
(S)

5,V V = h
(S)

8,V V = h
(S)

11,V V = h
(S)

12,V V = h
(V )

1,V V = h
(V )

4,V V = h
(V )

5,V V = h
(T )

3,V V = h
(A)

2,V V = 0.

(4.27)
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5 On-shell scattering amplitudes & decomposition

A short introduction into the basics of scattering theory will be given at the beginning of this chapter.

Two-body scattering reactions will be decomposed leading to Mandelstam’s dispersion integral represen-

tation. We also confront this representation with complementary decomposition schemes. In accordance

to Mandelstam’s approach, we will present the resulting invariant functions Gn(s, t) for different com-

binations of spin. The motivation for and the introduction into a modified decomposition scheme for

the on-shell scattering amplitudes of photoproduction processes is presented in the following section. A

stepwise derivation of the appropriate projection algebra for the decomposition of our photoproduction

scattering amplitudes is presented. Four examples for the application of this projection algebra conclude

this chapter.

5.1 Fundamentals of scattering theory

We commence this section with the introduction of a general scattering matrix S which satisfies the

unitarity condition:

SS† = S†S = 1. (5.1)

Unitarity ensures that the probability density of the scattered state is an invariant under scattering [57]:

〈 f | f 〉= 〈i|S†S|i〉= 〈i|i〉. (5.2)

The initial state |i〉 is observed in the limit t → −∞. It is transformed after the scattering into the final

state | f 〉= S|i〉 for t → +∞. We relate S with the transition amplitude T with the help of

S = 1+ iT. (5.3)

The scattering matrix S is calculated via the equation of motion in the interaction picture [58]:

iħh
d

d t
|Ψ(t)〉=HI(t)|Ψ(t)〉. (5.4)

The scattered state |Ψ(t)〉 is observed at a discrete time. The Hamiltonian in the interaction picture

HI(t) is related to the Hamiltonian in the Schroedinger pictureH S
I

through [58]

HI(t) = exp
�

iHS
0
(t − t0)

�

H S
I

exp
�

−iHS
0
(t − t0)

�

. (5.5)

The equation of motion is transformed in combination with the initial condition
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|Ψ(t = −∞)〉 ≡ |i〉 (5.6)

to the integral equation [58]

|Ψ(t)〉= |i〉+ (−i)

∫ t

−∞
dt1 HI(t1)|Ψ(t1)〉. (5.7)

We iteratively solve this equation with respect to the time t i and arrive at the Dyson expansion as solution

for the scattering matrix S [58]:

S =

∞∑

n=0

(−i)n

n!

∫

. . .

∫

d4 x1d4 x2 . . . d4 xnT {HI(x1)HI(x2) . . .HI(xn)}. (5.8)

The integrals cover the complete space-time while T describes the time-ordering operator. It acts on a

product of Hamiltonian densitiesHI(x i) in the interaction picture at the spatial coordinate x i.

5.2 Decomposition into invariant amplitudes

The scattering matrix S describes the transition between the incoming two-body state |α〉 and the outgo-

ing state |β〉:

Sαβ = 〈β |S|α〉. (5.9)

The Dyson expansion of the scattering matrix in Eq. (5.8) is used to calculate matrix elements of the

transition amplitude T which we introduced in (5.9) for e.g. photoproduction:

〈q̄p̄|T |qp〉= (2π)4δ4(q̄+ p̄− q− p)TSqSp→Sq̄Sp̄
. (5.10)

While q and p represent the 4-momentum of the initial boson and fermion, respectively, we name the

4-momenta of the final boson and fermion by q̄ and p̄, respectively. Both energy and 3-momentum

conservation are assured by the δ4-function. We distinguish the invariant amplitudes TSqSp→Sq̄Sp̄
by the

Spin Si of the corresponding particle with the momentum i. The investigations in this thesis make it

necessary to develop a decomposition scheme for these invariant amplitudes. We would like to point

out that the choices we make regarding the decomposition scheme are not unique. Chew, et al. [59]

constructed a decomposition scheme for on-shell pion photoproduction based on the CGLN amplitudes

A(s, t), B(s, t), C(s, t) and D(s, t). Six amplitudes ABT
1−6
(s, t) were derived by Bardeen and Tung [60]

for the decomposition of Compton scattering amplitudes. Other schemes for particles with arbitrary

spin were also derived (see e.g. [61]). All of these cited sets of amplitudes are free from kinematical

constraints. Nevertheless, we avoid these approaches because they are unsystematically derived each for

a specific reaction process. Additionally, the results on this field are mostly restricted to particles with

lower spin like [62] and cannot be extended systematically to the particle multiplets we use in this thesis.
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We will rather derive systematically spin-dependent decomposed expressions for our on-shell scattering

amplitudes step by step. It is pointed out that the further discussion is restricted to two-body processes

with both an incoming and an outgoing pair of one boson and one fermion. This decomposition leads

into a set of analytic functions. Additionally, the freedom from kinematical constraints is demanded from

our decomposition scheme. The analytic functions Gn(s, t) are expressed in terms of the two Mandelstam

variables s and t.

First, we recall the Mandelstam variables s, u and t and their relationship to the initial and final boson

masses m and m̄, and the initial and final fermion masses M and M̄ :

s = (p+ q)2 = (p̄+ q̄)2,

u= (p− q̄)2 = (p̄− q)2,

t = (p− p̄)2 = (q̄− q)2,

s+ u+ t = m2+M2+ m̄2+ M̄2. (5.11)

At the beginning, we treat elastic scattering of a (J P = 0−)-boson off a (J P = 1

2

+
)-fermion with the same

kind of particles in the outgoing channel. The dimension of every set of invariant functions Gn(s, t)

equals the total number of independent amplitudes in the helicity basis which reads

1

2
(2Sq + 1) (2Sp + 1) (2Sq̄ + 1) (2Sp̄ + 1). (5.12)

The factor 1

2
arises from the assumption of parity conservation. Hence, the corresponding helicity space

for the decomposition is two-dimensional according to Eq. (5.12). We choose two Lorentz-Dirac struc-

tures with a minimal number of momenta to be free from kinematical constraints. The unity operator

and the quantity /w ≡ γµwµ = (/p+ /q) = (/̄p+ /̄q) serve for our purposes [63]:

T
0 1

2
→0 1

2
(q̄, q, w) = ū(p̄, λ̄)(G1(s, t) 1+ G2(s, t) /w)u(p,λ). (5.13)

The spinors u(p,λ) and ū(p̄, λ̄) of the initial and final fermion are expressed with the help of the helicities

λ and λ̄. Instead of /w, any other combination of the fermion and boson momenta /p, /̄p and /q, /̄q,

respectively, could have been used for the decomposition. The decomposition procedure in this PhD

thesis is based on the Mandelstam’s dispersion integral representation [26]. Once we fix the spins

of both incoming and outgoing particles, it provides us with a set of invariant functions Gn(s, t) with

transparent analytic properties [63]. Each of these functions Gn(s, t) are only non-analytic at a finite

number of dynamical singularities. These singularities are directly connected to the corresponding s-, u-

and t-channel processes:

Gn(s, t) =
1

π

∫

ds′
ρn

s
(s′)

s′− s
+

1

π

∫

dt ′
ρn

t
(t ′)

t ′− t
+

1

π

∫

du′
ρn

u
(u′)

u′− u

+
1

π2

∫

du′
∫

ds′
ρn

us
(u′, s′)

(u′− u)(s′− s)

+
1

π2

∫

du′
∫

dt ′
ρn

ut
(u′, t ′)

(u′− u)(t ′− t)

+
1

π2

∫

ds′
∫

dt ′
ρn

st
(s′, t ′)

(s′− s)(t ′− t)
. (5.14)
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We point out at this step that we only gain from this representation in combination with the following

decomposition in Lorentz-Dirac structures. For instance, a perturbative treatment of the spectral func-

tions ρn
i
(i′) and ρn

i j
(i′, j′) would destroy the unitarity condition for the scattering matrix S.

We continue with the examination of the elastic scattering of (J P = 1−)-bosons off (J P = 1

2

+
)-fermions

with (J P = 0−)-bosons and (J P = 1

2

+
)-fermions as outgoing particles. Although our decomposition

should be applied to photoproduction, the following derivation considers massive (J P = 1−)-bosons.

