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Abstract. In this paper we show that solving systems coming from the
public key of the Unbalanced Oil and Vinegar (UOV) signature scheme
is on average at least as hard as solving a certain quadratic system with
completely random quadratic part. In providing lower bounds on direct
attack complexity we rely on the empirical fact that complexity of solving
a non-linear polynomial system is determined by the homogeneous part
of this system of the highest degree. Our reasoning explains, in particu-
lar, the results on solving the UOV systems presented by J.-C. Faugere
and L. Perret at the SCC conference in 2008.
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1 Introduction

Multivariate public key cryptography is one of the alternatives for the post-
quantum era, i.e. when a large enough quantum computer is built and the public
key cryptosystems used today (RSA, ECC, El Gamal) are broken. Other than
resistance to quantum computer attacks, multivariate public key cryptosystems
(MPKCs) enjoy other useful properties. In particular, they are quite fast com-
pared to conventional schemes and require only very moderate resources. This
makes MPKCs excellent candidates for use in resource constraint devices, like
RFIDs and smart cards. Still there are two issues that pose obstacles on the
way of using MPKCs. The first one is the issue of key sizes. The second problem
is that MPKC proposals are being broken on a regular basis, which weakens
believe in a possibility of constructing both secure and efficient MPKC.

Quite a few attempts have been undertaken in order to tackle the first prob-
lem. Mainly, the researchers concentrated on reducing the secret key size. In the
recent paper [23] the authors undertook an attempt to reduce the public key
size, based on yet unbroken (under proper parameter choice) UOV scheme [15].
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There has been no lack in proposals of MPKCs, see [7,10] for an overview. On
the down side for the designers, the cryptanalytic progress has also been substan-
tial. New proposals aim mainly at fixing problems exposed by the cryptanalysis,
but then it often happens that “fixed” proposals get broken again (observe for
example the sequence Matsumoto-Imai scheme [17] → its cryptanalysis [20] →
HFE [21] → cryptanalysis of HFE challenge 1 [13] or a less known sequence MFE
cryptosystem [26] → its SOLE cryptanalysis [8] → improved MFE [25] → crypt-
analysis of the improved versions [5]; there are many more such “sequences”).
There is a need in theoretical backing of design principles used in constructions
of MPKCS. Note that for the classical cryptosystems one has some empirical
certainty in the security of these systems. Namely, it is believed that breaking
RSA in the classical computational model is as hard as factoring. For the ECC
there is a believe that there exists no sub-exponential algorithm for solving the
discrete logarithm problem in a group of points of an elliptic curve. Even better
arguments are provided in the lattice-base and hash-based cryptography. For ex-
ample, rigorous security reductions are provided for the cryptosystems based on
random lattices as well as more compactly representable ideal lattices. Some at-
tempts on providing “provability” or “reducibility” for MPKCs were undertaken
by N. Courtois in his note [6]. There for providing security proofs he assumed
strong properties of certain multivariate constructions themselves. It would be
desirable instead to anchor security to some known problem(s) on which MP-
KCs are built. In this paper this will be a weaker version of the MQ-problem.
Surprisingly enough, the methods used by the authors in [23] are also applicable
to tackle the problem of “provable security” in the case of MPKCs as we will
show.

The object of this paper is the Unbalanced Oil and Vinegar (UOV) scheme
proposed in [15]. Note that for suitably chosen parameters (in particular, v > o,
e.g. v = 2o, see Section 2) the progress in cryptanalysis of this scheme is con-
nected mainly with the progress in solving generic quadratic systems over a finite
field [4,14], which is one of the underlying hard problems the UOV is based on.
Despite some progress, the above problem is still considered to be hard on av-
erage. Considering lack of structural attacks on the UOV for carefully chosen
parameters, the system remains unbroken for more than ten years now. In this
paper we show that breaking a UOV system directly is on average at least as
hard as solving a quadratic system with a random quadratic part. We would like
to be careful here on what we mean. What is meant is that using only direct
(or general) attacks on the UOV, i.e. attacks based on Gröbner bases/XL-like,
it is not possible to break the UOV if the parameters are large enough (and
it is in principle possible to compute these). Still, our approach says nothing
about structural attacks on the UOV. In particular, our approach says that the
balanced Oil and Vinegar is secure against direct attacks, but it is a matter
of the polynomial time algorithm to find an equivalent secret key [16]. So our
claim is related to the direct solving attacks only. One, of course, should also be
careful with “provably secure” in this context. If it is possible to solve a random
quadratic system with certain parameters, this implies a jeopardy for a UOV
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scheme which anchors to such a system. In particular, in [14,4] it was shown
that it is possible to forge signatures of the UOV with certain parameters. Still,
moderate increase of parameters would render such an attack inefficient, due to
high complexity of the anchoring problem.

