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Abstract

As distributed systems are getting more and more complex, search facilities for finding
services and data within the system become crucial. Users expect search engines to deal
with complex query languages like keyword search, SQL, or XPath. At the same time,
application developers cannot be expected to come up with distributed versions of those
query languages from scratch. Rendezvous search systems are a very scalable solution
to this problem. By separating the query processing from the network communication,
existing libraries for query processing can be easily reused.

A wide range of rendezvous search systems for different scenarios has been proposed
in the past. Their scalability and resilience make them an excellent choice for search in
large-scale and dynamic peer-to-peer environments. The resilience stems mainly from
the high number of replicas per datum, which however makes replica maintenance
difficult. Unfortunately, most rendezvous search systems lack maintenance algorithms
to sustain the desired replica count under node churn.

Replica maintenance is closely related to update mechanisms for mutable data. The
highly distributed nature of peer-to-peer systems in general and the high replica count
of rendezvous search systems in particular require carefully designed mechanisms for
consistent updates with concurrent accesses.

In this thesis, replica maintenance and update mechanisms for the BubbleStorm peer-
to-peer overlay and related rendezvous search systems are introduced. After analyzing
the design space of replica maintenance for peer-to-peer systems, a complete solution
covering all identified use cases is presented. This includes a maintainer-based mecha-
nism for data managed by a single node and a collective mechanism for data that shall
be persistent beyond any particular node’s session time.

The algorithms are evaluated in BubbleStorm’s sophisticated testbed, which allows
prototype experiments and simulations with the same source code.
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Zusammenfassung

Da verteilte Systeme immer komplexer werden, kommt Suchmechanismen zum
Auffinden von Services und Daten eine stetig wachsende Bedeutung zu. Anwender
erwarten, dass Suchmaschinen komplexe Anfragesprachen wie Volltextsuche, SQL oder
XPath verarbeiten können. Gleichzeitig kann von Anwendungsentwicklern jedoch nicht
erwartet werden, dass sie verteilte Versionen dieser Anfragesprachen von Grund auf
selbst implementieren. Rendezvous-Suchsysteme stellen eine hochgradig skalierbare
Lösung für dieses Problem dar. Durch die Trennung von Anfragebearbeitung und
Netzwerkkommunikation können bestehende Implementierungen der Anfragesprachen
leicht wiederverwendet werden.

Eine breite Palette an Rendezvous-Suchsytemen wurde bereits für verschiedene
Szenarien vorgeschlagen. Ihre Skalierbarkeit und Robustheit macht sie zu einer
ausgezeichneten Wahl für die Suche in großen und dynamischen Peer-to-Peer-
Umgebungen. Diese Robustheit basiert zu großen Teilen auf der hohen Anzahl von
Replikaten pro Datum, wodurch allerdings die Replikaverwaltung erschwert wird. Lei-
der fehlt den meisten Rendezvous-Suchsystemen eine Replikaverwaltung, welche die
gewünschte Anzahl der Replikate bei Veränderungen der Netzwerkzusammensetzung
aufrecht erhält.

Die Replikaverwaltung ist eng verwandt mit Updatemechanismen für veränderliche
Daten. Die verteilte und dezentrale Natur von Peer-to-Peer-Systemen im Allgemeinen
und die hohe Anzahl von Replikaten in Rendezvous-Suchsystemen im Speziellen er-
fordern sorgfältig gestaltete Mechanismen für konsistente Updates bei konkurrierenden
Zugriffen.

In dieser Dissertation werden Replikaverwaltung und Updatemechanismen für das
Peer-to-Peer-Overlay BubbleStorm und verwandte Rendezvous-Suchsysteme vorgestellt.
Nach Analyse des Entwurfraums für die Replikaverwaltung in Peer-to-Peer-Systemen
wird eine vollständige Lösung für alle identifizierten Anwendungsfälle präsentiert. Dies
beinhaltet einen verwalterbasierten Mechanismus für Daten, die von einem einzelnen
Knoten verwaltet werden, und einen kollektiven Mechanismus für Daten, welche über
die Onlinezeit jedes einzelnen Knotens hinaus verfügbar bleiben sollen.

Die Algorithmen werden mit BubbleStorms hoch entwickelter Testumgebung evaluiert,
die es erlaubt, den selben Quellcode sowohl für Prototypenexperimente als auch für
Simulationen zu verwenden.
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1 Introduction
In the past decade, the way the Internet is used has changed significantly. Traditionally,
it was understood as a routing network, connecting clients to well-known and static
servers, and was depicted as a cloud in schematic figures. Data was downloaded from
or uploaded to the servers and thus passed through the network, but never stayed
within the cloud (see Figure 1.1a). Albeit the technical principles of the Internet persist
mostly unmodified, the user-level abstraction has changed fundamentally. Nowadays,
more and more computing tasks and the storage of data are moved into the cloud,
represented by anonymous servers in large data centers, dynamically assigned to paying
customers. Users often do not know (and typically do not care) where exactly the data
is stored, as long as it is available anytime and anywhere (see Figure 1.1b). To ensure
availability, the data is often replicated among multiple servers or even data centers.
Nonetheless, users expect to modify data in real-time and always get the latest version
of requested data. Retrieving or modifying the distributed data in large data centers has
to be coordinated by special servers with global knowledge of the multiple and dynamic
locations of each data item.

Internet

well-known serveruser

data

(a) Traditional view

Internet

user

data

data

data

(b) Cloud computing

Figure 1.1.: How cloud computing changed the abstraction of the Internet

The success of the Internet and the rampant growth of digital data has also changed
the way of accessing data. Instead of manually navigating through hierarchical or oth-
erwise structured sets of data, content-based search enables to find the desired informa-
tion using a few keywords or attributes. The full-text search boxes on countless websites
are as ubiquitous as the big search engines that make the world wide web usable. Their
success is echoed by desktop search engines and improved search facilities in desktop
applications. As it seems, the future of data is less structured than expected.

Therefore, two of the key requirements for many networked applications nowadays
are maintaining the distributed data and supporting flexible content-based search on
this data. In the realm of client-server computing, a versatile and field-proven toolbox
of frameworks, libraries, and server suites for the development of such applications is
available (like Apache Hadoop [148]) and makes the life of developers comparatively
easy. One of the current major research challenges for those frameworks is scalability,
i.e., to deal with large amounts of users accessing large sets of information, the so-called
“big data”.
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Scalability is an inherent feature of peer-to-peer computing. A peer-to-peer applica-
tion benefits from the capacity that each peer brings to the system, which can counter-
balance the additional load the peer induces. Even though servers can be made scalable
by using large-scale clusters, the costs involved may be beyond the capabilities of many
projects.

With all the peer-to-peer research of the past years and the enormous demand for scal-
able solutions, one would expect a boom of peer-to-peer applications. Unfortunately, the
opposite is true. Very few new peer-to-peer applications are released, some providers of
peer-to-peer-based services are switching to client-server infrastructures [4], and even
prominent peer-to-peer software like BitTorrent [25] heavily relies on servers for co-
ordination and search. Especially striking is the absence of sophisticated applications
beyond the traditional peer-to-peer strong points like file sharing, instant messaging,
and video streaming. Even those markets are dominated by companies exclusively fo-
cused on peer-to-peer software like Skype or PPlive.

The key to understanding the current lean time of peer-to-peer is to have a closer
look at the outlined application requirements. Traditionally, application developers had
to choose between unstructured peer-to-peer overlays, which offer flexible search ca-
pabilities but do not scale, and structured peer-to-peer overlays, which offer scalable
key-value-lookups but are complicated when it comes to more sophisticated search
methods. Additionally, the reliable long-term replication and consistency of updated
data in peer-to-peer overlays might be an area which did not get the attention it de-
serves.

Putting together a working peer-to-peer system with full-text search and data repli-
cation from the current state of the art is an almost impossible task for a non-expert
in peer-to-peer networking and challenging even for experts. This explains why peer-
to-peer algorithms are not yet used widely in the software industry. Because search
algorithms need to be adapted (read: reimplemented) for structured overlays, an appli-
cation developer would not only need domain-specific knowledge but also expertise in
both peer-to-peer networking and information retrieval.

To solve this problem, a proper abstraction for peer-to-peer frameworks is needed
that not only enables application developers to treat the networking aspect as a black
box, but also to re-use existing libraries for search algorithms. If it could solve the
problem of data replication on top, such a framework would definitely help closing the
gap between peer-to-peer and client-server computing.

In this thesis I present the BubbleStorm [143] peer-to-peer system, which is a pow-
erful search framework that allows the re-use of search algorithms. Furthermore, I de-
fine replication modes that cover typical application scenarios. Each of the replication
modes is implemented by a replication and update mechanism usable by BubbleStorm
or comparable search overlays. The key insights of those mechanisms and the abstract
replication modes advance the topic of replication in large-scale distributed systems in
general.

BubbleStorm is an implementation of the rendezvous search concept, which is dis-
cussed in Chapter 2. Rendezvous search is a paradigm for distributed “blind search”
(or arbitrary search) that is optimized for demanding query languages like keyword
search. Although a noteworthy number of rendezvous search systems have been pro-
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posed lately, there exists no survey of these approaches yet. Chapter 2 closes this gap
by giving a comprehensive overview of the field.

Chapter 3 provides a closer look at the existing BubbleStorm infrastructure. This
includes a brief introduction of the underlying theory, the overlay topology, the bubble-
cast search algorithm, and the gossip algorithm, which provides system-wide statistics
for self-organization. Additionally, the CUSP transport protocol is introduced, which
was developed in the context of BubbleStorm to overcome limitations of TCP in com-
plex peer-to-peer environments. It is used as the basis for the implementation of Bub-
bleStorm in this thesis.

Chapter 4 discusses the current state of the art of replication and updates in peer-
to-peer search overlays. An analysis of the application requirements uncovers four
fundamental replication modes for distributed systems. Depending on its persistence,
lifetime, and ownership conditions, a data type can be classified as instant, fading,
managed, or durable. Use-cases explain why each mode is necessary and a discussion
of the related work shows, that mixing the modes in a replication algorithm is not
recommendable.

Chapter 5 shows how the replication modes can be mapped to BubbleStorm. The data
description primitives allow the definition of data types in the schema of a BubbleStorm
application. Each bubble type can follow one of the four replication modes, and a fifth
primitive is used to define the relationships between the bubble types. Instant and
fading bubble types are naturally supported by bubblecast. For managed and durable
types additional replication mechanisms are required. The chapter concludes with a
discussion of how to use the primitives to implement different example applications.

Managed bubble types are implemented using maintainer-based replication, which is
presented in Chapter 6. The algorithm enables maintenance and updates with eventual
consistency on data items, which are controlled by a dedicated maintainer. Durable
bubble types use the collective replication mechanism, which is presented in Chapter 7.
Collective replication supports long-term persistence and concurrent updates in appli-
cation scenarios where no dedicated maintainer for a certain data item is available.
With a solution for each of the four replication modes and its powerful search capabil-
ities, BubbleStorm offers a complete but very manageable framework for sophisticated
peer-to-peer application developers.

Evaluating a distributed system at the scale and complexity of BubbleStorm is a chal-
lenging task on its own. The available evaluation methods are discussed in Chapter 8.
The sophisticated evaluation framework for large-scale distributed systems developed
for this work is presented in Chapter 9. It offers large-scale simulation, prototype ex-
periments on network testbeds like PlanetLab, and building real-world libraries and
applications, all without changing the application source code.

In Chapter 10, the presented algorithms are evaluated using the evaluation frame-
work. The results prove the adherence of the given success guarantees, the low com-
munication cost, and the extreme robustness against network disruptions. The system
is highly self-adaptive and quickly adjusts to changing environments.

In summary, this thesis presents a novel taxonomy for replication algorithms in de-
centralized distributed systems, describes the peer-to-peer search overlay BubbleStorm,
which is able to cover the complete design space of the taxonomy and yet provides a
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simple abstraction to use the system in application development. Due to its powerful
search and replication capabilities, BubbleStorm may enable a new generation of so-
phisticated peer-to-peer applications. Before discussing the problem statement and the
contributions in detail, a short introduction to the terms and concepts used in this thesis
is given.
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1.1 Background

In a distributed system, multiple computers are connected through a communication
network and appear as coherent system to the user [27, 138]. A distributed system
provides services to the users. A service can range from a simple computation on a single
machine to a complex state-changing operation involving many computers. Individual
services are often combined into more complex and powerful composite services. A host
providing a service is called a server and a host requesting and consuming a service a
client.

1.1.1 Design Goals of Distributed Systems

Diverse goals are involved in the design of distributed systems [27, 138]. This work
will focus on the goals most relevant to peer-to-peer systems: scalability, availability,
performance, fault tolerance, and consistency [50, 58]. While security is also a very
important topic for distributed systems, it is beyond the scope of this work. Since the
definition of those terms vary in the literature, a brief discussion is given how the terms
are understood in the context of this work.

• Performance is a measure for the service quality of a distributed system. The most
important metrics for performance are throughput and response time. Throughput
is the amount of requests or bytes served per unit of time, while the response time
describes the time an individual request needs to complete (also called latency).

• Efficiency measures the ratio between performance and cost. Cost is typically ex-
pressed in terms of consumed bandwidth, number of messages exchanged, number
of connections, memory usage, or CPU consumption, depending on the scenario.
Cost can also be expressed as the monetary cost for the acquisition and operation
of a distributed system.

• Scalability describes the ability of a distributed system to improve its performance
by increasing the number of service-providing computers (the network size n). A
scalable system is able to cope with a wide range of network sizes, from small to
large.

• Elasticity means that the system is additionally able to adjust to changing network
sizes during operation. Elasticity is expressed as absolute or relative size change
per unit of time.

• Fault tolerance describes the ability of a distributed system to cope with failures
of services, servers, or the communication infrastructure. In particular, a system
is partition tolerant if it is able to deal with the temporary loss of connectivity be-
tween parts of the system. An unfortunate combination of message losses between
any two participants can qualify as a partition.

• Availability is the probability that the system is operating at a specified time, where
operating means that the system is processing service requests from users. This
does not yet state anything about the quality of the result.
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• Consistency helps defining the result quality. A consistency model defines the rules
the responses of a system have to obey.

• Strict consistency means that every user operation (e.g., insert, update, delete) is
reflected in the result in the exact order they were issued. Due to the limits in clock
synchronization, this is practically impossible to achieve in a system connected
over a communication network.

• Sequential consistency is a relaxed form of consistency, so that every result has to
reflect the same order of operations, but not necessarily in the order the operations
were issued.

• Eventual consistency does not guarantee immediate consistency, but that the system
will become consistent after a sufficiently long period of time has passed.

Not all design goals can be achieved in the same system. The CAP theorem [17, 46]
states that no system can provide (sequential) consistency, availability, and partition
tolerance at the same time. When a partition (i.e., caused by arbitrary message loss) oc-
curs, the system must either tolerate inconsistencies or stop servicing until the partition
is healed. This insight has fundamentally affected the design of large-scale distributed
systems. Since transient partitions are commonplace in the Internet and an unavailable
system is not very useful, more and more system developers have embraced weaker
consistency models such as eventual consistency.

1.1.2 Peer-to-Peer Overlays

Traditionally, the roles of servers (service providers) and clients (service consumers)
have been fixed. In client-server computing, a small and fixed set of machines assumes
the role of servers, and a much larger and dynamic set of machines are the clients
operated by the users. This relatively simple model enables scalable and consistent
systems with high performance, but the provisioning and maintenance of the servers
result in a significant (monetary) cost overhead. If availability and fault tolerance are
to be maximized, additional investment is required.

In peer-to-peer (P2P) computing, no strict distinction between clients and servers ex-
ists. Every host can be client, server, or both, and the roles can change dynamically. In
a pure P2P environment, no dedicated server machines operated by system administra-
tors exist, but every participating computer is provided by a user, who typically wants
to use the services of the system. This radically reduces the cost of the system and thus
makes P2P very attractive for scenarios in which there is no or only a low-profit busi-
ness model. It is obvious that a system where every consumer not only induces load but
also provides additional capacity can, by its nature, be very scalable. Indeed, some P2P
systems have successfully scaled up to millions of online users in practice.

In a research area that is still evolving, many different definitions of P2P, which all
describe the same phenomenon, can be found. A good characterization was given by
Oram et al. [102] and refined by Steinmetz and Wehrle [133]:
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“A Peer-to-Peer system is a self-organizing system of equal, autonomous entities
(peers) which aims for the shared usage of distributed resources in a networked
environment avoiding central services. In short, it is a system with completely
decentralized self-organization and resource usage.”

Even though the underlying network architecture (the underlay) makes it possible for
each peer to communicate with any other peer, not every peer knows all other peers in
the system (nor is this desirable in most cases). Instead, the peers form an overlay net-
work, where each peer is connected to a small set of neighbors and maintains a routing
table of those neighbors. The degree of a peer is defined as its number of neighbors.
Messages are routed through the overlay by forwarding them to the most appropriate
neighbor (recursive routing) or repeatedly querying the current set of neighbors for more
appropriate peers (iterative routing). Steinmetz and Wehrle provide a formal definition
of overlay networks and their properties, which can be found in [133].

1.1.3 Churn and Open-Membership Systems

P2P technology can be deployed in a wide range of scenarios, from rather unstable
wireless ad-hoc networks to relatively static data center environments. This work fo-
cuses on the traditional usage scenario of public Internet-based systems. Thus, it can be
assumed that every peer has stable end-to-end network connectivity (i.e., Internet ac-
cess). Furthermore, the membership in such a system is not controlled centrally. There
might be an authority (or a federation of many authorities) which grants the credentials
required to join the system, but this authority cannot force a peer to join. The size of
the system in such an environment is beyond any central control and hard to predict.
It might change or fluctuate significantly in short and long term. Such a system of au-
tonomous peers will be called an open-membership system. The process of peers joining
and leaving the system dynamically is called network churn.

In an open-membership system the set of available services changes dynamically. The
services of peers that leave the system become unavailable. A P2P system needs a
mechanism to locate the currently available services. Some applications cannot tolerate
services to become unavailable and thus need to migrate their services between peers.
Since no single peer can be assumed to be reliable and may fail at any moment without
prior notice, failed services must be recovered or replicated proactively. The nomadic
nature of such services aggravates the problem of how to locate them.

1.1.4 Self-X

The uncertainties of the open environment, the decentralized structure, and the sheer
scale of P2P systems make them a natural application of self-adaptive software [123].
Self-adaptive systems use an automated feedback loop to continuously adjust them-
selves to a changing environment. The self-adaptation can aim at different goals.
Self-configuring or self-organizing systems are able to operate without or with reduced
manual configuration. Self-healing systems increase fault-tolerance by automatically
discovering and counteracting failures or disruptions. Self-optimizing systems increase
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efficiency through adjustment of system parameters. Self-protecting systems are able to
detect and recover from security breaches. Optimally, a P2P system should support all
kinds of self-adaptation, but at least self-organization is inherent to any P2P system.

1.1.5 Peer-to-Peer Search

The problem of locating nomadic services is the archetypical example of self-
organization in P2P networks. It has made search one of the core services of most
P2P systems and search overlays a major building block in the area of P2P technol-
ogy. A search overlay is a decentralized index structure to locate services, or put more
generally: to query for data. Many different approaches to organize such an overlay
exist [65, 115]. Normally, only the meta-data required to answer the queries, but not
the service itself, is stored in the search overlay. This meta-data contains a reference to
the location of the service. The service itself might provide data (e.g., a downloadable
file in a file-sharing application), but in the following data will be used to refer to the
(meta-)data stored in the search overlay. Data stored or provided by services outside of
search overlays is beyond the scope of this work.

Search overlays are usually categorized into structured and unstructured overlays. In
a structured overlay, the routing of inserts and search requests is based on the related
data, normally by assigning a key to each item [29]. Such search overlays provide a
get and put operation like a hash table and are therefore called distributed hash ta-
bles (DHT). Each peer in a DHT is responsible for a more or less randomly assigned
range or set of keys and all requests related to a key should be routed to the responsible
peer. Since the request popularity distribution in distributed systems is typically Zipf-
like [16, 54], the (random) peers responsible for the most popular keys might become
bottlenecks to the system. Furthermore, the limitation to key-value lookups makes more
complex requests like keyword search [113], range queries [111], or XPath [13] a chal-
lenging task for a DHT. Unstructured search overlays, however, typically support arbitrary
queries naturally, since the content of the requests is opaque to the overlay routing. In
unstructured overlays, the requests are distributed by mechanisms like flooding [64]
or random walk [20] and are processed by each receiving peer. Unfortunately, this ap-
proach has a message count of O(n) for exhaustive searches and is not as scalable as
DHTs which typically only require O(log n). Thus, peer-to-peer application developers
have to choose between scalability or sophisticated search.

A new kind of search overlays tries to overcome this limitation. The rendezvous search
systems put O(

p
n) copies of each data item and each query in the network, which makes

them very scalable, especially in the context of complex queries which add additional
overhead to DHTs [83, 157]. The placement is done in such a fashion that every query
is evaluated against every data item somewhere in the overlay. A more formal definition
will be given in Section 2.2. Since a query is executed against a complete copy of each
data item, arbitrary queries can be used.

8



1.1.6 Query/Data vs. Publish/Subscribe

The term search normally describes a situation where data is stored in the system and
a user issues a query to retrieve matching items. In contrast to this classic query/data
approach, the concept of publish/subscribe [35] consists of a subscriber that stores sub-
scriptions in the system, and a publisher that pushes data into the system. When a pub-
lication matches a subscription, the subscriber is notified by the system and receives the
data. In the context of this work, both are classified as methods of search. Query/data
is query-triggered search with an active searcher and a passive system that only reacts
to search requests (see Figure 1.2a). Publish/subscribe is publication-triggered search
where the system actively pushes notifications to passive subscribers (see Figure 1.2b).

SystemPublisher Searcher

Query

Response

Publication

(active)(passive)

(a) Query-triggered search

SystemPublisher Searcher

Subscription

Notification

Publication

(active) (passive)

(b) Publication-triggered search

Figure 1.2.: Query/data and publish/subscribe compared

A search overlay that is able to perform query-triggered searches can often be turned
into a publish/subscribe system that performs publication-triggered searches [119,
142]. In the context of this work, search overlay denotes systems that can be used
for query-triggered and publication-triggered search. Future applications might even
combine both approaches and continuously update the initial result set of a query with
a follow-up subscription.

1.1.7 Peer-to-Peer Replication

Replication plays a major role in the design of search overlays. Replication is the place-
ment of copies (replicas) of a data item at different locations in a distributed system.
Replication can be used to improve availability [150] and performance [151], both im-
portant aspects for large-scale, open-membership P2P networks. Since a peer may go
offline immediately without prior notice, the replicas it stores can become unavailable
to the system. Only by maintaining a sufficient number of replicas for each data item,
it can be assured that neither churn nor large-scale failures can remove data perma-
nently from the system. The placement of replicas can also help to improve search
performance. A shorter path to the data can both reduce message cost and response
time [26].

In a dynamic environment like P2P systems where the composition and organization
of the overlays is constantly changing, the placement of replicas needs to be adjusted to
ensure proper replication. The replica maintenance keeps track of the replicas and takes
action if required. Depending on the algorithm and the situation, replicas need to be
added, removed or moved from one peer to another. Replication is closely intertwined
with updates on the replicated data. The replication algorithm is in control of the
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replica placement. If updates are in-place, the update mechanism needs the placement
information to modify the replicas. If a copy-on-write approach is taken, the update
mechanism needs to issue new replicas through the replication mechanism.

The combination of mutable data and replication brings up consistency issues. As
long as there is only one copy of each data item in the system, every request will re-
turn this version (if it is found). With multiple replicas and mutable data, individual
copies might get out of sync if an update does not reach all replicas. A data item with
differing replicas will be called incoherent. A data item with only identical replicas is co-
herent. An incoherency may lead to inconsistent results, because two different requests
might access different replicas, but coherence is not necessary to ensure consistent re-
sponses. If it is guaranteed that all requests return the same version of the data item
(e.g., by always accessing the same replica), incoherent data can be used for consistent
responses.

Different approaches to replication in P2P overlays exist. The algorithms considered
in this work put a pre-defined number of replicas on nodes selected by the algorithm.
This ensures that every data item can be successfully retrieved. Other approaches [20,
26, 91], which shall be called caching, replicate data based on their request popularity.
Since the replication is done by the requester and does not follow a pattern globally
agreed upon, replicas in such systems can normally not be updated consistently since
their location is unknown. Caching can be useful to improve load balance for skewed
popularity distributions in potentially unbalanced systems like DHTs.

1.1.8 ACID vs. BASE

The insight of the CAP theorem sparked new research approaches in the area of
client/server computing. The previously omnipresent concept of ACID transactions
(atomicity, consistency, isolation, durability) [55] is now understood as a tradeoff that
favors consistency over availability in the face of partial system failures. Its new counter-
part BASE (basically available, soft state, eventual consistency) [105] tries to maximize
availability and sacrifices strong consistency in failure situations. The need to scale
systems up without compromising availability has made BASE popular among web ap-
plication developers [105].

In an open-membership P2P environment, that is typically both of much larger scale
and much more failure-prone than server clusters, this tradeoff is even more important.
Since in a large P2P system failures are not the exception but the common case, any
system with a useful availability will have to trade some consistency for availability. That
said, giving up on strong consistency cannot be an excuse to ignore consistency issues
completely. A proper search overlay and replication algorithm should try to maximize
consistency under the availability constraint. When working with eventual consistency,
the amount and duration of inconsistencies should be minimized.
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1.2 Problem Statement

If P2P applications are meant to successfully compete with modern client/server appli-
cations, they need proper support for complex search and mutable data stored reliably
in the system. The goal of this work is to describe such a search overlay for unstable
open-membership environments. By building on joint work with Wesley Terpstra in the
area of search [140, 143], this thesis focuses on the replication and update mechanisms
required.

A system providing these services should be highly available, very scalable, and pro-
vide useful consistency guarantees. In an open-membership environment this can only
be achieved by providing a high level of fault tolerance. Typical challenges are arbitrary
communication failures and node crashes, a high level of node churn, abruptly changing
network sizes, and dynamic workloads with heavily skewed popularity distributions.

In order to support a maximum of different P2P applications, the diverse use cases for
replicated data and their requirements need to be identified, and corresponding repli-
cation modes have to be defined. Those use-cases vary widely in their requirements of
persistence, lifetime, and mutability of the data to be distributed. For example, some
information, like search requests, might be non-persistent, because it is consumed in-
stantly, while other data, like documents, may require long-term persistence. Some
persistent data, e.g., a wiki article, must stay available even though none of its authors
is online anymore. On the other hand, the lifetime of data may be bound to the ex-
istence of a certain node, e.g., presence information in a chat system. Being able to
modify distributed information is often required, but typically introduces a communica-
tion overhead, which is wasteful for immutable data. Currently, no taxonomy for P2P
replication modes exist, and therefore the existing replication mechanisms have un-
clear design goals. A versatile search overlay should be able to cope with a wide range
of application scenarios and thus needs a set of replication algorithms that support the
requirements of the different replication modes.

