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Hiermit erkläre ich, dass ich die vorliegende Arbeit - abgesehen von den in ihr ausdrücklich ge-
nannten Hilfen - selbständig verfasst habe.
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Abstract
Cryptographic techniques are essential for the security of communication in modern society. As
more and more business processes are performed via the Internet, the need for efficient crypto-
graphic solutions will further increase in the future. Today, nearly all cryptographic schemes used
in practice are based on the two problems of factoring large integers and solving discrete logarithms.
However, schemes based on these problems will become insecure when large enough quantum com-
puters are built. The reason for this is Shor’s algorithm, which solves number theoretic problems
such as integer factorization and discrete logarithms in polynomial time on a quantum computer.
Therefore one needs alternatives to those classical public key schemes. Besides lattice, code and
hash based cryptosystems, multivariate cryptography seems to be a candidate for this. Additional
to their (believed) resistance against quantum computer attacks, multivariate schemes are very
fast and require only modest computational resources, which makes them attractive for the use on
low cost devices such as RFID chips and smart cards. However, there remain some open problems
to be solved, such as the unclear parameter choice of multivariate schemes, the large key sizes and
the lack of more advanced multivariate schemes like signatures with special properties and key
exchange protocols.
In this dissertation we address two of these open questions in the area of multivariate cryptogra-
phy. In the first part we consider the question of the parameter choice of multivariate schemes.
We start with the security model of Lenstra and Verheul, which, on the basis of certain assump-
tions like the development of the computing environment and the budget of an attacker, proposes
security levels for now and the near future. Based on this model we study the known attacks
against multivariate schemes in general and the Rainbow signature scheme in particular and use
this analysis to propose secure parameter sets for these schemes for the years 2012− 2050.
In the second part of this dissertation we present an approach to reduce the public key size of
certain multivariate signature schemes such as UOV and Rainbow. We achieve the reduction by
inserting a structured matrix into the coefficient matrix of the public key, which enables us to
store the public key in an efficient way. We propose several improved versions of UOV and Rain-
bow which reduce the size of the public key by factors of 8 and 3 respectively. Using the results
of the first part, we show that using structured public keys does not weaken the security of the
underlying schemes against known attacks. Furthermore we show how the structure of the public
key can be used to speed up the verification process of the schemes. Hereby we get a speed up
of factors of 6 for UOV and 2 for Rainbow. Finally we show how to apply our techniques to the
QUAD stream cipher. By doing so we can increase the data throughput of QUAD by a factor of
7.
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Zusammenfassung
Kryptographische Techniken sind für die Sicherheit der Kommunikation in der modernen Gesell-
schaft unverzichtbar. Da der Anteil der im Internet durchgeführten Geschäftsprozesse weiter zu-
nimmt, wird der Bedarf nach effizienten Lösungen auf diesem Gebiet noch weiter steigen. Nahezu
alle heutzutage benutzten kryptographischen Verfahren beruhen entweder auf dem Problem des
Faktorisierens großer Zahlen oder dem Lösen diskreter Logarithmen. Jedoch werden derartige
Verfahren unsicher, sobald Quantencomputer entsprechender Größe zur Verfügung stehen. Der
Grund dafür ist Shor’s Algorithmus, mit dessen Hilfe zahlentheoretische Probleme wie das Fak-
torisieren ganzer Zahlen und das Lösen diskreter Logarithmen auf einem Quantencomputer in
polynomieller Zeit durchgeführt werden können. Aufgrund dessen werden Alternativen zu diesen
klassischen public-key-Verfahren benötigt. Neben gitter-, code- und hashbasierten Verfahren ist
die multivariate Kryptographie ein möglicher Kandidat dafür. Zusätzlich zu der (vermuteten) Re-
sistenz gegenüber Angriffen mit Quantencomputern sind multivariate Verfahren sehr schnell und
benötigen lediglich moderate Rechenkapazitäten, was diese Verfahren für den Einsatz auf RFID
chips und smart cards attraktiv macht. Jedoch bleiben noch einige offene Probleme zu lösen, wie
die Parameterwahl multivariater Verfahren, das Problem großer Schlüssel sowie der Mangel an
fortgeschrittenen multivariaten Verfahren wie Signaturverfahren mit speziellen Eigenschaften und
key-exchange Protokollen.
In dieser Dissertation befassen wir uns mit zwei dieser offenen Fragen auf dem Gebiet der multi-
variaten Kryptographie. Im ersten Teil beschäftigen wir uns mit der Parameterwahl multivariater
Verfahren. Wir beginnen mit dem Sicherheitsmodell von Lenstra und Verheul, das, auf der Basis
einiger Annahmen wie der Entwicklung von Rechenkapazitäten und dem Budget eines Angreifers,
Sicherheitslevel für die Gegenwart und die nahe Zukunft vorschlägt. Von diesem Modell ausgehend
analysieren wir bekannte Angriffe gegen multivariate Systeme im Allgemeinen und das Rainbow
Signaturverfahren im Besonderen, um für diese Verfahren sichere Parametersätze für die Zeit bis
2050 herzuleiten.
Im zweiten Teil der Dissertation stellen wir eine Strategie zur Verkleinerung des öffentlichen
Schlüssels bestimmter multivariater Signaturverfahren wie UOV und Rainbow vor. Wir erzielen
unsere Ergebnisse, indem wir eine strukturierte Matrix in die Koeffizientenmatrix des öffentlichen
Schlüssels übertragen. Dies ermöglicht es uns, den öffentlichen Schlüssel auf effiziente Weise zu
speichern. Wir beschreiben mehrere dieser verbesserten Varianten von UOV und Rainbow, die die
Größe des öffentlichen Schlüssels um das 8-fache (UOV) bzw. das 3-fache (Rainbow) verringern.
Darüber hinaus zeigen wir, wie sich die Struktur des öffentlichen Schlüssels dazu verwenden lässt,
den Verifikationsprozess der beiden Signaturverfahren zu beschleunigen. Hierbei erzielen wir Be-
schleunigungen um das 6-fache (UOV) bzw. das 2-fache (Rainbow). Mit Hilfe der Ergebnisse
des ersten Teils zeigen wir, dass durch unsere Maßnahmen die Sicherheit der Verfahren nicht
beeinträchtigt wird. Im letzten Abschnitt zeigen wir, wie sich unsere Techniken auf die multivari-
ate Stromchiffre QUAD anwenden lassen. Dadurch lässt sich der Datendurchsatz von QUAD um
das 7-fache erhöhen.
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Chapter 1

Introduction

Cryptographic techniques are essential for the security of communication in modern society. In
the business world, the communication between trading partners needs to remain confidential.
But also the private user deals with cryptography nearly every day. Examples for this are online
shopping and software downloads. When logging in to an email account or visiting the website
of a bank, cryptographic techniques are used, too. As more and more business processes are per-
formed via the Internet (e.g. via cloud computing) and because of new applications like e-voting
and digital payment the need for efficient cryptographic solutions will still increase in the future.
The most often used cryptographic primitives are encryption and digital signature schemes. En-
cryption schemes guarantee the confidentiality of data which means that an attacker can not get
any information about the content of the encrypted message. Signature schemes on the other
hand ensure that a message really comes from the sender (authentication) and that it was not
changed after the signing process (data integrity). For contracts it is also important that none of
the signers is able to neglect the validity of the agreement (non-repudiation), which can also be
guaranteed by a digital signature scheme.
Today, nearly all of the cryptographic schemes used in practice are based on two mathematical
problems, namely the factorization of large integers and the solving of discrete logarithms. The
best known examples for such schemes are the RSA cryptosystem [51] and the Digital Signature
Algorithm (DSA) [41]. However, schemes based on these two problems will become insecure as
soon as large enough quantum computers are built [4]. The reason for this is Shor’s algorithm
[53], which solves number theoretic problems like integer factorization and discrete logarithms in
polynomial time on a quantum computer. Therefore it is necessary to develop alternatives to
those classical cryptosystems whose security is based on problems which are not affected by Shor’s
algorithm. Besides lattice, code and hash based schemes, multivariate cryptography seems to be
a candidate for this.
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The security of multivariate cryptography is based on the PoSSo-Problem of solving systems of
multivariate nonlinear polynomial equations over finite fields. Equation (1.1) shows such a system
of m quadratic equations in n variables.

p(1)(x1, . . . , xn) =
n∑
i=1

n∑
j=i

p
(1)
ij · xixj +

n∑
i=1

p
(1)
i · xi + p

(1)
0

p(2)(x1, . . . , xn) =
n∑
i=1

n∑
j=i

p
(2)
ij · xixj +

n∑
i=1

p
(2)
i · xi + p

(2)
0

...

p(m)(x1, . . . , xn) =
n∑
i=1

n∑
j=i

p
(m)
ij · xixj +

n∑
i=1

p
(m)
i · xi + p

(m)
0 . (1.1)

The PoSSo problem is defined as follows:

Problem PoSSo: Given a system P = (p(1), . . . , p(m)) of m nonlinear polynomial equations in the
variables x1, . . . , xn, find values x̄1, . . . , x̄n such that p(1)(x̄1, . . . , x̄n) = . . . = p(m)(x̄1, . . . , x̄n) = 0.

The PoSSo problem is proven to be NP-hard even for the simplest case of quadratic equations over
the field with two elements [27]. In the case of all polynomials being quadratic the PoSSo problem
is called MQ-Problem. For efficiency reasons, nearly all multivariate schemes restrict themselves
to polynomials of degree 2.

The first attempt to build a cryptographic scheme based on multivariate quadratic polynomials
was done by Ong, Schnorr and Shamir in [43], where they propose a signature scheme based on
the difficulty of solving the equation

s2
1 + k · s2

2 = m (mod n). (1.2)

However, the security of this scheme is still based on the difficulty of factoring the modulus
n = p · q and therefore can not be said to be a ”real” multivariate scheme. Furthermore, beyond
other weaknesses, the scheme is not resistant against quantum computer attacks.
The development of multivariate schemes in today’s sense started in 1988 with the C? scheme of
Matsumoto and Imai [38], which can be used both for encryption and signatures. Matsumoto and
Imai used a bijective map F over a degree n extension field E of GF(2) of the form

F : E→ E,F(X) = X2θ+1. (1.3)

To make sure that this map is invertible, we have to choose θ in such a way that gcd(2θ+1, 2n−1) =
1. Due to the Frobenius Isomorphism, equation (1.3) yields, via the canonical isomorphism be-
tween GF(2n) and the vector space GF(2)n, a system of multivariate quadratic equations F̄ over
the field GF(2). To hide the structure of F̄ , Matsumoto and Imai composed it in the public key
with two affine maps S and T . By doing so, they produced a public key of the form P = S ◦F̄ ◦T .
This construction, called bipolar construction, is still the standard method to build multivariate
public key cryptosystems.

Since the development of these early schemes, multivariate cryptography has been an active area
of research and many schemes both for encryption and signatures have been proposed. How-
ever, there is a lack of ”advanced” multivariate schemes like key exchange protocols and signature
schemes with special properties. A good overview of existing multivariate schemes can be found
in [15].
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Beyond the supposed resistance against quantum computer attacks, multivariate schemes enjoy a
number of advantages:

• Speed
First, multivariate schemes are very fast, especially for signatures. In fact, there are many
hints that multivariate schemes can be faster than classical public key schemes like RSA and
ECC [11, 7].

• Modest Computational Requirements
Furthermore, the mathematical operations performed by multivariate schemes are usually
very simple: Most schemes need only addition and multiplication over small finite fields.
Therefore multivariate schemes require only modest computational resources, which makes
them attractive for the use on low cost devices such as RFID chips and smart cards, without
the need of a cryptographic coprocessor. In fact, a variant of the C? scheme called SFLASH
[48] was proposed by the European Commission as a standard for signature schemes on low
cost devices [49].

• Hardness of the MQ-Problem
Another argument for building cryptographic schemes on the basis of the MQ-Problem is
that the best known attacks against this problem are still exponential. This is in contrast to
schemes based on the problem of integer factorization, which can be solved in subexponential
time by algorithms like the number field sieve [35]. From this point of view, the trust in
the hardness of the MQ-Problem might be stronger than for integer factorization and the
parameters of multivariate schemes have not to be adapted as drastically as those of RSA.

• Variety of Cryptographic Schemes
The last argument we want to mention here is that it is always nice to have cryptographic
schemes based on a large variety of problems. As mentioned above, nearly all cryptographic
schemes used today are based either on the integer factorization or the discrete logarithm
problem. Therefore, a major cryptanalytic success against one of these two problems would
lead to a severe security problem. With having a greater range of cryptographic schemes,
the impacts of such a cryptanalytic break through would be much less grave.

However, there remain a number of problems to be solved:

• Parameter Choice of Multivariate Schemes
The question which parameters have to be chosen for cryptosystems to reach given levels
of security is one of the central problems of cryptography. A practitioner, who wants to
use a certain cryptographic scheme in one of his protocols, must know which parameters he
has to choose for the cryptosystem to guarantee the security of his protocol. But also for
the theorist, the problem of choosing parameters is important. Developing a new crypto-
graphic scheme without explicit parameter choice does not make much sense. There are even
some cryptographic schemes for which it is unclear if there exist parameters which make the
scheme both efficient and secure.
In the area of multivariate cryptography the question of the parameter choice has not been
answered so far. We address this problem in the first part of this thesis for multivariate
schemes in general and in particular for the Rainbow signature scheme, which is one of the
best studied and most promising multivariate schemes. By this analysis we obtain parameter
sets which guarantee the security of the schemes for the years 2012 to 2050.
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• Reducing Key Sizes for Multivariate Schemes
One of the biggest problems of multivariate cryptography is the large size of the public and
private keys. The key sizes of multivariate schemes are in the area of 10-100 kB and there-
fore much larger than those of classical public key cryptosystems like RSA and ECC. This
problem will increase over time since the key sizes grow cubic with the number of variables.
While the size of the private key can be decreased easily by using a small random seed and
a pseudo random number generator (PRNG), the question, how to reduce the size of the
public key is not so easy to answer. However, in many applications, especially the public key
size is important. While the private key is stored on a PC or a Hardware Security Module,
everybody, who wants to verify a signature or send an encrypted message, has to get the
public key. So, by reducing the public key size of a cryptographic scheme, we can reduce the
data traffic by a significant factor. Furthermore, reducing the public key size also helps to
reduce the size of certificates as they are used in many public key infrastructures (PKI’s).
We address the problem of reducing the public key size in the second part of this thesis,
where we develop a strategy which allows us to reduce the public key size of the multivariate
signature schemes UOV and Rainbow by factors of 8 and 3 respectively.

• Developing Multivariate Schemes with Provable Security
Another problem of multivariate cryptography is the lack of security proofs. There are many
examples for multivariate schemes which were thought to be secure but broken later. Some
of these schemes were ”repaired” by modifying them slightly, broken again, modified and
so on. A well known example for such a scheme is the C? scheme of Matsumoto and Imai
[38], which was broken by Patarin’s Linearization Equations [44]. After that the original
scheme was modified by removing some of the public equations (Minus-Modification). The
new scheme was called SFLASH [48] and later recommended by the European Commission
as a standard for signature schemes on low cost devices [49]. However, it was broken again
by the differential attacks of Dubois et al. [20]. Recently, Ding et al. proposed a way to
prevent these attacks by ”projection” of the equations [19].
These developments have undermined the confidence of large parts of the cryptographic
community in the security of multivariate schemes in general. It is therefore necessary to
create multivariate schemes which offer provable security.
One way to achieve this is by building multivariate schemes on the basis of the provable
secure identification scheme of Sakumoto, Shirai and Hiwatari [52]. However, the so obtained
signature schemes are not very efficient and it is quite unclear if this way can be used to
build a provable secure multivariate encryption scheme. Another approach in this direction
was proposed in [32]. In this paper, Huang et al. propose a provably secure multivariate
public key cryptosystem, which can be used both for encryption and signatures. However,
the security of this scheme is based on a variation of the MQ-Problem. Therefore, it remains
unclear if a provable secure encryption scheme can be constructed on the basis of the MQ-
Problem itself.

• Developing ”Advanced” Multivariate Cryptosystems
While there exists a large variety of multivariate signature and encryption schemes there is
a lack of more advanced cryptographic schemes such as key exchange protocols or signature
schemes with special properties. So far, there exist hardly any multivariate schemes in this
area. One possible direction to solve this problem is by building provable secure multivariate
signature schemes with special properties on the basis of the multivariate identification
scheme of [52] by using the Fiat Shamir transform [26]. One example for such a scheme is
our multivariate threshold ring signature scheme [P4]. In the Future Work section of this
thesis we present an idea how to build a multivariate blind signature scheme on the basis of
UOV using the techniques shown in Chapter 7.
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1.1 Contribution of this thesis

The contribution of this thesis is twofold.

In the first part ”Selecting Parameters for Multivariate Cryptography” we deal with the prob-
lem of the parameter choice of multivariate schemes. Starting with the security model of Lenstra
and Verheul [36], we analyze known attacks against multivariate schemes in general and the Rain-
bow signature scheme in particular to find good parameters for these schemes.

Chapter 4 ”The model” describes the security model of Lenstra and Verheul [36]. The model
takes as input a year y and uses parameters such as the cryptanalytic development and the bud-
get of an attacker to compute a concrete security level a cryptographic scheme must achieve to be
thought secure in the year y.

In Chapter 5 ”Complexity of the MQ-Problem” we determine, based on our model, the min-
imal number of equations a multivariate scheme must contain to be thought secure in the year
y ∈ {2012, . . . , 2050}. In this chapter we look at random systems as they are used in the multivari-
ate identification scheme [52] and the stream cipher QUAD [2] (see also Chapter 11). We do our
analysis separately for multivariate systems over GF(16), GF(31) and GF(256). Additionally, this
chapter provides parameter recommendations for the UOV signature scheme for different levels of
security and different underlying fields.

Chapter 6 ”Selecting Parameters for the Rainbow Signature Scheme” analyzes known attacks
against the Rainbow signature scheme to find secure parameters for Rainbow for the years
y ∈ {2012, . . . , 2050}. We optimize the parameters for both public and private key size and do
the analysis separately for Rainbow schemes over GF(16), GF(31) and GF(256). Furthermore, we
compare the Rainbow schemes over the three fields in regard of key sizes and signature length.

In the second part ”Reducing Key Sizes for Multivariate Cryptography” we address the prob-
lem of the large key sizes of multivariate schemes. We present an approach to reduce the public
key size of certain multivariate schemes like the Unbalanced Oil and Vinegar (UOV) and Rain-
bow signature schemes. We achieve this by creating UOV and Rainbow instances with structured
public keys. Furthermore, we show how the structure in the public key can be used to speed up
the verification process of the signature schemes.

In Chapter 7 ”The General Approach” we describe our general approach to reduce the public
key size of UOV and Rainbow. We show how to insert a structured matrix B into the coefficient
matrix of the public key of the schemes. By doing so, this matrix gets the form MP = (B|C)
where the matrix B can be fixed by the user. As we will see in the Chapters 8 and 9, using this
technique enables us to reduce the public key size of the UOV and Rainbow schemes by large
factors.

Chapter 8 ”Improved Versions of UOV” presents several improved versions of the UOV signa-
ture scheme, which reduce the size of the public key of the original scheme by a factor of up
to 8.0. We describe the key generation of different improved variants of the UOV scheme and
discuss the security of our constructions. Furthermore, we propose concrete parameter sets for
our schemes and compare them with the original UOV scheme in terms of the public key size. Fi-
nally, we describe how the implementation of our improved schemes can be done in an efficient way.



18 CHAPTER 1. INTRODUCTION

In Chapter 9 ”Improved Versions of Rainbow” we present two improved versions of the Rainbow
signature scheme. As we will see, using a structured matrix B together with the techniques pre-
sented in Chapter 7 reduces the public key size of the original scheme by a factor of up to 3.0. We
analyze the security of our improved versions and give details about the implementation.

Chapter 10 ”Speeding up the Verification Process” shows how the structure in the public key
of our improved schemes can be used to speed up the verification process of the signature schemes.
As we will see, we can use our techniques to speed up the verification process of UOV and Rainbow
by factors of up to 6.1 and 2.4 respectively. We analyze the speed up both theoretically and by a
C implementation of our schemes.

In the last chapter of this thesis (Chapter 11; ”Speeding up QUAD”) we show how the tech-
niques presented in Chapter 10 can be used to speed up the multivariate stream cipher QUAD.
By using specially designed polynomial systems, the data throughput of QUAD can be increased
by a factor of up to 6.8. As in the previous chapter, we derive our results both theoretically and
by a C implementation of QUAD.
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Chapter 2

Multivariate Cryptography

In this chapter we give an overview of the basics of multivariate cryptography needed in the later
parts of this thesis. After recalling the basic definitions of multivariate polynomials in Section
2.1, Section 2.2 describes the basic construction techniques of multivariate public key cryptosys-
tems. Section 2.3 introduces the mathematical problems on which the security of multivariate
cryptosystems is based, whereas Section 2.4 deals with a phenomenon called equivalent keys, by
which we denote different private keys which correspond to the same public key. Finally, Sec-
tion 2.5 describes known attacks against the MQ-Problem which can be used as message recovery
respectively signature forgery attacks against multivariate schemes.

2.1 Multivariate Polynomials

In this section we recall the basic definitions and introduce notations about multivariate polyno-
mials needed in the later parts of this thesis.

Definition 2.1. We define the ring of multivariate polynomials in n variables over a (finite) field
F as

F[x1, . . . , xn] =

{
s∑
i=1

ci · tai |s ∈ N, ai = (ai,1, . . . , ai,n) ∈ Nn0

}
. (2.1)

We call ci ∈ F a coefficient and tai = x
ai,1
1 · xai,22 · . . . · xai,nn a monomial. The product ci · tai is

called a term. The set of all monomials in F[x1, . . . , xn] is denoted by Tn.

Definition 2.2. The degree of a monomial ta = xa1
1 · x

a2
2 · . . . · xann ∈ F[x1, . . . , xn] is defined as

deg(ta) = |a| =
n∑
j=1

aj . (2.2)

The degree of a polynomial p =
∑s
i=1 ci · tai is defined as

deg(p) = max
i∈{1,...,s}

deg(tai) = max
i∈{1,...,s}

|ai|. (2.3)

Definition 2.3. For a monomial ta = xa1
1 · x

a2
2 · . . . · xann ∈ F[x1, . . . , xn] we define

log(ta) = (a1, a2, . . . , an) ∈ Fn. (2.4)
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Definition 2.4. An ordering of monomials is a complete relationship σ ⊂ Tn×Tn on Tn. Instead
of (t1, t2) ∈ σ we write t1 >σ t2. The ordering σ is called admissible if, for any t1, t2, t3 ∈ Tn we
have

• t1 ≥σ 1 and

• t1 >σ t2 ⇔ t1 · t3 >σ t2 · t3.

The three most often used examples for admissible orderings of monomials are the pure lexico-
graphic order (lex), the graded lexicographic order (glex) and the reversed graded lexicographic
order (grevlex).

• In the pure lexicographic order we have

t1 >lex t2 ⇔ the first non zero component of log(t1)− log(t2) is greater than 0.

• In the graded lexicographic order we have

t1 >glex t2 ⇔ deg(t1) > deg(t2) or deg(t1) = deg(t2) ∧ t1 >lex t2.

• In the reversed graded lexicographic order we have

t1 >grevlex t2 ⇔ deg(t1) > deg(t2)

or deg(t1) = deg(t2) and the last non zero component of log(t1)− log(t2) is negative.

Unless otherwise stated, we use the graded lexicographic order throughout this thesis.

After having fixed an ordering of monomials σ (not necessarily an admissible one), we can give
the following definitions:

Definition 2.5. For a multivariate polynomial

p(x1, . . . , xn) =
s∑
i=1

ci · tai ∈ F[x1, . . . , xn]

with ta1 >σ ta2 >σ . . . >σ tas we define the coefficient vector Π(p) by

Π(p) = (c1, . . . , cs) ∈ Fs. (2.5)

Definition 2.6. For a system P of m multivariate polynomials1

p(1)(x1, . . . , xn) =
s∑
i=1

c
(1)
i · tai

p(2)(x1, . . . , xn) =
s∑
i=1

c
(2)
i · tai

...

p(m)(x1, . . . , xn) =
s∑
i=1

c
(m)
i · tai

with ta1 >σ ta2 >σ . . . >σ tas we define the Macauley matrix of P by

MP = (Π(p(1)), . . . ,Π(p(m)))T =


c
(1)
1 c

(1)
2 . . . c

(1)
s

c
(2)
1 c

(2)
2 . . . c

(2)
s

...
...

c
(m)
1 c

(m)
2 . . . c

(m)
s

 . (2.6)

1Without loss of generality we assume that each of the polynomials of P contains the same monomials.
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In the context of multivariate cryptography we mostly deal with systems of multivariate quadratic
polynomials. The number of equations in the system we denote by m, the number of variables is
n. Equation (2.7) shows such a system P of multivariate quadratic polynomials.

p(1)(x1, . . . , xn) =
n∑
i=1

n∑
j=i

p
(1)
ij · xixj +

n∑
i=1

p
(1)
i · xi + p

(1)
0

p(2)(x1, . . . , xn) =
n∑
i=1

n∑
j=i

p
(2)
ij · xixj +

n∑
i=1

p
(2)
i · xi + p

(2)
0

...

p(m)(x1, . . . , xn) =
n∑
i=1

n∑
j=i

p
(m)
ij · xixj +

n∑
i=1

p
(m)
i · xi + p

(m)
0 (2.7)

If m = n, we call P a determined system. For m < n, P is called underdetermined and for m > n
we speak of an overdetermined system.

For the system P of equation (2.7) and the graded lexicographic order of monomials the Macauley
matrix (see Definition 2.6) has the form

MP =


p

(1)
11 p

(1)
12 . . . p

(1)
nn p

(1)
1 . . . p

(1)
n p

(1)
0

p
(2)
11 p

(2)
12 . . . p

(2)
nn p

(2)
1 . . . p

(2)
n p

(2)
0

...
...

p
(m)
11 p

(m)
12 . . . p

(m)
nn p

(m)
1 . . . p

(m)
n p

(m)
0

 . (2.8)

We get 
p(1)

p(2)

...
p(m)

 (x1, . . . , xn) = MP · (x2
1, x1x2, . . . , x

2
n, x1, . . . , xn, 1)T . (2.9)

Matrix Representation
For a multivariate quadratic system P as shown in equation (2.7) we can write each component
p(k) (k = 1, . . . ,m) as a matrix-vector product using an upper triangular (n+ 1)× (n+ 1) matrix
MP (k) of the form

MP (k) =



p
(k)
11 p

(k)
12 p

(k)
13 . . . p

(k)
1n p

(k)
1

0 p
(k)
22 p

(k)
23 . . . p

(k)
2n p

(k)
2

0 0 p
(k)
33 p

(k)
3n p

(k)
3

...
. . .

...
...

0 0 . . . 0 p
(k)
nn p

(k)
n

0 0 . . . 0 0 p
(k)
0


. (2.10)

We get

p(k)(x1, . . . , xn) = (x1, . . . , xn, 1) ·MP (k) · (x1, . . . , xn, 1)T (k = 1, . . . ,m). (2.11)



22 CHAPTER 2. MULTIVARIATE CRYPTOGRAPHY

Definition 2.7. We call a quadratic system P homogeneous quadratic, if it has no linear and
constant terms (i.e. all the coefficients p(k)

i (i = 0, . . . , n, k = 1, . . . ,m) of equation (2.7) are
fixed to zero).

In the case of a homogeneous quadratic system P the matrices MP (k) of equation (2.9) are of the
form

MP (k) =


p

(k)
11 p

(k)
12 p

(k)
13 . . . p

(k)
1n

0 p
(k)
22 p

(k)
23 . . . p

(k)
2n

0 0 p
(k)
33 p

(k)
3n

...
. . .

...
0 0 . . . 0 p

(k)
nn

 ∈ Fn×n (2.12)

and we get

p(k)(x1, . . . , xn) = (x1, . . . , xn) ·MP (k) · (x1, . . . , xn)T (k = 1, . . . ,m). (2.13)

In the context of multivariate public key cryptosystems we often use the symmetric matrices

M̃P
(k)

associated to the homogeneous quadratic part of the system P. These matrices are defined
as

M̃P
(k)

= MP (k) + (MP (k))T =


2 · p(k)

11 p
(k)
12 p

(k)
13 . . . p

(k)
1n

p
(k)
12 2 · p(k)

22 p
(k)
23 . . . p

(k)
2n

p
(k)
13 p

(k)
23 2 · p(k)

33 p
(k)
3n

...
. . .

...
p

(k)
1n p

(k)
2n . . . p

(k)
n−1,n 2 · p(k)

nn

 (k = 1, . . . ,m).

(2.14)
Note that for multivariate systems P defined over fields of characteristic 2 the entries on the main

diagonal of the matrices M̃P
(k)

are 0.

Definition 2.8. For a multivariate quadratic system P we define the differential or polar form G
as

G(x,y) = P(x + y)− P(x)− P(y) + P(0). (2.15)

Note that G is homogeneous quadratic and bilinear in x and y. We can write each component of
G as a bilinear form

x ·G(k) · yT (2.16)

with a symmetric matrix G(k) = MP (k) + (MP (k))T (k = 1, . . . ,m). Note that for fields of
characteristic 2 the elements on the main diagonal of G(k) are zero.



2.2. THE STANDARD (BIPOLAR) CONSTRUCTION 23

Decryption / Signature Generation

h ∈ Fm - x ∈ Fm - y ∈ Fn - z ∈ Fn

6

P

S−1 F−1 T −1

Encryption / Signature Verification

Figure 2.1: General workflow of bipolar schemes

2.2 The Standard (Bipolar) Construction

The basic idea behind the standard construction of multivariate cryptography is to choose a system
F : Fn → Fm of m multivariate quadratic polynomials in n variables which can be easily inverted
(central map). After that one chooses two affine invertible maps S : Fm → Fm and T : Fn → Fn
to hide the structure of the central map F in the public key. The public key of the cryptosystem
is the composed quadratic map P = S ◦F ◦T which is supposed to be hardly distinguishable from
a random system and therefore be difficult to invert. The private key consists of S, F and T and
therefore allows to invert P.
The standard process for encryption and decryption / signature generation and verification works
as shown in Figure 2.1.

Encryption Schemes (m ≥ n)

Encryption: To encrypt a message z ∈ Fn, one simply computes h = P(z). The ciphertext
of the message z is h ∈ Fm.

Decryption: To decrypt the ciphertext h ∈ Fm, one computes recursively x = S−1(h), y = F−1(x)
and z = T −1(y). z ∈ Fn is the plaintext of the ciphertext h. Since m ≥ n, the preimage of x
under F and therefore the resulting plaintext is unique.

Signature Schemes (m ≤ n)

Signature Generation: To sign a document d, we use a hash function H : {0, 1}? → Fm to
compute the value h = H(d) ∈ Fm. Then we compute x = S−1(h), y = F−1(x) and z = T −1(y).
The signature of the document is z ∈ Fn. Here, F−1(x) means finding one (of the possibly many)
preimage of x under the central map F . Since n ≥ m we can be sure that such a preimage exists.
Therefore every message has a signature.

Verification: To verify the authenticity of a document, one simply computes h′ = P(z) and
the hash value h = H(d) of the document. If h′ = h holds, the signature is accepted, otherwise it
is rejected.

The security of bipolar schemes is based on two different problems. In particular, these are
the MQ-Problem and some version of the IP-Problem. If the central map F is publicly known
(as for C? [38] and `iC [17]), this is the IP2S-Problem, if F is a part of the private key (as for
UOV [47] and Rainbow [16]), it is the EIP-Problem. More information regarding these underlying
problems can be found in Section 2.3.
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Figure 2.2: Construction of BigField schemes

2.2.1 A Short Overview of Bipolar Constructions

Most of the existing multivariate public key cryptosystems are bipolar constructions. According
to the type of the central map in use one can distinguish three main types:

• BigField Schemes
For a BigField scheme we havem = n which makes these schemes suitable both for encryption
and signatures. We define a degree n extension field E of F by E = F[X]/p(X) for an
irreducible polynomial p(X) ∈ F[X] of degree n and define Φ : Fn → E to be the canonical
isomorphism from the vector space Fn to E, i.e.

Φ(x1, . . . , xn) =
n∑
i=1

xi ·Xi−1.

The central map of the scheme is a bijective map F : E → E which, due to the Frobenius
isomorphism, can be transformed to a quadratic map F̃ = Φ−1 ◦ F ◦ Φ : Fn → Fn. The
public key of the scheme is the composed map P = S ◦ F̃ ◦ T = S ◦ Φ−1 ◦ F ◦ Φ ◦ T with
two affine maps S : Fn → Fn and T : Fn → Fn (see Figure 2.2).
One of the first schemes in this area and one of the first multivariate schemes in general is the
C? scheme of Matsumoto and Imai [38]. After this scheme was broken by the Linearization
Equations of Patarin [44], many variations of this original scheme have been proposed. As
an example we mention here the SFLASH [48] schemes of Courtois et al. which were later
recommended by the European Commission as a standard for digital signatures on restricted
devices [49]. However, SFLASH was broken by the differential attacks of Dubois et al. [20],
after which it was recommended to use a projection technique to hide the structure of the
central map [19]. Other schemes from this group are Square [12] and HFE [46].

• MiddleField Schemes
MiddleField Schemes are similar to BigField schemes in the sense that they use an extension
field, too. However, the extension field E is not of degree n, but of degree l = n

k for some
integer k. The vector y ∈ Fn is lifted to a vector Y ∈ Ek, bijectively mapped to some
X ∈ Ek and sent down to x ∈ Fn. As for the BigField schemes we have m = n, which makes
MiddleField schemes suitable for both encryption and signatures.
The best known examples for MiddleField schemes are MFE [58] and `-invertible cycles [17].

• SingleField Schemes
In contrast to BigField and MiddleField schemes, all the computations of a SingleField
scheme are done in one (relatively small) field. We usually have m < n which restricts Sin-
gleField constructions to signature schemes. Two of the best analyzed and most often used
multivariate schemes, namely UOV [47] and Rainbow [16] belong to this group of schemes.
Other examples for SingleField schemes are the TTS schemes (Tame Transformation Sys-
tems) [61]. In the rest of this thesis, we mostly look at SingleField schemes and in particular
at UOV and Rainbow.
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2.2.2 Other Constructions

Mixed Systems

To build a multivariate scheme of the mixed systems type, one starts with a quadratic map
F : Fm+n → Fm of the form

F(x1, . . . , xn, y1, . . . , ym) = (h1, . . . , hm). (2.17)

F has to fulfill the following two conditions:

(C1) For each fixed element (x̄1, . . . , x̄n) ∈ Fn the map

F(x̄1, . . . , x̄n, y1, . . . , ym) : Fm → Fm

gets linear.

(C2) For each fixed element (ȳ1, . . . , ȳm) ∈ Fm the map

F(x1, . . . , xn, ȳ1, . . . , ȳm) : Fn → Fm

is an efficiently invertible system of quadratic equations.

The public key of the scheme is defined as P = L◦F ◦ (S ×T ), where S : Fn → Fn, T : Fm → Fm
and L : Fm → Fm are invertible affine maps. Therefore, P is a quadratic map from Fm+n to Fm.
But, for any fixed (x̄1, . . . , x̄n) ∈ Fn, the system

P(x̄1, . . . , x̄n, y1, . . . , ym)

becomes a linear map from Fm to itself (due to condition (C1)).

Encryption Schemes (m ≥ n)

Encryption: To encrypt a message X̄ = (x̄1, . . . , x̄n) ∈ Fn one solves the linear system
P(x̄1, . . . , x̄n, y1, . . . , ym) = (0, . . . , 0) for y1, . . . , ym. The solution Ȳ = (ȳ1, . . . , ȳm) ∈ Fm is the
ciphertext of the message X̄.

Decryption: To decrypt a ciphertext Ȳ ∈ Fm, one first computes Ŷ = (ŷ1, . . . , ŷm) = L−1(Ȳ ).
Then one solves

F(x1, . . . , xn, ŷ1, . . . , ŷm) = (0, . . . , 0) (2.18)

for x1, . . . , xn. Note that equation (2.18) is, due to condition (C2), efficiently invertible. We de-
note the solution by X̂ = (x̂1, . . . , x̂n) ∈ Fn. Finally, one computes the plaintext X̄ = S−1(X̂).
Since we have m ≥ n, the resulting plaintext is unique.

Signature Schemes (m ≤ n)

Signature Generation: To sign a document d, one uses a hash function H : {0, 1}? → Fm to
compute a hash value Ȳ = H(d) = (ȳ1, . . . , ȳm) ∈ Fm. One computes Ŷ = (ŷ1, . . . , ŷm) = L−1(Ȳ )
and solves

F(x1, . . . , xn, ŷ1, . . . , ŷm) = (0, . . . , 0). (2.19)

for x1, . . . , xn. Again, (2.19) is a system of quadratic equations which, due to condition (C2), is
efficiently invertible. Denote this solution by X̂ = (x̂1, . . . , x̂n). The signature of the message m
is X̄ = S−1(X̂) ∈ Fn. Since we have n ≥ m we can be sure that every message has a signature.

Signature Verification: To verify the authenticity of a signature X̄ = (x̄1, . . . , x̄n) ∈ Fn, one
computes the hash value Ȳ = H(d) = (ȳ1, . . . , ȳm) and evaluates P(x̄1, . . . , x̄n, ȳ1, . . . , ȳm). If the
result is (0, . . . , 0) ∈ Fm, the signature is accepted, otherwise it is rejected.
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Prover: A,B,S, T Verifier: A,B

Choose randomly two affine maps
S ′ : Fm → Fm, T ′ : Fn → Fn

Compute C = S ′ ◦ A ◦ T ′
-C

Choose Ch ∈R {0, 1}
� Ch

If Ch = 0, Rsp = (S ′, T ′)
If Ch = 1, compute
Ŝ = S ′ ◦ S−1

T̂ = T ′ ◦ T −1

Rsp = (Ŝ, T̂ )
-

Rsp
If Ch = 0, check
C ?= S ′ ◦ A ◦ T ′

If Ch = 1, check
C ?= Ŝ ◦ B ◦ T̂

Figure 2.3: IP identification scheme of [46]

There exist only very few schemes of the mixed systems type. Examples for such schemes are
the Dragon cryptosystems of Patarin [45].

As for bipolar schemes, the security of schemes of the mixed systems type is based on the MQ-
Problem and some type of the IP-Problem (see Section 2.3).

Additionally to these constructions for multivariate encryption and signature schemes there exist
two different constructions for multivariate public key identification schemes.
In an identification scheme a prover P wants to prove his identity to a verifier V . Usually this
is done using a zero knowledge proof in which the prover shows his knowledge of a secret s. The
central property of such a proof is that the verifier does not get any information about the secret s
which prevents him from impersonating P . In the following we describe two different constructions
of such a prove based on multivariate quadratic polynomials.

IP-based Identification

The IP identification scheme [46] can be described as follows:

Key Generation: The prover P randomly chooses a system A : Fn → Fm of multivariate quadratic
polynomials and two affine maps S : Fm → Fm and T : Fn → Fn. He computes B = S ◦ A ◦ T .
The public key consists of A and B, the private key of S and T .

To prove his identity to a verifier, P now performs one or more rounds of the identification
protocol. Figure 2.3 shows one round of the protocol.
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Prover: P,v, s Verifier: P,v

Choose r0, t0 ∈R Fn, e0 ∈R Fm

r1 = s− r0, t1 = r0 − t0
e1 = P(r0)− e0

c0 = Com(r1,G(t0, r1)− P(0) + e0)
c1 = Com(t0, e0)
c2 = Com(t1, e1) -(c0, c1, c2)

�
Ch

If Ch = 0, Rsp = (r0, t1, e1)
If Ch = 1, Rsp = (r1, t1, e1)
If Ch = 2, Rsp = (r1, t0, e0)

-
Rsp

Choose Ch ∈R {0, 1, 2}

If Ch = 0, check
c1

?= Com(r0 − t1,P(r0)− e1)
c2

?= Com(t1, e1)

If Ch = 1, check
c0

?= Com(r1, v − P(r1)− G(t1, r1) + P(0)− e1)
c2

?= Com(t1, e1)

If Ch = 2 check
c0

?= Com(r1,G(t0, r1)− P(0) + e0)
c1

?= Com(t0, e0)

Figure 2.4: MQ identification scheme of [52]

The scheme is a zero knowledge argument of knowledge that P knows two affine maps S and T
such that B = S ◦A◦T . The cheating probability per round is 1

2 . Therefore, one needs 30 rounds
to reduce the impersonation probability to 2−30.
Using the Fiat Shamir construction, the IP-identification scheme can be extended to a signature
scheme. The security of the scheme is based on the IP2S-Problem (see Subsection 2.3.2).

MQ-based identification

One very new construction is the identification scheme of Sakumoto et al. [52] whose security
is based solely on the MQ-problem (see Subsection 2.3.1). Therefore it is one of the very few
multivariate schemes which offer provable security.

Key Generation: The prover randomly chooses a system P : Fn → Fm of multivariate quadratic
polynomials and a vector s ∈ Fn. He computes v = P(s) ∈ Fm. The public key consists of P and
v, the private key is the vector s.
Figure 2.4 shows one round of the identification protocol. Here,

G(x,y) = P(x + y)− P(x)− P(y) + P(0) (2.20)

is the polar form of the system P (see Definition 2.8).
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The scheme is a zero-knowledge argument of knowledge for a solution of the system P(x) = v.
The cheating probability per round is 2

3 . Therefore, one needs 52 rounds to reduce the imperson-
ation probability to less than 2−30.
Via the Fiat-Shamir construction [26] this identification scheme can be extended to a provable
secure multivariate signature scheme. Furthermore, the identification scheme can be used as a
basis for the construction of more advanced provable secure signature schemes. One example for
such a scheme is our threshold ring signature scheme [P4].

We do not consider the latter three constructions in the rest of this thesis. So, whenever we
speak of a multivariate public key scheme, we refer to a scheme of the bipolar type.

2.3 Underlying Problems

In this section we describe the mathematical problems underlying the security of multivariate
cryptosystems.

2.3.1 The MQ-Problem

The central problem on which the security of all multivariate cryptosystems is based is the

Problem PoSSo (Polynomial System Solving): Given a system P = (p(1), . . . , p(m)) of m non-
linear polynomial equations in the variables x1, . . . , xn, find values x̄1, . . . , x̄n such that
p(1)(x̄1, . . . , x̄n) = . . . = p(m)(x̄1, . . . , x̄n) = 0.

