Annex II: Maps of geo-potentials

<table>
<thead>
<tr>
<th>Map</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Infrastructure</td>
<td>338</td>
</tr>
<tr>
<td>2</td>
<td>Land use</td>
<td>339</td>
</tr>
<tr>
<td>3</td>
<td>Relief of the study area</td>
<td>340</td>
</tr>
<tr>
<td>4</td>
<td>Biotic zonation APA Carste de Lagoa Santa</td>
<td>341</td>
</tr>
<tr>
<td>5</td>
<td>Speleological zonation</td>
<td>342</td>
</tr>
<tr>
<td>6</td>
<td>Geomorphological compartments</td>
<td>343</td>
</tr>
<tr>
<td>7</td>
<td>Geomorphological features</td>
<td>344</td>
</tr>
<tr>
<td>8</td>
<td>Slope (Degree)</td>
<td>345</td>
</tr>
<tr>
<td>9</td>
<td>Completely flat slope</td>
<td>346</td>
</tr>
<tr>
<td>10</td>
<td>Very flat slope</td>
<td>347</td>
</tr>
<tr>
<td>11</td>
<td>Flat slope</td>
<td>348</td>
</tr>
<tr>
<td>12</td>
<td>Very steep slope</td>
<td>349</td>
</tr>
<tr>
<td>13</td>
<td>Local topographic position index</td>
<td>350</td>
</tr>
<tr>
<td>14</td>
<td>Low Local topographic position index</td>
<td>351</td>
</tr>
<tr>
<td>15</td>
<td>Concave Local topographic position index</td>
<td>352</td>
</tr>
<tr>
<td>16</td>
<td>Convex Local topographic position index</td>
<td>353</td>
</tr>
<tr>
<td>17</td>
<td>Medium topographic position index</td>
<td>354</td>
</tr>
<tr>
<td>18</td>
<td>Low medium topographic position index</td>
<td>355</td>
</tr>
<tr>
<td>19</td>
<td>Concave medium topographic position index</td>
<td>356</td>
</tr>
<tr>
<td>20</td>
<td>Regional topographic position index</td>
<td>357</td>
</tr>
<tr>
<td>21</td>
<td>Low Regional topographic position index</td>
<td>358</td>
</tr>
<tr>
<td>22</td>
<td>Surface and subsurface drainage in the study area</td>
<td>359</td>
</tr>
<tr>
<td>23</td>
<td>Elevation above river, lake or sinkhole</td>
<td>360</td>
</tr>
<tr>
<td>24</td>
<td>Distance to river, lake or sinkhole</td>
<td>361</td>
</tr>
<tr>
<td>25</td>
<td>Contributing area per unit contour length</td>
<td>362</td>
</tr>
<tr>
<td>26</td>
<td>Wetness index</td>
<td>363</td>
</tr>
<tr>
<td>27</td>
<td>High wetness index</td>
<td>364</td>
</tr>
<tr>
<td>28</td>
<td>Medium to high wetness index</td>
<td>365</td>
</tr>
<tr>
<td>29</td>
<td>Stream power</td>
<td>366</td>
</tr>
<tr>
<td>30</td>
<td>High stream power (excluding rivers)</td>
<td>367</td>
</tr>
<tr>
<td>31</td>
<td>High stream power (optimized for rivers)</td>
<td>368</td>
</tr>
<tr>
<td>32</td>
<td>Updated geological map and overview of the data base</td>
<td>369</td>
</tr>
<tr>
<td>33</td>
<td>Map of lineaments</td>
<td>370</td>
</tr>
<tr>
<td>34</td>
<td>Geological structures</td>
<td>371</td>
</tr>
</tbody>
</table>
Map 35 Updated geological map and locations of the outcrops B - Z ..372
Map 36 Updated geological map with cross-sections ...373
Map 37 Facies distribution of the Sete Lagoas Formation ..376
Map 38 Elevation of the basement surface ..377
Map 39 Base elevation of the Serra de Santa Helena Formation ...378
Map 40 Thickness of the Serra de Santa Helena Formation ..379
Map 41 Regionalized risk for the existence of near surface epikarst ...380
Map 42 Weathering depth ...381
Map 43 Groundwater surface ...382
Map 44 Elevation above groundwater ...383
Map 45 Subsoil depth above groundwater ..384
Map 46 Thickness of hard bedrock above groundwater ..385
Map 47 Thickness of limestone bedrock above groundwater ..386
Map 48 Thickness of basement bedrock above groundwater ..387
Map 49 Optimality value for limestone thickness above groundwater ..388
Map 50 Optimality value for overburden above limestone ...389
Map 51 Optimality value for accessibility for limestone resources ..390
Map 52 Sand resources ..391
Map 53 Gleysols ..392
Map 54 Deep Gleysols ..393
Map 55 Deep autochthonous red topsoil ...394
Map 56 Deep allochthonous red topsoil ...395
Map 57 Deep red topsoil ..396
Map 58 Deep all topsoil ...397
Map 59 Dominant hydrological soil type ..398
Map 60 Effective field capacity of the topsoil ..399
Map 61 Effective field capacity within 1 meter from surface ..400
Map 62 Topsoil permeability ...401
Map 63 Subsoil permeability ...402
Map 64 Hydrological soil categories for dominant flow processes ..403
Map 65 Chemical soil properties ..404
Map 66 Agricultural value ..405
Map 67 Subsoil erodibility ..406
Map 68 Soil erodibility ...407
Map 69 Topsoil protection value for groundwater ..408
Map 70 Subsoil protection value for groundwater ..409
Map 71 Map of the lithology protection factor (L-value) ..410