Since a photon may convert into a ρµν -, a ωµν - or a φµν -meson of the vector meson nonet under vector

meson dominance, our results can be applied straightforwardly to photoproduction. The determination

of the six invariant functions Gn(s, t) becomes difficult. An appropriate set of Gn(s, t) is identified after

Heo [63]: possible combinations of γµ, wµ, /w and the final boson momentum q̄ are constructed. We do

not include the boson momentum q. Its on-shell condition requires the validity of the Ward identity:

qµεµ(q,α) = 0. (5.15)

Here, the polarisation vector εµ is a function of the polarisation α. The Levi-Civita tensor εµνρσ and the

expression iγ5 are added to guarantee the same parity for each Lorentz-Dirac structure. We conclude

with an eight-dimensional, i. e. an over-complete, collection of functions Gn(s, t) and Lorentz-Dirac

structures [63]:

T
1 1

2
→0 1

2
(q̄, q, w) = ū(p̄, λ̄)(G1(s, t) γµ i γ5+ G2(s, t) wµ i γ5+ G3(s, t) q̄µ i γ5

+ G4(s, t)εµνρσq̄νwρqσ + G5(s, t) γµ /w i γ5+ G6(s, t) wµ /w i γ5

+ G7(s, t) q̄µ /w i γ5+ G8(s, t) εµνρσq̄νwρqσ /w)εµ(q,α) u(p,λ). (5.16)

It was proven that two of the eight functions Gn(s, t) are linear combinations of the remaining six [63].

We finally arrive at [63]:

T
1 1

2
→0 1

2
(q̄, q, w) = ū(p̄, λ̄) (G1(s, t) γµ i γ5+ G2(s, t) wµ i γ5+ G3(s, t) q̄µ i γ5

+ G5(s, t) γµ /w i γ5+ G6(s, t) wµ /w i γ5+ G7(s, t) q̄µ /w i γ5) εµ(q,α) u(p,λ). (5.17)

The principle of a minimal number of momenta manifests itself through our choice again: only Lorentz-

Dirac structures with zero, one or two momenta appear while those with three or four momenta are

linearly decomposed in terms of the former. The investigation of reactions such as photoproduction

with vector mesons (γB → V B) forces us to discuss the elastic scattering with (J P = 1−)-bosons and

(J P = 1

2

+
)-fermions both in the initial and final state. We derive the corresponding decomposition

scheme similarly to the former. Due to the two polarisation vectors ε∗µ̄(q̄, ᾱ) and εµ(q,α), we combine the

objects g µ̄µ, γµ, wµ, q̄µ, qµ and /w. Again, the Levi-Civita tensor and the γ5-matrix ensure an equal parity

for all terms. We find out that we have to neglect all contributions including the Levi-Civita tensor [63].

However, we fail to construct a decomposition scheme which satisfies both analyticity and freedom from

kinematical constraints. A kinematical singularity at s = 0 remains in our final solution [63]. This

singularity indicates that our set of analytic amplitudes Gn(s, t) are somehow connected to each other at

the singularity point [63]. Hence, we will introduce a modified decomposition scheme which consists of

analytic functions F±
n
(
p

s, t) instead of Gn(s, t). A specific symmetry will enable us to relate the former

to the latter.
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5.3 Decomposition scheme for photoproduction

The modified decomposition scheme is derived similarly to the previous chapter: we start with a decom-

position for T
0 1

2
→0 1

2
, extend our result to the on-shell scattering amplitude T

1 1
2
→0 1

2
and finally decompose

T
1 1

2
→1 1

2
. First, we introduce some quantities frequently used in the decomposition algebra [24]:

kµ =
1

2
(qµ− pµ), k̄µ =

1

2
(q̄µ− p̄µ),

rµ = kµ−
1

2

q2− p2

s
wµ, r̄µ = k̄µ−

1

2

q̄2− p̄2

s
wµ, (5.18)

in which it holds wµ = qµ+ pµ = q̄µ+ p̄µ as introduced in Eq. (5.13). The following products will serve

us to present the later derived projection algebra in an efficient manner [24]:

r · r = −p2
cm, w · r = 0, w ·w = s,

r̄ · r = −p̄cmpcm cosθ , r̄ ·w = 0, r̄ · r̄ = −p̄2
cm. (5.19)

pcm and p̄cm are the initial and final fermion three-momenta in the center-of-momentum system. The

related four-momenta p and p̄ are determined by the scattering angle θ [24]. Again, we identify the

dimension of the corresponding helicity space with

1

2
(2Sq + 1) (2Sp + 1) (2Sq̄ + 1) (2Sp̄ + 1). (5.20)

To derive the appropriate projection algebra for photoproduction, we use the elastic scattering of a

(J P = 0−)-boson off a (J P = 1

2

+
)-fermion with the same kind of particles in the final state as a starting

point. After the exclusion of the adjoint spinor ū(p̄, λ̄) for the final fermion and the spinor u(p,λ) for the

initial fermion [24],

T
0 1

2
→0 1

2
(q̄, q, w) = ū(p̄, λ̄) T̄

0 1
2
→0 1

2
u(p,λ), (5.21)

the remaining on-shell scattering amplitude is decomposed into the invariant functions F±
1
(
p

s, t) and

the projection matrices P± [24]:

T̄
0 1

2
→0 1

2
(q̄, q, w) = F+

1
(
p

s, t) P++ F−
1
(
p

s, t) P−. (5.22)

We have to identify two Dirac structures for the construction of P±. The number of momenta within

these Dirac structures should be minimised, too. So, we opt for the unity operator 1 and wµ again. The

projection matrices can be fixed in the following way [24]:

P± =
1

2

�

1± /w
p

s

�

, P±P± = P±, P±P∓ = 0. (5.23)
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The MacDowell symmetry [64] elucidates our choice: the invariant functions F±
1
(
p

s, t) can be expressed

in dependence of the already introduced functions G1(s, t) and G2(s, t) of Eq. (5.13) [24]:

F±
1
(
p

s, t) = G1(s, t)±
p

s G2(s, t). (5.24)

Obviously, this decomposition satisfies the MacDowell symmetry relationship [64]:

F+
1
(−
p

s, t) = F−
1
(
p

s, t). (5.25)

The projection algebra for elastic scattering of a (J P = 0−)-boson off a (J P = 1

2

+
)-fermion with the same

kind of particles in the final state is fixed by [24]

1

2
t r(P±ΛQ±Λ̄) = 1. (5.26)

The two-dimensional basis of the helicity space [24]

Q± =
s

v
2

�
(r̄ · r)P∓− Ē∓E∓P±

�
(5.27)

consists of the useful auxiliary quantities [24]

E± =

p
s

2

�

1−
m2−M2

s

�

±M , Ē± =

p
s

2

�

1−
m̄2− M̄2

s

�

± M̄ ,

v
µ = εµατβ k̄αwτkβ (5.28)

the already introduced projection matrices P± and the scalar product (r̄ · r). The quantities Λ and Λ̄ with

the definitions

Λ = /p+M , Λ̄ = /̄p+ M̄ , (5.29)

ensure that the on-shell conditions

p2 = M2, p̄2 = M̄2 (5.30)

are valid for the initial and final fermion, respectively. We use the elastic scattering of a (J P = 1−)-boson

off a (J P = 1

2

+
)-fermion for our investigations of photoproduction. It is pointed out that there is an

important difference between the treatment of a massive (J P = 1−)-boson and a massless photon in
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Quantum Field Theory: The Proca equations of the associated four-vector field of the former demon-

strate that only three components of this four-vector field can be chosen freely (see e.g. [65], p. 135).

In contrast, the field of the latter carries two degrees of freedom which are related to the two physical

transverse polarisation states (see e.g. [65], p. 132). Nevertheless, we make an attempt to apply the

following decomposition scheme to our on-shell scattering amplitudes due to a lack of alternatives. First,

we focus on photoproduction processes with pseudoscalar mesons (γB→ PB). The appropriate decom-

position scheme and algebra is derived on the basis of the former decomposition. However, we extend

the notation of Eq. (5.10): the initial massive (J P = 1−)-boson is substituted by a massless photon γ.

Hence, we denote the initial photon by γ instead of its spin 1.

