Abbildungsverzeichnis

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Unterkapitel</th>
<th>Bildbezeichnung</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Modell eines zukünftigen IC-Aufbaus</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>β-GaSe: schematisches Kristallmodell</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>GaSe Polytypen (schematisch)</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>GaSe Phasendiagramm</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>berechnete GaSe-Bandstruktur</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>GaSe, InSe: berechnete Zustandsdichte</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>Kristallstruktur Graphit (schematisch)</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td>Kristallstruktur ZnSe (schematisch)</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>2.8</td>
<td>Si7×7 STM, DAS-Modell</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>2.9</td>
<td>Prozesse bei der Dampfphasenabscheidung</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>2.10</td>
<td>Nukleationskeime, Freie Energie in Abh. d. Keimradius r</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>2.11</td>
<td>Nukleationstheorie, Wachstumsmoden (schematisch)</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>2.12</td>
<td>Nukleation und Keimbildung auf Oberflächen</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>2.13</td>
<td>Keimbildungsrate</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>2.14</td>
<td>(Quasi)van der Waals-Epitaxie: Schema</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>2.15</td>
<td>GaSe-Halbleage auf Si(111)</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>2.16</td>
<td>XPS Oberflächenempfindlichkeit</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>2.17</td>
<td>XPS Analyser schematisch</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>2.18</td>
<td>PES Anregungsschema</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>2.19</td>
<td>XPS Beispiel: GaSe-Substrat</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>2.20</td>
<td>UPS Beispiel: GaSe-Oberfläche</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>2.21</td>
<td>XPS: Bandanpassung HL-Heterokontakt</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>2.22</td>
<td>XPD: Interferenzschema</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>2.23</td>
<td>XPD Vorwärtsstreuung (schematisch)</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>2.24</td>
<td>Röntgenphotoelektronenbeugung an GaSe-Halbleage auf Si(111)</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>2.25</td>
<td>XPD-Holographie, Ga3d-Hologramm</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>2.26</td>
<td>LEED: schematischer Aufbau, Ewald-Konstruktion</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>2.27</td>
<td>Schematischer Aufbau AFM-Messenordnung</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>2.28</td>
<td>AFM Spitze</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>2.29</td>
<td>HR-SEM schematisch</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Schichtgitter-Substratpräparation: Spaltvorgang</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Schichtgitter-Substratpräparation: Montage</td>
<td>59</td>
<td></td>
</tr>
</tbody>
</table>
Abbildungsverzeichnis