To enable their widespread use, the proposed mechanisms must be understandable
and easy to use for application developers, which are not always experts in P2P network-
ing. This requires a clear separation of concerns between network communication, data
management, and application code. The system must provide a comprehensible, yet
flexible interface to the application developer.

Any scientifically valid proposal should be analyzed and evaluated thoroughly. The
available methods include mathematical analysis, large-scale simulation, and proto-
type experiments. As none of the methods can provide exhaustive insight by itself, a
combination of evaluation methods is required.
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1.3 Contributions

The main contribution of this work is the description and evaluation of a search overlay
that supports complex search and a versatile set of replication modes for the searchable
data. This overlay is the rendezvous search system BubbleStorm, which is the result of a
larger research project. Its search capabilities and basic organization have already been
described in [140, 143].

This work completes the system by contributing replica maintenance and update al-
gorithms. These capabilities allow the persistent storage and consistent modification
of distributed data in an extremely dynamic environment. As this enables a much
wider range of applications far beyond mere search, the system is better described
as a rendezvous information system. To the best of the author’s knowledge, no ren-
dezvous information system for P2P environments has been presented before.

In detail, the contributions of this work include:

• The first survey of rendezvous search systems in the area of P2P search over-

lays (Chapters 2 and 3). Even though there are quite a few systems using ren-
dezvous approaches, most of them seem to have been invented independently and
even more recent publications about these systems seem to be unaware of most
related work in the area. In this thesis, a comprehensive overview of the state
of research is given, and the existing systems are classified into solutions for data
centers, structured overlays, unstructured overlays, and semi-structured overlays.

• A generic classification of replication modes for P2P search overlays (Chap-

ter 4). Different types of data and applications require different forms of replica-
tion. This work identifies four fundamental use cases for replication and proposes
a taxonomy for replication mechanisms. The current state of the art in P2P repli-
cation is reviewed based on the classification. The replication modes are instant,
fading, managed, and durable replication. Because the replication modes have
conflicting requirements, no single replication algorithm can support all modes
completely.

• Data description primitives for BubbleStorm (Chapter 5). The identification
of replication modes makes it possible to define a schema model for rendezvous
search systems, using BubbleStorm as a concrete example. Such a schema al-
lows application developers to define their data model without in-depth knowl-
edge about the underlying search overlay and enables portability of applications
between different rendezvous search systems, similar to the SQL data definition
language for relational databases. The compact scheme consists of four primitives
to cover the four replication modes (instant, fading, managed, and durable) and
a fifth primitive to define rendezvous matching constraints between data types. A
complete application data model including distributed data, queries, subscriptions,
and publications can be defined using only those five primitives.

• A maintainer-based replication algorithm for managed data (Chapter 6). Un-
like instant and fading data, managed data needs a replica maintenance algorithm
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to sustain availability. The algorithm presented here builds upon a dedicated main-
tainer for each managed data item and can be used with BubbleStorm and similar
search overlays. It provides eventual consistency guarantees and avoids conflicting
updates through serialization by the maintainer. It preserves the replica distribu-
tion in the overlay required by the rendezvous search system to meet its search
success guarantees and is extremely robust against disruptive changes in the net-
work.

• A collective replication algorithm for durable data (Chapter 7). This algorithm
not only adds support for the last remaining replication mode to BubbleStorm and
similar systems, but also provides efficient key-value lookups for unstructured ren-
dezvous search systems. It provides eventual consistency and a fully automated
resolution of conflicting updates. Like the maintainer-based replication, it pre-
serves the replica placement invariants and matches the resilience of the other
BubbleStorm components.

• A state-of-the-art simulation and prototyping environment for the evaluation

of P2P systems (Chapter 9). Evaluation of large-scale distributed systems in
highly dynamic environments is a challenging task. Even minor inaccuracies in
the evaluation setup can lead to highly misleading results. The evaluation envi-
ronment developed for this work has been carefully designed to avoid typical mis-
takes. By combining overlay simulation with automated prototype experiments,
both synthetic large-scale simulations and very realistic real-world experiments
can be conducted.
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2 Rendezvous Search
This chapter gives an introduction to the concept of rendezvous search and an overview
of the existing solutions for distributed rendezvous search. A brief version of this survey
has been presented at a workshop [77], and a journal paper based on this chapter has
been submitted for publication [78].

2.1 Index-Based Search

If each data item has a unique identifier, and all searches in a system only select items
based on this primary key (a key-value lookup), it is obvious to organize items in the
(distributed) data store by their identifier (partition by key) and thereby build an index
as shown in Figure 2.1a. In a distributed environment each peer takes responsibility for
a partition of the index, and the desired key can be found in logarithmic time through
a DHT. Unfortunately, searches in reality are rarely that simple.

Often, data items consist of a number of attributes, and each attribute can have mul-
tiple values. There exists a wide range of tools for mapping such problems to indexes,
like inverted indexes for keyword search [70]. This involves putting a reference to the
item for each value (keyword) it contains. A query for multiple keywords would query
each keyword separately and then intersect the result sets (see Figure 2.1b).
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(a) Key-value lookup in an index
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Figure 2.1.: Search with inverted indexes

While inverted indexes are a popular and efficient technique in standalone systems,
the copying of references and intersecting of result sets becomes very inefficient when
being mapped to a DHT in a P2P environment and can barely compete with the notori-
ously unscalable Gnutella [83].

Even worse is that partition-by-key requires a custom index and thus a specific P2P
communication model for each query language. Inverted indexes are specific to key-
word search and similar attribute-based queries. Queries on hierarchical data like XPath
require a completely different approach [13]. Message routing and query evaluation are
so tightly interwoven that existing libraries for standalone systems cannot be reused but
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have to be reimplemented specifically for P2P search. Aside from the additional effort,
this requires an engineer that is both an expert in P2P networking and the processing
of the respective query language.

For these reasons, sophisticated search on DHTs has not been very successful. A
different, more flexible approach is needed,

• that is easier to use with a wide range of query languages,

• that does not require the application developers to have expert-level knowledge of
networking and query processing,

• and that is at least as scalable as DHTs.

Rendezvous search might be the perfect solution for this problem and thus has gained
a growing popularity in the P2P community lately.

2.2 Concept

In rendezvous search the message routing is independent of the data and query lan-
guage in use. The system ensures that a query meets every data item somewhere in the
network, but otherwise serves as a black box. This is achieved by creating a set of repli-
cas for each query and data item and distributing them in the overlay. Since rendezvous
search systems treat query and data equally, in the following, item is used to refer to
instances of query and data. This slight generalization can provide additional freedom
in application design, as will be shown later.

Similar to the definition in [140], the correctness in rendezvous systems is defined as
follows:

Definition 1 (The Rendezvous Problem). Let the function R(x) ✓ N denote the subset of
nodes (out of all nodes N) who receive a replica of item x . For two given sets of items A and
B find a replica dissemination function R which guarantees the existence of a rendezvous
peer for each pair (a, b). 8(a, b) 2 A⇥ B : R(a)\ R(b) 6= ;

There are numerous different ways to solve the rendezvous problem, each with its
own advantages and disadvantages. All solutions share a number of properties which
stem directly from the definition of the problem.

First of all, the bandwidth cost of a rendezvous search is independent of the complexity
of the query evaluation, which makes it especially competitive, as the bandwidth costs
of other solutions grow due to the complexity. Therefore, they are an excellent choice
for complex queries. The rendezvous problem can be solved with a complexity O(

p
n).

Secondly, rendezvous search systems can answer arbitrary queries. Let the function
M(a, B) denote the items matching the query a out of the set B of items stored at a
given node. This match function can easily be implemented for a vast range of query
languages. The advantage of rendezvous search systems is to always keep complete data
items instead of breaking them up into distributed data snippets as, e.g., in inverted
indexes. Rendezvous search systems partition by document instead of partitioning by
key.

16



2004

2006

2008

2010

2003

2005

2007

2009

2011

Data Center Unstructured P2PStructured P2P Semi-Structured P2P

Bit Zipper

Google Grid

BubbleStorm

Ferreira

SplitQuest

ROAR DHT

HautakorpiDeetoo

ROAR DC

Follow-up Work
Citation
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The third important property shared by rendezvous search systems is the separation
of concerns. The match function is completely independent of the replica dissemination
mechanism, which is inside the black box and of no concern for the application devel-
oper. This is a huge improvement for application developers. Apart from completely
hiding the highly complex network interactions, the separation of concerns allows the
application developer to re-use off-the-shelf database systems or information retrieval
libraries to implement the match function. By separating network communication from
query matching, the application developer does not need in-depth expertise of either
problem.

2.3 History and Classification

Concepts similar to rendezvous search systems like sharding for horizontal database
partitioning [19] or quorum systems for consensus and locking [59] have been popular
in the database community for a long time.

The most intuitive solution to the rendezvous problem is the grid approach as used by
Google for their web search engine [6], which originally was published in the context
of quorum systems [21]. The nodes are arranged in a grid, and each data item is
copied to every node in a random row, while each query is copied to every node in
a random column. The need for better search capabilities in P2P overlays led to a
number of independent attempts to solve the rendezvous problem for highly dynamic,
failure-prone, and self-organizing networks. In Figure 2.2 the genealogy of rendezvous
search systems according to citations and follow-up projects is depicted. Surprisingly,
even some of the newer systems seem to be completely unaware of the related work in
the area. The wide range of solutions has created a quite diverse design space. In the
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following, a survey of the existing rendezvous search overlays will be given and they
are classified according to the following criteria.

Most fundamental to the system design is the consistency model for the rendezvous
algorithm. Some systems are deterministic, i.e., they promise to produce all rendezvous
pairs as long as the preconditions are fulfilled. Probabilistic systems do not promise all
pairs, but guarantee minimum percentage of pairs produced. At first glance, determin-
istic approaches seem clearly superior to probabilistic ones, but this heavily depends on
the environmental conditions. When link and node failures are common, the precon-
ditions of a deterministic system are easily violated. In this case, they might be worse
than probabilistic systems. The CAP theorem [17, 46] shows that there cannot be a
system that provides consistency, availability, and partition tolerance at the same time.
In other terms, no system can operate with deterministic success in the presence of fail-
ures. Therefore, deterministic approaches seem to be more suited to a relatively stable
environment.

Most probabilistic rendezvous search systems build upon the theory of the generalized
birthday problem with two mutually exclusive groups [156]. The collision probability
of those two groups is 1� e�� for groups of size O(

p
�n), which is surprisingly high and

makes probabilistic systems competitive.
The second fundamental distinction is the type of overlay used. There are systems

using unstructured and systems using structured overlays. While the unstructured ap-
proaches typically have to define their own topology, the structured systems simply
build upon an existing DHT. Some approaches even build a structured routing on top
of an unstructured topology. This concept will be called semi-structured. Finally, there
are systems which do not use an overlay at all, but use global knowledge for direct con-
nections. Such approaches are useful for data center environments. Even though they
lack the self-organization of real P2P systems, they are very relevant to the evolution of
their P2P relatives.

Another interesting characteristic is the replica dissemination algorithm for items.
Data center solutions normally assume global topology knowledge and high bandwidth.
Therefore, they can use direct connections to all receivers in parallel. In P2P topologies
replicas can be placed one after another in a chain. This walk through the topology
can be deterministic or random. Long walks do not only suffer from high latency, but
are also fragile, because any dropped message loses the rest of the walk. Some systems
therefore use multiple short walks in parallel for a constant improvement. Even better
are trees, since they have logarithmic depth and a dropped message only causes loss of
a small subtree.

Replicas lost to churn need to be replaced. Some systems already provide an al-
gorithm for this replica maintenance. If replicas are not placed randomly, an update
mechanism could change their content. In a large scale distributed system this should
be done consistently even in the face of concurrent updates from multiple requesters.

The final attribute to be considered is the amount of adaptivity the rendezvous search
system supports. The minimum adaptivity for a P2P system is a self-organizing topol-
ogy. Not all systems specify their own topology mechanism but re-use existing overlays.
Since the number of replicas in a rendezvous search system typically depends on the
network size (n) or a similar topology attribute (e.g., sum of degrees), changes of such
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Figure 2.3.: Grid-based rendezvous search

properties need to be detected and replica counts need to be adapted. In addition to
network size adaptation, the replica counts can be adjusted to minimize network traffic
or response times. A couple of rendezvous search systems support such online traffic
balance adaptation. Some of the systems, especially those with a data center back-
ground, do not have complete self-organizing capabilities. Often at least some of those
capabilities could be borrowed from other rendezvous search systems.

2.4 Grid

The most intuitive approach to solve the rendezvous problem is to arrange the nodes in
a matrix- or grid-like fashion. Each item of one type (e.g., data) is replicated on every
node in a randomly chosen row and each item of the corresponding type (e.g., query)
is replicated on every node in a randomly chosen column (see Figure 2.3a). A node
receiving a query matches it against all locally stored data and returns the result to the
client that issued the query. Since every column intersects every row exactly once, the
grid is a solution for the rendezvous problem.

This approach is used in the Google Web Search Engine [6]. Each row in the system
is a shard of the total set of data, and each column is a complete copy. Each of the
globally distributed Google data centers houses at least one complete column and thus
can independently process any incoming query. Therefore, queries can simply be routed
to the closest data center to reduce response times.

When choosing the same size for columns and rows (a square), the number of mes-
sages for queries and data is O(

p
n). This is optimal in terms of total message count, if

both operations are equally common. If their frequencies differ, a rectangle shape can
improve the system’s total message count (see Figure 2.3b). More useful than message
count is the notion of bandwidth cost. The ratio between rows and columns can be
based on the bandwidth usage of queries and data to minimize the bottleneck band-
width usage [139, 140, 108]. The grid approach is able to attain a lower bound on
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bottleneck bandwidth usage and thus is—in terms of this metric—an optimal solution
for the rendezvous problem.

Unfortunately, the grid is a very static design and thus not suited for P2P environ-
ments. The system does not take network size or traffic balance changes into account,
and it is unclear how an online adaptation of size or traffic balance could work. Further-
more, failure tolerance is not an inherent part of the system design. Google solves the
problem by keeping multiple replicas of each partition per data center, but this is only a
feasible solution if node failures are rare rather than common. On the other hand, the
grid is a very efficient and deterministic solution to the rendezvous problem. In terms
of the CAP theorem the approach chooses consistency over availability and therefore is
useful for data centers, but not for P2P environments. A P2P solution needs to be much
more flexible and self-adaptive in respect to environment changes. Those shortcomings
cannot be solved by adding internal redundancy (e.g., by having multiple nodes for
each position in the grid), as they are fundamental to the design of the system.

2.5 Bit Zipper

Bit Zipper [141] was the first attempt to solve the rendezvous problem with a P2P
system. It builds upon a DHT that supports the key-based-routing (KBR) interface [29].
The basic idea is to map the two-dimensional grid to the one-dimensional key space
of the DHT. The solution chosen by Bit Zipper, even though not explicitly stated by
its authors, is to use a space filling curve for this mapping (see Figure 2.4a). More
precisely, it is a z-order curve [94]. The mapping is achieved by taking the row and
column numbers of a rendezvous peer and interleaving their bits.

The dissemination algorithm of Bit Zipper works as follows. Each data item and
query are assigned a (random) seed key. Then every even bit of the seed key for a data
item and every odd bit of the seed key for a query are declared wildcards. An item is
then sent to every possible key in the DHT that can be generated by assigning concrete
values to the wildcards. This can be done in practice by splitting the message in both
directions whenever a wildcard bit needs to be resolved during the key-based routing.
The dissemination algorithm forms a tree in the DHT. The rendezvous peer of a given
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query-data pair can be determined by “zipping” the bits of the query key together with
the bits of the data key (see Figure 2.4b).

Bit Zipper is a deterministic approach that relies on the consistency and routing capa-
bilities of the underlying DHT. Experiments on PlanetLab have shown that a DHT like
Chord [136] can have more than 2% of failed lookups due to the usual network anoma-
lies [47]. If a typical fraction of nodes in the overlay is behind a NAT, the amount of
failed lookups rises beyond 5%. Such a high failure rate disqualifies DHT-based systems
from most open-membership application scenarios for Internet-based P2P rendezvous
search systems. In a more controlled environment, DHT-based systems can be useful
nonetheless.

Bit Zipper uses 6

p
n messages to place 2

p
n replicas. That makes it a constant factor

less efficient than the static grid solution. Unlike the grid, the system automatically
scales with the number of nodes, due to the fractal nature of its dissemination mech-
anism. The authors do not specify any maintenance mechanism for the replicas. The
normal mechanisms provided by DHTs do not seem helpful here, because they are not
designed to deal with such a large number of replicas of the same item stored at dif-
ferent DHT key locations. Therefore, it is unclear how Bit Zipper would perform under
churn.

Bit Zipper does support traffic balancing with a balance factor b. The first b bits
are not used for wildcards in the item type with the higher load, and are all wildcards
for the other type. This traffic balancing is unfortunately not dynamic but pre-defined
during application design, which limits its usefulness.

The Bit Zipper paper is based on theoretical analysis only and lacks any type of ex-
perimental evaluation.

2.6 ROAR

ROAR (rendezvous on a ring) [110, 109, 108] takes an approach similar to Bit Zipper
by mapping the grid to a circular key space. In contrast to Bit Zipper, ROAR maps rows
to intervals in the key space. A data item is replicated to each node in a randomly
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chosen interval. A query is sent to a randomly chosen node within each interval (see
Figure 2.5).

The initial design of ROAR [110] defined that the system runs on top of a DHT like
Chord [136]. The later publications [109, 108] assumed a data center scenario with
global knowledge and one hop routing instead. ROAR is a deterministic system in both
cases. Although the data center solution, of course, is more efficient, ROAR can also be
compared with the other decentralized and self-organizing rendezvous search systems
and thus both scenarios are considered here.

The data center solution requires O(
p

n) direct messages for the dissemination of an
item. In the DHT scenario the data dissemination would require an O(log n) lookup for
the first node in the interval followed by an O(

p
n) chain of replication messages within

the interval, which is very competitive. Unfortunately, random walks of length O(
p

n)
are very failure-prone in a dynamic P2P environment [143]. The query dissemination
would require an O(log n) lookup for each of the O(

p
n) replicas, raising the total repli-

cation cost to a not very compelling O(
p

n log n). Fortunately, the lookup results can
be cached. Thus, subsequent searches need only O(

p
n) messages as long as the target

nodes stay online.
Unlike Bit Zipper, ROAR comes with a complete replica maintenance mechanism to

mitigate the effects of churn. ROAR puts great emphasis on dynamic traffic balancing
to optimize response times. It can change the replication levels of queries and data to
adapt to changing workloads. It even supports heterogeneous node capacities.

ROAR has been evaluated mainly using numerical simulation and prototyping, but
also includes some theoretical analysis.

2.7 Ferreira

Ferreira et al. [36] were the first to solve the rendezvous problem for unstructured
P2P overlays. Due to the lack of global routing information, they chose a probabilistic
approach that is based on the random placement of replicas. To disseminate an item,
they first use an O(log n) random walk to pick a random node in the overlay [48]. They
put the replica on this node and continue with an

p
�n random walk. In each of the

following random walk steps they put a replica on the receiving node (see Figure 2.6).
� is a user-defined parameter that can be used to increase the success probability by
putting more replicas into the system. The success probability is 1� e��. Compared to
Bit Zipper, this is quite efficient. With a total message cost equal to Bit Zipper’s 6

p
n, �

would be 36, yielding a success guarantee of 15 nines.
The symmetric nature of query and data items in this system opens up new opportu-

nities. For example, application designs, where three item types rendezvous with each
other in a triangular fashion, become possible. A type could even match with itself, so
that an item of this type encounters every previously published item of its type. This
could be used, e.g., to match buddy lists in an instant messenger system against each
other to find buddies already online and publish the user’s own presence information
with a single operation. Another use-case is the implementation of self-joins for SQL-like
query languages.
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Although the authors provide a brief theoretical analysis to prove their algorithm, they
seem to misuse random walks. While it is correct that the short random walk selects a
random starting node, the nodes chosen in the long random walk are depending on their
predecessors. This is especially harmful since a random walk is likely to go back to the
predecessor, thus putting multiple replicas on the same nodes, effectively reducing the
replica count. Furthermore, long random walks are likely to get stopped prematurely
by failing nodes. These two effects reduce the desired replication degree considerably,
as shown in the experiments in [143].

The authors do not specify which kind of graph is suitable as a topology and how it
can be constructed. It seems that any expander graph would be sufficient. In order
to pick the correct length for the random walks, the system needs an estimate of the
network size n. It is not clear what the authors would suggest as a solution, but there is
a large body of work on how to solve this problem [144, 88, 96]. The system does not
have a replica maintenance algorithm either. The random placement of replicas makes
it hard to update already published items.

The system does take heterogeneous node degrees into account, but instead of using
them to improve the efficiency like [143, 108], the authors use a Metropolis-Hastings
approach to ensure uniform sampling independent of node degrees.

Unfortunately, Ferreira et al. only provide an incomplete analysis of their approach
and then build their numerical simulation on the assumption that their analysis is cor-
rect.

2.8 BubbleStorm

Even though actually being the successor to Bit Zipper, the BubbleStorm system [143,
145] is somewhat similar to the Ferreira system. It places O(

p
�n) replicas randomly in

an unstructured P2P overlay and provides a probabilistic success guarantee of 1� e��.
Since BubbleStorm is symmetric as well, it also supports self-matching types.

In contrast to the Ferreira system, it comes with a random multigraph topology and
the necessary join and leave algorithms to maintain the topology. The random topol-
ogy makes the short random walk used by Ferreira et al. unnecessary. Any topology

23



D

Data Query

R

Q

D
Q

D Q

D

Q

Q

D

Q

D

Rendezvous Node

Figure 2.7.: Tree-based probabilistic rendezvous search with BubbleStorm

neighbor is already a random sample of all available nodes. Instead of using a fragile
random walk of length O(

p
�n), BubbleStorm uses a random walk that splits in every

step, which makes it much more robust to message loss (see Figure 2.7).
BubbleStorm also provides a gossip algorithm [144] that can be used to periodically

determine an accurate estimate of the network size n. The same algorithm can be used
to estimate the traffic injected by queries and data respectively to dynamically adjust the
replica counts and thus minimize the system’s total bandwidth usage. The system can
make use of heterogeneous node capacities to further reduce bandwidth requirements.

In its original form, BubbleStorm lacks a replica maintenance algorithm. It has the
same problem of updating the randomly placed replicas as the Ferreira system.

BubbleStorm has been thoroughly evaluated using simulation [143] and analy-
sis [145]. The simulation results assert BubbleStorm a high resilience against churn
and catastrophic node failures (up to 50% simultaneous crashes). There also exists a
prototype implementation [79].

2.9 SplitQuest

SplitQuest [84] is a follow-up work to the random walk system by Ferreira et al. The
system uses a semi-structured approach. It builds upon any unstructured expander
topology, but assigns key space responsibilities to nodes based on their node identifier
as in a DHT. SplitQuest then uses an approach similar to ROAR to map data items to in-
tervals in the key space, which are called replication groups. The routing to those groups
is based on the unstructured topology and therefore probabilistic (see Figure 2.8).

To publish to a replication group, a node forwards the item to all neighbors with an
identifier within the group. The receivers store the item and in turn forward it in a
similar fashion, if they have not seen the item yet. A query carries a to-visit range,
which is used to find useful receivers. Initially, the to-visit range covers all replication
groups. After evaluating the query locally, a receiver removes its own group and selects
all neighbors within the remaining range, but at most one node from every group. It
splits the range between all receiving nodes. The search terminates when the to-visit
range only covers the group of the receiver.
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Unfortunately, the dissemination mechanisms for query and data are not symmetric,
and thus SplitQuest does not offer the self-matching capabilities of its predecessor or
BubbleStorm.

Lopes and Ferreira provide promising numerical simulation results, but the paper
lacks theoretical analysis and real-world experimentation. The authors emphasize the
system’s resilience against churn, but do not provide measurements of catastrophic fail-
ures. Replica maintenance and updates are not covered in the publication.

2.10 Deetoo

Deetoo [22] is a rather recent publication on the rendezvous problem in P2P overlays,
but surprisingly, it completely lacks references to related work in the area. It is yet
another attempt to map the grid to a DHT structure. Instead of using the same topology
for queries and data like Bit Zipper and ROAR, Deetoo uses two separate Chord rings
for queries and data. The address of a node in the data ring is the transposition of
its address in the query ring. That means a node at position (x , y) in the grid gets
the address a = x + w y on the data ring and b = wx + y on the query ring (w is
the number of addresses per row or column). With this approach, nodes on the same
column have adjacent addresses on the query ring and nodes on the same row have
adjacent addresses on the data ring (see Figure 2.9a).

Because only a very small fraction of all available addresses are actually assigned to
online nodes, Deetoo puts queries and data on a consecutive range of columns and rows
to ensure a rendezvous point for each pair with high probability (see Figure 2.9b). The
system uses a � factor much like Ferreira and BubbleStorm to place O(

p
�n) replicas

for a success probability of 1� e��.
To disseminate a query or a data item, Deetoo selects the respective ring and contacts

the first node in the interval. This node stores the item and splits the remaining interval
between those neighbors that are inside of the interval. They recursively proceed with
this interval broadcast until all nodes in the interval have been reached.

To maintain replicas, joining nodes retrieve all items they are responsible for from
their neighbors. Updates and deletions are possible through deterministic routing, but

25



Data Ring Query Ring

(a) Topology mapping in Deetoo (b) Selecting ranges of rows and columns in Dee-
too

Figure 2.9.: Deetoo

concurrent operations from multiple nodes are not considered. The separation of items
into query and data types makes self-matching types impossible. It is not explained how
the system gets an estimate of the network size n, which is required to pick the correct
replication degree.

Deetoo combines deterministic routing with probabilistic success guarantees, which
seems to be the worst of both worlds. The deterministic routing relies on the correctness
of the DHT’s routing tables and can only keep its success guarantees as long as this
assumption holds. But even then no deterministic success is guaranteed, since Deetoo
ignores the traditional concept of responsibility ranges in DHTs and instead assigns the
item only to nodes with an ID inside of the item’s replication interval. Since the interval
could contain zero nodes, dissemination could fail even with correct DHT routing.

Deetoo’s response times, success probability, and replication cost have been analyzed
mathematically and simulated numerically. A prototype evaluation is mentioned as
future work.

2.11 Hautakorpi

Hautakorpi and Schultz [56] have presented the most recent rendezvous search system
based on structured P2P overlays, which they falsely assume to be the first solution to
this particular problem. Their system runs on top of the Chord [136] or Bamboo [114]
DHTs. It is a probabilistic approach that places replicas randomly in the overlay and
uses random walks as the dissemination strategy. Therefore, it resembles a structured
topology version of the Ferreira system. The costs and guarantees are obviously the
same.

