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Abstract In [26], Sakumoto et al. presented a new multivariate identification scheme,
whose security is based solely on the MQ-Problem of solving systems of quadratic
equations over finite fields. In this paper we extend this scheme to a threshold ring
identification and signature scheme. Our scheme is the first multivariate scheme of
this type and generally one of the first multivariate signature schemes with special
properties. Despite of the fact that we need more rounds to achieve given levels of
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1 Introduction

Since the introduction of threshold ring signatures in 2002 [12], a number of schemes
in this area were proposed [11,21]. Most of them are based on number theoretic prob-
lems and therefore will be broken when large enough quantum computers are built
[6].

Therefore we need alternatives for these schemes. In the last years much work has
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been done to develop post-quantum threshold ring signature schemes. These schemes
are based on mathematical problems which are not affected by Shor’s algorithm [27]
and therefore are believed to resist attacks with quantum computers [6]. We want to
mention here the code-based construction by Aguilar et al. [2] and the lattice-based
scheme of Cayrel et al. [13].

In this paper we propose a new threshold ring signature scheme based on multivariate
polynomial systems. We achieve this by extending the identification scheme of [26] to
a threshold ring identification scheme and applying the Fiat-Shamir paradigm [17] to
transform it into a signature scheme. Although our scheme requires more rounds than
code- and lattice-based schemes to reach the same level of security, it produces signa-
tures which are at least twice shorter than that of code- and lattice-based constructions
[2,13]. In particular, both the signature length and the computational complexity of
our scheme are independent of ¢ and linear in N. Our scheme is the first multivariate
scheme of this type and generally one of the first multivariate signature schemes with
special properties. The security of our scheme is based solely on the MQ-Problem of
solving systems of multivariate quadratic equations over finite fields. Therefore our
scheme offers provable security, which is quite a rare fact in multivariate cryptogra-
phy.

The outline of this paper is as follows: In the next section we recall the basic def-
initions about cryptographic techniques needed for the construction of our scheme.
Section 3 introduces the identification scheme of [26] which is the basis of our con-
struction. In Section 4 we show how to extend this scheme to a threshold ring iden-
tification and signature scheme and describe our scheme in detail, whereas Section 5
considers the security of the scheme. In Section 6 we give concrete parameters for our
scheme and compare it with other existing threshold ring signature schemes. Finally,
Section 7 concludes the paper.

2 Preliminaries
2.1 Commitment schemes

A cryptographic commitment scheme allows a user U to commit to a chosen value,
while keeping it hidden to others. This is done with the help of a commitment function
Com. The function Com is called

— binding, if, after publishing Com(x), it is computationally infeasible for U to find
a'y # x such that Com(y) = Com(x). Informally spoken, U is not able to change
x after having commited to it.

— hiding, if it is infeasible for an attacker to compute x from Com(x).

In applications, a commitment function is usually realized by a second pre-image and
pre-image resistant resistant hash function.
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2.2 Identification Schemes

In an identification scheme the Prover P wants to convince the Verifyer V that he re-
ally is P. In cryptography, this is usually done by a Zero-Knowledge proof of Knowl-
edge: P proofs to V that he knows a secret s without giving away any information
about this secret. By doing so, the verifier gets no information about s which prevents
him from impersonating P.

The standard construction of a (3-pass) identification scheme works as follows:

1. Commitment step: The prover P uses a commitment function Com to compute
one (or several) commitment com. He sends com to the verifier.

2. Challenge step: V chooses randomly a challenge Ch from a given set and sends it
to P.

3. Response step: Depending on his commitments and the challenge Ch the prover
P computes the response Rsp and sends it to V. V checks if Rsp is correct, i.e. if
Rsp corresponds to the commitment com and his challenge.

The basic security criteria of an identification scheme are

— Completeness: The prover P is always able to perform the identification protocol
correctly.

— Soundness: An entity which does not know the secret s fails the identification
protocol with some probability p > 0. We call 1 — p the impersonation probability
of the scheme. By repeating the identification protocol n times, we are able to
reduce the impersonation probability to (1 — p)". Therefore we can reach any
bound on the impersonation probability.

— Zero-Knowledge: By performing the identification protocol, the verifier V does
not get any information on the secret s.

2.3 Threshold Ring Signatures

Threshold ring signatures were introduced in 2002 by Bresson, Stern and Szydlo [12].
The receiver of a (z,N)-threshold ring signature shall be convinced that ¢ (among a
larger group of N) users have signed a message without being able to identify this
subgroup.

Definition 1 Lets < N be integers. A (¢, N)-threshold ring signature scheme consists
of 3 algorithms

— KeyGen: is a probabilistic algorithm which outputs N pairs of private and public
keys (ski,pki),..., (skn, pky).

