Die Rolle des Prostaglandin-Signalweges
im Rahmen der Nephrogenese
bei der Maus

Vom Fachbereich Biologie der
Technische Universität Darmstadt

zur Erlangung des akademischen Grades eines
Doctor rerum naturalium
genehmigte
Dissertation von

Dipl. Biol. Stefanie Frölich
aus Frankfurt am Main

1. Referent: Prof. Dr. Rolf M. Nüsing
2. Referent: Prof. Dr. Ralf A. W. Galuske
3. Referent: Prof. Dr. Paul Layer

Tag der Einreichung: 25.05.2012

Darmstadt 2013
D17
Die vorliegende Arbeit wurde am Uniklinikum Frankfurt
im Institut der Klinischen Pharmakologie
im Pharmazentrum Frankfurt
unter der Betreuung von
Herrn Prof. Dr. Dr. Rolf M. Nüsing angefertigt.

Teile der Arbeit wurden eingereicht bzw. publiziert bei:

Frölich S, Jensen B, Nüsing RM. Role of renin-angiotensin-aldosteron system in COX dependent nephrogenesis; **in preparation.**
Ehrenwörtliche Erklärung

Darmstadt, Mai 2012

Vorname Nachname
Inhaltsverzeichnis

1 Einleitung .. 1
 1.1 Die Niere .. 1
 1.1.1 Das Nephron .. 1
 1.2 Grundzüge der Nephrogenese .. 2
 1.3 Cyclooxygenasen .. 6
 1.4 Prostaglandine .. 8
 1.4.1 Prostaglandine in der Niere ... 11
 1.5 Cyclooxygenase-Knockout-Mäuse .. 13
 1.6 Renin-Angiotensin-Aldosteron-System ... 15
 1.6.1 Cyclooxygenasen und die Regulation von Renin .. 18
 1.7 Fragestellungen .. 19

2 Material und Methoden .. 20
 2.1 Materialien ... 20
 2.1.1 Geräte ... 20
 2.1.2 Chemikalien .. 21
 2.1.3 Verbrauchsstoffe .. 21
 2.1.4 Puffer und Lösungen ... 22
 2.1.5 Untersuchte Substanzen ... 24
 2.1.6 Oligonukleotide .. 25
 2.1.7 Versuchstiere ... 26
 2.1.8 Software ... 27
 2.2 Methoden ... 27
 2.2.1 Tierversuche ... 27
 2.2.2 Molekularbiologische Methoden .. 32
 2.2.3 Biochemische Methoden .. 35
 2.2.4 COX-Aktivitäts Test .. 37
 2.2.5 Messung der Plasma-Reninkonzentration ... 38
 2.2.6 Statistik ... 38

3 Ergebnisse ... 39
 3.1 COX-2⁺-Mäuse .. 39
 3.2 COX-Aktivität .. 41
 3.3 PGE₂-Synthasen Expression .. 42
 3.3.1 mPGES-1 ... 42
 3.3.1 mPGES-2 ... 43
 3.3.1 cPGES .. 43
 3.4 Selektiver COX-2-Inhibitor SC-236 .. 47
 3.4.1 Bindegewebsfärbung mit Sirius Red ... 53
 3.4.1 PGE₂ Konzentration im Urin ... 56
 3.4.2 Makrophagen ... 56
 3.4.3 PCNA (Proliferating-Cell-Nuclear-Antigen) ... 57
 3.5 COX-1-Knockout und SC-236 Behandlung .. 59
 3.6 Selektiver COX-1-Inhibitor SC-560 .. 62
 3.7 Dexamethason .. 64
 3.8 mPGES-1 Knockout-Mäuse .. 67
 3.9 Prostanoidrezeptor Knockout-Mäuse ... 69
 3.10 EP2-Rezeptor Blockade in EP4⁺-Mäusen ... 72
 3.11 Renin-Angiotensin-Aldosteron-System ... 75
 3.11.1 Reninaktivität im Blutplasma ... 76
Inhaltsverzeichnis

3.11.2 Telmisartan (AT₁-Rezeptor Antagonist) ... 77
3.11.3 PD123319 (AT₂-Rezeptor Antagonist) ... 84
3.11.4 Spironolacton (Aldosteron-Antagonist) ... 86

3.12 NaCl .. 89
 3.12.1 PGE₂-Konzentration im Urin ... 93

3.13 Furosemid .. 95
 3.13.1 PGE₂-Konzentration im Urin ... 98

3.14 Furosemid und SC-236 ... 99
 3.14.1 PGE₂-Konzentration im Urin ... 101

4 Diskussion ... 104
 4.1 Mögliche Signaltransduktionsprozesse während der Nephrogenese 105
 4.2 Cyclooxygenasen .. 106
 4.3 PGE₂-Synthasen .. 110
 4.4 Dexamethason .. 111
 4.5 Prostanoidrezeptor Knockout-Mäuse ... 113
 4.6 Renin-Angiotensin-Aldosteron-System .. 114
 4.7 Salz und Furosemid .. 117

5 Zusammenfassung .. 119

6 Literaturverzeichnis .. 120

Danksagung .. 128

Curriculum Vitae .. 129
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Erklärung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Ampere</td>
</tr>
<tr>
<td>AA</td>
<td>Arachidonsäure</td>
</tr>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>ACE</td>
<td>Angiotensin converting enzyme</td>
</tr>
<tr>
<td>AMP</td>
<td>Adenosin-Monophosphat</td>
</tr>
<tr>
<td>APS</td>
<td>Ammoniumpersulfat</td>
</tr>
<tr>
<td>AT II</td>
<td>Angiotensin II</td>
</tr>
<tr>
<td>AT₁ bzw. AT₂</td>
<td>Angiotensin II-Rezeptor, Subtyp 1 bzw. 2</td>
</tr>
<tr>
<td>BCA</td>
<td>bicinchoninic acid</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumin</td>
</tr>
<tr>
<td>°C</td>
<td>Grad Celsius</td>
</tr>
<tr>
<td>cAMP</td>
<td>cyclic-AMP (cyclisches-AMP)</td>
</tr>
<tr>
<td>cDNA</td>
<td>copy-DNA</td>
</tr>
<tr>
<td>Cl⁻</td>
<td>Chlorid</td>
</tr>
<tr>
<td>COX</td>
<td>Cyclooxygenase</td>
</tr>
<tr>
<td>Cₜ</td>
<td>Cycle threshold</td>
</tr>
<tr>
<td>Da</td>
<td>Dalton</td>
</tr>
<tr>
<td>DEPC</td>
<td>Diethylpyrocarbonat</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxid</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonucleinsäure</td>
</tr>
<tr>
<td>DP</td>
<td>Prostaglandin DP-Rezeptor</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylendiamintetraessigsäure</td>
</tr>
<tr>
<td>ENaC</td>
<td>epitheliale Na-channel</td>
</tr>
<tr>
<td>EP1-4</td>
<td>Prostaglandin E₂-Rezeptor, Subtyp 1-4</td>
</tr>
<tr>
<td>EtOH</td>
<td>Ethanol</td>
</tr>
<tr>
<td>FP</td>
<td>Prostaglandin F₂-Rezeptor</td>
</tr>
<tr>
<td>g</td>
<td>Erdbeschleunigung, (g = 9,81 \text{ m/ sec}^2)</td>
</tr>
<tr>
<td>HCl</td>
<td>Salzsäure</td>
</tr>
<tr>
<td>JG</td>
<td>juxtaglomerulär</td>
</tr>
<tr>
<td>KCl</td>
<td>Kaliumchlorid</td>
</tr>
<tr>
<td>i.p.</td>
<td>intra peritoneal</td>
</tr>
<tr>
<td>IP</td>
<td>Prostacyclin-Rezeptor</td>
</tr>
<tr>
<td>M</td>
<td>Molarität</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger-RNA (Boten-RNA)</td>
</tr>
<tr>
<td>H₂O</td>
<td>deionisiertes Wasser (Milli-Q mittels Reinstwasser)</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Begriff</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>Na⁺</td>
<td>Natrium</td>
</tr>
<tr>
<td>NaCl</td>
<td>Natriumchlorid</td>
</tr>
<tr>
<td>NKCC2</td>
<td>Na-K-2Cl Cotransporter (Natrium-Kalium-2Chlorid Kotransporter)</td>
</tr>
<tr>
<td>NSAID</td>
<td>Non-steroidal anti-inflammatory drug</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffered Saline</td>
</tr>
<tr>
<td>PCNA</td>
<td>Proliferating cell Nuclear Antigen</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction (Polymerase-Kettenreaktion)</td>
</tr>
<tr>
<td>PGE₂</td>
<td>Prostaglandin E2</td>
</tr>
<tr>
<td>PGH₂</td>
<td>Prostaglandin H2</td>
</tr>
<tr>
<td>RAAS</td>
<td>Renin-Angiotensin-Aldosteron-System</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleinsäure</td>
</tr>
<tr>
<td>RT</td>
<td>reverse Transkription</td>
</tr>
<tr>
<td>s.c.</td>
<td>sub cutan</td>
</tr>
<tr>
<td>SDS</td>
<td>sodiumdodecylsulfate</td>
</tr>
<tr>
<td>SEM</td>
<td>Standardfehler des Mittelwertes (Standard Error of the Mean)</td>
</tr>
<tr>
<td>SSW</td>
<td>Schwangerschaftswoche</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris-Eisessig-EDTA</td>
</tr>
<tr>
<td>TAL</td>
<td>thick ascending loop of Henle (dicker aufsteigender Ast der Henle Schleife)</td>
</tr>
<tr>
<td>TEMED</td>
<td>Tetramethylethylendiamin</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris(hydroxymethyl)-aminomethan</td>
</tr>
<tr>
<td>U</td>
<td>Unit (Einheit)</td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
</tr>
</tbody>
</table>
1 Einleitung

