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Zusammenfassung

Die vorliegende Arbeit befasst sich mit den Wechselwirkungen von Neutrinos in heiÿer und

dichter Materie. Dabei geht es insbesondere um die relevanten Neutrino-Wechselwirkungen im

Kontext von Neutrino-Transport in Kern-Kollaps-Supernovae (CCSNe). Beim Kollaps eines

massereichen Sterns und der sich anschlieÿenden Explosion wird Gravitationsenergie in Höhe

von ungefähr 1053 erg hauptsächlich in Form von Neutrinos freigesetzt. Die dementsprechend

hohen Neutrino�üsse haben Auswirkungen auf die verschiedensten Vorgänge im Rahmen einer

Supernova.

Beim Zurückfedern des Sternenkerns nach Kontraktion über die Kerndichte hinaus entsteht

eine auswärts gerichtete Stoÿwelle. Simulationen von CCSNe �nden, dass diese Stoÿwelle beim

Durchlaufen des Sterns durch das Aufheizen von akkretierten Masseströmen soviel Energie

verliert, dass sie zum Halten kommt und keine prompte Explosion statt�ndet. Die meisten

Studien sagen voraus, dass die Supernova-Explosion letztendlich durch den Mechanismus des

verzögerten Neutrino-Heizens ausgelöst wird. Demzufolge werden Neutrinos, die in tieferen

Schichten emittiert wurden, im Bereich hinter der Schockfront wieder absorbiert. Dadurch

wird genug Energie auf die Stoÿwelle übertragen um sie wiederau�eben zu lassen. Hieraus wird

ersichtlich, dass verlässliche Modelle für Explosionen durch Neutrino-Heizen auf eine präzise

Beschreibung der Neutrino-Wechselwirkungen in der heiÿen und dichten Materie des Protoneu-

tronensterns (PNS) angewiesen sind.

Eine Reihe weiterer Prozesse hängt ebenfalls von den Eigenschaften der Neutrinospektren

ab. Man erwartet, dass die Absorption von Neutrinos an der Ober�äche des PNS zu einem

beträchtlichen Massenaus�uss führt, dem sogenannten Neutrino getriebenen Wind (NDW).

Der NDW wird als möglicher Ort für die Synthese schwerer Elemente durch den sogenannten

r-Prozess diskutiert. Der Verlauf der Elementsynthese hängt entscheidend von den thermody-

namischen und chemischen Bedingungen im NDW ab, welche wiederum hauptsächlich durch

die Neutrinospektren bestimmt werden.

Weiterhin wird erwartet, dass die direkte Messung der Neutrinospektren der nächsten na-

hen Supernova mit modernen Detektoren einen detaillierten Einblick in die Vorgänge bei einer

CCSN liefern wird. Zusätzlich könnte eine solche Messung Aufschluss über das Verhalten von

Materie bei extrem hohen Dichten liefern. Solche Zustände sind im Labor selbst in modernen

Schwerionen-Beschleunigern wenn überhaupt nur schwer zu reproduzieren. Diese Information

kann jedoch nur dann gewonnen werden wenn die Theorie gleichzeitig verlässliche Modelle für

die Emission von Neutrinos liefert. Ein weiterer interessanter Aspekt sind Neutrinooszillationen

in der Nähe des PNS, deren Auftreten sowohl die Ausbeute der Elementsynthese als auch mess-

bare Neutrinosignale auf der Erde modi�zieren könnte. Die Modelle für Neutrinooszillationen

hängen ebenfalls von den detaillierten Eigenschaften der Neutrinospektren ab.
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Neutrino-Transport in PNS ist insofern ein besonders Konzept als das die Neutrinos auf-

grund der hohen Dichten nicht einfach aus dem Stern entweichen können. Neutrinos spüren

im Allgemeinen nur die schwache Wechselwirkung (und die Gravitation) weshalb sie kaum mit

anderen Teilchen reagieren. Ihre mittlere freie Weglänge ist in den meisten Umgebungen gröÿer

als jedes relevante Objekt. Bei einer CCSN wird die Materie im Inneren eines PNS aber so

heiÿ und dicht, dass die Neutrinos quasi gefangen sind. Sie be�nden sich dann im thermischen

und chemischen Gleichgewicht mit der Materie. Weiter drauÿen bei niedrigen Dichten wird die

freie Weglänge wieder groÿ, so dass die Neutrinos einfach entweichen. Im Übergangsbereich

zwischen diesen beiden Grenzfällen stellt Neutrino-Transport ein nicht-triviales Problem dar.

Das Spektrum der Neutrinos wird hauptsächlich durch den Bereich bestimmt indem sie von

der Materie entkoppeln, jedoch ist die Position dieser Zone im Allgemeinen unterschiedlich je

nach Neutrinoenergie und -spezies. Neutrinos mit niedrigen Energien entkoppeln normaler-

weise bei höheren Dichten, da die meisten Reaktionsraten mit der Energie zunehmen. Weiter

entkoppeln Elektron-Neutrinos bei niedrigeren Dichten als alle anderen weil sie die kürzeste

freie Weglänge haben, gefolgt von Elektron-Antineutrinos. Für die Neutrinospezies der schwe-

ren µ- und τ -Leptonen werden die längsten freien Weglängen und entsprechend die höchsten

Entkopplungsdichten vorausgesagt.

Die Modellierung von Neutrino-Transport muss sich nun unter anderem mit den folgenden

zwei Fragen beschäftigen. Die erste Frage ist die nach den relevanten Neutrinoreaktionen. Es

müssen alle Reaktionen berücksichtigt werden die für wenigsten eine Neutrinospezies bei einer

beliebigen aber relevanten Energie eine bedeutenden Rate aufweisen.

Die zweite Frage beschäftigt sich mit dem Ansatz nachdem die Raten berechnet werden. Die

Simulation von Neutrino-Transport in heutigen CCSNe-Simulationen kann rechnerisch extrem

aufwendig sein. Da Rechenzeit in dieser Gröÿenordnung eine begrenzte Ressource darstellt,

gilt es bei der Bestimmung der Reaktionsraten eine Balance zu �nden zwischen Präzision

und Aufwand. Deshalb werden nach Möglichkeit passende Näherungen verwendet, welche die

Wechselwirkungen numerisch vereinfachen. Dies beinhaltet z.B. vereinfachte Beschreibungen

der starken Wechselwirkung oder die Annahme nicht-relativistischer Kinematik für Nukleonen.

Solche Näherungen müssen mit Bedacht gewählt werden, da sie nicht in jeder Situation glei-

chermaÿen berechtigt sind. Da aber die Eigenschaften der Neutrinospektren z.B. stark von der

Beschreibung der starken Wechselwirkung bei hohen Dichten abhängen können, kann eine unge-

naue Beschreibung zu signi�kanten Abweichungen bei den Vorhersagen für Neutrinoemissionen

führen.

Die vorliegende Arbeit beschäftigt sich im Detail mit genau diesen Fragestellungen. Zum

einen wird die Bedeutung schwacher Wechselwirkungen mit geladenen Strömen (CC) zwis-

chen Neutrinos und Myonen sowie die Bedeutung des inversen Neutronzerfalls für Elektron-

Antineutrinos in CCSN bestimmt. Myonische CC-Reaktionen sind in heutigen Simulationen

nicht implementiert. Dabei wird argumentiert, dass die Teilchenenergien im Inneren eines PNS

noch zu klein seien um die schweren Myonen mit einer Masse von 105.7 MeV mit Reaktionsraten

zu produzieren, die relevant sind im Vergleich zu anderen Reaktionen dieser Neutrinos. Dieses

Argument wird in dieser Arbeit auf die Probe gestellt, da die Teilchenenergien bei Dichten ober-

halb von 1012 g/cm3 im Prinzip hoch genug sein können. Der inverse Neutronenzerfall wird in
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bisherigen Simulationen vernachlässigt, da man die entsprechende Rate für ν̄e im Vergleich zur

Absorption an Protonen oder Streuung an Nukleonen für nachrangig hält. Bei hohen Dichten

in neutronenreicher Materie sorgt aber die starke Wechselwirkung für eine Vergröÿerung der

Energiedi�erenz zwischen Neutronen und Protonen, wodurch die Absorptionsrate an Protonen

gerade für niederenergetische ν̄e stark unterdrückt wird. Der inverse Neutronenzerfall leidet

hingegen nicht an diesem Problem und stellt somit eine interessante Alternative dar.

Das zweite Ziel dieser Arbeit ist eine verbesserte Beschreibung der Neutrino-NukleonWechsel-

wirkung bei hohen Dichten. Dazu wird versucht neue semianalytische Ausdrücke zur Beschrei-

bung der Reaktionen herzuleiten ohne gängige Näherungen für die Kinematik der Nukleonen

zu verwenden. Weiter sollen die Ausdrücke eine genauere Beschreibung der schwachen hadro-

nischen Ströme inklusive des sogenannten schwachen Magnetismus enthalten, ohne dass dies zu

einem Anstieg des numerischen Aufwands führt.

Im ersten Abschnitt dieser Arbeit werden entsprechende Ausdrücke, insbesondere für die in-

verse mittlere freie Weglänge (IMFP), für mehrere Neutrinoreaktion hergeleitet. Dabei handelt

es sich im Einzelnen um die folgenden Reaktionen: Absorption von νe an Neutronen; Absorption

von ν̄e an Protonen; inverser Neutronenzerfall; inverser Myonenzerfall; Umwandlung von ν̄e und

Elektronen in ν̄µ und Myonen; Absorption von νµ an Neutronen; Umwandlung von νµ und Elek-

tronen in νe und Myonen. Dafür werden zuerst die entsprechenden Matrixelemente hergeleitet,

wobei die Abhängigkeit der schwachen Kopplung und der hadronischen Kopplungskonstanten

vom Impulsübertrag aufgrund der vergleichbar kleinen Energieskalen im PNS vernachlässigt

wird. Die starke Wechselwirkung bei hohen Dichten wird im Rahmen der relativistischen

mittleren Feldtheorie (RMF) durch starke Wechselwirkungs-Potentiale berücksichtigt. Diese

Herleitungen reproduzieren frühere Ergebnisse aus der Literatur und erweitern diese, so dass

sie zusätzliche Korrekturen für endliche Massen und die starken Wechselwirkungs-Potentiale

enthalten. Basierend auf diesen Matrixelementen werden dann Ausdrücke wie der IMFP für

Absorptionsreaktionen oder Streu-Kerne für Streureaktionen ermittelt. Diese Berechnungen

berücksichtigen die exakte Kinematik aller Teilchen. Beiträge des schwachen Magnetismus sind

ebenfalls in allen Ordnungen enthalten. Die resultierenden Ausdrücke werden entweder zum

ersten mal explizit hergeleitet oder sind präziser als die meisten vergleichbaren Ausdrücke in

gegenwärtigen CCSN-Simulationen, ohne gröÿeren numerischen Aufwand zu erfordern. Dieser

Teil der Arbeit ist in zwei Abschnitte gegliedert, einen für rein leptonische Reaktionen und

einen für Wechselwirkungen zwischen Neutrinos und Nukleonen.

Im Anschluss an diese rein analytischen Herleitungen werden im zweiten Teil der Arbeit die

Transportgröÿen für die Bedingungen in einem PNS numerisch berechnet. Zu diesem Zweck

werden Materiepro�le und Neutrinospektren aus einer 1-dimensionalen, allgemein relativis-

tischen, hydrodynamisch CCSN-Simulation mit Boltzmann-Neutrino-Transport herangezogen.

Die Bedeutung der neuen Reaktionen wird verglichen mit einem Standard-Set von Neutrinore-

aktionen, welches für gegenwärtige Supernova-Simulationen repräsentativ ist.

Für ν̄e stellt sich der inverse Myonenzerfall als eine wichtige Reaktion bei Neutrinoenergien

unterhalb 5−10 MeV während der ersten Sekunde nach Bildung der Stoÿwelle heraus. Ähnlich

ist der inverse Neutronenzerfall eine wichtige Reaktionen bei den gleichen Energien für die

Zeit nach mehr als einer Sekunde. Dies liegt daran, dass die Entkopplungsregion in Folge der

3



Kühlung und Deleptonisierung des PNS zu Dichten oberhalb von 1013 g/cm3 wandert. Dort

ist die Energiedi�erenz zwischen Neutronen und Protonen durch die starke Wechselwirkung

deutlich vergröÿert, was zu einer starken Unterdrückung der Absorption von ν̄e an Protonen

im Vergleich zum inversen Neutronenzerfall führt. Für die Entkopplung von Myonneutrinos

�ndet man, dass die Absorption an Neutronen nur bei sehr hohen Energien oberhalb 95 MeV

entscheidend ist. Im Bereich darunter bis zu Energien zwischen 30−50 MeV ist die Umwandlung

von νµ und Elektronen in νe und Myonen eine wichtige inelastische Reaktion, vergleichbar in der

Rate mit Neutrinostreuung an Elektronen. Für niedrige Neutrinoenergien unterhalb 5−10 MeV

�ndet man schlieÿlich das der inverse Myonenzerfall in der ersten Sekunde für νµ ähnlich wichtig

ist wie für ν̄e.

Dementsprechend kommt man zu dem Schluss, dass schwache myonische CC-Reaktionen und

der inverse Neutronenzerfall in dynamische CCSN-Simulationen implementiert werden sollten.

Es wird erwartet, dass dies zu einer Änderung der Spektren von ν̄e und νµ führt. Weiterhin kop-

peln diese Reaktionen unterschiedliche Neutrinospezies auf eher asymmetrische Weise. So kann

z.B. ein hochenergetisches ν̄e tief im Kern in ein niederenergetisches ν̄µ umgewandelt werden.

Letzteres kann aufgrund seiner vielfach gröÿeren freien Weglänge ungehindert entweichen und

beein�usst damit die Deleptonisierungsrate. Ein analoges Argument gilt für die Umwandlung

hochenergetischer νµ in niederenergetische νe. Aufgrund der vielen Feedback-Mechanismen die

in einer Supernova aktiv sind ist es jedoch nahezu unmöglich das Ausmaÿ der Änderungen in

den Spektren mit einer an die Simulation nachgelagerten Berechnung wie im Rahmen dieser

Arbeit zu bestimmen.

Die Relevanz myonischer Reaktionen führt auch dazu, dass Myonen schon zu einem sehr

frühen Zeitpunkt während der Supernova auftreten. Die genau Häu�gkeit der Myonen und

mögliche Konsequenzen für die Neutrinoemissionen sind jedoch auch hier ohne eine dynamische

Simulation schwer vorherzusagen.

Weiter wird die Implementierung des schwachen Magnetismus in dieser Arbeit mit genäherten

analytischen Korrekturfaktoren verglichen, die gegenwärtig in CCSN-Simulationen Verwendung

�nden. Dabei stellt sich heraus, dass für Neutrino-Transport bei hohen Dichten in PNS der Ef-

fekt des schwachen Magnetismus durch solche Korrekturfaktoren nur unzureichend beschrieben

wird.

Zusammenfassend lässt sich festhalten, dass die Implementierung der neuen Reaktionen und

der verbesserten Transportausdrücke in dynamische CCSN-Simulation empfohlen wird. Nur so

kann der mögliche Ein�uss auf die Explosions-Dynamik, auf die Deleptonisierung und Kühlung

eines PNS und auf die Neutrinospektren verlässlich und aussagekräftig bestimmt werden.
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1. Introduction

Neutrinos interact by one of the basic forces of nature, the weak interaction. Understanding

and observing the behaviour of neutrinos can thus tell us about this basic force. However, the

weak interaction has its name for a reason. One �nds neutrinos as particles of most elusive kind.

Of all particles that are known to us they are the ones that are the least likely to react with

anything else. Every second tens of billions of neutrinos pass through each square centimeter

of the Earth's surface (and our skin's) and cross the whole Earth (and our body). Yet we are

completely unaware of this as almost none of them will interact with us. It is this property

which makes them as interesting as a probe as they are a nuisance. For instance, in particle

physics most experiments measure neutrinos by observing the fact that they are not there. If

some energy is missing that is not found in any of the detectors then it was probably carried

away by a neutrino. Likewise, the active observation and measurement of a neutrino requires

major e�orts, patience, and huge detectors. But this is also the origin of their relevance in

astrophysics. In general, neutrinos can be messengers from the deepest regions of stars where

nuclear burning takes place. In this way they helped us to understand the nuclear burning

processes that power our Sun. Even though most life on Earth thrives in some way on the

energy of solar light, for a long time it was not known what made the Sun shining. The Sun's

light itself consists of photons from the photosphere, a layer at the surface of the Sun. After

nuclear forces were discovered a century ago, it was speculated that nuclear fusion reactions

in the core of the Sun are the source of thermal energy. Later it was understood that these

reactions would also result in the production of neutrinos. Once emitted, most of these neutrinos

would leave the Sun and could later be detected on earth. And so it happened eventually in the

famous Homestake neutrino experiment. Not only could it qualitatively con�rm the theory of

neutrino production by nuclear fusion in the Sun, but one could actually quantify the neutrino

�ux and compare it against theoretical models of stellar burning to great success. On top of

that, the very same measurement gave the �rst hint at the phenomena of neutrino oscillations.

These neutrino oscillations are among the prime examples of physics that cannot be explained

within the famous Standard Model. This serves to underline the important role that research

on astrophysical neutrino signals has today and will have in the future. The corresponding

questions gave rise to the �eld of neutrino astronomy, where one uses huge underground tanks,

the polar ice, or the water of the ocean as detectors.

Understanding supernova explosions is another big �eld of astrophysics that is very much

concerned with the measurement of neutrinos. Just like for the Sun, a part of this connection

stems from the fact that only neutrinos (besides possibly gravitational waves) can probe the

dynamics of the collapse and explosion in the cores of supernovae. Thereby neutrinos could

also be microscopes into some of the most extreme states of elementary matter that can be
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Figure 1.1.: Neutrino signal from SN1987A. Measured neutrino energies are plotted vs. arrival

time after beginning of signal.

encountered in the universe. However, the role of supernova neutrinos goes beyond this. It was

predicted that most of the energy of a core collapse supernova will be released in neutrinos.

In the young protoneutron star that forms by the collapse of a massive star, the temperature

and density are so extremely high that neutrino emission is by far the most e�cient cooling

process. The core will actually be so dense that not even the neutrinos can leave it immediately

all at once. Instead, theory predicts a particular neutrino light curve that would be observed

from a core collapse supernova. It took until the event of the famous supernova 1987A to

measure the �rst (and up to now only) supernova neutrino signal by several experiments all

over the world. Even though only a few dozen neutrinos were measured, the signal was showing

a striking quantitative agreement with models. It encouraged scientists that their principle

understanding of these most violent events in the universe was correct. At that time it was

already clear that the actual understanding of core collapse supernova explosions would be a

�ne-tuning problem of neutrino transport in the protoneutron star. This problem has not been

fully solved today, although in recent years the answer looks to become clear.

There are further fundamental questions coupled to supernova neutrinos. Researchers discuss

the possibility of heavy element nucleosynthesis in supernovae. The corresponding scenario

depends crucially on the spectra of several neutrino �avours. Also, supernova neutrinos could

undergo oscillations similar to the ones in our Sun, observations of which would enlarge our view

on new physics. Eventually, neutrino signals from supernovae would probably carry information

about the state of matter at nuclear density and about the nuclear interaction itself.

10



1.1. Core-Collapse Supernovae

This section will focus on the scenario of an Iron core-collapse supernova (CCSN). At the end

of their lifetime many massive stars have lost much of their material through stellar winds and

expulsion of their extended envelope. What is left is a star that contains all the products of

di�erent stages of stellar burning i.e. nuclear fusion in stars. The material is almost sorted in

di�erent layers, each of them dominated by di�erent nuclei. On the surface is a small layer of

Hydrogen, followed by Helium and then subsequently the heavier metals Carbon, Oxygen and

Neon. In the center one �nds Silicon and inside the Silicon layer there is eventually the Iron

core. This picture is often coined as the onion shell structure of massive stars. It is illustrated

in Figure 1.2

Figure 1.2.: Onion shell structure of massive star at the end of its lifetime. Elements are sorted,

with the lightest outside and the heaviest in the center. In the Silicon layer eventually the

Iron core forms. At the inner boundary of each layer shell burning frequently takes place and

contributes more mass to the subsequent layer.

The Iron core itself cannot undergo further fusion. The reason for this is that the nuclear

binding energy reaches a maximum for nuclei in the Iron group. In particular, 62Ni is the che-

mical element with the largest binding energy per nucleon. The behaviour of the binding energy

curve is very well approximated by the semi-empirical Bethe-Weizsäcker mass formula which

describes nuclei as drops of incompressible nuclear �uid. The resulting binding energy curve

is shown in Figure 1.3. The pressure in the Iron core is very high and so is the temperature,

it exceeds 5 billion Kelvin (or 0.5 MeV). Under this conditions nuclear matter is in nuclear

statistical equilibrium (NSE), an equilibrium between photodisintegration and strong interac-

tions. All nuclei heavier than Iron are strongly suppressed because of their smaller binding

energy and no nuclear fusion occurs that would release new energy. Without su�cient radia-
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tion pressure from fusion, the Iron core contracts under gravity until it is stabilized by electron

degeneracy pressure due to Pauli blocking. At the bottom of the other layers contraction will

frequently trigger shell burning. The shell burning will increase the amount of more massive

metals inside. This will lead to a growth of the Iron core. However there exists a maximum

mass of the Iron core that can be stabilized by the degeneracy pressure of electrons. It is called

the Chandrasekhar mass MCh. This limit lies close to 1.44M�, the exact value depends on

the electron fraction Ye in the core. Once the Iron core becomes heavier than this limit, the

degeneracy pressure of the electron gas can no longer withstand the gravitational pull. Con-

sequently the core starts to contract beyond a stable con�guration, causing the temperature

to rise further. Eventually it will heat up to ∼ 1 MeV. At this point NSE favours a partial

photodissociation of some of the Iron into alpha particles. This is an endogenous process, tak-

ing away further energy from the core. Also, when contraction starts, the electron chemical

potential rises. Electrons are then absorbed onto heavy nuclei. The neutrinos created in these

electron captures leave the star since their cross section with matter is still very small for the

present densities. Hence the core deleptonizes and the electron abundance decreases. As a

consequence the pressure against gravity decreases, too, and the contraction accelerates. This

feedback evolves into a runaway situation and the contraction becomes a collapse. The core

falls inward almost freely. The velocity is supersonic at nearly a quarter of the speed of light

[1]. If the core is not too massive, the collapse comes to a halt when matter reaches densities

Figure 1.3.: Average binding energy per nucleon

above the nuclear saturation density. At this point the nuclear interaction becomes strongly

repulsive and the nuclear equation of state (EOS) sti�ens. The idea that the core collapse of a

degenerate star is the birth of a neutron star was �rst brought up already in 1934 [2]. Initial

works in the early sixties realized that the gravitational collapse releases a huge amount of

gravitational binding energy EG > 1053 erg. It was expected that part of this energy should
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be able to trigger the explosions which astronomers observed as supernovae [3]. At the same

time �rst simulations of the gravitational collapse found that the forming neutron star will

bounce back at nuclear densities. Since the outer core will still fall inwards, this will launch

a shock that will propagate outwards into the outer layers. This could reverse the in fall of

the outer layers and make them gravitationally unbound [4, 5]. But it was also understood

that most of the gravitational binding energy would be emitted in the form of neutrinos. It

was further found that without additional help the initial shock would eventually stall. The

shock must overcome the large mass in�ow that gets accreted on the protoneutron star (PNS)

from the outer shells. Upon shock passage all heavy nuclei in the accretion �ow are dissociated

into nucleons due to the large temperatures in the shocked region. Yet, these reactions are

endogenous and drain too much of the shock's energy to allow for an explosion. It will be stuck

at a radius R ∼ 100 km after a few 100 ms. However, if only a small fraction of the neutrinos

(on the order of 1%) can be captured above the surface of the PNS, this will deposit enough

energy to revive the shock and trigger an explosion [6]. Since then the study of CCSNe was,

among many other things, always also a question of �ne-tuning neutrino transport.

1.1.1. Explosion Mechanism

Today still the favoured mechanism to explode a CCSN is the delayed neutrino-heating mech-

anism, discussed by Bethe & Wilson [7]. During the collapse phase the density increases so

high that even neutrinos become trapped in the matter. This is mainly due to elastic neutral-

current scattering on nucleons [8, 9, 10] and charged-current absorption on neutrons. The

neutral-current reaction channels a�ect all neutrino �avours, including those that are ther-

mally created. However, after the PNS has formed there is a certain density region where

the mean free path of neutrinos grows large enough for them to become gradually untrapped

again and di�use out of the star [11]. This region is called the neutrinosphere. At even lower

density neutrinos become eventually free streaming. When the shock passes through the PNS,

the matter is heated up into NSE. Under these conditions a large neutron fraction is energet-

ically favoured. Thus many electrons will be captured on protons, producing a large amount

of electron neutrinos. However, these neutrinos are trapped, too, as long as the shock pro-

gresses through the high density region inside the neutrinosphere. Once the shock crosses the

neutrinosphere (before it stalls), the neutrinos from transition to NSE at lower densities can

immediately escape. Consequently a large initial pulse of neutrinos is emitted. Afterwards

there emerges a region where the cooling of matter due to neutrino emission and the heating

due to absorption of neutrinos from further inside are in equilibrium. This region is called the

gain radius Rg [7] and it lies below the stalled accretion shock. Outside Rg up to the shock

radius Rs the matter is heated by neutrinos. In the delayed explosion mechanism this heating

transports enough energy to the shock to revive it. However, for Iron core progenitors the prob-

lem is that the dynamics are so complicated that sophisticated multidimensional simulations

are required. As a consequence 1D simulations of CCSNe fail to explode. In multidimensional

simulations, non spherical hydrodynamic instabilities develop. They cause matter to be heated

more e�ciently. Of special relevance is convective overturn through Raleigh-Taylor instabilities
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that form in the convectively unstable heating region [12, 13, 14, 15]. Another important mode

is the standing accretion shock instability (SASI) with its sloshing motion [16]. The underlying

instability is thought to be an advective-acoustic cycle [17, 18]. Modeling of these mechanisms

is essential for the success of the neutrino-heating mechanism [19, 20]. In recent years sev-

eral groups were �nally able to achieve exploding CCSNe in 2D [21, 20, 22, 23, 24, 25, 26].

However their exact results di�er, as do the details of their numerical simulations. Di�erent

approaches were undertaken with respect to neutrino transport, gravity treatment and the set

of weak interactions. This led to calls for code comparisons to identify sensible ingredients of

the simulation [27].

Alternative models to explode a CCSN are the magnetohydrodynamic (MHD) approach (e.g.

[28]), an acoustic mechanism [21, 29], and a nuclear phase transition in the PNS to quark

matter [30, 31].

1D models, even though they cannot achieve exploding CCSNe without parametric adjust-

ments such as arti�cial heating, can be powerful tools to investigate certain properties of super-

novae. This holds especially for the time after shock release when the region above the PNS is

very well approximated by spherical symmetry again. For the special case of an electron-capture

supernova (ECSN) the situation with respect to shock revival appears to be less critical. The

progenitor stars of ECSNe are probably massive AGB stars. They are eventually not massive

enough to trigger fusion stages beyond Carbon burning. ECSNe represent thus the low mass

limit of collapsing stars. Their core consists of O-Ne-Mg [32, 33, 34]. Just as the Iron core in a

CCSN progenitor or matter in a white dwarf, it is stabilized by electron degeneracy pressure.

The Neon and the Magnesium have a low threshold towards electron capture, thereby decreas-

ing the pressure. Hence, once these reactions start to happen, a gravitational runaway evolves,

very similar to the collapse of an Iron core, including bounce and shock formation. A special

feature of the O-Ne-Mg core is the very steep drop of density in the C-O shell. As a conse-

quence the mass accretion on the shock fades su�ciently fast to allow for a continuous shock

expansion. This presents ideal conditions for neutrino heating and therefore ECSNe are found

to explode even in 1D simulations, without need for hydrodynamical instabilities [35, 36, 37].

Such simulations predict rather low explosion energies ∼ 1050 erg and Nickel ejecta of only

several 10−3M�. These results compare nicely with observations of the famous historical Crab

SN [38, 39]. It is estimated that 20%-30% of all SNe could be ECSNe [40, 39].

1.2. Nuclear Equation of State

The previous section made clear that a precise understanding of the hydrodynamics of hot and

dense matter and of its interactions with neutrinos is required to achieve a successful supernova

explosion. The study of high density nucleonic matter is non trivial, as the densities that are

present in a PNS cannot be easily obtained in the laboratory, if at all. The next generation

of heavy ion colliders such as the FAIR facility might be able to investigate matter under such

extreme conditions. Until then there are only certain boundaries on the behaviour of dense

matter in limiting cases, such as the binding energy at nuclear saturation density.

Theory suggests that a large variety of phases can be encountered, depending on how dense
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exactly the matter is. For example, one expects that close to the surface of neutron stars,

protons form a regular crystal lattice and the electrons move as clouds between them, similar

to the situation in metals. Also, meson condensates could emerge at higher densities, e.g. pion

or kaon condensates, or the matter could contain a signi�cant amount of hyperons. Eventually,

the constitution of the matter that gets advected onto the shock depends sensitively on the

structure of the progenitor star and therefore its precise evolution up to the collapse. However, it

turns out that nearly all these di�erences vanish in a hot PNS. They key here is the large matter

temperature after shock passage. As noted repeatedly before, above T = 0.5 MeV matter is in

NSE. The interior of a PNS is well above this threshold with temperatures reaching up as high as

several tens of MeV. Under this condition, almost all theories predict that nuclei disappear. The

only thing that remains are nucleons, i.e. neutrons and protons, as well as electrons, all mixed

homogeneously to build a uniform matter. An exception is the possibility of the so called pasta

phase [41], which could survive at somewhat higher temperatures. In it the nucleons are not

homogeneously distributed, instead the di�erent species clump together to build macroscopic

structures. While in principle the pasta phase could signi�cantly a�ect neutrino transport, it

is strongly discussed whether it really would survive the large temperatures in the �rst seconds

after core bounce. It is also questioned whether the pasta phase would extend large enough in

space to be actually felt by the neutrinos. If the size of the pasta phase is small compared to

the neutrino mean free path, the neutrinos will not see the substructure. Another alternative

to nucleonic matter is a phase transition to quark matter at high densities. Yet, this is such

a distinct scenario that it will not be covered in this work. Also, quark matter is expected to

emerge only above saturation density, while the most relevant regions for neutrino transport

are initially below saturation density. In general it has to be noted that for the regime above

nuclear saturation density the uncertainties are larger, yet this region is mostly irrelevant for

the studies in this work.

Coming back to the established picture of nucleons and electrons, the state of matter is

still not su�ciently constrained. The main culprit here is the uncertain nature of the strong

interaction between the nucleons. There are a variety of di�ering models to describe this force.

Also, once a model is chosen one still has to compute the actual thermodynamical and chemical

properties of matter. That means one has to derive the corresponding equations of state. The

EOS contains all the relations between the main thermodynamical properties. It tells us e.g.

how large the pressure is for a given density and temperature; how many protons are present

in a state of chemical equilibrium; what is the speed of sound and how viscous is the nucleonic

�uid? For neutrino transport, one is particularly interested in the dispersion relations and

distribution functions of the particles. This corresponds especially to quantities such as the

chemical potentials or interaction potentials.

Historically, there were mainly two nuclear EOS that are implemented in CCSN simulations,

namely those of Lattimer & Swesty (LS) [42] and of Shen and collaborators [43]. Since then

the number of nuclear EOS that are tabulated or formatted in a suitable way for CCSN has

grown [44, 45, 46, 47]. They cover a wide set of parameters and phenomenological properties.

The question for the correct EOS for CCSNe is one with di�erent aspects. The �rst question

is what is actually the most precise description of dense nuclear matter? Practically all of
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the available EOS reproduce certain experimental observations. In particular they achieve

the correct binding energy and the correct saturation density for nuclear matter. But beyond

that many further constraints have meanwhile arisen from theory, experiment and astronomical

observation. For example, a nuclear EOS that describes the matter in a hot PNS should be able

to support the maximum neutron stars masses that are observed. This limit lies currently at

∼ 2M� [48, 49]. Also, recently constraints emerged on the radius of neutron stars from a wide

range of observations and statistical analysis [50]. The EOS should then be able to agree with

these �ndings, too. Relevant and precise theoretical constraints at low density arise e.g. from

recent calculations of the neutron matter EOS in chiral e�ective �eld theory (CEFT) [51, 52].
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Figure 1.4.: Constraints on nuclear symmetry energy from isobaric analog states (IAS) and

neutron skin thickness (NS) [53, 54]. The constraints are depicted as gray boxes, compared

against a set of RMF-EOS. Figure courtesy of M. Hempel.

Eventually, all of these observations and many other independent experiments and calcula-

tions also put boundaries on the nuclear symmetry energy S(nB) (for a review and summarizing

analysis see [54]). As one example out of many, Figure 1.4 shows constraints on the symmetry

energy from isobaric analog states and neutron skin thickness [53, 54], compared to predictions

from various EOS [44]. The symmetry energy is the di�erence between the bulk energy per

nucleon in pure neutron matter (Yp = 0) and in isospin symmetric matter (Yp = Yn = 0.5).

One can write down an expansion of the bulk energy per baryon e(nB, Yp) for a given baryon

density nB and a proton fraction Yp, around the symmetric con�guration Yp = 1/2

e(nB, Yp) = e(nB, 1/2) + S2(nB) (1− 2Yp)
2 + higher order terms.
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Note that there is no linear expansion coe�cient as the expressions has to be symmetric in

neutron-to-proton excess. In a common approximation the terms in higher order of neutron

excess are dropped. The symmetry energy is then equivalent to the lowest order expansion

coe�cient S(nB) = S2(nB) (for densities above nuclear saturation density this approximation

has to be used with care [55]). The two parameters of the symmetry energy that are constrained

the most are the lowest order parameter Sν and its slope Lν at nuclear saturation density n0,

which are de�ned by

Sν = S2(n0) and Lν = 3n0
dS

dn

∣∣∣∣
n0

.

Of the EOS that are available for CCSNe most are adjusted to agree nicely with certain con-

straints but might not agree as well with others. It is no surprise that especially the traditional

LS and Shen EOS fail to reproduce several experimental results that were found after these

EOS were calculated. At this point one has to note that most EOS which are considered for

core collapse supernovae are based on relativistic mean �eld theory (RMF). The idea of RMF is

to describe the nuclear interaction by an e�ective coupling of nucleons to meson �elds. These

meson �elds are incorporated into the Lagrangian of the system so the interaction is intrinsi-

cally Lorentz invariant (Relativistic). One approximates then the meson �elds by their mean

values (mean �eld). An RMF-EOS builds on this basis to derive the thermodynamical and

chemical properties of the matter.

The next important question for choosing an EOS is, which properties of the EOS are crucial

for the evolution of a CCSN? First comparisons of the impact of di�erent EOS were made in

1D simulations between the rather soft LS180 EOS and the sti�er Shen EOS. Quantitative

di�erences in properties characterizing collapse, bounce, and early post bounce evolution were

found not to exceed a range of 5% to 25% [56, 57, 58]. This behaviour was coined as Mazurek's

law. It states that changes in the microphysics of collapsing stellar cores are moderated by

strong feedback mechanisms between the di�erent ingredients of CCSNe simulations [59]. This

seeming insensitivity of the early shock phase to the properties of the EOS near saturation

density also holds for the new set of EOS [58]. As long as the EOS does not disagree too

strongly with the current constraints, there seems to be no impact in the early stage. However,

the situation changes at later times. Especially for neutrino di�usion out of the dense matter,

the particular choice of an EOS can matter a lot. As will be discussed in the next section, the

spectral properties of neutrinos are determined in the region where they decouple. After the

shock revival, at the timescale of several 100 ms up to seconds, the decoupling region moves

towards large densities above 1012 g/cm3. There, the strong interaction starts to be important

for the description of weak interactions. Hence, di�erent nuclear EOS could in principle result

in di�erent neutrino spectra. It can be easily understood (and will be discussed in detail later)

that especially the important charged-current reactions for νe and ν̄e are particularly sensitive

to the energy di�erence between neutrons and protons. This energy di�erence has a very close

relationship to the symmetry energy. As an example, the chemical di�erence between neutrons

and protons in nuclear matter can be expressed in terms of S(nB) [60]

µn − µp = 4S(nB) (1− 2Yp) .
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With this relation one can further connect the symmetry energy to the chosen microscopic

description of nuclear matter that the determines the chemical potentials µn and µp. The

interaction potentials and the chemical potentials from an EOS are among the most relevant

parameters for the calculation of neutrino transport. Figure 1.5 illustrates this issue by com-

paring the inverse mean free path for absorption of electron neutrinos on neutrons for di�erent

EOS. In all cases the temperature, density, and composition agree. Yet the inverse mean free

path can di�er by a factor of 3-5 or even more.
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Figure 1.5.: Inverse mean free path for absorption of νe on neutrons for various RMF-EOS.

Evaluated at T = 7.4 MeV, ρ = 2.1 × 1013 g/cm3, Ye = 0.035. EOS are from Shen [43],

Lattimer&Swesty (LS)[42], and various parameter sets from Hempel [44]. The number in

brackets indicates the value of the nuclear symmetry energy at the given conditions.

It was recently emphasized that it is important to correctly implement the EOS-dependence of

this energy di�erence into the neutrino transport [61, 62, 63]. For reliable predictions of neutrino

spectra one should then choose an EOS that shows good agreement with the constraints on the

nuclear symmetry energy. Such an EOS is e.g. the DD2-EOS [64]. It compares nicely against

many of the aforementioned constraints. It is an RMF-EOS with the correct limiting behaviour

at high and at low densities. For low density it reproduces the model-independent virial EOS

[65]. Furthermore it contains light clusters as explicit degrees of freedom.

1.3. Neutrino Transport and Neutrino Signals

It was stated already that neutrino transport is such a crucial aspect of CCSNe because neu-

trinos become trapped in the high density matter. Deep in the PNS, the mean free path of
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neutrinos is so short that they are in thermal and chemical equilibrium with the matter. Moving

outwards, the density decreases and the mean free path increases until neutrinos can leave the

system. This process is very sensitive to the particular energy and one expects that neutrinos

of di�erent energies decouple at di�erent densities. Right after shock break out, when temper-

atures are the highest, the decoupling region of electron neutrinos extends down to 1011 g/cm3

and lower. When the PNS gradually cools down, the mean free paths become larger for a given

density as average energy decreases and the decoupling region moves inwards. The phenomena

of neutrino decoupling can be approximately described by the concept of the neutrinosphere.

It states that neutrino spectra almost behave as thermal radiation emitted from the neutri-

nosphere. The position of this decoupling region is in general di�erent for all neutrino �avours,

and it varies with the neutrino energy. This is because the neutrinosphere is determined by the

interactions of neutrinos with matter, which also di�er for varying �avours and energy.

Discussing now the di�erent neutrino reactions, one �rst has to know that the matter in the

PNS is very neutron rich. Consequently, protons are more bound than neutrons, similar to

the situation in a neutron rich nucleus. For νe, one knows then that absorption on neutrons

is the dominant reaction in the hot PNS. Neutrons are very abundant target particles and the

conversion into a proton always releases energy. For ν̄e this picture is more complicated. The

absorption on protons is an important reaction as well, yet there are less protons than neutrons.

Also this reaction requires energy to convert the proton into a neutron. The latter is a problem

especially for low energy ν̄e, as they decouple from higher densities where the di�erence in

strong interaction potentials adds up on the mass di�erence. Consequently the neutral current

scattering o� of neutrons is similar as important as the charged current absorption on protons.

Eventually, for µ- and τ -�avour neutrinos charged current reactions are considered negligible.

Their main interaction proceeds via scattering on neutrons and protons, and scattering on

electrons. Already from this simple picture it becomes clear that the νe, having the highest

interaction rates with matter, decouples further outside than the ν̄e. The heavy �avour leptons

will then for the same reason decouple even further inside. As the spectral properties are

determined by the decoupling region, and the temperature is higher at larger densities, one will

expect the average neutrino energies to follow the order 〈ενe〉 < 〈εν̄e〉 . 〈ενx〉. It is predicted

that this spectral behaviour should be observable for a next SN comparable to the famous

SN1987A. At the current level of understanding many processes in a SN are sensitive to the

detailed value of average energies and their di�erences. It is then necessary to describe the

neutrino interactions at the required precision. This means to include subleading terms in the

main reactions, such as weak magnetism [66]. It also means to make sure, that all relevant

reactions are considered. These are precisely the two questions that are addressed in this

work and they will be discussed in more detail in the main body. In particular it will be

assessed, whether certain reactions that are negligible at the initial neutrinosphere position,

might become relevant once the sphere moves to high densities where di�erences in energy for

neutrons and protons become larger. For example, it is expected that, due to temperatures and

chemical potentials of several tens of MeV, neutrinos will be able to overcome the threshold of

muon production. Yet it is unclear up to now whether these reactions are relevant for neutrino

decoupling. This question will be investigated by deriving and computing the corresponding
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inverse mean free paths. Also it will be studied whether improved descriptions of interactions

with nucleons will lead to signi�cant changes for neutrino transport.

Once a su�ciently precise description of neutrino interactions is achieved, one can look at the

neutrino signals that will be predicted. The measurement of a neutrino signal from a galactic

SN comparable to the famous SN1987A but with modern observation technology would give

many insights into the explosion mechanism. Current simulations expect that the propagation

of the shock through the neutrinospheres will lead to an initial burst, especially in νe and all

heavy �avour neutrinos νx. Directly afterwards all luminosities will decrease. The luminosities

of νe and ν̄e will become similar but larger than for νx. For the mean neutrino energies one

expects indeed the following hierarchy 〈ενe〉 < 〈εν̄e〉 . 〈ενx〉 with 〈ενx〉 . 13 − 16 MeV [67].

At late times when accretion has ceased, the mean energies become practically equal. This is

attributed to the �at temperature pro�le in the PNS and the close proximity of all neutrino

spheres [68, 69]. Given the high densities of neutrino decoupling at later times it could also

be possible to learn about the nuclear physics at these conditions, in particular about the

nuclear EOS. Furthermore, from the di�erences in mean energies one could conclude better

upon the possible path for heavy element nucleosynthesis, which will be reviewed in the next

section. Eventually, while neutrino oscillations play probably no role in the decoupling region,

the emitted neutrinos can become subject to oscillations once they are mostly free streaming.

The observation of neutrino �avour oscillations in the form of unexpected swaps in the spectra

could signi�cantly improve their understanding [70, 71]. For even later times neutrino emission

becomes an indirect probe of the high density matter. While the neutrino �ux might be too

low to be observed, it is still the main cooling process of the neutron star (NS) (for a review

see e.g. [72]). The occurrence of a pasta phase close to the neutron star crust could a�ect this

cooling process [41]. Also, as the NS becomes completely transparent to neutrinos, they emerge

from the inner core, where densities could reach a multiple of nuclear saturation densities. The

state of matter under these conditions is unclear, and many models di�er in the predictions

for neutrino interactions. The standard charged current reactions for electron �avour neutrinos

might become forbidden by energy-momentum conservation in degenerate matter [73]. The

most relevant reaction in nuclear matter should then be the so called modi�ed URCA process

[74, 75]. Other relevant neutrino sources might be interactions between nucleons and hyperons

[76] or meson condensates [77, 78, 79]. Also, nucleon pairs could form Bose condensates below

a critical temperature. This would suppress many standard emission channels but also o�er

additional reactions in form of pair breaking and formation processes. All of these models di�er

in their prediction for the cooling curve of the NS. Hence, the observation of such a cooling curve

would signi�cantly restrict the possible models for baryonic matter at supranuclear densities.

1.4. Nucleosynthesis of Heavy Elements

The exothermic nuclear burning process in stars can only explain nuclear fusion up to the Iron

group. The critical problem here is the maximum in the binding energy for the Iron group and

the high temperatures that result in NSE. Elements heavier than Iron must then be created in

other environments.
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One can study the shape of the element abundance pattern that is observed in the Sun. Since

the Sun is expected to be a star of a later generation, the matter from which it formed already

contained metals that were created by previous generations of stars. Also, all the metals that

are observed in the Sun must be created before its formation, as no metals were produced in

the Sun itself yet.
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Figure 1.6.: Solar photospheric and meteoritic isotopic abundances given as described in [80].

Elements up to the iron peak that are produced in stellar burning show much larger abundance

then heavy metals above A=56. For the heavy metals two peaks can be identi�ed. Both of

them are related to nuclear shell closures in the neutron shell, pointing to the dominant role

of neutron captures for the production of heavy elements. For each peak region two peaks can

be identi�ed, one related to the slow neutron capture or s-process and one related to the rapid

neutron capture or r-process. Figure courtesy of L.Huther

In the solar elemental abundance pattern (Figure 1.6) several important features can be

observed that hint at how nucleosynthesis proceeds in the universe [81]. One recognizes im-

mediately that the lighter metals up to Iron are produced in a much higher amount than the

heavy metals above A=56. The lighter elements are produced in exothermic stellar burning

phases which convert matter in every massive star. A peak at Iron is formed because here the

fusion products gather, as Iron cannot be processed any further in regular fusion processes.

Also one can �nd relatively large abundances of so called α-nuclei. These are isotopes with

equal number of neutrons and protons that can be formed through repeated alpha capture on

lighter seed nuclei.

Beyond the Iron peak, abundances decrease signi�cantly and the pattern becomes rather

�at. However, two regions with relatively increased abundances can be seen. It is found that

the corresponding peak nuclei can be identi�ed as isotopes with a closed neutron shell. The

neutrons in such a con�guration are relative strongly bound but the nucleus is very reluctant

to capture an additional neutron. One can naturally explain these peaks by neutron capture

on heavy nuclei. It is intuitive that neutron captures play a signi�cant role for heavy element

nucleosynthesis. Neutrons cannot feel the electric Coulomb barrier, so they can approach a

heavy nucleus much easier than protons could. Also the capture of free nucleons will increase
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the total binding energy even for many nuclei beyond Iron. So since neutron captures should

be important for heavy element nucleosynthesis, it will proceed until nuclei are formed that are

very reluctant to capture additional neutrons. Therefore one observes a peak at closed neutron

shell nuclei.

Further study of the heavy peak regions reveals that in each of them there are actually two

peaks present. The right one (larger A for similar N) is connected to isotopes in the valley

of stability while the left one consists of more neutron rich isotopes. It can be infered that

there should be two distinct scenarios that are responsible for this substructure. The di�erence

between them is expected to be the exposure of the heavy nuclei to free neutrons. The right

peaks are then connected to the so called s-process and the left peaks to the r-process. In the

context of core collapse supernova, the r-process is of special interest. It requires a scenario with

large neutron abundances. In such an environment of high neutron density, neutron capture

rates on heavy nuclei are larger than beta-decay rates. Nuclei repeatedly capture neutrons until

a con�guration is reached where an additional neutron would not be bound any more. For high

temperatures it can alternatively happen that an equilibrium between a further neutron capture

and photodissociation back to the original nucleus are in equilibrium. Either way the nucleus

waits in this con�guration for a β−-decay to take place. Once it occurs, the next sequence of

neutron captures follows.

However, astrophysical sites have to feature very extreme conditions to obtain the required

neutron �ux. The favorite candidates for r-process sites are neutrino-driven winds in CCSNe or

in neutron star mergers (NSMs). For CCSNe this will be discussed in detail. Current studies

indicate that core-collapse supernovae might actually not be able to produce a full r-process

but can only create the lighter of the heavy elements. Simulations of NSMs on the other hand

are able to produce neutrino driven winds that allow for a full r-process [82, 83, 84]. A NSM

is the coalescence of two neutron stars in a binary system. Due to gravitational wave emission

the system loses energy and angular momentum and the neutron stars approach each other.

The eventual merger results in the release of large amounts of gravitational energy. The matter

becomes very hot and an accretion disk of neutron rich material is formed. However a problem

with NSMs is that they require two neutron stars to be formed and to spiral in on each other,

which takes a lot of time. Yet observations of some metal poor stars already show the presence

of light r-process nuclei but a lack of heavy r-process nuclei [85]. This might be a problem

to r-process from NSMs only, as metal poor stars are discussed to be among the oldest in the

universe, from the �rst generations of star formation. One argument for this says that they

would contain more metals from previous stars and thus not be metal poor, if they were not

created very early in the universe. Under this assumption, one can further argue that as these

stars were formed so early in the universe, there was no time for previous NSMs and distribution

of the corresponding matter out�ow into star formation regions. Also, some studies suggest

that NSMs cannot reproduce the particular r-process pattern in those metal poor stars [86]. In

contrast, core-collapse supernovae represent the formation of neutron stars at the end of the

lifetime of a massive star. This process takes much less time and could therefore explain the

r-process abundance in metal poor stars. In addition, parametric simulations of supernovae

explosions were able to reproduce the corresponding abundance pattern [87].
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An important aspect of the r-process is that it mostly operates through isotopes which are

so extreme and unstable that many of them are not accessible in laboratory experiments,

yet. Therefore many features of the r-process are attached with signi�cant uncertainties e.g.

because masses of the nuclei are not measured. On the other hand, astrophysical observations

and simulations put constraints on these uncertainties. This is an important manifestation

of the connection between nuclear physics and astrophysics, building the essence of nuclear

astrophysics. Any improvement on either �eld a�ects the predictions of the other. Nuclear

physics is fundamental to model and understand astrophysical processes while simulations and

observations of these processes probe the nuclear physics at extreme conditions.

1.5. Nucleosynthesis in CCSN

In the case of a successful SN explosion, the shock will move outwards and on its way it will

compress and heat matter. After passing a certain distance, the conditions in the shock will

not be violent enough anymore to dissociate nuclei into free nucleons. Instead it will allow for

explosive nuclear burning, e.g. in the form of Si- or O/Ne-burning [88]. Beyond that there

are several scenarios of nucleosynthesis that are enabled or determined by the large �ux of

neutrinos of all �avours from the hot PNS. The most interesting one in the context of this work

is the neutrino driven wind.

As it was noted before the newly formed PNS consists of dense hot matter with temperatures

of several 10 MeV that emits a large �ux of neutrinos. An initial neutrino burst comes from the

transition of the shock-heated matter to a new, neutron rich chemical equilibrium in NSE. Later

the PNS cools by producing neutrinos thermally in pairs from e+-e− conversion and nucleon-

nucleon bremsstrahlung [89]. After the stalled shock has been launched/revived, neutrino

luminosities are still very high for several seconds. At the surface of the PNS these neutrinos

are free streaming, i.e. most of them will leave the envelope without further interaction. Yet

there will be a small fraction that is scattered or absorbed by the surrounding matter. The

basic idea for any scenario of neutrino related nucleosynthesis is that through the large neutrino

luminosities, even a small fraction of reacting neutrinos translates into a relative large number

of reactions from the perspective of the nucleons. For example, the gravitational binding energy

of a nucleon at the surface of the PNS is ' 100 MeV. Assuming an average neutrino energy of

〈εν〉 ' 10 MeV, ten neutrinos must be captured to make one nucleon unbound.

Yet, it is found that neutrinos indeed deposit enough energy on the surface of the PNS to

eject a gravitationally unbound matter out�ow, the neutrino driven wind (NDW) [90, 91].

Consequently the properties of this out�ow are determined by the emitted neutrino spectrum.

Total ejected masses are expected in the order of 10−3M� [92, 93]. Due to its unique properties,

the NDW is considered as a possible site for heavy element nucleosynthesis, in particular for

the r-process [94, 95]. It is found that the path for nucleosynthesis in the NDW depends

crucially on the electron fraction Ye, the entropy per baryon s, and the expansion timescale τ

[96, 97, 98, 87]. The electron fraction and its evolution over time can be related rather directly

to the luminosities and mean energies of electron type neutrinos [99]. One �nds the following
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approximation for Ye in the NDW [91]

Ye ∼
[
1 +

Lν̄e (〈εν̄e〉 − 2∆)

Lνe (〈ενe〉+ 2∆)

]−1

, (1.1)

where the 〈εν〉 are the respective average neutrino energies, Lν̄ are the neutrino luminosities

and ∆ is the mass di�erence between neutrons and protons. Under the assumption of equal

luminosities, a neutron rich NDW with Ye < 0.5 requires that the average electron neutrino

energies ful�ll the relation 〈εν̄e〉 − 〈ενe〉 > 4∆.

When the neutrino driven wind expands, the �rst nuclei to form are α-particles. For Ye < 0.5

basically all protons will then become bound in α while some free neutrons remain. In a next

step nuclei like 12C are formed by three-body reactions involving α-particles. Further α-captures

can lead to heavier elements up to 56Ni. However, in the case of a fast expansion less 12C and

subsequent nuclei can form, since the triple-α-process is very sensitive towards density changes.

Also some of the 12C can be destroyed by photodissociation if the entropy is large enough.

