TU Darmstadt / ULB / TUprints

Capacitive Sensing and Communication for Ubiquitous Interaction and Environmental Perception

Grosse-Puppendahl, Tobias (2015)
Capacitive Sensing and Communication for Ubiquitous Interaction and Environmental Perception.
Technische Universität
Ph.D. Thesis, Primary publication

[img]
Preview
Dissertation - Text
2015_05_28_Dissertation_Final.pdf - Accepted Version
Copyright Information: CC BY-NC-ND 3.0 Unported - Creative Commons, Attribution, NonCommercial, NoDerivs.

Download (30MB) | Preview
Item Type: Ph.D. Thesis
Type of entry: Primary publication
Title: Capacitive Sensing and Communication for Ubiquitous Interaction and Environmental Perception
Language: English
Referees: Fellner, Prof. Dieter W. ; Van Laerhoven, Prof. Kristof ; Neumann, Prof. Gerhard ; Schürr, Prof. Andy ; Buchmann, Prof. Alejandro
Date: 22 May 2015
Place of Publication: Darmstadt
Date of oral examination: 22 May 2015
Abstract:

During the last decade, the functionalities of electronic devices within a living environment constantly increased. Besides the personal computer, now tablet PCs, smart household appliances, and smartwatches enriched the technology landscape. The trend towards an ever-growing number of computing systems has resulted in many highly heterogeneous human-machine interfaces. Users are forced to adapt to technology instead of having the technology adapt to them. Gathering context information about the user is a key factor for improving the interaction experience. Emerging wearable devices show the benefits of sophisticated sensors which make interaction more efficient, natural, and enjoyable. However, many technologies still lack of these desirable properties, motivating me to work towards new ways of sensing a user's actions and thus enriching the context. In my dissertation I follow a human-centric approach which ranges from sensing hand movements to recognizing whole-body interactions with objects.

This goal can be approached with a vast variety of novel and existing sensing approaches. I focused on perceiving the environment with quasi-electrostatic fields by making use of capacitive coupling between devices and objects. Following this approach, it is possible to implement interfaces that are able to recognize gestures, body movements and manipulations of the environment at typical distances up to 50cm. These sensors usually have a limited resolution and can be sensitive to other conductive objects or electrical devices that affect electric fields. The technique allows for designing very energy-efficient and high-speed sensors that can be deployed unobtrusively underneath any kind of non-conductive surface. Compared to other sensing techniques, exploiting capacitive coupling also has a low impact on a user's perceived privacy.

In this work, I also aim at enhancing the interaction experience with new perceptional capabilities based on capacitive coupling. I follow a bottom-up methodology and begin by presenting two low-level approaches for environmental perception. In order to perceive a user in detail, I present a rapid prototyping toolkit for capacitive proximity sensing. The prototyping toolkit shows significant advancements in terms of temporal and spatial resolution. Due to some limitations, namely the inability to determine the identity and fine-grained manipulations of objects, I contribute a generic method for communications based on capacitive coupling. The method allows for designing highly interactive systems that can exchange information through air and the human body. I furthermore show how human body parts can be recognized from capacitive proximity sensors. The method is able to extract multiple object parameters and track body parts in real-time. I conclude my thesis with contributions in the domain of context-aware devices and explicit gesture-recognition systems.

Alternative Abstract:
Alternative AbstractLanguage

Innerhalb der letzten Jahre haben sich die Funktionalitäten der Geräte in einer Wohnumgebung stark erweitert. Dieser Trend kann zu großen Teilen dem technischen Fortschritt in der Elektro- und Informationstechnik zugeschrieben werden. Im Laufe dieser Entwicklung wurden bestehende Geräte, wie bspw. Personal Computer, miniaturisiert, und neue Nutzungsszenarien entstanden. Durch die Verfügbarkeit von immer effizienteren Prozessoren und neuen energiesparenden Sensoren entwickelten sich neue Gerätekatgorien wie Smartwatches und Smartphones. Neben diesen vielen unterschiedlichen Geräten existieren ebenfalls viele heterogene Benutzungskonzepte. Die Nutzung der Geräte ist häufig mit Problemen innerhalb aller Altersklassen verbunden, da immer mehr Nutzungsarten verinnerlicht werden müssen. Obwohl die technischen Möglichkeiten moderner Geräte meist sehr groß sind, sind Nutzer oft nur in der Lage einen kleinen Anteil tatsächlich auszuschöpfen.

In meiner Arbeit konzentriere ich mich auf die Wahrnehmung eines Nutzers mit Hilfe von quasistatischen elektrischen Feldern oder auch kapazitive Sensorik. Zunächst erläutere ich die Funktionsweise kapazitiver Wahrnehmung im Detail, beginnend bei schwach elektrischen Fischen in der Natur bis hin zu modernen Gestenerkennungssystemen. Auf Basis dieser Technologie ist es möglich, Nutzerschnittstellen zu entwickeln, die in der Lage sind Gesten, Körperbewegungen und Manipulationen der Umgebung in bis zu 50 cm Entfernung zu erkennen. Im Gegensatz zu anderen Methoden, wie bspw. Kameras, ist kapazitive Sensorik nicht abhängig von Beleuchtung und visueller Verdeckung. Aufgrund der geringeren Auflösung haben diese Sensoren einen geringen Einfluss auf die gefühlte Privatsphäre des Nutzers. Kapazitive Sensoren sind sehr energieeffizient und können unauffällig unter allen nichtleitenden Materialien angebracht werden. Ich orientiere mich an drei zentralen Forschungsfragen: (1) Der Erweiterung kapazitiver Wahrnehmungsmethoden, (2) dem Erkennen von Körperteilen eines Nutzers auf Basis kapazitiver Sensoren, und (3) dem expliziten und impliziten Interaktionsdesign solcher Systeme. Ich stelle unterschiedliche Methoden und Fallstudien vor, die ich quantitativ und qualitativ evaluiere.

German
Uncontrolled Keywords: capacitive sensing, capacitive sensors, capacitive communication
URN: urn:nbn:de:tuda-tuprints-45689
Classification DDC: 000 Generalities, computers, information > 004 Computer science
600 Technology, medicine, applied sciences > 600 Technology
600 Technology, medicine, applied sciences > 620 Engineering and machine engineering
Divisions: 20 Department of Computer Science
Study Areas > Study Area Information System Engineering
Date Deposited: 08 Jun 2015 14:04
Last Modified: 09 Jul 2020 00:57
URI: https://tuprints.ulb.tu-darmstadt.de/id/eprint/4568
PPN: 386765855
Export:
Actions (login required)
View Item View Item