In contrast to the former two-dimensional decomposition, the total number of helicity amplitudes is

now six (Eq. (5.12)). We exclude the final and initial spinor ū(p̄, λ̄) and u(p,λ), respectively, and the

polarisation vector εµ(q,α) of the initial photon:

Tγ 1
2
→0 1

2
(q̄, q, w) = ū(p̄, λ̄) T̄

µ

γ 1
2
→0 1

2

εµ(q,α) u(p,λ). (5.31)

Similar to the previous considerations, we specify the decomposition by

T̄
µ

γ 1
2
→0 1

2

(q̄, q, w) =
∑

±

3∑

n=1

�

F±
n
(
p

s, t) T
µ
±,n

�

. (5.32)

The six Lorentz-Dirac basis vectors T
µ
±,i

are composed of our former projection matrices P± and three

additional expressions wµ, r̄µ and γ̂µ,

T
µ
±,1 = γ5 i P±γ̂

µ,

T
µ
±,2 = γ5 i P±wµ,

T
µ
±,3 = γ5 i P± r̄µ, (5.33)

where the latter denotes

γ̂µ = γµ−
1

s
/wwµ. (5.34)

We defined the quantities wµ and rµ at the beginning of this section so that r̄µ is orthogonal to wµ:

r̄µwµ = r̄ ·w = 0. (5.35)

The Lorentz-Dirac structure γ̂µ is defined so that it is also orthogonal to wµ:

γ̂µwµ = γ̂ ·w = 0. (5.36)
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These orthogonality relations simplify the corresponding projection algebra [24]

1

2
t r(Tµ

a,n
ΛQb,k

µ Λ̄) = δnkδab, qµQ±,k
µ = 0 (5.37)

with the projection quantities

Q±,1
µ = ∓

p
s

v
2

P±vµ,

Q±,2
µ = −R̄± i γ5w̄⌋,µ+

δ+ 1

2

p
s

v
2

Ē±Q±vµ,

Q±,3
µ = −R̄± i γ5 r̄⌋⌊,µ+

p
s

v
2

E∓Q∓vµ, (5.38)

R̄± =
s

v
2

�
E∓ Ē±P±− (r̄ · r)P∓

�
, δ =

m2−M2

s
. (5.39)

The Ward identity qµQ±,k
µ = 0 ensures that only on-shell scattering amplitudes contributes to the de-

composition. To obtain the clearly arranged expressions in Eq. (5.38), we substitute certain linear

combinations of r, r̄ and w by the four-vectors r⌋⌊,µ, w⌊,µ and w⌋,µ. The latter are determined by the

following scalar products [23]:

r⌋⌊ · r = 1, r⌋⌊ · r̄ = r⌋⌊ ·w = 0,

w⌋ ·w = 1, w⌋ · r = w⌋ · q̄ = 0,

w⌊ ·w = 1, w⌊ · r = w⌊ · p̄ = 0. (5.40)

As the two last relations indicate, a vector with the index ⌋ is orthogonal to the boson four-momentum

while a vector with the index ⌊ is orthogonal to the fermion four-momentum. Lutz and Vidaña [23]

introduce the explicit form of the quantities r⌋⌊,µ, w⌊,µ and w⌋,µ with the help of

r⌋⌊,µ ≡ rr̄ w,µ, w⌊,µ ≡ wr p̄,µ, w⌋,µ ≡ wr q̄,µ (5.41)

where the auxiliary quantity ab c,µ is constructed by the vectors aµ, bµ and cµ in the following way [23]:

ab c,µ

ab c · ab c

= aµ−
a · c
c · c cµ−

a ·
�

b− c·b
c·c c
�

�

b− c·b
c·c

�2

�

bµ−
c · b
c · c cµ

�

,

ab c,µaµ ≡ ab c · a = 1, ab c,µbµ ≡ ab c · b = 0, ab c,µcµ ≡ ab c · c = 0. (5.42)

The quantities r̄⌋⌊,µ, w̄⌋,µ and w̄⌊,µ are defined analogously to Eq. (5.40):
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r̄⌋⌊,µ ≡ r̄r w,µ, w̄⌋,µ ≡ w r̄ q,µ, w̄⌊,µ ≡ w r̄ p,µ. (5.43)

Heo connects the analytic functions Gn(s, t) of Eq. (5.17) with F±
n
(
p

s, t) in the following way [63]:

he constructs a decomposition scheme for the reaction 11

2
→ 01

2
and makes use of the MacDowell

symmetry. The new scheme consists of the invariant amplitudes G±
n
(
p

s, t) which are related to the

analytic functions Gn(s, t) of Eq. (5.17) via [63]

G±
n
(
p

s, t) = G∓
n
(−
p

s, t) = Gn(s, t)±
p

s Gn+4(s, t), n ∈ {1, 2, 3}. (5.44)

Finally, he can derive correlations between G±
n
(
p

s, t) and the invariant functions F±
n
(
p

s, t) [63]:

F±
1
= G±

1
, F±

2
= G±

2
±

G±
1p
s
+
(w · q)G±

3

s
, F±

3
= G±

3
. (5.45)

Again, the MacDowell symmetry relations connect corresponding invariant functions F+
i
(
p

s, t) and

F−
i
(
p

s, t) together:

F+
i
(−
p

s, t) = F−
i
(
p

s, t). (5.46)

Our investigation does not only cover the processes of the kind of γB→ PB but also γB→ V B. The total

number of helicity amplitudes is now 18 according to Eq. (5.12). We turn to the elastic scattering of a

photon off a (J P = 1

2

+
)-fermion with a (J P = 1−)-boson and a (J P = 1

2

+
)-fermion in the final state. First,

we exclude both the final polarisation vector ε∗µ̄(q̄, ᾱ) of the final vector meson and the initial polarisation

vector εµ(q,α), and the final spinor ū(p̄, λ̄) and the initial spinor u(p,λ) for the incoming and outgoing

octet baryon, respectively:

Tγ 1
2
→1 1

2
(q̄, q, w) = ū(p̄, λ̄) ε∗µ̄(q̄, ᾱ) T̄

µ̄µ

γ 1
2
→1 1

2

εµ(q,α) u(p,λ). (5.47)

T̄
µ̄µ

γ 1
2
→1 1

2

is decomposed into nine invariant functions F+
i
(
p

s, t) and their nine counterparts F−
i
(
p

s, t):

T̄
µ̄µ

γ 1
2
→1 1

2

(q̄, q, w) =
∑

±

9∑

n=1

�

F±
n
(
p

s, t) T
µ̄µ
±,n

�

. (5.48)

Again, the Lorentz-Dirac structures from our former considerations serve to construct the 18-dimensional

basis

T
µ̄µ
±,1 = ĝ µ̄µP±, T

µ̄µ
±,2 = γ̂

µ̄P±γ̂
µ,

T
µ̄µ
±,3 = γ̂

µ̄P±wµ, T
µ̄µ
±,4 = wµ̄P±γ̂

µ,

T
µ̄µ
±,5 = γ̂

µ̄P± r̄µ, T
µ̄µ

±,6
= r µ̄P±γ̂

µ,

T
µ̄µ
±,7 = wµ̄P± r̄µ, T

µ̄µ
±,8 = r µ̄P±wµ,

T
µ̄µ
±,9 = wµ̄P±wµ, (5.49)
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in which we defined the Lorentz-Dirac structure ĝ µ̄µ perpendicular to wµ:

ĝ µ̄µ = g µ̄µ−
wµ̄wµ

s
, ĝ µ̄µwµ = 0. (5.50)

In addition to the following trace equation [24],

1

2
t r(T µ̄µ

a,n
ΛQ

b,k
µ̄µ Λ̄) = δabδnk, (5.51)

two Ward identities complete our projection algebra for this case:

q̄µ̄Q
±,k
µ̄µ = 0, qµQ

±,k
µ̄µ = 0. (5.52)

We present two of the 18 projections Q
±,k
µ̄µ on the basis vectors as examples [24]:

Q
±,2
µ̄µ = r⌋⌊,µ̄(P±− 2(r̄ · r)Q∓)r̄⌋⌊,µ− (r̄⌋⌊ · r⌋⌊)

1

v
2

vµ̄(P±− 2(r̄ · r)Q∓)vµ

+ Ē± i γ5

p
s

v
2

vµ̄(P∓+ 2(r̄ · r)R±)r̄⌋⌊,µ− E± i γ5

p
s

v
2

r⌋⌊,µ̄(P±+ 2(r̄ · r)R∓)vµ. (5.53)

These basis vectors are linear compositions of the components v
µ (Eq. (5.28)), r

µ̄

⌋⌊ (Eq. (5.40)), (r̄ · r)
(Eq. (5.19)), P± (Eq. (5.23)), Q± (Eq. (5.27)), E± (Eq. (5.28)), Ē± (Eq. (5.28)) and R± (Eq. (5.39)).