This scenario is then called an α-rich freeze-out. The remaining free nucleons can be captured

on these seeds to form heavy elements. It was found that a full r-process would require a

short expansion timescale τ on the order of milliseconds, entropy s > 150 kB, and Ye < 0.5

[91, 100, 96]. Hydrodynamic simulations found that the short timescale can be achieved but

they fail to come up with enough entropy [101, 98, 102, 103]. Furthermore the di�erence in the

average neutrino energies turned out too small so that instead of a neutron-rich wind a proton-

rich wind was predicted [68, 37]. Especially at late times after several seconds the NDW will

always obey Ye > 0.5 as luminosities and average energies of νe and ν̄e become equal. However,

recent improvements in the calculation of neutrino opacities at high densities have put parts of

this picture in question [61, 62, 63]. They found that initially the wind can indeed be neutron

rich, although they agree that it will become proton rich within seconds. It was subsequently

found that a light or weak r-process might be allowed by these conditions. Such a scenario could

produce elements up to Molybdenum (Z=42) [104]. For the elements that are produced a nice

agreement is found with the observations of metal poor stars [85]. Beyond these developments

one must note that it proves di�cult to reach Ye signi�cantly di�erent from 0.5 at all, because

of the so called α-e�ect [105], which tends to suppress asymmetries in Ye.

All the above �ndings regarding the sensitivity to neutrino spectra highlight the importance

of a sophisticated neutrino transport in CCSN simulations to achieve reliable predictions of

nucleosynthesis yields. A recent investigation of a possible r-process in NDW from CCSNe that

considers updated results on most relevant aspect was performed in [106].

One can look now also to the possible behaviour of a proton-rich NDW. For this conditions

the NDW is thought to produce mainly N=Z nuclei up to 64Ge through a series of (p, γ), (α, γ)

and (α, p) reactions. Even in proton rich ejecta there might be the possibility to produce some

elements heavier than 64Ge via the νp-process [107, 93]. If Ye is very large i.e. very proton-rich,

many free protons will be left after the formation of nuclei. The more protons are left, the more

of them will be converted into neutrons by ν̄e-capture. These neutrons can then be captured on

the seed nuclei. Subsequent (p, γ) reactions will eventually form proton-rich nuclei with higher

mass number A.
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Recently additional scenarios for the evolution of the NDW opened through physics beyond

the standard model. It was found for an ECSN that active-sterile neutrino �avour conversions

(ASFC), as they are suggested by the reactor neutrino anomaly [108], can lead to a signi�cantly

lower Ye. This would allow for nucleosynthesis beyond Z = 42 up to Cd [109]. Without ASFC

only elements with Z . 30 were produced in the same simulation.

Another important path for nucleosynthesis in CCSN is the so called neutrino nucleosynthesis,

or ν-process. I takes place in the outer shells above the PNS [110]. The large neutrino �ux

results in neutral-current scatterings on already existing nuclei, but also in charged current

absorptions if the neutrino energies are large enough [111]. Thereby the neutrinos deposit

energy which leads to evaporation of light particles such as protons, neutrons, and α. These

reactions are thus also described as neutrino-spallation reactions. Since the neutral-current

cross sections are the same for all neutrino lepton �avours, also µ- and τ -�avour neutrinos can

contribute, in contrast to the NDW. To be precise, these neutrino �avours might dominate the

ν-process as they have the highest energies and the cross sections are energy-dependent. For

neutrino nucleosynthesis as well as for the NDW, an accurate knowledge of the neutrino spectra

is important as the nucleosynthesis yields might vary strongly.

For most regions further outside, the temperature will be too small to reach NSE even after

shock passage so the result of the ν-process will be depending on the progenitor composition,

especially on its metallicity. The main outcome will be the nuclei 7Li, 11B, 19F, 138La, and
180Ta, plus possibly odd Z nuclei up to Copper [88]. Many of these elements are di�cult to

produce in any other scenario.

1.6. Outline

For the next supernova event similar to SN1987A, neutrino observations are expected to mea-

sure the spectra in great detail. One must then produce predictions from theory that are equally

precise to make the best use out of these measurements. To achieve such predictions for many

of the processes that were mentioned before, a su�ciently accurate and consistent description

of the interactions and the transport of supernova neutrinos at high temperatures and densities

is required. This is the context of the present work. In particular, this thesis presents a compre-

hensive formalism for the calculation of neutrino interactions and investigates the signi�cance

of various neutrino reactions. For this purpose, Chapter 2 will review the textbook basics of the

quantum �eld theory of weak interactions, which describes the interactions of neutrinos. This

work will then deliver the derivations to compute the corresponding interaction rates. Chapter

3 will derive the matrix elements for leptonic and semileptonic neutrino interactions. Here, well

known results from the literature will be reproduced, discussed, and adjusted for the particular

reactions of interest. In Chapters 4 and 5, mean free paths and scattering kernels for all these

reactions will be derived. To be precise, Chapters 4 and 5 deal with leptonic and semileptonic

neutrino reactions, respectively. Also, in Chapter 5 an alternative approach will be derived to

calculate reactions between neutrinos and nucleons. This approach attempts to achieve higher

accuracy of rate calculations without the cost of additional computational demand, which is a

crucial resource in computational physics. Eventually, Chapter 6 will then assess under which
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conditions and to which degree the inclusion of the new reactions might modify the outcome of

state of the art supernova simulations. Also, the results for the new calculation approach will

be compared to other current standard implementations of neutrino interactions, and the sig-

ni�cance of the di�erence will be discussed. In this way this work attempts on adding another

small puzzle piece to the large picture of neutrino physics and explosive astrophysics.
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2. Fundamentals of Neutrinos and

their Interactions

2.1. Notation

For all derivations in this work natural units are employed. This means

~ = c = kB = 1.

Four-vectors are denoted by

p = (E, ~p) . (2.1)

3-dimensional vectors are consequently denoted by

~p with

√
~p 2 = |~p| = p̄. (2.2)

Greek indices always denote components of four-vectors, while roman letters denote components

of 3-dimensional vectors. Exceptions are stated explicitly.

2.2. Electroweak Interaction in the Standard Model of

Physics

2.2.1. Symmetry and Interaction

Today many features of neutrinos are properly described in the Standard Model (SM) of physics

[112, 113, 114]. In the SM, the strong, electromagnetic, and weak interactions of elementary

particles are described within a quantum �eld theory. In particular, the SM is a so called gauge

theory. It makes a certain use of a special class of symmetries that we believe are present in

our world to describe the interactions between all elementary particles.

If a symmetry exists in nature, this means the laws of physics will not change under a

transformation corresponding to this symmetry. As an example, if a system does not change

under a global rotation, it is said to have rotational symmetry or to be invariant under rotation.

Rotation symmetry is an example of a continuous symmetry, as it means a rotation can be

performed by an angle of arbitrary size.

There are also discrete symmetries, where the transformation parameter can have only dis-

crete values. An example of such a symmetry is the parity symmetry, i.e. the invariance of
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a system to spatial inversion. Obviously, only integer multiples of spatial inversions can be

performed and there is no such thing as an in�nitesimal �mirroring�.

A very important �nding regarding symmetries is Noether's theorem. It says that for every

continuous symmetry in a sytem there is also a conservation law. Rotational invariance of a

system is connected to conservation of angular momentum. For discrete symmetries there are

also conservation laws. Parity invariance implies that the parity of a system, its behaviour

under parity transformations, must be conserved through all the evolution of the system.

A very basic symmetry of nature which we believe to be ever present is Lorentz symme-

try. Lorentz symmetry means symmetry under (speci�c) translations and rotations in the 4-

dimensional spacetime. In special relativity, space and time are described on an equal footing.

Hence, Lorentz symmetry extends and uni�es the classical picture of invariance under rotation,

translation in space, and translation in time. It is connected to conservation of angular momen-

tum, momentum, and energy. Lorentz invariance demands that the Lagrangian, which contains

all information on the dynamics of a system, must be written in terms of Lorentz scalars, i.e.

quantities that do not change under Lorentz transformations. This strongly constraints the

general structure that the dynamic equations describing our universe can have.

Gauge theories are based on internal symmetries. Internal symmetries do not refer to trans-

formations in spacetime but to the internal space of particle �elds only. A very important

example is the symmetry of a system's wave function Ψ under transformation of the charge

phase

Ψ→ Ψ′ = UC(α)Ψ,

UC(α) = exp (iαQ),

where Q is the electrical charge operator. This symmetry is a U(1) symmetry i.e. the trans-

formations form a unitary group of 1 × 1 matrices. The operator Q is called the generator

of this particular group and the group is named U(1)Q. Symmetry under transformations of

this group results in conservation of the total charge Q. It is then a general �nding that the

generator of a symmetry group is conserved in the symmetric system. A U(n) group has n2

generators. Another class of groups that are important for �eld theories are the special unitary

groups SU(n). They di�er from U(n) by the additional requirement that the determinant of

the transformations must be one. A SU(n) group has n2 − 1 generators.

All transformations on internal spaces are called gauge transformations, since one can �gauge�

a symmetric system by an arbitrary phase. The phase can be chosen favorable to study a certain

question without a�ecting any physical observable.

The important step in the derivation of a gauge theory is to demand that the global gauge

symmetries of a system become local. For the group U(1)Q this means that the parameter α is

not the same everywhere but depends on spacetime.

U(α)→ U(α(x)) = exp (iα(x)Q).

However, no Lagrangian that contains only free particle �elds is invariant under such trans-

formations. To preserve the symmetry, additional terms have then to be introduced in the

Lagrangian. These terms couple the free particles to massless vector �elds. Yet, such vector
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�elds represent bosonic particles with spin 1. To complete the Lagrangian eventually, one has

to include further terms to describe the dynamics of these new vector �elds. In case of the

U(1)Q symmetry, local gauge invariance gives rise to the photon �eld and the electromagnetic

interaction of charged particles by coupling them to the photons. It can be summarized then:

In a gauge theory all interactions between particles arise from the demand that all the global

gauge symmetries of the Lagrangian become local. This gives rise to a number of massless

vector �elds equal to the number of generators of the respective symmetry groups. The vector

�elds couple to all particles with a �nite charge of the corresponding generator.

These fundamental considerations on symmetries almost su�ce to build a basis for elec-

troweak interactions, if it wasn't for the �nding that some of the electroweak vector bosons are

actually massive. To explain this observation, the concept of spontaneous symmetry breaking

is required.

The idea of spontaneous symmetry breaking is to introduce special scalar �elds Φ into the

Lagrangian. In particular, this is done in such a fashion that the Lagrangian retains all its

gauge symmetries. In vacuum however, these scalars Φ have minima in their potentials for

non-vanishing �elds, which do not obey the gauge symmetries. An example and analogy of

such spontaneous symmetry breaking is the �nite magnetization of ferromagnets below their

critical temperature TC . Even though the underlying theory of electromagnetism is invariant

under rotation, the spins of particles in a ferromagnet will all align in one common direction

for T < TC . One can not predict which orientation this spontaneous magnetization will have.

Each orientation is equally possible and each has the same total energy. Yet all of them break

the rotational symmetry of the system. It is then said that the symmetry of the Lagrangian

is spontaneously broken, or hidden, in the system. For a local gauge symmetry to be sponta-

neously broken, the scalar �eld must couple to the vector bosons of the symmetry. From this

coupling arise new terms that are equivalent to mass terms for the vector �elds. Furthermore,

all other elementary particles can acquire mass by coupling to the scalar �eld, too. In the

SM, this scalar particle is the Higgs-boson and the corresponding mechanism of spontaneous

symmetry breaking is called the Higgs mechanism.

To summarize now the construction of a gauge theory (in a highly simpli�ed manner) the

following steps have to be performed:

• Identify all symmetries of the dynamics of a system.

• Construct a Lagrangian that conserves all these symmetries and contains free �elds of all

elementary particles.

• Make all global gauge symmetries local by including massless vector �elds, introducing

thereby interactions to the Lagrangian.

• Include scalar �elds that have a non-vanishing vacuum value. This leads to spontaneous

symmetry breaking of local gauge symmetries of those gauge �elds that couple to the

scalars. Thereby the respective vector bosons acquire mass.

• Couple elementary particles to the scalar �elds to attribute mass to the former.
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2.2.2. The Standard Model

Following the recipe from the previous section, the Standard Model is constructed as a Lorentz-

invariant gauge theory. It's Lagrangian is based on the local gauge symmetry group SU(3)C ×
SU(2)L × U(1)Y .

The group SU(3)C corresponds to the conservation of color charge and gives rise to 8 massless

gluon �elds. The gluons mediate the strong interaction.

The group SU(2)L corresponds to the conservation of weak isospin. The L denotes that

the transformation of this symmetry a�ects only states of left-handed chirality (this will be

explained later in more detail). The group U(1)Y corresponds to conservation of the weak

hypercharge Y . It is connected to the third generator of weak isospin T3 and the electrical

charge operator Q by the Gell-Mann-Nishijima relation:

Q = T3 +
Y

2
.

The SU(2)L × U(1)Y local gauge symmetry is partly broken in the universe. The scalar Higgs

boson has a non-vanishing vacuum �eld. Through the Higgs mechanism three of the four vector

bosons of the group SU(2)L × U(1)Y become massive by coupling to the Higgs. However, a

U(1)Q symmetry related to charge conservation is contained in the original SU(2)L × U(1)Y .

This symmetry is conserved in the system even after spontaneous symmetry breaking. Thus,

the corresponding vector boson, the photon, remains massless. The three massive vector bosons

are theW−, theW+ and the Z. They mediate the weak interaction, while the photons mediate

the electromagnetic interaction.

The gauge theory of the SM describes almost all interactions of elementary particles in very

good agreement with experimental observations. However, the SM itself does not explain the

actual number of di�erent elementary particles. The scalar boson i.e. the Higgs particle is

chosen to implement the Higgs mechanism in a minimal way. The fermions, which are all

other elementary particles other than the Higgs and the Vector bosons, are chosen as they

are observed in experiments. Since it is the aim of this work to discuss weak interactions of

neutrinos, and since all elementary fermions couple to the weak interaction, a short review on

their most important properties will be given.

The SM contains 12 elementary fermions and their 12 antiparticles. All of them have a spin

of 1/2. The antiparticles have the exact same properties as the particles except that all their

generalized charges (electrical charge, lepton or baryon number,...) are inverted. For example,

the positron has the same spin and mass as the electron but a positive unit of electrical charge.

The 12 particles can be separated into two families, the leptons and the quarks. The main

di�erence between them is that quarks carry color charge and are subject to the strong interac-

tion while leptons are not. Both quarks and leptons couple to the electroweak interaction. The

net number of quarks Nq −Nq̄ and the net number of leptons Nl −Nl̄ are conserved quantities

in all interactions of the SM (outside of the SM however lepton number might not be conserved,

e.g. if neutrinos are Majorana particles). Further, all the fermions can be grouped in three

generations. Within each generation, there are two quarks and two leptons. Each of the pairs

forms a doublet of the weak isospin. The lepton doublet consist of a massive lepton with one
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negative unit of electrical charge and a massless lepton with no electrical charge, the neutrino

(massive neutrinos are physics beyond the SM). The quark doublet consist of a quark with

electrical charge 2/3 and one with the negative charge −1/3. The di�erence between the three

generations is the mass of the quarks and the charged lepton. They all become signi�cantly

heavier going from one family to the next.

Generations

1st 2nd 3rd

Fa
m
ily Quarks

u c t

d s b

Leptons
e− µ− τ−

νe νµ ντ

Table 2.1.: Elementary fermions of the Standard Model

Beyond the conservation of the total net lepton number, one �nds that the net number of

leptons in a particular family Nl,i −Nl̄,i, with i = e, µ, τ , is conserved in all interactions of the

SM, too. However, this is not the same for the quarks. Weak interactions with the charged

bosons W± can transform quarks of one family into quarks of another family. The reason for

this is that the mass eigenstates and the weak eigenstates are not the same for a given quark

�avour. The coupling between di�erent quark families by the charged weak current is described

by the Cabibbo-Kobayashi-Maskawa (CKM) matrix [115, 116] (more on that later on).

2.2.3. Dirac Spinors and Dirac Equation

As mentioned before, all elementary particles in the SM are spin 1/2 fermions. In a Lorentz-

invariant �eld theory, spin 1/2 particles are described by Dirac spinors Ψ. Dirac spinors are

four dimensional spinor �eld operators that follow the Dirac equation. The Dirac equation

reads

(iγµ∂µ −m) Ψ (x) = 0.

Here m is the mass of the fermion. The γµ are the Dirac gamma matrices. They are 4x4

matrices that obey the anticommutation relation

{γµ, γν} = 2ηµν1,

where ηµν is the Minkowski metric. The γµ are related to the generators σµν of Lorentz-

transformations by the commutation relation

σµν =
i

2
[γµ, γν ] .

The Dirac equation is obtained via the Euler-Lagrange procedure from the Dirac Lagrangian

for a free fermion �eld

L(x) = Ψ̄(x) (iγµ∂µ −m) Ψ(x).
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For any four-vector Aµ, the Feynman-slashed expression /A is de�ned by

/A = γµAµ.

In the Feynman-slashed notation the Dirac equation reads(
i/∂ −m

)
Ψ (x) = 0.

The solutions to the Dirac equation are the wave functions for particles and antiparticles. The

dispersion relation is the one that is expected from special relativity

pµp
µ = m2 → E2 = ~p 2 +m2.

The Dirac equation has the eigenspinors Ψ
(+)
~p,s (x) and Ψ

(−)
−~p,−s(x) which are de�ned according to

Ψ
(+)
~p,s (x) = u(~p, s)e−ip·x and Ψ

(−)
−~p,−s(x) = v(~p, s)eip·x , s = 1, 2. (2.3)

The stationary eigenspinors u(~p, s) and v(~p, s) are given by

u(~p, s) =
1√

E +m

(
χs

~σ·~p
E+m

χs

)
and v(~p, s) =

1√
E +m

(
~σ·~p
E+m

ηs

ηs

)
, (2.4)

where χs and ηs each are any two linear independent, normalized Pauli spinors with χ†sχs′ =

η†sηs′ = δss′ . The ~σ is the vector of the 2× 2 Pauli-matrices. For the calculation of transitions

the following property of the spinors will be very useful∑
s

u(~p, s)ū(~p, s) = /p+m, (2.5)∑
s

v(~p, s)v̄(~p, s) = /p−m.

Here ū and v̄ are the adjoint spinors of u and v, respectively.

ū = u†γ0 and v̄ = v†γ0.

It is then understood that Ψ+
~p,s(x) is the wave function for a particle with momentum ~p and

polarization s, while Ψ−−~p,−s(x) describes an antiparticle with momentum ~p and polarization s.

In second quantization, the �eld operator Ψ(x) can be expressed in the following Fourier-

series

Ψ(x) =
∑
~p,s

[
Ψ+
~p,s(x) b(~p, s) + Ψ−−~p,−s(x) d†(~p, s)

]
,

Ψ̄(x) =
∑
~p,s

[
Ψ̄+
~p,s(x) b†(~p, s) + Ψ−−~p,−s(x) d(~p, s)

]
,

where the expansion coe�cients are creation and destruction operators

• b(~p, s) destroys a particle with momentum ~p and polarization s.

• b†(~p, s) creates a particle with momentum ~p and polarization s.

• d(~p, s) destroys an antiparticle with momentum ~p and polarization s.

• d†(~p, s) creates an antiparticle with momentum ~p and polarization s.
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2.2.4. Helicity, Chirality, and Parity Violation

An important representation of the Pauli spinors χs and ηs are the eigenspinors of the hermitian

helicity operator ~Σ · p̂, where ~Σ is the spin operator

Σk = εijkσij =

(
σk 0

0 σk

)
.

The eigenvalues of the helicity operator are ±1 and allow for the notation u(~p, h) and v(−~p, h)

with

~Σ · p̂ u(~p, h) = hu(~p, h)
~Σ · p̂ v(−~p, h) = h v(−~p, h)

, h = ±1.

In weak interactions, besides helicity also chirality or �handedness� plays a crucial role. The

chirality matrix γ5 is a product of all the γµ

γ5 = iγ0γ1γ2γ3 with
{
γ5, γµ

}
= 0.

Every spinor can be decomposed into a so called left-handed chirality part ΨL and a right-

handed chirality part ΨR (now as the Weyl spinors)

Ψ = ΨL + ΨR,

where ΨL and ΨR are eigenfunctions of γ5 with

γ5ΨR = +ΨR,

γ5ΨL = −ΨL.

Therefore one can de�ne projection operators ΠR/L that project on the right- and left-handed

component of a state, respectively.

ΠR =
1 + γ5

2
→ ΠRΨ = ΨR,

ΠL =
1− γ5

2
→ ΠLΨ = ΨL.

The Lagrangian for a free Dirac particle can also be written in terms of the Weyl spinors

L = Ψ̄Riγ
µ∂µΨR + Ψ̄Liγ

µ∂µΨL −m
(
Ψ̄RΨL + Ψ̄LΨR

)
.

In general it is not obvious what the meaning of chirality is. However, for massless fermions

such as the neutrinos in the SM, it can be shown that γ5 commutates with the Hamiltonian

Ĥ. The helicity eigenspinors of the Dirac equation are then also eigenspinors of the chirality

matrix with

γ5u(~p, h) = hu(~p, h)

γ5v(−~p, h) = −h v(−~p, h)
, h = ±1.

Also, the dynamic equations of the two Weyl spinors decouple in the Lagrangian since the

mixed term vanishes.
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It is an important observational �nding that only chiral left-handed neutrinos (left-handed

or negative helicity) and chiral left-handed antineutrinos (right-handed or positive helicity)

exist in nature. More precisely, only chiral left-handed neutrinos are observed to participate

in weak interactions. Therefore (charged-current) weak interactions are maximally violating

parity. This observation is the reason for postulating the SU(2)L symmetry group in the SM.

It dictates the structure of the coupling between the elementary fermions and the vector bosons

of the weak interaction.

2.2.5. Bilinear Covariants

The structure of interaction terms in the Lagrangian of the SM can be constrained signi�cantly

by some basic considerations. First, it can be shown that all physical observables of Dirac

�elds must be build from even powers of spinors Ψ(x). The most interesting one turns out to

be the simplest, being of order two. Also, the term must transform covariant under Lorentz-

transformations. Such an expression is called a covariant bilinear and can be written in the

general form

Ψ̄ΓΨ.

Since Γ is a 4×4 matrix there exist 16 di�erent, linearly independent covariant bilinears. They

all can be constructed from products of the γµ. They are named according to their behaviour

under Lorentz-transformations:

• Lorentz scalar: ΓS = 1,

• Lorentz pseudoscalar: ΓP = iγ5,

• Lorentz vector: ΓµV = γµ,

• Lorentz axial vector: ΓµA = γ5γ
µ,

• Lorentz tensor: ΓµνT = σµν .

2.2.6. Weak Interactions of Elementary Particles

To understand the coupling of elementary fermions to the vector bosons of the electroweak

interaction one must take a look at the quantum numbers of the fermions in the group SU(2)L×
U(1)Y . Chiral left-handed leptons form a doublet of the weak isospin. For right-handed chirality

there are no neutrinos, and the charged leptons form a weak isospin singlet. A possible notation

for this is

Ψl,L =

(
νl,L

lL

)
, Ψl,R = lR.

Here νl and l are the Dirac spinors of neutrinos and leptons, respectively.

Taking into account the observational constraints on the parity violating behaviour of weak

interactions and the chirality of neutrinos, the SM �nds that the isospin changing, or charged-

current, weak interaction acts generally only on left-handed chirality states. Also, the quarks
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can likewise be grouped into left-handed weak isospin doublets and right-handed weak isospin

singlets. In the example of the 1st generation quarks this is described by

Ψq,L =

(
uL

dL

)
, Ψq,R = uR, dR.

Here u and d are the Dirac spinors of up quark and down quark, respectively. The two com-

ponents of the doublet have the same total weak isospin T = 1/2 but di�erent polarizations

T3 = ±1/2. The singlet has the trivial quantum numbers T = T3 = 0. The quantum numbers

of the weak hypercharge Y can be expressed through T3 and Q and will therefore not be needed

explicitly in what follows.

T T3 Q ZL/R ZV ZA

νe,L, νµ,L, ντ,L
1
2

+1
2

0 +1
2

+1
2

+1
2

eL, µL, τL
1
2
−1

2
−1 −1

2
+ s2

W −1
2

+ 2s2
W −1

2

eR, µR, τR 0 0 −1 s2
W

uL, cL, tL
1
2

+1
2

+2
3

+1
2
− 2

3
s2
W +1

2
− 4

3
s2
W +1

2

uR, cR, tR 0 0 +2
3

−2
3
s2
W

dL, sL, bL
1
2
−1

2
−1

3
−1

2
+ 1

3
s2
W −1

2
+ 2

3
s2
W −1

2

dR, sR, bR 0 0 −1
3

+1
3
s2
W

Table 2.2.: Electroweak quantum numbers of elementary fermions

The Standard model delivers the following expression for the coupling term of electron type

leptons to the charged vector bosons

Llecc = − g√
2

[
ν̄e,Lγ

µeLWµ + ēLγ
µνe,LW

†
µ

]
= − g

2
√

2

[
ν̄eγ

µ (1− γ5) eWµ + ēγµ (1− γ5) νeW
†
µ

]
.

W µ denotes the charged vector bosons and g is the corresponding coupling constant. The

coupling has a �vector minus axial vector� or V-A coupling. The coupling of both bilinears has

exactly the same strength and therefore the total expression is maximally parity violating. One

can rewrite the Lagrangian in terms of the weak charged current Jµle :

Llecc = − g

2
√

2

[
Jµ†le Wµ + JµleW

†
µ

]
with Jµle = ēγµ (1− γ5) νe.
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The other two lepton families couple in the exact same way to W µ. Hence, the total leptonic

Lagrangian for charged-current weak interaction reads

Llcc =
∑
l=e,µ,τ

− g

2
√

2

[
Jµ†l Wµ + Jµl W

†
µ

]
with Jµl = l̄γµ (1− γ5) νl.

For the charged-current coupling of the quarks, it has to be considered that the quark eigen-

spinors of the weak interaction are a linear combination of the mass eigenspinors of the three

generations. In terms of the weak eigenspinors, which we denote by qw with q = u, d, c, s, t, b,

the quark current reads exactly the same as the one for leptons

Ludcc = − g

2
√

2

[
Jµ†udWµ + JµudW

†
µ

]
with Jµud = ūwγ

µ (1− γ5) dw.

The qw are related to the mass eigenstates q by the CKM matrix Vdwsw
bw

 =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


ds
b

 .

The weak charged current for u-quarks reads then

Jµu = Jµud = Vudūγ
µ (1− γ5) d+ Vusūγ

µ (1− γ5) s+ Vubūγ
µ (1− γ5) b.

The total quark current is then given by

JµQ =
∑
q

Jµq =
∑
q=u,c,t

∑
q′=d,s,b

Vqq′ q̄γ
µ (1− γ5) q′.

The elements Vud and Vus are historically given by

Vud = cos θC = 0.97427 and Vus = sin θC = 0.22534,

where θC is called the Cabibbo angle with θC = 13.02◦.

The neutral-current coupling to the Z-boson is di�erent from the charged current as it cou-

ples to both chiral spinor components. This is because the Z-boson couples partly to the

electromagnetic current of the fermions which does not vanish for right-handed chirality. The

general Lagrangian for neutral weak interaction can then be derived as

Lnc = − g

cW

[
Ψ̄Lγµ

(
T3 − s2

WQ
)

ΨL + Ψ̄Rγµ
(
−s2

WQ
)

ΨR

]
Zµ

= − g

cW

[
Ψ̄LγµZLΨL + Ψ̄RγµZRΨR

]
Zµ.

with

ZL = T3,L −Qs2
W and ZR = −Qs2

W .

The expressions cW = cos θW and sW = sin θW refer to the Weinberg angle θW . They are

de�ned through the weak coupling g and the electromagnetic coupling e by

sW =
e

g
with s2

W ' 0.231.
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In Table 2.2 the respective left- and right-handed neutral couplings for elementary fermions are

listed. De�ning the neutral current jZµ by

Lnc = − g

2cW
jZµZ

µ 1

2
jZµ = Ψ̄LγµZLΨL + Ψ̄RγµZRΨR.

The leptonic neutral current becomes

jZ,lµ = ν̄l,Lγµνl,L + l̄Lγµ
(
−1 + 2s2

W

)
lL + l̄Rγµ

(
2s2

W

)
lR,

and for the quarks of the �rst generation one �nds for example

jZ,qµ =ūLγµ

(
1− 4

3
s2
W

)
uL + d̄Lγµ

(
−1 +

2

3
s2
W

)
dL + ūRγµ

(
−4

3
s2
W

)
uR + d̄Rγµ

(
2

3
s2
W

)
dR.

It has to be noted that there is no neutral-current mixing between quarks of di�erent gener-

ations, unlike for the charged current. The neutral current weak spinors are the same as the

mass spinors.

With hindsight to the calculation of rates it is more convenient to express the neutral coupling

in terms of the full spinors instead of the chiral components. Using the projection operator one

�nds

Ψ̄LγµΨL = Ψ̄γµ
1− γ5

2
Ψ and Ψ̄RγµΨR = Ψ̄γµ

1 + γ5

2
Ψ.

The neutral weak current can then by written as

jZµ = Ψ̄γµ (ZV − ZAγ5) Ψ,

with the couplings ZV and ZA given by

ZV = ZL + ZR and ZA = ZL − ZR.

Hence the leptonic neutral current becomes

jZ,lµ =
1

2

[
ν̄lγµ (1− γ5) νl + l̄γµ

(
−1 + 4s2

W + γ5

)
l
]
,

while for the quarks one �nds

jZ,qµ =
1

2

[
ūγµ

(
1− 8

3
s2
W − γ5

)
u+ d̄γµ

(
−1 +

4

3
s2
W + γ5

)
d

]
.

2.2.7. Weak Currents of Nucleons

Due to the con�ning character of the strong interaction, free quarks do not exist in nature.

Instead they are always contained in color-free objects. The two known classes of these objects

are baryons and mesons. Baryons consist of three quarks with antibaryons made o� three

antiquarks. Mesons are build from quark-antiquark pairs. In the context of nuclear astrophysics

and neutrino interactions the most abundant and important baryons are neutrons and protons.

Neutrons consist of two down quarks and one up quark, protons consist of one down quark and
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two up quarks. For some scenarios at high densities, it is also relevant to study interactions

with Λ, which is constructed from one of each down quarks, up quarks, and strange quarks.

When neutrinos interact with nucleons i.e. baryons this cannot be described by interaction

with free quarks. Converting a neutron into a proton by neutrino absorption is not the same

as converting a free down quark into a free up quark. Instead it means to convert one bound

state of strong interaction into another. Hence one has to replace the quark current by the

appropriate hadronic transition matrix element. In the example of neutrino absorption on

neutrons this is described by

ūγµ (1− γ5) d→ 〈p(pp)|hµW (0)|n(pn)〉 ,

with hµW (x) being the hadronic current

hµW (x) = vµW (x)− aµW (x)

= ū(x)γµd(x)− ū(x)γµγ5d(x).

The transition matrix element can di�er in two ways from the quark current. First the coupling

terms can have a di�erent structure within the restriction of being of the V -A-type. Secondly

the coupling constants will be dependent on momentum transfer. This is because the wavelength

of the neutrino relates to the resolution of the baryon that is felt upon reacting. Hence high

energy neutrinos (or particles in general) see more of the substructure of the baryons.

The transition matrix element must keep the V − A-structure. Also it must satisfy the

invariance of strong interactions under weak isospin transformations. Under these constraints,

the most general matrix elements can be written as

〈p(pp)|vµW (0)|n(pn)〉 = Vudūp(pp)

[
γµGV

(
q2
)

+ σµνqν
iF2(q2)

2mN

]
un(pn)

and

〈p(pp)|aµW (0)|n(pn)〉 = Vudūp(pp)

[
γµγ5GA

(
q2
)

+ γ5q
µGP (q2)

mN

]
un(pn).

Here qµ is the momentum transfer, which is de�ned by

qµ = pµN,f − p
µ
N,i. (2.6)

From QCD it is known that the QCD Lagrangian of strong interaction obeys isospin invariance

i.e. ful�lls isospin symmetry. Noether's theorem implies then that the isovector currents are

conserved. This is known as the the conserved vector current (CVC) hypothesis. From there

one can derive a connection between the weak charged-current vector matrix element and the

electromagnetic matrix elements of nucleons.

〈p(pp)|vµW (0)|n(pn)〉 =
〈
p(pp)|jµγ,Q(0)|p(pp)

〉
+
〈
n(pn)|jµγ,Q(0)|n(pn)

〉
.

Now one can relate the respective weak form factors GV (q2) and F2(q2), which would be di�cult

to measure directly, to the well known electromagnetic form factors FN
1 (q2) and FN

2 (q2)

GV

(
q2
)

= F p
1

(
q2
)
− F n

1

(
q2
)
,

F2

(
q2
)

= F p
2

(
q2
)
− F n

2

(
q2
)
.
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Assuming the same q2 dependence for all electromagnetic form factors of the nucleons, �tted

to electron scattering data, one �nds eventually (see e.g. [117])

GV

(
q2
)

=

(
1− q2

4m2
N

)−1(
1− q2

M2
V

)−2 [
1− q2

4m2
N

(µp − µn)

]
,

F2

(
q2
)

=

(
1− q2

4m2
N

)−1(
1− q2

M2
V

)−2

[µp − µn − 1] .

The vectorial mass is �tted to MV ' 0.84 GeV, the anomalous proton magnetic moment is

µp = 2.793 and the neutron magnetic moment µn = −1.913.

Throughout this work the low momentum exchange approximation will be used, where all

form factors will be evaluated at q2 = 0. They become then

GV = GV (0) = gv = 1 and F2 = F2(0) = (µp − µn − 1) ' 3.706.

Since F2 depends on the large anomalous magnetic moments of the nucleons, the corresponding

contributions to the weak matrix element are called �weak magnetism�.

In contrast to the CVC hypothesis, the axial current is not conserved. Instead, it can be

shown that the pion decay requires non conservation of the axial current The partially conserved

axial current (PCAC) hypothesis is then connecting the axial current to the pion �eld π

∂µa
µ
W (x) = fπm

2
ππ
−(x).

From there one can derive a relation connecting the axial and the pseudoscalar form factors

GA(q2) and GP (q2) to the pion-nucleon form factor gπN(q2)(
−q2 +m2

π

) [
2mNGA

(
q2
)

+
q2

mN

GP

(
q2
)]

=
√

2gπN
(
q2
)
fπm

2
π.

For vanishing momentum exchange q2 → 0 this results in the Goldberg-Treiman relation

gA = GA(0) =
fπgπN√

2mN

' 1.3,

with gπN = gπN(m2
π) and the assumption gπN(0) ' gπN . The result of the Goldberg-Treiman

relation is in rather good agreement with precise measurements of gA from neutron decay

gA
gV
' 1.27.

Furthermore, measurements of neutrino scattering reactions have been used to �t the q2-

dependence of GA to be

GA

(
q2
)

=
gA(

1− q2

m2
A

)2 ,

with the axial mass mA ' 1.206 GeV.

The pseudoscalar form factor GP (0) for vanishing momentum transfer can then be derived

to

GP (0) ' 2m2
N

m2
π

gA.

39



Dropping the pseudoscalar term and using the low q2 approximation, the charged current

nuclear matrix element becomes eventually

〈p(pp)|hµW (0)|n(pn)〉 = Vudūp(pp)

[
γµ + σµνqν

iF2

2mN

− γµγ5gA

]
un(pn). (2.7)

The neutral current transition matrix is initially subject to the same arguments regarding

the general structure of the vector and axial currents. First, the quark neutral current jµZ,q is

replaced by
〈
p(pp)|jµZ,Q(0)|n(pn)

〉
. The neutral hadronic current jµZ,Q(x) can be decomposed

into a vector and an axial vector part

jµZ,Q(x) = vµZ(x)− aµZ(x).

Both the vector current and the axial current can then be split (somewhat analogous to the

quark case) into

vµZ(x) = vµ3 (x)− 2 sin2 θW j
µ
γ,Q(x)− 1

2
vµs (x),

aµZ(x) = aµ3(x)− 1

2
aµs (x).

where vµ3 (x) and aµ3(x) are the vector and axial currents of the isospin operator I3, respectively.

vµs (x) and aµs (x) are the vector and axial contributions of strange and heavier quarks and jµγ,Q
is the electromagnetic current.

The general structure of the neutral currents is analogous to the charged currents

〈N(pf )|vµZ(0)|N(pi)〉 = ūN(pf )

[
γµFZN

1

(
q2
)

+ σµνqν
iFZN

2 (q2)

2mN

]
uN(pi)

and

〈N(pf )|aµZ(0)|N(pi)〉 = ūN(pf )

[
γµγ5G

ZN
A

(
q2
)

+ γ5q
µG

ZN
P (q2)

mN

]
uN(pi).

The form factors of the vectorial part can be connected again to the electromagnetic form

factors by

FZp
1

(
q2
)

=
1

2
(F p

1 − F n
1 )− 2 sin2 θWF

p
1 −

1

2
F sp

1 ,

FZn
1

(
q2
)

=
1

2
(F n

1 − F
p
1 )− 2 sin2 θWF

n
1 −

1

2
F sn

1 ,

FZp
2

(
q2
)

=
1

2
(F p

2 − F n
2 )− 2 sin2 θWF

p
2 −

1

2
F sp

2 ,

FZn
2

(
q2
)

=
1

2
(F n

2 − F
p
2 )− 2 sin2 θWF

n
2 −

1

2
F sn

2 .

The strange form factors are not well constrained by experiment, yet. Hence, they are neglected

in many studies of neutrino interactions which is done in this work, too. Using the already

known electromagnetic form factors with the same assumptions as for the charged current one

40



arrives then at

FZp
1

(
q2
)

=
1

2

[
1− q2

4m2
N

(µp − µn)− 4 sin2 θW

(
1− q2

4m2
N
µp

)]
(

1− q2

4m2
N

)(
1− q2

M2
V

)2 ,

FZn
1

(
q2
)

=
1

2

[
−1 + q2

4m2
N

(µp − µn) + 4 sin2 θW
q2

4m2
N
µn

]
(

1− q2

4m2
N

)(
1− q2

M2
V

)2 ,

FZp
2

(
q2
)

=
1

2

[
µp − µn − 1− 4 sin2 θW (µp − 1)

](
1− q2

4m2
N

)(
1− q2

M2
V

)2 ,

FZp
2

(
q2
)

=
1

2

[
µn − µp + 1− 4 sin2 θWµn

](
1− q2

4m2
N

)(
1− q2

M2
V

)2 .

In the low momentum exchange approximation the form factors simplify to

FZp
1 = FZp

1 (0) =
1

2

(
1− 4 sin2 θW

)
' 1

2
× 0.076,

FZn
1 = FZn

1 (0) = −1

2
,

FZp
2 = FZp

2 (0) ' 1

2

(
3.706− 4 sin2 θW · 1.793

)
' 1

2
× 2.049,

FZn
2 = FZn

2 (0) ' 1

2

(
−3.706 + 4 sin2 θW · 1.913

)
' −1

2
× 1.938.

For the neutral current axial form factors one �nds a relation with the charged current axial

form factors that is given by

GZp
A

(
q2
)

=
1

2
GA

(
q2
)
− 1

2
Gsp
A

(
q2
)
,

GZn
A

(
q2
)

= −1

2
GA

(
q2
)
− 1

2
Gsn
A

(
q2
)
,

GZp
P

(
q2
)

=
1

2
GP

(
q2
)
− 1

2
Gsp
P

(
q2
)
,

GZn
P

(
q2
)

= −1

2
GP

(
q2
)
− 1

2
Gsn
P

(
q2
)
.

Neglecting again the strange quark form factors a simple equivalence is found

GZp
A

(
q2
)

= −GZn
A

(
q2
)

=
1

2
GA

(
q2
)
,

GZp
P

(
q2
)

= −GZn
P

(
q2
)

=
1

2
GP

(
q2
)
.

2.3. Matrix Elements

The study of neutrino transport in compact astrophysical objects requires the calculation of

certain transport properties. Such are e.g. the rates with which neutrinos interact with the

particles in their environment by certain reactions. In this respect, a very fundamental transport

property is the cross section per unit volume σ
V
or inverse mean free path λ−1. The mean free
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path describes how far a neutrino will travel on average before it experiences a reaction. The

inverse mean free path is in general a quantity that depends on the energy of a neutrino.

According to the distribution of its reaction partners it can also be angle dependent. In the

interior of compact stellar objects the distribution of all baryons and charged leptons is basically

isotropic and given by conditions of thermal and chemical equilibrium. However, this is not

the case for neutrinos (which is why one needs to study neutrino transport). Hence, reactions

that absorb or emit a single neutrino and do not involve additional neutrinos are su�ciently

described by λ−1(Eν). For neutrino scattering or neutrino �avour converting reactions one

needs a quantity that depends on the energies of all participating neutrinos and the angles

between them. This quantity can then be folded with the discrete neutrino distributions.

Such a quantity is often called a scattering kernel R. For a reaction involving 2 neutrinos one

would need then R(Eν1, Eν2, θ1,2). Actually, transport calculations need a scattering kernel that

depends on the angles of both neutrinos with respect to a prede�ned axis (mostly the radial

direction) R(Eν1, Eν2, θ1, θ2). How two derive these quantities from each other will be discussed

in more detail later when the respective reactions are studied.

For any neutrino reaction (in the picture of free quasi particles), the inverse mean free path

λ−1(Eν) can be calculated in the following way (see e.g. [118])

1

λ(Eν)
=

∫ (∏
i

d3pi

2Ei (2π)3

)(∏
f

d3pf

2Ef (2π)3

)
1

2Eν
g
〈
|M (pν , {pi} → {pf})|2

〉
(2.8)

× (2π)4 δ4

(
pν +

∑
i

pi −
∑
f

pf

)(∏
i

fi(Ei)

)(∏
f

(1− ff (Ef ))

)
.

Here, fi and ff denote the (isotropic) distribution functions of all participating particles except

for the neutrino. Since the particles are fermions, �nal state Pauli blocking must be taken

into account. The degeneracy factor g sums essentially over di�erent possibilities of spins (and

colors) of initial particles (it is not to be mistaken with the weak coupling constant g with

the same notation). Eventually,
〈
|M (pν , {pi} → {pf})|2

〉
is the square of the Lorentz invariant

matrix elementM of the reaction, summed over �nal state spins and averaged over initial state

spins. The invariant matrix element can be derived from quantum �eld theory by its de�nition

through the T -matrix

〈{pf} |T | pν {pi}〉 = (2π)4 δ4

(
pν +

∑
i

pi −
∑
f

pf

)
· iM (pν , {pi} → {pf}) .

For the electroweak interaction, the expression on the left-hand side can be evaluated using per-

turbation theory i.e. Feynman diagrams and Feynman rules. The derivation of these concepts

will not be discussed here. It su�ces to note that one has to choose all possible connected,

amputated diagrams up to a certain order of perturbation and sum them with the correct

respective sign. The calculation of the matrix element of a single diagram follows then the

corresponding Feynman rules.

In the scope of this work only lowest oder perturbation theory will be studied. Hence, only

so called tree level diagrams are considered. They contain only a single weak vector boson
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propagator, either charged or neutral, which connects the incoming and outgoing fermions. It

can be shown that the corresponding matrix elements basically consist of the respective charged

or neutral particle currents coupled to each other by the corresponding charged or neutral boson

propagator

|Mcc| =
g2

8
JµW,1

(
gµν − qµqν

m2
W

q2 −m2
W

)
JνW,2 |Mnc| =

g2

4c2
W

JµZ,1

(
gµν − qµqν

m2
Z

q2 −m2
Z

)
JνZ,2,

in agreement with the de�nition of charged and neutral currents in previous sections. Here,

gµν is the metric tensor. As an example one can consider absorption of electron neutrinos on

down quarks for charged interactions, and scattering of muon neutrinos on electrons for neutral

interactions. The absorption will have the matrix element∣∣M(νe + d→ u+ e−
)∣∣ =

g2

8
Vud

[
ū(s′)
u (pu)γ

µ (1− γ5)u
(s)
d (pd)

](gµν − qµqν
m2
W

q2 −m2
W

)
×
[
ū(t′)
e (pe)γ

ν (1− γ5)u(t)
νe (pν)

]
.

while for the scattering one has∣∣M(νµ + e− → νµ + e−
)∣∣ =

g2

16c2
W

[
ū(s′)
νµ (p′ν)γ

µ (1− γ5)u(s)
νµ (pν)

](gµν − qµqν
m2
Z

q2 −m2
Z

)
×
[
ū(t′)
e (p′e)γ

ν
(
−1 + 4s2

W + γ5

)
u(t)
e (pe)

]
.

2.3.1. Four-point interaction

For low momentum transfer |q2| � m2
W ,m

2
Z the weak boson propagators simplify to

lim
|q2/m2

W,Z|→0

(
gµν − qµqν

m2
W,Z

q2 −m2
W,Z

)
= − gµν

m2
W,Z

.

The weak interaction Lagrangian can then be approximated by a so called current-current

Lagrangian.

LCCeff = −GF√
2
j†Wµj

µ
W and LNCeff = −GF√

2
j†Zµj

µ
Z .

The e�ective Fermi coupling constant GF is de�ned by

GF√
2

=
g2

8m2
W

.

Furthermore the matrix elements for tree level diagrams simplify to

|Mcc| =
GF√

2
JµW,1JW,2,µ and |Mnc| =

2GF√
2
JµZ,1JZ,2,µ. (2.9)

Hence, all terms that contribute to the e�ective interaction Lagrangian represent a possible

matrix element. For the absorption of electron neutrinos on down quarks this equates into∣∣M(νe + d→ u+ e−
)∣∣ =

GF√
2
Vud

[
ū(s′)
u (pu)γ

µ (1− γ5)u
(s)
d (pd)

]
×
[
ū(t′)
e (pe)γµ (1− γ5)u(t)

νe (pν)
]
.
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while for the scattering of muon neutrinos on electrons the matrix element becomes∣∣M(νµ + e− → νµ + e−
)∣∣ =

GF

2
√

2

[
ū(s′)
νµ (p′ν)γ

µ (1− γ5)u(s)
νµ (pν)

]
×
[
ū(t′)
e (p′e)γµ

(
−1 + 4s2

W + γ5

)
u(t)
e (pe)

]
.

In general the matrix element is now of the form

|M | = Qµ(s, s′)Eµ(t, t′).

The squared matrix element
〈
|M |2

〉
, summed over �nal spins and averaged over initial spins

can then by written〈
|M |2

〉
=g−1

S

∑
s,s′,t,t′

(Qµ(s, s′)Eµ(t, t′)) (Qν(s, s′)Eν(t, t
′))
† (2.10)

=g−1
S

∑
s,s′,t,t′

[
Qµ(s, s′)Qν†(s, s′)

] [
Eµ(t, t′)E†ν(t, t

′)
]
.

where gS is averaging over initial spins with gS =
∑
s

1 ×
∑
t

1. The right-hand side expression

for
〈
|M |2

〉
is then solved by transforming it into traces of γ-matrices. It will be discussed in

detail for the various reactions later on.

2.4. Nuclear Matter E�ects

The previous sections laid out the formalism to compute weak interactions as singular events

with certain probabilities. The reacting particles were free elementary fermions and free nu-

cleons. Distribution functions and especially Pauli blocking of these particles were included in

the calculation of cross sections in Eq.(2.8). Thereby it was taken into account that neutrinos

move in a multi-particle environment which is subject to the laws of quantum statistics. At the

high densities as encountered in PNSs the e�ects of �nal state blocking are highly relevant for

any reaction process. Furthermore, the description of nuclear transitions was paying tribute to

the observation that quarks do not appear as free particles in nature. Due to the self-coupling

behaviour of strong interactions, quarks are con�ned in color-neutral objects, especially nucle-

ons in the region of interest. Hence the picture of free nucleons is indeed a phenomenological

description of interacting quarks. It is appropriate to leading orders for the energy scales that

are relevant for neutrino decoupling in young PNSs. However, even in this e�ective picture,

particles are not free. Except for the neutrinos, they all continuously experience strong and/or

electromagnetic interaction. This is actually the reason why matter can be assumed to be in

thermal equilibrium on the timescale of weak interactions. But these forces will also cause

deviations of the actual particle distributions from ideal Fermi gases. For low densities these

deviations are so small that they can be neglected to leading order. Yet, at large densities they

might signi�cantly modify the dispersion relations of particles and give rise to collective phe-

nomena like pair excitations, resulting in modi�ed amplitudes for certain reactions. Predicting

reliable neutrino rates at large densities above 1012 g/cm3 can only be achieved by considering
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these e�ects. Depending on the exact situation (density and composition), di�erent approaches

can be used and are used in nuclear astrophysics. Neutrino opacities in supernova simulations

mostly account for mean �eld e�ects. In some cases they go beyond and consider collective

e�ects in the form of correlations from linear response theory, also called random phase ap-

proximation (RPA), mainly by pion exchange. Both methods have the advantage that they

merge easily with RMF-EOS, which are very popular for the description of high density matter

in nuclear astrophysics. A nice review of these approaches can be found in [119]. They will be

brie�y illustrated in the following since they are also implemented in the scope of this work.

Recent studies consider more realistic nucleon-nucleon (NN) interactions e.g. from chiral e�ec-

tive �eld theory (EFT) [120]. Yet, their treatment is beyond the calculations presented here

and cannot be covered in detail.

2.4.1. Relativistic mean �eld theory

The basic idea of a mean �eld theory in general is to describe an interaction by a potential.

Furthermore, the potential should not be explicitly dependent on the position of particle i with

respect to all other particles j, but it should be an average potential, depending on the density

of particles j at the position ~ri.

U(~ri) =
∑
j

V (~ri, ~rj) 7→ U(ρ(~ri)).

In RMF theory such an averaged potential arises from nucleon-meson interaction terms in

the Lagrangian. From experiment it is known that nucleon-nucleon (NN) interactions can be

described by meson exchange. The idea of RMF is to begin with a Lorentz invariant Lagrangian

that contains terms to describe the meson �elds and terms which couple these mesons to the

nucleons. This way, the strong interaction between nucleons is mediated by the meson �elds of

the theory. The most important mesons for RMF are the pions π, the σ-meson, the ω-meson,

and the ρ-meson. However, the single π-meson does not contribute initially at mean �eld level

but becomes important beyond mean �eld e.g. for pairing. Also, the charged ρ-meson �elds

have zero expectation value. Only a neutral ρ-meson is included then. Hence the respective

NN Lagrangian would have the structure (see e.g. [121])

LNN = LN + Lm + Lint,
LN = Ψ̄(x)

(
i/∂ −m

)
Ψ(x),

Lm =
1

2

(
∂µσ∂

µσ −m2
σσ

2
)
− 1

2

(
1

2
ΩµνΩ

µν −m2
ωωµω

µ

)
− 1

2

(
1

2
~Rµν

~Rµν −m2
ρρµρ

µ

)
,

Lint = gσΨ̄σΨ− gωΨ̄/ωΨ− gρΨ̄γµ~τρµΨ.

Here mσ, mω, and mρ are the respective meson masses, gσ, gω, gρ are the nucleon-meson

couplings. The �eld tensors Ωµν and ~Rµν are given by

Ωµν = ∂µων − ∂νωµ,
~Rµν = ∂µ~ρ ν − ∂ν~ρ µ.
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Right from the start, this representation is an e�ective picture. The parameters like the meson

masses are thus not expected to agree with the actual physical values of these properties, as

are the meson �elds not to be identi�ed with the actual meson �elds. Instead, the parameters

are �tted to agree with measurements of nuclear matter properties, like the saturation density.

From the above Lagrangian LNN one derives the Dirac equation in medium for nucleons[(
i/∂ − gω/ω − γµ~τρµ

)
− (m− gσσ)

]
Ψ = 0.

In the rest frame of nuclear matter the spatial components of the vector �elds vanish. The

Dirac equation simpli�es then to[(
i/∂ − gωγ0ω

0 − γ0τ3ρ
0
)
− (m− gσσ)

]
Ψ = 0.

In the mean �eld approximation the meson �elds are treated as classical �elds

σ 7→ 〈σ〉 = S and ω0 7→
〈
ω0
〉

= U and ρ0 7→
〈
ρ0
〉

= V.