To improve the response time of queries, the authors use multiple parallel and there-
fore shorter random walks instead of a single O(

p
�n) long random walk. This constant

improvement reduces the response latency, but is inferior to the tree-like strategies of Bit
Zipper, Deetoo, and BubbleStorm. To avoid collisions between those random walks, the
nodes in the overlay are partitioned by their ID and each random walk is only forwarded
to nodes in a certain partition. This asymmetry makes self-matching types impossible.

The authors put much emphasis on the incremental deployment of their algorithm,
i.e., how to use it on an existing DHT where not all nodes are aware of the algorithm
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yet. They achieve reasonable success rates, when 50-75% of the nodes support the
algorithm (depending on the type of DHT).

Even though the system is designed to run on a DHT, there is no reason why it should
not work on an unstructured expander graph topology, since it does not make any use
of the DHT’s routing metric.

The paper gives some basic mathematical background to the problem, but does not
contain an actual analysis of the algorithm. The system has been implemented and sim-
ulated with Oversim [8]. Unfortunately, the simulation experiments do not contain any
churn. The topics of replica maintenance or updates are not touched in the publication.

2.12 Related Systems

There are a couple of systems beyond those described above, which are related to ren-
dezvous search systems. The Gnutella overlay [64] can be understood as a degener-
ated version of a rendezvous search system. It provides the same interfaces for issuing
queries, publishing data, and matching them against each other. The publication does
not replicate the data item beyond its publisher. Therefore, the query must be flooded to
all nodes in the network, which leads to an unacceptable cost of O(n)messages. Greatly
simplified, Gnutella could be understood as a degenerated version of BubbleStorm with
an extreme replication count imbalance.

The percolation-inspired search overlay from Sarshar et al. [125] can be used with
a rendezvous search interface as well. The system is based on a power-law topology,
which was believed to be natural for unstructured overlays—an assumption which has
been disproved lately [137]. In contrast to Gnutella, it replicates its data items with a
random walk of sub-linear length. Queries are also replicated with a similar random
walk at first, but then a probabilistic dissemination scheme based on bond percolation
is started from the nodes in the random walk. The system heavily depends on hetero-
geneous node degrees to perform competitively. It seems questionable if a maximum
node degree of O(

p
n) or even O(n) is the common case for typical P2P environments.

PathFinder [15, 72] is an unusual approach to structured P2P search. It uses a huge
pre-generated random graph to construct a random topology and then computes routing

27



paths between the client and the node responsible for the requested key locally based on
the pre-generated random graph. Although the algorithm seems a bit exotic compared
to traditional DHTs, it is appealing that its topology can be used for expander graph
based rendezvous search systems. The authors suggest to use BubbleStorm for arbitrary
searches on the PathFinder topology and the PathFinder algorithm itself for key-value
lookups. While this is a very useful combination of strategies, this approach unfortu-
nately requires to maintain independent replication sets for both algorithms within the
same topology. This does not only waste storage space, but might additionally lead to
consistency issues with mutable data.

The content discovery system (CDS) from Gao and Steenkiste [41, 42, 43] was proba-
bly the first search overlay to apply the idea of the grid protocol from quorum systems to
the P2P scenario. It is not a rendezvous search system, though. The CDS is an inverted
index of attribute-value pairs stored in a DHT. The authors recognized the possible im-
balance a DHT-based inverted index would impose on the nodes’ workload. Therefore,
they designed the system to replace overloaded nodes with a load balancing matrix
(LBM) of multiple nodes, which processed the put and get requests to the given key
with the classic grid protocol. Although being a pioneering work in the field, CDS had
little influence on the development of those systems and is much less powerful than a
real rendezvous search system.

2.13 Comparison & Review

Rendezvous search systems are a powerful, resilient, and flexible method of large-scale
distributed search. This makes them a perfect building block for sophisticated P2P appli-
cations. An application developer can pick from a wide range of different solutions, se-
lecting an approach that fits best into the existing infrastructure and fulfills the applica-
tion’s non-functional requirements. The similar interfaces of rendezvous search systems
would make applications conceptually portable between different rendezvous search
implementations, which is especially useful if the application requirements change.

There are multiple solutions for each environment: data center, structured P2P, and
unstructured P2P. In the context of data centers, the classic grid approach is easy to
implement and efficient. ROAR on the other hand is much more sophisticated and
provides a high degree of self-adaptivity.

For structured overlays, the choice is much harder to make. Bit Zipper is fast, de-
terministic, and probably easy to implement. ROAR—running on a DHT—has rather
slow and failure-prone sequential dissemination, but is feature-rich with replica main-
tenance and traffic balancing. Deetoo has fast dissemination and replica maintenance,
but would need to borrow traffic balancing from ROAR. Unfortunately, it cannot guar-
antee deterministic success. It is also unclear how expensive the maintenance of two
Chord rings is in practice. The system from Hautakorpi is not very compelling in com-
parison to the others. It is comparatively slow on dissemination, does not support
replica maintenance or updates, and only has probabilistic guarantees. The possibility
of an incremental deployment is an unique selling point, though.

In the area of unstructured overlays, the Ferreira system has pioneered the field, but
is slow, fragile, and has problems with replica placement. BubbleStorm is definitely
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Publication [6] [141] [36] [143,
145]

[110] [108,
109]

[22] [56] [84]

Year 2003 2004 2005 2007 2007 2009
2011

2010 2010 2010

Substrate

data center yes yes
structured yes yes yes yes
unstructured yes yes (yes)
semi-structured yes
Routing

deterministic yes yes yes yes yes
probabilistic yes yes yes yes yes
self-matching yes yes
Replication

data direct tree walk tree walk direct tree walk tree
query direct tree walk tree lookup direct tree walks trees
maintenance yes yes yes
Updates

possible yes yes yes yes yes yes
consistent
Self-Adaptivity

network size yes yes yes yes yes yes yes yes
traffic balance yes yes yes

Table 2.1.: Comparison of rendezvous search systems

more sophisticated and provides traffic balancing and fast, reliable dissemination. The
two systems are the only ones able to use self-matching types, but neither supports
updates or offers a solution to replica maintenance. SplitQuest with its semi-structured
concept is a very interesting new approach that might combine the resilience of unstruc-
tured systems with the efficiency of structured overlays. It is fast and supports updates,
but does not have traffic balancing, replica maintenance, or self-matching types. The
biggest downside is, that the theory behind SplitQuest is an open issue which makes it
impossible to calculate the success guarantees of the system.

The high replication degree of rendezvous search systems is both a blessing and a
curse. A large number of replicas not only makes a system naturally resilient against
data loss because of churn and catastrophic failures, but also allows a very even load
distribution between nodes. Unfortunately, most of the systems lack mechanisms for
replica maintenance and updates. Even those systems that are able to update data
items do not deal with consistency problems on concurrent updates. The high replica
count makes this especially challenging in the area of unstructured overlays, in which
the whereabouts of replicas are hard to determine.
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Since this work aims to solve replica maintenance in open-membership overlays,
which operate in a highly unreliable Internet-based environment, data center and
structured rendezvous search systems do not provide a useful basis. In the field of
unstructured rendezvous search systems, BubbleStorm is the most evolved and reliable
system. Therefore, it will serve as the basis for the replica maintenance algorithms pre-
sented in this work. Nonetheless, the algorithms can be applied to other unstructured
rendezvous search systems and—to some extent—to their data center and structured
cousins as well.

30



3 BubbleStorm
The replication mechanisms presented in this work are targeting BubbleStorm, because
it currently is the most sophisticated of the unstructured rendezvous search systems.
Unstructured systems seem to be the most resilient class of rendezvous search systems,
and therefore the best choice for open-membership Internet-based P2P overlays. Other
probabilistic systems like the random walk system by Ferreira et al. [36] or the DHT-
based random walk system by Hautakorpi and Schultz [56] are similar enough for the
mechanisms to be as easily implemented with these systems. However, BubbleStorm is
the most mature solution and thus the natural choice.

The BubbleStorm system has been presented at ACM SIGCOMM 2007 [143]. Ad-
ditional information like the proof of correctness can be found in the accompanying
technical report [145]. The basic structure of the BubbleStorm system like topology,
item dissemination, network size measurement, and traffic balancing are covered in
the dissertation of Wesley Terpstra [140]. The implementation of BubbleStorm uses
CUSP [146], which is a novel transport protocol designed for complex and dynamic dis-
tributed systems like P2P applications. It has been developed as part of the BubbleStorm
research project.

For the reader’s convenience, an overview of the existing BubbleStorm infrastructure
is given here. The system builds upon a random multigraph topology protocol, which
enables a random tree-based item dissemination mechanism known as bubblecast. In
BubbleStorm, a set of replicas of a given item is called a bubble. The topology is also
used by a gossip protocol which is able to compute network-wide sums, averages, min-
ima, and maxima [144]. This is used to measure the network size, which is needed to
determine bubble sizes. The system-wide traffic injection of each type of bubbles is also
measured with the gossip protocol. This information is used by the bubble balancer to
compute optimal bubble sizes with respect to bandwidth usage.

3.1 Concept

Query Bubble Data BubbleRendezvous

Figure 3.1.: Intersecting bubbles in BubbleStorm

BubbleStorm is a probabilistic and unstructured rendezvous search system. Each item
(data or query) is replicated on a random set of nodes. This set of replicas specific to
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certainty factor � 1 4 9 16
traffic factor (

p
�) 1 2 3 4

probability 1� e�� 63.21% 98.17% 99.99% 99.99999%

Table 3.1.: Intersection probability as a function of �

the given item is called a bubble. Bubbles that carry the same type of item (e.g., a
certain type of data records) are grouped together into a bubble type. BubbleStorm
takes care that bubbles of bubble types which are supposed to intersect (like query and
related data) do rendezvous with a certain probability. This probabilistic guarantee of
P(fail) e�� can be tuned by the application developer by setting the certainty factor �
of the intersection (see Table 3.1). The sizes of two intersecting bubble types are chosen
by the system to suffice the following theorem and using the definition g(z) := 1� e�z.

Theorem 1. Place x replicas of type X and y replicas of type Y uniformly at random on
n nodes. Let M be the number of nodes receiving at least one replica of each type. Then,
P(M = 0) e�� whenever,

g(�/n) g(x/n)g(y/n)

Theorem 1 is only valid for homogeneous networks with uniform node degrees. It
can be generalized for heterogeneous networks by using a number of additional graph
properties of the topology.

Definition 2. Let d(v ) be the degree of node v 2 V in a graph (V, E).

Dj :=
nX

i=1

d(i) j

dmax := max{d(v )|v 2 V}

In BubbleStorm, D
0

, D
1

, D
2

, and dmax need to be monitored. D
0

is the network
size (D

0

= |V | = n), D
1

is the sum of degrees, which is twice the number of edges
(D

1

= 2|E|), D
2

is the sum of squared degrees, and dmax is the maximum degree in the
network. The heterogeneous formulation of the bubble size equation is as follows:

Theorem 2 (The Bubble Size Equation). Place x replicas of type X and y replicas of type
Y on the nodes V with probability proportional to their degree d(v ). Let M be the number
of nodes receiving at least one replica of each type. Then P(M = 0) e�� whenever,
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Ç
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å

✓
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◆

The bubble size equation ensures the probabilistic guarantees given by BubbleStorm.
Proofs for Theorem 1 and Theorem 2 can be found in [140].
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3.2 Topology

BubbleStorm’s main concept—replicating bubbles to a random set of nodes—heavily
depends on the overlay’s topology. BubbleStorm uses a random multigraph topology,
which means that each edge connects two randomly chosen nodes. It is a multigraph,
because two nodes may be connected by more than one edge (a multi-edge) and an
edge might even connect a node with itself (a self-loop). Multi-edges and self-loops are
extremely rare in large networks and thus do not impact the performance, but are very
useful for bootstrapping a small network and simplify the topology protocol.

An overlay topology should avoid partitioning of the graph. Unfortunately, the basic
definition of random graphs does not require the graph to be connected. Therefore,
BubbleStorm’s topology is based on an Eulerian circuit, which is a tour through all
edges of the graph that visits every edge exactly once. In contrast to an Eulerian path,
an Eulerian circuit ends at the starting node and thus forms a cycle. Every node appears
d(v )/2 times in the circuit. This occurrence of the node is called a location.

In order to build a connected random multigraph based on an Eulerian circuit, ev-
ery node picks a number of locations equal to its desired degree. These locations are
then randomly permuted. The permutation defines the path of the Eulerian circuit and
thus the edges the graph contains. Since every node with a non-zero desired degree is
contained in the circuit, the graph is connected.

The notion of a desired degree is a useful concept for load balancing. Every topology
edge carries the same expected load and therefore the expected load of a node scales
linearly with its degree. In BubbleStorm, every node decides the capacity (bandwidth,
CPU, storage) it wants to offer to the system, and the desired degree is derived from this
capacity. The topology will take care that the node gets a degree equal or close to its
desired degree. There is a minimum degree, which a node has to match to participate as
a peer in the overlay. It is currently set to 16. Nodes with a capacity that does not suffice
for a degree of 16 should use more powerful peers as a proxy to access the overlay. Such
proxies are called super nodes in peer-to-peer networks and have been successfully used
by unstructured systems like Gnutella [64], FastTrack [85], and Skype [53].

The main challenge is to define a protocol that creates and maintains the specified
topology in a decentralized, self-organizing, and iterative fashion. The node that is
creating a BubbleStorm network connects its locations in a daisy chain. All edges in the
network are self-loops at this point. When a node wants to join the overlay, it contacts
an arbitrary node in the overlay. It uses this bootstrap node to start a random walk of
length O(log n) for each location. The random walk is long enough to select a node
in the random graph with a probability proportional to its degree [12]. The receiving
node then selects one of its edges at random. The two steps combined select a random
edge with uniform probability.

This edge is then split. Instead of being connected to each other, the two nodes of
the edge connect to the joining node. This leaves their degree unchanged and adds
two neighbors to the joining node for each location. Therefore, each node can get
to its desired degree (if it is even) without affecting the degree of any other node.
This procedure is equivalent to adding the node’s locations at random positions in the
Eulerian circuit (see Figure 3.2).
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(a) The nodes in the random
graph

JJ

(b) The corresponding Eulerian circuit

Figure 3.2.: A node with two locations joining the BubbleStorm overlay

When a node wants to leave, it simply connects the two neighbors of each location
back together. Not all nodes leave the network orderly: some crash, some lose con-
nectivity or power. In this case, the neighbors cannot be spliced together. They will
detect the loss of a neighbor after a communication timeout and have to remove the
connection from their neighbor table, which reduces their degree by one. This is called
a broken edge. If the node’s effective degree is at least two below its desired degree, it
can create an additional location to find two additional neighbors with a random walk.
Broken edges cannot be repaired, but if a node’s location consists of two broken edges,
this inoperable location can be deleted, which reduces the number of broken edges in
the overlay.

Random graphs are extremely robust. Even with a large number of edges removed,
the vast majority of nodes (the giant component) will stay connected [12]. This is not
only important for resilience against individual or large scale crashes, but enables
BubbleStorm’s operation in spite of broken connections due to firewalls, NATs [132],
and communication anomalies. In contrast, DHTs require connections between certain
nodes to operate correctly, e.g., Chord [136] requires each node to be connected to its
direct successor. Since such requirements do not hold on the Internet, Chord shows a
significant and uncontrollable failure probability of several percent in real-world exper-
iments [47].

3.3 Bubblecast

BubbleStorm uses trees to replicate items randomly in the network. The bubblecast
mechanism combines the advantages of random walks and flooding. In flooding, the
sender forwards the message to all its neighbors, which process it and forward it to all
their neighbors (except the sender) in turn. This process is repeated recursively for a
number of hops. Due to its large fan-out, flooding is fast and reliable, but the simple hop
counter makes it impossible to select a precise number of receiver nodes. In a setting
with heterogeneous node degrees, the edge load becomes unbalanced. A node with a
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Figure 3.3.: An example bubblecast with a branch factor of 2

high degree will forward more messages to its neighbors, because it is receiving a lot.
This makes degree-based load balancing impossible.

A random walk is the exact opposite. It is only ever forwarded to a single random
neighbor. Therefore, its hop counter can precisely select the number of receivers. Ran-
dom walks also induce even load on all links in the topology [12], which is perfect
for degree-based load balancing. Unfortunately, random walks of length O(

p
n) are

extremely slow and unreliable in large networks [143].
Bubblecast forwards messages to a fixed number of randomly selected neighbors in

each step and splits the remaining number of nodes to reach between the receivers.
Therefore, it shares the fast and reliable tree structure of flooding and the precise re-
ceiver count and edge load balance with random walks. Branching 4-way in every step
has proved to provide excellent response times [140].

Essentially, bubblecast recursively chops up the random walk. The set of remaining
nodes can be understood as an interval. Every receiving node removes the head ele-
ment, because it processes the message itself. It then splits up the remaining interval
equally between the nodes it forwards the bubblecast to (see Figure 3.3). Like in a ran-
dom walk, this imposes a numbering on the nodes, which can be used by the replication
mechanisms described later. The numbering happens in depth-first preorder.

Bubblecast, like flooding or a random walk, does not truly place items randomly in
the network. All items of a bubble are inside of a connected subgraph. Since query
and data are using the same topology, this means that there are fewer exterior edges
to reach the data bubble than there should be with true random placement. Therefore,
the success probability is less than in theory. BubbleStorm uses a dependency correction
factor, that increases bubble sizes to compensate for the interdependency. This correc-
tion should also be used with related rendezvous search systems like Ferreira [36] and
Hautakorpi [56]. The dependency correction factor F is defined as

F :=
D

2

D
2

� 2D
1
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3.4 Bubble Balancer

The bubble balancer computes bubble sizes with respect to the bubble size equation
to ensure the requested guarantees. It also applies traffic balancing to minimize the
bandwidth usage of bubblecasting. Every type of bubbles t 2 T injects a certain amount
of raw traffic St into the overlay. This traffic is the sum of the sizes of all items of
that type being disseminated (which can be measured system-wide with BubbleStorm’s
gossip protocol). Let xt be the bubble size of type t. The total bandwidth usage of a
bubble type is St xt .

The balancer seeks to minimize the total system traffic (subject to Theorem 2), which
is X

t2T

St xt

This optimization problem can be formulated convex [140] and solved with a convex
optimizer [14]. BubbleStorm monitors St for all bubble types and uses this information
for a periodic recalculation of the bubble sizes. To avoid all too sudden jumps, the
traffic data is smoothed with an exponentially weighted moving average. BubbleStorm
is currently the only rendezvous search system that is able to monitor and optimize its
bandwidth usage without needing any manual intervention.

3.5 Gossip Protocol

Topology, bubble balancer, and bubblecast depend on measuring global system at-
tributes. The topology needs the network size n (= D

0

) for computing the length of
the O(log n) random walks for joining. The bubble balancer uses the topology proper-
ties D

1

, D
2

, and dmax , and traffic measurements St for the correct and traffic-optimal
calculation of bubble sizes. Bubblecast needs D

1

and D
2

for calculating the dependency
correction factor.

The measurements contain input from all nodes, and the results are required by each
node. BubbleStorm therefore deploys a gossip protocol that allows collective calcula-
tion and system-wide dissemination of sums, averages, minima, and maxima of data
provided by the participating nodes.

The gossip protocol is based on the push-sum algorithm [67], which uses mass con-
versation and density convergence to provide measurements after O(log n) message
exchanges. In BubbleStorm, the algorithm has been adapted for asynchronous and
completely decentralized communication [144]. The protocol is round-based and pro-
vides a new set of results after every measurement round. During a round, each node
sends fractions of its current measurement values to its neighbors in a round-robin
fashion. Received measurements are added to the local values. When the local mea-
surement has been stable for a sufficient number of message exchanges, the node issues
a round switch and notifies its neighbors, which propagate the round switch recursively.

The new round is started with fresh input values at each node. Naturally, the gos-
sip protocol causes a delay between the state of the computed measurements and the
actual state of the system. This delay consists of the measurement round needed for
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computation and the time since the last measurement round output. Therefore, the
measurement delay is between one and two rounds (see Figure 3.4). This influences
the time span BubbleStorm needs to adapt to changed environment parameters, which
can be seen in simulations (see Section 10).

3.6 CUSP

Early implementations of BubbleStorm revealed the limitations of the traditional Inter-
net transport protocols, TCP [104] and UDP [103]. TCP offers many powerful features
like reliable in-order delivery, flow control, congestion control, and fragment reassem-
bly, but is specifically designed for scenarios with a single application data stream per
connection. In BubbleStorm, many concurrent messages for topology, gossip, and bub-
blecast need to be routed through the same connection. Since especially bubblecast
messages can be larger than an IP packet, they are concurrent and independent data
streams. An application using BubbleStorm for, e.g., video streaming or content distri-
bution, would add long-lived bulk data streams. TCP would suffer from head-of-line
blocking, which means that a lost packet in any stream stops progress in all other con-
current (and independent) streams. Using a separate TCP connection per stream is not
a good solution, since it would require a slow three-way handshake each time.

UDP is not really an alternative. It is an extremely simple, unreliable datagram pro-
tocol, that can only be used as a platform for application-level protocols. Re-inventing
transport level functionality like congestion and flow control at application level for
each application protocol separately seems wasteful and shortsighted.

TCP and UDP do not even provide confidentiality and authenticity. Any application
requiring a minimum of security would need to use TLS/SSL [32] on top of the transport
protocol, adding message header overhead and additional handshake steps.

Therefore, we decided to design a novel transport protocol, the Channel-based Unidi-
rectional Stream Protocol (CUSP) [146], which comprises the above mentioned features
and is flexible enough to satisfy the many different requirements in complex application
scenarios. While other modern transports like SCTP [134] or SST [39] have also tried to
combine the advantages of TCP and UDP, CUSP overcomes their technical and concep-
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tual shortcomings. Like SST, CUSP multiplexes dynamically created lightweight streams
on a channel between two nodes. Low-level packet management like negotiation, cryp-
tography, congestion control, and reliability are being managed by the channel. Streams
ensure in-order delivery and can be created and destroyed without an expensive three-
way handshake. Unlike in SCTP and SST, CUSP’s streams are unidirectional, because
many routing overlay scenarios do not need bidirectional streams. If bidirectional com-
munication is required, two unidirectional streams (one in each direction) can be used
as easily as bidirectional streams.

Because new protocols running directly on IP are hard to deploy, since they typically
require kernel-level privileges and have to be supported by intermediate systems like
firewalls and NAT routers, CUSP is encapsulated in UDP packets. This enables easy
deployment and non-privileged userland implementations. Furthermore, existing UDP
techniques for NAT traversal can be re-used [116].

Although originally designed for BubbleStorm, CUSP is a full-fledged transport pro-
tocol and could be used for any application that works with TCP, SCTP, or SST. It is
especially useful for applications with many complex and concurrent operations. It has
already been used for a real-time MMOG gaming application [74, 75].

The problems tackled by CUSP are not unique to P2P overlays. HTTP [38] suffers
from many problems like head-of-line blocking, connection setup latency (especially
with encryption), and the lack of server-initiated messages. The SPDY protocol [49]
tries to solve most of these problems by modifying HTTP, but keeps TCP for ease of de-
ployment. By using (the also easy-to-deploy) CUSP instead of TCP, SPDY could achieve
even more and with less effort.

3.7 Evaluation

For the original BubbleStorm conference publication [143], an early version of Bub-
bleStorm was evaluated with a custom-built message-based simulator. The very space-
efficient implementation in C allowed for experiments of up to one million nodes. It
did not use CUSP, but a simple simulation model of TCP, and the protocols for topology
maintenance and gossip. Furthermore, the traffic balance was static. Nonetheless, the
results give a good impression of the capabilities of the lower layers of BubbleStorm,
which are used as the basis for the replica maintenance and update mechanisms. An
in-depth performance evaluation of the current BubbleStorm implementation can be
found in the dissertation of Wesley Terpstra [140].

BubbleStorm is compared to the random walk system by Ferreira et al. [36] and
the Gnutella flooding network [64]. All simulations were conducted with a � of 2 (=
98.17% success probability). BubbleStorm provides the guaranteed success as specified
(see Figure 3.5a). The Ferreira system drops in success because of the fragility of long
random walks and the problem with collisions (see Section 2.7). Gnutella breaks down
from overload at 100k nodes.

The response time plot shows a similar picture (see Figure 3.5b). Random walks can-
not offer competitive latency. Gnutella performs great for small networks, but becomes
quickly saturated.
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Figure 3.5.: Performance evaluation of BubbleStorm, Ferreira, and Gnutella from [143]

The traffic analysis divides into topology and item dissemination traffic (see Fig-
ure 3.5c). The Ferreira system is run on the BubbleStorm topology. It uses significantly
more traffic, because, unlike BubbleStorm, it cannot benefit from node heterogeneity.
Gnutella is extremely inefficient and collapses at a network size of 100k. It dies of con-
gestion even though it is using only ⇡ 35% of the available bandwidth. This is caused
by the load imbalance introduced by flooding in a heterogeneous network.

Figure 3.6 shows the success of BubbleStorm after 90% of all nodes leaving or 50%
of all nodes crashing simultaneously. This is a very extreme stress test for any overlay
network. BubbleStorm quickly recovers in both cases. In the crash scenario, the success
rate drops temporarily, as messages are sent to crashed nodes before their disappearance
is discovered by timeouts. In the leave scenario, a longer time disruption happens as
the nodes wait to get their neighbors’ edges spliced together. In both cases the success
rate increases temporarily. This is caused by the delay of the gossip protocol. The
measurements do not yet reflect the reduced network size and therefore the bubble
sizes are too big. That the success rate does not reach the specified level again, is not
caused by the leave event but is an artifact of the simulation setup. The network is
growing rapidly after the leave event, because the global arrival rate is unchanged. In
this case, the delay of the measurement protocol makes bubble sizes too small.

More details about the simulation setup, additional results, and an in-depth discussion
of the observations can be found in the paper [143].
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Figure 3.6.: BubbleStorm under catastrophic failures (from [143])
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3.8 Review

BubbleStorm is a versatile and sophisticated rendezvous search system, that has been
designed and implemented with painstaking attention to correctness and performance.
Based on a solid theoretic foundation, the system proved to be extremely resilient and
very adaptive. Equipped with the versatile CUSP transport and the useful gossip pro-
tocol, BubbleStorm provides a good set of tools for the implementation of the replica
maintenance and update mechanisms presented in the following chapters. These mech-
anisms are needed to make BubbleStorm a complete system, which can be used in
practice.
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4 Replication Modes in P2P Overlays
Replication is an essential feature for any P2P search overlay. Without replication, churn
would cause search index structures to decay over time. Many search overlays and es-
pecially the rendezvous search systems use replication to improve scalability and search
success rates. Not only data items are replicated, queries are often copied to many
nodes too. Even though replication plays a major role in the design of search overlays,
its importance is missed by many overlay developers, and the role of replication in P2P
overlays has not been systematically examined yet.

Replication is the placement of information items on multiple distinct nodes in a
distributed system. In the context of P2P search overlays, replication consists of the
dissemination, maintenance, and update of items. The dissemination of items describes
the original placement of replicas in the network. The maintenance of replicas ensures
the desired replication degree in the face of churn. Update mechanisms manage the
freshness and consistency of replicas when the item is updated. This should include
resolving conflicts on concurrent update requests.

