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Abstract. Multivariate cryptography is one of the main candidates to
guarantee the security of communication in a post quantum era. While
multivariate signature schemes are very fast and require only modest
computational resources, the key sizes of such schemes are quite large.
In [17] Petzoldt et al. proposed a way to use Linear Recurring Sequences
(LRS’s) for the key generation of the Unbalanced Oil and Vinegar (UOV)
signature scheme by which they were able to reduce the public key size
of this scheme by a factor of 7. In this paper we describe a modification
of their scheme, which enables us not only to reduce the public key size,
but also to speed up the verification process of the UOV scheme by a
factor of 5.

Keywords: Multivariate Cryptography, UOV Signature Scheme, Key
Size Reduction, Fast Verification.

1 Introduction

When quantum computers arrive, classical public-key cryptosystems like RSA
and ECC will be broken [1]. The reason for this is Shor’s algorithm [18] which
solves number theoretic problems like integer factorization and discrete loga-
rithms in polynomial time on a quantum computer. So, to guarantee the security
of communication in a post quantum era, we need alternatives to those classi-
cal schemes. Besides lattice-, code-, and hash-based cryptosystems, multivariate
cryptography seems to be a candidate for this.

Additionally to its (believed) resistance against quantum computer attacks,
multivariate cryptosystems are very fast, especially for signatures [3, 5]. Fur-
thermore they require only modest computational resources, which makes them
attractive for the use on low-cost devices like smartcards and RFID chips. How-
ever, multivariate schemes are not widely used yet, mainly because of the large
size of their public and private keys.

In [17] Petzoldt et al. proposed to use Linear Recurring Sequences (LRS) for
the key generation of the Unbalanced Oil and Vinegar (UOV) Signature Scheme.
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They did this by inserting a matrix B generated by an LRS into the coefficient
matrix of the public key. Therefore, the Macauley matrix of the public key has
the form MP = (B|C), where C is a matrix without visible structure. By doing
so, they were able to decrease the public key size of UOV by a factor of 7, namely
from 100 kB to about 14 kB.

In this paper we propose a variation of their scheme, which not only decreases
the size of the public key, but also enables us to speed up the verification process.
We show how to use the large structure of the matrix B to reduce the number of
field multiplications needed during the verification process by a factor of 5. We
derive our results both theoretically and show them using a C implementation
of the scheme.

The structure of this paper is as follows: Section 2 gives a very short introduc-
tion on Linear Recurring Sequences (LRS). In Section 3 we give an overview on
multivariate signature schemes and describe the UOV signature scheme. Section
4 reviews the approach of [16] to create UOV schemes with structured public
keys . In Section 5 we describe our new approach in detail. Furthermore we look
at the security of our scheme and consider the question how to choose the pa-
rameters of it. Section 6 demonstrates, how we can use the special structure of
our polynomials to speed up the verification process. Finally, Section 7 presents
the results of our computer experiments and Section 8 concludes the paper.

2 Linear Recurring Sequences (LRS)

In this section we repeat briefly results from the theory of linear recurring se-
quences (LRS’s) needed in the following sections. For a more detailed introduc-
tion we refer to [13].

Definition 1. Let L be a positive integer and γ1, . . . , γL be elements of a finite
field F. A Linear Recurring Sequence (LRS) of length L is a sequence {s1, s2, . . . }
of F-elements satisfying the relation

sj = γ1 · sj−1 + γ2 · sj−2 + · · ·+ γL · sj−L =

L∑

i=1

γi · sj−i (∀j > L). (1)

The values s1, . . . , sL are called the initial values of the LRS.

Definition 2. The connection polynomial of an LRS is defined as

C(X) = γL ·XL + γL−1 ·XL−1 + · · ·+ γ1 ·X + 1 =

L∑

i=1

γiX
i + 1.

The LRS S is uniquely determined by its initial values s1, . . . , sL and the con-
nection polynomial C (due to equation (1)). Therefore we denote the LRS by
S = LRS(s1, . . . , sL, C).
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3 Multivariate Public Key Cryptography

The basic idea behind multivariate cryptography is to choose a system F of m
quadratic polynomials in n variables over a finite field F which can be easily
inverted (central map). After that one chooses two affine invertible maps S and
T to hide the structure of the central map. The public key of the cryptosystem
is the composed quadratic map P = S ◦ F ◦ T which is (hopefully) difficult to
invert. The private key consists of S, F and T and therefore allows to invert P .