The objects r̄⌋⌊,µ, w̄⌋,µ and w̄⌊,µ are introduced in Eq. (5.43).

We present the complete set of the 18 projection objects Q
±,k
µ̄µ in the appendix E.

5.4 Examples of invariant functions for photoproduction

We decompose the kinematical part of on-shell scattering amplitudes on tree-level for the photoproduc-

tion processes γB → PB and γB → V B. While a photon γ and the states B of the (J P = 1

2

+
)-baryon

octet appear in the initial channel, the final meson-baryon state may consist of a baryon octet state and

of either a state of the pseudoscalar (P) or the vector mesons (V ). We present examples of invariant

functions for the contact term processes and the s-, u- and t-channel processes with the corresponding

counterterms of the chiral SU(3) Lagrangian. It is pointed out that our calculations are done under the

assumption of massless Goldstone bosons.

The contact term process which is related to the scattering reaction γB → PB is illustrated by the

following Feynman diagram:
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p̄, λ̄

q̄

x

p,λ

q,α

. (5.54)

Figure 5.1.: Contact interaction of the reaction γB→ PB

The initial (final) boson and fermion momentum is denoted by q and p (q̄ and p̄), respectively. The

polarization α of the initial photon is determined as well as the helicities λ and λ̄ of the initial and the

final baryon. We turn to the basis vector (Eq. (5.33))

T
µ
+,2 = γ5 i P+wµ (5.55)

with the corresponding projection onto this basis vector (Eq. (E.3))

Q+,2
µ = −R̄+ i γ5w̄⌋,µ+

δ+ 1

2

p
s

v
2

Ē+Q+vµ (5.56)

and present the corresponding invariant function F+2 (
p

s, t) which was calculated via a Mathematica

Code:

F+
2
(
p

s, t) = −
i
p

s
. (5.57)

The complete set of invariant functions F±
n
(
p

s, t) is given in the appendix G. We derive the corresponding

on-shell scattering amplitude via the following parts of the chiral SU(3) Lagrangian (for details, see

appendix G):

�

−
ieFA

2 f

�

t r
�

B̄γµγ5

��

QAµ,Φ
�

, B
��

,

�

−
ieDA

2 f

�

t r
�

B̄γµγ5

¦�

QAµ,Φ
�

, B
©�

. (5.58)

The s-channel process with a (J P = 1

2

+
)-baryon as the intermediate particle that is related to the scatte-

ring reaction γB→ PB is illustrated by the following Feynman diagram:

(p+ q)

p̄, λ̄

q̄

x y

p,λ

q,α

. (5.59)

Figure 5.2.: S-channel process of the reaction γB→ PB

The four-momentum (p + q) of the intermediate baryon is enforced by the conservation of the four-

momentum. The application of our decomposition scheme of section 5.3 to the basis vector of Eq.

(5.33)
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T
µ
+,1 = γ5 i P+γ̂

µ (5.60)

with the corresponding projection on this basis vector (Eq. (E.3))

Q+,1
µ = −

p
s

v
2

P+vµ (5.61)

leads to the invariant function F+1 (
p

s, t):

F+
1
(
p

s, t) =

p
smB + s− 2w · q

s−m2
B

. (5.62)

Again, the complete set of invariant functions F±
n
(
p

s, t) is given in the appendix G. The (J P = 1

2

+
)-baryon

mass is denoted by mB. Here, the utilised Lagrangians read (for details, see appendix G):

i e t r
�

B̄γµ
�

QAµ, B
��

,
�

−
FA

2 f

�

t r
�

B̄γµγ5 [∂
µΦ, B]

�

,

�

−
DA

2 f

�

t r
�

B̄γµγ5 {∂ µΦ, B}
�

. (5.63)

The reaction γB→ V B with the focus on the u-channel process with a (J P = 1

2

+
)-baryon as the interme-

diate particle

(p− q̄)

p̄, λ̄

q̄, ᾱ

x y

p,λ

q,α

(5.64)

Figure 5.3.: U-channel process of the reaction γB→ V B

together with the basis vector (Eq. (5.49))

T
µ̄µ
+,4 = wµ̄P+γ̂

µ (5.65)

and the corresponding projection (Eq. (E.3))

Q
+,4
µ̄µ =

p
s

v
2

w
µ̄

⌋ P+ i γ5v
µ+

1

2
(δ̄+ 1)

s

v
2
((r̄ · r)E+Q

µ̄µ
−,2− (r · r)Ē−Q

µ̄µ
+,2) (5.66)

is related to the exemplified invariant function F+
4
(
p

s, t):
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F+
4
(
p

s, t) =

�
2mB −

p
s
��

m2
B
− s+ 2w · q̄

�

�

m2
B + 2q̄ · q− s

�p
s

. (5.67)

All relevant invariant functions F±
n
(
p

s, t) are given in the appendix G. The desired reaction amplitudes

are computed via the following Lagrangian contributions with vector meson fields in the tensor repre-

sentation (for details, see appendix G):

i e t r
�

B̄γµ
�

QAµ, B
��

,
�

−
FV

2mV

�

t r
�

B̄γα
�

∂ βVαβ , B
��

,

�

−
DV

2mV

�

t r
�

B̄γα
¦

∂ βVαβ , B
©�

,

�

−
GV

2mV

�

t r
�
B̄γαB

�
t r
�

∂ βVαβ
�

,

�

−
FT mV

8 f

�

t r
�

B̄σαβ
�

Vαβ , B
��

,

�

−
DT mV

8 f

�

t r
�

B̄σαβ
¦

Vαβ , B
©�

,

�

−
GT mV

8 f

�

t r
�

B̄σαβB
�

t r
�

Vαβ
�

. (5.68)

The t-channel process of γB→ V B with a (J P = 1−)-meson as the intermediate particle is illustrated by

(q̄− q)

p̄, λ̄

q̄, ᾱ

y

x

p,λ

q,α

. (5.69)

Figure 5.4.: T-channel process of the reaction γB→ V B

The helicity of the outgoing vector meson is denoted by λ̄. The intermediate particle carries the

four-momentum (q̄− q). We choose the basis vector (Eq. (5.49))

T
µ̄µ
−,7 = wµ̄P− r̄µ (5.70)

with the corresponding projection on the basis vector (Eq. (E.3))

Q
−,7
µ̄µ =Q−(w

µ̄

⌋ r̄
µ

⌋⌊− (w⌋ · r̄⌋⌊)
1

v
2

v
µ̄

v
µ)− (r · r)Ē+

s

v
2
(Q
µ̄µ
+,4−

1

2
(δ̄+ 1)Q

µ̄µ
−,5)

+ (r̄ · r)E+
s

v
2
(Q
µ̄µ
−,4+

1

2
(δ̄+ 1)Q

µ̄µ
+,5). (5.71)

The application of our Mathematica Code leads to the invariant amplitude F−
7
(
p

s, t)

F−
7
(
p

s, t) = −
2i

p
s

�

2−
m2

1−
m2

B
−q̄·q−s+w·(q̄+q)

� . (5.72)
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Like for the other examples, the complete set of the corresponding analytic functions is presented in

the appendix G. We denote the vector meson mass by m1− to distinguish it from the chiral parameter

mV . Here, we obtained our result via the following parts of the chiral SU(3) Lagrangian (for details, see

appendix G):

�

−
ie

4

�

t r
�

∂ ρVρσ
�

QAµ, Vµσ
��

,

�

−
ie

4

�

t r
��

QAµ, Vµσ
�

∂ ρVρσ
�

,

�

−
ieM

4

�

t r
�h

V νρ , Vρµ
i

QFνµ

�

,

�

−
FV

2mV

�

t r
�

B̄γα
�

∂ βVαβ , B
��

,

�

−
DV

2mV

�

t r
�

B̄γα
¦

∂ βVαβ , B
©�

,

�

−
GV

2mV

�

t r
�
B̄γαB

�
t r
�

∂ βVαβ
�

,

�

−
FT mV

8 f

�

t r
�

B̄σαβ
�

Vαβ , B
��

,

�

−
DT mV

8 f

�

t r
�

B̄σαβ
¦

Vαβ , B
©�

,

�

−
GT mV

8 f

�

t r
�

B̄σαβB
�

t r
�

Vαβ
�

. (5.73)
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6 Conclusions

We examined strong interactions in the low-energy regime in terms of two complementary non-

perturbative approaches: the interplay of large-Nc QCD and chiral perturbation theory (χPT) was

studied. While the expansion in the parameter 1/Nc is based on quark and gluon degrees of free-

dom, χPT uses hadrons as effective degrees of freedom. The focus of our work was the investigation

of mesons and baryons composed from up-, down- and strange quarks. We used the chiral SU(3) La-

grangian with (J P = 1

2

+
)- and (J P = 3

2

+
)-baryon ground states as building blocks. In the SU(3)-flavour

limit the latter form an octet and a decuplet, respectively.