The (particle-)solution to the Dirac equation in medium can be derived in analogy to equations

(2.3)-(2.5). For the positive energy eigenspinor of nucleons one �nds

Ψ+
~p,s(x) = u(~p, s)e−ip·x , s = 1, 2,

where the stationary eigenspinor u(~p, s) is given by

u(~p, s) =
1√

E∗ +m∗

(
χs

~σ·~p
E∗+m∗

χs

)
with

∑
s

u(~p, s)ū(~p, s) = /p
∗ +m∗. (2.11)

The e�ective mass m∗ and the e�ective four momentum p∗ are de�ned by

m∗ = m− gσS and p∗ = (E∗, ~p) =

(√
~p 2 +m∗2, ~p

)
. (2.12)

and the positive single particle energies for protons and neutrons are

Ep = E∗ + gωU +
1

2
gρV =

√
~p 2 +m∗2 + gωU +

1

2
gρV, (2.13)

En = E∗ + gωU −
1

2
gρV =

√
~p 2 +m∗2 + gωU −

1

2
gρV. (2.14)

Now one can de�ne the mean �eld potentials for neutrons and protons

Un = gωU −
1

2
gρV and Up = gωU +

1

2
gρV. (2.15)

In this picture, the distribution of fermions is described by a free Fermi-gas distribution of

nucleons with an e�ective mass. The chemical potential is then replaced by a so called e�ective

Fermi potential µF,n/p with

µF,n/p = µn/p − Un/p → fn,p =

[
1 + exp

(√
~p 2 +m∗2 − µF,n/p

T

)]−1

. (2.16)
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Figure 2.1.: Feynman diagrams of Dyson-Schwinger equation for NN-interaction in mean �eld

approximation[119]: a) nucleon propagator in mean �eld; b) dressed vertex for coupling to ex-

ternal current; c) current-current correlation function or polarization tensor, also called bubble

series; Thick and thin solid lines are medium and free propagators, respectively. Dashed lines

represent strong/electromagnetic interaction while weak lines represent weak interactions. The

squares and circles are medium and free weak vertices, respectively.

Eventually another replacement has to be made. In the normalization factor (
∏

i 2Ei) the

nucleon energy EN has to be replaced by E∗N . This comes from the normalization of the phase

space integral which is actually a spacetime integral over the mass shell condition. Since the

latter is modi�ed for the quasiparticles in the medium one �nds

d4pNδ
(
(EN − UN)2 − ~p 2

N −m∗2N
)

= d3pNdEN

δ

(
EN − UN −

√
~p 2
N −m∗2N

)
2 (EN − UN)

=
d3pN
2E∗N

. (2.17)

Applying all these modi�cations into (2.8) one can calculate the transport properties in

RMF-theory analogous to free fermions.

2.4.2. Random Phase Approximation RPA

In RMF-theory, nuclear interactions are implemented in a non-perturbative and self-consistent

way. The nucleon propagator, which describes the motion of a nucleon, is modi�ed with respect

to a free nucleon by its coupling to the medium. In the mean �eld approximation this mod-

i�cation is due to a particular series of diagrams/couplings ([122, 121]). These diagrams are

shown in Figure 2.1a) [119]. The nucleon propagator in medium can be described by the e�ec-

tive free propagator plus the so called tadpole diagram. Note that the tadpole contains again

the modi�ed propagator. Therefore all orders of couplings are contained in these diagrams.

In order to consistently describe reactions on the basis of this approach, one has to consider

the possibility that external currents can couple not only to the bare nucleon but also to the

tadpole. Coupling to the tadpole describes a particle-hole or nucleon-antinucleon excitation.

This is an initial-state or �nal-state interaction (and hence not incorporated in the S-matrix
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approach [119]). These excitations are not covered in the intuitive treatment of section 2.4.1.

Fully consistent computation of transport properties based on an RMF-EOS requires then the

use of RPA, also called ring-approximation or linear response theory. Figure 2.1c) depicts the

diagrams corresponding to RPA, the so-called bubble series. However, RPA demands an ap-

proach to compute transport properties that is di�erent to the S-matrix approach previously

employed. It focuses on the calculation of correlation functions or medium polarization tensors.

2.4.3. Cross Sections in RPA

For a two-particle charged-current interaction between leptons and nucleons, in the absence of

a medium, the squared matrix element
〈
|M |2

〉
can be written (see Eq.(2.10))

〈
|M |2

〉
=g−1

S

G2
F

2
LµνT

µν ,

where Lµν and T µν are the spin sums over the lepton and the nucleon currents, respectively. It

will be shown later that the nucleon current can be written in the form

T µν = Tr
[(
/p+m

)
J̄µN
(
/p+ /q +m

)
J̄νN
]
,

where J̄µN is the coupling part of the nucleon current. For charged-current reactions one �nds

(see Eq.(2.7))

J̄µN = Vud

[
γµ + σµνqν

iF2

2mN

− γµγ5gA

]
From Eq.(2.8) one �nds then for the inverse mean free path (with gS = g)

1

λ(El)
=

∫
d3pN

2EN (2π)3

d3p′N
2E ′N (2π)3

d3p′l
2E ′l (2π)3

1

2El

G2
FV

2
ud

2
LµνT

µν (2.18)

× (2π)4 δ4(pl + pN − p′l − p′N)fN(EN) (1− f ′l (E ′l)) (1− f ′N(E ′N))

=
G2
FV

2
ud

32π2

∫
d3p′l
ElE ′l

(1− f ′l (E ′l))Lµν
∫

d3pNd
3p′N

4ENE ′N (2π)3T
µνδ4(. . . )fN(EN) (1− f ′N(E ′N))

One can show that Equation 2.18 is only a special version of a more general expression. One

can write

1

λ(El)
=
G2
FV

2
ud

32π2

∫
d3p′l
ElE ′l

(1− f ′l (E ′l))LµνSµν (2.19)

Here, Sµν is the so called medium response function. In this most general notation Sµν contains

all the information on the interaction among the nucleons. Therefore Sµν can also be computed

in a more sophisticated approach. In order to calculate the Sµν that corresponds to RPA, one

needs to start by evaluating Sµν in terms of the retarded/medium polarization Πµν
R [122, 123,

124]

1

λ(El)
=

G2
F

32π2

∫
d3p′l
ElE ′l

(1− f ′l (E ′l))Lµν=(Πµν
R )

[
1− exp

(
−q0 + µN − µ′N

T

)]
. (2.20)
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The retarded polarization tensor is connected to the time-ordered/causal polarization tensor

Πµν by

Πµν
R = tanh

(
q0 + µN − µ′N

2T

)
Πµν .

The time-ordered polarization is given by

Πµν = −i
∫

d4p

(2π)4Tr
[
T
(
GN(p)J̄µNGN ′(p+ q)J̄νN

)]
,

where Gi(p) is the respective nucleon propagator for a non-interacting nucleon in a Fermi gas,

and T stands for time ordering. The subsequent steps to compute the respective polarizations

will not be discussed here. However, it has to be noted that up to now, the approach via the T-

matrix in Equation 2.18 and the approach via the polarization in Equation 2.20 are completely

analogous and none of them has anything to do with RPA.

When considering mean �eld interactions in the T-matrix, Eq.(2.18) is modi�ed in the fol-

lowing way

1

λ(El)
=
G2
F

32π2

∫
d3p′l
ElE ′l

(1− f ′l (E ′l))Lµν
∫

d3pNd
3p′N

4E∗NE
∗′
N (2π)3

T ∗µνδ4(pl + pN − p′l − p′N)fN(EN) (1− f ′N(E ′N))

The e�ective nucleon tensor T ∗µν becomes

T ∗µν = Tr
[(
/p
∗ +m∗

)
J̄µN
((
/p+ /q

)∗
+m∗

)
J̄νN
]

To account for the same level of interaction in the polarization tensor one has to replace the

free nucleon propagator Gi(p) with the e�ective nucleon propagator G∗i (p)

G∗i (p) = Gi(p
∗)

Even after these replacements, again both approaches via the T-matrix and the polarization

are equivalent and none gives the RPA-response.

The consistent approach of linear response theory goes beyond this intuitive modi�cation.

It replaces the free polarization tensor Πµν by the dressed polarization Π∗µν according to the

bubble series in 2.1c). For a detailed derivation of the standard vector and axial-vector contri-

butions to the polarization the reader is referred to [125, 123, 126]. Additional contributions

from weak magnetism are derived in [127].

2.4.4. Neutrino Transport in Core Collapse Supernova

As mentioned before, the surface of a PNS posses a region of transition in terms of neutrino

transport. At high densities above 1013 g/cm3 neutrino spectra are in thermal and chemical

equilibrium with matter. They are e�ectively trapped due to the short mean free path or

conversely the large opacities that they experience. At densities below 1010 g/cm3 they will be

decoupled from the matter. The neutrino mean free path will become so large that neutrinos
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are free streaming and will most likely leave the PNS without further interaction. In between

these two extremes there is a region where neutrinos decouple from the matter. Understanding

and modeling this transition is necessary to predict the spectra of neutrinos. For numerical

simulations of core collapse supernovae there are various approaches to treat neutrino transport.

In particular, one has to decide for a trade o� between accuracy and computational e�ort. On

the basis of most approaches lies the evolution of the neutrino radiation �eld within kinetic

theory. To be precise, the time evolution of the neutrino distribution is determined by the

solution to the Boltzmann equation. In a very simpli�ed notation this equation can be written

in the form
∂f

∂t
+ T (f) +G(f) = C(f) (2.21)

For a more thorough discussion of the Boltzmann equation see e.g. [128]. The term T describes

the evolution due to spatial transport through a volume. The term G accounts for e�ects

that arise from a particular choice of a coordinate system, from special relativity, and from

general relativity. Eventually, the term C is the so called collision term that describes the

interaction of neutrinos with particles. The consistent and simultaneous solution of both terms

G and C proves to be a di�cult task that can up to now only be solved by making signi�cant

approximations to the general case. A most famous example is probably the assumption of

certain spatial symmetries to reduce the problem of simulating a supernova to 2D or even 1D

in space. Also various simpli�cations to the collision term are in use such as neglecting certain

types of reactions e.g. inelastic scatterings that couple di�erent neutrino energies to each other.

One of the aims of this work is basically to improve the description of the collision term

by studying neutrino reactions which are not present in current neutrino transport codes but

might contribute signi�cantly. Hence, a connection has to be made between the collision term

and the transport properties that are derived here. A common assumption of basically all

neutrino transport schemes is that the neutrino distribution f is symmetric for polar rotations

around the radial axis. Thus f depends on time t, position ~x, energy E and azimuthal angle θ

with respect to the radial outward direction. The collision term can then be written out in the

following form

C(f(E, θ)) =j(E) (1− f(E, θ))− χ(E)f(E, θ) (2.22)

+ (1− f(E, θ))

∫
d cos θ′ dE ′E

′2Rin
S (θ, θ′, E, E ′)f ′(E ′, θ′)

− f(E, θ)

∫
d cos θ′ dE ′E

′2Rout
S (θ, θ′, E, E ′) (1− f ′(E ′, θ′))

+ (1− f(E, θ))

∫
d cos θ′ dE ′E

′2Rin
PR(θ, θ′, E, E ′)

(
1− f̄ ′(E ′, θ′)

)
− f(E, θ)

∫
d cos θ′ dE ′E

′2Rout
PR(θ, θ′, E, E ′)f̄ ′(E ′, θ′)

The term j describes the emission of neutrinos while χ represents the absorption. Treating

neutrino transport in a comoving frame, both j and χ become equal to the inverse mean free

path or cross section per unit volume for neutrino absorbing or emitting reactions.

j(E) =
1

λ(E)

∣∣∣∣
νout

χ(E) =
1

λ(E)

∣∣∣∣
νin

(2.23)
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For example, the inverse mean free path for electron neutrino absorption on neutrons is a

contribution to χνe , while the same expression for electron capture is a contribution to jνe .

Next, the expression RS represents all the scattering reactions which have a neutrino among

the initial and the �nal state particles. In particular Rin
S describes reactions where a neutrino

of the distribution f with a particular energy E is an outgoing particle. One can also say that

it scatters into the distribution. Likewise Rout
S describes reactions where such a neutrino is an

initial state particle and goes out of the distribution. To achieve the rate of these reactions

one has to integrate over the phase space of the other neutrino distribution f ′. This has to be

done numerically as the neutrino distributions are discrete and not necessarily an equilibrium

distribution (otherwise there would be no need to solve the Boltzmann Equation in the �rst

place). It should be noted that f ′ is not necessarily equal to f . The present work deals in

particular with reactions where f and f ′ refer to di�erent neutrino �avours. However, f and

f ′ describe both either neutrinos or antineutrinos. Eventually RPR describes neutrino pair

processes such as production of a neutrino-antineutrino pair in electron-positron annihilation

or nucleon bremsstrahlung. The indices in and out denote again whether the neutrino pair is in

the �nal or initial state of the reaction i.e. whether they are created or destroyed, respectively.

The distribution of the other neutrino f̄ ′ describes antineutrinos of f represents neutrinos, and

vice versa. A notable omission in the above collision term are reactions where neutrino pairs

are incoming and outgoing, such as a neutrino �avour conversion νe + ν̄e → νµ + ν̄µ. These

reactions were found to be relevant for neutrino transport in PNS [129], however they are not

included in the scope of this work.

There exists a useful relation that connects the cross section for emission of a neutrino by a

certain reaction to the one for absorption by the inverse of the reaction, called detailed balance.

The idea behind detailed balance builds on the fact that the matrix element is the same for any

reaction and its inverse. Thus the cross sections for both reactions di�er only by the exchange

of initial and �nal state statistical factors for all particles other than the neutrino. It can be

shown that the integrand di�ers then only by a factor which depends on the neutrino energy,

the chemical potentials of all other particles, and the temperature. Hence this factor can be

taken out of the phase space integral. In particular one �nds

j(E) = χ(E) · exp [(µf − µi − E) /T ] (2.24)

where µf is the sum of chemical potentials of �nal state particles in the absorption reaction.

Likewise µi is the chemical potential of the initial state reaction partner. Similar relations can

be found for scattering and pair reactions kernels.

Rin
S (θ, θ′, E, E ′) = Rout

S (θ, θ′, E, E ′) · exp [(µf − µi + E ′ − E) /T ] (2.25)

Rin
PR(θ, θ′, E, E ′) = Rout

PR(θ, θ′, E, E ′) · exp [(−E ′ − E) /T ] (2.26)

With the detailed balance equations one needs to calculate only the absorption or emission

process explicitly and can then derive the inverse process immediately by an analytic transfor-

mation. Alternatively one can calculate both expressions explicitly and use the detailed balance

condition as a crosscheck for the results.
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3. Matrix Elements for Weak

Interactions

This work wants to study the relevance of weak interactions that were not included in CCSN

simulations, yet. It further tries to improve the expressions for some reactions that are already

routinely included. These new expressions are supposed to be less approximative with respect

to the treatment of relativity and mean �eld e�ects. Also a more complete treatment of the

weak current is implemented. At the same time they are meant to be no more demanding

in computation than the previously used expressions. Hence, they could be implemented in

current neutrino transport schemes without signi�cant modi�cations.

The �rst step to derive these expressions is the computation of the corresponding matrix

elements according to equations (2.9) and (2.10). Nuclear interactions will be accounted for

according to equations (2.11)-(2.15).

Some of the results in this section are well known textbook examples on the derivation of

matrix elements. Relevant modi�cations beyond known expressions will arise due to the nuclear

interaction potentials.

leptonic reactions semileptonic reactions

νµ/ν̄µ + e− → νµ/ν̄µ + e− νe + n→ p+ e−

νµ + e− → νe + µ− ν̄e + p→ n+ e+

νµ + ν̄e + e− → µ− ν̄e + e− + p→ n

ν̄e + e− → ν̄µ + µ− νµ + n→ p+ µ−

Table 3.1.: Table of reactions that are studied in the present work
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3.1. Matrix Elements for Leptonic Reactions

νµ + e− → νµ + e−

The scattering of muon neutrinos and antineutrinos on electrons is a purely neutral current

reaction. The matrix element for these reactions and the subsequent scattering kernels are well

known expressions in the literature. Nevertheless the derivation will be repeated in this work

because it serves as the starting point for the derivation of the new leptonic reactions. It has

then to be noted that the expression for the scattering of tau neutrinos is exactly the same as

for muon neutrinos. First the expression for neutrinos will be considered. The weak neutral

current for the muon neutrino reads

JαZ,νµ =
1

2
ūs
′

νµγ
α (1− γ5)usνµ .

For the electron one �nds

JαZ,e− =
1

2
ūt
′

e−γ
α
(
−1 + 4s2

W + γ5

)
ute− .

Please note at this point the notation usνµ instead of νµ,s and ūsνµ instead of ν̄µ,s for the eigen-

spinors of the muon neutrino (and equivalently for all other particles). This is done to avoid

confusion with the eigenspinors of antiparticles which will be denoted by v instead of u. Those

must not be mixed since they result in di�erent spin sums, see Eq.(2.5). Further the explicit

momentum dependence of the spinors is dropped in the notation although it is understood that

it still applies.

The neutral current matrix element takes the form∣∣M(νµ + e− → νµ + e−
)∣∣ =

GF

2
√

2

[
ūs
′

νµγα (1− γ5)usνµ

] [
ūt
′

e−γ
α
(
−1 + 4s2

W + γ5

)
ute−
]
.

For the squared matrix element one has to average over initial spins. The respective spin

degeneracy factor is gS = 2× 1 = 1. The are two possible spins for the incoming electron but

only one for the neutrino. The squared matrix element can then be written in the form

〈
|M |2

〉
=
G2
F

16

(∑
s,s′

Qαβ(s, s′)

)(∑
t,t′

Eαβ(t, t′)

)
.

The neutrino tensor Qαβ(s, s′) and the electron tensor Eαβ(t, t′) are de�ned by

Qαβ(s, s′) =
[
ūs
′

νµγ
α (1− γ5)usνµ

] [
ūs
′

νµγ
β (1− γ5)usνµ

]†
,

Eαβ(t, t′) =
[
ūt
′

e−γα
(
−1 + 4s2

W + γ5

)
ute−
] [
ūt
′

e−γβ
(
−1 + 4s2

W + γ5

)
ute−
]†
.

First the neutrino tensor will be computed

Qαβ(s, s′) =
[
ūs
′

νµγ
α (1− γ5)usνµ

] [
ūs
′

νµγ
β (1− γ5)usνµ

]†
=
[
ūs
′

νµγ
α (1− γ5)usνµ

] [
ūsνµγ

β (1− γ5)us
′

νµ

]
.
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Performing the spin sum over s according to Eq.(2.5) one �nds∑
s

usνµū
s
νµ = /pνµ

+mνµ = γδpνµ,δ.

The result can be plugged into the neutrino tensor∑
s,s′

Qαβ(s, s′) = pνµ,δ
∑
s′

ūs
′

νµγ
α (1− γ5) γδγβ (1− γ5)us

′

νµ .

Considering now that the spinors are vectors and the product of γ-matrices is a matrix itself.

he spin sum over the neutrino tensor can then be transformed into a trace over γ-matrices by

using simple matrix algebra∑
s,s′

Qαβ(s, s′) = pνµ,δ
∑
s′

(
ūs
′

νµ

)
i

[
γα (1− γ5) γδγβ (1− γ5)

]
ij

(
us
′

νµ

)
j

= pνµ,δ
∑
s′

[
γα (1− γ5) γδγβ (1− γ5)

]
ij

(
us
′

νµū
s′

νµ

)
ji

= pνµ,δp
′
νµ,ε

[
γα (1− γ5) γδγβ (1− γ5)

]
ij

(γε)ji

= pνµ,δp
′
νµ,εTr

[
γα (1− γ5) γδγβ (1− γ5) γε

]
= pνµ,δp

′
νµ,εTr

[
2 (1 + γ5) γαγδγβγε

]
. (3.1)

At this point one has to consider the traces of γ-matrices in general. The �rst rule is that

any trace over an odd number of γ-matrices must vanish. The relevant nonvanishing traces are

derived in the appendix in section A. Using these rules and the anticommutation γ5γ
α = −γαγ5

one �nds ∑
s,s′

Qαβ(s, s′) = pνµ,δp
′
νµ,ε

(
2Tr
[
γαγδγβγε

]
+ 2Tr

[
γ5γ

αγδγβγε
])

= 8pνµ,δp
′
νµ,ε

(
gαδgβε − gαβgδε + gαεgβδ + iεαδβε

)
= 8

(
pανµp

′β
νµ + pβνµp

′α
νµ − g

αβ
(
pνµ · p′νµ

)
− iεαβδεpνµ,δp′νµ,ε

)
.

Proceeding in analogous steps for the electron tensor one �nds∑
t,t′

Eαβ(t, t′) =
∑
t,t′

[
ūt
′

e−γα
(
−1 + 4s2

W + γ5

)
ute−
] [
ūte−γβ

(
−1 + 4s2

W + γ5

)
ut
′

e−

]
= 8

{(
1− 4s2

W + 8s4
W

) [
pe−,αp

′
e−,β + pe−,βp

′
e−,α − gαβ (pe− · p′e−)

]
−i
(
1− 4s2

W

)
εαβκρp

κ
e−p
′ρ
e− −m

2
e

(
4s2

W − 8s4
W

)
gαβ
}
.

The contraction of both tensors is straightforward (see app. B). It yields∑
s,s′,t,t′

Qαβ(s, s′)
∑
t,t′

Eαβ(t, t′) = 64
(
pνµ · pe−

) (
p′νµ · p

′
e−

) (
4− 16s2

W + 16s4
W

)
+64

(
pνµ · p′e−

) (
p′νµ · pe−

) (
16s4

W

)
+ 64m2

e

[(
pνµ · p′νµ

)] (
8s2

W − 16s4
W

)
.

Hence the squared matrix element for this reaction equates to〈∣∣M (
νµ + e− → νµ + e−

)∣∣2〉 = 16G2
F

[(
pνµ · pe−

) (
p′νµ · p

′
e−

) (
1− 4s2

W + 4s4
W

)
(3.2)

+
(
pνµ · p′e−

) (
p′νµ · pe−

) (
4s4

W

)
+m2

e

(
pνµ · p′νµ

) (
2s2

W − 4s4
W

)]
.
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ν̄µ + e− → ν̄µ + e−

For the scattering of antineutrinos on electrons, only the antineutrino tensor has to be calculated

new. The di�erence here is that the incoming antineutrinos are described by outgoing spinors

v, and vice versa. The neutrino current is given by

JαZ,ν̄µ =
1

4
v̄s
′

ν̄µγ
α (1− γ5) vsν̄µ .

One then de�nes the Matrix element again by〈∣∣M (
ν̄µ + e− → ν̄µ + e−

)∣∣2〉 =
G2
F

16

(∑
s,s′

Q̄αβ(s, s′)

)(∑
t,t′

Eαβ(t, t′)

)
.

The antineutrino tensor equates then to

Q̄αβ(s, s′) =
[
v̄sν̄µγ

α (1− γ5) vs
′

ν̄µ

] [
v̄sν̄µγ

β (1− γ5) vs
′

ν̄µ

]†
=
[
v̄sν̄µγ

α (1− γ5) vs
′

ν̄µ

] [
v̄s
′

ν̄µγ
β (1− γ5) vsν̄µ

]
.

The spin sum over the antispinors v gives the same result as the one over the spinors u since

the neutrinos are massless ∑
s

vsν̄µ v̄
s
ν̄µ = /pν̄µ

−mν̄µ = γδpν̄µ,δ.

The spin sum over the antineutrino tensor Q̄αβ(s, s′) can then again be transformed into a trace

over γ-matrices, analogous to the sum for Qαβ(s, s′)∑
s,s′

Q̄αβ(s, s′) = p′ν̄µ,δpν̄µ,εTr
[
2 (1 + γ5) γαγδγβγε

]
.

The only di�erence between neutrinos and antineutrinos is the exchange of the initial and �nal

neutrino four-momentum. Hence, the squared matrix element results into〈∣∣M (
ν̄µ + e− → ν̄µ + e−

)∣∣2〉 = 16G2
F

[(
p′ν̄µ · pe−

) (
pν̄µ · p′e−

) (
1− 4s2

W + 4s4
W

)
(3.3)

+
(
p′ν̄µ · p

′
e−

) (
pν̄µ · pe−

) (
4s4

W

)
+m2

e

(
pν̄µ · p′ν̄µ

) (
2s2

W − 4s4
W

)]
.

(3.4)

νµ + e− → νe + µ−

This reaction, which exchanges the lepton �avour of the neutrino and the charged lepton, is

purely charged current. It is described by an e− that emits a W− boson to become a νe while

the νµ absorbs the W− to become a µ−. The weak charged current of the µ-type leptons is

given by

JαW,µ = ūs
′

µ−γ
α (1− γ5)usνµ .
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For the electron type leptons it is similarly

JαW,e = ūt
′

νeγ
α (1− γ5)ute− .

The squared matrix element can then be de�ned by

〈∣∣M (
νµ + e− → νe + µ−

)∣∣2〉 =
G2
F

4

(∑
s,s′

Mαβ(s, s′)

)(∑
t,t′

Eαβ(t, t′)

)
.

The neutrino tensor Mαβ(s, s′) and the electron tensor Eαβ(t, t′) are de�ned by

Mαβ(s, s′) =
[
ūs
′

µ−γ
α (1− γ5)usνµ

] [
ūs
′

µ−γ
β (1− γ5)usνµ

]†
,

Eαβ(t, t′) =
[
ūt
′

νeγα (1− γ5)ute−
] [
ūt
′

νeγβ (1− γ5)ute−
]†
.

Performing the spin sum over Mαβ(s, s′) it can be transformed into the following trace∑
s,s′

Mαβ(s, s′) =
∑
s,s′

[
ūs
′

µ−γ
α (1− γ5)usνµ

] [
ūsνµγ

β (1− γ5)usµ−
]

= Tr
[
γα (1− γ5)

(
γδpνµ,δ

)
γβ (1− γ5)

(
γεp′µ−,ε +mµ

)]
= pνµ,δp

′
µ−,εTr

[
2 (1 + γ5) γαγδγβγε

]
+ pνµ,δmµTr

[
2 (1 + γ5) γαγδγβ

]
.

The second trace vanishes as it sums over an odd number of γ-matrices. The remaining ex-

pression is equivalent to Eq.(3.1). The muon tensor consequently becomes∑
s,s′

Mαβ(s, s′) = 8
[
pανµp

′β
µ− + pβνµp

′α
µ− − gαβ

(
pνµ · p′µ−

)
− iεαβδεpνµ,δp′µ−,ε

]
.

It is further clear, that Eαβ(t, t′) can be derived completely analogous to Mαβ(s, s′). The only

di�erence is that there the charged lepton is incoming and the neutrino outgoing.∑
t,t′

Eαβ(t, t′) = 8
[
pe−,αp

′
νe,β + pe−,βp

′
νe,α − gαβ

(
pe− · p′νe

)
− iεαβκρpκe−p′

ρ
νe

]
.

The contraction of muon and electron tensor is straightforward again (see app. B). It yields∑
s,s′,t,t′

Mαβ(s, s′)
∑
t,t′

Eαβ(t, t′) = 256
(
pνµ · pe−

) (
p′µ− · p′νe

)
.

Therefore, the matrix element is found to be〈∣∣M (
νµ + e− → νe + µ−

)∣∣2〉 = 64G2
F

(
pνµ · pe−

) (
p′µ− · p′νe

)
. (3.5)

νµ + ν̄e + e− → µ−

Based on the previous reaction, the calculation of inverse muon decay proceeds almost the

same. It is again a purely charged current interaction. The muon current and subsequently the
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muon tensor do not change. The only minor di�erence is in the electron current. The incoming

antineutrino replaces the outgoing neutrino.

JαW,e = v̄t
′

ν̄eγ
α (1− γ5)ute− .

However, this does not cause a change in the electron tensor. One only replaces

′∑
t

ut
′

νeū
t′

νe = /pνe
+mνe = γεpνe,δ by

′∑
t

vt
′

ν̄e v̄
t′

ν̄e = /pν̄e
−mν̄e = γεpν̄e,δ.

Therefore the derivation yields the same result for the squared matrix element as for the �avour

exchanging scattering. The electron antineutrino simply replaces the neutrino in the momentum

index. 〈∣∣M (
νµ + e− + ν̄e → µ−

)∣∣2〉 = 64G2
F

(
pνµ · pe−

) (
p′µ− · pν̄e

)
. (3.6)

ν̄e + e− → ν̄µ + µ−

This reaction converts the lepton �avour of a pair of electron leptons into a pair of muon

leptons. The electron current and consequently the electron tensor are the same as for inverse

muon decay. The muon current takes the following form

JαW,µ = ūs
′

µ−γ
α (1− γ5) vsν̄µ .

It is equivalent to the muon current for the �avour converting scattering reaction except for the

replacement of the spinor usνµ by v
s
ν̄µ . Analogous to the argumentation for the electron tensor in

the inverse muon decay, this does not result in a modi�cation of the muon tensor. Hence, the

matrix element is again the same as e.g. for the inverse muon decay. One only has to replace

the incoming momentum pνµ by the outgoing momentum p′ν̄µ .〈∣∣M (
ν̄e + e− → ν̄µ + µ−

)∣∣2〉 = 64G2
F

(
p′ν̄µ · pe−

) (
p′µ− · pν̄e

)
. (3.7)

3.2. Matrix Elements for Semileptonic Reactions

νe + n→ p+ e−

The absorption of electron neutrinos on neutrons is a pure charged current reaction. For the

calculation of the lepton tensor one can use the results that were already derived for the leptonic

reactions. The lepton current for this reaction is

JαW,e = ūt
′

e−γ
α (1− γ5)utνe .

Subsequently the electron tensor becomes∑
t,t′

Eαβ(t, t′) = 8
[
pνe,αpe−,β + pνe,βpe−,α − gαβ (pνe · pe−)− iεαβκρpκνep

ρ
e−

]
.
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The e�ective charged nuclear current equals the respective nuclear transition element. It is

given by

JαW,N = ūs
′

p

[
γαGV

(
q2
)

+ σαηqη
iF2(q2)

2mN

− γαγ5GA

(
q2
)
− γ5q

αGP (q2)

mN

]
usn.

From now on the pseudoscalar coupling term will be dropped. For absorption of electron

type neutrinos this is justi�ed by the smallness of the contribution. It can be shown that the

pseudoscalar contribution to the nucleon trace are of the order m2
e/m

2
π � 1. However, for

absorptions of muon neutrinos these terms would be of the order m2
µ/m

2
π ∼ 1. Therefore the

respective terms should be considered for a more complete treatment of absorption of muon

neutrinos. This study should then be undertaken in a future work.

Further, the momentum dependence of all the coupling constants will not be noted any more.

The e�ective nucleon current becomes then

JαW,N = ūs
′

p

[
γαGV − γαγ5GA + σαηqη

iF2

2mN

]
usn.

In analogy with the electron tensor Eαβ(t, t′), a hadron tensor Hαβ(s, s′) can be de�ned

Hαβ(s, s′) = ūs
′

p

[
γαGV − γαγ5GA + σαηqη

iF2

2mN

]
usnū

s
n

[
γβGV − γβγ5GA − σβλqλ

iF2

2mN

]
us
′

p .

The spin sum over the e�ective spinors results into (see Eq.2.11)∑
s

usnū
s
n = γδp∗n,δ +m∗n and

∑
s′

us
′

p ū
s′

p = γεp∗p,ε +m∗p,

where p∗ was previously de�ned by (see Eq.2.12)

p∗ =
(√

p̄2 +m∗2, ~p
)
.

The spin sum over the hadron tensor equates to∑
s,s′

Hαβ(s, s′) =Tr

[(
γαGV − γαγ5GA + σαηqη

iF2

2mN

)(
γδp∗n,δ +m∗n

)
(
γβGV − γβγ5GA − σβλqλ

iF2

2mN

)(
γεp∗p,ε +m∗p

)]
.

For clarity the hadron tensor will be separated into several terms, each corresponding to a

certain coupling

Hαβ = Hαβ
V V +Hαβ

AA +Hαβ
V A +Hαβ

V F +Hαβ
AF +Hαβ

FF .

The spin sum over the vector element becomes∑
s,s′

Hαβ
V V = G2

V Tr
[
γα
(
γδp∗n,δ +m∗n

)
γβ
(
γεp∗p,ε +m∗p

)]
= 4G2

V

[
p∗αn p

∗β
p + p∗βn p

∗α
p − gαβ

(
p∗n · p∗p

)
+ gαβm∗nm

∗
p

]
.
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The spin sum over the axialvector element becomes∑
s,s′

Hαβ
AA = G2

ATr
[
γαγ5

(
γδp∗n,δ +m∗n

)
γβγ5

(
γεp∗p,ε +m∗p

)]
= 4G2

A

[
p∗αn p

∗β
p + p∗βn p

∗α
p − gαβ

(
p∗n · p∗p

)
− gαβm∗nm∗p

]
.

The spin sum over the vector-axialvector element becomes∑
s,s′

Hαβ
V A =−GVGATr

[
γα
(
γδp∗n,δ +m∗n

)
γβγ5

(
γεp∗p,ε +m∗p

)]
−GVGATr

[
γαγ5

(
γδp∗n,δ +m∗n

)
γβ
(
γεp∗p,ε +m∗p

)]
=− 8iGVGAp

∗
n,δp

∗
p,εε

αβδε.

The spin sum over the vector-tensor element becomes∑
s,s′

Hαβ
V F =

iGV F2

2mN

{ −Tr
[
γα
(
γδp∗n,δ +m∗n

)
σβλqλ

(
γεp∗p,ε +m∗p

)]
+Tr

[
σαηqη

(
γδp∗n,δ +m∗n

)
γβ
(
γεp∗p,ε +m∗p

)]}
=

2GV F2

mN

{
2gαβ [m∗n

(
q · p∗p

)
−m∗p (q · p∗n)

]
+ qβ

(
p∗αn m

∗
p − p∗αp m∗n

)
+ qα

(
p∗βn m

∗
p − p∗βp m∗n

)}
.

The spin sum over the axialvector-tensor element becomes∑
s,s′

Hαβ
AF =

iGAF2

2mN

{ Tr
[
γαγ5

(
γδp∗n,δ +m∗n

)
σβλqλ

(
γεp∗p,ε +m∗p

)]
− Tr

[
σαηqη

(
γδp∗n,δ +m∗n

)
γβγ5

(
γεp∗p,ε +m∗p

)]}
= −4iGAF2

mN

(
p∗n,δqλm

∗
p + p∗p,δqλm

∗
n

)
εαβδλ.

The spin sum over the tensor element becomes

∑
s,s′

Hαβ
FF =

F 2
2

4m2
N

qηqλTr
[
σαη

(
γδp∗n,δ +m∗n

)
σβλ

(
γεp∗p,ε +m∗p

)]
=
F 2

2

m2
N

{
m∗nm

∗
p

(
gαβq2 − qαqβ

)
+
(
gαβ

[(
p∗n · p∗p

)
q2 − 2 (p∗n · q)

(
p∗p · q

)]
+ p∗αn

[
qβ
(
p∗p · q

)
− p∗βp q2

]
+ p∗αp

[
qβ (p∗n · q)− p∗βn q2

]
+qα

[
p∗βn
(
p∗p · q

)
+ p∗βp (p∗n · q)− qβ

(
p∗n · p∗p

)])}
.

To derive the squared matrix element one has to calculate the contraction of electron tensor

and hadron tensor. For this purpose the squared matrix element will be separated into terms

with di�erent coupling, analogous to the hadron tensor

〈∣∣M (
νe + n→ p+ e−

)∣∣2〉 =
G2
FV

2
ud

4

(∑
s,s′

Hαβ(s, s′)

)(∑
t,t′

Eαβ(t, t′)

)
(3.8)

=
〈
|M |2

〉
V V

+
〈
|M |2

〉
AA

+
〈
|M |2

〉
V A

+
〈
|M |2

〉
V F

+
〈
|M |2

〉
AF

+
〈
|M |2

〉
FF

.
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The vector matrix element becomes〈
|M |2

〉
V V

= 16G2
FV

2
udG

2
V

[
(p∗n · pνe)

(
p∗p · pe−

)
+ (p∗n · pe−)

(
p∗p · pνe

)
−m∗nm∗p (pνe · pe−)

]
. (3.9)

The axialvector matrix element becomes〈
|M |2

〉
AA

= 16G2
FV

2
udG

2
A

[
(p∗n · pνe)

(
p∗p · pe−

)
+ (p∗n · pe−)

(
p∗p · pνe

)
+m∗nm

∗
p (pνe · pe−)

]
. (3.10)

The vector-axialvector matrix element becomes〈
|M |2

〉
V A

= 32G2
FV

2
udGVGA

[
(p∗n · pνe)

(
p∗p · pe−

)
− (p∗n · pe−)

(
p∗p · pνe

)]
. (3.11)

Note that these three elements form the standard expression for the matrix element in the

nonrelativisitic limit with Eνe , Ee− << MN〈
|M |2

〉
NR

= 16G2
FV

2
ud

[
(GA +GV )2 (p∗n · pνe)

(
p∗p · pe−

)
+ (GA −GV )2 (p∗n · pe−)

(
p∗p · pνe

)
+
(
G2
A −G2

V

)
m∗nm

∗
p (pνe · pe−)

]
' 16G2

FV
2
ud

[
G2
A (3− cos θνe,e−) +G2

V (1 + cos θνe,e−)
]
E∗nE

∗
pEνeEe− .

The vector-tensor matrix element becomes〈
|M |2

〉
V F

=
8G2

FV
2
udGV F2

mN

{[
(p∗n · pνe)m∗p −

(
p∗p · pνe

)
m∗n
]

(pe− · q) (3.12)

+
[
(p∗n · pe−)m∗p −

(
p∗p · pe−

)
m∗n
]

(pνe · q) +
[
(p∗n · q)m∗p −

(
p∗p · q

)
m∗n
]

(pνe · pe−)
}
.

The axialvector-tensor matrix element becomes〈
|M |2

〉
AF

=
16G2

FV
2
udGAF2

mN

{[
(p∗n · pνe)m∗p +

(
p∗p · pνe

)
m∗n
]

(pe− · q) (3.13)

−
[
(p∗n · pe−)m∗p +

(
p∗p · pe−

)
m∗n
]

(pνe · q)
}
.

The tensor matrix element becomes〈
|M |2

〉
FF

=
2G2

FV
2
udF

2
2

m2
N

[(
p∗n · p∗p

)
(pνe · pe−) q2 + 2 (p∗n · pνe)

(
p∗p · q

)
(pe− · q) (3.14)

−2
(
p∗n · p∗p

)
(pνe · q) (pe− · q)− 2 (p∗n · pνe)

(
p∗p · pe−

)
q2 + 2 (p∗n · pe−)

(
p∗p · q

)
(pνe · q)

− 2 (p∗n · pe−)
(
p∗p · pνe

)
q2 + 2 (p∗n · q)

(
p∗p · pνe

)
(pe− · q) + 2 (p∗n · q)

(
p∗p · pe−

)
(pνe · q)

− m∗nm∗p
[
(pνe · p′e−) q2 + 2 (pνe · q) (pe− · q)

]]
.

The above notation is not the most compact and convenient for further calculation, especially

for the parts corresponding to weak magnetism. However, it is a very general notation of the

matrix element that proves very useful for the remaining semileptonic interactions.

ν̄e + p→ n+ e+

The charged lepton current for the absorption of antineutrinos on protons reads

JαW,e = v̄t
′

ν̄eγ
α (1− γ5) vte+ .
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As it was noted before, there is no di�erence in the resulting lepton tensor whether it is con-

structed from spinors u or antispinors v. However, for antineutrino capture the positron is

treated like an incoming particle in the notation, while the antineutrino is outgoing. The lep-

ton tensor can then be constructed from the one for neutrino capture by replacing νe → e+ and

e− → ν̄e ∑
t,t′

Eαβ(t, t′) = 8 [pe+,αpν̄e,β + pe+,βpν̄e,α − gαβ (pe+ · pν̄e)− iεαβκρpκe+p
ρ
ν̄e ] .

The e�ective charged nucleon current reads

JαW,N = ūs
′

n

[
γαGV − γαγ5GA + σαηqη

iF2

2mN

]
usp.

It di�ers from the charged nucleon current of neutrino absorption on neutron by the replacement

n → p and p → n. It is then immediately clear that also the resulting nucleon tensor for ν̄e-

absorption equals the one of νe-absorption with the same replacements. The matrix element is

the contraction of nucleon and lepton tensor. Hence, it can be obtained by the combination of

replacements for nucleons and leptons〈∣∣M (
ν̄e + p→ n+ e+

)∣∣2〉 =
〈∣∣M (

νe + n→ p+ e−
)∣∣2〉∣∣∣

νe→e+,e−→ν̄e,n→p,p→n
.

However, all parts of the matrix element are either symmetric (3.9, 3.10, 3.11, 3.14) or antisym-

metric (3.12, 3.13) to the replacement {νe → e−, e− → νe, n→ p, p→ n}. Therefore, all that

needs to be done is changing νe → ν̄e and e− → e+ in the indices of the matrix element, and

to invert the overall sign for the vector-tensor and the axialvector-tensor part.〈∣∣M (
ν̄e + p→ n+ e+

)∣∣2〉
V V,AA,V A,FF

=
〈∣∣M (

νe + n→ p+ e−
)∣∣2〉

V V,AA,V A,FF

∣∣∣∣
νe→ν̄e,e−→e+

,〈∣∣M (
ν̄e + p→ n+ e+

)∣∣2〉
V F,AF

= −
〈∣∣M (

νe + n→ p+ e−
)∣∣2〉

V F,AF

∣∣∣∣
νe→ν̄e,e−→e+

.

ν̄e + e− + p→ n

For inverse neutron decay the charged lepton current is

JαW,e = v̄t
′

ν̄eγ
α (1− γ5)ute− .

Hence the lepton tensor is the same as for antineutrino absorption with the replacement e+ →
e−. Further, the charged nucleon current and the corresponding tensor are exactly the same as

for antineutrino absorption. Therefore, the matrix element has the same structure as for the

previous reactions. It di�ers however by a factor 1/2 from the average over incoming spins of

electron and proton. It can be written〈∣∣M (
ν̄e + e− + p→ n

)∣∣2〉
V V,AA,V A,FF

=
1

2

〈∣∣M (
νe + n→ p+ e−

)∣∣2〉
V V,AA,V A,FF

∣∣∣∣
νe→ν̄e

,〈∣∣M (
ν̄e + e− + p→ n

)∣∣2〉
V F,AF

= −1

2

〈∣∣M (
νe + n→ p+ e−

)∣∣2〉
V F,AF

∣∣∣∣
νe→ν̄e

.
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νµ + n→ p+ µ−

The charged lepton current for muon neutrino absorption reads

JαW,e = ūt
′

µ−γ
α (1− γ5)utνµ .

It is equivalent the one for electron neutrino absorption with the replacement e→ µ. Hence the

same applies for the subsequent lepton tensor. Also, the nucleon current and nucleon tensor

are exactly the same as for electron neutrino absorption. No assumption was previously made

concerning the mass of the charged lepton. Hence, the matrix element has the same structure

for absorption of both electron and muon neutrinos〈∣∣M (
νµ + n→ p+ µ−

)∣∣2〉 =
〈∣∣M (

νe + n→ p+ e−
)∣∣2〉∣∣∣

e→µ
.

3.2.1. Compact Notation of Semileptonic Matrix Elements

νe + n→ p+ e−

A more compact notation can be found for the tensor related parts of the matrix element. The

momentum transfer q is the di�erence between outgoing and incoming nucleon four-momentum

(2.6). Due to momentum conservation it can also be related to the lepton four-momenta instead.

For neutrino absorption on neutrons this reads

q = pp − pn = pνe − pe− and q2 = m2
e − 2 (pνe · pe−) .

The second relation accounts for the vanishing neutrino mass. Using the above notation the

vector-tensor matrix element (Eq. 3.12) transforms into

〈
|M |2

〉
V F

=
8G2

FV
2
udGV F2

mN

{
2
[
(p∗n · pνe)m∗p −

(
p∗p · pνe

)
m∗n − (p∗n · pe−)m∗p +

(
p∗p · pe−

)
m∗n
]

× (pνe · pe−)−
[
(p∗n · pνe)m∗p −

(
p∗p · pνe

)
m∗n
]
m2
e

}
. (3.15)

The axialvector-tensor matrix element (Eq. 3.13) transforms into

〈
|M |2

〉
AF

=
16G2

FV
2
udGAF2

mN

{[
(p∗n · pνe)m∗p +

(
p∗p · pνe

)
m∗n + (p∗n · pe−)m∗p +

(
p∗p · pe−

)
m∗n
]

× (pνe · pe−)−
[
(p∗n · pνe)m∗p +

(
p∗p · pνe

)
m∗n
]
m2
e

}
. (3.16)

The tensor matrix element (Eq. 3.14) transforms into

〈
|M |2

〉
FF

=
2G2

FV
2
udF

2
2

m2
N

{
4 (pνe · pe−)

[
(p∗n · pνe)

(
p∗p · pνe

)
+ (p∗n · pe−)

(
p∗p · pe−

)]
(3.17)

−m2
e [4 (p∗n · pνe)

(
p∗p · pνe

)
+
(
p∗n · p∗p

)
(pνe · pe−)

]
+m∗nm

∗
p

[
4 (pνe · pe−)2 − 3 (pνe · pe−)m2

e

]}
.
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ν̄e + p→ n+ e+

For antineutrino absorption on proton the momentum transfer q is given by

q = pn − pp = pν̄e − pe+ and q2 = m2
e − 2 (pν̄e · pe+) .

This is related to the momentum transfer of neutrino absorption by the replacement {νe → ν̄e,

e− → e+}. Since this is the same relation that connects the matrix elements of the two reactions,

also the compact notation can be obtained by the same replacement.

ν̄e + e− + p→ n

For inverse neutron decay the momentum transfer q is given by

q = pn − pp = pνe + pe− and q2 = m2
e + 2 (pνe · pe−) .

This is di�erent from the relation for neutrino and antineutrino absorption. Using this notation

the vector-tensor element transforms into

〈
|M |2

〉
V F

=
4G2

FV
2
udGV F2

mN

{
2
[(
p∗p · pν̄e

)
m∗n − (p∗n · pν̄e)m∗p +

(
p∗p · pe−

)
m∗n − (p∗n · pe−)m∗p

]
× (pν̄e · pe−) +

[(
p∗p · pν̄e

)
m∗n − (p∗n · pν̄e)m∗p

]
m2
e

}
. (3.18)

The axialvector-tensor matrix element transforms into

〈
|M |2

〉
AF

=
8G2

FV
2
udGAF2

mN

{[
(p∗n · pe−)m∗p +

(
p∗p · pe−

)
m∗n − (p∗n · pν̄e)m∗p −

(
p∗p · pν̄e

)
m∗n
]

× (pν̄e · pe−)−
[
(p∗n · pν̄e)m∗p +

(
p∗p · pν̄e

)
m∗n
]
m2
e

}
. (3.19)

The tensor matrix element transforms into

〈
|M |2

〉
FF

=
G2
FV

2
udF

2
2

m2
N

{
4 (pe− · pν̄e)

[
(p∗n · pν̄e)

(
p∗p · pν̄e

)
+ (p∗n · pe−)

(
p∗p · pe−

)]
(3.20)

+m2
e [4 (p∗n · pν̄e)

(
p∗p · pν̄e

)
−
(
p∗n · p∗p

)
(pν̄e · pe−)

]
−m∗nm∗p

[
4 (pν̄e · pe−)2 + 3 (pν̄e · pe−)m2

e

]}
.

νµ + n→ p+ µ−

Analogous to the comparison between neutrino and antineutrino capture it can be shown that

the compact notation for muon neutrino absorption can be derived from electron neutrino

absorption by the known replacement {e→ µ}.
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3.2.2. Approximation for Single Nucleon Mass

In an EOS with a single e�ective nucleon mass the previous results can be further simpli�ed.

The corresponding matrix element can also be used as an approximation for the case of very

similar e�ective nucleon masses
∣∣m∗n −m∗p∣∣ � m∗n,p. However, it has to be noted that the

corresponding error of this approximation is of the order ∆m∗/m∗N . This is actually larger

than some of the other terms that are retained in the approximation. One should keep this in

mind when discussing small e�ects.

νe + n→ p+ e−

The vector-tensor matrix element simpli�es to〈
|M |2

〉
V F

= 8G2
FV

2
udGV F2

m∗N
mN

{
2
[(
p∗n − p∗p

)
· (pνe − pe−)

]
(pνe · pe−)−

[(
p∗n − p∗p

)
· pνe

]
m2
e

}
.

(3.21)

The axialvector-tensor matrix element simpli�es to〈
|M |2

〉
AF

= 16G2
FV

2
udGAF2

m∗N
mN

{[(
p∗n + p∗p

)
· (pνe + pe−)

]
(pνe · pe−)−

[(
p∗n + p∗p

)
· pνe

]
m2
e

}
.

(3.22)

The matrix elements for electron antineutrino and muon neutrino capture follow accordingly.

ν̄e + e− + p→ n

The vector-tensor matrix element simpli�es to〈
|M |2

〉
V F

= 4G2
FV

2
udGV F2

m∗N
mN

{
2
[(
p∗p − p∗n

)
· (pν̄e + pe−)

]
(pν̄e · pe−) +

[(
p∗p − p∗n

)
· pν̄e

]
m2
e

}
.

(3.23)

The axialvector-tensor element transforms into〈
|M |2

〉
AF

= 8G2
FV

2
udGAF2

m∗N
mN

{[(
p∗n + p∗p

)
· (pe− − pν̄e)

]
(pν̄e · pe−)−

[(
p∗n + p∗p

)
· pν̄e

]
m2
e

}
.

(3.24)

Noninteracting Nonrelativistic Nucleons

In the case of noninteracting, nonrelativistic nucleons it can easily be shown that the above

matrix elements agree with derivations and results in previous works, especially for the neutrino

absorption reactions [66, 130]. For νe-absorption, four-momentum conservation demands

pp = pn + pνe − pe− .

For noninteracting nucleons the e�ective nucleon momenta become the regular nucleon mo-

menta p∗n,p = pn,p and the e�ective mass equals the rest mass m∗N = mN . Hence the vector-

tensor matrix element becomes〈
|M |2

〉
V F

= 8G2
FV

2
udGV F2

{
4 (pνe · pe−)2 − 3 (pνe · pe−)m2

e

}
. (3.25)
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The axialvector-tensor matrix element becomes〈
|M |2

〉
AF

= 32G2
FV

2
udGAF2

{
[pn · (pνe + pe−)] (pνe · pe−)− (pn · pνe)m2

e

}
. (3.26)

Neglecting the lower order terms ∼ m2
e, both of these expressions agree with equation (12) of

[66]. Further it can be shown that from 3.25, 3.26, 3.17 one can derive the exact cross section

for noninteracting nucleons at rest which was given in equation (12) in [130].
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4. Scattering Kernels for Leptonic

Reactions

In this chapter scattering kernels for purely leptonic neutrino reactions will be derived. Starting

point are the well known matrix elements from the literature, that have been discussed in

chapter 3. In a �rst step a scattering kernel R(θ12, Eν1, Eν2) that depends on the relative

angle θ12 between the neutrinos will be obtained. The procedure will be based on the work

of [131, 132] for neutrino electron scattering. This expression will then be transformed into a

scattering kernel R(θ1, θ2, Eν1, Eν2) that depends on the angle of each neutrino with respect to

the radial outward direction. Such an expression is required for numerical neutrino transport

where the discrete distribution function of neutrinos f(Eν , θ) is dependent on both the energy

and the azimuthal angle with respect to the radial direction. The approach to develop this

transport scattering kernel will follow the studies of [133, 134, 135].

4.1. Scattering Kernel with Relative Angle Dependence

4.1.1. General Expression

Let us assume we have a generalized reaction of an incoming neutrino (particle �1�), reacting

with an incoming charged lepton (particle �2�) into an outgoing neutrino (particle �3�) and an

outgoing charged lepton (particle �4�).

ν1 + l2 → ν3 + l4.

