Introduction to Automatic Differentiation

Johannes Willkomm

PLEIAD Seminar, Universidad de Chile
27 Nov. 2009
Santiago de Chile
Outline of the talk

• Automatic Differentiation (AD)
 – Definition by example
 – Forward and reverse mode
 – Scalar and vector mode

• AD implementation
 – Source transformation and operator overloading
 – Reverse mode example
 – Tools

• Alternatives to AD
 – Divided differences, Complex-Variable method
 – Symbolic and manual differentiation

• Summary
• **Automatic or Algorithmic Differentiation (AD)**
 - Given a numeric program, that implements function F
 - AD creates a new program that computes F', the first order derivative of F
 - And sometimes also the higher order derivatives F'', F''', F^{IV}, etc.
• Consider the beam of a lighthouse rotating with angular velocity ω as it runs along a quay with slope γ at distance v, as a function of time t.

\[
y = \gamma x
\]
Lighthouse example

- The coordinates of the point where the light hits the quay are given by
 \[x = \frac{v \tan(\omega t)}{\gamma - \tan(\omega t)} \]
 \[y = \frac{\gamma v \tan(\omega t)}{\gamma - \tan(\omega t)} \]

- A program implementing this function
 \[v_1 = \omega \times t; \]
 \[v_2 = \tan(v_1); \]
 \[v_3 = \gamma - v_2; \]
 \[v_4 = v \times v_2; \]
 \[x = v_4 / v_3; \]
 \[y = \gamma \times x; \]
• Program code can be mechanically differentiated

 - Differentiate each statement and insert it before the original statement

 \[
 \begin{align*}
 v_1 &= \omega \times t; \quad \Rightarrow \quad \delta v_1 &= \delta \omega \times t + \omega \times \delta t; \\
 v_2 &= \tan(v_1); \quad \Rightarrow \quad \delta v_2 &= \delta v_1 / \cos^2(v_1); \\
 v_3 &= \gamma - v_2; \quad \Rightarrow \quad \delta v_3 &= \delta \gamma - \delta v_2; \\
 v_4 &= \nu \times v_2; \quad \Rightarrow \quad \delta v_4 &= \delta \nu \times v_2 + \nu \times \delta v_2; \\
 x &= v_4 / v_3; \quad \Rightarrow \quad \delta x &= \delta v_4 / v_3 + v_4 \delta v_3 / v_3^2; \\
 y &= \gamma \times x; \quad \Rightarrow \quad \delta y &= \delta \gamma \times x + \gamma \times \delta x;
 \end{align*}
\]
• The AD code has new input and output variables
 \(\delta t, \delta \gamma, \delta \nu, \text{ and } \delta \omega \) are new inputs
 \(\delta x, \delta y \) are new results

• The user must set the input derivatives
 – \(\delta t = \frac{dt}{dp}, \delta \gamma = \frac{d\gamma}{dp}, \delta \nu = \frac{d\nu}{dp}, \text{ and } \delta \omega = \frac{d\omega}{dp} \),
 where \(p \) is the parameter to differentiate to

• Examples:
 – Setting \(\delta t = 1, \delta \gamma = 0, \delta \nu = 0, \text{ and } \delta \omega = 0 \), the AD code computes \(\frac{dx}{dt} \) and \(\frac{dy}{dt} \)
 – Setting \(\delta t = 0, \delta \gamma = 1, \delta \nu = 0, \text{ and } \delta \omega = 0 \), the AD code computes \(\frac{dx}{d\gamma} \) and \(\frac{dy}{d\gamma} \), etc.

• To get all eight derivatives, the code must be run four times: this is the scalar forward mode
We can also transform the derivative variables into vectors

- Using 4-vectors we can compute all derivatives at once

Example

- Set $\delta t = [1,0,0,0]$, $\delta \gamma = [0,1,0,0]$, $\delta \nu = [0,0,1,0]$, and $\delta \omega = [0,0,0,1]$
- As the result we obtain the full Jacobian matrix $J = DF$

$$
\delta x = \begin{bmatrix}
\frac{dx}{dt} & \frac{dx}{d\gamma} & \frac{dx}{d\nu} & \frac{dx}{d\omega}
\end{bmatrix}
$$

$$
\delta y = \begin{bmatrix}
\frac{dy}{dt} & \frac{dy}{d\gamma} & \frac{dy}{d\nu} & \frac{dy}{d\omega}
\end{bmatrix}
$$
Formalize forward AD

- To differentiate a program
 - Create new variable δv for each program variable v
 - Differentiate each statement and insert it before the original statement
 - Each δv holds the derivative dv/dp of v w.r.t. the input parameter p

$$z = f(u, v, w); \quad \delta z = \frac{\partial f}{\partial u} \delta u + \frac{\partial f}{\partial v} \delta v + \frac{\partial f}{\partial w} \delta w;$$
Reverse mode AD