— Sign:is a probabilistic interactive protocol between ¢ users, involving a set (pky, .. .
pkn) of N public keys, a set (sk;, ..., sk;, ) of f private keys and a message m, and
which outputs a (¢, N)-threshold ring signature ¢ for the message m.

— Verify: is a deterministic algorithm which takes as input a threshold value ¢, a set
of N public keys (pkj, ..., pky) and a message/signature pair (m, o), and outputs
1 if o is a valid (¢, N)-threshold ring signature for the message m w.r.t. the public
keys (pky, ..., pky) and O otherwise.
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To produce a threshold ring signature, the group of signers chooses a leader L, which
gathers the individual signatures and communicates with the verifier (see Figure 3).

The basic security criteria of a threshold ring signature scheme are

— Correctness: A fairly generated (t, N)-threshold ring signature is accepted with
overwhelming probability.

— Unforgeability: Without the knowledge of at least ¢ of the private keys it is in-
feasible to generate a valid (¢, N)-threshold ring signature. More formally we can
define this property by the following game:

1. The challenger € uses algorithm KeyGen to produce key pairs sk;, pk; (i =
1,...,N). He gives all the public keys to the forger .% and keeps the secret
keys for himself.

2. 7 is allowed to ask the following queries:

— Signing query: % chooses a message m and gives it to €. The challenger
uses algorithm Sign to produce a threshold ring signature o for the mes-
sage m and gives it to #.

— Corrupt query: .F chooses an integer i € 1,...,N. € gives him the cor-
responding private key sk;. Note that the number of corrupt queries must
be strictly less than 7.

7 wins the game, if he can generate a valid threshold ring signature 6* for a new
message m*. A threshold ring signature scheme, for which the success probabil-
ity of .% is negligible, is called existentially unforgeable under chosen message
attacks.

— Source-Hiding: Given a message-signature pair (m, o), it is infeasible for the
verifier to reveal which ¢-subset of signers contributed to ¢. More formally, we
can define this property by the following game: Let S} = {Pyy,...,P;} and S, =
{P1,...,Py} be two different groups of signers. The attacker is allowed to ask
both groups to sign messages. Finally, he gets a message m* and a signature o*
which was generated by one of the groups. He succeeds, if he can decide which
group signed the message with probability > %

Many threshold ring signature schemes are based on a threshold ring identification
scheme and the Fiat-Shamir paradigm.

In a threshold ring identification scheme the ¢ signers choose a leader L, which gath-
ers the individual commitments and responses and communicates with the verifier.
Figure 1 shows one round of such a scheme.

2.4 Fiat-Shamir heuristic

The Fiat-Shamir heuristic [17] is a general way to convert an identification scheme
into a signature scheme. The idea is to start from a 3-pass identification scheme (with
commitment com, challenge Ch and response Rsp; see Subsection 2.2). To sign a
message m, the signer produces a valid transcript (com,Ch, Rsp) of the interactive
identification protocol. Here, Ch = %(m,com) for a random oracle Z.
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Fig. 1 Threshold Ring Identification

Since the challenge Ch can be computed out of the message and the commitments,
it has not to be part of the signature. Therefore, a signature has the form

o = (com|Rsp).! ()

As shown by Pointcheval and Stern in [23], an honest-verifier zero-knowledge 3-pass
identification scheme leads via the Fiat-Shamir heuristic to a signature scheme, which
is existentially unforgeable under chosen message attacks (see Subsection 2.3) in the
random oracle model.

3 Multivariate Cryptography

Multivariate Cryptography is one of the main candidates to guarantee the security
of communication in the post-quantum world. Since multivariate cryptosystems need
only simple operations (namely addition and multiplication over small finite fields),

! To achieve given levels of security, it might be neccessary to run the identification scheme several
(say M) times. In this case, the challenge is given as Ch = %Z(m,comy,...,comy) and the signature has
the form 6 = (comy,...,comy,Rspy,...,Rspu).
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they require only modest computational resources which makes them suitable for the
use on low cost devices like RFID chips and smartcards. Additionally, multivariate
schemes seem to be faster than classical Public-Key-Cryptosystems like RSA and
ECC [8,14]. A good overview on existing multivariate schemes can be found in [15].

3.1 Multivariate quadratic systems

The basic objects of multivariate cryptography are systems of multivariate quadratic
equations over a finite field IF. We write such a system of m equations in n variables
as

n

n
ZZP,I “Xi-Xj + ZP, x1+p =0

i=1j=i

ZZp,, X x,+2p, xi+py" =0. 2

i=1j=i

The security of multivariate cryptosystems is based on the

MQ-Problem: Given m quadratic polynomials py,...,p, in n variables over a fi-
nite field T, find a vector x = (x1,...,x,) € F" such that p;(x) = ... = p,(x) =0.