The PoSSo-Problem is proven to be NP-complete even for the simplest case of quadratic polyno-
mials over GF(2) [27] (in its decisional variant). More precisely, it can be shown to be equivalent
to the 3SAT problem.
For efficiency reasons, most multivariate schemes restrict to quadratic polynomials. For the special
case of all polynomials p(1), . . . , p(m) having degree 2, the PoSSo-Problem is called MQ-Problem
(for Multivariate Quadratic).

The PoSSo-Problem is one of the central problems in all areas of cryptography, since nearly all
cryptographic schemes can be written as systems of nonlinear polynomial equations. Especially
for the cryptanalysis of symmetric ciphers like block and stream ciphers this so called algebraic
cryptanalysis plays a major role [50].
In Section 2.5 we present known attacks against the MQ-Problem. In contrary to the case of
integer factorization, all these attacks have exponential complexity (for m ∼ n).

2.3.2 The IP-Problem

Due to their construction, the security of most multivariate schemes is not solely based on the
MQ-Problem, but also on (some variant of) the IP (Isomorphism of Polynomials)-Problem. In
particular, there exist three versions of this problem.

Problem IP1S (Isomorphism of Polynomials with 1 Secret): Given nonlinear multivariate sys-
tems A and B such that B = A◦T for a linear or affine map T , find a map T ′ such that B = A◦T ′.

Problem IP2S (Isomorphism of Polynomials with 2 Secrets): Given nonlinear multivariate sys-
tems A and B such that B = S ◦ A ◦ T for linear or affine maps S and T , find two maps S ′ and
T ′ such that B = S ′ ◦ A ◦ T ′.

Problem EIP (Extended Isomorphism of Polynomials): Given a nonlinear multivariate system
P which can be written as P = S ◦ F ◦ T with affine maps S and T and F belonging to a special
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class of nonlinear polynomial systems C, find a decomposition of P of the form P = S ′ ◦ F ′ ◦ T ′
with affine maps S ′ and T ′ and F ′ ∈ C.

The IP2S-Problem is used for the construction of multivariate schemes where the central map is
publicly known (e.g. for C?, Square and `iC).
When the central map of the scheme is part of the private key, the security of the scheme is based
on the EIP-Problem. This is the case for most SingleField schemes such as UOV and Rainbow.

In contrast to the MQ-Problem, there is not much known about the difficulty of the IP-Problem.
In fact, for some multivariate schemes (e.g. the balanced Oil and Vinegar signature scheme [47])
the decomposition of the public key P turned out to be very easy [34]. This fact prevented re-
searchers to give security proofs for multivariate public key schemes. In fact, the existing provably
secure multivariate schemes are based on the MQ-based identification scheme of Subsection 2.2.2.

2.4 Equivalent Keys

A surprising fact of many multivariate public key schemes is that for one public key, there exists
a large number of different private keys. This fact was first observed in [59]. We define

Definition 2.9. Let ((S,F , T ),P) be a key pair of a multivariate public key cryptosystem. A
second private key (S ′,F ′, T ′) is called equivalent to (S,F , T ) if it leads to the same public key,
i.e.

(S ′,F ′, T ′) ≡ (S,F , T )⇔ S ′ ◦ F ′ ◦ T ′ = S ◦ F ◦ T = P. (2.21)
Note that F ′ has to be a valid central map of the multivariate scheme, i.e. it must have the same
structure as F .

For a private key (S,F , T ), we denote the set of all private keys equivalent to (S,F , T ) by
EQ(S,F,T ).

To find for a given private key (S,F , T ) the set EQ(S,F,T ) one introduces two additional affine
maps Σ : Fm → Fm and Ω : Fn → Fn (see [59]). We get

P = S ◦ F ◦ T = S ◦ Σ−1︸ ︷︷ ︸
S′

◦Σ ◦ F ◦ Ω︸ ︷︷ ︸
F ′

◦Ω−1 ◦ T︸ ︷︷ ︸
T ′

. (2.22)

One then analyzes, which form Σ and Ω must have such that F ′ is a valid central map of the
multivariate public key scheme. Such affine maps Σ and Ω are called sustainers [59]. In Section
3.2 and 3.5 we consider the question of equivalent keys for UOV and Rainbow respectively.
The concept of equivalent keys plays a major role in the cryptanalysis of multivariate schemes.
Since for an attacker it is sufficient to find any of the equivalent keys, he can look for an equivalent
key with simple structure. This fact is used in many attacks against multivariate schemes (see
Sections 3.3 and 3.6).

2.5 Generic Attacks

In this section we give an overview of the most important methods for solving systems of nonlinear
multivariate equations.
These so called direct attacks can be used against each multivariate scheme as a message recovery
attack (encryption schemes) or signature forgery attack (signature schemes).
Additionally, these attacks can be used in algebraic cryptanalysis to attack symmetric schemes
such as block and stream ciphers [50].

Throughout this thesis, we denote by the term ”complexity” the number of field multiplications
an algorithm performs before outputting a solution. Similarly, the term ”bit complexity” denotes
the base 2 logarithm of this number.
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2.5.1 Relinearization

The Relinearization attack aims at solving overdetermined systems of multivariate quadratic equa-
tions. Let P be a system of m quadratic equations in the n variables x1, . . . , xn. The main idea is
to introduce a new variable xij for each quadratic monomial xixj . By doing so, one gets a system
of linear equations which, if the number of equations is large enough, can be solved by Gaussian
elimination. One has to test whether the so obtained solution is really a solution of the quadratic
system, i.e. if xij = xixj ∀i, j ∈ {1, . . . , n}.
To solve a (dense) system of quadratic equations in n variables by this method, one needs
m ≥ (n+1)·(n+2)

2 − 1 equations.

2.5.2 XL

In [14] Courtois et al. proposed a method called ”eXtended Linearization” or XL-Algorithm.
Let TnD be the set of all monomials in F[x1, . . . , xn] of degree ≤ D. The XL-Algorithm works as
shown in Algorithm 2.1.

Algorithm 2.1 XL-Algorithm
Input: Set of quadratic polynomials F = {f (1), . . . , f (m)}
Output: vector x = (x1, . . . , xn) such that f (1)(x) = . . . = f (m)(x) = 0

1: for i = 1 to n do
2: Fix an integer D > 2.
3: Generate all polynomials h · f (j) with h ∈ TnD−2 and j = 1, . . . ,m.
4: Perform Gaussian Elimination on the set of all polynomials generated in the previous step

to generate one equation containing only xi.
5: If step 4 produced at least one univariate polynomial in xi, solve this polynomial

by e.g. Berlekamp’s algorithm.
6: Simplify the equations f (1), . . . , f (m) by substituting the value of xi.
7: end for
8: return x = (x1, . . . , xn)

If the degree D is too small, line 4 will not produce a univariate polynomial. In this case one has
to increase D and try again. The smallest degree for which the XL-Algorithm outputs a solution
of the system F is called the degree of regularity dreg.

2.5.3 Gröbner Bases

Gröbner Bases as introduced by B. Buchberger in [10] allow us to find all the solutions of a system
of multivariate nonlinear polynomial equations by giving a simple representation of the variety of
the solution space. Especially if the Gröbner Basis was computed according to the lexicographic
order of monomials, it is very easy to derive all the solutions of the system from it. In this
sense, Gröbner Basis techniques can be viewed as an extension of the Gaussian Elimination to the
nonlinear case.

Definition 2.10. An ideal in F[x1, . . . , xn] is a subset I ⊂ F[x1, . . . , xn] such that for each element
a ∈ F[x1, . . . , xn] and any element b ∈ I we have a · b ∈ I.
A subset M ⊂ I is called generating system of the ideal I (we write I = 〈M〉)

⇔ ∀a ∈ I ∃m1, . . . ,ms ∈M and α1, . . . , αs ∈ F[x1, . . . , xn] such that a =
s∑
i=1

αi ·mi (2.23)

Theorem 2.1. For every ideal I ⊂ F[x1, . . . , xn] there exists a finite generating system.

Proof. See [42], Theorem 1.8.
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A ring which fulfills the condition of Theorem 2.1 is called noetherian ring.

Let σ be an admissible ordering of monomials (see Definition 2.4).

Definition 2.11. Let f =
∑s
i=1 ci · ti be a polynomial in F[x1, . . . , xn]. W.l.o.g. we assume that

we have t1 >σ t2 >σ . . . >σ ts. Then we call

• t1 the leading monomial of f with respect to the monomial ordering σ. We denote it by
LMσ(f) or LM(f).

• c1 the leading coefficient of f with respect to the monomial ordering σ. We denote it by
LCσ(f) or LC(f).

• c1 · t1 the leading term of f with respect to σ. We denote it by LTσ(f) or LT(f).

Note that we have
LT(f) = LC(f) · LM(f).

Definition 2.12. A Gröbner Basis of an ideal I is a subset G = {g(1), . . . , g(s)} ⊂ I such that

I = 〈g(1), . . . , g(s)〉 and 〈LT(I)〉 = 〈LT(g(1)), . . . ,LT(g(s))〉. (2.24)

Remark 2.1. Definition 2.12 shows that the term Gröbner Basis depends on the chosen monomial
ordering. For example, a Gröbner Basis with respect to the lexicographic order is in general no
Gröbner Basis with respect to the graded reversed lexicographic order.

Reduction of Polynomials

Let g ∈ F[x1, . . . , xn] and F = {f (1), . . . , f (s)} ⊂ F[x1, . . . , xn]. The polynomial g can be reduced
modulo F to a polynomial h ∈ F[x1, . . . , xn] (we write g 7→F h), if ∃ p(i) ∈ F[x1, . . . , xn] (i =
1, . . . , s) such that

h = g −
s∑
i=1

p(i) · f (i). (2.25)

Definition 2.13. The polynomial g ∈ F[x1, . . . , xn] is called completely reduced with respect to
F = {f (1), . . . , f (s)} if no term of g is divisible by any LM(f (i)) for all f (i) ∈ F .

Theorem 2.2. Let F = {f (1), . . . , f (s)} be an ordered set of polynomials in F[x1, . . . , xn]. Then,
for any g ∈ F[x1, . . . , xn] there exist polynomials p(1), . . . , p(s) such that

g =
s∑
i=1

p(i) · f (i) + r,

with a polynomial r ∈ F[x1, . . . , xn] being completely reduced with respect to F .

Proof. See [42], Theorem 4.6.

Definition 2.14. The polynomial r of Theorem 2.2 is called normal form of g with respect to F .

For F = {f (1), . . . , f (s)} being a random subset of F[x1, . . . , xn] the normal form r is not uniquely
determined and depends on the order of the polynomials f (i) ∈ F . However, we get

Theorem 2.3. If G = {g(1), . . . , g(s)} is a Gröbner Basis, the normal form r of a polynomial
h ∈ F[x1, . . . , xn] is uniquely determined and independent of the order of the polynomials g(i) ∈ G.

Proof. See [42], Theorem 4.13.
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Buchberger’s Algorithm

In his thesis [10] Buchberger developed an efficient algorithm to compute a Gröbner Basis of the
ideal generated by a set F = {f (1), . . . , f (m)} ⊂ F[x1, . . . , xn] of polynomials. The most important
notion in Buchberger’s algorithm [10] is the so called S-Polynomial.

Definition 2.15. Let f, g ∈ F[x1, . . . , xn]. The S-Polynomial of f and g is defined by

Spoly(f, g) =
LCM(LT(f),LT(g))

LT(g)
· g − LCM(LT(f),LT(g))

LT(f)
· f. (2.26)

In his thesis Buchberger discovered the following criterion on a set G for being a Gröbner Basis:

Theorem 2.4. Let I ⊂ F[x1, . . . , xn] be an ideal in the polynomial ring F[x1, . . . , xn]. A subset
G ⊂ I with I = 〈G〉 is a Gröbner Basis of I if and only if

NormalForm(Spoly(p, q)) = 0 ∀ p, q ∈ G.

Proof. See [42], Theorem 4.18.

We can use this criterion to construct an algorithm for finding a Gröbner Basis of an ideal I =
〈F 〉 ⊂ F[x1, . . . , xn] (see Algorithm 2.2).

Algorithm 2.2 Buchberger’s Algorithm
Input: F = {f (1), . . . , f (m)}, monomial ordering σ
Output: Gröbner Basis G = {g(1), . . . , g(s)} of I = 〈f (1), . . . , f (m)〉

1: G← F
2: repeat
3: G′ ← G
4: for each pair {p, q}, p 6= q ∈ G′ do
5: S ← NormalForm(Spoly(p, q), G)
6: if S 6= 0 then
7: G← G ∪ {S}
8: end if
9: end for

10: until G = G′

11: return G

Theorem 2.5. Algorithm 2.2 outputs a Gröbner Basis of the ideal I with respect to the monomial
ordering σ after finitely many steps.

Proof. See [42], Theorem 4.19.

Improvements of Buchberger’s Algorithm and F4/F5

Buchberger’s Algorithm as presented above has two main disadvantages:

(1) The output of the algorithm depends on the order of the polynomials f (i) ∈ F and

(2) many reductions of S-polynomials lead to zero and cause unnecessary work.

The first problem can be easily solved by introducing the term reduced Gröbner Basis.

Definition 2.16. A Gröbner Basis G = {g(1), . . . , g(s)} is said to be reduced, if all polynomials
g(i) are monic and LM(g(i)) does not divide LM(g(j)) for all i 6= j, 1 ≤ i < j ≤ s.
Theorem 2.6. If G and H are reduced Gröbner Bases generating the same ideal, then G = H.

Proof. See [42], Theorem 4.21.

Thus, if we reduce the set G each time we enlarge it (i.e. after line 7 of Algorithm 2.2), the output
of the algorithm will be unique.
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In his thesis [10], Buchberger discovered two criteria to avoid reductions to zero.

• If LT(g(i)) and LT(g(j)) are relatively prime, then Spoly(g(i), g(j)) reduces to zero and can
be ignored.

• If there exists g(k) ∈ G such that LT(g(k)) divides LCM(LT(g(i)),LT(g(j))), and if Spoly(g(i), g(k))
and Spoly(g(j), g(k)) have already been considered, Spoly(g(i), g(j)) reduces to zero and can
be ignored.

As a further improvement, Faugère suggested for his F4 [23] and F5 [24] algorithms to compute
many of the normal forms in one go by using the Macauley matrix of the system and fast linear
algebra.
During the computation one has to deal with polynomials of high degree, which makes the coeffi-
cient matrices of the system very large and the Gaussian Elimination extremely costly. The largest
degree appearing during the computation of a Gröbner Basis is called the degree of regularity dreg.
The complexity of solving a system of m quadratic equations in n variables using the F5 algorithm
is given by [5]

complexityF5
(m,n) = O

(
m ·

(
n+ dreg − 1

dreg

))ω
, (2.27)

where the degree of regularity dreg can be estimated by the lowest integerD such that the coefficient
of tD in

(1− t2)m

(1− t)n
(2.28)

is less or equal to 0 and 2 < ω ≤ 3 is the linear algebra constant of solving a linear system.
Note that the upper estimation of dreg holds only for semi regular (∼ random) systems. For the
public systems of multivariate schemes the degree of regularity can be smaller (e.g. HFE, see [21]).

When solving an underdetermined system of m equations in n > m variables with a Gröbner
Basis technique, one usually fixes some of the variables to create a determined system. The reason
for this is that for underdetermined systems the solution space has a very complicated structure
and it is very difficult to compute this variety. By fixing n−m variables one creates a determined
system with much simpler (often zero dimensional) variety.

The running time of the Gröbner Basis algorithms depends heavily on the chosen monomial order-
ing. While, to identify the solution of a system, Gröbner Bases with respect to the lexicographic
order are better, Gröbner Bases with repect to the graded reversed lexicographic order can be
computed much faster. Therefore, it is usually more efficient to compute a Gröbner Basis with
respect to this order first and then to use linear algebra techniques to transform it into a Gröbner
Basis with respect to the lexicographic order (FGLM-Algorithmus, see [25]).

Hybrid approach

When solving a determined multivariate nonlinear polynomial system it is often a good strategy
to guess some variables to create an overdetermined system. This strategy is used by algorithms
like HybridF5 [5], which combines exhaustive search with Faugères F5 algorithm. Although, by
this strategy, one has to run the F5 algorithm several times to find a solution of the original
system, this often reduces the time needed to solve the system. In fact, the HybridF5 algorithm is
currently the fastest generic method to solve nonlinear polynomial systems over fields larger than
GF(2).
The complexity of solving a system of m quadratic equations in n variables over a field with q
elements using the HybridF5 algorithm is given by [5]

complexityHF5
(q,m, n) = min

k≥0
qk · compF5

(m,n− k) = min
k≥0

qk · O
(
m ·

(
n− k + dreg − 1

dreg

))ω
.

(2.29)
Here, the degree of regularity can be estimated as for the F5 algorithm.
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2.5.4 Solving Underdetermined Systems

In [33] Kipnis et al. proposed an algorithm which solves an underdetermined system P of m
quadratic equations in n ≥ m·(m+1) variables over a finite field F of characteristic 2 in polynomial
time.
The goal of this approach is to find a change of basis such that all coefficients p(k)

ij of quadratic
cross terms vanish. By doing so, one has to solve basically a system of linear equations which can
be done in polynomial time. To achieve this, we define a linear map T (given by an n× n matrix
MT = (tij)ni,j=1) and a new quadratic map F = P ◦ T . The coefficients f (k)

ij of this map F are
given by

f
(k)
ij =

n∑
r=1

n∑
s=r

σrsij · p(k)
rs (1 ≤ i ≤ j ≤ n), (2.30)

where the coefficients σrsij are given by

σrsij =
{
tri · tsi i = j
tri · tsj + trj · tsi otherwise . (2.31)

Let Π(k) and Φ(k) be the coefficient vectors of the k-th component of P and F respectively (see
Definition 2.5). Then we can write equation (2.30) in the form

Φ(k) = Σ · (Π(k))T (k = 1, . . . ,m), (2.32)

with an n·(n+1)
2 × n·(n+1)

2 matrix

Σ =


σ11

11 σ12
11 . . . σnn11

σ11
12 σ12

12 σnn12
...

. . .
...

σ11
nn σ12

nn . . . σnnnn

 =


t211 t11t21 . . . t2n1

2 · t11t12 t11t22 + t12t21 . . . 2 · tn1tn2

...
. . .

...
t21n t1nt2n . . . t2nn

 . (2.33)

We denote the row of Σ belonging to the monomial xixj by (i, j). Note that all the elements of
the row (i, j) are bilinear in one element of the i-th and one element of the j-th column of MT .

Kipnis et al. now fixed the first column of the matrix MT . Therefore all the elements in the
row (1, 1) of Σ are fixed, which also fixes the coefficients f (k)

11 (k = 1, . . . ,m) to some value of F.
Furthermore all the elements of the row (1,i) (i = 2, . . . , n) become linear. Row (1, 2) gives us m
relations of the form

f
(k)
12 = 2 · t11 · p(k)

11︸ ︷︷ ︸
∈F

·t12 + t11 · p(k)
12︸ ︷︷ ︸

∈F

·t22 + t21 · p(k)
12︸ ︷︷ ︸

∈F

·t12 + . . .+ 2 · tn1 · p(k)
nn︸ ︷︷ ︸

∈F

·tn2 (k = 1, . . . ,m). (2.34)

If n ≥ m, we can use Gaussian Elimination to find values for the ti2 (i = 1, . . . , n) such that
f

(k)
12 = 0 ∀k = 1, . . . ,m.

In the next step we compute the elements ti3 (i = 1, . . . , n) in such a way that f (k)
13 = f

(k)
23 =

0 ∀k = 1, . . . ,m. We get a system of 2 ·m equations in n variables. To be sure that this system
has a solution, we need n ≥ 2 ·m.
We continue this process to remove all quadratic crossterms xixj (1 ≤ i < j ≤ n) from the system
F . In the last step we have to solve a linear system of (m− 1) ·m equations in n variables. To be
sure that this system has a solution, we need n ≥ m · (m− 1).
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At the end of this process, the transformed system F = P ◦ T consists of m equations of the form

m∑
i=1

βix
2
i +

m∑
i=1

xi · Li(xm+1, . . . , xn) +Qi(xm+1, . . . , xn) = 0 (2.35)

where Li is some linear relation in the variables xm+1, . . . , xn and Qi is quadratic. By Gaussian
Elimination we can find values for xm+1, . . . , xn such that Li = 0 ∀i. We evaluate the quadratic
maps Qi at these variables and solve the remaining system for x1, . . . , xm.

Remark 2.2. For multivariate systems over fields with odd characteristic the above attack has
exponential running time. The reason for this is that only half of the elements of such a field are
squares. Therefore one needs to run the algorithm about 2m times to find a solution of the system.

In [40] Miura et al. extended the above attack to systems with n ≥ m · (m+ 3)/2 variables.
Another improvement of the attack was done by Thomae and Wolf. In [56] they found by a sharp
analysis of Kipnis’ attack a way to solve underdetermined systems with m < n < m · (m + 1)
variables faster. In particular, one can use their algorithm to reduce a system of m equations in
ω ·m variables to a system of m− bω − 1c equations and variables. This has to be considered for
the parameter choice of UOV.

Remark 2.3. The technique used by the attack as described above is very similar to the technique
used in this thesis to reduce the public key size of UOV and Rainbow (see Chapter 7). In particular,
equations (2.30) and (2.31) are exactly the same as in our construction.

2.5.5 Solving Systems over GF(2)

When solving systems over GF(2) the techniques described above are not very efficient, since
Gröbner Basis attacks will soon run out of memory. In this subsection we describe two approaches
for solving such systems, namely an improved exhaustive search method and a technique called
SAT-Solving. Whereas most of the multivariate public key encryption and signature schemes work
over larger fields than GF(2), these attacks play an important role in the algebraic cryptanalysis
of block and stream ciphers.

Improved Exhaustive Search using Gray Codes

In [9] Bouillaguet et al. presented an efficient algorithm for solving multivariate quadratic systems
over GF(2) which extensively makes use of the so called Gray code.

Let p : GF(2)n → GF(2) be a quadratic polynomial with coefficients and variables in GF(2)
and ek be the k-th unit vector in GF(2)n. A possible solution i ∈ GF(2)n of the polynomial p can
be seen as an integer i ∈ {0, . . . , 2n − 1}. Furthermore let b(i) be the index of the least significant
non zero bit of i.

Definition 2.17. The standard Gray code G : {0, . . . , 2n − 1} → {0, 1}n is defined by [31]

G(0) = 0n, G(i) = G(i− 1) + eb(i). (2.36)

In contrast to the standard binary code, G(i) and G(i − 1) differ, regardless of the choice of i,
in only one bit. This fact enabled Bouillaguet et al. to speed up their computations by a large
factor. For a function f : GF(2)n → GF(2) we define

dk f(i) = f(i+ ek)− f(i) (k = 1, . . . , n). (2.37)

Such we get
p(G(i)) = p(G(i− 1) + eb(i)) = p(G(i− 1)) + db(i) p(G(i− 1)). (2.38)
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Note that dk p (k = 1, . . . , n) is an affine function from GF(2)n to GF(2), which enables us to
compute p(G(i)) from p(G(i− 1)) very efficiently.
By extending this technique to systems of polynomials, the authors of [9] were able to proof

Theorem 2.7. The common zeroes of m (random) quadratic polynomials in n variables can be
found after having performed approximately log2(n) · 2n+2 bit operations.

Proof. See [9], Theorem 2.

In particular, this complexity is independent from the number of equations m.

Remark 2.4. The attack as described above is an improvement of an exhaustive search in the
solution space. By using the concept of Gray codes the possible solutions are reorderd in such a
way that the computations are much more efficient.

SAT solvers

Another approach to solve multivariate polynomial systems over GF(2) is called SAT-solving. As
mentioned in Subsection 2.3.1, the PoSSo problem is equivalent to the 3SAT problem. Therefore
it is possible to translate a system of multivariate polynomials into an instance of a SAT (Satis-
fiability) problem. In particular, a system of multivariate polynomial equations P(x1, . . . , xn) =
(p(1)(x1, . . . , xn), . . . , p(m)(x1, . . . , xn)) = 0 is transformed into a conjunction of clauses. A clause
is a disjunction of literals, each of which is either a variable xi (called atom) or its negation x̄i. A
boolean formula of this form is called to be in conjunctive normal form (CNF).
The SAT solver now looks for an interpretation that satisfies the boolean formula, i.e. it tries to
find truth values for all the atoms in such a way that each of the clauses is evaluated to be true.
For the actual solution of the boolean formula their exists a number of algorithms such as MINISAT
[22] and CryptoMiniSat [54].
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Chapter 3

UOV and Rainbow

In this chapter we describe two of the best studied and most promising multivariate schemes,
namely the (Unbalanced) Oil and Vinegar and the Rainbow signature schemes. Additionally to
the description of the schemes (Sections 3.1 and 3.4), we study the question of equivalent keys for
UOV and Rainbow (Section 3.2 and 3.5 respectively) and present the known attacks against the
two schemes (Section 3.3 and 3.6).

3.1 The (Unbalanced) Oil and Vinegar Signature Scheme

In this section we introduce the Oil and Vinegar signature scheme, which was proposed by J.
Patarin in [47].

Let F be a finite field with q elements. Let o and v be two integers and set n = o + v. We
define two index sets V = {1, . . . , v} and O = {v + 1, . . . , n}. The variables xi (i ∈ V ) are called
Vinegar variables and the variables xj (j ∈ O) Oil variables.
The central map F of the scheme consists of o polynomials f (1), . . . , f (o) ∈ F[x1, . . . , xn] of the
form

f (k)(x) =
∑

i,j∈V,i≤j

α
(k)
ij xixj +

∑
i∈V,j∈O

β
(k)
ij xixj +

∑
i∈V ∪O

γ
(k)
i xi + η(k) (k = 1, . . . , o). (3.1)

Note that Oil and Vinegar variables are not completely mixed, just like oil and vinegar in a salad
dressing.

To invert the central map F , one chooses random values for the Vinegar variables x1, . . . , xv
and substitutes them into the polynomials f (1), . . . , f (o). By doing so one gets a system of o linear
equations in the o Oil variables xv+1, . . . , xn which can be solved by e.g. Gaussian Elimination.
If the system does not have a solution, one has to choose other values for the Vinegar variables
and try again. However, this happens only with very small probability. Therefore, in most cases,
one gets a valid signature at the first try.

To hide the structure of the central map F in the public key, one composes it with an affine
invertible map T : Fn → Fn (given by a matrix MT ∈ Fn×n and a vector cT ∈ Fn).

The public key is therefore given by P = F ◦T , the private key consists of F and T and therefore
allows to invert the public key.
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Remark 3.1. The second affine map S used in the bipolar construction (see Section 2.2) is not
needed for the security of UOV. The reason for this is that a linear combination of polynomials of
the form (3.1) still has the form of (3.1). Therefore, the composition S ◦ F does not change the
structure of the central map F and can be dropped.

The process of signature generation/verification can be described as follows:

Signature generation: To sign a document d, one uses a hash function H : {0, 1}? → Fo to compute
the hash value h = H(d) ∈ Fo of the document. After that one computes recursively y = F−1(h)
and z = T −1(y). The signature of the document d is z ∈ Fn. Here, F−1(h) means finding
one (of approximately qv) preimage of h under F . As mentioned above, this step is performed by
fixing the Vinegar variables at random and solving the resulting linear system for the Oil variables.

Signature verification: To verify the authenticity of a signature, one computes the hash value
h = H(d) of the document and the value h′ = P(z). If h = h′ holds, the signature is accepted,
otherwise rejected.

In his original paper [47], Patarin suggested to use o = v (Balanced Oil and Vinegar (OV)).
After this scheme was broken by Kipnis and Shamir in [34], it was proposed in [33] to set v > o
(Unbalanced Oil and Vinegar (UOV)).

The size of the public key is given by

sizepk UOV = o · (n+ 1) · (n+ 2)
2

(3.2)

field elements, the size of the private key is

sizesk UOV = n · (n+ 1) + o ·
(
v · (v + 1)

2
+ o · v + n+ 1

)
(3.3)

field elements. Recommended parameters for the UOV signature scheme can be found in Section
5.4.

3.2 Equivalent Keys for UOV

In this section we consider the question of equivalent keys for the UOV scheme. We follow hereby
the approach of Section 2.4 and [59]. Let ((F , T ),P) be a UOV key pair and introduce an
additional affine map Ω : Fn → Fn. We write

P = F ◦ T = F ◦ Ω︸ ︷︷ ︸
F ′
◦Ω−1 ◦ T︸ ︷︷ ︸

T ′
(3.4)

The following theorem answers the question, for which affine maps Ω the map F ′ = F ◦ Ω is a
valid UOV central map.

Theorem 3.1. Let (F , T ) be a UOV private key and Ω : Fn → Fn be an affine map whose linear
part has the form

Ωlin =

(
Ω(1)
v×v 0v×o

Ω(3)
o×v Ω(4)

o×o

)
. (3.5)

Then (F ′, T ′) with F ′ = F ◦ Ω and T ′ = Ω−1 ◦ T is an equivalent UOV private key.

Proof. see [60], Theorem 4.12.

Note that Ω−1
lin has the same form as Ωlin.
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Corollary 3.1. Let (F , T ) be a UOV private key over a field with q elements. Then the set
EQ(F,T ) of private keys equivalent to (F , T ) has the size

|EQ(F,T )| = qn ·
v−1∏
i=0

(qv − qi) · qo·v ·
o−1∏
i=1

(qo − qi). (3.6)

Proof. The number of elements in EQ(F,T ) is the same as the number of possible choices of the
map Ω. The first factor in equation (3.6) represents the qn possible choices of the constant part
of Ω, the remaining factors describe the possible choices of the matrix Ωlin of Theorem 3.1. Note
that both Ω(1) and Ω(4) must be invertible.

Remark 3.2. Corollary 3.1 states that for each UOV public key P there exist
qn+o·v ·

∏v−1
i=0 (qv − qi) ·

∏o−1
i=0 (qo − qi) UOV private keys (F , T ) such that F ◦ T = P.

The next theorem states that for every UOV public key there exists a corresponding UOV private
key of a very special form.

Theorem 3.2. Let P be a UOV public key. Then, with overwhelming probability, there exists a
UOV private key (F̃ , T̃ ) with F̃ ◦ T̃ = P, such that MT̃ has the form

MT̃ =
(

1v×v T ′o×v
0v×o 1o×o

)
(3.7)

Note that M−1

T̃
has the same form as MT̃ .

Proof. Since P is a valid UOV public key, we know that there exists a UOV private key (F , T )
such that F ◦ T = P. In the following we show that there exists an equivalent private key of the
form shown in the theorem. To do this, we compute Ωlin in such a way that Ωlin ·MT̃ = MT . Let

Ωlin =
(

Ω̃1 0
Ω̃3 Ω̃4

)
and MT =

(
T1 T2

T3 T4

)
. If T1 is invertible1, we get

• Ω̃1 = T1

• Ω̃3 = T3 and

• Ω̃4 = T4 − T3 · T−1
1 · T2.

The matrix T ′ is given as T ′ = T−1
1 · T2.

The matrix MT̃ can be written as a product of matrices Tv+1 · . . . · Tn with

Ti =



1 0 0 t′1i 0
. . .

...
...

...
0 1 0 t′vi 0
0 . . . 0 1 0 0
...

...
. . .

0 . . . 0 0 1


(i = v + 1, . . . , n). (3.8)

The matrices Ti contain the same non zero elements as the matrix T ′ of equation (3.7). By
inversion we get M−1

T̃
= T−1

n · . . . · T−1
v+1. Note that T−1

i has of the form (3.8) (∀ i = v+ 1, . . . , n).

1If T1 is not invertible, we can switch rows and columns of MT by renumbering the variables until we get
an invertible matrix.
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3.3 Attacks against UOV

We define the matrix F (k) to be the symmetric matrix associated to the homogeneous quadratic
part of the k-th component of F (k = 1, . . . , o) (see equation (2.14)). Due to the special structure
of the central map the matrices F (k) have the form

F (k) =

(
F

(k)
11 F

(k)
12

F
(k)
21 0

)
, (3.9)

where F (k)
11 is a v × v matrix, F (k)

12 ∈ Fv×o and F
(k)
21 = (F (k)

12 )T ∈ Fo×v (k = 1, . . . , o).
Analogously, we denote by P (k) the symmetric matrix associated to the homogeneous quadratic
part of the k-th component of the public map P (k = 1, . . . , o). Such we obtain

P (k) = MT
T · F (k) ·MT and (3.10)

F (k) = (M−1
T )T · P (k) ·M−1

T (k = 1, . . . , o). (3.11)

3.3.1 Direct Attack

The most straightforward method to attack the UOV signature scheme is to try to solve the public
system P(z) = h for z (signature forgery attack). In the case of UOV, these systems are highly
underdetermined (we have n = α · o, where α is usually chosen to be 3). Therefore one can use
the attack on underdetermined systems of [56] to reduce the number of equations in the system
by bα − 1c. (see Subsection 2.5.4). In order to solve the resulting quadratic system the attacker
can use an arbitrary method such as XL or a Gröbner Basis method like F4/F5 (see Section 2.5).

3.3.2 UOV-Reconciliation Attack

The UOV-Reconciliation attack [18] is based on the following observation:
Let ((F , T ),P) be a UOV key pair such that MT has the form of equation (3.7). We write M−1

T as
a product of matrices T̃n · . . . · T̃v+1 with matrices T̃j having the form of equation (3.8). Note that
each of these matrices contains, besides the 1’s on the main diagonal, only v non-zero elements.
With this notation equation (3.11) yields

F (k) = (T̃v+1)T · . . . ·

P
(k)
n−2︷ ︸︸ ︷

(T̃n−1)T · (T̃n)T · P (k) · T̃n︸ ︷︷ ︸
P

(k)
n−1

·T̃n−1 . . . · T̃v+1

︸ ︷︷ ︸
P

(k)
v

(k = 1, . . . , o) (3.12)

with matrices P (k)
j of the form

P
(k)
j =

(
?j×j ?j×(n−j)

?(n−j)×j 0(n−j)×(n−j)

)
(j = v, . . . , n− 1, k = 1, . . . , o). (3.13)

The matrices P (k)
v (k = 1, . . . , o) have the form of a UOV central map.

The goal of the attack is to compute, starting with P
(k)
n = P (k), for each (k = 1, . . . , o) a se-

quence of matrices P (k)
j (j = n− 1, . . . , v) of the form (3.13). At the end of this process, we will

get matrices P (k)
v (k = 1, . . . , o), which, together with the matrix M−1

T = T̃n · . . . · T̃v+1 can be
used as an equivalent private key.
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To do this, we have to take a closer look at the question, how we get from P
(k)
j+1 to P

(k)
j

(j = n− 1, . . . , v). We have

? . . . ? ? . . . . . . ?
...

...
...

...
? . . . ? ? . . . . . . ?
? . . . ? 0j,j . . . . . . 0j,n
...

...
... 0 . . . 0

...
...

...
...

...
? . . . ? 0n,j 0 . . . 0


︸ ︷︷ ︸

P
(k)
j

= T̃Tj+1·



a11 . . . a1,j−1 a1,j . . . . . . a1n

...
...

...
...

aj−1,1 . . . aj−1,j−1 aj−1,j . . . . . . aj−1,n

aj,1 . . . aj,j−1 aj,j . . . . . . aj,n
...

...
... 0 . . . 0

...
...

...
...

...
an1 . . . an,j−1 an,j 0 . . . 0


︸ ︷︷ ︸

P
(k)
j+1

·T̃j+1.

(3.14)
Since the elements of P (k)

j+1 are known, the elements of the matrix P
(k)
j are given as quadratic

functions in the unknown elements of the matrix T̃j+1. Most of the elements of the matrix P
(k)
j

are unknown, but we know that the elements in the lower right corner must be zero. Each of
these zero elements yields one quadratic equation in the v unknown elements of T̃j+1. Since the
equations delivered by 0k,l and 0l,k are the same, equation (3.14) yields n− j quadratic equations.
Altogether we get o · (n− j) quadratic equations in v variables (for k = 1, . . . , o). By solving this
system, we get the matrix T̃j+1 and can use equation (3.14) to compute P (k)

j (k = 1, . . . , o).

By repeating this process we can, starting with the matrices P (k)
n = P (k), find o matrices P (k)

v

(k = 1, . . . o) which, together with the matrix M (−1)
T = T̃n · . . . · T̃v+1, can be used as an alternative

private key. An attacker can use this equivalent private key to generate signatures in the same
way as a legitimate user.

During the attack we have to solve systems of (n − j) · o quadratic equations in v variables
(j = n− 1, . . . , v). The complexity of the attack is mainly given by the complexity of solving the
first system of o quadratic equations in v variables.

Algorithm 3.1 shows the UOV-Reconciliation attack in a compact form.

Algorithm 3.1 UOV-Reconciliation attack

Input: matrices P (k)
n (k = 1, . . . , o) representing the homogeneous quadratic parts of the public

polynomials
Output: private key (represented by matrices F (k) (k = 1, . . . , o) and a matrix MT )

1: for j = n− 1 to v do
2: Define a matrix Tj+1 of the form (3.8).
3: Define for k = 1, . . . o matrices P (k)

j of the form (3.13).

4: Compute for k = 1, . . . , o the matrix U (k) = TTj+1 · P
(k)
j+1 · Tj+1. The equality of P (k)

j and
U (k) (see equation 3.14) yields for every k = 1, . . . , o n− j quadratic equations in the
elements of Tj+1. Altogether we get therefore a system of o · (n− j) equations in v
variables.

5: Solve the quadratic system generated in the previous step by any method such as XL or
F4/F5 and put the solution into the matrix Tj+1.

6: Compute for k = 1, . . . , o the matrices P (k)
j by P (k)

j = TTj+1 · P
(k)
j+1 · Tj+1.

7: end for
8: MT ← Tn · . . . · Tv+1

9: F (k) ← P
(k)
v (k = 1, . . . , o)

10: return F (k) (k = 1, . . . , o), MT
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3.3.3 UOV Attack

The goal of the UOV attack [33] is to find an equivalent private key by finding an equivalent affine
map T of the form of equation (3.7). The attack was originally used to break the balanced Oil and
Vinegar signature scheme [47]. In this subsection we describe the generalization to the unbalanced
case (v > o).

Definition 3.1. We define the Oil subspace of Fn as

O = {x = (x1, . . . , xn) ∈ Fn : x1 = . . . = xv = 0}.

The Vinegar subspace is the set

V = {x = (x1, . . . , xn) ∈ Fn : xv+1 = . . . = xn = 0}.

The goal of the attack is to find the preimage of the Oil subspace under the map T .

Let E : Fn → Fn be a linear transformation of the form of equation (3.9). Then we get

Lemma 3.1. 1. E(O) is an o dimensional subspace of V.
2. If E is invertible, E−1(V) is an v dimensional subspace of Fn in which O is a proper subspace.

Proof. See [33], Lemma 2.

Remark 3.3. In the case of the balanced Oil and Vinegar signature scheme we have E(O) = V and
E−1(V) = O. This fact makes the whole attack much easier and enables us to find an equivalent
map T in polynomial time.

Let H =
∑o
i=1 λi ·F (i) be a linear combination of the matrices F (i) associated to the homogeneous

quadratic part of the i-th central polynomial. Note that H has the form of (3.9). We obtain

Theorem 3.3. Assume that, for some (k ∈ {1, . . . , o}), the matrix F (k) is invertible. Then, with
probability not less than qo−v, the map (F (k))−1 ·H has a non trivial invariant subspace which is
also a subspace of O.

Proof. See [33], Theorem 4.1.

Theorem 3.3 yields

Theorem 3.4. Let W =
∑o
i=1 λi · P (i) be a linear combination of the matrices P (i) and let

P (k) (for some k ∈ {1, . . . , o}) be invertible. Then with probability not less than qo−v, the map
(P (k))−1 ·W has a non trivial invariant subspace which is also a subspace of T −1(O).

Proof. See [33], Theorem 4.2.

We can therefore use Algorithm 3.2 to find T −1(O).

The following Lemma can be used to test if a subspace H computed by Algorithm 3.2 is indeed a
subspace of T −1(O).

Lemma 3.2. If H ⊂ T −1(O), then, for every x,y ∈ H and every i = 1, . . . , o we have

xT · P (i) · y = 0.

Proof. See [33], Lemma 3.
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Algorithm 3.2 UOV attack
Input: UOV public key (given as matrices P (1), . . . , P (o))
Output: Basis of T −1(O)

1: repeat
2: For a random vector λ ∈ Fo compute W =

∑o
i=1 λi · P (i).

3: Compute Ŵ = (P (k))−1 ·W for an invertible matrix P (k).
4: Compute the minimal invariant subspaces of Ŵ .
5: For each minimal invariant subspace of Ŵ , test if it is also a subspace of T −1(O).

For this step we can use the test described in Lemma 3.2.
6: until o linear independent vectors v1, . . . , vo ∈ T −1(O) are found.
7: return v1, . . . , vo

After having performed qv−o−1 runs of the loop, Algorithm 3.2 has found with high probability at
least one non zero vector in T −1(O). We continue this process until we find o linear independent
vectors in T −1(O). By doing so, we can reconstruct the matrix MT and thus find an equivalent
private key which can be used by an attacker to generate signatures in the same way as a legitimate
user.
The complexity of the whole process can be estimated by

complexityUOV attack(q, o, v) = qv−o−1 · o4. (3.15)

3.4 The Rainbow Signature Scheme

In [16] J. Ding and D. Schmidt proposed a signature scheme called Rainbow, which is based on
the idea of Oil and Vinegar, but reduces both key sizes and signature lengths.

Let F be a finite field with q elements and S be the set {1, . . . , n}. Let v1, . . . , vu+1 be inte-
gers such that 0 < v1 < v2 < . . . < vu < vu+1 = n and define the sets of integers Si = {1, . . . , vi}
for i = 1, . . . , u. We set oi = vi+1 − vi and Oi = {vi + 1, . . . , vi+1} (i = 1, . . . , u). The number of
elements in Si is vi and we have |Oi| = oi.
The central map F of the scheme consists of m = n− v1 polynomials
f (v1+1), . . . , f (n) ∈ F[x1, . . . , xn] of the form

f (k)(x) =
∑

i,j∈S`, i≤j

α
(k)
ij xixj+

∑
i∈O`, j∈S`

β
(k)
ij xixj+

∑
i∈S`∪O`

γ
(k)
i xi+η(k) (k = v1+1, . . . , n), (3.16)

where ` is the only integer such that k ∈ O`.

The central map F as defined above consists of u different levels of Oil and Vinegar. In the
`-th level the variables xi ∈ S` are the Vinegar variables and xj ∈ O` are the Oil variables. So, the
polynomials of the `-th level form a UOV scheme with v` Vinegar variables and o` Oil variables.
For u = 1 we get exactly the UOV signature scheme of Section 3.1.
The different levels of Oil and Vinegar in the map F are called Rainbow layers.