- AD is also possible by running the program backwards
- For each statement we propagate the derivative of the LHS to the derivatives of the variables on the RHS
 - Create the so-called adjoint statements

\[
\delta u = \delta u + \frac{\partial f}{\partial u} \delta z; \\
\delta v = \delta u + \frac{\partial f}{\partial v} \delta z; \\
\delta w = \delta u + \frac{\partial f}{\partial w} \delta z;
\]
Reverse mode AD

- **Forward sweep**
 - The program is executed, saving all variable values

- **Initialize adjoints**
 - Initialize all derivative variables δv to zero

- **Return sweep**
 - Execute the adjoint statements in reverse order
 - Now, at any one time, δv contains the adjoint df/dv of v
Lighthouse in reverse

- Run code
- Zero adjoints
- Run adjoint code

\[
\begin{align*}
\delta x & += \gamma \ast \delta y; \\
\delta \gamma & += x \ast \delta y; \\
\delta t & = 0; \\
\delta v_4 & += \delta x / v_3; \\
\delta v_3 & += -v_4 / v_3^2 \ast \delta x; \\
\delta v_2 & += v_2 \delta v_4; \\
\delta v_1 & = 0; \\
\delta v_2 & += \nu \delta v_4; \\
\delta v_3 & += 0; \\
\delta v_2 & += -\delta v_3; \\
\delta v_1 & += \delta v_2 / \cos^2(v_1); \\
\delta \omega & += t \ast \delta v_1; \\
\delta t & += \omega \ast \delta v_1; \\
\end{align*}
\]

\[
\begin{align*}
v_1 & = \omega \ast t; \\
v_2 & = \tan(v_1); \\
v_3 & = \gamma - v_2; \\
v_4 & = \nu \ast v_2; \\
x & = v_4 / v_3; \\
y & = \gamma \ast x;
\end{align*}
\]
Running reverse mode AD code

- The adjoint code has new in- and outputs
 - $\delta x, \delta y$ are new inputs
 - $\delta t, \delta \gamma, \delta \nu, \text{ and } \delta \omega$ are new results
- Values for δx and δy are supplied by the user
 - $\delta x = \frac{dx}{dr}$ and $\delta y = \frac{dy}{dr}$ where r is the result to differentiate
- Example
 - Setting $\delta x = 1$ and $\delta y = 0$, the code computes $\frac{dx}{dt}$, $\frac{dx}{dy}$, $\frac{dx}{dv}$, and $\frac{dx}{d\omega}$
 - Setting $\delta x = 0$ and $\delta y = 1$, the code computes $\frac{dy}{dt}$, $\frac{dy}{dy}$, $\frac{dy}{dv}$, and $\frac{dy}{d\omega}$
- To get all eight derivatives, the code must be run twice, or with 2-vectors as input adjoints
First order AD in general

- Given a function
 \[y = F(x), \quad F : \mathbb{R}^n \rightarrow \mathbb{R}^m \]
 - First order AD computes the Jacobian
 \[J = DF \in \mathbb{R}^{m \times n} \]
 - Or products thereof

- AD in forward mode
 \[J \cdot S, \quad S \in \mathbb{R}^{n \times p} \]
 - Computes Jacobian times vector or Jacobian time matrix products

- AD in reverse mode
 \[S \cdot J, \quad S \in \mathbb{R}^{p \times m} \]
 - Computes vector times Jacobian or matrix times Jacobian products
AD complexity

- The time complexity depends on the number of rows or columns in S and the runtime T_F of F
 - Computing J has $T_F O(m)$ in RM and $T_F O(n)$ in FM
 - The c in O is $3 < c < 50$, depending on tool & strategy

\[
S \in \mathbb{R}^{p \times m} \quad J \in \mathbb{R}^{m \times n} \quad J \in \mathbb{R}^{m \times n} \quad S \in \mathbb{R}^{n \times p}
\]

- Space complexity is $O(T_F)$ in RM!
• Source transformation
 – New program text is generated
 – Higher order derivatives often not directly supported, but by repeatedly applying the tool

