
 1

Platform Independent

Specification of

Engineering Model

Transformations

Vom Fachbereich Elektrotechnik und Informationstechnik
der Technischen Universität Darmstadt

zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigte Dissertation

von

Dipl.-Ing. Michael Schlereth

geboren am 22.04.1966 in Schweinfurt

Referent: Prof. Dr. rer. nat. Andy Schürr

Koreferent: Prof. Dr.-Ing. Ulrich Epple

Tag der Einreichung: 23.01.2014

Tag der mündlichen Prüfung: 13.06.2014

D17

Darmstadt 2014

 2

 3

I dedicate this thesis to Susan,

 the sunshine of my life.

 4

 5

Acknowledgments

I thank my principal advisor, Prof. Dr. Andy Schürr, for giving me the opportunity to
work as an external doctoral student at Real-Time Systems Lab in Darmstadt, for his

open door if support was needed, and for sharing his deep insights into model

transformation systems when it comes to the industrial application of theoretical

concepts. My second advisor Prof. Dr. Ulrich Epple is one of the drivers of modeling

and object-orientation in automation engineering. I thank him for inspiring discussions,

for sharing ACPLT, and for supporting my thesis.

I thank my fellow doctoral students at Real-Time Systems Lab, Darmstadt, Anthony

Anjorin, Marius Lauder, and Sebastian Rose, for sharing ideas and accepting me in the
team. Tina Kraußer from Chair of Process Control Engineering, Aachen, helped me

starting with the ACPLT process control system.

I thank my managers at Siemens AG, Ulrich Welz and Rolf Florschütz, for giving me

the freedom to work on this thesis beside my daily work. At Siemens AG, I also thank

my colleagues and friends Clemens Dinges and Rumwald Hermann for the work on

exciting projects, for believing in me, and for motivating me to continue the work on this

thesis.

 6

 7

Abstract

Production machine engineering involves multiple engineering disciplines defining
together the configuration of each machine. Each of these disciplines provides an

engineering model, which influences engineering models from other disciplines and is

itself influenced by other engineering models. Therefore, building a valid configuration

of a production machine requires the reconciliation of engineering models of all involved

engineering disciplines.

Up to now, execution of model reconciliations by model transformation systems was

mainly considered for desktop model transformation environments. The analysis of

engineering processes and customer applications of production machines revealed that
the industrial application of model transformations requires the execution of the same

model transformation specification on different execution environments depending on

the initiator of the model reconciliation. An electrical engineer runs the model

transformation on his desktop between locally installed engineering applications for

small organizations or on his field programming device for commissioning scenarios.

For complex systems and bigger organizations, model transformations are executed on

an enterprise product lifecycle management (PLM) server. A machine operator triggers

model transformations on the real-time system of an automation controller for on-site

reconfigurable machines, e.g. by physically connecting a modular device to a production

machine.

To tackle this scenario, this thesis presents a new application of the model driven

architecture (MDA), which transforms a platform independent model transformation

specifications (PIM-MT) to platform specific model transformation specifications (PSM-

MT) by higher order transformations (HOT). For industrial usage, both the platform

independent transformation specification and the platform specific execution reuse

proven existing technology which is tailored and extended where needed. This allows for

the stepwise introduction of model transformation technology in existing engineering

and technology environments based on a classification scheme which was developed as

part of this thesis. For the PIM-MT specification, the strict handling of references
between engineering model elements from current model transformation specifications,

which does not fit well the requirements of engineering models with temporarily violate

references within the engineering workflow, was replaced by a weaker reference

handling based on domain specific reference designators. An existing model

transformation specification, the ATL language, has been tailored for PIM-MT

specifications. For the PSM-MT desktop execution, the ATL desktop model

transformation engine was reused. XSL transformations were adapted for enterprise

model transformations executed on PLM servers. A PSM-MT engine for real-time IEC

61131 programmable logic controllers was developed as part of this thesis.

With the results of this thesis it is now possible to build a customized engineering

environment as an extension of the existing infrastructure of a machine builder, which

automates the configuration of production machines by using model transformations

generated from a common platform independent specification on multiple execution

platforms.

 8

Zusammenfassung

An der Entwicklung von Produktionsmaschinen sind mehrere Entwicklungs-
Fachrichtungen beteiligt, insbesondere Mechanikkonstruktion, Elektrokonstruktion und

Automatisierungsentwicklung, die zusammen die Konfiguration einer Maschine

erstellen. Jede dieser Fachrichtungen beschreibt die Maschinenkonfiguration mit Hilfe

eines fachspezifischen Maschinenmodells, das einerseits die Inhalte anderer

fachspezifischer Maschinenmodelle beeinflusst und andererseits selbst von den Inhalten

anderer fachspezifischer Maschinenmodelle beeinflusst wird. Daher müssen bei der

Entwicklung einer Produktionsmaschine die Maschinenmodelle aller beteiligten

Fachrichtungen untereinander abgeglichen werden.

Der Abgleich von Maschinenmodellen durch Modelltransformationssysteme wird bisher

hauptsächlich auf Arbeitsplatzsystemen mit lokal installierten Modelltransformations-

umgebungen durchgeführt. Die Analyse der Entwicklungsprozesse und

Kundenanwendungen von Produktionsmaschinen zeigt aber, dass die industrielle

Anwendung von Modelltransformation erfordert, dass die gleiche Modell-

transformationsspezifikation je nach Initiator des Modellabgleichs auf verschiedenen

Ausführungsumgebungen durchgeführt werden muss. In einer kleinen Firma oder bei

einer Maschineninbetriebnahme führt ein Elektrokonstrukteur die Modelltransformation

auf seinem Arbeitsplatzrechner oder Programmiergerät zwischen lokal installierten

Entwicklungssystemen aus. Für komplexe Maschinen oder größere

Entwicklungsorganisationen werden Modelltransformationen regelmäßig auf einem
Enterprise Product Lifecycle Management (PLM) Server ausgeführt. Ein

Maschinenbediener startet Modelltransformationen auf dem Echtzeit-System einer

speicherprogrammierbaren Steuerung (SPS) für Maschinen, die Vor-Ort rekonfiguriert

werden können, beispielsweise durch den physikalischen Anschluss eines neuen

Maschinenmoduls an eine Produktionsmaschine.

Um diese Aufgabenstellung zu bewältigen, präsentiert die vorliegende Arbeit eine neue

Anwendung der Model-Driven-Architecture (MDA), bei der eine plattformunabhängige

Modelltransformationsspezifikation (PIM-MT) in plattformspezifische Modell-
transformationsspezifikationen (PSM-MT) mit Hilfe von Higher-Order-Transformations

(HOT) transformiert wird. Um den industriellen Einsatz zu ermöglichen, wird sowohl

für die plattformunabhängige Modelltransformationsspezifikation als auch für die

plattformspezifische Modelltransformationsmaschinen auf erprobte existierende

Technologien aufgebaut, die im Rahmen dieser Arbeit angepasst und erweitert wurden.

Dadurch kann die Technologie von Modelltransformationen mit Hilfe eines

Klassifikationsschemas, das im Rahmen der vorliegenden Arbeit erstellt wurde,

schrittweise in vorhandene Entwicklungs- und Technologieumgebungen eingeführt

werden.

 9

Für die plattformunabhängige Modelltransformationsspezifikation (PIM-MT) wurde die

strenge Definition von Referenzen zwischen Elementen des Maschinenmodells, die

schlecht zu den Anforderungen von Maschinenmodellen mit zeitweise ungültigen

Referenzen während des Entwicklungsprozesses passt, durch eine lockerere Definition

von Referenzen mit Hilfe von domänenspezifischen Kennzeichnungssystemen ersetzt.

Eine existierende Sprache zur Spezifikation von Modelltransformationen, die ATL

Modelltransformationssprache, wurde zur Nutzung als PIM-MT angepasst. Zur PSM-

MT-Ausführung auf Arbeitsplatzrechnern wurde die ATL-Modelltransformations-

maschine wiederverwendet. XSL-Transformationen wurden für serverbasierte
Modelltransformationen auf PLM-Systemen angepasst. Im Rahmen der vorliegenden

Arbeit wurde eine neue Modelltransformationsmaschine entwickelt, die auf

echtzeitfähigen speicherprogrammierbaren Steuerungen, die dem IEC 61131-3 Standard

entsprechen, ausführbar ist.

Auf Basis der Ergebnisse der vorliegenden Arbeit ist es nun möglich eine

kundenspezifisch angepasste Entwicklungsumgebung für Produktionsmaschinen zu

erstellen, die die existierende Entwicklungsumgebung eines Maschinenbauers so
erweitert, dass Produktionsmaschinen mit Hilfe von Modelltransformationen

automatisiert auf verschiedenen Plattformen konfiguriert werden können. Die

Spezifikation der plattformspezifischen Modelltransformationen wird dabei aus einer

einmalig erstellten plattformunabhängigen Modelltransformationsspezifikation für alle

Zielplattformen generiert.

 10

 11

Notations Used Within Figures

The architectural and implementation diagrams presented within this thesis use the UML
notation [IS12a].

The more architectural related figures are created with Microsoft PowerPoint1 (e.g.

Figure 21). The architectural diagrams are class diagrams annotated with some graphic

markers as shown with some samples in Figure 1. Classes are depicted by rectangles, the

can symbol is used for classes stereotyped as models. Directed or undirected

associations, dependencies, and generalizations are used according to the UML

specification.

The graphic markers are mainly used for the grouping of elements. Elements with the

same fill color belong to a group. Beside fill colors, boundary rectangles are used to

group elements.

For internal use only / © Siemens AG 2013. All Rights Reserved.

Industry SectorPage 2 Jan-2013 Michael Schlereth

Architectural Diagram UML Elements

Grouping

Class A Class DClass B Model C

Class E

Figure 1: Architectural UML Diagram Sample

The more implementation related UML figures are created with the UML Modeling Tool
"Enterprise Architect"2 (e.g. Figure 11). The UML elements used are the same as for the

more architecture related figures but the visual appearance is different.

Beside the formal UML figures, informal figures appear within this thesis where

diagrams are cited from references (e.g. Figure 2), where diagrams shall visualize

informal descriptions (e.g. Figure 7), or where figures show screenshots from

implementation tools (like Ecore diagrams in Figure 77).

1
 https://office.microsoft.com/en-us/powerpoint/

2
 http://www.sparxsystems.com/products/ea/

https://office.microsoft.com/en-us/powerpoint/
http://www.sparxsystems.com/products/ea/

 12

 13

Contents

1 Introduction ... 21

1.1 Motivation .. 21

1.2 Scope .. 23

1.3 Contributions .. 25

2 Application Scenario.. 27

2.1 Labeling Machine ... 27

2.2 Engineering Models .. 28

2.3 Engineering Model Reconciliation... 30

3 Requirements for Engineering Model Transformations ... 33

3.1 Mission Statement ... 34

3.2 Model Driven Specification of Model Transformations 35

3.3 Requirements for Engineering Model Transformation Specifications 37

3.4 Structure of Engineering Model Transformation Specifications 39

3.5 Engineering Model Access .. 40

3.6 Related Work .. 44

4 Platform Specific Model Transformation Languages and Engines 45

4.1 Desktop Model Transformation Engine ... 49

4.1.1 Rule Language ... 50

4.1.2 System Model .. 51

4.1.3 Pattern Language .. 52

4.1.4 Inter-Rule Execution Control .. 55

4.1.5 Modularization ... 56

4.1.6 Implementation Alternatives ... 57

4.1.7 Summary .. 59

 14

4.2 Enterprise Model Transformation Engine .. 60

4.2.1 Rule Language ... 62

4.2.2 System Model .. 64

4.2.3 Pattern Language .. 66

4.2.4 Inter-Rule Execution Control .. 69

4.2.5 Modularization ... 69

4.2.6 Implementation Alternatives ... 70

4.2.7 Summary .. 71

4.3 Real-Time Model Transformation Engine .. 73

4.3.1 Rule Language ... 77

4.3.2 System Model .. 78

4.3.3 Pattern Language .. 79

4.3.4 Inter-Rule Execution Control .. 82

4.3.5 Modularization ... 83

4.3.6 Related Work ... 84

4.3.7 Summary .. 84

4.4 PSM-MT summary ... 86

5 Platform Independent Model Transformation Language ... 88

5.1 Rule Language .. 91

5.2 System Model ... 93

5.3 Pattern Language .. 96

5.4 Inter-Rule Execution Control... 100

5.5 Modularization .. 103

5.6 Related Work .. 104

5.7 Summary .. 105

 15

6 PIM-MT to PSM-MT Transformations ... 107

6.1 PIM-MT transformation specification example .. 110

6.2 Desktop Model Transformations - ATL to ATL ... 114

6.2.1 PSM-MM to PIM-MM Transformation ... 115

6.2.2 Model Instances ... 116

6.2.3 PIM-MT to PSM-MT Transformation ... 117

6.2.4 Rule Execution ... 118

6.2.5 Summary .. 118

6.3 Enterprise Model Transformations - ATL to XSLT .. 119

6.3.1 PSM-MM to PIM-MM Transformation ... 120

6.3.2 Model Instances ... 122

6.3.3 PIM-MT to PSM-MT Transformation ... 124

6.3.4 Rule Execution ... 126

6.3.5 Summary .. 127

6.4 Real-Time Model Transformations - ATL to IEC 61131-3 128

6.4.1 PSM-MM to PIM-MM Transformation ... 130

6.4.2 Model Instances ... 133

6.4.3 PIM-MT to PSM-MT Transformation ... 134

6.4.4 Rule Execution ... 137

6.4.5 Summary .. 139

7 Conclusion and Future Work.. 140

8 References ... 143

9 Appendix ... 148

9.1 PIM-MT to intermediate ATL transformation .. 148

9.2 Desktop PIM-MT/Intermediate Representation to PSM-MT transformation 153

 16

9.3 Enterprise PIM-MT/Intermediate Representation to PSM-MT transformation .. 155

9.4 Real-Time PSM-MM to PIM-MM transformation ... 158

9.5 Real-Time PIM-MM generalizations transformation .. 160

9.6 Real-Time PIM-MT/Intermediate Representation to PSM-MT transformation .. 163

 19

Figure 84: ATL Rule to IEC 61131-3 Structured Text - Model Transformations

Library 130
Figure 85: IEC 61131-3 Platform Specific Metamodel 131
Figure 86: IEC 61131-3 PSM-MM to PIM-MM Transformation 132
Figure 87: IEC 61131-3 Platform Specific Model Instances 134
Figure 88: IEC 61131-3 Platform Specific Model Transformation Rule 136
Figure 89: IEC 61131-3 Platform Specific Rule Execution 138
Figure 90: Real-Time PIM-MT to PSM-MT Higher Order Transformation (HOT) 139

 20

http://eclipse.org/

 24

The focus of this thesis is on the reuse of the existing platform specific model

transformation engines. Nevertheless, the platform specific model transformation

environment has been extended where required. Especially for the execution of model

transformation at real-time automation systems, the IEC 61131-3 [In03b] execution

environment of programmable logic controllers has been extended to support the

platform specific execution of model transformation specifications. These extensions

were implemented on the application level of the model transformation environments

and are compatible to the existing environment.

For internal use only / © Siemens AG 2013. All Rights Reserved.

Industry SectorPage 8 Jan-2013 Michael Schlereth

Using Different Technical Platforms for the Definition

and the Execution of Model Transformations

Model Transformation

Definition

Model Transformation

Execution

Higher-Order

Transformation

Platform A

Device and Signal Model

(Electrical Engineering)

Functional Model

(Mechanical Engineering)

Software Model

(Automation Engineering)

Model

Transformation2

Model

Transformation1

Model

Transformation1

Platform B

Device and Signal Model

(Electrical Engineering)

Functional Model

(Mechanical Engineering)

Software Model

(Automation Engineering)

Model

Transformation2

Model

Transformation1

Model

Transformation1

Platform C

Device and Signal Model

(Electrical Engineering)

Functional Model

(Mechanical Engineering)

Software Model

(Automation Engineering)

Model

Transformation2

Model

Transformation1

Model

Transformation1

Platform D

Device and Signal Model

(Electrical Engineering)

Functional Model

(Mechanical Engineering)

Software Model

(Automation Engineering)

Model

Transformation2

Model

Transformation1

Model

Transformation1

Figure 4: Using Different Technical Platforms for the Definition and the Execution of Model

Transformations

 26

The contributions provided by this thesis are presented with the help of an application

scenario based on the engineering models of a bottle labeling machine presented in

Section 2.

The requirements for the new concept of model driven implementation of model

transformations are introduced in Section 3. This concept is based on the higher order
transformations from a platform independent model transformation specification (PIM-

MT) to multiple platform specific model transformation specifications (PSM-MT) as a

new application of the model driven architecture (MDA) [MM03]. Section 3 describes

the structure of engineering model specifications, the structure of engineering models,

and the interfaces to these engineering models. This given environment must be handled

by the MDA approach for model transformation specifications introduced by this thesis.

The platform specific model transformations engines (PSM-MT) required by the
application example of Section 2 are covered in Section 4. This section starts with the

introduction of an analysis scheme for model transformation platforms, which was

developed as part of this thesis. This analysis scheme is applied to the three model

transformation platforms required within production machine engineering: desktop

model transformations, server based model transformations, and real-time model

transformations. The existing technical platforms for server based model transformations

and for real-time model transformations could not be used as currently available, but had

to be adapted and extended as part of this thesis. Section 4 shows the adaptation of XSL

transformations and presents the IEC 61131-3 model transformation engine developed as

part of this thesis.

The counterpart to the platform specific model transformations, the platform

independent model transformation specification (PIM-MT), is subject of Section 5. The

ATL model transformation language is adapted for the usage as a PIM-MT by selecting

a subset of its language feature set and providing usage guidelines for its pattern

language.

The implementation details of the PIM-MT to PSM-MT higher order transformation and
the PSM-MM to PIM-MM transformation are described in Section 6. The

implementation covers the transformation of ATL to ATL, ATL to XSLT, and ATL to

IEC 61131-3.

Section 7 summarizes the results of this thesis and gives an outlook for future work.

 27

2 Application Scenario

As outlined in Section 1.2 this thesis targets at the reconciliation of models as part of

machine engineering and machine operation. As a running example, the engineering

model of a production machine with optional modules will be used.

2.1 Labeling Machine

The production machine market is very broad and covers many industries like

packaging, textile, plastics, handling, converting, and printing. The production machine

used as an example comes from the packaging industry and is a labeling machine used as
part of a bottle filling line (see Figure 5). In this application, the bottles filled with a

beverage enter the labeling machine on an infeed conveyor belt as shown at the left of

Figure 5. Then, the bottles are moved around a big wheel to make way for multiple

labeling units. These labeling units apply labels to different areas of a bottle, e.g. to the

front side of the bottle, to the back side of the bottle or to the neck of a bottle (see

Figure 6).

For internal use only / © Siemens AG 2013. All Rights Reserved.

Industry SectorPage 5 Jan-2013 Michael Schlereth

Modular Machinery Engineering

Figure 5: Bottle Labeling Machine

 30

The automation software structure reflects the structure of the electrical configuration.

As shown in Figure 9, the PLC software consists of an invariant part, which includes for

example the task system and general execution logic. For each labeling unit, a control

module for the labeling unit must be activated if the labeling unit is present. For

addressing the electrical devices of the control unit from the labeling unit control

module, interface modules like the axis technology object shown in Figure 9 must be

activated. These interface modules address the drive controller by the field bus network,

which connects the main PLC with the labeling unit stations.

Task System Program
Blocks

Labeling Unit
Control

Drive ControllerAxis
Technology

Object

Invariant elements required by the

base unit.

Optional elements required by the

labeling units.

External

hardware used by

the main PLC.

callcallcall

Figure 9: Bottle Labeling Machine - Software Structure

2.3 Engineering Model Reconciliation

For a valid configuration of a machine, the models of the different disciplines must be

reconciled. For the application scenario considered here, changes in the electrical model

must be reflected within the software model. For example, on a real-time controller for

each labeling device drive controller within the electrical model, the corresponding

software blocks in the automation model must be activated (see Figure 10). The abstract

definition of the model reconciliation as shown in Figure 10 does not include the
execution of the model transformation between the models. Depending on the system

characteristics, the reconciliation can be executed by the construction of a complete

model, by the addition of elements to an existing model, or by activating already existing

elements within an existing model.

The reconciliation of engineering models must only handle model elements which are

relevant for the model transformation specification. For example, the elements

"FrontSide:LabelFeeder" and "BackSide:LabelFeeder" shown at the lower right in

Figure 10 must be activated as part of the model reconciliation, but any relationship of
these model elements to other elements in the automation software needs not to be

handled by the reconciliation, because these relationships are not dependent on the

source model but can be constructed within the target element as part of the target

element initialization process without any knowledge from the source model. Therefore,

these elements are modeled without any relationship to other model elements.

 31

For internal use only / © Siemens AG 2013. All Rights Reserved.