1.1 Die Niere

Abb. 1: Schematischer Längsschnitt durch die menschliche Niere
(Quelle: http://www.jameda.de/gesundheits-lexikon/niere/)

1.1.1 Das Nephron

Abb. 2: Schematische Darstellung eines funktionalen Nephrons
Das Nephron ist die kleinste funktionelle Einheit der Niere. Es besteht aus der Bowman-Kapsel, die den Glomerulus umgibt, dem proximalen und distalen Tubulus der Henle-Schleife und dem Sammelrohr, das von mehreren Nephronen geteilt wird. (Quelle: Campbell, 1997)

1.2 Grundzüge der Nephrogenese

Die frühe Nierenentwicklung

Hierbei dient der durch das metanephrogene Blastem freigesetzte Botenstoff GDNF (Glial Cell Line-Derived Neurotrophic Factor), durch seine Bindung an den RET-Rezeptor im Wolfferschen-Gang als Induktionssignal zur Ausbildung der Ureterknospe (Hellmich et al., 1996). In der Folge bildet sich induziert vom metanephrogenem Blastem durch Wachstum und dichotome Verzweigungsmorphogenese (siehe Abb. 3 A und B) der Ureterknospe das Sammelrohrsyste der Niere. Parallel hierzu entwickeln sich aus dem metanephrogenen Mesenchym die Nephrone. Durch die Induktion der Ureterknospe unterzieht sich das metanephrogene Mesenchym hierbei einer Reihe von morphogenetischen Vorkommnissen, wodurch das locker angelegte Mesenchym in ein Epithel konvertiert wird (= mesenchymale – epitheliale Transformation), das sich insbesondere durch die apiko-basolaterale Polarisierung auszeichnet. Dabei entwickeln sich, am Ende der 6. SSW aus dem kappenartig verdichteten metanephrogenen Blastem (Kappenmesenchym) durch Proliferation und Abschnürungen renale Vesikel im Nierencortex (s. Abb. 3 B). Der nicht kondensierte Anteil des Mesenchym bildet das interstitielle Stroma. Durch longitudinales Wachstum der...

Die Differenzierung der Nephrone erfolgt in der Nierenrinde von außen nach innen (Nierenrinde zum Nierenmark). Das bedeutet, dass die ausdifferenzierten Nephrone weiter innen im medullären Bereich zu liegen kommen und die sich noch proliferierenden Blastemanteile außen in der Nierenrinde befinden.

Wachstumsfaktoren

Für eine korrekte Nierenentwicklung ist die Positionierung der Ureterknospe entscheidend. Sie erfolgt durch das RET/GDNF/GFRα1-System (Dressler, 2006). Da c-ret zum Auswachsen und zur Proliferation der Ureterknospe benötigt wird, wird der Tyrosinkinase-Rezeptor RET im Wolfferschen Gang der Maus als erstes von E8 bis E11,5 und dann noch mal von E13,5 bis E17,5 exprimiert (Horster et al., 1999). Das dazugehörige Signalmolekül GDNF wird nur im metanephrogenen Blastem exprimiert. c-ret selbst wird nur in der Ureterknospe exprimiert. Es ist demnach nicht verwunderlich, dass Studien an RET^{−/−}-Mäusen kein Auswachsen der Ureterknospe zeigen (Schuchardt et al., 1994) und die Tiere somit auch keine Nieren ausbilden. Positive Regulatoren dieses Systems sind unter anderem EYA-1 und SIX-1, die in mutierter Form beim Menschen das BOR-Syndrom auslösen können (Ruf et al., 2004), das mit unterschiedlich ausgeprägten Nierenfehlbildungen einhergeht.

Weitere wichtige Rollen spricht man zum Beispiel den Transkriptionsfaktoren Wt-1, GATA-3 und Pax-2 oder dem sezernierten Signalstoff Wnt-4 (Stark et al., 1994) zu, die in der Niere zu unterschiedlichen Zeitpunkten exprimiert werden.

Der Transkriptionsfaktor Wt-1 ist unter anderem dafür erforderlich, damit das Mesenchym kompetent wird und auf die Induktion durch die Ureterknospe reagieren kann. Veränderungen im WT1-Gen stehen mit dem Wilms-Tumor im Zusammenhang, der besonders im Kindesalter auftritt (Davies et al., 1999). Die Expression von RET entlang des Wolfferschen Gangs wird von GATA-3 reguliert. Eine Mutation des GATA-3-Gens kann

1.3 Cyclooxygenasen

Die Cyclooxygenase (COX) ist ein membranständiges Enzym ohne transmembrane Domänen. Es ist das limitierende Enzym bei der Prostaglandinsynthese. Die Umwandlung von Arachidonsäure (AA) in PGH₂ besteht aus zwei verschiedenen Reaktionen. Zunächst wird AA durch die COX zu Prostaglandinendoperoxid (PGG₂) oxygenuert, welches anschließend durch die Peroxidase-Aktivität der COX zu PGH₂ reduziert wird (Garavito et al., 2002).

In der Niere wird die COX-1 am stärksten im Sammelrohr exprimiert, in geringen Mengen auch in den interstitiellen Zellen, in glomerulären mesengialen Zellen und in den Endothelzellen der Arteriolen (Harris et al., 1994; Yang et al., 1998). COX-2 ist dagegen in der Niere überwiegend in den medullären interstitiellen Zellen und im Cortex im dicken aufsteigenden Ast der Henle-Schleife sowie in Zellen der Macula Densa exprimiert (s. Abb. 4) (Guan et al., 1997; Hao et al., 1999; Harris et al., 1994). Die Expression von COX-2 kann in diesen Zellen durch verschiedene Arten von Stress induziert werden.