The paper is organized as follows. In Section 2 we review the UOV scheme.
Then in Section 3 we present the idea of [23] and show how it can be used for
inserting a random (rather than partially cyclic) matrix in a UOV public key. In
the following section we gather important points necessary for the further expo-
sition. Our reduction arguments follow in Section 5 where we present our main
result in Theorem 1. Section 6 provides some lower bounds on direct attacks
using results of the previous section. We conclude in Section 7.

2 The UOV Signature Scheme

The idea of the Oil and Vinegar trapdoor was first proposed by J. Patarin in
[22] and stems from his cryptanalysis of the Matsumoto-Imai scheme [20].

Let K be a finite field. Let o and v be two integers and set n = o+ v. Patarin
suggested to choose o = v. The original scheme was broken by Kipnis and Shamir
in [16], and it was recommended in [15] to choose v > o (Unbalanced Oil and
Vinegar (UOV)). Next we describe the idea of the UOV scheme.

The UOV scheme is a single field construction, so we work solely in the
polynomial ring K[X ], where X = {x1, . . . , xn}. We divide the variable set
X into two sets: vinegar variables (xi)i∈V , V = {1, . . . , v} and oil variables
(xi)i∈O, O = {v + 1, . . . , n}. Here |V | = v, |O| = o and v + o = n. We define o
quadratic polynomials qk(X) = qk(x1, . . . , xn) by

qk(X) =
∑

i∈V, j∈O

α
(k)
ij xixj +

∑

i,j∈V, i≤j

β
(k)
ij xixj +

∑

i∈V ∪O

γ
(k)
i xi + η(k), k = 1, . . . , o

(1)
Note that oil and vinegar variables are not fully mixed, just like oil and vinegar
in a salad dressing.

The map Q = (q1(X), . . . , qo(X)) can be easily inverted. First, we choose
the values of the v vinegar variables x1, . . . , xv at random. Therewith we get a
system of o linear equations in the o variables xv+1, . . . , xn which can be solved
by Gaussian elimination. If the system does not have a solution, choose other
values of x1, . . . , xv and try again.

The public key P of the UOV scheme consists of o quadratic polynomials in
n variables.

P = (p(1), . . . , p(o))

=

(
n∑

i=1

n∑

j=i

p
(1)
ij xixj +

n∑

i=1

p
(1)
i xi + p

(1)
0 , . . . ,

n∑

i=1

n∑

j=i

p
(o)
ij xixj +

n∑

i=1

p
(o)
i xi + p

(o)
0

)
(2)

After having chosen an ordering on monomials, we can write down the public
coefficients into an o × (n+1)·(n+2)

2 -matrix MP .



20 S. Bulygin, A. Petzoldt, and J. Buchmann

MP =

⎛

⎜⎜⎝

p
(1)
11 p

(1)
12 . . . p

(1)
nn p

(1)
1 . . . p

(1)
n p

(1)
0

...
...

p
(o)
11 p

(o)
12 . . . p

(o)
nn p

(o)
1 . . . p

(o)
n p

(o)
0

⎞

⎟⎟⎠ .

In the case of UOV, the public key is given as

P = Q ◦ T , (3)

with an affine invertible map T and the central map Q as defined in (1).

Remark 1. In contrast to other multivariate schemes the second affine map S is
not needed for the security of UOV and therefore is left out. So we indeed use
P = Q ◦ T and not P = S ◦ Q ◦ T .

Other than the attack on the balanced version [16] , there exists a number of
attacks on different parameter choices, see e.g. [4,2]. Essentially, the UOV scheme
remains unbroken. For example the parameter choice: v = 2o, o = 26 over the
field GF (28) is considered to be secure [2,4,7].