Industry SectorPage 12 Jan-2013 Michael Schlereth

Device and Signal Model

(Electrical Engineering)

Software Model

(Automation Engineering)

Reconciliation Between

Electrical and Automation Engineering Models

Model

Transformation

Engine

Back Side :Label
Feeder

Back Side :Label
Device Control

Bottle Labeling :Labeling Machine
Operation

Front Side :Label
Feeder

:Label Device
Control

source target

Drive Controller Labeling Unit Front Side

Drives Front Side

Drive Controller Labeling Unit Back Side

Drives Back Side

Figure 10: Reconciliation Between Electrical and Automation Engineering Models

The application example shown in Figure 10 is used throughout this thesis to evaluate

the platform independent specification of model transformation systems. Within the

evaluation, the model elements of the application example are used with the formal

names shown in Figure 11. All elements include a name attribute, which provides a

unique identifier for each element. This name is also used for references between

elements.

The device and signal model is an instance of an electrical model. The electrical model

consists of a DriveControlUnit, which represents the DriveController from the device

and signal model shown in Figure 10. The DriveControlUnit models a vendor

independent device. Within the application example, low voltage converters of the

SIEMENS SINAMICS series4 were used as vendor specific devices, namely the

G120ControlUnit and the S120ControlUnit. The second part of the device and signal

model, the drives used for front side and back side labeling, are represented by the

DriveObject of the electrical model. The DriveObject includes an address attribute,

which holds the communication address used on the field bus network to control the
DriveObject. The DriveObject elements included in a DriveControlUnit are referenced

by the driveObject attribute.

The software model is an instance of the automation model. It consists of a

LabelDeviceCuControl, which is used in the user program to control the

DriveControlUnit from the electrical model. The DriveObject from the electrical model

is controlled by two different elements of the automation model. The DriveAxis

specialization of a TechnologyObject is used to provide positioning control functions.

The labeling function of the DriveAxis is controlled by the LabelDeviceControl element.

4
 http://www.industry.siemens.com/drives/global/en/converter/low-voltage-drives/Pages/Default.aspx

http://www.industry.siemens.com/drives/global/en/converter/low-voltage-drives/Pages/Default.aspx

 32

The labelDevice attribute of the LabelDeviceCuControl references the related

LabelDeviceControl. The TechnologyObject and the LabelDeviceControl include an

address attribute, which holds the communication address used on the field bus network

of the related elements from the electrical model.

DriveControlUnit

+ name :string
+ driveObject :string

DriveObject

+ name :string
+ address :string

S120ControlUnitG120ControlUnit

Electrical Model Automation Model

TechnologyObject

+ name :string
+ address :string

LabelDeviceCuControl

+ name :string
+ labelDevice :string

LabelDeviceControl

+ name :string
+ adress :string

DriveAxis

Figure 11: Electrical and Automation Engineering Models

The engineering models described in Section 2.2 , which are part of such a reconciliation

operation, reside on different execution platforms depending on the reconciliation

scenario, e.g. on desktop engineering applications, on a PLM server, or on automation

controllers. The reconciliation platform required for a specific application depends on

the engineering process of the production machine, the production process implemented

by the production machine, and the customer requirements. The following Section 3 will

detail these requirements for the execution of engineering model transformations on

different platforms.

 33

3 Requirements for Engineering Model Transformations

Reconciliation of engineering models as described in the application scenario in

Section 2 can be executed on different model reconciliation platforms depending on the

engineering phase in the machine development process (see Figure 12). The term

reconciliation is used in this thesis for the requirement to bring engineering models of

different engineering disciplines in a consistent state. Model reconciliation can be

realized by different technologies with model transformations being one these

technologies. This thesis uses model transformations as the technology to achieve model
reconciliation.

An Electrical Engineer starts the model reconciliation on his desktop between locally

installed engineering applications, if he is working in a small organization. If he goes out

for commissioning, reconciliation might be required on his field programming device if

he changes the electrical configuration of the machine due to commissioning issues.

Finally, a reconfiguration of the machine as part of the operation of the production

process can be executed on field programming devices with desktop engineering tools
similar to the model reconciliation executed in the commissioning phase.

For larger organizations and more complex systems, engineering models are managed by

product lifecycle management (PLM) systems running in a server environment. The

PLM server is accessed by many users from multiple engineering disciplines. In contrast

to the desktop scenario, a single engineering model like the electrical engineering model

is accessed and modified in parallel by multiple users. Generating a consistent machine

configuration is part of the PLM workflow within the engineering process of a machine.

The model reconciliation required for such a consistent machine is executed on the PLM
server. The reconciliation can be triggered on a regularly base (e.g. every night similar to

nightly software builds) or based on events (e.g. an electrical engineer commits his

working copy of the electrical engineering model).

For internal use only / © Siemens AG 2013. All Rights Reserved.

Industry SectorPage 10 Jan-2013 Michael Schlereth

Model Reconciliation of Production Machines

Design Commissioning Operation

Desktop

PLM Server

Real-Time Controller

Model

Reconciliation

Platform

Engineering

Phase

Figure 12: Model Reconciliation of Production Machines

 35

With these requirements in mind, the mission of this thesis is to define platform

independent model transformation rules and the transformation of these platform

independent model transformation rules to different model transformation rule execution

platforms as shown in Figure 13.

For internal use only / © Siemens AG 2013. All Rights Reserved.

Industry SectorPage 14 Jan-2013 Michael Schlereth

Engineering Model Reconciliation Scenarios

Desktop Applications

Model Reconciliation

On-Site Model Reconciliation

PLM Server

Model Reconciliation

Device and Signal Model

(Electrical Engineering)

Functional Model

(Mechanical Engineering)

Software Model

(Automation Engineering)

Model

Transformation

Model

Transformation

Rules

Figure 13: Platform Independent Specification of Model Transformation Rules

3.2 Model Driven Specification of Model Transformations

For the transformation of platform independent model transformation specifications to

different execution platforms the model driven architecture (MDA) is used. The model

driven architecture as described by the MDA guide [MM03] assumes that a system is

built by the iterative application of the MDA. Within a model driven development

process, the MDA pattern describes the iterative development of an implementation as

the transformation from a platform independent model (PIM) to a more platform specific

model (PSM) (see Figure 14). This pattern reflects the development process from a

requirement model through concepts and detailed model to the final implementation

model. In general, the transformation from a PIM to a PSM requires additional
information, such as parameters for the mapping of a PIM to different implementation

platforms. This information is shown as additional information in Figure 14 and might

involve also entering information by a user before the transformation is started. The new

application area of the PIM-PSM pattern presented by this thesis considers the

transformations used by the MDA also as models and transforms platform independent

models of model transformations (PIM-MT) to platform specific models of model

transformations (PSM-MT).

 36

For internal use only / © Siemens AG 2013. All Rights Reserved.

Industry SectorPage 15 Jan-2013 Michael Schlereth

Transformations As Defined By The MDA

Platform Specific Model (PSM)

Additional Information

Transformation

Platform Independent Model (PIM)

Platform Independent

Model Transformation (PIM-MT)

Specification

Platform Specific

Model Transformation (PSM-MT)

Specification

Figure 14: The MDA model transformation pattern [MM03]

The MDA pattern used in this thesis (see Figure 14) involves three different actors as

shown in the use case diagram of Figure 15: the automation system provider, the

machine builder (OEM), and the machine operator.

The automation system provider specifies the transformation from the platform
independent model transformation (PIM-MT) specification to the platform specific

model transformation (PSM-MT) specification. The model transformation engines used

for this transformation as well as the model transformation engines for the PSM-MT of

engineering models are in general standard model transformation engines. Only for real-

time model transformations on programmable logic controllers (PLC), a model

transformation engine must be developed by the automation system provider, since such

a model transformation is not available up to now.

The machine builder (OEM) specifies the platform independent model transformations

(PIM-MT) required for the reconciliation between engineering models. He executes the

PIM-MT to PSM-MT model transformation provided by the automation system provider

to get the desired platform specific model transformation specification (for one of the

three platforms shown in Figure 13). The machine builder uses the platform specific

model transformation specification (PSM-MT) as part of the machine engineering

process to reconcile the engineering models of his machine engineering environment.

Real-time model transformation specifications are not only executed by the machine
builder (OEM) within machine test and commissioning, but are also executed by the

machine operator as part of the machine reconfiguration for new production orders.

 37

Automation System
Provider

Machine Builder
(OEM)

Machine Operator

Specify PIM-MT to PSM-MT
Transformation

Specifiy PIM-MT of
engineering models

Execute PIM-MT to PSM-MT
transformation

Develop Real-Time Model
Transformation Engine

Execute PSM-MT of
engineering models

Execute Real-Time PSM-MT of
engineering models

Figure 15: Actors and Use-Cases of Engineering Model Transformations

3.3 Requirements for Engineering Model Transformation Specifications

The key requirement of machine builders for model transformation specifications as

presented by this thesis is the platform independence. The same model transformation
specification shall be executable on different model transformation platforms depending

on customer requests and project needs. The platforms currently relevant for machine

builders for the transformation of engineering models are desktop workstations, PLM

servers, and real-time automation systems.

Being part of a machine engineering and machine configuration workflow, model

transformation must always refine existing models and do not create completely new

models. The support of the model refinement is platform specific and might be
implemented different on multiple platforms.

The execution of model transformations shall be triggered by user interaction or by

automatic processes. User triggers for model transformations are required for machine

 38

engineers in their daily engineering work to update their working model with changes

made in engineering models by other users.

Automatic triggers are required for model transformations executed on PLM servers or

on real-time automation systems. A PLM server requires the execution of model

transformations if a valid configuration of the engineering models is requested, e.g. for
machine commissioning or for the generation of the machine documentation. The

generation of valid configurations is usually part of the release management within

machine engineering. For real-time systems, a valid engineering model configuration is

required if the machine is switched from manual mode to automatic mode. Model

transformation engines must be compatible to the cyclic execution model of real-time

systems. In contrast to the classical desktop usage of model transformation engines, the

model transformation is not triggered by discrete events but executed continuously by

the real-time system of the automation controller.

Machine engineering is a heavily customized process with respect to the content of

engineering models and the data exchange between engineering disciplines. The

customization of engineering models is different between companies and evolves over

time within a company from machine project to machine project. Together with changes

of the engineering process and changes of the engineering models, the model

transformation rules must evolve over time. The knowledge about engineering model

consistency is part of the engineering knowledge of machine engineers. Therefore,

model transformation rules must be easy understandable and modifiable by machine

engineers. This requires an easy understandable model transformation specification

together with an easy understandable engineering model.

The model transformation rules are part of the engineering data of a machine project. In

a managed engineering environment, the model transformation rules must be stored

together with the other machine related information on a PLM server or on a version

control system. These repositories can easily handle textual information. Therefore, a

textual representation of model transformation rules is preferred. A textual

representation also eases the exchange of model transformation specifications between

different platforms.

In machine engineering models, object oriented models are still very uncommon. For

example, real-time automation controllers are configured by key-value lists or electrical

engineering models consist of a bill of material together with a cross reference list.

Therefore, engineering model transformations must support such weak-typed models

within model transformation rules. In a weak-typed model no common classification

scheme exists, but classification of elements is implemented by different attributes.

Another consequence of weak-typed models is that a strong support for string handling

must be provided by the model transformation specification. Beside type classifiers for

elements, also type classifiers for attributes are missing. Textual strings are the least
common denominator between attribute values of different engineering model elements.

Finally, references play a weaker role in machine engineering projects than in general

object oriented models. Although references must be valid for a model release (i.e.

referencing an object, which exists in the same model as the reference), working

 39

versions of the engineering models can include invalid references due to changes of the

machine model (i.e. referencing an object, which does not exists in the same model as

the reference). Therefore, the model transformation specification must accept invalid

references. References in machine engineering models are for example implemented by

common attributes like communication addresses, memory addresses, or reference

designators.

The engineering models used on different platforms by model transformations must be

extendable to support the adaptation to model transformation engines. For example,

meta-information about model elements required by a model transformation engine must

be added to the engineering model if the information is not available in the engineering

model yet. Such an extension was required for the implementation of model

transformations on IEC 61131 programmable logic controllers.

3.4 Structure of Engineering Model Transformation Specifications

The structure of engineering model transformation specifications, as covered by this

thesis, is shown in Figure 16. An engineering model transformation specification can be

used to run an engineering model reconciliation, e.g. between an electrical engineering
model and an automation software model as described in Section 2. In general, multiple

engineering model transformation specifications will be used for different reconciliation

scenarios. Model reconciliation is triggered by a user working on an engineering model

or by the engineering model management environment (e.g. a PLM server) on a regular

basis.

An engineering model transformation specification consists of one or more

transformation rules. Each transformation rule checks a relationship between some

source model elements and target model elements for validity. If the relationship is
invalid (usually target elements do not exist or have wrong attributes), the engineering

model is modified so that the relationship between the source model elements and the

target model elements is valid.

A transformation rule uses model patterns to check the relationship between model

elements in a source and a target model. In the application example of the bottle labeling

machine used in this thesis (see Section 2.3), a transformation rule defines for example

that a label feeder element must be activated in the software model (the target model) if a
labeling device drive controller is active in the device and signal model (the source

model). The source model pattern selects a set of model elements. In general, the

specification of source model elements is not unique with respect to the properties of the

source elements. Therefore, a source model pattern selects multiple occurrences in the

engineering model. A selection of a source model pattern occurrence is called context for

the execution of a model transformation rule. The relationship between source model

elements and target model elements is checked based on the current context of the model

transformation rule. The target model elements are created and modified based on the

information from selected source model elements, for example the name of target model

elements can be derived from source model elements or properties of target model

elements can be calculated from source model elements.

 40

Excecution ControlTransformation
Rule

Model Pattern

System Model

Model
Transformation

Specification

use

TargetSource

trigger

1..*

Figure 16: Model Transformation Specification Structure

The access of transformations rules to model elements is specified according to a system
model used by the transformation rules. The system model provides the vocabulary,

which can be used by the transformation rules to specify model patterns. One part of the

vocabulary are classifiers, which can be used to identify model elements (e.g. names of

elements type or names of element properties). Another part of the vocabulary describes

the model structure: which elements can be referenced from the context of another

model element (e.g. which properties belong to a model element and can be read or

modified from a reference of this model element).

Finally, the execution control of transformation rules specifies the execution order and
execution activation of transformation rules. This part of the model transformation

specification is in many cases not explicitly specified but implicitly part of the

relationship of model elements, which are created by model transformation rules. An

explicit specification of the execution control can be part of a state machine running the

model transformation rules or can be specified as attributes of the transformation rules

such as an execution priority or rule application conditions.

3.5 Engineering Model Access

The execution of engineering model transformations as described in Section 3.4 requires

appropriate interfaces to the engineering models to select and modify model elements.

The engineering model transformations use different operations on source model

elements and on target model elements: source model elements are only queried but
never modified while target model elements are only created or modified but never

queried by the target pattern specification. Therefore, source model elements and target

model elements have different interfaces as shown in Figure 17. The interface to the

source model supports the selection of elements and querying element properties. The

target model interface supports the creation of elements and the modification of element

properties.

 41

Transformation Engine

Source Model Target Model

Figure 17: Model Access Operations

Elements, which are accessed by the engineering model operation, are described by the

metamodel shown in Figure 18. The metamodel is very small to be adaptable to a large

number of engineering models available. The elements of this metamodel are prefixed

with EM (for Engineering Model) to distinguish them from elements with similar names

in other metamodels.

EMClass

+ name :String

EMAttribute

+ name :String

1

emSuperTypes

0..*

1

emAttributes

0..*

Figure 18: Engineering Metamodel

The model driven approach selected by this thesis requires the classification of elements

according to EMClass types (at the left side of Figure 18). Each EMClass type can be

identified by a unique name. The engineering information, which can be stored in an
instance of an EMClass type, is held by attributes defined by EMAttribute (at the right

side of Figure 18)), which are also identified by a unique name. In general, it is difficult

to define common data types between different engineering models and between

implementations of an engineering model on different platforms. Therefore, the

EMAttribute does not include a type specification. The reuse of common model patterns

between transformation rules is supported by the emSuperTypes relationship between

EMClass types. The emSuperTypes relationship creates two constraints on the EMClass

types. The first constraint allows that two EMClass types, which share a common

EMClass by an emSuperTypes relationship can be used interchangeable in the model

 42

pattern of a model transformation rule. The second constraint defines that the source

EMClass type of an emSuperTypes relationship must hold all EMAttribute data elements

of the target EMClass type.

The engineering metamodel used in this thesis does not use an explicit definition of a

reference between two EMClass elements. In most metamodels used for model
transformations, references build a strong relationship between elements, which may not

be violated within a model instance. In engineering models, it is very common that the

model is inconsistent due to parallel changes of different people working on the model.

Therefore, a weak reference between elements is required for engineering models. Such

a weak reference is implemented by attributes which adhere to a naming scheme agreed

between the users of different model. Examples for such an agreement are reference

designators for industrial equipment [IS09].

Existing engineering models do not provide a common engineering metamodel and a

common interface for model operations as presented in this section. Moreover, most

engineering models are not designed and prepared to be modified by a model

transformation engine. Therefore, an adaptation of the structure of engineering models

and the interface to the model transformation are required as shown in Figure 19.

The adaptation of the engineering model structures maps the elements of the engineering

model to the metamodel elements shown in Figure 18. First, the elements of the

engineering model must be classified in EMClass elements. In general, currently
unrelated elements of the engineering model (e.g. drive elements and IO elements for an

electrical model) must available as common EMClass types. Then a naming scheme for

these classified elements must be defined and unique names must be assigned to each

classified engineering model element. These unique names must be automatically be

derivable from the engineering model elements, e.g. from properties of the engineering

elements or by the addition of additional information to the engineering model.

After the classification of EMClass elements, the available properties of these elements

must be defined as EMAttribute elements. The EMAttributes can play different roles in
the engineering model. They can be identifiers, which define the position of an EMClass

instance in a hierarchical structure within the engineering model, they can be references

to another EMClass instance, or they can be ordinary values, which define the

parameters of an EMClass instance. The value of an EMAttribute used as an identifier is

often derived dynamically from the structure of an engineering model and not stored

statically by an EMAttribute. References to other engineering model elements stored in

an EMAttribute may be invalid (e.g. if the referenced element is deleted or renamed after

the creation of the reference). This implementation of weak references supports

engineering workflows which assume that engineering models are only consistent at

specific points in the engineering workflow.

The interface adaptation includes the adaptation of source model operations and target

model operations. The source model operations "select element" and "get property" must

be mapped to common accessible data structures independent of the type of model

element. Model transformation engines assume that queries to the source model are

 43

model element independent. Therefore, a common interface must be provided that

executes queries either dynamically by dispatching the queries to different engineering

model elements or based on a data structure, which stores all information about available

model elements.

The creation of elements as required by the target model might be mapped to different
operations in the target engineering model. For example, a real-time automation

controller does not allow for the creation of elements similar to a new operation in the

Java programming language. Instead, all elements that might be available in any

automation controller configuration must be available preconfigured on the controller to

optimize the memory layout. The creation or deletion of an engineering model element

means the activation or deactivation of an already existing model element on this real-

time controller. Another implementation of the create operation is required for the

refinement of engineering models: after the creation of an element, a merge operation

with the already existing engineering model must be executed to avoid duplicate model

elements within the reconciled engineering model. This implementation of the create

operation is for example required for enterprise model transformation engines, which
implement event driven model modifications.

The modification of EMAttribute elements within an engineering model results in

different operations similar to the role of EMAttributes within the target model. An

EMAttribute, which identifies the position of an engineering model element within the

hierarchical structure of target model must be handled together with the create operation

to create the model element at the appropriate position of the engineering model. For

EMAttributes representing references no special handling is required since invalid

references are allowed within the target model by design.

For internal use only / © Siemens AG 2013. All Rights Reserved.

Industry SectorPage 21 Jan-2013 Michael Schlereth

Transformation Engine - Model Adaptation

Platform Specific Model

Transformation Engine

Transformation Engine

Compatible Source Model

Transformation Engine

Compatible Target Model

Transformation Engine

Agnostic Source Model

Transformation Engine

Agnostic Target Model

Metamodel+Operations

Source Adaptation

Metamodel+Operations

Target Adaptation

source target

Figure 19: Transformation Engine - Model Adaptation

 44

3.6 Related Work

The MDA manifesto [Bo04], published by IBM Rational Software, promoted the model

driven architecture (MDA) as the next level of software engineering building on

modeling standards like UML (Unified Modeling Language) [IS12a] and MOF (Meta

Object Facility) [Ob11]. The focus of the MDA manifesto was the automated
construction of software applications from models based on standard modeling

technologies. This approach did not gain much acceptance due to the wide gap between

abstract UML models and the complex source code of programming languages like C++.

Therefore, the approach presented by this thesis does not focus on code generation for

production machine applications but on the reconciliation between engineering models

on a similar level of abstraction.

The research roadmap for the model-driven development of complex software systems
provided by [FR07] presents three major challenges for the successful application of

model driven development: modeling language challenges, separation of concern

challenges, and model manipulation and management challenges. These challenges have

been tackled by this thesis building on industry technologies. Existing modeling

languages were used to realize the concepts developed by this thesis. The separation of

concerns is based approved engineering workflows for production machine engineering.

The existing engineering environment of production machine builders is used for model

manipulation and management.