Abb. 4: RNA-Nachweis und Lokalisation von COX-1 (blau) und COX-2 (grün) im Nephron; (Vitzthum et al., 2002).

1.4 Prostaglandine

PGH₂ kann durch bislang drei verschiedene bekannte Enzyme zu Prostaglandin E₂ (PGE₂) synthetisiert werden (Murakami et al., 2002). Die zytosolische PGE₂-Synthase (cPGES) ist funktionell meist an COX-1 gekoppelt und ebenso konstitutiv exprimiert (Tanioka et al., 2000). Zur PGE₂-Synthese benötigt sie Glutathion. Die zweite PGE₂-Synthase ist die mikrosomale PGE₂-Synthase-1 (mPGES-1). Sie ist meist an die COX-2 gekoppelt und ist ebenso induzierbar (Thoren et al., 2003). Die mikrosomale PGE₂-Synthase-2 (mPGES-2) wird konstitutiv exprimiert und ist vermutlich funktionell an beide COX-Isoformen gekoppelt.
(Murakami et al., 2003). Neben PGE\(_2\) können noch weitere Prostanoide durch ihre jeweiligen gewebespezifischen Synthasen wie Prostaglandin D\(_2\) (PGD\(_2\)), Prostaglandin F\(_2\) (PGF\(_2\)), Prostacyclin (PGI\(_2\)) und Thromboxane (TXA\(_2\), TXB\(_2\)) gebildet werden (Coleman et al., 1989; Kennedy et al., 1982).

Die Prostanoide vermitteln ihre Wirkung über G-Protein gekoppelte Rezeptoren vom Rhodopsintyp mit sieben transmembranen Domänen (Narumiya and FitzGerald, 2001; Narumiya et al., 1999; Ushikubi et al., 1995). Jedes natürlich vorkommende Prostaglandin besitzt mindestens einen spezifischen Receptor (s. Abb. 5).

Abb. 5: Prostanoid-Synthese; (Dey et al., 2006)

<table>
<thead>
<tr>
<th>Rezeptor</th>
<th>Signalweg</th>
<th>Liganden</th>
<th>Effekte</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP</td>
<td>cAMP↑</td>
<td>PGD</td>
<td>Vasodilatation, Hemmung der Thrombozytenaggregation, Erschaffung der glatten Muskulatur von Gastrointestinaltrakt und Uterus</td>
</tr>
<tr>
<td>EP1</td>
<td>IP3↑</td>
<td>PGE, PGF</td>
<td>Kontraktion der glatten Muskulatur von Bronchien und Gastrointestinaltrakt</td>
</tr>
<tr>
<td>EP2</td>
<td>cAMP↑</td>
<td>PGE</td>
<td>Erschaffung der glatten Muskulatur von Bronchien, Gastrointestinaltrakt und Gefäßen, Blutdrucksenkung</td>
</tr>
<tr>
<td>EP3</td>
<td>cAMP↓</td>
<td>PGE</td>
<td>Hemmung der Säuresekretion des Magens, verstärkte Uteruskontraktionen in der Schwangerschaft, Hemmung der Lipolyse und Neurotransmitterfreisetzung</td>
</tr>
<tr>
<td>EP4</td>
<td>cAMP↑</td>
<td></td>
<td>Vermehrte Schleimsekretion des Magens, Offenhaltung des Ductus arteriosus Botalli</td>
</tr>
<tr>
<td>FP</td>
<td>IP3↑</td>
<td>PGF</td>
<td>Uteruskontraktionen</td>
</tr>
<tr>
<td>IP</td>
<td>cAMP↑</td>
<td>PGI</td>
<td>Vasodilatation, Hemmung der Thrombozytenaggregation, der Reninfreisetzung und Natriuresis</td>
</tr>
<tr>
<td>TP</td>
<td>IP3↑</td>
<td>TXA, PGD</td>
<td>Thrombozytenaggregation, Vasokonstruktion, Bronchokonstruktion</td>
</tr>
</tbody>
</table>

Abb. 6: Prostanoid-Rezeptoren und ihre Effekte (Mutschler, 2001)

Der EP3-Rezeptor ist in vielen verschiedenen Geweben exprimiert, darunter zählen Niere, Uterus, Nebennieren und Magen. Er signalisiert über die Inhibition der intrazellulären cAMP-
Einleitung

1.4.1 Prostaglandine in der Niere

Eine Defizienz des EP4-Rezeptors zeigt in Mäusen jedoch keinen spezifischen renalen Phänotyp (Fleming et al., 1998; Ushikubi et al., 1998), was vermuten lässt, dass die fehlende Funktion von einem anderen Receptor, wie zum Beispiel dem EP2-Rezeptor, kompensiert wird (Breyer and Breyer, 2001). Die Expression des EP4-Rezeptors ist in der Niere hauptsächlich in den Glomeruli (Jensen et al., 2001; Narumiya, 1994), aber auch im distalen Tubulus und im Sammelrohr nachzuweisen (Breyer and Breyer, 2000a). Die renale Funktion des EP4-Rezeptors ist jedoch noch nicht abschließend geklärt (Breyer et al., 1996a; Breyer et al., 1996b; Sugimoto et al., 1994). Doch lässt die Expression im Glomerulus vermuten, dass er an der renalen Hämodynamik und der Reninfreisetzung beteiligt ist (Jensen et al.,

Abb. 7: Lokalisation der Prostaglandin-Rezeptoren in der Niere

PCT: proximaler cortikaler Tubulus; PST: gerader Teil des proximalen Tubulus; cTAL: cortikaler Teil des dicken aszendierenden Schenkel der Henle-Schleife; mTAL: medullärer Teil des dicken aszendierenden Schenkel der Henle-Schleife; CCD: cortikales Sammelrohr; MCD: medulläres Sammelrohr; Quelle: aus Breyer and Breyer, 2001

Auch die Prostanoidrezeptoren TP, FP und DP werden in der Niere exprimiert, über deren renale Funktion ist aber bisher nur wenig bekannt.

Aus all diesen Untersuchungen ist letztendlich jedoch noch nicht bekannt, welche Prostaglandine bei der Nierenentwicklung eine zentrale Rolle spielen. Denkbar wären neben dem PGE₂ auch das Thromboxan oder das Prostacyclin.

1.5 Cyclooxygenase-Knockout-Mäuse

Durch den genetischen Knockout der beiden COX-Enzyme, in Mäusen, konnten deren biologische Mechanismen näher untersucht werden.