Due to this construction, the security of multivariate cryptography is based
on two mathematical problems:

Problem MQ: Solve the system p1 = . . . = pm = 0, where each pi is a quadratic
polynomial in the n variables x1, . . . , xn with coefficients and variables in F.

The MQ-problem is proven to be NP-hard even for quadratic polynomials
over GF (2) [10].

Problem EIP (Extended Isomorphism of Polynomials): Given a class of central
maps C and a map P expressible as P = S ◦ F ◦ T , where S and T are affine
maps and F ∈ C, find a decomposition of P of the form P = S ′ ◦ F ′ ◦ T ′, with
affine maps S ′ and T ′ and F ′ ∈ C.

In this paper we concentrate on the case of multivariate signature schemes.
The standard process for signature generation and verification works as follows:

d �H h ∈ F
m � x ∈ F

m � y ∈ F
n � z ∈ F

n

�

P

S−1 F−1 T −1

Fig. 1. Signature generation and verification

Signature Generation. To sign a document d, we use a hash function H :
{0, 1}∗ → F

m to compute the value h = H(d) ∈ F
m. Then we compute x =

S−1(h), y = F−1(x) and z = T −1(y). The signature of the document is z ∈ F
n.

Here, F−1(x) means finding one (of the possibly many) pre-images of x under
the central map F .

Verification. To verify the authenticity of a document, one simply computes
h′ = P(z) and the hash value h = H(d) of the document. If h′ = h holds, the
signature is accepted, otherwise rejected.



444 A. Petzoldt and S. Bulygin

There are several ways how to build the central map F of multivariate schemes.
In this paper we concentrate on the so called SingleField constructions. In con-
trast to BigField schemes like Matsumoto-Imai [14] and MiddleField schemes
like �iC [8], here all the computations are done in one (relatively small) field. In
the following subsection we describe one well known example for such a scheme
in detail.

3.1 The UOV Signature Scheme

One way to create an easily invertible multivariate quadratic system is the prin-
ciple of Oil and Vinegar, which was first proposed by J. Patarin in [15].

Let F be a finite field. Let o and v be two integers and set n = o + v.
We set V = {1, . . . , v} and O = {v + 1, . . . , n}. We call x1, . . . , xv the Vine-
gar variables and xv+1, . . . , xn Oil variables and define o quadratic polynomials
f (k)(x) = f (k)(x1, . . . , xn) by

f (k)(x) =
∑

i∈V, j∈O

α
(k)
ij xixj+

∑

i,j∈V, i≤j

β
(k)
ij xixj+

∑

i∈V ∪O

γ
(k)
i xi+η(k) (1 ≤ k ≤ o).

(2)

Note that Oil and Vinegar variables are not fully mixed, just like oil and vinegar
in a salad dressing.

The map F = (f (1)(x), . . . , f (o)(x)) can be easily inverted. First, we choose
the values of the v Vinegar variables x1, . . . , xv at random. Thus we get a system
of o linear equations in the o variables xv+1, . . . , xn which can be solved e.g. by
Gaussian Elimination. If the system does not have a solution, one has to choose
other values of x1, . . . , xv and try again.

To hide the structure of F in the public key, one composes it with an affine
map T : Fn → F

n. Therefore, the public key has the form P = F ◦ T . The
private key consists of F and T and therefore allows to invert the public key.

Remark: In opposite to other multivariate schemes the second affine map S
is not needed for the security of UOV. So it can be dropped.

In his original paper [15] Patarin suggested to choose o = v (Balanced Oil and
Vinegar (OV)). After this scheme was broken by Kipnis and Shamir in [12], it
was recommended in [11] to choose v > o (Unbalanced Oil and Vinegar (UOV)).