Instead of the transformation of a platform independent model transformation

specification (PIM-MT) to a platform specific model transformation (PSM-MT) as

presented by this thesis, a modular model transformation environment could be

developed. A modular model transformation environment could be adapted to different

execution platforms as required by the production machine engineering process by the

replacement of components like the meta-modeling technology or the model

transformation language. For example, the Epsilon family of languages and tools [Ko13]

allows for the replacement of the modeling technology but is tightly connected to the

Java platform for the execution of the model transformation language. A framework,

which allows for the execution of a model transformation specification on different

platforms, is not available up to now. Therefore, the MDA approach realized by this
thesis is required to fulfill the need of production machine builders for the execution of

model transformation specifications on different platforms.

 47

model transformation engine, the system model must be transformed in the

representation expected by the model transformation engine. Many model transformation

systems use object oriented system model representations, e.g. based on meta-modeling

concepts like Ecore [St09]. Therefore, object oriented system models are used within this

thesis.

The pattern language is part of the rule language and used to select and modify elements

from the system model. For object oriented system models, the pattern language works

on typed elements of the system models with a type specific set of attributes. Depending

on the design of the system model, the pattern language can either select from a large

number of different types with few attributes (called a strong-typed system model) or

select from a small number of different types with many attributes with complex values

(called a weak-typed system model). For engineering models in machine development,

weak typed system models are more common than strong-typed system models. For the

usage of weak-typed engineering model as part of a model transformation, the elements

of the weak-typed engineering model must be classified according to their attributes and

transformed to a strong type system model with a higher number of different types to
take advantage of the type support of existing model transformation languages. These

types are the primary keys for the selection of elements by the pattern language of a

model transformation engine.

The execution of multiple rules within a model transformation definition is coordinated

by the inter-rule execution control of a model transformation system. The execution

order of model transformation rules can be either implicitly determined by the model

transformation engine based on constraints of the system model or explicitly defined by

the user.

Finally, the modularization of model transformation definitions eases structuring of the

model transformation specification, eases the reuse of definitions of model

transformations, and eases the adaptation of model transformations to different

engineering systems.

Another scheme for the classification of model transformation approaches was provided

by [CH03]. In this classification scheme, the design features of model transformations

relevant for the classification of platform specific model transformation specifications

(PSM-MT) are transformation rules, rule application strategy, rule scheduling, and rule

organization. The transformation rule design feature covers the pattern language

considered as one of classification features within this thesis. Inter-rule execution control

of this thesis is included in the rule application strategy. The modularization feature is

part of the rule organization in [CH03].

The classification of the rule language and the system model as used in this thesis is not

part of the feature model used by [CH03]. The taxonomy of model transformation

presented by [MV05] uses the term "technological space" for the classification of the

system model used by this thesis.

The following subsections analyze the PSM-MT model transformation systems used for

desktop, enterprise PLM server, and real-time controllers as part of this thesis. Each

 48

PSM-MT model transformation described here stands as the representative for its kind of

model reconciliation platform. The analysis provided by the following subsections can

used, if another PSM-MT model transformation system shall be used for a specific setup

of a machine engineering environment.

For the real-time PSM-MT as presented in Section 4.3, a new model transformation
engine for IEC 61131-3 real-time controllers was developed as part of this thesis. For the

other model transformation platforms, desktop and enterprise PLM server, this thesis

shows the necessary adaptation of existing modeling transformation platforms for the

usage as a PSM-MT for engineering model transformations in Section 4.1 and

Section 4.2 respectively.

 49

4.1 Desktop Model Transformation Engine

A desktop model transformation engine is typically executed on the personal computer

of an engineer. Before the execution of the model transformation, the engineer must

setup the execution environment of the model transformation engine (e.g. by the

installation of the transformation engine software package), must transfer the source

model from a source engineering application to the local file system of his PC, configure

the transformation and run the transformation, and finally transfer the target model from

the local file system into the target engineering application (see Figure 21).

For internal use only / © Siemens AG 2013. All Rights Reserved.

Industry SectorPage 22 Jan-2013 Michael Schlereth

Desktop Model Transformations

Local Desktop PC

Source Engineering

Application

Transformation

Engine

Target Engineering

Application

Source

Model

Target

Model

Transformation

Specification

Figure 21: Desktop Model Transformations

The source model and the target model must adhere to a data format which can be used

by the transformation engine. Therefore, an adaptation between the engineering

application and the model data format must be implemented. In general, such an

adaptation is either implemented based on an existing file export from the engineering

application (e.g. XML data export) or uses an application programming interface (API)

of the engineering tool to generate the data model.

For desktop model transformations, the ATL model transformation language [Jo06] was

used in this thesis. ATL was chosen because it provides a mature implementation based

on the Eclipse platform5 with a comprehensive toolset and commercial technical support

(e.g. from Obeo6). A disadvantage of ATL is that it is available only for the Java

programming language and not for the DOTNET environment which is the main

programming environment for Windows desktop PC.

5
 http://eclipse.org/atl/

6
 http://www.obeo.fr/

http://eclipse.org/atl/
http://www.obeo.fr/

 50

4.1.1 Rule Language

An ATL model transformation is specified by a set of rules, which specify the mapping

of source elements to target elements. The ATL rules are aggregated as elements of type

ModuleElement in an ATL module, which is the container of all ATL rules belonging to

a model transformation specification (see upper part of Figure 22). The declarative ATL

rules used as platform independent model transformation rules are a special Rule called

MatchedRule (see lower part of Figure 22).

Module

ModuleElement

Rule

OCL::OCLModel

MatchedRule InPattern

OutPattern OutPatternElement Binding

+ propertyName :string

OclExpression

+elements

+outModels

1..*

+inModels

1..*

+inPattern

+outPattern +elements

1..*

+bindings

0..*

+filter

+value

Figure 22: ATL Model Transformation Specification

Each MatchedRule consists of an InPattern and an OutPattern. The InPattern is specified

by an OclExpression. The object constraint language (OCL) was originally designed "to
describe expressions on UML models" [Ob10]. ATL reuses the OCL type system and

OCL declarative expressions as part of pattern definitions. The OutPattern is specified

by a set of bindings. Bindings initialize attributes of the created target model elements

with the help of OCL expressions.

 51

4.1.2 System Model

The ATL model transformation engine operates on system models based on the Ecore

metamodel [St09]. The core elements of an Ecore model are shown in Figure 23: classes,

attributes, data types, and references. The engineering metamodel presented in

Section 3.5/Figure 18 is easily adaptable to this metamodel, since the engineering

metamodel definition used in this thesis is a subset of the elements in the Ecore

metamodel. As already mentioned, the engineering metamodel does not use strong-typed
attributes and does not use Ecore references to ease the integration with weak-typed

models of machine engineering tools. Instead, references are implemented as attributes

holding identity values from referenced objects. This approach limits the introspection

capabilities of model instances but fits better to the current design scheme of machine

engineering models.

EClass

+ name :String

EAttribute

+ name :String

EDataType

+ name :String

EReference

+ name :String
+ containment :boolean
+ lowerBound :int
+ upperBound :int

eSuperTypes

0..*

eAttributes

0..*

eAttributeType

0..*

eReferences

0..*

eReferenceType

1

eOpposite

0..1

Figure 23: The Ecore kernel [St09]

 52

4.1.3 Pattern Language

The ATL transformation language uses the OCL language [IS12b] for the definition of

patterns for querying model elements and modifying model elements. Model queries are
only allowed on the source model, while model modifications are only allowed on the

target model. Model modifications include the creation of elements and the manipulation

of attributes. The deletion of model elements is in general not part of ATL

transformations, since the target model is usually generated completely from scratch.

LocatedElement

InPattern

InPatternElement

PatternElement

LocatedElement

OCL::
VariableDeclaration

+ varName :string

SimpleInPatternElement

OCL::OclType

+ name :String

LocatedElement

OCL::OclExpression

elements

1..*

type

0..1

filter

0..1

Figure 24: ATL model queries: InPattern

Patterns used for model queries are called source pattern or InPattern in the ATL

metamodel (see Figure 24). Target patterns or OutPattern in the ATL metamodel (see

Figure 25) are used for model modifications. Both patterns refer to typed elements of the

system models.

 53

The InPattern refers to a single typed element of the system model with an assigned

variable name. In the example in Figure 26, the type of the element from the system

model is "MMSIMOTION!DriveObject" and the assigned variable name is "s". The

second part of an InPattern is a filter condition, which is formulated as an OCL

expression. Commonly used filter conditions are filters for the instance name as shown

in Figure 26, filters for the position within the hierarchical structure of an engineering

model (e.g. a path to the instance), or specific attribute values (e.g. the logical address of

an automation device).

LocatedElement

OutPattern

OutPatternElement

PatternElement

LocatedElement

OCL::
VariableDeclaration

+ varName :string

SimpleOutPatternElement

Binding

+ propertyName :string

LocatedElement

OCL::OclExpression

OCL::OclType

+ name :String

elements

1..*

bindings

0..*

value

type

0..1

Figure 25: ATL model modifications: OutPattern

The OutPattern of an ATL rule creates one or more instances of system model elements

within the target model. Each instance has an assigned type from the system model and
is identified within the rule by a variable name. This variable can be used by subsequent

OutPatternElements to refer to attributes. The OutPatternElements are created within the

order of their definition within the ATL rule definition. Therefore, it is not possible to

reference from an OutPatternElement to attributes from a subsequent OutPattern element

(e.g. it is not possible to reference attributes of t from u in Figure 26) but attributes can

only be referenced from preceding elements. The definition of attributes and references

as part of the creation of elements is called binding in the ATL transformation language

(see Figure 25). Similar to the definition of filters in ATL InPatterns, bindings are

defined by OCL expressions.

 54

Figure 26: ATL rule example with InPattern and OutPattern

-- @path MMELECTRICAL=/pim_mt/model/electrical.ecore
-- @path MMAUTOMATION=/pim_mt/model/automation.ecore

module electrical2automation;
create OUTAUTOMATION : MMAUTOMATION
 from INELECTRICAL : MMELECTRICAL;

helper def :
 RDLabelDeviceControl(driveObject : MMELECTRICAL!DriveObject)
 : String = 'fbrd_'+driveObject.name;

helper def :
 RDTechnologyObject(driveObject : MMELECTRICAL!DriveObject)
 : String = 'tord_'+driveObject.name;

rule do2to
{
 from
 s: MMELECTRICAL!DriveObject
 to
 u: MMAUTOMATION!LabelDeviceControl
 (
 name <- thisModule.RDLabelDeviceControl(s)
)
 , t: MMAUTOMATION!TechnologyObject
 (
 name <- thisModule.RDTechnologyObject(s)
)
}

 55

4.1.4 Inter-Rule Execution Control

ATL does not support explicit control of the order of rule execution for matched rules.

ATL matched rules are executed in the order of their definition in the ATL module. In
the example in Figure 27, the rule do2to is executed before the rule cu2control. For the

ATL model transformation, the rule order is less important, because the execution of an

ATL model transformation consists of two phases. In the first phase, all rules are

executed and traceability links are created for information that must be exchanged across

rules (e.g. cross rule attribute values or cross rule references)[YW09]. In the second

phase, the missing information of all generated model elements (e.g. unresolved

references to created target model elements) is added with the help of the traceability

links created in the first phase of the ATL model transformation execution.

Figure 27: ATL rule execution order

Beside matched rules, which are used in the application scenario of this thesis, ATL also

knows lazy rules and called rules. These two additional ATL rule types can be called

from matched rules. This allows for a limited inter-rule execution control, since the lazy

rules and the called rules are executed together with the calling matched rule. ATL lazy

rules and called rules are not considered as a cross-platform concept and are, therefore,

not used for platform specific desktop model transformation specifications within this

thesis.

module electrical2automation;
create OUTAUTOMATION : MMAUTOMATION
 from INELECTRICAL : MMELECTRICAL;

rule do2to
{
 from
 s: MMELECTRICAL!DriveObject
 to
 u: MMAUTOMATION!LabelDeviceControl
}

rule cu2control
{
 from
 s: MMELECTRICAL!DriveControlUnit
 to
 t: MMAUTOMATION!LabelDeviceCuControl
}

 56

4.1.5 Modularization

ATL supports two modularization concepts: separation of the system model from the

model transformation modules and grouping ATL model transformation rules in
different modules.

The first modularization option, separation of model transformations and associated

models, is implemented by ATL launch configurations (see Figure 28). A launch

configuration allows for the execution of an ATL model transformation (an ATL

module) for different source and target models. Even the metamodel of the source- and

the target model might be different for multiple launch configurations, if the model

elements referenced by the ATL model transformation are still available.

LaunchConfiguration

ATL::Module

MetaModel

SourceModel
TargetModel

ATL::Library

conforms conforms

superimposed

Figure 28: ATL launch configuration

The second modularization option, grouping ATL rules in multiple files, is visible in an

ATL launch configuration by superimposed ATL modules and by ATL libraries. ATL

libraries allow the reuse of ATL helper methods for multiple ATL transformation
definitions. An example of superimposed ATL modules is shown in Figure 29. The first

module, "electrical2automation", defines rules specific for the transformation of an

electrical model to an automation model. It uses the superimposed ATL module

"model2model", which includes rules required for the transformation of common model

elements like the root element of an engineering model.

 57

Figure 29: ATL modularization by superimposed modules

Both ATL modularization concepts are useful if a platform specific model

transformation shall be adapted to different engineering models. The launch

configuration can be used to address different models and metamodels, which shall be

used for a transformation. The superimposed models allows for the adaptation of ATL

transformations to different model content. For example, if specific model elements

should not be considered for the execution of a model transformation, the related

superimposed ATL modules can be omitted for that model transformation execution.

4.1.6 Implementation Alternatives

For desktop model transformations, an existing model transformation engine was

selected according to the requirements presented in Section 3 and adapted for the usage

as a PSM-MT engine. Beside the selected ATL model transformation engine, many other

desktop transformation engines were developed in academia. Therefore, the open source

module model2model;
create OUTAUTOMATION : MMAUTOMATION
from INELECTRICAL : MMELECTRICAL;

rule model2model
{
 from
 s: MMELECTRICAL!Model
 to
 t: MMAUTOMATION!Model
}

module electrical2automation;
create OUTAUTOMATION : MMAUTOMATION
from INELECTRICAL : MMELECTRICAL;
uses model2model;

rule do2to
{
 from
 s: MMELECTRICAL!DriveObject
 to
 u: MMAUTOMATION!LabelDeviceControl
 , technologyObject: MMAUTOMATION!TechnologyObject
}

http://eclipse.org/
https://www.microsoft.com/net
http://www.borland.com/
http://www.eclipse.org/projects/project.php?id=modeling.mmt.qvt-oml
http://projects.ikv.de/qvt/wiki
http://www.eclipse.org/epsilon/
http://tefkat.sourceforge.net/
http://moflon.org/

 59

source model to a target model as well as to transform the target model back to the

source model. For that purpose, different TGG are translated to multiple model

transformations defined by story diagrams [ZSW99] for each transformation direction.

The eMoflon implementation is still in an initial state and was, therefore, not used by

this thesis.

4.1.7 Summary

Desktop model transformation engines provided the first implementations of the

concepts outlined by the model driven architecture (MDA) [MM03]. Although, being the

first implementations of model transformations, no accepted standard with mature

implementations of desktop transformation systems exists until now. Therefore, the ATL

transformation language has been chosen as one of the desktop transformation languages

with enhanced tool support and many application examples.

Desktop transformation languages rely on strong-typed engineering models and strong

references between engineering model elements. This section defined the subset of

model transformation specification features required by engineering model

transformations with weak relationships between model elements based on reference

designators. The system metamodel of engineering model transformations replaces the

Ecore specific definition of references by weak references defined by string attributes

holding reference designators specific to the transformed system.

Inter-rule execution control is only influenced by the structure of the system model and

not by the transformed system, which is modified by transformations of the system

model. For example, constraints on the rule execution order given by the current state of

a production machine (e.g. locking of parts of the system) cannot be handled by the ATL

model transformation specification.

PSM-MT feature ATL

Rule Language ATL matched rules

System Model Ecore metamodels

Pattern Language OCL

Inter-Rule

execution control

ATL traceability

Modularization Rule superimposition and

ATL libraries

Figure 30: ATL PSM-MT features

 61

For internal use only / © Siemens AG 2013. All Rights Reserved.

Industry SectorPage 23 Jan-2013 Michael Schlereth

Integration of Authoring Systems

Local Desktop PC PLM Server

Mechanical

CAD

Electrical

CAD

Automation

Engineering

Batch

Product

Data Management

(PDM)

Data

Integration

Customizing

Figure 32: Model Transformations between Authoring Systems [ES09]

For enterprise engineering model transformations, the model transformation engine is

part of a PLM server (see Figure 33) and does not run on the local desktop PC together

with an engineering application as for desktop model transformations (see Figure 21).

The engineering applications used to author the source and target engineering model are

still executed on the local desktop PC of engineers. In contrast to desktop engineering

model transformations, these engineering applications are executed on different PCs,
because they are used by different engineers as part of their discipline specific

engineering task.

For internal use only / © Siemens AG 2013. All Rights Reserved.

Industry SectorPage 28 Jan-2013 Michael Schlereth

Enterprise Model Transformations

Local Desktop PC

Source Engineering

Application

Transformation

Engine

Target Engineering

Application

Source

Model

Target

Model

Transformation

Specification

PLM ServerLocal Desktop PC

Figure 33: Enterprise Model Transformations

The main technology currently used on enterprise PLM servers for the exchange of

engineering model data is the XML language [Wo08] with its related specifications (see

Figure 34). The XML language together with the XML schema [Wo12] definition is
used for the definition and for the exchange of engineering models.

 62

The transformation of engineering models is defined by XSL transformations (XSLT)

[Wo07] and executed by XSLT processors. XSLT is part of the extensible stylesheet

language (XSL) family15. It is itself an XML language but uses the textual language

XPATH [Wo10] for pattern matching.

For internal use only / © Siemens AG 2013. All Rights Reserved.

Industry SectorPage 29 Jan-2013 Michael Schlereth

Enterprise Data Transformation Technologies

XML XML-Schema

XPath
XSLT

(XSL Transformations)

uses

conforms

transforms refers

Model

Transformation

Model

Definition

Figure 34: Enterprise Data Transformation Technologies

4.2.1 Rule Language

An engineering model transformation as specified by the XSL transformation

language 2.0 [Wo07] consists of a set of template rules included in an XSLT stylesheet

(see Figure 35).

Stylesheet
Module

Template Rule

Stylesheet

Schema Import

1..*

* 1..*

Figure 35: XSL Transformations (XSLT)

15
 http://www.w3.org/Style/XSL/

http://www.w3.org/Style/XSL/

 63

An XSLT stylesheet is a well-formed XML 1.0 document [Wo08]. An important role of

XSLT is the application of styling information to XML source documents for the

transformation into presentation formats like HTML or SVG. For that purpose, XSLT is

well supported on enterprise servers and webservers for the separation of data and

representation. The transformation of XML source documents is not limited to

presentation formats but can also be used to transform an XML document representing a

source engineering model to another XML document representing a target engineering

model. Because of these two features, enterprise server support and engineering model

transformations, XSL transformations were used as a platform specific model
transformation language within this thesis.

The rule language for engineering model transformations provided by XSL

transformations consists of template rules (see Figure 36). An XSLT template rule

selects a node in the source engineering model according to a match pattern. For each

application of a template rule, a tree for the target engineering model is constructed

according to a sequence constructor. The construction of the tree in the target model can

use information from the source engineering model by navigating from the selected
source node to other source model elements.

Template Rule

Sequence
Constructor

Pattern
match

Figure 36: Template Rule

 64

4.2.2 System Model

The system model used by platform specific enterprise model transformations is based

on XML files representing engineering models. An XML file consists of elements,
attributes, and data. The structure of valid XML documents consisting of these three

items is defined by the XML Schema Definition Language (XSD) [Wo12]. An XSD

definition itself is an XML document with a schema element as XML document root

(see upper part of Figure 37). The XML schema includes two different kinds of

declarations: the declaration of elements and the definition of types. An element

declaration defines valid occurrences of XML elements and XML attributes with an

XML document, which conforms to an XML schema definition. Complex type

definitions allow the reuse of the structure of XML elements within a schema definition.

For engineering models used in product lifecycle management (PLM) systems in an

enterprise environment, the structure of XML documents representing engineering

models must adhere to a schema definition, which can be handled by the PLM system.

Therefore, the system model used for engineering model transformations is restricted by

a schema definition of the PLM system used for engineering model management (see the

middle part of Figure 37). Within this thesis, the SIEMENS Teamcenter PLMXML

[Si11a] schema definition was used for the platform specific representation of

engineering models within enterprise PLM systems. The PLMXML schema definition is

publicly available and is used for the data exchange between the Teamcenter PLM

system and other PLM systems or authoring applications.

A common element of models used by product lifecycle management systems is an item:

"The development of product lifecycle management and the use of different

product lifecycle management systems are very largely based on the use of

items. An item is a systematic and standard way to identify, encode and name a

product, a product element or module, a component, a material or a service.
Items are also used to identify documents. What an item means depends upon

the specific needs and products of each company." [SI08b]

 65

Within the PLMXML schema definition, an item type can be defined as an extension of

the StructureBase complex type defined by the PLMXML schema. The lower part of

Figure 37 shows as an example of the definition of a DriveControlUnit and DriveObject

as part of the device and signal model (a domain PLMXML specific schema) of the

bottle labeling machine application used as an example in this thesis (see Section 2).