In this chapter, a taxonomy for P2P search overlay replication is presented. Four
replication modes are identified and motivated: instant, fading, managed, and durable
(see Figure 4.1). These four fundamentally different modes are compared and put into
context of the current state of the art in P2P replication. The fundamental difference of
the replication modes suggests that more than one replication algorithm is needed to
cover all modes.

instant fading managed durable

persistent?

long-term relevance?

independent of publisher?

yes

yes

yes

no

no

no

Figure 4.1.: Replication modes in P2P networking
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4.1 Instant Replication

In order to categorize the different replication modes, the different requirements of the
application scenarios need to be examined. The most essential question is, whether
the items need to be stored. Quite a few item types are non-persistent, e.g., queries
in query/data and publications in publish/subscribe. Such items are processed at the
receivers and may trigger system reactions like responses or notifications, but are dis-
carded immediately afterwards. This class of items does not need maintenance and can
by its nature not be updated. I call this the instant replication mode.

4.2 Fading Replication

Even if the item is persistent, the overhead and complexity introduced by replica main-
tenance is not always justified. Short-lived information like position updates [86] or
additional replicas to relieve hot-spot peers [91] are typical candidates for this replica-
tion mode, which will be called fading. If replicas are not maintained, the replication
degree will shrink over time, because replica-holding peers leave the overlay. Sooner or
later the replication will not be sufficient for the desired availability and search success
anymore. Therefore, fading replication is often used for items with an expiration timer,
which are deleted after a certain amount of time, because they are outdated anyway.

4.3 Managed Replication

If maintenance for long-term persistence is needed, the responsibility for the stored
items needs to be determined. If there exists a node that can be made responsible
for maintaining the replicas the replication mode is called managed replication. The
maintainer node can be used to simplify the maintenance and update algorithms. The
maintainer can monitor and adjust replication levels without complex coordination with
other nodes. Furthermore, updates can be serialized through the maintainer, which
greatly simplifies consistency management.

I distinguish between natural owners and dynamically assigned maintainers. A nat-
ural owner is a node that is inherently linked to the managed data. This relationship
is typical for data that references a specific node. Examples are service offerings of a
node (e.g., a list of shared files) or subscriptions (e.g., a list of buddies that a node is
interested in). The lifetime of the data is bound to the maintainer node; if the node
goes offline, the data should disappear.

Dynamically assigned maintainers require a slightly more complex model. There is no
immanent relationship between data and maintainer, but data is assigned a maintainer
by some selection algorithm. An intuitive approach is to use the responsibility ranges
in DHTs to assign the maintainer. The node with the ID closest to the ID of the data be-
comes its maintainer [97, 98]. Since responsibility ranges in DHTs change under churn,
the maintainer of a certain data item can change anytime. Routing inconsistencies in
DHTs [47] can lead to ambiguities in the maintainer-data relationship. If two nodes act
as maintainer for the same data and serialize update requests independently, inconsis-
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tent states are a likely result. Dynamically assigned maintainers should therefore only
be used in reliable environments and not in large-scale open-membership overlays.

4.4 Durable Replication

If the data to be replicated is not owned by any particular node, and the environment
is too unstable to employ dynamically assigned maintainers, a collective approach is
needed. A typical usage scenario would be articles in a P2P wiki. An article does not
belong to any particular node and should stay available even if all of its authors have
left the system. Without a dedicated maintainer, the responsibility for the data item
becomes shared. This makes maintenance and update mechanisms especially challeng-
ing, because the decision making process needs to be distributed. Since this mode
aims for long-term persistence without any lifetime constraints, it will be called durable
replication.

The first challenge is to determine and contact the nodes responsible for storing a
given item. DHT-based solutions [68, 2] typically use a set of hash functions and
key lookups to find the responsible nodes. Unstructured systems can try to connect
all replica holders of an item and flood the update requests through this specialized
overlay [153].

When concurrent updates happen, a local conflict resolution has to decide which
update takes effect and which update gets rejected. Since this is a difficult problem,
most collective mechanisms rely upon external means like a reliable unique timestamp
source [2] or by enforcing application-level conflict resolution through a reject-both
strategy [153].

A notable side-effect of durable replication is the difficulty of deleting items. Only if all
replicas have been purged from the system and will not be brought back by offline nodes
re-joining the overlay, an item can be considered deleted. Otherwise, the remaining
replicas might “re-infect” the system by being spread to previous replica holders again.
A way to immunize the nodes against already deleted data is to replace replicas with
so-called tombstones or death certificates instead of deleting them [122].

4.5 Related Work

The first pure P2P search overlay, Gnutella [64], kept data exclusively local, and there-
fore did not need any replication algorithm. With the introduction of super nodes in
Gnutella and similar systems, a one-hop replication from the leaf node to the super node
became necessary. This replication follows the managed mode, with the leaf node be-
ing the maintainer. In the next generation of unstructured overlays, Gia [20] extended
this one-hop replication to all neighbors of every node, but the semantics remained
unchanged. Both Gnutella and Gia use instant replication for queries. Gnutella uses
hop-constrained flooding, while Gia employs short random walks.

Most of the better known DHT search overlays only touch replica dissemination, but
mostly leave out updates and maintenance. Chord [136] suggests to replicate the data
on a number of successors of the responsible node in the ring. Pastry [117] and Kadem-
lia [91] store the replicas on the nodes closest to the key of the data, which is quite
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similar to the Chord approach. CAN [112] and Tapestry [158], however, use a set of
different hash functions to determine the responsible nodes for a given key. Tapestry
additionally places a copy of the replica on each node along the routing paths to avoid
hot-spots. CAN, Pastry, and Kademlia employ similar types of caching, but do this on
top of the normal replica dissemination using separate mechanisms.

Chord leaves all replica maintenance and update handling to the application devel-
oper, thus only providing fading replication by itself. Tapestry and CAN use periodic
republication and expiry of items, which is a form of managed replication. In Pastry
and its storage system PAST [118], each peer monitors all other nodes responsible for
the same data. When responsibilities change due to failures or joins, the replicas are
exchanged among the affected nodes. This is an example of collective replication. CAN
and Pastry additionally use caching to mitigate hot-spots. Additional replicas are placed
along the routing paths as part of the lookup process or—in case of CAN only—actively
by overloaded replica holders. Cached replicas expire or are evicted from the cache
eventually. In both cases, the caching policy is separate and not coordinated with the
replica managing peers. This has a negative impact on possible consistency guarantees
for updates. Even worse, updates and consistency issues for items in the search overlay
are not discussed by any of the mentioned DHTs.

Kademlia follows a “the more the merrier” strategy by combining all three replica-
tion modes for maintaining persistent data. The replica holding peers contact all other
responsible peers every hour and exchange missing replicas with them, thereby imple-
menting a durable mode. Additionally, the original publisher has to refresh an item
every 24 hours or it expires, which makes it a managed replication. On top of that,
requesters put a copy of the item on the last hop of the routing path to lessen hot-spots.
These cached copies are not maintained and have an expiration counter like in fading
replication. This combination of strategies does not only add a lot of complexity, but
also limits the replication effects to the weakest of the used modes. Even though durable
maintenance is used, the lifetime of an item is limited to the publisher’s lifetime (plus
one day at most). Although managed and durable replication would allow updates, the
cached copies make consistent updates impossible. Kademlia is a good example why it
is important to decide which replication mode is appropriate for a given type of data
and not to mix them unnecessarily. A clear taxonomy makes this obvious, but without
such a concept, it is hard to completely understand the consequences of the replication
algorithm design.

The lack of consistent update mechanisms for data in DHTs has led to a number of
add-on update mechanisms. Kne�ević et al. [68] propose a system based on multiple
hash functions using durable replication. The approach solves conflicts by using version
numbers and updating the replica holding nodes in a certain order. Every peer peri-
odically queries the network for the newest version of the replicas it is responsible for.
This mechanism ensures eventual consistency even when updates have been missed,
but does not give an upper bound for convergence time.

The Update Management System [2] attempts to avoid update conflicts by using
unique timestamps which can be obtained by a timestamp service. The authors pro-
pose to run a timestamp service for each key in a distributed fashion over the DHT. The
peer responsible for a key’s timestamps effectively serializes the update requests, which
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makes this update scheme a managed replication with dynamically assigned maintain-
ers. The replica maintenance, however, is done in a durable fashion, where a peer
obtaining a new responsibility is pulling the replicas from the overlay without coordi-
nation from the maintainer.

Antony et al. [3] propose a replication and update mechanism for the P-Ring
DHT [28], which provides transactional semantics. Replicas are stored on a succes-
sor chain similar to Chord. Updates are sent to the first node in the chain, which
forwards the request to its successors. Each of the nodes only forwards the request, if it
accepts the update. The last node sends an acknowledgement in the opposite direction.
Upon receiving the acknowledgement, the nodes execute the update. To maintain the
replicas, the head periodically sends information about items to replicas along the suc-
cessor chain. The approach is a pure managed replication with dynamically assigned
maintainers.

The P2P-based wiki Scalaris [127] uses the symmetric replication mechanism [45]
and extends it with an adapted Paxos atomic commit protocol [95] for guaranteed con-
sistency of concurrent updates. The symmetric replication partitions the identifier space
of the DHT and every item is replicated to each partition. On responsibility changes, the
previous replica holder transfers the replica to the newly responsible peer. If the previ-
ously responsible peer crashed, the receiving node fetches the replica from one of the
other partitions. Since it lacks coordinators, symmetric replication can be categorized
as durable mode replication.

All these approaches have in common, that they rely on the correctness and consis-
tency of the underlying DHT. Routing anomalies and responsibility ambiguities can lead
to unforeseen results. Routing table inconsistencies are quite common in DHTs [47].

The P-Grid overlay [1] uses an epidemic update mechanism, which consists of a push
and a pull phase [30]. New updates are recursively pushed to responsible nodes, and
newly or re-joined nodes pull replicas they have missed. The system does not deal with
concurrent updates.

A replication approach for unstructured systems by Wang et al. uses chains of peers
for replication [153]. Under churn, peers originally located in the chain might become
unavailable, and therefore each peer keeps a list of multiple predecessors and succes-
sors to bridge such gaps. Updates are propagated along the chain in both directions.
Concurrent updates can be detected with a timestamped approach. In such a case, both
updates are rejected and the requesting peers are required to jointly solve the conflict.

4.6 Review & Comparison

Even though replication is an essential feature to any P2P search overlay, the design
space has not been analyzed systematically yet. The diverse types of data have varying,
even conflicting requirements. In this chapter, the common use cases of replication in
search overlays have been described, a taxonomy for replication mechanisms from them
has been derived, and existing algorithms according have been classified to this schema.
An overview of the identified replication modes can be found in Table 4.1.
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Mode
Disse

mination

Persis
tence

Maintenance

Updates
Conflict

Resolution

Use-Case Example

Instant yes no no no no query
Fading yes limited no no no short-lived data, caching
Managed yes limited yes yes n/a list of shared files
Durable yes yes yes yes yes wiki article

Table 4.1.: Comparison of replication modes

Instant replication is mainly useful for queries or publication notifications, which are
processed and forwarded, but never stored in the search overlay. This mode has at least
the following requirements: no persistence, no maintenance, and no updates.

Fading replication is very similar, but the replicas are stored in the overlay, at least for
a certain time. It is useful for temporary data or cached replicas. Fading replication can-
not be used for data that needs long-term availability guarantees or consistent updates,
but adds no maintenance overhead to the system.

Managed replication supports full-fledged maintenance and updates. It is especially
useful for data that has a natural owner. The data can be maintained and updated
by this maintainer. Since the maintainer can serialize update requests, this mode does
not need a distributed conflict resolution. Most managed replication algorithms work
with periodic keep-alive refresh messages. The variant with dynamically assigned main-
tainers even offers persistence beyond a single maintainer’s lifetime. Unfortunately, it
completely relies on the consistency of the leader election process and thus is not appli-
cable to unstable environments.

Durable replication overcomes this and can be used for long-time persistence in
Internet-based overlays. This collective approach is useful for shared data like wiki ar-
ticles, but can also be applied to user-specific information, which should stay available
when the owner is offline (e.g., account information). A collective of nodes responsible
for the same data is typically connected directly or with a dedicated miniature overlay,
which is used to exchange maintenance and update messages. Without a central point
of control, concurrent updates must be resolved by a distributed conflict resolution or
by using an external control source like an unique timestamp service.

The four replication modes are conceptually different and should not be mixed. If
techniques from multiple modes are applied to the same data, persistence or consistency
features can break and additional overhead is added. The taxonomy introduced here
can give orientation during the design of replication algorithms to enable clean and
focused designs.
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5 Data Description Primitives for
BubbleStorm

BubbleStorm is a flexible search overlay for large-scale open-membership systems in
unreliable environments. It uses a large number of replicas for queries and data to
achieve its probabilistic search guarantees. The flexibility and the extreme replication
call for a very sophisticated data management.

In this chapter, the primitives for defining bubble types and their intersections are
discussed. Four of the primitives enable the specification of bubble types of the four
replication modes described in Chapter 4, and one primitive defines the intersections
between types to enable reliable search guarantees. This primitive is called match, be-
cause it is typically used to facilitate the matching of queries against data or publications
against subscriptions. When an application developer specifies that two bubble types
must match, a rendezvous function must be given, which defines how matches are found
and handled by the receiving node.

In the context of BubbleStorm, a bubble is the set of replicas of a single item. All
bubbles of the same type of data are called a bubble type. A bubble class is the set of
bubble types that are using the same replication mode.

The set of bubble types and matches between bubble types of a given application is
called its match graph. The bubble types are the vertices and the matches are the edges.
The matching graph contains descriptions for all types of data and their interactions
and is a crucial characteristic of the application. This is comparable with relations and
prepared statements in relational databases. The matching graph is the input for the
bubble balancer, which periodically computes correct and optimal bubble sizes (see
Section 3.4).

BubbleStorm itself does not provide a data storage component. The application pro-
vides BubbleStorm an adequate data store when a bubble type is defined. Thus, all
incoming store, update, and delete requests are forwarded to this data store. This
allows the application developer to re-use existing data storage libraries like relational
databases or document repositories, while preserving maximum flexibility by separating
the communication middleware from the storage backend.

5.1 Instant Bubbles

Instant bubbles are the most simple bubble class in BubbleStorm and implement the
instant replication mode. They are non-persistent and thus do not feature replica main-
tenance or updates. Consequentially, an instant bubble type does not need a data store.
Typical use-cases for instant bubbles are queries, pub/sub-style publications, notifica-
tions, and other process-and-forget types of data. The dissemination of instant bubbles
is realized with bubblecast (see Section 3.3). Bubblecast’s tree structure enables high
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reliability and compelling response times, which makes it the optimal choice for in-
teractive requests like queries. An instant bubble does nothing useful by itself. Only
when the type is matched against a persistent bubble type, the rendezvous function will
trigger the handling of the incoming data.

5.2 Fading Bubbles

Fading bubbles are the persistent counterpart of instant bubbles. The definition of a
fading bubble requires a store function, with which incoming items can be added to the
local data store of a node. Otherwise, fading bubbles work exactly like instant bubbles.
They cannot be updated, are not maintained, and are disseminated via bubblecast.
Accordingly, there is no maintenance overhead for fading bubbles. A typical use-case
for a fading bubble type is short-lived data like position updates in online games [86].

5.3 Managed Bubbles

Managed bubbles implement the managed replication mode with fixed maintainers.
The creator of a bubble automatically becomes its maintainer. Only this maintainer can
update or delete the bubble, and if the maintainer leaves the network, the bubble will
disappear too. The data store for a managed bubble type has to provide functionality to
add, update, and delete items.

The underlying mechanism, which provides managed replication for BubbleStorm,
will be described in Chapter 6. In short, every maintainer uses bubblecast to find a
random set of so-called storage peers to hold his data. New storage peers also use
bubblecast to offer their services to a random set of maintainers. Add, update, and
delete requests are sent by the maintainer directly to the storage peers. A flush-and-
reload mechanism guarantees that orphaned and inconsistent data is removed from the
system eventually. Replica counts are automatically corrected to compensate against
churn or to adapt to new bubble sizes.

5.4 Durable Bubbles

Durable bubbles provide long-term persistence for data without a dedicated maintainer.
Durable bubbles can be created, updated, and deleted by any peer. A conflict resolution
algorithm deals with concurrent updates from multiple users.

The responsibility for certain items is assigned based on the identifier of the node,
similar to the approach of DHTs or semi-structured rendezvous search systems (see
Section 2.9). As a handy side-effect, this enables very efficient key-value lookups for
durable bubbles, like in a DHT. Every peer announces its responsibilities with a special
managed bubble. The data from these bubbles is used to fill a key-based routing table
at each peer. Through careful choice of parameters, every peer typically knows a few
other nodes for each key, therefore forming a graph for each item, which can be used
to efficiently and reliably distribute messages like update requests via flooding. Durable
deletion of items is implemented with tombstones [122]. The data store for a durable
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bubble type must support store, update, delete, and lookup requests. The details of the
durable replication will be discussed in Chapter 7.

5.5 Match Constraints

A match is defined between a subject bubble type and an object bubble type. The subject
is the bubble that triggers the rendezvous when it is received. The object is the bubble
type against which the subject is matched. The received subject item is matched against
all locally stored object items. Thus, the object type must be from a persistent class,
since an instant bubble type does not have a data store to match against.

The matching is facilitated through an application-provided rendezvous function. In
theory, the rendezvous function evaluates every pair of subject item and object item at
the local node to find matches, but that would be rather inefficient in practice. Instead,
the rendezvous function only receives the subject item and evaluates it against the local
data store of the object type, typically using highly efficient index structures.

The effects of successful matches are defined within the rendezvous function. The
application might want to return matching object items to the sender of the subject
item (query/data model) or forward the subject item to the owner of the matching
object item (publish/subscribe model), covering both active and passive search with
the same mechanism (see Section 1.1.6). It is even possible to do both, issue messages
to other parties, or trigger any other action required by the application. This concept
enables BubbleStorm to preserve the full flexibility of the rendezvous search principle
with a simple API. Convenience functionality for typical use-cases like query/data can
be easily layered on top of this API.

Some search operations, like joins in relational databases, require matching more
than two data types at the same time. In principle, BubbleStorm is capable of multi-
edges in the matching graph, but this approach would not be scalable enough for most
scenarios. Alternatively, database join algorithms like block nested loop join can be
adapted to BubbleStorm’s primitives. An in-depth discussion can be found in the paper
on how to implement distributed SQL queries with BubbleStorm [80].

Since BubbleStorm is a probabilistic rendezvous search system, it gives probabilistic
guarantees for search success. Those guarantees are tunable and controlled by the
lambda parameter of the matching primitive. See Section 3.1 for details on how lambda
works.

5.6 Comparison

BubbleStorm’s data primitives cover a large area in the replication design space and
support each of the four replication modes discussed in Section 4. Long-term and short-
term data, active and passive search, node-specific and collectively-owned items, muta-
ble and immutable data are all considered in a set of only five primitives. The richness of
replication options puts BubbleStorm ahead of the related work in P2P search overlays.

The four bubble classes offer application developers an easy to understand and flex-
ible tool set (see Table 5.1). Instant bubbles are the only non-persistent class and are
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Bubble Class Instant Fading Managed Durable
Mechanism bubblecast bubblecast maintained collective
Discussed in Section 3.3 Section 3.3 Chapter 6 Chapter 7
Store no yes yes yes
Update no no yes yes
Delete no no yes yes
Lookup no no no yes
Consistency n/a n/a eventual eventual
Implementation
Complexity

low low medium high

Maintenance
Overhead

none none low medium

Availability n/a short-term high high

Table 5.1.: Comparison of bubble classes

suited for queries and the like. Fading bubbles are similar but persistent and only useful
for temporary data. Both classes have no replica maintenance overhead and are thus
very efficient. By their nature, they cannot be updated or deleted (except by an expi-
ration timeout). Managed and durable bubbles have higher overhead, because of the
maintenance cost, but can be updated and deleted with eventual consistency. Managed
bubbles are bound to the lifetime of their publisher and can only be modified by this
node. Durable bubbles on the other hand are collectively managed and of permanent
persistence.

5.7 Application Examples

For a better understanding of the data primitives, a few typical application examples and
their respective matching graphs are discussed in the following. The graphical depiction
of the matching graph consists of a circle for each bubble type. The intersections of
bubble types illustrate match constraints between those types. The arrow points from
the subject type to the object type. A self-match, in which the same bubble type is both
subject and object, is depicted by a circular arrow.

5.7.1 Forum

An online forum is a structured discussion platform like the Usenet with its news groups.
Nowadays, average users are most familiar with web-based forums. A forum typically
consists of a hierarchical structure of (sub-)forums, each of them containing a number
of conversation threads. Each thread consists of a number of individual postings. Those
might be ordered linearly or in a tree-like fashion.

The example application (see Figure 5.1) uses two persistent bubble types: forums
and posts. Both are durable, because users expect their postings to persist over time,
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even when they leave the systems. Posts and forums also might need to be updated or
deleted by an administrator or moderator. A post would consist of author, title, body,
date, forum, thread ID, and position in the thread.

list_forums

list_threads

display_thread keyword_search
forum

post

instant
fading
managed
durable

Figure 5.1.:Matching graph for a forum application

There are four instant types for search purposes. List_forums returns all forums in the
system, so they can be displayed in the navigation section of the client application. In
a very large forum structure, the search might be limited to a number of levels under a
given root node to avoid unnecessary result traffic.

List_threads finds all posts in a given forum that have started a thread (i.e., they have
a position of zero). This bubble is sent when a user clicks on a forum to display its
contents. Display_thread finds all posts in a given thread (i.e., they match the given
thread ID). This bubble is used when a thread is clicked by the user.

The last bubble type keyword_search illustrates the power of the rendezvous ap-
proach. It is used for full-text searches on all forum posts and its rendezvous function
can be implemented easily by using an off-the-shelf keyword search engine like Apache
Lucene [92] as the data store for the posts. An application developer could even easily
provide advanced options like limiting the search to certain forums, authors, or date
ranges.

5.7.2 Instant Messaging

In an instant messaging application users query central repositories to find the users
in their contact list who are currently online. Any further communication like chat
or voice messaging and monitoring of online contacts is normally done through direct
point-to-point connections. A distributed version of the central contact repository can
be implemented very easily with BubbleStorm.

A single bubble type called buddy_list is needed to publish the own online presence
and to find the online contacts (see Figure 5.2). A buddy_list item contains the name of
the publisher, its network address, and a list of all the user names the publisher has on its
contact list. This bubble type is managed and self-matching. When a user comes online,
it publishes its buddy_list. The rendezvous function matches the incoming contact list
against the names of the owners of the locally stored buddy_lists. To ensure mutuality,
the owner name of the incoming list also needs to be in the contact list of the matching
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buddy_list conversation_history

instant
fading
managed
durable

Figure 5.2.: Matching graph for an instant messaging application

buddy_list. On a match, the name and network address is forwarded to both nodes.
When a node goes offline, it deletes its bubble automatically. If not, the replication
mechanism takes care of garbage collection.

In the age of cloud computing, users expect their conversation histories to be stored
in the network and automatically updated on a local device when it joins the system.
This functionality can also be implemented with a single bubble type. The conversa-
tion_history bubble type is durable and stores all conversations of a certain user. For
privacy reasons, such an item would typically be encrypted by the user. The durable
class provides a key-value lookup mechanism, which can find a user’s conversation his-
tory by using a hash of the user name as the item’s identifier. Since the identifier of
the item is well-known by the user, no separate search bubble is needed. The persis-
tence guarantees of the durable replication ensure that the items are kept available,
even when the user is offline for a longer period of time. This example shows that Bub-
bleStorm can be easily used as a DHT with durable replication. Getting rid of separate
structures for different search modes can reduce development complexity considerably.

5.7.3 MMOG

A central challenge in massively multiplayer online games (MMOGs) is interest manage-
ment. Each player is interested in events occurring in a certain area around its avatar.
In a P2P environment, a common solution is to establish direct connections between all
nodes that are in each other’s area of interest [126].

player_position

instant
fading
managed
durable

Figure 5.3.:Matching graph for an MMOG application

This can be implemented easily with BubbleStorm. Each player periodically publishes
its own position and its area of interest, which is implicitly defined by the position. The
player_position bubble type is self-matching (see Figure 5.3). Whenever a node receives
a position update, it matches this position against the locally stored positions and no-
tifies players that are within interest range. Since position bubbles are issued with a
high frequency and are only of short-term interest, maintenance overhead should be
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avoided. Therefore, fading bubbles with a few seconds timeout are a good choice. In-
stead of updating existing bubbles, every position update uses a new, short-lived bubble.

This communication model has already been successfully implemented for the Planet
Pi4 online game with BubbleStorm as the rendezvous overlay [86].

5.7.4 File-Sharing

The classic application scenario for P2P is file-sharing, and search is a fundamental
component of file-sharing: users need to find the content they want and the peers that
offer this content. Surprisingly, the real-world file-sharing networks have not solved
the problem of distributed search. The most popular services like the now defunct
Napster [100] or the more up-to-date BitTorrent [25] heavily rely on central, well-
known servers for metadata search and peer tracking. Other solutions like Gnutella [64]
use simple flooding techniques for search and are therefore unable to achieve the same
scalability and quality of service as their “cheating” competition.

With BubbleStorm, building a scalable and reliable search for file-sharing would not
only be easy, but also could implement a superior set of features without needing central
servers. The metadata description of files needed for search would be published with
durable file_metadata bubbles. Any file in the system would have exactly one instance
of this bubble, no matter how many peers hold a copy of the file. The identifier of the
bubble could be computed from a hash of the file’s content. This approach avoids dupli-
cates in the search result list. Appropriate files to user queries are found with a find_file
bubble, which is instant. The rendezvous function matching queries against metadata
could be highly sophisticated, featuring range queries (e.g., file sizes, publishing dates),
stemming and synonym support for keyword search (e.g., title, description), or even
more advanced techniques like picture similarity search.

find_file file_metadata

instant
fading
managed
durable

my_files find_peers

Figure 5.4.:Matching graph for a file-sharing application

The find_file search returns a list of matching file descriptions to the searching node.
When the user has selected a file to download, a find_peers search with the file iden-
tifier is issued. Find_peers bubbles match my_files bubbles, which contain a list of file
identifiers of files shared by a certain peer and the corresponding network address.
The find_peers search returns the network addresses of peers that share the requested
files. Those peers can then be contacted directly for downloads. Find_peers bubbles are
managed and persistent. My_files also match find_peers, making it a mutual matching
relationship. This means that an incoming my_files list also triggers stored find_peers
requests. The find_peers request becomes a continuous query, which keeps updating
its result list with new peers until it is deleted by the requester. That way, nodes get
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informed about new download sources immediately and without the need for repeated
polling.