The MQ-Problem is proven to be NP-hard even for quadratic systems over the field
of two elements [18].

The most efficient method for solving multivariate polynomial systems is the Hybrid
approach [7] of Bettale, Faugere and Perret, which combines exhaustive search and
Faugeres Fs algorithm [16].

Remark: For most of the existing multivariate public key cryptosystems the coef-
ficients of the public system &7 are not chosen randomly. Instead one starts with an
easily invertible map .% (called central map) and combines it with two invertible
affine maps . and .7 to get a public key of the form & = . 0 .F o J. Therefore,
the security of the scheme is based not only on the MQ-Problem, but also on the EIP-
Problem (Extended Isomorphism of Polynomials).

EIP-Problem: Given a multivariate quadratic system & expressable as & = .%o
Z 0.7 with two invertible affine maps . and .7 and a map .% belonging to a spe-
cial class € of multivariate quadratic maps, find a decomposition of & of the form
P =" o F o7 with two invertible affine maps .’ and .7’ and a quadratic map
F'eE.

There is not much known about the difficulty of the EIP-Problem. In fact, for some
classes of central maps % (e.g. Balanced Oil and Vinegar [20]), the EIP-Problem is
very easy to solve. This fact prevented researchers to give security proofs for their
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multivariate public key cryptosystems. In contrast to these schemes, the security of
our threshold ring signature scheme is based solely on the MQ-Problem. Therefore,

it is one of the first multivariate schemes which offer provable security (see Section
5).

3.2 The MQ-based identification scheme

At CRYPTO 2011 Sakumoto et al. presented a new multivariate identification scheme
whose security is based solely on the MQ-Problem [26] .

In the scheme we have a multivariate quadratic system & : F" — " which is viewed
as a system parameter and fixed for a large number of users. Every user chooses a
vector s € F" as his secret key and computes his public key as v = (s) € F™.

To identify himself to a verifier, he has to show that he indeed knows s (without
revealing any information about s).

To create a zero-knowledge proof of the vector s, we need the so called polar form of
the multivariate system &, which is defined as

G(x,y) = P(x+y)—Px) - 2(y). 3)

Note that ¢ (x,y) is bilinear in x and y.

Remark: In general, the polar form of a multivariate system & is given by ¢4 (x,y) =
P(x+y)— P(x)— P(y)+ Z(0). But, since for both the identification scheme of
[26] and our scheme the system &2 does not have constant terms, the term £2(0)
vanishes.

The basic observation of [26] is the following: The knowledge of s is equivalent
to knowing a tuple (rg,r1,%0,11,€0,e1) satisfying

Y (to,r1)+eo=v—P(r1)—¥Y(t1,r1) —e; and

(to,e0) = (ro —t1, P (ro) —e1). 4
Under the assumption that there exists a binding and hiding commitment scheme

Com?, the authors of [26] used this observation to create a zero knowledge proof for
a solution of the system &7 (x) = v (see Figure 2).

The scheme as shown in Figure 2 has a cheating probability per round of % There-
fore, one needs 52 rounds to reduce the impersonation probability to less than 2730,
The authors of [26] propose for their scheme F = GF (2), n = 84, m = 80 to achieve a
security level of 80 bit. For this parameter set, the communication cost of the scheme
(52 rounds) is 29,640 bits or 3.6 kB.

Additionally to the 3-pass version shown in Figure 2, the authors of [26] also pre-
sented a 5-pass version of their scheme. Furthermore, in [22] and [25], the scheme

2 1In practice this is realized by a collision- and pre-image resistant hash function.
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Prover: &,v,s Verifier: &2, v

Choose rg,ty €g F", eg €g F™
ry=8—ro,t1 =rp—1o
e = e@(r()) — €

co = Com(ry,9 (to,r1) +eo)
c1 = Com(ty,ep)
¢y = Com(t,er) (co,c1,¢2)

Ch Choose Ch € {0,1,2}

If Ch =0, Rsp = (ro,t1,e1)
If Ch=1,Rsp = (r1,t1,€1)

If Ch =2, Rsp = (r1,10,€0) Rsp If Ch = 0. check

o1 = Com(rg—t1, P(ro) —e1)

) i7Com(tl,el)

If Ch =1, check
Co;COm(mV—«@(rl)—g(fl,rl)—el)
) ;Com(tl,el)

If Ch =2 check

co 2z Com(r1,9 (to,r1) +eo)

c ;Com(to,eo)

Fig. 2 The identification scheme of [26]

was extended to polynomials of higher degree. In this paper, we restrict ourselves to
the original approach (3-pass version).