DriveControlUnit and DriveObject are new item types which are part of the system

model of the bottle labeling machine.

StructureBase

ManagedBase

ComplexType

DriveObjectDriveControlUnit

XML Schema
Metametamodel

PLMXML Schema
Metamodel

Device and Signals
Schema
Metamodel

S120ControlUnit G120ControlUnit

Figure 37: PLMXML schema extension

 67

An example of a match pattern is shown in Figure 39. It selects all nodes of an

engineering model with an element type of "DriveControlUnit" or any derived type from

"DriveControlUnit" (e.g. S120ControlUnit or G120ControlUnit according to Figure 37).

To evaluate type specific match expressions, the schema of the source engineering

model must be introduced to the XSLT processor by a schema import instruction (see

"xsl:import-schema" at the beginning of Figure 39). The type checking features of XSLT

are not available with a basic XSLT processor. They require a schema-aware XSLT

processor. Until now, implementations of schema-aware XSLT processors are hardly

available.

Template Rule

Sequence
Constructor

Text Node

Literal Result
Element

XSLT
instruction

Extension
Instruction

Pattern XPath
Expressionmatch

Figure 38: Template Rule Patterns

The sequence constructor of an XSLT template rule is used within platform specific

model transformations to create an XML subtree within the target engineering model

(the term "sequence constructor" in XSLT 2.0 replaced the term "template" as used in

XSLT 1.0). The subtree can be either constructed from fixed template content (by Text

Nodes or Literal Result Elements) or can be based on dynamic content (by XSLT

instructions or Extension Instructions). XLST instructions are for example used to

calculate the value of an attribute in the target engineering model from values of the

source engineering model. Extension instructions are user defined functions that can be
used for example to provide platform specific implementations of required calculations.

The sequence constructor used as an out pattern in Figure 39 creates a

"LabelDeviceCuControl" element in the software model of the labeling machine. Its

name attribute is set by a user defined function "RDLabelDeviceCuControl" (RD stands

for reference designator), which creates valid names of "LabelDeviceCuControl"

 68

elements according to the given name of the "LabelDeviceCuControl" from the devices

and signals model. Its "labelDevice" attribute references the name of a

"LabelDeviceControl" object within the software model. This name is created by the

"RDLabelDeviceControl" function from a reference to a "DriveObject" in the electrical

and signal model.

Figure 39: XSLT template rule example with match pattern and sequence constructor

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 >

<xsl:import-schema
 namespace="http://www.plmxml.org/Schemas/PLMXMLSchema"
 schema-location="../model/PLMXMLElectricalSchema.xsd " />

 <!-- rule cu2control-->
 <xsl:template match="element(*, plmxml:DriveControlUnit)">

 <!-- OutPattern -->
 <xsl:element name="plmxml:LabelDeviceCuControl"
 type="plmxml:LabelDeviceCuControl">
 <xsl:attribute name="name">
 <xsl:value-of
 select="plmxml:RDLabelDeviceCuControl(@name)"/>
 </xsl:attribute>
 <xsl:attribute name="labelDevice">
 <xsl:value-of
 select="plmxml:RDLabelDeviceControl(@driveObject)"
 />
 </xsl:attribute>
 </xsl:element>

</xsl:stylesheet>

 69

4.2.4 Inter-Rule Execution Control

XSLT template rules are executed as part of an XSL transformation starting from an

initial template:

"The transformation is performed by evaluating an initial template. If a named

template is supplied when the transformation is initiated, then this is the initial

template; otherwise, the initial template is the template rule selected according

to the rules of the xsl:apply-templates instruction for processing the initial

context node in the initial mode." [Wo07]

The further application order of XSLT template rules after the initial template rule is

controlled by "apply-templates" instructions. Used within a template rule, the "apply-

templates" instruction executes all XSLT template rules, which match the sequence of

nodes given as a parameter to the "apply-template" instruction. The default sequence of

nodes of the "apply-templates" instruction causes all the children of context node to be

processed.

4.2.5 Modularization

The XSLT language supports the modularization of an XSLT stylesheet in multiple files,

which are included in a principal stylesheet module:

"A stylesheet may consist of several stylesheet modules, contained in different

XML documents. For a given transformation, one of these functions as the

principal stylesheet module. The complete stylesheet is assembled by finding
the stylesheet modules referenced directly or indirectly from the principal

stylesheet module using xsl:include and xsl:import elements" [Wo07]

The "include" and "import" XSLT instructions allow for the definition of the precedence

of the imported template rules. For imported modules, the template rules of the

importing module take precedence over template rules of the imported module. For

included modules, the template rules of the included module take precedence over

template rules of the including module.

Splitting up an XSLT stylesheet in multiple modules is similar to the modularization

concept of the desktop transformation engine ATL with different ATL modules

described in Section 4.1.5.

The separation of the system model from the model transformation modules is different
for XSLT and for ATL. For XSLT the definition of the system models used for the

transformation is part of the XSLT language (the "import-schema" XSLT instruction)

while ATL uses an external configuration for the definition of the system models used

for the transformation. The modularization provided by the ATL launch configuration is

not part of the XSLT standard but might be provided by the implementation of an XSLT

processor on an enterprise server. For example, the URI used by the XSLT "include"

instruction can mapped from a virtual location to a real module by the XSLT processor.

This provides the same benefit as the ATL launch configuration.

 70

4.2.6 Implementation Alternatives

For enterprise model transformations, an existing model transformation engine was

selected according to the requirements presented in Section 3 and adapted for the usage
as a PSM-MT engine. Alternatively to model transformations by the selected XSLT

technology, the terms "enterprise application integration (EAI)" [Li00] or "data

integration" [DHI12] are more common on an enterprise level than "model

transformations". Within an enterprise application integration solution, the

transformation of data as executed by model transformations is only a small part of the

infrastructure required for application integration. Workflow management, event

handling, or web services are additional components of an enterprise application

integration system. Therefore, a model transformation engine is only a part of an

enterprise application integration environment.

Microsoft BizTalk Server16 is an integration solution for business process automation

within companies.

"At its most basic, BizTalk is designed to receive inbound messages, pass them

through some form of logical processing, and then deliver the result of that

processing to an outbound location or subsystem." [DM07]

The logical processing stage of a BizTalk solution includes the transformation from a

source message, which includes a source model instance for engineering model

transformations, to a target message, which includes a target model instance for

engineering model transformations. Transformations are designed within BizTalk using

BizTalk maps [DW09]. BizTalk maps provide a graphical data flow editor, which maps

data from a source XML schema to a target XML schema. The graphical mapping

representation is compiled to an XSLT representation, which is used by the BizTalk

environment for message transformation.

Similar to the BizTalk maps, Altova MapForce17 is a commercial tool, which defines

data transformations by a graphical data flow language from a source to a target schema.

MapForce only provides the transformation engine, but not a complete enterprise

application environment such as BizTalk. Like BizTalk maps, MapForce generates

XSLT from the graphical representation to be used by XSL transformation engines. The

transformations created by MapForce can be executed in an arbitrary server

environment. For example, the Siemens Teamcenter PLM server can use MapForce

transformations to map a source engineering model to a target engineering model.

Both enterprise transformation engines, BizTalk and MapForce, do not provide an

external representation of their transformation language, which could be used in MDA

workflows for the transformation of a platform independent model (PIM) of a

transformation specification to a platform specific model (PSM) of a BizTalk or

MapForce transformation as proposed by this thesis.

16
 http://www.microsoft.com/biztalk

17
 http://www.altova.com/mapforce.html

http://www.microsoft.com/biztalk
http://www.altova.com/mapforce.html

 71

The Drools Business Logic integration Platform18 includes the Drools Expert rule

engine, which is based on the Rete algorithm [Fo82]. The Drools platform handles

models consisting of Java objects. It can be integrated into enterprise application

integration frameworks like Spring [Lu11] or Apache Camel19. The models handled by

Drools Expert rules are represented by Java beans representing business objects.

Therefore, engineering models as considered by this thesis, would need a bidirectional

adapter to Java to be usable with the Drools expert engine.

4.2.7 Summary

XSLT as a member of the extensible stylesheet language (XSL) family (beside XSL-FO

formatting objects and XPATH [Te05]) was originally not designed as a model

transformation language but for the transformation of XML documents to documents

with another representation of the original document. With representation of models as

XML documents, it is also very common to use XSLT as model transformation

language, which transforms an XML document representing a source model in another
XML document, which represents a target model. For the transformation of engineering

models represented by XML documents, this section showed how XSLT can be used as

an enterprise model transformation engine with a similar rule structure as for desktop

model transformation engines presented in Section 4.1 if a restricted subset of the XSLT

language is used.

In comparison to the ATL desktop model transformation engine introduced in the

previous section, XSLT provides more advanced features for pattern handling. For

example, XPATH queries allow for the selection of node sets according to declarative
queries, while OCL used as an ATL pattern language only allows the navigation relative

from a context node. Therefore, user defined functions are used instead of XPATH

queries and templates to reduce complexity for the higher order transformation (HOT) of

platform independent model transformation specifications (PIM-MT) to platform

specific model transformation specifications (PSM-MT) as described later in this thesis.

Handling of element types and extension relationships as defined by XML schema (see

Section 4.2.2) is not very common for XSLT transformation engines until now and

currently only supported by a few schema aware XSL transformation engines. Schema
aware transformations are only available for source patterns. The target patterns are

constructed without schema checking by the XSLT transformation engine.

Desktop model transformation engines as described in Section 4.1 usually apply the

complete set of transformation rules to a complete engineering model definition. If the

same execution strategy is applied to enterprise model transformation engines like XSLT

in server systems with middleware like message systems and multi-user handling, the

complete set of transformation rules is executed on a subset of the engineering model
definition. Therefore, platform specific model transformation rules must be executable

on source and target model definitions with invalid references or with invalid attribute

18
 https://www.jboss.org/drools/

19
 https://camel.apache.org/

https://www.jboss.org/drools/
https://camel.apache.org/

 72

values. The engineering model specification and transformation rule definition presented

in this section takes this account with the special implementation of references by

reference designators, which allows for the independent execution of each

transformation rule without the need of fixing invalid references in a second

transformation phase similar to ATL.

PSM-MT feature XSLT

Rule Language XSLT template rules

System Model XML schema definition

Pattern Language XPATH 2.0 and XSLT

Inter-Rule

execution control

"apply-templates"

instructions

Modularization XSL stylesheet modules

Figure 40: XSLT PSM-MT features

 73

4.3 Real-Time Model Transformation Engine

Real-Time engineering model transformations, as considered by this thesis, are executed

on programmable logic controllers (PLC) on production machines (see Figure 41).

Programmable logic controllers as defined by IEC 61131-1 [In03a] are used in industrial

environments to control production devices such as machines and plants.

For internal use only / © Siemens AG 2013. All Rights Reserved.

Industry SectorPage 31 Jan-2013 Michael Schlereth

Real-Time Model Transformations

Local Desktop PC

Source Engineering

Application

Transformation

Engine

Target Engineering

Application

Transformation

Specification

Programmable Logic Controller

(PLC)

Model Transformation

Code

Engineering Model

RepresentationTarget

Model

Source

Model

PLC Engineering

Application

Figure 41: Real-Time Model Transformations

The key difference between a PLC and a general purpose personal computer (PC) is the

connection of the PLC to the physical world by sensors and actuators (see Figure 42). By

its sensors, the PLC can receive information about its environment. The actuators

connected to a PLC control the physical world. In general a PLC program can't be easily

restarted because the physical state of the environment must be reversed and hazard for

people and equipment must be avoided. Therefore, engineering model transformations

must be executed as part of the controller program with respect to the current operating

state of the machine.

 74

For internal use only / © Siemens AG 2013. All Rights Reserved.

Industry SectorPage 33 Jan-2013 Michael Schlereth

Basic functional structure of a PLC-system

Communication

Functions

Application Program

Functions

Operating System

Functions

Application Program

Storage Functions

Data Storage

Human-Machine

Interface Functions

Interface Functions to Sensors and Actuators

Programming,

Debugging Functions

Signal Processing Functions

Machine/Process

Other

Systems

Operator

Application

Programmer

Figure 42: Basic functional structure of a PLC-system [In03a]

The platform specific model of a PLC is the software model described by IEC 61131-3

[In03b]. IEC 61131-3 defines the programming languages which can be used to create

the application program shown in Figure 42. The structure of an application program is

programming language independent. The application program uses program organization

units (POU) and data types (see Figure 43). These elements, POU and data type can be

either provided by the application program itself or by the operating system of the PLC,
e.g. as built-in elements or as add-on packages from the PLC vendor.

Application
Program

POU

DataType

Operating
System

Figure 43: PLC Application Program

The program organization units (POU) represent the executable parts of an application

program. IEC 61131-3, 2nd edition, defines 3 different types of program organization

units: program, function block, and function (see Figure 44). Despite its similar name,

the program POU is does not represent the application program, but is part of an

application program on the same level as a function block POU and a function POU. In

 75

contrast to function block POUs and function POUs, a program POU can be assigned to

tasks within the PLC. A POU can be called from another POU. This call may include

input, output, or input-output parameters. A function is stateless: it does not keep

information between subsequent function calls. Function blocks include local data

structures and can, therefore, keep state information between subsequent calls. Finally,

programs represent the top level POU. They can be assigned to the execution system of a

PLC and provide an image of the I/O connections of the PLC.

POU

Program FunctionBlock Function

Figure 44: Program Organization Units (POU)

Data types defined by IEC 61131-3 include elementary data types (e.g. Boolean,

integer), generic data types which are type compatible to multiple elementary data types

(e.g. ANY_NUM for all real and integer data types), and user defined data types (see

Figure 45).

DataType

ElementaryDataType GenericDataType UserDefinedDataType

Figure 45: Data Type

Program organization units together with user defined data types are the modeling

elements provided by IEC 61131-3 which can be used to describe automation

applications. Many PLC vendors provide additional elements like system specific

functions, function blocks, and user defined data types as part of their operating system.

 76

These elements can be used together with the IEC 61131-3 model elements to build an

application model.

The example model used by this thesis for the PLC configuration of the labeling device

application scenario as implemented by a Siemens SIMOTION PLC [Si08a] is shown in

Figure 46. SIMOTION provides "Technology Object" and "Positioning Axis" as user
defined data types by its operating system for the control of drives. The application

program adds the "Label Device Control" function block and the program "Labeling

Machine Operation" as part of the software model. The user defined data type "Label

Feeder" is part of the electrical engineering model of the labeling device.

Positioning Axis

Label Device
Control

Label FeederLabeling
Machine
Operation

Technology Object

FunctionBlock UserDefinedDataTypeProgram

POU
DataType

Drive Axis

IEC 61131-3
Metametamodel

PLC Operating
System
Metamodel

PLC Application
Program
Metamodel

Figure 46: PLC model example: Labeling Device

 78

this thesis takes account of generalization relationships by a special implementation of

the transformation rule function blocks.

A transformation rule is not implemented by a single function block, but consists of

multiple function blocks. Each of these function blocks handles the rule matching for an

object type, which is a descendant of the source context object type of a transformation
rule definition. For example, a transformation rule with a source context object type of

drive axis would be mapped to three transformation rule function blocks according to the

generalization hierarchy shown in Figure 46: a function block matching drive axis

objects, a function block matching positioning objects, and a function block matching

label feeder objects. These function blocks duplicate nearly the same code for each

object type. This is acceptable for model transformation rules generated from a platform

independent model transformation specification (PIM-MT) as introduced by this thesis.

Moreover, the models of many production machines only include a small number of

generalization relationships. In the future, with the new features of IEC 61131-3 3rd

edition, this code duplication can be avoided by using classes and references.

4.3.2 System Model

The key elements of the system model used by programmable logic controllers (PLC)

based on IEC 61131-3 [In03b] were introduced in Figure 44 and Figure 45: function

blocks and user defined data types. IEC 61131-3 does not define a model or methods for

the introspection of the system model of a PLC. Therefore, an introspection model was

implemented as part of this thesis which allows for information access to the elements of

the engineering models implemented by the programmable logic controllers. The
introspection model includes a function block for each element of the PLC system (see

Figure 42) which shall be accessible by model transformation. As shown in Figure 48,

function blocks within the introspection model represent the drive objects (like the

backLabel and frontLabel drive objects of the labeling machine), technology objects

(like the labeling positioning axes), and the application function blocks (like the labeling

control function blocks). Depending on the features of the PLC engineering system, the

code of introspection function blocks can be automatically generated (e.g. by scripting

functions of the PLC engineering systems) or must be manually created by the PLC

programmer as part of the PLC software development.

The engineering model elements of the PLC exposed by the introspection model are

connected to the physical world by the sensors and actors. Querying the status of

engineering model elements and setting the parameters of engineering models often

requires the execution of communication procedures for the interaction with the physical

devices. Therefore, the introspection model is implemented as function blocks, which

can be executed as part of the model transformation process, and not only as simple data

structures.

 79

For internal use only / © Siemens AG 2013. All Rights Reserved.

Industry SectorPage 38 Jan-2013 Michael Schlereth

Building The Introspection Model

Communication

Functions

Drive

Objects

Operating

System Functions

Technology

Objects

Application Program

Functions

Application

Function Blocks

PLC Engineering Project

Introspection

Function Blocks

Figure 48: Building the Introspection Model

4.3.3 Pattern Language

Programmable logic controllers (PLC) based on the IEC 61131-3 standard [In03b] do

not include a specific programming language for pattern matching. Instead, source

patterns and target patterns are evaluated by the imperative programming structured text

(ST), which is defined by the IEC 61131-3 standard (see Figure 50).

The source pattern is evaluated by iterating through the elements of the introspection

model introduced in Section 4.3.2. As shown in Figure 49, each introspection function

block at least holds the name and the active status of a PLC element as part of the meta-

information data structure. In addition to the common meta-information, each
introspection function block type holds type specific information as references to other

objects (driveObject attribute of DriveControlUnit in Figure 49) or the hardware address

(address attribute of DriveObject in Figure 49).

The attributes of the source engineering model elements are compared by user defined

functions with the filters defined by the source pattern. Special attention must be paid to

the selection of the object type of the source context element. The transformation

function blocks do not include a query for the object type defined by the source pattern.

Instead, a separate transformation function block is used for the object type and all of its
super types, which shall be matched by the source pattern. This type specific separation

is required, because the 2nd edition of IEC 61131-3 implemented by most controller does

not support polymorphic references to function blocks.

 80

FunctionBlock

Introspection

+ active :bool
+ name :string

DriveObject

+ address :int

DriveControlUnit

+ driveObject :string

Figure 49: Meta Information about IEC 61131-3 Elements

Elements in the target engineering model are activated by factory functions according to
the target pattern. IEC 61131-3 does not define the creation of dynamic instances of

functions blocks in favor of predictable memory layout and runtime execution behavior

of PLC systems. Therefore, the maximum number of instances of function blocks or user

defined data types, which shall be handled by an engineering model, must be statically

configured by the PLC engineering system. Within this maximum number of instances,

each preconfigured instance might play different roles, e.g. an instance of a function

block may control different devices reconfigurable at runtime. Nevertheless, the type and

the number of preconfigured elements cannot be modified.

The implementation of the construction of target engineering model elements presented

by this thesis assumes that the engineering model element instances required by all valid

machine configurations are already present within the PLC but deactivated. The creation

operation for an element activates the already available instance. The target pattern

example in the lower part of Figure 50 shows the use of the factory function

"createLabelDeviceControl" to construct an element of type "LabelDeviceControl" in the

target model. Bindings of attributes are assigned by structured text assignments to the

input variables of the function blocks (e.g. the "address" in Figure 50). Finally, the

function block is executed to transfer the data to the external devices if necessary.

 81

Figure 50: Transformation Function Block Example

VAR_GLOBAL

 driveObjects : ARRAY[1..doNum] OF DriveObject;

END_VAR

// do2toRule for DriveObject type

FUNCTION_BLOCK do2toRule_DriveObject

 VAR_OUTPUT

 modelCompleted : BOOL;

 END_VAR

 // source pattern

 // name filter match

 IF nameCheck(driveObjects[iterator].info.name,

 'LabelFeeder') THEN

 sourceMatch:=TRUE;

 END_IF;

 // target pattern

 IF sourceMatch THEN

 // create target element

 targetIdentifier:=fbIdentifier(iterator);

 targetIterator:=createLabelDeviceControl(

 targetIdentifier);

 IF (targetIterator>0) THEN

 // set additional attributes

 labelDeviceControlBlocks[targetIterator].address

 :=driveObjects[iterator].address;

 labelDeviceControlBlocks[targetIterator]()

 END_IF;

 END_IF;

 iterator:=iterator+1;

 IF iterator>_lastIndexOf(in:=driveObjects) THEN

 iterator:=1;

 stateModelCompleted:=TRUE;

 END_IF;

 modelCompleted:=stateModelCompleted;

END_FUNCTION_BLOCK

 82

4.3.4 Inter-Rule Execution Control

Model transformation rules are executed in a programmable logic controller (PLC) by

calls to the rule function blocks from a program (see Figure 51). In IEC 61131-3, a
program is a program organization unit (POU), which can be called by the task system of

a PLC. The implementation of a PLC task system is vendor specific. For example, the

Siemens SIMATIC controllers [Si11b] implement a task system with cyclic execution of

programs (called organization blocks for SIMATIC controllers) while the Siemens

SIMOTION controllers [Si08a] allow the asynchronous execution of programs. Both

task models can be used for the execution of model transformation rules. The cyclic

execution model leaves it up to the rule execution engine to ensure that each rule

execution cycle does not violate the timing constraints of each execution cycle. The

asynchronous execution model schedules the rule transformation engine execution in

rotation with other task and relaxes the timing constraints for the rule execution engine.

