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Abstract. Multivariate cryptography is one of the main candidates to
guarantee the security of communication in the post-quantum era. While
multivariate signature schemes are fast and require only modest compu-
tational resources, the key sizes of such schemes are quite large. In [14]
Petzoldt et al. proposed a way to reduce the public key size of certain
multivariate signature schemes like UOV and Rainbow by a large factor.
In this paper we show that by using this idea it is possible to speed up
the verification process of these schemes, too. For example, we are able
to speed up the verification process of UOV by a factor of 5.
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1 Introduction

When quantum computers arrive, classical public-key cryptosystems like RSA
and ECC will be broken [1]. The reason for this is Shor’s algorithm [18] which
solves number theoretic problems like integer factorization and discrete loga-
rithms in polynomial time on a quantum computer. So, to guarantee the security
of communication in the post-quantum era, we need alternatives to those classi-
cal schemes. Besides lattice-, code-, and hash-based cryptosystems multivariate
cryptography seems to be a candidate for this.
Additionally to its (believed) resistance against quantum computer attacks, mul-
tivariate cryptosystems are very fast, especially for signatures [2,3]. Furthermore
they require only modest computational resources, which makes them appropri-
ate for the use on low-cost devices like smartcards and RFID chips. However,
multivariate schemes are not widely used yet, mainly because of the large size
of their public and private keys.
In [14], [16] and [17] Petzoldt et al. showed different possibilities to decrease
the public key size of the Unbalanced Oil and Vinegar (UOV) and Rainbow
signature schemes. The key idea is it to insert a highly structured matrix into
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the coefficient matrix of the public key. Therefore, the coefficient matrix of the
public key has the form MP = (B|C), where B is a matrix of a very special form
(e.g. partially circulant or generated by an LFSR) and C is a matrix without
visible structure. By doing so, they were able to decrease the public key size of
UOV by 86 %, namely from 99.9 kB to 13.4 kB.
In this paper we show that this idea can not only be used to decrease the size
of the public key, but also to speed up the verification process. We use the rich
structure of the matrix B to reduce the number of field multiplications needed
during the verification process by a large factor (for cyclicUOV this factor is
about 80 %). We derive our results both theoretically and show them using a C
implementation of the schemes.
The structure of this paper is as follows: In Section 2 we give a short overview
on multivariate signature schemes and describe the UOV and Rainbow signa-
ture schemes. Section 3 reviews the approach of [14] and [16] to create UOV
and Rainbow schemes with structured public keys. In Section 4 we demonstrate
how we can use this special structure to speed up the verification process of
the schemes. In Subsection 4.2 we look hereby on partially cyclic UOV schemes,
whereas Subsection 4.3 deals with cyclic versions of Rainbow. Section 5 presents
the results of our experiments and Section 6 concludes the paper.

2 Multivariate Public Key Cryptography

The basic idea behind multivariate cryptography is to choose a system F of m
quadratic polynomials in n variables which can be easily inverted (central map).
After that one chooses two affine invertible maps S and T to hide the structure of
the central map. The public key of the cryptosystem is the composed quadratic
map P = S ◦ F ◦ T which is difficult to invert. The private key consists of S, F
and T and therefore allows to invert P.
Due to this construction, the security of multivariate cryptography is based on
two mathematical problems:

Problem MQ: Solve the system p(1) = · · · = p(m) = 0, where each p(i) is
a quadratic polynomial in the n variables x1, . . . , xn with coefficients and vari-
ables in GF (q).

The MQ-problem is proven to be NP-hard even for quadratic polynomials over
GF (2) [8].

Problem EIP (Extended Isomorphism of Polynomials): Given a class of central
maps C and a map P expressible as P = S ◦ F ◦ T , where S and T are affine
maps and F ∈ C, find a decomposition of P of the form P = S ′ ◦ F ′ ◦ T ′, with
affine maps S ′ and T ′ and F ′ ∈ C.

In this paper we concentrate on the case of multivariate signature schemes.
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Fig. 1: Signature generation and verification

The standard process for signature generation and verification works as shown
in Figure 1.

Signature Generation To sign a document d, we use a hash functionH : {0, 1}∗ →
Fm to compute the value h = H(d) ∈ Fm. Then we compute x = S−1(h),
y = F−1(x) and z = T −1(y). The signature of the document is z ∈ Fn. Here,
F−1(x) means finding one (of the possibly many) pre-image of x under the
central map F .