The UOV signature scheme over GF (28) is commonly believed to be secure
for o ≥ 28 equations [19] and v = 2 · o Vinegar variables. For UOV schemes over
GF (24) we need at least o = 40 equations and v = 2 · o Vinegar variables.
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4 Improved versions of UOV

In this section we review the approach of [16] to create UOV-based schemes with
a structured public key.

Recall that, in the case of the Unbalanced Oil and Vinegar signature scheme
[11], the public key P is given as the composition of the central UOV-map F
and an affine invertible map T (given by a matrix MT and a vector cT ), i.e.

P = F ◦ T . (3)

In [16] it is observed, that this equation (after fixing the affine map T ), leads to
a linear relation between the coefficients of the quadratic monomials of P and
F of the form

p
(k)
ij =

v∑

r=1

n∑

s=r

αrs
ij · f (k)

rs , (4)

where p
(k)
ij and f

(k)
ij are the coefficients of xixj in the k-th component of P and

F respectively and the αrs
ij are given as

αrs
ij =

{
tri · tsi (i = j)
tri · tsj + trj · tsi otherwise

. (5)

Here tij ∈ F denote the elements of the matrix MT . Let D := v·(v+1)
2 +ov be the

number of non-zero quadratic terms in any component of F and D′ := n·(n+1)
2

be the number of quadratic terms in the public polynomials. Let MP and MF be
the coefficient matrices of P and F respectively (w.r.t. the graded lexicographic
ordering of monomials). The matrices MP and MF are divided into submatrices
as shown in Figure 2. Note that, due to the absence of oil × oil terms in the
central polynomials, we have a block of zeros in the middle of MF .

Flin

Plin

Q

B

0

C

D D′

MP

MF

Fig. 2. Layout of the matrices MP and MF
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Furthermore, the authors of [16] defined the so called transformation matrix
AUOV ∈ F

D×D containing the coefficients αrs
ij of equation (4)

AUOV =
(
αrs
ij

)
(1 ≤ r ≤ v, r ≤ s ≤ n for the rows, 1 ≤ i ≤ v, i ≤ j ≤

n for the columns), i.e.

AUOV =

⎛

⎜⎜⎜⎝

α11
11 α11

12 . . . α11
vn

α12
11 α12

12 . . . α12
vn

...
...

αvn
11 αvn

12 . . . αvn
vn

⎞

⎟⎟⎟⎠ . (6)

With this notation, equation (4) yields

B = Q ·AUOV . (7)

If the matrix AUOV is invertible, this equation has a solution for Q. Experiments
indicate that this condition is fulfilled with overwhelming probability. We can
then use Algorithm 1 to generate a key pair for UOV.

Algorithm 1. Alternative Key Generation for UOV schemes

Input: parameters (F, o, v)
Output: UOV keypair (F , T ),P
1: D ← v·(v+1)

2
+ o · v

2: Choose an o×D matrix B (e.g. generated by an LRS).
3: Choose randomly an affine map T (represented by an n × n-matrix MT and an

n-vector cT ). If MT is not invertible, choose again.
4: Compute for T the corresponding transformation matrix AUOV (using equations

(5) and (6)). If AUOV is not invertible, go back to step 2.
5: Solve the linear system given by equation (7) to get the matrix Q and therewith

the quadratic coefficients of the central polynomials.
6: Choose the linear and constant terms of the central map F at random.
7: Compute the public key as P = F ◦ T .
8: return (F , T ),P

5 Our Choice of B

The authors of [17] used a matrix B, whose elements were given by a single
Linear Recurring Sequence, i.e. for a given LRS S = (s1, s2, . . . ) the matrix B
was of the form

B(PB11) =

⎛

⎜⎜⎜⎝

s1 s2 . . . sD
sD+1 sD+2 . . . s2·D
...

...
s(o−1)·D+1 s(o−1)·D+2 . . . so·D

⎞

⎟⎟⎟⎠ (8)

To guarantee the security of the scheme, they had to choose a Linear Recurring
Sequence of length L ≥ o.
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In our new scheme, we use not only one, but o different Linear Recurring
Sequences. The goal of this strategy is to reduce the lengths of the single LRS’s,
which will later help us to speed up the verification process of the scheme (see
Section 6). In fact, we will use Linear Recurring Sequences of length 1.