The map F(x) = (f (v1+1)(x), . . . , f (n)(x)) can be inverted as follows. First, we choose the values
of the variables x1, . . . , xv1 at random and substitute them into the polynomials f (v1+1), . . . , f (n).
By doing so we get a system of o1 linear equations (given by the polynomials f (k) (k ∈ O1)) in the
o1 unknowns xv1+1, . . . , xv2 , which can be solved by e.g. Gaussian Elimination. The so computed
values of the variables xi (i ∈ O1) are substituted into the polynomials f (k) (k > v2) and a system
of o2 linear equations (given by the polynomials f (k) (k ∈ O2)) in the o2 unknowns xi (i ∈ O2) is
obtained. By repeating this process we can get values for all the variables xi (i = 1, . . . , n). 2

2It may happen, that one of the linear systems does not have a solution. If so, one has to choose other values of
x1, . . . xv1 and try again. However, the probability of this is very small. Therefore, in most cases, one gets a
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To hide the structure of F in the public key one composes it with two affine invertible maps
S = (MS , cS) : Fm → Fm and T = (MT , cT ) : Fn → Fn.
The public key of the scheme is therefore given as P = S ◦ F ◦ T . The private key consists of the
three maps S, F and T and therefore allows to invert the public key.
The process of signature generation/verification can be described as follows:

Signature Generation To sign a document d, we use a hash function H : {0, 1}? → Fm to com-
pute the value h = H(d) ∈ Fm. Then we compute recursively x = S−1(h), y = F−1(x) and
z = T −1(y). The signature of the document is z ∈ Fn. Here, F−1(x) means finding one (of
approximately qv1) preimage of x under the central map F .

Verification To verify the authenticity of a signature, one simply computes h′ = P(z) and the
hash value h = H(d) of the document. If h′ = h holds, the signature is accepted, otherwise it is
rejected.

The size of the public key is

sizepk Rainbow = m · (n+ 1) · (n+ 2)
2

(3.17)

field elements, the size of the private key is

sizesk Rainbow = m · (m+ 1) + n · (n+ 1) +
u∑
i=1

ol ·
(
vl · (vl + 1)

2
+ vl · ol + vl+1 + 1

)
(3.18)

field elements. Recommended parameters for the Rainbow signature scheme can be found in
Chapter 6. For the remainder of this chapter we restrict for simplicity to Rainbow schemes with
two layers.

3.5 Equivalent Keys for Rainbow

Let (S,F , T ) be a Rainbow private key. In this section we want to find the set EQ(S,F,T ) of all
private keys equivalent to (S,F , T ). To do this, we follow the approach of Section 2.4 and [59],
i.e. we introduce two additional affine maps Σ : Fm → Fm and Ω : Fn → Fn and set

P = S ◦ Σ−1︸ ︷︷ ︸
S′

◦Σ ◦ F ◦ Ω︸ ︷︷ ︸
F ′

◦Ω−1 ◦ T︸ ︷︷ ︸
T ′

. (3.19)

The following theorem answers the question, for which affine maps Σ and Ω the map F ′ = Σ◦F ◦Ω
has the form of a Rainbow central map.

Theorem 3.5. Let (S,F , T ) be a Rainbow private key and let Σ : Fm → Fm and Ω : Fn → Fn be
affine maps, whose linear parts have the form

Σlin =

(
Σ(1)
o1×o1 0o1×o2

Σ(3)
o2×o1 Σ(4)

o2×o2

)
, Ωlin =

 Ω(1)
v1×v1 0v1×o1 0v1×o2

Ω(4)
o1×v1 Ω(5)

o1×o1 0o1×o2
Ω(7)
o2×v1 Ω(8)

o2×o1 Ω(9)
o2×o2

 . (3.20)

Then (S ′,F ′, T ′) with S ′ = S ◦ Σ−1, F ′ = Σ ◦ F ◦ Ω and T ′ = Ω−1 ◦ T is an equivalent Rainbow
private key.

Note that Σ−1
lin and Ω−1

lin have the same form as Σlin and Ωlin respectively.

valid signature at the first try.
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Proof. see [60], Theorem 4.14.

Corollary 3.2. Let (S,F , T ) be a Rainbow private key over a field with q elements. Then the set
EQ(S,F,T ) of private keys equivalent to (S,F , T ) has the size

|EQ(S,F,T )| = qm+n · qv1·(o1+o2)+2·o1·o2 ·
v1−1∏
i=0

(qv1 − qi) ·

(
o1−1∏
i=0

(qo1 − qi)

)2

·

(
o2−1∏
i=0

(qo2 − qi)

)2

.

(3.21)

Proof. The number of elements in EQ(S,F,T ) is the same as the number of possible choices of the
maps Σ and Ω. The first factor in equation (3.21) represents the number of possible choices of the
constant parts of the maps Σ and Ω. The remaining factors stand for the possible choices of the
matrices Σlin and Ωlin of Theorem 3.5. Note that each of the matrices Σ(1), Σ(4), Ω(1), Ω(5) and
Ω(9) has to be invertible.

Remark 3.4. Corollary 3.2 states that for each Rainbow public key P, there exist

qm·(v1+1)+n+2·o1·o2 ·
∏v1−1
i=0 (qv1 − qi) ·

(∏o1−1
i=0 (qo1 − qi)

)2

·
(∏o2−1

i=0 (qo2 − qi)
)2

Rainbow private
keys (S,F , T ) such that S ◦ F ◦ T = P.

The next theorem states that for any Rainbow public key P there exists, with overwhelming
probability, a corresponding Rainbow private key of a very special form.

Theorem 3.6. Let P be a Rainbow public key. Then, with overwhelming probability, there exists
a Rainbow private key (S̃, F̃ , T̃ ) with S̃ ◦ F̃ ◦ T̃ = P such that

MS̃ =
(

1o1×o1 S′o1×o2
0o2×o1 1o2×o2

)
, MT̃ =

 1v1×v1 T
′(1)
v1×o1 T

′(2)
v1×o2

0o1×v1 1o1×o1 T
′(3)
o1×o2

0o2×v1 0o2×o1 1o2×o2

 . (3.22)

Proof. Since P is a Rainbow public key, we can be sure that there exists a Rainbow private key
(S,F , T ) with S ◦ F ◦ T = P. In the following we compute affine maps Σ and Ω which transform
this private key into an equivalent private key of form (3.22), i. e. S̃ = S ◦Σ−1 and T̃ = Ω−1 ◦ T

are of the form shown in the theorem. Let S =
(
S1 S2

S3 S4

)
and Σlin be of the form as shown in

equation (3.20) .
If S4 is invertible3, we get from S = S̃ ◦ Σ

• Σ1 = S1 − S2 · S−1
4 · S3

• Σ3 = S3 and

• Σ4 = S4.

The matrix S′ of equation (3.22) is given as

S′ = S2 · S−1
4 . (3.23)

3If S4 is not invertible, we can switch the rows and columns of S by renumbering the equations of F until we
get an invertible matrix.
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Let T =

 T1 T2 T3

T4 T5 T6

T7 T8 T9

 and Ωlin be of the form (3.20). If T1 and T5−T4 ·T−1
1 ·T2 are invertible4,

we get from T = Ω ◦ T̃

• Ω1 = T1

• Ω4 = T4

• Ω7 = T7

• T ′(1) = T−1
1 · T2

• T ′(2) = T−1
1 · T3

• Ω5 = T5 − T4 · T−1
1 · T2

• T ′(3) = Ω−1
5 · (T6 − T4 · T−1

1 · T3)

• Ω8 = T8 − T7 · T−1
1 · T2 and

• Ω9 = T9 − T7 · T−1
1 · T3 − Ω8 · T ′(3).

The matrix MT̃ of equation (3.22) can be written as a product of matrices Tv1+1 · . . . · Tn such
that

Ti =



1 0 0 t′1i 0
. . .

...
...

...
0 1 0 t′v2i 0
0 . . . 0 1 0 0
...

...
. . .

0 . . . 0 0 1


(i = v2 + 1, . . . , n) and

Ti =



1 0 0 t′1i 0
. . .

...
...

...
0 1 0 t′v1i 0
0 . . . 0 1 0 0
...

...
. . .

0 . . . 0 0 1


(i = v1 + 1, . . . , v2). (3.24)

Besides the 1’s on the main diagonal, the matrices Ti (i = v1 + 1, . . . , n) contain exactly the same
non zero elements as the matrix MT̃ .
By inversion we get M−1

T̃
= T−1

n · . . . · T−1
v1+1. Note that the matrices T−1

i have the same structure
as the matrices Ti (i = v1 + 1, . . . , n).

4Again it is possible to switch rows and columns of T by renumbering the variables.
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F (k) =

v1 v2 n

v1

v2

n

F (k) =

v1 v2 n

v1

v2

n

v1 + 1 ≤ k ≤ v2 v2 + 1 ≤ k ≤ n

Figure 3.1: Layout of the matrices F (k). The white parts of the matrices are fixed to zero.

3.6 Attacks against Rainbow

Let F (k) (v1 + 1 ≤ k ≤ n) be the symmetric matrix associated to the homogeneous quadratic part
of the k-th component of the central map F (see equation (2.14)). Due to the special structure of F
the matrices F (k) have the form shown in Figure 3.1. Analogously, we denote the symmetric matrix
representing the homogeneous quadratic part of the k-th component of P by P (k) (v1 +1 ≤ k ≤ n).
With this notation we get

P (i+v1) =
m∑
j=1

sij M
T
T · F (j+v1) ·MT and (3.25)

F (i+v1) =
m∑
j=1

s̃ij (M−1
T )T · P (j+v1) ·M−1

T (i = 1, . . . ,m) (3.26)

where sij and s̃ij (i, j = 1, . . . ,m) are the elements of the matrices MS and M−1
S respectively.

3.6.1 Direct Attack

The most straightforward method to attack the Rainbow signature scheme is to try to solve the
public system P(x) = h (signature forgery attack). Since the public systems of Rainbow are
underdetermined, one usually fixes/guesses some of the variables before applying an algorithm
such as XL or a Gröbner Basis method such as F4/F5 (see Section 2.5).

3.6.2 MinRank Attack

The goal of the MinRank attack [30, 6] is to find a linear combination of the matrices P (k)

(v1 +1 ≤ k ≤ n) of very low rank (in the case of Rainbow, this rank is given by v2). Such a matrix
corresponds to a linear combination of the o1 matrices MT

T · F (k) ·MT (k ∈ O1) representing the
central polynomials of the first Rainbow layer. Therefore, we have to solve the following problem.

MinRank-Problem: Given a set of m n × n matrices P (v1+1), . . . , P (n), find a linear combi-
nation H =

∑n
i=v1+1 λiP

(i) which has rank ≤ v2.

This problem can be solved as shown in Algorithm 3.3.

By finding o1 linear independent matrices C of this form, we can extract the first Rainbow layer.
This step costs approximately o1·qv1+1 operations, where q is the cardinality of the underlying field.

The remaining Rainbow layers can now be extracted by a similar technique. However, since
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Algorithm 3.3 MinRank attack
Input: matrices P (v1+1), . . . , P (n)

Output: Linear combination C =
∑n
i=v1+1 ci · P (i) of rank ≤ v2

1: repeat
2: Choose randomly a vector λ ∈ Fm and compute P =

∑n
i=v1+1 λi · P (i).

3: if Rank (P ) > 1 and Rank(P ) < n then
4: Choose randomly a vector γ from Ker(P ).
5: C ←

∑n
i=v1+1 γi · P (i)

6: end if
7: until Rank (C) ≤ v2

8: return C

the attacker has from the first step partial knowledge of the secret transformation of variables,
the complexity of extracting the remaining layers is much lower than that of the first step and
therefore can be neglected.

Having separated all the Rainbow layers, the attacker is able to generate signatures the same
way as a legitimate user. The complexity of the attack is mainly given by the complexity of
extracting the first Rainbow layer. So we have

complexityMinRank(q, v1, o1) = o1 · qv1+1. (3.27)

For the following we define the sets Oi as Oi = {x ∈ Fn : x1 = . . . = xvi = 0} (i = 1, . . . , u).

3.6.3 HighRank Attack

The HighRank attack as proposed by Coppersmith et al. in [13] can be seen as the counterpart
of the MinRank attack.
As the matrices C found during the MinRank attack are linear combinations of the matrices
MT
T ·F (k) ·MT (k ∈ O1), we have C(x) = 0 for all x ∈ T −1(O1) and therefore T −1(O1) ⊂ ker(C).

Hence the MinRank attack can be seen as an attack looking for this space T −1(O1) or as an attack
that finds a large kernel shared by a small number of linear combinations C =

∑n
k=v1+1 λk · P (k).

In the HighRank attack, we turn this around. The goal of this attack is to find a small kernel
(T −1(Ou)) shared by a large number of linear combinations

∑n
k=v1+1 λk · P (k).

The HighRank attack is based on the following observation. The variables xvu+1, . . . , xn ap-
pear only in the quadratic cross terms of the central polynomials f (vu+1), . . . , f (n) of the last
Rainbow layer. Therefore we get Ou ⊂ ker

∑vu
k=v1+1 αk · F (k) for arbitrary α ∈ Fk which means

that T −1(Ou) lies in the kernel of certain linear combinations of the matrices P (k) (k = 1, . . . , n).
Algorithm 3.4 shows the functioning of this attack to find the space T −1(Ou).

Algorithm 3.4 HighRank attack
Input: matrices P (v1+1), . . . , P (n)

Output: T −1(Ou)
1: Form an arbitrary linear combination H =

∑n
k=v1+1 λk · P (k). Find V = kerH.

2: If dimV ≥ 1, set
(∑n

k=v1+1 λkP
(k)
)
V = 0. Test, if the solution set has dimension m− ou.

3: With probability qou , we have therefore found V ⊂ T −1(Ou). We continue this process, until
we have found the whole space T −1(Ou).

4: return T −1(Ou)

The complexity of this step can be estimated by qou · n
3

6 .
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j
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P
(k)
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?? 0

? ?

0 0
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j
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P
(k)
j =
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(k)
j =
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0

k ∈ {v1 + 1, . . . , v2}

v2 − 1 ≥ j ≥ v1

Figure 3.2: Structure of the matrices P (i)
j

By studying the subspaces of T −1(Ou) we can find bigger kernels (which correspond to T −1(Oi)
(i = u− 1, . . . , 1)). Since the complexity of this step can be neglected, we get

complexityHighRank(q, ou, n) = qou · n
3

6
. (3.28)

3.6.4 Rainbow-Band-Separation Attack

The Rainbow-Band-Separation attack [18] can be seen as an extension of the UOV-Reconciliation
attack (see Subsection 3.3.2) to Rainbow and uses the layer structure of this scheme. The attack
is based on the following observation:
Let P be a Rainbow public key and (S,F , T ) be a corresponding private key such that MS and
MT are of the form of equation (3.22). We write M−1

T as a product of matrices T̃n · . . . · T̃v1+1 as
shown in equation (3.24) and get

F (k) =
m∑
l=1

s̃kl

(
T̃Tv1+1 · . . . · T̃Tn · P (l) · T̃n · . . . · T̃v1+1

)
(3.29)

(see equation 3.26). Here, s̃kl (k, l = 1, . . . ,m) denote the elements of the matrix M−1
S .

As for the UOV-Reconciliation attack (see Subsection 3.3.2), the goal of the Rainbow-Band-
Separation attack is to find for every k = v1 + 1, . . . , n a sequence of matrices P (k)

n−1, . . . , P
(k)
v1 , such

that P (k)
v1 has the form of F (k). The matrices P (k)

v1 (k = v1 + 1, . . . , n) (together with the matrices
T̃i (i = v1 +1, . . . , n) and the elements s̃kl) yield therefore an equivalent Rainbow public key which
can be used by the attacker to sign messages in the same way as a legitimate user.
In more detail, the matrices P (k)

j the attacker wants to find have the form shown in Figure 3.2.
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The transition from P
(k)
j to P (k)

j−1 looks like

P
(k)
j−1 = T̃Tj · P

(k)
j · T̃j

j ∈ {v1 + 1, . . . , v2} or
j ∈ {v2 + 1, . . . , n}, k ∈ {v1 + 1, . . . n} \ {j}

P
(k)
j−1 =

∑n
l=v2+1 s̃kl

(
T̃Tj · P

(l)
j · T̃j

)
j ∈ {v2 + 1, . . . , n}, k = j

(3.30)

As in the case of the UOV-Reconciliation attack, every zero position in the matrices P (k)
j−1 yields

one (usually quadratic) equation in the unknown elements of T̃j and s̃jl. Altogether, in the j-th
step, we get (n − j + 1) · (m + n − 1) (mostly quadratic) equations in n variables from (3.30)
(j = n, . . . , v1 + 1) 5. By solving this system, the attacker is able to find the matrix T̃j and the
elements s̃kl and therefore can compute the matrices P (k)

j−1 (k = v1 + 1, . . . , n).

To find the matrices P (k)
v1 and therefore an equivalent private key, the attacker has to solve m of

these systems.
The complexity of the Rainbow-Band-Separation attack is mainly determined by the complexity
of solving the first system which consists of

• one cubic equation

• m− 1 quadratic equations in the variables of T̃n

• n− 1 bilinear equations (linear both in the elements of T̃n and the s̃nk (k = v2 + 1, . . . , n)).

In Chapter 6 we carry out a number of experiments to estimate the complexity of solving such
systems.

3.6.5 UOV and UOV-Reconciliation Attack

For these two attacks Rainbow is seen as a UOV scheme: We define a new map F̃ = S ◦F and get
P = S ◦F ◦T = F̃ ◦T . Note that F̃ has the form of a UOV central map with vu Vinegar variables
and ou Oil variables 6. Therefore we can use all specific attacks against UOV against Rainbow, too.

For the complexity of the UOV attack we get (see equation (3.15))

complexityUOV attack Rainbow(q, vu, ou, n) = qvu−ou−1 · o4
u = qn−2·ou−1 · o4

u, (3.31)

the complexity of the UOV-Reconciliation attack is given mainly by the complexity of solving a
system of m quadratic equations in vu variables.

5For j ∈ {v1 + 1, . . . , v2}, the number of variables reduces to v1.
6However, unlike a UOV scheme, we have still m equations in the system.
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Part I

Selecting Parameters for
Multivariate Schemes
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The question, which parameters one has to choose for a cryptographic scheme to meet given levels
of security is one of the central problems of cryptography and is important both for the practitioner
as for the theorist. In this first part of the dissertation we address this question for multivari-
ate cryptosystems in general and in particular for the Rainbow signature scheme. We start our
analysis with the security model of Lenstra and Verheul. This model takes as input a year y and
computes, using parameters like the development of computational power and the budget of an
attacker, a security level cryptographic schemes must reach to be thought secure in the year y.
Based on this model we then analyze generic attacks against the MQ-Problem (see Section 2.5)
as well as specialized attacks against Rainbow (see Section 3.6) and provide parameters which
guarantee the security of this scheme for now and the near future.

In the first chapter of this part (Chapter 4) we introduce the security model of Lenstra and
Verheul and describe our computing environment which will be used for the experiments in the
following two chapters. In Chapter 5 we analyze the complexity of the MQ-Problem both theo-
retically and with computer experiments. We combine the results with our security model to give
lower bounds for the parameter choice of multivariate schemes. Furthermore we give parameters
for the UOV signature scheme for different levels of security. Finally, in Chapter 6, we analyze
known attacks against the Rainbow signature scheme, which is one of the best studied and most
promising multivariate schemes and propose parameter sets for this scheme for the years 2012 -
2050. Hereby we use a strategy which allows us to optimize the parameters in regard of both
public and private key size.



54



55

Chapter 4

The model

In [36] Lenstra and Verheul developed a security model, which they used to find appropriate pa-
rameter sets for symmetric cryptography and some asymmetric schemes. The main points of their
model are:

1. Security margin: a definition of the term “adequate security”.

2. Computing environment: the expected change in computational resources available to at-
tackers.

3. Cryptanalytic development: the expected development in cryptanalysis.

In the following we take a closer look at these items.

Security margin

To decide, whether a given instance of a cryptographic scheme offers an adequate level of security,
one has to define the term “adequate security”. The authors of [36] define it by the security offered
by the Data Encryption Standard (DES) in 1982. That is, in 1982 a symmetric key size of 56 bit
provided an adequate level of security. We follow this definition.

Computing environment

Here the authors of [36] use a slightly modified version of Moore’s law, which states that the
amount of computing power and random access memory one gets for 1 dollar doubles every t
months. Our default setting of t is 18, see [36].
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Remark 4.1. In the last years there has been an active discussion whether Moore’s law will hold in
the future. The reason for these concerns is that an increase in processor performance goes hand in
hand with a diminution of the electronic circuits on the processor. This will not be possible forever
since with smaller circuits the laws of quantum mechanics play an increasing role. However, part
of this trend can be reversed by multicore computing, which means using more than one processor
on the same CPU. We believe that this process will continue and the number of processors on one
CPU will increase even further. Multicore computing especially speeds up paralellizable programs,
as they are used for many cryptanalytic purposes. Furthermore, with better production techniques,
the cost of a processor will decrease. So, we believe that the modified version of Moore’s law used
in [36] will hold over the next 50 years.

Another thing we have to take into account in this context is the budget of an attacker, which
might increase over time. The parameter b > 0 is defined as the number of years it takes on
average for an expected twofold increase of budget. Statistical data says, that the world wide
economic performance (in today’s prices) doubles about every ten years. So our default setting
for b is 10.

Cryptanalytic development

It is impossible to say what cryptanalytic developments will take place in the future, or even
what developments have already taken place, but have not been published yet. In a relatively
modern field like multivariate public key cryptography this is especially difficult. Furthermore,
many multivariate schemes thought to be secure were completely broken by new attacks ( e.g.
SFLASH [48]). However, we can assume that, at least for schemes whose security is only based
on the MQ-Problem (e.g. the identification scheme of [52] and the stream cipher QUAD [2]), the
pace of future cryptanalytic findings and their impact will not vary dramatically compared to the
pace of findings about classical public key cryptosystems in the last decades. We assume the same
for the UOV and Rainbow signature schemes (see Chapter 3), since despite of active research in
the last 20 years, there has not been a break through in cryptanalysis, at least for schemes with
carefully chosen parameters. In fact, similarly to the case of classical public key schemes like RSA,
known attacks against UOV and Rainbow have been stepwise improved over time.

We define the number r > 0 to be the number of months it is expected to take on average
for cryptanalytic techniques affecting multivariate public key cryptosystems to become twice as
effective. Under the assumption, that the pace of cryptanalytic findings in the area of multivariate
cryptography will not vary dramatically from those in the field of classical public key cryptosys-
tems, our default setting for r is r = 18.
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symmetric security level with
year key size todays algorithms
2012 79 79
2015 82 84
2020 86 91
2030 93 105
2040 101 120
2050 109 134

Table 4.1: Required security levels until 2050

Given that breaking DES with a key length of 56 bit was infeasible to do in the year 1982, we get
the key size a secure symmetric scheme must have in the year y ≥ 1982 by the formula

symmetric key size(y) = 56 + 12 · y − 1982
t

+
y − 1982

b
bit (y ≥ 1982). (4.1)

With our default settings we get

symmetric key size(y) =
23
30
· y − 1463.5 bit (y ≥ 1982). (4.2)

So far, we have not considered the possible advances in cryptanalysis. To cover these, we have to
adapt the above formula slightly. So, a multivariate cryptosystem, which shall be secure in the
year y, must reach (with todays algorithms) the security level of

security level(y) = symmetric key size(y) + 12 · y − 2012
r

r=18=
43
30
· y − 2804.9 bit (y ≥ 2012). (4.3)

Table 4.1 shows the symmetric key size and the security level a (multivariate) scheme must reach
to be thought secure in the year y. As the table shows, a symmetric scheme, which shall be secure
in the year 2050, must have a key size of at least 109 bit. Therefore, to be secure in the year
2050, a multivariate scheme must reach the same level of security (with the algorithms available
in 2050). But, with the algorithms available today, it must reach a higher security level of 134 bit.
In the following, we denote the symmetric key size required in the year y by `(y) and the security
level needed for multivariate schemes by ¯̀(y).
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4.1 Our Computing Environment

To estimate the complexity of attacks against multivariate schemes, we carried out a large number
of computer experiments. For these experiments (see the next two chapters) we used a server
with 128 GB RAM and 16 AMD Opteron processors with 2.8 GHz. Systems of multivariate
quadratic polynomials are solved with MAGMA [8] version 2.13-10, which contains an efficient
implementation of Faugère’s F4 algorithm [23], on a single processor.
To find a relation between the running time of MAGMA and the complexity of a system we use a
random system of 37 equations in 22 variables over GF(256). The bit complexity of solving this
system with F4 is about 46.7 [18]. Since MAGMA needed about 1.43 · 105 seconds to solve this
system, we get the following relation between the running time of our experiments and the bit
complexity of solving a multivariate system.

bit complexity = lg
(

running time · 246.7

1, 43 · 105

)
≈ lg(running time) + 29.6. (4.4)

The above formula enables us to compare the results of our computer experiments with the theo-
retical results obtained by the analysis of the HybridF5 algorithm (see Section 5.1).
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Chapter 5

Complexity of the MQ-Problem

In this chapter we study the complexity of the MQ-Problem and answer the question, how many
equations are needed to defend a multivariate scheme against direct attacks1. We do this both by
a theoretical analysis of the HybridF5 algorithm (see [5] and Subsection 2.5.3), which is currently
the fastest algorithm to solve systems of multivariate nonlinear equations and experiments with
MAGMA, which contains an efficient implementation of Faugère’s F4 algorithm. Note that, for
multivariate public key schemes, the numbers presented in this section are necessarily lower bounds
since we do not study key recovery attacks. Furthermore, for some multivariate schemes (e.g. HFE)
Gröbner Basis algorithms can use the special structure of the public key to reduce the running time
[39]. For schemes with highly underdetermined systems (e.g. UOV) one has to consider special
attacks against underdetermined systems, too (see [56] and Subsection 2.5.4). Furthermore, since
overdetermined systems are easier to solve, our analysis can not be applied to encryption schemes
such as the SimpleMatrix scheme of [55].

5.1 Theoretical Analysis with HybridF5

HybridF5 [5] is currently the fastest algorithm to solve generic systems of nonlinear multivariate
equations. The basic idea is to guess some of the variables to create overdetermined systems before
applying Faugère’s F5 [24] algorithm. When doing so, one has to run the F5 algorithm several
times to find a solution of the original system. When guessing k variables over a finite field of q
elements, this number is given by qk.
The complexity of solving a system of m quadratic equations in n variables over a finite field with
q elements by the HybridF5 algorithm can be estimated by [5]

complexityHF5
(q,m, n) = min

k≥0
qk · O

(
m ·

(
n− k + dreg − 1

dreg

))ω
, (5.1)

where, for random systems, the degree of regularity dreg is given as the lowest integer D for which
the coefficient of tD in (1−t2)m

(1−t)n is less or equal to 0 and 2 < ω ≤ 3 denotes the linear algebra
constant of solving a linear system (see Subsection 2.5.3).
Unfortunately, the details of the F5 algorithm are not publicly known, which makes it difficult
to estimate the concrete running time the algorithm needs to solve a multivariate system. Nev-
ertheless, to derive secure parameters for multivariate schemes from formula (5.1), we follow the
approach of [56, P12]. We set ω = 2 and get by

lower bound(q,m, n) = min
k≥0

qk ·
(
m ·

(
n− k + dreg − 1

dreg

))2

(5.2)

1In this chapter, we consider only determined systems. We therefore set n = m.
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Figure 5.1: Complexity of solving determined random systems over GF(16) with HybridF5

a lower bound of the complexity of the HybridF5 algorithm. If this lower bound is larger than the
security level, we can be sure that an attack against the multivariate quadratic system with the
HybridF5 algorithm is infeasible.
We used equation (5.2) to compute a lower bound of the complexity of solving determined random
systems over GF(16), GF(31) and GF(256) with the HybridF5 algorithm when guessing different
numbers of variables. Figures 5.1 - 5.3 show the results.

A natural question in this context is, how many variables should be guessed before applying the
F5 algorithm, i.e. for which number k ≥ 0 the complexity of the algorithm as shown by equation
(5.2) gets minimal. Guessing variables to build overdetermined systems reduces the complexity of
each run of the F5 algorithm, but also increases the number of this runs. We find

• for determined systems over GF(16) it is the best strategy to guess 5 (m ≤ 29), 6 (30 ≤ m ≤
40) or 7 (m ≥ 41) variables,

• for determined systems over GF(31) it is the best strategy to guess 2 (m ≤ 27), 3 (28 ≤ m ≤
35) or 4 (m ≥ 36) variables and

• for determined systems over GF(256) it is the best strategy to guess 1 (m ≤ 32) or 2 (m ≥ 33)
variables.
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Figure 5.2: Complexity of solving determined random systems over GF(31) with HybridF5
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Figure 5.3: Complexity of solving determined random systems over GF(256) with HybridF5
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By applying the above strategy and evaluating equation (5.2) for m ∈ {20, . . . 60}, we find that
the bit complexity of solving a determined random system of m multivariate quadratic equations
using the HybridF5 algorithm is roughly

2.30 ·m+ 14.4 (5.3)

for systems over GF(16),
2.50 ·m+ 13.0 (5.4)

for systems over GF(31) and
2.65 ·m+ 12.1 (5.5)

for systems over GF(256).

5.2 Experiments with MAGMA

Additionally to our theoretical analysis presented in the previous section we carried out a large
number of computer experiments. For these experiments we used MAGMA v. 2.13-10 which
contains an efficient implementation of Faugère’s F4 algorithm. Although MAGMA v. 2.13-10
was already released in 2008, it is still one of the fastest publicly available solvers for multivariate
nonlinear systems and in fact often faster than newer versions of MAGMA. Before applying the
MAGMA command Variety, we guessed some of the variables to create overdetermined systems.
As we will see, this reduces the running time of the algorithm for a large class of parameters, even
if we have to run the F5 algorithm several times to find a solution of the original system.

Solving determined random systems over GF(16)

Table 5.1 shows the results of our MAGMA experiments with determined random systems over
GF(16).

# equations 9 10 11 12 13 14 15 16
no guessing 4.6 s 34.6 s 4.2 m 33.8 m 273.4 m 41.7 h - -

30.5 MB 82.5 MB 460 MB 1,416 MB 7,041 MB 21,949 MB ooM1

1 guessed 1.7 s 12.4 s 2.1 m 7.1 m 98.9 m 8.6 h 86.9 h 23.0 d
9.4 MB 11.7 MB 21.3 MB 65.7 MB 201.7 MB 782 MB 1,750 MB 2,425 MB

2 guessed 1.6 s 9.8 s 1.0 m 5.5 m 41.4 m 4.8 h 21.6 h 6.2 d
8.9 MB 11.2 MB 19.3 MB 39.5 MB 73.9 MB 86.3 MB 120.1 MB 225.4 MB

3 guessed 3.0 s 16.8 s 1.5 m 8.6 m 47.5 m 5.9 h 25.7 h 4.5 d
8.2 MB 10.7 MB 15.3 MB 18.6 MB 29.7 MB 34.2 MB 43.6 MB 58.7 MB

4 guessed 6.2 s 32.8 s 2.9 m 15.4 m 80.7 m 7.1 h 47.9 h 6.1 d
8.5 MB 10.3 MB 11.7 MB 13.2 MB 16.4 MB 20.3 MB 29.8 MB 35.7 MB

5 guessed 19.4 s 97.3 s 8.1 m 40.2 m 199.3 m 16.5 h 82.5 h 25.5 d
8.3 MB 9.4 MB 11.3 MB 12.7 MB 14.5 MB 16.5 MB 21.3 MB 28.7 MB

6 guessed 69.0 s 328.7 s 26.1 m 124.3 m 592.0 m 47.0 h 223.8 h 44.4 d
8.1 MB 9.2 MB 10.7 MB 11.9 MB 14.3 MB 15.9 MB 20.7 MB 27.3 MB

7 guessed 169.1 s 781.6 s 60.2 m 278.1 m 1,285 m 98.7 h 457.4 h 88.1 d
8.2 MB 9.1 MB 10.5 MB 11.4 MB 13.9 MB 18.7 MB 26.9 MB 30.4 MB

8 guessed 786.0 s 3,552 s 269.2 m 1,230 m 5,538 m 417.5 h 1,889 h 356.2 d
8.2 MB 9.3 MB 10.4 MB 11.3 MB 13.6 MB 17.8 MB 25.3 MB 29.2 MB

1 out of memory

Table 5.1: Running time of solving determined random systems over GF(16) with MAGMA
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Figure 5.4: Running time of solving determined random systems over GF(16) with MAGMA

As the table shows, we get for our examples the best results when guessing 2 (9 ≤ m ≤ 15) or 3
(m = 16) variables. One can further see that the time MAGMA needs to find a solution of the
system grows exponentially with the number of equations.
To estimate the running time for larger systems, we extrapolated the results of Table 5.1 for
m ∈ {17, . . . , 60}. This extrapolation (see Figure 5.4) shows that for more than 21 equations it
is better to guess 4 or more variables. For the parameters usually used for multivariate schemes
(30 ≤ m ≤ 60), it seems to be a good strategy to guess 6 or 7 variables before applying the F4

algorithm. Guessing even more variables helps only for very large systems, since one has to run
the F4 algorithm too often.
We find that the actual running time of the F4 algorithm can be closely estimated by

running timeF4
(16,m) = 22.31·m − 14.2 sec. (5.6)

Together with equation (4.4) we get

bit complexityF4
(16,m) = 2.31 ·m+ 15.4, (5.7)

which is very similar to the result of (5.3).
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Solving determined random systems over GF(31)

Table 5.2 shows the results of our MAGMA experiments with determined random systems over
GF(31).

# equations 9 10 11 12 13 14 15 16
no guessing 4.8 s 35.5 s 4.4 m 35.5 m 286.4 m 39.6 h - -

30.7 MB 83.2 MB 387 MB 1,269 MB 6,186 MB 24,505 MB ooM 1

1 guessed 4.5 s 29.8 s 3.4 m 19.8 m 152.5 m 15.6 h 134.5 h 28.6 d
9.2 MB 9.7 MB 12.9 MB 28.6 MB 81.3 MB 284 MB 1,025 MB 1,684 MB

2 guessed 7.6 s 45.8 s 4.6 m 22.9 m 200.7 m 17.0 h 130.9 h 20.4 d
7.9 MB 8.1 MB 8.3 MB 10.1 MB 16.0 MB 42.1 MB 106.1 MB 310.4 MB

3 guessed 31.7 s 171.3 s 15.4 m 83.1 m 448.5 m 40.5 h 176.7 h 30.1 d
8.0 MB 8.2 MB 8.4 MB 8.5 MB 10.8 MB 13.4 MB 23.3 MB 35.2 MB

4 guessed 92.6 s 486.4 s 42.6 m 223.5 m 1,173 m 102.7 h 487.4 h 81.2 d
8.1 MB 8.4 MB 8.7 MB 9.3 MB 9.8 MB 10.3 MB 13.5 MB 16.7 MB

1 out of memory

Table 5.2: Running time of solving determined random systems over GF(31) with MAGMA

As the table shows, we get for our examples the best results when guessing 1 (9 ≤ m ≤ 14) or 2
(15 ≤ m ≤ 16) variables.
Similarly to the case of GF(16) (see above), we extrapolated these results to larger systems. This
extrapolation (see Figure 5.5) shows that for more than 25 equations we get the best results when
guessing 3 variables. When guessing 4 or more variables we have to run the F4 algorithm so often
that, for the parameters usually used in multivariate cryptography (30 ≤ m ≤ 50), we do not get
a speed up of the running time.
We find that the actual running time of the F4 algorithm can be closely estimated by

running timeF4
(31,m) = 22.63·m − 20.4 sec (17 ≤ m ≤ 25)

= 22.51·m − 16.2 sec (26 ≤ m ≤ 50). (5.8)

Together with equation (4.4) we get for m ∈ {26, . . . , 50}

bit complexityF4
(31,m) = 2.51 ·m+ 13.4, (5.9)

which is very similar to the result of (5.4).
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Figure 5.5: Running time of solving determined random systems over GF(31) with MAGMA
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Solving determined random systems over GF(256)

Table 5.3 shows the results of our MAGMA experiments with determined random systems over
GF(256).

# equations 9 10 11 12 13 14 15 16

0 guessed 5.5 s 40.9 s 5.0 m 39.8 m 5.3 h 47.0 h - -
28.4 MB 98.6 MB 352 MB 1,438 MB 6,456 MB 23,495 MB ooM 1

1 guessed 128.2 s 332.8 s 31.6 m 247.0 m 41.0 h 267.0 h 78.0 d 436.3 d
9.8 MB 11.2 MB 13.3 MB 29.4 MB 83.4 MB 291.4 MB 724 MB 1,173 MB

2 guessed 9.2 m 54.0 m 382.3 m 32.8 h 122.0 h 50.8 d 230.2 d 1,894 d
8.1 MB 8.4 MB 8.6 MB 10.7 MB 14.5 MB 42 MB 118 MB 335 MB

3 guessed 309.5 m 1,688 m 153.4 h 836.6 h 174.8 d 1,612 d 4,777 d 20,292 d
8.1 MB 8.3 MB 8.6 MB 9.2 MB 11.3 MB 18.2 MB 26.1 MB 52.9 MB

1 out of memory

Table 5.3: Running time of solving determined random systems over GF(256) with MAGMA

As one can see from the table, for our examples we get the best results without guessing. But,
as the extrapolation (see Figure 5.6) shows, for more than 20 variables it is better to guess one
variable and for more than 25 variables we get the best results when guessing two variables. When
guessing 3 or more variables we have to run the F4 algorithm so often that, for the parameters
usually used in multivariate cryptography (25 ≤ m ≤ 50), we do not get a speed up of the running
time.

We find that the actual running time of the F4 algorithm can be closely estimated by a expo-
nential function of the form

running timeF4
(256,m) = 22.65·m − 15.1 sec (26 ≤ m ≤ 50). (5.10)

Together with equation (4.4) we get for m ∈ {26, . . . , 50}

bit complexityF4
(256,m) = 2.65 ·m+ 14.5, (5.11)

which is very similar to the result of (5.5).

Memory

The memory consumption of Gröbner Basis techniques still remains a major problem of crypt-
analysis. As can be seen from the Tables 5.1 - 5.3 we ran, regardless of the underlying field, out
of memory when trying to solve determined systems with more than 14 equations. However, by
guessing some of the variables and solving overdetermined systems, it is possible to reduce the
memory consumption by a significant factor.
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Figure 5.6: Running time of solving determined random systems over GF(256) with MAGMA
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security number of equations
level (bit) GF(16) GF(31) GF(256)

80 30 28 26
100 39 36 33
128 51 48 43
192 80 75 68
256 110 103 93

Table 5.4: Minimal number of equations needed to reach given levels of security

5.3 Results

In this section we summarize the results of the previous two sections and give recommendations
for the minimal number of equations a multivariate scheme should contain to reach given levels of
security.
As we have seen, the theoretical behavior of the HybridF5 algorithm and the actual running time
of MAGMA’s F4 implementation are very similar. Since the HybridF5 algorithm seems to be
slightly faster, we derive the results presented in this section mainly from the theoretical analysis
of this algorithm. Therefore we find that the bit complexity of solving a determined multivariate
system of m equations with randomly chosen coefficients directly is roughly given by

2.30 ·m+ 14.4 (5.12)

for systems over GF(16),
2.50 ·m+ 13.0 (5.13)

for systems over GF(31) and
2.65 ·m+ 12.1 (5.14)

for systems over GF(256).

Figure 5.7 illustrates this relation.
The minimal number m of equations needed to reach a security level of ` bit is therefore given by

m = d`− 14.4
2.30

e (5.15)

equations over GF(16),

m = d`− 13.0
2.50

e (5.16)

equations over GF(31) or

m = d`− 12.1
2.65

e (5.17)

equations over GF(256).

Table 5.4 shows the minimal number of equations needed to reach given levels of security.

Table 5.5 shows the minimal number of equations needed for the security of a multivariate scheme
in the years 2012 to 2050. Note that in this chapter we considered only random systems, as they
are used by the MQ-based identification scheme [52] or by the QUAD stream cipher [2] (see also
Chapter 11). While for some multivariate public key schemes (e.g. Rainbow) the public systems
P behave very similar to random systems (see Chapter 6), the public systems of other multivariate
schemes (e.g. HFE) are much easier to solve [39]. Therefore, for multivariate public key schemes,
the numbers presented in the Tables 5.4 and 5.5 can only be seen as lower bounds.
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symmetric minimal number of equations over
year key size (bit) GF(16) GF(31) GF(256)
1982 56
2010 78 29 27 25
2011 79 29 27 25
2012 79 30 28 26
2013 80 30 28 26
2014 81 30 28 26
2015 82 31 28 27
2016 83 32 29 27
2017 83 32 30 28
2018 84 33 31 28
2019 85 33 31 28
2020 86 35 31 29
2021 86 35 32 30
2022 87 35 33 30
2023 88 36 34 30
2024 89 37 35 31
2025 89 38 35 32
2026 90 38 36 32
2027 91 39 36 33
2028 92 39 36 33
2029 93 40 37 34
2030 93 40 37 34
2031 94 42 38 35
2032 95 42 39 35
2033 96 43 40 36
2034 96 43 40 37
2035 97 44 41 37
2036 98 45 42 38
2037 99 45 42 38
2038 99 46 42 39
2039 100 46 43 39
2040 101 47 44 40
2041 102 48 44 40
2042 102 48 44 41
2043 103 49 45 41
2044 104 50 46 42
2045 105 50 47 42
2046 106 51 47 43
2047 106 52 48 43
2048 107 52 48 44
2049 108 53 49 45
2050 109 54 49 45

Table 5.5: Minimal number of equations needed for the security of MQ-schemes
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Furthermore, to find good parameters for a certain multivariate scheme, one has to analyze key
recovery attacks (i.e. attacks against the EIP-Problem), too. Since, for each multivariate scheme,
different attacks have to be considered, one has to perform this analysis for each scheme separately.
In the next chapter we do this for the Rainbow signature scheme.

5.4 Parameters for UOV

In this section we use the results of the previous sections to derive good parameters for the Un-
balanced Oil and Vinegar signature scheme of Section 3.1. To defend the scheme against the
UOV attack of Kipnis and Shamir (see Subsection 3.3.3) we choose v = 2 · o [33]. The number of
variables in the public system is therefore given by n = 3 · o, the number of equations is o.
The public systems of UOV behave very similar to random systems [5]. We can therefore use the
results derived in this chapter to estimate the impact of direct attacks against UOV. By using the
attack on underdetermined systems (see [56] and Subsection 2.5.4), we can reduce the number of
equations in the public systems by 2 before applying an algorithm like XL or a Gröbner Basis
method. Therefore, in order to get a secure UOV scheme, we have to increase the numbers shown
in Table 5.4 and 5.5 by 2. Furthermore we have to test, if the so obtained parameters lead to
secure hash lengths.