<table>
<thead>
<tr>
<th>Seite</th>
<th>Abbildungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3</td>
<td>ESCALAB schematisch</td>
</tr>
<tr>
<td>4.1</td>
<td>GaSe-Substrat: XPS</td>
</tr>
<tr>
<td>4.2</td>
<td>GaSe, ZnSe: UPS Valenzband</td>
</tr>
<tr>
<td>4.3</td>
<td>XPS, UPS: ZnSe auf GaSe</td>
</tr>
<tr>
<td>4.4</td>
<td>XPS: ZnSe auf GaSe, Auswertung</td>
</tr>
<tr>
<td>4.5</td>
<td>ZnSe auf GaSe: Entwicklung FWHM</td>
</tr>
<tr>
<td>4.6</td>
<td>ZnSe auf GaSe: Banddiagramm</td>
</tr>
<tr>
<td>4.7</td>
<td>GaSe-Substrat: AFM atomare Struktur</td>
</tr>
<tr>
<td>4.8</td>
<td>ZnSe auf GaSe: LEED</td>
</tr>
<tr>
<td>4.9</td>
<td>ZnSe auf GaSe: LEED Facetten</td>
</tr>
<tr>
<td>4.10</td>
<td>ZnSe auf GaSe: Ewald-Konstr. Facetten</td>
</tr>
<tr>
<td>4.11</td>
<td>ZnSe auf GaSe: Facettenfläche</td>
</tr>
<tr>
<td>4.12</td>
<td>ZnSe auf GaSe: REM SE-Bild</td>
</tr>
<tr>
<td>4.13</td>
<td>ZnSe auf GaSe: REM SE-Bild, Facetten</td>
</tr>
<tr>
<td>4.14</td>
<td>ZnSe auf GaSe: REM Übersicht</td>
</tr>
<tr>
<td>4.15</td>
<td>ZnSe/GaSe: Ratenabh. d. ZnSe-Austrittsarbeit</td>
</tr>
<tr>
<td>4.16</td>
<td>ZnSe/GaSe: Ausscheidungen</td>
</tr>
<tr>
<td>4.17</td>
<td>ZnSe auf GaSe: Facettenwachstum schematisch</td>
</tr>
<tr>
<td>4.18</td>
<td>CdTe auf GaSe, $T_S = 300^\circ$C: UPS</td>
</tr>
<tr>
<td>4.19</td>
<td>CdTe auf GaSe, $T_S = 300^\circ$C: XPS/UPS</td>
</tr>
<tr>
<td>4.20</td>
<td>CdTe auf GaSe, $T_S = 300^\circ$C: Bandanpassung</td>
</tr>
<tr>
<td>4.21</td>
<td>CdTe auf GaSe, $T_S = 300^\circ$C: LEED</td>
</tr>
<tr>
<td>4.22</td>
<td>CdTe auf GaSe, $T_S = 300^\circ$C: REM Morphologie</td>
</tr>
<tr>
<td>4.23</td>
<td>CdTe auf GaSe, $T_S = 300^\circ$C: REM Keimbildung</td>
</tr>
<tr>
<td>4.24</td>
<td>CdTe auf GaSe, $T_S = 200^\circ$C: REM Morphologie</td>
</tr>
<tr>
<td>4.25</td>
<td>ZnSe auf InSe: UPS ZnSe, InSe</td>
</tr>
<tr>
<td>4.26</td>
<td>ZnSe auf InSe: XPS/UPS Übersicht</td>
</tr>
<tr>
<td>4.27</td>
<td>ZnSe auf InSe: Intensitätsverlauf der Rumpfniveaus</td>
</tr>
<tr>
<td>4.28</td>
<td>ZnSe auf InSe: FWHM In$3d_{5/2}$, Zn$2p_{3/2}$</td>
</tr>
<tr>
<td>4.29</td>
<td>ZnSe auf InSe: UPS ZnSe, InSe</td>
</tr>
<tr>
<td>4.30</td>
<td>ZnSe auf InSe: LEED</td>
</tr>
<tr>
<td>4.31</td>
<td>ZnSe auf InSe: REM Morphologie</td>
</tr>
<tr>
<td>4.32</td>
<td>ZnSe auf InSe: REM Morphologie Übersicht</td>
</tr>
<tr>
<td>4.33</td>
<td>Se auf GaSe: SXPS VB</td>
</tr>
<tr>
<td>4.34</td>
<td>Se auf GaSe: UPS/XPS</td>
</tr>
<tr>
<td>4.35</td>
<td>Se auf GaSe: UPS/XPS Forts.</td>
</tr>
<tr>
<td>4.36</td>
<td>Se auf GaSe: UPS/XPS Forts.</td>
</tr>
<tr>
<td>4.37</td>
<td>Se auf GaSe: UPS/XPS Forts.</td>
</tr>
<tr>
<td>4.38</td>
<td>ZnSe auf Se-get. GaSe: UPS</td>
</tr>
<tr>
<td>4.39</td>
<td>Se auf GaSe: UHV-AFM</td>
</tr>
<tr>
<td>4.40</td>
<td>Se auf GaSe: UHV-AFM, LEED</td>
</tr>
<tr>
<td>4.41</td>
<td>Se auf GaSe: UHV-AFM, LEED</td>
</tr>
<tr>
<td>Abbildungsverzeichnis</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td></td>
</tr>
<tr>
<td>4.42 Se auf GaSe bei RT: AFM, LEED</td>
<td>129</td>
</tr>
<tr>
<td>4.43 Se auf GaSe: AFM</td>
<td>130</td>
</tr>
<tr>
<td>4.44 ZnSe auf Se/GaSe: AFM, LEED</td>
<td>131</td>
</tr>
<tr>
<td>4.45 Se auf GaSe: REM</td>
<td>132</td>
</tr>
<tr>
<td>4.46 ZnSe auf Se/GaSe: AFM, LEED</td>
<td>133</td>
</tr>
<tr>
<td>4.47 ZnSe auf GaSe gesputtert: UPS</td>
<td>137</td>
</tr>
<tr>
<td>4.48 GaSe-Oberfläche gesputtert: XPS</td>
<td>138</td>
</tr>
<tr>
<td>4.49 GaSe-Oberfläche gesputtert: AFM</td>
<td>140</td>
</tr>
<tr>
<td>4.50 ZnSe auf GaSe gesputtert: AFM</td>
<td>141</td>
</tr>
<tr>
<td>4.51 SXPS ZnSe auf GaSe:Si(111): Valenzband</td>
<td>145</td>
</tr>
<tr>
<td>4.52 SXPS $\nu=140$eV: ZnSe/GaSe/Si(111)</td>
<td>148</td>
</tr>
<tr>
<td>4.53 LEED ZnSe/GaSe-HL:Si(111)</td>
<td>150</td>
</tr>
<tr>
<td>4.54 ZnSe auf GaSe-HL:Si(111): AFM</td>
<td>151</td>
</tr>
<tr>
<td>4.55 XPD-Holographie: Si2p, Zn3d</td>
<td>153</td>
</tr>
<tr>
<td>4.56 ZnSe auf GaSe:Si(111): Schema</td>
<td>154</td>
</tr>
<tr>
<td>4.57 ZnSe/GaSe:Si(111): XPD MgKα, Si2p, Ga3d</td>
<td>156</td>
</tr>
<tr>
<td>4.58 ZnSe/GaSe:Si(111): XPD MgKα, Zn3d, Se3d</td>
<td>158</td>
</tr>
<tr>
<td>4.59 ZnSe auf HOPG: Bandstruktur</td>
<td>162</td>
</tr>
<tr>
<td>4.60 ZnSe auf HOPG, ZnSe-Rate = 0.2Å/s: AFM, Keimbildung</td>
<td>163</td>
</tr>
<tr>
<td>4.61 ZnSe auf HOPG: XPS</td>
<td>165</td>
</tr>
<tr>
<td>4.62 ZnSe auf HOPG, ZnSe-Rate = 0.2Å/s: Bandanpassung</td>
<td>166</td>
</tr>
<tr>
<td>4.63 ZnSe auf HOPG: UPS Übersicht</td>
<td>167</td>
</tr>
</tbody>
</table>
Tabellenverzeichnis