3 Inserting a Random Matrix in the UOV Public Key

Let q
(k)
ij be the coefficients of quadratic terms of the central map polynomials

from (1). Due to equations (2) and (3), we get the following equations for the
coefficients of the quadratic terms of the public key:

p
(r)
ij =

n∑

k=1

n∑

l=k

αij
kl · q

(r)
kl =

v∑

k=1

n∑

l=k

αij
kl · q

(r)
kl (1 ≤ i ≤ j ≤ n, r = 1, . . . , o) (4)

with

αij
kl =

{
tki · tli (i = j)
tki · tlj + tkj · tli (i �= j) (5)

Note that the right hand side of equation (4) only contains coefficients of the
quadratic terms of Q and coefficients of T and is linear in the former ones. The
second ”=” in equation (4) is due to the fact that all the qij (i, j ∈ O) are zero.

Denote D := v·(v+1)
2 + o · v. Let the monomials xixj , 1 ≤ i, j ≤ n be ordered

w.r.t the given degree monomial ordering 1. The given monomial ordering <ord

also induces an ordering on the set of pairs Pr = {(i, j)|1 ≤ i ≤ j ≤ n}, namely
(i′, j′) > (i′′, j′′) iff xi′xj′ >ord xi′′xj′′ .

We define Q to be the o × D matrix containing the non-zero coefficients of
the central polynomials with respect to the monomial ordering defined above.
1 In fact we do not need a monomial ordering as is used in computer algebra; we just

need some ordering of monomials. Still we prefer to work with monomial orderings
in this paper.
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Additionally, we define a D × D matrix A containing the coefficients of the
equations (4):

A =
(
αij

kl

)
,

where indices (k, l) are taken according to the monomial ordering as above and
1 ≤ i ≤ v, i ≤ j ≤ n. Thus equation (4) yields

M ′ = Q · A, (6)

where M ′ is a submatrix of MP composed of the first D columns.
In order to obtain a UOV scheme, we assign random values from K to the

coefficients of T . Then the entries of the matrix A can be computed by equation
(5). Equation (6) yields a linear relation between the coefficients of P and Q,
given T . To use this relation properly, we need the matrix A to be invertible.
Practically for large enough fields (e.g. K = GF (28)) this property is satisfied
in an overwhelming number of cases. Assuming A is invertible, we can prove the
following proposition:

Proposition 1. Given an o×D matrix B and an affine invertible map T such
that the corresponding matrix A is invertible, it is possible to construct a UOV
scheme with the secret key (Q, T ) and the public key P with MP = (B|C), where
C is a (o × ((n + 1)(n + 2)/2 − D))-matrix.

Proof. Under the assumption of A being invertible, equation (6) yields a bijection
between the entries of M ′ and the quadratic coefficients of Q. Therefore, if we
assign the entries of M ′ the values of the matrix B, we get a uniquely determined
quadratic part of the central map Q. Since the linear part and constant terms
of Q do not have any influence on the quadratic part of the public key, they can
be chosen arbitrarily.

4 Preparation

In this section we gather some points which are useful for understanding the
core part that follows.

We have already mentioned and will be mentioning the notion of a quadratic
system with a completely random quadratic part.

Definition 1. Let {f1, . . . , fm} be a set of quadratic polynomials from the poly-
nomial ring K[x1, . . . , xn], K a finite field, of the form fl =

∑
i<j aijxixj +∑

i bixi + cl, 1 ≤ l ≤ m. We say that the quadratic system f1 = · · · = fm = 0 has
a completely random quadratic part, if aij’s are chosen from K uniformly and
independently at random and bi’s and cl’s are arbitrary.

So in this sense, we require coefficients of quadratic monomials to be random
and we do not impose any restrictions on the affine part.
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All the following reasoning will be based on one assumption that appears
to be quite reasonable due to considerable empirical evidence gathered by the
community of polynomial system solving.

Assumption. Solving a random quadratic system with m equations and n vari-
ables is as hard as solving a quadratic system with m equations and n variables
with a completely random quadratic part.

This assumption deals mainly with Gröbner bases techniques and other general
techniques for polynomial system solving. Since these techniques are general, it
is quite plausible to assume that they are not able to catch any peculiarities that
may be present in an affine part, and thus the complexity is determined mainly
by the quadratic part. See more discussion on this issue after Corollary 1.