Table 5.6 presents our proposed parameter sets for the UOV scheme for different levels of se-
curity and different underlying fields.

security parameters public key private key hash size signature
level (bit) (o, v) size (kB) size (kB) (bit) size (bit)

GF(16)1

80 (40,80) 144.2 135.2 160 480
100 (50,100) 280.2 260.1 200 600
128 (64,128) 585.0 538.1 256 768
192 (96,192) 1,964.3 1,786.7 384 1,152
256 (128,256) 4,644.1 4,200.3 512 1,536

GF(31)1

80 (33,66) 108.5 102.9 160 528 2

100 (41,82) 206.9 193.8 200 656 2

128 (52,104) 419.9 389.2 256 832 2

192 (78,156) 1,408.2 1,287.5 384 1,248 2

256 (104,208) 3,327.3 3,021.1 512 1,664 2

GF(256)

80 (28,56) 99.9 95.8 224 672
100 (35,70) 193.8 183.2 280 840
128 (45,90) 409.4 381.8 360 1080
192 (70,140) 1,528.9 1,402.3 560 1,680
256 (95,190) 3,807.5 3,464.1 760 2,280

1 For UOV schemes over GF(16) and GF(31), the number of equations is determined by the
length of the hash value.

2 Theoretically, the length of a signature should be three times the length of the hash value. The

differences are caused by data conversions between GF(31) and {0, 1}? (see Subsection 6.3.1).

Table 5.6: Recommended parameters for UOV over GF(16), GF(31) and GF(256) for different
levels of security

As Table 5.6 shows, we get the shortest signatures when using UOV over GF(16). On the other
hand, the key sizes of these schemes are much larger than those of UOV schemes over larger fields.
Here we get, at least for moderate security levels (80 to 128 bit) the best results when using UOV
over GF(256). For high levels of security (192 and 256 bit), UOV schemes over GF(31) lead to
smaller key sizes. However, even for those schemes, the sizes of the public and private key are
very large (> 1 MB).
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Chapter 6

Selecting Parameters for the
Rainbow Signature Scheme

The Rainbow signature scheme (see Section 3.4) is one of the best studied and most promising
multivariate signature schemes. In this chapter we develop parameter sets which guarantee the
security of this scheme for the years 2012 - 2050. We optimize these parameters simultaneously
for both public and private key size. Furthermore we recommend Rainbow parameters for some
fixed levels of security and compare Rainbow schemes over GF(16), GF(31) and GF(256) in terms
of key and signature sizes.
In our approach we follow the model of Lenstra and Verheul (see Chapter 4), which, for a given
year y, yields the required security level in bits.
To find good and secure parameters for Rainbow, we have to study the known attacks against the
scheme. These include (see Section 3.6)

• direct attacks,

• the MinRank attack,

• the HighRank attack,

• the Rainbow-Band-Separation attack,

• the UOV attack and

• the UOV-Reconciliation attack.

Furthermore, since the parameters of Rainbow directly correspond to the length of the hash
function in use, we have to choose them in such a way that a collision attack against the hash
function is infeasible.
In this chapter, we denote by q the cardinality of the underlying field.

6.1 Our Strategy

Our strategy to find good parameters for Rainbow guaranteeing the security of the scheme in the
year y ∈ {2012, . . . , 2050} consists of the following four steps:

1. Compute the symmetric key size `(y) and the security level ¯̀(y) needed for the security of
a multivariate scheme in the year y (following the model of Chapter 4).

2. Find the minimal number of equations needed to reach the required level of security. To
do this we have to consider direct attacks as well as attacks against the hash function. In
particular,



72CHAPTER 6. SELECTING PARAMETERS FOR THE RAINBOW SIGNATURE SCHEME

• the complexity of direct attacks (signature forgery attacks) against Rainbow must be
greater or equal to the security level, i.e.

complexitydirect attack(q,m)
!
≥ 2¯̀(y) and (6.1)

• finding a collision of the hash function must be infeasible, i.e

m · lg q
!
≥ 2 · `(y) or m = d2 · `(y)

lg q
e. (6.2)

Remark 6.1. Note that in equation (6.1) and (6.2) we consider two different security levels.
For the direct attacks (equation (6.1)) we have to consider possible advances in cryptanalysis (see
Chapter 4). Therefore we have to compute the security level ¯̀(y) following equation (4.3). On the
contrary, the best attack against the collision resistance of hash functions is the birthday attack,
which does not underly this development. Therefore, in equation (6.2), we have to compute the
security level `(y) following equation (4.2).

3. Find the minimal number ou of equations in the last Rainbow layer. Minimizing this number
will help to reduce the size of the private key (see Table 6.1).

• To find the number ou we have to analyze the HighRank attack (see Subsection 3.6.3).
We get

complexityHighRank(q, ou, n) = qou · n
3

6
≥ qoum

3

6
!
≥ 2¯̀(y)

⇒ ou = d
¯̀(y)− 3 · lgm+ lg 6

lg q
e. (6.3)

4. Find the minimal number n of variables needed to reach the given level of security. The
relevant attacks here are the MinRank, the UOV, the UOV-Reconciliation and the Rainbow-
Band-Separation attack.

• For the MinRank attack (see Subsection 3.6.2) we have

complexityMinRank(q,m, n) = qv1+1 ·m ·
(
n2

2
− m2

6

)
≥ qn−m+1 ·m · m

2

3
!
≥ 2¯̀(y)

⇒ n = d
¯̀(y)− 3 · lgm+ lg 3− lg q

lg q
+me. (6.4)

• For the UOV attack (see Subsection 3.3.3) we get

complexityUOV−Attack(q, ou, n) = qn−2·ou−1 · o4
u

!
≥ 2¯̀(y)

⇒ n = d
¯̀(y)− 4 · lg ou + (2 · ou + 1) · lg q

lg q
e. (6.5)

• To defend the scheme against the UOV-Reconciliation attack (see Subsection 3.3.2) we
need

vu ≥ m or v1 ≥ ou and (6.6)

• to defend the scheme against the Rainbow-Band-Separation attack (see Subsection
3.6.4) we need

complexityRBS attack(q,m, n)
!
≥ 2¯̀(y). (6.7)

The most interesting items hereby are defending the scheme against direct attacks (equation (6.1))
and the Rainbow-Band-Separation attack (equation (6.7)). In the next three sections we analyze
these two points for Rainbow schemes over GF(16), GF(31) and GF(256).
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(F,m, n) (v1, o1, o2) private key size (byte)

(GF(16),40,57)

(17,17,23) 23,030
(17,19,21) 22,887
(17,21,19) 22,687
(17,23,17) 22,444

(GF(256),26,43)

(17, 10,16) 19,786
(17,12,14) 19,628
(17,14,12) 19,460
(17,16,10) 19,288

Table 6.1: Private key sizes for different layouts of the Rainbow layers

Remark 6.2. As stated above, the number of equations is, apart from the length of the hash
value, determined by the complexity of signature forgery attacks (see 2.)). On the other hand, the
number ou of equations in the last Rainbow layer and the number of variables n is determined by
the complexity of key recovery attacks (see 3. and 4.).

By following the above strategy, we simultaneously optimize the parameters of Rainbow for both
public and private key size. The size of the public key (see equation (3.17)) depends only on the
number of equations m and the number of variables n. So, by finding minimal values for m and n
we minimize the size of the public key. By finding the minimal number ou of equations in the last
Rainbow layer (step 3) we additionally minimize the size of the private key (see equation (3.18)
and Table 6.1). By dividing the middle layer into several sublayers, it is possible to reduce the
size of the private key even further without weakening the security of the scheme. Furthermore
this helps to speed up the signature generation process, as the systems which have to be solved
by Gaussian Elimination get smaller.

Remark 6.3. While, in order to reduce the size of the private key, it is a good strategy to choose
the last Rainbow layer as small as possible, the opposite holds for the public key size of our improved
versions of Rainbow (see Chapter 9). So, in order to find a good compromise between private and
public key size, we choose for our improved versions the size of the middle and the last Rainbow
layer as equal as possible. Note that this does not affect the security of the scheme (at least as long
as ou ≤ v1, see equation (6.6)).

6.2 Rainbow Schemes over GF(16)

6.2.1 Number of Equations

The minimal number of equations required for the security of Rainbow is determined by the
complexity of direct attacks and the length of the hash function output, i. e. m has to be chosen
in such a way that a collision attack against the hash function is infeasible.
To estimate the complexity of direct attacks against Rainbow schemes over GF(16), we carried
out a large number of experiments of solving the public systems of Rainbow over GF(16) with
MAGMA’s F4 algorithm. Before we could apply the MAGMA function Variety, we had to convert
the underdetermined Rainbow systems into determined ones by fixing n −m variables. Since an
underdetermined system over GF(16) with m equations in n > m variables has approximately
16n−m solutions, it can be expected that the determined system has on average exactly one
solution.
By guessing additional variables we created overdetermined systems to see whether this reduces
the time needed to find a solution of the original system. When guessing k variables, one has to
run the F4 algorithm 16k times in order to find a solution of the original system. Table 6.2 and
Figure 6.1 show the results of these experiments.
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parameters (5,4,5) (6,5,5) (7,5,6) (8,6,6) (9,6,7) (10,7,7) (11,7,8) (12,8,8)
no guessing 4.5 s 34.4 s 4.2 m 33.8 m 273.2 m 41.7 h - -

30.5 MB 82.5 MB 460 MB 1,416 MB 7,041 MB 21,949 MB ooM
1 guessed 1.7 s 12.2 s 2.0 m 7.0 m 98.7 m 8.6 h 86.7 h 22.9 d

9.4 MB 11.7 MB 21.3 MB 65.7 MB 201.7 MB 782 MB 1,750 MB 2,425 MB
2 guessed 1.5 s 9.6 s 1.0 m 5.3 m 41.2 m 4.7 h 21.6 h 6.2 d

9.0 MB 16.4 MB 17.5 MB 29.7 MB 93.6 MB 116.2 MB 231.1 MB 306.4 MB
3 guessed 2.9 s 16.7 s 1.5 m 8.5 m 47.3 m 5.8 h 25.6 h 4.5 d

8.2 MB 10.7 MB 15.3 MB 18.6 MB 29.7 MB 34.2 MB 43.6 MB 58.7 MB
4 guessed 6.1 s 32.7 s 12.9 m 15.3 m 80.6 m 7.0 h 47.8 h 6.1 d

8.5 MB 10.3 MB 11.7 MB 13.2 MB 16.4 MB 20.3 MB 29.8 MB 35.7 MB
5 guessed 19.3 s 97.2 s 8.1 m 40.1 m 199.1 m 16.3 h 82.2 h 25.4 d

8.3 MB 9.4 MB 11.3 MB 12.8 MB 14.6 MB 16.5 MB 21.3 MB 28.8 MB
6 guessed 68.7 s 327.9 s 26.0 m 123.9 m 591.3 m 47.1 h 223.5 h 44.3 d

8.1 MB 9.3 MB 10.6 MB 11.7 MB 14.1 MB 15.9 MB 20.7 MB 27.3 MB
7 guessed 168.8 s 780.3 s 59.9 m 278.0 m 1,284 m 98.5 h 456.8 h 88.0 d

8.2 MB 9.1 MB 10.5 MB 11.4 MB 13.9 MB 18.7 MB 26.9 MB 30.1 MB
8 guessed 785.4 s 3,542 s 269.0 m 1,227 m 5,529 m 417.3 h 1,885 h 355.9 d

8.2 MB 9.3 MB 10.4 MB 11.3 MB 13.6 MB 17.8 MB 25.3 MB 28.7 MB

Table 6.2: Running time of solving Rainbow systems over GF(16) with MAGMA

As both Table 6.2 and the extrapolation in Figure 6.1 show, the public systems of Rainbow behave
very similar to random systems. Therefore, the numbers m shown in the third column of Table
5.5 are high enough to defend a Rainbow scheme against direct attacks.

Remark 6.4. As we found, the actual layer structure of Rainbow has no significant effect on the
running time of direct attacks. In particular, the running time of our experiments was independent
of the number v1 = n−m of variables we fixed to get a determined system.

However, the numbers presented in Table 5.5 are not high enough to guarantee the collision
resistance of a hash function. So, to reach a security level of ` bit, the number of equations in
Rainbow schemes over GF(16) has to be chosen as

m
GF(16)
Rainbow(y) = d2 · `(y)

lg(16)
e = d`(y)

2
e. (6.8)

The number ou of equations in the last Rainbow layer is determined by complexity of the HighRank
attack. For Rainbow schemes over GF(16) we get thereby (see equation (6.3))

o
GF(16)
u Rainbow(y) = d

¯̀(y)− 3 · lgmGF(16)
Rainbow(y) + lg 6
4

e. (6.9)

6.2.2 Number of Variables

As stated in the previous section, the number of variables n required for the security of the Rainbow
scheme is determined by the complexities of the MinRank, the UOV, the UOV-Reconciliation and
the Rainbow-Band-Separation attack. Hereby, equations (6.4), (6.5) and (6.6) give a lower bound
on n. We find that, for y ≤ 2035, this number is determined by the UOV-Reconciliation attack,
while, for y > 2035, n is determined by the complexity of the UOV attack. Therefore we get
(see equations (6.6) and (6.5))

n
GF(16)
Rainbow(y) = o

GF(16)
u Rainbow(y) +m

GF(16)
Rainbow(y) (y ≤ 2035) or

n
GF(16)
Rainbow(y) = d

¯̀(y)− 4 · lg oGF(16)
u Rainbow(y) + 4 · (2 · oGF(16)

u Rainbow(y) + 1)
4

e (y > 2035). (6.10)
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Figure 6.1: Running time of the direct attack against Rainbow schemes over GF(16) with guessing

# equations 9 10 11 12 13 14
(v1, o1, o2) (5,4,5) (5,5,5) (6,5,6) (7,6,6) (7,6,7) (9,7,7)
time (s) 1.2 2.2 94.2 1,558 3,659 46,438

(v1, o1, o2) (6,4,5) (6,5,5) (7,5,6) (8,6,6) (8,6,7) (10,7,7)
time (s) 4.8 44.2 1,550 4,775 26,103 163,207

for comparison: running time of the direct attack
time (s) 4.5 34.4 255 2,027 16,405 150,120

Table 6.3: Running time of the RBS attack against Rainbow schemes over GF(16)

To check whether this number is high enough to defend the scheme against the Rainbow-Band-
Separation (RBS) attack, we carried out some experiments to estimate the running time of this
attack (see Table 6.3). We implemented the Rainbow-Band-Separation attack (as shown in Sub-
section 3.6.4) in MAGMA and ran it for different parameter sets. The systems appearing during
the attack were solved with the F4 algorithm integrated in MAGMA. By doing so, we found for
some small m the minimal number nRBS of variables such that

complexityRBS attack(16,m, nRBS) ≥ complexitydirect attack(16,m). (6.11)

For our small examples (see Table 6.3), this number is approximately given by

n
GF(16)
RBS ≈ 5

3
·m. (6.12)

A theoretical analysis with the F5 algorithm (see Figure 6.2) shows that this nGF(16)
RBS is high enough

to defend the scheme against the RBS attack for arbitrary m. However, this number is lower than
the bound given by equation (6.10). Therefore, choosing the number n according to equation
(6.10) leads to Rainbow schemes which are also secure against the RBS attack.
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Figure 6.2: Complexity of the RBS attack against Rainbow schemes over GF(16)

6.2.3 Parameter Choice

Table 6.4 shows the proposed parameters for Rainbow schemes over GF(16) for the years 2012 -
2050. The parameters are optimized for small key sizes (both public and private).

To find these parameter sets, we applied the following strategy:
First, we used equation (6.8) to find the minimal number mGF(16)

Rainbow of equations needed to guar-
antee the security of Rainbow in the year y. Using this mGF(16)

Rainbow we computed the number of
equations needed in the last Rainbow layer oGF(16)

u Rainbow by formula (6.9). Finally, we used both
m

GF(16)
Rainbow and o

GF(16)
u Rainbow to compute the required number of variables in the scheme by formula

(6.10).

Table 6.5 presents our parameter recommendations for Rainbow schemes over GF(16) to meet
given levels of security. As in Table 6.4, the number of equations is determined by the required
length of the hash value (equation (6.8)).

6.3 Rainbow Schemes over GF(31)

In [11] Chen et al. suggested to use multivariate schemes over the field GF(31). Using this
field seems to be especially appropriate on PC’s with modern CPU’s supporting the SSE vector
instruction set extensions. In this section we want to find the optimal parameters for the Rainbow
signature scheme over GF(31) guaranteeing the security of the scheme for the years 2012 to 2050.
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year symmetric required example scheme public key private key hash size signature
key size (bit) m ou n (v1, o1, o2) size (kB) size (kB) (bit) size (bit)

1982 56
2010 78 39 17 56 (17, 22, 17) 31.5 20.9 156 224
2011 79 40 17 57 (17, 23, 17) 33.4 21.9 160 228
2012 79 40 17 57 (17, 23, 17) 33.4 21.9 160 228
2013 80 40 17 57 (17, 23, 17) 33.4 21.9 160 228
2014 81 41 18 59 (18, 23, 18) 35.6 23.6 164 236
2015 82 41 18 59 (18, 23, 18) 36.6 24.2 164 236
2016 83 42 18 60 (18, 24, 18) 37.7 24.8 168 240
2017 83 42 19 61 (19, 23, 19) 38.9 26.0 168 244
2018 84 42 19 61 (19, 23, 19) 40.1 26.6 168 244
2019 85 43 19 62 (19, 24, 19) 41.2 27.2 172 248
2020 86 43 20 63 (20, 23, 20) 43.7 29.2 172 252
2021 86 43 20 63 (20, 23, 20) 43.7 29.2 172 252
2022 87 44 20 64 (20, 24, 20) 44.9 29.8 176 256
2023 88 44 21 65 (21, 23, 21) 47.5 31.9 176 260
2024 89 45 21 66 (21, 24, 21) 48.8 32.6 180 264
2025 89 45 21 66 (21, 24, 21) 48.8 32.6 180 264
2026 90 45 22 67 (22, 23, 22) 51.5 34.8 180 268
2027 91 46 22 68 (22, 24, 22) 52.9 35.5 184 272
2028 92 46 23 69 (23, 23, 23) 55.8 37.8 184 276
2029 93 47 23 70 (23, 24, 23) 57.2 38.6 188 280
2030 93 47 23 70 (23, 24, 23) 57.2 38.6 188 280
2031 94 47 23 70 (23, 24, 23) 58.7 39.4 188 280
2032 95 48 24 72 (25, 24, 24) 63.3 44.1 192 288
2033 96 48 24 72 (24, 24, 24) 63.3 42.7 192 288
2034 96 48 24 72 (24, 24, 24) 63.3 42.7 192 288
2035 97 49 25 75 (27, 24, 25) 70.0 49.3 196 304
2036 98 49 25 75 (26, 24, 25) 70.0 47.8 196 300
2037 99 50 26 78 (29, 24, 26) 77.1 54.8 200 316
2038 99 50 26 78 (29, 24, 26) 77.1 54.8 200 316
2039 100 50 26 78 (28, 24, 26) 77.1 53.2 200 312
2040 101 51 27 80 (30, 24, 27) 82.7 58.9 204 324
2041 102 51 27 81 (30, 24, 27) 84.7 58.9 204 324
2042 102 51 27 81 (30, 24, 27) 84.7 58.9 204 324
2043 103 52 28 83 (32, 24, 28) 90.6 65.0 208 336
2044 104 52 28 84 (32, 24, 28) 92.8 65.1 208 336
2045 105 53 28 84 (32, 25, 28) 94.6 67.4 212 340
2046 106 53 29 87 (34, 24, 29) 101.3 71.7 212 348
2047 106 53 29 87 (34, 24, 29) 101.3 71.7 212 348
2048 107 54 29 87 (34, 25, 29) 103.3 74.1 216 352
2049 108 54 30 90 (36, 24, 30) 110.4 78.6 216 360
2050 109 55 30 90 (35, 25, 30) 112.4 79.1 220 360

Table 6.4: Recommended Parameters for Rainbow over GF(16)
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security parameters public key private key hash size signature
level (bit) (v1, o1, o2) size (kB) size (kB) (bit) size (bit)

80 (17,23,17) 33.4 21.9 160 228
100 (22,28,22) 65.9 42.7 200 288
128 (29,35,29) 139.5 89.3 256 372
192 (43,53,43) 462.7 287.4 384 556
256 (59,69,59) 1,110.4 687.2 512 748

Table 6.5: Recommended Parameters for Rainbow over GF(16) for different levels of security

6.3.1 Data Conversion between GF(31) and {0, 1}?

Since both hash values and signatures are usually given as bit strings, one needs to convert elements
of {0, 1}? into elements of GF(31) and vice versa. To store the keys, it is necessary to convert
elements of GF(31) into bit strings, too.
Analogously to [11] we use the following data conversion between GF(31) and {0, 1}?:

• 3 elements of GF(31) fit into a 2-byte block and

• an 8-byte block fits into 13 elements of GF(31).

While the second transformation is relatively strict, the transformation from GF(31) to {0, 1}? is
not optimal. In fact, we would need only 15 bits to store 3 elements of GF(31) instead of 16 as in
the upper transformation. So, with a better data conversion it would be possible to reach smaller
key sizes and signatures. However, for the reason of simplicity, we use the same transformations
as in [11].

6.3.2 Number of Equations

In this subsection we want to find the minimal number of equations needed for the security of the
Rainbow scheme over GF(31) in the year y (2012 ≤ y ≤ 2050). This number is determined by the
complexity of direct attacks and the required length of the hash function (see Section 6.1).
To estimate the impact of direct attacks we carried out a large number of experiments of solving the
public systems of Rainbow over GF(31) with MAGMA’s F4 algorithm. Again we had to convert
the underdetermined Rainbow systems into determined ones by fixing n−m of the variables before
applying the MAGMA function Variety. By further guessing 1, 2, 3 or 4 additional variables
we created overdetermined systems to see whether this reduces the time needed to find a solution
of the system. When guessing k variables, one has to run the F4 algorithm 31k times to find a
solution of the original system. Table 6.6 shows the results of these experiments. Figure 6.3 shows
the datapoints of the table together with an extrapolation to larger systems.

As both Table 6.6 and Figure 6.3 show, Rainbow systems over GF(31) behave very much like
random systems over this field. Therefore, the numbers presented in the fourth column of Table
5.5 are high enough to defend a Rainbow scheme over GF(31) against direct attacks.
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parameters (5,4,5) (6,5,5) (7,5,6) (8,6,6) (9,6,7) (10,7,7) (11,7,8) (12,8,8)
no guessing 4.7 s 35.3 s 4.3 m 35.2 m 285.9 m 39.3 h - -

30.1 MB 82.9 MB 385 MB 1,268 MB 6,184 MB 24,502 MB ooM
1 guessed 4.3 s 29.6 s 3.4 m 19.7 m 152.0 m 15.5 h 134.3 h 28.4 d

9.1 MB 9.3 MB 12.7 MB 28.5 MB 81.1 MB 282 MB 1,023 MB 1,679 MB
2 guessed 7.4 s 45.7 s 4.5 m 22.7 m 197.5 h 16.8 h 130.5 h 20.3 d

7.4 MB 8.0 MB 8.2 MB 9.9 MB 15.7 MB 41.7 MB 105.6 MB 307.6 MB
3 guessed 31.4 s 170.9 s 15.1 m 82.9 m 447.2 m 40.5 h 176.6 h 30.1 d

7.0 MB 8.2 MB 8.4 MB 8.5 MB 10.8 MB 13.4 MB 23.3 MB 35.2 MB
4 guessed 92.4 s 486.0 s 42.3 m 222.3 m 1,167 m 102.5 h 487.4 h 80.9 d

7.0 MB 8.3 MB 8.6 MB 9.1 MB 9.6 MB 10.2 MB 13.3 MB 16.5 MB

Table 6.6: Running time of solving Rainbow systems over GF(31) with MAGMA
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Figure 6.3: Running time of the direct attack against Rainbow schemes over GF(31)
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# equations 9 10 11 12 13 14
(5,4,5) (6,5,5) (6,5,6) (8,6,6) (8,6,7) (9,7,7)

time (s) 2.1 22.2 60.9 1,102 2,988 44,491
(6,4,5) (7,5,5) (7,5,6) (9,6,6) (9,6,7) (10,7,7)

time (s) 6.9 41.2 299.2 4,091 21,302 415,458
for comparison: running time of the direct attack

time (s) 4.7 35.3 263 2,132 17,186 141,565

Table 6.7: Complexity of the RBS attack against Rainbow Schemes over GF(31)

However, for the years y ≤ 2035 these numbers are not high enough to guarantee the collision
resistance of the hash function in use. So, the minimal number of equations required for a Rainbow
scheme over GF(31) being secure in the year y is given by

m
GF(31)
Rainbow(y) = d2 · `(y)

lg(31)
e (y ≤ 2035) or

m
GF(31)
Rainbow(y) = d

¯̀(y)− 13.0
2.5

e(y > 2035). (6.13)

The minimal number ou of equations in the last Rainbow layer is determined by the complexity
of the HighRank attack. For Rainbow schemes over GF(31) we get (see equation (6.3))

o
GF(31)
u Rainbow(y) = d

¯̀(y)− 3 · lgmGF(31)
Rainbow(y) + lg 6

lg(31)
e. (6.14)

6.3.3 Number of Variables

The number n of variables needed in a Rainbow scheme is determined by the complexities of the
MinRank, the UOV, the UOV-Reconciliation and the Rainbow-Band-Separation attack. Let us
first take a look at the first three of these attacks which give a lower bound for n. We found
that, for y ≤ 2032, this lower bound is determined by the UOV-Reconciliation attack, while for
y ≥ 2033 the UOV attack is more efficient. Therefore we get (see equations (6.5) and (6.6))

n
GF(31)
Rainbow (y) = m

GF(31)
Rainbow(y) + o

GF(31)
u Rainbow(y) (y ≤ 2032) or

n
GF(31)
Rb = d

¯̀(y)− 4 · lg oGF(31)
uRainbow(y) + lg(31) · (2 · oGF(31)

u Rainbow(y) + 1)
lg(31)

e (y > 2032).(6.15)

To estimate the running time of the Rainbow-Band-Separation (RBS) attack, we carried out a
number of computer experiments. We implemented the RBS attack as shown in Subsection 3.6.4
in MAGMA and used it to attack Rainbow schemes over GF(31) with different parameter sets
(see Table 6.7). The quadratic systems were solved with the F4 algorithm integrated in MAGMA.

For our small example parameters we found that for nGF(31)
RBS ≈ 5

3 ·m we get

complexityRBS attack(31,m, nGF(31)
RBS ) ≥ complexitydirect attack(31,m) (9 ≤ m ≤ 14) (6.16)

The theoretical analysis with F5 (see Figure 6.4) shows that this relation holds for all m ≤ 60 (i.e.
for the values of m we need to guarantee the security of the scheme). As we find, the number
n

GF(31)
RBS is less than the lower bound of equation (6.15). Therefore, by choosing the number of

variables according to (6.15) we get Rainbow parameters which are secure against the Rainbow-
Band-Separation attack, too.
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Figure 6.4: Running time of the RBS attack against Rainbow schemes over GF(31)

6.3.4 Parameter Choice

Table 6.8 presents the recommended parameters for Rainbow schemes over GF(31) for the years
2012 - 2050. The parameters are optimized for small key sizes (both public and private).

The parameters proposed in Table 6.8 are identified as follows: First we used equation (6.13)
to find the minimal number of equations mGF(31)

Rainbow required for the security of the scheme in the
year y. We then used this number to compute the minimal number oGF(31)

u Rainbow of equations in the
last Rainbow layer (equation (6.14)). Finally, we used both m

GF(31)
Rainbow and o

GF(31)
u Rainbow to compute

the required number of variables (following equation (6.15)).

Table 6.9 presents our parameter recommendations for Rainbow schemes over GF(31) to meet
given levels of security. The number of equations is hereby given by the required length of the
hash value.

6.4 Rainbow Schemes over GF(256)

6.4.1 Number of Equations

In this subsection we want to find the number m of equations needed in a Rainbow scheme over
GF(256) to reach a given level of security. As we find, this number is mainly determined by direct
attacks or signature forgery attacks. To find the minimal number m for Rainbow schemes over
GF(256), we carried out a large number of experiments of solving the public systems of Rainbow
over GF(256) with MAGMA’s [8] implementation of the F4 algorithm. Before we could apply
the MAGMA function Variety, we had to convert the underdetermined Rainbow systems into
determined ones by fixing n−m of the variables. By further guessing 1, 2 or 3 additional variables
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year symmetric key required example scheme public key private key hash signature
size (bit) m ou n (v1, o1, o2) size (kB) (kB) size (bit) size (bit)

1982 56
2010 78 32 14 46 (14, 18, 14) 23.5 16.0 176 248
2011 79 33 14 47 (14, 19, 14) 25.3 17.0 176 256
2012 79 33 14 47 (14, 19, 14) 25.3 17.0 176 256
2013 80 33 14 47 (14, 19, 14) 25.3 17.0 176 256
2014 81 33 14 47 (14, 19, 14) 25.3 17.0 176 256
2015 82 34 15 49 (15, 19, 15) 28.2 19.1 184 264
2016 83 34 15 51 (17, 19, 15) 30.5 21.1 184 272
2017 83 34 15 52 (18, 19, 15) 31.7 22.2 184 280
2018 84 35 16 52 (17, 19, 16) 32.6 22.5 192 280
2019 85 35 16 52 (17, 19, 16) 32.6 22.5 192 280
2020 86 35 16 53 (18, 19, 16) 33.8 23.6 192 288
2021 86 35 16 54 (19, 19, 16) 35.1 24.7 192 288
2022 87 36 17 57 (21, 19, 17) 40.1 28.6 192 304
2023 88 36 17 57 (21, 19, 17) 40.1 28.6 192 304
2024 89 37 17 58 (21, 20, 17) 42.6 30.1 200 312
2025 89 37 17 58 (21, 20, 17) 42.6 30.1 200 312
2026 90 37 18 58 (21, 19, 18) 42.6 30.2 200 312
2027 91 37 18 61 (24, 19, 18) 47.0 34.2 200 328
2028 92 38 18 63 (25, 20, 18) 51.5 37.3 208 336
2029 93 38 19 63 (25, 19, 19) 51.5 37.4 208 336
2030 93 38 19 63 (25, 19, 19) 51.5 37.4 208 336
2031 94 39 19 63 (24, 20, 19) 52.8 37.8 208 336
2032 95 39 20 65 (26, 19, 20) 56.1 40.9 208 352
2033 96 40 20 68 (28, 20, 20) 62.9 46.0 216 368
2034 96 40 20 68 (28, 20, 20) 62.9 46.0 216 368
2035 97 41 20 69 (28, 21, 20) 66.3 48.2 224 368
2036 98 42 21 70 (28, 21, 21) 69.9 50.5 224 376
2037 99 42 21 70 (28, 21, 21) 69.9 50.5 224 376
2038 99 42 21 70 (28, 21, 21) 69.9 50.5 224 376
2039 100 43 21 73 (30, 22, 21) 77.7 56.4 232 392
2040 101 44 22 75 (31, 22, 22) 83.8 60.9 240 400
2041 102 44 22 75 (31, 22, 22) 83.8 60.9 240 400
2042 102 44 22 75 (31, 22, 22) 83.8 60.9 240 400
2043 103 45 23 76 (31, 22, 23) 88.0 63.6 240 408
2044 104 46 23 77 (31, 23, 23) 92.3 66.2 248 416
2045 105 47 23 80 (33, 24, 23) 101.6 73.3 256 432
2046 106 47 23 82 (35, 24, 23) 106.7 77.9 256 440
2047 106 48 24 82 (34, 24, 24) 108.9 78.7 256 440
2048 107 48 24 82 (34, 24, 24) 108.9 78.7 256 440
2049 108 49 24 83 (34, 25, 24) 113.9 81.7 264 448
2050 109 49 25 84 (35, 24, 25) 116.6 84.3 264 448

Table 6.8: Recommended Parameters for Rainbow over GF(31)



6.4. RAINBOW SCHEMES OVER GF(256) 83

security parameters public key private key hash size signature
level (bit) (v1, o1, o2) size (kB) size (kB) (bit) size (bit)

80 (14,19,14) 25.3 17.0 160 256
100 (18,23,18) 48.8 32.3 200 320
128 (23,29,23) 99.1 64.0 256 400
192 (35,43,35) 270.6 209.4 384 608
256 (48,56,48) 663.5 498.4 512 816

Table 6.9: Recommended Parameters for Rainbow over GF(31) for different levels of security

parameters (5,4,5) (6,5,5) (7,5,6) (8,6,6) (9,6,7) (10,7,7) (10,7,8) (11,8,8)

no guessing 5.3 s 40.6 s 4.9 m 39.7 m 5.3 h 46.8 h - -
28.1 MB 96.2 MB 345 MB 1,163 MB 7,419 MB 35,173 MB ooM

guessing 1 variable 128.0 s 329.6 s 31.4 m 245.8 m 40.4 h 266.6 h 78.0 d 435.9 d
9.9 MB 10.3 MB 11.2 MB 23.4 MB 76.1 MB 283 MB 989 MB 3,954 MB

guessing 2 variables 9.1 m 53.7 m 381.5 m 32.6 h 120.9 h 50.6 d 229.8 d 1,886 d
8.2 MB 8.2 MB 8.4 MB 10.3 MB 14.8 MB 41 MB 121 MB 334 MB

guessing 3 variables 307.4 m 1,673 m 152.6 h 835.4 h 172.4 d 1,598 d 4,751 d 20,247 d
8.1 MB 8.4 MB 8.7 MB 9.0 MB 11.2 MB 17.8 MB 24.8 MB 51.7 MB

Table 6.10: Running time of solving Rainbow systems over GF(256) with MAGMA

we created overdetermined systems to see whether this reduces the time needed to find a solution
of the system. When guessing k variables, one has to run the F4 algorithm 256k times to find
a solution of the original system. Table 6.10 shows the results of these experiments. Figure 6.5
shows the datapoints of the table as well as an extrapolation for larger values of m.
As a comparison to Table 5.6 and Figure 5.6 shows, the public systems of Rainbow behave very
similar to random systems. We can therefore use the values shown in the fifth column of Table
5.5 to build secure Rainbow schemes. Note that these numbers are much higher than needed for
the collision resistance of the hash function.

We therefore get (see equation (5.17))

m
GF(256)
Rainbow(y) = d

¯̀(y)− 12.1
2.65

e. (6.17)

The number ou of equations in the last Rainbow layer is determined by the complexity of the
HighRank attack. For Rainbow schemes over GF(256) we get thereby (see equation (6.3))

o
GF(256)
u Rainbow(y) = d

¯̀(y)− 3 · lgmGF(256)
Rainbow(y) + lg 6
8

e. (6.18)

6.4.2 Number of Variables

The number of variables needed in a Rainbow scheme is determined by the complexities of the
MinRank, the UOV, the UOV-Reconciliation and the Rainbow-Band-Separation attack. For Rain-
bow schemes over GF(256) we find that the Rainbow-Band-Separation (RBS) attack is the most
efficient of these attacks. To estimate the complexity of the RBS attack against Rainbow schemes
over GF(256), we carried out a number of experiments with MAGMA. We implemented the RBS
attack as shown in Subsection 3.6.4 in MAGMA code and used it to attack Rainbow instances
over GF(256) with different parameter sets. The quadratic systems appearing during the attack
were solved with the F4 algorithm integrated in MAGMA. Table 6.11 shows the results.
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Figure 6.5: Running time of the direct attack against Rainbow schemes over GF(256) with guessing
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# equations 9 10 11 12 13 14
(5,4,5) (6,5,5) (8,5,6) (8,6,6) (8,6,7) (10,7,7)

time (s) 1.3 12.6 115.2 1,141 3,115 46,438
(6,4,5) (7,5,5) (9,5,6) (9,6,6) (9,6,7) (11,7,7)

time (s) 20.9 44.2 693.3 4206 22,064 936,659
for comparison: running time of the direct attack

time (s) 5.3 40.6 292.5 2,382 19,031 168,578

Table 6.11: Running time of the RBS attack against Rainbow schemes over GF(256)

security parameters public key private key hash size signature
level (bit) (v1, o1, o2) size (kB) size (kB) (bit) size (bit)

80 (17,17,9) 25.1 18.8 208 344
100 (26,22,11) 59.0 44.4 264 472
128 (36,28,15) 136.1 101.3 344 632
192 (63,46,22) 582.9 430.3 544 1048
256 (85,63,30) 1,463.1 1,061.4 744 1424

Table 6.12: Recommended parameters for Rainbow over GF(256) for different levels of security

As Table 6.11 shows, we get for our small examples

complexityRBS attack(256,m,
5
3
·m) ≥ complexitydirect attack(256,m). (6.19)

Furthermore, we analyzed the RBS attack theoretically when solving the quadratic systems with
the HybridF5 algorithm (see Figure 6.6) to find for 20 ≤ m ≤ 50 the minimal number nGF (256)

RBS

such that

complexityRBS attack(256,m, nGF(256)
RBS ) ≥ complexitydirect attack(256,m). (6.20)

This analysis shows, that for large m, we need a bit more variables than indicated by (6.19). The
values of n shown in Table 6.13 are derived by this analysis.

6.4.3 Parameter Choice

Table 6.13 shows our parameter recommendations for Rainbow schemes over GF(256) for the years
2012 - 2050. The parameters are optimized for small key sizes (both public and private).

To get the parameters proposed in Table 6.13, we first used equation (6.17) to compute the
number of equations mGF(256)

Rainbow needed for the security of the Rainbow scheme in the year y. We
used this number and equation (6.18) to compute the number oGF(256)

u Rainbow of equations in the last
Rainbow layer and finally determined the required number of variables by the theoretical analysis
of the Rainbow-Band-Separation attack.

Table 6.12 presents our parameter recommendations for Rainbow schemes over GF(256) to meet
given levels of security.
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symmetric required example scheme public key private key hash signature
year key size m ou n (v1, o1, o2) size (kB) size (kB) size (bit) size (bit)
1982 56
2010 78 25 9 42 (17,16,9) 23.1 17.5 200 336
2011 78 25 9 42 (17,16,9) 23.1 17.5 200 336
2012 79 26 9 43 (17, 17, 9) 25.1 18.8 208 344
2013 80 26 9 44 (18, 17, 9) 26.3 19.8 208 352
2014 81 26 9 46 (20, 17, 9) 28.6 22.1 208 368
2015 82 27 9 47 (20, 18, 9) 31.0 23.6 216 376
2016 83 27 10 47 (20, 17, 10) 31.0 23.7 216 376
2017 83 28 10 48 (20, 18, 10) 33.5 25.2 224 384
2018 84 28 10 48 (20, 18, 10) 33.5 25.2 224 384
2019 85 28 10 50 (22, 18, 10) 36.3 27.8 224 400
2020 86 29 10 53 (24, 19, 10) 42.1 32.5 232 424
2021 86 30 10 54 (24, 20, 10) 45.1 34.4 240 432
2022 87 30 11 54 (24, 19, 11) 45.1 34.5 240 432
2023 88 30 11 54 (24, 19, 11) 45.1 34.5 240 432
2024 89 31 11 55 (24, 20, 11) 48.3 36.5 248 440
2025 89 32 11 56 (24, 21, 11) 51.7 38.6 256 448
2026 90 32 11 58 (26, 21, 11) 55.3 42.1 256 464
2027 91 33 11 59 (26, 22, 11) 59.0 44.4 264 472
2028 92 33 12 59 (26, 21, 12) 59.0 44.5 264 472
2029 93 34 12 60 (26, 22, 12) 62.8 46.9 272 480
2030 93 34 12 60 (26, 22, 12) 62.8 46.9 272 480
2031 94 35 12 62 (27, 23, 12) 68.9 51.3 280 496
2032 95 35 12 65 (30, 23, 12) 75.6 57.6 280 520
2033 96 36 13 66 (30, 23, 13) 80.1 60.5 288 528
2034 96 37 13 67 (30, 24, 13) 84.8 63.5 296 536
2035 97 37 13 67 (30, 24, 13) 84.8 63.5 296 536
2036 98 38 13 68 (30, 25, 13) 89.6 66.6 304 544
2037 99 38 13 69 (31, 25, 13) 92.2 69.0 304 552
2038 99 39 13 70 (31, 26, 13) 97.3 72.2 312 560
2039 100 39 14 72 (33, 25, 14) 102.9 77.4 312 576
2040 101 40 14 73 (33, 26, 14) 108.4 80.9 320 584
2041 102 40 14 73 (33, 26, 14) 108.4 80.9 320 584
2042 102 41 14 74 (33, 27, 14) 114.1 84.5 328 592
2043 103 41 14 74 (33, 27, 14) 114.1 84.5 328 592
2044 104 41 14 77 (36, 27, 14) 123.4 93.1 328 616
2045 105 42 15 78 (36, 27, 15) 129.6 97.2 336 624
2046 106 43 15 79 (36, 28, 15) 136.1 101.3 344 632
2047 106 43 15 79 (36, 28, 15) 136.1 101.3 344 632
2048 107 44 15 80 (36, 29, 15) 142.7 105.4 352 640
2049 108 45 15 81 (36, 30, 15) 149.5 109.7 360 648
2050 109 45 15 84 (39, 30, 15) 160.6 120.0 360 672

Table 6.13: Recommended parameters for Rainbow over GF(256)
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GF(16) GF(31) GF(256)
public key private key public key private key public key private key

year size (kB) size (kB) size (kB) size (kB) size (kB) size (kB)
2012 33.4 21.9 25.3 17.0 25.1 18.8
2015 36.6 24.2 28.2 19.1 31.0 23.6
2020 43.7 29.2 33.8 23.6 42.1 32.5
2030 57.2 38.6 51.5 37.4 62.8 46.9
2040 82.7 58.9 83.8 60.9 108.4 80.9
2050 112.4 79.1 116.6 84.3 160.6 120.0

Table 6.14: Key sizes (in kB) of Rainbow schemes over different fields for the years 2012 - 2050

security GF(16) GF(31) GF(256)
level public key private key public key private key public key private key
(bit) size (kB) size (kB) size (kB) size (kB) size (kB) size (kB)
80 33.4 21.9 25.3 17.0 26.3 18.8
100 65.9 42.7 48.8 32.3 59.0 44.4
128 139.5 89.3 99.1 64.0 136.1 101.3
192 462.7 287.3 270.6 209.4 582.9 430.3
256 1,110.4 687.2 663.5 498.4 1,463.1 1,061.5

Table 6.15: Key sizes (in kB) of Rainbow schemes over different fields for different levels of security

6.5 Summary and Comparison

In this section we summarize the results presented in the previous sections. We compare Rainbow
schemes over the three fields GF(16), GF(31) and GF(256) in terms of key sizes and signature
lengths.