One can show that for such a reaction the matrix element can be expressed in a general form

〈
|M |2

〉
= C1 (p1 · p2) (p3 · p4) + C2 (p1 · p4) (p2 · p3) + C3 (p1 · p3) . (4.1)

Here the Ci are constant prefactors that are di�erent for each reaction. The scattering kernel

for this general reaction be de�ned

R(θ13, E1, E3) = 2

∫
d3p2

(2π)3

d3p4

(2π)3

〈
|M |2

〉
16E1E2E3E4

(2π)4 δ4(p1 + p2 − p3 − p4)f2(E2) [1− f4(E4)]

= C∗1R1 + C∗2R2 + C∗3R3. (4.2)
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The C∗i are constant prefactors again, while the Ri are de�ned by

R1(θ13, E1, E3) =

∫
d3p2d

3p4
(p1 · p2) (p3 · p4)

E1E2E3E4

δ4(p1 + p2 − p3 − p4)f2(E2) [1− f4(E4)] . (4.3)

R2(θ13, E1, E3) =

∫
d3p2d

3p4
(p1 · p4) (p2 · p3)

E1E2E3E4

δ4(p1 + p2 − p3 − p4)f2(E2) [1− f4(E4)] . (4.4)

R3(θ13, E1, E3) =

∫
d3p2d

3p4
(p1 · p3)

E1E2E3E4

δ4(p1 + p2 − p3 − p4)f2(E2) [1− f4(E4)] . (4.5)

The Ri can be solved analytically up to a remaining integration over E2, for the derivation see

appendix C.1. For R1 the result is given by

R1 =
2π

∆5

∞∫
E−

dE2f2(E2) [1− f4(E4)]
(
Ã1E

2
2 + B̃1E2 + C̃1

)
. (4.6)

The integration limit E− equals

E− =
1

2

[
(E3 − E1) (1 + k) +

√
(E2

1 + E2
3 − 2E1E3 cos θ)

[
(1 + k)2 +

2m2
2

E1E3 (1− cos θ)

]]
,

(4.7)

with

k ≡ Q

E1E3 (1− cos θ)
and Q ≡ 1

2

(
m2

4 −m2
2

)
. (4.8)

The coe�cients Ã1, B̃1, C̃1, and ∆ are de�ned as

Ã1 =E1E3 (1− cos θ)2 [E2
1 + E1E3 (3 + cos θ) + E2

3

]
, (4.9)

B̃1 =E2
1E3 (1− cos θ)2 [2E2

1 + E1E3 (3− cos θ)− E2
3 (1 + 3 cos θ)

]
(4.10)

+Q (1− cos θ)
[
E3

1 + E2
1E3 (2 + cos θ)− E1E

2
3 (2 + cos θ)− E3

3

]
,

C̃1 =E3
1E3 (1− cos θ)2

[
E2

1 − 2E1E3 cos θ + E2
3

(
−1

2
+

3

2
cos2 θ

)]
(4.11)

+QE1 (1− cos θ)
[
E3

1 − E2
1E3 cos θ + E1E

2
3

(
−2 + cos2 θ

)
+ E3

3 cos θ
]

+Q2

[
E2

1 cos θ − E1E3

(
3

2
+

1

2
cos2 θ

)
+ E2

3 cos θ

]
+

1

2
E1E3

(
1− cos2 θ

)
∆2m2

2,

∆ =
√
E2

1 − 2E1E3 cos θ + E2
3 . (4.12)

For R2 one �nds similarly

R2 =
2π

∆5

∞∫
E−

dE2f2(E2) [1− f4(E4)]
(
Ã2E

2
2 + B̃2E2 + C̃2

)
. (4.13)
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The coe�cients Ã2, B̃2, and C̃2 are given by

Ã2 =E1E3 (1− cos θ)2 [E2
1 + E1E3 (3 + cos θ) + E2

3

]
, (4.14)

B̃2 =E1E
2
3 (1− cos θ)2 [E2

1 (1 + 3 cos θ) + E1E3 (−3 + cos θ)− 2E2
3

]
(4.15)

+Q (1− cos θ)
[
E3

1 + E2
1E3 (2 + cos θ)− E1E

2
3 (2 + cos θ)− E3

3

]
,

C̃2 =E1E
3
3 (1− cos θ)2

[
E2

1

(
−1

2
+

3

2
cos2 θ

)
− 2E1E3 cos θ + E2

3

]
(4.16)

+QE3 (1− cos θ)
[
E3

1 cos θ + E2
1E3

(
−2 + cos2 θ

)
− E1E

2
3 cos θ + E3

3

]
+Q2

[
E2

1 cos θ − E1E3

(
3

2
+

1

2
cos2 θ

)
+ E2

3 cos θ

]
+

1

2
E1E3

(
1− cos2 θ

)
∆2m2

2.

The expression R3 becomes eventually

R3 =
2π

∆5

∫
dE2f2(E2) [1− f4(E4)] C̃3. (4.17)

The coe�cient C̃3 is given by

C̃3 = (1− cos θ) ∆4m2m4. (4.18)

Now the remaining energy integrals can be transformed into Fermi-Dirac integrals which are

more convenient for numerical integration. One can show (see appendix C.1)

I0 =

∞∫
E−

dE2f2(E2) [1− f4(E4)]

=Tfγ(η
′ − η) [F0(η′ − y)− F0(η − y)] , (4.19)

I1 =

∞∫
E−

dE2E2f2(E2) [1− f4(E2 + E1 − E3)]

=T 2fγ(η
′ − η) {[F1(η′ − y)− F1(η − y)] + y [F0(η′ − y)− F0(η − y)]} , (4.20)

I2 =

∞∫
E−

dE2E
2
2f2(E2) [1− f4(E2 + E1 − E3)]

=T 3fγ(η
′ − η) {[F2(η′ − y)− F2(η − y)] + 2y [F1(η′ − y)− F1(η − y)] (4.21)

+y2 [F0(η′ − y)− F0(η − y)]
}
.

Here the Fermi-Dirac integrals Fn(z) and the functions fγ(z) are given by

Fn(z) =

∞∫
0

dx
xn

exp (x− z) + 1
and fγ(z) =

1

exp (z)− 1
, (4.22)

and the coe�cients η, η′, and y are determined by

y ≡ E−
T
, η =

µ2

T
, η′ = η − E1 − E3 + µ2 − µ4

T
. (4.23)

The integrals Ri can then be expressed by

R1 =
2π

∆5

(
Ã1I2 + B̃1I1 + C̃1I0

)
, R2 =

2π

∆5

(
Ã2I2 + B̃2I1 + C̃2I0

)
, R3 =

2π

∆5
C̃3I0. (4.24)

The Fermi-Dirac integrals can be numerically expressed e.g. by Chebychev expansions of poly-

logarithms [136, 135].
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4.1.2. Muon Neutrino Scattering on Electrons

The special case of scattering of muon neutrinos on electrons can be derived from the general

expression Eq.(4.2) by subsequently replacing

p1 = pνµ , p2 = pe− , p3 = p′νµ , p4 = p′e− , m2 = m4 = me. (4.25)

The matrix element for scattering of muon neutrinos on electrons is given in Eq.(3.2). By

inserting this into Eq.(4.2), the constants C∗i equate to

C∗1 =
G2
F

2π2

(
1− 4s2

W + 4s4
W

)
, C∗2 =

G2
F

2π2
4s4

W , C∗3 =
G2
F

2π2
m2
e

(
2s2

W − 4s4
W

)
. (4.26)

Thus one �nds for the scattering kernel

R
(
θ, Eνµ , E

′
νµ

)
=
G2
F

π

1

∆5

[(
1− 4s2

W + 4s4
W

) (
Ã1I2 + B̃1I1 + C̃1I0

)
+4s4

W

(
Ã2I2 + B̃2I1 + C̃2I0

)
+m2

e

(
2s2

W − 4s4
W

)
C̃3I0

]
, (4.27)

with

∆ =
√
E2
νµ − 2EνµE

′
νµ cos θ + E ′νµ

2,

Ã1 =EνµE
′
νµ (1− cos θ)2

[
E2
νµ + EνµE

′
νµ (3 + cos θ) + E ′νµ

2
]
,

B̃1 =E2
νµE

′
νµ (1− cos θ)2

[
2E2

νµ + EνµE
′
νµ (3− cos θ)− E ′νµ

2
(1 + 3 cos θ)

]
,

C̃1 =E3
νµE

′
νµ (1− cos θ)2

[
E2
νµ − 2EνµE

′
νµ cos θ + E ′νµ

2

(
−1

2
+

3

2
cos2 θ

)]
+

1

2
EνµE

′
νµ

(
1− cos2 θ

)
∆2m2

e,

Ã2 =EνµE
′
νµ (1− cos θ)2

[
E2
νµ + EνµE

′
νµ (3 + cos θ) + E ′νµ

2
]
,

B̃2 =EνµE
′
νµ

2
[
E2
νµ (1 + 3 cos θ) + EνµE

′
νµ (−3 + cos θ)− 2E ′νµ

2
]
,

C̃2 =EνµE
′
νµ

3
(1− cos θ)2

[
E2
νµ

(
−1

2
+

3

2
cos2 θ

)
− 2EνµE

′
νµ cos θ + E ′νµ

2

]
+

1

2
EνµE

′
νµ

(
1− cos2 θ

)
∆2m2

e,

C̃3 = (1− cos θ) ∆4m2
e.

The functions I0, I1, and I2 are given in equations (4.19)-(4.21). The coe�cients therein take

the form

y ≡ E−
T
, η =

µe
T
, η′ =

µe − Eνµ + E ′νµ
T

, (4.28)

with

E− =
1

2

E ′νµ − Eνµ +

√√√√(E2
νµ + E ′νµ

2 − 2EνµE
′
νµ cos θ

)[
1 +

2m2
e

EνµE
′
νµ (1− cos θ)

] . (4.29)

This result agrees perfectly with expressions from the literature, as in [134, 135].
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4.1.3. Muon Antineutrino Scattering on Electrons

The only di�erence to muon neutrino scattering on electrons is the change in the notation

νµ → ν̄µ and the coe�cients C∗i , which can be derived from Eq.(3.3).

C∗1 =
G2
F

2π2
4s4

W , C∗2 =
G2
F

2π2

(
1− 4s2

W + 4s4
W

)
, C∗3 =

G2
F

2π2
m2
e

(
2s2

W − 4s4
W

)
. (4.30)

4.1.4. Absorption of Muon Neutrino on Electron

The scattering kernel for the reaction νµ + e− → νe + µ− can be obtained from the general

expression Eq.(4.2) by subsequently replacing

p1 = pνµ , p2 = pe− , p3 = p′νe , p4 = p′µ− , m2 = me, m4 = mµ. (4.31)

The matrix element for absorption of muon neutrinos on electrons is given in Eq.(3.5). By

inserting this into Eq.(4.2) the constants C∗i equate to

C∗1 =
2G2

F

π2
, C∗2 = 0, C∗3 = 0. (4.32)

Thus one �nds for the scattering kernel

R
(
θ, Eνµ , Eνe

)
=

4G2
F

π

Ã1I2 + B̃1I1 + C̃1I0

∆5
, (4.33)

with

∆ =
√
E2
νµ − 2EνµEνe cos θ + E2

νe ,

Ã1 =EνµEνe (1− cos θ)2
[
E2
νµ + EνµEνe (3 + cos θ) + E2

νe

]
,

B̃1 =E2
νµEνe (1− cos θ)2

[
2E2

νµ + EνµEνe (3− cos θ)− E2
νe (1 + 3 cos θ)

]
+Q (1− cos θ)

[
E3
νµ + E2

νµEνe (2 + cos θ)− EνµE2
νe (2 + cos θ)− E3

νe

]
,

C̃1 =E3
νµEνe (1− cos θ)2

[
E2
νµ − 2EνµEνe cos θ + E2

νe

(
−1

2
+

3

2
cos2 θ

)]
+QEνµ (1− cos θ)

[
E3
νµ − E

2
νµEνe cos θ + EνµE

2
νe

(
−2 + cos2 θ

)
+ E3

νe cos θ
]

+Q2

[
E2
νµ cos θ − EνµEνe

(
3

2
+

1

2
cos2 θ

)
+ E2

νe cos θ

]
+

1

2
EνµEνe

(
1− cos2 θ

)
∆2m2

e,

Q =
m2
µ −m2

e

2
.

The functions I0, I1, and I2 are given in equations (4.19)-(4.21). The coe�cients therein take

the form

y ≡ E−
T
, η =

µe
T
, η′ =

µµ − Eνµ + Eνe
T

, k =
Q

EνµEνe (1− cos θ)
. (4.34)

with

E− =
1

2

[(
Eνe − Eνµ

)
(1 + k) +

√(
E2
νµ + E2

νe − 2EνµEνe cos θ
)[

(1 + k)2 +
2m2

e

EνµEνe (1− cos θ)

]]
.

(4.35)
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4.1.5. Flavour Conversion of Electron Antineutrino and Electron

The scattering kernel for the reaction ν̄e + e− → ν̄µ + µ− can be obtained from the general

expression Eq.(4.2) by subsequently replacing

p1 = pν̄e , p2 = pe− , p3 = p′ν̄µ , p4 = p′µ− , m2 = me, m4 = mµ. (4.36)

The matrix element for this �avour conversion is given in Eq.(3.7). By inserting this into

Eq.(4.2) the constants C∗i equate to

C∗1 = 0, C∗2 =
2G2

F

π2
, C∗3 = 0. (4.37)

Thus one �nds for the scattering kernel

R
(
θ, Eν̄e , Eν̄µ ,

)
=

4G2
F

π

Ã2I2 + B̃2I1 + C̃2I0

∆5
, (4.38)

with

∆ =
√
E2
ν̄e − 2Eν̄eEν̄µ cos θ + E2

ν̄µ ,

Ã2 =Eν̄eEν̄µ (1− cos θ)2
[
E2
ν̄e + Eν̄eEν̄µ (3 + cos θ) + E2

ν̄µ

]
,

B̃2 =Eν̄eE
2
ν̄µ (1− cos θ)2

[
E2
ν̄e (1 + 3 cos θ) + Eν̄eEν̄µ (−3 + cos θ)− 2E2

ν̄µ

]
+Q (1− cos θ)

[
E3
ν̄e + E2

ν̄eEν̄µ (2 + cos θ)− Eν̄eE2
ν̄µ (2 + cos θ)− E3

ν̄µ

]
,

C̃2 =Eν̄eE
3
ν̄µ (1− cos θ)2

[
E2
ν̄e

(
−1

2
+

3

2
cos2 θ

)
− 2Eν̄eEν̄µ cos θ + E2

ν̄µ

]
+QEν̄µ (1− cos θ)

[
E3
ν̄e cos θ + E2

ν̄eEν̄µ
(
−2 + cos2 θ

)
− Eν̄eE2

ν̄µ cos θ + E3
ν̄µ

]
+Q2

[
E2
ν̄e cos θ − Eν̄eEν̄µ

(
3

2
+

1

2
cos2 θ

)
+ E2

ν̄µ cos θ

]
+

1

2
Eν̄eEν̄µ

(
1− cos2 θ

)
∆2m2

e,

Q =
m2
µ −m2

e

2
.

The functions I0, I1, and I2 are given in equations (4.19)-(4.21). The coe�cients therein take

the form

y ≡ E−
T
, η =

µe
T
, η′ =

µµ − Eν̄e + Eν̄µ
T

, k =
Q

Eν̄eEν̄µ (1− cos θ)
. (4.39)

with

E− =
1

2

[(
Eν̄µ − Eν̄e

)
(1 + k) +

√(
E2
ν̄e + E2

ν̄µ − 2Eν̄eEν̄µ cos θ
)[

(1 + k)2 +
2m2

e

Eν̄eEν̄µ (1− cos θ)

]]
.

(4.40)

4.1.6. General Expression for Inverse Decay

Let us assume we have a generalized reaction of an incoming neutrino (particle �1�), reacting

with an incoming charged lepton (particle �2�) and another incoming neutrino (particle �3�)
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into an outgoing charged lepton (particle �4�). Again the matrix element can be expressed in a

general form 〈
|M |2

〉
= C1 (p1 · p2) (p3 · p4) + C2 (p1 · p4) (p2 · p3) + C3 (p1 · p3) . (4.41)

The scattering kernel for this general reaction can then be de�ned

R(θ13, E1, E3) = 2

∫
d3p2

(2π)3

d3p4

(2π)3

〈
|M |2

〉
16E1E2E3E4

(2π)4 δ4(p1 + p2 + p3 − p4)f2(E2) [1− f4(E4)]

= C∗D1RD1 + C∗D2RD2 + C∗D3RD3. (4.42)

The C∗Di are constant prefactors again, while the RDi are de�ned by

RD1(θ13, E1, E3) =

∫
d3p2d

3p4
(p1 · p2) (p3 · p4)

E1E2E3E4

δ4(p1 + p2 + p3 − p4)f2(E2)[1−f4(E4)] , (4.43)

RD2(θ13, E1, E3) =

∫
d3p2d

3p4
(p1 · p4) (p2 · p3)

E1E2E3E4

δ4(p1 + p2 + p3 − p4)f2(E2)[1−f4(E4)] , (4.44)

RD3(θ13, E1, E3) =

∫
d3p2d

3p4
(p1 · p3)

E1E2E3E4

δ4(p1 + p2 + p3 − p4)f2(E2) [1− f4(E4)] . (4.45)

The RDi can be solved up to a remaining integration over E2, for the derivation see appendix

C.2. For RD1 the result is given by

RD1 =
2π

∆5
D

ED+∫
ED−

dE2f2(E2) [1− f4(E4)]
(
ÃD1E

2
2 + B̃D1E2 + C̃D1

)
Θ(k − 1). (4.46)

The integration limits ED± equals

ED±=
1

2

[
(E3 + E1)(k − 1)±

√
(E2

1 + E2
3 + 2E1E3 cos θ)

[
(1− k)2 − 2m2

2

E1E3 (1− cos θ)

]]
. (4.47)

with k and Q given in Eq.(4.8). The coe�cients ÃD1, B̃D1, C̃D1, and ∆ are de�ned as

∆ =
√
E2

1 + 2E1E3 cos θ + E2
3 , (4.48)

ÃD1 =E1E3 (1− cos θ)2 [−E2
1 + E1E3 (3 + cos θ)− E2

3

]
, (4.49)

B̃D1 =E2
1E3 (1− cos θ)2 [−2E2

1 + E1E3 (3− cos θ) + E2
3 (1 + 3 cos θ)

]
(4.50)

+Q (1− cos θ)
[
E3

1 − E2
1E3 (2 + cos θ)− E1E

2
3 (2 + cos θ) + E3

3

]
,

C̃D1 =− E3
1E3 (1− cos θ)2

[
E2

1 + 2E1E3 cos θ + E2
3

(
−1

2
+

3

2
cos2 θ

)]
(4.51)

+QE1 (1− cos θ)
[
E3

1 + E2
1E3 cos θ + E1E

2
3

(
−2 + cos2 θ

)
− E3

3 cos θ
]

+Q2

[
E2

1 cos θ + E1E3

(
3

2
+

1

2
cos2 θ

)
+ E2

3 cos θ

]
− 1

2
E1E3

(
1− cos2 θ

)
∆2m2

2.

Similar expressions can be derived for RD2 and RD3. They are given in appendix C.2. As

for the scattering kernel, the remaining energy integrals can be transformed into Fermi-Dirac
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integrals. One can show (see appendix C.2)

ID0 =

ED+∫
ED−

dE2f2(E2) [1− f4(E2 + E1 + E3)]

=Tfγ(η
′
D − η) [F0(η′D − y−)− F0(η − y−)− F0(η′D − y+) + F0(η − y+)] , (4.52)

ID1 =

ED+∫
ED−

dE2E2f2(E2) [1− f4(E2 + E1 + E3)]

=T 2fγ(η
′
D − η) {[F1(η′D − y−)− F1(η − y−)− F1(η′D − y+) + F1(η − y+)] (4.53)

+y− [F0(η′D − y−)− F0(η − y−)]− y+ [F0(η′D − y+)− F0(η − y+)]},

ID2 =

ED+∫
ED−

dE2E
2
2f2(E2) [1− f4(E2 + E1 + E3)]

=T 3fγ(η
′
D − η) {[F2(η′D − y−)− F2(η − y−)− F2(η′D − y+) + F2(η − y+)] (4.54)

+ 2y− [F1(η′D − y−)− F1(η − y−)]− 2y+ [F1(η′D − y+)− F1(η − y+)]

+y2
− [F0(η′D − y−)− F0(η − y−)]− y2

+ [F0(η′D − y+)− F0(η − y+)]
}
.

Here the Fermi-Dirac integrals Fn(z) and the functions fγ(z) are given in Eq. (4.22), the

coe�cient η is given in Eq.(4.23), and η′D and y± are determined by

y± ≡
ED±
T

, η′D = η − E1 + E3 + µ2 − µ4

T
. (4.55)

The integrals RDi can then be expressed by

RD1 =
2π

∆5

(
ÃD1ID2 + B̃D1ID1 + C̃D1ID0

)
, RD2 =

2π

∆5

(
ÃD2ID2 + B̃D2ID1 + C̃D2ID0

)
, (4.56)

RD3 =
2π

∆5
C̃D3ID0.

4.1.7. Inverse Muon Decay

The scattering kernel for inverse muon decay νµ + e− + ν̄e → µ− can be obtained from the

general expression Eq.(4.42) by subsequently replacing

p1 = pνµ , p2 = pe− , p3 = p′ν̄e , p4 = p′µ− , m2 = me, m4 = mµ. (4.57)

The matrix element for inverse muon decay is given in Eq.(3.6). By inserting this into Eq.(4.42)

the constants C∗Di equate to

C∗D1 =
2G2

F

π2
, C∗D2 = 0, C∗D3 = 0. (4.58)

Thus one �nds for the scattering kernel

R
(
θ, Eνµ , Eν̄e

)
=

4G2
F

π

ÃD1ID2 + B̃D1ID1 + C̃D1ID0

∆5
, (4.59)
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with

∆ =
√
E2
νµ + 2EνµEν̄e cos θ + E2

ν̄e ,

ÃD1 =EνµEν̄e (1− cos θ)2
[
−E2

νµ + EνµEν̄e (3 + cos θ)− E2
ν̄e

]
,

B̃D1 =E2
νµEν̄e (1− cos θ)2

[
−2E2

νµ + EνµEν̄e (3− cos θ) + E2
ν̄e (1 + 3 cos θ)

]
+Q (1− cos θ)

[
E3
νµ − E

2
νµEν̄e (2 + cos θ)− EνµE2

ν̄e (2 + cos θ) + E3
ν̄e

]
,

C̃D1 =− E3
νµEν̄e (1− cos θ)2

[
E2
νµ + 2EνµEν̄e cos θ + E2

ν̄e

(
−1

2
+

3

2
cos2 θ

)]
+QE1 (1− cos θ)

[
E3
νµ + E2

νµEν̄e cos θ + EνµE
2
ν̄e

(
−2 + cos2 θ

)
− E3

ν̄e cos θ
]

+Q2

[
E2
νµ cos θ + EνµEν̄e

(
3

2
+

1

2
cos2 θ

)
+ E2

ν̄e cos θ

]
− 1

2
EνµEν̄e

(
1− cos2 θ

)
∆2m2

e,

Q =
m2
µ −m2

e

2
.

The functions ID0, ID1, and ID2 are given in equations (4.52)-(4.54). The coe�cients therein

take the form

y± ≡
ED±
T

, η =
µe
T
, η′D =

µµ − Eνµ − Eν̄e
T

, k =
Q

EνµEν̄e (1− cos θ)
. (4.60)

with

ED±=
1

2

[(
Eν̄e + Eνµ

)
(k − 1)±

√(
E2
νµ + E2

ν̄e + 2EνµEν̄e cos θ
)[

(1− k)2 − 2m2
e

EνµEν̄e (1− cos θ)

]]
.

(4.61)

4.2. Scattering Kernel with Radial Angle Dependence

In Section 2.4.4 it was shown that the solution of the transport problem via the Boltzmann

equation of the neutrino radiation �eld considers local neutrino distributions which depend on

energy and azimuthal angle with respect to the radial direction, f = f(θ, E). In this approach

scattering reactions need to be described by expressions that depend on the separate energies

and angles of both participating neutrinos.(
∂f

∂t

)
scatt

= (1− f(E, θ))

∫
d cos θ′ dE ′E

′2Rin
S (θ, θ′, E, E ′)f ′(E ′, θ′) (4.62)

− f(E, θ)

∫
d cos θ′ dE ′E

′2Rout
S (θ, θ′, E, E ′) (1− f ′(E ′, θ′)) .

At the same time one can de�ne an inverse mean free path for a neutrino that participates

in such reactions, analogous to Eq.(2.8). With the de�nition of the scattering kernels in this

chapter one �nds
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(
∂f

∂t

)
scatt

= (1− f(E, θ))

(
1

λ(E)

)
scatt,in

− f(E, θ)

(
1

λ(E)

)
scatt,out

(4.63)

= (1− f(E, θ))

∫
d3p′

(2π)3R
in(θνν′ , E, E

′)f ′(E ′, θ′)

− f(E, θ)

∫
d3p′

(2π)3R
out(θνν′ , E, E

′) (1− f ′(E ′, θ′)) .

Now one has to transform the kernel R(θνν′ , E, E
′) into RS(θ, θ′, E, E ′). The relation between

the angles θνν′ , θ′, and θ′ is given by the well known expression

cos (θνν′) = cos (θ) cos (θ′)
√

(1− cos2 (θ)) (1− cos2 (θ′)) cos (φ′). (4.64)

Consequently one �nds

R(θνν′ , E, E
′) = R(θ, θ′, φ′, E, E ′). (4.65)

One way to get rid of the φ′-dependence is to simply integrate it out. Comparing equations

(4.62) and (4.63), there is already an additional dφ′ integral in (4.63). So the scattering kernel

for neutrino transport can be obtained by

RS(θ, θ′, E, E ′) =

∫
dφ′

(2π)3R(θνν′ , E, E
′). (4.66)

This approach was proposed e.g. in [134, 135]. The φ′ integral must be solved numerically.

However, for �true� scattering reactions such as neutrino scattering on electrons, where the

interacting particles only exchange four-momentum but not any of their generalized charges,

this alone is not su�cient. In the special case of forward scattering, where E = E ′ and

θ = θ′, the kernel R(θνν′ , E, E
′) has a pole. Yet the integral over it can be shown to be �nite.

Nevertheless, a numerical integration over φ′ cannot be performed. Instead one can calculate

RS(θ, θ′, E, E ′) exactly in terms of Legendre expansions of R(θνν′ , E, E
′), see [135]. However, for

all the new leptonic reactions that are studied in this work, this problem of forward scattering

is intrinsically absent. Equation (4.66) is then always su�cient to obtain the scattering kernel

for Boltzmann transport.
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5. Cross Sections for Semileptonic

Reactions

5.1. Relativistic Interacting Nucleons

This section will derive semianalytic expressions for opacities with full consideration of the

dispersion relation of relativistic and interacting nucleons. This dispersion relation is given in

the relativistic mean �eld approach by

EN =
√
p2
N +m∗2N + UN .

The opacities will be derived from the matrix elements in Section 3.2. In particular the vector,

axialvector and vector-axialvector matrix elements are given by equations (3.9), (3.10), and

(3.11) respectively. For the tensor related i.e. weak magnetism matrix elements, which are sub

leading order contributions, the single e�ective nucleon mass approximation will be employed.

For absorption of electron neutrinos, electron antineutrinos, and muon neutrinos the matrix

elements are given in equations (3.21), (3.22), and (3.17). For inverse neutron decay they are

given in equations (3.23), (3.24), and (3.20).

The derivations in this section are an improvement of the integration method in [137]. There

nucleons were treated noninteracting and nonrelativistic, but the calculation can be extended

to incorporate the above dispersion relation.

In a �rst step the weak magnetism matrix elements have to be transformed into expressions

that are suitable for the procedure in [137]. Then the analytic integration will be performed

up to the point were the cross section can be expressed as a two-dimensional integral. The

two remaining integration steps have to be performed numerically. The advantage of the new

expressions for the cross sections is that they are more exact than those expressions which con-

sider nucelons as nonrelativistic, see e.g. [124]. Furthermore weak magnetism will be included

explicitely, allowing for a comparison with the analytic correction factor of [130]. Despite

these improvements, the new expressions are numerically equally demanding as comparable

approximations which result in two-dimensional numerical integrals as well [124]. In contrast,

relativistic RPA cross sections would lead to rates that are fully consistent with the underlying

EOS but require three-dimensional numerical integrals [126]. This is true even for nonrelativis-

tic RPA [138].
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5.1.1. Absorption of Electron Neutrinos

Matrix Element

The matrix elements in equations (3.21), (3.22), and (3.17) that correspond to weak mag-

netism have to be transformed into a more convenient form. For this purpose the e�ective four

momentum of the proton can be expressed by

p∗p = pp − (Up, 0) = p∗n + pνe − pe− + (∆U, 0) with ∆U = Un − Up. (5.1)

Putting this relation into the vector-tensor matrix element from Eq.(3.21) one obtains〈
|M |2

〉
V F

= 8G2
FV

2
udGV F2

m∗N
mN

{
4 (pνe · pe−)2 − 3 (pνe · pe−)m2

e (5.2)

+∆U
[
2 (pνe · pe−) (Ee− − Eνe) +m2

eEνe
]}
.

Using the same relation for the axialvector-tensor matrix element one �nds〈
|M |2

〉
AF

= 16G2
FV

2
udGAF2

m∗N
mN

{
2 [p∗n · (pνe + pe−)] (pνe · pe−)− 2 (p∗n · pνe)m2

e (5.3)

+∆U
[
(pνe · pe−) (Eνe + Ee−)−m2

eEνe
]}
.

However, this form is still not suitable for integration. It can be further transformed (appendix

B.3.1) into〈
|M |2

〉
AF

= 16G2
FV

2
udGAF2

m∗N
mN

{
2 (p∗n · pνe)

(
p∗p · pe−

)
− 2 (p∗n · pe−)

(
p∗p · pνe

)
(5.4)

+2 (p∗n · pνe) (Eνe − Ee−) ∆U + (pνe · pe−) (Ee− − Eνe) ∆U + ∆UEνe
(
2Q+ 2∆UE∗p + ∆U2

)}
.

Likewise, the tensor matrix element can be transformed (see app. B.3.1) into〈
|M |2

〉
FF

=
8G2

FV
2
udF

2
2

m2
N

[
2 (p∗n · pνe)

2 (pνe · pe−)− 2 (p∗n · pνe) (pνe · pe−)2 (5.5)

+ (p∗n · pνe) (pνe · pe−)
[
2Q+m2

e + ∆U
(
2E∗p + Eνe + Ee−

)
−∆U2

]
− (p∗n · pνe)

2m2
e

+ (pνe · pe−)2

[
m∗nm

∗
p −Q+

m2
e

4
−∆U

(
E∗p + Ee−

)
+

∆U2

2

]
− (p∗n · pνe)m2

e∆UEνe

+ (pνe · pe−)

{
−
(
3m∗p +m∗n

)
m∗n

m2
e

4
+Q2 +Q

m2
e

4
− m4

e

8

+ ∆U

[
E∗p

(
2Q+

m2
e

4

)
+ Ee−

(
Q+

m2
e

2

)
− E∗n

m2
e

4

]
+∆U2

(
E∗2p + E∗pEe− −Q−

m2
e

8

)
−∆U3

(
E∗p +

Ee−

2

)
+

∆U4

4

}]
.

Summing up equations (3.9)-(3.11), (5.2), (5.4), and (5.5) the total matrix element for neutrino

absorption on neutrons becomes〈
|M |2

〉
= 16G2

FV
2
ud

[
(p∗n · pνe)

(
p∗p · pe−

)
A1 + (p∗n · pe−)

(
p∗p · pνe

)
B1 + (p∗n · pνe)

2 (pνe · pe−)C1

+ (p∗n · pνe) (pνe · pe−)2D1 + (p∗n · pνe)
2E1 + (pνe · pe−)2G1

+ (p∗n · pνe) (pνe · pe−)H1 + (p∗n · pνe) J1 + (pνe · pe−)K1 + L1] . (5.6)

where the coe�cients A1-L1 are given in app. B.3.3.
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Phase Space Integration

Combining the general formula for cross sections Eq.(2.8) with the medium modi�cations

Eq.(2.17) and the matrix element in medium Eq.(5.6), the cross section per unit volume or

inverse mean free path for absorption of electron neutrinos on neutrons is given by

1

λ(Eνe)
=

∫
d3pn

(2π)3

d3pe−

(2π)3

d3pp

(2π)3 2G2
FV

2
ud

(A1MA + ...+ L1ML)

EνeE
∗
nEe−E

∗
p

(2π)4 δ4(pνe + pn − pe− − pp)

× fn(En) [1− fe−(Ee−)] [1− fp(Ep)] . (5.7)

where (MA, ...,ML) are the four-momenta products from Eq.(5.6) that correspond to (A1, ..., L1),

respectively. For example, MA = (p∗n · pνe)
(
p∗p · pe−

)
and ML = 1. In a �rst step one integrates

over the proton energy to reduce the four-momentum conservation δ4 into momentum conser-

vation δ3. The inverse mean free path can then be expressed by

1

λ(Eνe)
=
G2
FV

2
ud

4π3

1

E2
νe

∞∫
En−

dEn

Ee+∫
me

dEe−fn [1− fe− ] [1− fp] (A1IA1 + ...+ L1IL1) Θ(Pmax − Pmin).

(5.8)

Where the expressions IX1 combine all the angular integrals

IX1 ≡
p̄νe p̄np̄e− p̄p

4π2

∫
dΩndΩe−dΩpMXδ

3(~pνe + ~pn − ~pe− − ~pp). (5.9)

The integration limits for En and Ee− are given by

En− = max
{
me +m∗p + Up − Eνe ,m∗n + Un

}
and Ee+ = Eνe + En −m∗p − Up. (5.10)

Further, the heaviside function guarantees momentum conservation. The arguments of Θ are

de�ned by

Pmin = max {|p̄νe − p̄n| , |p̄e− − p̄p|} and Pmax = min {p̄νe + p̄n, p̄e− + p̄p} . (5.11)

The angular integrals IX1 can be solved analytically. In appendix D.1 all integrals are computed

explicitely in a general notation IX . The integrals IX1 for νe-capture can be obtained from the

IX by replacing the general indices according to

IX1 = IX |{1→νe,2→n,3→e−,4→p} . (5.12)

5.1.2. Absorption of Electron Antineutrinos

The matrix element in its basic form for ν̄e-capture can be derived from the expression for νe-

capture (equations (3.9)-(3.11), (3.17), (3.21), (3.22) ) by simply renaming the indices 〈νe → ν̄e,

e− → e+〉 and applying an additional sign change for the vector-tensor and axialvector-tensor

terms. However, the kinematic relation Eq.(5.1) does not hold here. Instead one has

p∗n = pn − (Un, 0) = p∗p + pν̄e − pe+ + (−∆U, 0) with ∆U = Un − Up. (5.13)
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Eq.(5.13) is connected to Eq.(5.1) by the replacement {n→ p, p→ n, νe → ν̄e, e
− → e+}. Since

all derivations for the weak magnetism matrix elements in section 5.1.1 were based on Eq.(5.1),

one can now repeat the exact same steps but with the nucleon indices exchanged. As explained

before, the vector-tensor element for ν̄e capture can be derived from Eq.(3.21) by changing the

sign and replacing {νe → ν̄e, e
− → e+}. However, as Eq.(3.21) is asymmetric under exchange of

the nucleon indices, this is equivalent to transforming it by {n→ p, p→ n, νe → ν̄e, e
− → e+}.

Since the vector-tensor matrix elements and the kinematics of antineutrino absorption are

connected to neutrino absorption by the same relation, so will be the result of the subsequent

transformations and one consequently �nds〈∣∣M (
ν̄e + p→ n+ e+

)∣∣2〉
V F

=
〈∣∣M (

νe + n→ p+ e−
)∣∣2〉

V F

∣∣∣
n→p,p→n,νe→ν̄e,e−→e+

. (5.14)

For the axialvector-tensor element a similar argumentation can be applied. It can also be

constructed from Eq.(3.22) by {νe → ν̄e, e
− → e+} and an overall sign change. Further, it is

symmetric under exchange of the nucleon indices. Thus the negative matrix element and the

kinematics of antineutrino capture are related to the matrix element and the kinematics of

neutrino capture by the same replacement {n→ p, p→ n, νe → ν̄e, e
− → e+}. Consequently

one �nds〈∣∣M (
ν̄e + p→ n+ e+

)∣∣2〉
AF

= −
〈∣∣M (

νe + n→ p+ e−
)∣∣2〉

AF

∣∣∣
n→p,p→n,νe→ν̄e,e−→e+

. (5.15)

Eventually the tensor matrix element for ν̄e-capture can be obtained from Eq.(3.17) simply

by {νe → ν̄e, e
− → e+}. Also, it is symmetric under exchange of the nucleon indices. Hence

the replacement {n→ p, p→ n, νe → ν̄e, e
− → e+} describes again the relation between matrix

elements and kinematics for neutrino and antineutrino capture. For the tensor element the

same relation like the one for the vector-tensor element applies then〈∣∣M (
ν̄e + p→ n+ e+

)∣∣2〉
FF

=
〈∣∣M (

νe + n→ p+ e−
)∣∣2〉

FF

∣∣∣
n→p,p→n,νe→ν̄e,e−→e+

. (5.16)

It has to be noted that the exchange of nucleon indices implies Q → −Q and ∆U → −∆U .

Summing up all contributions, the total matrix element for antineutrino capture on protons

becomes〈
|M |2

〉
= 16G2

FV
2
ud

[
(p∗n · pν̄e)

(
p∗p · pe+

)
A2 + (p∗n · pe+)

(
p∗p · pν̄e

)
B2 +

(
p∗p · pν̄e

)2
(pν̄e · pe+)C2

+
(
p∗p · pν̄e

)
(pν̄e · pe+)2D2 +

(
p∗p · pν̄e

)2
E2 + (pν̄e · pe+)2G2 (5.17)

+
(
p∗p · pν̄e

)
(pν̄e · pe+)H2 +

(
p∗p · pν̄e

)
J2 + (pν̄e · pe+)K2 + L2

]
.

Where the coe�cients G2-L2 can be easily obtained from G1-L1 by

(G2, H2, J2, K2, L2) = (G1, H1, J1, K1, L1)|
{
n→ p, p→ n, νe → ν̄e, e

− → e+, (5.18)

GA → −GA, Q→ −Q,∆U → −∆U} ,

while for the remaining coe�cients one simply has

(A2, B2, C2, D2, E2) = (A1, B1, C1, D1, E1) . (5.19)
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With the matrix element of Eq.(5.17) the inverse mean free path becomes eventually

1

λ(Eν̄e)
=

∫
d3pp

(2π)3

d3pe+

(2π)3

d3pn

(2π)3 2G2
FV

2
ud

(A2MA + ...+ L2ML)

Eν̄eE
∗
pEe+E

∗
n

(2π)4 δ4(pν̄e + pp − pe+ − pn)

× fp(Ep) [1− fe+(Ee+)] [1− fn(En)] . (5.20)

Since ν̄e-capture has the same kinematic structure as νe-capture, the phase space integrals can

be computed analogous as well. Similar to Eq.(5.8) one �nds then

1

λ(Eν̄e)
=
G2
FV

2
ud

4π3

1

E2
ν̄e

∞∫
Ep−

dEp

Ee+∫
me

dEe+fp [1− fe+ ] [1− fn] (A2IA2 + ...+ L2IL2) Θ(Pmax − Pmin).

(5.21)

The arguments of the heaviside function are de�ned through

Pmin = max {|p̄ν̄e − p̄p| , |p̄e+ − p̄n|} and Pmax = min {p̄ν̄e + p̄p, p̄e+ + p̄n} . (5.22)

The limits for the energy integration are given by

Ep− = max
{
me +m∗n + Un − Eν̄e ,m∗p + Up

}
and Ee+ = Eν̄e + Ep −m∗n − Un. (5.23)

The angular integrals IX2 can be obtained from the general IX in appendix D.1 by replacing

the indices according to

IX2 = IX |{1→ν̄e,2→p,3→e+,4→n} . (5.24)

5.1.3. Inverse Neutron Decay

For inverse neutron decay the matrix elements that correspond to weak magnetism have to be

transformed seperately from the other semileptonic reactions. First, the matrix elements from

equations (3.23), (3.24), and (3.20) are inherently di�erent to the capture reactions. Second,

the kinematic relation between the four-momenta has a di�erent structure as well. It can be

described by the relation

p∗p = pp − (Up, 0) = p∗n − pν̄e − pe− + (∆U, 0) with ∆U = Un − Up. (5.25)

Putting this relation into the vector-tensor matrix element from Eq.(3.23) one obtains〈
|M |2

〉
V F

= 4G2
FV

2
udGV F2

m∗N
mN

{
−4 (pνe · pe−)2 − 3 (pνe · pe−)m2

e (5.26)

+∆U
[
2 (pνe · pe−) (Ee− + Eνe) +m2

eEνe
]}
.

For the axialvector-tensor matrix element the following expression can be derived (see app.

B.3.2)〈
|M |2

〉
AF

= 8G2
FV

2
udGAF2

m∗N
mN

{
2 (p∗n · pν̄e)

(
p∗p · pe−

)
− 2 (p∗n · pe−)

(
p∗p · pν̄e

)
(5.27)

− 2 (p∗n · pν̄e) (Eν̄e + Ee−) ∆U + (pν̄e · pe−)
(
Eν̄e+Ee−

)
∆U

+2∆UEν̄eQ+ 2∆U2Eν̄eE
∗
p −∆U3Eν̄e

}
.
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Likewise the tensor matrix element can be transformed〈
|M |2

〉
FF

=
4G2

FV
2
udF

2
2

m2
N

[
2 (p∗n · pνe)

2 (pνe · pe−)− 2 (p∗n · pνe) (pνe · pe−)2 (5.28)

− (p∗n · pνe) (pνe · pe−)
[
2Q+m2

e + ∆U
(
2E∗p − Eνe + Ee−

)
−∆U2

]
+ (p∗n · pνe)

2m2
e

− (pνe · pe−)2

[
m∗nm

∗
p −Q+

m2
e

4
−∆U

(
E∗p + Ee−

)
+

∆U2

2

]
+ (p∗n · pνe)m2

e∆UEνe

+ (pνe · pe−)

{
−
(
3m∗p +m∗n

)
m∗n

m2
e

4
+Q2 +Q

m2
e

4
− m4

e

8

+ ∆U

[
E∗p

(
2Q+

m2
e

4

)
+ Ee−

(
Q+

m2
e

2

)
− E∗n

m2
e

4

]
+∆U2

(
E∗2p + E∗pEe− −Q−

m2
e

8

)
−∆U3

(
E∗p +

Ee−

2

)
+

∆U4

4

}]
.

Summing up equations (3.9)-(3.11) and (5.26)-(5.28) the total matrix element for inverse neu-

tron decay becomes〈
|M |2

〉
= 8G2

FV
2
ud

[
(p∗n · pν̄e)

(
p∗p · pe−

)
A3 + (p∗n · pe−)

(
p∗p · pν̄e

)
B3 + (p∗n · pν̄e)

2 (pν̄e · pe−)C3

+ (p∗n · pν̄e) (pν̄e · pe−)2D3 + (p∗n · pν̄e)
2E3 + (pν̄e · pe−)2G3

+ (p∗n · pν̄e) (pν̄e · pe−)H3 + (p∗n · pν̄e) J3 + (pν̄e · pe−)K3 + L3] . (5.29)

where the coe�cients (E3...K3) are given in app. B.3.3, while the remaining coe�cients simply

follow

(A3, B3, C3, D3, L3) = (A1, B1, C1, D1, L1) . (5.30)

With the matrix element Eq.(5.29) the inverse mean free path becomes eventually

1

λ(Eν̄e)
=

∫
d3pp

(2π)3

d3pe−

(2π)3

d3pn

(2π)3 2G2
FV

2
ud

(A2MA + ...+ L2ML)

Eν̄eE
∗
pEe−E

∗
n

(2π)4 δ4(pν̄e + pp + pe− − pn)

× fp(Ep)fe−(Ee−) [1− fn(En)] . (5.31)

Similar to the neutrino capture reactions the angular integrals can be combined into one ex-

pression, so the inverse mean free path becomes

1

λ(Eν̄e)
=
G2
FV

2
ud

4π3

1

E2
ν̄e

∞∫
m∗p+Up

dEp

∞∫
Ee−

dEe−fpfe− [1− fn] (A3IA3 + ...+ L3IL3) Θ(Pmax − Pmin).

(5.32)

The angular integrals IX3 have the form

IX3 ≡
p̄ν̄e p̄pp̄e− p̄n

4π2

∫
dΩpdΩe−dΩnMXδ

3(~pν̄e + ~pp + ~pe− − ~pn). (5.33)

The arguments of the heaviside function are de�ned again through

Pmin = max {|p̄ν̄e − p̄p| , |p̄e− − p̄n|} and Pmax = min {p̄ν̄e + p̄p, p̄e− + p̄n} . (5.34)

The lower integration limit for the electron energy equals

Ee− = max {m∗n + Un − Eν̄e − Ep;me} . (5.35)

Eventually the integrals IX3 are solved explicitely in appendix D.2.
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5.1.4. Absorption of Muon Neutrinos

For the absorption of muon neutrinos one �nds that the matrix element and the kinematic

conditions are exactly the same as for absorption of electron neutrinos under the replacement

{νe → νµ, e→ µ}. Consequently the total matrix element for νµ-absorption can be described

by〈
|M |2

〉
= 16G2

FV
2
ud

[(
p∗n · pνµ

) (
p∗p · pµ−

)
A4 + (p∗n · pµ−)

(
p∗p · pνµ

)
B4 +

(
p∗n · pνµ

)2 (
pνµ · pµ−

)
C4

+
(
p∗n · pνµ

) (
pνµ · pµ−

)2
D4 +

(
p∗n · pνµ

)2
E4 +

(
pνµ · pµ−

)2
G4

+
(
p∗n · pνµ

) (
pνµ · pµ−

)
H4 +

(
p∗n · pνµ

)
J4 +

(
pνµ · pµ−

)
K4 + L4

]
. (5.36)

where the coe�cients E4-L4 can be obtained from E1-L1 by

(E4, G4, H4, J4, K4, L4) = (E1, G1, H1, J1, K1, L1)| {νe → νµ, e→ µ} . (5.37)

while for the remaining coe�cients one simply has

(A4, B4, C4, D4) = (A1, B1, C1, D1) . (5.38)

Since the matrix element and the kinematics are exactly the same as for νe-capture, the inverse

mean free path can analogously be expressed.

1

λ
(
Eνµ
) =

G2
FV

2
ud

4π3

1

E2
νµ

∞∫
En−

dEn

Eµ+∫
mµ

dEµ−fn [1− fµ− ] [1− fp] (A4IA4 + ...+ L4IL4) Θ(Pmax − Pmin).

(5.39)

The angular integrals, the integration limits, and the arguments of the heaviside function can

be obtained from equations (5.9)-(5.11) simply by replacing {e→ µ}. Likewise, the integrals

IX4 can be obtained from the IX by

IX4 = IX |{1→νµ,2→n,3→µ−,4→p} (5.40)

5.2. Nonrelativistic Interacting Nucleons

For nuclear matter in a PNS at densities signi�cantly below the nuclear saturation density

and temperatures of several 10 MeV, it is a reasonable lowest order approximation to consider

the nucleons as nonrelativstic particles. The dispersion relation of the quasiparticles is then

approximated by

En,p =
√
p2
n,p +m∗2n,p + Un,p '

p2
N

2m∗N
+m∗N + UN =

p2
N

2m∗N
+mN + ŨN . (5.41)

Here ŨN denotes the so called nonrelativistic interaction potential. From Eq.(5.41) it is clear

that ŨN relates to the relativistic interaction potential UN by

ŨN = UN +m∗N −mN = UN − gσS. (5.42)
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Both notations are used in the literature on calculations of neutrino opacities. For the deriva-

tions of opacities it does not matter which notation is chosen, both will lead to the same result.

For this work the notation with the e�ective mass and the relativistic potentials is chosen. The

following calculations of neutrino opacities on nonrelativistic nucleons are strongly based on

the work in [124], more recently revisited in [63, 61]. In the case of νe-capture and ν̄e-capture

their results are reproduced. However, the approach is modi�ed to take the �nite lepton mass

into account, which is very important for the absorption of νµ. Also, the calculation of inverse

neutron decay requires some adjustments of the formalism.

5.2.1. Absorption of Electron Neutrinos

Under the assumption of nonrelativistic nucleons one can simplify the matrix element for neu-

trino capture on neutrons signi�cantly. Therefore it is assumed that all particle momenta are

much smaller than the nucleon mass, p/m∗N � 1. All contributions to the normalized matrix

element that are of order (p/m∗N) or higher are then neglected. Under this approximation, only

the terms A1MA, B1MB, and C1MC do not vanish. For these one �nds

A1MA

EνeE
∗
nEe−E

∗
p

=

[
(GV +GA)2 + 2GAF2

m∗N
mN

]
(p∗n · pνe)

(
p∗p · pe−

)
EνeE

∗
nEe−E

∗
p

=

[
(GV +GA)2 + 2GAF2

m∗N
mN

](
1− cos θν,n

p̄n
E∗n

)(
1− cos θe−,p

p̄e− p̄p
Ee−E∗p

)
' (GV +GA)2 + 2GAF2

m∗N
mN

, (5.43)

B1MB

EνeE
∗
nEe−E

∗
p

=

[
(GV −GA)2 − 2GAF2

m∗N
mN

] (
p∗p · pνe

)
(p∗n · pe−)

EνeE
∗
nEe−E

∗
p

=

[
(GV +GA)2 + 2GAF2

m∗N
mN

](
1− cos θν,p

p̄p
E∗p

)(
1− cos θe−,n

p̄e− p̄n
Ee−E∗n

)
' (GV −GA)2 − 2GAF2

m∗N
mN

, (5.44)

C1MC

EνeE
∗
nEe−E

∗
p

=

[
G2
A −G2

V +O

(
p2

m∗2N

)]
m∗nm

∗
p

(pνe · pe−)

EνeE
∗
nEe−E

∗
p

=

[
G2
A −G2

V +O

(
p2

m∗2N

)](
1− cos θν,e−

p̄e−

Ee−

)
'
(
G2
A −G2

V

)(
1− cos θν,e−

p̄e−

Ee−

)
. (5.45)

Summing these terms up, the total normalized matrix element takes the form〈
|M |2

〉
EνeE

∗
nEe−E

∗
p

= 16G2
FV

2
ud

[
G2
V

(
1 + cos θν,e−

p̄e−

Ee−

)
+G2

A

(
3− cos θν,e−

p̄e−

Ee−

)]
. (5.46)

The cross section for electron neutrino absorption on neutrons can then be expressed by

1

λ(Eνe)
=

∫
d3pn

(2π)3

d3pe−

(2π)3

d3pp

(2π)3 2G2
FV

2
ud

[
G2
V

(
1 + cos θν,e−

p̄e−

Ee−

)
+G2

A

(
3− cos θν,e−

p̄e−

Ee−

)]
× (2π)4 δ4(pνe + pn − pe− − pp)fn(En) [1− fe−(Ee−)] [1− fp(Ep)] . (5.47)
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Now one can de�ne the structure function S(q0, ~q). It contains all terms that are connected to

the nucleons and thus characterizes the response of the nucleon system. It is given by

S(q0, ~q) ≡ 2

∫
d3pn

(2π)3

d3pp

(2π)3 (2π)4 δ4(pνe + pn − pe− − pp)fn(En) [1− fp(Ep)] . (5.48)

Here q0 and ~q are the energy and momentum part of the four-momentum transfer q = pνe−pe− ,
respectively. It is then convenient to substitute the integration over electron phase space d3pe−

by integration over energy and momentum transfer (see appendix E.1)

∫
d3pe− = 2π

Eνe−me∫
−∞

dq0
Ee−

Eνe

Eνe+p̄e−∫
Eνe−p̄e−

dq̄ q̄. (5.49)

Combining equations (5.48) and (5.49) the inverse mean free path becomes

1

λ(Eνe)
=
G2
FV

2
ud

4π2

Eνe−me∫
−∞

dq0
Ee−

Eνe
[1− fe−(Ee−)] (5.50)

×
Eνe+p̄e−∫
Eνe−p̄e−

dq̄

[
G2
V

(
1 + cos θν,e−

p̄e−

Ee−

)
+G2

A

(
3− cos θν,e−

p̄e−

Ee−

)]
q̄S(q0, ~q).

The structure function can be solved analytically (see appendix E.1). It becomes eventually

S(q0, ~q) =
m∗nm

∗
pT

πq̄

ξ− − ξ+

1− exp (−z)
with (5.51)

ξ± = ln

[
1 + exp ((En± − µn) /T )

1 + exp ((En± + q0 − µp) /T )

]
, z =

µn − µp + q0

T
, En± =

p̄2
n±

2m∗n
+m∗n + Un,

p̄2
n± =

2q̄2

χ2

[(
1 +

χm∗pc

q̄2

)
±

√
1 +

2χm∗pc

q̄2

]
, χ = 1−

m∗p
m∗n

,

c = q0 + Un − Up +m∗n −m∗p −
q̄2

2m∗p
.

In the special case of equal e�ective nucleon masses m∗n = m∗p = m∗ this expressions simpli�es

to (see appendix E.1)

S(q0, ~q) =
m∗2T

πq̄

z + ξ−
1− exp (−z)

. (5.52)

Here z and ξ− are de�ned as before. However, p̄n− is given by

p̄2
n− =

m∗2

q̄2

(
q0 + ∆U − q̄2

2m∗p

)2

. (5.53)
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5.2.2. Absorption of Electron Antineutrinos

It can be shown that the matrix element for ν̄e-capture in the nonrelativistic approximation is

the same as for νe-capture. Also the kinematics are the same for both reactions. Consequently

the cross sections for absorption on nonrelativstic nucleons for neutrinos and antineutrinos are

connected by a simple replacement of indices.

1

λ(Eν̄e)
=

1

λ(Eνe)

∣∣∣∣
{νe→ν̄e,e−→e+,n→p,p→n}

. (5.54)

Mind again that this implies ∆U = Un − Up → −∆U = Up − Un.