My_files is also a managed bubble type, since it is bound to the node’s lifetime. The file
list is published when a node joins the network and can be updated when the shared files
change. My_files matches file_metadata. When the list is published, metadata matching
the file identifiers is returned to the publisher. The publisher can automatically detect
metadata that is missing in the network or needs updating, because it is incomplete or
conflicting with the local description. In an established network, a newly joined peer
would not need to upload a huge metadata list, since almost all of the information is
already in the network. Either it has been provided by other peers or by the node itself
in a previous session. The file_metadata is of durable type. It can be edited by any peer
that wants to improve the metadata and is not connected to any particular node.

A basic version of the BubbleStorm-based file-sharing search and tracking has already
been implemented using tracker-less BitTorrent as the content distribution protocol [34,
147].
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6 Maintainer-based Replication
The maintainer-based replication mechanism implements the replica management for
managed bubble types in BubbleStorm (see Section 5.3). It follows the managed repli-
cation mode (see Section 4.3) with a natural owner—the publisher becomes the owner
of the item. The algorithm has originally been published as a conference paper [81].
Since then, it has been extended and improved to reflect the concept of bubble types,
save on routing state for multiple documents per publisher, and to react more robustly
to environment changes. The algorithm has been designed with BubbleStorm in mind,
but is fully compatible with other rendezvous search systems. Its basic principles can be
applied to replication in any dynamic distributed system.

6.1 Model and Requirements

The node that publishes a certain item becomes the maintainer of this item. Replicas
of the item are placed on a set of nodes, which are called the storage peers of the item.
Every maintainer keeps a set of storage peers and selects from this set when a new item
is published. The replicas should remain in the network as long as their maintainer is
online. When the maintainer leaves or crashes, the items should disappear as quickly
as possible. Orphaned replicas, which have not yet been purged from the network, are
called junk. An item can only be changed or deleted by its maintainer.

The items are categorized into types. Each item of a certain type has the same desired
replica count, and all items of this type share a common data store for storing the
replicas at the storage peers. Those types correspond to the bubble types in BubbleStorm
(see Section 5).

It is assumed that the underlying rendezvous search system provides certain func-
tionality. First, an algorithm to find suitable storage peers is needed. Normally, the
algorithm used to publish data items is suitable. In the case of BubbleStorm, bubblecast
(see Section 3.3) is used for this purpose. Second, a service that regularly provides up-
dated system statistics like network size, replication degrees, and total replica count is
needed. BubbleStorm provides such a facility with its gossip protocol (see Section 3.5).

6.2 Overview

In this replication algorithm, each node serves both as a maintainer and a storage peer.
A maintainer keeps a set of storage peers to store its publications. When a peer joins
the network, it searches for an initial set of storage peers. Likewise, a node searches for
maintainers it can offer its storage to, when it joins the network. A leaving maintainer
deletes all stored items from its storage peers. A leaving storage peer silently removes
the data it holds from the system. These operations ensure a stable density of replicas
in the network in the face of churn.
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Since a rendezvous search system requires replica counts proportional to the square-
root of the network size, the maintainer needs to adjust the set of storage peers or the
assignment of data to peers when the network size changes. Because the automatic
load balancing can cause changes in bubble sizes even when the network size remains
constant, similar adjustments are necessary in this case.

When a maintainer crashes without deleting its items from the network, junk is left
behind. Instead of constantly checking the online status of its maintainers to determine
the junk status of individual items, a storage peer simply deletes all items and searches
for new maintainers when a heuristic overall junk threshold is reached.

The maintainer-based replication does not maintain exact replica counts per item,
which would be impossible or at least overly expensive in a highly dynamic P2P system,
but provides a binomial distribution of replica counts with the correct mean. This prob-
abilistic guarantee still holds under extreme amounts of churn and is fully sufficient to
support the probabilistic rendezvous search guarantees of BubbleStorm. The mathe-
matical analysis of the algorithm, which proves that the system converges to a binomial
distribution, can be found in Appendix A.

The storage operations between a maintainer and its storage nodes are implemented
with point-to-point communication.

6.3 Maintainers

Every node that publishes at least one managed item becomes a maintainer. The main-
tainer keeps track of the storage peers that hold its items and adjusts the set of storage
peers used when necessary. Since the maintainer knows the storage peers and their net-
work addresses, storage operations can be issued with direct point-to-point connections.
The maintainer node is the only peer that can modify the items it has published.

6.3.1 Joining the Overlay

Once a peer has successfully joined the BubbleStorm overlay, i.e., it has acquired topol-
ogy neighbors and is able to issue bubblecasts, it searches for storage peers. Theoreti-
cally, this operation could be delayed until the first managed item is to be published,
but this would significantly delay the publication of this item and it can be assumed
that, when managed bubble types are present, sooner or later a managed item will be
published. Especially in the case of collective replication (see Chapter 7), which uses
managed items internally, the timely availability of storage peers is crucial.

Storage peers are found with a special bubblecast called find_storage. The size of this
bubble type is the maximum of all managed bubble types registered, which ensures that
the pool of storage peers acquired is big enough to accommodate every managed bubble
type. This maximum relationship is supported by the bubble balancer (see Section 3.4).

Find_storage requests resemble fading bubble types, since they are not maintained,
but are processed by a store function when they are received. In this function, the
receiving peer becomes a storage peer for the requesting maintainer. It stores the re-
quester in its list of maintainers and sends a response to the maintainer, which contains
the necessary contact information to access its storage services.
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The bubblecast algorithm implies a numbering of the receiving nodes (see Sec-
tion 3.3), which is used by the maintainer-based replication to assign the items of
different types to the stochastically correct number of storage peers. The replication
algorithm naturally preserves a given replica density, which is the ratio of replicas to
network size. Every storage peer retrieved by find_storage is assigned a density position
p, which is the ratio of its position i in the bubblecast to the total network size n. The
density d of a managed item is computed as the ratio of its bubble type’s size b to net-
work size n. A maintainer stores a managed item on all its storage peers with a density
position equal to or smaller than the item’s density (see Figure 6.1).

Maintainer

density position

Storage Peers

high density bubble type

medium density bubble type

low density bubble type

Figure 6.1.: The assignment of di�erent bubble types to the storage pool

The internal calculations of the replication algorithm are based exclusively on density
positions. A density position of a storage peer in a maintainer’s pool does not change
over time. The problem is that, at the time of a bubblecast, the actual network size is not
known, because the gossip protocol has a measurement delay of up to two rounds (see
Section 3.5). Therefore, the network size at the time of the bubblecast is only used as
a first estimate. As a heuristic, especially in situations where the overlay grows quickly,
a new density position is decreased accordingly, if a bigger network size is detected in
one of the next two measurements that arrive.

6.3.2 Leaving the Overlay

When a maintainer leaves the network, it deletes all its managed items from the storage
peers and does not accept requests from new nodes to become storage peers anymore.
This approach follows the concept of managed replication: when the owner becomes
unavailable, its items should disappear from the system.

If the maintainer crashes or becomes otherwise unable to communicate with its stor-
age peers before (completely) deleting its items, orphaned data will be left behind on
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the storage peers. This so-called junk accumulates in the system since storage peers
never check the online status of their maintainers. Storage peers garbage-collect junk
periodically to keep it below a configurable threshold (see Section 6.4.3).

6.3.3 Self-Adaptation

Changes of network size and bubble sizes make replication adjustments necessary.
Since the maintainer-based replication approach sustains a constant replica density, the
square-root-based replica counts of BubbleStorm will not be preserved without taking
active measures upon size changes. Additionally, the bubble balancer (see Section 3.4)
may change bubble sizes independently of network size to optimize bandwidth con-
sumption.

density increase?
d' > d

remove replicas
[d', d)

add replicas
[d, d')

yes no

Figure 6.2.: Adjusting maintained bubbles on environment changes

Figure 6.2 explains how the maintainer-based replication achieves robustness despite
these challenges. When the network size changes from n to n0, and the bubble size
changes from b to b0, the target density of a bubble is adjusted from d = b/n to d 0 =
b0/n0. If the new bubble density d 0 is bigger than the previous density d, all storage
peers in the interval [d, d 0) are sent the maintainer’s items of this bubble type. If the
new bubble density d 0 is smaller than the previous density d, the maintainer’s items of
this bubble type are removed from all storage peers in the interval [d 0, d). This approach
sustains the invariant that a bubble type of a size b has an expected replica count of b.

If the highest bubble density is larger than it has been in the previous measurement
round, additional storage peers need to be acquired. A bubblecast with the appropriate
size is used to find those peers and assign them the correct density positions. If the
largest bubble density is smaller than before, the unused peers can be removed from
the maintainer’s set of storage peers.

6.3.4 Storage Operations

A maintainer can execute the following operations on a storage peer: store, update,
delete, and quit. A store request creates a new replica of an item on the storage peer.
An update request updates the content of a previously stored item. A delete request
removes an item from the storage peer. A quit request is used to notify the storage peer
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that its services are no longer required, because densities have changed or because the
maintainer is leaving the network. The quit request is only used internally and cannot
be triggered directly by the user application.

When an operation is issued, not only all affected storage peers are contacted, but an
internally kept local copy of the data is also updated. When a new storage peer is added
to the storage pool later, the maintainer immediately provides it with the data from this
local copy.

Every action, except quit, expects an acknowledgement. If no acknowledgment ar-
rives within 60 seconds, the storage peer is considered offline and is removed from the
storage pool. This reactive approach avoids keep-alive traffic at the cost of additional
local state in the form of dead storage peer entries. Since bandwidth is typically scarce
compared to local memory, this tradeoff appears to be the reasonable choice.

6.4 Storage Peers

Every node that is part of the search overlay offers its services as a storage peer. Nodes
that are not willing or capable to contribute storage capacity to the system should not
become peers in the overlay. Instead, they should become clients in a super node net-
work and use the super nodes to access the search overlay. Otherwise, the bubblecast-
based rendezvous search could not rely on a uniform probability distribution of items
in the overlay and thus not provide any success guarantees.

6.4.1 Joining the Overlay

When a node has successfully joined the overlay, it starts a find_maintainers bubblecast.
Find_maintainers has the same size as find_storage and is started in parallel. Nodes that
receive this message add the new node to their storage pool and contact it to provide
it with their managed items. The density position p of the storage peer is based on the
position of the receiving maintainer in the find_maintainer bubblecast. The idea behind
this inverse search is to find the maintainers that might have reached the storage peer
with their find_storage requests, if the storage peer had been already online at the
request time.

The expected density of existing items is preserved by this join operation. Maintainers
are selected with uniform probability by the bubblecast and the added replicas exactly
cancel the increased network size. In a network with “perfect” churn, where every
leaving node is replaced by a new one, this approach would keep the size of storage
pools balanced. Density and network size changes are handled by the maintainers as
discussed in Section 6.3.3.

6.4.2 Leaving the Overlay

When a storage peer leaves the overlay, it simply deletes all items it stores. It is not
necessary to notify the affected maintainers. Since maintainers are assigned their stor-
age peers with uniform probability and a leaving storage peer also reduces the network
size, the expected density of all items stays unchanged.
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In the context of managed replication, it would not be helpful to keep stored items
beyond sessions. If a storage peer brought back items from a previous session, multiple
problems could occur. First of all, it is not unlikely that the maintainer of an item is not
online anymore. Thus, the storage peer would bring junk into the system. Even if the
maintainer is still online or comes online again, the storage peer and maintainer may
be unable to locate each other, since their network addresses could have changed. This
kind of junk will not only be orphaned, but will also miss updates from the maintainer,
leading to inconsistent data in the overlay. Therefore, retrieving fresh data from the
currently online maintainers upon join is a much safer approach from a consistency
point of view.

6.4.3 Controlling Junk

When maintainers leave the network without being able to notify their storage peers,
junk replicas will be left behind. This can happen when a maintainer crashes, loses
power or network connectivity, or is unable to reach one or multiple of its storage peers
due to network problems. Without countermeasures, this junk will stay in the system
until the affected storage peers themselves leave and therefore delete the replicas they
hold.

Junk not only unnecessarily uses up storage space, but since it is indistinguishable
from valid data, it shows up in query results. This wastes bandwidth for the transfer
to the requester and can also negatively affect user experience, if a large portion of the
presented results is actually invalid.

A conventional eviction scheme might simply use keep-alive ping messages as a fail-
ure detection mechanism. Using a ping, a peer checks if a replica’s maintainer is online
and evicts the replica in case the ping does not return. In a P2P setting, however, such
a failure detection mechanism is very unreliable. It would eventually bias the system
towards preferentially storing replicas from either reliable or short-lived maintainers.
The problem is that a transient network failure could cause the peer to incorrectly con-
clude that the maintainer is down. This false deduction will never be corrected, because
once the replica is removed, neither party will place that replica onto the peer again.
Temporary failures thus become permanent failures. For particularly long-lived peers,
these errors will slowly accumulate, decreasing the replication degree and leading to a
non-uniform replica distribution, which can negatively affect search success.

Instead, the maintainer-based replication algorithm does not try to identify individual
junk replicas, but essentially simulates a leave-and-rejoin operation when appropriate.
This is called the flush and reload approach. A storage peer deletes all stored items,
searches for new maintainers with a find_maintainers request, receives their replicas,
and does not accept any further storage operations from its old maintainers. With this
approach, the issue of temporary failures becoming permanent is side-stepped, not by
trying to make the system reliable, but by making the system forget. A transient failure
could still cause the storage peer to miss a replica it should have stored, but on its next
reload attempt it has a fresh chance to store it.

The main challenge is to find a trade-off between remaining junk in the system and
the traffic overhead introduced by the reload operations. Fixed flush intervals are a bad
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choice. If the number of maintainer crashes increases, the amount of junk can grow
unbounded. Conversely, if no maintainers crash anymore, the reload traffic would be
wasted. A reasonable solution needs to self-adapt automatically to environment changes
to sustain the desired quality of service.

The maintainer-based replication provides a controllable probabilistic bound on the
portion of junk in the system. Therefore, the goodness factor g 2 (0,1) is introduced.
This parameter controls the desired percentage of valid replicas a peer stores on aver-
age. For instance, if g = 0.8, then on average 80% of replicas a peer stores are valid.
When g is used as a system-wide parameter, then 1� g is the expected percentage of
junk responses to a query.

To determine the threshold for flushing, the system needs to know the sum of densities
of all maintained items in the system D =

P
i di, which equals the number of replicas

each storage peer is expected to store. BubbleStorm’s global value of D can be measured
using the gossip protocol (see Section 3.5). Each maintainer provides the bubble size bi
for each item i published. This sum B =

P
i bi is then divided by the network size n.

By comparing the number of replicas it actually stores with D, a storage peer can
estimate the percentage of junk it has. To achieve a goodness g, a peer can tolerate up
to j = D(1/g � 1) junk on average. Since flushing reduces junk to zero, a peer should
flush when it reaches 2 j to get to an average of j. A naïve approach would now evict
junk once the junk level exceeds the threshold D+ 2 j.

This is almost the approach taken, but there is a subtle condition for correctness. By
reloading replicas after flushing, a replica of the item i with probability d is obtained.
To keep the density unchanged, the peer must also have had a replica with probability
d before flushing. This is only true if storage peer v ’s decision to flush is independent
of the replicas it stores (*):

P(i loses replica |v flushes) = P(v stores i |v flushes)
⇤= P(v stores i) = d

Simply flushing when the threshold is reached is unsafe because peers with the most
replicas flush first. So when v flushes, it is more likely to be storing a replica of i, and
independence is lost.

For this reason, a two-bucket approach is used. Maintainers are randomly assigned
either type #1 or #2 (e.g., using the last bit of a hash of their address). When a storage
peer receives a replica from a maintainer of a certain type, it stores the replica in the
respective bucket. When it has to delete a replica, it removes it from the corresponding
bucket. This division makes it safe to use the traffic flow through bucket #1 in deter-
mining when to flush bucket #2 and vice versa. That is, when one bucket reaches the
threshold, the other bucket is flushed.

Let r be the number of replicas in one bucket. The bucket contains the expected D/2
valid replicas plus the junk j/2, i.e., r = D/2+ j/2. The goodness factor requires that
g ⇤ r, i.e., g(D/2+ j/2) replicas are valid on average. As the bucket contains D/2 valid
replicas, D/2 = g(D/2 + j/2), which can be rewritten as j/2 = D/2(1/g � 1). The
threshold is reached when twice the desired junk has accumulated, i.e., j per bucket,
so that the average will be correct. Thus, the threshold of an individual bucket is r =
D/2+ j = D/g � D/2, i.e., half the threshold of a storage peer.
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6.4.4 Flush Cost Analysis

Flushing is surprisingly cheap. Consider counting every item transfer, which seems a
reasonable metric. Any system which preserves the replication degree must create new
replicas when storage peers join the system, and thus transfer at least as many replicas
as the maintainer-based replication. The same argument applies when the density is
increased. However, flushing and reloading adds additional transfers to recover flushed
valid replicas.

To measure this cost, consider a system where only necessary transfers occur. Initially,
storage peer v pulls an average D/2 replicas into bucket #1 with find_maintainers.
Thereafter, v receives x replicas from new maintainers performing find_storage. Unfor-
tunately, v now decides to flush, wasting transfers. For simplicity, assume v again pulls
D/2 replicas and receives x pushes before its next flush. Before the F th flush, peer v
has performed F(D/2+ x) transfers, when only D/2+ x F were needed. Letting F grow,
the percentage of wasted transfers is,

F(D/2+ x)
D/2+ x F

� 1=
D(F � 1)
D+ 2x F

⇡ D

2x
, amortized for large F

To make this equation useful, x needs to be found. Suppose that for every item cre-
ated, another item is on average deleted. This is the case for a network in equilibrium.
Storage peer v saw x pushes, so it should also have seen x deletes. However, if c is the
percentage of maintainers which crash (and thus don’t delete their replicas properly),
storage peer v ’s bucket will have j = cx junk replicas when it flushes. When s flushes,
j = D(1/g � 1). Solve for x to find the overhead which is,

percentage of wasted transfers⇡ D

2x
=

c

2/g � 2

For example, consider g = 0.8, requiring 80% of replicas to be valid. With no crashes
(c = 0), there is no overhead. With 10% crashes, the overhead is 20% on the longest
lived peers. In the real world, the overhead will be even smaller, because most peers
have a much smaller F than infinity.

6.5 Extensions

Beyond the basic functionality already explained, the maintainer-based replication of-
fers a couple of features that can further improve its usefulness and versatility: eventual
consistency enabled by maintainer serialization, exploiting heterogeneous peer capaci-
ties, and uniform bubblecast for correct maintainer selection in heterogeneous environ-
ments.

6.5.1 Eventual Consistency

Given that each valid item has a single live maintainer, updates can be easily controlled
by the maintainer. Deletion is considered a special case of an update. Although in
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most applications, the maintainer will be the only node updating its items, others can
be allowed to update by simply sending their update requests to the maintainer. By
tagging each object with its maintainer’s address, the maintainer of an object can be
found easily.

As maintainers already keep a list storing a superset of their storage peers, this stor-
age pool can be used for update management too. Whenever an update occurs, the
maintainer sends the new version of the item (or the changed delta) to all peers in its
storage pool. In principle, this updates all replicas in the system.

However, recall that maintainers remove non-responsive peers from their storage
pool. If a transient network failure occurs, then the maintainer might incorrectly re-
move a peer from the storage pool and later fail to update it. This leaves temporarily
inconsistent replicas in the network, a problem that cannot sensibly solved in an open-
membership P2P overlay, since it would need to sacrifice either availability or partition
tolerance [17, 46]. However, all peers eventually either leave the system or flush. Thus,
inconsistent replicas will eventually be removed, guaranteeing eventual consistency. If a
time limit on the potential inconsistency window is required, a maximum time between
flushes could be set.

6.5.2 Heterogeneous Peer Capacities

Usually not all peers have the same capacity. Thus, storage peers should have the
choice to only provide as much service as their capacities allow. In BubbleStorm, peers
in the overlay can control their relative load. To support this, every peer v picks a
capacity `v . If one peer has twice the capacity of another, it can store approximately
twice as many replicas (and serve requests on these replicas). In BubbleStorm, the
capacity `v determines the degree d(v ) of v in the topology. Since bubblecast follows
every topology edge with uniform distribution, the load induced by instant and fading
bubbles is proportional to the degree (see Section 3.3).

To be compatible with this approach, the maintainer-based replication requires rela-
tively few changes. The network size D

0

and the sum over all capacities, D
1

=
P

v2V `v ,
are already monitored by the gossip protocol (see Section 3.5). A peer v ’s relative ca-
pacity is thus h= `v D

0

/D
1

. When all peers have the same capacity, bubblecast chooses
each peer with the same probability 1/n. In a heterogeneous setting, in contrast, it
chooses a peer v with relative capacity h with a probability of h/n. Therefore, the re-
sult set of a find_storage request will pick nodes with a probability proportional to their
capacity, which in turn leads to the desired capacity-proportional load distribution.

However, the find_maintainers algorithm has to be adjusted. A joining storage peer
must pull replicas with a bubble size scaled by h to receive the correct load.

Furthermore, maintainers must be selected uniformly at random. Therefore, bub-
blecasts for find_maintainers must not use the heterogeneous node degrees, but in-
stead select nodes uniformly at random as in a homogeneous environment. Otherwise,
the maintainers would get storage pool sizes depending on their capacity. This would
lead to non-uniform bubble sizes for the same bubble type depending on the publisher,
breaking the success guarantees of BubbleStorm. Bubblecasts with uniform selection
probability in heterogeneous topologies are explained in the next section.
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Finally, the flush threshold must substitute rh/g for r/g to reflect the individual ca-
pacity of a storage peer.

6.5.3 Uniform Bubblecast in Heterogeneous Topologies

Bubblecast selects nodes with a probability proportional to their degree. In a homoge-
neous topology where every node has the same degree, nodes are selected with uniform
probability. Since nodes in BubbleStorm should select their degree proportional to their
capacity, bubblecast selects nodes proportional to their capacity in a heterogeneous en-
vironment. For query and data replication, this is the desired and intended behaviour,
because it enables a more efficient operation [140, 143]. In special situations, however,
where nodes should be selected uniformly, e.g., when assigning maintainers to newly
joined storage peers, the heterogeneity of the topology must be compensated.

There are multiple solutions to this problem. Ferreira et al. use a Metropolis-Hastings
algorithm [5] for their random walk rendezvous search system [36]. Unfortunately, this
algorithm is only applicable to random walks, but not to tree-like distribution schemes
like bubblecast. The limited reliability and linear response times of random walks make
them unsuitable for a large-scale open-membership P2P overlay.

The solution used for bubblecast is based on response probabilities. A node receiving
a uniform bubblecast answers it with a probability proportional to its capacity. A node
with the minimum capacity hmin answers the request with 100% likelihood. Nodes
with a capacity h > hmin answer with probability hmin/h. As the minimum capacity
`min is a globally-known system parameter (in BubbleStorm it is the minimum degree),
hmin = `minD

0

/D
1

can be calculated by any node.
Since a node receives a bubblecast message with a probability h/n proportional to its

capacity, the combined probability of a node being selected and answering a bubblecast
message is hmin/n. Not answering a bubblecast in this context means, that the receiver
completely omits any local actions normally triggered by this type of message. Nonethe-
less, the bubblecast is split and forwarded normally in any case, including the removal
of the head entry of the target interval (see Section 3.3).

In order to keep the expected number of answers b⇤ to a bubblecast correct, the
bubble size b (i.e., the number of nodes selected) must be adjusted to reflect the reduced
answer probabilities. The expected number of answers per node selected is

Pn
i=1

hmin
n
=

hmin. Therefore, b = b⇤/hmin to receive the correct number of messages. This algorithm
is independent of the maintainer-based replication, and will be re-used for a similar
problem in the collective replication (see Chapter 7).
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7 Collective Replication
The collective replication mechanism implements the replica management for durable
bubble types in BubbleStorm (see Section 5.4). It follows the durable replication mode
(see Section 4.4) and thus implements replication for items that are not bound to any
owner and should persist even when the participants of the overlay change completely.
The collective replication has been designed with BubbleStorm in mind, but like the
maintainer-based replication, it can be used for any unstructured rendezvous search sys-
tem. Its principles may be useful to replication mechanisms for large-scale distributed
systems in general.

The mechanism builds upon the infrastructure of managed bubbles provided by the
maintainer-based replication (see Chapter 6) and introduces a responsibility concept
to unstructured rendezvous search systems. It also allows for inexpensive key-value
lookups with very good response times for items replicated with durable bubbles. Thus,
it introduces a powerful feature to unstructured search overlays, which previously has
been exclusive to structured systems like DHTs. The key-value lookups operate on the
same replicas used for the usual rendezvous-based search, making redundant overlay
structures for key-value lookups and complex search obsolete.

7.1 Model and Requirements

In the durable replication mode, an item is not bound to any particular node. An update-
in-place model, which is favorable due to the storage requirements, suggests that a set
of nodes is assigned responsibility for storing a certain durable item. These nodes are
called the responsibility set of this item. All operations on the durable item should be
routed to those responsible nodes. The responsibility set can change over time due to
node churn. The state transfer to the newly joined nodes must be self-organized, since
there is no dedicated authority for a durable item. In contrast to managed replication,
in durable replication a node may keep stored replicas across sessions and bring them
back into the system, because the data is not bound to an owner.

A system, in which data can be updated by multiple independent entities, needs sup-
port for concurrent updates with useful consistency guarantees, especially if the data
is replicated widely like in a rendezvous search system. A replication mechanism for
durable data is required to support insert, update, and delete operations concurrently
from multiple nodes. The CAP theorem [17, 46] implies that only a weak consistency
model like eventual consistency can be supported in a large-scale open-membership P2P
overlay (see Sections 1.1.1 and 1.1.8).

It is assumed that the underlying rendezvous search system provides certain function-
ality. The collective replication requires existing mechanisms for instant replication (see
Section 4.1) and managed replication (see Section 4.3). BubbleStorm provides those
in the form of bubblecast (see Section 3.3) and the maintainer-based replication (see
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Chapter 6). If the underlying rendezvous search system does not provide a managed
replication mechanism, fading replication (see Section 4.2) with periodic re-publication
could be used for environments with low and predictable churn.

In order to assign a node to a responsibility set, it needs some sort of permanent
identifier, the node ID, which should stay unchanged even across sessions. Otherwise,
the ability to bring replicas back into the system would be impaired. It is also assumed
that each item has an immanent identifier, e.g., a hash of its name, which allows the
system to assign it to a responsibility set. This identifier is called the item ID.

7.2 Overview

Responsibility Set

Locate Bubble
of y

Query Bubble
of z

Responsibility
Bubble of x

y

z

x

Figure 7.1.: Overview of the collective replication mechanism

In the collective replication, every node becomes part of a number of randomly as-
signed responsibility sets. Every node publishes a managed bubble, which contains its
node ID (necessary to compute its responsibilities) and its contact information. This
bubble is called the responsibility bubble (see Figure 7.1).