6.5.1 Key Sizes

The Tables 6.14 and 6.15 show the key sizes of Rainbow schemes over GF(16), GF(31) and
GF(256).

As we can see from Table 6.14, choosing GF(31) as underlying field seems to be a good choice to
get small key sizes for Rainbow for now and the next 25 years. Starting from the year 2039, the
key sizes of Rainbow schemes over GF(16) are the smallest ones.
When we compare Rainbow schemes of the same security level (see Table 6.15), the situation looks
similar: Again we get the smallest keys for Rainbow schemes over GF(31). For Rainbow schemes
over GF(16) the number of equations increases much faster than for Rainbow schemes over larger
fields to meet the length of a collision resistant hash function. Therefore, using Rainbow over
GF(16) does not help to decrease the key sizes in this context.
An interesting fact hereby is the ratio between the public and private key size of Rainbow schemes.
In the year 2012 this ratio is about 1.3 for Rainbow over GF(256) and 1.5 for Rainbow over GF(16)
and GF(31). The reason for this is the different ratio between the number of variables and the
number of equations (1.6 and 1.4 for Rainbow schemes over GF(256) and GF(16) respectively).
The reason for this again is that for Rainbow schemes over GF(256) the Rainbow-Band-Separation
attack plays a major role, while, for Rainbow schemes over smaller fields, the number of variables
is determined by the MinRank and the UOV-Reconciliation attack.
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Signature size (bit) of
Rainbow schemes over

year GF(16) GF(31) GF(256)
2012 228 256 344
2015 236 264 376
2020 252 288 424
2030 280 336 480
2040 324 400 584
2050 360 448 672

Table 6.16: Signature sizes (in bit) of Rainbow schemes over different fields for the years 2012 -
2050

security Signature size (bit) of
level Rainbow schemes over
(bit) GF(16) GF(31) GF(256)

80 228 256 344
100 288 320 472
128 372 400 632
192 556 608 1,048
256 748 816 1,424

Table 6.17: Signature sizes (in bit) of Rainbow schemes over different fields for different levels of
security

6.5.2 Signature Lengths

The Tables 6.16 and 6.17 compare Rainbow schemes over GF(16), GF(31) and GF(256) in terms
of the signature length.

As we see from the tables, we get the shortest signatures when using Rainbow over GF(16). These
signatures are about 10 to 20 percent shorter than the signatures one gets when using Rainbow
over GF(31). The signatures of Rainbow schemes over GF(256) are much longer and this difference
in length will increase over time.
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Part II

Reducing Key Sizes for
Multivariate Schemes
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One of the biggest problems of multivariate cryptosystems is the large size of their public (and
private) keys. In this second part of the thesis we present an approach to reduce the public key size
of the UOV and Rainbow signature schemes without weakening the security of the schemes. We
achieve our results by generating UOV and Rainbow instances with structured public keys. Un-
fortunately it does not seem to be possible to generate a UOV or Rainbow scheme with completely
structured public key. The Macauley matrix MP of the public key P of our schemes therefore
consists out of two parts B and C, i.e. we have MP = (B|C) with a structured matrix B and
a matrix C without visible structure. The structure inside the matrix B enables us to give a
compact representation of this matrix and therefore of the public key. This leads to a significant
reduction of the public key size of factors of up to 8.0 (UOV) and 3.1 (Rainbow). Furthermore,
we can use our approach to get some results about ”provable security” of the UOV scheme. The
structure of the matrix B can also be used to speed up the verification process of our schemes.
We achieve here a speed up of factors of up to 6.1 and 2.4 for UOV and Rainbow respectively.
By applying our technique to the QUAD stream cipher, we can increase the data throughput of
QUAD by a factor of 6.8.

In the first chapter of this part (Chapter 7) we present our general approach to generate UOV
and Rainbow instances with structured public keys. In Chapter 8 we describe several improved
versions of the UOV signature scheme which reduce the public key size of the original scheme by
large factors. We discuss the security of these schemes and compare our schemes with the original
UOV signature scheme in terms of the public key size. Furthermore we present in this chapter
a scheme called UOVrand, which offers some kind of provable security and give details about
the implementation of our schemes. Chapter 9 presents two improved versions of the Rainbow
signature scheme which reduce the public key size of the original scheme by large factors. We
analyze the efficiency of the known attacks on Rainbow against our improved versions and give
details about the implementation of our schemes. In Chapter 10 we show how the structure in the
public key of our improved versions of UOV and Rainbow can be used to speed up the verification
process of the signature schemes. The analysis is done both theoretically and experimentally us-
ing C implementations of our schemes. Finally, Chapter 11 applies our techniques to the QUAD
stream cipher and shows how the key stream generation process of QUAD can be sped up by using
structured polynomials. We discuss the security of these constructions and present the results of
our computer experiments.
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Chapter 7

The General Approach

In this chapter we present our general approach to reduce the public key size of the UOV and
Rainbow signature schemes. We achieve this reduction by inserting a structured matrix B into
the Macauley matrix MP of the public key. Our construction allows the user to fix a major part
of the public key and to compute out of it the central map of the scheme (see Figures 7.3 and
7.6). Section 7.1 shows, how this can be done for the UOV signature scheme and in Section 7.2
we describe how our technique can be extended to Rainbow.

7.1 UOV

Recall that the public key of the UOV signature scheme is given by

P = F ◦ T , (7.1)

where F is a UOV central map and T is a randomly chosen affine invertible map (given by an
n× n matrix MT = (tij)ni,j=1 and a vector cT ∈ Fn).

Let f (k)
ij and p

(k)
ij be the coefficients of the monomial xixj in the k-th component of F and P

respectively (1 ≤ i ≤ j ≤ n, 1 ≤ k ≤ o). Note that, due to the special structure of the UOV
central map F , some of the coefficients f (k)

ij are fixed to 0. In particular, we have

f
(k)
ij = 0 ∀i ∈ O ∧ j ∈ O, 1 ≤ k ≤ o⇔ v + 1 ≤ i ≤ j ≤ n, 1 ≤ k ≤ o. (7.2)

The key observation for our construction is the following. Equation (7.1) implies

p
(k)
ij =

n∑
r=1

n∑
s=r

αrsij · f (k)
rs

(7.2)
=

v∑
r=1

n∑
s=r

αrsij · f (k)
rs (1 ≤ i ≤ j ≤ n, 1 ≤ k ≤ o) (7.3)

with

αrsij =
{
tri · tsi (i = j)
tri · tsj + trj · tsi otherwise . (7.4)

After fixing the elements of the matrix MT to some random values of F, equation (7.3) becomes a
linear relation between the coefficients p(k)

ij and f (k)
rs (1 ≤ i ≤ j ≤ n, 1 ≤ r ≤ v, r ≤ s ≤ n, 1 ≤ k ≤ o).

To simplify our notation, we define two integers D and D′ as follows. Let

• D := v·(v+1)
2 + o · v be the number of non zero quadratic terms in the components of F and

• D′ := n·(n+1)
2 be the number of quadratic terms in the public polynomials.

Let MP and MF be the Macauley matrices of P and F respectively (w.r.t. the graded lexicographic
ordering of monomials, see Definition 2.6). We divide the matrices MP and MF into submatrices
as shown in Figure 7.1. Note that, due to the absence of oil × oil terms in the central polynomials,
we have a block of zeros in the middle of MF (c.f. equation (7.2)).
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Figure 7.1: Layout of the matrices MP and MF

Figure 7.2: Sizes of the matrices Pquad, Q and ÂUOV

Furthermore we define a transformation matrix ÂUOV ∈ FD×D′ containing the coefficients αrsij of
equation (7.3) by

ÂUOV =
(
αrsij
)

(1 ≤ r ≤ v, r ≤ s ≤ n for the rows, 1 ≤ i ≤ j ≤ n for the columns), i.e.

ÂUOV =


α11

11 α11
12 . . . α11

nn

α12
11 α12

12 . . . α12
nn

...
...

αvn11 αvn12 . . . αvnnn

 . (7.5)

For both rows and columns, the elements of ÂUOV are ordered with respect to the graded lexico-
graphic order.
With this notation, equation (7.3) yields

Pquad = Q · ÂUOV (7.6)

(see Figure 7.2). We call the column of ÂUOV containing the entries αrsij (1 ≤ r ≤ v, r ≤ s ≤ n)
the (i, j)-th column of ÂUOV. Analogously we call the column of Pquad containing the coefficients
p

(k)
ij (k = 1, . . . , o) the (i, j)-th column of Pquad.

In order to solve equation (7.6) for Q, we define for an index set I containing D of the pairs
(i, j) (1 ≤ i ≤ j ≤ n)

• B := Pquad|I ∈ Fo×D contains the (i, j)-th column of Pquad ⇔ (i, j) ∈ I and

• AUOV := ÂUOV|I ∈ FD×D contains the (i, j)-th column of ÂUOV ⇔ (i, j) ∈ I.

More information on this step and the choice of I can be found in Subsection 7.1.1.

For the restricted matrices B and AUOV equation (7.6) yields

B = Q ·AUOV. (7.7)
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GF(16) GF(31) GF(256)
(o,v) (10,20) (20,40) (10,20) (20,40) (10,20) (20,40)
% of invertible sel. str. 1 93.9 93.7 96.9 96.8 99.7 99.6
matrices AUOV sel. str. 2 93.8 93.8 96.6 96.8 99.6 99.8

Table 7.1: Percentage of the matrices AUOV being invertible

If the D×D matrix AUOV is invertible, we can fix the elements of the matrix B and compute the
elements of Q by

Q = B ·A−1
UOV. (7.8)

We can then use Algorithm 7.1 to generate a key pair for UOV.

Algorithm 7.1 Alternative Key Generation for UOV

Input: parameters (F, o, v), matrix B ∈ Fo×D, selection strategy (given by an index set I)
Output: UOV key pair ((F , T ),P)

1: Choose randomly an affine map T (represented by an n× n-matrix MT and an n-vector cT ).
If MT is not invertible, choose again.

2: Compute for T the corresponding transformation matrix AUOV (using equations (7.4) and
(7.5) and the given selection strategy). If AUOV is not invertible, go back to line 1.

3: Compute the matrix Q containing the quadratic coefficients of the central polynomials by
equation (7.8).

4: Choose the linear and constant terms of the central map F at random.
5: Compute the public key as P = F ◦ T .
6: return ((F , T ),P)

7.1.1 Selection Strategies

In this subsection we look at different possibilities to define the index set I used in Algorithm 7.1.
The two selection strategies we use in this thesis can be described as follows:

1. The first possibility (used e.g. for cyclicUOV, see Section 8.1) is to choose the index set I as

I1 = {(i, j) : 1 ≤ i ≤ v, i ≤ j ≤ n}. (7.9)

This selection strategy has the nice property that the monomials xixj ((i, j) ∈ I1) are the
first monomials with respect to the graded lexicographic order. So the matrix B consists
exactly of the first D columns of the matrix Pquad. The grey parts in Figure 7.2 show the
matrices B and AUOV for this selection strategy.

2. The second possibility (used for 0/1UOV, see Section 8.6) is to choose the index set I as

I2 = {(i, j) : (i, j) ∈ E}, (7.10)

where E with |E| = D is the set of edges of a specially designed graph G. In Section 8.6 we
use for G the Turán graph. By this choice we can ensure that each k ∈ {1, . . . , n} appears in
the elements (i, j) ∈ I2 approximately the same number of times. We need this fact later to
show the security of the 0/1UOV scheme. More details on this issue can be found in Section
8.6.

Table 7.1 shows that, for both of the above choices of I, we get an invertible matrix AUOV with
overwhelming probability. The values presented in the table are close to the theoretical probability
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of a D ×D matrix being invertible of

D−1∏
i=0

(
1− qi−D

)
. (7.11)

Remark 7.1. The large percentage of invertible matrices AUOV guarantees the functioning of
Algorithm 7.1 for the selection strategies 1 and 2. In particular, one only needs very few trials to
pass the test in line 2 of the algorithm.

Surprisingly enough there exist selection strategies which seem to lead always to singular matrices
AUOV.

Claim 7.1. Let I3 be the set containing the pairs (i, j) (1 ≤ i ≤ j ≤ n) corresponding to the
D smallest quadratic monomials with respect to the graded lexicographic order. Then the matrix
AUOV = ÂUOV|I3 is singular.

Proposition 7.1 proves this claim for the (balanced) case o = v = 2.

Proposition 7.1. For the (balanced) case o = v = 2 the matrix ĀUOV consisting of the last D
columns of ÂUOV is singular.

Proof. We show even more, namely that the last D − 1 columns of the D ×D′ matrix ÂUOV are
linearly dependent. Let MT = (tij)4

i,j=1 ∈ F4×4 be the matrix of the invertible affine map T .
Then the matrix ÃUOV consisting of the last D − 1 = 6 columns of ÂUOV has the form

ÃUOV =



t212 0 0 t213 0 t214

t12 · t22 t12 · t23 + t13 · t22 t12 · t24 + t14 · t22 t13 · t23 t13 · t24 + t14 · t23 t14 · t24

t12 · t32 t12 · t33 + t13 · t32 t12 · t34 + t14 · t32 t13 · t33 t13 · t34 + t14 · t33 t14 · t34

t12 · t42 t12 · t43 + t13 · t42 t12 · t44 + t14 · t42 t13 · t43 t13 · t44 + t14 · t43 t14 · t44

t222 0 0 t223 0 t224

t22 · t32 t22 · t33 + t23 · t32 t22 · t34 + t24 · t32 t23 · t33 t23 · t34 + t24 · t33 t24 · t34

t22 · t42 t22 · t43 + t23 · t42 t22 · t44 + t24 · t42 t23 · t43 t23 · t44 + t24 · t43 t24 · t44


.

We show that the rank of this matrix is only 5, i.e. the last column of ÃUOV is a linear combination
of the first 5 columns. Using the row operations of the Gauss Algorithm (without swapping rows),
we can bring ÃUOV to the form

˜̃AUOV =



? 0 0 ? 0 ?
0 ? ? ? ? ?
0 0 ? 0 ? ?
0 0 0 0 0 0
0 0 0 ? ? ?
0 0 0 0 ? ?
0 0 0 0 0 0


.

The computations in this step were performed with MAGMA and the values of ”?” can be very
complicated. For example, ˜̃AUOV[6][6] consists of 92 terms of degree up to 32.

The claim 7.1 seems to be true for arbitrary values of o and v. In fact, we have proven it for
1 ≤ o ≤ 50, v = 2 · o (using MAGMA).
Therefore the selection strategy induced by the set I3 is not suitable for our purposes.



7.1. UOV 97

T , F ⇒ P

T , B︸ ︷︷ ︸
P

⇒ F , CB︸ ︷︷ ︸
P

Figure 7.3: Standard key generation (above) and alternative key generation for UOV. The yellow
parts are chosen by the user, the blue parts are computed during the key generation process.

Remark 7.2. Due to the symmetry between F and P (c.f. equations (3.10) and (3.11)) we get a
relation between the coefficients f (k)

ij and p(k)
ij of the form

f
(k)
ij =

n∑
r=1

n∑
s=r

α̃rsij · p(k)
rs (7.12)

with

α̃rsij =
{
t̃ri · t̃si (i = j)
t̃ri · t̃sj + t̃rj · t̃si otherwise . (7.13)

where t̃ij (i, j = 1, . . . , n) are the elements of the matrix M̃T = M−1
T .

However, since some of the coefficients f (k)
ij are fixed to zero (c.f. equation (7.2)), some of the

relations of equation (7.12) lead, after fixing the coefficients p(k)
ij , to contradictions. Therefore, we

can not use equation (7.12) for our purposes.
On the other hand, equation (7.12) is used in cryptanalysis as a starting point for the UOV-
Reconciliation attack (see Subsection 3.3.2).

By applying Algorithm 7.1 we can insert arbitrary matrices B into the Macauley matrix of the
public key. In Chapter 8 we will discuss some specific choices of this matrix and their effects on
the public key size of UOV.

Remark 7.3. For affine maps T which lead, via a given selection strategy I, to invertible matrices
AUOV the standard key generation process of UOV as described in Section 3.1 and the alternative
key generation as described by Algorithm 7.1 are equivalent: Let a selection strategy I be fixed and
let T be an affine map which leads (together with the selection strategy I) to an invertible matrix
AUOV. Then we have, due to equation (7.7) a one to one relation between the matrices B and Q.
In the standard construction, the matrix Q is fixed (as part of the central map F) and leads via
the relation P = F ◦ T to a uniquely determined public key P. In our construction, we fix the
matrix B (as part of the public key) and get due to equation (7.8) a uniquely determined matrix
Q. After choosing the linear and constant terms of F , we get due to the relation P = F ◦ T a
uniquely determined public key. Figure 7.3 shows a graphical illustration of the two possibilities of
the key generation process.
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7.2 Rainbow

In this section we describe how to insert a given matrix B into the Macauley matrix of a Rainbow
public key. We do this by introducing a new map Q = F ◦T and applying the technique presented
in the previous section to each Rainbow layer separately.

7.2.1 Preliminaries

To simplify the notation in this section, we introduce some constants and a specially designed
ordering of monomials. We denote

• D0 := 0

• D1 := v1·(v1+1)
2 +o1 ·v1 is the number of non zero quadratic terms in the central polynomials

of the first layer.

• D2 := v2·(v2+1)
2 +o2 ·v2 is the number of non zero quadratic terms in the central polynomials

of the second layer.
. . .

• D` := v`·(v`+1)
2 + o` · v` is the number of non zero quadratic terms in the central polynomials

of the `-th layer.
. . .

• Du := vu·(vu+1)
2 +ou ·vu is the number of non zero quadratic terms in the central polynomials

of the u-th layer.

• D := n·(n+1)
2 is the number of quadratic terms in the public polynomials.

The monomial ordering is defined as follows:

• The first block contains the D1 quadratic monomials xixj appearing in the central polyno-
mials of the first Rainbow layer (i.e. the monomials xixj (1 ≤ i ≤ v1, i ≤ j ≤ v2)).

• The second block contains the D2 −D1 quadratic monomials xixj appearing in the central
polynomials of the second, but not in those of the first Rainbow layer
(i.e. the monomials xixj (1 ≤ i ≤ v1, v2 < j ≤ v3 ∨ v1 < i ≤ v2, i ≤ j ≤ v3)).
. . .

• The `-th block contains the D` −D`−1 quadratic monomials xixj appearing in the central
polynomials of the `-th but not in those of the (`− 1)-th Rainbow layer
(i.e. the monomials xixj (1 ≤ i ≤ v`−1, v` < j ≤ v`+1 ∨ v`−1 < i ≤ v`, i ≤ j ≤ v`+1)).
. . .

• The u-th block contains the Du −Du−1 quadratic monomials xixj appearing in the central
polynomials of the u-th but not in those of the (u− 1)-th Rainbow layer
(i.e. the monomials xixj (1 ≤ i ≤ vu−1, vu < j ≤ n ∨ vu−1 < i ≤ vu, i ≤ j ≤ vn)).

• The (u+1)-th block contains the remaining D−Du quadratic monomials ( i.e. the monomials
xixj (vu ≤ i ≤ j ≤ n).

• The (u+ 2)-th block contains the linear and constant monomials.

Inside the blocks we use the lexicographic order.



7.2. RAINBOW 99

Example 7.1. For (v1, o1, o2) = (2, 2, 2) we get

• D1 = v1·(v1+1)
2 + o1 · v1 = 7,

• D2 = v2·(v2+1)
2 + v2 · o2 = 18,

• D = n·(n+1)
2 = 21

and the following ordering of monomials on F[x1, x2, x3, x4, x5, x6]:
x2

1 > x1x2 > x1x3 > x1x4 > x2
2 > x2x3 > x2x4 > x1x5 > x1x6 > x2x5 > x2x6 > x2

3 > x3x4 >
x3x5 > x3x6 > x2

4 > x4x5 > x4x6 > x2
5 > x5x6 > x2

6 > x1 > x2 > x3 > x4 > x5 > x6 > 1.

7.2.2 Properties of the Rainbow Public Key

For the Rainbow signature scheme (see Section 3.4) the public key P is given as the composition
of three maps

P = S ◦ F ◦ T (7.14)

with affine maps S = (MS , cS) and T = (MT , cT ) and a Rainbow central map F . We define

Q = F ◦ T (7.15)

and get
P = S ◦ Q. (7.16)

Note that the relation between the maps Q and F has the same form as the relation between a
public key and a central map in the UOV case. Therefore we get exactly the same equations as
in Section 7.1. We have

q
(k)
ij =

n∑
r=1

n∑
s=r

αrsij · f (k)
rs (v1 + 1 ≤ k ≤ n, 1 ≤ i ≤ j ≤ n), (7.17)

where q(k)
ij and f

(k)
ij are the coefficients of the monomial xixj in the k-th component of Q and F

respectively and the coefficients αrsij are given as

αrsij =
{
tri · tsi (i = j)
tri · tsj + trj · tsi otherwise (7.18)

with tij (1 ≤ i, j ≤ n) being the elements of the matrix MT .
Between the coefficients of the public key P and the map Q we get

p
(k)
ij =

n∑
l=v1+1

sk−v1,l−v1 · q
(l)
ij (1 ≤ i ≤ j ≤ n, v1 + 1 ≤ k ≤ n) (7.19)

with skl (1 ≤ k, l ≤ m) being the elements of the matrix MS .
Due to the special structure of the central map F (see Figure 7.5), we can reduce the number of
terms in equation (7.17). We get

q
(k)
ij =

v1∑
r=1

v2∑
s=r

αrsij · f (k)
rs (k ∈ O1)

q
(k)
ij =

v2∑
r=1

v3∑
s=r

αrsij · f (k)
rs (k ∈ O2)

...

q
(k)
ij =

vu∑
r=1

n∑
s=r

αrsij · f (k)
rs (k ∈ Ou). (7.20)
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ARainbow =



α11
11 α11

12 . . . α11
v1v2 α11

1,v2+1 . . . α11
v2,v3 α11

1,v3+1 . . . α11
n,n

α12
11 α12

12 . . . α12
v1v2 α12

1,v2+1 . . . α12
v2,v3 α12

1,v3+1 . . . α12
n,n

...
...

αv1v211 αv1v212 . . . αv1v2v1v2 αv1v21,v2+1 . . . αv1v2v2,v3 αv1v21,v3+1 . . . αv1v2n,n

α1,v2+1
11 α1,v2+1

12 . . . α1,v2+1
v1v2 α1,v2+1

1,v2+1 . . . α1,v2+1
v2,v3 α1,v2+1

1,v3+1 . . . α1,v2+1
n,n

...
...

αv2v311 αv2v312 . . . αv2v3v1v2 αv2v31,v2+1 . . . αv2,v3v2,v3 αv2,v31,v3+1 . . . αv2,v3n,n

α1,v3+1
11 α1,v3+1

12 . . . α1,v3+1
v1v2 α1,v3+1

1,v2+1 . . . α1,v3+1
v2,v3 α1,v3+1

1,v3+1 . . . α1,v3+1
n,n

...
...

αn,n11 αn,n12 . . . αn,nv1v2 αn,n1,v2+1 . . . αn,nv2,v3 αn,n1,v3+1 . . . αn,nn,n



D1

D2

...

D

D1 D2 . . . D

Figure 7.4: Structure of the matrix ARb

To write equation (7.20) in a compact form, we define a quadraticD×D matrixARainbow containing
the coefficients αrsij of equation (7.20) by

ARainbow =
(
αrsij
)

(1 ≤ r ≤ s ≤ n for the rows, 1 ≤ i ≤ j ≤ n for the columns) (7.21)

(see Figure 7.4). The order in which the αrsij appear in the matrix ARainbow, is thereby given by
the monomial ordering defined in Subsection 7.2.1 (for both rows and columns).

Let MP , MQ and MF be the Macauley matrices of P, Q and F respectively (with respect to the
monomial ordering defined in Subsection 7.2.1). As in the case of UOV we denote the submatrices
containing the coefficients of quadratic terms by Pquad, Qquad and Fquad respectively.

With this notation, equations (7.19) and (7.20) yield

Pquad = MS ·Qquad (7.22)

and
Qquad = Fquad ·ARainbow. (7.23)

7.2.3 Construction

Similarly to the case of UOV, the equations (7.22) and (7.23) allow us to fix the coefficients of
some of the quadratic terms of the public polynomials. In particular, we can fix

• D1 coefficients of the quadratic terms of each polynomial of the first layer

• D2 coefficients of the quadratic terms of each polynomial of the second layer
. . .

• Du coefficients of the quadratic terms of each polynomial of the u-th layer.

In the following, we select the coefficients to be fixed in such a way that they correspond to the
non zero coefficients of the central map F .
We divide the matrices MP , MQ and MF into submatrices as shown in Figure 7.5. The selected
coefficients of MP are located in the grey parts of the matrix. The grey parts in the matrix MF

mark the non zero coefficients of quadratic monomials in the map F .
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MP

n

v1

v2

v3

...
vu−1

vu

B1

C1

B2

C2

B3

C1

C2

Bu−1
Bu

Cu−1

Cu

. . .

. . .

. . .

. . .
Plin

MQ

n

v1

vu

v2...
...

...
...

...
...

...

Q1,1 Q1,2 Q1,3 . . . Q1,
u−1

Q1,u

Qu,1 Qu,2 Qu,3 . . . Qu,
u−1

Qu,u

Q1,
u+1

Qu,
u+1

Qlin

MF

n

v1

vu

vu−1

...

v3

v2

F1 0 . . . 0

F2 0 . . . 0

. . .
...

...

Fu−1 0 0

Fu 0

Flin

D1 D2 D3 Du−2 Du−1 Du D linear

︸ ︷︷ ︸
Pquad

︸ ︷︷ ︸
Qquad

︸ ︷︷ ︸
Fquad

Figure 7.5: Layout of the matrices MP , MQ and MF
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Similarly to MP , MQ and MF , we divide the matrices MS and ARainbow into submatrices. We write

MS =


S1,1 S1,2 . . . S1,u

S2,1 S2,2 S2,u

...
...

Su,1 Su,2 . . . Su,u

 , (7.24)

where Si,j is an oi × oj matrix (i, j = 1, . . . , u) and

ARainbowb =


A1,1 A1,2 . . . A1,u+1

A2,1 A2,2 A2,u+1

...
...

Au+1,1 Au+1,2 . . . Au+1,u+1

 , (7.25)

where Ai,j is a (Di −Di−1)× (Dj −Dj−1) matrix (i, j = 1, . . . , u+ 1). Here we set Du+1 := D.
Therewith, equation (7.22) yields

Bi =

 Si,1 . . . Si,u
...

...
Su,1 . . . Su,u

 ·
 Q1,i

...
Qu,i

 =

 Si,i . . . Si,u
...

...
Su,i . . . Su,u


︸ ︷︷ ︸

S̃i

·

 Qi,i
...

Qu,i

+
i−1∑
j=1

 Si,j
...

Su,j

 ·Qj,i
(7.26)

Using the relation (7.23), the i-th row of Qquad
1 can be computed as

Qquad[i] = Fquad[i] ·ARb = Fi ·

 A1,1 . . . A1,u+1

...
...

Ai,1 . . . Ai,u+1

 . (7.27)

We obtain

(Qi1|| . . . ||Qii) = Fi ·

 A1,1 . . . A1,i

...
...

Ai,1 . . . Ai,i


︸ ︷︷ ︸

Ãi

(7.28)

and

(Qi,i+1|| . . . ||Qi,u+1) = Fi ·

 A1,i+1 . . . A1,u+1

...
...

Ai,i+1 . . . Ai,u+1

 . (7.29)

If all the matrices S̃i and Ãi (i = 1, . . . , u) are invertible, we can use equations (7.26), (7.28) and
(7.29) to generate a key pair for Rainbow (see Algorithm 7.2).

1Here we denote Qquad[i] = (Qi,1|| . . . ||Qi,u+1) (see Figure 7.5). Fquad[i] is defined analogously.
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Algorithm 7.2 Alternative Key Generation for Rainbow

Input: parameters (F, v1, o1, . . . , ou), matrices Bi ∈ F(n−vi)×(Di−Di−1) (i = 1, . . . , u)
Output: Rainbow key pair ((S,F , T ),P)

1: Choose randomly an affine map S : Fm → Fm (given as a matrix MS ∈ Fm×m and a vector
cS ∈ Fm). If one of the submatrices S̃i (i = 1, . . . , u) of MS (see equation (7.26)) is singular,
choose again.

2: Choose randomly an affine map T : Fn → Fn (given as a matrix MT ∈ Fn×n and a vector
cT ∈ Fn). If the matrix MT is singular, choose again.

3: Compute for MT the corresponding transformation matrix ARainbow (using equations (7.18)
and (7.21)). If one of the submatrices Ãi (i = 1, . . . , u) (see equation 7.28) is singular, go back
to step 2.

4: for i = 1 to u do

5: Compute

 Qi,i
...

Qu,i

 =

 Si,i . . . Si,u
...

...
Su,i . . . Su,u


−1

·

Bi −∑i−1
j=1

 Si,j
...

Su,j

 ·Qj,i
.

6: Compute Fi = (Qi,1|| . . . ||Qi,i) ·

 A1,1 . . . Ai,1
...

...
A1,i . . . Ai,i


−1

.

7: if i < u then

8: Compute (Qi,i+1|| . . . ||Qi,u+1) = Fi ·

 A1,i+1 . . . A1,u+1

...
...

Ai,i+1 . . . Ai,u+1

.

9: end if
10: end for
11: Choose the linear and constant terms of the central polynomials at random.
12: Compute the public key by P = S ◦ F ◦ T .
13: return ((S,F , T ),P)

For the functioning of Algorithm 7.2 it is important that the tests in line 1, 2 and 3 of the algorithm
are fulfilled with high probability. Therefore we have to ensure that the matrices MT , S̃i and Ãi
(i = 1, . . . , u) are invertible in a large number of cases.
As the elements of the matrix MS are randomly chosen field elements, the probability of the
(n− vi−1)× (n− vi−1) matrix S̃i being invertible is given by

n−vi−1−1∏
j=0

(
1− qj−n+vi−1

)
(7.30)

with q being the cardinality of the underlying field. Here we set v0 = 0.
The probability of all matrices S̃i (i = 1, . . . , u) being invertible is therefore given by

u∏
i=1

n−vi−1−1∏
j=0

(
1− qj−n+vi−1

)
. (7.31)

For the parameters (F, v1, o1, o2) = (GF(256),17,13,13) this probability is 98.9 %.
Similarly, the probability of the n× n matrix MT being invertible is given by

n−1∏
j=0

(1− qj−n), (7.32)

which for the parameters (GF(256),17,13,13) is 99.6 %.
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GF(16) GF(31) GF(256)
parameters (v1, o1, . . . , ou) (17,23,17) (17,12,11,17) (14,19,14) (14,10,9,14) (17,13,13) (17,7,6,13)

% of cases in which all the matrices 87.9 82.5 93.7 90.7 99.2 98.8
Ãi (i = 1, . . . , u) are invertible

Table 7.2: percentage of matrices Ãi being invertible

S , F , T ⇒ P

S , T , P ⇒ F , P

Figure 7.6: Standard key generation (above) and alternative key generation for Rainbow. The
yellow parts are chosen by the user, the blue parts are computed during the key generation process.

To estimate the percentage of the test in line 3 of Algorithm 7.2 being fulfilled, we carried out
a number of experiments (see Table 7.2). As the table shows, in a large part of all cases all the
matrices Ãi (i = 1, . . . , u) are invertible. Again, the values are close to the theoretical results.

As we have seen, the probability that all the tests in line 1 to 3 of Algorithm 7.2 are fulfilled
is (at least for big fields) very large. This guarantees the functioning of the algorithm.

By using Algorithm 7.2 we can insert arbitrary matrices B1, . . . , Bu into the Macauley matrix of
the public key. In Chapter 9 we will discuss some possibilities for the choice of these matrices and
their effect on the public key size of Rainbow.

Remark 7.4. If the affine maps S and T lead to invertible matrices S̃i and Ãi (i = 1, . . . , u), the
standard key generation process of Rainbow (see Section 3.4) and the alternative key generation as
described by Algorithm 7.2 are equivalent. This means that we have a one to one relation between
the matrices B1, . . . , Bu and central maps F (due to equations (7.27) - (7.29)): After fixing the
entries of the matrices B1, . . . , Bu we get by using Algorithm 7.2 a uniquely determined central
map F and every map F can be generated in this way. Figure 7.6 shows a graphical illustration
of the two possibilities of the key generation process.
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Chapter 8

Improved versions of UOV

In this chapter we present different improved versions of the Unbalanced Oil and Vinegar (UOV)
signature scheme which reduce the public key size of the original UOV scheme (see Section 3.1)
by large factors. To do this, we follow the approach of Section 7.1 to create a UOV key pair
((F , T ),P) with a structured public key. As shown in the last chapter, the Macauley matrix of P
has the form MP = (B|C) with a structured matrix B and a matrix C without visible structure.
In the following 6 sections we present different possibilities of choosing the matrix B and appro-
priate selection strategies to generate UOV key pairs with reduced public key size. Section 8.7
discusses the security of these schemes and in Section 8.8 we compare our improved schemes with
the original UOV scheme in terms of the public key size. Finally, Section 8.9 gives details about
the implementation of our schemes.

As in Section 7.1 we define D := v·(v+1)
2 + o · v to be the number of non zero quadratic terms in

the polynomials of the central map F .

8.1 CyclicUOV

The first possibility we consider here is to use a partially circulant matrix B. In this case we
need to store only the first row of the matrix B and can compute the remaining rows out of this
first one. To create a partially circulant o×D matrix B, we start with a randomly chosen vector
b = (b1, . . . , bD) ∈ FD. The i-th row of the matrix B is given by

B[i] = Ri−1(b) (i = 1, . . . , o), (8.1)

where Rj(b) denotes the cyclic right shift of the vector b by j positions. Algorithm 8.1 shows
this generation process in a compact form.

Algorithm 8.1 Generation of a matrix B for cyclicUOV
Input: parameters (F, o, v)
Output: matrix B ∈ Fo×D for cyclicUOV

1: Choose randomly a vector b ∈ FD.
2: B[1]← b
3: for i = 2 to o do
4: b← R(b)
5: B[i]← b
6: end for
7: return B
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To generate a key pair of cyclicUOV, we use this matrix B together with selection strategy 1 (see
Subsection 7.1.1) as input for Algorithm 7.1.

To represent a partially circulant o × D matrix B, we need D field elements. The size of the
public key of cyclicUOV is therefore given by

sizepk cyclicUOV = D + o ·
(
o · (o+ 1)

2
+ n+ 1

)
(8.2)

field elements. The size of the private key is the same as for the standard UOV scheme (see
equation (3.3)).
Additionally to the key size reduction, the structure in the public key of cyclicUOV enables us to
speed up the verification process of the scheme by a large factor (see Section 10.2).

8.2 UOVLRS

In this section we consider the case, where the matrix B is generated by a linear recurring sequence.
This approach is motivated by the fact that a partially circulant matrix does not have good
statistical properties. Therefore we get a public key which is easily distinguishable from a random
public key which might make it possible to develop dedicated attacks against the scheme. Before
we start with the description of the UOVLRS scheme, we need some basic facts about randomness
properties of sequences and linear recurring sequences (LRS’s).

8.2.1 Golomb’s Randomness Postulates

In this subsection we look at sequences over a finite field Fq. We cite from [29] some criteria a
sequence Σ must fulfill to be considered a random sequence.

Definition 8.1. Let λ, η, ζ ∈ Fq with λ 6= η and λ 6= ζ. A subsequence σ̄ of Σ = {σ1, σ2, . . . } of
the form

η, λ, . . . , λ︸ ︷︷ ︸
k times

, ζ

is called a run of λ of length k.

Definition 8.2. Let K be a finite field and L be an extension field of K. Then the function

Tr : L→ K,Tr(α) =
∑

g∈Gal(L/K)

g(α)

is called the trace function from L to K. Here, Gal(L/K) is the Galois group of the field extension
L/K, i.e. the group of all L-automorphisms g : L→ L with g|K = id.

Definition 8.3. The auto-correlation function of a sequence Σ = {σ1, σ2, . . . } with period qn − 1
is defined as

ACΣ(τ) =
qn−1∑
i=1

χ(σi) · χ(σi+τ ) (0 ≤ τ ≤ qn − 2),

where χ is given by
χ(x) = e2πiTr(x)

with Tr being the trace function between Fq and its prime field Fp (see Definition 8.2).
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Golomb formulated in [28] three postulates a sequence has to fulfill to be considered a random
sequence. Let Σ be a sequence with period qn − 1.

R-1 In every period, every non zero element of Fq occurs exactly qn−1 times and the zero element
occurs exactly qn−1 − 1 times.

R-2 In every period,

1. for 1 ≤ k ≤ n− 2, the runs of each element λ ∈ Fq of length k occur exactly (q − 1)2 ·
qn−k−2 times.

2. the runs of each non zero element of Fq of length n− 1 occur exactly q − 2 times.

3. the runs of the zero element of length n− 1 occur exactly q − 1 times.

4. the run of every non zero element of length n occurs exactly once.

R-3 The auto-correlation function ACΣ is two valued with

ACΣ(τ) =
{
qn − 1 if τ ≡ 0 mod (qn − 1)
−1 if τ 6≡ 0 mod (qn − 1)

Remark 8.1. The auto-correlation function ACΣ measures the amount of similarity between the
sequence Σ and its shift by τ positions. Postulate R-3 states that for τ ≥ 1 the value ACΣ(τ)
should be quite small.

Postulate R-1 can be extended as follows

R-4 In every period, each n-tuple (λ1, . . . , λn) ∈ Fnq \ {0} appears exactly once.

Remark 8.2. In the partially cyclic approach shown in the previous section, the rows of the matrix
B are given as B[i] = Ri−1(b) (i = 1, . . . , o), where Rj is the cyclic right shift by j positions and
b is a randomly chosen vector. The sequence obtained by this construction clearly does not fulfill
Golomb’s postulates. For example, for most of the λ ∈ Fq the 2-run (λ, λ) does not appear in such
a sequence (contradiction to postulate R-2).

8.2.2 Linear Recurring Sequences

In this subsection we discuss some basic facts about linear recurring sequences (LRS’s). For more
information about LRS’s we refer to [37].

Definition 8.4. Let L be a positive integer and γ1, . . . , γL be given elements of a finite field Fq. A
linear recurring sequence (LRS) of length L is a sequence S = (s1, s2, . . . ) of Fq-elements satisfying
the relation

sj = γ1 · sj−1 + γ2 · sj−2 + · · ·+ γL · sj−L =
L∑
i=1

γi · sj−i (j > L). (8.3)

The values s1, . . . , sL are called the initial values of the LRS.

Definition 8.5. The connection polynomial of the linear recurring sequence S is defined as

C(X) = γLX
L + γL−1X

L−1 + . . .+ γ1 ·X + 1 =
L∑
i=1

γiX
i + 1.

The degree of the connection polynomial C corresponds to the length of the LRS.

The LRS S is uniquely determined by its initial values s1, . . . , sL and the connection polynomial
C(X) (due to equation (8.3)). Therefore we denote the sequence S by S = LRS(s1, . . . , sL, C(X)).
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Definition 8.6. A univariate polynomial p(X) ∈ Fq[X] is called primitive, if p(X) is the minimal
polynomial of a generator α of the extension field Fqn , i.e. p(X) is a polynomial with deg(p(X)) =
n in Fq[X], p(α) = 0 and 〈α〉 = F?qn .

Definition 8.7. A linear recurring sequence with non trivial initial state (s1, . . . sL) ∈ FLq \ {0}
and primitive connection polynomial C of degree L is called an (L-th order) m-sequence.

Lemma 8.1. Any L-th order m-sequence over Fq is periodic with minimal period qL − 1 and the
minimal period of every LRS of length L is upper bounded by this number.

Proof. See [37], Theorem 6.33, page 205.

Definition 8.8. The linear complexity LC(S) of a sequence S is the degree of the connection poly-
nomial C(X) of lowest degree L for which there exist s1, . . . sL ∈ Fq such that S = LRS(s1, . . . , sL, C(X)).

Lemma 8.2. Let S = LRS(s1, . . . , sL, C(X)) be an L-th order m-sequence. Then we have
LC(S) = L.

Proof. Follows directly from Definition 8.8 and Lemma 8.1.

Lemma 8.2 states that there exists no linear recurring sequence of length L′ < L which generates
S.

Lemma 8.3. Any L-th order m-sequence fulfills the postulates R-1 to R-4 of Subsection 8.2.1 (for
n = L).

Proof. See [29], Property 5.2 - 5.5 (pages 128 ff.).

Remark 8.3. Because of the good statistical properties of m-sequences, linear recurring sequences
are used to bring randomness into a large number of areas, for example digital broadcasting and the
Global Positioning System (GPS). However, an m-sequence can not be said to be a truly random
sequence. For example, the linear complexity of an L-th order m-sequence of length N � L is L,
whereas for a random sequence it should be about N/2. Therefore, the elements of an m-sequence
are easily predictable. Hence, for cryptographic applications like stream ciphers, one has to add
some non-linearity features.

8.2.3 Construction of the Matrix B

In this subsection we describe how to generate the matrix B of Algorithm 7.1 for UOVLRS. To
get a public key with good statistical properties, we use an L-th order m-sequence to compute
the elements of the matrix B. We therefore start with a primitive polynomial C(X) of degree L
and a non trivial initial state (s1, . . . , sL) ∈ FL \ {0}. We then calculate the first o ·D elements
s1, . . . , so·D of the m-sequence S = LRS(s1, . . . , sL, C(X)) and define the i-th row of the matrix
B by

B[i] = (s(i−1)·D+1, . . . , si·D) (i = 1, . . . , o). (8.4)

Algorithm 8.2 shows this generation process in a compact form.

To generate a key pair of UOVLRS, we first use Algorithm 8.2 to generate a structured matrix
B. Then we use Algorithm 7.1 (with selection strategy 1; see Subsection 7.1.1) to generate the
private and public key of the scheme.