We choose randomly two vectors α, γ ∈ F
o and define for each i = 1, . . . , o

a univariate polynomial Ci by Ci(X) = γi ·X + 1. For i = 1, . . . , o we compute

the first D elements of the Linear Recurring Sequence S(i) = (s
(i)
1 , s

(i)
2 , . . . ) =

LRS(αi, Ci) and put this sequence into the i-th row of the matrix B. Therefore,
the matrix B will have the following structure:

B =

⎛

⎜⎜⎜⎜⎝

s
(1)
1 s

(1)
2 . . . s

(1)
D

s
(2)
1 s

(2)
2 . . . s

(2)
D

...
...

s
(o)
1 s

(o)
2 . . . s

(o)
D

⎞

⎟⎟⎟⎟⎠
. (9)

We denote the scheme obtained by using this matrix B and Algorithm 1 by
UOVLRS2.

5.1 Choice of α and γ

First, we look at the question what happens if two elements of the vector γ,
say γi and γj (i �= j) are equal.

Theorem 1. If γi = γj for i �= j ∈ {1, . . . , o}, the homogeneous quadratic parts
of the polynomials p(i) and p(j) are linearly dependent.

Proof. If γi = γj for i �= j ∈ {1, . . . , o}, the two rows B[i] and B[j] are linearly
dependent. Since we have Q = B ·A−1 (c.f. equation (7)), the same holds for Q[i]
and Q[j] (see Figure 2). Note that this matrix contains all the private coefficients
of quadratic terms, which means that the homogeneous quadratic parts of the
i-th and j-th central polynomials are linearly dependent. Since during the key
generation of UOV the rows of the central map F are not mixed, the same holds
for the homogeneous quadratic part of the i-th and j-th public polynomial. 	


Theorem 1 states that by computing p(i) − αi

αj
· p(j) the attacker will get a linear

equation in the system variables, which means that he can reduce the number
of variables in the quadratic system by 1. We can conclude

Corollary 1. Attacking an instance of UOVLRS2 with m equations and t < m
different values in the vector γ is only as hard as solving a (UOVLRS2) system
of t equations.

To check this theoretical result, we created instances of UOVLRS2 for different
values of o and v and different types of vectors γ and solved the resulting public
systems with MAGMA v.2-13.10 (with fixing of v variables to create determined
systems).
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Table 1. Running time of direct attacks with MAGMA

t 1 (o, v) (9,18) (10,20) (11,22) (12,24) (13,26) (14,28)
9 time (s) 5.4 5.7 5.7 5.8 5.8 5.9
10 time (s) ——— 38.9 40.8 41.8 43.0 44.6
11 time (s) ——— ——— 287.3 301.4 309.8 315.2

1 number of different values in γ

To achieve the optimal security level, the elements of the vector γ must be
pairwise distinct. Furthermore, all the elements have to be �= 0.

Remark: The above condition gives a lower bound to the cardinality of the
underlying field. In particular, we can not define our scheme over GF (24).

On the contrary, there seem to be no major conditions for the choice of the
vector α. We have to ensure only that αi ∈ F \ {0} ∀i = 1, . . . , o. For simplicity
we choose α = (1, . . . , 1).2 Therefore, we get a matrix B of the Vandermonde-
type:

B =

⎛

⎜⎜⎜⎝

1 γ1 γ2
1 . . . γD−1

1

1 γ2 γ2
2 . . . γD−1

2
...

...
1 γo γ2

o . . . γD−1
o

⎞

⎟⎟⎟⎠ (10)

which can be used in Algortihm 1 to generate a key pair of UOVLRS2.

5.2 Security

As mentioned above, the matrix B of our scheme is of the Vandermonde type. If
the elements of the vector γ are pairwise distinct, there is not any relationship
between the rows of B at all. This is in contrast to the schemes of [16] and [17]
and prevents therefore possible attacks against schemes of this type which use
such relationships. Furthermore this is very similar to the case of standard UOV,
which seems to show that direct attacks against our scheme are as difficult as
direct attacks against standard UOV. Further evidence for this result was given
by experiments with MAGMA [2].