5.2.3. Inverse Neutron Decay

For inverse neutron decay, the terms of the matrix element that do not vanish for nonrelativistic

nucleons are exactly the same as for capture of electron neutrinos. Consequently the inverse

mean free path for inverse neutron decay di�ers only in the statistical factor and with respect

to the four-momentum conservation in the δ4-function. It is given by

1

λ(Eν̄e)
=

∫
d3pp

(2π)3

d3pe−

(2π)3

d3pn

(2π)3 2G2
FV

2
ud

[
G2
V

(
1 + cos θν,e−

p̄e−

Ee−

)
+G2

A

(
3− cos θν,e−

p̄e−

Ee−

)]
× (2π)4 δ4(pν̄e + pp + pe− − pn)fp(Ep)fe−(Ee−) [1− fn(En)] . (5.55)

The integration over electron phase space can be be substituted again by integration over energy

transfer q0 and momentum transfer ~q (see appendix E.2)

d3pe− = 2π

∞∫
Eν̄e+me

dq0
Ee−

Eν̄e

Eν̄e+p̄e−∫
Eν̄e−p̄e−

dq̄ q̄. (5.56)

Now the inverse mean free path can again be expressed as integration over a structure function

1

λ(Eν̄e)
=
G2
FV

2
ud

4π2

∞∫
Eν̄e+me

dq0
Ee−

Eν̄e
[1− fe−(Ee−)] (5.57)

×
Eν̄e+p̄e−∫
Eν̄e−p̄e−

dq̄

[
G2
V

(
1 + cos θν̄,e−

p̄e−

Ee−

)
+G2

A

(
3− cos θν̄,e−

p̄e−

Ee−

)]
q̄S(q0, ~q).

Integrating over neutron phase space, the structure function for inverse neutron decay is given

by

S(q0, ~q) =
1

2π2

∫
d3ppδ(q0 + Ep − En)fp(Ep) [1− fn(En)] . (5.58)

Comparing this with the structure function for νe-capture (equation E.1) the only di�erence is

the exchange of nucleon indices. Hence the result for the structure function can be obtained

by the same exchange of indices.

S(q0, ~q)
(
ν̄e + p+ e− → n

)
= S(q0, ~q)

(
νe + n→ p+ e−

)∣∣
{n→p,p→n} . (5.59)

It is then clear that the structure functions for inverse neutron decay and ν̄e-absorption are the

same. This is intuitively clear, as the structure function represents the nucleon response and

in both reactions a proton is converted into a neutron after receiving energy.
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5.2.4. Absorption of Muon Neutrinos

For the absorption of muon neutrinos everything is analogous to the absorption of electron

neutrinos. The only di�erence is the mass mµ and the chemical potential µµ of the muons.

However, since no assumptions were made in the derivation about the size of these quantities,

the inverse mean free paths of both reactions are simply related by

1

λ
(
Eνµ
) =

1

λ(Eνe)

∣∣∣∣
{νe→νµ,e−→µ−}

. (5.60)

5.3. Elastic Approximation for Nonrelativistic Nucleons

5.3.1. Absorption of Electron Neutrinos

In the elastic approximation for capture reactions [139] one assumes that the momentum trans-

fer between leptons and nucleons does not lead to a change in absolute momentum of the

nucleon. Hence, p̄n = p̄p. This is a reasonable approximation if the energy of the lepton is con-

siderably smaller than the mass of the nucleons. In this approximation the structure function

reduces to (see appendix E.1)

S(q0, ~q) = 4πδ
(
q0 − Un + Up −m∗n +m∗p

) nn − np
1− exp

[(
m∗n −m∗p + Un − Up − µn + µp

)
/T
]

= 4πδ
(
q0 − Un + Up −m∗n +m∗p

) nn − np
1− exp [(ηp − ηn) /T ]

. (5.61)

In the elastic approximation it is more convenient to write the electron phase space integral in

the following form ∫
d3pe− = 2π

Eνe−me∫
−∞

dq0Ee− p̄e−

1∫
−1

d cos (θ).

The inverse mean free path becomes then

1

λ(Eνe)
=
G2
FV

2
ud

π

nn − np
1− exp [(ηp − ηn) /T ]

Eνe−me∫
−∞

dq0Ee−pe− [1− fe−(Ee−)] δ
(
q0 − Un + Up −m∗n +m∗p

)

×
1∫

−1

d cos θν,e−

[
G2
V

(
1 + cos θν,e−

p̄e−

Ee−

)
+G2

A

(
3− cos θν,e−

p̄e−

Ee−

)]
. (5.62)

The terms proportional to cos θν,e− vanish after integration. The q0-integral �xes the electron

energy to

Ee− = Eνe +m∗n −m∗p + Un − Up. (5.63)

The inverse mean free path becomes eventually

1

λ(Eνe)
=

2G2
FV

2
ud

π

(
G2
V + 3G2

A

)
Ee−pe− [1− fe−(Ee−)]

nn − np
1− exp [(ηp − ηn) /T ]

Θ(Ee− −me).

(5.64)
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5.3.2. Absorption of Electron Antineutrinos

Proceeding analogous to electron neutrino capture the inverse mean free path results into

1

λ(Eν̄e)
=

2G2
FV

2
ud

π

(
G2
V + 3G2

A

)
Ee+pe+ [1− fe+(Ee+)]

np − nn
1− exp [(ηn − ηp) /T ]

Θ(Ee+ −me),

(5.65)

with the positron energy Ee+ as function of the incoming antineutrino energy Eν̄e

Ee+ = Eν̄e +m∗p −m∗n + Up − Un. (5.66)

5.3.3. Inverse Neutron Decay

The inverse mean free path for inverse neutron decay in the elastic approximation becomes

1

λ(Eν̄e)
=

2G2
FV

2
ud

π

(
G2
V + 3G2

A

)
Ee−pe−fe−(Ee−)

np − nn
1− exp [(ηn − ηp) /T ]

Θ(Ee− −me), (5.67)

with the electron energy Ee− as function of the incoming neutrino energy Eνe

Ee− = m∗n −m∗p + Un − Up − Eνe . (5.68)

5.3.4. Absorption of Muon Neutrinos

The inverse mean free path for absorption of muon neutrinos can be derived form the expression

for electron neutrinos simply by renaming {e→ µ}. This is possible since up to now there were

no assumptions made with respect to the mass of the charged lepton.

1

λ
(
Eνµ
) =

2G2
FV

2
ud

π

(
G2
V + 3G2

A

)
Eµ−pµ− [1− fµ−(Eµ−)]

nn − np
1− exp [(ηp − ηn) /T ]

Θ(Eµ− −mµ),

(5.69)

with the muon energy Eµ− as function of the incoming neutrino energy Eνµ

Eµ− = Eνµ +m∗n −m∗p + Un − Up. (5.70)
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6. Neutrino Transport Properties

6.1. Standard Set of Reactions

In this chapter it will be discussed how the new reactions a�ect neutrino transport in a hot

PNS during the �rst 100milliseconds to seconds. For this purpose, transport properties such

as opacities and neutrinospheres will be calculated on the basis of the expressions that have

been derived in the previous chapters. The results will be compared against what is called here

a standard set of neutrino reactions for transport in core collapse supernovae. This standard

set consists of most of the reactions that are included in current CCSN simulations and are

considered to be the dominant contributions for neutrino transport. An overview over the

standard set is given in Table 6.1.

standard reactions reference

ν/ν̄ + e−/e+ → ν/ν̄ + e−/e+ [135]

ν/ν̄ + n/p→ ν/ν̄ + n/p [139]

νe + n→ e− + p [124, 137], this work

ν̄e + p→ e+ + n [124, 137], this work

ν + ν̄ +NN → NN [140]

ν + ν̄ → e− + e+ [139]

Table 6.1.: Standard reactions for ν̄e and νµ for neutrino transport in PNS.

For electron neutrinos, transport is dominated by the charged-current absorption on neutrons

and the corresponding emission through electron captures on protons. The inverse mean free

path of these reactions is signi�cantly larger than of any other reaction for practically all

relevant neutrino energies, temperatures, and matter densities. However, this reaction will

only be studied to asses the impact of the improved treatment of weak magnetism and nucleon

relativity from section 5.1.1. The transport of νe as such will not be investigated, as no changes

are expected. Even though the new reaction νµ + e− → νe + µ− does emit an electron neutrino
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and the inverse reaction is a source of opacity, there is no reason to believe that its contribution

can come close to be signi�cant compared to the standard charged-current channel. Nevertheless

these calculations where performed and the result con�rmed the intuition.

For electron antineutrinos the charged-current absorption on protons and its inverse is one

of the important reactions, but not the dominating one. PNS matter is initially neutron rich

and becomes even more so over time. There are then less absorption targets for ν̄e than for

νe. Also, absorption on protons has to overcome the mass (energy) di�erence to the neutron,

while absorption on neutrons releases this energy. This is further reducing the opacity for ν̄e,

especially for low neutrino energies. Also, this e�ect becomes even stronger at high densities

when the di�erence in the strong interaction potentials adds up to the mass di�erence between

the nucleons. When assessing the role of inverse neutron decay for ν̄e-transport, absorption

on protons will be calculated based on the derivations in section 5.1.2 although this is strictly

speaking not part of a standard reaction set. However, for the overall comparison of di�erent

reaction channels, the di�erence between the approach in this work to the ones in e.g. [139, 124]

is not of major relevance. Also, these modi�cations will be studied in a separate section.

Another reaction that is very important for ν̄e is scattering on nucleons, in particular neu-

trons. For this reaction all nucleons are viable targets and there is no energy di�erence to be

overcome, which is especially relevant at higher densities. In this chapter, scattering on nucle-

ons is described as a purely elastic reaction [139], i.e. Eν = E ′ν . The approximation is justi�ed

by the large mass of the nucleons compared to the neutrino energies. One can show that for

such a kinematic combination, the response function and consequently the scattering kernel

are strongly peaked around zero energy exchange. However, it was found years ago already

that the energy exchange per reaction is actually not so small at all, and that even a small

energy exchange eventually leads to a signi�cant modi�cation of the neutrino spectrum due to

the large number of scatterings [141, 142, 19]. Hence, the simpli�cation of elastic scattering is

a noticeable shortcoming of the approach in this work. Given the present approximation, more

recent improvement of the neutrino-nucleon scatterings are also left out of the discussion. The

inelasticity of this reaction has two sources, nucleon recoil and nucleon-nucleon interactions.

The precise nature of the nuclear interaction is still a topic of ongoing research. At the same

time, the structure function of this reaction is much more dependent on the description of nu-

clear interaction than e.g. the charged-current reactions. Recent work on chiral e�ective �eld

theory suggests that more sophisticated calculations of NN-interactions might be required than

all the approaches discussed in this work [120]. Nuclear correlations will play a much larger role

for scattering on nucleons even at comparably low densities. Beyond that, weak magnetism

is relevant for scattering on nucleons, too [66, 130]. All these e�ects will be neglected in the

elastic scattering approximation that is adopted in this work.

Scattering of neutrinos on electrons (and some positrons) is another reaction that is included

in neutrino transport simulations for a long time. It is implemented here with the full in-

elastic and relativistic treatment [134, 139, 135]. The scattering kernel for muon neutrinos is

reproduced in chapter 3 in this work to derive the muonic reactions in close analogy. Due to

the large neutron fraction Yn, scatterings on charged leptons are less frequent than scattering

on nucleons. Still, it is argued that they are very important for downscattering of neutrino
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energies and thus for the energetic equilibration especially of the heavy �avour neutrinos. µ-

and τ -neutrinos experience no charged-current reactions in the standard picture of current sim-

ulations. In the frame of this work scattering on electrons is thus the main channel of energy

exchange for νµ and all other heavy �avour neutrinos. Hence it is the main reaction against

which the role of charged-current muonic reactions for muon neutrinos has to be compared.

However, several studies suggest that the dominance of scattering on electrons is only true for

certain conditions and especially for neutrino energies Eν . 10 MeV, while for higher neutrino

energies Eν & 20 MeV scattering on nucleons is more important for energy exchange, too [141].

One should keep this in mind as in this work the relevance of scattering on nucleons cannot

really be compared to the one of muonic charged-current reactions.

Eventually, bremsstrahlung NN → NN + ν + ν̄ and its inverse can be another dominant

source of energy exchange for low energy ν̄e. Especially for those neutrinos that are below the

absorption threshold this reaction can become very relevant. Bremsstrahlung has a smaller

inverse mean free path than scattering on nucleons but is much more e�cient in equilibrating

the neutrino spectrum with the matter. Yet again, when including the full inelastic treatment of

nucleon scattering, it is under debate how relevant bremsstrahlung is for electron antineutrinos

[142, 19]. In this work bremsstrahlung is computed based on an analytic interpolation formula

from [140]. The same implementation is found in many state of the art CCSN simulations. For

muon neutrinos and all other heavy �avour neutrinos bremsstrahlung is especially important

as it is expected to be their main thermal production process.

Neutrino pair production from electron-positron annihilation and its inverse is also included

in the standard reaction set [139]. This reaction channel competes with bremsstrahlung as it

has a similar e�ect on the neutrino spectrum. It is initially crucial for the thermal production

of neutrinos, especially for the heavy leptons �avours, where it dominates over bremsstrahlung.

Yet it is predicted that, in terms of opacity, for the most relevant conditions this reaction is

inferior to bremsstrahlung for neutrino energies below 50 MeV [141].

There are several notable omissions from what is considered here the standard reaction set.

Scattering of neutrinos from each other νx + νy → ν ′x + ν ′y is not included, as well as the �avour

conversion of a neutrino-antineutrino pair into another one νµ,τ + ν̄µ,τ → νe + ν̄e [129]. These

reactions were found to increase the number �ux of µ- and τ -neutrinos [25]. Further we do not

consider scattering [143, 144] or absorption [145] on nuclei. These reactions are very important

during the collapse phase and later at lower densities where nucleons are mainly bound in

nuclei. Also at high densities nuclei might form, although the extent of this depends strongly

on the description of nuclear interactions at high densities and consequently on the choice of

the EoS. Still, for the regions where neutrinos decouple after the bounce, nuclei are practically

absent and the corresponding reactions are negligible. A notable exception to this statement

could be scatterings and captures on light nuclei, especially deuterium [146, 147, 148].

6.2. Explosion Model

In order to study neutrino transport in a hot PNS one needs the chemical composition and

thermodynamical condition of the matter. Also some neutrino reactions such as scatterings
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and pair processes need actual neutrino spectra of reaction partner neutrinos. Thus, all results

in this chapter will be based on matter pro�les and neutrino spectra from an actual CCSN

simulation. More precise, this input is obtained from a 1-dimensional (spherically symmetric)

hydrodynamical CCSN simulation [37] of a 18 M� progenitor star [88]. The neutrino radiation

�eld was evolved with full Boltzmann neutrino transport, based on the above standard set

of neutrino reactions, plus additional reaction channels involving nuclei such as electron cap-

tures [139, 149]. The nuclear matter in nuclear statistical equilibrium (NSE) at temperatures

T > 0.5 MeV is described by the baryon EoS from Shen et al.[43]. This supernova model, like

all 1-D models except simulations of the O-Ne-Mg progenitor, does not develop a self consistent

explosion. This is most likely due to the lack of hydrodynamical instabilities in 1-D which are

understood to increase the neutrino heating e�ciency. Therefore this model arti�cially increases

charged-current electron �avour neutrino rates in the region between the neutrinosphere and

the standing accretion shock (SAS). This increases the e�ciency of energy deposition behind

the SAS and eventually triggers an explosion.

For the present work it is important to note that the neutrino spectra from such an arti�cial

explosion were found to be in relative good agreement with neutrino spectra from self consistent

2-D models [20]. The calculations in this work are based on radial pro�les of the temperature T ,

the baryon mass density ρ, and the electron fraction Ye at di�erent times during the simulation.

To obtain the chemical composition of the nuclear matter these pro�les are used as input for

an interpolation of the Shen-EoS [43]. Whenever neutrino pro�les are required, they are taken

from the simulation as well.

At this point one has to note that the calculations in this thesis are done in a post processing

manner. In post processing one can show whether additional neutrino reactions should be

important for matter pro�les and neutrino spectra that are encountered in CCSN. One might

also be able to hint at the direction of changes. But it is di�cult to quantify possible changes

as the actual e�ect upon implementation of new rates can only be shown by new dynamic

simulations.

6.3. Concept of Neutrinospheres

When neutrinos di�use out of a medium like a stellar surface, the matter usually becomes

increasingly transparent and the mean free path of the radiation is gradually decreasing. In the

deep interior, radiation is strongly coupled to the medium, both thermally and chemically. Far

outside, the mean free path becomes so large that radiation can be considered as free streaming.

In both cases the description of the radiation �eld and its evolution is rather straightforward.

One does not need to consider the exact reaction rates, as they are either so large or so small

that it does not matter. In contrast the description of the di�usion process in the transition

region proves to be signi�cantly more di�cult. However the theory of radiative transport o�ers

tools to simplify the di�usion problem, most notably the radiation sphere. Radiative transport

predicts that the intensity and likewise the spectrum of radiation outside of a hot emitting

source is approximately a thermal black body spectrum. Furthermore there exists a relation

between the temperature of the radiation and the temperature of the source at a certain depth
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below the surface. In particular, the e�ective radiation temperature is equal to the temperature

of the medium at the region where the optical depth τ = 2/3 [150]. The optical depth is de�ned

as the space integral over the total inverse mean free path, coming from the vacuum where the

inverse mean free path vanishes, up to a certain point in the medium. Assuming spherical

symmetry one can de�ne the optical depth as a function of the radius by

τ(R) =

∞∫
R

dr
1

λtot(r)
. (6.1)

Consequently the radius RS of the e�ective decoupling region of radiation is de�ned by

τ(RS) =

∞∫
RS

dr
1

λtot(r)
=

2

3
. (6.2)

Using this expression, the di�usion problem can simply be approximated by emitting a black

body spectrum from RS according to the matter temperature T (RS). Applying this approach to

the transport of neutrinos results in the concept of the neutrinosphere. However, the neutrino

sphere is not perfect in that sense. It was already discussed in the previous chapters that the

inverse mean free path is an energy dependent quantity, 1/λ(r) = 1/λ(r, E). Hence the neutrino

sphere has a di�erent position and a di�erent temperature for varying neutrino energies. One

�nds that these di�erences can actually be quite large. As a result, the spectrum is not perfectly

described by a single temperature. Nevertheless, calculations showed that the concept of the

neutrinosphere can give reasonable estimates for neutrino spectra and luminosities. In this work

it is especially useful as it roughly marks the region where neutrinos decouple from matter.

Thus, when assessing whether a reaction is important for the formation of neutrino spectra,

one has to ask whether it is important at the position of the neutrinosphere.

Later studies have discussed that in general one needs to distinguish two di�erent kind of

neutrino spheres [150, 140]. The transport or scattering sphere Rtr de�nes the region of last

interaction with the medium, while the e�ective or energy sphere Reff is the region of last

energy exchange with the medium. For electron neutrinos where the charged-current channels

are the dominating opacity source both regions are the same Rtr,νe = Reff,νe . However, for

ν̄e and even more so for all heavy lepton �avour neutrinos, the dominating reaction on the

surface of the PNS is scattering on nucleons. As it was discussed before, this reaction can be

considered as almost isoenergetic. Under this assumption, scattering on nucleons delays the

time when neutrinos leave the surface, but cannot modify their energy. Instead, the spectrum of

the neutrinos is determined by the energy exchanging reactions such as scattering on electrons

deeper inside. The main e�ect of isoenergetic scatterings is to increase the time for additional

non-isoenergetic reactions to take place. Comparing the two concepts of the transport and the

e�ective neutrinosphere, they are de�ned via the total and the e�ective inverse mean free path,

respectively. The total inverse mean free path 1/λtot is an equally weighted sum over the inverse

mean free path of all possible reactions, including isoenergetic scatterings. The e�ective mean

free path 1/λeff is composed of the energy inverse mean free path 1/λe and of 1/λtot according
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to

1

λeff
=

√
1

λtot
· 1

λe
. (6.3)

Here, 1/λe is the sum over all reactions that are not isoenergetic. Thus one �nds

1

λtot
=

1

λe
+

1

λiso
. (6.4)

Isoenergetic scattering reactions contribute less to 1/λeff than energy changing reactions. The

transport and e�ective neutrino spheres are now given by

τtr(Rtr) =

∞∫
Rtr

dr
1

λtot(r)
=

2

3
and τeff (Reff ) =

∞∫
Reff

dr
1

λeff (r)
=

2

3
. (6.5)

For neutrino species where Rtr 6= Reff , a reaction can be considered important for the formation

of the neutrino spectrum when it is important at Reff , compared to other non-isoenergetic

reactions. The region between Reff and Rtr is called the scattering atmosphere. However, it

has to be noted that the neutrino spectrum will in fact be modi�ed when crossing an extended

scattering atmosphere. As it was explained before, scattering of neutrons is not isoenergetic.

Even though the response function might be more sharp than for other reactions, there is still a

relevant width to it. Since for µ- and τ -neutrinos the opacity of nucleon scattering is much larger

than for any other channel, the neutrino spectrum does experience considerable modi�cation

between Rtr and Reff [140, 142, 141, 19]. On the other hand, scatterings on nucleons are

not energy changing enough that the e�ective neutrino temperature would be de�ned by the

temperature at Rtr i.e. Tν 6= T (Rtr). Instead the e�ective neutrino temperature Tν depends in

a non-trivial way on the medium temperature at the e�ective neutrinosphere T (Reff ), on the

development of the medium temperature between Reff and Rtr, and on the transport optical

depth at the e�ective neutrino sphere τtr(Reff ) [142]. For the results in this chapter one must

keep then in mind that the concept of the e�ective neutrino sphere is somewhat overestimated in

its relevance compared to what happens in a dynamical simulation. Still, for a post processing

calculation Reff remains a major point of reference to determine the neutrino spectrum.

6.4. Spectral averages

In the previous section it was explained that concepts such as inverse mean free path and

neutrinosphere depend on the neutrino energy. Beyond that, they depend also on the ther-

modynamical conditions and the chemical composition of the nuclear mater, which in turn

depends on the density and the time of the PNS evolution. Studying energy dependent ex-

pressions gives accurate information on the progression of neutrino transport, but they are less

helpful in giving an overview of neutrino transport over the whole PNS. Fur this purpose it is

helpful to compute spectrally averaged quantities and study the density dependence for a given

time. Particularly interesting is the spectrally averaged inverse mean free path 1/ 〈λ〉 which is
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de�ned by

1

〈λ〉
=

∫
dEν d cos θ E2

νfν(Eν , θ)
1

λ(Eν)∫
dEν d cos θ E2

νfν(Eν , θ)
. (6.6)

For the e�ective mean free path one de�nes

1

〈λeff〉
=

√
1

〈λtot〉
· 1

〈λe〉
. (6.7)

These expressions can readily be extended to account for scattering reactions by replacing

1/λ(Eν)→ 1/λ(Eν , θ). Based on 1/ 〈λ〉 one can likewise de�ne a spectrally averaged neutrino

sphere 〈Rν〉 by

τ(〈Rν〉) =

∞∫
〈Rν〉

dr
1

〈λ(r)〉
=

2

3
. (6.8)

One has to be careful not to overestimate the quantitative meaning of spectrally averaged

expression, but they are of great use for qualitative discussion and comparison.

6.5. Transport of Electron Antineutrinos

6.5.1. Standard Scenario

This section will sketch the transport situation for ν̄e in a hot PNS after bounce. It will present

the thermodynamical and chemical conditions, spectrally averaged inverse mean free paths

and the position of the spectrally averaged neutrino spheres. All transport properties will be

derived on the basis of the standard set of neutrino reactions. All quantities will be shown for

the relevant density range for three di�erent times, 150 ms, 500 ms, and 2 s post bounce. At

150 ms for this simulation one looks still at the early evolution before the shock is fully revived.

After 500 ms one studies the situation shortly after the explosion is achieved. Eventually after

2 s one studies the cooling phase of the PNS. Figures 6.1 and 6.2 show the composition and the

thermodynamical conditions for di�erent densities in the PNS, 150 ms after bounce.

There, matter is signi�cantly neutron rich. Up to 1013 g/cm3 the neutron fraction Yn reaches

almost 0.9. This also manifests in a signi�cant di�erence between neutron and proton chemical

potentials µn and µp. At higher densities, matter is less deleptonized with Yn ∼ 0.75, which is

due to the fact that neutrinos are still mostly trapped in this region. In the chemical potentials

one has therefore a small dip in µn − µp at ρ ∼ 2× 1013 g/cm3. In general chemical potentials

increase with density, as it is expected. This can be nicely seen from the electron chemical

potential µe. At the surface of the PNS at ρ = 1011 g/cm3 the temperature is below 5 MeV.

It increases up to more than 20 MeV above ρ = 1013 g/cm3. The di�erence in the strong

interaction potentials is negligible up to several times 1012 g/cm3, where it slowly starts to

rise. Eventually, the e�ective mass does not deviate signi�cantly from the rest mass below

ρ = 1013 g/cm3. Also, in the considered density range it stays always above 0.8mN .
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Figure 6.1.: Chemical abundances and e�ective nucleon mass over density, 150 ms post bounce.

Yn, Yp, and Ye denote neutron, proton, and electron fraction per baryon, respectively. The

e�ective mass Meff is shown in terms of the nucleon rest mass mN = 938 MeV.
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Figure 6.2.: Thermodynamical quantities over density, 150 ms post bounce. µ denotes chemical

potentials and U denotes strong interaction potentials. The curve for 3 kBT denotes the average

thermal energy of neutrinos.
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Figure 6.3.: Spectrally averaged inverse mean free path of ν̄e for various reactions, 150 ms

post bounce. The black vertical line marks the density of the spectrally averaged e�ective

neutrinosphere.

Now that the state of nuclear matter is known, one can study the corresponding neutrino

interactions.

Figure 6.3 shows the spectrally averaged mean free paths for ν̄e over density. One can see

that scattering on neutrons shows the largest rate followed by absorption on protons. It can

be seen that the rate for absorption increases compared to the scattering, when the neutron

fraction decreases at high density. For even higher densities the strong interaction potentials

rises. This leads again to a relative decrease of the absorption inverse mean free path. The

position of the spectrally averaged neutrinosphere is marked by the black line in Figure 6.3, it

lies at 〈Reff〉 ∼ 1.6 × 1011 g/cm3. One expects then, that ν̄e decoupling is determined mainly

by absorption on protons, as scattering on neutrons is less e�cient in equilibrating. Also, one

can conclude that strong interaction will not play a relevant role at this density. Therefore, one

would not expect for muonic reactions or inverse neutron decay to contribute signi�cantly in

the decoupling region. However, as can be seen in Figure 6.2, at very large densities µe becomes

larger then the muon mass, so one should expect muon production in this region already at

this early time. Regarding the other standard reactions, scattering on protons and scattering

on electrons have the next largest inverse mean free path. Thereby, scattering on protons is

roughly 3 times larger for all densities. The two pair processes have even smaller opacities,

with electron-positron pair creation dominating up to almost 1014 g/cm3.

Next, Figures 6.4 and 6.5 show the thermodynamical and chemical composition of the matter

at 500 ms post bounce.

One can see that the deleptonization has further progressed, as Yn > 0.9 up to 3×1013 g/cm3.

The temperature pro�le is lower and more �at at densities below 1013 g/cm3. However further
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Figure 6.4.: Chemical abundances and e�ective nucleon mass over density, 500 ms post bounce.

Yn, Yp, and Ye denote neutron, proton, and electron fraction per baryon, respectively. The

e�ective mass Meff is shown in terms of the nucleon rest mass mN = 938 MeV.
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Figure 6.5.: Thermodynamical quantities over density, 500 ms post bounce. µ denotes chemical

potentials and U denotes strong interaction potentials. The curve for 3 kBT denotes the average

thermal energy of neutrinos.
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inside it peaks higher than before, reaching a maximum of over 30 MeV. This means that

thermal neutrinos in this region will have energies similar to the muon mass. The rise in

Un−Up starts earlier, mainly due to the higher neutron fraction and therefore larger asymmetry

at intermediate densities. Yet, it reaches roughly the same maximum value, as the neutron

fraction close to 1014 g/cm3 has not changed signi�cantly since the earlier time. The larger

intermediate Yn translates intuitively also in a larger µn − µp and smaller µe. The behaviour

of the e�ective mass has not changed signi�cantly. One can note that it only starts to deviate

from the rest mass at even higher densities now.

Looking at the spectrally averaged transport properties in Figure 6.6 , one recognizes �rst

that the e�ective neutrinosphere has moved up more than one order of magnitude in density to

〈Reff〉 ∼ 2× 1012 g/cm3. The reason for this is not obvious from a comparison of the opacities.

Opacities have indeed decreased at lower densities but not so much that they could explain

the size of the shift in 〈Reff〉. Instead the reason for this is the contraction of the PNS in the

meantime. The density pro�le has become much stepper and therefore the radial extent of the

PNS surface has shrinked. Also the radial position of the neutrinosphere has moved further

inside, from ∼ 49 km after 150 ms to ∼ 25 km after 500 ms. The size of the PNS surface can

be approximately read from the size of the mean free path at the neutrinosphere. The size of

the mean free path at decoupling should be similar to the extent of the region with signi�cant

opacity, i.e. the PNS surface. It has decreased from ∼ 20 km down to ∼ 1 km for scattering on

neutrons and ∼ 8 km for absorption on protons.
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Figure 6.6.: Spectrally averaged inverse mean free path of ν̄e for various reactions, 500 ms

post bounce. The black vertical line marks the density of the spectrally averaged e�ective

neutrinosphere.

When comparing the di�erent reactions to each other, scattering on neutron has the largest

inverse mean free path over all densities. At the position of the e�ective neutrino sphere it is
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Figure 6.7.: Chemical abundances and e�ective nucleon mass over density, 2 s post bounce. Yn,

Yp, and Ye denote neutron, proton, and electron fraction per baryon, respectively. The e�ective

mass Meff is shown in terms of the nucleon rest mass mN = 938 MeV.
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Figure 6.8.: Thermodynamical quantities over density, 2 s post bounce. µ denotes chemical

potentials and U denotes strong interaction potentials. The curve for 3 kBT denotes the average

thermal energy of neutrinos.

almost an order of magnitude larger than the one for absorption on neutrons. Consequently

a scattering atmosphere emerges above the e�ective neutrinosphere, as the transport neutri-
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nosphere lies at lower densities 〈Rtr〉 ∼ 9 × 1011 g/cm3. Thus the neutrino spectrum will

be determined by the interplay of absorption on protons and scattering on neutrons. While

absorption on protons has the smaller opacity, it is still more inelastic than the scattering re-

action. Beyond the leading order one �nds again scattering on protons followed by scattering

on electrons. Of those, scattering on electrons might be the more important reaction, as it is

more inelastic and e�cient in neutrino downscattering. The pair processes still seem to be less

relevant, with electron-positron-pair creation dominating over inverse bremsstrahlung. Given

the position of the e�ective neutrinosphere it is not expected that mean �eld e�ects or the new

reactions investigated in this work might play a role.

Next, Figures 6.7 and 6.8 show the thermodynamical and chemical composition of the matter

at 2 s post bounce. The deleptonization of matter has progressed much further, as Yn > 0.9

for the whole density range. Close to 1014 g/cm3 a decrease on Yn can still be found, hinting

that deleptonization is still ongoing. Additionally, the proton fraction decreases well below the

electron fraction down to Yp < 0.02 for intermediate densities as the EoS predicts an alpha

mass fraction Xα = 0.045 for ρ = 1012 g/cm3. The temperature pro�le is lower and �atter for

all densities. At lower densities it has not decreased signi�cantly, staying almost the same at

the surface. Inside 1013 g/cm3 the PNS has cooled signi�cantly with a maximum temperature

of 20 MeV. Below 1013 g/cm3 the increase in Yn does not translate in a signi�cant change of

the chemical potentials µn − µp or µe. Above this density µe has decreased while µn − µp has
increased. At high density the di�erence in strong interaction potentials has notably increased,

rising stronger and reaching almost up to 30 MeV. Eventually, the behaviour of the e�ective

mass is the same as it was 500 ms post bounce.
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Figure 6.9.: Spectrally averaged inverse mean free path of ν̄e for various reactions, 2 s post

bounce. The black vertical line marks the density of the spectrally averaged e�ective neutri-

nosphere.
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The e�ective neutrinosphere has moved signi�cantly higher in density 〈Reff〉 ∼ 1013 g/cm3.

This time the di�erence is also due to a decrease in the opacities, especially for absorption on

protons. The PNS has contracted further indeed, with the e�ective neutrinosphere now sitting

at a radius of ∼ 17.7 km. Yet the mean free path for ν̄e absorption at this position is ∼ 5 km,

similar to the situation after 500 ms. However, the mean free path for scattering on neutrons

is down to ∼ 200 m at 〈Reff〉. Consequently the range of the scattering atmosphere increases

as the transport mean free path lies signi�cantly lower at 〈Rtr〉 ∼ 2.8× 1012 g/cm3.

The absorption on protons has still the largest inelastic opacity at the neutrinosphere. Yet

considering how much larger the inverse mean free path for scattering on neutrons is, it can

be assumed that even the small inelasticity of this reaction will lead to a modi�cation of the

neutrino spectrum that is emitted from 〈Reff〉. Scattering on electrons and on protons are closer
to the absorption than before, with scattering on protons becoming larger than absorption for

ρ > 3×1013 g/cm3. This is caused by the larger Un−Up, which decreases the rate for absorption
on protons but not for scattering. The pair processes seem to be negligible. However it has

to be noted that bremsstrahlung is now the clearly dominating pair process at high densities.

Given that Un − Up = 5 MeV at 〈Reff〉 it is interesting to look at the relevance of inverse

neutron decay.
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Figure 6.10.: Spectrally averaged inverse mean free path of ν̄e for extended reaction set, 150 ms

post bounce. The black vertical line marks the density of the spectrally averaged e�ective

neutrinosphere.

6.5.2. Role of New Reactions

Now the reaction set is extended to include inverse neutron decay ν̄e + p + e− → n, inverse

muon decay ν̄e + e− + νµ → µ−, and the reaction ν̄e + e− → ν̄µ + µ−. Figure 6.10 shows the
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spectrally averaged inverse mean free paths and the spectrally averaged e�ective neutrinosphere

150 ms post bounce for the extended reaction set. The position of 〈Reff〉 does not change upon
inclusion of the additional reactions. All new reactions seem to be negligible in the decoupling

region. The absorption on electrons ν̄e + e− → ν̄µ + µ− has the largest inverse mean free path

among the new reactions, becoming similar to scattering on electrons above 1013 g/cm3. Inverse

muon decay comes close to electron-positron pair creation while inverse neutron decay has the

smallest opacity of all reactions.

It was noted in the beginning, that the spectrally averaged quantities can be misleading if

one is concerned with the transport of neutrinos with a particular energy. For this purpose,

it is better to look at energy dependent transport properties. Figure 6.11 shows the energy

dependent e�ective neutrino sphere Reff (Eν).
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Figure 6.11.: Energy dependent e�ective neutrinosphere Reff (Eν) for ν̄e, 150 ms post bounce.

The red curve shows Reff for the standard reaction set, the black dashed curve is computed

for the extended reaction set.

The red curve shows Reff for the standard reaction set while the black dashed curve is com-

puted for the extended reaction set. One can see immediately that the e�ective neutrinosphere

〈Reff〉 is in fact somewhat misleading, as all neutrinos with energy Eν < 15 MeV decouple fur-

ther inside. Neutrinos with energies Eν < 10 MeV decouple at densities higher than 1012 g/cm3,

even going up to 1013 g/cm3 for Eν < 3 MeV. Also it can be seen that for Eν < 5 MeV there

is actually a di�erence in Reff between the standard and extended reaction sets. In order to

understand this di�erence one needs to study energy dependent opacities. However, as the

energy will be the dependent variable, one has to look at several discrete densities separately.

Figure 6.12 shows the energy dependent opacities of ν̄e for ρ ∼ 1.6×1011 g/cm3, the position of

the neutrino sphere. It has to be noted that for scatterings, opacities are de�ned as the phase

space integral of the �nal state neutrino over the scattering kernel, as in eq. (2.22), averaged
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over the angle of the initial state neutrino. In general the opacity is given as a rate, equal to

the inverse mean free path times the speed of light.

At this density, neutrinos with Eν ∼ 15 MeV decouple from matter. As expected from the

spectrally averaged opacity, the dominating reactions for these neutrinos are absorption on

protons and scattering on neutrons. Also the new reactions are indeed negligible as expected

from the energy dependent neutrino sphere.
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Figure 6.12.: Energy dependent opacity of ν̄e for extended reaction set, 150 ms post bounce for

ρ = 1.60× 1011 g/cm3. Rate is de�ned as inverse mean free path times c.

Next, Figure 6.13 shows the e�ective opacity for ρ ∼ 1012 g/cm3 for the same time. At this

density, neutrinos with Eν ∼ 10 MeV decouple according to Figure 6.11.

Again, the energy dependent opacities agree with the general statements from before. Scat-

tering on neutrons and absorption on protons are the important reactions for the neutrinos

that decouple here. Also, the additional reactions are negligible.

Eventually, Figure 6.14 shows the energy dependent opacities for ρ ∼ 1013 g/cm3, 150 ms

post bounce. Here low energy neutrinos with Eν ∼ 3 MeV should decouple. This energy is at

the left border of Figure 6.14. One �nds that for these low neutrino energies the inverse muon

decay is the reaction with the largest opacity. More than a factor of 2 smaller are scattering

on neutrons, scattering on electrons and inverse bremsstrahlung. Also, the rate for absorption

on protons is vanishing for these energies. None of this was indicated in Figure 6.10 by the

spectrally averaged opacities. Yet, it is in agreement with the observation from Figure 6.11 that

the e�ective neutrinosphere moves outwards upon inclusion of the additional reactions. Hence,

for the decoupling of ν̄e with Eν ∼ 3 MeV the inverse muon decay should be considered in

neutrino transport as it has the largest opacity. Interestingly, the absorption on electrons is not
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Figure 6.13.: Energy dependent opacity of ν̄e for extended reaction set, 150 ms post bounce for

ρ = 1012 g/cm3. Rate is de�ned as inverse mean free path times c.

102

103

104

105

106

107

108

20 40 60 80 100 120 140

[1
/s

]

Energy[MeV]

ν̄e + p→ e+ + n
ν̄e + n→ ν̄e + n
ν̄e + p→ ν̄e + p
ν̄e + e− → ν̄e + e−
νe + ν̄e + NN → NN

νe + ν̄e → e− + e+
ν̄e + e− + p→ n
ν̄e + e− + νµ → µ−

ν̄e + e− → ν̄µ + µ
−

Figure 6.14.: Energy dependent opacity of ν̄e for extended reaction set, 150 ms post bounce for

ρ = 1.1× 1013 g/cm3. Rate is de�ned as inverse mean free path times c.
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important for any neutrino energy, even though it showed the largest average opacity of the new

reactions in Figure 6.10. Also, in the standard scenario one �nds that inverse bremsstrahlung

and inelastic scattering on electrons are the most important reactions for the decoupling of low

energy neutrinos. Eventually it is notable that at 150 ms post bounce there is no scattering

atmosphere for ν̄e for any energy.

The same study as before is then repeated at 500 ms post bounce. One �rst looks at the

spectrally averaged opacities including the new reactions in Figure 6.15. The position of the

averaged neutrinosphere does not change noticeably as the new reactions are negligible at the

corresponding density. Of the new reactions, the inverse mean free path for the absorption on

electrons surpasses those of scattering on electrons and comes close to scattering on protons

for very high densities. However, one should keep in mind that this was similar for the earlier

time. There the reaction turned out to be irrelevant for the decoupling of all neutrino energies.
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Figure 6.15.: Spectrally averaged inverse mean free path of ν̄e for extended reaction set, 500 ms

post bounce. The black vertical line marks the density of the spectrally averaged e�ective

neutrinosphere.

One therefore studies next the energy dependent e�ective neutrinosphere in Figure 6.16. As

expected Reff (Eν) moves to higher densities for all neutrino energies. It is especially notable

that now neutrinos up to energies Eν ∼ 10 MeV decouple inside 1013 g/cm3 where mean �eld

e�ects are relevant. The position of Reff changes with the extended reaction set for Eν <

7 MeV.

Figure 6.17 shows the energy dependent opacity for ρ ∼ 1012 g/cm3 where neutrinos with

Eν ∼ 25 MeV decouple. One can see that for these neutrinos the situation is well described

by the spectrally averaged properties. Scattering on neutrons has the largest opacity while

absorption on protons has the largest inelastic rate. Also the new reactions are in fact negligible.

Next Figure 6.18 shows the energy dependent opacity for ρ ∼ 1013 g/cm3 after 500 ms where
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Figure 6.16.: Energy dependent e�ective neutrinosphere Reff (Eν) for ν̄e, 500 ms post bounce.

The red curve shows Reff for the standard reaction set, the black dashed curve is computed

for the extended reaction set.
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Figure 6.17.: Energy dependent opacity of ν̄e for extended reaction set, 500 ms post bounce for

ρ = 1.1× 1012 g/cm3. Rate is de�ned as inverse mean free path times c.
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Figure 6.18.: Energy dependent opacity of ν̄e for extended reaction set, 500 ms post bounce for

ρ = 1.1× 1013 g/cm3. Rate is de�ned as inverse mean free path times c.
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Figure 6.19.: Energy dependent opacity of ν̄e for extended reaction set, 500 ms post bounce for

ρ = 2.2× 1013 g/cm3. Rate is de�ned as inverse mean free path times c.
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neutrinos with Eν ∼ 10 MeV decouple. Scattering on neutrons is again the largest opacity,

resulting in a scattering atmosphere above Reff . For the inelastic reactions one �nds that

scattering on electrons has almost the same rate as absorption on protons. Still, the new

reactions are not contributing signi�cantly.

Eventually the situation at ρ ∼ 2 × 1013 g/cm3 is studied in Figure 6.19. Here neutrinos

with energies Eν < 7 MeV decouple from matter. The elastic scattering on neutrons is still the

largest opacity source for Eν ∼ 7 MeV. However for the equilibration of low energy neutrinos

the most important reactions are scattering on electrons, inverse bremsstrahlung, and inverse

muon decay. For neutrino energies below 3 MeV the rate of inverse neutron decay rises sharply

and becomes the largest opacity.

It can be concluded that at later times 500 ms after bounce inverse muon decay is an im-

portant opacity source for electron antineutrinos with energies less than 7 MeV. Also, for even

lower energies less then 3 MeV inverse neutron decay becomes the dominant reaction. Both

these �ndings are not a�ected by the elastic treatment of scattering on nucleons but should

also hold in a more general approach. Also it should be noted that again spectrally averaged

transport properties are not suited to describe the transport of relatively low energetic neutri-

nos. In the standard scenario one �nds again that inverse bremsstrahlung and scattering on

electrons are the most important reactions for ν̄e with Eν < 7 MeV.
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Figure 6.20.: Spectrally averaged inverse mean free path of ν̄e for extended reaction set, 2 s

post bounce. The black vertical line marks the density of the spectrally averaged e�ective

neutrinosphere.

To conclude the study on electron antineutrinos the in�uence of the extended reaction set

on energy dependent transport properties is performed for even later times, 2 s after bounce.

First the spectrally averaged opacities are shown in Figure 6.20. Even though the e�ective

neutrinosphere is now located at ρ > 1013 g/cm3 where strong interaction potentials are relevant,
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the new reactions seem to be irrelevant in the decoupling region. Inverse muon decay has

eventually one of the largest spectrally averaged inverse mean free paths of all inelastic reactions,

but only for densities higher than 5× 1013 g/cm3.
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Figure 6.21.: Energy dependent e�ective neutrinosphere Reff (Eν) for ν̄e, 2 s post bounce. The

red curve shows Reff for the standard reaction set, the black dashed curve is computed for the

extended reaction set.

Looking at the energy dependent e�ective neutrinosphere in Figure 6.21 one �nds that there

is a di�erence between the standard and the extended reaction set. For neutrino energies

around Eν ∼ 10 MeV and less, Reff is clearly shifted to lower densities. As Reff (10 MeV) at

5× 1013 g/cm3 this seems plausible also from the spectrally averaged opacities.

In Figure 6.22 the energy dependent opacities are shown for ρ ∼ 1013 g/cm3. This is were

neutrinos with an energy of 20 MeV should decouple at 2 s after bounce. It can be seen that the

rate for scattering on neutrons is an order of magnitude larger than any other reaction for this

neutrino energy. This will probably result in a signi�cant scattering atmosphere above Reff .

The largest inelastic contribution is absorption on protons which is about 3 times as large as

scattering on electrons. The new reactions are not relevant, indeed.

This picture changes signi�cantly for neutrinos with Eν ∼ 10 MeV and less. They decouple

above 5× 1013 g/cm3 and the corresponding opacities are depicted in Figure 6.23. The largest

inelastic opacities are those of inverse neutron decay and inverse bremsstrahlung. The lower the

neutrino energy, the larger is especially the rate for inverse neutron decay. For neutrino energies

of 5 MeV it becomes the reaction with the largest rate. Consequently, the phenomenon of the

scattering atmosphere is less relevant if not completely absent for low energy ν̄e. In contrast to

the situation for earlier times, the muonic reactions are not contributing much for any neutrino

energy at 2 s post bounce.
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Figure 6.22.: Energy dependent opacity of ν̄e for extended reaction set, 2 s post bounce for

ρ = 1.2× 1013 g/cm3. Rate is de�ned as inverse mean free path times c.
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Figure 6.23.: Energy dependent opacity of ν̄e for extended reaction set, 2 s post bounce for

ρ = 5.4× 1013 g/cm3. Rate is de�ned as inverse mean free path times c.
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6.5.3. Summary

For the standard reaction set it is found that for all times up to several seconds post bounce

scattering on neutrons and absorption on protons are the reactions with the largest inverse mean

free path for electron antineutrinos. As time progresses, the opacity for scattering on neutrons

grows relative to the one for absorption on protons because of the ongoing deleptonization of

the PNS. As a result, a scattering atmosphere emerges outside of Reff . These �ndings hold

for all neutrino energies except for the lowest one. Absorption on protons decreases strongly

for neutrino energies that are close to or less than the energy di�erence between protons on

neutrons. Reff moves to higher densities over time for all energies, due to the contraction

and cooling of the PNS. Consequently, the neutrino energies for which absorption on neutrons

is suppressed rise over time, as the strong interaction potentials add to the energy di�erence

between the nucleons. To be precise, this study �nds the transition to be at roughly 3 MeV after

150 ms, growing to 7 MeV after 500 ms, and reaching 10 MeV at 2 sc. Below these threshold

energies, inelastic scattering on electrons and inverse bremsstrahlung are the major energy

equilibrating opacity sources. It is further noteworthy that electron-positron pair creation has

no signi�cant inverse mean free path for any neutrino energy at any time.

The additional reactions of the extended reaction set are likewise only important for the low

neutrino energies. Until 500 ms post bounce inverse muon decay is a signi�cant contribution

to the inelastic opacity of these neutrinos. As it is strongly temperature dependent it vanishes

later. In contrast, inverse neutron decay does not become important even for lowest energies

before 500 ms. However, after 2 s it is the most important reaction for neutrino energies below

10 MeV. It can be expected that for later times, when Reff moves to even higher densities,

inverse neutron decay might become the most important reaction of ν̄e for all relevant neutrino

energies.

The e�ect of the increased opacity for low energy ν̄e is di�cult to estimate in post processing.

On one side it could be argued that less low energy neutrinos emitted should result in relatively

more high energy neutrinos, increasing the average energy of electron antineutrinos 〈εν̄e〉. On
the other hand experience suggests that every increase in opacity leads to a decrease in average

energies. Hence the outcome can only be evaluated by dynamic simulations.

6.6. Transport of Muon Neutrinos

For muon neutrinos the standard reaction set will not be discussed separately. Instead it will

be discussed along with the extended reaction set by spectrally averaged as well as energy

dependent opacities and e�ective neutrinospheres. The matter pro�les are the same as in the

previous section for ν̄e. Again the transport problem is investigated for the same three di�erent

times, i.e. 150 ms, 500 ms, and 2 s post bounce. To begin with, Figure 6.24 shows the spectrally

averaged opacities and the corresponding e�ective neutrinosphere at 150 ms post bounce. For

the standard reaction set, scattering on neutrons clearly shows the largest inverse mean free

path of all reactions. Scattering on electrons is the major inelastic reaction for all densities, yet

its opacity is always more than an order of magnitude below scattering on neutrons. Therefore

111



a signi�cant scattering atmosphere emerges. The spectrally averaged e�ective neutrinosphere

lies for the standard set at 〈Reff〉 = 1.04 × 1012 g/cm3, while the transport sphere is located

further outside at 〈Rtr〉 = 1.21× 1011 g/cm3.
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Figure 6.24.: Spectrally averaged inverse mean free path of νµ for extended reaction set, 150 ms

post bounce. The black vertical line marks the density of the spectrally averaged e�ective

neutrinosphere.

Further, the pair processes seem to be irrelevant, as they are more than an order of magnitude

smaller than scattering on electrons. The inclusion of the additional reactions leads to an

outward shift of the e�ective neutrinosphere, 〈Reff〉 = 9.5 × 1011 g/cm3. One notices that

the absorption on electrons νµ + e− → νe + µ− shows the second largest inelastic opacity at

Reff behind scattering on electrons, followed by the absorption on neutrons νµ + n→ p+ µ−.

Also, both of these reactions eventually grow above scattering on electrons further inside, with

absorption on neutrons becoming the reaction with the largest inverse mean free path of all

reactions for densities higher than 1013 g/cm3.

Figure 6.25 shows the energy dependent neutrinosphere, both for the standard and extended

reaction set. One can see that the additional reactions shift Reff (Eν) to lower densities for

Eν . 10 MeV and Eν & 25 MeV. Especially for high neutrino energies this shift grows and

becomes eventually very large.

Figure 6.26 depicts the energy dependent opacities a ρ ∼ 3 × 1011 g/cm3 where neutrinos

with Eν . 50 MeV decouple from matter. For these neutrinos one �nds that the inelastic

opacities due to scattering on electrons and absorption on electrons are almost equally large.

This explains the shift observed in Figure 6.25. One can also see that the absorption on neutrons

is probably only relevant for very large νµ energies above 90 MeV. Beyond that one �nds that

scatterings on neutrons and even on protons have a much larger rate than any inelastic reaction,

both in the standard and extended scenario. Pair process or the inverse muon decay have no

signi�cant impact on the transport of high energy neutrinos.
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Figure 6.25.: Energy dependent e�ective neutrinosphere Reff (Eν) for νµ, 150 ms post bounce.

The red curve shows Reff for the standard reaction set, the black dashed curve is computed

for the extended reaction set.
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Figure 6.26.: Energy dependent opacity of νµ for extended reaction set, 150 ms post bounce for

ρ = 3.3× 1011 g/cm3. Rate is de�ned as inverse mean free path times c.
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Figure 6.27.: Energy dependent opacity of νµ for extended reaction set, 150 ms post bounce for

ρ = 7.6× 1012 g/cm3. Rate is de�ned as inverse mean free path times c.

Figure 6.27 shows the energy dependent opacities at ρ ∼ 7.6×1012 g/cm3 where νµ with Eν .

8 MeV decouple. In the standard scenario, scattering on electrons is still the dominant inelastic

reaction with elastic scattering on neutrons being signi�cantly more frequent. However, in the

extended reaction set inverse muon decay is equally as important as scattering on electrons for

equilibrating νµ. By studying opacities for ρ ∼ 1013 g/cm3 where neutrinos with energy less

than 5 MeV decouple, one even �nds that inverse muon decay has the largest opacity for all

reactions. It becomes even larger than scattering on neutrons. In the standard scenario inverse

bremsstrahlung becomes similar frequent as scattering on electrons for these lowest neutrino

energies. Summing it up, at 150 ms after core bounce, scattering on electrons is the largest

inelastic opacity source for almost all energies. Only for neutrino energies below 5 MeV is inverse

bremsstrahlung a relevant reaction, too. Elastic scattering on neutrons shows always a much

larger opacity, leading to a wide scattering atmosphere above Reff . In the extended scenario,

one �nds that all new reactions are important at some neutrino energy. Absorption of νµ is

important only for neutrinos with Eν > 90 MeV. Below this limit and down to Eν ∼ 40 MeV

absorption on electrons is as important as scattering on electrons. Eventually for energies less

than 10 MeV inverse muon decay has a similar rate to scattering on electrons, even becoming

the largest rate for Eν < 5 MeV. Therefore the scattering atmosphere vanishes for these νµ.

Next the spectrally averaged transport properties are studied at 500 ms post bounce in Figure

6.28. For the standard scenario the picture looks similar to the earlier time. Scattering on

neutrons has by far the largest inverse mean free path while scattering on electrons is the

most important inelastic reaction for all densities. The e�ective neutrinosphere is now at
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Figure 6.28.: Spectrally averaged inverse mean free path of νµ for extended reaction set, 500 ms

post bounce. The black vertical line marks the density of the spectrally averaged e�ective

neutrinosphere.

higher densities due to ongoing contraction, cooling, and deleptonization of the PNS, 〈Reff〉 =

6.0 × 1012 g/cm3. In the extended scenario, the neutrinosphere moves outwards to 〈Reff〉 =

5.2 × 1012 g/cm3. Absorption on neutrons and on electrons are comparable to scattering on

electrons in the decoupling region and become larger than the latter deeper inside. Also,

absorption on neutrons shows the largest opacity of all reactions for ρ > 3× 1013 g/cm3.