Studies in χPT hold a challenge: the chiral Lagrangian consists of an infinite number of terms. The

treatment of low-energy QCD physics via a perturbation theory requires the ordering of these terms

according to their relevance. We used the interplay between large-Nc QCD and χPT to shed light on

the structure of the chiral Lagrangian. In the limit of large-Nc the low-energy parameters of the chiral

Lagrangian are correlated. For instance the masses of the two baryon multiplets turn degenerate in the

SU(3)-flavour limit. This serves as the starting point of our investigations. In this work we analysed the

time-ordered product of two scalar and two vector currents in the baryon ground state. The examination

of these matrix elements at large-Nc was compared to corresponding results derived in χPT. From this we

obtained sum rules for some low-energy parameters of the chiral Lagrangian. The results for the vector

correlation function were used to constrain a phenomenological interaction of light vector mesons with

the baryon ground states.

In the second part of this thesis we addressed a formal problem which arises in a partial wave de-

composition of reaction amplitudes for particles with non-vanishing spin. In particular we considered

the vector meson photoproduction off the nucleon as it is currently studied in [1–3]. A decomposition

of on-shell production amplitudes into covariant partial wave amplitudes which are both free from kine-

matical constraints and compatible with the microcausality condition was achieved. A Mathematica code

using the FeynCalc package [4] was written and applied to some tree-level contact terms and s-, u- and

t-channel processes.
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A Conventions

A.1 Natural units

The examinations throughout this thesis are done in natural units, i. e.

ħh= c = kB = 1. (A.1)

The definition contains the reduced Planck constant ħh = h

2π
, the speed of light in vacuum c and the

Boltzmann constant kB.

A.2 Notation

The commutator and the anticommutator of two arbitrary operators A and B are expressed throughout

this thesis as follows:

[A, B]≡ [A, B]− ≡ AB− BA, (A.2)

{A, B} ≡ [A, B]+ ≡ AB+ BA. (A.3)

A.3 Pauli matrices

The linear vector space of all complex 2×2-matrices C(2×2) is spanned by the three Pauli matrices σ1, σ2,

σ3 in combination with the two-dimensional unit matrix σ0. The Hermitian Pauli matrices are commonly

expressed through

σ1 =

�
0 1

1 0

�

, σ2 =

�
0 −i

i 0

�

, σ3 =

�
1 0

0 −1

�

. (A.4)

They are traceless and satisfy the properties [31]

det σi = −1, σt
i
= σ∗

i
= −σ2σiσ2,

[σi,σ j] = 2i εi jkσk, {σi,σ j}= 2δi j. (A.5)

A.4 Metric & derivatives

The metric of our relativistic framework is specified with the help of the metric tensor gµν :

gµν = gµν =








1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1








. (A.6)
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It can be used to define products of two contravariant or covariant quantities:

gµνVµW ν = VνW
ν = V νWν = gµνVµWν = V ·W = V 0W 0− ~V · ~W = V 0W 0− V iW i. (A.7)

We introduced the Einstein convention in the last step: the summation over both correspondent Lorentz

(Greek) and spacial (Latin) indices is done without explicit notation. To derive scattering amplitudes,

we need derivatives of both contravariant and covariant spacial coordinates xµ and xµ, respectively:

∂µ ≡
∂

∂ xµ
, ∂ µ ≡

∂

∂ xµ
. (A.8)

The explicit expressions for both derivatives read:

∂µ =









∂

∂ t
∂

∂ x
∂

∂ y
∂

∂ z









, ∂ µ =









∂

∂ t

− ∂

∂ x

− ∂

∂ y

− ∂

∂ z









. (A.9)

The investigation of scattering amplitudes also requires the specification of the totally antisymmetric

Levi-Civita tensor:

εµνρσ =







+1 if {µ,ν ,ρ,σ} is an even permutation of {0, 1, 2, 3}
−1 if it is an odd permutation

0 otherwise

. (A.10)

A.5 Dirac matrices

In this thesis, we make use of the four-component γ matrices which satisfy the following anticommuta-

tion relations [65]:

{γµ,γν}= γµγν + γνγµ = 2gµν . (A.11)

The Hermitian component γ0 and the anti-Hermitian components γi of γµ are used to define γ5 through

[65]

γ5 = γ
5 = iγ0γ1γ2γ3 = −

i

4!
εµνρσγ

µγνγργσ

= −iγ0γ1γ2γ3 = iγ3γ2γ1γ0 = γ†
5, (A.12)

γ2
5
= 1, (A.13)

{γ5,γµ}= 0. (A.14)
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We introduce the antisymmetric quantity σµν as the commutator of the γ matrices [65]:

σµν =
i

2
[γµ,γν], (A.15)

γµγν = gµν − iσµν , (A.16)

[γ5,σµν] = 0, (A.17)

γ5σ
µν =

i

2
εµνρσσρσ. (A.18)

A.6 SU(3) group

The SU(3) group is described by the eight Hermitian Gell-Mann matrices λi, i = 1, . . . 8:

λ1 =






0 1 0

1 0 0

0 0 0




 , λ2 =






0 −i 0

i 0 0

0 0 0




 , λ3 =






1 0 0

0 −1 0

0 0 0




 ,

λ4 =






0 0 1

0 0 0

1 0 0




 , λ5 =






0 0 −i

0 0 0

i 0 0




 , λ6 =






0 0 0

0 0 1

0 1 0




 ,

λ7 =






0 0 0

0 0 −i

0 i 0




 , λ8 =

1
p

3






1 0 0

0 1 0

0 0 −2




 . (A.19)

These matrices obey the relationships

λa = λ
†
a
, (A.20)

t r(λaλb) = 2δab, (A.21)

t r(λa) = 0. (A.22)

They are traceless and fulfil the commutation relationships of a Lie algebra [35]:

�
λa

2
,
λb

2

�

= i fabc

λc

2
, (A.23)

�
λa,λb

	
=

4

3
δab + 2dabcλc. (A.24)

fabc is the totally antisymmetric tensor and takes the value 0 except for the cases

f123 = 1, f147 = f246 = f257 = f345 =
1

2
, f156 = f367 =−

1

2
, f458 = f678 =

p
3

2
. (A.25)
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It is connected to the Gell-Mann matrices of the SU(3) group via

fabc =
1

4i
t r([λa,λb]λc). (A.26)

The totally symmetric tensor dabc is obtained by

dabc =
1

4
t r({λa,λb}λc). (A.27)

The non-vanishing dabc symbols of SU(3) are given in the following:

d118 = d228 = d338 =
1
p

3
, d146 = d157 = d256 = d344 = d355 =

1

2
, d247 = d366 = d377 = −

1

2
,

d448 = d558 = d668 = d778 = −
1

2
p

3
, d888 =−

1
p

3
. (A.28)

We introduced the vector meson nonet in this thesis which requires the definition of an additional matrix

λ0 [35]:

λ0 =

r

2

3






1 0 0

0 1 0

0 0 1




 . (A.29)

A possible basis for the linear vector space of all 3× 3-matrices is given by λi, i = 0, . . . , 8 [35].
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B S-matrices

The construction of our coupled-channel notation in isospin-strangeness basis requires the definition of

the “spin-1

2
-to-spin-3

2
”-transition matrices S1, S2 and S3. We need these transition matrices to derive the

spin-3

2
spinors uµ(p,λ) directly from the spin-1

2
spinors u(p, s). The spin-1

2
spinors read [31]

u(p, s) =

r

Ep +M

2M

 

1(2×2)
~σ·~p

Ep+M

!