• Operator Overloading
 – Numeric data type (\texttt{double}) is replaced by new type
 – Tapeless: Derivatives are stored inside the active variables and updated on the fly
 • Forward mode only
 – With Taping: Computations are first recorded on a so-called Tape, which is then read (forwards or backwards) to compute the derivatives
 – Higher order derivatives are not much more difficult to implement than first order
• Compute polynomial of order n

$$F(x, c) = \prod_{i=0}^{n} c_i x^i$$

• A C-style implementation in MATLAB
 - If x, c_i are all scalars that could also be a one-liner

```matlab
function r = polynom(x, c)
    r = 0;
    powX = 1;
    for i = 1:length(c)
        r = r + c(i) .* powX;
        powX = powX .* x;
    end
end
```
function \([a_x\ a_c\ nr_r] = a_polynom(x, c, a_r)\)
\[
tmpc1 = 0; \\
r = 0; \\
powX = 1; \\
tmpfl = length(c); \\
for i=1 : tmpfl \\
push(tmpc1); \\
tmpc1 = c(i) .* powX; \\
push(r); \\
r = r + tmpc1; \\
push(powX); \\
powX = powX .* x; \\
end \\
push(tmpfl); \\
r_r = r;
\]

- **Forward sweep**
 - Run (canonicalized) code
 - Save all values overwritten
 - Save control flow

\[
[a_powX\ a_tmpc1] = a_zeros(powX, tmpc1); \\
[a_x\ a_c] = a_zeros(x, c); \\
if nargin < 3 \\
[a_r] = a_zeros(r); \\
end \\
[tmpfl] = pop; \\
for i=flip1r(1 : tmpfl) \\
 [powX] = pop; \\
 a_x = a_x + adjred(x, powX .* a_powX); \\
 a_powX = adjred(powX, a_powX .* x); \\
 [r] = pop; \\
 a_tmpc1 = a_tmpc1 + adjred(tmpc1, a_r); \\
 a_r = adjred(r, a_r); \\
 [tmpc1] = pop; \\
 a_c(i) = a_c(i) + adjred(c(i), a_tmpc1 .* powX); \\
 a_powX = a_powX + adjred(powX, c(i) .* a_tmpc1); \\
 [a_tmpc1] = a_zeros(tmpc1); \\
end
\]

- **Return sweep**
 - Zero adjoints
 - Run backwards
 - Compute adjoints
<table>
<thead>
<tr>
<th>Tool</th>
<th>Language</th>
<th>FM</th>
<th>RM</th>
<th>ST</th>
<th>OO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADOL-C</td>
<td>C/C++</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>CppAD</td>
<td>C/C++</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>ADiFor</td>
<td>Fortran 77</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Tapenade</td>
<td>Fortran 77,</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fortran 90/95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADiMat</td>
<td>Matlab</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>MAD</td>
<td>Matlab</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ADiCape</td>
<td>CapeML</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
Alternative ways to compute derivatives

- **Divided differences**
 - Very inaccurate
 - Difficult to find the right value for h
 - Only function F is required
 - Only Jv with complexity $O(n)$

$$\frac{df}{dx_i} \approx \frac{f(x + he_i) - f(x - he_i)}{2h}$$

- **Complex variable method**
 - Program needs to be changed similar to AD with OO
 - Derivatives are exact, if h is just small enough
 - Need to provide new operations $>$, $<$, abs
 - Only Jv with complexity $O(n)$

$$\frac{df}{dx_k} = \Im \{f(x + hie_k)\}$$
• The CV-Method is more precise
 – Usually up to machine precision
• And it is safer to use
 – Just set h to a very small value, e.g. $h = 10^{-60}$
Alternative ways to compute derivatives

• Symbolic differentiation
 – May be difficult to write a whole program as one expression
 – Large derivative expressions with lots of repeated subexpressions
 – Often very large runtimes
 • Especially for higher order derivatives
 • Differentiation has to be done only once however

• Manual differentiation
 – Usually efficient derivative code
 – Often tedious and error-prone, especially when F is changed
 – Discretization of F and F' has to be taken into account
• Let F be defined by a PDE
 – Usually implemented by discretization
 – e.g. using the Finite Element Method

• Derivative F' often by discretizing the adjoint PDE
 – The discretization introduces errors in both F and F''
 – AD of the discretized F differentiates through the discretization errors of F
• Solving Inverse Heat Conduction Problem with Conjugate-Gradient optimization using both AD gradient and gradient obtained from adjoint PDE
 – The objective function J drops faster with AD
 – “faster” means fewer number of iterations here

![Graph showing the objective function J dropping with iterations n.]
• **AD advantages**
 - AD can provide derivatives of that are efficient, precise, and reliable
 - AD is often easy to apply

• **AD disadvantages**
 - AD tools can be difficult to use and may lack support for language elements and/or higher order derivatives
 - Applying the reverse mode of AD needs special measures to cope with the memory requirements
 - Possible, but not discussed here

• When you need derivatives you should use AD
• You should consult with an AD expert
"Evaluating Derivatives", 2nd edition
Andreas Griewank & Andrea Walther
SIAM, Philadelphia 2008