4 Our threshold ring signature scheme

4.1 From identification to threshold ring identification

The authors of [26] propose to use the system &2 as a system parameter which stays
the same for all users. Every user chooses randomly a vector s € F” as his private key
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and publishes v = #(s) € " as his public key. In our scheme, we turn this around.
In a threshold ring signature scheme, the leader must be able to simulate the actions
of the non-signers without knowing their secrets. To enable this, we fix the vector
v € " of the identification scheme to zero. Then, every user P; chooses randomly a
private key s; € F” and creates a system ; such that #;(s;) = 0 (see Subsection 4.2
and Algorithm 1). If the system %7; does not contain constant terms, the zero vector
0 € " is always a solution of the system. This enables the leader to simulate the
actions of the non-signers without knowing their secrets.

The verifier of the threshold ring signature scheme must be able to recognize how
many of the possible signers contributed to the signature. To enable this, we add the
following test to the scheme. For fields of characteristic 2 we have

s=rp+r=0&r=r "« Com(ry) =Com(r). %)

Note that the second 7« is not really an ”< ”. While the ”=- " always holds for a
deterministic commitment function the ”<" holds only computationally due to the
binding property of the commitment function. In the following we always work over
fields of characteristic 2.

Basically we could make the test (5) at any point of the verification process. How-
ever, in a threshold ring signature scheme, the verifier must not be able to identify
non-signers. To achieve this, we use a permutation X € Sy which permutes the N
users before applying the test (5). This leads to a rather difficult problem: Regardless
of the challenge, the public key & (or its polar form ¥) is used during the verifica-
tion step of the identification scheme. Therefore, if we permute the secret keys, the
verification step can no longer be performed correctly. One possibility to solve this
problem is to extend the protocol as follows:

Each signer P; sends the two additional commitments c(3i) = Com(rg)) and c‘(:) =

Com(rgi)) to the leader, who chooses randomly a permutation X € Sy and sends
Cz3 = Com(E(cgl), . ,cgN))) and C4 = Com(E(cgl), e 7cy\,))) to the verifier. On the

Challenge Ch = 3, the leader reveals 2(6(31>, . ,cgN)) and E(cgl), e ,CE‘N)). The ver-

ifier checks the correctness of the commitments C; and C4 and checks if there are at
least ¢ positions i with cg’) + cff) and therefore s; # 0.

Remark: This additional Challenge Ch = 3 is the main difference between our scheme
and schemes like [2], where the test (5) can be performed during the execution of
Stern’s protocol. Because of this additional step the cheating probability per round
increases to % and we need more rounds to reach given security levels. But, since the
responses of the MQ-identification scheme [26] are significantly shorter than in [2],
we still get smaller communication costs and signature sizes (see Section 6).
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Fig. 3 Threshold Ring Identification. For simplicity we assume that L = P; and S = {Py,..., B }.

4.2 The Identification Scheme

Let U be a group of N users. A subgroup S C U of ¢ signers wants to identify them-
selves to a verifier. To do this, the signers choose a leader L which gathers the com-
mitments and responses of the single signers and communicates with the verifier (see
Figure 3).

4.2.1 Key Generation

Let IF be a field of characteristic 2. Every user P; € U chooses randomly a vector
s; € F" and creates a quadratic system &7; : " — ™ such that £;(s;) = 0. &; must
not contain constant terms. Algorithm 1 shows the key generation process of our
scheme.

Here, p,” is the coefficient of the monomial x; in the j —th component of 2.

The vector v computed in line 4 of the algorithm is a random looking vector in ™.
In line 7 we change some of the linear coefficients of the system &2 in such a way
that all the non zero elements of v are put to zero. Therefore we ensure that the public
key derived by Algorithm 1 is a system & of m quadratic polynomials in n variables
without constant terms such that & (s) = 0.

The homogeneous quadratic part of the system & can be seen as a system parameter
which is fixed for all N users and might be given by a random seed. This reduces the
size of the public key by a large factor (see Table 3).

Remark: The coefficients of the homogeneous quadratic part of & are randomly
chosen (line 3) and not changed during the algorithm. Therefore, under the common
assumption that the complexity of solving a quadratic system depends only on its
homogeneous quadratic part, solving the equation Z?(s) = 0 for our scheme is as dif-
ficult as solving a random instance of the MQ-Problem.
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Algorithm 1 Key Generation process

Input: parameters m, n

Output: keypair (sk, pk)
1: Choose randomly a vector s € F”
2t «— max{j|s; #0}

(95}

constant terms
4 v P(s)
5: for j=1tomdo
6: ifv; # 0 then
R
8: endif
9: end for
10: sk« s
11: pk— &

12: return (sk, pk)

Choose randomly a system &7 of m quadratic polynomials in 7 variables without

The public key of the group is simply the concatenation of all public keys,

ie. & = @1””9}\/

4.2.2 The Identification protocol

One round of our threshold ring identification scheme works as follows:

1. Each of the ¢ signers P; € S (including the leader) chooses
00 e o)

computes

and sends c(()i>7 c(li) , cgo, cgi) and cff) to the leader.
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2. The leader computes c(()i), c(1i>, cgi), cgi) and cgf) for the N —¢ non-signers P, € U \ S
(using 0 as “’secret” s;), chooses a random permutation £ € Sy, computes the master

commitments

Co = Com c(()l), .,CE)N))
C, = Com 2,c<11>, ..,cgm)
1 N
ey

and sends Cy, C1, C2, C3 and Cy to the verifier. For the computation of C3 and Cy,

the permutation is used on the upper indices of cg’) and cf") respectively.