The nodes that receive the responsibility bubble, use this information to build a local
routing table. They also provide their contact information to the sender to enable a
bidirectional connection. The size of the responsibility bubble assures that the combined
routing tables of a small set of nodes are sufficient to find one or multiple nodes in a
given responsibility set with high probability.

When a node wants to contact the responsibility set of a given item, it issues a small
locate bubble, which checks the routing tables of the receiving nodes for appropriate
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contacts. If such entries are found, the request is forwarded directly to these nodes,
which are called the entry points. A key-value lookup would simply be a locate bubble,
which would return the replicas from the entry points directly to the requester.

When the item is to be inserted, updated, or deleted, the receiving responsible nodes
not only process the request locally, but forward it to other responsible nodes they have
in their own routing tables. The responsibility set is flooded with the request until all
nodes reachable from the entry points have received the request. To support concurrent
updates, each update is identified by a unique Lamport timestamp [73].

As the nodes of a responsibility set are randomly selected, a collectively maintained
bubble type can be used for rendezvous-based search with any other bubble type, e.g.,
an instant query bubble type.

The routing tables create a meta-topology for each responsibility set, which is called
the responsibility graph (the green bubble in Figure 7.1). The main challenge in this ap-
proach is to find the correct sizes for responsibility bubbles and locate bubbles to enable
a high probability of success without unnecessary overhead. The responsibility bubbles
have to assert that the routing tables create responsibility graphs in which most nodes
are connected to each other (i.e., have a giant component), but without introducing too
much redundancy, which would make flooding inefficient. A giant component connects
a constant fraction of the vertices of a random graph, which is much larger than all
other connected components of the graph. The locate bubbles on the other hand must
assure that an entry point within the giant component is found.

The introduction of a key-based routing scheme on top of a random topology clas-
sifies the collective replication as a semi-structured solution for the rendezvous search
problem, similar to the SplitQuest system (see Section 2.9). Additionally, the collec-
tive replication retains the symmetric matching capabilities of BubbleStorm, allowing a
durable bubble type to have match constraint with itself. Furthermore, replication and
updates are covered, and key-value lookups are added.

7.3 Responsibility

Every node that receives a responsibility bubble adds the information to its routing
table for the collective replication. It also contacts the sending node, which can add
the receiver to its routing table, enabling a bidirectional connection. The routing table
is used to forward requests to insert, update, delete, or look up a durable bubble to
the responsible nodes. The routing scheme is a one-hop algorithm. A receiving node
forwards the request to all responsible nodes in its routing table and discards it when
no responsible node is available. The node that sent the request is excluded from the
routing step. The routing table must enable a node to determine which of the contained
nodes is responsible for a given item. Assigning these responsibilities in a robust way is
a key component to the replication mechanism.

Responsibility for item IDs can be assigned in many different ways. DHTs use different
metrics like predecessor [136], numerical distance [117], or XOR [91], among others.
These metrics compare the node ID with the item ID and assign responsibility to nodes
with the minimal value, because a unique responsibility is required. Alternatively, any
node under a given threshold could be used, if a set of responsible nodes is desired,
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which is more in line with the requirements of a rendezvous search system. For the
collective replication, the threshold is the responsibility probability. The classic metrics
could be used for the collective replication, but the one-hop routing opens up additional
design freedom to be exploited.

The downside of the discussed metrics is that nodes with similar node IDs share a
large portion of responsibilities. Therefore, correlated node failures increase the chance
of a range of item IDs becoming unavailable. Additionally, some item ID assignment
schemes can lead to a biased ID distribution, which would result in hot-spots at the
nodes close-by.

In the collective replication, responsibility is assigned with a pseudo-random algo-
rithm. The assignment function takes node ID and item ID as parameters and returns a
uniformly random value for the metric. If this random value is below the responsibility
probability, the node is responsible. The probably most simple and fastest random func-
tion is the linear congruential method [69]. It multiplies an input value with a random
seed and takes it modulo the output range. The random seed has to be odd. Otherwise,
only even results would be generated.

The first 64 bits of the item ID are used as the input value and the the first 64 bits of
the node ID as the random seed, adding 1 to make it odd, if necessary. Linear congru-
ential generators are no high quality random number generators, especially when the
seed is not carefully chosen. But since the responsibilities need to be calculated when
requests are routed, they offer a good trade-off of computation speed and randomness
in scenario of responsibility computation. Compared with a classic metric, the overlap
of responsibilities between two nodes with similar node IDs is much smaller, which re-
duces the risk of losing multiple items on correlated node failures. In an environment
where computation cost is critical or resilience is not an issue, any of the classic metrics
could also be used.

7.4 Bubble Sizes

In order to achieve the desired replication degree for durable bubbles, the responsible
set and the responsibility bubbles must have the correct sizes and the locate bubble
must be big enough to find the giant component reliably. Fortunately, a sharp estimate
on the volume of the giant component of random graphs with given degree sequence
exists [23], which applies directly to the given problem. The lower bound given by
Chung and Lu is summarized in the following.

In their random graph model, each node has an expected degree d. Edges are placed
randomly between nodes, but with a probability proportional to the expected degree of
the nodes. The expected volume for a subset S of vertices, Vol(S), is defined as the sum
of the expected degrees.

Vol(S) =
X

vi2S

di

Chung and Lu provide a lower bound on the volume of the giant component and an
upper bound on the size of the second largest component.
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Theorem 3. Suppose that G is a random graph with n vertices and an expected average
degree ˜d. When ˜d � 4

e
, almost surely the giant component of G has volume at least

Vol(GCC)� cVol(G), where

c =

 
1

2

(1+

r
1� 4

˜de
) + o(1)

!

and the second largest component almost surely has size at most

1+ o(1)
log n

1+ log

˜d � log 4

Theorem 3 proves that a random graph with a sufficiently large expected average
degree is dominated by a giant connected component containing almost all nodes. In
the context of the collective replication, the random graph is the responsibility graph,
and its giant component is the durable bubble. Therefore, the size of the responsibility
set r should be the durable bubble size bdurable divided by the connectivity factor c from
Theorem 3 to compensate for the nodes isolated from the giant component.

r =
bdurable

c

Thus, a given node is responsible for a given item of bubble size bdurable with the re-
sponsibility probability,

p =
r

D
0

=
bdurable

cD
0

.

The expected average degree ˜d of the responsibility graph depends on the size of
the responsibility set r and the size bresp of the responsibility bubbles. The number
of peers a node knows for each responsibility set is the responsibility probability times
the number of entries in its routing table, because each of the nodes it knows may
be responsible for that item. Since every node publishes a responsibility bubble of
size bresp and each node receives them with uniform probability and then provides the
sender with its responsibility information, the expected number of entries in the routing
table is 2bresp.

It is to be noted that Theorem 3 only applies to undirected random graphs. The re-
sponsibility bubble only establishes a directed random graph. The undirected graph
is created by the receiver contacting the sender, establishing a bidirectional edge.
Nonetheless, preliminary simulations suggest that a directed graph may be sufficient.
The current implementation nevertheless ensures bidirectional connections to be con-
sistent with the mathematical theory.

The bubble size problem can be re-formulated as a rendezvous problem (see Theo-
rem 1 in Section 3.1): r nodes are chosen randomly to be responsible for a given item
and 2bresp random nodes are known locally at each peer. Therefore, P(M = 0)  e��,
the probability of not having a responsible peer in the local routing table, whenever,

g(�/n) g(r/n)g(2bresp/n)
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As proven in [140], the distribution of how many matches are found is Poisson in the
limit with a rate of �. In practice, that means an expected number of � responsible
nodes are found in a routing table. This simplifies the determination of responsibility set
and responsibility bubble size to a normal match constraint between these two bubble
types with parameter � = ˜d/2 (see Section 5.5).

This expected average degree ˜d determines the connectivity of the responsibility
graph and thus the size of the giant component (see Theorem 3). The connectivity
factor c has to be high enough to ensure that the majority of all responsible nodes re-
ceives an update. For BubbleStorm, ˜d = 2.0, resulting in a connectivity factor of ⇡ 75%.
Thus, typically a vast majority of at least 3/4 of all responsible nodes receive an update,
and it is highly unlikely to have a noteworthy population of any outdated version. Ad-
ditionally, the communication overhead for flooding the responsibility graph is limited
to two times the number of recipients, which is considered a sensible trade-off.

The last value to determine is the locate bubble size blocate. It has to be big enough to
find at least one entry point to the giant component with high probability. The proba-
bility that a peer has no responsible peer in its routing table is e�˜d , and the probability
that a responsible node is not in the giant component is 1� c. Thus, a node is unable to
provide an entry point to the giant component with probability (1� c)e�˜d . The failure
probability of a locate bubble of size blocate is

P(fail to locate) =
⇣
(1� c)e�˜d

⌘blocate

With ˜d = 2.0, a locate bubble size of 3 already provides a surprising >99.99% success
probability, which seems more than sufficient for most use cases. It is to be noted that
the locate bubble size is independent of the network size, enabling BubbleStorm to
lookup durable bubbles with O(1) cost and latency.

This performance advantage over the usual O(log n) of DHTs is enabled by a routing
table size of O(

p
n), the size of the responsibility bubble, whereas most DHTs only

pay O(log n). If only key-value lookup is desired, the log-based trade-off may be more
appropriate for some scenarios. In the case of BubbleStorm, high-performance lookups
are a nice side-effect of the collective replication, which can be exploited for application
design.

7.5 Joining and Leaving the Network

When a node joins the network, it publishes its responsibility bubble containing the
node identifier and the necessary contact information needed to send requests directly
to the node as a managed bubble. When a node receives a new responsibility bubble,
it offers the new neighbor all locally stored items the neighbor is responsible for. The
neighbor is thus able to download all data it should store.

When a node leaves the network, its managed responsibility bubble is deleted au-
tomatically (or garbage-collected in the case of crashes) and hence purged from the
routing tables. The node can keep the locally stored data items for use in a future ses-
sion. Upon re-joining the network, it can determine which items should be deleted,
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because it is no longer responsible for their storage, and is informed by the receivers of
its responsibility bubble, which inserts and updates it has missed.

It is to be noted that a joining or leaving node does not affect the responsibilities of
existing nodes directly, which is unlike traditional DHT algorithms, where the interde-
pendencies can be the source of inconsistencies in an unreliable environment. Instead,
only globally available network statistics from the gossip protocol are used, which is
a much safer choice for an Internet-based P2P overlay with high churn and transient
network failures.

7.6 Self-Adaptation

Overlay and workload dynamics can lead to changing network size and bubble sizes.
BubbleStorm’s gossip protocol periodically measures the relevant overlay characteris-
tics and re-calculates the system parameters. In case of the collective replication, the
responsibility of a node and the size of the responsibility bubbles may be affected.

The responsibility bubbles are managed and automatically adjusted to the new size
by the maintainer-based replication (see Section 6.3.3). This may result in the deletion
or insertion of routing table entries. The locally stored items of shared responsibility
are offered to new neighbors as discussed in the previous section.

Changes in the responsibility of a node can have two consequences: losing responsi-
bility for locally stored items and gaining responsibility for items not yet stored locally.
If a node finds that it has lost responsibility, it simply deletes the local copy. Gaining
responsibility is not detected by the node itself, but by the nodes that have received
its responsibility bubble. If the density of a bubble type increases, a node checks the
responsibility of all locally stored items of that type with all routing table entries and
compares it with the previous responsibility. If a neighbor has become responsible for
a certain item, it is offered to this neighbor. All existing items that a node has become
responsible for are offered with the same probability as receiving the initial insert or
update request, because the required responsibility graph properties are unaffected.

7.7 Key-Value Lookups

Any operation on an item of a durable type requires to locate the responsibility set. This
is achieved by issuing a locate bubble for the item ID. With high probability, the locate
bubble finds at least one node in the giant component of the responsibility set. A key-
value lookup can be easily implemented by forwarding the request to the found nodes.
Each of those nodes retrieves the locally stored item of the requested ID and returns it
to the requester. The lookup request is not flooded in the responsibility graph, because
the responses of the entry points are already sufficient.

As the locate bubble usually finds multiple responsible peers, and these may not have
the same content for a given ID, a requester may get different versions of the requested
item. The requester can filter the responses to use the highest version, which is the item
that will remain when system-wide consistency is reached eventually.

By using the infrastructure of the responsibility bubbles with its O(
p

n) state, the lo-
cate bubbles can be used to enable O(1) key-value lookups in BubbleStorm, because the
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size of the locate bubbles is constant. The lookups operate on the normal durable data
replicated in the system, which can be used to facilitate rendezvous search operations,
and therefore does not require additional replicas or parallel structures for key-value
lookups and advanced search.

7.8 Inserts and Updates

To store an item into a durable bubble, the requester uses a locate bubble to find en-
try points to the responsibility set, which then recursively forward the request to all
responsible peers reachable. Because of the giant component of the responsibility set,
which is found by almost all locate bubbles, the majority of responsible nodes will re-
ceive the request. If the rare event occurs that the giant component is not found, only
a very small amount or even none of the responsible nodes will receive the update. A
requester checks whether its request has been executed by issuing an independent key-
value lookup some time after the store request. A lookup can be made independent by
sending the locate bubble to a different set of nodes.

Unlike managed bubbles, there is no unique maintainer for a bubble, which can serial-
ize store requests. Therefore, concurrent updates can happen and need to be resolved.
When two nodes issue store requests for the same bubble simultaneously, both may
have flooded some fraction of the responsibility graph before their requests meet. If
the concurrency was ignored, both versions would retain a noteworthy fraction of the
responsibility set.

In a large open-membership distributed system, it is practically impossible to achieve
a total ordering of the requests. Instead, the system must rely on a partial ordering
scheme like Lamport clocks [73] or vector clocks [37, 90]. For a network of x partic-
ipants, vector clocks require a state of x entries, which needs to be transferred with
requests. As the system contains O(

p
n) responsible nodes in each durable bubble, vec-

tor clocks limit scalability significantly by increasing the bandwidth cost from O(
p

n) to
O(n). Therefore, Lamport clocks are used for the collective replication.

Each request is tagged with a version number and the requester’s node ID. The version
number starts at 0 for a newly created item and is increased by 1 for each update.
Inserting an item simply denotes a store request with version 0, whereas an update is
a store request with a higher version number. To avoid version number overflow, the
version field is 64 bits wide. A requester that wants to update an item, needs to retrieve
the current version number via lookup before the update. Often, the update depends
on the content of the current version anyway.

When a node receives a store request for an already existing item, it compares the
local version number ⌧l with the one of the request ⌧r . If ⌧l < ⌧r , the update is accepted
and overwrites the local version. The request is then forwarded to other responsible
nodes. If ⌧l > ⌧r , the update is discarded and is not forwarded. If ⌧l = ⌧r , the
requester IDs are compared analogously. If both attributes are identical, the request has
already been received by this node, and thus is ignored, which stops the flooding of the
responsibility graph.

Some P2P systems use mechanisms similar to two-phase-commit [51] or three-phase-
commit [130] for consistent updates, e.g., [3, 97, 98]. Even though they can provide

72



strong consistency guarantees, such algorithms have the disadvantage that responsible
peers leaving or crashing during an update cause an abort after a timeout, thus hurting
availability. In a highly dynamic environment with many responsible peers, this will
lead to many aborts and unacceptable availability. Therefore, it is necessary to trade
consistency for availability for the unreliable large-scale systems targeted here.

The approach of the collective replication limits the expected amount of inconsistency
in the network state, but tolerates inconsistent results (see previous section). The node
churn leads to constant change of the responsibility graph, which helps propagating
the newest version to previously disconnected peers. If no further updates happen, all
responsible peers will eventually converge to the same version due to replica exchange
of the self-adaptation mechanism.

7.9 Deletes

Deleting a collectively replicated item can be intricate. If a responsible node receiving
a delete request completely purged the local state of the item, future encounters with
nodes that missed the request would lead to a re-replication of the deleted item. The
population of the almost extinct item will completely regenerate eventually, obliterating
the delete request. Since it is to be expected that individual replicas that survive a
delete, countermeasures must be taken.

The traditional method is to replace replicas with tombstones or death certificates
instead of deleting them completely [122]. Delete is implemented as an update request,
which removes all content of the item. This retains the version information of a deleted
item. Surviving replicas of previous versions will be replaced by this tombstone through
replication graph changes, preventing the old versions of slowly flooding the graph.

7.10 Heterogeneity

Like all other replication modes in BubbleStorm, the collective replication should exploit
the heterogeneity of node capacities. This can be achieved by making the responsibility
probability proportional to the node capacities,

pv =
bdurable`v

cD
1

Responsibility bubbles additionally include the node’s capacity `v to enable the receivers
to calculate the adjusted responsibility.

The responsibility bubbles must be used with a homogeneous version of the managed
replication. Otherwise, high capacity nodes will have large routing tables and increased
responsibility leading to a disproportionately high routing load. Since the heteroge-
neous collective replication will be deployed together with a heterogeneous topology,
a slightly modified version of the maintainer-based replication must be used. In order
to ensure uniform routing table sizes, the find_storage requests of the maintainer-based
replication for responsibility bubbles use uniform bubblecast (see Section 6.5.3), just
like the find_maintainer requests.
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8 Methodology
The evaluation of large-scale distributed systems is non-trivial and potentially error-
prone. Network researchers have employed different evaluation methods, each of
them with its own strengths and weaknesses. Gross and Güneş [52] name mathe-
matical analysis, measurements, and computer simulation as the common evaluation
techniques. Heckmann [57] additionally mentions practical experimentation. These
four areas can be further divided into analysis, numerical simulation, message-based
simulation, packet-level simulation, prototype experiments, emulation, real-world mea-
surements, and benchmarking (see Figure 8.1).
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Figure 8.1.: Networking research methods (based on [57])

A perfect evaluation technique would be repeatable and would provide high perfor-
mance even for large network sizes, while still modeling the environment realistically.
Furthermore, it should enforce a correct isolation between the simulated entities, to
prevent unrealistic side-channels that can lead to wrong results. Ultimately, an eval-
uation method should support fair and representative comparisons between different
solutions for the same problem. Unfortunately, no single method fulfills all these re-
quirements and thus cannot produce universally valid results. Therefore, it is best to
combine multiple methods to double-check the results.
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In the following, the strengths and weaknesses of different methods are discussed. In
this work, a combination of analysis, different simulation techniques, and prototyping
assures the validity of results. The simulator and prototyping environment used for this
work is discussed in Section 9 and [79].

8.1 Analysis

Mathematical analysis uses a mathematical model to describe the system behavior by a
set of equations. Normally, only an abstract representation of the system can be mod-
eled mathematically, since the complexity of such models increases rapidly. This limits
the understanding of the system behavior, but still provides fundamental insights like
asymptotic behavior. Since the computational complexity of the mathematical model is
typically independent of the parameters, very large networks can be evaluated as eas-
ily as small ones. The big O notation allows a very coarse grained comparison of the
performance and cost of different algorithms.

8.2 Numerical Simulation

Computer simulations can be applied at many different levels of abstraction and with
different techniques. Discrete-event simulation is the most common technique in the con-
text of computer networks [52]. In this kind of simulation every state change is modeled
as an event, and events are executed in the order of their schedule time. Sometimes
round-based simulation is also used, but is only applicable to the more abstract simula-
tion models, since relatively coarse rounds instead of fine-grained timestamps are used
to model state changes.

The most abstract simulations for computer networks can be described as numerical
simulations. A very simple model is used to simulate the fundamental system behavior.
Neither the real-world limitations of computer networks like message delays, band-
width limits, transient failures nor technical details like communication protocols are
taken into account for the simulation. Instead of detailed message exchanges, the
state of remote nodes is accessed and modified directly and often instantly during
state changes. Even though the realism of such simulation results is relatively low,
numerical simulation is highly useful as a proof-of-concept in an early design phase.
The high level of abstraction can easily affect correctness, as the simulator works with
a global view which provides no isolation. Since the computational complexity is very
low, these simulations can easily scale up to millions of nodes. Numerical simulations
are typically custom-built for a specific experiment. Their level of abstraction and the
lack of standardization makes meaningful comparisons almost impossible.

8.3 Message-Based Simulation

Most P2P researchers use a more detailed form of simulation, which is called message-
based. The system is modeled as a set of nodes, which can communicate by exchanging
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messages. All state changes should be local to the affected node, modifications to re-
mote nodes are only triggered by sending messages. Similarly, remote information
should only be accessed through message exchanges, never directly.

Much emphasis in message-based P2P simulators is put on churn models, message
delays, and workloads, but the network is only modeled as end-to-end connections. If
at all, the underlying network protocols like TCP, UDP, IP, Ethernet, etc. are not simulated
realistically.

This level of abstraction provides good performance of up to many thousands of nodes
and can give rough estimates on service latency or bandwidth usage. Even though the
approach seems to isolate nodes against each other, a small inattention, like accessing a
remote node’s internal data structures, might lead to side-channels between nodes that
can invalidate the simulation results. Therefore, simulation experiments have to be im-
plemented carefully to ensure correctness. There are both custom message-based sim-
ulators for specific experiments and generic simulator frameworks like PlanetSim [44],
PeerFactSim.KOM [135], PeerSim [93], and ProtoPeer [40]. Comparisons between al-
gorithms can be done using one of those simulators, but are limited by the (typically
rather low) realism of the underlay and workload models used.

8.4 Packet-Level Simulation

Packet-level simulators provide maximal realism for network simulations. They simulate
transport, routing, and even physical layers with high accuracy. This limits not only their
capacity to a few hundred or thousand nodes, but also adds a lot of complexity to the
simulator implementation. Due to their complexity, only a few well-known community
projects like ns-3 [60] and OMNeT++ [152] and no relevant custom simulators exist.
Oversim [7] provides a P2P-specific environment for OMNeT++. The configuration of
an experiment for such a simulator is typically more complex than for more abstract
simulators. The realism of the simulation results depends on a proper configuration
and workload that models the real world accurately. If done properly, the results are
much more precise than the measurements generated by a message-based simulation.

8.5 Prototyping

The ultimate proof-of-concept is to build the system and to run it on a real network. But
implementing a sophisticated P2P system can be time-consuming by its own. Evaluating
a prototype on the Internet is even more cumbersome. It involves the deployment of the
prototype on a large number of hosts, which optimally are distributed globally. Most
research projects do not have the resources to build and maintain such a testbed, but
research initiatives exist that try to provide the necessary infrastructure to the research
community. An example of such a global testbed is PlanetLab [131], that provides
shared access to more than a thousand computers, which are made available by the
participating research organizations. The shared access to machines and the cross traf-
fic on the public Internet connections between the hosts can have a significant influence
on the experimental results. Since these circumstances are beyond the control of the re-
searcher that conducts the experiment, the repeatability of such real-world experiments
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is limited. This also limits the ability to compare different prototypes. Nonetheless, a
prototype that is deployed on a real network cannot break entity isolation with unreal-
istic side-channels.

8.6 Emulation

Emulation is an alternative to real-world experiments. A prototype is deployed in a
controlled lab environment that emulates the real world, e.g., by adding failures, de-
lay, message loss, or bandwidth constraints. The realism of the emulated environment
determines how close to real-world measurements an emulation experiment can get.
An emulator can be understood as a simulator that executes prototypes instead of
more-or-less abstract models. It offers the repeatability of simulators combined with
the isolation and realism of prototypes. This provides a good starting point for compar-
isons, but still requires realistic workload and user behavior models to yield significant
results. Executing a large number of prototype applications requires a large amount
of computing power and heavily limits performance. Dedicated hardware testbeds like
Emulab [63] provide the required environment, but are not widely available. The Slice-
Time project [155] combines the evaluation of one or a few prototypes with a large
number of simulated nodes run by the ns-3 simulator. Unfortunately, this requires both
a prototype and a simulator implementation.

8.7 Real-World Measurements

If the system prototype has been released to the public or is otherwise deployed oper-
ationally, it can be measured in the real world. This provides maximum realism, but
can be hard to measure since the machines are typically beyond the control of the re-
searcher. Nonetheless, such measurement studies have provided important insight into
P2P systems in the past [54, 124]. Real-world measurements can only be conducted
on real systems. Establishing a real-world community for a system prototype is beyond
the scope of a typical research project and a complex endeavor by itself. Therefore,
real-world measurements are most often used to derive models of user behavior from
existing systems as a parameter to simulator experiments of new systems or to improve
the understanding of system requirements. If two systems for the same purpose can be
measured in the wild, this can serve as the basis for a very well-founded comparison.

8.8 Benchmarking

A benchmark is a set of standard tests to evaluate the relative performance of soft-
ware and/or hardware components. Industry-standard benchmarks are widespread
and well-known, e.g., for microprocessors [62], graphic cards [129], databases [82],
and middleware [120, 121]. The development of a benchmark involves the definition
of a representative workload for the benchmark scenario, which can be difficult to de-
termine even for experts in the field. Benchmarks are traditionally conducted on real
hard- and software that is under the complete control of the benchmark conductor.
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This makes benchmarking incompatible with practically all other networking research
methods. Running a P2P benchmark only on fully-controlled machines is not feasible in
practice. Current research tries to apply the benchmarking approach to simulation and
emulation experiments in P2P networking [76].

8.9 Review

Table 8.1 provides a comprehensive overview of the strengths and weaknesses of the
different evaluation methods. None of them is sufficient alone. A method can provide
either repeatability and performance or realistic environment models and isolation, but
never both. Thus, a sound evaluation must use a multi-method approach to cover all
desirable features. To maximize the benefit, the different methods need to be con-
ducted independently to ensure that an error in one experiment does not impact other
experiments using different methods.

Representative comparisons are best achieved with benchmarks or real-world mea-
surements, but both tools are not applicable to most research projects. Either there is
no recognized benchmark for the given scenario or it cannot be scaled to the typical
P2P network sizes. Real-world measurements can only be done for applications de-
ployed in the real world, which is rarely the case for research prototypes. Therefore,
useful comparisons of P2P applications are currently a challenging problem.

Method
Repeatability

Performance

Comparability

Realist
ic environment

Entity
isolation

Analysis ++ ++ o – –
Numerical simulation ++ ++ – – –
Message-based simulation ++ + – - -
Packet-based simulation ++ o - o o
Prototyping - - - + ++
Emulation + - - + ++
Real-world measurements - + + ++ ++
Benchmarking o – ++ + ++

Table 8.1.: Comparison of networking research methods

A promising approach is to combine existing methods to cover new positions in the de-
sign space. The evaluation method for this work, which is described in Chapter 9, com-
bines prototyping with message-based or packet-based simulation. This multi-method
approach aims to maximize the validity of the presented results.
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9 Simulation and Prototyping
Environment

The simulation and prototyping environment developed for this work is based on ex-
tensive experience gathered in a wide range of P2P research projects, ranging from
message-based Gnutella simulations [87], custom-built message/packet simulations of
BubbleStorm with up to one million nodes [143, 144], numerical simulations of the
maintainer-based replication [81], and benchmarking concepts for networked virtual
environments [71] to prototyping P2P wikis [99] and P2P gaming overlays [74, 75].