Verification To verify the authenticity of a document, one simply computes
h′ = P(z) and the hash value h = H(d) of the document. If h′ = h holds, the
signature is accepted, otherwise rejected.

There are several ways to build the central map F of multivariate schemes.
In this paper we concentrate on the so called SingleField constructions. In con-
trast to BigField schemes like Matsumoto-Imai [11] and MiddleField schemes
like `iC [6], here all the computations are done in one (relatively small) field.
In the following two subsections we describe two well known examples of these
schemes in detail.

2.1 The Unbalanced Oil and Vinegar (UOV) Signature Scheme

One way to create an easily invertible multivariate quadratic system is the prin-
ciple of Oil and Vinegar, which was first proposed by J. Patarin in [13].
Let F be a finite field. Let o and v be two integers and set n = o + v. We
set V = {1, . . . , v} and O = {v + 1, . . . , n}. We call x1, . . . , xv the Vinegar
variables and xv+1, . . . , xn Oil variables. We define o quadratic polynomials
f (k)(x) = f (k)(x1, . . . , xn) by

f (k)(x) =
∑

i∈V, j∈O

α
(k)
ij xixj +

∑
i,j∈V, i≤j

β
(k)
ij xixj +

∑
i∈V ∪O

γ
(k)
i xi +η(k) (1 ≤ k ≤ o).

(1)
Note that Oil and Vinegar variables are not fully mixed, just like oil and vinegar
in a salad dressing.
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The map F = (f (1)(x), . . . , f (o)(x)) can be easily inverted. First, we choose the
values of the v Vinegar variables x1, . . . , xv at random. Therefore we get a sys-
tem of o linear equations in the o variables xv+1, . . . , xn which can be solved
e.g. by Gaussian Elimination. If the system does not have a solution, one has to
choose other values of x1, . . . , xv and try again.
The public key of the scheme is given as P = F ◦ T , where T is an affine map
from Fn to itself. The private key consists of the two maps F and T and there-
fore allows to invert the public key.

Remark: In opposite to other multivariate schemes the second affine map S
is not needed for the security of UOV. So it can be omitted.

In his original paper [13] Patarin suggested to choose o = v (Balanced Oil and
Vinegar (OV)). After this scheme was broken by Kipnis and Shamir in [10], it
was recommended in [9] to choose v > o (Unbalanced Oil and Vinegar (UOV)).
The UOV signature scheme over GF(256) is commonly believed to be secure for
o ≥ 28 equations [19] and v = 2 · o Vinegar variables. For UOV schemes over
GF(31) we set (o, v) = (33, 66).

2.2 The Rainbow Signature Scheme

In [4] J. Ding and D. Schmidt proposed a signature scheme called Rainbow,
which is based on the idea of (Unbalanced) Oil and Vinegar [9].

Let F be a finite field and V be the set {1, . . . , n}. Let v1, . . . , vu+1, u ≥ 1
be integers such that 0 < v1 < v2 < · · · < vu < vu+1 = n and define the
sets of integers Vi = {1, . . . , vi} for i = 1, . . . , u. We set oi = vi+1 − vi and
Oi = {vi + 1, . . . , vi+1} (i = 1, . . . , u). The number of elements in Vi is vi and we
have |Oi| = oi. For k = v1+1, . . . , n we define multivariate quadratic polynomials
in the n variables x1, . . . , xn by

f (k)(x) =
∑

i∈Ol, j∈Vl

α
(k)
ij xixj +

∑
i,j∈Vl, i≤j

β
(k)
ij xixj +

∑
i∈Vl∪Ol

γ
(k)
i xi + η(k), (2)

where l is the only integer such that k ∈ Ol. Note that these are Oil and Vinegar
polynomials with xi, i ∈ Vl being the Vinegar variables and xj , j ∈ Ol being
the Oil variables.
The map F(x) = (f (v1+1)(x), . . . , f (n)(x)) can be inverted as follows. First, we
choose x1, . . . , xv1 at random. Hence we get a system of o1 linear equations (given
by the polynomials f (k) (k ∈ O1)) in the o1 unknowns xv1+1, . . . , xv2 , which can
be solved by Gaussian Elimination. The so computed values of xi (i ∈ O1) are
plugged into the polynomials f (k)(x) (k > v2) and a system of o2 linear equa-
tions (given by the polynomials f (k) (k ∈ O2)) in the o2 unknowns xi (i ∈ O2)
is obtained. By repeating this process we can get values for all the variables
xi (i = 1, . . . , n) 3.
3 It may happen, that one of the linear systems does not have a solution. If so, one