1.1 Gitterfehlanpassung der unters. (Q)vdW-Systeme 4
2.1 GaSe, InSe: Physikalische Konstanten 10
2.2 GaSe: Anisotropie physikalischer Eigenschaften 12
2.3 ZnSe, CdTe: Physikalische Konstanten 15
2.4 Silizium: Physikalische Eigenschaften 18
2.5 PES: Energiewerte der Anregungslichtquellen 39
3.1 Ätzprozedur für Si(111) nach Shiraki 60
4.1 Grenzflächendipole verschiedener QvdW-Systeme 115
4.2 Simulationsbedingungen XPD (SSC) für ZnSe/GaSe:Si(111) 155
Literaturverzeichnis

Literaturverzeichnis

[115] E. Schaar-Gabriel, Elektronische Struktur und initielles Wachstum von Indiumsele-

[119] R. Schlaf, Halbleiterheterostrukturen aus Schichtgitterverbindungen: Quantendipol-

[127] S. Gunst, Nanostrukturierung von Übergangsmetalldichalkogeniden durch Interkala-

[128] A. Klein, Photoelektronenspektroskopie an Schichthalbleiter/Metall-Grenzflächen,

[129] G. Nicolay, R. Claessen, F. Reinert, V. Strocov, S. Hüfner, H. Gao, U. Hartmann,