For both scenarios, the rule execution engine must be able to yield control to the PLC
execution system and to handle interruptions of the rule execution process by the PLC

execution system. Therefore, the execution of model transformation rules in small

execution steps was implemented based on IEC 61131-3 as part of this thesis.

Transformation rules matching a source pattern with a type specification without any

subtypes are implemented as a single function block. Transformation rules matching a

source pattern with subtype specifications are split in multiple function blocks for each

subtype as described in the previous Section 4.3.3. This allows for lower execution time

for each rule execution compared with the execution time of rule specifications, which

match more source patterns (e.g. desktop rule specifications).

Figure 51: Rule Execution Program Example

Beside constraints of the PLC execution system, inter-rule execution must consider

constraints of the production process of the production machine. Depending on the

process characteristics, the rule execution engine might run continuously or only in

specific operating states of the production machine. For example, the machine state
model for automatic mode operation of packaging machines [Or06] defines the state

PROGRAM RuleExecution

 VAR

 rule_do2toRule_DriveObject :

 MT.do2toRule_DriveObject;

 modelCompleted_do2toRule_DriveObject : BOOL:=FALSE;

 END_VAR

 REPEAT

 rule_do2toRule_DriveObject(

 modelCompleted=>

 modelCompleted_do2toRule_DriveObject);

 UNTIL modelCompleted_do2toRule_DriveObject END_REPEAT;

END_PROGRAM

 83

transitions stopped-starting and starting-ready for the initialization of the production

machine. For a packaging process, the execution of the rule transformation engine can be

part of the starting state of the packaging machine to reflect changes of the machine

configuration for a new production batch.

The continuous execution of transformation rules as part of the PLC execution system
requires special consideration for the deactivation of engineering model elements. The

ATL model transformation rules, used as a PIM-MT within this thesis, only specify the

creation of model elements and not the deletion of model elements. Therefore, before the

start of execution of model transformation rules, all target engineering model elements

are deactivated within a specific operating state of the packaging machine (e.g. as part of

the starting state as described in the previous paragraph). Within the continuous

execution of the model transformation rules, real-time engineering model elements can

delete or deactivate themselves on errors. This reflects inconsistencies of the engineering

model which require the further execution of model transformation rules to re-establish

engineering model consistency.

Finally, for real-time model transformation engines, the focus of inter-rule execution

control is not engineering model specific dependencies between transformation rules but

on real-time rule execution constraints. In general, model transformation rules are

executed independent of other transformation rules, leading to temporarily inconsistent

or invalid engineering models. It is up to the PLC program to handle these temporary

inconsistencies and to continue normal operation after engineering model reconciliation.

4.3.5 Modularization

The structured programming model of IEC 61131-3 supports modularization with

respect to executable program organization units (POU) and with respect to data

structures with user defined data types.

The modularization of program organization units (POU) is used by the IEC 61131-3
model transformation engine implemented as part of this thesis to separate

transformation rules by multiple function blocks which can be scheduled within the PLC

execution system without the violation of timing constraints. Further modularization, as

the aggregation of multiple reusable transformation rules in libraries is not specified by

IEC 61131-3 but is part of vendor specific implementations of IEC 61131-3. For

example, the library and unit concept of Siemens SIMOTION controllers [Si08a] allows

for the specification of production machine independent transformation rules within one

library (for example provided by Siemens as the controller provider) and the

specification of production machine dependent transformations in another library by the

machine provider. The advantage of library concepts for real-time controllers over

library concepts of enterprise model transformation engines or desktop model
transformation engines is the availability of know-how protection concepts, which

protect the intellectual property within the model transformation specification. Model

transformation rules implemented as function blocks can be distributed with enabled

know-how protection, which hides the implementation code. In contrast to binary

distribution, it is possible to reveal the know-how protected code by a key (e.g. a

password) for authorized people.

 84

Modularization with respect to data structures is not well supported in the current 2nd

edition of IEC 61131-3, since the programming environment only supports aggregation

of user defined data types within other user defined data types or within program

organization units. This aggregation is used by the implementation of the IEC 61131-3

introspection model of this thesis to share meta-information about IEC 61131-3

elements. Further modularization concepts like inheritance and polymorphism are part of

the 3rd edition of IEC 61131-3, but not implemented by most programmable logic

controllers until now.

4.3.6 Related Work

The real-time model transformation engine for IEC 61131-3 controllers was developed

as a new model transformation engine as part of this thesis. Other model transformation

engine implementations on real-time controllers are rarely available. The ACPLT

process control system20 (Aachener ProzessLeitTechnik) provides an implementation of

a rule engine based on the IEC 61131 standard. The object management system
ACPLT/OV provides introspection and reflection features for the metamodel

implemented by ACPLT as required by model transformation engines. The ACPLT/RE

rule system [KQE11] uses the ACPLT/OV object management system for the

specification of engineering rules for the reconciliation of automation systems.

Preparative workings for this thesis [SK12] showed the usage of ACPLT/RE as a

platform specific model transformation engine. ACPLT/RE cannot be executed on

arbitrary IEC 61131 compatible automation controllers but only on the ACPLT/OV

system. The IEC 61131 model transformation engine presented by this thesis can be

executed on any IEC 61131 real time controller.

The usage of IEC61131 in model driven environments is part of several workings, for

example the generation of automation hardware and software configuration [Ma08], the

automation software and simulation models of machine tools [ZP08], or the usage of

UML (Unified Modeling Language) and SysML (Systems Modeling Language) as an

abstract specification of IEC 61131 systems [FT11]. They consider the generation of

automation code from engineering models outside the programmable logic controller but

not the integration of the engineering models and the model transformation engine into

the real time controller as described by this thesis.

Object orientated programming methods can be used within current IEC 61131

programmable logic controllers either with coding conventions as described by [Ho12]

for Siemens SIMATIC PLC or with vendor specific extensions as within CoDeSys

[VW07].

4.3.7 Summary

Engineering model representations and model transformation engines are not covered yet

by the IEC 61131 standard which describes the structure of real-time programmable

logic controllers. The main challenges for the real-time model transformation engine

implemented as part of this thesis on top of the IEC 61131 standard were the missing

20
 http://www.plt.rwth-aachen.de/acplt-technologien/

http://www.plt.rwth-aachen.de/acplt-technologien/

 85

introspection and reflection for IEC 61131 programming elements to explore the PLC

system, the lack of dynamic instances for IEC 61131 programming elements to create

new model element instances, and the vendor specific access methods to PLC operating

system elements like technology objects.

The implementation of a real-time model transformation engine is a new concept created
as part of the work of this thesis. It uses IEC 61131 programming elements and coding

conventions for the engineering model representation and the model transformation

rules. The IEC 61131 implementation of the model transformation engine cannot check,

if all elements required for the execution of a transformation rule are correctly coded

(e.g. the definition of rule patterns, the integration of the rule into the rule system, and

the integration of rule related model element in the engineering model representation).

Therefore, the generation of the IEC 61131 from a platform independent rule

specification as described in the next section is superior to manually coding the model

transformation engine.

PSM-MT feature IEC 61131-3

Rule Language rule function blocks

System Model generated/manually

programmed IEC 61131

representation

Pattern Language custom functions

Inter-Rule

execution control

controlled by machine state

machine

Modularization IEC 61131 program

organization units and user

defined data types

Figure 52: IEC 61131-3 PSM-MT features

 86

4.4 PSM-MT summary

For industrial usage, standardized and approved solutions are required for

implementation of model transformation engines. The three platform specific model

transformation systems (PSM-MT) ATL, XSLT and IEC 61131-3 are not only selected

as an application example but as the standard technology representing the three

execution environments desktop model transformations, enterprise model

transformations, and real-time model transformations. For desktop model transformation

languages, no commonly used standardized languages exist until now. Therefore, the

ATL transformation was used as a representative for the characteristics of declarative
model transformation languages because of the maturity of the ATL implementation and

its tool support. Within enterprise model transformation systems, XSLT [Wo07] was

chosen because of its usage on middleware servers connecting engineering systems

while SQL [IS11] is only used for backend database servers. Real-time controllers are

based on IEC 61131 [In03a]. Beside the introduction of the three platform specific

model transformation environment required for the engineering of production machine,

the objective of this section was the definition of common model transformation

concepts available on all model transformation platforms for usage within platform

independent to platform specific model transformation transformations.

The rule languages used for platform specific engineering model transformations are

based on simple declarations of the mapping of a source pattern to a target pattern. These

rule specifications can be easily expressed by all three platform specific model

transformation engines considered by this thesis.

The system model of ATL, the Ecore metamodel, provides fewer features for the

definition of element constraints than the XSLT system model, the XML schema
definitions. The system model elements of IEC 61131 controllers are not explicitly

modeled but are implicitly part of the operating system or the user program. Therefore,

the usage of system model elements of Ecore and XSLT was restricted to prepare the

ground for a platform independent system model. IEC 61131 does not explicitly define a

system model. Therefore, the system model of IEC 61131 was realized within this thesis

by user defined types and function blocks, which allow for the introspection of IEC

61131 elements for model transformations. This system model within real-time

controllers can be created manually or can be generated automatically within the

engineering system of IEC 61131 controllers.

The pattern languages used by ATL, XSLT, and IEC 61131-3 are very different in their

language structure and their language features. Therefore, complex queries and complex

object construction are encapsulated in user defined functions, which are available on all

three model transformation platforms. This allows for the platform specific optimization

of the patterns used within the engineering of a production machine, while the pattern

specification remains platform independent.

Inter-rule execution control is based on different specification concepts in the three

platform specific transformation engines. ATL tries to hide the inter-rule execution

 87

control from the user and uses a two pass rule execution algorithm, which handles

element creation and element references in two different steps. This hidden inter-rule

execution control does not consider rule execution requirements of the target system but

only considers the data structure of the engineering model. XSLT allow partly control

about rule execution by explicit selection of the parts of the engineering model, which

should be considered for rule application. Moreover, the middleware used in an

enterprise server also has control about rule execution by selecting the parts of the

engineering model which are handled for example as part of the message within a

transformation pipeline. This selection might be based for example on element locking
for multi-user systems or on change events within the engineering system. IEC 61131-3

model transformations are not much influenced by the model structure but by the real-

time execution constraints, which require a small execution granularity and time limits

for the execution of a single rule.

Finally, modularization covers multiple aspects: the modularization of the rule

specifications, the modularization of the rule execution, and the modularization of the

system model. Within the model transformation platforms, only the modularization of
the rule specifications is included. All three model transformation platforms support the

modularization on the level of source files. Multiple files can be used to group the

definition of rules used by a main module. This allows for the reuse of rules as part of

libraries. Know-how protection of rule specification libraries is only part of IEC 61131

controllers as a vendor specific extension. The other model transformation systems do

not provide specific support for know-how protection.

 88

5 Platform Independent Model Transformation Language

Within the application example, the bottle labeling machine, the model transformations

executed for the reconciliation of the engineering models of a machine configuration are

executed on different platform specific model transformation engines as described in

Section 4 depending on the machine requirements. The same set of transformation rules

shall be executed on a desktop model transformation engine, on an enterprise model

transformation engine, and on a real-time programmable logic controller.

The model driven architecture (MDA) [MM03] describes the generation of platform

specific models (PSM) from more abstract platform independent models (PIM). The

platform independent model hides implementation details of the specific implementation

platforms and allows for the specification of a system independently of the platform that

supports it. This enables the reuse of an implementation on multiple platforms. A model

transformation maps the platform independent model (PIM) to a platform specific model

(PSM), which provides an implementation of the PIM on a specific execution

environment. MDA considers model transformations as a technology used outside the
platforms, which shall be transformed. Therefore, this thesis proposes the extension of

the model driven architecture (MDA) approach to the transformation of platform

independent model transformations (PIM-MT) to platform specific model

transformations (PSM-MT) (see Figure 53). This enables the usage of the modeling and

transformation environment together with the system to be modeled and transformed on

the same platform. The transformation and the transformed system are no longer

separated but available on a common platform. This allows for the usage of

reconfigurable systems on multiple platforms as required for example for machines like

the bottle labeling machine of the application example in Section 2.

For internal use only / © Siemens AG 2013. All Rights Reserved.

Industry SectorPage 40 Jan-2013 Michael Schlereth

The Model Driven Architecture (MDA) approach:

PIM to PSM transformation

Platform Independent

Model Transformation (PIM-MT)

Platform Specific

Model Transformation (PSM-MT)

Transformation

Figure 53: Model Driven Architecture PIM to PSM transformation

 90

transformation language was not considered as part of this thesis since the availability of

a stable implementation of the model transformation specification is a key requirement

for industrial usage. The specialization of UML was considered within the preparative

work of thesis. This option was discarded due to the complexity of the UML language

together with the missing tool support for transformations from the UML metamodel to

other models. Therefore, the generalization of an existing model transformation language

was chosen as a platform independent specification of model transformations as

described in the next section.

For the work of this thesis, the ATL transformation language [Jo06] was tailored for the

usage as a platform independent transformation language. ATL was chosen for multiple

technical reasons. First of all, ATL provides a mature implementation based on the

Eclipse platform21 with commercial technical support (e.g. from Obeo22). ATL uses a

textual representation of model transformation rules, which can be easily handled by

PLM or version control systems. A parser, which translates the textual representation in

an Ecore model instance, is provided as part of the ATL implementation (the detailed

Ecore model is described by [Ti09]) This Ecore model can be used by the PIM-MT to
PSM-MT transformation according to the model driven approach chosen by this thesis

(see Section 3.2).

ATL is not a platform independent transformation language. Within this thesis, the

syntax and parts of the ATL semantics are used for the platform independent

specification of model transformations. With this approach, the specifications and the

tooling of the ATL language can be reused as a platform independent modeling

language. Generalization of the ATL means that concepts of the ATL language, which

cannot be used on multiple platforms, are omitted. In the following, the syntax and
semantics of ATL, as used for platform independent model transformations are

described.

21
 http://eclipse.org/atl/

22
 http://www.obeo.fr/

http://eclipse.org/atl/
http://www.obeo.fr/

 91

5.1 Rule Language

The ATL rule language includes three different rule specifications: matched rules, lazy

matched rules, and called rules. Called rules can be used within ATL imperative code.

Lazy rules allow for the modularization of ATL rules. The platform independent

transformation specification defined by this thesis only uses the matched rules for the

declarative rule specification. The original ATL syntax specification for matched rules is

shown in Figure 55, the generalized syntax used for platform independent rule

specification is shown in Figure 56.

Figure 55: Original ATL Matched Rule Syntax
23

The "from" section of the ATL rule defines a source pattern for matching a single object.

The "to" section of the ATL rule defines multiple target patterns for the creation of

objects. Both patterns require objects with type definitions. ATL rules benefit from

models with a detailed type system. Otherwise, the specification of object matching and

construction is more difficult, because complex matching conditions, which are harder to

23
 http://wiki.eclipse.org/ATL/User_Guide_-_The_ATL_Language#Matched_Rules

rule rule_name {

 from

 in_var : in_type [in model_name]? [(

 condition

)]?

 [using {

 var1 : var_type1 = init_exp1;

 ...

 varn : var_typen = init_expn;

 }]?

 to

 out_var1 : out_type1 [in model_name]? (

 bindings1

),

 out_var2 : distinct out_type2

 foreach(e in collection)(

 bindings2

),

 ...

 out_varn : out_typen [in model_name]? (

 bindingsn

)

 [do {

 statements

 }]?

}

http://wiki.eclipse.org/ATL/User_Guide_-_The_ATL_Language#Matched_Rules

 93

5.2 System Model

The ATL model transformation language references input and output metamodels based

on Ecore [St09] meta-metamodel definitions (see Figure 57). The engineering

metamodels of production machines only use a small subset of the Ecore meta-

metamodel features as specified in Section 3.5: EClass, EAttribute, and eSuperTypes.

Instead of EReference, the engineering metamodels use attributes with reference

designators as required by mechatronic models.

For internal use only / © Siemens AG 2013. All Rights Reserved.

Industry SectorPage 46 Jan-2013 Michael Schlereth

Platform Independent System Model

Ecore Subset

Input Metamodel

(e.g. Electrical)

meta-

metamodel
metamodel

Output Metamodel

(e.g. Automation)

model

Input Model

(e.g. Hardware Configuration)

Output Model

(e.g. Controller Program)

Figure 57: Platform Independent System Model

The input and output metamodels could be defined manually on the level of platform

independent specifications. But in general, a platform specific engineering system

already provides existing metamodels, for example PLMXML schema definitions for

enterprise model transformations. Therefore, a metamodel transformation from the

platform specific metamodel to the platform independent metamodel is required as

shown in Figure 58. This is an extension to the model driven architecture (MDA) point

of view, which assumes in general transformations from platform independent models to
platform specific models as shown in Figure 53.

Within the work of this thesis, it is assumed that it is possible to specify a metamodel for

every platform specific model. The development of such a specification is required if the

platform specific model transformation does not provide a predefined metamodel

specification. For example, the IEC 61131-3 standard used for the real-time model

transformation engine (see Section 4.3) did not provide a metamodel specification.

Therefore, a metamodel based on the IEC 61131-3 programming languages specification
was created as a PSM-MM as part of the work of this thesis. The answer to the question,

if it is possible to specify a metamodel for every engineering model, is outside the work

of this thesis.

 96

5.3 Pattern Language

The rule language and the Ecore system model used by the ATL platform independent

transformation specification are based on a simple, abstract model which is well suited to

be handled by a PIM-MT to PSM-MT model transformation. The pattern language of

model transformation specifications is mostly a complex language to support the

specification of complex source or target patterns as required by engineering model

transformations. These pattern languages are hard to handle by a PIM-MT to PSM-MT

model transformation because of the complex abstract syntax trees representing these

languages. The translation of a complex pattern language would be better solved by a

compiler. This would break the MDA concept of model transformations and prevent

users to create the PIM-MT to PSM-MT transformation with the same knowledge which

is required to specify the platform independent model transformation specification.

Therefore, this thesis proposes to restrict the definition of source and target patterns to

the usage of user defined functions and string literals. User defined functions provide a

level of abstraction suitable for the usage of model transformations for the

transformation of PIM-MT patterns to PSM-MT patterns. With user defined functions,

the same patterns can be realized as with the usage of a complex platform independent

pattern language for the cost of the reimplementation of each user defined function on

the platform specific level by the means of the platform specific pattern language. An

example for the usage of user defined functions is shown in Figure 59. The upper part
shows the rule "do2to" with expressions used in the rule definition: the source pattern

uses the filter "s.name.startswith('backLabel')" and the target pattern the binding

"'fbrd_'+s.name". In the lower part, the rule "do2to" is shown with the user defined

function "thisModule.nameCheck(s.name, 'backLabel')" replacing the filter

"s.name.startswith('backLabel')" and the user defined function

"thisModule.RDLabelDeviceControlName(s.name)" replacing the binding

"'fbrd_'+s.name". The user defined functions "nameCheck" and

"RDLabelDeviceControlName" provide an encapsulation as well as an abstraction of the

meaning of the expression.

Beside user defined functions, string literals can be used to represent constant values.

Other literals like integer number or floating numbers are not included in the

implementation provided by this thesis since strings are available on all platform specific

model transformation system. With the help of user defined functions, string literals can

be converted to other data types if required.

 97

Figure 59: Pattern language with Expressions vs. User Defined Functions

-- Usage of User Defined Functions
helper def : nameCheck
 (value : String, substring : String)
 : Boolean =
 value.startsWith(substring);
helper def : RDLabelDeviceControl
 (driveObject : MMELECTRICAL!DriveObject)
 : String =
 'fbrd_'+driveObject.name;
rule do2to
{
 from
 s: MMELECTRICAL!DriveObject
 (
 thisModule.nameCheck(s.name, 'backLabel')
)
 to
 u: MMAUTOMATION!LabelDeviceControl
 (
 name <-
 thisModule.RDLabelDeviceControlName(s.name)
 , address <- s.address
 , labelformat <- 'f203'
)
}

-- Usage of Expressions
rule do2to
{
 from
 s: MMELECTRICAL!DriveObject
 (
 s.name.startswith('backLabel')
)
 to
 u: MMAUTOMATION!LabelDeviceControl
 (
 name <- 'fbrd_'+s.name
 , address <- s.address
 , labelformat <- 'f203'
)
}

 98

Within target patterns, the ATL pattern language supports a special construct for object

references: object references in the target model can be assigned to references from the

source model. The code snippet in Figure 60 shows a rule for transformation of a drive

control unit to a controller function block named "cu2control", which assigns a reference

to a labeling device with the binding "labelingDeviceRef <- s.driveObjectRef". This

assignment is not valid, because the variable "s" refers to an element from the source

model. ATL handles this assignment internally with traceability links: the reference is

initialized with the target model element, which is created by the default rule defined for

the source model object referenced by "s.driveObjectRef". ATL creates this reference as
a strong reference based on the EReference element from the Ecore metamodel. A strong

reference invalidates the complete model if the reference is violated (e.g. the referenced

element is not available). EReference elements can reference anonymous objects without

visible identifiers.