The combined knowledge led to the design of a novel evaluation framework for
message/packet-based simulations, prototyping, and real-world experiments, gener-
ating all three modes from identical source code for the application under test. This
approach combines the advantages of simulation and experimentation while avoiding
most of their pitfalls. Together with the mathematical analysis presented in Chapters 6
and 7 and Appendix A, three of the four methods of distributed systems evaluation
(see Chapter 8) are covered. Only observation is beyond the reach of this work, since
real-world measurements can only be conducted with already deployed systems, and
standardized benchmarks do not exist for P2P replication and updates.

An early version of the evaluation framework has been published [79], as well as the
concepts of the packet delay model [66] and the session model [106, 107]. The same
framework has been used to evaluate the CUSP transport protocol [146]. The system
has recently been extended [11] to allow the execution of the experiments configured
for the simulator in a real-world testbed like PlanetLab [131] or G-Lab [128].

9.1 Overview

The key to the evaluation framework design is the definition of a narrow system in-
terface, which completely abstracts away the underlying runtime environment (see
Figure 9.1). Applications building exclusively upon this interface can be executed in
the simulator engine, in a distributed real-world testbed, and even as interactive stan-
dalone applications. Currently, a message-based overlay simulator and a real-world
engine for standalone execution implement the system interface. An experimental im-
plementation using the ns-3 packet-based simulator [60] exists, proving the portability
of the system interface.

On top of the simple UDP interface provided by the system, a complete reference
implementation of CUSP provides a full-fledged transport protocol for both simulation
and real-world execution. This design decision unburdens the simulation engines from a
lot of implementation overhead and guarantees an identical transport protocol behavior
across all runtime engines. The combination of a message-based overlay simulator and
a full transport protocol implementation places the simulation mode between the classic
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Figure 9.1.: The evaluation framework architecture

message-based and packet-based simulators. The user-space CUSP implementation also
allows deploying BubbleStorm and other applications developed with the framework
on operating systems unaware of the CUSP protocol.

Automated experiments for the simulator and the testbed mode are configured in a
SQLite database [101]. In this experiment database, the nodes, their networking ca-
pabilities, the churn model, and the workload parameters are defined. The runtime
engine reads this configuration upon startup and initializes the experiment accord-
ingly. The experiment definition can contain correlated node events like catastrophic
failures or simultaneous join events as well as notification events to application-specific
workload generators. These events are implemented using standard POSIX signals.

The experiment database is also used to store the experiment output, simplifying the
inspection of the configuration that produced the output. The output contains the data
that was written to the log and statistics module of the system interface. The config-
urable log of all nodes in the experiment is very valuable for post-mortem debugging of
the application. Step debugging of distributed environments is normally not possible,
and thus a log is probably the best tool to trace problems, which often involve multiple
nodes and a considerable timespan. The statistics contain aggregate state and perfor-
mance information of individual nodes and the whole experiment. These statistics can
be plotted directly from the experiment database with Gnuplot.

Using the same application code with different runtimes does not only eliminate re-
dundant development effort, but additionally avoids individual shortcomings of each of
the approaches. On the one hand, a simulated application can be tested and debugged
much easier than a standalone prototype of a distributed application. A simulation
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also offers perfect isolation from real-world anomalies, which are hard to separate from
application code misbehavior. A real-world experiment is by its nature never fully repro-
ducible. On the other hand, a simulation might abstract away important mechanisms of
the underlying communication infrastructure or timing constraints that can significantly
affect the application behavior. Furthermore, the lack of strict node isolation (see Chap-
ter 8) may lead to communication side-channels in a simulation, which are impossible
in a real-world deployment. By testing the application with both runtimes, it is possible
to rigorously evaluate the correctness and performance of the system under test. The
opportunity to build interactive prototype applications offers additional insight into the
usefulness and relevancy of the developed algorithms in practice. Using the framework,
a tracker-less BitTorrent client [34, 147] and a P2P gaming overlay [86] were built on
top of BubbleStorm, among others.

The framework is implemented in the functional programming language Standard
ML, using the whole-program optimizing MLton compiler [154]. For some performance-
critical portions of the code, optimized C and assembler code is used. The rest of the
chapter discusses the components of the evaluation environment in detail, starting with
the system interface, which is the core of the framework, and then continuing from top
to bottom in the component stack.

9.2 System Interface

The system interface, which decouples the evaluated system from the particular runtime
environment, consists of four major components: scheduling, communication, entropy,
and logging. These interfaces are implemented by each runtime. To minimize the im-
plementation effort for the runtimes, the interfaces are narrow, but include all common
services needed for the development of sophisticated network applications. Future revi-
sions of the system interface may add a component for persistent data storage, like file
system access and/or database connections. These have been unnecessary for the range
of application prototypes implemented so far.

9.2.1 Event Scheduling

Applications in the evaluation framework are implemented in a pure event-based mode.
Every action executed by the application is encapsulated into an event. Applications
never actively sleep or wait, but instead schedule a continuation event, if an action
needs to wait for whatever reason. Events can also be triggered externally, i.e., by
incoming messages from the network.

The main advantage of this approach is the compatibility with discrete-event simula-
tors. Event-based application code can be almost trivially mapped to the events of the
simulator engine. The downside of the approach is the lack of explicit multi-threading,
which is acceptable for dedicated network applications and even the gaming proto-
type [75]. Additionally, single-threaded applications are typically easier to implement
and thus less error-prone than their multi-threaded equivalents.

The system interface provides the necessary facilities to create, schedule, and cancel
events, and features a virtual system clock. Additionally, the application can register
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handler functions for POSIX signals, which can be used to notify an application that it
should shut down (SIG_INT) or to trigger application-specific events (SIG_USR1 and
SIG_USR2). This interface provides a very portable method of controlling the applica-
tion’s behavior without the need of additional infrastructure.

9.2.2 Network Communication

The network communication API is essentially an asynchronous UDP interface. UDP
sockets can be created, and UDP datagrams can be sent and received. UDP is a very
simple transport protocol, which can be easily modeled by a simulator runtime. Accu-
rately modeling a more sophisticated transport protocol like TCP would be much more
challenging and thus would extremely increase the runtime implementation costs. With
the CUSP implementation, a complete transport protocol is available inside the eval-
uation framework, offering a comprehensive feature set to the application developer.
CUSP internally uses the UDP system interface for network communication.

The network communication interface furthermore includes an opaque network ad-
dress structure. This address can be implemented as IPv4 or IPv6 addresses, allowing a
smooth transition path between address types.

9.2.3 Entropy

The entropy interface provides random numbers to the application for cryptographic
or stochastic operations and is used to seed the application’s internal random number
generators. In the real-network, it is implemented using operating system means such as
/dev/random or /dev/urandom. In a simulation, it provides pseudo-random numbers
from the simulator’s random number generator and thus ensures repeatability of the
experiments.

9.2.4 Logs and Statistics

The experiment output is passed to the log and statistics interfaces. The log interface
can write short messages to a logging facility. Log entries are tagged with a severity
level and a module name. Internally, the logging facility adds a timestamp and the
node identifier. The typical logging backend is the experiment database. Logs in the
database can be filtered by the tags through simple SQL statements.

The statistics interface can monitor performance metrics and system parameters mea-
sured by the application. Each statistic is accumulated over a configurable time span
(typically one second) and then written to the logging backend. Each entry includes
count, average, minimum, maximum, and standard deviation and is stored in a format
suitable for aggregation.
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9.3 Experiment Configuration

The composition and course of events of an experiment is defined in the experiment
database. The same database layout can be used for the simulator and the testbed
runtime. An experiment consists of node groups, which have configurable sizes, capa-
bilities, and churn behavior.

The size of a node group consists of a fixed part and a proportional part. The fixed
size is an absolute node count and the proportional size is the fraction of the total
experiment size. The proportional size is calculated after the fixed sizes of all groups
have been subtracted from the experiment size. Both sizes are added together to derive
the total size of the node group. This approach allows the experiment conductor to
easily scale the experiment size up and down without affecting the size of special node
groups, e.g., a group consisting of a single bootstrap server, which initializes the overlay.

The capabilities of a node include bandwidth, buffer sizes, and location, among oth-
ers. The churn behavior defines the session time distribution and special churn events,
which trigger large-scale network size changes.

Every node group is assigned an application name and command line arguments, ex-
actly like the the program would be called from the command line. The arguments can
be used to configure the application and the application-specific workload generation.
The argument parser of the churn generator supports a number of variables, which al-
low the experiment conductor to tell nodes their own IP and port, and the addresses
of other node groups, which is necessary to discover bootstrap nodes and to join the
overlay.

A detailed description of the experiment database layout can be found in [11].

9.4 Experiment Output

The runtime converts the information received through the log and statistics interface
into the configured output format. Currently, the framework supports two formats:
console and database. The console format is designed for standalone applications with
very selective log filters, but can also be redirected into a text file for post-processing.
The database format is designed for large-scale experiments and uses the experiment
database for storage. Statistical data can be plotted with Gnuplot directly from the
database (see Figure 9.2).

9.5 Churn Generation

The major difference of P2P systems compared to traditional distributed systems is the
high level of node churn, which has to be considered in the experiment setup. Unlike
application-specific workloads like search behavior, the churn generation is a generic
model, which can be applied to any application under test. It is also impossible for an
application to start itself. Therefore, the churn generation is implemented as part of the
framework.
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Figure 9.2.: Browser for selecting statistics from the database to be plottedwith Gnuplot

Nodes can either orderly leave the network, e.g., by notifying their neighbors in the
overlay or transferring their state or responsibility to a replacement node, which takes
some time, or crash immediately without any cleanup.

9.5.1 Session Model

The session model used in the framework applies a session/intersession model [106,
107], which does not destroy nodes that leave the network when their session ends.
Instead, the nodes are kept in an inactive state during the intersession time and re-join
the system when their next session begins.

In addition to the background churn, which keeps the network in a steady state with
approximately the same number of nodes joining and leaving in a given time interval,
the experiment conductor may want to change the network size by slowly or abruptly
adding or removing nodes from the network. Such large-scale changes are useful to
simulate catastrophic events that test the system’s elasticity and fault-tolerance. It
is important that these events do not affect the background churn behavior, because
otherwise unexpected side-effects may distort the steady state after the event.

The session model defines three attributes of a node’s session state (see Figure 9.3):
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stopped running stopped running stopped

join crash join leave timeout

Figure 9.3.: The session model of the churn generator

• online/offline: This attribute is controlled by the background churn. When a
session starts, it goes online. When the session ends, it goes offline. The churn
behavior configured for the node calculates the session and intersession times.
The churn behavior also defines a crash probability. Nodes that do not crash,
execute the leave procedure of the application. The initial state of a node is picked
randomly from the online/offline cycle of the used session/intersession duration
distribution.

• active/inactive: An active node is considered available and may join the network.
an inactive node does not participate in the network, even if it is online. The
experiment conductor can define churn events that set a configurable fraction of
the nodes active or inactive, either simultaneously or over time. These churn
events are used to define catastrophic events, which are independent of the online
state. If active/inactive and online/offline were combined into a single state, the
nodes added by a massive join event could have a different mean residual lifetime
as the existing nodes, which would have side-effects on the churn behavior in the
subsequent stages of the experiment. Churn events can be defined independently
for each node group and can trigger join, leave, and crash behavior.

• running/stopped: Only a node that has become both online and active joins the
network. Such a node is called running. When a node crashes, it is set to stopped
immediately. When it leaves, it is granted a five minute timeout to execute the
leave procedure. If it is still running after the timeout, it is crashed by the churn
generator.

The relationship of the session attributes can be summarized as follows:

running= (online^ active)_ shutting down

9.5.2 POSIX Signals

While joining simply means starting a node’s main function, leaving and crashing are
more subtle. The framework design goal to be runtime agnostic and to only support
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required functionality through a minimal system interface, contradicts the introduc-
tion of a specialized leave/crash interface, which would be hard to implement for the
standalone mode.

Instead, the standard POSIX signals are used to trigger the node behavior. SIG_INT
signals the node to leave. The application-specific leave procedure is implemented as
a SIG_INT handler. SIG_KILL crashes the node immediately and cannot be handled by
the application.

Additionally, the user signals SIG_USR1 and SIG_USR2 can be handled by the appli-
cation to trigger custom behavior, like starting or stopping the workload. Sending user
signals to node groups at specific points in time can be configured in the experiment
database, similar to churn events.

More detailed workload generation models are very application-specific and beyond
the scope of a general evaluation framework. Such a workload generator can be imple-
mented in the application space, even coordinating multiple nodes, as described in the
next chapter.

9.6 CUSP Implementation

The reference implementation of CUSP is implemented on top of the system interface
of the evaluation framework. Thus, the same code basis can be used for validation in
the simulator and real-world applications with the standalone mode. Additionally, the
implementation overhead of the transport layer has been removed from both the run-
time engines and the application code. This simplifies the runtime implementation and
allows for a narrow system interface, yet still provides a full-fledged transport proto-
col to application developers. CUSP can be considered the thin waist of the evaluation
framework.

9.7 Simulator Mode

The default simulator runtime is a message-based overlay simulator, which calculates
end-to-end delays with a network coordinate delay model. The entropy interface is
implemented with a Mersenne Twister random number generator [89]. The current im-
plementation of the simulator engine is single-threaded, but an experimental prototype
exists, which uses multiple processes; each being responsible for a set of statically as-
signed nodes. Only messages between nodes of different processes and synchronization
messages are exchanged between the worker processes. This design does not only allow
the use of multiple cores in a single computer, but the deployment of a simulation on a
cluster of multiple computers.

9.7.1 Network Model

The coordinate-based delay model of the simulator runtime is based on the algorithm
already presented in [66]. The mechanism uses real-world measurement data from
the CAIDA [18] and PingER [149] projects, which employ long-term measurements
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to derive base delays between host pairs and packet loss and jitter statistics between
regions. The base delays are used to position the hosts in a low-dimensional Euclidean
coordinate space. Nodes in the experiment are assigned to hosts from the measurement
set and use their delay statistics. The experiment database allows the definition of the
region of the hosts to be considered for selection for each group of experiment nodes.
The model is more realistic than most comparable solutions [66], especially topology
generators, yet it uses very little memory (a set of coordinates per node).

The original approach extracts jitter and loss data from the PingER measurements and
then uses a stateless random loss and jitter calculation based on the expected values.
This method is unrealistic, since the random jitter causes an extreme amount of packet
reordering. Since the CUSP protocol, which runs atop the delay model, uses the TCP fast
retransmit algorithm [61], any packet that is more than three packets late is considered
to be lost by the congestion control. Therefore, the excessive jitter leads to a highly
degraded congestion window and a correspondingly reduced throughput. The jitter
model is thus excluded from the simulator, since it would heavily distort the application
performance.

In addition to the base delay, which reflects the time a packet travels through the
Internet backbone, a last hop delay is added for sender and receiver, which accounts for
the significant delay that is added by certain access types like traditional ADSL or WiFi.
The last hop delay is configured in the network capabilities of the node.

If the upstream of a node is busy, when a packet is scheduled to send, it is buffered in
an output buffer for later transmission. If the buffer is too full to take the packet, it is
dropped. Similarly, an input buffer exists, which stores incoming packets that cannot be
downloaded yet. This design simulates the potential bandwidth bottleneck at the last
hop. The bandwidths and the buffer sizes of upstream and downstream are part of the
network capabilities.

9.8 Standalone Mode

As an alternative to the simulator runtime, the application can be compiled in the stand-
alone mode, which uses the operating system services to implement the system inter-
face. In this mode, the application can be executed as a native binary. Linux, Windows,
and Mac OS X are supported as standard target platforms, other UNIX-compatible oper-
ating systems and processor architectures are supported by the compiler, but have not
been tested. A standalone application can be used for interactive applications or for
execution in the testbed environment.

9.9 Testbed Mode

The testbed mode shares the runtime with the standalone mode. A standalone applica-
tion can be automatically deployed to a network evaluation testbed like PlanetLab [131]
or G-Lab [128] and instrumented by the testbed churn generator. A central master
script, started by the experiment conductor, connects to the available testbed hosts con-
figured in the experiment database via SSH and copies all required executables and
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configuration data to the selected machines. The master reads the experiment config-
uration from the database and assigns a number of experiment nodes to each testbed
host.

A local management process on the testbed servers starts and stops the application
nodes according to the churn model and sends them signals, if required. After the exper-
iment run, the individual experiment databases of the application nodes are collected
and aggregated into one result database. This result database has the same schema as
the simulator database and can be used with exactly the same plotting tools.

9.10 Example Applications

Figure 9.4.: The Planet Pi4 Massively Multiplayer Online Game [75]
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Figure 9.5.: Implementation of Planet Pi4 in the evaluation framework
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The main purpose of the framework has been to debug and evaluate the implemen-
tation of CUSP and BubbleStorm. It is nonetheless a general-purpose simulation and
prototyping framework, which can be used to implement a wide range of applications.
The system has been successfully used to evaluate the sophisticated online gaming ap-
plication Planet Pi4 [74] (see Figure 9.4).

The current implementation of Planet Pi4 does not only support the P2P overlays
BubbleStorm and pSense [126] for in-game communication, but also a reference client-
server implementation [75] (see Figure 9.5). The client and the server are two separate
applications, which can be run in the same experiment, because the simulator allows
running node-specific applications. The workload for Planet Pi4 can be either generated
manually, using an interactive 3D game interface, or automatically by game bot artificial
intelligence. The game is implemented in C++ and uses the C bindings of CUSP and
BubbleStorm to use the framework. As it is using the framework’s system interface
exclusively and is single-threaded, it can be executed in the simulator.

Figure 9.6.: Torrent search with BubbleStorm [34]

Another application, which has been built on top of the framework, is a BitTorrent
client that uses BubbleStorm for decentralized torrent search and tracking [34, 147]
(see Figure 9.6). The application is written in Java and uses the JNI bindings of Bub-
bleStorm. Since the project is multi-threaded and uses TCP connections for BitTorrent-
compatible swarming, it cannot be run in the simulator. However, this demonstrates
that components that are built using the framework can be seamlessly integrated with
components that are completely unaware of the framework, which makes it a versatile
tool set for the development of network protocols and applications.

An implementation of the Kademlia DHT [91] is also available for the framework,
which will be discussed in the evaluation chapter.
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9.11 Review

The evaluation framework developed for this thesis is much more than a simple Bub-
bleStorm simulator. The rigorous interface design, which allows moving an application
from standalone mode into the simulator without changing a single line of code, is
aiming to advance the understanding of network application simulation in general. In
the process of implementing the framework, a number of shortcomings of commonly
used techniques have been uncovered, like the random jitter problem or distorted node
churn after large-scale simultaneous join events.

Even though the implementation of an application requires slightly more effort than in
a traditional overlay simulator, the ability to deploy the system in three different modes
easily compensates for that, since the parallel maintenance of independent code paths
for prototype and simulation is no longer necessary. Additionally, the runtimes can be
validated against each other to uncover artifacts in the results, which are caused by an
unrealistic runtime. An application that is able to run in testbed or standalone mode is
evidentially free of undesired side-channels, which can distort the system performance.
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Figure 9.7.: Typical realism and ease of use of simulation and experimentation methods

A secondary objective of the framework design is to minimize the amount of work
needed to implement additional runtimes, applications, and overlays, as well as prepar-
ing and interpreting experiments. The narrow system interface, the integrated transport
protocol, and the central experiment database with the related tools are all helping to
achieve this goal. In summary, the system provides a relatively realistic overlay simula-
tor, which can be used to deploy real-world prototypes in fully automated experiments
with very little additional effort.

Compared to the current state of the art (see Chapter 8), the evaluation framework of-
fers a better combination of realism and effort (see Figure 9.7), especially when the dif-
ferent deployment options are combined, which achieves synergy both for the amount
of work needed and validation of results. The simulator mode—although technically be-
ing message-based—benefits from the integrated transport protocol and the validation
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with the testbed mode, putting it more in line with high-level packet-based simulators.
The testbed mode on the other hand benefits from the automatic deployment, exper-
iment database, and the possibility to debug the application in the simulator, which
significantly reduces the effort to conduct prototype experiments.
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10 Evaluation
The replication algorithms are evaluated using three different scenarios. The first sce-
nario tests the long-term availability of data under churn and catastrophic events. The
second scenario tests the consistency of search results when items are updated. The
third scenario checks if items can be deleted from the network successfully.

For comparison, a basic BubbleStorm scenario with fading replication and a Kademlia
overlay are used. Fading replication does not support updates or deletion and can
therefore only be used in the replication scenario. Kademlia only supports expiration
and is therefore not used in the deletion scenario.

10.1 Experiment Setup

The scenarios are item centric. An item is inserted, updated, or deleted by a randomly
chosen node and then search requests for this item are issued by random nodes. Con-
sequently, every search has exactly one correct result (the latest version of the item).
This model is used to precisely measure the search success of BubbleStorm and make it
comparable with Kademlia, which is constrained to key-value lookups.

Since rendezvous search decouples query matching from overlay communication,
more advanced matching algorithms like keyword search would yield exactly the same
search success and communication costs. In comparison, Kademlia would need to main-
tain an inverted index inducing significantly more traffic and possibly reducing search
success. A meaningful keyword search benchmark comparing two fundamentally dif-
ferent overlay types is a complex task beyond the scope of this work. Especially, it is
hard to define a realistic workload which does not penalize either overlay type, because
the performance of each overlay depends on completely different workload parameters.
Therefore, the scenarios only use key-value matching, even though this implies a clear
disadvantage for BubbleStorm.

To measure the success, the standard information retrieval metrics precision and re-
call are used. Recall is defined as the fraction of relevant answers found. In this context,
recall is the fraction of searches that retrieved the correct item. Precision is defined as
the fraction of results that are relevant. In the update scenario, precision can be calcu-
lated as the fraction of searches with a result that returned the latest version.

10.1.1 Coordinator

In order to calculate precision and recall, the current state of an item must be known.
This requires an inter-node coordination between publishing and search nodes. In the
simulator, this information can be kept in shared memory, establishing a clearly defined
side-channel between nodes. Unfortunately, shared memory is not available when using
the distributed testbed.
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Therefore, the coordination of insert, update, delete, and search operations in the
overlay is implemented as a separate application, which communicates with the nodes.
The coordinator is a small server to which the peers connect, and which triggers opera-
tions at the nodes and provides them with the expected query result. In the testbed, the
peers and the coordinator use CUSP to communicate. In the simulator, a shared mem-
ory queue is used to eliminate the additional coordination traffic from the simulation
results.

Essentially, the coordinator implements the application workload in the evaluation
framework (see Figure 9.1). Using the coordinator approach, the same experiments
can be run in the simulator and the testbed.

10.1.2 Workload Generation

The items published in the experiments have a size of 2KB, a typical size for a small
text document or media metadata object. Initially, every five minutes divided by the
network size, the coordinator selects a random node to publish a new item with a
random identifier. Thus, on average, each node publishes a new item every five minutes.

After a publication, the coordinator waits for a cooldown of 100ms and then starts 20
search requests for this item from random nodes. The search requests are distributed
exponentially over one hour, which increases the measurement density at the beginning
of the search cycle. A node waits 60 seconds for results after issuing a search and then
evaluates precision and recall.

In the replication scenario, the item is deleted or expired after the completion of
the search cycle if the replication algorithm under test does not support deletion. In
the consistency scenario, a random node is selected to publish an update for the item
instead, and a new search cycle is started. The updating and searching is repeated until
the end of the experiment. In the deletion scenario, a random node is selected to delete
the item. The following search cycle tests if undeleted replicas remain in the system.
Again, this process is repeated until the end of the experiment.

10.1.3 BubbleStorm Prototypes

Three different setups of BubbleStorm are used in the experiment. The fading prototype
uses a fading bubble type for the data and an instant bubble type for the queries. They
match with a lambda of 4, resulting in an expected recall of ⇡ 98.17%. The managed
prototype is similar to the fading replication, but uses a managed bubble type for the
data. The durable prototype uses a durable bubble type for the data with a minimum
size of 20 replicas and uses the same instant search bubble type. All three prototypes
are designed to evaluate the ability of the respective replication mechanism to maintain
the replica distribution required for successful rendezvous search. The lookup prototype
uses a durable bubble type identical to the durable prototype, but uses lookups instead
of an instant bubble for search.
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10.1.4 Kademlia Prototypes

The Kademlia implementation used in the experiments, kindly provided by Max Lehn,
implements the Kademlia protocol as described in the original publication [91]. Using
the default parameters, the replication factor k is set to 20 replicas and ↵ equals three
parallel lookups. As suggested by the authors, plain UDP is used as transport protocol.
Since UDP does not support re-assembly of IP fragments, the maximum transfer unit
is artificially increased from 1500 bytes to 2200 bytes in the Kademlia simulation runs.
Otherwise, the transferred 2KB items would be fragmented during transmission and the
store requests would fail.

A real Kademlia implementation must either use a reliable transport protocol like TCP
or CUSP or implement its own fragment re-assembly protocol. The connection estab-
lishment and management of a reliable transport would introduce significant overhead.
A simple re-assembly protocol, however, would suffer from the combined message loss
probabilities of all fragments, which makes the transfer of larger items practically im-
possible. Neither of this is accounted for in the experiments at hand, granting Kademlia
an additional advantage.

As explained in Section 4.5, Kademlia uses a mix of replication modes in its replica
management. Replicas are autonomously exchanged between the responsible peers,
following the durable scheme. Additionally, the original publisher must refresh the item
every 24 hours or it is expired, which fits the managed scheme. This work only evaluates
the durable part, since the experiments are not long enough to trigger the expiration.
In the real world, this mechanism artificially limits the flexibility of the system.

Even worse, the caching mechanism additionally requires a searching node to put
an additional replica on the last node without the data found along the routing path.
These items have a decreased expiration time based on the number of nodes between
the caching node and the ID of the cached item. This mechanism implements a fad-
ing replication, because the cached replicas are practically impossible to update. To
illustrate the effects of this approach, the Kademlia experiments are run both with and
without caching.

It is not the intent of this work to compare the performance of key-value search of
structured vs. unstructured P2P overlays, but instead to highlight why a careful repli-
cation algorithm design is required to achieve maximum reliability and consistency.
Kademlia has been chosen for comparison, because it mixes all three replication modes
into a single replication algorithm.

10.1.5 Network Composition

Unless noted otherwise, all experiments have a network size of 1000 running nodes.
Each node has an exponential lifetime with an expected average lifetime of 60 minutes
and an online/offline ratio of 5%, resulting in a pool of 20000 total nodes to achieve the
desired online count. Under churn, 90% of the peers leave the network using the correct
shutdown procedure, while 10% crash and simply do not answer requests anymore.
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Ten well-known nodes, which are always online, are used as bootstrap hosts to join the
overlay.

In the first 45 minutes of the experiment, the nodes join the overlay with an exponen-
tial ramp-up. The overlay is granted another 15 minutes to stabilize before the actual
measurement phase starts.

Every node has a bandwidth of 16MBit/s downstream and 1MBit/s upstream, a typ-
ical ADSL2 home user connection. The nodes are distributed globally using the delay
model discussed in Section 9.7.1.