Annex II: Maps of geo-potentials

335
Map 72 Map of fracturing factor (F-value) ... 411
Map 73 Total bedrock protection ... 412
Map 74 Protection of the groundwater by overlying layers (P-map). 413
Map 75 Slope categories for the estimation of the degree of lateral flow 414
Map 76 I’-map showing the degree of lateral flow .. 415
Map 77 Surface catchment zones for groundwater protection. 416
Map 78 I-map showing the degree of bypassing protective layers. 417
Map 79 PI-map showing the intrinsic vulnerability of the groundwater. 418
Map 80 Risk of slope instability ... 419
Map 81 Topographic threshold for gully initiation ... 420
Map 82 Map of gully initiation hazard by rills or small landslides. 421
Map 83 Topographic threshold for gully propagation .. 422
Map 84 Existence of a temporary aquifer at topsoil-subsoil interface. 423
Map 85 Existence of potentially instable headwater hollows. 424
Map 86 Areas vulnerable to erosion by subsurface flow. 425
Map 87 Areas with possible saturation excess surface flow. 426
Map 88 Vulnerability to erosion by saturation excess surface flow 427
Map 89 Vulnerability to gully propagation ... 428
Map 90 Risk of gully propagation .. 429
Map 91 Risk of general gully or riverside erosion hazard. 430
Map 92 Risk of actual gully or riverside erosion hazard including land use. 431
Map 93 Risk for contamination of surface water or sinkholes. 432
A. General base data

1. Infrastructure
2. Landuse

Map 2 Landuse

Classified image from Landsat 7 Landsat ETM+ image from 03.August 2002.
3. Topography

Map 3 Relief of the study area

The map is based on contour lines from the topographic map 1: 25 000. Remnants of plateau surfaces are dissected by streams and declining from SSW to NNW. In the north-west, the karstified limestone crops out. Exceptional to this regional trend are the steeper and higher hills east of the triangular Lake Lagoa Santa (yellow line).
4. Zonation from APA Carste de Lagoa Santa

Map 4 Biotic zonation APA Carste de Lagoa Santa.

Biotic zonation for the environmental protection area APA Carste de Lagoa Santa. Source: Hermann et al. (1998)
Map 5 Speleological zonation

Speleological zonation in the environmental protection area APA Carste de Lagoa Santa. Source: de Souza et al. (1998).
B. Relief and geomorphology

1. Geomorphology

Map 6 Geomorphological compartments

Compartments as described in section 6.5 (black lines) and locations of satellite images and mapped topographic position indices used to illustrate the catenas (white rectangles).
Map 7 Geomorphological features

Data from Kohler et al. (1998) supplemented by features identified from relief data and on images from Google Earth (non-comprehensive overview).
2. Slope

Map 8 Slope (Degree)

See also section 10.3.2
Map 9 Completely flat slope

See also section 10.3.2
Map 10 Very flat slope

See also section 10.3.2
Map 11 Flat slope

See also section 10.3.2
Map 12 Very steep slope

See also section 10.3.2
3. **TPI**

Map 13 Local topographic position index.