Figure 60: Object Reference Handling by ATL Traceability Links

rule do2to
{
 from
 s: MMELECTRICAL!DriveObject
 to
 t: MMAUTOMATION!LabelDeviceControl
 (
 name <- 'fbrd_'+driveObjectName
)
}
rule cu2control
{
 from
 s: MMELECTRICAL!DriveControlUnit
 to
 t: MMAUTOMATION!LabelDeviceCuControl
 (
 name <- 'fbrd_'+driveControlUnitName.name
 , labelingDeviceRef <- s.driveObjectRef
)
}

 100

Figure 61: Weak Object References by Reference Designators

5.4 Inter-Rule Execution Control

The ATL model transformation language does not support the definition of the execution

order for matched rules used for platform independent specification of engineering

model transformations. The transformation rules are executed in the order of their

definition within the transformation module. In ATL, rules cannot be executed

atomically because of the resolution of object references by the traceability model.

Atomically means in this context that each model transformation rule can be executed

independently of each other model transformation rule. The ATL transformation

executes all transformation rules, keeping track of unresolved references within the

helper def : RDLabelDeviceCuControl(driveControlUnitName :
String) : String = 'fbrd_'+driveControlUnitName;
helper def : RDLabelDeviceControl(driveObjectName : String) :
String = 'fbrd_'+driveObjectName;

rule do2to
{
 from
 s: MMELECTRICAL!DriveObject
 to
 u: MMAUTOMATION!LabelDeviceControl
 (
 name <-
 thisModule.RDLabelDeviceControl(s.name)
)
}
rule cu2control
{
 from
 s: MMELECTRICAL!DriveControlUnit
 to
 t: MMAUTOMATION!LabelDeviceCuControl
 (
 name <-
 thisModule.RDLabelDeviceCuControl(s.name)
 , labelingDevice <-
 thisModule.RDLabelDeviceControl(s.driveObjectRef.name)

)
}

 101

traceability model. After finishing the execution of all model transformation rules, the

unresolved references are fixed within the target model to provide the final model

transformation result.

For platform independent model transformations, each transformation rule shall be

executable independent of the other transformation rules as an atomic model
transformation operation to support platform specific model transformation systems with

different rule execution algorithms. For example, for enterprise model transformation or

real-time model transformations, long running model transformations are hard to handle

within the timing restrictions of the execution environment. Therefore, the ATL solution

of executing all model transformation rules and resolving references within the complete

target model is difficult to use for platform specific model transformation specifications.

The usage of weak references as introduced in Section 5.3 solves this problem:

references are calculated immediately on the execution of each transformation rule.

Therefore, open references need not to be fixed a-posteriori in the complete target

model.

A model transformation engine, which executes continuously on existing models, must

handle the deletion of target model elements, because the continuous execution of

atomic model transformation rules only affects the parts of the target model, which are

addressed by the target pattern of a model transformation rule, and not target model

elements, which are not required anymore due to a change of the source model. Current

model transformation languages like ATL in general only specify the creation of

elements but not the deletion of elements. Therefore, the deletion of target model

elements must be handled by the platform specific model transformation execution

environment independently from the platform independent model transformation
specification. The platform specific model transformation execution control can handle

element deletion on different levels shown in Figure 62: as part of a platform specific

model transformation execution environment: within the engineering models (e.g. as part

of state changes of engineered system), within the model elements extracted from the

engineering models as part of the model access (e.g. as part of a message queue within

an enterprise model transformation environment), or within the platform specific model

transformation engine (e.g. as explicit delete operations).

For internal use only / © Siemens AG 2013. All Rights Reserved.

Industry SectorPage 39 Jan-2013 Michael Schlereth

Platform Specific Execution Control

Execution

Control

Platform Specific Model Transformation

Engine

Model Access

Engineering Models

Figure 62: Platform Specific Execution Control

 103

using build specifications like MAKE24 or ANT25. With the knowledge about the

structure of engineering models from the design process of a machine, the preparation of

engineering models for transformation execution and the execution control of model

transformation rules can be defined similar to the build processes of complex software

systems.

The last option, deleting target model elements dependent on a supermodel, which

merges source and target model, is difficult to implement for engineering model

transformations. This approach is implemented in some current model transformation

languages like the refinement mode of ATL26 or the correspondence model of triple

graph grammars (TGG)27. The refinement mode of ATL assumes that source and target

model are combined in a single model, which is usually not possible for engineering

models handled within different engineering domains. The TGG correspondence model

is a third model beside source and target, which keeps track of the relationship between

source and target model elements, supporting the deletion of target model elements, if

the source model element no longer exists. The definition and storage of an additional

engineering model is hard to handle by different platform specific model transformation
systems.

For the work within this thesis, the first two options have been selected for the

implementation of the platform specific transformation of the engineering models of a

labeling machine. The first option, using a technological context was used for the

evaluation of model transformation rules affecting only the labeling unit equipment

module of a labeling machine by desktop and enterprise model transformations. The

second option, executing the delete operation based on system state, was used for

evaluation of engineering model transformations by real-time controllers.

5.5 Modularization

The ATL modularization concept of the separation of the system model from the model

transformation modules is used to combine different system models generated from

platform specific model transformation engines to a launch configuration for a platform

independent model transformation specification as described in Section 5.2.

The second ATL modularization concept, grouping ATL model transformation rules in

separate modules, which are used by a main module, is not required for platform
independent model transformation specifications, because model transformation rules

can be executed independent from each other as atomic transformations. Therefore,

platform independent model transformation rules can be split into multiple ATL modules

without the requirement to include ATL model transformation rules into a single ATL

module.

24
 http://www.gnu.org/software/make/

25
 http://ant.apache.org/

26
 http://wiki.eclipse.org/ATL/User_Guide_-_The_ATL_Language#ATL_Refining_Mode

27
 http://www.moflon.org/

http://www.gnu.org/software/make/
http://ant.apache.org/
http://wiki.eclipse.org/ATL/User_Guide_-_The_ATL_Language#ATL_Refining_Mode
http://www.moflon.org/

 105

5.7 Summary

Platform independent model transformation specification has been considered until now

mainly under the aspect of exchanging model transformation specifications between

different model transformation engines and not from the aspect of mapping a platform

independent model transformation to platform specific model transformation
specifications as an extension to the MDA approach.

Within this section, the first part of the platform independent model transformation

specification (PIM-MT) to platform specific model transformation specification (PSM-

MT) transformation, the platform independent model transformation specification, has

been introduced. Instead of the definition of a new platform independent model

transformation specification language, a proven existing model transformation language

with a mature toolset, the ATL language, was tailored for the usage as a platform
independent. Tailoring covers the identification of language features commonly

available on the target platform specific model transformation environments as well as

the preparation of the transformation from the PIM-MT to the PSM-MT by a higher-

order model transformation as introduced in the next section. The usage of ATL as a

platform independent transformation specification does not introduce new language

features but only restricts the usage of existing language features.

The declarative part of the ATL rule language can be used as a platform independent

rule language with minor modifications.

Major modifications are required for the system model and the pattern language. The

system model used by platform independent model specifications has been restricted to

the usage of the EClass and EAttribute features, replacing the strong references

EReference by weak references based on technological reference designators. Reference

designators are created within platform independent model transformation specifications

by user defined functions, which are used for object identification, avoiding anonymous

objects, as well as for reference definition. User defined functions also play an important

role within the platform independent pattern language. The pattern languages of platform
specific model transformation languages introduce a high level of complexity and are

difficult to generate by a model transformation. Therefore, user defined functions are

used as an additional level of abstraction within the platform independent and platform

specific pattern language. This allows for the transformation from PIM-MT to PSM-MT

by model transformation with still keeping the support of complex pattern definitions.

The platform independent specification of model transformation rules assumes the

atomic execution of model transformation rules. Therefore, inter-rule execution control
mainly deals with the execution control of the model transformation execution based on

target system requirements and the handling of the engineering models (e.g. preparation

of target models for the execution of model transformation rules by the deletion of target

elements).

Finally, the modularization of platform independent model transformation specification

allows for the configuration of platform independent model transformation specifications

 106

with respect to specifics of platform specific model transformation specifications, mainly

for the system model used.

The usage of ATL as a platform independent model transformation specification is

summarized in Figure 63. The platform independent model transformation specification

(PIM-MT) by ATL, which references platform independent metamodels based on the
Ecore meta-metamodel, is transformed to platform specific model transformations

(PSM-MT) referencing platform specific metamodels. The directed associations between

the elements in Figure 63 reflect the navigability between the elements (the

transformations have an association to the models handled by the transformation; the

models have an association to their metamodels). The next section describes the

implementation of the higher order transformation between the PIM-MT and PSM-MT

specifications together with the inverse transformation form PSM metamodels to PIM

metamodels for the three model transformation platforms desktop, enterprise, and real-

time, considered by this thesis.

For internal use only / © Siemens AG 2013. All Rights Reserved.

Industry SectorPage 50 Jan-2013 Michael Schlereth

PIM-MT to PSM-MT Transformations

Platform Independent

Model Transformation

(PIM-MT)

Model Transformation @ Desktop

Platform Specific

Model Transformation

(PSM-MT)

Model Transformation @ Desktop / @ Enterprise / @ Real-Time

PSM Model

Transformation

Model

PSM

Metamodel

Higher-Order-

Transformation

ATL Model

Transformation

Model

Metamodel

Transformation

Eclipse

Ecore

Metamodels

Figure 63: PIM-MT to PSM-MT Transformations

 107

6 PIM-MT to PSM-MT Transformations

This section describes the evaluation of PIM-MT to PSM-MT transformations for

desktop, enterprise, and real-time transformations, as implemented by this thesis. As

presented in Section 5, the PIM-MT to PSM-MT transformation includes two
transformations: the higher-order-transformation from the platform independent model

transformation specification to the platform specific model transformation specification

and the reverse directed transformation of the platform specific metamodel to the

platform independent metamodel.

The PIM-MT to PSM-MT transformations are implemented by the ATL transformation

language. ATL is used both for the platform independent specification of model

transformations and for the PIM-MT to PSM-MT transformation. Therefore, the ATL
know-how is useful for the development of both transformations. For all three PSM-MT

engines, the PIM-MT to PSM-MT transformation is executed in two steps: the first step

is the transformation of the PIM-MT to an intermediate representation by ATL rules and

the second step is the transformation of the intermediate representation to the textual

format of the platform specific model transformation by an ATL query (see Figure 64).

For internal use only / © Siemens AG 2013. All Rights Reserved.

Industry SectorPage 52 Jan-2013 Michael Schlereth

Implementation of the Higher Order Transformation

(HOT)

ATL Transformation

@ Desktop

IEC 61131 Transformation

@ Real-Time

XSLT Transformation

@ Enterprise

Platform Independent

Model Transformation

Specification

Platform Independent

Model Transformation

Specification (PIM-MT)

Platform Specific

Model Transformation

Specification (PSM-MT)

Higher Order Transformation

(HOT)

Intermediate

Representation

ATL rules

ATL query

Figure 64: Implementation of the Higher Order Transformation (HOT)

The intermediate representation of the platform independent model transformation

specification represents the elements of platform independent model transformation

language. As specified in Section 5, this is a subset of the ATL language, which is used

as a platform independent model transformation language. This intermediate

representation eases the transformation to the textual representation of the platform

specific model transformation languages by an ATL query.

 109

for the platform independent model transformations (for example the ATL editor in the

evaluation of this thesis).

The implementation of the transformation from the platform independent model

transformation specification to the intermediate model transformation specification is

listed in the appendix, Section 9.1.

Module

+ name :String

ModuleElement

Rule

+ name :String

SimpleExpression

+ type :String
+ value :String

HelperCall

+ name :String

Expression

InPattern

+ type :String

OutPattern

+ type :String

Binding

+ propertyName :String

inPattern

1

outPattern

1..*

value

arguments

0..*

filter

0..1

elements

*

bindings
*

Figure 65: PIM-MT Intermediate Representation

While the PIM-MT to PSM-MT transformation uses the same technology for all
platform specific model transformation specifications (ATL rules and ATL query), the

evaluation of the metamodel transformation in the opposite direction uses different

technologies for the platform specific metamodels. These different technologies are

required, since the platform specific metamodel representations in general are only

available as textual representations, which must be transformed to the modeling

technologies used by platform independent model transformation specifications by a text

to model transformation.

 110

For desktop model transformations, no metamodel transformation is required, since ATL

is used for both the platform independent model transformation specification and as a

desktop model transformation engine. The transformation of metamodel definitions

based on XML schema (XSD) used for enterprise model transformations is already

provided by the Eclipse Modeling Framework (EMF) toolkit28. For the transformation of

the metamodel used by the runtime model transformation engine implemented as part of

this thesis, a parser for the structured text programming language of IEC 61131-3

[In03b] was implemented as part of the evaluation to transform the metamodel definition

based on IEC 61131-3 function blocks to an Ecore representation. This parser was
implemented with the help of the Eclipse XTEXT framework29, which provides support

both for parser development and for metamodel definitions.

For internal use only / © Siemens AG 2013. All Rights Reserved.

Industry SectorPage 53 Jan-2013 Michael Schlereth

Implementation of the Metamodel Transformations

Platform Independent

Metamodel (PIM-MM)

Platform Specific

Metamodel (PSM-MM)

Ecore

@ Desktop

IEC 61131 Function

Blocks @ Real-Time

XML-Schema

@ Enterprise

Ecore

EMF XSD

Generator

XTEXT

DSL
Metamodel

Transformation

Copy

Figure 66: Implementation of the Metamodel Transformations

In the next sections, the platform independent model transformation specification used

for evaluation is introduced followed by the implementations of PIM-MT to PSM-MT

transformations for desktop, enterprise, and runtime model transformation specifications.

6.1 PIM-MT transformation specification example

For the evaluation of the PIM-MT to PSM-MT transformation, the model transformation

specification for the reconfiguration of a labeling machine as introduced in Section 2 is

used. Depending on the format of bottles, different labeling devices are connected to the

labeling machine, for example a front labeling device and a back labeling device. The

change of a configuration is detected by the electrical devices connected to the machine

controller and requires a reconfiguration of the software, which controls the electrical

devices of the labeling device. Therefore, a model transformation from the electrical

model to the automation model of the currently active machine configuration is required.

28
 http://www.eclipse.org/modeling/emf/

29
 http://www.eclipse.org/Xtext/

http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/Xtext/

 113

Figure 69: Platform Independent Model Transformation (PIM-MT) Example

-- @path MMELECTRICAL=/pim_mt/model/electrical.ecore
-- @path MMAUTOMATION=/pim_mt/model/automation.ecore

module electrical2automationStringRef;
create OUTAUTOMATION : MMAUTOMATION from INELECTRICAL :
MMELECTRICAL;

rule do2to
{
from
 s: MMELECTRICAL!DriveObject
 (
 thisModule.MatchString(s.name, 'frontLabel')
)
to
 u: MMAUTOMATION!LabelDeviceControl
 (
 name <- thisModule.RDLabelDeviceControl(s.name)
)
 , technologyObject: MMAUTOMATION!TechnologyObject
 (
 name <- thisModule.RDTechnologyObject(s.name)
 , address <- s.address
)
}

rule cu2control
{
from
 s: MMELECTRICAL!DriveControlUnit
to
 t: MMAUTOMATION!LabelDeviceCuControl
 (
 name <-
thisModule.RDLabelDeviceCuControl(s.name)
 , labelDevice <-
thisModule.RDLabelDeviceControl(s.driveObject)
)
}

 114

6.2 Desktop Model Transformations - ATL to ATL

Model transformations executed on a local desktop are a common environment for the

design and evaluation of engineering model transformation specifications. The ATL

model transformation environment was chosen within this thesis for the platform

independent specification of model transformations (PIM-MT), but can be also used as a
platform specific model transformation engine (PSM-MT).

The PIM-MT to PSM-MT transformation from ATL to ATL can also be used to verify if

the PIM-MT model transformation specification does not include modeling concepts,

which cannot be handled by the PIM-MT to PSM-MT higher order transformation. This

approach avoids the development of a special PIM-MT development environment with

static checks of the PIM-MT model transformation specification, but still allows for the

verification of the PIM-MT model transformation.

The evaluation setup for desktop model transformations is shown in Figure 70. In

general, the source engineering model and the target engineering model are exchanged

with the engineering tools by a tool adapter. The effort for the development of a tool

adapter depends on the interfaces available for an engineering tool and from the

complexity of the mapping of the engineering tools metamodel and engineering model to

the models required by the desktop model transformation engine. For the application

example of a bottle labeling machine, a tool adapter for an ECAD engineering tool and a

tool adapter for a PLC engineering tool is required. In contrast to enterprise model
transformations, where these adapters are provided as part of a PLM system, the adapters

required for desktop model transformations must be developed especially for the desktop

model transformation engine.

For internal use only / © Siemens AG 2013. All Rights Reserved.

Industry SectorPage 55 Jan-2013 Michael Schlereth

Desktop Model Transformation Evaluation

ATL Transformation

Engine

Source Ecore

Model

Target Ecore

Model

ATL PSM-MT

Transformation

Specification

Source Ecore

Metamodel

Target Ecore

Metamodel

Tool

Adapter

ECAD

Engineering

PLC

Engineering

Evaluation

Setup

Figure 70: Desktop Model Transformation Evaluation

 115

To avoid the development of a tool adapter, within the evaluation of this thesis, the

source engineering metamodels and the target engineering metamodels together with the

source models used for the test of the desktop model transformations have been created

manually as Ecore models. The evaluation setup uses the Eclipse ATL model

transformation engine31 for the execution of the desktop model transformation

specification.

6.2.1 PSM-MM to PIM-MM Transformation

Within the evaluation setup for desktop model transformations, the platform specific

metamodels (PSM-MM) the electrical engineering model and the automation model

were the same metamodels as the platform independent metamodels presented in

Section 6.1. Therefore, the PSM-MM to PIM-MM transformation is a simple copy of the

metamodel. In general, even if a tool adapter already provides an Ecore metamodel, a

PSM-MM to PIM-MM transformation is required to generalize and simplify the tool

dependent platform specific metamodel.

31
 http://www.eclipse.org/atl/

http://www.eclipse.org/atl/

 117

Figure 72: Automation Model Example

6.2.3 PIM-MT to PSM-MT Transformation

The higher order transformation from the platform independent model transformation

specification (PIM-MT) to the ATL platform specific model transformation specification

(PSM-MT) is implemented as an ATL query from the intermediate model transformation

specification presented at the start of this section (see Figure 64).

Using the ATL both as a language for the platform independent specification of model

transformations and as an engine for the platform specific execution of model

transformation means that the PIM-MT to PSM-MT higher order transformation mainly

discards concepts that are not part of the platform independent model transformation

specification defined in Section 5 but are allowed within the ATL language. Therefore,

the generated PSM-MT can be compared to the PIM-MT to reveal forbidden ATL

language features.

The implementation of the PIM-MT to desktop PSM-MT higher order transformation is

listed in Section 9.2

<?xml version="1.0" encoding="ISO-8859-1"?>
<org.mtmda.automation:AuModel xmi:version="2.0"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:org.mtmda.automation="http://automation.mtmda.org">
 <items xsi:type="org.mtmda.automation:LabelDeviceControl"
 name="fbrd_backLabel"/>
 <items xsi:type="org.mtmda.automation:LabelDeviceControl"
 name="fbrd_frontLabel"/>
 <items xsi:type="org.mtmda.automation:LabelDeviceCuControl"
 name="fbrd_backLabelCU"
 labelDevice="fbrd_backLabel"/>
 <items xsi:type="org.mtmda.automation:LabelDeviceCuControl"
 name="fbrd_frontLabelCU"
 labelDevice="fbrd_frontLabel"/>
 <items xsi:type="org.mtmda.automation:DriveAxis"
 name="tord_backLabel"/>
 <items xsi:type="org.mtmda.automation:TechnologyObject"
 name="tord_frontLabel"/>
</org.mtmda.automation:AuModel>

 118

6.2.4 Rule Execution

The ATL desktop transformation engine does not support the specification of the

execution order of the declarative model transformation rules used within this thesis. For

typical desktop model transformation application scenarios, the explicit specification of

the rule execution order is not required, since the model rule execution is not influenced

by the system outside the model transformation as for enterprise model transformations

or real-time model transformations.

6.2.5 Summary

The PIM-MT to PSM-MT environment for desktop model transformations is

summarized in Figure 73. It is especially simple, because ATL is used for both platform

independent and platform specific specifications of model transformations. The

transformation of the platform specific metamodels to the platform independent
metamodels is a simple copy. The PIM-MT specification is transformed by an ATL

higher order transformations to the platform specific representation. This representation

is executed as a desktop model transformation by the ATL desktop model transformation

engine.

For internal use only / © Siemens AG 2013. All Rights Reserved.