has to choose other values of x1, . . . xv1 and try again.
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The public key of the scheme is given as P = S ◦ F ◦ T with two invertible
affine maps S : Fm → Fm and T : Fn → Fn . The private key consists of S, F
and T and therefore allows to invert te public key.
In the following, we restrict ourselves to Rainbow schemes with two layers (i.e.
u = 2). For this, F = GF (256), (v1, o1, o2) = (17, 13, 13) provides 80-bit secu-
rity under known attacks [15]. For Rainbow schemes over GF(31), we choose
(v1, o1, o2) = (14, 19, 14).

3 Improved versions of UOV and Rainbow

In [14] and [16] Petzoldt et al. presented an approach to create UOV- and
Rainbow-based schemes with structured public keys, by which they could re-
duce the public key size of these schemes by up to 83 %. Due to lack of space
we give here only a very brief description and refer to [14] and [16] for the details.

The main idea of the approach is to insert a structured matrix B into the
Macauley matrix MP of the public key. In our case the matrix B is chosen
partially circulant, i.e. its rows are given by

B[i] = Ri−1(b) (i = 1, . . . ,m), (3)

where b is a randomly chosen vector and Ri denotes the cyclic right shift by i
positions.
To insert this matrix B into MP , the authors used the relation P = F◦T between
a UOV public and private key, which translates into the matrix equation

MP = MF ·A (4)

with a transformation matrix A whose elements are given as quadratic functions
in the coefficients of the affine map T . If this matrix is invertible, one can com-
pute the matrix MF in such a way that MP has the form MP = (B|C) with a
partially circulant matrix B and a matrix C without visible structure. Figure 2
shows this key generation process graphical form.

4 The verification process

The central part of the verification process for multivariate signature schemes is
the evaluation of the public polynomials. Normally this is done as follows: For
a given (valid or invalid) signature z = (z1, . . . , zn) ∈ Fn one first computes an
(n+1)·(n+2)

2 vector mon, which contains the values of all monomials of degree
≤ 2, i.e.

mon = (z2
1 , z1z2, . . . , z

2
n, z1, . . . , zn, 1). (5)

Then we have

P(z) =

 MP [1] ·monT

...
MP [m] ·monT

 , (6)



6 Albrecht Petzoldt and Stanislav Bulygin and Johannes Buchmann

T , B︸ ︷︷ ︸
P

⇒ F , CB︸ ︷︷ ︸
P

S , T , P ⇒ F , P

Fig. 2: Alternative key generation for UOV (above) and Rainbow. The light gray
parts are chosen by the user, the dark gray parts are computed during the key
generation process.

with MP [i] being the i-th row of the Macauley matrix MP and · being the stan-
dard scalar product.

For schemes with partially cyclic public key, the following strategy seems to
be more promising:

4.1 Notations

Let h = (h1, . . . , hm) be the hash value of the signed message.
The public polynomials can be written as

p(k)(x1, . . . , xn) =
n∑

i=1

n∑
j=i

p
(k)
ij · xixj +

n∑
i=1

p
(k)
i · xi + p

(k)
0 (k = 1, . . . ,m). (7)

For k = 1, . . . ,m we define upper triangular matrices MP (k) by

MP (k) =



p
(k)
11 p

(k)
12 p

(k)
13 . . . p

(k)
1n p

(k)
1

0 p
(k)
22 p

(k)
23 . . . p

(k)
2n p

(k)
2

0 0 p
(k)
33 p

(k)
3n p

(k)
3

...
. . .

...
...

0 0 . . . 0 p
(k)
nn p

(k)
n

0 0 . . . 0 0 p
(k)
0


. (8)

For a (valid or invalid) signature z = (z1, . . . , zn) of the message we define the
extended signature vector

sign = (z1, . . . , zn, 1). (9)

With this notation we can write the verification process in the following form

accept the signature z⇐⇒ sign ·MP (k) · signT = hk ∀k ∈ {1, . . . ,m}. (10)
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In the following two subsections we consider the question how we can evaluate
this equation more efficiently for improved versions of UOV and Rainbow.