Looking then at the energy dependent e�ective neutrinosphere in Figure 6.29 the situation

is similar to the earlier time. The neutrinospheres have overall moved to higher densities. The

extended reaction set causes an outward shift of of Reff for energies less than ∼ 10 MeV and

more than ∼ 30 MeV. This shift becomes very large for the most energetic neutrinos with

Eν > 70− 80 MeV.

Figure 6.30 shows the energy dependent opacities at ρ = 3.4 × 1012 g/cm3 where neutrinos

with Eν . 40 MeV decouple. In the standard scenario the situation is as before. Scattering

on electrons is the only relevant inelastic reaction while the rate for scattering on neutrons is

two orders of magnitude larger. For the extended reaction set one �nds that the opacity for

absorption on electrons is almost as large as for scattering on electrons. For higher neutrino

energies, absorption on electrons even becomes the major inelastic reaction, until absorption

on neutrons dominates for energies above ∼ 95 MeV.

Figure 6.31 depicts then the energy dependent opacity at ρ ∼ 2×1013 g/cm3 where neutrinos

with Eν ∼ 10 MeV decouple. In the standard scenario the inelastic opacity comes mainly from

inverse bremsstrahlung and scattering on electrons. Elastic scattering on neutrons has the

overall largest rate. When included, inverse muon decay is equally important as the other main

inelastic reactions, which results in the observed shift of Reff . For neutrino energies of 5 MeV
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Figure 6.29.: Energy dependent e�ective neutrinosphere Reff (Eν) for νµ, 500 ms post bounce.

The red curve shows Reff for the standard reaction set, the black dashed curve is computed

for the extended reaction set.
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Figure 6.30.: Energy dependent opacity of νµ for extended reaction set, 500 ms post bounce for

ρ = 3.4× 1012 g/cm3. Rate is de�ned as inverse mean free path times c.
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Figure 6.31.: Energy dependent opacity of νµ for extended reaction set, 500 ms post bounce for

ρ = 2.2× 1013 g/cm3. Rate is de�ned as inverse mean free path times c.

and less, inverse bremsstrahlung is the dominant inelastic reaction in the standard set and the

scattering atmosphere vanishes. The opacity for inverse muon decay surpasses even the one for

bremsstrahlung for these low energies.

Summing up the �ndings, the transport situation after 500 ms is almost the same as the one

after 150 ms except that the decoupling in general takes place at higher densities. Inelastic

scattering in the standard scenario is dominated by scattering on electrons down to Eν =

10 MeV, below this point inverse bremsstrahlung takes over. Elastic scattering on neutrons

has a much larger opacity than the inelastic reactions down to Eν = 5 MeV resulting in a

scattering atmosphere above Reff . For the muonic reactions, absorption on neutrons has the

largest inelastic opacity for Eν > 95 MeV, absorption on electrons is an important opacity

source down to Eν = 40 MeV, and inverse muon decay becomes the most important inelastic

reaction below Eν = 10 MeV.

To conclude the study on the transport of νµ the situation at 2 s after bounce is looked

at. The spectrally averaged opacities and e�ective neutrinosphere are plotted in Figure 6.32.

The standard scenario is straightforward again. Scattering on neutrons has by far the largest

inverse mean free path of all reactions. Scattering on electrons is the most important inelastic

reaction. Inverse bremsstrahlung comes close for very high densities only. The averaged e�ective

neutrinosphere lies for the standard reactions at 〈Reff〉 = 3.0 × 1013 g/cm3. A scattering

atmosphere reaches up to 〈Rtr〉 = 2.4×1012 g/cm3. When including the additional reactions, the

e�ective neutrinosphere moves outwards to 〈Reff〉 = 2.3× 1013 g/cm3. Opacity for absorption

on neutrons is a little larger than scattering on electrons at 〈Reff〉, while absorption on electrons
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Figure 6.32.: Spectrally averaged inverse mean free path of νµ for extended reaction set, 2 s

post bounce. The black vertical line marks the density of the spectrally averaged e�ective

neutrinosphere.
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Figure 6.33.: Energy dependent e�ective neutrinosphere Reff (Eν) for νµ, 2 s post bounce. The

red curve shows Reff for the standard reaction set, the black dashed curve is computed for the

extended reaction set.
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is almost equal to the latter.

Figure 6.33 shows the energy dependent e�ective neutrinosphere 2 s post bounce. For the

extended reaction set, Reff (Eν) is shifted to lower densities for Eν > 25 MeV. However, for

low energy neutrinos there is no change between the standard and the extended scenario. This

is a notable di�erence to earlier times.

To investigate this, �rst the energy dependent opacities are studied for ρ ∼ 3 × 1013 g/cm3

where neutrinos with Eν =< 30 MeV decouple from matter. This is shown in Figure 6.34.

Like at earlier times it is found that in the standard case the scattering on electrons is the

single most important inelastic reaction for these neutrinos while scattering on neutrons has

the largest overall opacity.
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Figure 6.34.: Energy dependent opacity of νµ for extended reaction set, 2 s post bounce for

ρ = 3.1× 1013 g/cm3. Rate is de�ned as inverse mean free path times c.

When including the charged-current muonic reactions, one �nds that absorption of νµ on

electrons is equally as relevant as scattering on electrons. Looking at opacities for lower densities

one �nds further, that absorption on electrons becomes relatively more important for decoupling

as the neutrino energy grows. It is then the most frequent inelastic reaction in the decoupling

region up to Eν = 95 MeV. Only for these very high energy neutrinos is absorption on neutrons

more important.

Next Figure 6.35 shows the energy dependent opacity for ρ ∼ 7.6 × 1013 g/cm3. This is

roughly where neutrinos with Eν < 10 MeV should decouple. In the standard scenario one

�nds that inverse bremsstrahlung is the most important inelastic reaction for these energies.

For Eν < 5 MeV it is even larger than scattering on neutrons. When including the charged-
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Figure 6.35.: Energy dependent opacity of νµ for extended reaction set, 2 s post bounce for

ρ = 7.6× 1013 g/cm3. Rate is de�ned as inverse mean free path times c.

current muonic reactions, inverse muon decay is more important than scattering on electrons

but it stays below inverse bremsstrahlung unlike earlier times. Therefore Reff does not di�er

much between standard and extended reaction set.

6.6.1. Summary

For the standard reaction set scattering on electrons has by far the largest inverse mean free path

in the decoupling region for all inelastic neutrino energies and all times down to Eν < 10 MeV.

Likewise scattering on neutrons has the largest opacity of all reactions, resulting in an extended

scattering atmosphere between Reff and Rtr. For the lowest neutrino energies the scattering

atmosphere becomes thinner and vanishes eventually. This transition always coincides with the

rise of inverse bremsstrahlung. The exact energy at which this takes place grows slowly with

time.

When including the extended reaction set, the charged-current muonic reactions shift Reff

to lower densities for several distinct ranges in neutrino energy. Absorption on neutrons is

by far the most important reaction for Eν > 95 MeV for all times. However, as few of these

neutrinos are emitted in the �rst place, the additional reaction e�ectively suppresses them

completely. Also, the in�uence of νµ absorption on neutrons on overall νµ-transport might

probably be rather small. Absorption of νµ on electrons is a major inelastic reaction down to

an energy Eν ∼ 50 MeV at 150 ms post bounce, Eν ∼ 40 MeV at 500 ms post bounce, and
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Eν ∼ 30 MeV at 2 s. The in�uence of this reaction on νµ-transport could indeed be signi�cant

and dynamic simulations should be performed to test this. Eventually, inverse muon decay is a

very important reaction for Eν < 10 MeV, probably within the �rst second post bounce. In this

time it surpasses inverse bremsstrahlung and also scattering on neutrons for lowest neutrino

energies. It is then expected that this reaction will clearly impact transport of low energy

neutrinos. However, at later times this reaction is less relevant than inverse bremsstrahlung,

probably because the temperature dependence of inverse muon decay is stronger.

When including the charged-current reactions for νµ in a dynamic CCSN simulation this will

probably lead to a decrease of the average neutrino energy
〈
ενµ
〉
. This is insofar interesting, as

it leads to a di�erence in the spectra between νµ and all other heavy lepton �avour neutrinos.

The changes could even a�ect ντ via neutrino oscillations. In state of the art CCSN simulations,

neutrino transport and consequently spectra of νµ and ντ are exactly the same. The inclusion

of the extended reaction set will changes the spectrum of νµ compared to ντ and neutrino

oscillations are very sensitive to di�erences between spectra and changes in spectra.

An additional e�ect is the appearance of a positive net muon leptonic abundance. As ν̄µ
di�use faster out of the PNS than νµ, a net �ux of muon antineutrinos leaves the PNS, at least

for some time. This leads to a growth of the net muon neutrino number and therefore the net

muon number.

Based on all of the above arguments, the implementation of charged-current reactions for

muon neutrinos in CCSN simulations is strongly recommended.

6.6.2. Muon Production

It is argued in this work that for certain neutrino energies, charged-current reactions for νµ
are comparable to standard inelastic reactions in the region of the e�ective neutrinosphere.

Moreover, the charged-current reactions show a stronger density and temperature dependence.

Therefore their rate is even larger inside the region where neutrinos are trapped. While this

might not a�ect the emitted neutrino spectra in the �rst place, these reactions will certainly

produce muons.

Muons are expected to appear in a neutron star after the �rst cooling phase and deleptoniza-

tion have settled down. This is based on the argument that the electron chemical potential µe
in the deep interior of a NS is larger than the muon mass. In chemical equilibrium the muon

abundance should thus be non-vanishing. However, it can be asked whether charged-current

muonic reactions might lead already to an earlier production of µ−. To study this question the

total rate of muon production was calculated for early times. The total rate of muon production

is equal to the total reaction rate i.e. �absorption� rate of muon neutrinos for reactions that

produce muons. To derive this rate one has to compute the integral of the inverse mean free

path over the initial muon neutrino phase space. Figure 6.36 shows the total production rate

of muons, per baryon and per second, for the respective charged-current reactions. The rates

are computed at 150 ms post bounce and plotted over density. The black line denotes again

the position of the spectrally averaged e�ective neutrinosphere. The production rates of muons

are relatively high indeed. At the position of the neutrinosphere the production rate is ∼ 3 s−1
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Figure 6.36.: Production rate of µ− for various charged-current reactions over density at 150 ms

post bounce. Rate is number of µ− produced per baryon per second. The black vertical line

denotes the position of the spectrally averaged e�ective neutrinosphere 〈Reff〉 >.

per baryon, and further inside it becomes as large ∼ 106 s−1 per baryon. The equilibrium muon

fraction must be less than the electron fraction Ye before equilibration, and Ye is mostly in the

range 0.1 − 0.25. Hence, one can assume that the muon abundance inside the e�ective muon

neutrinosphere will be equilibrated within milliseconds. Muons will then be present int the

PNS directly after bounce, maybe even already at bounce.

In order to investigate the e�ect of muon production on chemical composition of the PNS, it

is computed in this work how the overall equilibrium distribution di�ers when including muons.

Figure 6.37 shows the abundance as it is from the simulation at 150 ms post bounce. The black

dashed line marks the position of 〈Reff〉 for the extended reaction set.

The abundance of νe is larger than the one of ν̄e for all densities. This di�erence becomes

monotonously bigger with increasing density. The reason for this is the ongoing deleptonization

of the star. As mentioned before, after the transition to the high temperature NSE, chemical

equilibrium favours a higher neutron abundance in the matter. This leads to net electron

captures and to net emission of electron neutrinos. Yet as these neutrinos are trapped, they

cannot escape immediately and form a positive net Yνe . In contrast, for muon neutrinos the

abundances Yνµ and Yν̄µ are exactly the same so the curves lie on top of each other. This is

because the CCSN simulation does not distinguish between the transport of νµ and ν̄µ. They

are only produced and destroyed together via neutral current pair processes and all their neutral

current opacities are the same. To include muons into the PNS, a new equilibrium distribution

was computed. First it was assumed that all µ- and e-�avour neutrinos are trapped inside

〈Reff〉.
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Then the composition inside 〈Reff〉 was updated to ful�ll the following set of equations:

(1) Yn + Yp − 1 = 0 baryon number conservation

(2) Yp − Ye − Yµ = 0 charge neutrality

(3) Yle = Ye− − Ye+ + Yνe − Yν̄e = constant electron lepton flavour conservation

(4) Ylµ = Yµ− − Yµ+ + Yνµ − Yν̄µ = 0 muon lepton flavour conservation

(5) µn − µp = µe− − µνe
(6) µn − µp = µµ− − µνµ
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Figure 6.37.: Particle abundances in terms of particles per baryon at 150 ms post bounce. The

vertical black dashed line marks the position of 〈Reff〉 for the extended reaction set

A special choice is the demand that Yµ = 0. It cannot be derived in post processing how

the net muon number might evolve, even though arguments were given why it should grow to

a positive non-vanishing value. Therefore it appears most reasonable to leave it at the original

value. The result can therefore suggest how the abundances will look like before the di�erence

in the transport of νµ and ν̄µ leads to Yµ > 0. The result for this, for the same time 150 ms

post bounce is shown in Figure 6.38. The muon abundance reaches a maximum of Yµ− = 0.6%.

This is more than an order of magnitude lower than Ye. Also at the position of the e�ective

neutrinosphere the muon abundance is negligible with Yµ− < 10−6. When performing the same

calculations for di�erent times, the maximum muon abundance to be found is Yµ− ∼ 1% roughly

1 second after bounce. One can conclude then that the inclusion of muons will not a�ect the

dynamics of the CCSN, as the small muon fraction does not result in signi�cant changes of

thermodynamical variables such as pressure. Further, comparing the equilibrium abundances

from Figure 6.38 with the production rates from 6.36 it can be assumed that inside the e�ective
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Figure 6.38.: Particle abundances in terms of particles per baryon at 150 ms post bounce, for

new equilibrium including muons. The vertical black dashed line marks the position of 〈Reff〉
for the extended reaction set

neutrinosphere muons will be in equilibrium on timescales less than milliseconds i.e. faster than

the dynamical timescale of the CCSN.

To give a reliable assessment of the e�ect of muons in equilibrium on the neutrino spectra

and the deleptonization of the PNS one needs to perform dynamical simulations. With all

the feedback e�ects that are involved in a PNS intuitive conclusions are di�cult to make.

However, the �ndings in this section certainly serve as an additional argument to actually

include charged-current muonic reactions into dynamical CCSN simulations.

6.7. Weak Magnetism Correction

This section will compare the treatment of weak magnetism as done in this work with weak

magnetism correction factors from the literature that are commonly used in CCSN simulations.

The relevant correction factors were derived in [130]. The idea there was to calculate the e�ect of

weak magnetism in the limit of in�nitely heavy nucleons, somewhat corresponding to the limit

of nonrelativistic nucleons. For this purpose it was assumed that the initial state nucleon is at

rest. However, while this approach should be reasonable in the non-relativistic, non-interacting

limit, one can argue that it misses the correct kinematics, the e�ect of strong interaction

potentials (which were not included) and of thermal nucleon motion at high temperatures. In

order to asses the validity of the correction factors at high densities and temperatures in a

PNS we proceed as follows: First the rates for νe absorption on neutrons and ν̄e absorption on

protons will be calculated without weak magnetism, i.e. F2 = 0, but with the full relativistic
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kinematics and strong interaction potentials. This is the base against which to compare the

di�erent treatments of weak magnetism. One option is to simply calculate the rates according

to the full formalism in this work. The other is to multiply the base rate with the analytic

correction factor obtained at [130]. However, the appropriate factor is actually not given in [130].

Instead that work gives a factor RRec that corrects for nucleon recoil and one that corrects for

nucleon recoil and weak magnetism RRec+WM. Yet, the base rate in this work contains nucleon

recoil already as it considers the full relativistic kinematics without approximations. One can

still derive a factor that only corrects for weak magnetism RWM by

RWM =
RRec+WM

RRec

(6.9)

This was proposed in [19]. The factors in particular are given by
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{
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Here, e = Eν/mN and the plus-sign is for absorption of νe while the minus-sign is for absorption

of ν̄e.
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Figure 6.39.: Relative weak magnetism corrections for νe absorption on neutron. T = 5.0 MeV,

ρ = 1011 g/cm3, Ye = 0.1. �corr� shows the analytic correction factor from [130], �incl� is based

on the derivations in this work.

Figure 6.39 shows the comparison of the di�erent approaches for νe absorption on neutrons,

for T = 5.0 MeV, ρ = 1011 g/cm3, and Ye = 0.1. At this condition the non-relativistic non-

interacting approximation is expected to work properly. Indeed the two curves for the analytic

correction factor and for the inclusion of weak magnetism as done in this work lie almost on

top.
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Figure 6.40.: Relative weak magnetism corrections for ν̄e absorption on proton. T = 5.0 MeV,

ρ = 1011 g/cm3, Ye = 0.1. �corr� shows the analytic correction factor from [130], �incl� is based

on the derivations in this work.

Figure 6.40 shows the same comparison for ν̄e absorption on protons for the same thermody-

namical conditions. Again, both curves lie on top of each other. Both results hold in general

also for similar conditions but lower densities. This is especially interesting for nucleosynthe-

sis in the neutrino driven wind. Since the weak magnetism correction factors are not density

dependent, they also apply at the region of the NDW. Their inclusion is important to achieve

the correct Ye in the NDW, because they a�ect νe and ν̄e in di�erent ways.

Besides, the results in Figures 6.39 and 6.40 are a good cross check for the expressions that

were derived in this work
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Figure 6.41.: Relative weak magnetism corrections for νe absorption on neutron. T = 7.0 MeV,

ρ = 3 × 1013 g/cm3, Ye = 0.05. �corr� shows the analytic correction factor from [130], �incl� is

based on the derivations in this work.

The same comparison for νe absorption but with di�erent thermodynamical conditions is

shown in Figure 6.41. There it is T = 7.0 MeV, ρ = 3 × 1013 g/cm3, Ye = 0.05. One can see

that the analytic correction factor is underestimating the impact of weak magnetism by a few

percent of the base rate.
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Figure 6.42.: Relative weak magnetism corrections for ν̄e absorption on proton. T = 7.0 MeV,

ρ = 3 × 1013 g/cm3, Ye = 0.05. �corr� shows the analytic correction factor from [130], �incl� is

based on the derivations in this work.

Therefore one can see that the weak magnetism factor does indeed start to deviate from

the correct result when strong interactions become important and the approximation of non-

relativistic nucleons becomes worse. Hence, for precise rates at high densities above 1013 g/cm3

these analytic factors should be used with caution. Especially, since the relative mistake is the

largest for low energy neutrinos, which in return are those that decouple at the highest densities.

Again, the same comparison is repeated at large densities for ν̄e absorption on protons in Figure

6.42. Here, the two approaches di�er, too. Yet, the deviation is smaller and not as constant

as for νe absorption. The two curves even cross at one point. Hence, the statements for νe
can in principle be repeated for ν̄e yet the problems with the analytic correction factor at large

densities appear not as signi�cant.

One can conclude, that the analytic correction factors for weak magnetism from [130] and

[19] work very well at the PNS surface and in lower density environments as the neutrino driven

wind. However, above densities of 1013 g/cm3 they have to be used with care as they are the

less correct, the larger the role of strong interactions and the worse the non-relativistic nucleon

approximation. This is especially true for low energy electron neutrinos.
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7. Summary

In this thesis, neutrino interactions in hot and dense matter are studied. In particular, this

work is concerned with neutrino matter interactions that are relevant for neutrino transport

in core-collapse supernovae (CCSNe). It is known that the core collapse of a massive star and

the subsequent explosion release the gravitational binding energy, about 1053 erg, mostly in the

form of neutrinos. Consequently, such large neutrino �uxes play are a major factor in a variety

of processes that are related with the supernova explosion. Simulations of CCSNe agree that

the initial shock, which forms due to a bounce of the core after contracting to supranuclear

density, stalls on the way out due to energy loss by heating the ongoing mass accretion �ow.

Hence, there is no prompt explosion. Most studies �nd that the eventual explosion proceeds in

the so called delayed neutrino-heating mechanism. It predicts that neutrinos which are emitted

from deeper inside heat the region below the stalled shock front. Thereby they deposit enough

energy to revive the shock and eventually produce an explosion. In order to achieve a reliable

explosion model in the delayed neutrino-heating mechanism, accurate treatment of neutrino

interactions in the hot and dense protoneutron star (PNS) is required.

Beyond the explosion itself there are various other processes that depend on the precise

spectra of the emitted neutrinos. For example, neutrino absorption on the PNS surface is

expected to result in a considerable mass out�ow. This out�ow is the so called neutrino driven

wind and it is considered as a possible site of heavy element production via the r-process

nucleosynthesis. The possible path of nucleosynthesis in this scenario depends sensitively on

the thermodynamical conditions and the chemical composition of the neutrino driven wind.

These conditions are in return mostly determined by the spectral properties of the emitted

neutrinos. Further, the direct measurement of neutrino spectra from a next nearby supernova

with modern detectors is expected to give detailed information on the evolution of a CCSN

but also on the state of matter at extremely high densities. This is particularly interesting as

such matter is very di�cult to reproduce in a laboratory on Earth, even in the most modern

heavy ion accelerators, if it is possible at all. However, the information that is contained in

the neutrino spectra will only be obtained, if theory is also able to produce reliable models

for neutrino emission. Another very interesting aspect of neutrino emission is the possibility

of neutrino oscillations in the vicinity of a protoneutron star. If oscillations take place, they

could for example change the outcome of nucleosynthesis or modify the neutrino signal that is

received on earth. However, the predictions for neutrino oscillations are naturally based on the

exact properties of the initial neutrino spectra.

Neutrino transport in a PNS is a unique problem insofar, as neutrinos are trapped at high

densities and cannot simply leave the object after their production. In general, neutrinos in-

teract only via the weak interaction (and gravity). Neutrinos are therefore only very weakly
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coupled to all other particles and reaction probabilities are extremely low. In most environ-

ments, the mean free path of neutrinos is signi�cantly larger than the size of any relevant

object. However, the core of a PNS in a CCSN is so dense and hot that inside a certain region

the mean free path for neutrinos becomes smaller than the size of the PNS. These neutrinos

are then in a thermal and chemical equilibrium with the matter. At lower densities the mean

free path becomes larger and the neutrinos can leave freely. In the transition region between

both regimes neutrino transport is a nontrivial problem. The spectrum of emitted neutrinos

depends on the conditions of the region where they decouple from matter. Yet, the position

of this region is determined by the size of neutrino interactions with matter. In general, the

position of the decoupling region varies for di�erent neutrino energies and di�erent neutrino

�avours. Usually, neutrinos with lower energy decouple further inside as the mean free path

decreases with increasing energy. Electron neutrinos are expected to have the shortest mean

free path of all neutrino types in the neutron rich matter of a protoneutron star, followed by

electron antineutrinos. The µ- and τ -�avour neutrinos are predicted to have the longest mean

free path and consequently to decouple at the highest densities.

Modeling of neutrino transport in a CCSN has then to deal among other things with two

issues. The �rst question is which neutrino reactions are relevant in a PNS. One has to make

sure that all reactions which contribute signi�cantly to a neutrino of any particular energy or

�avour are considered in the transport problem. The second question is how the corresponding

transport properties should be evaluated numerically. Simulations of neutrino transport can

be very computationally demanding. As limited computational resources are among the main

constraints of state of the art supernova simulations, a trade of between accuracy and complexity

has to be made. Therefore one tries to use reasonable approximations in the description of

neutrino interactions which greatly reduce the computational e�ort. Such approximations are

e.g. simpli�ed treatment of strong interactions in the baryonic matter or simpli�ed kinematics

by assuming neutrons and protons to be non-relativistic. All these approximations have to be

used with care, as they work very well in some regimes, yet might fail in others. As neutrino

interactions are very sensitive to e.g. the description of nuclear interactions at high densities,

this can lead to signi�cant shortcomings in the predicted neutrino spectra and all dependent

processes.

It is precisely these questions with which the present work is concerned. First it tries to asses

the relevance of charged-current weak interactions that include muon neutrinos or muons, as

well as the role of inverse neutron decay for neutrino transport in CCSNe. Charged-current

muonic reactions are not implemented in current simulations as they are expected to have

negligibly small rates. It is argued that because of the large muon mass mµ = 105.7 MeV the

production of a muon is almost impossible at the thermodynamical conditions in a PNS or at

least it is signi�cantly suppressed compared to other reaction channels. This thesis questions

these arguments as the particle energies at densities above 1012 g/cm3 in a PNS can in principle

be high enough for muon production. Inverse neutron decay is neglected for the transport of

electron antineutrinos, as the reaction rate is expected to be signi�cantly lower than the rate

for absorption on protons and scattering on neutrons. However at large densities in neutron

rich matter, nuclear interactions e�ectively increase the energy di�erence between neutrons and
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protons. Consequently, absorption of ν̄e is strongly suppressed for low neutrino energies. In

contrast, inverse neutron decay is not a�ected by this problem.

The second project of this work is to improve the description of interactions between neutrinos

and nucleons in neutrino transport. The idea is to derive semi-analytic expressions for these

reactions that are not based on the assumption of nonrelativistic nucleons, and to have a more

accurate treatment of the hadronic weak current including weak magnetism corrections, while

at the same time not increasing the computational demand.

In the �rst part of this work, semi-analytic expressions for transport properties, in particular

the inverse mean free path, of various neutrino interactions are derived. To be precise, the

following reactions are studied: Absorption of νe on neutrons; absorption of ν̄e on protons;

inverse neutron decay; inverse muon decay; conversion of ν̄e and electrons into ν̄µ and muons;

absorption of νµ on neutrons; conversion of νµ and electrons into νe and muons. First the

corresponding matrix elements were derived analytically. The momentum transfer dependence

of the weak coupling and of hadronic coupling constants is ignored, due to the comparably

low energy scale in PNSs. Strong interactions at high densities are implemented on the level

of relativistic mean �eld theory via strong interaction potentials and e�ective nucleon masses.

Also, the hadron weak magnetism coupling is explicitly included. These derivations reproduce

previous �ndings in the literature, but also generalize them to include �nite mass corrections and

strong interaction potentials. Next, the transport properties such as inverse mean free path for

absorption reactions and scattering kernels for scattering reactions are derived from the matrix

elements. These derivations consider the full relativistic kinematics of all participating particles

without further approximations. Also the weak magnetism terms of the matrix elements are

explicitly included to all orders. The resulting expressions are either derived for the �rst time

explicitly or more precisely than most expressions that are used in state of the art simulations,

while being similarly demanding in terms of computational e�ort. This part of the work is

structured in two di�erent problems, one for purely leptonic reactions and one for interactions

between neutrinos and nucleons.

After these purely analytic derivations, the transport properties are then evaluated numeri-

cally for PNS conditions. Therefore matter and neutrino pro�les from a 1-dimensional general

relativistic hydrodynamic CCSN simulation with full Boltzmann neutrino transport are used to

determine the relevant thermodynamical variables and the chemical composition. The impact

of the new reactions is compared to a standard set of neutrino reactions which is representative

for state of the art supernova simulations. It is found that for ν̄e inverse muon decay is an

important contribution to the inverse mean free path for neutrino energies less than 5−10 MeV

during the �rst second after core bounce. Likewise, inverse neutron decay is important in the

neutrino decoupling region for the same neutrino energies after the �rst seconds post bounce.

This is due to the decoupling region eventually moving to densities above 1013 g/cm3 as the

PNS cools and deleptonizes. At these densities, the energy di�erence between neutrons and

protons grows signi�cantly because of nuclear interactions. Therefore inverse neutron decay is

favoured above absorption on protons for low energy ν̄e. For νµ it is found that absorption on

neutrons is important only for the decoupling of neutrinos with extremely high energies above

95 MeV. Below this value and down to energies between 30− 50 MeV the conversion of νµ and
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electrons into νe and muons is a major inelastic reaction channel, comparable to scattering of

νµ on electrons. Eventually for small neutrino energies below 5−10 MeV, inverse muon decay is

an important reaction during the �rst second after bounce for νµ, as it is for ν̄e. It is concluded

that the charged-current weak muonic reactions and inverse neutron decay should be included

in dynamical simulations of core collapse supernovae. It is expected that they will modify the

spectra of ν̄e and νµ. Furthermore, these reactions couple di�erent neutrino �avours in a rather

asymmetric way. For example, high energy ν̄e can be converted into low energy ν̄µ deep in the

PNS. The latter can easily leave the core and consequently a�ect deleptonization rates. Similar

arguments can be made for the conversion of high energy νµ into low energy νe. However, due

to the various feedback mechanisms that are active in supernovae, it is nigh impossible to assess

the spectral changes in the post-processing manner of this thesis.

The relevance of muonic reactions also emphasizes that muons will be present in the stellar

core early on during the supernova evolution. The exact amount and possible consequences on

neutrino emissions are again di�cult to predict without performing dynamical simulations.

The approach to include weak magnetism that is chosen in this work is compared to analytic

approximations from the literature. It is found that for neutrino transport at high densities in

a PNS weak magentism is not properly described by such a simplifying approximation.

Concluding the overall study, it is strongly recommended to implement both the new reactions

and the improved semi-analytic transport expressions from this work into dynamical CCSN

simulations. Only then can the possible impact on explosion dynamics, PNS deleptonization

and cooling, and neutrino spectra really be evaluated.

A natural yet nontrivial extension of this work is the derivation of scattering kernels for

neutrino scattering on nucleons, including relativistic nucleon kinematics, strong interaction

potenials, and weak magnetism corrections. Another interesting project is the inclusion of

pseudoscalar coupling for muonic reactions with nucleons.
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A. Traces of γ-Matrices

All traces over odd numbers of γ-matrices vanish. For traces over even numbers one can �nd the

following rules

Tr [γαγβ] = 4gαβ, (A.1)

Tr [γαγβγδγε] = 4 (gαβgδε − gαδgβε + gαεgβδ) , (A.2)

Tr [γαγβγδγεγκγρ] = 4 [gαβ (gδεgκρ − gδκgερ + gδρgεκ)− gαδ (gβεgκρ − gβκgερ + gβρgεκ) (A.3)

+ gαε (gβδgκρ − gβκgδρ + gβρgδκ)− gακ (gβδgερ − gβεgδρ + gβρgδε)

+ gαρ (gβδgεκ − gβεgδκ + gβκgδε)] ,

Tr [γ5] = 0, (A.4)

Tr [γ5γαγβ] = 0, (A.5)

Tr [γ5γαγβγδγε] = 4iεαβδε. (A.6)

For matrix elements that correspond to weak magnetism one has to calculate traces that include σαβ ,

the commutator of the γ-matrices.

σαβ =
i

2
[γα, γβ] =

i

2
(γαγβ − γβγα) . (A.7)

One can then derive the following rules

Tr [σαβγδγε] =
i

2
(Tr [γαγβγδγε]− Tr [γβγαγδγε]) = 4i (−gαδgβε + gαεgβδ) , (A.8)

Tr [σαβσδε] =
i

2
(Tr [σαβγδγε]− Tr [σαβγεγδ]) = 4 (gαδgβε − gαεgβδ) , (A.9)

Tr [γ5σαβγδγε] =
i

2
(Tr [γ5γαγβγδγε]− Tr [γ5γβγαγδγε]) = −4εαβδε, (A.10)

Tr [γ5σαβγδγε] = Tr [γ5γασβδγε] = Tr [γ5γαγβσδε] , (A.11)

Tr [σαβγδσεκγρ] = − 1

4
(Tr [γαγβγδγεγκγρ]− Tr [γβγαγδγεγκγρ]

−Tr [γαγβγδγκγεγρ] + Tr [γβγαγδγκγεγρ])

= 4 [gαδ (gβεgκρ − gβκgερ)− gαε (gβδgκρ − gβκgδρ + gβρgδκ) (A.12)

+gακ (gβδgερ − gβεgδρ + gβρgδε) + gαρ (gβεgδκ − gβκgδε)] .

For the fully antisymmetric tensor εαβδε the following relations are usefull

εαβδεε
αβκρ = −2

(
δκδ δ

ρ
ε − δ

ρ
δ δ
κ
ε

)
, (A.13)

εαβδεε
αβδκ = −6δκε . (A.14)
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B. Derivation of
〈
|M |2

〉
B.1. Leptonic Reactions

νµ/ν̄µ + e− → νµ/ν̄µ + e−

Calculation of the Electron Tensor

∑
t,t′

Eαβ
(
t, t′
)

=
∑
t,t′

[
ūt
′

e−γα
(
−1 + 4s2

W + γ5

)
ute−
] [
ūte−γβ

(
−1 + 4s2

W + γ5

)
ut
′

e−

]
=
∑
t′

[
ūt
′

e−γα
(
−1 + 4s2

W + γ5

) (
γδp

δ
e− +me

)
γβ
(
−1 + 4s2

W + γ5

)
ut
′

e−

]
= Tr

[
γα
(
−1 + 4s2

W + γ5

) (
γδp

δ
e− +me

)
γβ
(
−1 + 4s2

W + γ5

) (
γεp
′ε
e− +me

)]
= pδe−p

′ε
e−Tr

[
γα
(
−1 + 4s2

W + γ5

)
γδγβ

(
−1 + 4s2

W + γ5

)
γε
]

+m2
eTr

[
γα
(
−1 + 4s2

W + γ5

)
γβ
(
−1 + 4s2

W + γ5

)]
.

De�ne V ≡ −1 + 4s2
W .∑

t,t′

Eαβ
(
t, t′
)

= pδe−p
′ε
e−Tr

[(
V 2 + 1− 2V γ5

)
γαγδγβγε

]
+m2

eTr
[(
V 2 − 1

)
γαγβ

]
= pδe−p

′ε
e−
[(
V 2 + 1

)
Tr [γαγδγβγε]− 2V Tr [γ5γαγδγβγε]

]
+m2

e

(
V 2 − 1

)
Tr [γαγβ]

= 4
(
V 2 + 1

) [
pe−,αp

′
e−,β + pe−,βp

′
e−,α − gαβ

(
pe− · p′e−

)]
+ i8V εαβδεp

δ
e−p
′ε
e− + 4m2

e

(
V 2 − 1

)
gαβ

= 8
{(

1− 4s2
W + 8s4

W

) [
pe−,αp

′
e−,β + pe−,βp

′
e−,α − gαβ

(
pe− · p′e−

)]
−i
(
1− 4s2

W

)
εαβδεp

δ
e−p
′ε
e− −m2

e

(
4s2
W − 8s4

W

)
gαβ

}
.

Piecewise Contraction of Neutrino Tensor and Electron Tensor

8
(
pανµp

′β
νµ

)
× 8

(
1− 4s2

W + 8s4
W

) [
pe−,αp

′
e−,β + pe−,βp

′
e−,α − gαβ

(
pe− · p′e−

)]
=64

(
1− 4s2

W + 8s4
W

) [(
pνµ · pe−

) (
p′νµ · p

′
e−

)
+
(
pνµ · p′e−

) (
p′νµ · pe−

)
−
(
pνµ · p′νµ

) (
pe− · p′e−

)]
,

8
(
pβνµp

′α
νµ

)
× 8

(
1− 4s2

W + 8s4
W

) [
pe−,αp

′
e−,β + pe−,βp

′
e−,α − gαβ

(
pe− · p′e−

)]
=64

(
1− 4s2

W + 8s4
W

) [(
pνµ · pe−

) (
p′νµ · p

′
e−

)
+
(
pνµ · p′e−

) (
p′νµ · pe−

)
−
(
pνµ · p′νµ

) (
pe− · p′e−

)]
,

− 8gαβ
(
pνµ · p′νµ

)
× 8

(
1− 4s2

W + 8s4
W

) [
pe−,αp

′
e−,β + pe−,βp

′
e−,α − gαβ

(
pe− · p′e−

)]
= 64

(
1− 4s2

W + 8s4
W

) [
2
(
pνµ · p′νµ

) (
pe− · p′e−

)]
,
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− i8
(
εαβδεpνµ,δp

′
νµ,ε

)
× 8

(
1− 4s2

W + 8s4
W

) [
pe−,αp

′
e−,β + pe−,βp

′
e−,α − gαβ

(
pe− · p′e−

)]
= 0,

− 8
[
pανµp

′β
νµ + pβνµp

′α
νµ − g

αβ
(
pνµ · p′νµ

)]
× i8

(
1− 4s2

W

)
εαβκρp

κ
e−p
′ρ
e−

= 0,

i8
(
εαβδεpνµ,δp

′
νµ,ε

)
× i8

(
1− 4s2

W

)
εαβκρp

κ
e−p
′ρ
e−

= −64
(
1− 4s2

W

) [
−2
(
δδκδ

ε
ρ − δδρδεκ

)]
pνµ,δp

′
νµ,εp

κ
e−p
′ρ
e−

= 64
(
1− 4s2

W

) [
2
(
pνµ · pe−

) (
p′νµ · p

′
e−

)
− 2

(
pνµ · p′e−

) (
p′νµ · pe−

)]
,

− 8
[
pανµp

′β
νµ + pβνµp

′α
νµ − g

αβ
(
pνµ · p′νµ

)]
× 8m2

e

(
4s2
W − 8s4

W

)
gαβ

= 64m2
e

(
4s2
W − 8s4

W

) [
2
(
pνµ · p′νµ

)]
.

νµ + e− → νe + µ−

Piecewise Contraction of Muon Tensor and Electron Tensor

8
(
pανµp

′β
µ−

)
× 8

[
pe−,αp

′
νe,β + pe−,βp

′
νe,α − gαβ

(
pe− · p′νe

)]
=64

[(
pνµ · pe−

) (
p′µ− · p

′
νe

)
+
(
pνµ · p′νe

) (
p′µ− · pe−

)
−
(
pνµ · p′µ−

) (
pe− · p′νe

)]
,

8
(
pβνµp

′α
µ−

)
× 8

[
pe−,αp

′
νe,β + pe−,βp

′
νe,α − gαβ

(
pe− · p′νe

)]
=64

[(
pνµ · pe−

) (
p′µ− · p

′
νe

)
+
(
pνµ · p′νe

) (
p′µ− · pe−

)
−
(
pνµ · p′µ−

) (
pe− · p′νe

)]
,

−8gαβ
(
pνµ · p′µ−

)
× 8

[
pe−,αp

′
νe,β + pe−,βp

′
νe,α − gαβ

(
pe− · p′νe

)]
=64

[
2
(
pνµ · p′µ−

) (
pe− · p′νe

)]
,

−i8
(
εαβδεpνµ,δp

′
µ−,ε

)
× 8

[
pe−,αp

′
νe,β + pe−,βp

′
νe,α − gαβ

(
pe− · p′νe

)]
=0,

−i8
[
pανµp

′β
µ− + pβνµp

′α
µ− − gαβ

(
pνµ · p′µ−

)]
× 8

(
εαβκρp

κ
e−p
′ρ
νe

)
=0,

i8
(
εαβδεpνµ,δp

′
µ−,ε

)
× i8εαβκρpκe−p

′ρ
νe

= −64
[
−2
(
δδκδ

ε
ρ − δδρδεκ

)]
pνµ,δp

′
µ−,εp

κ
e−p
′ρ
νe

= 64
[
2
(
pνµ · pe−

) (
p′µ− · p

′
νe

)
− 2

(
pνµ · p′νe

) (
p′µ− · pe−

)]
.
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B.2. Semileptonic Reactions

νe + n→ p+ e−

Vector Element Hαβ
V V

∑
s,s′

Hαβ
V V = G2

V Tr
[
γα
(
γδp∗n,δ +m∗n

)
γβ
(
γεp∗p,ε +m∗p

)]
= G2

V p
∗
n,δp

∗
p,εTr

[
γαγδγβγε

]
+G2

Vm
∗
nm
∗
pTr

[
γαγβ

]
= 4G2

V

[
p∗αn p

∗β
p + p∗βn p

∗α
p − gαβ

(
p∗n · p∗p

)
+ gαβm∗nm

∗
p

]
.

Axialvector Element Hαβ
AA

∑
s,s′

Hαβ
AA = G2

ATr
[
γαγ5

(
γδp∗n,δ +m∗n

)
γβγ5

(
γεp∗p,ε +m∗p

)]
= G2

Ap
∗
n,δp

∗
p,εTr

[
γαγδγβγε

]
−G2

Am
∗
nm
∗
pTr

[
γαγβ

]
= 4G2

A

[
p∗αn p

∗β
p + p∗βn p

∗α
p − gαβ

(
p∗n · p∗p

)
− gαβm∗nm∗p

]
.

Vector-Axialvector Element Hαβ
V A

∑
s,s′

Hαβ
V A =−GVGATr

[
γα
(
γδp∗n,δ +m∗n

)
γβγ5

(
γεp∗p,ε +m∗p

)]
−GVGATr

[
γαγ5

(
γδp∗n,δ +m∗n

)
γβ
(
γεp∗p,ε +m∗p

)]
=GVGATr

[
γ5γ

α
(
γδp∗n,δ −m∗n

)
γβ
(
γεp∗p,ε +m∗p

)]
GVGATr

[
γ5γ

α
(
γδp∗n,δ +m∗n

)
γβ
(
γεp∗p,ε +m∗p

)]
= 2GVGAp

∗
n,δp

∗
p,εTr

[
γ5γ

αγδγβγε
]

= 8iGVGAp
∗
n,δp

∗
p,εε

αδβε = −8iGVGAp
∗
n,δp

∗
p,εε

αβδε.

Vector-Tensor Element Hαβ
V F

∑
s,s′

Hαβ
V F =

iGV F2

2mN

{
−Tr

[
γα
(
γδp∗n,δ +m∗n

)
σβλqλ

(
γεp∗p,ε +m∗p

)]
+Tr

[
σαηqη

(
γδp∗n,δ +m∗n

)
γβ
(
γεp∗p,ε +m∗p

)]}
=
iGV F2

2mN

{
−p∗n,δqλm∗pTr

[
γαγδσβλ

]
− p∗p,εqλm∗nTr

[
γασβλγε

]
+p∗n,δqηm

∗
pTr

[
σαηγδγβ

]
+ p∗p,εqηm

∗
nTr

[
σαηγβγε

]}
=
iGV F2

2mN

{
p∗n,δqλm

∗
p

(
Tr
[
σαλγδγβ

]
− Tr

[
γαγδσβλ

])
+p∗p,δqλm

∗
n

(
Tr
[
σαλγβγδ

]
− Tr

[
γασβλγδ

])}
.
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By permutation of arguments in the traces and applying the corresponding rules for traces from sec.A

one �nds then∑
s,s′

Hαβ
V F =

iGV F2

2mN

{
p∗n,δqλm

∗
p

(
Tr
[
σαλγδγβ

]
− Tr

[
σβλγαγδ

])
+p∗p,δqλm

∗
n

(
Tr
[
σαλγβγδ

]
− Tr

[
σβλγδγα

])}
=− 2GV F2

mN

{
p∗n,δqλm

∗
p

(
−gαδgβλ + gαβgδλ + gαβgδλ − gαλgβδ

)
+p∗p,δqλm

∗
n

(
−gαβgδλ + gαδgβλ + gαλgβδ − gαβgδλ

)}
=− 2GV F2

mN

{
qλ
(
p∗n,δm

∗
p − p∗p,δm∗n

) (
2gαβgδλ − gαδgβλ − gαλgβδ

)}
=

2GV F2

mN

{
2gαβ

[
m∗n
(
q · p∗p

)
−m∗p (q · p∗n)

]
+ qβ

(
p∗αn m

∗
p − p∗αp m∗n

)
+ qα

(
p∗βn m

∗
p − p∗βp m∗n

)}
.

Axialvector-Tensor Element Hαβ
AF

∑
s,s′

Hαβ
AF =− iGAF2

2mN

{
−Tr

[
γαγ5

(
γδp∗n,δ +m∗n

)
σβλqλ

(
γεp∗p,ε +m∗p

)]
+Tr

[
σαηqη

(
γδp∗n,δ +m∗n

)
γβγ5

(
γεp∗p,ε +m∗p

)]}
.

Proceeding analogous to Hαβ
V F one �nds

∑
s,s′

Hαβ
AF =− iGAF2

2mN

{
p∗n,δqλm

∗
p

(
Tr
[
σαλγδγβγ5

]
− Tr

[
γαγ5γ

δσβλ
])

+p∗p,δqλm
∗
n

(
Tr
[
σαλγβγ5γ

δ
]
− Tr

[
γαγ5σ

βλγδ
])}

=− iGAF2

2mN

{
p∗n,δqλm

∗
p

(
Tr
[
γ5σ

αλγδγβ
]

+ Tr
[
γ5γ

αγδσβλ
])

+p∗p,δqλm
∗
n

(
−Tr

[
γ5σ

αλγβγδ
]

+ Tr
[
γ5γ

ασβλγδ
])}

=
2iGAF2

mN

{
p∗n,δqλm

∗
p

(
εαλδβ + εαδβλ

)
+ p∗p,δqλm

∗
n

(
−εαλβδ + εαβλδ

)}
=− 4iGAF2

mN

(
p∗n,δqλm

∗
p + p∗p,δqλm

∗
n

)
εαβδλ.

Tensor Element Hαβ
FF

∑
s,s′

Hαβ
FF =

F 2
2

4m2
N

qηqλTr
[
σαη

(
γδp∗n,δ +m∗n

)
σβλ

(
γεp∗p,ε +m∗p

)]
=

F 2
2

4m2
N

qηqλ

{
m∗nm

∗
pTr

[
σαησβλ

]
+ p∗n,δp

∗
p,εTr

[
σαηγδσβλγε

]}
=
F 2

2

m2
N

qηqλ

{
m∗nm

∗
p

(
gαβgηλ − gαλgβη

)
+ p∗n,δp

∗
p,ε×[

gαδ
(
gβηgελ − gηλgβε

)
− gαβ

(
gδηgελ − gηλgδε + gεηgδλ

)
+gαλ

(
gδηgβε − gβηgδε + gεηgβδ

)
+ gαε

(
gβηgδλ − gηλgβδ

)]}
,
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∑
s,s′

Hαβ
FF =

F 2
2

m2
N

{
m∗nm

∗
p

(
gαβq2 − qαqβ

)
+
[
p∗αn q

β
(
p∗p · q

)
− p∗αn p∗βp q2 − gαβ (p∗n · q)

(
p∗p · q

)
+ gαβ

(
p∗n · p∗p

)
q2 − gαβ (p∗n · q)

(
p∗p · q

)
+ qαp∗βp (p∗n · q)− qαqβ

(
p∗n · p∗p

)
+qαp∗βn

(
p∗p · q

)
+ p∗αp q

β (p∗n · q)− p∗αp p∗βn q2
]}

=
F 2

2

m2
N

{
m∗nm

∗
p

(
gαβq2 − qαqβ

)
+
(
gαβ

[(
p∗n · p∗p

)
q2 − 2 (p∗n · q)

(
p∗p · q

)]
+ p∗αn

[
qβ
(
p∗p · q

)
− p∗βp q2

]
+ p∗αp

[
qβ (p∗n · q)− p∗βn q2

]
+qα

[
p∗βn
(
p∗p · q

)
+ p∗βp (p∗n · q)− qβ

(
p∗n · p∗p

)])}
.

Piecewise Contraction of Vector Matrix Element
〈
|M |2

〉
V V

and Axialvector Matrix

Element
〈
|M |2

〉
AA

4G2
V p
∗α
n p
∗β
p × 8

[
pνe,αpe−,β + pνe,βpe−,α − gαβ (pνe · pe−)− iεαβκρpκνep

ρ
e−

]
= 32G2

V

[
(p∗n · pνe)

(
p∗p · pe−

)
+ (p∗n · pe−)

(
p∗p · pνe

)
−
(
p∗n · p∗p

)
(pνe · pe−)

]
,

4G2
V p
∗α
p p
∗β
n × 8

[
pνe,αpe−,β + pνe,βpe−,α − gαβ (pνe · pe−)− iεαβκρpκνep

ρ
e−

]
= 32G2

V

[
(p∗n · pνe)

(
p∗p · pe−

)
+ (p∗n · pe−)

(
p∗p · pνe

)
−
(
p∗n · p∗p

)
(pνe · pe−)

]
,

− 4G2
V g

αβ
(
p∗n · p∗p

)
× 8

[
pνe,αpe−,β + pνe,βpe−,α − gαβ (pνe · pe−)− iεαβκρpκνep

ρ
e−

]
= 64G2

V

(
p∗n · p∗p

)
(pνe · pe−) ,

4G2
V g

αβm∗nm
∗
p × 8

[
pνe,αpe−,β + pνe,βpe−,α − gαβ (pνe · pe−)− iεαβκρpκνep

ρ
e−

]
=− 64G2

Vm
∗
nm
∗
p (pνe · pe−) .

Summing all terms up, the matrix element becomes

4
〈
|M |2

〉
V V

G2
FV

2
ud

= 64G2
V

[
(p∗n · pνe)

(
p∗p · pe−

)
+ (p∗n · pe−)

(
p∗p · pνe

)
−m∗nm∗p (pνe · pe−)

]
.

For the element
〈
|M |2

〉
AA

the only di�erence arises from the sign of the m∗nm
∗
p-term.

4
〈
|M |2

〉
AA

G2
FV

2
ud

= 64G2
A

[
(p∗n · pνe)

(
p∗p · pe−

)
+ (p∗n · pe−)

(
p∗p · pνe

)
+m∗nm

∗
p (pνe · pe−)

]
.

Contraction of Vector-Axialvector Matrix Element
〈
|M |2

〉
V A

4
〈
|M |2

〉
AA

G2
FV

2
ud

= − 8iGVGAp
∗
n,δp

∗
p,εε

αβδε × 8
[
pνe,αpe−,β + pνe,βpe−,α − gαβ (pνe · pe−)− iεαβκρpκνep

ρ
e−

]
=− 64GVGAp

∗
n,δp

∗
p,εp

κ
νep
′ρ
e−
[
−2
(
δκδ δ

ρ
ε − δ

ρ
δ δ
κ
ε

)]
= 128GVGA

[
(p∗n · pνe)

(
p∗p · pe−

)
− (p∗n · pe−)

(
p∗p · pνe

)]
.
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Piecewise Contraction of Vector-Tensor Matrix Element
〈
|M |2

〉
V F

4GV F2

mN
gαβ

[
m∗n
(
q · p∗p

)
−m∗p (q · p∗n)

]
× 8

[
pνe,αpe−,β + pνe,βpe−,α − gαβ (pνe · pe−)− iεαβκρpκνep

ρ
e−

]
=

64GV F2

mN
(pνe · pe−)

[
m∗p (q · p∗n)−m∗n

(
q · p∗p

)]
,

2GV F2

mN
qβ
(
p∗αn m

∗
p − p∗αp m∗n

)
× 8

[
pνe,αpe−,β + pνe,βpe−,α − gαβ (pνe · pe−)− iεαβκρpκνep

ρ
e−

]
=

16GV F2

mN

{[
(p∗n · pνe)m∗p −

(
p∗p · pνe

)
m∗n
]

(pe− · q) +
[
(p∗n · pe−)m∗p −

(
p∗p · pe−

)
m∗n
]

(pνe · q)

+
[(
p∗p · q

)
m∗n − (p∗n · q)m∗p

]
(pνe · pe−)

}
,

2GV F2

mN
qα
(
p∗βn m

∗
p − p∗βp m∗n

)
× 8

[
pνe,αpe−,β + pνe,βpe−,α − gαβ (pνe · pe−)− iεαβκρpκνep

ρ
e−

]
=

16GV F2

mN

{[
(p∗n · pνe)m∗p −

(
p∗p · pνe

)
m∗n
]

(pe− · q) +
[
(p∗n · pe−)m∗p −

(
p∗p · pe−

)
m∗n
]

(pνe · q)

+
[(
p∗p · q

)
m∗n − (p∗n · q)m∗p

]
(pνe · pe−)

}
.

Summing all terms up, the matrix element becomes

4
〈
|M |2

〉
V F

G2
FV

2
ud

=
32GV F2

mN

{[
(p∗n · pνe)m∗p −

(
p∗p · pνe

)
m∗n
]

(pe− · q)

+
[
(p∗n · pe−)m∗p −

(
p∗p · pe−

)
m∗n
]

(pνe · q) +
[
(p∗n · q)m∗p −

(
p∗p · q

)
m∗n
]

(pνe · pe−)
}
.

Replacing further the momentum transfer by q = pνe − pe− this can be transformed into.

4
〈
|M |2

〉
V F

G2
FV

2
ud

=
32GV F2

mN

{
2
[
(p∗n · pνe)m∗p −

(
p∗p · pνe

)
m∗n − (p∗n · pe−)m∗p +

(
p∗p · pe−

)
m∗n
]

(pνe · pe−)

−
[
(p∗n · pνe)m∗p −

(
p∗p · pνe

)
m∗n
]
m2
e

}
.