3. The verifier chooses randomly a challenge Ch € {0,1,2,3} and sends it to the
leader. If Ch € {0, 1,2} the leader sends Ch to the ¢ — 1 co-signers.

4.IfCh € {0,1,2}, the ¢ signers P; € S (including the leader) compute their responses
Rsp;, namely
- IfCh=0, Rsp; = (r((f),tl(i),egi))
— 1t Ch=1,Rsp; = (r\",11" el")
— 1fCh=2, Rspi = (71" )
and send Rsp; to the leader.
5. The leader computes Rsp; for the N — ¢ non-signers, computes the master response
RSP

— IfCh=0,RSP = (X,Rspi,...,Rspy)
If Ch=1, RSP = (Rspy,.. RspN)

(

(z

IfCh=2,RSP = 2Rsp1, .,Rspy)
1fCh=3,RSP = (X(c{",....c{"), z(cV,....cMy)

and sends RSP to the verifier. For Ch = 3, the permutation X € Sy is used on the

upper indices of cgi> and cy).

6. The verifier checks the correctness of the commitments

— If Ch =0, he parses RSP into E,r(()l)7 t§1)7 egl), . ,r(()m7 1, e
Fori=1,...N he computes

(-) = Com(r, (@) —tl( ), ﬂi(r(()w) — egi)),
Egi) = Com(tfi)7egi)) and

5gi) = Com(rg))
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and checks, if
~(N)

Ci ;Com(Z,Egl),...,cl ),
C = Com(é(;),...,EgN)) and

G = com(z@",...,éM).

— If Ch =1, he parses RSP into rEl), tl(l), egl) EN)

Fori=1,...N he computes

s s

PR

58.) = Com(rii)7 —Qi(ry)) — %(IY), rii)) - egi)) and

Eg> = Com(tl(i) , egi))

and checks, if

Co= Com(éé”, s ,Egv)) and
G ;Com(ﬁgl),...,égv)).
— If Ch =2, he parses RSP into Z,rgl), t(()l), eé”,...,rgN), téN), e(()N).

Fori=1,...N he computes

E(()i) = Com(r(li),%(t(()i), rgi)) + e((f))7

E(li> = Com(t(()i),eg)) and

E‘(:) = Com(rgi))

and checks, if
~(N)

Co ;Com(ﬁél),...,co ),

C 2 Com(E,Egl)7 ... ,ESN)) and

Cy = com(z@,...,éMy).
CO) e B0 )

— If Ch = 3, he parses RSP into c, yeeesCy

He checks, whether
C3 < Com(cgz(l)), . ,cgz(m)),

Cy 2 Com(cftz(l)),...,c4
and that there are at least ¢ indices i € {1,...,N} with

oEO) 4 (20, ©)

Remark: By checking the property (6) the verifier can test if indeed ¢ of the N signers
used a non-zero secret key and therefore contributed to the signature. However, due

to the permutation X, he is not able to identify these signers.
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4.3 The Signature Scheme

By using the Fiat-Shamir paradigm we can transform this identification scheme into
a threshold ring signature scheme.

The key generation process for the signature scheme works just as for the thresh-
old identification scheme. Every user i calls Algorithm 1 to get his public key &.
The public key of the group is given by & = 2||...||Py.

To produce a threshold ring signature for a message m, the leader gathers the commit-
ments of the signers (for all rounds) and creates the master commitments Cé] ) , Cil) yeens

Cf‘l), (()2), ... ,C‘(‘#munds) (following step 2 of the threshold identification scheme). He

then uses a hash function .77 to produce the challenge vector

1 1 1 2 #rounds
Ch= 22| ISV ISV ICP - ICF ™ N o thounas 1) D

He sends the vector Ch to his co-signers which compute their responses. Finally the
leader computes the master responses and creates the signature

1 1 1 2 #rounds rounds
o=@ I eI ey [IRSPM||RSPR)| .. ||RpHrounds)).
(8)

To verify the authenticity of a signature, the verifier parses ¢ into C(()l), Clm, . ftw,

Céz), e Ci#rounds), RSP RSP@) | ... RSp#rounds) computes the challenge vector
(see equation (7)) and tests foreach i € {1, ..., #rounds} if RSP is a correct response

to Ch; according to C(()i) yeen ,Cff) (following step 6 of the identification protocol of
Subsection 4.2).