4.2 cyclicUOV

In the case of cyclicUOV [14], the matrices MP (k) are of the form shown in
Figure 3. We have

MP
(k)
ij = MP

(k−1)
i,j−1 ∀i = 1, . . . , v, j = i+ 1, . . . , n, k = 2, . . . , o. (11)

Therefore we get

(sign1, . . . , signi)·


MP

(k)
1,j

MP
(k)
2,j

...
MP

(k)
i,j

 = (sign1, . . . , signi)·


MP

(k−1)
1,j−1

MP
(k−1)
2,j−1
...

MP
(k−1)
i,j−1


∀i = 1, . . . , v

j = i+ 1, . . . , n,
k = 2, . . . , o.

(12)
The boxes in Figure 3 illustrate this equation. Boxes with continuous lines show
the vector (MP

(k−1)
1,j−1 , . . . ,MP

(k−1)
i,j−1 )T on the right hand side of the equation,

whereas the boxes with dashed lines represent the vector (MP
(k)
1,j , . . . ,MP

(k)
i,j )T

on the left hand side. As one can see, the dashed boxes in the matrix MP (k)

are exactly the same as the boxes with continuous lines in the matrix MP (k−1)

(k = 2, . . . , o). We can use this fact to speed up the verification process of cyclic-
UOV by a large factor (see Algorithm 1).

Algorithm 1 works as follows. The first matrix-vector product sign ·MP (1) ·signT

is computed as for a random polynomial: From step 1 to step 9 we compute the
product sign ·MP (1) (the result is written into the vector temp) and step 10
computes the scalar product of temp and sign. Furthermore we compute the vec-
tor a = (a1, . . . , an−1) which can be used for the computation of sign ·MP (2).
In the loop (step 11 to step 24 of the algorithm) we compute the matrix vector
products sign ·MP (k) · signT (k = 2, . . . , o). Step 12 to step 22 computes the
vector temp = sign ·MP (k). We begin with tempn+1 and go back to temp1. In
the computation of tempi (i = 2, . . . , n) we use the values ai computed before,
since, due to the cyclic structure of the public key, they appear in several of
the products sign ·MP (k) (see equation (12)). Furthermore (step 18 and 21) we
update the values of the ai (i = 1, . . . , n− 1) for the use in the next iteration of
the loop. Step 23 computes the scalar product of temp and sign. The last three
steps (step 25 to 27) use the values h′l (l = 1, . . . o) computed in step 10 and 23
to verify the authenticity of the signature.
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MP (1) =



s1 s2 s3 . . . sv−1 sv sv+1 . . . sn−1 sn ?
0 sn+1 sn+2 . . . sn+v−2 sn+v−1 sn+v . . . s2n−2 s2n−1 ?
0 0 s2n . . . s2n+v−4 s2n+v−3 s2n+v−2 . . . s3n−4 s3n−3 ?
...

. . .
...

...
...

...
...

...
0 . . . 0 sD−2o−1 sD−2o sD−2o+1 . . . sD−o−2 sD−o−1 ?
0 . . . 0 sD−o sD−o+1 . . . sD−1 sD ?
0 . . . 0 ? . . . ? ? ?
...

. . .
...

...
...

...
. . .

...
...

...
0 . . . . . . . . . 0 ? ?
0 . . . . . . . . . 0 ?



a1 a2 a3 av−1 av av+1 an−1 an

MP (2) =



sD s1 s2 . . . sv−2 sv−1 sv . . . sn−2 sn−1 ?
0 sn sn+1 . . . sn+v−3 sn+v−2 sn+v−1 . . . s2n−3 s2n−2 ?
0 0 s2n−1 . . . s2n+v−5 s2n+v−4 s2n+v−3 . . . s3n−5 s3n−4 ?
...

. . .
...

...
...

...
...

...
0 . . . 0 sD−2o−2 sD−2o−1 sD−2o . . . sD−o−3 sD−o−2 ?
0 . . . 0 sD−o−1 sD−o . . . sD−2 sD−1 ?
0 . . . 0 ? . . . ? ? ?
...

. . .
...

...
...

...
. . .

...
...

...
0 . . . . . . . . . 0 ? ?
0 . . . . . . . . . 0 ?


...