XIV

XVI
Literaturverzeichnis

XVIII

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Erklärung</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFM</td>
<td>Atomic Force Microscopy</td>
</tr>
<tr>
<td>ARPES</td>
<td>Angle Resolved Photoemission Spectroscopy</td>
</tr>
<tr>
<td>DOS</td>
<td>Density of States</td>
</tr>
<tr>
<td>EAR</td>
<td>Electron Affinity Rule</td>
</tr>
<tr>
<td>EDC</td>
<td>Energy Distribution Curve</td>
</tr>
<tr>
<td>EELS</td>
<td>Electron Energy Loss Spectroscopy</td>
</tr>
<tr>
<td>GFA</td>
<td>Gitterfehlanpassung</td>
</tr>
<tr>
<td>GIXRD</td>
<td>Grazing Incidence X-Ray Diffraction</td>
</tr>
<tr>
<td>HOPG</td>
<td>Highly Oriented Pyrolytic Graphite</td>
</tr>
<tr>
<td>LBM</td>
<td>Leitungsbandminimum</td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitting Diode</td>
</tr>
<tr>
<td>LEED</td>
<td>Low Energy Electron Diffraction</td>
</tr>
<tr>
<td>LEELS</td>
<td>Low Energy Electron Loss Spectroscopy</td>
</tr>
<tr>
<td>PE</td>
<td>Photoelektronen</td>
</tr>
<tr>
<td>PES</td>
<td>Photo Electron Spectroscopy</td>
</tr>
<tr>
<td>RHEED</td>
<td>Reflection High Energy Electron Diffraction</td>
</tr>
<tr>
<td>SAD</td>
<td>Small Area Diffraction</td>
</tr>
<tr>
<td>SE</td>
<td>Sekundär Elektronen</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscopy</td>
</tr>
<tr>
<td>SPM</td>
<td>Scanning Probe Microscopy</td>
</tr>
<tr>
<td>STM</td>
<td>Scanning Tunneling Microscopy</td>
</tr>
<tr>
<td>SXPS</td>
<td>Soft X-Ray Photoelectron Spectroscopy</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission Electron Microscopy</td>
</tr>
<tr>
<td>TMDCs</td>
<td>Transition Metal Dichalcogenides</td>
</tr>
<tr>
<td>UHV</td>
<td>Utrahochvakuum</td>
</tr>
<tr>
<td>UPS</td>
<td>Ultraviolett Photoelectron Spectroscopy</td>
</tr>
<tr>
<td>VB</td>
<td>Valenzband</td>
</tr>
<tr>
<td>VBM</td>
<td>Valenzelektronenmaximum</td>
</tr>
<tr>
<td>(Q)vdWE</td>
<td>(Quasi)van der Waals Epitaxie</td>
</tr>
<tr>
<td>XPD</td>
<td>X-Ray Photoelectron Diffraction</td>
</tr>
<tr>
<td>XPS</td>
<td>X-Ray Photoelectron Spectroscopy</td>
</tr>
<tr>
<td>XSW</td>
<td>X-Ray Standing Wave</td>
</tr>
</tbody>
</table>

Konferenzen
- Frühjahrstagung der Deutschen Physikalischen Gesellschaft (DPG), Münster, 22.-26.03.1999
- E-MRS ICEM IUMRS Concerence, Strassbourg, 30.05.-02.06.2000
- MRS Conference, San Francisco, USA, 16.-20.4.2001
- APS Meeting, Northwest Chapter, Seattle, USA, 21.-22.05.2001

Publikationen
• E. Wisotzki, A. Bostewick, J. Adams, M.A. Olmstead, A. Klein, R. Fritsche, W. Jaegermann, *XPD investigation of quasi-van der Waals epitaxial relation of ZnSe on bulk GaSe and GaSe-terminated Si(111)*, in Arbeit

• E. Wisotzki, A. Klein, R. Fritsche, W. Jaegermann, *Nucleation behaviour of II-VI compounds on van der Waals-surfaces of InSe, GaSe and GaSe-terminated Si(111)*, in Arbeit
Danke schön, Merci, Thank you!

Folgenden Personen bin ich zu Dank verpflichtet, da sie zum Gelingen dieser Arbeit beigetragen haben:

Prof. Dr. Wolfram Jaegermann danke ich für die interessante Aufgabenstellung und bereitwillige Unterstützung bei der Durchführung des Aufenthaltes in Seattle sowie seinen persönlichen Einsatz, der zur Erteilung zweier Stipendien geführt hat.