Furthermore we checked experimentally the security of our scheme against
other attacks affecting UOV-like schemes, including

– UOV attack of Kipnis and Shamir [11]
– UOV Reconciliation attack [7]

and found that these attacks cannot use the structure in our systems. Details
on these experiments can be found in the appendix of this paper.

2 In fact, the attacker is allowed to multiply each public polynomial p(i) (i = 1, . . . , o)
by a number ai ∈ F \ {0} of his choice. By doing so, he can produce a vector α′ of
this form.
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6 The Verification Process

The central part of the verification process for multivariate signature schemes is
the evaluation of the public polynomials. Normally this is done as follows: For
a given (valid or invalid) signature z = (z1, . . . , zn) ∈ F

n one first computes an
(n+1)·(n+2)

2 vector mon, which contains the values of all monomials of degree
≤ 2, i.e.

mon = (z21 , z1z2, . . . , z
2
n, z1, . . . , zn, 1). (11)

Then we have

P(z) =

⎛

⎜⎝
MP [1] ·monT

...
MP [o] ·monT

⎞

⎟⎠ , (12)

with MP [i] being the i-th row of the Macauley matrix MP .

For our new scheme, the following strategy seems to be more promising:

6.1 Notations

Let h = (h1, . . . , ho) be the hash value of the signed message.
The public polynomials can be written as

p(k)(x1, . . . , xn) =
n∑

i=1

n∑

j=i

p
(k)
ij · xixj +

n∑

i=1

p
(k)
i · xi + p

(k)
0 (k = 1, . . . , o). (13)

For k = 1, . . . , o we define upper triangular matrices MP (k) by

MP (k) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

p
(k)
11 p

(k)
12 p

(k)
13 . . . p

(k)
1n p

(k)
1

0 p
(k)
22 p

(k)
23 . . . p

(k)
2n p

(k)
2

0 0 p
(k)
33 p

(k)
3n p

(k)
3

...
. . .

...
...

0 0 . . . 0 p
(k)
nn p

(k)
n

0 0 . . . 0 0 p
(k)
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (14)

For a (valid or invalid) signature z = (z1, . . . , zn) of the message we define the
extended signature vector

sign = (z1, . . . , zn, 1). (15)

With this notation we can write the verification process in the following form

accept the signature z ⇐⇒ sign ·MP (k) · signT = hk ∀k ∈ {1, . . . , o}. (16)

In the following subsection we consider the question how we can evaluate this
equation more efficiently for our scheme.
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6.2 Verification of UOVLRS2

In the case of UOVLRS2, the matrices MP (k) are of the form shown in
Figure 3.

MP (k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 γk γ2
k . . . γv−2

k γv−1
k γv

k . . . γn−2
k γn−1

k �
0 γn

k γn+1
k . . . γn+v−3

k γn+v−2
k γn+v−1

k . . . γ2n−3
k · γ2n−2

k �
0 0 γ2n−1

k . . . γ2n+v−5
k γ2n+v−4

k γ2n+v−3
k . . . γ3n−5

k γ3n−4
k �

...
. . .

...
...

...
...

...
...

0 . . . 0 γD−2o−2
k γD−2o−1

k γD−2o
k . . . γD−o−4

k γD−o−3
k �

0 . . . 0 γD−o−1
k γD−o

k . . . γD−2
k γD−1

k �
0 . . . 0 � . . . � � �
...

. . .
...

...
...

...
. . .

...
...

...
0 . . . . . . . . . 0 � �
0 . . . . . . . . . 0 �

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

v

Fig. 3. Matrices MP (k) for UOVLRS2

We have

MP
(k)
ij = γk ·MP

(k)
i,j−1 ∀i ∈ {1, . . . , v}, j ∈ {i+ 1, . . . , n}, k ∈ {1, . . . , o}. (17)

Therefore we get

(sign1, . . . , signi) ·

⎛

⎜⎜⎜⎜⎝

MP
(k)
1,j

MP
(k)
2,j
...