5 Security

Theorem 1 The scheme as described in Section 4 is a zero knowledge argument of
knowledge, with a cheating probability of %, that the group of signers knows t vectors
Siys- - Si, € F"\ {0} which fulfill Z;(si;;)) =0V j=1,....t.

Proof We have to prove the three properties of completeness, soundness and zero
knowledge. The completeness of the scheme follows directly from our description in
the previous section. The proofs of soundness and zero-knowledge (see the next two
lemmas) follow mostly the original proofs in [26]. O

Lemma 1 (Soundness) An attacker, which is able to pass r rounds of our scheme
without detection with probability > (%)r, can either break the binding property of
the commitment scheme or extract t vectors sj,,...,s;, € F"\ {0} with & (s;;) =
ovj=1,...t "

3 For 193 rounds (corresponds to 80 bit security) the length of the hash value must be > 386 bits.
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Proof Let’s assume that an attacker is able to pass r rounds of the threshold ring
identification scheme with probability > ( %)r. Then he must be able to answer all
four challenges in at least one round correctly. Assuming the binding property of
the commitment scheme we show that such an attacker is able to extract ¢ vectors
Siys--+ySi € ]F"\{O} with f@i.i(é‘i.j) =0 (]Z 1,...,1‘).

Let’s denote by E,(cl’j ) the value of & the verifier computes in step 6 of the protocol
for the user i and the challenge j. Furthermore we have to cover the fact that in step

5 of the protocol an attacker might use different permutations to perturb the cgm and
cf(). We denote these permutations by x3) and £0) respectively. Due to the binding
property of the commitment scheme we get

att =gl el — alv2) 9)

0 = 5@ L0 _H12) AN N.2) (10)
Egl 0) (2 )7 7~(2N7O):5§N,1) (11)
2(0)@170) g 0)) _ (5&2(3)(1)’3),...,5&2(3)(’\’)’3)) (12)
sOE V) = (VDD AEPm), (13)

The equations (9), (10) and (11) yield (foralli =1,...,N)

(rgi,l)’ !@i(rgi,])) - gj(tl(i,l)JY,I) _ egi,l))) _ (rgi,2)7gi(téi,2)’ rgi,z)) +e(()i,2)) (14)

(r(()i,o) _t(()i,o)7 @i(réi’o)) _esi,o)) _ (téi,2)7e(()i72)) (15)
(tfi,())’egi.())) _ (tﬁi,l)m(li,l)) (16)
As shown in [26], these three equations lead, for every i = 1,...,N, to a solution

§i = rg’o) + rgi"z) of Z;(x) = 0. We show that at least ¢ of these solutions are # 0.
To pass challenge 3 of the protocol, the test (equation (6)) has to be fulfilled for at

least ¢ indices iy, .. .,i;. With our notation this can be written as
<2<3 (i G in3) .
Cy ) 7& 4 Y =101

Dueto £V =x@ = ¥ (c.f. equation (10)) and equation (12) and (13) this is equiv-
alent to 0 Siia
S T
which again is computationally equivalent to
0 LDy g,
Finally, we see that this is equivalent to
Sviy =g M Lo =1,

which means that the attacker has found 7 vectors §y;,) € "\ {0} with Py ;1 (Sx(;,)) =
0j=1,. O
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Remark: Lemma 1 states that, in order to pass r rounds of the scheme with probabil-
ity > (%) r, an attacker has to break at least one instance of the MQ-Problem. Thie is
true even if the attacker corrupts up to r — 1 signers. By increasing the number r, we
can decrease the cheating probability to be lower than every security margin.

Lemma 2 (Zero-knowledge) Our threshold ring identification scheme is zero knowl-
edge if the commitment scheme Com is hiding.

Proof Let . be a simulator which knows all the public keys &; (i = 1,...,N), but
does not know ¢ of the private keys. W.l.o.g. we can assume that . does not know
any of the private keys. Therefore we can neglect the interactions between the sign-
ers and the leader L and . simulates just the interactions between the leader and a
cheating verifier CV. At the beginning, . chooses a value Ch* € {0,1,2,3}. Ch* is

a prediction, of what challenge the verifier will not choose.

If Ch* = 3, the simulator sets all §; (i=1,...,N) to zero, chooses randomly r(()), (() e

F" and ég) € " and computes ng) =35 ,;(Q, tf') = F(()’) — { " and eg) = @,-(7‘((;)) &l >.
After that he creates the commitments Eg), 52”, 5<2'), Eg') and 53(1') (i=1,... 7N),
chooses a random permutation X € Sy and creates the master commitments Cyp, C1, C3,
C3 and C; as described in step 2 of the protocol. It is obvious that .# can answer the
challenges 0, 1 and 2 correctly.