See also section 10.3.3.
Map 14 Low Local topographic position index.

See also section 10.3.3.
Map 15 Concave Local topographic position index.

See also section 10.3.3.
Map 16 Convex Local topographic position index.

See also section 10.3.3.
Map 17 Medium topographic position index.

See also section 10.3.3.
Map 18 Low medium topographic position index.

See also section 10.3.3.
Map 19 Concave medium topographic position index.

See also section 10.3.3.
Map 20 Regional topographic position index.

See also section 10.3.3.
Map 21 Low Regional topographic position index.

See also section 10.3.3.
C. **Surface hydrology**

1. **Surface and subsurface drainage**

Map 22 Surface and subsurface drainage in the study area.

Annex II: Maps of geo-potentials - Surface hydrology 359
2. Elevation above surface water or sinks

Map 23 Elevation above river, lake or sinkhole.

The method is described in section 10.4
3. Distance to surface water or sinks

Map 24 Distance to river, lake or sinkhole.

The method is described in section 10.4
4. Specific catchment area

Map 25 Contributing area per unit contour length.

The method is described in section 10.4
5. Wetness index

Map 26 Wetness index.

The method is described in section 10.4
Map 27 High wetness index.

The method is described in section 10.4
Map 28 Medium to high wetness index.

The method is described in section 10.4
6. Stream power

Map 29 Stream power.

The method is described in section 10.4
Map 30 High stream power (excluding rivers).

The method is described in section 10.4
Map 31 High stream power (optimized for rivers).

The method is described in section 10.4
D. Geology

1. Geological database

Map 32 Updated geological map and overview of the data base
2. Lineaments

Map 33 Map of lineaments

The maps was derived from manual interpretation of the hillshade display (background) of the digital elevation model.
3. Structure

Map 34 Geological structures

Interpretation of lineaments and field observation for the structural setting of the study area.
4. Location of outcrop photos

Outcrop A is just south of the study area near the bifurcation of MG-10 and MG-424.
5. Geological cross-sections

The cross sections are shown on page 374 and 375.
Geological cross-sections 1 - 5. Their location is indicated in Map 36.
Figure Annex II - 2 Geological cross-sections 6 - 8. Their location is indicated in Map 36.
6. Facies distribution of the Sete Lagoas Fm.

Map 37 Facies distribution of the Sete Lagoas Formation.

The map indicates the character of the top layer of the Sete Lagoas Formation. Especially in the eastern part of the study area, stacked layers of pure and impure carbonates are common (see also the cross-sections on page 374 and 375).
7. Interpolated surfaces

The map was interpolated from outline and drillhole data (see section 5.9.4). The northern part of the area is highly insecure.

Annex II: Maps of geo-potentials - Geology 377
Map 39 Base elevation of the Serra de Santa Helena Formation. The map was interpolated from outline and drillhole data (see also section 11.3)
Map 40 Thickness of the Serra de Santa Helena Formation.

The map was interpolated from outline and drillhole data (see also section 11.3). The central part of low values is probably due to subsurface dissolution processes in the underlying carbonates.
8. Risk of near surface epikarst

Map 41 Regionalized risk for the existence of near surface epikarst. This value was optimized for the estimation of groundwater vulnerability. The calculation method is described in section 10.5.
9. Weathering depth

Map 42 Weathering depth.

The method is described in section 11.2
10. Geological architecture above groundwater

Map 43 Groundwater surface.

The method is described in section 11.1
Map 44 Elevation above groundwater.

The method is described in section 11.1
Map 45 Subsoil depth above groundwater.

The method is described in section 11.2.
Map 46 Thickness of hard bedrock above groundwater.

The method is described in section 11.4.
Map 47 Thickness of limestone bedrock above groundwater.

The method is described in section 11.4.
Map 48 Thickness of basement bedrock above groundwater.

The method is described in section 11.4.
Map 49 Optimality value for limestone thickness above groundwater.

The method is described in section 12.1
11. Mass resources

Map 50 Optimality value for overburden above limestone.

The method is described in section 12.1
Map 51 Optimality value for accessibility for limestone resources.

The method is described in section 12.1
Map 52 Sand resources

Assumed depth of the Quaternary sediments in the Ribeirão da Mata fluvial system around the probable center of urban growth next to the international airpoirt.

White areas = urbanized areas within the alluvial plains.

Grey areas = equidistant zones of a cost-distance calculation that takes into account the steepness of the terrain.