Einleitung

Kömhoff et al. (2000) konnten ebenfalls zeigen, dass durch die Gabe eines COX-2-Inhibitors vom Tag der Geburt an bis zum postnatalen Tag 21 ein vergleichbarer Phänotyp in der Niere

1.6 Renin-Angiotensin-Aldosteron-System

Durch das überwiegend in der Lunge vorkommende Angiotensin-Converting-Enzym (ACE) wird ANG I in seine aktive Form, dem Oktapeptid Angiotensin II (ANG II), hydrolysiert. ANG II ist einer der stärksten Vasokonstriktoren und zusätzlich in der Lage, aus der Nebennierenrinde das Hormon Aldosteron freizusetzen. Aldosteron fördert im Bereich des distalen Tubulus die Rückresorption von Na⁺ und H₂O und erhöht dadurch das Blutvolumen. ANG II kann über zwei verschiedene 7-transmembrane G-Protein gekoppelte Rezeptoren, dem AT₁- und AT₂-Rezeptor, signalisieren (Timmermans et al., 1993). Eine Aktivierung des AT₁-Rezeptors bewirkt vorwiegend eine Stimulation der Phospholipase C (PLC), die über die Synthese von Inositol-1,4,5-trisphosphat (IP₃) die Freisetzung von intrazellulärem Calcium fördert. Eine weitere Möglichkeit ist eine Stimulation der Phospholipase D (PLD) und
Einleitung

Abb. 8: Renin-Angiotensin-Aldosteron-System

Knockout	Phänotyp
AT₁A⁻ Knockout | Reduktion des systolischen Blutdruckes und minimaler Blutdruckanstieg auf Angiotensin II (Ito et al., 1995; Oliverio et al., 1997) gering ausgeprägte pränatale Letalität und renale Entwicklungs- defekte (Oliverio et al., 1998)
AT₁B⁻ Knockout | keine Entwicklungsdefekte und normale Blutdruckregulation (Chen et al. 1997)
AT₁A₁B⁻ Knockout | postnatale Letalität mit renalen und kardialen Entwicklungsdefekten und fehlende Blutdruckantwort auf Angiotensin II (Oliverio et al., 1998; Tsuchida et al., 1998)
AT₂⁻ Knockout | verstärkte Blutdruckantwort auf Angiotensin II-Infusionen bei normalen (Hein et al., 1995) bzw. erhöhten (Ichiki et al., 1995) basalen Blutdruckwerten

Tabelle 1: Transgene Maus-Modelle von Angiotensin II AT-Rezeptoren

1.6.1 Cyclooxygenasen und die Regulation von Renin

Einleitung

1.7 Fragestellungen

2 Material und Methoden

2.1 Materialien

2.1.1 Geräte

<table>
<thead>
<tr>
<th>Geräte</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>7500 Fast Real-time PCR System</td>
<td>Applied Biosystems, Darmstadt (D)</td>
</tr>
<tr>
<td>Accu-Jet, Pipettierhilfe</td>
<td>Brand, Wertheim (D)</td>
</tr>
<tr>
<td>Brutschrank</td>
<td>Heraeus, Hanau (D)</td>
</tr>
<tr>
<td>Deckgläser:</td>
<td>Waldemar Knittel GmbH, Braunschweig (D)</td>
</tr>
<tr>
<td>Feinwaage</td>
<td>Sartorius, Göttingen (D)</td>
</tr>
<tr>
<td>Finnpipette Digital</td>
<td>Thermo, Langenselbold (D)</td>
</tr>
<tr>
<td>Laborzentrifuge 5415R</td>
<td>Eppendorf, Hamburg (D)</td>
</tr>
<tr>
<td>Lichtmikroskop</td>
<td>Nikon GmbH, Düsseldorf (D)</td>
</tr>
<tr>
<td>Mastercycler TGradient</td>
<td>Biometra, Göttingen (D)</td>
</tr>
<tr>
<td>Magnetrührer</td>
<td>Heidolph Instruments, Schwabach (D)</td>
</tr>
<tr>
<td>MicroAmp Fast Optical 96-well</td>
<td>Applied Biosystems, Darmstadt (D)</td>
</tr>
<tr>
<td>Mikrotom:</td>
<td>Rotationsmikrotom RM2135, Leica</td>
</tr>
<tr>
<td>Mikrotomklingen:</td>
<td>Instruments, Nussloch</td>
</tr>
<tr>
<td>Mini-PROTEAN® Tetra Cell</td>
<td>Histoknife H, Heraeus-Kulzer; Werheim/Ts. (D)</td>
</tr>
<tr>
<td>Mini-Transblot-Cell</td>
<td>Bio Rad Laboratories GmbH, München (D)</td>
</tr>
<tr>
<td>Multipette</td>
<td>Bio Rad Laboratories GmbH, München (D)</td>
</tr>
<tr>
<td>Nano-Drop ND-1000</td>
<td>Eppendorf, Hamburg (D)</td>
</tr>
<tr>
<td>Objektträger:</td>
<td>Super Frost, Menzel GmbH&Co KG, Braunschweig (D)</td>
</tr>
<tr>
<td>Orion AplusTM pH Meter</td>
<td>Thermo Fischer Scientific, Oberhausen (D)</td>
</tr>
<tr>
<td>Ofen</td>
<td>Hybaid, Teddington (UK)</td>
</tr>
<tr>
<td>Photomikroskop:</td>
<td>Axioskop, Zeiss (Oberkochen)</td>
</tr>
<tr>
<td>Pipetten, diverse Größen</td>
<td>Gilson, Middleton, WI (USA)</td>
</tr>
<tr>
<td>PowerPac Basic</td>
<td>Bio Rad Laboratories GmbH, München (D)</td>
</tr>
<tr>
<td>Polytron PT 1200</td>
<td>Kinematica AG; Luzern (CH)</td>
</tr>
<tr>
<td>Präparationsbesteck:</td>
<td>Aesculap, Tuttlingen; (D)</td>
</tr>
<tr>
<td>Sonifier S-250</td>
<td>BRANSON, Danbury, CT (USA)</td>
</tr>
</tbody>
</table>
Material und Methoden

2.1.2 Chemikalien

Alle Chemikalien wurden, wenn nicht anders angegeben, im analytischen Reinheitsgrad von den Firmen Merck (Darmstadt), Invitrogen (Karlsruhe), Biorad (München), Roche (Mannheim), Amersham Pharmacia (Freiburg) oder Sigma-Aldrich (Deisenhofen) bezogen. Organische Lösungsmittel stammten von Carl Roth GmbH (Karlsruhe) und Merck (Darmstadt).

2.1.3 Verbrauchsstoffe

Blotting Papier
EDTA-Mikroprobengefäßer
Einbettkassetten
Kanülen, 0,3 x 12 mm
Nitrocellulosemembran
PCR-Gefäße (0,2 ml)
Pipettenspitzen, diverse Größen
Reagiergefäße (1,5 ml /2 ml)
Zentrifugenröhrchen (15 ml / 50 ml)
2.1.3.1 Reaktionskits

Absolute QPCR ROX Mix
ABgene, Surrey (UK)

Absolute QPCR SYBR Mix
ABgene, Hamburg (D)

BCA Protein Assay Kit
Thermo Scientific, Langenselbold (D)

ECL Detection System
GE Healthcare, Freiburg (D)

RNeasy-Kit
Qiagen, Hilden (D)

Prostaglandin E₂ EIA Kit -
Cayman Chemical, Ann Arbor, MI (USA)

Monoclonal

VECTASTAIN Elite ABC Kit
Vector Laboratories, Burlingame, CA (USA)

2.1.3.2 Antikörper

Antikörper für Immunhistochemie:

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Verdünnung</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCNA</td>
<td>1 : 50</td>
<td>Santa Cruz, Santa Cruz, CA (USA)</td>
</tr>
<tr>
<td>F4-80</td>
<td>1 : 50</td>
<td>Santa Cruz, Santa Cruz, CA (USA)</td>
</tr>
</tbody>
</table>

Antikörper Western Blot:

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Verdünnung</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>mPGES-1</td>
<td>1 : 5000</td>
<td>AgriSera, Vännäs (S)</td>
</tr>
<tr>
<td>mPGES-2</td>
<td>1 : 2000</td>
<td>Cayman Chemical, Ann Arbor (USA)</td>
</tr>
<tr>
<td>cPGES</td>
<td>1 : 50</td>
<td>Cayman Chemical, Ann Arbor (USA)</td>
</tr>
</tbody>
</table>

2.1.3.3 Größen- und Molekulargewichtsstandards

DNA-Ladder Mix
Peqlab, Erlangen (D)

Precision Plus ProteinTM Standards
Bio Rad Laboratories GmbH, München (D)

2.1.4 Puffer und Lösungen

Alle Puffer und Lösungen wurden mit gefiltertem Reinstwasser (Milli-Q Advantage A10 Ultrapure Water, Fa. Millipore), im Folgenden als H₂O bezeichnet, hergestellt.