If Ch* # 3, . chooses §, r(()> t(()) € F”* and e(> € " at random and computes

rg) =§—F é) andtl() = (()) () JdfCh* =0, 1tcomputese(l) = 9@( 7o )-l—@i( §i) —
&), otherwise &\ = 22,(i)). If Ch* =2, .% computes &) = Com(”, — 2,(# ") —
E%(fil),fgl)) - EE’)), otherwise 58) = Com(;’g’),%(té >, ()) + E(')) It computes E(ll) =
Com(fé),é(())), Eg) Com(ff ),ég )) €g) Com( (()>) and c(> Com(rg )) chooses a
random permutation X and creates the master commitments Cy, Ci, C», C3 and C4
following step 2 of the protocol.

If Ch* # Ch, .7 is able to answer Ch correctly.

Therefore, . outputs a valid transcript of one round of the threshold identification
scheme with probability %. Furthermore, this output is indistinguishable from a real
transcript of the scheme. 0O

Remark: It is also impossible for the leader to get information about the signers’
private keys. The interactions between the leader and the signers follow the identi-
fication scheme of [26], which is zero knowledge. Since the commitment scheme is
hiding, the two additional commitments sent by each signer to the leader make no
difference to this fact.

Corollary 1 The resulting threshold ring signature scheme obtained from the appli-
cation of the Fiat-Shamir paradigm on our threshold ring identification scheme (see
Subsection 4.3) is unforgeable under chosen message attacks (see Subsection 2.1) in
the random oracle model.

Proof We show that every attacker who can produce a valid signature for a message m
can find non trivial solutions for at least ¢ of the MQ-Problems &%, =0 (i=1,...,N).



A Multivariate based Threshold Ring Signature Scheme 17

Let 6 = (CMT,Ch,RSP) with CMT = (cé” | |c§” Il... ||C§#rounds)) and
RSP = (RSPW||RSPA)|| ... ||RSPH#rounds)y be 3 valid threshold signature for a mes-
sage m (see equation (8)). For the following we look at a certain round io. Let’s

assume that Ch() = 0. By the well known forking lemma [23] we get with certain
(io)

probability other valid signatures o1, ..., 03 with Ch; " = j (j=1,...,3). This means
that the attacker can in at least one round answer all 4 challenges correctly. Accord-
ing to Lemma 1 this enables him to extract ¢ vectors s, ,...,s;, € F"\ {0} such that
e@ij(sij) =0. O

Theorem 2 The so obtained threshold ring signature scheme is source hiding.

Proof For the challenges 0,1 and 2 the responses of both a signer and a non-signer
are completely indistinguishable, since ry,fy and eg are chosen uniformly at random
and therefore the responses are random, too. So, the only possibility for the verifier
to identify non-signers is challenge 3. In this case he checks whether the two values
Com(ry) and Com(ry) are equal, which implies ro = r| and therefore s = ro+r; = 0.
But in this case the possible signers are mixed by a random permutation X. Since the
verifier has no access to this permutation, he is not able to identify non-signers. O

6 Parameters and Comparison

For our threshold ring identification (and signature) scheme we propose the same
parameters as in [26], namely

F = GF(2), (m,n) = (80,84).

Therefore, the public key size of our scheme is m - @ -N =1292,320- N bit or
35.7-N kB.

The communication cost of one round of our scheme depends on the challenge.
Between the signers and the leader the communication cost per round lies between
800 (t — 1) (for Ch = 3 we don’t need a response) and 1050 (+ — 1) bit.

Between the leader and the verifier the communication cost is given by

802 4248 - N bit < communication cost per round < 802 + 320 - N bit.
The overall communication cost per round is on average

988 (1 — 1)+ 866 +266 - N bit.

6.1 Reducing the communication cost

To reduce the cost of communication, one can use the following trick [26]:
In step 2 of the protocol, the leader sends COM = Com(Cy,C1,C>,C3,Cy) to the ver-
ifier. The responses in step 5 are changed as follows

— IfCh =0, RSP = (X,Rspy,...,Rspy,Co,Cs)
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cheating probability 2-30 2780
(N,1) 73 rounds | 193 rounds
(50,30) 378 kB 998 kB
(100,50) 672 kB 1777 kB

Table 1 communication cost

- IfCh=1,RSP = (Rspy,...,Rspn,C1,C3,Cy)

— IfCh=2,RSP = (X,Rspi,...,Rspn,C2,C3)

_ _ _ (1) (N) (1) (N)
IfCh=3,RSP=(X(cy',...,c5 '), Z(cy’,...,¢c; ), Co,C1,C2)

In step 6 of the protocol, the verifier computes the remaining C;’s and checks, if COM
was created honestly. By doing so, one can reduce the communication cost per round
by on average 240 bit.