We will proceed as follows. First, by inserting a random matrix in the Macauley
matrix of the public key as in Section 3, we will show that solving the system
coming from the public key yields a solution to a certain system with a com-
pletely random quadratic part (Proposition 2). Still this is not enough, since
additional information about that system is known, which renders the problem
of finding a solution simple. Therefore, we modify a bit the key generation pro-
cedure to vaporize this additional information. Then in Theorem 1 we show that
solving the system coming from the public key yields a solution to a certain
system with a completely random quadratic part, where one has no additional
information about the system in the sense of the above assumption. Using the
assumption we conclude average hardness of direct solving the public system
and then derive some (although quite conservative) estimates on complexity.

Let us make a remark about “security reduction” we are doing here. It is not
a security reduction in a usual cryptographic sense. In particular, we do not have
any probabilistic models, advantages, etc. What we mean is that if one is able to
solve the public system, then one is able (given some values of the solution vec-
tor!) solve a system with a completely random quadratic part, which we assume
to be hard by the assumption we made here.

5 Security Reduction

Lemma 1. Let T be an invertible affine map which leads to an invertible trans-
formation matrix A. Then, every UOV-scheme that has the affine map T as a
part of the secret key can be obtained via the construction of Proposition 1.

Proof. Let (Q, T ) be a UOV scheme, such that T leads, via equation (5), to an
invertible transformation matrix A. Let Q be the o × D matrix containing the
non-zero quadratic coefficients of Q and L be the o× (n + 1)-matrix containing
its linear coefficients and constant terms. Let B be defined as B = Q · A. Since
A was assumed to be invertible, this is an 1:1 relation between the matrices
B and Q. We start with (B, T ) and follow the construction described in the
Proposition. If the linear and constant part is chosen to be L, we will end up
with the UOV scheme (Q, T ).
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In the classical UOV key generation we start with a random UOV central
map Q, random invertible affine T and then obtain a public key P , which can be
written with a matrix MP = (B|C). According to Lemma 1 we may equivalently
start with B, the same T and end up with the same Q up to linear terms, which
may be assigned arbitrarily. In this sense both constructions are equivalent. In
order to provide a security reduction we will need the latter construction.

Let (P ,Q, T ) be a UOV scheme obtained via Proposition 1. We impose the
following monomial ordering. Let Y, Z ⊂ X = {1, . . . , n} be two disjoint subsets
of X (note that X is now a set on indexes not to be confused with the variables
set in Section 2) such that X = Y ∪ Z. The sets Y and Z have cardinalities v
and o resp., so that o + v = n. The monomial ordering with x1 > · · · > xn is
then an ordering chosen in such a way that the following holds:

xixj > xkxl > xmxp > xu ∀i, j, k ∈ Y ∀l, m, p ∈ Z ∀u ∈ X. (7)

One example of such an ordering is a weighted-degree ordering where each vari-
able of Y has weight 3 and each variable of Z has weight 2. With this ordering
quadratic monomials composed of Y -variables will be the largest, then follow
“mixed” with variables from Y and Z, and finally those composed of Z-variables.
We will need this ordering later in the proof of Proposition 2, in the follow-up
procedure of the key generation, and in Theorem 1.

Now let P (x) be polynomials of the public key P . Let h be a hash value of
the given document. The task of an attacker that wants to attack UOV directly
is to find a solution of P (x) = h. Any solution to P (x) = h provides a valid
signature, therefore enables signature forgery.

Proposition 2. Let P (x) be polynomials of the public key P of a UOV scheme
that is constructed by choosing completely random B and T , following Propo-
sition 1, and using an ordering satisfying (7). If it is possible to get a solution
x′ = (x′

1, . . . , x
′
n) of P (x) = h, then it is possible to get a solution of a quadratic

system of o equations and v variables with a completely random quadratic part.

Proof. The public key P is represented by a matrix MP = (B|C), where the
columns are ordered according to the chosen ordering that satisfies (7). Due to
this ordering the public key polynomials may be written as

p(k) =
∑

i,j∈Y

a
(k)
ij xixj +

∑

i∈Y,j∈Z

b
(k)
ij xixj +

∑

i,j∈Z

c
(k)
ij xixj +

∑

i∈X

d
(k)
i xi + e(k), (8)

for k = 1, . . . , o. Again according to the monomial ordering we have chosen,
coefficients a