To represent the matrix B of UOVLRS we have to store the initial state (s1, . . . , sL) and the
connection polynomial C(X).
For the following we assume the connection polynomial C(X) to be primitive. So, whenever we
speak of a linear recurring sequence, we refer to an m-sequence.
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Algorithm 8.2 Generation of a matrix B for UOVLRS

Input: parameters (F, o, v), L
Output: matrix B ∈ Fo×D for UOVLRS

1: Choose randomly a vector s ∈ FL \ {0} as initial state and a primitive connection polynomial
C(X) of degree L.

2: Compute the first o ·D elements s1, . . . , so·D of the sequence S = LRS(s, C(X)).
3: for i = 1 to o do
4: B[i]← (s(i−1)·D+1, . . . , si·D).
5: end for
6: return B

Remark 8.4. The randomness properties of m-sequences guarantee that we get a public key with
good statistical properties. In particular, all elements of F appear in the matrix B approximately
the same number of times. This is in contrast to the cyclicUOV scheme (see Section 8.1) where the
elements of the vector b are repeated in every row of B. We therefore believe that the development
of dedicated attacks against the UOVLRS scheme is a hard task.

8.2.4 Choice of L

A natural question in this context is how to choose the length L of the linear recurring sequence
in use. A small number L will reduce the size of the public key but possibly weaken the security
of the scheme. The following theorem gives a lower bound on L. In the theorem we use the same
notation as in Section 7.1 (see page 94).

Theorem 8.1. Let ((F , T ),P) be a UOV key pair generated by a linear recurring sequence of
length L. Then we have rank(Pquad) = rank(B) = min(o, L).

Proof. Since B is a submatrix of Pquad, the rank of Pquad can not be less than that of B. But,

according to equation (7.6), the rank of Pquad can not be larger than rank(Q)
(7.8)
= rank(B), too.

The remainder of the proof is given by Lemma 8.4.

Lemma 8.4. Let the o×D matrix B be generated by an LRS of length L (as described by Algorithm
8.2). Then we have rank(B) = min(o, L).

Proof. As B is an o×D matrix, the rank of B can not be higher than o. So let’s assume L < o.
We show that rank(B) = L. First assume that we have rank(B) > L. Then there exist r > L
linear independent columns of B. W.l.o.g. we can assume that the first L columns of B, namely
B1, . . . , BL are linearly independent. Let Bi (i > L) be a column of B which is linearly independent
of the first L columns. But, since the sequence S (see Algorithm 8.2) has linear complexity L, there
exists a linear combination of the form Bi =

∑L
j=1 βj ·Bj . which contradicts our assumption.

On the other hand let’s assume that we have rank(B) = r < L. Then there exist r columns
B̂1, . . . , B̂r in B such that every other column Bk of B can be written in the form Bk =

∑r
i=1 β̂i ·B̂i.

This implies that S can be generated by a linear recurring sequence of length r < L. But, this
is a contradiction to S being an L-th order m-sequence and the primitiveness of the connection
polynomial (see Lemma 8.2).

Theorem 8.1 states that for L < o the homogeneous quadratic parts of the public polynomials will
be linearly dependent. In particular, of the o quadratic polynomials of a public key generated by
an LRS of length L < o, only L will have linear independent homogeneous quadratic parts.
Therefore, an attacker can find linear relations between the public polynomials which transform
the last o − L components of the system P(x) = h into linear equations. By doing so, he can
remove o− L equations and variables from the system which leaves him with a system of only L
quadratic equations. As a consequence of this, to achieve the maximal possible security, we have
to choose the length of the LRS at least o.
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(GF(256),o,v) (9, 18) (10, 20) (11, 22) (12, 24) (13, 26) (14, 28)
L = o 5.3 s 40.6 s 293.8 s 2,388 s 19,052 s 169,312 s
L = o− 1 - 5.8 s 42.2 s 303 s 2,311 s 20,952 s
L = o− 2 - - 6.0 s 43.6 s 309 s 2,560 s

Table 8.1: Running time of the direct attack against UOVLRS for different values of L

To check the correctness of these theoretical considerations, we carried out a number of experiments
with MAGMA [8]. For different parameter sets (GF(256), o, v, L) we created instances of the
UOVLRS scheme and solved the corresponding systems, after fixing v variables to get a determined
system, with MAGMA v.2.13-10 using the command Variety. Table 8.1 shows the results.

As the table shows, solving a UOV system with o equations generated by a linear recurring
sequence of length L < o is only as difficult as solving a determined system of L quadratic
equations. We therefore fix the length of the LRS in our scheme to o. So we need 2 · o field
elements to represent the matrix B.
The size of the public key of UOVLRS is therefore given by

size pk UOVLRS = 2 · o+ o ·
(
o · (o+ 1)

2
+ n+ 1

)
(8.5)

field elements, the size of the private key is the same as for the standard UOV scheme (see equation
(3.3)).

8.3 Combination of LRS and Cyclic Techniques

It is also possible to combine linear recurring sequences with the technique shown in Section 8.1.
For cycUOVLRS, we generate the vector b used in Algorithm 8.1 by a linear recurring sequence of
length L. To get the optimal security, we use for this step a primitive polynomial C(X) of degree
L and a non trivial initial state (s1, . . . sL) ∈ FL \ {0}. We then compute the first D elements
s1, . . . , sD of the m-sequence S = LRS(s1, . . . , sL, C(x)), put them into a vector b and define the
i-th row of the matrix B by

B[i] = Ri−1(b) (i = 1, . . . , o). (8.6)

As in Section 8.1, Ri(b) denotes the cyclic right shift of the vector b by i positions. Algorithm
8.3 shows this generation process in a compact form.

Algorithm 8.3 Generation of a matrix B for cycUOVLRS
Input: parameters (F, o, v), L
Output: matrix B ∈ Fo×D for cycUOVLRS

1: Choose randomly a vector s ∈ FL \{0} and a primitive connection polynomial C(X) of degree
L.

2: Compute the first D elements of the m-sequence S = LRS(s, C(x)) and put them into a vector
b ∈ FD.

3: B[1]← b
4: for i = 2 to o do
5: b← R(b)
6: B[i]← b
7: end for
8: return B



8.4. UOVLRS2 111

(GF(256),o,v) (9, 18) (10, 20) (11, 22) (12, 24) (13, 26) (14, 28)
L = o 5.4 s 340.5 s 292.9 s 2,384 s 19,065 s 169,412 s
L = o− 1 5.1 s 338.3 s 286.4 s 2,371 s 19,012 s 168,283 s
L = o− 2 2.9 s 18.1 s 136.3 s 1,035 s 8,833 s 82,473 s

Table 8.2: Running time of the direct attack against cycUOVLRS for different values of L

We can use this matrix B as input for Algorithm 7.1 (with selection strategy 1; see Subsection
7.1.1) to generate a key pair for cycUOVLRS.

As in the case of UOVLRS, we need 2 · L field elements to represent the matrix B.

8.3.1 Choice of L

As for UOVLRS (see Section 8.2) we have to answer the question how to choose the length L of the
linear recurring sequence in use. In the case of cycUOVLRS, this question can not be answered as
directly as in the previous section. The reason for this is the cyclic right shift R, which destroys
some of the structure of the LRS. To get an impression of the influence of L on the security
of our scheme, we created for different parameter sets instances of cycUOVLRS and solved the
public systems, after fixing v variables to get a determined system, with MAGMA v.2.13-10 using
the command Variety. Table 8.2 shows the results. As the table shows, cycUOVLRS systems
with L < o can be solved significantly faster than systems with L = o (at least for L ≤ o − 2).
The reason for this is that the cyclic right shift R destroys the linear structure only in the left
part of the matrix B. So there remain linear dependencies between the coefficients of the public
polynomials which can be used during the elimination step of a Gröbner Basis method. By using
these dependencies in a systematic way, it should be possible to reduce the numbers in Table
8.2 even further. We therefore recommend to use for cycUOVLRS a linear recurring sequence of
length o.
So, in order to represent the matrix B, we need 2 · o = v field elements. The size of the public key
is the same as for the UOVLRS scheme, i.e.

sizepk cycUOVLRS = 2 · o+ o ·
(
o · (o+ 1)

2
+ n+ 1

)
(8.7)

field elements, the size of the private key is the same as for the standard UOV scheme (see equation
(3.3)).

8.4 UOVLRS2

To speed up the verification process (see Section 10.3) it is useful to use linear recurring sequences
of short length. As we have seen in the previous sections, neither UOVLRS nor cycUOVLRS are a
candidate for this. Therefore we come to another approach. In contrast to the schemes presented
in the previous sections, we use not only one, but o different linear recurring sequences. The goal
of this strategy is to reduce the lengths of the single LRS’s, which will later help us to speed up
the verification process of the scheme (see Chapter 10). In fact, we use linear recurring sequences
of length 1.
We choose two vectors α and γ ∈ Fo and define for each i = 1, . . . , o a univariate polynomial
Ci(X) by Ci(X) = γi ·X + 1. For i = 1, . . . , o we compute the first D elements s(i)

1 , . . . , s
(i)
D of the

linear recurring sequence

S(i) = LRS(αi, Ci(X)) (8.8)
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and put this sequence into the i-th row of the matrix B. Therefore, the matrix B will have the
following structure:

B =


s

(1)
1 s

(1)
2 . . . s

(1)
D

s
(2)
1 s

(2)
2 . . . s

(2)
D

...
...

s
(o)
1 s

(o)
2 . . . s

(o)
D

 . (8.9)

Algorithm 8.4 presents the generation of a such a matrix B in a compact form.

Algorithm 8.4 Generation of a matrix B for UOVLRS2
Input: parameters (F, o, v)
Output: matrix B ∈ Fo×D for UOVLRS2

1: Choose two vectors α and γ ∈ Fo (see Subsection 8.4.1).
2: for i = 1 to o do
3: Compute the first D elements s(i)

1 , . . . , s
(i)
D of the linear recurring sequence

S(i) = LRS(ai, γi ·X + 1) and put them into a vector b ∈ FD.
4: B[i]← b
5: end for
6: return B

To create a key pair of UOVLRS2, we use the matrix B computed by Algorithm 8.4 as input for
Algorithm 7.1 (with selection strategy 1; see Subsection 7.1.1).

8.4.1 Choice of α and γ

In this subsection we consider the question how the two vectors α and γ in line 1 of Algorithm 8.4
should be chosen.

First, we look at the question what happens if two elements of the vector γ, say γi and γj
(1 ≤ i < j ≤ o) are equal.

Theorem 8.2. If γi = γj for i 6= j ∈ {1, . . . , o}, the homogeneous quadratic parts of the public
polynomials p(i) and p(j) are linearly dependent.

Proof. If γi = γj for i 6= j ∈ {1, . . . , o}, the two rows B[i] and B[j] are linearly dependent. Since
we have Q = B · A−1 (c.f. equation (7.8)), the same holds for the rows Q[i] and Q[j] (see Figure
7.1). Note that the matrix Q contains all the coefficients of quadratic terms of the map F , which
means that the homogeneous quadratic parts of the i-th and j-th central polynomials are linearly
dependent. Since during the key generation of UOV the rows of the central map F are not mixed,
the same holds for the homogeneous quadratic part of the i-th and j-th public polynomial.

Theorem 8.2 states that by computing p(i) − αi
αj
· p(j) the attacker gets a linear equation in the

system variables, which means that he can reduce the number of variables in the quadratic system
P(x) = h by 1. We can conclude

Corollary 8.1. Attacking an instance of UOVLRS2 with o equations and t < o different values
in the vector γ is only as hard as solving a (UOVLRS2) system of t equations.

To check this theoretical result, we created instances of UOVLRS2 for different parameters o and
v and different types of vectors γ and solved the resulting public systems with MAGMA v.2.13-10
(see Table 8.3). Before applying the MAGMA command Variety we fixed v of the n variables to
create determined systems.
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t 1/ (GF(256),o,v) (9,18) (10,20) (11,22) (12,24) (13,26) (14,28)
9 5.4 s 5.7 s 5.7 s 5.8 s 5.8 s 5.9 s
10 ——— 40.8 s 41.2 s 41.8 s 43.0 s 44.6 s
11 ——— ——— 288.3 s 301.4 s 309.8 s 315.2 s

1 number of different values in γ

Table 8.3: Running time of the direct attack against UOVLRS2 for different
types of γ

To achieve the optimal security level, the elements of the vector γ have to be chosen pairwise
distinct. Furthermore, all the elements have to be 6= 0.

Remark 8.5. The above condition gives a lower bound on the cardinality of the underlying field.
In particular, we can not define our scheme over GF (16) and GF (31).

On the contrary, there seem to be no major conditions for the choice of the vector α.2 We have to
ensure only that αi ∈ F \ {0} ∀i = 1, . . . , o. For simplicity we choose α = (1, . . . , 1)︸ ︷︷ ︸

o

. Therefore,

we get a matrix B of the Vandermonde-type:

B =


1 γ1 γ2

1 . . . γD−1
1

1 γ2 γ2
2 . . . γD−1

2
...

...
1 γo γ2

o . . . γD−1
o

 . (8.10)

To represent the matrix B we therefore need to store only the vector γ ∈ Fo. So, the public key
size of UOVLRS2 is given by

sizepk UOVLRS2 = o+ o ·
(
o · (o+ 1)

2
+ n+ 1

)
(8.11)

field elements, the size of the private key is the same as for the standard UOV scheme (see equation
(3.3)).

In Section 10.3 we show how the structure in the public key of UOVLRS2 can be used to speed
up the verification process of the scheme.

8.5 UOVrand

In this section we present an improved version of UOV called UOVrand for which it is possible to
achieve some results in the direction of provable security. For the following we set α = v

o .
For UOVrand, the elements of the o ×D matrix B are chosen uniformly at random from F. We
can then use Algorithm 7.1 (with selection strategy 1; see Subsection 7.1.1) to generate a UOV
key pair ((F , T ),P). After performing this algorithm, we use a secret permutation Σ ∈ Sn on the
set of variables to compute T ′ = T ◦ Σ and P ′ = P ◦ Σ. Since

F ◦ T ′ = F ◦ T ◦ Σ = P ◦ Σ = P ′, (8.12)

((F , T ′),P ′) is a valid UOV key pair. We call (F , T ′),P ′) a key pair of UOVrand. Let us denote
the input variables of P by x1, . . . , xn and the input variables of P ′ by u1, . . . , un. Note that we
have xi = uΣ−1(i) ∀i = 1, . . . , n.
We denote the set of all variables ui corresponding to Vinegar variables xi (i ∈ V ) by X, the set
{u1, . . . , un} \X by Y . We have |X| = α

α+1 · n and |Y | = n
α+1 .

2In fact, the attacker is allowed to multiply each public polynomial p(i) (i = 1, . . . , o) by an arbitrary element
ai ∈ F \ {0}. By doing so, he can produce a vector α′ of his choice.
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8.5.1 Security Reduction

Due to the above construction the major part of the coefficients in the public polynomials (both
of P and P ′) is chosen uniformly at random. In P, these are the coefficients of the monomials
xixj which contain at least one Vinegar variable, i.e.

p
(k)
ij is chosen uniformly at random from F⇔ i ∈ V ∨ j ∈ V. (8.13)

For P ′ we get

p
′(k)
ij is chosen uniformly at random from F ⇔ ui ∈ X ∨ uj ∈ X. (8.14)

But, without the knowledge of the permutation Σ, an attacker is not able to detect which variables
ui are contained in the set X.
When attacking the system P ′ directly, an attacker usually fixes a number of variables ui to create
an (over-)determined system. When the attacker randomly chooses a variable ui to be fixed, he
meets with probability α

α+1 a variable ui ∈ X and with probability 1
α+1 a variable from Y . When

fixing v of the variables ui, the attacker fixes therefore on average α
α+1 · v variables from X and

v
α+1 variables from Y . We can use this observation to prove the following theorem:

Theorem 8.3. A direct attack against a UOVrand scheme with o equations and v+o = (α+1) ·o
variables is on average at least as hard as solving a quadratic random system of o equations in
α
α+1 · o variables.

Proof. Let A be an attacker who wants to solve the system P ′(u1, . . . , un) = h directly. Let
us assume that, before applying XL or a Gröbner Basis algorithm, A fixes v of the variables ui
to create a determined system. Since he has no means to detect which of the variables ui are
contained in the set X (and therefore correspond to Vinegar variables xj), he chooses the indices
i1, . . . , iv of variables to be fixed uniformly at random from the set {1, . . . , n}. As we have seen
above, he meets by this strategy on average α

α+1 · v variables from X and v
α+1 variables from Y .

Let us denote the set of fixed variables from X and Y by XF and YF respectively. After this
fixing part, he therefore gets a system P̃ of o equations in the o variables contained in X \ XF

and Y \ YF .
Now let’s assume that A has access to an oracle which gives him the values of all variables from
Y \ YF . He therefore ends up with a system ˜̃P of o equations in the variables ui ∈ X \XF . As we
have seen, this set contains on average v − α

α+1 · v = α
α+1 · o variables and according to (8.14) the

homogeneous quadratic part of the system ˜̃P is chosen uniformly at random from F.

The security reduction as given by Theorem 8.3 is quite bad. For example, to reach a (provable)
security of 80 bit (under direct attacks) for a UOVrand scheme with o equations and 3 ·o variables,
we would need o = 66 equations over GF(256). The reason for this is the oracle used in the proof
of Theorem 8.3, which gives the attacker the values of (on average) o

3 variables ui ∈ Y \ YF . By
doing so, the oracle reduces the complexity of the attack by a huge factor. In practice we expect
that solving the system P̃ is as hard as solving an o× o system with randomly chosen coefficients.

In a practical setting, one uses a cryptographic secure pseudo random number generator to gen-
erate the elements of the matrix B of UOVrand. For example, we can use a block cipher such as
AES in the OFB mode or a stream cipher like Salsa20 [3] for this step. In this case, in order to
represent the matrix B, we have to store only a small random seed of e.g. 128 bit. Therefore, the
public key size of the scheme is given by

sizepk UOVrand AES = 128 bit + o ·
(
o · (o+ 1)

2
+ n+ 1

)
(8.15)

field elements, the size of the private key is the same as for the standard UOV scheme (see equation
(3.3)).
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8.6 0/1UOV

Let F be a finite field of cardinality q > 2. In this section we describe an approach to generate
a UOV key pair defined over F, whose public coefficients are mainly in the field GF(2). Hereby
we can not follow the strategy used in the previous sections (see Subsection 8.6.2). Before we can
present our new approach, we first need a result from graph theory.

8.6.1 The Turán graph

In this subsection we introduce the Turán graph which is the basis of our construction presented in
the next subsection. Before we come to the Turán graph itself, we first need some basic definitions.

Definition 8.9. An (undirected) graph is an ordered pair G = (V,E) consisting of a set V of
vertices and a set E of edges, which are 2-element subsets of V . We denote an edge connecting
the two vertices x and y ∈ V by (x, y). In this case, the two vertices x and y are called adjacent.

Definition 8.10. The complement of a graph G = (V,E) is a graph G (called complementary
graph) on the same set of vertices such that two vertices of G are adjacent if and only if they are
not adjacent in G, i.e. G = (V,K \ E) where K is the set of all 2-element subsets of V .

Definition 8.11. A k-independent set in an undirected graph G = (V,E) is a set I ⊂ V of k
vertices, no two of which are connected by an edge, i.e. (x, y) /∈ E ∀ x, y ∈ I.

Definition 8.12. A k-clique in an undirected graph G = (V,E) is a k-subset of the vertex set
C ⊂ V , such that for every two vertices in C, there exists an edge connecting the two,
i.e. (x, y) ∈ E ∀ x, y ∈ C.

The Turán graph T(n, k) (named after the Hungarian mathematician Pal Turán) is defined as fol-
lows [57]: The set V of n vertices is partitioned into k subsets A1, . . . , Ak, whose sizes are as equal
as possible, i.e.

⋃k
i=1Ai = V , Ai ∩ Aj = ∅, ||Ai| − |Aj || ≤ 1 ∀ i 6= j. Two vertices are connected

by an edge if and only if they belong to different subsets, i.e. (vi, vj) ∈ E ⇔ vi ∈ Ar, vj ∈ As
with r 6= s.

The number of edges in T(n, k) is given by 1
2 ·
∑k
i=1 |Ai| · (n − |Ai|) and is upper bounded by(

1− 1
k

)
· n

2

2 . Since every set of (k + 1) vertices contains at least two vertices in the same subset
Ai, the Turán graph does not contain a (k + 1) clique.

Theorem 8.4. [57] The Turán graph is the graph with the highest possible number of edges with
this property.

The complementary graph of the Turán graph T(n, k) is denoted by CT(n, k). Here, two vertices
are connected by an edge if and only if they belong to the same subset,
i.e. (vi, vj) ∈ E ⇔ ∃r ∈ {1, . . . , k} s.t. vi ∈ Ar ∧ vj ∈ Ar.
The number of edges in the graph CT (n, k) is given by |E| =

∑k
i=1

(|Ai|
2

)
, which is bounded from

below by n
2 ·
(
n
k − 1

)
.

Since every set of (k+1) vertices contains at least two vertices from the same subset Ai, the graph
CT(n, k) does not contain a (k + 1) independent set. From Theorem 8.4 it follows that CT(n, k)
is the graph with the minimal number of edges with this property.
Figure 8.1 shows for n = 8 and k = 3 the Turán graph T(8,3) and its complementary graph
CT(8,3).

8.6.2 The Selection Strategy

When using a matrix B ∈ GF(2)o×D, the coefficients of the quadratic monomials xixj correspond-
ing to the columns of B are elements of GF(2). Only the o·(o+1)

2 remaining quadratic monomials
will have coefficients in F \ GF(2). We denote the set of these monomials by C. When using a
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Figure 8.1: Turán graph T(8, 3) and complementary graph CT(8, 3)

matrix B ∈ GF(2)o×D together with selection strategy 1 (see Subsection 7.1.1), this set C has the
form

C = {xixj |v + 1 ≤ i ≤ j ≤ n}. (8.16)

Before applying an algorithm like XL or a Gröbner Basis method, the attacker usually fixes some
of the variables to create an (over-)determined system. By fixing the o variables xi (v+1 ≤ i ≤ n)
an attacker can turn all the monomials of C into constants and therefore create a system whose
quadratic terms have coefficients from GF(2). As Table 8.4 shows, MAGMA can solve systems of
this type significantly faster than the public systems of the standard UOV scheme. Therefore we
have to follow a new approach.

(GF(256),o,v) (9,18) (10,20) (11,22) (12,24) (13,26) (14,28)
UOV system 5.5 s 38.3 s 289.2 s 2,383 s 18,928 s 169,038 s

GF(2) - system 3.7 s 32.4 s 253.4 s 2,214 s 17,742 s 143,749 s
1 system obtained by using a matrix B over GF(2) as input for Algorithm 7.1 (with selection

strategy 1)

Table 8.4: Running time of the direct attack against UOV and GF(2) systems

The goal of our new approach is to choose the elements of C in such a way that, no matter which
variables the attacker fixes before applying an algorithm like F4, he is not able to turn all the
monomials of C to linear or constant terms. Our new idea can be described as follows:

The set C of quadratic monomials with coefficients in F \GF(2) can be seen as a graph G(V,E)
with vertices V = {x1, . . . , xn} and edges E = {(xi, xj)|xixj ∈ C}. By construction we have
|E| = o·(o+1)

2 . By fixing/guessing k variables, the attacker creates a new graph G(k) = (V (k), E(k))
with n− k vertices and E(k) = {(xi, xj) ∈ E|xi ∈ V (k) ∧ xj ∈ V (k)}.
In the following we create the graph G in such a way, that the graph G(k), no matter which
variables the attacker fixes before applying a Gröbner basis algorithm, contains at least one edge
(for all k ≤ k̄ and a maximal upper bound k̄). This means that the attacker is forced to solve the
system over F and can not restrict to the easier case of computing a Gröbner Basis over GF(2).
We observe the following:
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Theorem 8.5. By fixing/guessing k variables, an attacker is able to create a system whose
quadratic terms all have coefficients in GF (2) if and only if the graph G contains an (n − k)-
independent set (see Definition 8.11).

Proof. ′ ⇐′: Assume that G contains an (n − k)-independent set I ⊂ V . Set V ′ = V \ I. Note
that |V ′| = k. Then E contains o·(o+1)

2 edges of the form (xi, xj) : i ∈ V ′ ∨ j ∈ V ′. By fixing k of
the variables the attacker is able to remove all the vertices xi ∈ V ′ from the graph G. Therefore,
we have E(k) = ∅ = C, which means that there remains a system whose quadratic terms all have
coefficients over GF(2).
′ ⇒′: Assume that G does not contain an (n − k)-independent set. Therefore, for each (n − k)-
subset of vertices V ′ there exists at least one edge of the form (xi, xj) with xi ∈ V ′ and xj ∈ V ′.
When the attacker removes k vertices from V there remain n−k vertices x̃1, . . . , x̃n−k in the graph
G(k). Since |V (k)| = n− k, there remains at least one edge (x̃i, x̃j) with x̃i ∈ V (k) and x̃j ∈ V (k).
Therefore, each polynomial in P contains at least one quadratic monomial with coefficient in
F\ GF(2).

According to Theorem 8.5 and our discussion before, we have to create a graph G = (V,E) with
the following properties:

• G contains n vertices x1, . . . , xn, i.e. |V | = n.

• G contains o·(o+1)
2 edges, i.e. |E| = o·(o+1)

2 .

• G does not contain an `-independent set (for all ` ≥ ¯̀ and minimal ¯̀).

For fixed `, the problem of finding the graph with n vertices, without `-independent set and min-
imal number of edges is solved by the complementary Turán graph CT (n, ` − 1). So, to find the
optimal graph G for our purposes, we apply the following strategy:

We start with ` = 1 and construct the complementary Turán graph CT (n, 1). We then increase `
until the number of edges in CT (n, `) is less or equal to o·(o+1)

2 .
Let ˆ̀ be this minimal ` such that the number |Ê| of edges in CT (n, ˆ̀) is less or equal to o·(o+1)

2 .
If we have o·(o+1)

2 − |Ê| = t > 0, we add t edges to Ê (beginning with the edges (xi, xj) /∈ Ê
corresponding to the first quadratic cross terms in the graded lexicographic order). By doing so,
we obtain a graph G(V,E) with CT (n, ˆ̀) ⊂ G, |V | = n and |E| = o·(o+1)

2 . Since G contains
CT (n, ˆ̀) as a subgraph, it does not contain an ˆ̀+ 1 independent set.

We now define a selection strategy suitable for our purposes as follows. The set I containing
the monomials appearing in the matrix B (see Section 7.1) is given as

I = {(i, j) : (i, j) ∈ G ∨ i = j}, (8.17)

where G is the complementary graph of G which is actually a subgraph of the Turán graph T (n, ˆ̀).
Note that G contains

(
n
2

)
− o·(o+1)

2 = D − n edges. Therefore, I contains exactly D 2-tuples (i, j)
(1 ≤ i ≤ j ≤ n) (including all the 2-tuples (i, i) (1 ≤ i ≤ n)).
We now choose the elements of the o×D matrix B uniformly at random from GF(2). We can then
generate a key pair of 0/1 UOV by following Algorithm 7.1 (using the selection strategy defined
above). By doing so we ensure that an attacker who fixes up to n− ˆ̀− 1 variables is not able to
remove all quadratic terms with coefficients in F \GF(2) from the system.

Example 8.1. For the parameters (F, o, v) = (GF(256), 28, 56) we have n = 84,
D = v·(v+1)

2 + o · v = 3164 and D2 = o·(o+1)
2 = 406.

To find the number ˆ̀, we compute for ` = 1, . . . the number of edges in the graph CT(84, `).
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` 1 2 3 4 5 6 7 8
# edges in CT(84, `) 3486 1722 1134 840 664 546 462 400

> D2 > D2 > D2 > D2 > D2 > D2 > D2 ≤ D2

So we have ˆ̀ = 8. To construct the complementary Turán graph CT (84, 8) we divide the set
of vertices x1, . . . , x84 into 8 subsets Ai (i = 1, . . . 8) as follows

i 1 2 3 4 5 6 7 8
|Ai| 11 11 11 11 10 10 10 10
Ai x1, . . . , x11 x12, . . . , x22 x23, . . . , x33 x34, . . . , x44 x45, . . . , x54 x55, . . . , x64 x65, . . . , x74 x75, . . . , x84

The graph CT (84, 8) contains 400 edges (xi, xj) with i 6= j and xi and xj belonging to the same
subset Ai (i = 1, . . . , 8).
To get the full number of 406 edges in the graph G we have to add 6 edges to CT (84, 8). In
our example these are the edges (x1, x12), . . . , (x1, x17) (Note that the edges (x1, x2), . . . , (x1, x11)
are already contained in CT (84, 8)). By doing so we get a graph G with n = 84 vertices and
o·(o+1)

2 = 406 edges which contains the graph CT (84, 8) as a subgraph. The complementary graph
G therefore contains

(
84
2

)
− 406 = 3080 edges.

Fixing of variables:
When attacking the scheme directly, an attacker usually fixes a certain number of variables before
applying XL or a Gröbner basis method. The attacker tries to fix the variables in such a way, that
the maximal number of edges in G (and therefore monomials in C) vanishes. For this step we
neglect the edges added in the previous step and assume that G = CT (84, 8). Since the number of
edges in the complementary Turán graph CT(n,k) is given by

k∑
i=1

(
|Ai|

2

)
,

it is obviously the best strategy for the attacker to remove from each subset Ai approximately the
same number of vertices. Note that by removing r vertices from CT(n, k) using the above strategy
the attacker creates the graph CT(n− r, k).

When fixing v of the n variables, the attacker creates the graph CT(o, k). In our example, we
get the graph CT(28, 8) whose 28 vertices are divided into subsets A′i (i = 1, . . . , 8) as follows:

i 1 2 3 4 5 6 7 8
|A′i| 4 4 4 4 3 3 3 3

The number of edges in this graph and therefore the number of quadratic terms with coefficients
in GF (256) \GF (2) remaining in each component of the public system is

∑8
i=1

(|A′i|
2

)
= 36.

When fixing/guessing v + 2 = 30 variables, the attacker implicitly creates the graph CT(26, 8),
whose vertices are divided into 8 groups A′′i as follows:

i 1 2 3 4 5 6 7 8
|A′′i | 4 4 3 3 3 3 3 3

The number of edges in this graph and therefore the number of quadratic terms with coefficients
in GF (256) \GF (2) remaining in each component of the public system is

∑8
i=1

(|A′′i |
2

)
= 30.

To remove all edges in the graph G (i.e. all quadratic monomials with coefficients in GF (256) \
GF (2) from the system P) the attacker would have to fix/guess n− ˆ̀= 84− 8 = 76 variables. To
find a solution of the original system by this strategy, he would have to solve 25676−v = 28·20 = 2160

final systems, which is far out of reach.
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(GF(256), o, v) (9,18) (10,20) (11,22) (12,24) (13,26) (14,28)
UOV 5.5 s 40.5 s 299.7 s 2,389 s 19,045 s 169,261 s
cyclicUOV 5.5 s 40.4 s 299.6 s 2,388 s 19,023 s 169,127 s
UOVLRS (L = o) 5.4 s 40.3 s 299.2 s 2,386 s 19,031 s 169,173 s
UOVLRScyc (L = o) 5.4 s 40.4 s 299.5 s 2,383 s 19,028 s 169,018 s
UOVLRS2 5.3 s 40.3 s 299.4 s 2,385 s 19,035 s 169,214 s
UOVrand 5.5 s 40.5 s 299.8 s 2,388 s 19,047 s 169,227 s
0/1 UOV 5.4 s 40.2 s 299.2 s 2,385 s 19,031 s 168,724 s

Table 8.5: Running time of the direct attack against UOV like schemes

The following table shows for some values of o the optimal number ˆ̀, as well as the number of
monomials in C and the minimal number of monomials remaining in C after fixing/guessing v
and v+ 2 variables (denoted by |C|v and (|C|v+2) respectively. As it is usually done for UOV, we
set here v = 2 · o.

o 10 18 26 28 30 32 36 40 44 48
ˆ̀ 7 8 8 8 8 8 9 9 9 9
|C| 55 171 351 406 465 528 666 820 990 1080
|C|v 3 12 30 36 42 48 54 70 86 105
|C|v+2 1 8 24 30 36 42 48 62 78 95

The public key size of 0/1UOV is given by

sizepk 0/1UOV = o ·
(
v · (v + 1)

2
+ o · v

)
bits + o ·

(
o · (o+ 1)

2
+ n+ 1

)
(8.18)

field elements, the size of the private key is the same as for the standard UOV scheme (see equation
(3.3)).

8.7 Security

In this section we analyze the security of our improved versions of the UOV signature scheme
against known attacks. These attacks include (see Section 3.3)

• direct attacks,

• the UOV attack and

• the UOV-Reconciliation attack.

Direct attacks

The most straightforward way to attack a multivariate signature scheme like UOV is by solving the
public system P(x) = h by XL or a Gröbner Basis method (signature forgery attack; see Section
2.5). To analyze the security of our improved schemes against these attacks, we carried out a
number of experiments with MAGMA [8] v.2.13-10, which contains an efficient implementation of
Faugère’s F4 algorithm [23]. For each of the improved versions of UOV presented in this chapter
and each parameter set listed in Table 8.5 we created 100 of the public systems P(x) = h and
solved them using the MAGMA command Variety. Table 8.5 shows the results.
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(GF(256), o, v) (9,18) (10,20) (11,22) (12,24) (13,26) (14,28)
UOV 5.6 s 40.8 s 298.9 s 2,391 s 19,071 s 169,642 s
cyclicUOV 5.5 s 40.6 s 298.6 s 2,390 s 18,987 s 169,454 s
UOVLRS (L = o) 5.5 s 40.5 s 299.1 s 2,389 s 18,519 s 169,421 s
UOVLRScyc (L = o) 5.4 s 40.5 s 299.0 s 2,389 s 18,918 s 169,443 s
UOVLRS2 5.5 s 40.4 s 299.1 s 2,391 s 18,924 s 169,541 s
UOVrand 5.6 s 40.5 s 299.2 s 2,392 s 19,031 s 169,637 s
0/1 UOV 5.4 s 40.4 s 299.1 s 2,391 s 18,904 s 168,961 s

Table 8.6: Running time of the UOV-Reconciliation attack against UOV like schemes

(GF(256), o, v) (2,4) (3,6) (4,8) (5,10)
UOV 16.1 24.3 32.2 40.0
cyclicUOV 16.1 24.2 32.0 39.9
UOVLRS (L = o) 16.0 24.1 31.9 39.9
UOVLRScyc (L = o) 16.1 24.2 32.1 40.0
UOVLRS2 16.0 24.1 32.0 39.9
UOVrand 16.1 24.2 32.2 40.0
0/1 UOV 16.0 24.1 32.1 39.9

Table 8.7: Results of the experiments with the UOV attack

UOV-Reconciliation attack

The goal of the UOV-Reconciliation attack (see Subsection 3.3.2) is to find a linear transformation
which brings the public polynomials into the form of a UOV central map. To do this, one has to
solve several systems of multivariate quadratic equations. The complexity of the attack is mainly
determined by the complexity of solving the first and largest of these systems. Table 8.6 shows
the time, MAGMA needs to solve this system which consists of o equations in v variables. For
each of our schemes and each of the parameter sets listed in the table we attacked 100 instances.

UOV attack

The goal of the UOV attack (see Subsection 3.3.3) is to compute an equivalent affine map T by
finding the preimage of the Oil subspace O = {(x1, . . . , xn) ∈ Fn : x1 = . . . = xv = 0} under
T . To do this, one computes the invariant subspaces of matrices W = (P (i))−1 ·

∑o
j=1 λj · P (j)

which, with a certain probability, are also subspaces of T −1(O). Here, P (i) is the symmetric
matrix associated to the homogeneous quadratic part of the i-th component of the public key (see
equation 2.14). Table 8.7 shows the base 2 logarithm of the number of matrices W we had to test
until finding a basis of T −1(O).

8.8 Parameters and Comparison

Based on our security analysis (see previous section) we propose for our improved schemes the
same parameters as for the standard UOV scheme (see Table 5.6), namely (for 80 bit security)

• (o, v) = (40, 80) for UOV like schemes over GF(16),

• (o, v) = (33, 66) for UOV like schemes over GF(31) and

• (o, v) = (28, 56) for UOV like schemes over GF(256).



8.8. PARAMETERS AND COMPARISON 121

security hash size signature private key public key reduction
level (bit) (bit) size (bit) size (kB) size (kB) factor

80

GF(16)

UOV(40,80) 160 480 135.2 144.2 -
cyclicUOV(40,80) 160 480 135.2 21.5 6.7
UOVLRS(40,80) 160 480 135.2 18.4 7.8
UOVrand(40,80) 1 160 480 135.2 18.4 7.8
0/1UOV(40,80) 160 480 135.2 49.8 2.9

GF(31)

UOV(33,66) 160 528 102.9 108.5 -
cyclicUOV(33,36) 160 528 102.9 17.1 6.4
UOVLRS(33,66) 160 528 102.9 14.2 7.6
UOVrand(33,66) 1 160 528 102.9 14.2 7.6
0/1UOV(33,66) 160 528 102.9 31.9 3.4

GF(256)

UOV(28,56) 224 672 95.8 99.9 -
cyclicUOV(28,56) 224 672 95.8 16.5 6.0
UOVLRS(28,56) 224 672 95.8 13.5 7.4
UOVLRS2(28,56) 224 672 95.8 13.5 7.4
UOVrand(28,56) 1 224 672 95.8 13.4 7.4
0/1 UOV(28,56) 224 672 95.8 24.1 4.1

100 GF(256)

UOV(35,70) 280 840 183.2 193.8 -
cyclicUOV(35,70) 280 840 183.2 30.0 6.5
UOVLRS(35,70) 280 840 183.2 25.2 7.7
UOVLRS2(35,70) 280 840 183.2 25.2 7.7
UOVrand (35,70) 1 280 840 183.2 25.1 7.7
0/1 UOV(35,70) 280 840 183.2 46.1 4.2

128 GF(256)

UOV(45,90) 360 1080 381.8 409.4 -
cyclicUOV(45,90) 360 1080 381.8 59.4 6.9
UOVLRS(45,90) 360 1080 381.8 51.5 7.9
UOVLRS2(45,90) 360 1080 381.8 51.4 8.0
UOVrand(45,90) 1 360 1080 381.8 51.3 8.0
0/1 UOV(45,90) 360 1080 381.8 96.0 4.3

1 using a PRNG with seed of 128 bit (e.g. AES in OFB mode)

Table 8.8: Key sizes for improved versions of UOV

For a security level of 100 bits we need

• (o, v) = (50, 100) for UOV like schemes over GF(16),

• (o, v) = (41, 82) for UOV like schemes over GF(31) and

• (o, v) = (35, 70) for UOV like schemes over GF(256).

For 128 bit security we propose

• (o, v) = (64, 128) for UOV like schemes over GF(16),

• (o, v) = (52, 104) for UOV like schemes over GF(31) and

• (o, v) = (45, 90) for UOV like schemes over GF(256).

Table 8.8 shows the key sizes of our improved schemes and compares them with those of the
standard UOV scheme. Note that the UOVLRS2 scheme does not work over GF(16) and GF(31)
(see Remark 8.5). Furthermore we omit the UOVLRScyc scheme here, since the results are the
same as for UOVLRS.
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security parameters key generation signature generation signature verification

level (bit) (F, o, v) time (ms) cycles (106) time (ms) cycles (106) time (ms) cycles (106)

80 (GF(256),28,56) 37,152 93,473 4.521 11.201 cyclicUOV 0.23 0.58
UOVLRS2 0.20 0.50

100 (GF(256),35,70) 111,249 279,780 7.818 18.818 cyclicUOV 0.40 1.00
UOVLRS2 0.36 0.90

128 (GF(256),45,90) 378,564 952,362 14.01 35.22 cyclicUOV 0.80 2.01
UOVLRS2 0.72 1.82

Table 8.9: Running time of improved versions of UOV

8.9 Implementation

In this section we give some details about the implementation of our improved versions of UOV.
The implementation was done in C and runs on a Lenovo ThinkPad with one Intel Core 2Duo
processor with 2.53 GHz and 4 GB of main memory.

Key Generation: The key generation process is the most expensive part of our implementa-
tion. During this step we have to perform the inversion of the large matrix AUOV ∈ FD×D (for the
parameters (o, v) = (28, 56) this matrix consists of 3146 rows and columns). To do this efficiently,
we used the M4RIE library [1], which performs the inversion using Gauss-Newton-John Elimina-
tion. The main idea behind this can be described as follows: For each row A[i] of the matrix
AUOV the multiples c · A[i] (c ∈ F) are precomputed and stored in the Newton-John table. The
elimination step can therefore be done by adding one row of AUOV with one row of the Newton-
John table. By doing so, the matrix inversion can be performed using O(D2) multiplications and
O(D3) additions.
To speed up the signature generation process, we furthermore store the inverted map T −1 (instead
of T ) in the private key.

Signature Generation: The signature generation process is done as for the standard UOV
scheme. To sign a message d with hash value h, we first choose the values of the Vinegar variables
at random and solve the resulting system for the Oil variables by Gaussian Elimination. After
that we use the map T −1 to compute a signature for the message d. As we find, for this step it is
not suitable to use the M4RIE library, as the matrices to be inverted are quite small.

Signature verification: The signature verification step is the most interesting part of the im-
plementation. For two of our improved versions of UOV (namely cyclicUOV and UOVLRS2) we
can use the structure in the public key to speed up the computations (more information on this
can be found in Chapter 10 of this thesis).

Table 8.9 shows the running time of our implementation. As the table shows, the key genera-
tion process of our schemes is quite expensive and takes a lot of time. However, since this process
has to be performed only once during the lifetime of a key, we do not think that this is a major
problem.
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Chapter 9

Improved Versions of Rainbow

In this chapter we present two different improved versions of the Rainbow signature scheme, which
reduce the public key size of the original Rainbow scheme by a factor of up to 3.1. To achieve
this, we follow the approach described in Section 7.2. We show how to choose the matrices Bi
(i = 1 . . . , u) used in Algorithm 7.2 in order to get a structured public key.

As we find, our description will be much easier if we first define a large matrix BRainbow ∈ Fm×Du
and then divide it into submatrices as shown in Figure 9.1. We denote the entry of the i-th row of
BRainbow corresponding to the monomial xjxk by B(i)

jk . Note that, analogously to the polynomials
of the Rainbow public key, we enumerate the rows of BRainbow by B[v1 + 1], . . . , B[n].

As in Section 7.2 we define D0 := 0 and

D` :=
v` · (v` + 1)

2
+ o` · v` (` = 1, . . . , u). (9.1)

Furthermore we use (unless otherwise stated) the monomial ordering defined in Subsection 7.2.1.