χ (1/2)
s

, χ
(1/2)
1 =

�
1

0

�

, χ
(1/2)
2 =

�
0

1

�

. (B.1)

This result together with the coupling of spin-1 polarisation and the spin-1

2
spinors leads to the spin-3

2
spinors [31]

uµ(p, s) =
∑

λ′,s

C

�

1λ
1

2
s′|

3

2
s

�

εµ(p,λ)u(p, s′). (B.2)

The quantities λ′ and s′ represent the eigenvalues of the spin projection operator in z-direction in the

spin space, so we conclude

λ′ ∈ {−1, 0, 1}, s′ ∈ {−1

2
, 1

2
}. (B.3)

We can identify an equation for the spin-3

2
spinors similar to (B.1),

uµ(p, s) =

r

Ep +M

2M

 

Sµ,†(p)
~σ·~p

Ep+M
Sµ,†(p)

!

χ (3/2)
s

,

χ
(3/2)
1 =








1

0

0

0








, χ
(3/2)
2 =








0

1

0

0








, χ
(3/2)
3 =








0

0

1

0








, χ
(3/2)
4 =








0

0

0

1








, (B.4)

in which the components of the contravariant expression Sµ,†(p) are connected to the S-matrices S1, S2

and S3 [31]:

S0,†(p) =
|~p|
M

ST
3

, S1,†(p) = ST
1

,

S2,†(p) = ST
2

, S3,†(p) =
Ep

M
ST

3
(B.5)

with
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S1 =









− 1p
2

0

0 − 1p
6

1p
6

0

0 1p
2









, S2 =









ip
2

0

0 ip
6

ip
6

0

0 ip
2









, S3 =









0 0
Æ

2

3
0

0
Æ

2

3

0 0









, ~S = (S1, S2, S3)
T . (B.6)

They obey certain properties like [31]

~S† · ~S = 2 1(2×2), ~S · ~S† = 1(4×4), ~σ · ~S† = 0, ~S · ~σ = 0, (B.7)

S
†
i
S j = δi j ·1(2×2)−

1

3
σiσ j = δi j ·1(2×2)−

1

3
(δi j + iεi jkσk) =

2

3
(δi j ·1(2×2)− iεi jk

1

2
σk), (B.8)

Siσ j − S jσi = −iεi jkTk, Siσkσi = 2Sk, iεi jkSiσ j = σk, (B.9)

εi jkSiS
†
j
= i~Sσk

~S†, εi jk(~Sσi
~S†)(~Sσ j

~S†) =
2

3
εi jkSiS

†
j
=

2

3
i~Sσk

~S†, (B.10)

(~Sσ∗
k
~S†) = (~Sσk

~S†)t ,
∑

i

(~Sσ(i)~S†)(~Sσ(i)~S†) =
5

3
1(4×4). (B.11)

All of these properties were proven explicitly with the help of Mathematica 10.
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C SU(2)× SU(3) operator identities

We present the complete set of operator identities for the contracted SU(6) group (NF = 3). The entries

in the column on the right determine the transformation behaviour of each identity under the SU(2)×
SU(3) group [16]:

2
¦

J i, J i
©

+ 3 {T a, T a}+ 12
¦

Ga
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, Ga

i

©
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¦

Ga
i
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¦
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¦
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¦
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¦
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¦
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©

+ 9

4
dabc

¦

T a, T b
©

− 10

3

¦

J i, Gc
i

©

= 0 (0, 8)

4
¦

Ga
i
, Gb

i

©

=
¦

T a, T b
©

(27) (0, 27)

εi jk

n

J i, Gc
j

o

= fabc

¦

T a, Gb
k

©

(1, 8)

3dabc

¦

T a, Gb
k

©

=
¦

J k, T c
©

− εi jk fabc

n

Ga
i
, Gb

j

o

(1, 8)

εi jk

n

Ga
i
, Gb

j

o

= facg dbch

¦

T g , Gh
k

© �

10+ 10
� �

1, 10+ 10
�

3
n

Ga
i
, Ga

j

o

=
¦

J i, J j
©

(J = 2) (2, 0)

3dabc

n

Ga
i
, Gb

j

o

=
n

J i, Gc
j

o

(J = 2) (2, 8)

Table C.1.: SU(2)× SU(NF) operator identities for (NF = 3) with corresponding transformation pattern

[16]
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D Baryon matrix elements of symmetric products of two one-body operators

The baryon matrix elements of the symmetric products of two one-body operators from [18] were care-

fully cross-checked. We present the results with two slight corrections:

(d, χ̄|{Ji, J j}|c,χ) =
1

2
δi jδχ̄χδcd , (D.1)

(d, χ̄|{Ji, T a}|c,χ) = σ
(i)

χ̄χ i fcda, (D.2)

(d, χ̄|{Ji, Ga
j
}|c,χ) = δi jδχ̄χ

�
1

2
dcda +

i

3
fcda

�

, (D.3)

(d, χ̄|{T a, T b}|c,χ) = δχ̄χ
�
δabδdc −

�
δadδbc +δbdδca

�
+ 3dabedecd

�
, (D.4)

(d, χ̄|{T a, Gb
i
}|c,χ) = σ

(i)

χ̄χ

�
1

3
δabδdc −

1

3

�
δadδbc +δbdδca

�
+ dabe

�

decd +
i

2
fecd

�

−
i

2

�
dabe fbce + fadedbce

�
�

, (D.5)

(d, χ̄|{Ga
i
, Gb

j
}|c,χ) = δi jδχ̄χ

�
5

12
δabδdc −

1

12

�
δacδbd +δadδbc

�
−
�

1

4
dcde −

2

3
i fcde

�

dabe

�

+ iεi jkσ
(k)

χ̄χ

�
1

4

�
δacδbd −δadδbc

�
+

�
1

2
ddce +

5

12
i fcde

�

i fabe

�

, (D.6)

(nop, χ̄|{Ji, Ga
j
}|c,χ) =

1

4
p

2

�

3iεi jkSk + Siσ j + S jσi

�

χ̄χ
Λnop

ac
, (D.7)

(nop, χ̄|{T a, Gb
i
}|c,χ) =

i

2
p

2
S
(i)

χ̄χ

�

fabdΛ
nop

dc
+ 2 facdΛ

nop

bd

�

, (D.8)

(nop, χ̄|{Ga
i
, Gb

j
}|c,χ) = iεi jkS

(k)

χ̄χ

1

8
p

2

�

−
�

dcd b +
2

3
i fcd b

�

Λ
nop

ad
+

5

3

�

i fabdΛ
nop

dc
+ i facdΛ

nop

bd

�

− (a↔ b))

+
�

Siσ j + S jσi

�

χ̄χ

1

8
p

2

�

Λ
nop

ad

�
dbcd + i fbcd

�
+ (a↔ b)

�

, (D.9)

(nop, χ̄|{Ji, J j}|klm,χ) =

�
9

2
δi jδχ̄χ − 3

�

SiS
†
j
+ S jS

†
i

�

χ̄χ

�

δ
nop

klm
, (D.10)

(nop, χ̄|{Ji, T a}|klm,χ) =
9

2

�
~Sσi
~S†
�

χ̄χ
Λ

a,nop

klm
, (D.11)

(nop, χ̄|{Ji, Ga
j
}|klm,χ) =

�
9

4
δi jδχ̄χ −

3

2

�

SiS
†
j
+ S jS

†
i

�

χ̄χ

�

Λ
a,nop

klm
, (D.12)

(nop, χ̄|{T a, T b}|klm,χ) =
9

4
δχ̄χ

�

Λa,nop
x yz
Λ

b,x yz

klm
+Λb,nop

x yz
Λ

a,x yz

klm

�

, (D.13)

(nop, χ̄|{T a, Gb
i
}|klm,χ) =

9

8

�
~Sσi
~S†
�

χ̄χ

�

Λa,nop
x yz
Λ

b,x yz

klm
+Λb,nop

x yz
Λ

a,x yz

klm

�

, (D.14)

(nop, χ̄|{Ga
i
, Gb

j
}|klm,χ) = δi jδχ̄χ

�
9

16
Λa,nop

x yz
Λ

b,x yz

klm
+ (a↔ b)