(k)
ij and b

(k)
ij are elements of the matrix B and therefore are chosen

completely at random. Now a solution x′ = (x′
1, . . . , x

′
n) may be seen as x′ =

((x′
i)i∈Y , (x′

j)j∈Z). Plug in values (x′
j)j∈Z for variables (xj)j∈Z in (8). Therewith

one obtains a quadratic system with o equations and v variables (xi)i∈Y of the
form

p̃(k) =
∑

i,j∈Y

a
(k)
ij xixj +

∑

i∈Y

d̃ij
(k)

xi + ẽ(k), k = 1, . . . , o.
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Note that coefficients a
(k)
ij are completely random and are taken from the initial

construction in (8). The system we need to solve is therefore

P̃ ((xi)i∈Y ) = h. (9)

So finding a solution x′ of P (x) = h provides a solution to (9), where P̃ has
completely random quadratic part.

Proposition 2 seemingly provides a reduction for the problem of direct solving
of P (x) = h to the problem of solving a quadratic system with a completely
random quadratic part. The way we presented the public key P this is not really
true. Indeed, if the attacker knows the variable sets Y and Z he may simply
fix the variables from Y ending up with a “non-random” system with variables
from Z. In fact, if we suppose that the coefficients c

(k)
ij are zero, then by fixing

Y -variables the attacker ends up with a linear system as is the case for UOV
maps. So the problem here is that having additional information about Y and
Z the system (9) is not as hard as it is supposed to be.

Note that when the attacker uses Gröbner methods for solving, he/she would
usually fix v variables first in order to end up with an o× o system. This is due
to the fact that a random quadratic system with o equations and v variables
over GF (q) is expected to have qv−o solutions. In order to be able to compute
a solution it is preferable to “cut down” the solution space. By assigning values
to some v − o variables, the system still has o equations, but o variables, and is
expected to have a unique solution, which is the found with Gröbner basis tech-
niques. The idea of our reduction is to disguise the monomial ordering that was
used and, in particular, the sets Y and Z. Below we show that after the process
of fixing the attacker, at least on average, is intrinsically faced with solving a
quadratic system which is at least as hard as a certain “random” one. For the
reduction we need the following key generation procedure:

Key generation procedure

1. Choose a o × D matrix B completely (and uniformly) at random.
2. Choose an affine map T at random. If it is not invertible, choose again.
3. Choose Y ⊂ X, |Y | = v at random. Set Z := X \ Y .
4. Use the construction of Proposition 1 with a monomial ordering satisfying

(7), obtain the central map Q and the matrix C. The secret key is (Q, T ).
5. Let M = (B|C) be a matrix with the columns indexed by monomials with

degree up to 2 ordered with the ordering chosen in the previous step. Let
M ′ be the matrix M whose columns are permuted according to the graded
lexicographic ordering. The public key is the set of polynomials with the
matrix MP = M ′.

Now the attacker observing the matrix MP does not know which monomial
ordering was used and what are the sets Y and Z. Therefore he is not able to
figure out where the random part

∑
i,j∈Y a

(k)
ij xixj is (see proof of Proposition 2).

Note also that except of a minor modification of the key generation procedure,
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the scheme stays essentially the same. In particular, one does not need to store
the set Y : after obtaining a key pair, signature generation and verification are
independent on a monomial ordering used.

Remark 2. A legitimate question here is whether an attacker observing the ma-
trix MP is able to figure out monomials xixj , i, j ∈ Z and therefore the sets Y
and Z. In principle, he must be able to do so, since the coefficients of mono-
mials xixj , i, j ∈ Z are not completely random, but obtained via the “reverse”
computation, after computing Q from B and T . It may be shown that the co-
efficients of the matrix C in the construction satisfy certain quadratic relations.
So, in principle, by choosing a subset S ⊂ X of cardinality o and checking if
coefficients xixj , i, j ∈ S satisfy these quadratic relations, it may be possible to
distinguish Z from other subsets of X . In order to do so one has to go through
all o-subsets of n and this has complexity dominated by O(

(
n
o

)
). It can be shown

to be worse than one can do with system solving, as we proceed below.
Moreover, in the monomial ordering as in the above construction, we may also

choose an arbitrary order of variables, unknown to the attacker. Then it is not
really clear for the attacker, how to apply the quadratic relations that exist for
the matrix C.

All in all, it seems that it is computationally impossible for the attacker to
figure out the partition of X into Y and Z. It is a future research point to confirm
this statement more rigorously.