In Section 9.1 and 9.2 we describe two improved versions of the Rainbow signature scheme called
cyclicRainbow and RainbowLRS2. Section 9.3 discusses the security of these improved schemes
and in Section 9.4 we compare our two schemes with the original Rainbow signature scheme in
terms of the public key size. Finally, Section 9.5 gives details about the implementation of our
improved schemes.

BRainbow

v1

v2

v3

b
bb vu−1

vu

n

B1

B2

B3
Bu−1

Bu
. . .

D1 D2 D3 Du−2 Du−1 Du

Figure 9.1: Layout of the matrix BRainbow
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9.1 CyclicRainbow

The first improved version of the Rainbow signature scheme we describe here is a variant of Rain-
bow with a partially circulant public key.
As stated above, we define a large matrix BRainbow ∈ Fm×Du and divide it into submatrices
as shown in Figure 9.1. In the concrete setting of cyclicRainbow, we choose randomly a vector
b ∈ FDu , whose elements are repeated in each row of the matrix BRainbow (after applying a cyclic
shift). In terms of key size reduction, the details of this process play no major role. However,
to speed up the verification process (see Chapter 10), it is better to fill the rows of BRainbow in
lexicographic order. Algorithm 9.1 shows the process of generating the matrices B1, . . . , Bu in a
compact form.

Algorithm 9.1 Generation of the matrices B1, . . . , Bu for cyclicRainbow
Input: parameters (F, v1, o1, . . . , ou)
Output: matrices Bi ∈ F(n−vi)×(Di−Di−1) (i = 1, . . . , u) for cyclicRainbow

1: Choose randomly a vector b ∈ FDu .
2: for i = v1 + 1 to n do
3: c← 1
4: for j = 1 to vu do
5: for k = j to n do
6: B

(i)
jk = bc

7: c← c+ 1
8: end for
9: end for

10: b← R(b) with R(b) being the cyclic right shift of the vector b by 1 position.
11: end for
12: Divide B into submatrices Bi as shown in Figure 9.1.
13: return B1, . . . , Bu

We use the matrices B1, . . . Bu generated by Algorithm 9.1 as input to Algorithm 7.2 to generate
a key pair of cyclicRainbow.

Example 9.1. For F = GF (19), (v1, o1, o2) = (2, 2, 2) we get

• D1 = v1·(v1+1)
2 + v1 · o1 = 7 and

• D2 = v2·(v2+1)
2 + v2 · o2 = 18.

We choose the vector b ∈ F18 as b = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18) and get

BRainbow =


1 2 3 4 7 8 9 5 6 10 11 12 13 14 15 16 17 18
18 1 2 3 6 7 8 4 5 9 10 11 12 13 14 15 16 17
17 18 1 2 5 6 7 3 4 8 9 10 11 12 13 14 15 16
16 17 18 1 4 5 6 2 3 7 8 9 10 11 12 13 14 15

 .

Such we get

B1 =


1 2 3 4 7 8 9
18 1 2 3 6 7 8
17 18 1 2 5 6 7
16 17 18 1 4 5 6

 ∈ F4×7

and

B2 =
(

3 4 8 9 10 11 12 13 14 15 16
2 3 7 8 9 10 11 12 13 14 15

)
∈ F2×11
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which can be used in Algorithm 7.2. We choose

S(x) =


5 0 6 0
13 12 14 15
4 7 11 17
13 1 11 14

 · x +


9
0
14
10


and

T (x) =


12 9 16 1 12 7
2 3 13 10 16 11
13 8 2 18 17 10
8 8 15 12 8 17
15 4 3 12 1 4
16 16 14 16 2 12

 · x +


7
14
10
16
5
11


and get the public key P (in matrix form (see equation (2.10))

p(3) : (x1, x2, x3, x4, x5, x6, 1) ·



1 2 3 4 10 3 18
0 7 8 9 15 14 13
0 0 11 5 9 15 5
0 0 0 7 12 0 2
0 0 0 0 6 8 14
0 0 0 0 0 12 18
0 0 0 0 0 0 16


·



x1

x2

x3

x4

x5

x6

1


,

p(4) : (x1, x2, x3, x4, x5, x6, 1) ·



18 1 2 3 14 9 9
0 6 7 8 17 18 12
0 0 7 12 14 8 5
0 0 0 5 8 0 16
0 0 0 0 7 4 17
0 0 0 0 0 6 13
0 0 0 0 0 0 2


·



x1

x2

x3

x4

x5

x6

1


,

p(5) : (x1, x2, x3, x4, x5, x6, 1) ·



17 18 1 2 3 4 17
0 5 6 7 8 9 1
0 0 10 11 12 13 11
0 0 0 14 15 16 8
0 0 0 0 15 3 12
0 0 0 0 0 15 16
0 0 0 0 0 0 8


·



x1

x2

x3

x4

x5

x6

1


and

p(6) : (x1, x2, x3, x4, x5, x6, 1) ·



16 17 18 1 2 3 0
0 4 5 6 7 8 1
0 0 9 10 11 12 3
0 0 0 13 14 15 5
0 0 0 0 4 2 1
0 0 0 0 0 15 8
0 0 0 0 0 0 11


·



x1

x2

x3

x4

x5

x6

1


.

To store the matrices B1, . . . , Bu, we have to store only the vector b ∈ FDu . The size of the public
key of cyclicRainbow is therefore given by

sizepk cyclicRainbow = Du+
u∑
`=1

o` ·
(

(n+ 1) · (n+ 2)
2

−D`

)
= Du+m· (n+ 1) · (n+ 2)

2
−

u∑
`=1

o` ·D`

(9.2)
field elements, the size of the private key is the same as for the standard Rainbow scheme (see
equation (3.18)).
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In Section 10.4 we show how the structure of the public key of cyclicRainbow can be used to
speed up the verification process of the scheme.

9.2 RainbowLRS2

In this section we show how to use linear recurring sequences (LRS’s) to reduce the public key
size of the Rainbow signature scheme. As in the case of cyclicRainbow (see previous section)
we define a matrix BRainbow ∈ Fm×Du and divide it into submatrices to get the matrices Bi
(i = 1, . . . , u) used in Algorithm 7.2. In the concrete setting of RainbowLRS2, we choose two
vectors α = (αv1+1, . . . , αn) and γ = (γv1+1, . . . , γn) ∈ Fm and define m linear recurring sequences
S(i) of length 1 by

S(i) = LRS(αi, γi ·X + 1) (i = v1 + 1, . . . , n). (9.3)

Finally, we put the first Du elements of S(i) into the i-th row of the matrix B (in graded lexico-
graphic order).
Algorithm 9.2 shows this generation process in a compact form.

Algorithm 9.2 Generation of the matrices B1, . . . , Bu for RainbowLRS2

Input: parameters (F, v1, o1, . . . , ou)
Output: matrices Bi ∈ F(n−vi)×Di−Di−1 (i = 1, . . . , u) for RainbowLRS2.

1: Choose two vectors α = (αv1+1, . . . , αn) and γ = (γv1+1, . . . , γn) ∈ Fm (see Subsection 9.2.1).
2: for i = v1 + 1 to n do
3: Compute the first Du elements s1 . . . , sDu of the LRS S(i) = LRS(ai, γi ·X + 1).
4: c← 1
5: for j = 1 to vu do
6: for k = j to n do
7: B

(i)
jk ← sc

8: c← c+ 1
9: end for

10: end for
11: end for
12: Divide B into submatrices Bi as shown in Figure 9.1.
13: return B1, . . . , Bu

We use the matrices B1, . . . , Bu generated by Algorithm 9.2 as input to Algorithm 7.2 to generate
a key pair of RainbowLRS2. In order to store the matrices B1, . . . , Bu we have to store only the
vectors α and γ.

9.2.1 Choice of α and γ

For RainbowLRS2, the question of choosing the vector γ is a bit more complicated than for the
simple case of UOVLRS2 (see Section 8.4). The reason for this is the second affine map S which
mixes the polynomials. So, if two elements of the vector γ are equal, not the whole homogeneous
quadratic part of the public polynomials will be linearly dependent. However, there still remain
linear dependencies which can be used by Gröbner Basis algorithms (see Table 9.1). Therefore we
recommend to choose all the elements of the vector γ to be pairwise distinct. Furthermore, all the
elements of the vector γ must be different from zero.
In contrast to this, there are no major conditions on the choice of the vector α. We just need
αi ∈ F \ {0} ∀i = 1, . . . ,m. So α can be fixed to α = (1, . . . , 1) ∈ Fn.

Remark 9.1. As in the case of UOVLRS2 (see Section 8.4), the above condition on γ prevents
us from using RainbowLRS2 over GF (16) and GF (31).
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(GF (256), v1, o1, o2) (6, 4, 5) (7, 5, 5) (8, 5, 6) (9, 6, 6) (10, 6, 7) (11, 7, 7)
L = m 5.2 s 40.6 s 291.9 s 2,381 s 19,027 s 168,562 s
L = m− 1 5.1 s 39.1 s 287.8 s 2,355 s 18,876 s 145,885 s
L = m− 2 2.8 s 18.4 s 135.7 s 1,034 s 8,836 s 82,492 s

Table 9.1: Running time of the direct attack against RainbowLRS2 for different values of L

(GF (256), v1, o1, o2) (6,4,5) (7,5,5) (7,5,6) (8,6,6) (9,6,7) (10,7,7)
Rainbow 5.3 s 40.6 s 292.5 s 2,382 s 19,031 s 168,578 s
cyclicRainbow 5.3 s 40.5 s 292.3 s 2,379 s 19,025 s 168,521 s
RainbowLRS2 5.2 s 40.6 s 291.9 s 2,381 s 19,027 s 168,562 s

Table 9.2: Running time of the direct attack against Rainbow like schemes

Therefore, in order to store the matrices B1, . . . , Bu, we have to store only the m elements of the
vector γ.
The size of the public key of RainbowLRS2 is therefore given by

sizepk RainbowLRS2 = m+
u∑
`=1

o` ·
(

(n+ 1) · (n+ 2)
2

−D`

)
= m · (n+ 1) · (n+ 2) + 2

2
−

u∑
`=1

o` ·D`

(9.4)
field elements, the size of the private key is the same as for the standard Rainbow scheme (see
equation (3.18)).

In Section 10.5 we show how the structure of the RainbowLRS2 public key can be used to speed
up the verification process of the scheme.

9.3 Security

We analyzed the security of our improved versions of the Rainbow signature scheme against known
attacks. These include (see Section 3.6):

• direct attacks

• Rank attacks (MinRank and HighRank)

• the Rainbow-Band-Separation attack and

• attacks against UOV (UOV-Reconciliation and UOV attack).

Direct attacks

The most straightforward way to attack multivariate schemes like Rainbow is by solving the public
system P(x) = h directly by the XL-Algorithm or a Gröbner Basis method (see Section 2.5). These
attacks belong therefore to the area of signature forgery attacks. To analyze the security of our
improved schemes against these attacks, we carried out a number of experiments with MAGMA
[8] v. 2.13-10, which contains an efficient implementation of Faugère’s F4 algorithm [23]. For each
of the improved versions of Rainbow presented in this chapter and each parameter set we created
100 public systems P(x) = h and solved them, after fixing n −m variables to get a determined
system, using the MAGMA command Variety. Table 9.2 shows the results.
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(GF (256), v1, o1, o2) (3,2,2) (4,2,3) (5,3,3) (6,3,4)
Rainbow 24.3 32.5 40.1 48.3
cyclicRainbow 24.2 32.1 40.0 48.2
RainbowLRS2 24.2 32.3 40.1 48.1

Table 9.3: Results of our experiments with the MinRank attack against Rainbow like schemes

(GF (256), v1, o1, o2) (3,2,2) (4,2,3) (5,3,3) (6,3,4)
Rainbow 16.7 24.6 24.7 32.4
cyclicRainbow 16.5 24.5 24.5 32.3
RainbowLRS2 16.4 24.4 24.6 32.2

Table 9.4: Results of our experiments with the HighRank attack against Rainbow like schemes

MinRank attack

The goal of the MinRank attack (see Subsection 3.6.2) is to find linear combinations of the matrices
P (k) associated to the homogeneous quadratic part of the k-th component of the public key (see
equation (2.14)) of rank r ≤ v2. These linear combinations correspond to linear combinations of
the central polynomial of the first Rainbow layer. Finding o1 of these linear combinations therefore
enables the attacker to separate the first Rainbow layer from the other polynomials. We imple-
mented the MinRank attack as presented in [6] in MAGMA and used it to attack our improved
Rainbow schemes. Table 9.3 shows the base 2 logarithm of the number of linear combinations we
had to test until finding a matrix of rank ≤ v2.

HighRank attack

The goal of the HighRank attack (see Subsection 3.6.3) is to find the space T −1(Ou) for Ou =
{x ∈ Fn : x1 = . . . = xvu = 0} by looking at the kernel of linear combinations of the matrices
P (k). Table 9.4 shows the base 2 logarithm of the number of linear combinations we had to test
to find a basis of T −1(Ou).

Rainbow-Band-Separation attack

The goal of the Rainbow-Band-Separation (RBS) attack (see Subsection 3.6.4) is to find an equiv-
alent Rainbow private key by stepwise creating a linear transformation which brings the matrices
P (k) into the form of a Rainbow central map. To do this, the attacker has to solve several systems
of multivariate equations. Table 9.5 shows the time MAGMA needs to solve the first and largest
of these systems for the standard Rainbow scheme as well as for our improved versions.

UOV-Reconciliation attack

Since Rainbow can be seen as a UOV scheme with vu Vinegar variables and ou Oil variables, it
can be attacked by the UOV-Reconciliation attack (see Subsection 3.3.2). The goal of this attack

(GF (256), v1, o1, o2) (6,4,5) (7,5,5) (7,5,6) (8,6,6) (9,6,7) (10,7,7)
Rainbow 6.9 s 41.2 s 299.2 s 4,206 s 21,302 s 415,458 s
cyclicRainbow 6.8 s 41.0 s 298.3 s 4,207 s 21,319 s 414,962 s
RainbowLRS2 6.7 s 40.9 s 297.9 s 4,202 s 21,278 s 415,243 s

Table 9.5: Running time of the RBS attack against Rainbow like schemes
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(GF (256), v1, o1, o2) (6,4,5) (7,5,5) (7,5,6) (8,6,6) (9,6,7) (10,7,7)
Rainbow 5.4 s 38.3 s 289.7 s 2,370 s 19,235 s 147,641 s
cyclicRainbow 5.3 s 38.2 s 289.5 s 2,367 s 19,231 s 147,484 s
RainbowLRS2 5.3 s 38.1 s 289.3 s 2,362 s 19,227 s 147,521 s

Table 9.6: Running time of UOV-Reconciliation attack against Rainbow like schemes

(256, v1, o1, o2) (3,2,2) (4,2,3) (5,3,3) (6,3,4)
Rainbow 24.4 24.5 40.4 40.6
cyclicRainbow 24.3 24.5 40.4 40.5
RainbowLRS2 24.3 24.4 40.3 40.4

Table 9.7: Results of the experiments with the UOV attack against Rainbow like schemes

is to find a linear transformation of the variables which brings the matrices P (k) into the form of a
UOV(vu, ou) central map. To find this transformation, one has to solve a number of multivariate
quadratic systems. Table 9.6 shows the time MAGMA needs to solve the first and largest of these
systems (m equations in vu variables).

UOV attack

As in the case of the UOV-Reconciliation attack we here consider Rainbow as an UOV scheme
with vu Vinegar variables and ou Oil variables. The goal of the UOV attack (see Subsection 3.3.3)
is to find an equivalent private key by finding the preimage of the Oil-subspace Ou = {x ∈ Fn :
x1 = . . . = xvu = 0} under the affine map T . We do this by looking at the invariant subspaces of
matrices of the form W = (P (i))−1 ·

∑n
j=v1+1 λj · P (j). Table 9.7 shows the base 2 logarithm of

the number of matrices W we had to test until finding a basis of T −1(Ou).

Summary

As the Tables 9.2 to 9.7 show, none of the known attacks against the Rainbow signature scheme
is significantly more efficient for any of our improved versions. The reason for this is that these
attacks do not look too closely at the inner structure of the polynomials and therefore can not use
the special structure of our public keys. However, it remains an open question if one can develop
dedicated attacks which use this structure.
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security hash size signature private key public key reduction
level (bit) (bit) size (bit) size (kB) size (kB) factor

80

GF(16) Rainbow(17,23,17) 160 228 21.9 33.4 -
cyclicRainbow(17,23,17) 160 228 21.9 15.6 2.1

GF(31) Rainbow(14,19,14) 160 256 17.1 25.3 -
cyclicRainbow(14,19,14) 160 256 17.1 12.0 2.1

GF(256)
Rainbow(17,13,13) 208 344 19.1 25.1 -

cyclicRainbow(17,13,13) 208 344 19.1 10.4 2.4
RainbowLRS2(17,13,13) 208 344 19.1 9.6 2.6

100 GF(256)
Rainbow(26,16,17) 264 472 45.0 59.0 -

cyclicRainbow(26,16,17) 264 472 45.0 21.7 2.7
RainbowLRS2(26,16,17) 264 472 45.0 20.2 2.9

128 GF(256)
Rainbow(36,21,22) 344 632 101.5 136.1 -

cyclicRainbow(36,21,22) 344 632 102.5 47.3 2.9
RainbowLRS2(36,21,22) 344 632 102.5 44.5 3.1

Table 9.8: Key sizes of Rainbow like schemes

9.4 Parameters and Comparison

Based on our security analysis presented in the previous section we can use for our improved
schemes the same parameters as for the standard Rainbow signature scheme (see Chapter 6).
However, to find a good compromise between public and private key size, we choose the sizes
of the middle and the last layer to be as equal as possible. Note that this is not possible for
Rainbow schemes over GF(16) and GF(31), since we need v1 ≥ ou to defend the scheme against
the UOV-Reconciliation attack.
So we propose (for 80 bit security)

• (v1, o1, o2) = (17, 23, 17) for Rainbow like schemes over GF(16),

• (v1, o1, o2) = (14, 19, 14) for Rainbow like schemes over GF(31) and

• (v1, o1, o2) = (17, 13, 13) for Rainbow like schemes over GF(256).

For 100 bit security we propose the parameters

• (v1, o1, o2) = (22, 28, 22) for Rainbow like schemes over GF(16),

• (v1, o1, o2) = (18, 23, 18) for Rainbow like schemes over GF(31) and

• (v1, o1, o2) = (26, 16, 17) for Rainbow like schemes over GF(256).

For a security level of 128 bits we get the parameters

• (v1, o1, o2) = (29, 35, 29) for Rainbow like schemes over GF(16),

• (v1, o1, o2) = (23, 29, 23) for Rainbow like schemes over GF(31) and

• (v1, o1, o2) = (36, 21, 22) for Rainbow like schemes over GF(256).

Table 9.8 shows the key sizes of our improved schemes and compares them with the original
Rainbow scheme. Note that RainbowLRS2 can not be used over the fields GF(16) and GF(31).
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security parameters key generation signature generation signature verification

level (bit) (F, v1, o1, o2) time (ms) cycles (106) time (ms) cycles (106) time (ms) cycles (106)

80 (GF(256),17,13,13) 2,377 6,133 2.01 4.74 cyclicRainbow 0.14 0.35
RainbowLRS2 0.15 0.38

100 (GF(256),26,16,17) 9,957 25,693 2.99 7.40 cyclicRainbow 0.29 0.72
RainbowLRS2 0.31 0.78

128 (GF(256),36,21,22) 39,008 100,660 4.95 12.53 cyclicRainbow 0.63 1.59
RainbowLRS2 0.67 1.69

Table 9.9: Running times of Rainbow like schemes

9.5 Implementation

In this section we give some details about the implementation of our improved versions of Rain-
bow. The implementation was done in C and runs on a Lenovo ThinkPad with one Intel Core
2Duo processor with 2.53 GHz and 4 GB of main memory.

Key Generation: The key generation process is the most expensive part of our implementa-
tion. Similarly to the case of UOV we have to invert the large matrices Ã1, . . . , Ãu. For the
parameters (v1, o1, o2) = (17, 13, 13) the biggest of these matrices (the matrix Ã2) consists of 855
rows and columns. As in the case of UOV (see Section 8.9) we use for this step the M4RIE library
[1]. Furthermore, we store the inverted maps S−1 and T −1 (instead of S and T ) in the private
key to speed up the signature generation process.

Signature Generation: The signature generation process is done as for the standard Rain-
bow scheme. To sign a message d with hash value h, we first use the map S−1 to compute
x = S−1(h). Then we choose the values of the Vinegar variables of the first layer at random and
solve the resulting system for the variables xi (i ∈ O1) by Gaussian Elimination. We substitute
these values into the remaining polynomials and solve the resulting system for the variables xi
(i ∈ O2). Finally, we use the map T −1 to compute a signature for the message d. As in Section
8.9, we do not use the M4RIE library during this step.

Signature verification: The signature verification step is the most interesting part of the imple-
mentation. For both of the proposed schemes we can use the structure of the public key to speed
up the computations (more information on this step can be found in Chapter 10 of this thesis).

Table 9.9 shows the running time of our implementation. As for the improved versions of UOV,
the key generation process of our schemes is quite expensive and takes a lot of time. However,
since this process has to be performed only once during the lifetime of a key, we do not think that
this is a major problem.
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Chapter 10

Speeding up the Verification
Process

In this chapter we show how the structure of the public keys of our improved versions of UOV and
Rainbow can be used to speed up the verification process of the schemes. After the description of
the generic verification process of multivariate signature schemes (Section 10.1), we show in Sec-
tions 10.2 - 10.5 how this step can be improved for the improved schemes cyclicUOV, UOVLRS2,
cyclicRainbow and RainbowLRS2 (see Sections 8.1, 8.4, 9.1 and 9.2). Finally, Section 10.6 presents
the results of our computer experiments and compares the running time of the verification process
of our improved versions with that of the original schemes.

10.1 Verification Process of Multivariate Signature Schemes

Let P = (p(1), . . . , p(m)) be the public key of a multivariate signature scheme. Let z = (z1, . . . , zn) ∈
Fn be a (valid or invalid) signature of a message d with hash value h = H(d) = (h1, . . . , hm) ∈ Fm.
The standard verification process looks as shown in Algorithm 10.1.

Algorithm 10.1 Generic verification process of multivariate signature schemes
Input: public key P = (p(1), . . . , p(m)) of a multivariate signature scheme, signature z ∈ Fn,

hash value h ∈ Fm
Output: boolean value TRUE or FALSE

1: for k = 1 to m do
2: h′k ← Evaluate(p(k), z)
3: if h′k 6= hk then return FALSE
4: end if
5: end for
6: return TRUE

As can be seen from Algorithm 10.1, invalid signatures can be detected usually very fast. As soon
as the test in line 3 is fulfilled, the algorithm stops and the signature is rejected. On the contrary,
for valid signatures, the test in line 3 has to be performed m times and we have to evaluate all
the polynomials p(1), . . . , p(m). Therefore, the running time of the verification algorithm is quite
asymmetric for valid and invalid signatures. This is in contrast to signature schemes like RSA and
DSA, where, regardless of the validity of a signature, the same operations have to be performed.
Furthermore, we see that the central step of the verification process is the evaluation of the public
polynomials p(1), . . . , p(m) (line 2). To perform this step, there are basically two possibilities:
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In the first way (later referred to as the standard approach), one computes for a given (valid or
invalid) signature z = (z1, . . . , zn) ∈ Fn an (n+1)·(n+2)

2 vector mon, which contains the values of
all monomials of degree ≤ 2, i.e.

mon = (z2
1 , z1z2, . . . , z

2
n, z1, . . . , zn, 1). (10.1)

Then we have
p(k)(z) = MP [k] ·monT (k = 1, . . . ,m), (10.2)

with MP [k] being the k-th row of the Macauley matrix MP (see Definition 2.6) and · being the
standard scalar product.
Note that for both the vector mon and the matrix MP we use the graded lexicographic order.
To evaluate the system P = (p(1), . . . , p(m)) in this way, one needs

• n·(n+1)
2 field multiplications to compute the vector mon and

• m ·
(
n·(n+1)

2 + n
)

field multiplications to compute the scalar products in equation (10.2).

Altogether, to verify a valid signature in this way, one needs

n

2
· ((n+ 1) · (m+ 1) + 2 ·m) (10.3)

field multiplications.

Remark 10.1. As mentioned above, the verification algorithm stops as soon as it has found an
k ∈ {1, . . . ,m} with p(k)(z) 6= hk. Therefore, for invalid signatures, the number of multiplications
is usually less than stated by formula (10.3).

The second strategy (later referred to as the alternative approach) can be described as follows:
We write the public polynomials in matrix form as shown in equation (2.10), i.e.

MP (k) =



p
(k)
11 p

(k)
12 p

(k)
13 . . . p

(k)
1n p

(k)
1

0 p
(k)
22 p

(k)
23 . . . p

(k)
2n p

(k)
2

0 0 p
(k)
33 p

(k)
3n p

(k)
3

...
. . .

...
...

0 0 . . . 0 p
(k)
nn p

(k)
n

0 0 . . . 0 0 p
(k)
0


(k = 1, . . . ,m). (10.4)

For a (valid or invalid) signature z = (z1, . . . , zn) we define the extended signature vector

sign = (z1, . . . , zn, 1). (10.5)

With this notation we can evaluate the polynomial p(k) (k = 1, . . . ,m) by

p(k)(z) = sign ·MP (k) · signT (k = 1, . . . ,m). (10.6)

To evaluate a single polynomial p(x1, . . . , xn) with associated matrix MP in this way, one needs

• (n+1)·(n+2)
2 field multiplications to compute the product temp = sign ·MP and

• n+ 1 field multiplications to compute the scalar product temp · signT .
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standard approach alternative approach
running CPU cycles running CPU cycles

time (ms) (106) time (ms) (106)

GF(16) UOV(40,80) 2.76 6.97 3.08 7.78
Rainbow(17,23,17) 0.65 1.63 0.72 1.84

GF(31) UOV(33,66) 2.01 5.08 2.12 5.21
Rainbow(14,19,14) 0.49 1.23 0.55 1.34

GF(256) UOV(28,56) 1.13 2.87 1.18 2.93
Rainbow(17,13,13) 0.29 0.72 0.31 0.83

Table 10.1: Comparison of our two evaluation strategies for UOV and Rainbow schemes (80 bit
security)

Therefore, to verify a valid signature in this way, we need

m · (n+ 1) · (n+ 4)
2

(10.7)

field multiplications. As mentioned above, for an invalid signature, this number is usually smaller.

Table 10.1 compares the two strategies for the verification process regarding their efficiency. For
this we created a straightforward C implementation of the UOV and Rainbow signature schemes
and verified 100,000 valid signatures using both of the above strategies. The table shows the
average running time as well as the number of CPU cycles needed during this process.

As Table 10.1 shows, for the standard UOV and Rainbow schemes, evaluating the polynomials by
the standard approach is slightly more efficient. But, as we will see in the following sections, for
schemes with structured public key we can do much better with the alternative approach.

10.2 CyclicUOV

In the case of cyclicUOV (see Section 8.1), the matrices MP (k) are of the form shown in Figure
10.1. We have

MP
(k)
ij = MP

(k−1)
i,j−1 ∀ i ∈ {1, . . . , v}, j ∈ {i+ 1, . . . , n}, k ∈ {2, . . . , o}. (10.8)

Therefore we get

(sign1, . . . , signi) ·


MP

(k)
1j

MP
(k)
2j

...
MP

(k)
ij

 = (sign1, . . . , signi) ·


MP

(k−1)
1,j−1

MP
(k−1)
2,j−1
...

MP
(k−1)
i,j−1


∀i ∈ {1, . . . v}, j ∈ {i+ 1, . . . , n}, k ∈ {2, . . . , o}. (10.9)

The boxes in Figure 10.1 illustrate this equation. The black boxes show the vector (MP
(k−1)
1,j−1 , . . . ,MP

(k−1)
i,j−1 )T

on the right hand side of the equation, whereas the blue boxes represent the vector (MP
(k)
1,j , . . . ,MP

(k)
i,j )T

on the left hand side. As one can see, the blue boxes in the matrix MP (k) are exactly the same
as the black boxes in the matrix MP (k−1) (k = 2, . . . , o). By using this relation, we can speed up
the verification process of cyclicUOV by a large factor (see Algorithm 10.2).
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MP (1) =



b1 b2 b3 . . . bv−1 bv bv+1 . . . bn−1 bn ?
0 bn+1 bn+2 . . . bn+v−2 bn+v−1 bn+v . . . b2n−2 b2n−1 ?
0 0 b2n . . . b2n+v−4 b2n+v−3 b2n+v−2 . . . b3n−4 b3n−3 ?
...

. . .
...

...
...

...
...

...
0 . . . 0 bD−2o−1 bD−2o bD−2o+1 . . . bD−o−2 bD−o−1 ?
0 . . . 0 bD−o bD−o+1 . . . bD−1 bD ?
0 . . . 0 ? . . . ? ? ?
...

. . .
...

...
...

...
. . .

...
...

...
0 . . . . . . . . . 0 ? ?
0 . . . . . . . . . 0 ?



a1 a2 a3 av−1 av av+1 an−1 an

MP (2) =



bD b1 b2 . . . bv−2 bv−1 bv . . . bn−2 bn−1 ?
0 bn bn+1 . . . bn+v−3 bn+v−2 bn+v−1 . . . b2n−3 b2n−2 ?
0 0 b2n−1 . . . b2n+v−5 b2n+v−4 b2n+v−3 . . . b3n−5 b3n−4 ?
...

. . .
...

...
...

...
...

...
0 . . . 0 bD−2o−2 bD−2o−1 bD−2o . . . bD−o−3 bD−o−2 ?
0 . . . 0 bD−o−1 bD−o . . . bD−2 bD−1 ?
0 . . . 0 ? . . . ? ? ?
...

. . .
...

...
...

...
. . .

...
...

...
0 . . . . . . . . . 0 ? ?
0 . . . . . . . . . 0 ?


...

MP (o−1) =



bD−o+3 bD−o+4 bD−o+5 . . . bo+1 bo+2 bo+3 . . . bv+1 bv+2 ?
0 bv+3 bv+4 . . . bn+o bn+o+1 bn+o+2 . . . bn+v bn+v+1 ?
0 0 bn+v+2 . . . b2n+o−2 b2n+o−1 b2n+o . . . b2n+v−2 b2n+v−1 ?
...

. . .
...

...
...

...
...

...
0 . . . 0 bD−3o+1 bD−3o+2 bD−3o+3 . . . bD−2o bD−2o+1 ?
0 . . . 0 bD−2o+2 bD−2o+3 . . . bD−o+1 bD−o+2 ?
0 . . . 0 ? . . . ? ? ?
...

. . .
...

...
...

...
. . .

...
...

...
0 . . . . . . . . . 0 ? ?
0 . . . . . . . . . 0 ?



MP (o) =



bD−o+2 bD−o+3 bD−o+4 . . . bo bo+1 bo+2 . . . bv bv+1 ?
0 bv+2 bv+3 . . . bn+o−1 bn+o bn+o+1 . . . bn+v−1 bn+v ?
0 0 bn+v+1 . . . b2n+o−3 b2n+o−2 b2n+o−1 . . . b2n+v−3 b2n+v−2 ?
...

. . .
...

...
...

...
...

...
0 . . . 0 bD−3o bD−3o+1 bD−3o+2 . . . bD−2o−1 bD−2o ?
0 . . . 0 bD−2o+1 bD−2o+2 . . . bD−o bD−o+1 ?
0 . . . 0 ? . . . ? ? ?
...

. . .
...

...
...

...
. . .

...
...

...
0 . . . . . . . . . 0 ? ?
0 . . . . . . . . . 0 ?



Figure 10.1: Matrices MP (i) for cyclicUOV
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Algorithm 10.2 Verification process of cyclicUOV
Input: public key of cyclicUOV (given in matrix form), signature z ∈ Fn, hash value h ∈ Fm
Output: boolean value TRUE or FALSE

1: sign← (z, 1)
2: for i = 1 to n− 1 do . first polynomial (p(1))
3: ai ←

∑min(i,v)
j=1 MP

(1)
ji · signj

4: tempi ← ai
5: end for
6: for i = v + 1 to n− 1 do
7: tempi ← ai +

∑i
j=v+1MP

(1)
ji · signj

8: end for
9: tempn ←

∑n
j=1MP

(1)
jn · signj

10: tempn+1 ←
∑n+1
j=1 MP

(1)
j,n+1 · signj

11: h′1 ←
∑n+1
j=1 tempj · signj

12: if h1 6= h′1 then return FALSE
13: end if
14: for k = 2 to o do . polynomials p(2), . . . , p(o)

15: tempn+1 ←
∑n+1
j=1 MP

(k)
j,n+1 · signj

16: for i = n to v + 1 by −1 do
17: ai ← ai−1

18: tempi ← ai +
∑i
j=v+1MP

(k)
ji · signj

19: end for
20: for i = v to 2 by −1 do
21: ai ← ai−1 +MP

(k)
ii · signi

22: tempi ← ai
23: end for
24: a1 ←MP

(k)
11 · sign1

25: temp1 ← a1

26: h′k ←
∑n+1
j=1 tempj · signj

27: if hk 6= h′k then return FALSE
28: end if
29: end for
30: return TRUE

Algorithm 10.2 works as follows. The first matrix vector product sign ·MP (1) · signT is computed
in the same way as for random polynomials: From line 2 to line 10 we compute the product
sign ·MP (1) (the result is written into the vector temp) and line 11 computes the scalar product
of temp and sign. In line 12 we check if the result is equal to the first component of the hash
value. If this test is not fulfilled, the algorithm returns FALSE and stops. Furthermore we com-
pute the vector a = (a1, . . . , an−1) which we can use during the computation of sign·MP (2) (line 3).
In the loop (line 14 to line 29 of the algorithm) we evaluate the remaining polynomials (p(2), . . . , p(o))
and test if the result is equal to the corresponding component of the hash value. From line 15 to 25
the algorithm computes the vector temp = sign ·MP (k). We begin with tempn+1 and go back to
temp1. During the computation of tempi (i = 2, . . . , n) we use the values ai computed during the
evaluation of the previous polynomial, which helps us to save a large number of multiplications
and therefore to speed up the evaluaton process. Furthermore (line 18 and 21) we update the
values of ai (i = 1, . . . , n− 1) for the use in the next iteration of the loop.
Line 26 computes the scalar product of the vectors temp and sign. Finally, in line 27, we check if
this result is equal to the corresponding component of the hash value. If the test is not fulfilled,
the algorithm returns FALSE and stops.
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Computational effort

Algorithm 10.2 needs

• in line 3 v·(v+1)
2 + (o− 1) · v field multiplications,

• in line 7 (o−1)·o
2 field multiplications,

• in line 9 n field multiplications,

• in line 10 n+ 1 field multiplications and

• in line 11 again n+ 1 field multiplications.

Therefore, to compute the value of h′1, the algorithm needs (n+1)·(n+4)
2 field multiplications (just

as for the straightforward evaluation of a random polynomial using the alternative approach).
In the loop (line 14 to 29) Algorithm 10.2 needs

• in line 15 n+ 1 field multiplications,

• in line 18 o·(o+1)
2 field multiplications,

• in line 21 v − 1 field multiplications,

• in line 24 1 field multiplication and

• in line 26 n+ 1 field multiplications.

So, for every iteration of the loop the algorithm needs 2 · (n+ 1) + v+ o·(o+1)
2 field multiplications.

During the verification process of a valid signature, we need therefore

(o− 1) ·
(

2 · (n+ 1) + v +
o · (o+ 1)

2

)
+

(n+ 1) · (n+ 4)
2

(10.10)

field multiplications.

For (F, o, v) = (GF(256), 28,56) this means a reduction of the number of field multiplications
needed during the verification process by a factor of 5.9 compared to the evaluation of the system
with the standard approach. For UOV schemes over GF(16), (o, v) = (40, 80), the reduction factor
is 6.1.

The results presented in this section can also be used to speed up the verification process of
UOVLRScyc (see Section 8.3). However, the large length of the linear recurring sequence in use
prevents us from using the additional structure efficiently.

10.3 UOVLRS2

In the case of UOVLRS2 (see Section 8.4), the matrices MP (k) are of the form shown in Figure
10.2.

We have

MP
(k)
i,j = γk ·MP

(k)
i,j−1 ∀i ∈ {1, . . . , v}, j ∈ {i+ 1, . . . , n}, k ∈ {1, . . . , o}. (10.11)

Therefore we get

(sign1, . . . , signi) ·


MP

(k)
1j

MP
(k)
2j

...
MP

(k)
ij

 = γk · (sign1, . . . , signi) ·


MP

(k)
1,j−1

MP
(k)
2,j−1
...

MP
(k)
i,j−1

 (10.12)

∀i ∈ {1, . . . v}, j ∈ {i+ 1, . . . , n}, k ∈ {1, . . . , o}.
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MP (k) =



1 γk γ2
k . . . γv−2

k γv−1
k γvk . . . γn−2

k γn−1
k ?

0 γnk γn+1
k . . . γn+v−3

k γn+v−2
k γn+v−1

k . . . γ2n−3
k · γ2n−2

k ?
0 0 γ2n−1

k . . . γ2n+v−5
k γ2n+v−4

k γ2n+v−3
k . . . γ3n−5

k γ3n−4
k ?

...
. . .

...
...

...
...

...
...

0 . . . 0 γD−2o−2
k γD−2o−1

k γD−2o
k . . . γD−o−4

k γD−o−3
k ?

0 . . . 0 γD−o−1
k γD−ok . . . γD−2

k γD−1
k ?

0 . . . 0 ? . . . ? ? ?
... 0

. . .
...

...
...

...
. . . ?

...
...

0 . . . . . . . . . 0 ? ?
0 . . . . . . . . . 0 ?



v

(k ∈ {1, . . . , o})

Figure 10.2: Matrices MP (k) for UOVLRS2

The boxes in Figure 10.2 illustrate this equation: The black boxes show the vector (MP
(k)
1,j−1, . . . ,MP

(k)
i,j−1)T

on the right hand side of equation (10.12), whereas the blue boxes represent the vector (MP
(k)
1,j , . . . ,MP

(k)
i,j )T

on the left hand side. Any blue box can be computed by multiplying the corresponding black box
by γk.

We can use this fact to speed up the verification process of UOVLRS2 by a large factor (see
Algorithm 10.3).

Algorithm 10.3 Verification process of UOVLRS2
Input: public key of UOVLRS2 (given in matrix form), signature z ∈ Fn, hash value h ∈ Fm
Output: boolean value TRUE or FALSE

1: sign← (z, 1)
2: for k = 1 to o do
3: temp1 ← sign1

4: for i = 2 to v do
5: tempi ← γk · tempi−1 +MP

(k)
ii · signi

6: end for
7: a← tempv
8: for i = v + 1 to n do
9: a← γk · a

10: tempi ← a+
∑i
j=v+1MP

(k)
ji · signj

11: end for
12: tempn+1 ←

∑n+1
j=1 MP

(k)
j,n+1 · signj

13: h′k ←
∑n+1
j=1 tempj · signj

14: if hk 6= h′k then return FALSE
15: end if
16: end for
17: return TRUE

Algorithm 10.3 works as follows. Every iteration of the main loop (line 2 to 16 of the algorithm)
evaluates one polynomial and checks if the result is equal to the corresponding component of the
hash value. From line 3 to 13 the public polynomials are evaluated. From line 3 to 12 we hereby
compute the matrix vector product sign ·MP (k) whose result is stored in the vector temp. In line
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v`

v`+1

cyclic0

...
. . .

...

?. . .?

?
? . . . ?

...
...

. . . ?

. . .

0 . . . 0 ?

MP (k) =




v` + 1 ≤ k ≤ v`+1 (` ∈ {1, . . . , u})

Figure 10.3: Matrices MP (k) for cyclicRainbow

5 and line 9/10 we hereby use the special structure of the UOVLRS2 public key, which allows us
save a large number of multiplications and therefore speeds up the computations. Finally, in line
13 of the algorithm, we compute the scalar product of the vectors temp and sign. In line 14 we
test, if the result of the evaluation process is equal to the corresponding component of the hash
value. If this test is not fulfilled, the algorithm returns FALSE and stops.

Computational effort

Algorithm 10.3 needs (for each iteration of the main loop)

• in the first loop (line 4 to 6) 2 · (v − 1) field multiplications,

• in the second loop (line 8 to 11) o+ o·(o+1)
2 field multiplications,

• in line 12 n+ 1 field multiplications and

• in line 13 again n+ 1 field multiplications.

Therefore, to verify a valid signature (o iterations of the main loop), Algorithm 10.3 needs

o ·
(

3 · n+ v +
o · (o+ 1)

2

)
(10.13)

field multiplications.

For F = GF(256), (o, v) = (28, 56) this means a reduction of the number of field multiplica-
tions needed during the verification process by a factor of 5.9 compared to the evaluation of the
polynomials using the standard approach. For UOV schemes over GF(16), (o, v) = (40, 80), the
reduction factor is 6.2.

10.4 CyclicRainbow

The verification process of cyclicRainbow is mainly done as that of cyclicUOV (see Section 10.2).
However we have to consider the different layers of the Rainbow public key. For cyclicRainbow,
the matrices MP (k) look as shown in Figure 10.3.
For the polynomials of the `-th Rainbow layer (` ∈ {1, . . . , u}) we get

MP
(k)
ij = MP

(k−1)
i,j−1 ∀i ∈ {1, . . . , v`}, j ∈ {i+ 1, . . . , v`+1}, k ∈ {v` + 1, . . . , v`+1} (10.14)
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or

(sign1, . . . , signi)·


MP

(k)
1j

MP
(k)
2j

...
MP

(k)
ij

 = (sign1, . . . , signi)·


MP

(k−1)
1,j−1

MP
(k−1)
2,j−1
...

MP
(k−1)
i,j−1

 ∀i ∈ {1, . . . v`}, j ∈ {i+ 1, . . . , v`+1},
k ∈ {v` + 1, . . . , v`+1}.

(10.15)
We can therefore use Algorithm 10.2 for each Rainbow layer separately (see Algorithm 10.4).