�
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+ iεi jk

�
~Sσk

~S†
�

χ̄χ

�
1

16
Λnop

ac
Λbc

klm
+

3

16
Λa,nop

x yz
Λ

b,x yz

klm
− (a↔ b)

�

+
�

SiS
†
j
+ S jS

†
i

�

χ̄χ

�
1

16
Λnop

ac
Λbc

klm
−

3

8
Λa,nop

x yz
Λ

b,x yz

klm
+ (a↔ b)

�

. (D.15)
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E Projection algebra for γ+ 1

2

+→ 1−+ 1

2

+

We introduce the decomposition for the scattering of photons off (J P = 1

2

+
)-fermions via the projection

algebra

1

2
t r(T µ̄µ

a,n
ΛQ

b,k
µ̄µ Λ̄) = δabδnk, (E.1)

which is completed by the following Ward identities:

q̄µ̄Q
±,k
µ̄µ = 0, qµQ

±,k
µ̄µ = 0. (E.2)

While T µ̄µ
a,n

denote the basis vectors, the projections of the on-shell scattering amplitude on this basis,

Q
±,k
µ̄µ , are given as follows [24]:

Q
±,1
µ̄µ =

1

v
2

vµ̄Q±vµ−Q
∓,2
µ̄µ ,

Q
±,2
µ̄µ = r⌋⌊,µ̄

�
P±− 2 (r̄ · r)Q∓

�
r̄⌋⌊,µ−

�

r̄⌋⌊ · r⌋⌊
� 1

v
2

vµ̄

�
P±− 2 (r̄ · r)Q∓

�
vµ

+ Ē± i γ5

p
s

v
2

vµ̄

�
P∓+ 2 (r̄ · r)R±

�
r̄⌋⌊,µ− E± i γ5

p
s

v
2

r⌋⌊,µ̄
�

P±+ 2 (r̄ · r)R∓
�

vµ,

Q
±,3
µ̄µ = ∓

p
s

v
2

vµ̄ i γ5P±w̄⌋,µ±
1

2
(δ+ 1)

s

v
2

�

(r̄ · r) Ē±Q
∓,2
µ̄µ − (r̄ · r̄) E∓Q

±,2
µ̄µ

�

,

Q
±,4
µ̄µ = ±

p
s

v
2

w⌋,µ̄P± i γ5vµ±
1

2

�

δ̄+ 1
� s

v
2

�

(r̄ · r) E±Q
∓,2
µ̄µ − (r · r) Ē∓Q

±,2
µ̄µ

�

,

Q
±,5
µ̄µ = ∓

p
s

v
2

vµ̄ i γ5P± r̄⌋⌊,µ±
s

v
2

�

(r · r) Ē±Q
∓,2
µ̄µ − (r̄ · r) E∓Q

±,2
µ̄µ

�

,

Q
±,6
µ̄µ = ±

p
s

v
2

r⌋⌊,µ̄P± i γ5vµ±
s

v
2

�

(r̄ · r̄) E±Q
∓,2
µ̄µ − (r̄ · r) Ē∓Q

±,2
µ̄µ

�

,

Q
±,7
µ̄µ =Q±

�

w⌋,µ̄ r̄⌋⌊,µ−
�

w⌋ · r̄⌋⌊
� 1

v
2

vµ̄vµ

�

± (r · r) Ē∓
s

v
2

�

Q
∓,4
µ̄µ −

1

2

�

δ̄+ 1
�

Q
±,5
µ̄µ

�

∓ (r̄ · r) E∓
s

v
2

�

Q
±,4
µ̄µ ∓

1

2

�

δ̄+ 1
�

Q
∓,5
µ̄µ

�

,

Q
±,8
µ̄µ =Q±

�

r⌋⌊,µ̄w̄⌋,µ−
�

r⌋⌊ · w̄⌋
� 1

v
2

vµ̄vµ

�

± (r̄ · r̄) E∓
s

v
2

�

Q
∓,3
µ̄µ −

1

2
(δ+ 1)Q

±,6
µ̄µ

�

∓ (r̄ · r) Ē∓
s

v
2

�

Q
±,3
µ̄µ −

1

2
(δ+ 1)Q

∓,6
µ̄µ

�

,

Q
±,9
µ̄µ =Q±

�

w⌋,µ̄w̄⌋,µ−
�

w⌋ · w̄⌋−
1

s

�
1

v
2

vµ̄vµ

�

−
1

4

�

δ̄+ 1
�

(δ+ 1)
s

v
2

�

(r̄ · r)Q∓,2
µ̄µ − Ē∓E∓Q

±,2
µ̄µ

�

±
1

2

�

δ̄+ 1
� s

v
2

�

(r̄ · r) E∓Q
∓,3
µ̄µ − (r · r) Ē∓Q

±,3
µ̄µ

�

±
1

2
(δ+ 1)

s

v
2

�

(r̄ · r) Ē∓Q
∓,4
µ̄µ − (r̄ · r̄) E∓Q

±,4
µ̄µ

�

.

(E.3)
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F Spinors for (J P = 1

2

+
)- and (J P = 3

2

+
)-baryons

The momentum and spin dependence of the spin-1/2 spinors u(p, s) are given by

u(p, s) =

r

Ep +M

2M

 

1(2×2)
~σ·~p

Ep+M

!

χ (1/2)
s

, χ
(1/2)
1 =

�
1

0

�

, χ
(1/2)
2 =

�
0

1

�

, (F.1)

where the energy Ep, the three-momentum ~p and the four-momentum p are connected through

E2
p
= ~p2+M2, p2 = M2. (F.2)

To investigate (J P = 3

2

+
)-baryons, we introduce similarly the spin-3/2 spinor

uµ(p, s) =

r

Ep +M

2M
S̃µ†(p)χ (3/2)

s
, χ

(3/2)
1 =








1

0

0

0








, χ
(3/2)
2 =








0

1

0

0








, χ
(3/2)
3 =








0

0

1

0








, χ
(3/2)
4 =








0

0

0

1








.

(F.3)

The spin-transition matrices S i†(p), i = 0, . . . , 3, are expressed in the (4× 4)-matrix space:

S0† =
|~p|
M




0
Æ

2

3
0 0

0 0
Æ

2

3
0



 , S1†(p) =

�

− 1p
2

0 1p
6

0

0 − 1p
6

0 1p
2

�

,

S2†(p) =

�

− ip
2

0 − ip
6

0

0 − ip
6

0 − ip
2

�

, S3†(p) =




0
Æ

2

3
0 0

0 0
Æ

2

3
0



 . (F.4)

We connect the quantity S̃µ†(p) of Eq. (F.3) with these spin-transition matrices via

Sµ†(p) =

 

Sµ†(p)
~σ·~p

Ep+M

!

. (F.5)

The spinor sum over all possible spin projections s is identified with the projection operator Λ
µν
+ (p) for

the positive energy states. It shows the subsequent kinematical dependency:

Λ
µν
+ (p)≡

∑

s

uµ(p, s)ūν(p, s) = − /
p+M

2M

�

gµν −
1

3
γµγν −

2

3

pµpν

M2
+

pµγν − pνγµ

3M

�

. (F.6)

The insertion of S̃µ†(p) into Eq. (F.6) provides us with
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S̃µ†(p)S̃ν(p) = − /
p+M

Ep +M

�

gµν −
1

3
γµγν −

2

3

pµpν

M2
+

pµγν − pνγµ

3M

�

,

S̃0†(p)S0(p) =
2

3

~p2

m2
1(2×2). (F.7)

To derive the normalisation condition both for the spin-1/2 and the spin-3/2 spinors, we utilise Eqs.