The next theorem shows that the attacker applying the fixing+solving technique
has to face some random system, at least on average.

Theorem 1. Let v = αo, α ≥ 1. Let

P (x) = h (10)

be an o× (o+ v) system of public equations for a UOV scheme obtained with the
procedure above. Suppose that the system (10) is solved by first fixing v variables
(variables are chosen at random, as well as the values fixed) and then solving
the o × o system, which is obtained after plugging in the fixed values in (10).
Then solving (10) is on average at least as hard as solving an o× α

α+1o quadratic
system with a completely random quadratic part.

Proof. Let Y and Z be disjoint variable sets as in the construction. So the public
key is given by equations (8), where Y and Z are unknown to the attacker. The
attacker fixes v variables to concrete values. Since v = αo, we expect on average

α
α+1v variables to be fixed in Y and 1

α+1v in Z. So there remains a set YF ⊂ Y of
variables in Y that are not fixed, |YF | = v − α

α+1v = 1
α+1v = α

α+1o. Denote the
non-fixed variables in Z by ZF . After plugging in the fixed values the attacker
obtains a system

P̃ (xi|i ∈ YF ∪ ZF ) = h. (11)

Again note that the sets YF and ZF are not known to the attacker. Let x′ =
(x′

i|i ∈ YF ∪ ZF ) be a solution of (11). Suppose the attacker is given the values
of x′

i, i ∈ ZF . After plugging in these values in (11) he/she obtains a system
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˜̃P (xi|i ∈ YF ) = h (12)

with a completely random quadratic part (all quadratic terms in (8) are “killed”
except the ones with i, j ∈ YF ). The system (12) has o equations and |YF | = α

α+1o
variables. Since the values x′

i, i ∈ ZF were given to the attacker, the actual
solving of (11) is at least as hard as solving (12).

The corollary below specifies the above theorem to the choice of α that is used
in the UOV to avoid the structural attack of [15].

Corollary 1. If v = 2o, then the quadratic system with a completely random
quadratic part from Theorem 1 has o equations and 2

3o variables. In other words,
the ratio #eqs/#vars = 3/2 in this case.

Let us discuss the above results. It may seem surprising that we have such a
reduction to a hard problem, considering that the legitimate signer is able to get
the solution x′. The catch here is that the system (12) is not completely random,
only its quadratic part is. So it is not surprising that the signer, knowing the
decomposition P = Q ◦ T is able to get a solution which also yields a solution
to (12). Similarly, the attacker, who via some structural attack is able to get the
decomposition P = Q ◦ T or an equivalent one, is also able to solve (12). If we
consider only direct attacks, though, the situation is different. There is a quite
strong experimental evidence that the complexity of solving a non-linear sys-
tem is determined by its homogeneous part of the highest degree, e.g. [14,4]. In
particular, in [3] an affine sequence of polynomials is defined to be semi-regular
(practically speaking random) if its homogeneous part of the highest degree is
semi-regular. Complexity estimates in [3] rely on the domination of the homo-
geneous highest degree part. If we take this domination assumption, we may
state that from the point of view of Gröbner basis algorithms (in particular F5
[12]) complexity of solving (12) and a completely random quadratic system of o
equations in α

α+1o variables is roughly the same. Figuratively speaking, Gröbner
basis algorithms are not able to see peculiarities that are hidden in the linear
part of (12). The above reasoning is compliant with the assumption we made in
Section 4.

In [14] J.-C. Faugère and L. Perret discuss security of the UOV scheme under
direct attacks. In particular, they apply their implementation of the F5 algorithm
to solve UOV systems with o = 16 and v = 16, 32 over GF (24). Based on their
experimental data, they conclude in particular: “These experiments suggest that
the systems obtained when mounting a specify2+solve signature forgery attack
against UOV behave like semi-regular systems”. It is now clear why they came
to such a conclusion: they intrinsically face solving a “random” system (12). In
fact as we have seen in the proof of Theorem 1 a system the attacker faces is a
o × o system (11), which is (much) harder than (12). We made a reduction to
(12) to use a “random” quadratic system as a “provably secure” anchor. Also
the following known observation is noticeable. We see from Theorem 1 that the

2 We called it “fix”.
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larger α is, the more variables we expect in an “underlying” random system
(and the number of equations stays the same). Therefore, as α (and thus v)
increases, we expect this system to be “more random” and thus harder to solve.
This is confirmed in [2], where the authors say “From experiments, we could con-
clude that the time complexity increases exponentially with increasing v. This
fact can be understood intuitively by the observation that for increasing v, the
scheme becomes more random, which makes it more difficult to solve.”. Theo-
rem 1 provides a theoretical explanation of this intuition. Note that although
we are mentioning some previously known work here, clearly the key generation
construction from Section 4 was not used there. Still, due to Lemma 1 the usual
key generation and the modified one yield essentially the same result. Therefore,
the reduction results naturally explain the older experimental results.