White bold lines = knick points of the graded river profile (compare Figure 12-2). Hofmann et al. (2009).
E. Soil properties

1. Soil types

Map 53 Gleysols.

The method is described in section 10.6.2.
Map 54 Deep Gleysols.

The method is described in section 10.6.2
Map 55 Deep autochthonous red topsoil.

The method is described in section 10.6.3.
Map 56 Deep allochthonous red topsoil.

The method is described in section 10.6.3.
Map 57 Deep red topsoil.

The method is described in section 10.6.3.
Map 58 Deep all topsoil.

The method is described in section 10.6.3.
Map 59 Dominant hydrological soil type.

The method is described in section 10.7.
2. Effective field capacity

Map 60 Effective field capacity of the topsoil.

The method is described in section 10.8.
Map 61 Effective field capacity within 1 meter from surface.
The method is described in section 10.8.
3. Permeability and hydrological categories

Map 62 Topsoil permeability.

The method is described in section 10.9.1
Map 63 Subsoil permeability

The map is estimated from lithology and risk of near surface epikarst. See section 10.9.2.
Map 64 Hydrological soil categories for dominant flow processes.

The method is described in section 10.10.
4. Agricultural value

Map 65 Chemical soil properties.

The method is described in section 12.3.1.
Map 66 Agricultural value.

The method is described in section 12.3.2.
5. Erodibility

The values are estimated from geology in comparison with erodibility of the topsoil. See also section 10.11.
Map 68 Soil erodibility.

The method is described in section 10.11.
F. Groundwater vulnerability

1. Protective function of overlying layers

Map 69 Topsoil protection value for groundwater.

It refers to the first meter from surface, independent of soil horizons. The method is described in section 13.2.2.
Map 70 Subsoil protection value for groundwater.

It refers to all soft material above groundwater below 1 meter from surface. The method is described in section 13.2.3.
Map 71 Map of the lithology protection factor (L-value)

This factor relates to protection by hard bedrock (Sete Lagoas Formation and basement. See also section 13.2.4.
Map 72 Map of fracturing factor (F-value)

This factor modifies the protection of lithology (L-factor). See also section 13.2.4.
Map 73 Total bedrock protection

This factor is calculated as a multiplication of the L and F value with the thickness of the relevant bedrock strata. See also section 13.2.4.
Map 74 Protection of the groundwater by overlying layers (P-map).

The method is described in section 13.3.
2. Degree of bypassing protective layers

Map 75 Slope categories for the estimation of the degree of lateral flow.

See also section 13.4.
Map 76 I’-map showing the degree of lateral flow

The map is based on hydrological soil type, land use and slope categories. See also section 13.4.
Map 77 Surface catchment zones for groundwater protection.

See also section 13.5.
Map 78 I-map showing the degree of bypassing protective layers.

The method is described in section 13.5.
3. Intrinsic vulnerability

Map 79 PI-map showing the intrinsic vulnerability of the groundwater.

The map is based on protection of overlying layers (P-map) and degree of bypassing (I-map). See also section 13.6.
G. Hazards

1. Risk of slope instability

Map 80 Risk of slope instability.

See also section 14.4.
2. Risk of gully initiation

Map 81 Topographic threshold for gully initiation.

See also section 14.4.
Map 82 Map of gully initiation hazard by rills or small landslides.

See also section 14.4.
3. Risk of gully propagation

Map 83 Topographic threshold for gully propagation.

See also section 14.5.
Map 84 Existence of a temporary aquifer at topsoil-subsoil interface.

See also section 14.5.
Map 85 Existence of potentially instable headwater hollows.

See also section 14.5.
Map 86 Areas vulnerable to erosion by subsurface flow.

See also section 14.5.
Map 87 Areas with possible saturation excess surface flow.

See also section 14.5.
Map 88 Vulnerability to erosion by saturation excess surface flow.

See also section 14.5.
Map 89 Vulnerability to gully propagation.

See also section 14.5.
Map 90 Risk of gully propagation.

See also section 14.5.
4. Risk of gully erosion

Map 91 Risk of general gully or riverside erosion hazard.

See also section 14.6.
Map 92 Risk of actual gully or riverside erosion hazard including land use.

See also section 14.6.
5. Risk of contamination of surface water

Map 93 Risk for contamination of surface water or sinkholes.

See also section 14.7.