MP (o−1) =



sD−o+3 sD−o+4 sD−o+5 . . . so+1 so+2 so+3 . . . sv+1 sv+2 ?
0 sv+3 sv+4 . . . sn+o sn+o+1 sn+o+2 . . . sn+v sn+v+1 ?
0 0 sn+v+2 . . . s2n+o−2 s2n+o−1 s2n+o . . . s2n+v−2 s2n+v−1 ?
...

. . .
...

...
...

...
...

...
0 . . . 0 sD−3o+1 sD−3o+2 sD−3o+3 . . . sD−2o sD−2o+1 ?
0 . . . 0 sD−2o+2 sD−2o+3 . . . sD−o+1 sD−o+2 ?
0 . . . 0 ? . . . ? ? ?
...

. . .
...

...
...

...
. . .

...
...

...
0 . . . . . . . . . 0 ? ?
0 . . . . . . . . . 0 ?



MP (o) =



sD−o+2 sD−o+3 sD−o+4 . . . so so+1 so+2 . . . sv sv+1 ?
0 sv+2 sv+3 . . . sn+o−1 sn+o sn+o+1 . . . sn+v−1 sn+v ?
0 0 sn+v+1 . . . s2n+o−3 s2n+o−2 s2n+o−1 . . . s2n+v−3 s2n+v−2 ?
...

. . .
...

...
...

...
...

...
0 . . . 0 sD−3o sD−3o+1 sD−3o+2 . . . sD−2o−1 sD−2o ?
0 . . . 0 sD−2o+1 sD−2o+2 . . . sD−o sD−o+1 ?
0 . . . 0 ? . . . ? ? ?
...

. . .
...

...
...

...
. . .

...
...

...
0 . . . . . . . . . 0 ? ?
0 . . . . . . . . . 0 ?


Fig. 3: Matrices MP (i) for cyclicUOV
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Algorithm 1 Verification process for cyclicUOV
1: for i = 1 to n− 1 do . first polynomial
2: ai ←

∑min(i,v)
j=1 MP

(1)
ji · signj

3: tempi ← ai

4: end for
5: for i = v + 1 to n− 1 do
6: tempi ← ai +

∑i
j=v+1 MP

(1)
ji · signj

7: end for
8: tempn ←

∑n
j=1 MP

(1)
ji · signj

9: tempn+1 ←
∑n+1

j=1 MP
(1)
j,n+1 · signj

10: h′1 ←
∑n+1

j=1 tempj · signj

11: for l = 2 to o do . polynomials 2, . . . , o
12: tempn+1 ←

∑n+1
j=1 MP

(l)
j,n+1 · signj

13: for i = n to v + 1 by −1 do
14: ai ← ai−1

15: tempi ← ai +
∑i

j=v+1 MP
(l)
ji · signj

16: end for
17: for i = v to 2 by −1 do
18: ai ← ai−1 + MP

(l)
ii · signi

19: tempi ← ai

20: end for
21: a1 ←MP

(l)
11 · sign1

22: temp1 ← a1

23: h′l ←
∑n+1

j=1 tempj · signj

24: end for
25: if hl = h′l ∀l ∈ {1, . . . , o} then return ”ACCEPT” . TEST
26: else return ”REJECT”
27: end if



10 Albrecht Petzoldt and Stanislav Bulygin and Johannes Buchmann

Computational effort Evaluating the system P in the standard way, one needs

– n·(n+1)
2 field multiplications to compute the vector mon (c.f. equation (5))

– and o · (n+1)·(n+2)−2
2 field multiplications to compute the scalar products of

equation (6).

Altogether, we need
n+ 1

2
· (n · (o+ 1) + 2 · o)− o (13)

field multiplications. Algorithm 1 needs

– in step 2 v·(v+1)
2 + (o− 1) · v field multiplications,

– in step 6 (o−1)·o
2 field multiplications,

– in step 8 n field multiplications,
– in step 9 n+ 1 field multiplications,
– and in step 10 again n+ 1 field multiplications.

Therefore, to compute the value of h′1, the algorithm needs (n+1)·(n+4)
2

In the loop (step 11 to 24) Algorithm 1 needs

– in step 12 n+ 1 field multiplications,
– in step 15 o·(o+1)

2 field multiplications,
– in step 18 v − 1 field multiplications,
– in step 21 1 field multiplication,
– and in step 23 n+ 1 field multiplications.