MP
(k)
i,j

⎞

⎟⎟⎟⎟⎠
= γk · (sign1, . . . , signi) ·

⎛

⎜⎜⎜⎜⎝

MP
(k)
1,j−1

MP
(k)
2,j−1
...

MP
(k)
i,j−1

⎞

⎟⎟⎟⎟⎠
(18)

∀i ∈ {1, . . . v}, j ∈ {i+ 1, . . . , n}, k ∈ {1, . . . , o}.

The boxes in Figure 3 illustrate this equation: Boxes with continuous lines show

the vector (MP
(k)
1,j−1, . . . ,MP k

i,j−1)
T on the right hand side of equation (18),

while the boxes with dotted lines show the vector (MP
(k)
1,j , . . . ,MP

(k)
i,j )T on the

left hand side. Any box with dotted lines can be computed by multiplying the
corresponding box with continuous lines by γk.

We can use this fact to speed up the verification process of UOVLRS2 by
a large factor (see Algorithm 2).

Algorithm 2 works as follows:
From line 2 to 14 the public polynomials are evaluated. From line 3 to 12 we

hereby compute the matrix vector product sign ·MP (k)· whose result is stored
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Algorithm 2. Verification process for UOVLRS2

Input: signature z ∈ F
n, hash value h ∈ F

m

Output: Boolean value TRUE or FALSE
1: sign← (z1, . . . , zn, 1)
2: for k = 1 to o do
3: temp1 ← sign1

4: for j = 2 to v do
5: tempj ← γk · tempj−1 +MP

(k)
jj · signj

6: end for
7: a← tempv

8: for j = v + 1 to n do
9: a← γk · a
10: tempj ← a+

∑j
i=v+1 MP

(k)
ij · signi

11: end for
12: tempn+1 ←

∑n+1
i=1 MP

(k)
i,n+1 · signi

13: h′
k ←

∑n+1
i=1 tempi · signi

14: end for
15: if hk = h′

k ∀k ∈ {1, . . . , o} then
16: return TRUE
17: else
18: return FALSE
19: end if

in the vector temp. In line 5 and line 9-10 we hereby use the special structure of
our public key, which allows us to compute each tempi (i = 2, . . . , n) using only
two multiplications. Finally, in line 13 of the algorithm, we compute the scalar
product of temp and sign.

In line 15 to 19 we test, if the result is equal to the hash value of the message.

Computational Effort. To evaluate P in the standard way (i.e. by using
equations (11) and (12)), one needs

n+ 1

2
· (n+ o · (n+ 2)) field multiplications. (19)

Algorithm 2 needs (for each iteration of the main loop)

– in the first loop (step 4 to 6) 2 · (v − 1) field multiplications,

– in the second loop (step 8 to 11) o+ o·(o+1)
2 field multiplications,

– in step 12 n+ 1 field multiplications,
– and in step 13 again n+ 1 field multiplications.

Therefore, to evaluate equation (16) (o iterations of the main loop), Algorithm
2 needs

o ·
(
3 · n+ v +

o · (o+ 1)

2

)
field multiplications. (20)
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For F = GF (28), (o, v) = (28, 56) this means a reduction of the number of field
multiplications needed during the verification process by a factor of 5.3.

7 Parameters and Experiments

Based on our security analysis (see Subsection 5.2 and Appendix A), we propose
for our scheme the same parameters as for the standard UOV scheme, namely

F = GF (256), (o, v) = (28, 56).

The elements of the vector γ ∈ F
o are chosen pairwise distinct and we set

α = (1, . . . , 1) ∈ F
o.

To check our theoretical results regarding the verification process, we cre-
ated a straightforward C implementation of our scheme and the standard UOV.
Table 2 shows the results:

Table 2. Comparison of our scheme with standard UOV

private key hash length signature public key verification time
Scheme size (kB) (bit) length (bit) size (kB) red. factor ms red. factor

UOV(28, 28, 56) 96.6 224 672 99.9 - 0.99 -

UOVLRS2(28, 28, 56) 96.6 224 672 13.5 7.4 0.18 5.5

UOV(28, 30, 60) 117.0 240 720 122.6 - 1.21 -

UOVLRS2(28, 30, 60) 117.0 240 720 16.4 7.5 0.21 5.7

8 Conclusion and Future Work

In this paper we proposed a variation of the UOVLRS scheme of [17], which
not only achieves a similar reduction of the public key size but also speeds up
the verification process of UOV by a large factor. In particular, we achieved a
reduction of the public key size of UOV by a factor of 7.5 and a speed up factor
of 5.5 for the verification process. We showed the latter both theoretically and
by a C implementation of the schemes. Furthermore, experiments seem to show
that the security of UOV is not weakened by our modifications.