Contraction of Axialvector-Tensor Matrix Element
〈
|M |2

〉
AF

4
〈
|M |2

〉
AF

G2
FV

2
ud

=
−4iGAF2

mN

(
p∗n,δqλm

∗
p + p∗p,δqλm

∗
n

)
εαβδλ × 8

[
pνe,αpe−,β + pνe,βpe−,α − gαβ (pνe · pe−)− iεαβκρpκνep

ρ
e−

]
=
−32GAF2

mN

(
p∗n,δm

∗
p + p∗p,δm

∗
n

)
qλp

κ
νep
′ρ
e−
[
−2
(
δκδ δ

ρ
λ − δ

ρ
δ δ
κ
λ

)]
=

64GAF2

mN

{[
(p∗n · pνe)m∗p +

(
p∗p · pνe

)
m∗n
]

(pe− · q)−
[
(p∗n · pe−)m∗p +

(
p∗p · pe−

)
m∗n
]

(pνe · q)
}
.

Replacing again q = pνe − pe− the alternative notation reads

4
〈
|M |2

〉
AF

G2
FV

2
ud

=
64GAF2

mN

{[
(p∗n · pνe)m∗p +

(
p∗p · pνe

)
m∗n + (p∗n · pe−)m∗p +

(
p∗p · pe−

)
m∗n
]

(pνe · pe−)

−
[
(p∗n · pνe)m∗p +

(
p∗p · pνe

)
m∗n
]
m2
e

}
.
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Piecewise Contraction of Tensor Matrix Element
〈
|M |2

〉
FF

F 2
2

m2
N

m∗nm
∗
p

(
gαβq2 − qαqβ

)
× 8

[
pνe,αpe−,β + pνe,βpe−,α − gαβ (pνe · pe−)− iεαβκρpκνep

ρ
e−

]
=− 8F 2

2

m2
N

m∗nm
∗
p

[
q2
(
pνe · p′e−

)
+ 2 (pνe · q) (pe− · q)

]
,

F 2
2

m2
N

gαβ
[(
p∗n · p∗p

)
q2 − 2 (p∗n · q)

(
p∗p · q

)]
× 8

[
pνe,αpe−,β + pνe,βpe−,α − gαβ (pνe · pe−)− iεαβκρpκνep

ρ
e−

]
=

16F 2
2

m2
N

[
2 (p∗n · q)

(
p∗p · q

)
−
(
p∗n · p∗p

)
q2
]

(pνe · pe−) ,

F 2
2

m2
N

p∗αn

[
qβ
(
p∗p · q

)
− p∗βp q2

]
× 8

[
pνe,αpe−,β + pνe,βpe−,α − gαβ (pνe · pe−)− iεαβκρpκνep

ρ
e−

]
=

8F 2
2

m2
N

[
(p∗n · pνe)

(
p∗p · q

)
(pe− · q)− (p∗n · pνe)

(
p∗p · pe−

)
q2 + (p∗n · pe−)

(
p∗p · q

)
(pνe · q)

− (p∗n · pe−)
(
p∗p · pνe

)
q2 − (p∗n · q)

(
p∗p · q

)
(pνe · pe−) +

(
p∗n · p∗p

)
(pνe · pe−) q2

]
,

F 2
2

m2
N

p∗αp

[
qβ (p∗n · q)− p∗βn q2

]
× 8

[
pνe,αpe−,β + pνe,βpe−,α − gαβ (pνe · pe−)− iεαβκρpκνep

ρ
e−

]
=

8F 2
2

m2
N

[(
p∗p · pνe

)
(p∗n · q) (pe− · q)−

(
p∗p · pνe

)
(p∗n · pe−) q2 +

(
p∗p · pe−

)
(p∗n · q) (pνe · q)

−
(
p∗p · pe−

)
(p∗n · pνe) q2 −

(
p∗p · q

)
(p∗n · q) (pνe · pe−) +

(
p∗p · p∗n

)
(pνe · pe−) q2

]
,

F 2
2

m2
N

qα
[
p∗βn
(
p∗p · q

)
+ p∗βp (p∗n · q)− qβ

(
p∗n · p∗p

)]
× 8

[
pνe,αpe−,β + pνe,βpe−,α − gαβ (pνe · pe−)

−iεαβκρpκνep
ρ
e−

]
=

8F 2
2

m2
N

[
(p∗n · pe−)

(
p∗p · q

)
(pνe · q) +

(
p∗p · pe−

)
(p∗n · q) (pνe · q)−

(
p∗n · p∗p

)
(pνe · q) (pe− · q)

+ (p∗n · pνe)
(
p∗p · q

)
(pe− · q) +

(
p∗p · pνe

)
(p∗n · q) (pe− · q)−

(
p∗n · p∗p

)
(pνe · q) (pe− · q)

−2 (p∗n · q)
(
p∗p · q

)
(pνe · pe−) +

(
p∗n · p∗p

)
(pνe · pe−) q2

]
.

Summing up all terms the tensor matrix element becomes

4
〈
|M |2

〉
FF

G2
FV

2
ud

=
8F 2

2

m2
N

[(
p∗n · p∗p

)
(pνe · pe−) q2 + 2 (p∗n · pνe)

(
p∗p · q

)
(pe− · q)

− 2
(
p∗n · p∗p

)
(pνe · q) (pe− · q)− 2 (p∗n · pνe)

(
p∗p · pe−

)
q2 + 2 (p∗n · pe−)

(
p∗p · q

)
(pνe · q)

−2 (p∗n · pe−)
(
p∗p · pνe

)
q2 + 2 (p∗n · q)

(
p∗p · pνe

)
(pe− · q) + 2 (p∗n · q)

(
p∗p · pe−

)
(pνe · q)

−m∗nm∗p
[
(pνe · pe−) q2 + 2 (pνe · q) (pe− · q)

]]
.

Replacing q = pνe − pe− and q2 = m2
e − 2 (pνe · pe−) an alternative notation reads

4
〈
|M |2

〉
FF

G2
FV

2
ud

=
8F 2

2

m2
N

{
4 (pe− · pνe)

[
(p∗n · pνe)

(
p∗p · pνe

)
+ (p∗n · pe−)

(
p∗p · pe−

)]
−m2

e

[
4 (p∗n · pνe)

(
p∗p · pνe

)
+
(
p∗n · p∗p

)
(pνe · pe−)

]
+m∗nm

∗
p

[
4 (pνe · pe−)2 − 3 (pνe · pe−)m2

e

]}
.
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B.3. Semileptonic Matrix Elements for Cross Sections

B.3.1. Capture of Electron Neutrinos

Axialvector-Tensor Matrix Element

First one needs to derive several simple relations between the four-momenta that will then be used

to transform the matrix element. The e�ective proton four momentum p∗p is given through the four

momenta of the other particles by

p∗p = pp − (Up, 0) = p∗n + pνe − pe− + (∆U, 0) with ∆U = Un − Up. (B.1)

Using this relation to replace p∗p one can derive the following equation

(p∗n · pνe)
(
p∗p · pe−

)
− (p∗n · pe−)

(
p∗p · pνe

)
= [p∗n · (pνe + pe−)] (pνe · pe−) + (p∗n · pνe)

(
∆UEe −m2

e

)
− (p∗n · pe−) ∆UEνe . (B.2)

Next one de�nes the constant Q by

Q ≡ 1

2

(
m∗2n −m∗2p

)
. (B.3)

Then the following relation can be derived through four momentum conservation

(p∗n − pe−)2 =
[
p∗p − pνe − (∆U, 0)

]2
,

⇒ (p∗n · pe−) =
(
p∗p · pνe

)
+Q+

m2
e

2
− ∆U2

2
+ ∆U

(
E∗p − Eνe

)
. (B.4)

Using again (B.1) in (B.4) one gets

(p∗n · pe−) = (p∗n · pνe)− (pνe · pe−) +Q+
m2
e

2
− ∆U2

2
+ ∆U E∗p . (B.5)

Plugging (B.5) into the RHS of (B.2) one gets

(p∗n · pνe)
(
p∗p · pe−

)
− (p∗n · pe−)

(
p∗p · pνe

)
= [p∗n · (pνe + pe−)] (pνe · pe−) (B.6)

− (p∗n · pνe)
[
m2
e + ∆U (Eνe − Ee−)

]
+ (pνe · pe−) ∆UEνe −∆UEνe

(
Q+

m2
e

2
+ ∆UE∗p −

∆U2

2

)
.

The axialvector-tensor matrix element is given in Eq.(5.3) by〈
|M |2

〉
AF

= 16G2
FV

2
udGAF2

m∗N
mN

{
2 [p∗n · (pνe + pe−)] (pνe · pe−)− 2 (p∗n · pνe)m2

e

+∆U
[
(pνe · pe−) (Eνe + Ee−)−m2

eEνe
]}
.

Solving (B.6) for [p∗n · (pνe + pe−)] (pνe · pe−) and using the result in
〈
|M |2

〉
AF

, the matrix element

becomes〈
|M |2

〉
AF

= 16G2
FV

2
udGAF2

m∗N
mN

{
2 (p∗n · pνe)

(
p∗p · pe−

)
− 2 (p∗n · pe−)

(
p∗p · pνe

)
(B.7)

+2 (p∗n · pνe) (Eνe − Ee−) ∆U + (pνe · pe−) (Ee− − Eνe) ∆U + ∆UEνe
(
2Q+ 2∆UE∗p + ∆U2

)}
.
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Tensor Matrix Element

The tensor matrix element is given by Eq.(3.17)〈
|M |2

〉
FF

2G2
FV

2
udF

2
2m
−2
N

= 4 (pνe · pe−)
[
(p∗n · pνe)

(
p∗p · pνe

)
+ (p∗n · pe−)

(
p∗p · pe−

)]
−m2

e

[
4 (p∗n · pνe)

(
p∗p · pνe

)
+
(
p∗n · p∗p

)
(pνe · pe−)

]
+m∗nm

∗
p

[
4 (pνe · pe−)2 − 3 (pνe · pe−)m2

e

]
.

To transform it into a more suitable form it is helpfull to derive some additional relations. With (B.1)

one �nds (
p∗p · pνe

)
= (p∗n · pνe)− (pνe · pe−) + ∆UEνe . (B.8)

Another relation that follows from (B.1) is(
p∗n · p∗p

)
= m∗2n + (p∗n · pνe)− (p∗n · pe−) + ∆UE∗n.

Now (B.5) can be used on this expression to yield

(
p∗n · p∗p

)
= (pνe · pe−) +

[
m∗2n −Q−

m2
e

2
+

∆U2

2
+ ∆U

(
E∗n − E∗p

)]
. (B.9)

One can derive yet another relation from (B.1)(
p∗p · pe−

)
= (p∗n · pe−) + (pνe · pe−)−m2

e + ∆UEe− .

Using (B.5) again this transforms into

(
p∗p · pe−

)
= (p∗n · pνe) +Q− m2

e

2
− ∆U2

2
+ ∆U

(
E∗p + Ee−

)
. (B.10)

In order to transform the tensor matrix element we de�ne the term A by

A ≡

〈
|M |2

〉
FF

2G2
FV

2
udF

2
2m
−2
N

−m∗nm∗p
[
4 (pνe · pe−)2 − 3 (pνe · pe−)m2

e

]
= 4 (p∗n · pνe) (pνe · pe−)

(
p∗p · pνe

)
+ 4 (pνe · pe−) (p∗n · pe−)

(
p∗p · pe−

)
(B.11)

− 4 (p∗n · pνe)
(
p∗p · pνe

)
m2
e − (pνe · pe−)

(
p∗n · p∗p

)
m2
e.

Using (B.8) on A yields

A = 4 (p∗n · pνe)
2 (pνe · pe−)− 4 (p∗n · pνe) (pνe · pe−)2 + 4 (p∗n · pνe) (pνe · pe−)

(
∆UEνe +m2

e

)
+ 4 (pνe · pe−) (p∗n · pe−)

(
p∗p · pe−

)
− 4 (p∗n · pνe)

2m2
e − 4 (p∗n · pνe)m2

e∆UEνe − (pνe · pe−)
(
p∗n · p∗p

)
m2
e.

Next use (B.9) on A to get

A = 4 (p∗n · pνe)
2 (pνe · pe−)− 4 (p∗n · pνe) (pνe · pe−)2 + 4 (p∗n · pνe) (pνe · pe−)

(
∆UEνe +m2

e

)
+ 4 (pνe · pe−) (p∗n · pe−)

(
p∗p · pe−

)
− 4 (p∗n · pνe)

2m2
e − 4 (p∗n · pνe)m2

e∆UEνe − (pνe · pe−)2m2
e

+ (pνe · pe−)m2
e

[
−m∗2n +Q+

m2
e

2
− ∆U2

2
+ ∆U

(
E∗p − E∗n

)]
.

Now one de�nes B, which is a part of A

B ≡ (pνe · pe−) (p∗n · pe−)
(
p∗p · pe−

)
. (B.12)
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Applying (B.10) on B yields

B = (p∗n · pνe) (pνe · pe−) (p∗n · pe−) + (pνe · pe−) (p∗n · pe−)

[
Q− m2

e

2
− ∆U2

2
+ ∆U

(
E∗p + Ee−

)]
.

Eventually using (B.5) on B one �nds

B = (p∗n · pνe)
2 (pνe · pe−)− (p∗n · pνe)(pνe · pe−)2 + (p∗n · pνe)(pνe · pe−)

[
2Q−∆U2 + ∆U

(
2E∗p + Ee−

)]
− (pνe · pe−)2

[
Q− m2

e

2
− ∆U2

2
+ ∆U

(
E∗p + Ee−

)]
+ (pνe · pe−)

[
Q2 − m4

e

4

+∆U

(
2E∗pQ+ Ee−Q+ Ee−

m2
e

2

)
+ ∆U2

(
E∗2p + E∗pEe− −Q

)
−∆U3

(
E∗p +

Ee−

2

)
+

∆U4

4

]
.

Plugging B into A and A into
〈
|M |2

〉
FF

, the tensor matrix element eventually becomes〈
|M |2

〉
FF

8G2
FV

2
udF

2
2m
−2
N

= 2 (p∗n · pνe)
2 (pνe · pe−)− 2 (p∗n · pνe) (pνe · pe−)2 (B.13)

+ (p∗n · pνe) (pνe · pe−)
[
2Q+m2

e + ∆U
(
2E∗p + Eνe + Ee−

)
−∆U2

]
− (p∗n · pνe)

2m2
e

+ (pνe · pe−)2

[
m∗nm

∗
p −Q+

m2
e

4
−∆U

(
E∗p + Ee−

)
+

∆U2

2

]
− (p∗n · pνe)m2

e∆UEνe

+ (pνe · pe−)

{
−
(
3m∗p +m∗n

)
m∗n

m2
e

4
+Q2 +Q

m2
e

4
− m4

e

8

+ ∆U

[
E∗p

(
2Q+

m2
e

4

)
+ Ee−

(
Q+

m2
e

2

)
− E∗n

m2
e

4

]
+∆U2

(
E∗2p + E∗pEe− −Q−

m2
e

8

)
−∆U3

(
E∗p +

Ee−

2

)
+

∆U4

4

}
.

B.3.2. Inverse Neutron Decay

Axialvector-Tensor Matrix Element

The kinematic relation between four-momenta for inverse neutron decay is given by

p∗p = pp − (Up, 0) = p∗n − pν̄e − pe− + (∆U, 0) with ∆U = Un − Up. (B.14)

Plugging this into Eq.(3.24) results in〈
|M |2

〉
AF

= 8G2
FV

2
udGAF2

m∗N
mN

{
2 [p∗n · (pe− − pν̄e)] (pν̄e · pe−)− 2 (p∗n · pν̄e)m2

e (B.15)

+ (pν̄e · pe−) (Ee− − Eν̄e) ∆U −∆UEν̄em
2
e

}
.

Further using (B.14), one can derive the following relation

(p∗n · pν̄e)
(
p∗p · pe−

)
− (p∗n · pe−)

(
p∗p · pν̄e

)
= [p∗n · (pe− − pν̄e)] (pν̄e · pe−) + (p∗n · pν̄e)

(
∆UEe− −m2

e

)
− (p∗n · pe−) ∆UEν̄e . (B.16)

Again the constant Q is de�ned as in (B.3). Another relation can then be obtained from rewriting the

kinematics (B.14).

(p∗n − pe−)2 =
(
p∗p + pν̄e − (∆U, 0)

)2
,

⇒ (p∗n · pe−) =−
(
p∗p · pν̄e

)
+Q+

m2
e

2
− ∆U2

2
+ ∆U

(
E∗p + Eν̄e

)
=− (p∗n · pν̄e) + (pν̄e · pe−) +Q+

m2
e

2
− ∆U2

2
+ ∆UE∗p . (B.17)
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Using (B.17) on the RHS of (B.16) yields

(p∗n · pν̄e)
(
p∗p · pe−

)
− (p∗n · pe−)

(
p∗p · pν̄e

)
= [p∗n · (pe− − pν̄e)] (pν̄e · pe−)− (pν̄e · pe−) ∆UEν̄e (B.18)

+ (p∗n · pν̄e)
[
∆U (Eν̄e + Ee−)−m2

e

]
−∆UEν̄e

(
Q+

m2
e

2
+ ∆UE∗p −

∆U2

2

)
.

Solving this equation for [p∗n · (pe− − pν̄e)] (pν̄e · pe−) and inserting it into the matrix element (B.15), it

transforms eventually into〈
|M |2

〉
AF

= 8G2
FV

2
udGAF2

m∗N
mN

{
2 (p∗n · pν̄e)

(
p∗p · pe−

)
− 2 (p∗n · pe−)

(
p∗p · pν̄e

)
(B.19)

−2 (p∗n · pν̄e) (Eν̄e + Ee−) ∆U + (pν̄e · pe−)
(
Eν̄e+Ee−

)
∆U + 2∆UEν̄eQ+ 2∆U2Eν̄eE

∗
p −∆U3Eν̄e

}
.

Tensor Matrix Element

The tensor matrix element for inverse neutron decay is given in Eq.(3.20) by〈
|M |2

〉
FF

=
G2
FV

2
udF

2
2

m2
N

{
4 (pe− · pν̄e)

[
(p∗n · pν̄e)

(
p∗p · pν̄e

)
+ (p∗n · pe−)

(
p∗p · pe−

)]
(B.20)

+m2
e

[
4 (p∗n · pν̄e)

(
p∗p · pν̄e

)
−
(
p∗n · p∗p

)
(pν̄e · pe−)

]
−m∗nm∗p

[
4 (pν̄e · pe−)2 + 3 (pν̄e · pe−)m2

e

]}
.

In order to transform it into a more suitable expression several helpfull relations can be derived. By

applying (B.14) one �nds (
p∗p · pν̄e

)
= (p∗n · pν̄e)− (pν̄e · pe−) + ∆UEν̄e . (B.21)

Also from (B.14) it can be shown that(
p∗n · p∗p

)
= m∗2n − (p∗n · pνe)− (p∗n · pe−) + ∆UE∗n.

Now (B.17) can be used on this expression. Doing so results in(
p∗n · p∗p

)
= − (pν̄e · pe−) +

[
m∗2n −Q−

m2
e

2
+ ∆U

(
E∗n − E∗p

)
+

∆U2

2

]
. (B.22)

A third relation that follows from (B.14) is(
p∗p · pe−

)
= (p∗n · pe−)− (pν̄e · pe−)−m2

e + ∆UEe− .

Using again (B.17) this transforms into(
p∗p · pe−

)
= − (p∗n · pνe) +Q− m2

e

2
− ∆U2

2
+ ∆U

(
E∗p + Ee−

)
. (B.23)

Next one de�nes C which is the part of the matrix element that is to be transformed

C ≡

〈
|M |2

〉
FF

2G2
FV

2
udF

2
2m
−2
N

+m∗nm
∗
p

[
4 (pνe · pe−)2 + 3 (pνe · pe−)m2

e

]
= 4 (p∗n · pνe) (pνe · pe−)

(
p∗p · pνe

)
+ 4 (pνe · pe−) (p∗n · pe−)

(
p∗p · pe−

)
(B.24)

+ 4 (p∗n · pνe)
(
p∗p · pνe

)
m2
e − (pνe · pe−)

(
p∗n · p∗p

)
m2
e.

Using (B.21) on C yields

C = 4 (p∗n · pνe)
2 (pνe · pe−)− 4 (p∗n · pνe) (pνe · pe−)2 + 4 (p∗n · pνe) (pνe · pe−)

(
∆UEν̄e −m2

e

)
+ 4 (pνe · pe−) (p∗n · pe−)

(
p∗p · pe−

)
+ 4 (p∗n · pνe)

2m2
e + 4 (p∗n · pνe) ∆UEν̄em

2
e − (pνe · pe−)

(
p∗n · p∗p

)
m2
e.
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Next use (B.22) on C

C = 4 (p∗n · pνe)
2 (pνe · pe−)− 4 (p∗n · pνe) (pνe · pe−)2 + 4 (p∗n · pνe) (pνe · pe−)

(
∆UEν̄e −m2

e

)
+ 4 (pνe · pe−) (p∗n · pe−)

(
p∗p · pe−

)
+ 4 (p∗n · pνe)

2m2
e + 4 (p∗n · pνe) ∆UEν̄em

2
e + (pνe · pe−)2m2

e

+ (pνe · pe−)m2
e

[
−m∗2n +Q+

m2
e

2
+ ∆U

(
E∗p − E∗n

)
− ∆U2

2

]
.

Now one de�nes D which is a part of C

D ≡ (pνe · pe−) (p∗n · pe−)
(
p∗p · pe−

)
. (B.25)

Applying (B.23) on D yields

D = − (p∗n · pνe) (pνe · pe−) (p∗n · pe−) + (pνe · pe−) (p∗n · pe−)

[
Q− m2

e

2
− ∆U2

2
+ ∆U

(
E∗p + Ee−

)]
.

Eventually using (B.17) on D one �nds

D = (p∗n · pνe)
2 (pνe · pe−)− (p∗n · pνe)(pνe · pe−)2 − (p∗n · pνe)(pνe · pe−)

[
2Q+ ∆U

(
2E∗p + Ee−

)
−∆U2

]
+ (pνe · pe−)2

[
Q− m2

e

2
− ∆U2

2
+ ∆U

(
E∗p + Ee−

)]
+ (pνe · pe−)

[
Q2 − m4

e

4

+∆U

(
2E∗pQ+ Ee−Q+ Ee−

m2
e

2

)
+ ∆U2

(
E∗2p + E∗pEe− −Q

)
−∆U3

(
E∗p +

Ee−

2

)
+

∆U4

4

]
.

Inserting D into C and C into
〈
|M |2

〉
FF

, the matrix element eventually becomes

〈
|M |2

〉
FF

4G2
FV

2
udF

2
2m
−2
N

= 2 (p∗n · pνe)
2 (pνe · pe−)− 2 (p∗n · pνe) (pνe · pe−)2 (B.26)

− (p∗n · pνe) (pνe · pe−)
[
2Q+m2

e + ∆U
(
2E∗p − Eνe + Ee−

)
−∆U2

]
+ (p∗n · pνe)

2m2
e

− (pνe · pe−)2

[
m∗nm

∗
p −Q+

m2
e

4
−∆U

(
E∗p + Ee−

)
+

∆U2

2

]
+ (p∗n · pνe)m2

e∆UEνe

+ (pνe · pe−)

{
−
(
3m∗p +m∗n

)
m∗n

m2
e

4
+Q2 +Q

m2
e

4
− m4

e

8

+ ∆U

[
E∗p

(
2Q+

m2
e

4

)
+ Ee−

(
Q+

m2
e

2

)
− E∗n

m2
e

4

]
+∆U2

(
E∗2p + E∗pEe− −Q−

m2
e

8

)
−∆U3

(
E∗p +

Ee−

2

)
+

∆U4

4

}
.
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B.3.3. Coe�cients of Matrix Element

Electron Capture on Neutrons

A1 = (GV +GA)2 + 2GAF2
m∗N
mN

, (B.27)

B1 = (GV −GA)2 − 2GAF2
m∗N
mN

, (B.28)

C1 =
F 2

2

m2
N

, (B.29)

D1 = − F 2
2

m2
N

, (B.30)

E1 = − F 2
2

2m2
N

m2
e, (B.31)

G1 = 2GV F2
m∗N
m∗

+
F 2

2

2m2
N

[
m∗nm

∗
p −Q+

m2
e

4
−∆U

(
E∗p + Ee−

)
+

∆U2

2

]
, (B.32)

H1 =
F 2

2

2m2
N

[
2Q+m2

e + ∆U
(
2E∗p + Eνe + Ee−

)
−∆U2

]
, (B.33)

J1 = 2GAF2∆U (Eνe − Ee−)− F 2
2

2m2
N

m2
e∆UEνe , (B.34)

K1 =
(
G2
A −G2

V

)
m∗nm

∗
p +GAF2

m∗N
mN

∆U (Ee− − Eνe) +GV F2
m∗N
mN

[
∆U (Ee− − Eνe)−

3

2
m2
e

]
(B.35)

+
F 2

2

2m2
N

{
−
(
3m∗p +m∗n

)
m∗n

m2
e

4
+Q2 +Q

m2
e

4
− m4

e

8
+ ∆U2

(
E∗2p + E∗pEe− −Q−

m2
e

8

)
+∆U

[
E∗p

(
2Q+

m2
e

4

)
+ Ee−

(
Q+

m2
e

2

)
− E∗n

m2
e

4

]
−∆U3

(
E∗p +

Ee−

2

)
+

∆U4

4

}
,

L1 = GV F2
m∗N
mN

∆UEνe
m2
e

2
+GAF2

m∗N
mN

∆UEνe
(
2Q+ 2∆UE∗p + ∆U2

)
. (B.36)

The terms Q and ∆U are de�ned by

Q ≡ 1

2

(
m∗2n −m∗2p

)
and ∆U = Un − Up.

Inverse Neutron Decay

E3 =
F 2

2

2m2
N

m2
e = −E1, (B.37)

G3 = −2GV F2
m∗N
m∗
− F 2

2

2m2
N

[
m∗nm

∗
p −Q+

m2
e

4
−∆U

(
E∗p + Ee−

)
+

∆U2

2

]
= −G1, (B.38)

H3 = − F 2
2

2m2
N

[
2Q+m2

e + ∆U
(
2E∗p − Eν̄e + Ee−

)
−∆U2

]
= −H1 +

F 2
2

m2
N

∆UEν̄e , (B.39)

J3 = −2GAF2∆U (Eν̄e + Ee−) +
F 2

2

2m2
N

m2
e∆UEν̄e = −J1 − 2GAF2∆UEe− , (B.40)
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K3 =
(
G2
A −G2

V

)
m∗nm

∗
p +GAF2

m∗N
mN

∆U (Eν̄e + Ee−) +GV F2
m∗N
mN

[
∆U (Eν̄e + Ee−)− 3

2
m2
e

]
(B.41)

+
F 2

2

2m2
N

{
−
(
3m∗p +m∗n

)
m∗n

m2
e

4
+Q2 +Q

m2
e

4
− m4

e

8
+ ∆U2

(
E∗2p + E∗pEe− −Q−

m2
e

8

)
+∆U

[
E∗p

(
2Q+

m2
e

4

)
+ Ee−

(
Q+

m2
e

2

)
− E∗n

m2
e

4

]
−∆U3

(
E∗p +

Ee−

2

)
+

∆U4

4

}
= K1 + 2 (GV +GA)F2

m∗N
mN

∆UEν̄e .
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C. Derivation of Scattering Kernels

C.1. General Scattering Kernel

Usefull Kinematic Relations

The four momenta of the particles are connected by

p1 + p2 = p3 + p4. (C.1)

Particles �1� and �3� are massless. The constant Q is de�ned by

Q =
1

2

(
m2

4 −m2
2

)
. (C.2)

Consequently one can show

(p3 · p4) = [p3 · (p1 + p2 − p3)]

= (p1 · p3) + (p2 · p3) , (C.3)

(p1 + p2)2 = (p3 + p4)2

⇒ (p1 · p2) = (p3 · p4) +Q

= (p1 · p3) + (p2 · p3) +Q, (C.4)

(p4 − p1)2 = (p2 − p3)2

⇒ (p1 · p4) = (p2 · p3) +Q. (C.5)

Further the angles between the particles are denoted in the following way. α is the angle between ~p3

and ~p2, θ is the angle between ~p1 and ~p3, and γ is the angle between ~p1 and ~p2. Eventually, φ is the

polar angle between ~p1 and ~p2 around the axis of ~p3. Then one can use the relation

cos γ = cosα cosβ + sinα sinβ cosφ. (C.6)

Integral R1

The integral R1 is given by

R1 =

∫
d3p2d

3p4
(p1 · p2) (p3 · p4)

E1E2E3E4
δ4(p1 + p2 − p3 − p4)f2(E2) [1− f4(E4)] . (C.7)

Using (C.3) and (C.4) the four-momentum product can be transformed into

(p1 · p2) (p3 · p4) = [p3 · (p1 + p2) +Q] [p3 · (p1 + p2)]

= E2
3 (E2 − p̄2 cosα+ E1 − E1 cos θ)2 + E3Q (E2 − p̄2 cosα+ E1 − E1 cos θ)

=
E3

p̄2

[
A1 +B1 cosα+ C1 cos2 α

]
. (C.8)
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The expressions A1, B1, and C1 are given by

A1 = p̄2 (E2 + E1 − E1 cos θ) [E3 (E2 + E1 − E1 cos θ) +Q] , (C.9)

B1 = −p̄2
2 [2E3 (E2 + E1 − E1 cos θ) +Q] , (C.10)

C1 = E3p̄
3
2. (C.11)

Writing the phase space integral over particle 2 in the form

d3p2 = dφdydE2p̄2E2 with y ≡ cosα.

R1 transforms into

R1 =
1

E1

∫
d3p4

E4
dφdydE2

[
A1 +B1y + C1y

2
]
δ4(p1 + p2 − p3 − p4)f2(E2) [1− f4(E4)] . (C.12)

Now one consideres the identity

1

2E4
=

∫
dE4δ

(
p2

4 −m2
4

)
. (C.13)

With the help of (C.13) the phase space integration over p4 can be used to transform the δ4-function∫
d3p4

E4
δ4(p1 + p2 − p3 − p4) = 2

∫
d4p4δ

4(p1 + p2 − p3 − p4)δ
(
p2

4 −m2
4

)
= 2δ

[
(p1 + p2 − p3)2 −m2

4

]
= δ

[
m2

4 − (p1 + p2 − p3)2

2

]
. (C.14)

The argument of the δ-function can be expressed as a function of φ by using (C.6)

f(φ) =
1

2

[
m2

4 − (p1 + p2 − p3)2
]

= Q+ E1E3 (1− cos θ) + E3 (E2 − p̄2y)− E1 (E2 − p̄2 cos γ)

= E1p̄2 sinα sin θ cosφ+Q+ E1E3 (1− cos θ) + E3 (E2 − p̄2y)− E1 (E2 − p̄2 cosα cos θ) .

(C.15)

Now one can write the integral R1 in the form

R1 =
1

E1

∫
dydE2

[
A1 +B1y + C1y

2
]
f2(E2) [1− f4(E4)]

2π∫
0

dφδ(f(φ)). (C.16)

The derivative of f(φ) with respect to φ is given by

f ′(φ) = −E1p̄2 sinα sin θ
√

1− cos2 φ. (C.17)

The angle φ0 is de�ned by f(φ0) = 0. One �nds then

cosφ0 =
E1 (E2 − p̄2 cosα cos θ)−Q− E1E3 (1− cos θ)− E3 (E2 − p̄2y)

E1p̄2 sinα sin θ
. (C.18)

The integration over φ can then be handled in the following way

2π∫
0

dφδ(f(φ)) = 2

π∫
0

dφδ(f(φ)) = 2

π∫
0

dφ
δ(φ− φ0)

|f ′(φ)|φ=φ0

= 2
Θ
(
1− cos2 φ0

)
E1p̄2 sinα sin θ

√
1− cos2 φ

. (C.19)
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The heaviside function is necessary to prevent con�gurations that are kinematically not possible and

would thus force cosφ0 to take unphysical values. The heaviside function can be transformed by

Θ
(
1− cos2 φ0

)
= Θ

[(
E1p̄2 sinα sin θ

√
1− cos2 φ

)2
]
. (C.20)

The integration over φ becomes then

2π∫
0

dφδ(f(φ)) = 2

Θ

[(
E1p̄2 sinα sin θ

√
1− cos2 φ

)2
]

E1p̄2 sinα sin θ
√

1− cos2 φ
. (C.21)

This can be transformed into

2

Θ

[(
E1p̄2 sinα sin θ

√
1− cos2 φ

)2
]

E1p̄2 sinα sin θ
√

1− cos2 φ
= 2

Θ
(
ay2 + by + c

)√
ay2 + by + c

. (C.22)

with the expressions a, b, and c given by

a = −p̄2
2

(
E2

1 + E2
3 − 2E1E3 cos θ

)
, (C.23)

b = 2p̄2 (E3 − E1 cos θ) [Q+ E2 (E3 − E1) + E1E3 (1− cosθ)] , (C.24)

c = E2
1 p̄

2
2 sin2 θ − [Q+ E2 (E3 − E1) + E1E3 (1− cosθ)]2 . (C.25)

Deriving (C.22)-(C.25) from (C.21) requires tedious but simple algebra. It will not be shown here in

detail. Summing all up, the intgral R1 can now be written in the form

R1 =
2

E1

∫
dE2f2(E2) [1− f4(E4)]

1∫
−1

dy
[
A1 +B1y + C1y

2
] Θ
(
ay2 + by + c

)√
ay2 + by + c

. (C.26)

The limits for y that are imposed by the heaviside function are in fact the roots of the radical

0 = ay2 + by + c ⇒ y = ±
√

b2

4a2
− c

a
− b

2a
.

Consequently the integral over y can be transformed into

1∫
−1

dy
f(y)√

ay2 + by + c
Θ
(
ay2 + by + c

)
=

1√
−a

+
√

b2

4a2−
c
a
− b

2a∫
−
√

b2

4a2−
c
a
− b

2a

dy
f(y)√

−
(
y + b

2a

)2
+ b2

4a2 − c
a

Θ
(
b2 − 4ac

)
.

(C.27)

The heaviside function arises from the requirement for the integrand to be integrable. As a �rst step

to solve this integral, de�ne the expressions b̄ and c̄ by

b̄ =
b

2a
and c̄ =

c

a
. (C.28)

The integral becomes then

+
√

b2

4a2−
c
a
− b

2a∫
−
√

b2

4a2−
c
a
− b

2a

dy
f(y)√

−
(
y + b

2a

)2
+ b2

4a2 − c
a

=

+
√
b̄2−c̄−b̄∫

−
√
b̄2−c̄−b̄

dy
f(y)√

−
(
y + b̄

)2
+ b̄2 − c̄

. (C.29)
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Now it is helpfull to introduce several identities that will be needed soon

1∫
−1

dx
1√

1− x2
= π,

1∫
−1

dx
x√

1− x2
= 0,

1∫
−1

dx
x2

√
1− x2

=
π

2
. (C.30)

In the next step one substitutes y by y∗ according to

y∗ ≡ y + b̄√
b̄2 − c̄

⇒ dy = dy∗
√
b̄2 − c̄. (C.31)

The whole integral over y becomes then

+
√
b̄2−c̄−b̄∫

−
√
b̄2−c̄−b̄

dy
A1 +B1y + C1y

2√
−
(
y + b̄

)2
+ b̄2 − c̄

=

1∫
−1

dy∗2
(
A1 − b̄B1 + b̄2C1

)
+
√
b̄2 − c̄

(
B1 − 2b̄C1

)
y∗ +

(
b̄2 − c

)
C1y

2√
1− y∗2

= π

(
A1 − b̄B1 +

3b̄2

2
C1 −

c̄

2
C1

)
=

π
√
−a4

[
a2A1 −

ab

2
B1 +

(
3b2

8
− ca

2

)
C1

]
. (C.32)

Then the whole integral R1 becomes

R1 =
2π

E1

∫
dE2f2(E2) [1− f4(E4)]

1
√
−a5

[
a2A1 −

ab

2
B1 +

(
3b2

8
− ca

2

)
C1

]
Θ
(
b2 − 4ac

)
. (C.33)

The heaviside function can be transformed into boundaries for the remaining energy integral. In the

limiting case the condition gives

0 = b2 − 4ac. (C.34)

By plugging (C.23)-(C.25) into (C.34) and solving for positive solutions of E2, the heaviside function

can be transformed into a lower limit on E2

∞∫
m2

dE2Θ
(
b2 − 4ac

)
=

∞∫
E−

dE2. (C.35)

This lower limit is given by

E− =
1

2

[
(E3 − E1) (1 + k) +

√(
E2

1 + E2
3 − 2E1E3 cos θ

) [
(1 + k)2 +

2m2
2

E1E3 (1− cos θ)

]]
. (C.36)

where the coe�cient k is de�ned by

k ≡ Q

E1E3 (1− cos θ)
. (C.37)

Now one has to sort the integrand in (C.33) by powers of E2. Therefore one must make use of

p̄2
2 = E2

2 −m2
2. This step requires several pages of tedious but straightforward algebra. Eventually one

arrives at the following solution.

R1 =
2π

∆5

∞∫
E−

dE2f2(E2) [1− f4(E4)]
(
Ã1E

2
2 + B̃1E2 + C̃1

)
. (C.38)
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The coe�cients Ã1, B̃1, C̃1, and ∆ are given by

Ã1 =E1E3 (1− cos θ)2 [E2
1 + E1E3 (3 + cos θ) + E2

3

]
, (C.39)

B̃1 =E2
1E3 (1− cos θ)2 [2E2

1 + E1E3 (3− cos θ)− E2
3 (1 + 3 cos θ)

]
(C.40)

+Q (1− cos θ)
[
E3

1 + E2
1E3 (2 + cos θ)− E1E

2
3 (2 + cos θ)− E3

3

]
,

C̃1 =E3
1E3 (1− cos θ)2

[
E2

1 − 2E1E3 cos θ + E2
3

(
−1

2
+

3

2
cos2 θ

)]
(C.41)

+QE1 (1− cos θ)
[
E3

1 − E2
1E3 cos θ + E1E

2
3

(
−2 + cos2 θ

)
+ E3

3 cos θ
]

+Q2

[
E2

1 cos θ − E1E3

(
3

2
+

1

2
cos2 θ

)
+ E2

3 cos θ

]
+

1

2
E1E3

(
1− cos2 θ

)
∆2m2

2,

∆ =
√
E2

1 − 2E1E3 cos θ + E2
3 . (C.42)

Integral R2

The integral R2 is given by

R2 =

∫
d3p2d

3p4
(p1 · p4) (p2 · p3)

E1E2E3E4
δ4(p1 + p2 − p3 − p4)f2(E2) [1− f4(E4)] . (C.43)

Using (C.5) the four-momentum product can be transformed into

(p1 · p4) (p2 · p3) = (p2 · p3) [(p2 · p3) +Q]

= E2
3 (E2 − p̄2 cosα)2 + E3Q (E2 − p̄2 cosα)

=
E3

p̄2

[
A2 +B2 cosα+ C2 cos2 α

]
. (C.44)

The expressions A2, B2, and C2 are given by

A2 = p̄2E2 (E3E2 +Q) , (C.45)

B2 = −p̄2
2 (2E3E2 +Q) , (C.46)

C2 = E3p̄
3
2. (C.47)

The subsequent derivation is exactly the same as for R1. Therefore R2 eventually becomes.

R2 =
2π

E1

∞∫
E−

dE2f2(E2) [1− f4(E4)]
1

√
−a5

[
a2A2 −

ab

2
B2 +

(
3b2

8
− ca

2

)
C2

]
. (C.48)

Sorting again by (tedious) ordering for powers of E2 one �nds

R2 =
2π

∆5

∞∫
E−

dE2f2(E2) [1− f4(E4)]
(
Ã2E

2
2 + B̃2E2 + C̃2

)
. (C.49)

The coe�cient ∆ is given in (C.42), E− is de�ned in (C.36), while Ã2, B̃2, and C̃2 are given by

Ã2 =E1E3 (1− cos θ)2 [E2
1 + E1E3 (3 + cos θ) + E2

3

]
, (C.50)

B̃2 =E1E
2
3 (1− cos θ)2 [E2

1 (1 + 3 cos θ) + E1E3 (−3 + cos θ)− 2E2
3

]
(C.51)

+Q (1− cos θ)
[
E3

1 + E2
1E3 (2 + cos θ)− E1E

2
3 (2 + cos θ)− E3

3

]
,

C̃2 =E1E
3
3 (1− cos θ)2

[
E2

1

(
−1

2
+

3

2
cos2 θ

)
− 2E1E3 cos θ + E2

3

]
(C.52)

+QE3 (1− cos θ)
[
E3

1 cos θ + E2
1E3

(
−2 + cos2 θ

)
− E1E

2
3 cos θ + E3

3

]
+Q2

[
E2

1 cos θ − E1E3

(
3

2
+

1

2
cos2 θ

)
+ E2

3 cos θ

]
+

1

2
E1E3

(
1− cos2 θ

)
∆2m2

2.
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Integral R3

The integral R3 is given by

R3 =

∫
d3p2d

3p4
(p1 · p3)

E1E2E3E4
δ4(p1 + p2 − p3 − p4)f2(E2) [1− f4(E4)] . (C.53)

The four-momentum product can be transformed into

(p1 · p3) = E1E
2
3 (1− cos θ) (C.54)

=
E3

p̄2
A3. (C.55)

The expressions A3 is given by

A3 = p̄2E1 (1− cos θ) . (C.56)

The subsequent derivation is again completely analogous to R1, so one eventually arrives at

R3 =
2π

∆5

∫
dE2f2(E2) [1− f4(E4)] C̃3. (C.57)

The coe�cient ∆ is de�ned in (C.42), E− is de�ned in (C.36), while C̃3 is given by

C̃3 = (1− cos θ) ∆4m2m4. (C.58)

Integral over E2

For the scattering kernels, an energy integration over the distribution functions remains. The corre-

sponding expressions are of the form

∞∫
E−

dE2E
n
2 f2(E2) [1− f4(E2 + E1 − E3)] , n = {0, 1, 2} . (C.59)

Under the assumption of Fermi-Dirac-distributions for particles �2� and �4� it was shown in [133] that

these expressions can be transformed into standard Fermi-Dirac-integrals. The latter can themselves

be expressed in terms of polylogarithm functions which are numerically convenient to handel and for

which good approximation formulas exist. To be precise, [133] discussed the special cas of f2 = f4.

The more general case for di�erent chemical potentials µ2 6= µ4 is but a minor extension. Writing out

the distribution functions (C.59) is given by

∞∫
E−

dE2E
n
2

1

exp
(
E2−µ2

T

)
+ 1

 exp
(
E2+E1−E3+∆µ−µ2

T

)
exp

(
E2+E1−E3+∆µ−µ2

T

)
+ 1

 . (C.60)

where ∆µ = µ2 − µ4. De�ning the following coe�cients

y ≡ E−
T
, η =

µ2

T
, η′ = η − E1 − E3 + ∆µ

T
. (C.61)

one can transform (C.60) into

∞∫
yT

dE2E
n
2

1

exp
(
E2
T − η

)
+ 1

[
exp

(
E2
T − η

′)
exp

(
E2
T − η′

)
+ 1

]
. (C.62)
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Substituting E2 by x according to

x =
E

T
− y ⇒

∞∫
yT

dE2 =

∞∫
0

dxT. (C.63)

the integral becomes then

∞∫
0

dxTn+1 (x+ y)n
1

exp (x+ y − η) + 1

[
exp (x+ y − η′)

exp (x+ y − η′) + 1

]
(C.64)

=

∞∫
0

dxTn+1 (x+ y)n
exp (x+ y + η)

[exp (x+ y) + exp (η)] [exp (x+ y) + exp (η′)]

=

∞∫
0

dxTn+1 (x+ y)n
exp (η)

exp (η′)− exp (η)

exp (x+ y) [exp (η′)− exp (η)]

[exp (x+ y) + exp (η)] [exp (x+ y) + exp (η′)]

=

∞∫
0

dxTn+1 (x+ y)n
1

exp (η′ − η)− 1

exp (x+ y + η′)− exp (x+ y + η)

[exp (x+ y) + exp (η)] [exp (x+ y) + exp (η′)]

=

∞∫
0

dxTn+1 (x+ y)n
1

exp (η′ − η)− 1

exp (x+ y + η′) + exp (η′ + η)− exp (x+ y + η)− exp (η′ + η)

[exp (x+ y) + exp (η)] [exp (x+ y) + exp (η′)]

=

∞∫
0

dxTn+1 (x+ y)n
1

exp (η′ − η)− 1

[
exp (η′)

exp (x+ y) + exp (η′)
− exp (η)

exp (x+ y) + exp (η)

]

=

∞∫
0

dxTn+1 (x+ y)n
1

exp (η′ − η)− 1

[
1

exp (x+ y − η′) + 1
− 1

exp (x+ y − η) + 1

]
.

Now the Fermi-Dirac integrals Fn(z) and the Boltzman-Distribution fγ(z) are given by

Fn(z) =

∞∫
0

dx
xn

exp (x− z) + 1
and fγ(z) =

1

exp (z)− 1
. (C.65)

Plugging this into the integral (C.64) one �nds eventually

I0 =

∞∫
E−

dE2f2(E2) [1− f4(E2 + E1 − E3)]

=

∞∫
0

dxT
1

exp (x+ y − η) + 1

[
exp (x+ y − η′)

exp (x+ y − η′) + 1

]
=Tfγ

(
η′ − η

) [
F0

(
η′ − y

)
− F0(η − y)

]
. (C.66)

I1 =

∞∫
E−

dE2E2f2(E2) [1− f4(E2 + E1 − E3)]

=

∞∫
0

dxT 2 (x+ y)
1

exp (x+ y − η) + 1

[
exp (x+ y − η′)

exp (x+ y − η′) + 1

]
=T 2fγ

(
η′ − η

) {[
F1

(
η′ − y

)
− F1(η − y)

]
+ y

[
F0

(
η′ − y

)
− F0(η − y)

]}
. (C.67)
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I2 =

∞∫
E−

dE2E
2
2f2(E2) [1− f4(E2 + E1 − E3)]

=

∞∫
0

dxT 3 (x+ y)2 1

exp (x+ y − η) + 1

[
exp (x+ y − η′)

exp (x+ y − η′) + 1

]
=T 3fγ

(
η′ − η

) {[
F2

(
η′ − y

)
− F2(η − y)

]
+ 2y

[
F1

(
η′ − y

)
− F1(η − y)

]
(C.68)

+y2
[
F0

(
η′ − y

)
− F0(η − y)

]}
.

C.2. Scattering Kernel for Inverse Decay

Usefull Kinematic Relations

The four momenta of the particles are connected by

p1 + p2 = p4 − p3. (C.69)

Particles �1� and �3� are massless. The constant Q is de�ned by

Q =
1

2

(
m2

4 −m2
2

)
. (C.70)

Consequently one can show

(p3 · p4) = [p3 · (p1 + p2 + p3)]

= (p1 · p3) + (p2 · p3) , (C.71)

(p1 + p2)2 = (p3 − p4)2

⇒ (p1 · p2) = − (p3 · p4) +Q

= − (p1 · p3)− (p2 · p3) +Q, (C.72)

(p4 − p1)2 = (p2 + p3)2

⇒ (p1 · p4) = − (p2 · p3) +Q. (C.73)

The angles between particles 1, 2, and 3 are denoted as for scattering. In particular, (C.6) applies.

Integral RD1

The integral RD1 is given by

RD1 =

∫
d3p2d

3p4
(p1 · p2) (p3 · p4)

E1E2E3E4
δ4(p1 + p2 + p3 − p4)f2(E2) [1− f4(E4)] . (C.74)

Using (C.71) and (C.72) the four-momentum product can be transformed into

(p1 · p2) (p3 · p4) = [−p3 · (p1 + p2) +Q] [p3 · (p1 + p2)]

= −E2
3 (E2 − p̄2 cosα+ E1 − E1 cos θ)2 + E3Q (E2 − p̄2 cosα+ E1 − E1 cos θ)

=
E3

p̄2

[
AD1 +BD1 cosα+ CD1 cos2 α

]
. (C.75)
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The expressions AD1, BD1, and CD1 are given by

AD1 = p̄2 (E2 + E1 − E1 cos θ) [−E3 (E2 + E1 − E1 cos θ) +Q] , (C.76)

BD1 = −p̄2
2 [−2E3 (E2 + E1 − E1 cos θ) +Q] , (C.77)

CD1 = −E3p̄
3
2. (C.78)

Writing the phase space integral over particle 2 in the form

d3p2 = dφdydE2p̄2E2 with y ≡ cosα.

RD1 transforms into

RD1 =
1

E1

∫
d3p4

E4
dφdydE2

[
A1 +B1y + C1y

2
]
δ4(p1 + p2 + p3 − p4)f2(E2) [1− f4(E4)] . (C.79)

Now one consideres the identity

1

2E4
=

∫
dE4δ

(
p2

4 −m2
4

)
. (C.80)

With the help of (C.80) the phase space integration over p4 can be used to transform the δ4-function∫
d3p4

E4
δ4(p1 + p2 + p3 − p4) = 2

∫
d4p4δ

4(p1 + p2 + p3 − p4)δ
(
p2

4 −m2
4

)
= 2δ

[
(p1 + p2 + p3)2 −m2

4

]
= δ

[
m2

4 − (p1 + p2 + p3)2

2

]
. (C.81)

The argument of the δ-function can be expressed as a function of φ by using (C.6)

f(φ) =
1

2

[
m2

4 − (p1 + p2 + p3)2
]

= Q− E1E3 (1− cos θ)− E3 (E2 − p̄2y)− E1 (E2 − p̄2 cos γ)

= E1p̄2 sinα sin θ cosφ+Q− E1E3 (1− cos θ)− E3 (E2 − p̄2y)− E1 (E2 − p̄2 cosα cos θ) .

(C.82)

Now one can write the integral RD1 in the form

RD1 =
1

E1

∫
dydE2

[
AD1 +BD1y + CD1y

2
]
f2(E2) [1− f4(E4)]

2π∫
0

dφδ(f(φ)). (C.83)

Comparing (C.76)-(C.78) with (C.9)-(C.11) and (C.82) with (C.15), it can be seen that at this point

the di�erence between R1 and RD1 comes down to replacing E3 by −E3. Consequently one can repeat

the derivation for R1 analogously. The integral RD1 becomes then

RD1 =
2π

E1

∫
dE2f2(E2) [1− f4(E4)]

1
√
−aD5

[
a2
DAD1 −

aDbD
2

BD1 +

(
3b2D

8
− cDaD

2

)
CD1

]
(C.84)

×Θ
(
b2D − 4aDcD

)
.

with the expressions aD, bD, and cD given by

aD = −p̄2
2

(
E2

1 + E2
3 + 2E1E3 cos θ

)
, (C.85)

bD = −2p̄2 (E3 + E1 cos θ) [Q− E2 (E3 + E1)− E1E3 (1− cosθ)] , (C.86)

cD = E2
1 p̄

2
2 sin2 θ − [Q− E2 (E3 + E1)− E1E3 (1− cosθ)]2 . (C.87)
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However, special care has to be taken for the heaviside function. Even though the condition is the

same as for the scattering reactions, except for a sign change of E3, one cannot just do the same to

derive the limit of E2. The reason here is that the condition equates to a quadratic function of E3. By

replacing E3 → −E3, instead of one lower limit that is physical one gets either a lower and an upper

limit, or no solution at all. In particular the integral over E2 becomes

∞∫
m2

dE2Θ
(
b2D − 4aDcD

)
=

ED+∫
ED−

dE2Θ(k − 1). (C.88)

The coe�cient k is de�ned in (C.37) while the integration limits ED± are given by

ED± =
1

2

[
(E3 + E1) (k − 1)±

√(
E2

1 + E2
3 + 2E1E3 cos θ

) [
(1− k)2 − 2m2

2

E1E3 (1− cos θ)

]]
. (C.89)

The meaning of the remaining heaviside function is that certain kinematic con�gurations of E1, E3,

and cos θ are in general not possible for given masses m2 and m4. As part of that it states that a

particle can never decay into a heavier particle. Sorting now RD1 by powers of E2 one �nds

RD1 =
2π

∆5
D

ED+∫
ED−

dE2f2(E2) [1− f4(E4)]
(
ÃD1E

2
2 + B̃D1E2 + C̃D1

)
Θ(k − 1). (C.90)

The coe�cients ÃD1, B̃D1, C̃D1, and ∆D are given by

ÃD1 =E1E3 (1− cos θ)2 [−E2
1 + E1E3 (3 + cos θ)− E2

3

]
, (C.91)

B̃D1 =E2
1E3 (1− cos θ)2 [−2E2

1 + E1E3 (3− cos θ) + E2
3 (1 + 3 cos θ)

]
(C.92)

+Q (1− cos θ)
[
E3

1 − E2
1E3 (2 + cos θ)− E1E

2
3 (2 + cos θ) + E3

3

]
,

C̃D1 =− E3
1E3 (1− cos θ)2

[
E2

1 + 2E1E3 cos θ + E2
3

(
−1

2
+

3

2
cos2 θ

)]
(C.93)

+QE1 (1− cos θ)
[
E3

1 + E2
1E3 cos θ + E1E

2
3

(
−2 + cos2 θ

)
− E3

3 cos θ
]

+Q2

[
E2

1 cos θ + E1E3

(
3

2
+

1

2
cos2 θ

)
+ E2

3 cos θ

]
− 1

2
E1E3

(
1− cos2 θ

)
∆2m2

2,

∆ =
√
E2

1 + 2E1E3 cos θ + E2
3 . (C.94)

Integral RD2

The integral RD2 is given by

RD2 =

∫
d3p2d

3p4
(p1 · p4) (p2 · p3)

E1E2E3E4
δ4(p1 + p2 + p3 − p4)f2(E2) [1− f4(E4)] . (C.95)

Using (C.73) the four-momentum product can be transformed into

(p1 · p4) (p2 · p3) = (p2 · p3) [− (p2 · p3) +Q]

= −E2
3 (E2 − p̄2 cosα)2 + E3Q (E2 − p̄2 cosα)

=
E3

p̄2

[
AD2 +BD2 cosα+ C2D cos2 α

]
. (C.96)
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The expressions AD2, BD2, and CD2 are given by

AD2 = p̄2E2 (−E3E2 +Q) , (C.97)

BD2 = −p̄2
2 (−2E3E2 +Q) , (C.98)

CD2 = −E3p̄
3
2. (C.99)

Analogous to the relation between R1 and RD1, one can derive RD2 from R2 by replacing E3 with

−E3.