Blocklösung für WB: 5 % Milchpulver angesetzt in PBS

Ethidiumbromidlösung: 0,5 mg/l in H₂O
Eosin: 1: 100 in H₂O verdünnen
2 Tropfen Essigsäure

Gewebepuffer: 50 mM Tris pH 7,5
1 mM Phenol
Proteasecocktail

Gewebelysepuffer (SDS-PAGE): 50 mM Tris pH 7,5
0,1 % Triton X
Proteasecocktail

Ladepuffer für Agarosegele: 0,25 % Bromphenolblau
0,25 % Xylenacyanol FF
15 % Ficoll (Typ 400) in TE-Puffer gelöst

WB-Lysepuffer: 50 mM Tris pH 7,8
0,1 % Triton-X-100
Proteinase Inhibitor Set I
40 % Glycerin
0,1 % Bromphenolblau

PBS (1x): 8 g/l NaCl
0,2 g/l KCl
1,77 g/l Na₂HPO₄·x2H₂O
0,25 g/l KH₂PO₄ in H₂O
pH auf 7,4 einstellen

PBST: in PBS 0,1 % Tween20 lösen

Schwanz-Lyse-Puffer: 100 mM Tris-HCl (pH auf 8,5 einstellen);
5 mM EDTA
0,2 % SDS
200 mM NaCl

SDS-Probenpuffer (4-fach): 100 mM Tris pH 7,4
8 % SDS
10 % β-Mercaptoethanol
40 % Glycerin
0,1 % Bromphenolblau

SDS-Laufpuffer (10x): 25 mM Tris pH 8,3
200 mM Glyzin
0,1 % (w/v) SDS
Material und Methoden

Stripping Puffer: 100 mM NaOH
2 % SDS
0,5 % DTT

TAE-Puffer (50x): 2 M Tris
0,5 M EDTA pH 8
0,57 % Eisessig
pH auf 8,5 einstellen

TE-Puffer: 1 M Tris pH 8
0,5 M EDTA pH 8

TN-Puffer: 50 mM Tris pH 7,4
100 mM NaCl

TNT-Puffer: 0,1 % Tween 20 in TN- Puffer

(lower) Tris-Puffer 4x 1,5 M Tris, pH 8
(upper) Tris-Puffer 4x 0,5 M Tris, pH 6,8

Western Blot-Puffer: 50 mM Tris pH 8,3
190 mM Glyzin
20 % (v/v) Methanol

2.1.5 Untersuchte Substanzen

Verwendete Substanzen wurden in den angegebenen Lösemitteln gelöst und in den im Folgenden angegebenen Konzentrationen verabreicht.

<table>
<thead>
<tr>
<th>Wirkstoff</th>
<th>gelöst in</th>
<th>Konzentration [mg/kgKG/d]</th>
</tr>
</thead>
<tbody>
<tr>
<td>AH 6809</td>
<td>DMSO</td>
<td>8</td>
</tr>
<tr>
<td>Dexamethason</td>
<td>DMSO</td>
<td>0,1</td>
</tr>
<tr>
<td>PD123319</td>
<td>DMSO</td>
<td>10</td>
</tr>
<tr>
<td>SC-236</td>
<td>DMSO</td>
<td>10</td>
</tr>
<tr>
<td>SC-560</td>
<td>DMSO</td>
<td>10</td>
</tr>
<tr>
<td>Spironolacton</td>
<td>DMSO</td>
<td>10</td>
</tr>
<tr>
<td>Telmisartan</td>
<td>DMSO</td>
<td>0,25; 0,4; 0,5</td>
</tr>
<tr>
<td>Furosemide</td>
<td>H2O pH 8</td>
<td>10; 30</td>
</tr>
<tr>
<td>ONO-AE1-259-01</td>
<td>MetOH</td>
<td>0,2</td>
</tr>
<tr>
<td>ONO-AE1-329</td>
<td>MetOH</td>
<td>0,2</td>
</tr>
</tbody>
</table>
2.1.6 Oligonukleotide

<table>
<thead>
<tr>
<th>Primer</th>
<th>5'</th>
<th>Sequenz</th>
<th>3'</th>
</tr>
</thead>
<tbody>
<tr>
<td>mCOX1_for</td>
<td>5'</td>
<td>GTG GCT ATT TCC TGC AGC TC</td>
<td>- 3'</td>
</tr>
<tr>
<td>mCOX1_rev</td>
<td>5'</td>
<td>CAG TGC CTC AAC CCC ATA GT</td>
<td>- 3'</td>
</tr>
<tr>
<td>mCOX2_for</td>
<td>5'</td>
<td>CCC CCA CAG TCA AAG ACA CT</td>
<td>- 3'</td>
</tr>
<tr>
<td>mCOX2_rev</td>
<td>5'</td>
<td>CTC ATC ACC CCA CTC AGG AT</td>
<td>- 3'</td>
</tr>
<tr>
<td>mß-actin_for</td>
<td>5'</td>
<td>GCT ACA GCT TCA CCA CCA CA</td>
<td>- 3'</td>
</tr>
<tr>
<td>mß-actin_rev</td>
<td>5'</td>
<td>AAG GAA GGC TGG AAA AGA GC</td>
<td>- 3'</td>
</tr>
<tr>
<td>m-Renin_for</td>
<td>5'</td>
<td>ATG AAG GGG GTG TCT GTG GGG TC</td>
<td>- 3'</td>
</tr>
<tr>
<td>m-Renin_rev</td>
<td>5'</td>
<td>ATG TCG GGG AGG GTG GGC ACC TG</td>
<td>- 3'</td>
</tr>
<tr>
<td>RT-mPGES1_for</td>
<td>5'</td>
<td>ACA GGC CAG ATG AGG CTG GGG AA</td>
<td>- 3'</td>
</tr>
<tr>
<td>RT-mPGES1_rev</td>
<td>5'</td>
<td>TCT CCA TGT CGT TGC GGT GGG CT</td>
<td>- 3'</td>
</tr>
<tr>
<td>RT-mPGES2_for</td>
<td>5'</td>
<td>TTT GGG GCT GTG GAG GCT GCC AT</td>
<td>- 3'</td>
</tr>
<tr>
<td>RT-mPGES2_rev</td>
<td>5'</td>
<td>ACC CAC GGC TGT CAC CCA CTT GT</td>
<td>- 3'</td>
</tr>
<tr>
<td>RT-cPGES_for</td>
<td>5'</td>
<td>ATT TTG CTG CGT ACA CAG CCC CC</td>
<td>- 3'</td>
</tr>
<tr>
<td>RT-cPGES_rev</td>
<td>5'</td>
<td>TCG GCC TCG AGT CCC AGA ATG CAC</td>
<td>- 3'</td>
</tr>
</tbody>
</table>

Primer zur Genotypisierung:

<table>
<thead>
<tr>
<th>Primer</th>
<th>5'</th>
<th>Sequenz</th>
<th>3'</th>
</tr>
</thead>
<tbody>
<tr>
<td>COX1-Primer</td>
<td>Forward 5'</td>
<td>AGG AGA TGG CTG CTG AGT TGG</td>
<td>- 3'</td>
</tr>
<tr>
<td></td>
<td>Reverse 5'</td>
<td>AAT CTG CTT TCT GAG TTG CC</td>
<td>- 3'</td>
</tr>
<tr>
<td></td>
<td>Neo 5'</td>
<td>GCA GCC TCT GTT CCA CAT ACA C</td>
<td>- 3'</td>
</tr>
<tr>
<td>COX2-Primer</td>
<td>Forward 5'</td>
<td>ACA CAC TCT ATC ACT GGC ACC</td>
<td>- 3'</td>
</tr>
<tr>
<td></td>
<td>Reverse 5'</td>
<td>TCC CTTCAC TAA ATG CCC TC</td>
<td>- 3'</td>
</tr>
<tr>
<td>EP1-Primer</td>
<td>Forward 5'</td>
<td>GCG GAG AGT CCG GCT AGA GAA G</td>
<td>- 3'</td>
</tr>
<tr>
<td></td>
<td>Reverse 5'</td>
<td>TGA GCC TAG CGG ATG AGG CAG G</td>
<td>- 3'</td>
</tr>
<tr>
<td></td>
<td>Neo 5'</td>
<td>ATG ACA AGA CGC TGG GCG GGG T</td>
<td>- 3'</td>
</tr>
<tr>
<td>EP2-Primer</td>
<td>Forward 5'</td>
<td>CTG GCC ATT ATG ACC ACT ACC TTC GCC</td>
<td>- 3'</td>
</tr>
<tr>
<td></td>
<td>Reverse 5'</td>
<td>CTG AGC AAC ACC CAT GTT TCT ATC CTG G</td>
<td>- 3'</td>
</tr>
<tr>
<td>EP3-Primer</td>
<td>Forward 5'</td>
<td>TGC CGA ATA TCA TGG TGG AAA ATG GCC G</td>
<td>- 3'</td>
</tr>
<tr>
<td></td>
<td>Reverse 5'</td>
<td>AAA GTG ACT AGC ACC CAG ATATCC TGC C</td>
<td>- 3'</td>
</tr>
<tr>
<td></td>
<td>Neo 5'</td>
<td>GAG TCC TCC ACT TTG GTG TAC ACA GTA C</td>
<td>- 3'</td>
</tr>
</tbody>
</table>
Material und Methoden

2.1.7 Versuchstiere

Es wurden C57/BL6J Mäuse von der Firma Jackson Laboratories (USA) verwendet, die in der Tierhaltungsanlage des Universitätsklinikums Frankfurt weitergezüchtet wurden.

COX-1\(^{-}\)-Mäuse und COX-2\(^{-}\)-Mäuse wurden aus eigener Zucht verwendet. Zuchtpaare wurden freundlicherweise von Prof. Dr. Robert Langenbach (National Institute of Environmental Health Sciences/ NC, USA) zur Verfügung gestellt.

Prostanoid-Rezeptoren Knockout-Mäuse (EP1\(^{-}\), EP2\(^{-}\), EP3\(^{-}\), EP4\(^{-}\), DP1\(^{-}\), IP1\(^{-}\), FP1\(^{-}\) und TP1\(^{-}\)) entstammen der eigenen Zucht. Diese Mäuse wurden ursprünglich von der Arbeitsgruppe von Prof. Dr. Shuh Narumiya (Universität Kyoto/ Japan) (Hizaki et al., 1999; Kabashima et al., 2003; Matsuoka et al., 2000; Murata et al., 1997; Segi et al., 1998; Sugimoto et al., 1997; Ushikubi et al., 1998) generiert und unserer Arbeitsgruppe zur weiteren Zucht zur Verfügung gestellt.

Swiss Webster Mäuse (CFW) wurden von der Firma Charles River bezogen. Die mPGES-1\(^{-}\) Mäuse wurden freundlicherweise von der Arbeitsgruppe PD Dr. Klaus Scholich (Universität Frankfurt) zur Verfügung gestellt.

| Primer | Forward | Reverse | Neo |
|--------|---------|---------|-----|-----|
| EP4-Primer | 5´ - TCT ACT TGC TCC CAG TGG ACA TAC ATG G | 3´ | |
| IP-Primer | 5´ - GAA CAG ACT CCT GAA CTG GGT ATG GTT C | 3´ | |
| FP-Primer | 5´ - GCC CAT CCT TGG ACA CCG AGA TTA TC | 3´ | |
| TP-Primer | 5´ - ACT TTG TTG CAG ACA CCA CCT GTC | 3´ | |
| DP1-Primer | 5´ - TCG GTC TTT TAT GTG CTC GTG | 3´ | |
Material und Methoden

2.1.8 Software

- Prism 4: GraphPad Software, San Diego (CA; USA)
- QuanityOne®-Software: Biorad, München (D)
- Image J: Freeware (http://rsbweb.nih.gov/ij/)
- Office: Microsoft®
- SigmaPlot: Systat Software GmbH, San José (CA; USA)

2.2 Methoden

2.2.1 Tierversuche

Behandlung der Mäuse

Der Tag der Geburt wurde als postnataler Tag 0 (P0) definiert. Den neugeborenen Mäusen wurde ab dem postnatalen Tag 1 (P1) bis zum postnatalen Tag 7 (P7) die entsprechenden Substanzen subcutan (s.c.) in eine Hautfalte zwischen die Schulterblätter und danach ab dem postnatalen Tag 8 (P8) bis zum postnatalen Tag 20 (P20) intraperitoneal (i.p.) gespritzt.

Das zu injizierende Volumen wurde möglichst klein gehalten und dem Körpergewicht angepasst, um Volumeneffekte zu vermeiden. Die Volumina und Konzentrationen der entsprechenden Substanzen richtete sich nach aufgeführtem Schema (s. Tab. 2).

Alle verwendeten Substanzen wurden in DMSO gelöst und die Stammlösungen wurden immer frisch zu den jeweiligen Konzentrationen verdünnt. Die Injektion der Tiere erfolgte alle 24 h mittels einer Insulinspritze täglich gegen 12:00 Uhr.
Material und Methoden

<table>
<thead>
<tr>
<th>Tag</th>
<th>Gewicht [g]</th>
<th>Menge [µl]</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>P1</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>P2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>P3</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>P4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>P5</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>P6</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>P7</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>P8</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>P9</td>
<td>5</td>
<td>7,5</td>
</tr>
<tr>
<td>P10</td>
<td>5</td>
<td>7,5</td>
</tr>
<tr>
<td>P11</td>
<td>6</td>
<td>7,5</td>
</tr>
<tr>
<td>P12</td>
<td>6</td>
<td>7,5</td>
</tr>
<tr>
<td>P13</td>
<td>6</td>
<td>7,5</td>
</tr>
<tr>
<td>P14</td>
<td>6</td>
<td>7,5</td>
</tr>
<tr>
<td>P15</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>P16</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>P17</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>P18</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>P19</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>P20</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>P21</td>
<td>8</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabelle 2: Übersicht über Gewicht und gespritzte Volumina abhängig vom Alter der Mäuse

Gewinnung von Spontanurin

Zur Gewinnung von Spontanurin wurden die Mäuse täglich in der Hand aufgespannt und durch leichtes “Bauchkitzeln“ zur Blasenentleerung animiert. Der Urin wurde in einem 500 µl Eppendorf-Cup aufgefangen und sofort auf Eis gehalten. Gelagert wurden die Urine bei -80 °C.

Präparation der Mäuse

entblutete Herz entnommen. Die entnommenen Organe wurden gewogen und entsprechend fixiert.

Fixieren der Organe

Die entnommenen Nieren wurden sofort in der Mitte der Länge nach geteilt und je eine Hälfte der linken sowie rechten Niere wurde in 4 % Paraformaldehyd für 24 h fixiert. Die andere Hälfte der rechten Niere wurde in Carnoy’scher Lösung ebenfalls für 24 h fixiert. Die andere linke Hälfte wurde in flüssigem Stickstoff schockgefroren und anschließend bei -80 °C gelagert.