Industry SectorPage 59 Jan-2013 Michael Schlereth

Desktop PIM-MT to PSM-MT Higher Order

Transformation (HOT)

Platform Independent

Model Transformation

(PIM-MT)

Model Transformation @ Desktop

Platform Specific

Model Transformation

(PSM-MT)

Model Transformation @ Desktop

Eclipse

ATL

Eclipse

ATL Engine

ATL

PIM-MT

Eclipse

Ecore

Metamodels

ATL to ATL

HOT

ATL

PIM-MT

Figure 73: Desktop PIM-MT to PSM-MT Higher Order Transformation (HOT)

 119

6.3 Enterprise Model Transformations - ATL to XSLT

For the execution of enterprise model transformations the Siemens Teamcenter32 PLM

system has been used as an example environment. A Teamcenter installation within an

enterprise consists of a 4-tier installation as shown in Figure 74. The client tier includes

the authoring applications to build the engineering models used in machine engineering.

For the application example of the bottle labeling machine, this is an ECAD engineering

application like EPLAN Electric33 for the electrical engineering model and Siemens

SIMOTION SCOUT [Si08a] for automation engineering. The client tier is connected to

the web tier of the Teamcenter installation, which routes client requests to the business
logic of the enterprise tier. The web tier is typically implemented by an application

server like JBoss34, which routes client requests to the business logic and provides

services message handling and message transformations. The enterprise tier hosts the

PLM business logic and defines the data schemata. The resource tier provides

persistence for databases and files.

For internal use only / © Siemens AG 2013. All Rights Reserved.

Industry SectorPage 58 Jan-2013 Michael Schlereth

Siemens Teamcenter 4-tier Architecture

Figure 74: Siemens Teamcenter 4-tier Architecture
35

The evaluation of enterprise model transformation uses the web tier and the enterprise

tier of a Teamcenter installation. The enterprise tier provides the schemata used for the

definition of engineering models within a PLM environment (see Figure 75). For the

execution of an enterprise model transformation, a source model is created as an XML

document based on the PLM schema of an electrical engineering model. This source
model is processed by an XSLT transformation, which was created as a platform specific

model transformation (PSM-MT) from the platform independent model transformation

(PSM-MT) by a higher order ATL transformation as part of the work this thesis. The

32
 http://www.plm.automation.siemens.com/en_us/products/teamcenter/

33
 http://www.eplan.de/en/solutions/electrical-engineering/eplan-electric-p8/

34
 https://www.jboss.org

35
 http://www.plmworld.org

http://www.plm.automation.siemens.com/en_us/products/teamcenter/
http://www.eplan.de/en/solutions/electrical-engineering/eplan-electric-p8/
https://www.jboss.org/
http://www.plmworld.org/

http://www.altova.com/altovaxml.html
http://www.plm.automation.siemens.com/en_us/products/open/plmxml/schemas.shtml

 123

Therefore, a model instance handled as a message within the web tier of a Teamcenter

installation conforms to its PLMXML schema but reflects only a sub-part of the

complete engineering model. An example instance of an electrical engineering model

message is shown in Figure 78. It includes the drive devices and the drive controllers of

the front labeling device and the back labeling device of the bottle labeling machine.

Figure 78: XML Platform Specific Model Instance

<?xml version="1.0" encoding="UTF-8"?>
<plmxml:PLMXML author="" date="2001-01-01"
schemaVersion="0.0" time="12:00:00"
xmlns:plmxml="http://www.plmxml.org/Schemas/PLMXMLSchema"
xmlns:xhtml="http://www.w3.org/1999/xhtml"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.plmxml.org/Schemas/PLMXMLSchem
a PLMXMLElectricalSchema.xsd "
>
 <plmxml:DriveObject address="1.0" name="frontLabel" />
 <plmxml:DriveObject address="2.0" name="backLabel" />
 <plmxml:DriveControlUnit driveObject="frontLabel"

name="frontLabelCU" />
 <plmxml:S120ControlUnit driveObject="backLabel"

inFeed="1KW" name="backLabelCU" />
</plmxml:PLMXML>

 125

Figure 79: XSLT Specific Model Transformation Rule

<xsl:import-schema
namespace="http://www.plmxml.org/Schemas/PLMXMLSchema"
schema-location="../model/PLMXMLElectricalSchema.xsd " />
<xsl:import-schema
namespace="http://www.plmxml.org/Schemas/PLMXMLSchema"
schema-location="../model/PLMXMLAutomationSchema.xsd " />
<xsl:include href="userdefinedfunctions.xsl"/>

<!-- rule do2to-->
<xsl:template match="element(*, plmxml:DriveObject)
[plmxml:MatchString(@name, 'frontLabel')]">
<!-- OutPattern -->
<xsl:element name="plmxml:LabelDeviceControl"
type="plmxml:LabelDeviceControl">
 <xsl:attribute name="name"><xsl:value-of
 select="plmxml:RDLabelDeviceControl(@name)"
/></xsl:attribute>
</xsl:element>
<!-- OutPattern -->
<xsl:element name="plmxml:TechnologyObject"
type="plmxml:TechnologyObject">
 <xsl:attribute name="name"><xsl:value-of
 select="plmxml:RDTechnologyObject(@name)"/>

</xsl:attribute>
 <xsl:attribute name="address"><xsl:value-of
 select="@address" />

</xsl:attribute>
</xsl:element>
</xsl:template>
<!-- rule cu2control-->
<xsl:template match="element(*, plmxml:DriveControlUnit)">
<!-- OutPattern -->
 <xsl:element name="plmxml:LabelDeviceCuControl"
type="plmxml:LabelDeviceCuControl">
 <xsl:attribute name="name"><xsl:value-of
 select="plmxml:RDLabelDeviceCuControl(@name)" />

</xsl:attribute>
 <xsl:attribute name="labelDevice"><xsl:value-of
 select="plmxml:RDLabelDeviceControl(@driveObject)"/>

</xsl:attribute>
</xsl:element>
</xsl:template>

 127

6.3.5 Summary

The complete environment used for the transformation of a platform independent model

transformation specification to an enterprise platform specific model transformation
specification is summarized in Figure 81. The platform specific engineering metamodels

used in the Teamcenter PLM environment on an enterprise server are defined by

Teamcenter PLMXML schema definitions. These metamodels are transformed from

platform specific metamodel representation (PSM-MM) to the platform independent

metamodel representation (PIM-MM) by the XSD2Java plugin, which is provided as

part of the Eclipse Modeling Framework EMF38. The PIM-MM Ecore representation

generated by the XSD2Java plugin can be directly used by the platform independent

model transformation specification (PIM-MT) without further adaptation, since the XML

schema definition of the PSM-MM supports the same set features which is required by

the PIM-MM Ecore representation.

The platform independent metamodel is used by the platform independent model

transformation specification, which defines the transformation rules required for the

reconfiguration of a bottle labeling machine. This platform independent rule

specification is transformed by an ATL higher order transformation to an enterprise

platform specific rule execution engine, which is executed by the Altova XML engine.

For internal use only / © Siemens AG 2013. All Rights Reserved.

Industry SectorPage 64 Jan-2013 Michael Schlereth

Enterprise PIM-MT to PSM-MT Higher Order

Transformation (HOT)

Platform Independent

Model Transformation

(PIM-MT)

Model Transformation @ Desktop

Platform Specific

Model Transformation

(PSM-MT)

Model Transformation @ Enterprise

Altova

XSLT Engine

Teamcenter

PLMXML

XML Schema

ATL to XSLT

HOT

ATL

PIM-MT

XSD2Java

Eclipse Plugin

Eclipse

Ecore

Metamodels

Figure 81: Enterprise PIM-MT to PSM-MT Higher Order Transformation (HOT)

38
 http://www.eclipse.org/modeling/emf/

http://www.eclipse.org/modeling/emf/

 131

Figure 85: IEC 61131-3 Platform Specific Metamodel

The implementation of the PSM-MM to PIM-MM transformation for the IEC 61131-3

model transformation platform is shown in Figure 86. The function blocks of the

engineering model can be exported from the SIMOTION SCOUT engineering system

FUNCTION_BLOCK DriveControlUnit

 VAR_INPUT

 name : STRING; // EString

 active : BOOL; // EBooleanObject

 driveObject : STRING; // EString

 END_VAR

 VAR_OUTPUT

 result: DINT;

 END_VAR;

 DebugMessage(message:='execute DriveControlUnit FB',

parameter:=name);

 result:=0;

 IF NOT active THEN

 GOTO block_exit;

 END_IF;

 result:=1;

 block_exit:

 ;

END_FUNCTION_BLOCK

FUNCTION_BLOCK S120ControlUnit

 VAR_INPUT

 name : STRING; // EString

 active : BOOL; // EBooleanObject

 driveObject : STRING; // EString

 inFeed : STRING; // EString

 END_VAR

 VAR_OUTPUT

 result: DINT;

 END_VAR;

...

END_FUNCTION_BLOCK

 132

available as a textual representation of the IEC 61131-3 structured text (ST)

programming language. This textual representation is transformed by a text to model

transformation to an Ecore model, which represents the abstract syntax tree of the

structured text file. The text to model transformation was implemented with the help of

the Eclipse XTEXT framework39 as part of the work of this thesis and a master thesis

[Ge12]. The abstract syntax tree of the structured text programming file is too detailed to

be used as a platform independent metamodel (PIM-MM). Therefore, a metamodel

transformation implemented with ATL extracts the function blocks and input variables

and transforms them to the platform independent metamodel as described above (see
Section 9.4). Finally, generalization relationships are added manually by a second ATL

transformation listed in Section 9.5.

For internal use only / © Siemens AG 2013. All Rights Reserved.

Industry SectorPage 71 Jan-2013 Michael Schlereth

IEC 61131-3 PSM-MM to PIM-MM Transformation

IEC 61131-3 function blocks

Structured Text (ST) Grammar ECORE Model

Platform Independent ECORE Model

Metamodel

Transformation

by ATL

Text To Model

Transformation

by XTEXT

IEC 61131-3

Platform Specific

Meta-Model

(PSM-MM)

Platform Independent

Meta-Model

(PIM-MM)

Figure 86: IEC 61131-3 PSM-MM to PIM-MM Transformation

39
 http://www.eclipse.org/Xtext/

http://www.eclipse.org/Xtext/

 136

Figure 88: IEC 61131-3 Platform Specific Model Transformation Rule

// SubTypes Sequence {}

FUNCTION_BLOCK rule_do2to_DriveObject

...

 IF DriveObjectInstances[iterator].active THEN

 // filter match

 IF

MatchString(DriveObjectInstances[iterator].name,

'frontLabel') THEN

 sourceMatch:=TRUE;

 END_IF;

 END_IF;

 IF sourceMatch THEN

 // Binding

 // create target element type TechnologyObject

targetIdentifier:=RDTechnologyObject(DriveObjectInstance

s[iterator].name);

targetIterator:=createTechnologyObject(targetIdentifier)

;

 IF (targetIterator>0) THEN

 // set additional attributes

TechnologyObjectInstances[targetIterator].name:=RDTechno

logyObject(DriveObjectInstances[iterator].name); //

HelperCall();

TechnologyObjectInstances[targetIterator].address:=Drive

ObjectInstances[iterator].address;

 ELSE

 DebugMessage(message:='Failed creating ',

parameter:=targetIdentifier);

 END_IF;

 END_IF;

END_FUNCTION_BLOCK

// SubTypes Sequence {'S120ControlUnit',

'G120ControlUnit', 'S1202ControlUnit'}

FUNCTION_BLOCK rule_cu2control_DriveControlUnit

...

END_FUNCTION_BLOCK

FUNCTION_BLOCK

rule_cu2control_DriveControlUnit_G120ControlUnit

...

END_FUNCTION_BLOCK

 138

Figure 89: IEC 61131-3 Platform Specific Rule Execution

PROGRAM RuleExecution

 VAR

 rule_do2to_DriveObject :

MT.rule_do2to_DriveObject;

 rule_cu2control_DriveControlUnit :

MT.rule_cu2control_DriveControlUnit;

 modelCompleted : BOOL:=FALSE;

 executionCount:DINT:=0;

 END_VAR

 DebugMessage(message:='Run rule execution');

 executionCount:=0;

 REPEAT

 DebugMessage(message:='rule_do2to_DriveObject

execution nr. ',

parameter:=DINT_TO_STRING(executionCount));

rule_do2to_DriveObject(modelCompleted=>modelCompleted);

 executionCount:=executionCount+1;

 UNTIL modelCompleted END_REPEAT;

 executionCount:=0;

 REPEAT

DebugMessage(message:='rule_cu2control_DriveControlUnit

execution nr. ',

parameter:=DINT_TO_STRING(executionCount));

rule_cu2control_DriveControlUnit(modelCompleted=>modelCo

mpleted);

 executionCount:=executionCount+1;

 UNTIL modelCompleted END_REPEAT;

...

 DebugMessage(message:='Stopped rule execution');

END_PROGRAM

 139

6.4.5 Summary

The complete environment used for the transformation of a platform independent model

transformation specification to a real-time platform specific model transformation
specification is summarized in Figure 90. The IEC 61131-3 function blocks specifying

the engineering metamodels in structured text (ST) are transformed by an XTEXT parser

to an Ecore model representing the abstract syntax tree of the metamodel elements. This

Ecore model is transformed to a platform independent Ecore metamodel by an ATL

transformation.

The platform independent metamodel is used by the platform independent model

transformation specification, which defines the transformation rules required for the

reconfiguration of a bottle labeling machine. This platform independent rule
specification is transformed by an ATL higher order transformation to a real-time

platform specific rule execution engine, which is executed on a SIMOTION D435

programmable logic controller.

For internal use only / © Siemens AG 2013. All Rights Reserved.

Industry SectorPage 72 Jan-2013 Michael Schlereth

Real-Time PIM-MT to PSM-MT Higher Order

Transformation (HOT)

Platform Independent

Model Transformation

(PIM-MT)

Model Transformation @ Desktop

Platform Specific

Model Transformation

(PSM-MT)

Model Transformation @ Real-Time

IEC 61131-3

Transformation

Engine

ATL to ST

HOT

ATL

PIM-MT

Eclipse XTEXT

ST Parser Plugin

Eclipse

Ecore

Metamodels

Figure 90: Real-Time PIM-MT to PSM-MT Higher Order Transformation (HOT)

 140

7 Conclusion and Future Work

Machine engineering, like the engineering of a production machine as presented for a

bottle labeling machine in Section 2 with its multi-disciplinary engineering models is

predestinated for the application of model transformation technology. Depending on the
application scenario and the machine builders' engineering environment, the execution of

engineering model transformations is not limited to a single execution platform, but must

be supported in different execution environments.

Therefore, Section 3 provided a new classification of engineering model transformations

by desktop model transformations, enterprise model transformations, and real-time

model transformations. Current model transformation classifications are based on

characteristics of the model transformation technologies used and not on the view of the
application requirements. As shown in the application scenario, these model

transformation execution environments are not used alternatively for each new model

transformation specification, but the same model transformation specification shall be

executed on different execution environments depending on the machine configuration

and the engineering workflow. The solution proposed by this thesis for this requirement

is a new application of the model driven architecture (MDA): the transformation of

platform independent model transformations (PIM-MT) to platform specific model

transformations (PSM-MT) by a higher order transformation (HOT).

As a prerequisite for the application of PIM-MT to PSM-MT transformations, Section 3

analyzes the common characteristics of engineering metamodels used in machine

development and the common characteristics of model transformation specifications to

reconcile these engineering models. Metamodels used up to now by model

transformation specification are intended to provide a very detailed object oriented

model of a single system with specifications of features like types and references. For

engineering metamodels applied to many engineering domain, a simple metamodel was

provided in Section 3 with weak references and simplified type handling for attributes,

which can be used across the engineering disciplines required by machine engineering.

Together with the engineering metamodel also a simplified model transformation

specification metamodel was introduced, which is applicable across multiple platform

specific model transformation execution engines.

The three different specific platforms for the execution of engineering model

transformations are presented in detail in Section 4. For each platform, the rule language,

the system model, the pattern language, the inter-rule execution control, and the

modularization features are presented in detail. Desktop model transformations, as the

key area of academic research, match the required features well and can be used for

engineering model transformations in general without any extensions. The XML

technology used for enterprise model transformations is more difficult to adapt to model
transformation specifications. Therefore, a mapping of the model transformation

specification metamodel to the features of XSLT 2.0 was developed. Finally, the

execution of model transformations on real-time systems as required by the application

 141

scenario was not considered before this thesis. For IEC 61131-3 programmable logic

controllers, a real-time model transformation engine was developed as part of the work

of this thesis. The new IEC 61131-3 model transformation engine provides an adaptation

of the object oriented engineering metamodels and model transformation specification to

the structured programming model of IEC 61131-3.

After the presentation of the platform specific model transformation engines, Section 5

introduces the platform independent model transformation language specified by this

thesis. With industrial usage in mind, this thesis did not take the usual approach of

defining a new platform independent model transformation language, but proposes the

new approach of reusing an existing model transformation specification language as a

platform independent model transformation specification. Using an existing model

transformation language allows to build on an established language specification and a

proven tool environment. To be usable as a platform independent model transformation,

the use of language features of the chosen ATL model transformation language must be

restricted. This affects features used in meta-modeling like the already mentioned usage

of references as well as features of the rule language like the pattern definition.
Otherwise, a PIM-MT to PSM-MT transformation could not be implemented as a higher

order model transformation but compiler technology would be required. For the

transformation of the pattern language, the application of user defined functions on the

platform independent level and the platform specific level was developed as a new

concept within this thesis, which showed its usefulness for keeping transformation rules

simple but still allowing complex pattern definitions.

With respect to the PIM-MT to PSM-MT higher order transformation, this thesis

revealed that this transformation always requires a reverse directed transformation of the
platform specific metamodel (PSM-MM) to a platform independent metamodel (PIM-

MM) used by the platform independent model transformation specification. While the

PIM-MT to PSM-MT higher order transformation is a one to many transformation (a

single platform independent metamodel specification is transformed to multiple platform

specific metamodel transformations), the PSM-MM to PIM-MM transformation is a

many to one transformation (multiple platform specific metamodels are transformed to a

single platform independent metamodel).

Finally, Section 6 presents the implementation of the PIM-MT to PSM-MT higher order

transformations together with the PSM-MM to PIM-MM transformations for the three

platform specific model transformation environments as an evaluation of the work of this

thesis. For desktop model transformations, ATL was used as the implementation.

Enterprise model transformations were implemented as part of the Siemens Teamcenter

PLM environment. The Siemens SIMOTION programmable logic controllers were used

for the evaluation of real time controllers.

Providing a new approach for an existing challenge, like the PSM-MT to PIM-MT
approach for the platform independent specification of model transformation answers a

set of open issued but also opens new questions for further research.

 142

The platform independent model transformation specification used within this thesis

relies on a set of implicit assumptions, which must be met by the platform specific model

transformation implementation. For the application of model transformations to already

existing models (which is the standard case for engineering model transformation) a

specification for the deletion of objects is required. For engineering models including

objects with a dependency to the outside world of the model transformation system

(which is common for enterprise model transformations and real-time model

transformations) a definition of the rule execution order is required. It is an open

question, what other language features are required for a model transformation language
if the requirement is not to handle a single system in all details but to provide a

transformation language that can be cover the execution requirements of many different

model transformation platforms.

Another important work of this thesis was the simplification of the model transformation

specification and the metamodel definitions to move away from the inflexible and strict

handling of references to widen the applicability of the specification to different

execution system. Within the work of this thesis, this was for example achieved by
implementing reference handling and object identity based on strings generated by user

defined functions instead of meta-modeling concepts. Although gaining flexibility, it

would be desired still to support checks, if references to object identifiers are valid, for

example with respect to the referenced object type or with respect to the structure of the

object identifier. Within database modeling, it is common to specify constraints on table

columns, e.g. columns serving as primary key (a reference in the wording of object

oriented design) or for valid values of database columns. It is a direction of future

research, if model transformation languages could be extended by these database

modeling concepts to support the applications considered by this thesis.

Finally, the higher order transformation from the PIM-MT to the PSM-MT is currently

implemented as a desktop model transformation based on the ATL model transformation

language. The application of the concepts provided by this thesis would also allow the

specification of this higher order transformation on a platform independent level and the

execution of this higher order transformation on different execution platforms. The

application fields and the requirements of such a successive application of the PIM-MT

to PSM-MT principle are not investigated yet.

 148

9 Appendix

The appendix lists the implementations of the model transformations implemented as

part of the evaluation presented in Section 6.