Prof. Marjorie A. Olmstead danke ich für die wahrhaft familiäre Aufnahme in ihre Arbeitsgruppe in Seattle, für die zahlreichen Diskussionen und ihr reges wissenschaftliches Interesse an meiner Forschungsarbeit sowie die Teilnahme an zwei unvergesslichen Messzeiten an der Advanced Light Source in Berkeley, Kalifornien....thanx Marjie!!!

Dr. Andreas Klein danke ich für die Einführung in die Geheimnisse und Tücken des ESCALAB, seine stete Hilfsbereitschaft bei Reparaturen im Labor sowie seine Anregungen bei der Durchführung der Experimente und der Auswertung meiner Daten.

Dr. Andreas Thißen danke ich für die Hilfe im Labor, den psychologischen Beistand bei den dawn-specials bei BESSY II sowie für die Durchführung der SSC-Simulationen.

Dr. Thomas Mayer danke ich für die netten Gespräche über allgemeine Probleme der Physik und des alltäglichen Lebens...(-;

Stefan Gunst danke ich für die jahrelange Begleitung durchs Studium, seine nette unkomplizierte Art als Tischnachbar im Büro, die Einweihung in die Welt der SPMs sowie seinen geteilten Enthusiasmus für die Musik.

Aaron Bostewick und John „tungsten” Adams danke ich für die Unterstützung und Einweisung in die Experimente in Seattle und Berkeley.

Dem Rest der Arbeitsgruppe Oberflächenforschung danke ich für die immerzu nette Atmosphäre im Doktorandenzimmer. Besonders bedanken möchte ich mich bei den Herren Jochen und Rainer Fritsche und bei Martin Star-Tex Beerbom für die stete Hilfsbereitschaft bei der Auseinandersetzung mit verschiedenster Soft- und Hardware sowie bei
Marga Lang für ihren Einsatz in bürokratischen Angelegenheiten.

An alle noch „werdenden“ Doktoranden...*hang in there!!!*

Meinen Eltern und meiner Schwester danke ich für alles, was mich soweit in meinem Leben gebracht hat.

Jochen „Lektor“ Dornheim danke ich für letztes Redigieren...*and for being part of „the family”.*

Marc Weissenberger danke ich als Freund und regem Gesprächspartner in nächtlichen wissenschaftlich-philosophischen Diskussionen.... (-;

Allen hier nicht namentlich erwähnten Personen danke ich für ihren jeweils speziellen Beitrag.

(last but certainly not least: extra special thanx für regen coffe-support während der Schreibphase an meine (ex)-Nachbarin Nina ...und viele ♥ an das schwarze Kaninchen und seine Besitzerin!!)
Lebenslauf

Elmar Wisotzki

7.10.1970 Geboren in Frankfurt am Main
1988/89 Austauschschüler und High-School Degree an der Warwick High in Lititz, Pennsylvania/USA
1991 Abitur am Justus-Liebig Gymnasium Darmstadt
WS 1992 Beginn des Studiums der Materialwissenschaft an der TU Darmstadt
Juni bis August 1995 Industriepraktikum bei der Firma Leybold AG, Hanau
April 1997 Diplomhauptprüfung im Fachbereich Materialwissenschaft der Technischen Universität Darmstadt
Mai 1997 bis Feb. 1998 Diplomarbeit im Fachgebiet Dünne Schichten der TUD unter Betreuung von Prof. H. Hahn
Synthese oxidischer dünner Schichten mit MBE unter Verwendung einer neuartigen Sauerstoff-Atomquelle
November 1997 Forschungsaufenthalt an der University of Florida, Gainesville, Florida/USA
März bis Juni 1998 Wissenschaftlicher Mitarbeiter im Fachgebiet Dünne Schichten, Fachbereich Materialwissenschaft/TUD
März bis Juli 2001 Forschungsaufenthalt im Physics Department der University of Washington, Seattle/USA sowie dem Lawrence National Laboratory der University of California, Berkeley, USA. Förderung durch DAAD-Stipendium.

Darmstadt, den 23.07.2002