Future work includes the extension of our ideas to the Rainbow Signature
scheme [6] and the implementation of the scheme on hardware. Furthermore we
want to apply our techniques to the QUAD stream cipher [4] to speed up its key
stream generation process.
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A Details of the Experiments

In this section we present the results of our experiments with known attacks
against the UOV scheme. In particular, we test the security of our scheme against

– Direct attacks

– UOV-Reconciliation attack

– UOV-attack

A.1 Direct Attacks

In a direct attack an attacker tries to solve the public system P(x) = h by a sys-
tem solver like XL or a Gröbner Basis method. Direct attacks can be used against
each multivariate scheme as a message recovery attack (encryption schemes) or
a signature forgery attack (signature schemes). To check the security of the
UOVLRS2 scheme under direct attacks, we carried out a number of experi-
ments with MAGMA [2] v.2-13.10, which contains an efficient implementation
of Faugère’s F4 algorithm [9] to compute Gröbner Bases. For each of the param-
eter sets listed in Table 3 we created 100 instances of UOV and UOVLRS2 and
solved the public systems using the MAGMA command Variety.

Table 3. Running time of the direct attack against UOV and UOVLRS2

parameters (28, o, v) (9,18) (10,20) (11,22) (12,24) (13,26) (14,28)

UOV 5.5 s 40.0 s 289.2 s 2,383 s 18,928 s 196,638 s

UOVLRS2 5.4 s 39.9 s 288.6 s 2,378 s 18,917 s 195,963 s

A.2 UOV-Reconciliation Attack

In the UOV-Reconciliation attack [7] the attacker tries to find an affine trans-
formation which brings the public key in the form of a UOV central map (i.e.
no Oil × Oil terms). To do this, the attacker has to solve a number of multi-
variate quadratic systems. The complexity of the attack is mainly given by the
complexity of solving the first of these systems, which contains o equations in v
variables. Table 4 shows the time, MAGMA needs for solving this first system
for standard UOV and UOVLRS2.
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Table 4. Running time of the UOV-Reconciliation attack against UOV and UOVLRS2

parameters (28, o, v) (9,18) (10,20) (11,22) (12,24) (13,26) (14,28)

UOV 5.5 s 40.1 s 289.3 s 2,381 s 18,924 s 196,712 s

UOVLRS2 5.4 s 39.9 s 286.8 s 2,379 s 18,923 s 196,683 s

A.3 UOV Attack

In the UOV attack of Kipnis and Shamir [12] the attacker tries to reconstruct
the essential parts of the affine transformation T (i.e. the parts which mix Oil
and Vinegar variables). To do this, he tries to find the space T −1(O), where O
is the so called Oil space

O = {x ∈ F
n : x1 = . . . = xv = 0}.

This can be done by looking at the invariant subspaces of the linear maps
W = P−1

i ·
∑o

j=1 Pj , where Pj is the symmetric matrix associated with the
homogeneous part of the j-th public polynomial. Table 5 shows the base 2-
logarithm of the number of matrices W we had to test until finding a basis of
T −1(O).

Table 5. Results of the experiments with the UOV attack

parameters (28, o, v) (2,4) (3,6) (4,8) (5,10)

UOV 16.1 24.3 32.2 40.0

UOVLRS2 16.0 24.1 32.0 39.9

As the Tables 3 - 5 show, known attacks against the UOV signature scheme
cannot use the special structure of our public keys. Of course, this is no proof
that no dedicated attacks against our scheme exist. However, as long as no such
attack is known, we believe our scheme to be secure and propose for it the same
parameters as for the standard UOV scheme (see Section 7).
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