As a result, we have a theoretical argument for security of the UOV schemes
under direct attacks. Note that such security is not that common for MPKCs.
Many proposals may actually be broken already by direct attacks: Matsumoto-
Imai, some instances of HFE [13], MQQ scheme [18], and many others. Some
others although not broken by direct methods, show their distinction from ran-
dom systems. In particular, solving succeeds at degrees lower than one would
expect from a random system.

6 Expected Lower Bounds on Direct Attacks Complexity

In this section we present lower bounds of attacker’s complexity, when using
direct solving methods. These lower bounds are based on average hardness the
attacker has to face as is described in Theorem 1 and Corollary 1. In order to pro-
vide concrete formulas for lower bounds we use complexity estimates for the F5
algorithm that exist for semi-regular sequences [3]. These complexity estimates
are also in accordance with the assumption we made in the previous section.
Similar complexity estimates exist for the XL algorithm, see [27].

In order to formalize the notion of a random system, the notion of a
(semi-)regular system was introduced in [3]. The definition of a semi-regular
system is as follows.

Definition 2 ([3]). Let f1, . . . , fm ∈ K[X ] be a sequence of homogeneous poly-
nomials. This sequence of polynomials is semi-regular if

- 〈f1, . . . , fm〉 �= K[X ],
- for all 1 ≤ i≤m and g ∈ K[X ] : deg(g ·fi)<dreg and g ·fi ∈ 〈f1, . . . , fi−1〉 ⇒

g ∈ 〈f1, . . . , fi−1〉.

Here dreg is the degree of regularity defined in [3] and it determines the degree
at which a Gröbner basis algorithm like F5 terminates.

The definition above is for homogeneous systems only. A sequence f1, . . . , fm

of affine polynomials is called semi-regular if the sequence fh
1 , . . . , fh

m is semi-
regular, where fh

i is the homogeneous part of fi of the highest degree.
Further, there is a result saying what is the asymptotic complexity of solving

a semi-regular system.
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Proposition 3 ([3]). Let f1, . . . , fm be an affine semi-regular sequence. Then
the total number of arithmetic operations in K performed by the F5 algorithm
is bounded by

O
(
m · dh

reg

(
n + dh

reg − 1
dh

reg

))ω

.

Here dh
reg is the degree of regularity of the corresponding homogeneous semi-

regular sequence, and ω is the exponent of linear algebra elimination procedure,
2 < ω ≤ 3.

For our results we also need explicit formulas for the degree of regularity that
plays a role in the proposition above. Namely, the following result from [3] is of
interest.

Theorem 2 ([3]). With the notation as above, let m = kn, k is a constant
k > 1. Then the degree of regularity of a homogeneous quadratic semi-regular
sequence in m polynomials and n variables behaves asymptotically like:

dreg = (k − 1
2
−
√

k(k − 1))n + O(n1/3), n → ∞.

Note that the above results are asymptotic. Therefore, one has to be careful
when applying these to concrete instances. Now having all this machinery we
may state the main result of this section.

Theorem 3. We use the same notation as in previous sections. Let v = αo, α ≥
1 and o is large enough. Let (10) be an o× (o+ v) system of public equations for
a UOV scheme obtained with the procedure of Section 3. Suppose that the system
(10) is solved by first fixing v variables and then solving the o × o system with
the F5 algorithm, which is obtained after plugging in the fixed values in (10).
The complexity of this approach is lower bounded by

O
(
o2 · DR(α) ·

( α
α+1o + DR(α)o − 1

DR(α)o

)ω)
, (13)

where

DR(α) =
(
1 − α

2(α + 1)
− 1√

α + 1

)
.

Proof. Due to Theorem 1 complexity of solving (10) is bounded from below by
complexity of solving a o × α

α+1o affine quadratic semi-regular system. Now the
result is obtained by setting n = α

α+1o, m = o, k = α+1
α in Theorem 2.