So, for every iteration of the loop the algorithm needs 2 · (n + 1) + v + o·(o+1)
2

field multiplications.
Altogether, we need therefore

(o− 1) ·
(

2 · (n+ 1) + v +
o · (o+ 1)

2

)
+

(n+ 1) · (n+ 4)
2

(14)

field multiplications to evaluate equation (10).

For F =GF(256), (o, v) = (28, 56) this means a reduction of the number of
field multiplications needed during the verification process by 80 % or a factor of
5.0. For a UOV scheme over GF(31), (o, v) = (33, 66), we get a reduction factor
of 5.4.

4.3 cyclicRainbow

The verification process for cyclicRainbow is mainly done as for cyclicUOV.
However we have to consider the different structure of the polynomials. For
cyclicRainbow, the matrices MP (k) look as shown in Figure 4.
So we get for the polynomials 2, . . . , o1 + 1

MP
(k)
ij = MP

(k−1)
i,j−1 ∀i = 1, . . . , v1, j = i+ 1, . . . , v2, k = 2, . . . , o1 + 1 (15)
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v1

v2

cyclic0

...
. . .

...

?. . .?

?
? . . . ?

...
...

. . . ?

. . .

0 . . . 0 ?




1 ≤ k ≤ o1

v2

n

cyclic
0

...
. . .

...

?

? . . .
?

...

?
. . .. . .

0 . . . 0 ?




o1 + 1 ≤ k ≤ o1 + o2

Fig. 4: Matrices MP (k) for cyclicRainbow

or

(sign1, . . . , signi)·


MP

(k)
1,j

MP
(k)
2,j

...
MP

(k)
i,j

 = (sign1, . . . , signi)·


MP

(k−1)
1,j−1

MP
(k−1)
2,j−1
...

MP
(k−1)
i,j−1


∀i = 1, . . . , v1,
j = i+ 1, . . . , v2,
k = 2, . . . , o1 + 1.

(16)
For the polynomials o1 + 2, . . . , o1 + o2 we get

MP
(k)
ij = MP

(k−1)
i,j−1 ∀i = 1, . . . , v2, j = i+1, . . . , n, k = o1 +2, . . . , o1 +o2 (17)

or

(sign1, . . . , signi)·


MP

(k)
1,j

MP
(k)
2,j

...
MP

(k)
i,j

 = (sign1, . . . , signi)·


MP

(k−1)
1,j−1

MP
(k−1)
2,j−1
...

MP
(k−1)
i,j−1


∀i = 1, . . . , v2,
j = i+ 1, . . . , n,

k = o1 + 2, . . . , o1 + o2.

(18)
To cover this fact, we use Algorithm 1 for both groups of polynomials separately
(see Algorithm 2 in Appendix A).

Computational cost Our algorithm needs

– (n+1)·(n+4)
2 field multiplications to evaluate p(1),

– o1 ·
(

(n+1)·(n+4)
2 − v2·(v2+1)

2 + o1·(o1+1)
2 + v1

)
field multiplications to evaluate

the polynomials p(2) . . . , p(o1+1) and
– (o2 − 1) ·

(
2 · (n+ 1) + v2 + o2·(o2+1)

2

)
field multiplications to evaluate the

polynomials p(o1+2), . . . , p(o1+o2).

For the parameters (q, v1, o1, o2) = (28, 17, 13, 13), this means a reduction by 56
% or a factor of 2.3 (with respect to the evaluation with the standard approach,
see (13)). For a Rainbow scheme over GF(31), (v1, o1, o1) = (14, 19, 14) the
reduction factor is 2.2.



12 Albrecht Petzoldt and Stanislav Bulygin and Johannes Buchmann

5 Experiments

We checked our theoretical results on a straightforward C implementation of our
schemes. Table 1 shows the results. The parameters in this table are chosen for
80 bit security.

Scheme private key hash length signature public key verification time

size (kB) (bit) length (bit) size (kB) red. factor ms s. u. f. 1

UOV(31, 33, 66) 102.9 160 528 108.5 - 1.75 -

cyclicUOV(31, 33, 66) 102.9 160 528 17.1 6.3 0.34 5.2

UOV(256, 28, 56) 95.8 224 672 99.9 - 0.98 -

cyclicUOV(256, 28, 56) 95.8 224 672 16.5 6.1 0.20 4.9

Rainbow(31, 14, 19, 14) 17.1 160 256 25.3 - 0.44 -

cyclicRainbow(31, 14, 19, 14) 17.1 160 256 12.0 2.1 0.21 2.1

Rainbow(256, 17, 13, 13) 19.1 208 344 25.1 - 0.26 -

cyclicRainbow(256, 17, 13, 13) 19.1 208 344 9.5 2.6 0.13 2.0
1 speed up factor of the verification time

Table 1: Improved versions of UOV and Rainbow
The differences between the results of our theoretical analysis (see Section 4) and
the actual runtime of the verification process is mainly caused by the heavy use
of control structures in Algorithms 1 and 2.