RD2 =
2π

∆5
D

ED+∫
ED−

dE2f2(E2) [1− f4(E4)]
(
ÃD2E

2
2 + B̃D2E2 + C̃D2

)
Θ(k − 1). (C.100)

The coe�cients ∆, ED±, and k are given in (C.94), (C.89), and (C.37), respectively. ÃD2, B̃D2, and

C̃D2 are given by

ÃD2 =E1E3 (1− cos θ)2 [−E2
1 + E1E3 (3 + cos θ)− E2

3

]
, (C.101)

B̃D2 =E1E
2
3 (1− cos θ)2 [E2

1 (1 + 3 cos θ)− E1E3 (−3 + cos θ)− 2E2
3

]
(C.102)

+Q (1− cos θ)
[
E3

1 − E2
1E3 (2 + cos θ)− E1E

2
3 (2 + cos θ) + E3

3

]
,

C̃D2 =− E1E
3
3 (1− cos θ)2

[
E2

1

(
−1

2
+

3

2
cos2 θ

)
+ 2E1E3 cos θ + E2

3

]
(C.103)

+QE3 (1− cos θ)
[
−E3

1 cos θ + E2
1E3

(
−2 + cos2 θ

)
+ E1E

2
3 cos θ + E3

3

]
+Q2

[
E2

1 cos θ + E1E3

(
3

2
+

1

2
cos2 θ

)
+ E2

3 cos θ

]
− 1

2
E1E3

(
1− cos2 θ

)
∆2m2

2.

Integral RD3

The integral RD3 is given by

RD3 =

∫
d3p2d

3p4
(p1 · p3)

E1E2E3E4
δ4(p1 + p2 + p3 − p4)f2(E2) [1− f4(E4)] . (C.104)

The four-momentum product can be transformed into

(p1 · p3) = E1E
2
3 (1− cos θ) (C.105)

=
E3

p̄2
AD3. (C.106)

The expressions AD3 is given by

AD3 = p̄2E1 (1− cos θ) . (C.107)

The subsequent derivation is completely analogous to RD1, so one �nds that RD3 is connected to R3

by replacing E3 with −E3.

RD3 =
2π

∆5
D

ED+∫
ED−

dE2f2(E2) [1− f4(E4)] C̃D3Θ(k − 1). (C.108)

Again the coe�cient ∆D, ED±, and k are given in (C.94), (C.89), and (C.37), respectively. C̃D3 is

de�ned by

C̃D3 = (1− cos θ) ∆4
Dm2m4. (C.109)
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Integral over E2

The main di�erence between the dE2 integration for scattering and inverse decay reactions is that

inverse decay reactions also have an upper limit. Also the argument of f4 changes due to the di�erent

kinematics. Consequently one can express it by

ED+∫
ED−

dE2E
n
2 f2(E2) [1− f4(E2 + E1 + E3)] n = {0, 1, 2} (C.110)

=

 ∞∫
ED−

−
∞∫

ED+

 dE2E
n
2 f2(E2) [1− f4(E2 + E1 + E3)] . (C.111)

Proceeding then analogous to the scattering reactions the derivation yields

ID0 =

ED+∫
ED−

dE2f2(E2) [1− f4(E2 + E1 + E3)]

=Tfγ
(
η′D − η

) [
F0

(
η′D − y−

)
− F0(η − y−)− F0

(
η′D − y+

)
+ F0(η − y+)

]
, (C.112)

ID1 =

ED+∫
ED−

dE2E2f2(E2) [1− f4(E2 + E1 + E3)]

=T 2fγ
(
η′D − η

) {[
F1

(
η′D − y−

)
− F1(η − y−)− F1

(
η′D − y+

)
+ F1(η − y+)

]
+y−

[
F0

(
η′D − y−

)
− F0(η − y−)

]
− y+

[
F0

(
η′D − y+

)
− F0(η − y+)

]}
, (C.113)

ID2 =

ED+∫
ED−

dE2E
2
2f2(E2) [1− f4(E2 + E1 + E3)]

=T 3fγ
(
η′D − η

) {[
F2

(
η′D − y−

)
− F2(η − y−)− F2

(
η′D − y+

)
+ F2(η − y+)

]
+ 2y−

[
F1

(
η′D − y−

)
− F1(η − y−)

]
− 2y+

[
F1

(
η′D − y+

)
− F1(η − y+)

]
+y2
−
[
F0

(
η′D − y−

)
− F0(η − y−)

]
− y2

+

[
F0

(
η′D − y+

)
− F0(η − y+)

]}
. (C.114)

Here, Fn(z) and fγ(z) are given in (C.65), η is given in (C.61), and y and η′D determined by

y± ≡
ED±
T

, η′D = η − E1 + E3 + µ2 − µ4

T
. (C.115)
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D. Cross Sections for Relativistic and

Interacting Nucleons

D.1. Phasespace Integrals for Absorption Reactions

From the respective matrix elements (5.6), (5.17), (5.36) it can be seen that the cross sections have

the same kinematic structure for all three neutrino capture reactions. In the following one denotes the

incoming neutrino by �1�, the incoming nucleon by �2�, the outgoing charged lepton by �3� and the

outgoing nucleon by �4�. With this notation the cross section for all neutrino capture reactions can be

written the following way

dλ−1(E1) =

∫
d3p2

(2π)3

d3p3

(2π)3

d3p4

(2π)3 2G2
FV

2
ud

(AjMA + ...+ LjML)

E1E∗2E3E∗4
(2π)4 δ4(p1 + p2 − p3 − p4) (D.1)

× f2(E2) [1− f3(E3)] [1− f4(E4)] .

In a �rst step one separates the phase space integrals into an angular integral and an integral over

absolute momentum p̄ =
√
~p 2

d3p3 = p̄2
3dΩ3dp̄3 = p̄3E3dΩ3dE3 and d3p2,4 = p̄2

2,4dΩ2,4dp̄2,4 = p̄2,4E
∗
2,4dΩ2,4dE2,4. (D.2)

Next the four-momentum conserving δ4 is reduced to δ3 by integration over dE4∫
dE4 δ

4(p1 + p2 − p3 − p4) = δ3(~p1 + ~p2 − ~p3 − ~p4)Θ(E∗4 −m∗4). (D.3)

From here on the energy E4 is given by E4 = E1 + E2 − E3. For convenience this relation will not be

explicitly written out. With D.2 and D.3 the cross section becomes

dλ−1(E1) =
2G2

FV
2
ud

(2π)5

∞∫
E2−

dE2

E3+∫
m3

dE3
p̄2p̄3p̄4

E1
f2(E2) [1− f3(E3)] [1− f4(E4)] (D.4)

∫
dΩ2dΩ3dΩ4 (AjMA + ...+ LjML) δ3(~p1 + ~p2 − ~p3 − ~p4).

The limits for the two remaining energy integrals dE2 and dE3 are set by the following conditions. E2

must be so large that for a given E1 it is at least possible to produce �nal state particles with their

respective minimal energy

E2− ≥ E3,min + E4,min − E1 = m3 +m∗4 + U4 − E1. (D.5)

Also E2 must be at least its own minimal energy. Hence the lower limit E2− is given by

E2− = max {m3 +m∗4 + U4 − E1,m
∗
2 + U2} . (D.6)
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The lower limit for E3 is trivially its mass m3. The upper limit E3+ is set by the condition that for

a given energy E1 and E2 the remaining energy E4 is at least equal to the minimum energy of this

particles

E3+ = E1 + E2 − E4,min = E1 + E2 −m∗4 − U4. (D.7)

The three angular integrals can be solved analytically for all terms. For this purpose the integrals

(IA, ..., IL) are de�ned by

IX ≡
p̄1p̄2p̄3p̄4

4π2

∫
dΩ2dΩ3dΩ4MXδ

3(~p1 + ~p2 − ~p3 − ~p4). (D.8)

These integrals will be solved explicitly in the following. The calculation of these integrals is strongly

based on the approach in [137]. Yet, it develops this approach further by including medium e�ects,

fully relativistic treatment, in some case more elaborate computation schemes.

Angular Integral I-A

IA is given by

IA ≡
p̄1p̄2p̄3p̄4

4π2

∫
dΩ2dΩ3dΩ4 (p1 · p∗2) (p3 · p∗4) δ3(~p1 + ~p2 − ~p3 − ~p4). (D.9)

De�ne the momentum ~P1 by

~P1 ≡ ~p1 + ~p2 and P1 =
√
p̄2

1 + p̄2
2 + 2p̄1p̄2 cos θ2. (D.10)

The δ-function can then be expressed by

δ3(~p1 + ~p2 − ~p3 − ~p4) =
1

p̄2
4

δ
(
p4 −

∣∣∣~P1 − ~p3

∣∣∣)δ2
(

Ω4 − Ω|~P1−~p3|
)
. (D.11)

Integrating over dΩ4 results then into

IA =
p̄1p̄2p̄3

4π2p̄4

∫
dΩ2dΩ3 (E1E

∗
2 − ~p1 · ~p2) (E3E

∗
4 − ~p3 · ~p4) δ

(
p4 −

∣∣∣~P1 − ~p3

∣∣∣). (D.12)

The angular integral is given by dΩ3 = dφ3d cos θ3 = dφ3dx. One has the freedom to de�ne the angle

x as the angle between ~P1 and ~p3. This allows for a variable substitution in the δ-function

δ
(
p4 −

∣∣∣~P1 − ~p3

∣∣∣) = δ

(
p4 −

√
~P

2

2 + ~p 2
3 − 2x~P1~p3

)
=

p̄4

P1p̄3
δ

(
x− P 2

1 + p̄2
3 − p̄2

4

2P1p̄3

)
. (D.13)

Further the dot product (~p3 · ~p4) can be rewritten by eliminating x according to the δ-function

~p3 · ~p4 = ~p3 ·
(
~P1 − ~p3

)
= p̄3P1x− p̄2

3 =
P 2

1 − p̄2
3 − p̄2

4

2
. (D.14)

Performing integrations over φ3 and x, the integral IA becomes

IA =
p̄1p̄2

2π

∫
dΩ2

1

P1
(E1E

∗
2 − ~p1 · ~p2)

(
E3E

∗
4 +

p̄2
3 + p̄2

4 − P 2
1

2

)
Θ(p̄3 + p̄4 − P1)Θ(P1 − |p̄3 − p̄4|).

(D.15)

The Heaviside functions arise from the limits of the angular range −1 ≤ x ≤ 1. Now one can substitute

the angular integral dΩ2 by

dΩ2 = dφ2d cos θ2 = dφ2dP1
P1

p̄1p̄2
. (D.16)
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Performing the integration over φ2 the integral IA takes the form

IA =

P1,max∫
P1,min

dP1

(
E1E

∗
2 +

p̄2
1 + p̄2

2 − P 2
1

2

)(
E3E

∗
4 +

p̄2
3 + p̄2

4 − P 2
1

2

)
, (D.17)

where the limits P1,min and P1,max arise from the combined constraints on both angles cos θ2 and

cos θ3. They are given by

P1,min = max {|p̄1 − p̄2| , |p̄3 − p̄4|} and P1,max = min {p̄1 + p̄2, p̄3 + p̄4} . (D.18)

After performing the integration over P1 one �nally obtains

IA =
1

60

[
3
(
P 5

1,max − P 5
1,min

)
− 10 (a+ b)

(
P 3

1,max − P 3
1,min

)
+ 60ab (P1,max − P1,min)

]
. (D.19)

The coe�cients a and b are given by

a = E1E
∗
2 +

p̄2
1 + p̄2

2

2
and b = E3E

∗
4 +

p̄2
3 + p̄2

4

2
. (D.20)

Angular Integral I-B

IB is given by

IB ≡
p̄1p̄2p̄3p̄4

4π2

∫
dΩ2dΩ3dΩ4 (p1 · p∗4) (p3 · p∗2) δ3(~p1 + ~p2 − ~p3 − ~p4). (D.21)

De�ne the momentum ~P2 by

~P2 ≡ ~p4 − ~p1 and P2 =
√
p̄2

1 + p̄2
4 − 2p̄1p̄4 cos θ4. (D.22)

The δ-function can then be expressed by

δ3(~p1 + ~p2 − ~p3 − ~p4) =
1

p̄2
2

δ
(
p2 −

∣∣∣~P2 + ~p3

∣∣∣)δ2
(

Ω2 − Ω|~P2+~p3|
)
. (D.23)

Integrating over dΩ2 results then into

IB =
p̄1p̄3p̄4

4π2p̄2

∫
dΩ3dΩ4 (E1E

∗
4 − ~p1 · ~p4) (E∗2E3 − ~p2 · ~p3) δ

(
p2 −

∣∣∣~P2 + ~p3

∣∣∣). (D.24)

Substituting dΩ3 = dφ3d cos θ3 = dφ3dx with x as the angle between ~P1 and ~p3, the δ-function becomes

δ
(
p2 −

∣∣∣~P2 + ~p3

∣∣∣) = δ

(
p2 −

√
~P

2

2 + ~p 2
3 + 2x~P2~p3

)
=

p̄2

P2p̄3
δ

(
x− p̄2

2 − P 2
2 − p̄2

3

2P2p̄3

)
. (D.25)

Further the dot product (~p2 · ~p3) can be rewritten by eliminating x

~p2 · ~p3 = ~p3 ·
(
~P2 + ~p3

)
= p̄3P2x+ p̄2

3 =
p̄2

2 + p̄2
3 − P 2

2

2
. (D.26)

Performing integrations over φ3 and x, the integral IB becomes

IB =
p̄1p̄4

2π

∫
dΩ4

1

P2
(E1E

∗
4 − ~p1 · ~p4)

(
E∗2E3 +

P 2
2 − p̄2

2 − p̄2
3

2

)
Θ(p̄2 + p̄3 − P2)Θ(P2 − |p̄2 − p̄3|).

(D.27)

161



Now one can substitute the angular integral dΩ4 by

dΩ4 = dφ4d cos θ4 = −dφ4dP2
P2

p̄1p̄4
. (D.28)

Performing the integration over φ4, the integral IB takes the form

IB =

P2,max∫
P2,min

dP2

(
E1E

∗
4 +

P 2
2 − p̄2

1 − p̄2
4

2

)(
E∗2E3 +

P 2
2 − p̄2

2 − p̄2
3

2

)
. (D.29)

The limits P2,min and P2,max are given by

P2,min = max {|p̄1 − p̄4| , |p̄2 − p̄3|} and P2,max = min {p̄1 + p̄4, p̄2 + p̄3} . (D.30)

After performing the integration over P2 one �nally obtains

IB =
1

60

[
3
(
P 5

2,max − P 5
2,min

)
+ 10 (c+ d)

(
P 3

2,max − P 3
2,min

)
+ 60cd (P2,max − P2,min)

]
. (D.31)

The coe�cients c and d are given by

c = E1E
∗
4 −

p̄2
1 + p̄2

4

2
and d = E∗2E3 −

p̄2
2 + p̄2

3

2
. (D.32)

Angular Integral I-C

IC is given by

IC ≡
p̄1p̄2p̄3p̄4

4π2

∫
dΩ2dΩ3dΩ4 (p1 · p∗2)2 (p1 · p3) δ3(~p1 + ~p2 − ~p3 − ~p4). (D.33)

First one de�nes the momentum ~P1 like in (D.10). The integration of IC proceeds then completely

analogous to IA up to (D.15), except for the transformation of the dot product and the integral over

φ3. One arrives then at

IC =
p̄1p̄2

4π2

∫
dΩ2dφ3

1

P1
(p1 · p∗2)2 (p1 · p3) Θ(p̄3 + p̄4 − P1)Θ(P1 − |p̄3 − p̄4|). (D.34)

Next the angular integral dΩ2 is substituted according to (D.16). Rewriting the four-momentum

products yields then

IC =
1

4π2

∫
dφ2dφ3

P1,max∫
P1,min

dP1

(
E1E

∗
2 +

p̄2
1 + p̄2

2 − P 2
1

2

)2

(E1E3 − p̄1p̄3 cos θ1,3) . (D.35)

Now one has to use a relation that connects the cos θa,b between two vectors ~va and ~vb to the cosines

cos θa,c and cos θb,c of each vector to a third vector ~vc. Denoting cos θ by x this relation is given by

xa,b = xa,cxb,c −
√(

1− x2
a,c

) (
1− x2

b,c

)
cos (φa,b). (D.36)

Inserting ~va = ~p1, ~vb = ~p3, and ~vc = ~P1, this transforms into

x1,3 = x1,Px3,P −
√(

1− x2
1,P

)(
1− x2

3,P

)
cosφ1,3. (D.37)

162



Further one �nds that the second term of x1,3 does not contribute to an integral over φ1,3 because of

the asymmetry of cosφ1,3. Renaming φ3 → φ1,3 it can be shown that

2π∫
0

dφ1,3 cosφ1,3 =

π∫
0

dφ1,3 cosφ1,3 +

2π∫
π

dφ1,3 cosφ1,3 =

π∫
0

dφ1,3 cosφ1,3 −
π∫

0

dφ1,3 cosφ1,3 = 0. (D.38)

Consequently the integral IC can be rewritten into

IC =
1

4π2

∫
dφ2dφ3

P1,max∫
P1,min

dP1

(
E1E

∗
2 +

p̄2
1 + p̄2

2 − P 2
1

2

)2

(E1E3 − p̄1p̄3x̄1,3) . (D.39)

with x̄1,3 = x1,Px3,P . The cosines x3,P is already �xed by momentum conservation, see (D.13)

x3,P =
P 2

1 + p̄2
3 − p̄2

4

2P1p̄3
. (D.40)

For x1,P one �nds

x1,P =
~p1 · ~P1

p̄1P1
=
p̄2

1 + p̄1p̄2 cos θ2

p̄1P1
=
P 2

1 + p̄2
1 − p̄2

2

2p̄1P1
with cos θ2 =

P 2
1 − p̄2

1 − p̄2
2

2p̄1p̄2
. (D.41)

Plugging (D.40) and (D.41) into (D.39), the integral IC takes the form

IC =
1

4π2

∫
dφ2dφ3

P1,max∫
P1,min

dP1

(
E1E

∗
2 +

p̄2
1 + p̄2

2 − P 2
1

2

)2 [
E1E3 −

1

4P 2
1

(
P 2

1 + p̄2
1 − p̄2

2

) (
P 2

1 + p̄2
3 − p̄2

4

)]
.

(D.42)

Performing the angular integrations one �nds then

IC =

P1,max∫
P1,min

dP1

(
α0 + α1P

2
1

)2 (
β0P

−2
1 + β1 + β2P

2
1

)
. (D.43)

where the limits P1,min and P1,max are given in (D.18). The other coe�cients are given by

α0 = E1E
∗
2 +

p̄2
1 + p̄2

2

2
, β0 =

1

4

(
p̄2

1 − p̄2
2

) (
p̄2

4 − p̄2
3

)
,

α1 = −1

2
, β1 = E1E3 −

1

4

(
p̄2

1 − p̄2
2 + p̄2

3 − p̄2
4

)
, (D.44)

β2 = −1

4
.

Performing the integration over P1 one �nally obtains

IC =

−
(
P 7

1,max − P 7
1,min

)
56

+
(α0 + β1)

20

(
P 5

1,max − P 5
1,min

)
−
(
α2

0 + 4α0β1 − β0

)
12

(
P 3

1,max − P 3
1,min

)
+
(
α2

0β1 − α0β0

)
(P1,max − P1,min)− α2

0β0

(
P−1

1,max − P
−1
1,min

)]
. (D.45)
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Angular Integral I-D

ID is given by

ID ≡
p̄1p̄2p̄3p̄4

4π2

∫
dΩ2dΩ3dΩ4 (p1 · p3)2 (p1 · p∗2) δ3(~p1 + ~p2 − ~p3 − ~p4). (D.46)

De�ne the momentum ~P3 by

~P3 ≡ ~p1 − ~p3 and P3 =
√
p̄2

1 + p̄2
3 − 2p̄1p̄3 cos θ3. (D.47)

The δ-function can then be expressed by

δ3(~p1 + ~p2 − ~p3 − ~p4) =
1

p̄2
4

δ
(
p4 −

∣∣∣~P3 + ~p2

∣∣∣)δ2
(

Ω4 − Ω|~P3+~p2|
)
. (D.48)

Integrating over dΩ4 results then into

ID =
p̄1p̄2p̄3

4π2p̄4

∫
dΩ2dΩ3 (E1E3 − ~p1 · ~p3)2 (E1E

∗
2 − ~p1 · ~p2) δ

(
p4 −

∣∣∣~P3 + ~p2

∣∣∣). (D.49)

Substituting dΩ2 = dφ2d cos θ2 = dφ2dx2 with x2 as the angle between ~P3 and ~p2, the δ-function

becomes

δ
(
p4 −

∣∣∣~P3 + ~p2

∣∣∣) = δ

(
p4 −

√
~P

2

3 + ~p 2
2 + 2x2

~P3~p2

)
=

p̄4

P3p̄2
δ

(
x2 −

p̄2
4 − P 2

3 − p̄2
2

2P3p̄2

)
. (D.50)

Performing the integration over x2 and rewriting the momentum products one �nds

ID =
p̄1p̄3

4π2

∫
dφ2dΩ3

(
E1E3 +

P 2
3 − p̄2

1 − p̄2
3

2

)2

(E1E
∗
2 − p̄1p̄2 cos θ1,2) Θ(p̄2 + p̄4 − P3)Θ(P3 − |p̄2 − p̄4|).

(D.51)

Now one can substitute the angular integral dΩ3 by

dΩ3 = dφ3d cos θ3 = −dφ3dP3
P3

p̄1p̄3
. (D.52)

Using this relation the integral ID becomes

ID =
1

4π2

∫
dφ2dφ3

P3,max∫
P3,min

dP3

(
E1E3 +

P 2
3 − p̄2

1 − p̄2
3

2

)2

(E1E
∗
2 − p̄1p̄2 cos θ1,2) . (D.53)

The limits P3,min and P3,max are given by

P3,min = max {|p̄1 − p̄3| , |p̄2 − p̄4|} and P3,max = min {p̄1 + p̄3, p̄2 + p̄4} . (D.54)

Analogous to (D.37) one can derive a connection between the cosines cos θ1,2 = x1,2, x1,P , and x2,P

x1,2 = x1,Px2,P −
√(

1− x2
1,P

)(
1− x2

2,P

)
cosφ1,2. (D.55)

The second part of x1,2 does not contribute to the integral, analogous to the discussion for IC in (D.38).

Further, x2,P = x2 is already given in (D.50). The cosine x1,P equates to

x1,P =
~p1 · ~P3

p̄1P3
=
p̄2

1 − p̄1p̄3 cos θ3

p̄1P3
=
P 2

3 + p̄2
1 − p̄2

3

2p̄1P3
with cos θ3 =

p̄2
1 + p̄2

3 − P 2
3

2p̄1p̄3
. (D.56)
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Plugging this into (D.53) the integral ID takes the form

ID =
1

4π2

∫
dφ2dφ3

P3,max∫
P3,min

dP3

(
E1E3 +

P 2
3 − p̄2

1 − p̄2
3

2

)2 [
E1E

∗
2 +

1

4P 3
1

(
P 2

3 + p̄2
1 − p̄2

3

) (
P 2

3 + p̄2
2 − p̄2

4

)]
.

(D.57)

Performing the angular integrations one �nds then

ID =

P3,max∫
P3,min

dP3

(
δ0 + δ1P

2
1

)2 (
ε0P

−2
1 + ε1 + ε2P

2
1

)
. (D.58)

The coe�cients are de�ned by

δ0 = E1E3 −
p̄2

1 + p̄2
3

2
, ε0 =

1

4

(
p̄2

1 − p̄2
3

) (
p̄2

2 − p̄2
4

)
,

δ1 =
1

2
, ε1 = E1E

∗
2 +

1

4

(
p̄2

1 + p̄2
2 − p̄2

3 − p̄2
4

)
, (D.59)

ε2 =
1

4
.

Performing the integration over P3 one �nally obtains

ID =


(
P 7

3,max − P 7
3,min

)
56

+
(δ0 + ε1)

20

(
P 5

3,max − P 5
3,min

)
+

(
δ2

0 + 4δ0ε1 + ε0
)

12

(
P 3

3,max − P 3
3,min

)
+
(
δ2

0ε1 + δ0ε0
)

(P3,max − P3,min)− δ2
0ε0

(
P−1

3,max − P
−1
3,min

)]
. (D.60)

Angular Integral I-E

IE is given by

IE ≡
p̄1p̄2p̄3p̄4

4π2

∫
dΩ2dΩ3dΩ4 (p1 · p∗2)2 δ3(~p1 + ~p2 − ~p3 − ~p4). (D.61)

This integral can be solved completely analogous to IA. Instead of (D.17) one obtains

IE =

P1,max∫
P1,min

dP1

(
E1E

∗
2 +

p̄2
1 + p̄2

2 − P 2
1

2

)2

. (D.62)

After performing the integration over P1 the integral IE results into

IE =
1

60

[
3
(
P 5

1,max − P 5
1,min

)
− 20a

(
P 3

1,max − P 3
1,min

)
+ 60a2 (P1,max − P1,min)

]
. (D.63)

The expressions P1,min and P1,max are de�ned by (D.18) and a is given in (D.20).

Angular Integral I-G

IG is given by

IG ≡
p̄1p̄2p̄3p̄4

4π2

∫
dΩ2dΩ3dΩ4 (p1 · p3)2 δ3(~p1 + ~p2 − ~p3 − ~p4). (D.64)

165



First one de�nes the momentum ~P3 like in (D.47). The δ-function can then be expressed by

δ3(~p1 + ~p2 − ~p3 − ~p4) =
1

p̄2
4

δ
(
p4 −

∣∣∣~P3 + ~p2

∣∣∣)δ2
(

Ω4 − Ω|~P3+~p2|
)
. (D.65)

Integrating over dΩ4 results then into

IG =
p̄1p̄2p̄3

4π2p̄4

∫
dΩ2dΩ3 (E1E3 − ~p1 · ~p3)2 δ

(
p4 −

∣∣∣~P3 + ~p2

∣∣∣). (D.66)

Substituting dΩ2 = dφ2d cos θ2 = dφ2dx2 with x2 as the angle between ~P3 and ~p2, the δ-function

becomes

δ
(
p4 −

∣∣∣~P3 + ~p2

∣∣∣) = δ

(
p4 −

√
~P

2

3 + ~p 2
2 + 2x2

~P3~p2

)
=

p̄4

P3p̄2
δ

(
x2 −

p̄2
4 − P 2

3 − p̄2
2

2P3p̄2

)
. (D.67)

Performing the integrations over φ2 and x2, the integral IG becomes

IG =
p̄1p̄3

2π

∫
dΩ3

(
E1E3 +

P 2
3 − p̄2

1 − p̄2
3

2

)2

Θ(p̄2 + p̄4 − P3)Θ(P3 − |p̄2 − p̄4|). (D.68)

Now one can substitute the angular integral dΩ3 by

dΩ3 = dφ3d cos θ3 = −dφ3dP3
P3

p̄1p̄3
. (D.69)

Performing the integration over φ3, the integral IG takes the form

IG =

P3,max∫
P3,min

dP3

(
E1E3 +

P 2
3 − p̄2

1 − p̄2
3

2

)2

. (D.70)

After performing the integration over P3 one �nally obtains

IG =
1

60

[
3
(
P 5

3,max − P 5
3,min

)
+ 20e

(
P 3

3,max − P 3
3,min

)
+ 60e2 (P3,max − P3,min)

]
. (D.71)

The expressions P3,min and P3,max are de�ned by (D.54). The coe�cient e is given by

e = E1E3 −
p̄2

1 + p̄2
3

2
. (D.72)

Angular Integral I-H

IH is given by

IH ≡
p̄1p̄2p̄3p̄4

4π2

∫
dΩ2dΩ3dΩ4 (p1 · p∗2) (p1 · p3) δ3(~p1 + ~p2 − ~p3 − ~p4). (D.73)

This can be solved completely analogous to either IC or ID. Here ID is chosen and so IH is found to

become

IH =

P3,max∫
P3,min

dP3

(
δ0 + δ1P

2
1

) (
ε0P

−2
1 + ε1 + ε2P

2
1

)
. (D.74)

The coe�cients P3,min and P3,max are de�ned in (D.54). The coe�cients δi and εi are given in (D.59).

Performing the integration over P3 one �nally obtains

IH =


(
P 5

3,max − P 5
3,min

)
40

+
(δ0 + 2ε1)

12

(
P 3

3,max − P 3
3,min

)
+

(2δ0ε1 + ε0)

2
(P3,max − P3,min) (D.75)

−δ0ε0

(
P−1

3,max − P
−1
3,min

)]
.
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Angular Integral I-J

IJ is given by

IJ ≡
p̄1p̄2p̄3p̄4

4π2

∫
dΩ2dΩ3dΩ4 (p1 · p∗2) δ3(~p1 + ~p2 − ~p3 − ~p4). (D.76)

This expression can be computed completely analogous to IA. Following the integration there, IJ is

found to become

IJ =

P1,max∫
P1,min

dP1

(
E1E

∗
2 +

p̄2
1 + p̄2

2 − P 2
1

2

)
. (D.77)

After performing the integration over P1, the integral IJ results into

IJ =
1

60

[
−10

(
P 3

1,max − P 3
1,min

)
+ 60a (P1,max − P1,min)

]
. (D.78)

The expressions P1,min and P1,max are de�ned by (D.18) and a is given in (D.20).

Angular Integral I-K

IK is given by

IK ≡
p̄1p̄2p̄3p̄4

4π2

∫
dΩ2dΩ3dΩ4 (p1 · p3) δ3(~p1 + ~p2 − ~p3 − ~p4). (D.79)

This expression can be computed completely analogous to IG. Following the integration there, IK is

found to become

IK =

P3,max∫
P3,min

dP3

(
E1E3 +

P 2
3 − p̄2

1 − p̄2
3

2

)
. (D.80)

After performing the integration over P3 one �nally obtains

IK =
1

60

[
10
(
P 3

3,max − P 3
3,min

)
+ 60e (P3,max − P3,min)

]
. (D.81)

The expressions P3,min and P3,max are de�ned by (D.54) and e is given in (D.72).

Angular Integral I-L

IL is given by

IL ≡
p̄1p̄2p̄3p̄4

4π2

∫
dΩ2dΩ3dΩ4δ

3(~p1 + ~p2 − ~p3 − ~p4). (D.82)

This expression can be computed completely analogous to either IA or IB or IG. Hence IL is found to

become

IL =

P1,max∫
P1,min

dP1 =

P2,max∫
P2,min

dP2 =

P3,max∫
P3,min

dP3. (D.83)

After performing the integration one �nally obtains

IL = (P1,max − P1,min) = (P2,max − P2,min) = (P3,max − P3,min) . (D.84)

The limits for the momenta are given in (D.18), (D.30), and (D.54).
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Limits for Energy Integration

For the two remaining energy integrals there are further constraints beyond the limits that are set in

(D.4). They arise from the additional demand that the four-momentum con�guration of all particles

must not only comply with energy conservation but also momentum conservation. The corresponding

constraint would be di�cult to express in terms of explicit limits on the energy integrals. However,

it can be simply expressed by the demand Pi,max > Pi,min. From (D.84) it is clear that this relation

is ful�lled for all the Pi if it is ful�lled for one of them. Thus when numerically evaluating (D.4),

the integrand must vanish if the condition is not met. In section (5.1) this is taken into account by

multiplying the integrals IX by Θ(P1,max − P1,min).

D.2. Phasespace Integrals for Inverse Neutron Decay

The matrix element of inverse neutron decay (5.29) has a distinctly di�erent kinematic structure to the

neutrino capture reactions. For convenience and to compare with the capture reactions one denotes the

incoming ν̄e by �1�, the incoming proton by �2�, the incoming electron by �3� and the outgoing neutron

by �4�. With this notation the cross section for inverse neutron decay can be written the following way

dλ−1(E1) =

∫
d3pp

(2π)3

d3pe−

(2π)3

d3pn

(2π)3 2G2
FV

2
ud

(A3MA + ...+ L3ML)

Eν̄eE
∗
pEe−E

∗
n

(2π)4 δ4(pν̄e + pp + pe− − pn)

× fp(Ep)fe−(Ee−) [1− fn(En)] . (D.85)

Proceeding analogous to the capture reactions, this can be transformed into

dλ−1(Eν̄e) =
2G2

FV
2
ud

(2π)5

∞∫
m∗p+Up

dEp

∞∫
Emin

dEe−
p̄pp̄e− p̄n
Eν̄e

fp(Ep)fe−(Ee−) [1− fn(En)]

∫
dΩpdΩe−dΩn (A3MA + ...+ L3ML) δ3(~pν̄e + ~pp + ~pe− − ~pn). (D.86)

The lower limit for Ee− arises from the condition that for given Eν̄e and Ep there must be enough total

energy to create a �nal state neutron with minimal energy

Emin = max {m∗n + Un − Eν̄e − Ep,me−} . (D.87)

The three angular integrals can again be solved analytically for all terms. For this purpose the integrals

(IA3, ..., IL3) are de�ned by

IX3 ≡
p̄1p̄2p̄3p̄4

4π2

∫
dΩpdΩe−dΩnMXδ

3(~pν̄e + ~pp + ~pe− − ~pn). (D.88)

The solution of these integrals can be obtained largely similar to the respective expressions of the

capture reactions. For this purpose one replaces (only in the angular integrals IX) the indices {1, 2, 3, 4}
by {ν̄e, n, e−, p} respectively. Further one has to adjust for the di�erent kinematics in the δ-function.

Following this recipe the derivations do not change in the structure but only with respect to some

signs. There are additional constraints on these integrals from momentum conservation. These are

derived the same way as for the capture reactions.
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Angular Integral I-A3

The angular integral IA3 has the form

IA3 =
p̄1p̄2p̄3p̄4

4π2

∫
dΩpdΩe−dΩn (p∗n · pν̄e)

(
p∗p · pe−

)
δ3(~pν̄e + ~pp + ~pe− − ~pn). (D.89)

It can be computed similar to IA. Eventually one obtains

IA3 =
1

60

[
−3
(
P ∗51,max − P ∗51,min

)
− 10 (a∗ − b∗)

(
P ∗31,max − P ∗31,min

)
+ 60a∗b∗

(
P ∗1,max − P ∗1,min

)]
,

(D.90)

with the limits for the momenta P ∗1,min and P ∗1,max and the coe�cients a∗ and b∗ given by

P ∗1,min = max {|p̄ν̄e − p̄n| , |p̄p − p̄e− |} and P ∗1,max = min {p̄ν̄e + p̄n, p̄p + p̄e−} , (D.91)

a∗ = Eν̄eE
∗
n −

p̄2
ν̄e + p̄2

n

2
and b∗ = E∗pEe− +

p̄2
p + p̄2

e−

2
. (D.92)

Angular Integral I-B3

The angular integral IB3 has the form

IB3 =
p̄1p̄2p̄3p̄4

4π2

∫
dΩpdΩe−dΩn (p∗n · pe−)

(
p∗p · pν̄e

)
δ3(~pν̄e + ~pp + ~pe− − ~pn). (D.93)

It can be computed similar to IB. Eventually one obtains

IB3 =
1

60

[
−3
(
P ∗52,max − P ∗52,min

)
+ 10 (c∗ − d∗)

(
P ∗32,max − P ∗32,min

)
+ 60c∗c∗

(
P ∗2,max − P ∗2,min

)]
,

(D.94)

with the limits for the momenta P ∗2,min and P ∗2,max and the coe�cients c∗ and d∗ given by

P ∗2,min = max {|p̄ν̄e − p̄p| , |p̄n − p̄e− |} and P ∗2,max = min {p̄ν̄e + p̄p, p̄n + p̄e−} , (D.95)

c∗ = Eν̄eE
∗
p +

p̄2
ν̄e + p̄2

p

2
and d∗ = E∗nEe− −

p̄2
n + p̄2

e−

2
. (D.96)

Angular Integral I-C3

The angular integral IC3 has the form

IC3 =
p̄1p̄2p̄3p̄4

4π2

∫
dΩpdΩe−dΩn (p∗n · pν̄e)

2 (pν̄e · pe−) δ3(~pν̄e + ~pp + ~pe− − ~pn). (D.97)

It can be computed similar to IC . Eventually one obtains

IC3 =


(
P ∗71,max − P ∗71,min

)
56

+
(α∗0 + β∗1)

20

(
P ∗51,max − P ∗51,min

)
+

(
α∗20 + 4α∗0β

∗
1 + β∗0

)
12

(
P ∗31,max − P ∗31,min

)
+
(
α∗20 β

∗
1 + α∗0β

∗
0

) (
P ∗1,max − P ∗1,min

)
− α∗20 β

∗
0

(
P ∗−1

1,max − P
∗−1
1,min

)]
, (D.98)

with the coe�cients α∗0, β
∗
0 , and β

∗
1 given by

α∗0 = Eν̄eE
∗
n −

p̄2
ν̄e + p̄2

n

2
, β∗0 =

1

4

(
p̄2
ν̄e − p̄

2
n

) (
p̄2
p − p̄2

e−
)
, (D.99)

β∗1 = Eν̄eEe− +
1

4

(
p̄2
ν̄e − p̄

2
n + p̄2

e− − p̄
2
p

)
.
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Angular Integral I-D3

The angular integral ID3 has the form

ID3 =
p̄1p̄2p̄3p̄4

4π2

∫
dΩpdΩe−dΩn (pν̄e · pe−)2 (p∗n · pν̄e) δ3(~pν̄e + ~pp + ~pe− − ~pn). (D.100)

It can be computed similar to ID. Eventually one obtains

ID3 =

−
(
P ∗73,max − P ∗73,min

)
56

+
(δ∗0 + ε∗1)

20

(
P ∗53,max − P ∗53,min

)
−
(
δ∗20 + 4δ∗0ε

∗
1 − ε∗0

)
12

(
P ∗33,max − P ∗33,min

)
+
(
δ∗20 ε

∗
1 − δ∗0ε∗0

) (
P ∗3,max − P ∗3,min

)
− δ∗20 ε

∗
0

(
P ∗−1

3,max − P
∗−1
3,min

)]
, (D.101)

with the limits for the momenta P ∗3,min and P ∗3,max and the coe�cients δ∗0 , ε
∗
0, and ε

∗
1 given by

P ∗3,min = max {|p̄ν̄e − p̄e− | , |p̄n − p̄p|} and P ∗3,max = min {p̄ν̄e + p̄e− , p̄n + p̄p} , (D.102)

δ∗0 = Eν̄eE
∗
e− +

p̄2
ν̄e + p̄2

e−

2
, ε∗0 =

1

4

(
p̄2
ν̄e − p̄

2
e−
) (
p̄2
p − p̄2

n

)
, (D.103)

ε∗1 = Eν̄eEn −
1

4

(
p̄2
ν̄e + p̄2

n − p̄2
e− − p̄

2
p

)
.

Angular Integral I-E3

The angular integral IE3 has the form

IE3 =
p̄1p̄2p̄3p̄4

4π2

∫
dΩpdΩe−dΩn (p∗n · pν̄e)

2 δ3(~pν̄e + ~pp + ~pe− − ~pn). (D.104)

It can be computed similar to IE . Eventually one obtains

IE3 =
1

60

[
3
(
P ∗51,max − P ∗51,min

)
+ 20a∗

(
P ∗31,max − P ∗31,min

)
+ 60a∗2

(
P ∗1,max − P ∗1,min

)]
. (D.105)

Angular Integral I-G3

The angular integral IG3 has the form

IG3 =
p̄1p̄2p̄3p̄4

4π2

∫
dΩpdΩe−dΩn (pν̄e · pe−)2 δ3(~pν̄e + ~pp + ~pe− − ~pn). (D.106)

It can be computed similar to IG. Eventually one obtains

IG3 =
1

60

[
3
(
P ∗53,max − P ∗53,min

)
− 20e∗

(
P ∗33,max − P ∗33,min

)
+ 60e∗2

(
P ∗3,max − P ∗3,min

)]
. (D.107)

The coe�cient e∗ is given by

e∗ = Eν̄eEe− +
p̄2
ν̄e + p̄2

e−

2
. (D.108)

Angular Integral I-H3

The angular integral IH3 has the form

IH3 =
p̄1p̄2p̄3p̄4

4π2

∫
dΩpdΩe−dΩn (p∗n · pν̄e) (pν̄e · pe−) δ3(~pν̄e + ~pp + ~pe− − ~pn). (D.109)

It can be computed similar to IH . Eventually one obtains

IH3 =


(
P ∗53,max − P ∗53,min

)
40

− (δ∗0 + 2ε∗1)

12

(
P ∗33,max − P ∗33,min

)
+

(δ∗0ε
∗
1 − ε∗0)

2

(
P ∗3,max − P ∗3,min

)
−δ∗0ε∗0

(
P ∗−1

3,max − P
∗−1
3,min

)]
. (D.110)
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Angular Integral I-J3

The angular integral IJ3 has the form

IJ3 =
p̄1p̄2p̄3p̄4

4π2

∫
dΩpdΩe−dΩn (p∗n · pν̄e) δ3(~pν̄e + ~pp + ~pe− − ~pn). (D.111)

It can be computed similar to IJ . Eventually one obtains

IJ3 =
1

60

[
10
(
P ∗31,max − P ∗31,min

)
+ 60a∗

(
P ∗1,max − P ∗1,min

)]
. (D.112)

Angular Integral I-K3

The angular integral IK3 has the form

IK3 =
p̄1p̄2p̄3p̄4

4π2

∫
dΩpdΩe−dΩn (pν̄e · pe−) δ3(~pν̄e + ~pp + ~pe− − ~pn). (D.113)

It can be computed similar to IK . Eventually one obtains

IK3 =
1

60

[
−10

(
P ∗33,max − P ∗33,min

)
+ 60e∗

(
P ∗3,max − P ∗3,min

)]
. (D.114)

Angular Integral I-L3

The angular integral IL3 has the form

IL3 =
p̄1p̄2p̄3p̄4

4π2

∫
dΩpdΩe−dΩnδ

3(~pν̄e + ~pp + ~pe− − ~pn). (D.115)

It can be computed similar to IL. Eventually one obtains

IL3 =
(
P ∗1,max − P ∗1,min

)
. (D.116)
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E. Cross Sections for Nonrelativistic

and Interacting Nucleons

E.1. Capture of Electron Neutrinos

Substitution of phase space integral

The integral over electron phase space can be described by

d3pe− = pe−Ee−dφ d cos θ dEe− .

The energy transfer q0 is de�ned by q0 = Eνe − Ee− . Hence, the energy integral can be substituted

according to

dq0

dEe−
= −1 ⇒

∞∫
me

dEe− =

Eνe−me∫
−∞

dq0.

Further, the momentum transfer q is related to cos θ by

q̄ =

√
(~pνe − ~pe−)2 =

√
E2
νe + p̄2

e− − 2Eνe p̄e− cos θ.

The angular integration over cos θ can then be substitued by integration over q̄

dq̄

d cos θ
=
−Eνe p̄e−

q̄
⇒

1∫
−1

d cos θ =
1

Eνe p̄e−

Eνe+p̄e−∫
Eνe−p̄e−

dq̄ q̄.

Performing the integration over φ the whole phase space integral d3pe− can eventually be substituted

by

d3pe− = 2π

Eνe−me∫
−∞

dq0
Ee−

Eνe

Eνe+p̄e−∫
Eνe−p̄e−

dq̄ q̄.

Structure Function for di�erent e�ective masses

Here it is assumed that the dispersion relations of neutrons and protons are given by

En =
p̄2
n

2m∗n
+m∗n + Un and Ep =

p̄2
p

2m∗p
+m∗p + Un.

The structure function S(q0, ~q) is given by

S(q0, ~q) ≡ 2

∫
d3pn

(2π)3

d3pp

(2π)3 (2π)4 δ4(pνe + pn − pe− − pp)fn(En) [1− fp(Ep)] .
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By integrating over proton phase space the four-momentum conserving δ4 is reduced to energy con-

serving δ. The structure function becomes then

S(q0, ~q) =
1

2π2

∫
d3pnδ(q0 + En − Ep)fn(En) [1− fp(Ep)] . (E.1)

Now the proton momentum ~pp is given by ~pp = ~pn + ~q. This allows to express the argument of the

δ-function in terms of the angle cos θn between the neutron and the momentum transfer.

0 = Ep − En − q0 =
(~pn + ~q)2

2m∗p
+m∗p + Up −

~p 2
n

2m∗n
−m∗n − Un

=
p̄ 2
n

2m∗p
χ+

p̄nq̄

m∗p
cos θn +

q̄2

2m∗p
−∆m∗ −∆U − q0 with χ = 1−

m∗p
m∗n

, (E.2)

= f(cos θn).

Consequently the δ-function can be rewritten

δ[f(cos θn)] = δ(cos θn − cos θ0)

∣∣∣∣df(cos θn)

d cos θn

∣∣∣∣−1

cos θ0

= δ(cos θn − cos θ0)
m∗p
p̄nq̄

. (E.3)

The angle cos θ0 is given by

cos θ0 =
m∗p
p̄nq̄

(
c− χp̄2

n

2m∗p

)
with c = q0 + ∆U + ∆m∗ − q̄2

2m∗p
.

Since −1 < cos θn < 1, the integration over cos θn will result into constraints on p̄n. From (E.2) one

can derive lower and upper limits

p̄2
n± =

2q̄2

χ2

[(
1 +

χm∗pc

q̄2

)
±

√
1 +

2χm∗pc

q̄2

]
. (E.4)

This results in upper and lower limits for the neutron energy En±

En± =
p̄2
n±

2m∗n
+m∗n + Un.

After rewriting the δ-function according to (E.3) and integrating over cos θn and φn, the structure

function becomes

S(q0, ~q) =
m∗p
πq̄

p̄n+∫
p̄n−

dp̄n p̄nfn(En) [1− fp(En + q0)] .

Next we de�ne the variables x and z by

x ≡ En − µn
T

and z ≡ µn − µp + q0

T
.

The statistical factor can then be expressed in terms of these new expressions

fn(En) [1− fp(En + q0)] =
1

1 + exp
(
En−µn
T

) 1

1 + exp
(
µp−En−q0

T

) =
1

1 + exp (x)

1

1 + exp (−x− z)
.

Substituting the integration over p̄n by x one gets

dx

dp̄n
=

p̄n
m∗nT

→
p̄n+∫
p̄n−

dp̄n p̄n = m∗nT

x+∫
x−

dx.
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and the structure function becomes

S(q0, ~q) =
m∗nm

∗
pT

πq̄

x+∫
x−

dx
1

1 + exp (x)

1

1 + exp (−x− z)
.

The integral over x can be solved analytically∫
dx

1

1 + exp (x)

1

1 + exp (−x− z)
=

1

1− exp (−z)
ln

[
1 + exp (x)

1 + exp (x+ z)

]
.

With the use of this expression the structure function �nally results into

S(q0, ~q) =
m∗nm

∗
pT

πq̄

ξ− − ξ+

1− exp (−z)
with ξ± = ln

[
1 + exp ((En± − µn) /T )

1 + exp ((En± + q0 − µp) /T )

]
. (E.5)

Structure Function for equal e�ective masses

Here it is assumed that the dispersion relations of neutrons and protons are given by

En =
p̄2
n

2m∗
+m∗ + Un and Ep =

p̄2
p

2m∗
+m∗ + Un.

This changes the relation between the neutron momentum p̄n and the angle cos (θn)

0 = Ep − En − q0 =
p̄nq̄

m∗p
cos θn +

q̄2

2m∗p
−∆m∗ −∆U − q0.

the energy conserving δ-function can thus be transformed into

δ(q0 + E2 − E4) = δ(cos θn − cos θ0)
m∗p
p̄nq̄

with cos θ0 =
m∗p
p̄nq̄

(
q0 + ∆U + ∆m∗ − q̄2

2m∗p

)
.

From the limits of cos (θn) there arises only a lower border for p̄n. By constructing the limiting value

of (E.4) for equal e�ective nucleon masses, one �nds that p̄n+ goes to in�nity. For the lower limit one

�nds

p̄2
n− =

m∗2

q̄2

(
q0 + ∆U − q̄2

2m∗p

)2

.

Proceeding analogous to the general case of di�erent e�ective masses the structure function can then

be solved to become

S(q0, ~q) =
m∗2T

πq̄

z + ξ−
1− exp (−z)

.

where z and ξ− are de�ned in E.5.

Structure Function in Elastic Approximation

After integration over the proton phase space, the structure function has the form

S(q0, ~q) = 4π

∫
d3pn

(2π)3 δ(q0 + En − Ep)fn(En) [1− fp(Ep)] .

In the elastic approximation the absolut momentum of the neutron and the proton is the same p̄n = p̄p.

Consequently the argument of the energy conserving δ-function becomes

0 = Ep − En − q0 =
p̄ 2
n

2m∗p
χ−∆m∗ −∆U − q0 with χ = 1−

m∗p
m∗n

, (E.6)

' −∆m∗ −∆U − q0 with χ ' 0. (E.7)
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In the second step one neglects the di�erence in kinematic energy between neutrons and protons that

arises from the di�erent e�ective masses in the denominator. With this approximation the δ-function

can be factored out of the phase space integral and the structure function becomes

S(q0, ~q) = 4πδ(q0 + ∆m∗ + ∆U)

∫
d3pn

(2π)3 fn(En(p̄n)) [1− fp(Ep(p̄n))] . (E.8)

The integrand can be a transformed by the following usefull relation [139, 61]

fn(En(p̄n)) [1− fp(Ep(p̄n))] =
fn(En(p̄n))− fp(Ep(p̄n))

1− exp ((∆m∗ + ∆U − µp + µn) /T )
. (E.9)

The denominator factors out of the integral. The integration over neutron phase space yields then∫
d3pn

(2π)3 fn(En(p̄n))− fp(Ep(p̄n)) = nn − np, (E.10)

where nn and np are the neutron and proton number density, respectively. The structure function

becomes eventually

S(q0, ~q) = 4πδ(q0 + ∆m∗ + ∆U)
nn − np

1− exp ((∆m∗ + ∆U − µp + µn) /T )
. (E.11)

E.2. Inverse Neutron Decay

Substitution of phase space integral

The integral over electron phase space can be described again by

d3pe− = pe−Ee−dφ d cos θ dEe− .

The energy transfer q0 is de�ned by q0 = Eν̄e + Ee− . Hence, the energy integral can be substituted

according to

dq0

dEe−
= 1 ⇒

∞∫
me

dEe− =

∞∫
Eν̄e+me

dq0.

Further, the momentum transfer q and cos θ are related by

q̄ =

√
(~pν̄e + ~pe−)2 =

√
E2
ν̄e + p̄2

e− + 2Eν̄e p̄e− cos θ.

The angular integration over cos θ can then be substitued by integration over q̄

dq

d cos θ
=
Eν̄e p̄e−

q̄
⇒

1∫
−1

d cos θ =
1

Eν̄e p̄e−

Eν̄e+p̄e−∫
Eν̄e−p̄e−

dq̄ q̄.

Performing the integration over φ the whole phase space integral d3pe− can eventually be substituted

by

d3pe− = 2π

∞∫
Eν̄e+me

dq0
Ee−

Eν̄e

Eν̄e+p̄e−∫
Eν̄e−p̄e−

dq̄ q̄.
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