The above lower bound is dominated by the binomial coefficient. The following
result gives a simplified lower bound on the logarithm of complexity necessary
for the direct attack
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Proposition 4. Using notation as above, if we denote by Compl the lower
bound on complexity as in Theorem 3, then for large enough o we have

log Compl ≥ ω · 3α + 2 − 2
√

α + 1
2(α + 1)

· H
( α + 2 − 2

√
α + 1

3α + 2 − 2
√

α + 1

)
· o,

where log is the binary logarithm and H(x) = −x log x− (1−x) log(1−x) is the
binary entropy function.

Proof. Let us rewrite the binomial coefficient in (13) in terms of o and α:

( α
α+1o + DR(α)o − 1

DR(α)o

)ω

=
(3α+2−2

√
α+1

2(α+1) o

α+2−2
√

α+1
2(α+1) o

)ω

.

Using Stirling’s approximation for large n and 0 < λ < 1: log
(

n
λn

)
≈ nH(λ) and

the fact that (13) is dominated by the binomial coefficient, we have the result
by a direct computation.

The following corollary shows the above results specified for the case α = 2.

Corollary 2. Using the notation above and assuming α = 2 we have that com-
plexity of direct F5-approach is lower bounded by

O
(
o2 · 2 −

√
3

3
·
( 4−√

3
3 o

2−√
3

3 o

)ω)
,

The lower bound on the logarithm of complexity is

log Comp ≥ ω · 4 −
√

3
3

· H
(2 −

√
3

4 −
√

3

)
· o ≈ 0.4 ω · o. (14)

In practice the lower bound (14) is pretty bad: by setting ω = 3 one needs to have
o around 70 to guarantee the security level of 80 bits. So for practical security
tighter bounds are needed.

Remark 3. The main reason why our lower bound is so bad is the use of the
oracle in the proof of Theorem 1. This oracle gives an attacker on average the
values of o

α+1 variables and therefore makes the system much easier to solve.

Note that we assumed that the attacker in the direct attack proceeds by first
fixing v variables to concrete values and then solving an o × o system. Here we
implicitly assumed that the attacker solves this o × o system “directly”. There
are other possibilities. For example, it has been shown to be a good practice
(especially when the underlying coefficient field is not too large) first to guess at
a couple of variables and then proceed with solving, e.g. with a Gröbner basis
algorithm. Recent results, also in context of the UOV, on a “hybrid” approach [4]
indicate that one may actually improve a bit on the complexity estimates above3.
3 In the sense that the attack is more efficient
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Still, we believe that the complexity estimates above grasp the essence of the
problem, namely that on average one deals with an exponential-time algorithm.
Therefore, we do not use the improved strategies here to derive more accurate
lower bounds. Potentially, one may even try to proceed without the initial fixing
of v variables. This may be possible if one uses e.g. a SAT-solver approach, see
e.g. [1]. By this approach we do not need to cut down our variety to make things
work; a SAT-algorithm is able to find one solution of a system directly. SAT-
solvers may be quite efficient for sparse systems over GF (2). Note that here we
are dealing with larger fields, rather than GF (2), and there methods of SAT-
solving are not so well understood. Moreover, complexity of such algorithms is
hard to estimate due to rich heuristics employed there. Therefore, we do not
attempt to include analysis based on SAT-solver in this paper.

7 Conclusion and Future Work

In this paper we presented a theoretical reasoning on why breaking UOV systems
directly is on average at least as hard as solving quadratic systems with a random
quadratic part. This reasoning is based on the assumption that the complexity
of solving an affine system is determined by its homogeneous part of the highest
degree, which we believe to be a very plausible assumption. It would be interesting
to test this assumption further, e.g. by using the mutant concept, [19].

As an immediate future work we see investigating the question whether similar
results may be obtained for other trapdoors, e.g. Rainbow [9] and enSTS [24]. A far
more reaching question for the UOV systems would be to see under which assump-
tions (if any) finding a decomposition of the form P = Q ◦ T can be reduced to
some problem that is believed to be hard. Existence of an efficient decomposition
finding for the balanced variant makes funding such a reduction a very challenging
task. Moreover, it is of interest to develop a more formal approach which would
enable security reduction in a classical cryptographic sense.
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