6 Conclusion

In this paper we show a way how the structure in the public keys of cyclic
versions of UOV and Rainbow can be used to achieve a significant speed up
of the verification process. We propose improved algorithms for the verification
process of UOV and Rainbow which run up to 5 times faster than the standard
verification algorithm. Future research includes:

– Use of special processor instructions
Like in the paper of Chen et al. [3] we plan to use special processor instruc-
tions to speed up our implementations.

– Implementation in hardware
We plan to implement our schemes in hardware (e.g. on FPGA and HSM),
which should also decrease the verification time.
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A Algorithm for the verification process of cyclicRainbow

Algorithm 2 shows the improved verification process for Rainbow schemes with
two layers and partially circulant public key. The algorithm can be extended to
Rainbow schemes with more than two layers in a natural way.

Algorithm 2 Verification process for cyclicRainbow
1: for i = 1 to v2 − 1 do . First polynomial
2: ai ←

∑min(i,v1)
j=1 MP

(1)
ji · signj

3: tempi ← ai

4: end for
5: for i = v1 + 1 to v2 − 1 do
6: tempi ← ai +

∑i
j=v1+1 MP

(1)
ji · signj

7: end for
8: for i = v2 to n + 1 do
9: tempi ←

∑i
j=1 MP

(1)
ji · signj

10: end for
11: h′1 ←

∑n+1
j=1 tempj · signj

12: for l = 2 to o1 do . Polynomials 2 to o1

13: for i = v2 + 1 to n + 1 do
14: tempi ←

∑i
j=1 MP

(l)
ji · signj

15: end for
16: for i = v2 to v1 + 1 by −1 do
17: ai ← ai−1

18: tempi ← ai +
∑i

j=v+1 MP
(l)
ji · signj

19: end for
20: for i = v1 to 2 by −1 do
21: ai ← ai−1 + MP

(l)
ii · signi

22: tempi ← ai

23: end for
24: a1 ←MP

(l)
11 · sign1

25: temp1 ← a1

26: h′l ←
∑n+1

j=1 tempj · signj

27: end for
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Algorithm 2 Verification process for cyclicRainbow (cont.)

28: tempn+1 ←
∑n+1

j=1 MP
(o1+1)
j,n+1 · signj . (o1 + 1)-th polynomial

29: for i = n to v2 + 1 by −1 do
30: ai ←

∑v2
j=1 MP

(o1+1)
ji · signj

31: tempi ← ai +
∑i

j=v2+1 MP
(o1+1)
ji · signj

32: end for
33: for i = v2 to v1 + 1 by −1 do
34: ai ← ai−1 +

∑i
j=v1+1 MP

(o1+1)
ji · signj

35: tempi ← ai

36: end for
37: for i = v1 to 2 by −1 do
38: ai ← ai−1 + MP

(o1+1)
ii · signi

39: tempi ← ai

40: end for
41: a1 ←MP

(o1+1)
11 · sign1

42: temp1 ← a1

43: h′o1+1 ←
∑n+1

j=1 tempj · signj

44: for l = o1 + 2 to o1 + o2 do . Polynomials o1 + 2 to o1 + o2

45: tempn+1 ←
∑n+1

j=1 MP
(l)
j,n+1 · signj

46: for i = n to v2 + 1 by −1 do
47: ai ← ai−1

48: tempi ← ai +
∑i

j=v2+1 MP
(l)
ji · signj

49: end for
50: for i = v2 to 2 by −1 do
51: ai ← ai−1 + MP

(l)
ii · signi

52: tempi ← ai

53: end for
54: a1 ←MP

(l)
11 · sign1

55: temp1 ← a1

56: h′l ←
∑n+1

j=1 tempj · signj

57: end for
58: if hl = h′l ∀l ∈ {1, . . . , m} then return ”ACCEPT” . TEST
59: else return ”REJECT”
60: end if