(F.1) and (F.3), respectively, and start with the following equations:

ū(p′, s′) Γ u(p, s) = χ
†(1/2)

s′ Γ̃ χ (1/2)
s

,

ūµ(p′, s′) Γ uν(p, s) = χ
†(3/2)

s′
�

Sµ(p′) Γ̃ Sν†(p)
�

χ (3/2)
s

. (F.8)

It is the purpose of these equations to perform a non-relativistic expansion with Γ̃ up to the order

O (Q2/M2) with |~p|, |~p′| ∼ O (Q) and M ′ = M . In the case of the normalisation conditions, we obtain for

Γ = 1, Γ̃ = Np′Np

�

1−
~σ · ~p′

Ep′ +M

~σ · ~p
Ep +M

�

(F.9)

the expansion’s result

Γ̃n.r. = 1. (F.10)

This directly leads to the normalisation conditions:

ū(p, s′)u(p, s) = δs′s, ūµ(p, s′)uµ(p, s) = −δs′s. (F.11)

The non-relativistic expansion for several other quantities of Γ̃, that are relevant for our calculations in

section 4.3, are presented in the following:

Γ = γ0, Γ̃ = Np̄Np

�

1+
~σ · ~̄p

Ep̄ +M

~σ · ~p
Ep +M

�

, Γ̃n.r. = 1, (F.12)

Γ = γi, Γ̃ = Np̄Np

�

σi

~σ · ~p
Ep +M

+
~σ · ~̄p

Ep̄ +M
σi

�

, Γ̃n.r. =
1

2M

�

(p+ p̄)i + iε jki(p− p̄) jσk

�

,

(F.13)

Γ = γ5, Γ̃ = Np̄Np

�

~σ · ~p
Ep +M

−
~σ · ~̄p

Ep̄ +M

�

, Γ̃n.r. =
1

2M
~σ · (~p− ~̄p), (F.14)

Γ = γ0γ5, Γ̃ = Np̄Np

�

~σ · ~̄p
Ep̄ +M

+
~σ · ~p

Ep +M

�

, Γ̃n.r. =
1

2M
~σ · (~p+ ~̄p), (F.15)
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Γ = γiγ5, Γ̃ = Np̄Np

�

σi +
~σ · ~̄p

Ep̄ +M
σi

~σ · ~p
Ep +M

�

, Γ̃n.r. = σi, (F.16)

Γ = σ0 j, Γ̃ = Np̄Np i

�

σ j

~σ · ~p
Ep +M

−
~σ · ~̄p

Ep̄ +M
σ j

�

, Γ̃n.r. =
i

2M

�

(p− p̄) j + iεki j(p+ p̄)kσi

�

,

(F.17)

Γ = σi j, Γ̃ = Np̄Npεi jk

�

σk −
~σ · ~̄p

Ep̄ +M
σk

~σ · ~p
Ep +M

�

, Γ̃n.r. = εi jkσk. (F.18)

Here, we identify the Latin indices i, j with the spatial indices 1, 2 and 3.
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G Complete sets of the invariant functions F±
n
(
p

s, t) for the examples in section 5.4

Contact term process which is related to the scattering reaction γB→ PB:

p̄, λ̄

q̄

x

p,λ

q,α

. (G.1)

Figure G.1.: Contact interaction of the reaction γB→ PB

We use the parts of the chiral SU(3) Lagrangian of (5.58) and derive the following on-shell scattering

amplitude Tµ
c

with the corresponding Clebsch-Gordan coefficient Cc:

Tµ
c
= Ccγ5γ

µ,

Cc =
e

2 f
FA t r

�

λp̄

��

Q,λq̄

�

,λp

��

+
e

2 f
DA t r

�

λp̄

¦�

Q,λq̄

�

,λp

©�

. (G.2)

The Dirac matrices γ5 and γµ are defined in appendix A.5. The positive elementary electric charge is

denoted by e while the pion decay constant f is introduced in Eq. (2.40). The free parameters FA and DA

are dimensionless. We identify Q with the charge matrix of Eq. (2.45). The Gell-Mann matrices λi are

specified by the momenta p and p̄ (q and q̄) of the initial and final fermion (boson), respectively. Our

Mathematica code provides us with the complete set of invariant functions F±
n
(
p

s, t) as follows:

F+
1
(
p

s, t) = −i, F−
1
(
p

s, t) = −i,

F+
2
(
p

s, t) = −
i
p

s
, F−

2
(
p

s, t) =
i
p

s
,

F+
3
(
p

s, t) = 0, F−
3
(
p

s, t) = 0. (G.3)

S-channel process with a (J P = 1

2

+
)-baryon as the intermediate particle that is related to the scattering

reaction γB→ PB:

(p+ q)

p̄, λ̄

q̄

x y

p,λ

q,α

. (G.4)

Figure G.2.: S-channel process of the reaction γB→ PB

We use the parts of the chiral SU(3) Lagrangian of (5.63) and derive the following on-shell scattering

amplitude Tµ
s

with the corresponding Clebsch-Gordan coefficient Cs:
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Tµ
s
=
∑

[B]

Cs i/qγ5

�

S[B](p+ q)
�

γµ,

Cs =−
8∑

a=1

e

2 f
FA t r

�

λa

�

λq̄,λp

��

t r
�

λp̄

�
Q,λa

��

. (G.5)

Here, we use the Feynman slash notation /q ≡ γµqµ. The propagator S[B](p+q) of the internal (J P = 1

2

+
)-

baryon in momentum space reads [65]:

S[B](p+ q) =
(/p+ /q) +mB

(p+ q)2−m2
B + iε

. (G.6)

Both kind of sums
∑

[B] and
∑8

a=1
consider the complete baryon octet states. Our Mathematica code

provides us with the complete set of invariant functions F±
n
(
p

s, t) as follows:

F+
1
(
p

s, t) =

p
smB + s− 2w · q

s−m2
B

, F−
1
(
p

s, t) =

p
smB − s+ 2w · q

m2
B − s

,

F+
2
(
p

s, t) =
−psmB + s+ 2w · q
(m2

B − s)
p

s
, F−

2
(
p

s, t) = −
mB +

s+2w·qp
s

m2
B − s

,

F+
3
(
p

s, t) = 0, F−
3
(
p

s, t) = 0. (G.7)

U-channel process with a (J P = 1

2

+
)-baryon as the intermediate particle which is related to the reaction

γB→ V B:

(p− q̄)

p̄, λ̄

q̄, ᾱ

x y

p,λ

q,α

. (G.8)

Figure G.3.: U-channel process of the reaction γB→ V B

We use the parts of the chiral SU(3) Lagrangian of (5.68) and derive, amongst others, the following

on-shell scattering amplitude T
µ̄µ
u,1 with the corresponding Clebsch-Gordan coefficient Cu,1:

T
µ̄µ
u,1 =

∑

[B]

�

Cu,1

�

/̄qq̄µ̄
�

S[B](p− q̄)
�

γµ− γµ̄(q̄ · q̄)
�

S[B](p− q̄)
�

γµ
��

,

Cu,1 = −
8∑

a=1

�

eFV

2m2
V

t r
�

λa

�

λq̄,λp

��

t r
�

λp̄

�
Q,λa

��

+
eDV

2m2
V

t r
�

λa

¦

λq̄,λp

©�

t r
�

λp̄

�
Q,λa

��

+
eGV

2m2
V

t r
�

λaλp

�

t r
�

λq̄

�

t r
�

λp̄

�
Q,λa

��
�

. (G.9)
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The parameters FV , DV and GV of the chiral SU(3) Lagrangian are dimensionless while mV carries the

dimension of a mass. Our Mathematica code provides us with the complete set of invariant functions

F±
n
(
p

s, t) as follows:

F+
1
(
p

s, t) = 0, F−
1
(
p

s, t) = 0,

F+
2
(
p

s, t) =
(2mB +

p
s)(m2

B
− s+ 2w · q̄)

m2
B + 2q̄ · q− s
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(2mB −

p
s)(m2

B
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m2
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,
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(
p
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p
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B
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(m2
B + 2q̄ · q− s)
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T-channel process of γB→ V B with a (J P = 1−)-meson as the intermediate particle:

(q̄− q)

p̄, λ̄

q̄, ᾱ

y

x

p,λ

q,α

. (G.11)

Figure G.4.: T-channel process of the reaction γB→ V B

We use the parts of the chiral SU(3) Lagrangian of (5.73) and derive, amongst others, the following

on-shell scattering amplitude T
µ̄µ

t(v ),1
with the corresponding Clebsch-Gordan coefficient Ct(v ),1:

T
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=
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+
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Here, both kind of sums
∑

[V ] and
∑8

a=0
consider the states of the complete vector meson nonet. The

propagator S[V ],αβ ,ρσ(q̄− q) of the internal vector meson in momentum space reads [36]:

S[V ],αβ ,ρσ(q̄− q) = −
1

m2
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1
�
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��
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�
q̄− q

�
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�
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�

β

�
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�

ρ −
�
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��

. (G.13)

Our Mathematica code provides us with the complete set of invariant functions F±
n
(
p

s, t) as follows:
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