Die in 4 % Paraformaldehyd fixierten Nieren wurden am nächsten Tag in 70 % Ethanol umgesetzt. Die in Carnoy’scher Lösung fixierten Nieren wurden in 100 % Ethanol überführt.

Histologie

Die linken, in 4 % PFA fixierten Nierenhälften wurden durch eine aufsteigende Ethanolreihe (je 1 h 70 %, 80 %, 95 % und 100 % ETOH) und Xylol zunächst schrittweise dehydriert. Danach wurden die Nierenhälften in Einbettkassetten gegeben und in flüssigem Paraffin für weitere 2 h inkubiert. Anschließend wurden die Nierenhälften auf den Schnittflächen liegend in eine Gießvorrichtung platziert und diese in Paraffin eingebettet. Zur schnelleren Aushärtung wurden die Blöckchen auf Eis gegeben. Mit einem Rotationsmikrotom wurden 4 µm dicke Schnitte angefertigt. Die Schnitte wurden zum Strecken in ein 55 °C Wasserbad gegeben und anschließend auf Objekträger aufgezogen und zum Trocknen über Nacht in einen 37 °C Brutschrank gestellt.

Anschließend wurden die Paraffinschnitte durch Inkubation von je zweimal 5 min Xylol und 2 min Methanol entparaffiniert und durch das Überführen in Wasser wieder hydriert. Die Schnitte wurden schließlich in den jeweiligen Färbelösungen gefärbt.

Um glomeruläre Veränderungen des Nierengewebes beurteilen zu können, wurden Paraffinschnitte zur besseren Übersicht mittels Hämatoxilin und Eosin nach Mayer gefärbt (Lillie, 1965; Mayer, 1896). Bei der HE-Färbung werden die Zellkerne durch den basischen Farbstoff Hämatoxilin blau angefärbt und das Cytoplasma durch den sauren Farbstoff Eosin rot angefärbt. Zunächst wurden die Paraffinschnitte durch Inkubation von je zweimal 5 min Xylol und 2 min Methanol entparaffinisiert und wieder rehydriert durch Überführen in Wasser. Die gewässerten Schnitte wurden für 40 sec in Hämatoxylin inkubiert und danach für 2 min
Material und Methoden

unter fließendem Wasser gebläut. Anschließend wurden die Schnitte für 20 sec mit Eosin gegengefärbt und in einer aufsteigenden Ethanolreihe (je 1 min 70%, 80%, 90% und 100%) wieder dehydriert und in Xylol überführt. Die Schnitte wurden nun mittels Entellan blasenfrei und luftdicht unter Deckgläsern eingedeckt.

Die entparaffinierten Schnitte wurden für 60 min mit Sirius Red Lösung inkubiert und anschließend zweimal mit 0,01 N HCl gewaschen und in Leitungswasser gespült. Danach wurden die Schnitte durch eine aufsteigende Ethanol-Reihe und Xylol dehydriert, sowie luftblasenfrei und luftdicht mit Entellan unter Deckgläsern eingedeckt.

Immunhistologie

Hierzu wurden Paraffinschnitte verwendet, die, wie für die Histologie beschrieben, auf Objekträger gebracht und entparaffiniert wurden. Die Schnitte wurden mit kaltem Aceton (4 °C) fixiert und in Puffer transferiert. Falls erforderlich, wurden die Schnitte vorher zur Antigenfreilegung in einer Küvette mit 1:10 verdünnter DAKO Target Retrieval Solution für 20 min im Wasserbad gekocht.

Um endogene Substrate und Peroxidasen zu eliminieren, wurden die Schnitte zu Beginn mit 0,3 % H$_2$O$_2$ in 0,3%igem Serum für 5 min inkubiert und danach dreimal mit PBS gewaschen. Anschließend folgte für 20 min ein Blockierungsschritt mit 0,3 %igem Serum und für 30 min die Inkubation mit dem Erstantikörper. Es folgte nach dreimaligen Waschen mit PBS eine

Mikroskopie

Histomorphologische Auswertung

Folgende Parameter dienten der histomorphologischen Beschreibung der Nephrogenese:

- Durchmesser der Glomeruli
- cortikale Dicke (Abstand der Glomeruli zum cortikalen Rand)
- relative Häufigkeit der Glomeruli im Bereich von 78 µm
- relative Größenverteilung der Glomeruli
- Summe der Größenhäufigkeitsprodukte

gezählt und mit der Gesamtanzahl ins Verhältnis gesetzt. Zur statistischen Analyse der Glomeruliverteilung bzw. um die Unterschiede der Kurvenverschiebung zu verdeutlichen, wurden die Häufigkeiten der jeweiligen 2,5 µm Abschnitte mit der kleinsten Größe des Bereichs multipliziert und die erhaltenen Produkte aufsummiert (= Größenhäufigkeitsprodukte).

Abb. 9: Vermessen einer Kontrollniere
Hier ist beispielhaft das Vermessen des Glomerulusdurchmessers (⌀) und des zum jeweiligen Glomerulus dazugehörigen Abstands zur Rinde (Δ) an einer unbehandelten Kontrollniere gezeigt.

2.2.2 Molekularbiologische Methoden

Darunter fallen:

- Photometrische Bestimmung der DNA- oder RNA-Konzentration in Lösung
- Elektrophoretische Auftrennung von DNA (1 - 2 % Agarose-Minigele)
- Isolierung von Gesamt-RNA (RNeasy™-Kit, Qiagen)
- Polymerase-Kettenreaktion (PCR)
Genotypisierung der Mäuse

Zur Genotypisierung der Mäuse der verschiedenen Knockout-Stämme wurden den, von den Elterntieren am ca. 18. Tag abgesetzten Jungtieren, eine 1 - 2 mm lange Schwanzbiopsie entnommen. Zusätzlich bekamen sie eine Ohrmarke mit laufender Nummer.

Die Schwanzbiopsien wurden zur Auflösung des Gewebes mit 500 µl Tail-Lyse-Puffer und 5 µl Proteinase K versetzt und über Nacht bei 55 °C geschüttelt. Am nächsten Tag wurden die Proben bei 10.000 g für 10 min zentrifugiert, der Überstand abgenommen und in ein neues Cup mit 500 µl vorgelegtem Isopropanol überführt. Die so präzipitierte DNA konnte durch leichtes Invertieren der Cups sichtbar gemacht werden und wurde anschließend bei 10.000 g für 1 min präzipitiert. Das Pellet wurde mit 500 µl 70 % Ethanol gewaschen, erneut zentrifugiert und getrocknet. Zuletzt wurde das Pellet in 250 µl TE-Puffer aufgenommen und bei 55 °C für 2 h geschüttelt. Die DNA-Lösung konnte nun direkt für eine PCR-Analyse eingesetzt werden.