Algorithm 10.4 Verification process of cyclicRainbow
Input: public key of cyclic Rainbow (given in matrix form), signature z ∈ Fn, hash value h ∈ Fm
Output: boolean value TRUE or FALSE

1: sign← (z, 1)
2: for i = 1 to v2 do . First polynomial (p(v1+1))
3: ai ←

∑min(i,v1)
j=1 MP

(v1+1)
ji · signj

4: tempi ← ai
5: end for
6: for i = v1 + 1 to v2 do
7: tempi ← ai +

∑i
j=v1+1MP

(v1+1)
ji · signj

8: end for
9: for i = v2 + 1 to n+ 1 do

10: tempi ←
∑i
j=1MP

(v1+1)
ji · signj

11: end for
12: h′v1+1 ←

∑n+1
j=1 tempj · signj

13: if hv1+1 6= h′v1+1 then return FALSE
14: end if
15: for k = v1 + 2 to v2 do . Remaining polynomials of the first layer
16: for i = v2 + 1 to n+ 1 do (p(v1+2), . . . , p(v2))
17: tempi ←

∑i
j=1MP

(k)
ji · signj

18: end for
19: for i = v2 to v1 + 1 by −1 do
20: ai ← ai−1

21: tempi ← ai +
∑i
j=v1+1MP

(k)
ji · signj

22: end for
23: for i = v1 to 2 by −1 do
24: ai ← ai−1 +MP

(k)
ii · signi

25: tempi ← ai
26: end for
27: a1 ←MP

(k)
11 · sign1

28: temp1 ← a1

29: h′k ←
∑n+1
j=1 tempj · signj

30: if hk 6= h′k then return FALSE
31: end if
32: end for . algorithm continues on the next page

Algorithm 10.4 works as follows: From line 2 to 14 we evaluate the first polynomial p(v1+1) and
check if the result is equal to the first component of the hash value 1. Hereby, line 2 to 11 compute
the vector temp = sign ·MP (1) and the elements of the vector a which can be used during the
evaluation of the second polynomial p(v1+2). Line 12 computes the scalar product temp · signT

and line 13 checks whether the result is equal to the first component of the hash value. If this test
is not fulfilled, the algorithm returns FALSE and stops.

1Analogously to the public polynomials, we enumerate the components of the hash value by hv1+1, . . . , hn.
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Algorithm 10.4 Verification process of cyclicRainbow (cont.)
33: for ` = 2 to u do
34: for i = v`+1 + 1 to n+ 1 do . First polynomial of the `-th layer (p(v`+1))
35: tempi ←

∑i
j=1MP

(v`+1)
j,i · signj

36: end for
37: for i = v`+1 to v` + 1 by −1 do
38: ai ←

∑v`
j=1MP

(v`+1)
ji · signj

39: tempi ← ai +
∑i
j=v`+1MP

(v`+1)
ji · signj

40: end for
41: for i = v` to v`−1 + 1 by −1 do
42: ai ← ai−1 +

∑i
j=v`−1+1MP

(v`+1)
ji · signj

43: tempi ← ai
44: end for
45: for i = v`−1 to 2 by −1 do
46: ai ← ai−1 +MP

(v`+1)
ii · signi

47: tempi ← ai
48: end for
49: a1 ←MP

(v`+1)
11 · sign1

50: temp1 ← a1

51: h′v`+1 ←
∑n+1
j=1 tempj · signj

52: if hv`+1 6= h′v`+1 then return FALSE
53: end if
54: for k = v`+ 2 to v`+1 do . Remaining Polynomials of the `-th layer
55: for i = v`+1 + 1 to n+ 1 do (p(v`+2), . . . , p(v`+1))
56: tempi ←

∑i
j=1MP

(k)
ji · signj

57: end for
58: for i = v`+1 to vl + 1 by −1 do
59: ai ← ai−1

60: tempi ← ai +
∑i
j=v`+1MP

(k)
ji · signj

61: end for
62: for i = v` to 2 by −1 do
63: ai ← ai−1 +MP

(k)
ii · signi

64: tempi ← ai
65: end for
66: a1 ←MP

(k)
11 · sign1

67: temp1 ← a1

68: h′k ←
∑n+1
j=1 tempj · signj

69: if hk 6= h′k then return FALSE
70: end if
71: end for
72: end for
73: return TRUE
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From line 15 to 32 we deal with the remaining polynomials of the first Rainbow layer (p(v1+2), . . . , p(v2)).
From line 16 to 29 the polynomials are evaluated. First (line 16 to 28) we compute again the vector
temp = sign ·MP (k). During this step we can use the vector a to speed up the computations (line
21 and 25). Furthermore, a is updated for use in the next iteration of the loop (line 20, 24 and
27). Finally, line 29 computes the scalar product temp · signT and line 30 checks if the result is
equal to the corresponding component of the hash value. If this test is not fulfilled, the algorithm
returns FALSE and stops.
In each iteration of the big loop (line 33 to 72) we evaluate all the polynomials of the `-th Rainbow
layer and test, if the result is equal to the corresponding components of the hash value. Lines
34 to 53 hereby deal with the first polynomial of the `-th layer (p(v`+1)). Besides evaluating the
polynomial, we invest much work in updating the vector a (line 38, 41, 45 and 48) which helps
us during the evaluation of the remaining polynomials. In line 52 we test if the result of the
evaluation is equal to the corresponding component of the hash value. If this test is not fulfilled,
the algorithm returns FALSE and stops.
From line 54 to 71 we finally deal with the remaining polynomials of the `-th layer (p(v`+2), . . . , p(v`+1)).
The computations are made less complex by the use of the vector a (line 60 and 63) which helps
us to speed up the algorithm. For increasing ` more and more of the multiplications can be saved.
Finally, in line 69 of the algorithm, we test if the result of the evaluation is equal to the corre-
sponding component of the hash value. As soon as this test is not fulfilled, the algorithm returns
FALSE and stops.

Example 10.1. In Example 9.1 we had F = GF (19), (v1, o1, o2) = (2, 2, 2) and the matrices
MP (k) (3 ≤ k ≤ 6} were given by

MP (3) =



1 2 3 4 10 3 18
0 7 8 9 15 14 13
0 0 11 5 9 15 5
0 0 0 7 12 0 2
0 0 0 0 6 8 14
0 0 0 0 0 12 18
0 0 0 0 0 0 16


,

MP (4) =



18 1 2 3 14 9 9
0 6 7 8 17 18 12
0 0 7 12 14 8 5
0 0 0 5 8 0 16
0 0 0 0 7 4 17
0 0 0 0 0 6 13
0 0 0 0 0 0 2


,

MP (5) =



17 18 1 2 3 4 17
0 5 6 7 8 9 1
0 0 10 11 12 13 11
0 0 0 14 15 16 8
0 0 0 0 15 3 12
0 0 0 0 0 15 16
0 0 0 0 0 0 8


and

MP (6) =



16 17 18 1 2 3 0
0 4 5 6 7 8 1
0 0 9 10 11 12 3
0 0 0 13 14 15 5
0 0 0 0 4 2 1
0 0 0 0 0 15 8
0 0 0 0 0 0 11


.
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Let z = (2, 4, 3, 8, 16, 5) ∈ F6 be a (valid or invalid) signature, sign = (2, 4, 3, 8, 16, 5, 1) be the
corresponding extended signature vector and h = (12, 12, 18, 16) ∈ F4 be the hash value of the
message to be signed.

1. Evaluation of the first polynomial (p(3))
temp1 = MP

(3)
11 · sign1 = 1 · 2 = 2 = a1

temp2 = MP
(3)
12 · sign1 +MP

(3)
22 · sign2 = 2 · 2 + 7 · 4 = 13 = a2

temp3 = MP
(3)
13 · sign1 +MP

(3)
23 · sign2︸ ︷︷ ︸

a3=3·2+8·4=0

+MP 3
33 · sign3 = 0 + 11 · 3 = 14

temp4 = MP
(3)
14 · sign1 +MP

(3)
24 · sign2︸ ︷︷ ︸

a4=4·2+9·4=6

+MP 3
34 · sign3 +MP

(3)
44 · sign4 = 6 + 5 · 3 + 7 · 8 = 1

temp5 =
∑5
i=1MP

(3)
i5 · signi = 14

temp6 =
∑6
i=1MP

(3)
i6 · signi = 10

temp7 =
∑7
i=1MP

(3)
i7 · signi = 12

h′3 =
∑7
i=1 tempi · signi = 12.

Since we have h′3 = 12 = h3, we continue.

2. Evaluation of the second polynomial (p(4))
temp7 =

∑7
i=1MP

(4)
i7 · signi = 16

temp6 =
∑6
i=1MP

(4)
i6 · signi = 18

temp5 =
∑5
i=1MP

(4)
i5 · signi = 10

temp4 =
∑4
i=1MP

(4)
i4 · signi = a3︸︷︷︸

a4=0

+MP
(4)
34 · sign3 +MP

(4)
44 · sign4 = 0 + 12 · 3 + 5 · 8 = 0

temp3 =
∑3
i=1MP

(4)
i3 · signi = a2︸︷︷︸

a3=13

+MP
(4)
33 · sign3 = 13 + 7 · 3 = 15

temp2 =
∑2
i=1MP

(4)
i2 · signi = a1 +MP

(4)
22 · sign2 = 2 + 6 · 4 = 7 = a2

temp1 = MP
(4)
11 · sign1 = 18 · 2 = 17 = a1

h′4 =
∑7
i=1 tempi · signi = 12.

Since we have h′4 = 12 = h4, we continue.

3. Evaluation of the third polynomial (p(5))
temp7 =

∑7
i=1MP

(5)
i7 · signi = 16

temp6 =
∑6
i=1MP

(5)
i6 · signi = 11

temp5 = a4 +MP
(5)
35 · sign3 +MP

(5)
45 · sign4︸ ︷︷ ︸

a5=4

+MP
(5)
55 · sign5 = 16

temp4 = a3 +MP
(5)
34 · sign3 +MP

(5)
44 · sign4 = 6 = a4

temp3 = a2 +MP
(5)
33 · sign3 = 18 = a3

temp2 = a1 +MP
(5)
22 · sign2 = 18 = a2

temp1 = MP
(5)
11 · sign1 = 15 = a1

h′5 =
∑7
i=1 tempi · signi = 18.

Since we have h′5 = 18 = h5, we continue.

4. Evaluation of the fourth polynomial (p(6))
temp7 =

∑7
i=1MP

(6)
i7 · signi = 6

temp6 = a5 +MP
(6)
56 · sign5 +MP

(6)
66 · sign6 = 16

temp5 = a4︸︷︷︸
a5=6

+MP
(6)
55 · sign6 = 13

temp4 = a3 +MP
(6)
44 · sign4 = 8 = a4

temp3 = a2 +MP
(6)
33 · sign3 = 7 = a3
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temp2 = a1 +MP
(6)
22 · sign2 = 12 = a2

temp1 = MP
(6)
11 · sign1 = 16 · 2 = 13 = a1

h′6 =
∑7
i=1 tempi · signi = 16.

Since we have h′6 = 16 = h6, the signature is accepted.

Computational cost

Our algorithm needs

• (n+1)·(n+4)
2 field multiplications to evaluate the first polynomial p(v1+1) (line 2 - 12) and

• (o1−1) ·
(

(n+1)·(n+4)
2 − v2·(v2+1)

2 + o1·(o1+1)
2 + v1

)
field multiplications to evaluate the poly-

nomials p(v1+2), . . . , p(v2) (line 15 - 32).

To evaluate the polynomials of the `-th layer the algorithm needs

• (n+1)·(n+4)
2 − v`·(v`+1)

2 + o`−1·(o`−1+1)
2 + v`−1 field multiplications to evaluate the polynomial

p(v`−1+1) (line 34 - 51) and

• (o` − 1) ·
(

(n+1)·(n+4)
2 − v`+1·(v`+1+1)

2 + o`·(o`+1)
2 + v`

)
field multiplications to evaluate the

polynomials p(v`−1+2), . . . , p(v`) (line 54 - 71).

So, to verify a valid signature, Algorithm 10.4 needs

m · (n+ 1) · (n+ 4)
2

− (o1 − 1) · v2 · (v2 + 1)− o1 · (o1 + 1)− 2 · v1

2

−
u∑
`=2

(
v` · (v` + 1)− o`−1 · (o`−1 + 1)− 2 · v`−1

2

+ (o` − 1) · v`+1 · (v`+1 + 1)− o` · (o` + 1)− 2 · v`
2

)
(10.16)

field multiplications. For the parameters (F, v1, o1, o2) = (GF(256),17,13,13), this means a reduc-
tion of the number of field multiplications by a factor of 2.5 compared to evaluating the Rain-
bow public key using the standard approach. For Rainbow schemes over GF(16), (v1, o1, o2) =
(17, 23, 17), the reduction factor is 2.4.

10.5 RainbowLRS2

The verification process of RainbowLRS2 is mainly done as that of UOVLRS2 (see Section 10.3).
However we have to consider the different layers of the Rainbow public key. For RainbowLRS2,
the matrices MP (k) look as shown in Figure 10.4.
For the polynomials of the `-th Rainbow layer (` ∈ {1, . . . , u}) we have

MP
(k)
ij = γk ·MP

(k)
i,j−1 ∀i ∈ {1, . . . , v`}, j ∈ {i+ 1, . . . , v`+1}, k ∈ {v` + 1, . . . , v`+1}. (10.17)

Such we get

(sign1, . . . , signi)·


MP

(k)
1j

...
MP

(k)
ij

 = γk·(sign1, . . . , signi)·


MP

(k)
1,j−1
...

MP
(k)
i,j−1

 ∀i ∈ {1, . . . , v`}, j ∈ {i+ 1, . . . , v`+1},
k ∈ {v` + 1, . . . , v`+1}

.

(10.18)
We can therefore use Algorithm 10.3 for each Rainbow layer separately (see Algorithm 10.5).
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v`

v`+1

generated
by LRS0

...
. . .

...

?. . .?

?
? . . . ?

...
...

. . . ?

. . .

0 . . . 0 ?

MP (k) =




v` + 1 ≤ k ≤ v`+1 (` ∈ {1, . . . , u})

Figure 10.4: Matrices MP (k) for RainbowLRS

Algorithm 10.5 Verification process of RainbowLRS2
Input: public key of RainbowLRS2 (given in matrix form), signature z ∈ Fn, hash value h ∈ Fm
Output: boolean value TRUE or FALSE

1: sign← (z, 1)
2: for ` = 1 to u do
3: for k = v` + 1 to v`+1 do
4: temp1 ← sign1

5: for i = 2 to v` do
6: tempi ← γk · tempi−1 +MP

(k)
ii · signi

7: end for
8: a← tempv`
9: for i = v` + 1 to v`+1 do

10: a← γk · a
11: tempi ← a+

∑i
j=v`+1MP

(k)
ji · signj

12: end for
13: for i = v`+1 + 1 to n+ 1 do
14: tempi ←

∑i
j=1MP

(k)
ji · signj

15: end for
16: h′k ←

∑n+1
j=1 tempj · signj

17: if hk 6= h′k then return FALSE
18: end if
19: end for
20: end for
21: return TRUE
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Algorithm 10.5 works as follows: Each iteration of the loop (line 3 - 19) evaluates one of the public
polynomials and checks if the result is equal to the corresponding component of the hash value.
From line 3 to 15 we compute the vector temp = sign ·MP (k). Due to the special structure of
the RainbowLRS2 public key we can save a large number of multiplications and therefore speed
up the computations. Line 16 computes the scalar product temp · signT and in line 17 we check if
the result is equal to the corresponding component of the hash value. If this test is not fulfilled,
the algorithm returns FALSE and stops.

Computational Effort

To evaluate a polynomial of the `-th layer, say p(k) (k ∈ {v` + 1, . . . , v`+1}), Algorithm 10.5 needs

• 2·(v`−1) multiplications to compute the elements temp2, . . . , tempv` (line 6 of the algorithm),

• o` multiplications to update a (step 10),

• o`·(o`+1)
2 multiplications to compute tempvl+1, . . . , tempv`+1

(line 11),

• (n+1)·(n+2)
2 − v`+1·(v`+1+1)

2 multiplications to compute tempv`+1+1, . . . , tempn+1 (line 14)

• and n+ 1 multiplications to compute the value hk (line 16).

Therefore, during the verification of a valid signature, Algorithm 10.5 needs

u∑
`=1

o` ·
(

(n+ 1) · (n+ 2)− v`+1 · (v`+1 + 1) + o` · (o` + 1)
2

+ o` + 2 · v` + n− 1
)

(10.19)

field multiplications. For the parameters (F, v1, o1, o2) = (GF(256),17,13,13) this means a re-
duction of the number of field multiplications by a factor of 2.5 compared to the evaluation
of a Rainbow public key using the standard approach. For Rainbow schemes over GF(16),
(v1, o1, o2) = (17, 23, 17), the reduction factor is 2.4.

10.6 Experimental Results

In this section we present our experimental results regarding the verification process of our im-
proved versions of UOV and Rainbow. The schemes were implemented in C and run on a Lenovo
ThinkPad with one Intel Core 2Duo processor with 2.53 GHz and 4 GB RAM.
Tables 10.2 and 10.3 show the running time of the verification process of our improved schemes
as well as for the standard UOV and Rainbow scheme for different underlying fields and different
levels of security. For each of the parameter sets listed in the tables we verified 100,000 valid
signatures. For the verification of the standard UOV and Rainbow schemes we use the standard
approach.
As the tables show, we get quite significant speed up factors of 5.8 and 2.1 for UOV and Rainbow
respectively (80 bit security). For higher security levels the speed up factors further increase up to
values of 6.1 and 2.4 respectively. Again, note that the schemes UOVLRS2 and RainbbowLRS2
can not be used over the fields GF(16) and GF(31).
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security (bit) verification time (ms) CPU cycles (106) speed up factor

80

GF(16) UOV(40,80) 2.76 6.97 -
cyclicUOV(40,80) 0.47 1.19 5.8

GF(31) UOV(33,66) 2.01 5.08 -
cyclicUOV(33,66) 0.36 0.90 5.6

GF(256)
UOV(28,56) 1.13 2.87 -
cyclicUOV(28,56) 0.23 0.58 4.9
UOVLRS2(28,56) 0.20 0.50 5.7

100 GF(256)
UOV(35,70) 2.11 5.34 -
cyclicUOV(35,70) 0.40 1.00 5.4
UOVLRS2(35,70) 0.36 0.90 5.8

128 GF(256)
UOV(45,90) 4.42 11.24 -
cyclicUOV(45,90) 0.80 2.01 5.5
UOVLRS2(45,90) 0.72 1.82 6.1

Table 10.2: Running time of the verification process for UOV like schemes

security (bit) verification time (ms) CPU cycles (106) speed up factor

80

GF(16) Rainbow(17,23,17) 0.65 1.63 -
cyclicRainbow(17,23,17) 0.32 0.82 2.0

GF(31) Rainbow(14,19,14) 0.49 1.23 -
cyclicRainbow(14,19,14) 0.23 0.58 2.1

GF(256)
Rainbow(17,13,13) 0.29 0.72 -
cyclicRainbow(17,13,13) 0.14 0.35 2.1
RainbowLRS2(17,13,13) 0.15 0.38 1.9

100 GF(256)
Rainbow(26,16,17) 0.66 1.67 -
cyclicRainbow(26,16,17) 0.29 0.72 2.3
RainbowLRS2(26,16,17) 0.31 0.78 2.1

128 GF(256)
Rainbow(36,28,15) 1.50 3.78 -
cyclicRainbow(36,21,22) 0.63 1.59 2.4
RainbowLRS2(36,21,22) 0.67 1.69 2.2

Table 10.3: Running time of the verification process for Rainbow like schemes
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Chapter 11

Speeding up QUAD

In this chapter we show how the techniques presented in the previous chapter can be used to
speed up the multivariate stream cipher QUAD without weakening its security. In particular, we
propose two variants of QUAD called cyclicQUAD and QUADLRS. By using systems of structured
polynomials, we can speed up the keystream generation process of QUAD by a factor of up to 6.8.
In this chapter we define D = (n+1)·(n+2)

2 .

11.1 The QUAD Stream Cipher

QUAD is a provable secure multivariate based stream cipher introduced in 2006 by Berbain,
Gilbert and Patarin [2]. The security of QUAD is based solely on the MQ-Problem of solving
nonlinear polynomial systems over a finite field.

Like all stream ciphers, QUAD encrypts a message by producing a keystream ks which has the
same length as the message. The ciphertext c of the message m is then created by simply bitwise
XORing of the message and the keystream, i.e.

ci = mi ⊕ ksi ∀i = 0, . . . ,Len(m)− 1.

A ciphertext c is decrypted in the same way, namely

mi = ci ⊕ ksi ∀i = 0, . . . ,Len(c)− 1.

The keystream of QUAD is generated as follows. Let F be a finite field. One chooses 4 multivariate
quadratic systems P, Q, S0 and S1 : Fn → Fn 1. These four systems are considered as system
parameters and are fixed for a large number of users. Before encrypting a message, a user chooses
a key k ∈ Fn and an initial vector IV ∈ {0, 1}80. The keystream of QUAD is then generated by
following Algorithms 11.1 and 11.2. Figure 11.1 shows a graphical illustration of the keystream
generation process. In Algorithm 11.2 we set L = dLen(m)

lg(q)·n e, where q is the cardinality of the
underlying field.
If the length of the so obtained keystream is larger than the length of the message m, we discard
the last bits of ks.

1While for the functioning of QUAD the three systems P, S0 and S1 are required to be determined, we do not
need this property for the system Q. In particular, the system Q could be overdetermined (m > n), which
would make the keystream generation process more efficient. But, since overdetermined systems are easier to
solve, we choose, for reasons of security, Q to be a determined system, too (m = n).
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k

IV

-

-
Preprocessing - x0 x1 x2 . . .- - -P P P

? ? ?

Q Q Q

y0 y1 y2 . . .︸ ︷︷ ︸
keystream

Figure 11.1: Keystream generation of QUAD

Algorithm 11.1 Preprocessing Phase of QUAD
Input: multivariate systems P, S0, S1 : Fn → Fn, key k ∈ Fn, initial vector IV ∈ {0, 1}80

Output: internal State IS ∈ Fn
1: IS ← k
2: for i = 0 to 79 do
3: if IV[i]=1 then
4: IS ← S1(IS)
5: else
6: IS ← S0(IS)
7: end if
8: end for
9: for i = 0 to 79 do

10: IS ← P(IS)
11: end for
12: return IS

Algorithm 11.2 Keystream generation of QUAD
Input: multivariate systems P, Q : Fn → Fn, internal state IS ∈ Fn, length L
Output: keystream ks ∈ Fn·L

1: ks← [ ]
2: for i = 0 to L− 1 do
3: ks← ks‖Q(IS)
4: IS ← P(IS)
5: end for
6: return ks
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11.2 Evaluation of Polynomials

The most expensive part during the keystream generation of QUAD is the evaluation of the poly-
nomial systems P and Q (see Algorithm 11.2). As mentioned in the previous chapter, there are
basically two ways to perform this step. For the following we define the standard approach and the
alternative approach as in Chapter 10. We created two different implementations of the QUAD
stream cipher using the two different evaluation strategies and tested their performance. As the
Tables 11.2 and 11.3 show, for random systems, evaluating the polynomials using the standard
approach is usually more effective. But, for structured systems, we can do much better with the
alternative approach.

11.2.1 CyclicQUAD

In this subsection we describe how to speed up the QUAD stream cipher by using partially
circulant polynomials. The result is a variant of QUAD called cyclicQUAD. The multivariate
systems P, Q, S0 and S1 of cyclicQUAD are generated as shown in Algorithm 11.3. To get the
system parameter of cyclicQUAD, we run Algorithm 11.3 four times (for each P, Q, S0 and S1).

Algorithm 11.3 Generation of a partially circulant system of polynomials
Input: parameter n
Output: partially circulant system P : Fn → Fn (given by its Macauley matrix MP ∈ Fn×D)

1: Choose randomly a vector b ∈ FD.
2: MP [1]← b, where MP [i] denotes the i-th row of the Macauley matrix MP .
3: for k = 2 to n do
4: b← R(b), where R(b) is the cyclic right shift of the vector b by one position.
5: MP [k]← b
6: end for
7: return MP

Let P be a multivariate quadratic system as generated by Algorithm 11.3. Then the corresponding
matrices MP (k) (k = 1, . . . , n) (see equation (2.10)) look as shown in Figure 11.2. We have

MP
(k)
ij = MP

(k−1)
i,j−1 i ∈ {1, . . . , n}, j ∈ {i+ 1, . . . , n+ 1}, k ∈ {2, . . . , n}. (11.1)

Therefore we get

(x1, . . . , xi)·


MP

(k)
1j

MP
(k)
2j

...
MP

(k)
ij

 = (x1, . . . , xi)·


MP

(k−1)
1,j−1

MP
(k−1)
2,j−1
...

MP
(k−1)
i,j−1

 ∀i ∈ {1, . . . , n}, j ∈ {i+1, . . . , n+1}, k ∈ {2, . . . , n}.

(11.2)
Figure 11.2 illustrates this equation. The black boxes show the vector (MP

(k−1)
1,j−1 , . . . ,MP

(k−1)
i,j−1 )T

on the right hand side of the equation, whereas the blue boxes represent the vector (MP
(k)
1j , . . . ,MP

(k)
ij )T

on the left hand side. Note that the blue boxes in the matrix MP (k) are exactly the same as the
black boxes in the matrix MP (k−1) (k = 2, . . . , n).
Algorithm 11.4 uses this fact to speed up the evaluation process of a partially circulant system P
by a large factor.

Algorithm 11.4 works as follows. The first polynomial p(1) is evaluated just as a random polynomial
with the alternative approach. In the loop (line 2 to 4) we compute the vector temp = x̂ ·MP (1).
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MP (1) =



b1 b2 b3 . . . bn−1 bn bn+1

0 bn+2 bn+3 . . . b2n−1 b2n b2n+1

0 0 b2n+2 . . . b3n−2 b3n−1 b3n
...

. . . . . .
...

...
0 . . . 0 bD−5 bD−4 bD−3

0 . . . 0 bD−2 bD−1

0 . . . . . . 0 bD



MP (2) =



bD b1 b2 . . . bn−2 bn−1 bn
0 bn+1 bn+2 . . . b2n−2 b2n−1 b2n
0 0 b2n+1 . . . b3n−3 b3n−2 b3n−1

...
. . . . . .

...
...

0 . . . 0 bD−6 bD−5 bD−4

0 . . . 0 bD−3 bD−2

0 . . . . . . 0 bD−1



...

MP (n−1) =



bD−n+2 bD−n+3 bD−n+4 . . . bD b1 b2
0 b3 b4 . . . bn bn+1 bn+2

0 0 bn+3 . . . b2n−5 b2n−4 b2n−3

...
. . . . . .

...
...

0 . . . 0 bD−n−4 bD−n−3 bD−n−2

0 . . . 0 bD−n−1 bD−n
0 . . . . . . 0 bD−n+1



MP (n) =



bD−n+1 bD−n+2 bD−n+3 . . . bD−1 bD b1
0 b2 b3 . . . bn−1 bn bn+1

0 0 bn+2 . . . b2n−6 b2n−5 b2n−4

...
. . . . . .

...
...

0 . . . 0 bD−n−5 bD−n−4 bD−n−3

0 . . . 0 bD−n−2 bD−n−1

0 . . . . . . 0 bD−n



Figure 11.2: Matrices MP (k) for cyclicQUAD
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Algorithm 11.4 Evaluation of partially circulant polynomials
Input: partially circulant system P : Fn → Fn (given in matrix form), internal state IS ∈ Fn
Output: res = P(IS)

1: x̂← (IS1, . . . , ISn, 1)
2: for i = 1 to n+ 1 do . first polynomial (p(1))
3: tempi ←

∑i
j=1MP

(1)
ji · x̂j

4: end for
5: res1 ←

∑n+1
j=1 tempj · x̂j

6: for k = 2 to n do . remaining polynomials (p(2), . . . , p(n))
7: for i = n+ 1 to 2 by −1 do
8: tempi ← tempi−1 +MP

(k)
ii · x̂i

9: end for
10: temp1 ←MP

(k)
11 · x̂1

11: resk ←
∑n+1
j=1 tempj · x̂j

12: end for
13: return res

In line 5 the algorithm then computes the scalar product temp · x̂T . In the big loop (line 6 to
12) we evaluate the remaining polynomials p(2), . . . , p(n). Again we start by computing the matrix
vector product temp = x̂ · MP (k) (line 7 to 10). During this step we can reuse the values of
tempi (i = 1, . . . , n) computed during the evaluation of the previous polynomial. In fact, we can
compute the product x̂ ·MP (k) by using only n multiplications (instead of (n+1)·(n+2)

2 ). In line
11 we finally compute the scalar product temp · x̂T .

To evaluate the n× n system P, Algorithm 11.4 needs

(n+ 1) · (n+ 4)
2

+ 2 · n · (n− 1) (11.3)

field multiplications. For a system over GF(256) with n = 26 (80 bit security) Algorithm 11.4
reduces the number of field multiplications needed during the evaluation process by a factor of 5.9
(compared to the evaluation of a random system using the standard approach). For F = GF(16),
n = 30, the reduction factor is 6.5.

11.2.2 QUADLRS

In this subsection we describe how to use linear recurring sequences (LRS’s) to speed up the
keystream generation process of the QUAD stream cipher. By doing so, we get a variant of
QUAD called QUADLRS.
The system parameter of QUADLRS is generated as shown in Algorithm 11.5. We run Algorithm
11.5 four times to get the quadratic systems P, Q, S0 and S1 : Fn → Fn.
Let P be a multivariate quadratic system as generated by Algorithm 11.5. Then the corresponding

matrices MP (k) (k = 1, . . . , n) (see equation (2.10)) look as shown in Figure 11.3. We have

MP
(k)
ij = γk ·MP

(k)
i,j−1 ∀ i ∈ {1, . . . , n}, j ∈ {i+ 1, . . . , n+ 1}, k ∈ {1, . . . , n}. (11.4)

Therefore we get

(x1, . . . , xi)·


MP

(k)
1j

...
MP

(k)
ij

 = γk·(x1, . . . , xi)·


MP

(k)
1,j−1
...

MP
(k)
i,j−1

 ∀i ∈ {1, . . . , n}, j ∈ {i+1, . . . , n+1}, k ∈ {1, . . . , n}.

(11.5)
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Algorithm 11.5 Generation of a multivariate system of the LRS type
Input: parameter n
Output: multivariate system P : Fn → Fn of the LRS type (given by its Macauley matrix MP )

1: Choose a vector γ ∈ Fn. The elements of γ have to be pairwise distinct.
2: for k = 1 to n do
3: Compute the first D elements of the linear recurring sequence S = LRS(1, γk ·X + 1) and

put them into a vector b(k) ∈ FD.
4: MP [k]← b(k)

5: end for
6: return MP

(k ∈ {1, . . . , n})MP (k) =



1 γi γ2
i . . . . . . γn−2

i γn−1
i γni

0 γn+1
i γn+2

i . . . . . . γ2n−2
i γ2n−1

i γ2n
i

0 0 γ2n+1
i . . . . . . γ3n−3

i γ3n−2
i γ3n−1

i
...

. . .
...

...
...

...
...

...
...

...
. . . γD−6

i γD−5
i γD−4

i

0 . . . . . . 0 γD−3
i γD−2

i

0 . . . . . . 0 γD−1
i



Figure 11.3: Matrices MP (k) for LRSQUAD

The boxes in Figure 11.3 illustrate this equation. The black boxes show the vector (MP
(k)
1,j−1, . . . ,MP

(k)
i,j−1)T

on the right hand side of the equation, whereas the blue boxes represent the vector (MP
(k)
1j , . . . ,MP

(k)
ij )T

on the left hand side. Note that one gets every blue box by multiplying the corresponding black
box by γk (k = 1, . . . , n).

Algorithm 11.6 uses this fact to evaluate the multivariate systems of QUADLRS much faster
than random systems.

Algorithm 11.6 Evaluation of polynomials of the LRS type
Input: multivariate system P : Fn → Fn of the LRS type (given in matrix form),

internal state IS ∈ Fn
Output: res = P(IS)

1: x̂← (IS1, . . . , ISn, 1)
2: for k = 1 to n do
3: temp1 ← x̂1

4: for i = 2 to n+ 1 do
5: tempi ← γi · tempi−1 +MP

(k)
ii · x̂i

6: end for
7: resk ←

∑n+1
j=1 tempj · x̂j

8: end for
9: return res
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n 9 10 11 12 13 14

GF(256)
random system 5.5 s 40.9 s 299.9 s 2,393 s 19,054 s 169,317 s

part. circ. system 5.4 s 40.6 s 298.8 s 2,390 s 19,046 s 168,846 s
LRS system 5.4 s 40.7 s 289.9 s 2,396 s 18,964 s 168,962 s

Table 11.1: Running time of the direct attack against QUAD (standard and improved versions)

Algorithm 11.6 works as follows:
Every iteration of the main loop evaluates one of the polynomials p(k) (k = 1, . . . , n). From line
3 to 6 we compute the matrix vector product x̂ ·MP (k) and store the result in the vector temp.
During the computation of tempi (i = 2, . . . , n) we can reuse the value of tempi−1, which enables
us to compute the vector temp using only 2 · n multiplications. Finally, in line 7, the algorithm
computes the scalar product temp · x̂T .

To evaluate the whole system P : Fn → Fn, Algorithm 11.6 needs

n · (3 · n+ 1) field multiplications. (11.6)

For QUAD over GF(256) with n = 26 (80 bit security), Algorithm 11.6 reduces the number of
field multiplications by a factor of 6.0 (compared to the evaluation of a random system using the
standard approach), for QUAD over GF(16) and n = 30 the reduction factor is 7.0.

11.3 Security

We analyzed the security of our schemes by performing a large number of experiments with
MAGMA v.2.13-10. For this, we looked at determined systems of the random, partially circulant
and LRS type and solved them using the MAGMA command Variety. As Table 11.1 shows, there
is no significant difference between the running time for random, partially circulant and systems
of the LRS type.

11.4 Parameters and Results

Based on our experiments presented in the previous section, we propose for our improved variants
of QUAD the same parameters as for the standard QUAD stream cipher, namely (for 80 bit
security)

• n = 30 for QUAD over GF(16) and

• n = 26 for QUAD over GF(256).

To check our theoretical results presented in Section 11.2 we created a straightforward C imple-
mentation of the QUAD stream cipher (both standard and improved variants). The program runs
on a Lenovo ThinkPad with a single Intel Core 2 Duo processor with 2.53 GHz and 4 GB RAM.
Tables 11.2 and 11.3 show the results of our experiments. For each of our schemes we encrypted
1,000 messages of different lengths and measured the running time of QUAD as well as the number
of CPU cycles used during the encryption process.
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Data Throughput (kB/s) CPU cycles/byte speed up factor
random system 71.7 35,265 -standard approach

GF(16) random system 53.4 47,325 -
n = 30 alternative approach

part. circ. system 458.3 5,513 6.4
LRS system 477.0 5,298 6.8

random system 158 15,777 -standard approach
GF(256) random system 113 21.860 -
n = 26 alternative approach

part. circ. system 875 2,820 5.5
LRS system 915 2,730 5.8

Table 11.3: Data Throughput of QUAD (80 bit security)

message size 100 kB 1 MB
s. f. 1 s. f. 1

random system running time (ms) 1,403 - 14,014 -
standard approach CPU cycles (109) 3.54 - 35.37 -

random system running time (ms) 1,871 - 18,706 -
GF(16) alternative approach CPU cycles (109) 4.73 - 47.23 -
n = 30 partially running time (ms) 219 6.4 2,183 6.4

circulant system CPU cycles (109) 0.56 6.4 5.52 6.4

LRS system running time (ms) 208 6.8 2,077 6.8
CPU cycles (109) 0.52 6.8 5.23 6.8

random system running time (ms) 625 - 6,229 -
standard approach CPU cycles (109) 1.58 - 15.7 -

random system running time (ms) 873 - 8,724 -
GF(256) alternative approach CPU cycles (109) 2.21 - 22.0 -
n = 26 partially running time (ms) 113 5.5 1,139 5.5

circulant system CPU cycles (109) 0.30 5.5 2.88 5.5

LRS system running time (ms) 108 5.8 1,072 5.8
CPU cycles (109) 0.27 5.7 2.68 5.8

1 speed up factor compared to evaluating random systems with the standard approach

Table 11.2: Running time of QUAD (80 bit security)

As can be seen from Table 11.2, evaluating random polynomials using the standard approach is
more efficient than doing it with the alternative approach. By using structured polynomials we
can achieve a speed up of a factor of up to 6.8. The same holds for the data throughput of QUAD
(see Table 11.3).
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Conclusion
In this dissertation we addressed two of the open problems in the area of multivariate cryptography
mentioned in the introduction of this thesis, namely

1. Parameter Choice of Multivariate Schemes and

2. Reducing Key Sizes of Multivariate Schemes.

In the first part of this thesis (Chapter 4 - 6) we considered the question of the parameter choice
for multivariate cryptosystems. After defining an appropriate security model, we analyzed known
attacks against multivariate schemes and Rainbow to find good parameters for these schemes for
now and the near future.

We started with the model of Lenstra and Verheul (see Chapter 4), which, based on assump-
tions like the computational power and the budget of an attacker, yields the level of security a
cryptographic scheme must reach to be thought secure in the year y.

In Chapter 5 we analyzed the complexity of direct attacks against multivariate systems. The
main result here is presented by Table 5.5 which, for the years 2012 to 2050, shows the mini-
mal number of equations in a system needed to reach the security level proposed by our model.
Additionally, this chapter provides recommended parameters for the UOV signature scheme for
different levels of security (see Table 5.6).

In Chapter 6 we dealt with the question of parameter choice for the Rainbow signature scheme.
We developed a strategy which allows us to find, for a given level of security, parameters for Rain-
bow which minimize both public and private key size. We did our analysis separately for Rainbow
schemes over GF(16), GF(31) and GF(256) (see Tables 6.4, 6.8 and 6.13). As a further result we
found that, in terms of signature length, Rainbow schemes over GF(16) lead to the best results,
whereas Rainbow schemes over GF(31) have the smallest public and private keys.

In the second part of the dissertation (Chapters 7 - 11) we proposed a way to reduce the public
key size and to speed up the verification process of the UOV and Rainbow signature schemes.
Using the results of the first part we showed that the security of the schemes is not weakened by
our construction.

In the first chapter of this part (Chapter 7) we presented the general idea of our construction
to create UOV and Rainbow key pairs with a structured public key. To do this, we showed how to
insert an arbitrary matrix B into the Macauley matrix MP of the public key of the multivariate
signature schemes.

In Chapter 8 we described several improved versions of the UOV signature scheme created by
the techniques presented in the previous chapter. The main result here is shown in Table 8.8
which compares the public key sizes of our improved schemes with those of the original UOV
scheme. For UOVLRS2 over GF(256) for example, we can reduce the public key size from 99.9 to
13.5 kB (80 bit security), which means a reduction by a factor of 7.5. Besides these UOV versions
with reduced public key size, we showed with UOVrand a variant of UOV which offers provable
security under direct attacks.
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Chapter 9 presented two improved versions of the Rainbow signature scheme which reduce the
public key size of the original scheme by a significant factor. The main result here is given by
Table 9.8 which shows that e.g. for RainbowLRS2 over GF(256), we can reduce the public key
size from 25.1 to 9.8 kB (80 bit security) which means a reduction by a factor of 2.5.

In Chapter 10 we showed how the structure in the public key of our schemes can be used to
speed up the verification process of the improved schemes. The main results here are given by the
Tables 10.2 and 10.3. As the tables show we can, by using the structure in the public key, achieve
speed ups of the verification process of UOV and Rainbow by factors of 6.1 and 2.4 respectively.

In the last chapter of this part (Chapter 11) we showed how we can use structured polynomi-
als to speed up the multivariate stream cipher QUAD [2]. The main result is presented in Table
11.2 which shows that we can use our techniques to speed up the key stream generation process
of QUAD by a factor of up to 6.8.

We hope that our work will help to overcome the disadvantages of multivariate cryptography
and make multivariate cryptosystems more suitable for the use in practice.

Future Work
As Future Work we plan to address the two problems ”Developing Multivariate Schemes with
Provable Security” and ”Developing ”Advanced” Multivariate Cryptosystems” mentioned in the
introduction of this thesis (see page 15).

As stated in Section 2.3, the security of most of the existing multivariate public key cryptosystems
is not solely based on the MQ-Problem (see Subsection 2.3.1), but also on some version of the
IP-Problem. This fact has prevented researchers to establish security proofs for their schemes
and led to the fact, that a number of multivariate schemes were broken. This development has
undermined the confidence of users in the security of multivariate cryptography in general and
prevented multivariate schemes from being used in practice. It is therefore necessary to create
multivariate schemes which offer provable security. One direction we want to follow is to base
multivariate schemes on the provable secure identification scheme of Sakumoto et al. [52] (see also
Subsection 2.2.2). Via the Fiat-Shamir paradigm [26] it is possible to convert this identification
scheme into a provable secure multivariate signature scheme. This direction of research is closely
related to the creation of multivariate signature schemes with special properties. One first result
in this area is our provable secure threshold ring signature scheme [P4]. We plan to go further
in this direction and to extend the identification scheme of [52] to a ring and group identification
and signature scheme.

Another way to create multivariate signature schemes with special properties we want to look
at is by developing new advanced schemes on the basis of existing multivariate signature schemes
like UOV and Rainbow. In this area we are working on a multivariate blind signature scheme
based on UOV using the techniques described in Chapter 7. Furthermore we want to explore
if these techniques can be used to develop other cryptographic primitives, such as key exchange
protocols, on the basis of multivariate polynomials.
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Content of the CD
Besides electronic versions of this dissertation and our publications the CD contains implementa-
tions of our improved versions of the UOV and Rainbow signature schemes. These implementations
can be divided into three groups

MAGMA code

folders UOV, cyclicUOV, UOVLRS, cycUOVLRS, UOVLRS2, 0/1UOV, Rainbow, cyclicRainbow,
RainbowLRS2

Each of the upper folders contains the three modules keygen, sign and verify.
The module keygen generates a UOV/Rainbow key pair and stores it in the files public_key.txt
and private_key.txt. The module sign reads the private key from the file and generates a
signature for a random message. Signature and message are stored in the file signature.txt.
The module verify reads the public key and the message/signature pair from the files and checks
the correctness of the signature.
Note that the implementations of the improved schemes are suited only for small toy examples
since the generation/inversion of the large matrices AUOV and ARb is too expensive.

C programs for Windows

• folder QUAD: contains C programs for QUAD, cyclicQUAD and QUADLRS

• folder Verification: contains C programs for UOV and Rainbow (both standard and im-
proved versions)

The programs in these folders are mainly used to determine the running time of the verifi-
cation process of our improved schemes.

C programs for Linux

• folder UOVRainbow: contains implementations of UOV/Rainbow and improved versions
(using the M4RIE library)
Each of the projects is divided into the three modules keygen, signgen and signveri.

• folder QUAD: implementation of QUAD over GF(256) and GF(2).

To run the above projects, one needs the software Oracle Virtual Box including a Linux
distribution containing the M4RIE library. Unfortunately, the size of this distribution is
much too big for this CD.
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