9.1 PIM-MT to intermediate ATL transformation

-- @path MMPIMMT=/pim-hot/model/pimmt.ecore
-- @nsURI MMATL=http://www.eclipse.org/gmt/2005/ATL

module atl2pimmt;
create OUTPIMMT : MMPIMMT from INATL : MMATL;

rule module2module
{
 from
 s: MMATL!Module
 to
 t: MMPIMMT!Module
 (
 elements <- s.elements->select(e |
e.oclIsTypeOf(MMATL!MatchedRule))
 , name <- s.name
)
}

rule matchedRule2rule
{
 from
 s: MMATL!MatchedRule
 to
 t: MMPIMMT!Rule
 (
 name <- s.name
 , inPattern <- s.inPattern.elements.at(1)
 -- , filter <-
thisModule.operationCallExp2helperCall(s.inPattern.filter)
 -- , filter <- s.inPattern.filter
 , outPatterns <- s.outPattern.elements

)
}

 149

rule simpleOutPatternElement2outPattern
{
 from
 s: MMATL!OutPatternElement
 to
 t: MMPIMMT!OutPattern
 (
 type <- s.type.name
 , bindings <- s.bindings
)
}

rule binding2binding
{
 from
 s: MMATL!Binding
 to
 t: MMPIMMT!Binding
 (
 propertyName <- s.propertyName
 , value <- s.value
 -- , value <- u
)
-- , u: MMPIMMT!SimpleExpression
-- (
-- type <- 'String'
-- , value <- 'helloBinding'
--)
-- , u: MMPIMMT!HelperCall
-- (
-- name <- 'helloHelperCall'
-- , arguments <- v
--)
-- , v: MMPIMMT!SimpleExpression
-- (
-- type <- 'String'
-- , value <- 'helloArgument'
--)

}

 150

-- InPattern

rule simpleInPatternElement2inPattern
{
 from
 s: MMATL!SimpleInPatternElement
 (
 s.oclIsKindOf(MMATL!SimpleInPatternElement)
)
 to
 t: MMPIMMT!InPattern
 (
 type <- s.type.name
 , filter <- s.refImmediateComposite().filter
)

}

rule operationCallExp2helperCall
{
 from
 s: MMATL!OperationCallExp
 (
 true --
s.refImmediateComposite().oclIsKindOf(MMATL!InPattern)
)
 to
 t: MMPIMMT!HelperCall
 (
 name <- s.operationName
 , arguments <- s.arguments->select(e |
e.oclIsTypeOf(MMATL!NavigationOrAttributeCallExp) or
e.oclIsTypeOf(MMATL!StringExp))
)
}

 151

-- test: support a.b and a.b.c attributes
rule navigationOrAttributeCallExp2attributeArgument
{
 from
 s: MMATL!NavigationOrAttributeCallExp
 (
 true --
s.refImmediateComposite().refImmediateComposite().oclIsKindOf(MM
ATL!InPattern)
)
 to
 t: MMPIMMT!SimpleExpression
 (
 type <- 'Attribute'
 , value <- if
(s.source.oclIsTypeOf(MMATL!NavigationOrAttributeCallExp)) then
s.source.name+'.'+s.name else s.name endif

)

}

rule stringExp2stringArgument
{
 from
 s: MMATL!StringExp
 (
 true --
s.refImmediateComposite().refImmediateComposite().oclIsKindOf(MM
ATL!InPattern)
)
 to
 t: MMPIMMT!SimpleExpression
 (
 type <- 'String'
 , value <- s.stringSymbol

)

}

 152

lazy rule lzoperationCallExp2helperCall
{
 from
 s: MMATL!OperationCallExp
 to
 t: MMPIMMT!HelperCall
 (
 name <- s.operationName
)
}

 153

9.2 Desktop PIM-MT/Intermediate Representation to PSM-MT transformation

-- @path MMPIMMT=/pim-hot/model/pimmt.ecore

query pimmt2atl = MMPIMMT!Module.allInstances()-
>first().toString().writeTo(
 '/pim-hot/model-gen/'+MMPIMMT!Module.allInstances()-
>first().name+'.psmmt.atl');

helper context MMPIMMT!Module def: toString() : String =
'-- @path MMELECTRICAL=/pim_mt/model/electrical.ecore\n' +
'-- @path MMAUTOMATION=/pim_mt/model/automation.ecore\n' +
'\n' +
'module electrical2automation;\n\n' +
'create OUTAUTOMATION : MMAUTOMATION from INELECTRICAL :
MMELECTRICAL;\n\n' +
'uses userDefinedFunctions;\n\n' +

 self.elements->iterate(e; acc : String = '' | acc +
e.toString() + '\n');

helper context MMPIMMT!Rule def: toString() : String =
'rule '+self.name+'\n' +
'{\n' +
' from\n' +
 self.inPattern.toString() +
' to\n' +
 self.outPatterns->iterate(e; acc : String = '' | acc +
e.toString(self.outPatterns.indexOf(e)) + if
e=self.outPatterns.last() then '\n' else ',\n' endif + '\n') +
' do\n' +
' {\n' +
' thisModule.debug(\''+self.name+'\');\n' +
' } \n' +
'\n' +
'}\n';

 154

helper context MMPIMMT!InPattern def: toString() : String =
' s: MMELECTRICAL!'+self.type + '\n' +
 if self.filter->oclIsUndefined() then
' -- no filter defined\n'
 else
' ('+
' -- filter match\n' +
' '+self.filter.toString()+'\n' +
')\n'
 endif;

helper context MMPIMMT!SimpleExpression def: toString() : String
=
 if self.type='String' then
 '\''+self.value+'\''
 else
 's.'+self.value
 endif;

helper context MMPIMMT!HelperCall def: toString() : String =
'thisModule.'+self.name+'(' +
 self.arguments->iterate(e; acc : String = '' | acc +
e.toString() + if e=self.arguments.last() then '' else ', '
endif) +
')';

helper context MMPIMMT!OutPattern def: toString(index : Integer)
: String =
' t'+index+': MMAUTOMATION!'+self.type+'\n'+
' (\n'+
 self.bindings->iterate(e; acc : String = '' | acc +
e.toString() + if e=self.bindings.last() then '\n' else ',\n'
endif) +
')';

helper context MMPIMMT!Binding def: toString() : String =
' '+self.propertyName+' <-
'+self.value.toString();

 155

9.3 Enterprise PIM-MT/Intermediate Representation to PSM-MT transformation

-- @path MMPIMMT=/pim-hot/model/pimmt.ecore

query pimmt2xsl = MMPIMMT!Module.allInstances()-
>first().toString().writeTo(
 '/pim-hot/model-gen/'+MMPIMMT!Module.allInstances()-
>first().name+'.psmmt.xsl');

helper context MMPIMMT!Module def: toString() : String =
'<?xml version="1.0" encoding="UTF-8"?>\n' +
'<!-- rule module '+self.name +' -->\n'+
'<xsl:stylesheet version="1.0" \n' +
' xmlns:xsl="http://www.w3.org/1999/XSL/Transform"\n' +
' xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" \n'
+
' \n' +
' xmlns:plmxml="http://www.plmxml.org/Schemas/PLMXMLSchema"
\n' +
' xmlns:xhtml="http://www.w3.org/1999/xhtml" \n' +
'
 xsi:schemaLocation="http://www.plmxml.org/Schemas/PLMXMLSc
hema PLMXMLElectricalSchema.xsd PLMXMLAutomationSchema.xsd "\n'
+
' \n' +
' >\n' +
'\n' +
'<xsl:import-schema
namespace="http://www.plmxml.org/Schemas/PLMXMLSchema" \n' +
' schema-
location="../model/PLMXMLElectricalSchema.xsd " /> \n' +
'<xsl:import-schema
namespace="http://www.plmxml.org/Schemas/PLMXMLSchema" \n' +
' schema-
location="../model/PLMXMLAutomationSchema.xsd " /> \n' +
' \n' +
'<xsl:output method="xml" indent="yes" />\n' +
'\n' +
'<xsl:template match="/*">\n' +
' \n' +

 156

' <plmxml:PLMXML \n' +
' author="" \n' +
' date="2001-01-01" \n' +
' schemaVersion="0.0" \n' +
' time="12:00:00" \n' +
'
 xmlns:plmxml="http://www.plmxml.org/Schemas/PLMXMLSchema"
\n' +
' xmlns:xhtml="http://www.w3.org/1999/xhtml" \n' +
' xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" \n' +
'
 xsi:schemaLocation="http://www.plmxml.org/Schemas/PLMXMLSc
hema ../model/PLMXMLAutomationSchema.xsd "\n' +
' >\n' +
' \n' +
' <xsl:apply-templates/>\n' +
' \n' +
' </plmxml:PLMXML>\n' +
'</xsl:template>\n' +
'\n' +
'<xsl:include href="userdefinedfunctions.xsl"/>\n'+
 self.elements->iterate(e; acc : String = '' | acc +
e.toString() + '\n') +
'</xsl:stylesheet>\n';

helper context MMPIMMT!Rule def: toString() : String =
' <!-- rule '+self.name+'-->\n' +
' <xsl:template match="element(*,
plmxml:'+self.inPattern.type+')'+self.inPattern.toString()+'">\n
' +
 self.outPatterns->iterate(e; acc : String = '' | acc +
e.toString() + '\n') +
' </xsl:template>\n';

helper context MMPIMMT!InPattern def: toString() : String =
 if self.filter->oclIsUndefined() then
 ''
 else
'['+self.filter.toString()+']'
 endif;

 157

helper context MMPIMMT!SimpleExpression def: toString() : String
=
 if self.type='String' then
 '\''+self.value+'\''
 else
 '@'+self.value
 endif;

helper context MMPIMMT!HelperCall def: toString() : String =
 'plmxml:'+self.name+
 '(' +
 self.arguments->iterate(e; acc : String = '' | acc +
e.toString() + if e=self.arguments.last() then '' else ', '
endif) +
 ')';

helper context MMPIMMT!OutPattern def: toString() : String =
' <!-- OutPattern -->\n' +
' <xsl:element name="plmxml:'+self.type+'"
type="plmxml:'+self.type+'">\n' +
 self.bindings->iterate(e; acc : String = '' | acc +
e.toString()) +
' </xsl:element>\n';

helper context MMPIMMT!Binding def: toString() : String =
' <xsl:attribute
name="'+self.propertyName+'"><xsl:value-of\n' +
' select="'+self.value.toString()+'"
/></xsl:attribute>\n';

 158

9.4 Real-Time PSM-MM to PIM-MM transformation

-- @nsURI MMSTUMC=http://www.xtext.org/iec61131/stumc/StUmc
-- @nsURI MMECORE=http://www.eclipse.org/emf/2002/Ecore

module stumc2ecore;
create OUTECORE : MMECORE from INSTUMC : MMSTUMC;

-- MMSTUMC!Bool_Spec
-- MMSTUMC!String_Spec
helper context MMSTUMC!Var_Init_Decl def : getEDataType() :
MMECORE!EDataType =
 if self.combined_Spec.oclIsKindOf(MMSTUMC!Bool_Spec) then
 MMECORE!EBoolean
 else
 MMECORE!EString
 endif;

rule unit2package
{
 from
 s: MMSTUMC!Unit
 to
 t: MMECORE!EPackage
 (
 name <- s.unitDef.id
 , nsPrefix <- 'org.mtmda.'+ s.unitDef.id
 , nsURI <- 'http://'+s.unitDef.id+'mtmda.org'
 , eClassifiers <- s.implementation.pous
)

}
rule fb2eClass
{
 from
 s: MMSTUMC!FB_Decl
 to
 t: MMECORE!EClass
 (
 name <- s.fbName
 , eStructuralFeatures <-
s.var_Decls.first().var_Decl
)
}

 159

rule varInitDecl2eAttribute
{
 from
 s: MMSTUMC!Var_Init_Decl
 (

 s.refImmediateComposite().oclIsKindOf(MMSTUMC!Input_Decls)
)
 to
 t: MMECORE!EAttribute
 (
 name <-
s.variable_List.variable_Name.first().name
 , eType <- s.getEDataType()
)
}

 160

9.5 Real-Time PIM-MM generalizations transformation

-- @nsURI MMECORE=http://www.eclipse.org/emf/2002/Ecore

module sttypes2supertypes;
create OUTSTTYPES : MMECORE refining INSTTYES : MMECORE;

rule sElModel
{
 from
 s:MMECORE!EClass
 (
 s.name='ElModel'
)
 to
 t:MMECORE!EClass
 (
 eSuperTypes <- MMECORE!EClass.allInstances()-
>select(e | e.name='ElClass')
)
}

rule sDriveControlUnit
{
 from
 s:MMECORE!EClass
 (
 s.name='DriveControlUnit'
)
 to
 t:MMECORE!EClass
 (
 eSuperTypes <- MMECORE!EClass.allInstances()-
>select(e | e.name='ElClass')
)
}

 161

rule sDriveObject
{
 from
 s:MMECORE!EClass
 (
 s.name='DriveObject'
)
 to
 t:MMECORE!EClass
 (
 eSuperTypes <- MMECORE!EClass.allInstances()-
>select(e | e.name='ElClass')
)
}

rule sG120ControlUnit
{
 from
 s:MMECORE!EClass
 (
 s.name='G120ControlUnit'
)
 to
 t:MMECORE!EClass
 (
 eSuperTypes <- MMECORE!EClass.allInstances()-
>select(e | e.name='DriveControlUnit')
)
}

rule sS120ControlUnit
{
 from
 s:MMECORE!EClass
 (
 s.name='S120ControlUnit'
)
 to
 t:MMECORE!EClass
 (
 eSuperTypes <- MMECORE!EClass.allInstances()-
>select(e | e.name='DriveControlUnit')
)
}

 162

rule sS1202ControlUnit
{
 from
 s:MMECORE!EClass
 (
 s.name='S1202ControlUnit'
)
 to
 t:MMECORE!EClass
 (
 eSuperTypes <- MMECORE!EClass.allInstances()-
>select(e | e.name='S120ControlUnit')
)
}

 163

9.6 Real-Time PIM-MT/Intermediate Representation to PSM-MT transformation

-- @path MMPIMMT=/pim-hot/model/pimmt.ecore

-- query pimmt2st = MMPIMMT!Module.allInstances()-
>first().toString().writeTo('/pim-hot/model-gen/psmmt.stumc');
query pimmt2st = MMPIMMT!Module.allInstances()-
>first().toString().writeTo(
 '/pim-hot/model-gen/'+MMPIMMT!Module.allInstances()-
>first().name+'.psmmt.stumc');
-- ->collect(e | e.toString().writeTo('/pim-hot/model-
gen/psmmt.stumc'));

helper def : getDomainType(type : String) : MMECORE!EClass =
 MMECORE!EClass.allInstances()->select(e |
e.name=type).first();

helper def : getSubTypes(type : String) : Sequence(String) =
 let
 eclassInstances : Sequence(MMECORE!EClass) =
MMECORE!EClass.allInstances().debug('eclassInstances')
 in let
 domainType : MMECORE!EClass =
thisModule.getDomainType(type).debug('domainType')
 in let
 subTypes : Sequence(MMECORE!EClass) =
MMECORE!EClass.allInstances()->select(e |
e.eAllSuperTypes.includes(domainType)).debug('getSubTypes for
'+type)
 in
 if (subTypes.size()>0) then
 subTypes->collect(e | e.name)
 else
 Sequence{}
 endif;

 164

helper context MMPIMMT!Module def: toString() : String =
'// rule module '+self.name +'\n' +
'INTERFACE\n' +
' USELIB DebugFile;\n' +
' // manual configuration of the USES statement is
required\n' +
' USES electricalInstances, automationInstances,
UserDefinedFunctions;\n' +
'\n' +
' \n' +
 self.elements->iterate(e; acc : String = '' | acc +
e.ruleInterfaceDeclaration() + '\n') +
' \n' +
' \n' +
'END_INTERFACE\n' +
'\n' +
'IMPLEMENTATION\n' +
' \n' +
 self.elements->iterate(e; acc : String = '' | acc +
e.toString() + '\n') +
' \n' +
' \n' +
' \n' +
'END_IMPLEMENTATION\n\n';

helper context MMPIMMT!Rule def: ruleFbName() : String =
 'rule_'+self.name+'_'+self.inPattern.type;

helper context MMPIMMT!Rule def: ruleInterfaceDeclaration() :
String =
' FUNCTION_BLOCK '+self.ruleFbName()+';\n' +
 thisModule.getSubTypes(self.inPattern.type)->iterate(e;
acc : String = '' | acc +
' FUNCTION_BLOCK '+self.ruleFbName()+'_'+e+';\n'

);

helper context MMPIMMT!Rule def: toString() : String =
' // SubTypes
'+thisModule.getSubTypes(self.inPattern.type).toString()+' \n'+
 self.subRule('') +
 thisModule.getSubTypes(self.inPattern.type)->iterate(e;
acc : String = '' | acc + self.subRule(e))
 ;

 165

helper context MMPIMMT!Rule def: subRule(inPatternSubType :
String) : String =
 let
 inPatternType : String =
 if (inPatternSubType.size()>0) then
 inPatternSubType
 else
 self.inPattern.type
 endif
 in let
 fb_name : String =
 if (inPatternSubType.size()>0) then
 self.ruleFbName()+'_'+inPatternSubType
 else
 self.ruleFbName()
 endif
 in
 ' FUNCTION_BLOCK '+fb_name+'\n' +
' VAR_OUTPUT\n' +
' modelCompleted : BOOL;\n' +
' END_VAR\n' +
' \n' +
' VAR\n' +
' iterator, targetIterator : DINT :=1;\n' +
' stateModelCompleted : BOOL :=FALSE;\n' +
' END_VAR\n' +
' \n' +
' VAR_TEMP\n' +
' sourceMatch:BOOL :=FALSE;\n' +
' targetIdentifier : STRING;\n' +
' END_VAR\n' +
' \n' +
' DebugMessage(message:=\''+fb_name+' execution, object
name\',
parameter:='+inPatternType+'Instances[iterator].name);\n' +
' IF '+inPatternType+'Instances[iterator].active THEN\n'+
 self.inPattern.toString(inPatternType) +
' END_IF;\n'+
' \n' +
' IF sourceMatch THEN\n' +
' DebugMessage(message:=\'sourceMatch=TRUE\');\n' +

 self.outPatterns->iterate(e; acc : String =
'' | acc + e.toString(inPatternType) + '\n') +

' END_IF;\n' +

 166

' \n' +
' iterator:=iterator+1;\n' +
' IF
iterator>_lastIndexOf(in:='+inPatternType+'Instances) THEN\n' +
' iterator:=1;\n' +
' stateModelCompleted:=TRUE;\n' +
' END_IF;\n' +
' \n' +
' modelCompleted:=stateModelCompleted; \n' +
' \n' +
' END_FUNCTION_BLOCK\n\n';

helper context MMPIMMT!InPattern def: toString(sourceType :
String) : String =
 if self.filter->oclIsUndefined() then
' // no filter defined\n' +
' sourceMatch:=TRUE;\n' +
' \n'
 else
' // filter match \n' +
' IF '+self.filter.toStringSourceType(sourceType)+'
THEN\n' +
' sourceMatch:=TRUE;\n' +
' END_IF;\n' +
' \n'
 endif;

helper context MMPIMMT!SimpleExpression def: toString() : String
=
 '// PSMMT-Error: MMPIMMT!SimpleExpression def: toString()
used without sourceType\n';
helper context MMPIMMT!HelperCall def: toString() : String =
 '// PSMMT-Error: MMPIMMT!HelperCall def: toString() used
without sourceType\n';

helper context MMPIMMT!SimpleExpression def:
toStringSourceType(sourceType : String) : String =
 if self.type='String' then
 '\''+self.value+'\''
 else
 if (sourceType='') then
 self.value
 else
 sourceType+'Instances[iterator].'+self.value
 endif
 endif;

 167

helper context MMPIMMT!HelperCall def:
toStringSourceType(sourceType : String) : String =
 self.name+
 '(' +
 self.arguments->iterate(e; acc : String = '' | acc +
e.toStringSourceType(sourceType) + if e=self.arguments.last()
then '' else ', ' endif) +
 ')';

helper context MMPIMMT!OutPattern def: toString(sourceType :
String) : String =
 let
 identifierBinding : MMPIMMT!Binding = self.bindings-
>select(e | e.propertyName='name').first()
 in
' // Binding\n' +
' // create target element type '+ self.type + '\n' +
 if identifierBinding.oclIsUndefined() then
' // PSMMT-Error: no identifier\n'
 else

'
targetIdentifier:='+identifierBinding.value.toStringSourceType(s
ourceType)+';\n' +
'
targetIterator:=create'+self.type+'(targetIdentifier);\n' +

' IF (targetIterator>0) THEN \n' +
' DebugMessage(message:=\'Created \',
parameter:=targetIdentifier);\n' +
' // set additional attributes\n' +
 self.bindings->iterate(e; acc : String = '' | acc +
' ' +

 self.type+'Instances[targetIterator].'+e.propertyName+':='
+
 if
(e.value.oclIsKindOf(MMPIMMT!SimpleExpression)) then
 if (e.value.type='String')

 168

then

 '\''+e.value.value+'\''
 else

 sourceType+'Instances[iterator].'+e.value.value
 endif +
 ';\n'
 else

 e.value.toStringSourceType(sourceType)+'; //
HelperCall();\n'
 endif
) +

' ELSE\n' +
' DebugMessage(message:=\'Failed creating \',
parameter:=targetIdentifier);\n' +
' END_IF;\n' +
' \n'
 endif;

helper context MMPIMMT!Binding def: toString() : String =
 '.'+self.propertyName+':=';

 169

Curriculum Vitae

Der Lebenslauf ist in der Online-Version aus Gründen des Datenschutzes nicht

enthalten.

 171

Erklärung laut §9 PromO

Ich versichere hiermit, dass ich die vorliegende Dissertation allein und nur unter
Verwendung der angegebenen Literatur verfasst habe. Die Arbeit hat bisher noch nicht

zu Prüfungszwecken gedient.

Datum Unterschrift