Isolierung von Gesamt-RNA aus Nierengewebe

Erststrangsynthese (RT-PCR)

Das Umschreiben von RNA in cDNA und die anschließende Amplifikation der cDNA wurde mittels einer Two-Step RT-PCR durchgeführt. Dies bedeutet, dass in einem ersten Schritt die cDNA synthetisiert wird, die dann als template für eine anschließende PCR eingesetzt wird. Die cDNA Synthese wurde mittels des Verso cDNA Kits von der Firma Thermo Scientific durchgeführt. In diesem Kit ist ein DNAse Verdau integriert. Als Primer wurde Oligo-dT verwendet. cDNA, die als Matrize für eine Real-time PCR dienen sollte, wurde mittels hexamerer Primer synthetisiert.
Quantitative Real-time PCR (qRT-PCR)

\[2^{-\Delta \Delta \text{Ct}} = \frac{2^{-\Delta \text{Ct1}}}{2^{-\Delta \text{Ct2}}} \]

\(\Delta \text{Ct1} \): Differenz der Ct-Werte von Referenz cDNA und internen Standard

\(\Delta \text{Ct2} \): Differenz der Ct-Werte von der zu bestimmenden cDNA und der internen Vergleichsgruppe

Die Messungen erfolgten in dreifacher Bestimmung. Als interner Standard diente die 18S-RNA oder GAPDH-RNA.

Die Reaktionen wurden in einer 96-well Platte in einem Gesamtvolumen von 10 µl/well durchgeführt. Es wurden 5 µl Sybr-Green Rox Mix und je 1 µl Primer gemischt und diese 7 µl in die wells vorgelegt. Anschließend wurden 2,5 µl H₂O mit 0,5 µl cDNA gemischt und zusammen in die wells gegeben. Die Platte wurde verschlossen, kurz abzentrifugiert und in das ABGene Gerät gestellt und das folgende Programm gestartet:
1. 15 min 95 °C
2. 15 sec 95 °C
3. 1 min 60 °C (die Schritte 2 und 3 wurden 40x wiederholt)

2.2.3 Biochemische Methoden

Proteinbestimmung

Der Bicinchoninsäure (BCA) Protein Assay (Pierce® BCA Protein Assay Kit, Thermo Scientific) beruht auf der Reduktion von Cu$^{2+}$ zu Cu$^{+}$ in einer alkalischen Lösung abhängig von der vorhandenen Proteinkonzentration. Cu$^{+}$ reagiert mit der Bicinchoninsäure zu einem violetten Reaktionsprodukt, dessen Absorptionsmaximum bei 562 nm liegt und photometrisch gemessen werden kann. Als Standard wurde Bovines Serum Albumin (BSA) verwendet.

SDS-Polyacrylamid-Gelelektrophorese (SDS-PAGE)

Bei der eindimensionalen SDS-PAGE werden Proteine ihrer molekularen Masse entsprechend aufgetrennt. SDS (sodium dodecyl sulfate) ist ein anionisches Detergenz, das die Eigenladung der Proteine effektiv überdeckt. Bei dem verwendeten diskontinuierlichen Verfahren nach Laemmli (Laemmli, 1970) werden die Proben zunächst in einem oberen Sammelgel mit großer Polyacrylamidporenweite auf eine schmale Bande konzentriert, um so eine gleichmäßige Auflösung zu erzielen (80 V bis zur Sammel-/Trenngelgrenze). Die Auftrennung erfolgte in einem sich anschließenden 15 %igem Trenngel, bis die Lauffront den unteren Gelrand erreicht hatte.

Zusammensetzung der Gele:

Sammelgel: 500 µl upper Tris (4x)
 250 µl Acrylamid (40 %)
 1,2 ml H$_2$O
 20 µl SDS (10 %)
 20 µl APS (10 %)
 2 µl TEMED
Trenngel (15 %ig):

- 2,5 ml lower Tris (4x)
- 5 ml Acrylamid (40 %)
- 2,4 ml H₂O
- 98,4 µl SDS (10 %)
- 49,2 µl APS (10 %)
- 4,92 µl TEMED

Die aufzutrennenden Proteine wurden mit 4-fachem Probenpuffer versetzt und bei 95 °C für 10 min denaturiert.

Zur Auftrennung der Proteine, entsprechend ihrer molekularen Masse, wurde das System von Biorad verwendet. Die Auftrennung erfolgte bei 100 V für etwa eine Stunde.

Western Blot

Im Western Blot Verfahren werden Proteine nach Auftrennung durch SDS-PAGE aus der Polyacrylamidmatrix auf eine Membran mittels Nass-Blotverfahrens transferiert und immobilisiert. Das hierbei entstandene Abbild der Gelelektrophorese ist einer weiteren Detektion mittels Immunodetektion zugänglich.

Das Gel wurde luftblasenfrei auf eine Nitrozellulosemembran gelegt und von beiden Seiten mit je einem in Transferpuffer äquilibrierten Whatman-Filterpapier und Schwämmchen in den Bloteinsatz geschichtet. Der Bloteinsatz wurde in die mit Transferpuffer gefüllte Elektrophoresekammer zusammen mit einem Eispack eingesetzt. Der Proteintransfer wurde für 1 h bei Raumtemperatur bei einer konstanten Spannung von 100 V oder bei 20 V über Nacht bei 4 °C durchgeführt.

Die Membran wurde nach dem Blotten kurz mit Ponceau S Lösung angefärbt und gleich wieder mit PBS entfärbt, um den Transfer der Proteine auf die Membran zu überprüfen. Anschließend wurden unspezifische Bindungen der Membran durch Inkubation mit 5 % Magermilchpulver in TN-Puffer für mindestens 1 h bei Raumtemperatur blockiert. Danach wurde die Membran dreimal für 5 min mit Waschpuffer gewaschen, der Primärrantikörper in 3 % Magermilchpulver TN-Puffer hinzugegeben und in Folie eingeschweißt. Die Inkubation mit dem primären Antikörper erfolgte über Nacht bei 4 °C auf einem Rotator. Die verwendeten Antikörperverdünnungen sind unter Punkt 2.1.3.2 aufgelistet. Am nächsten Tag wurden nicht bindende Antikörper durch dreimaliges Waschen in PBST entfernt. Anschließend wurde die Membran mit dem Sekundärantikörper in 5 % Milchpulver in PBS 1 h bei Raumtemperatur inkubiert. Nach erneutem dreimaligem Waschen mit TNT-Puffer
wurde die Membran kurz mit ECL-Plus-Reagenz (ECL-Plus-Detektions-Kit; GE Healthcare) überschichtet, dann in Frischhaltefolie eingeschlagen und in eine Entwicklungskassette gelegt. In der Dunkelkammer wurde für verschiedene Expositionszeiten (ca. 1 - 10 min) ein Fotofilm aufgelegt und anschließend entwickelt.

2.2.3.1 ELISA

PGE$_2$ ELISA

Kreatinin ELISA

2.2.4 COX-Aktivitäts Test

Die Nieren wurden gewogen und in 2 V eiskaltem Gewebepuffer mittels Ultraturax homogenisiert. Das Homogenat wurde anschließend beschallt und bei 3000 g und 4 °C für 15 min abzentrifugiert. Die Proteinkonzentration des Überstandes wurde bestimmt und die Lösung bei -80 °C aufbewahrt. Zur Aktivitätsbestimmung wurde in der folgenden Reaktion je 100 µg Protein eingesetzt.

Gewebepuffer und Protein und ggf. Inhibitoren wurden in einem Gesamtvolumen von 250 µl in ein vorbereitetes Cup vorgelegt. Die Proben mit den Inhibitoren wurden auf Eis 30 min inkubiert. Dann wurde der Ansatz für 2 min bei 37 °C warm gestellt und anschließend wurde die Reaktion durch die Zugabe von 50 µM Arachidonsäure (AA) gestartet und für 10 min bei
37 °C inkubiert. Die Reaktion wurde anschließend mit 50 µl 1 % Ameisensäure abgestoppt. Die Bestimmung der Prostaglandine erfolgte in unserem Institut mittels LC-MS/MS (Schmidt et al., 2005) und wurden freundlicherweise von Yannik Schreiber und Carlo Angioni durchgeführt.

2.2.5 Messung der Plasma-Reninkonzentration

2.2.6 Statistik