Furthermore it is possible to perform all 73 (or 193) rounds of the scheme on parallel.
Therewith, the communication cost can be reduced further by 160 - (#rounds — 1) bit:
Instead of sending COM for each round separately, the leader sends

COM = Com(coMY ..., copFrounds)) (17)

The verifier computes COM for each round and finally tests if COM was computed
honestly. By doing so, the leader has to send only 1 hash value to the verifier.

Table 1 shows the reduced communication cost of our scheme for different parame-
ters.

6.2 Reducing the signature length

The trick mentioned in the previous subsection can also be used to reduce the signa-

ture length of our scheme.

After having computed the master commitments C(()l) ,C 51) oo, C il) , C(()z) ,eeor, C fﬁrounds)

(see Subsection 4.3), the leader uses a hash function J# to compute
com = (| V| ICVICE . | cfromes) (18)
The challenge vector is then obtained by
Ch = ¢ (m||COM) (19)
for a message m. By doing so, the leader gets a signature of the form
6 = (COM||RSP,||RSP,|| . .. ||RSPs,ounds) (20)

where the responses RSP, are computed as shown in Subsection 6.1.
To verify the authenticity of a signature, the verifier computes for each round the re-
maining C; and finally checks the correctness of COM.
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(N,1) signature length
(50,30) 324 kB
(100,50) 638 kB

Table 2 Signature lengths

The length of a so obtained signature is given by

|o| = 160+ #rounds - (464 + 266 - N) bits. (21)

In particular, the signature length is independent of ¢ and linear in N. Table 2 shows
the signature lengths of our scheme for different values of N. The signature lengths
shown in Table 2 correspond to 193 rounds of the scheme, which leads to a security
level of 80 bit.

6.3 Computational Cost

The computationally most expensive operations in our scheme are the polynomial
evaluations of the systems & and %; of which the latter can be performed by three
evaluations of ;. Therefore we have on average % - N evaluations of systems of
m equations in n variables per round. For the whole scheme (193 rounds), we get
a computational effort of 1110 - N polynomial evaluations and 1448 - (N + 1) hash
function evaluations. In particular, the computational complexity of our scheme is
independent of ¢ and linear in N.

6.4 Comparison

Table 3 compares our scheme with other existing Post-Quantum threshold ring sig-
nature schemes.

Security Scheme TRSS-C [2] | TRSS-L [13] | Our scheme
hash length 160 bit 160 bit 160 bit
rounds 140 80 193
280 public key 1.5 MB! 7.8 MB! 3.5 MB?
private key 700 bit 1280 bit 84 bit
signature length 1.4 MB 14.8 MB 0.64 MB
hash length 224 bit 224 bit 224 bit
rounds 190 100 256
2100 public key 2.2 MB! 17.0 MB! 6.9 MB 2
private key 850 bit 1728 bit 105 bit
signature length 24 MB 26.7 MB 1.07 MB

! Using a PRNG these numbers can be reduced to several kB.

2 By viewing the homogeneous quadratic part of the public key as system parameter (c.f. Subsection 4.2)
the public key sizes can be reduced to 82 kB (80 bit security) or 117 kB (100 bit security) respectively.

Table 3 Comparison of different threshold ring signature schemes (for (V,)=(100,50))
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As Table 3 shows, our scheme produces shorter signatures than code- or lattice based
constructions. The reason for this is that the responses RSP in our threshold identi-
fication scheme (see Section 4) are relatively short (on average 266 - N bit compared
to 828 - N bit for the code-based scheme). This has a much greater influence on the
signature length than the number of rounds, which is larger in our scheme.

Remark: By our method, it is also possible to extend the 5-pass version of the MQ-
identification scheme of [26] and the more advanced schemes of [22] and [25] to
threshold ring identification (and signature) schemes. However, we obtain the most
efficient solution by basing our scheme on the 3-pass version of the identification
scheme of [26].

7 Conclusion and Future Work

In this paper we proposed a new threshold ring identification and signature scheme,
whose security is based solely on the MQ-problem. Our scheme is the first multi-
variate scheme of this kind and the first multivariate signature scheme with special
properties. Furthermore it offers provable security, which is quite a rare fact in mul-
tivariate cryptography. Despite the fact that our scheme requires more rounds than
other post-quantum threshold ring signature schemes, the signatures are significantly
smaller. The scheme also enjoys smaller secret keys.

As Future work we plan to create other provable secure multivariate signature schemes
with special properties (forward secure, identity-based, etc.)
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