10.2 Replication Scenario

In the first experiment, the reliability of the replication and search algorithms is tested.
Items are published and searched for, but not updated or deleted. After the first hour
of network build-up, the search success in a stable network is measured for two hours.
Then a number of catastrophic events are triggered (see Figure 10.1). At three hours
into the experiment, 50% of all nodes leave the network simultaneously, using the or-
derly leave algorithm. At four hours, the network size is brought up to its previous size
of 1000 nodes again, by simultaneously joining 500 nodes. At five hours, 50% of all
nodes crash simultaneously, again reducing the network size to 500 nodes.
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Figure 10.1.: The changing network size during the replication test

10.2.1 Replication Test

Figure 10.2 and Figure 10.3 show the recall in the replication test during the second
and third hour of the experiment. The item age, which is the time span during the
publication of the item and the beginning of the search request, is plotted on the x-axis.
Figure 10.2 is plotted on a log scale for the item age to highlight the initial latency of
replica distribution. Figure 10.3 is cropped to the relevant recall of 96%-100%.

The first thing to notice is the difference in distribution latency. Fading and durable
replication are both extremely quick as they use constrained flooding mechanisms. Man-
aged replication is slightly slower as the replicas are distributed by the maintainer ex-
clusively. Nonetheless, it also gets to the desired replica degree in under one second.
Kademlia is much slower, needing up to 30 seconds before an item is successfully pub-
lished. Since Kademlia needs to ensure the k nodes closest to the item ID are selected
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Figure 10.2.: Recall vs. item age (log scale for x-axis)
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Figure 10.3.: Recall vs. item age (cropped)

and uses an iterative routing mechanism, communication timeouts can block the com-
plete store process. These timeouts happen quite frequently, because nodes leave the
Kademlia overlay without notifying their neighbors.

More interesting from a replication perspective is the long-term availability of items.
The fading replication experiences the expected linear decay over time, since no
counter-measures against lost replicas are taken. Kademlia is maintaining the high
availability for at least 40 minutes before the item availability slightly decreases. It can
be conjectured that this decrease is a result of Kademlia’s reactive replica maintenance
mechanism. Items are replicated from replica holders to the k closest nodes every hour,
but if all of the replica holders either leave or are displaced from the set of k closest
nodes due to churn, a lookup for the item may not find any replica. The caching of
replicas lessens but does not eliminate the problem. Proactive replication mechanisms
that exchange data immediately with newly discovered neighbors, like the managed
and durable replication, do not exhibit this problem.

Kademlia also fails to achieve the 100% search success one would naïvely expect
from the deterministic routing behavior. This is most likely to be attributed to routing
table inconsistencies. However, the achieved 99.5% recall is already impressive, given
the harsh conditions of a high churn overlay. The recall of the managed replication
hovers around 98.5%, close to but safely above the guaranteed recall of 98.17%. The
durable replication achieves a recall well above this mark, reaching up to the 99.5%
of Kademlia. It must be assumed that the giant component of the responsibility graph
is significantly higher than the lower bound (see Section 7.4), at least for the given
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network size and minimum durable bubble size. This may be attributed to the o(1)
component in Theorem 3. The lookup mechanism is extremely reliable, providing a
recall of 99.975% after completed replica distribution. Even though this is slightly
below the specified 99.99%, probably because of node crashes, the recall is much better
than the supposedly deterministic Kademlia.

In summary, both managed and durable replication achieve quick replica distribution
and long-term availability.

10.2.2 Large-Scale Leave
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Figure 10.4.: Recall after a 50% leave event

After three hours, 50% of all nodes simultaneously leave the overlay. The effects on
recall are depicted in Figure 10.4. The plot shows the combined recall of all search
requests with an item age of at least 30 seconds, since this is the time required by the
slowest replication algorithm to reach the desired replication degree. Fading replication
is put at a disadvantage because it loses replicas over time, but the subject of discussion
is the elasticity of the algorithms under stress and not a comparison of absolute recall
between the algorithms. Each of the values in the plot is an average of 60 seconds of
measurement, consisting of 800 to 2000 individual search requests.

After the leave, Kademlia drops to 95.3%, because some items lose most or even all
of their replicas and an increased number of timeouts occurs. Afterwards, it slowly
recovers to 98.3%, as caching replaces some of the lost replicas. Without caching,
Kademlia keeps hovering around 96%.

Fading replication retains its search success right after the leave, even though it loses
half of the 40 replicas per item on average. This is a simple side-effect of the search
bubble size being calculated on the previous network size, and thus being too large for
the current situation. When the new measurement from the gossip protocol arrives,
the search bubble is shrunk from 120 to 80 and the recall drops accordingly. The only
reason that the fading replication can recover is the publication of new items with the
correct replica count. The items that existed before the event are permanently impaired.

The managed and durable replication are less affected by the massive leave. Like the
fading replication, they benefit from unchanged bubble sizes in the beginning. When
the new measurements arrive, the recall drops temporarily, as new replicas need to be
distributed. After a short phase of reorganization, the search success recovers com-
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pletely. The lookup prototype is similarly affected, since it depends on the durable data
bubbles and managed responsibility bubbles.

10.2.3 Large-Scale Join
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Figure 10.5.: Recall after a 50% join event

After four hours, the overlay is brought back to its initial size with a simultaneous
join, doubling the network size. Figure 10.5 shows the effects on recall analogously to
the previous section. Kademlia shows tremendous elasticity in this scenario. After only
a very short drop, the recall goes up to the previous level as new nodes are integrated
into the overlay very quickly. Caching has no significant impact in this situation.

BubbleStorm is in a much tougher position here. Before the new network size is
discovered, the bubbles are too small to guarantee the desired recall. After the bubble
size update, the recall in the fading replication jumps up to the previous level, because
not only the new but also the old items benefit from the increased search bubble size.

Both the managed and durable replication need some additional time until the new
replication level is set up, but then provide the usual high level of recall. The lookup
mechanism suffers less, because initially the oversized responsibility bubbles compen-
sate the missing durable replicas and when the responsibility gets reduced, the durable
items have already been brought back to the correct replication level.

All of the examined replication algorithms show good stability in the case of large-
scale join events, with Kademlia being much quicker on the recovery, since it does not
have to rely on system-wide measurements.

10.2.4 Large-Scale Crash

After five hours, 50% of all nodes simultaneously crash without prior notice. Figure 10.6
documents how recall evolves during this event. Kademlia does not distinguish between
a leave and a crash. A node that decides to quit the overlay simply closes its network
socket. Therefore, the behavior of Kademlia during crash is practically identical to the
leave scenario. Again, the failure probability after a crash is four times higher than
before. Without caching, it is even increased seven-fold. The hourly republication may
eventually fix this, but takes too long to be visible in the experiment.
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Figure 10.6.: Recall after a 50% crash event

BubbleStorm search suffers badly from the defunct overlay connection as most bub-
blecast messages are sent to non-existing neighbors. As topology timeouts discover the
broken links and repair the overlay, the search success goes up again. Fading replication
is unable to reach the previous level, because too many replicas have been lost. When
the decreased bubble sizes take effect, the search success on previously published items
drops again.

Managed and durable replication go through the same sequence of events, but are
affected much less by the decreased bubble sizes and quickly restore replication of the
existing items. Lookups are less impaired by timeouts, because they only use very small
locate bubbles.

10.2.5 Query Response Times
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Figure 10.7.: Response time of searches

In Figure 10.7, the average response times of search requests are depicted. The mea-
surements are taken from the stable phase of the replication test (see Section 10.2.1)
and are plotted against the age of the item requested.

Kademlia has a rather unappealing search latency, starting at an extreme 11.3 seconds
for items with an age of 100ms. This is about the time it takes to distribute the item,
and an item cannot be found before it has been put into the overlay. As discussed in
Section 10.2.1, most of these very early queries are left unanswered. Only the items
suffering from a combination of timeouts have the chance of (late) success. However,
even after replication is completed, the response time is only slightly below 700ms.
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Most of the queries are answered much quicker, but in cases where multiple timeouts
occur, the search may take several seconds. Caching improves the situation by reducing
the number of outliers through early termination. When the replication starts dropping
due to churn, the response times are affected too.

The BubbleStorm replication mechanisms provide almost constant response time
of 450-500ms over the complete measurement cycle, excluding the initial replication
phase, where the average latency is higher but already below one second. Only fading
replication shows a slow increase in latency, which is caused by the decay of the repli-
cation degree. Durable lookups are much faster, achieving response times of 212ms on
average, as only very few nodes need to be contacted for a lookup.

The results suggest that timeout-based behavior should be avoided in unstable P2P
environments. This insight does not apply to search and replication in particular, but
generally applies to P2P communication protocols.

10.2.6 Tra�c Analysis
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Figure 10.8.: Bandwidth usage

Figure 10.8 shows the average bandwidth usage of peers during the stable phase of
the replication test. First thing to note is that all replication mechanisms are more
than one order of magnitude below the upstream bandwidth limit of the peers in the
scenario (128KB/s). Given the traffic complexity of O(

p
n) (BubbleStorm) or O(log n)

(Kademlia), it is evident that there is enough headroom for much larger networks or
even higher workloads. Unfortunately, the realistic evaluation of such large systems is
beyond the computational power available for this thesis and would require a parallel
simulator running on a large computing cluster.

Concerning the replication mechanisms, fading replication uses 1.95KB/s on aver-
age. Despite its management overhead, the managed replication needs only 2.11KB/s,
which is just 8.3% more than the fading replication. The durable replication requires
3.23KB/s, which is 65.7% more than the base case. This increased traffic is caused by
the inevitable transfer of replicas between peers that change responsibility and the re-
dundancy of the responsibility graph. The excellent recall in the replication test with
a failure rate less than a third of the probabilistic guarantee suggests that the trade-off
between communication cost and reliability is not perfectly fine-tuned yet. However,
both relative bandwidth overhead and recall may converge to a lower level when over-
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lay grows to hundreds of thousands of nodes and beyond. Using lookups instead of
rendezvous search for durable bubbles can reduce the bandwidth requirements sig-
nificantly in the use-cases where the key of the item is already known. The lookup
prototype consumes 1.79KB/s on average, which is only 55% of the durable replication
using rendezvous search.

Despite BubbleStorm’s bandwidth consumption being already very moderate, Kadem-
lia of course is much more economical, as its O(log n) scalability already suggests.
Without caching, Kademlia consumes 0.83KB/s and caching reduces this slighlty to
0.72KB/s. Larger network sizes would widen the gap between BubbleStorm and Kadem-
lia even further, but one has to keep in mind that the two systems solve fundamentally
different problems. Kademlia is limited to key-value lookups, and more sophisticated
query languages like keyword search are a serious challenge for DHTs [83, 157], espe-
cially when it comes to bandwidth. BubbleStorm’s traffic statistic would not change a
single bit if the queries where keyword searches instead of key-value lookups.

10.3 Consistency Scenario
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Figure 10.9.: Consistency of updates

In the consistency scenario, the overlay is grown analogously to the replication test,
but then enters a three hour stable phase, in which only churn occurs, but no extreme
events take place. During this time, items are searched for one hour as usual, but then
a randomly selected peer sends an update. After that, a new one-hour search cycle
begins, testing which version of the item is retrieved. This procedure is repeated until
the end of the experiment. The precision of search results during the update phase is
used as the key metric, since it measures how many queries receive the latest version of
the item (see Figure 10.9).

Both BubbleStorm mechanisms show a very high level of consistency, with search re-
sult precision almost indistinguishable from 100%. This is a bit surprising, especially in
the case of the managed replication, which is expected to accumulate a limited amount
of junk due to crashes. There are two effects that promote higher than expected preci-
sion. Firstly, the junk level is much lower than the specified 80% goodness suggests. This
network-wide limit is only ever reached when all online peers suffer from a long phase
of maintainer crashes. In the experiment, most peers leave before reaching the junk
threshold and new peers arrive in the network without any junk. Secondly, � = 4 does
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not only specify the average recall, but also the number of expected copies per search
result. When the junk percentage is already low, the chances that all four answers
are junk is extremely low. The same query behavior is responsible for the very good
precision of the durable replication. Additionally, it benefits from the highly reliable
distribution of replicas already discussed in the replication test.

The consistency test reveals the problems of the Kademlia replication. Even without
caching, an update request is unable to displace the old version. Again, the reactive
nature of the replication causes nodes that are no longer responsible for the item to keep
their replicas until expiration. Since the default expiration in Kademlia is 24 hours, the
old and new versions co-exist for a long time, causing a precision of only 88%, slowly
rising to 91% as churn takes old replicas away.

With caching enabled, the situation is even worse. The initial precision is as low
as 64%, i.e., one out of three queries does only return outdated results. Since cache
replicas expire faster, the precision improves to 80% after one hour, which is still an
unacceptable level for most applications.

Without immediate reaction to churn and a clear separation of replication modes,
Kademlia is unable to achieve consistency for updates. Such a replication algorithm
should only be used in environments where consistency does not matter or updates are
not used at all.

10.4 Deletion Scenario
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Figure 10.10.: Success of delete requests

The deletion scenario is almost identical to the consistency scenario, but instead of
being updated, items are deleted after one hour. The delete success is depicted in
Figure 10.10, which measures the percentage of queries that did not see the deleted
item, i.e., how successful the deletion was. Since update and deletion are practically the
same operation in the managed and durable replication, the behavior of the algorithms
is identical. The chances of not detecting an outdated version of a deleted item are—at
least in the given scenario—almost zero.

Kademlia is not included in the deletion test. The reactive approach and the inclu-
sion of non-updatable fading replication leads to a highly inconsistent state. Without
tombstones, deleted items will almost certainly be re-replicated over time, negating any
deletion attempt.
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10.5 Testbed Experiments

The evaluation framework used for the experiments can be used to generate prototypes
and run them in a distributed real-world testbed (see Chapter 9). In order to validate
the simulator and simulation results against real-world measurements, the replication
experiment (see Section 10.2.1) was re-run on G-Lab [128], using ⇡ 100 servers dis-
tributed across Germany. To avoid an overly bias due to too many peers sharing a single
server, the network size was reduced to 400 peers. Kademlia had to be excluded from
this test, because the simulator MTU hack to avoid UDP fragmentation cannot be used
on the real Internet (see Section 10.1.4).
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Figure 10.11.: Recall of simulator runs and G-Lab experiments compared

Figure 10.11 shows the recall results of the simulator experiments compared with
their G-Lab counterparts. The differences between the simulator and the real world are
mostly within the margin of measurement error, except for the fading replication, which
even performs slightly better in the real world. The results convincingly show that the
algorithms proposed in this work fulfill their specification in real-world environments.

10.6 Review

The simulation scenarios, which have been validated by real-world testbed experiments,
have proven the reliability and consistency of the managed and durable replication
mechanisms. The response times are comparable to the highly parallel bubblecast and
the bandwidth overhead seems moderate. Update and delete requests are executed with
very high consistency. The fading replication, which was previously BubbleStorm’s only
replication mechanism, is not only limited to immutable data, but also shows a constant
decrease in search success over time. It is also not able to adjust replication after large-
scale network changes. The lookups for durable bubbles provide an additional search
algorithm, which is not only extremely reliable, but also less bandwidth-demanding
than rendezvous search. A system that provides both mechanisms can let the application
developer choose the optimal method for the problem at hand, even using both in
parallel for different tasks.

Kademlia uses a slow but generally reliable replication scheme. Exchanging replicas
between responsible peers once per hour was proven to be insufficient to cope with
churn adequately. More serious is Kademlia’s failure to achieve consistency after up-
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dates, especially when using caching. The mixture of fading and durable replication
modes limits the system’s features to the far more constrained fading mode. The man-
aged replication used for daily re-insertion of items, not simulated here, further limits
the long-term availability of items. The taxonomy of replication modes given in Chap-
ter 4 may help future replication algorithm designers to achieve a better separation of
concerns.
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11 Conclusion & Future Work
The BubbleStorm search overlay alone is already one of the most advanced P2P ren-
dezvous search systems. But without long-term replication and update support, its
applicability to real-world problems remains limited. The replication and update al-
gorithms presented here close this gap and create a P2P overlay that provides much
more than rendezvous search. The data management capabilities cover a wide range
of use-cases with an easy-to-understand replication model and convenient application
developer interface. The data management possible with this system is unparalleled by
the existing rendezvous search system proposals. Therefore, we call BubbleStorm the
first rendezvous information system.

Nonetheless, in every interesting research project, any achievement opens up new
questions and research opportunities. The most relevant future work opportunities are
summarized in the following, before a conclusion to this work is given.

11.1 Future Work

11.1.1 Data as a Signal

The persistent queries in BubbleStorm already permit to continuously receive additional
results to a query or subscription, but this currently only covers newly inserted data.
There is no technical reason for the current exclusion of updates and deletes and thereby
limiting the observation of result set changes. The main challenge is to provide the
application developer with a convenient and clear interface for a match function that is
able to track all changes.

Data items in the result sets could be compared to a signal. They change from zero to
a value when a new item is discovered, change their value on an update, and go back to
zero when a delete happens. A user could send a query, which first matches the existing
data to return an initial result set, and then is made persistent to track changes of the
result set in real-time.

11.1.2 Additional Replication Mechanisms

The replication mechanisms provided for BubbleStorm cover all replication modes de-
scribed in Chapter 4. The collective replication for durable data additionally provides
key-value lookups, which would also be useful for data in the fading and managed
replication modes. The lookups are enabled by the responsibility concept of the col-
lective replication mechanism. It is certainly possible to build a managed replication
mechanism on top of the responsibility routing and provide the same properties as with
the maintainer-based replication. A fading replication using the responsibility would
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be identical to durable data with the exception that it is never re-replicated to new
neighbors.

In such a system, bubblecast would only be used for instant bubbles and to estab-
lish the maintainer-based responsibility routing tables. Fading, managed, and durable
application data would all use the same (or at least similar) responsibility set flood-
ing mechanism and all share the lookup capabilities. Nonetheless, rendezvous search
including self-matching would be fully preserved.

11.1.3 Data Transfer

The origins of P2P computing lie in bulk data transfer and that is still one of its primary
applications. Currently, the most popular system for swarming downloads is BitTorrent.
BubbleStorm has already been employed as a distributed tracker and search engine for
BitTorrent, but it seems desirable to integrate a bulk transfer mechanism directly into
the BubbleStorm core.

Similar to blobs (binary large objects) in databases, sometimes an application needs
to put large data chunks into the system, e.g., multimedia data. While BubbleStorm
is content agnostic, transferring large items with bubblecast or one of the replication
mechanisms would be slow and—due to the highly dynamic environment—potentially
error-prone.

Instead of sending the data itself, a publisher could send the access information to a
download swarm, which can be used to retrieve the data. In the collective replication,
the same mechanism can be used to replicate data to new neighbors. In both cases, the
parallel downloading from multiple sources can speed up data transfer and in the case
of the maintainer-based replication reduce the load on the publisher.

If the binary data is not needed for query matching, some bandwidth can be saved by
only distributing it to a small set of peers reliable enough to sustain the availability, pos-
sibly using the responsibility mechanism of the collective replication. The data bubble
would then only contain a reference to the swarm for on-demand downloading. The
collective replication could thus serve as a mechanism to permanently provide a set of
seeders for a swarm.

11.1.4 Privacy

P2P systems are considered good substrates for privacy-preserving distributed systems,
as implemented by Freenet [24] or GNUnet [9]. Unfortunately, these systems typically
lack the support for complex queries, which is exactly what BubbleStorm provides. In-
tegrating an anonymization mechanism like onion routing [33] into BubbleStorm or
porting rendezvous search to one of the existing systems could provide a new level of
privacy-preserving networking. The amount of self-organization and self-description
possible with such a system would drastically reduce the need for external search en-
gines, which may not be able to preserve the same level of privacy and resilience as the
P2P overlay.
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11.1.5 Cloud Computing

Google’s grid-based search has served as the starting point for the discussion of ren-
dezvous search. The harshness of P2P environments requires a high level of self-
adaptivity that could also be useful in the ever-growing cloud data centers. Some of
the results compiled and presented in this work may have their application in future
generations of cloud computing.

Essentially, rendezvous search is the P2P equivalent of map/reduce [31]. The query
is distributed to a selection of computers that hold the desired data, they execute a map
job to select the matches and return them to a node that combines (i.e., reduces) the
matches into a coherent result set. This is exactly what a query bubble in BubbleStorm
does. Admittedly, a P2P overlay consisting of end-user computers connected through
relatively slow Internet connections cannot compete with a high-performance data cen-
ter cluster. Yet, the wide range of map/reduce applications could shed light on how to
use rendezvous search systems for highly advanced P2P applications.

11.2 Conclusion

This work presents BubbleStorm and the replication mechanisms needed to make it
the first true P2P rendezvous information system. Besides presenting the first com-
prehensive literature study in the area of rendezvous search, a generic taxonomy of
P2P replication mechanisms consisting of four fundamental replication modes has been
given, which helps to cleanly separate the use-cases in replication algorithm design.
These replication modes are used to define a simple set of five data description primi-
tives sufficient to define the data scheme of a rendezvous search application.

In order to implement the missing replication modes in BubbleStorm, two novel repli-
cation mechanisms have been presented: the maintainer-based replication, which im-
plements the managed replication mode by using the publisher of a data item as its
maintainer, and the collective replication, which implements the durable replication
mode by setting up a responsibility routing on top of BubbleStorm. The responsibility
routing also adds extremely resilient O(1) key-value lookups on durable data. All of the
algorithms are based on the accurate mathematical analysis of the underlying stochastic
processes and theory of random graphs.

For the evaluation of the system, a novel simulation and prototyping environment has
been developed, which makes it possible to run the same source code in a simulator,
in a distributed testbed like PlanetLab, or as a standalone application. Since the same
experiments can be run in the simulator and the testbed, the experiment results can
be validated against each other. The evaluation results prove the high availability and
consistency of updates even under extreme conditions.

Already, BubbleStorm has been used as a substrate for a set of very different applica-
tions including a decentralized BitTorrent search engine and tracker, a P2P wiki, and a
full-fledged 3D massively multiplayer online game. This versatility proves the power of
the rendezvous search concept and its BubbleStorm implementation. Hopefully, it will
be used to create a new generation of sophisticated P2P applications.
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A Analysis of the Maintainer-based
Replication

This section proves the convergence of the maintainer-based replication (see Chapter 6).
It is taken from our original paper describing the algorithm [81], but is authored by
Wilhelm Stannat and Wesley Terpstra. It is included here solely for the reader’s conve-
nience.

Taking the approach of the maintainer-based replication, any sequence of peer join
and crash/leave events causes the replica distribution to converge to the binomial, Bn,p.
Symmetrically, if all items share p, then any sequence of item creation and deletion
events with d undeleted objects converges peer load distribution to Bd,p. We only prove
the first claim as the second is analogous.

Let nt � 0 be the network size for time t 2 Z. For simplicity, we require that every
unit of time corresponds to exactly one event: join or leave. A joining peer causes
nt+1

= nt + 1, while a leaving peer causes nt+1

= nt � 1. The sequence of joins and
leaves is chosen by an adversary.

For an arbitrary item, consider the evolution of the number of replicas Rt over time.
Rt is a random variable taking values in [0, nt]. If nt+1

= nt + 1, then a storage peer
joined the system, increasing Rt by 1 with probability p;

P(Rt+1

= i) = P(Rt+1

= i |Rt= i�1)P(Rt= i�1)
+ P(Rt+1

= i |Rt= i)P(Rt= i)
= pP(Rt= i�1) + (1� p)P(Rt= i)

Let rt = (rt(0), rt(1), . . . , rt(nt)) be Rt ’s probability vector, where rt(i) = P(Rt = i) for
i 2 [0, nt]. We use the notation rt(i) to emphasize that rt plays a dual role as both a
vector and a function of i. Set Jn to the [0, n]⇥ [0, n+ 1] join transition matrix where
rt+1

= rt Jnt
,

Jn =

2
66664

1�p p 0 . . . 0

0 1�p p . . . ...
... . . . . . . . . .

0

0 . . . 0 1�p p

3
77775
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When one storage peer out of nt leaves (or crashes), it destroys a replica with prob-
ability Rt/nt . Like Jn, define Ln as the [0, n] ⇥ [0, n � 1] transition matrix mapping
rt+1

= rt Lnt
.

Ln =
1

n

2
6666664

n 0 . . . 0

1 n�1

. . . ...

0 2

. . .
0

... . . . . . .
1

0 . . . 0 n

3
7777775

Using these two matrices, we can finally formulate the transition matrix rt+1

= rt Tt
for all t,

Tt :=

(
Jnt

if nt+1

= nt + 1

Lnt
if nt+1

= nt � 1

Theorem 4. If there exists some upper-bound n⇤ on the network size, such that n⇤ > nx
for all time x , then, for any initial replication distribution r and fixed t, the replication
distribution rt converges to Bnt ,p as the mixing time grows;

rt = r
t�1Y

x=t
0

Tx ! Bnt ,p as (t � t
0

)!1

where Bn,p = (Bn,p(0), Bn,p(1), . . . , Bn,p(n)) and

Bn,p(i) =
✓

n

i

◆
pi(1� p)n�i

We first prove three lemmas needed for this result. The first lemma explains why the
binomial is the limit.

Lemma 1. The binomial distribution is an invariant flow;

Bnt+1

,p = Bnt ,pTt

Proof. The transition matrix is a join Jn or leave Ln:

(Bn,pJn)(0) = (1� p)Bn,p(0) = (1� p)(1� p)n

= Bn+1,p(0)
(Bn,pJn)(i) = pBn,p(i � 1) + (1� p)Bn,p(i)

= pi(1� p)n+1�i
✓

n

i � 1

◆
+
✓

n

i

◆�

= Bn+1,p(i)

(Bn,p Ln)(i) =
n� i

n
Bn,p(i) +

i + 1

n
Bn,p(i + 1)

= Bn�1,p(i)
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The next two lemmas show that the transition matrix forces any two states Rt , St
towards each other. We will measure the distance between E( f (Rt+1

) |Rt) and
E( f (St+1

) |St) for arbitrary function f using the Lipschitz norm,

|| f ||` =max

i> j

| f (i)� f ( j)|
i � j

Lemma 2. For all time t and any f : Z! R,

||Tt f ||`  || f ||` ·
(

1 if nt+1

= nt + 1

1� 1

nt
if nt+1

= nt � 1

Proof. There are again two cases. Interpret function f (i) as a column vector on [0, nt].
Then, for all i > j,

Jn f (i) = (1� p) f (i) + p f (i + 1)
|Jn f (i)� Jn f ( j)|
 (1� p)| f (i)� f ( j)|+ p| f (i + 1)� f ( j + 1)|
 (1� p)|| f ||`(i � j) + p|| f ||`(i � j)
= || f ||`(i � j)

By carefully regrouping terms,

Ln f (i) = i
n

f (i � 1) + n�i
n

f (i)
|Ln f (i)� Ln f ( j)|
 j

n
| f (i � 1)� f ( j � 1)|
+ i� j

n
| f (i � 1)� f ( j)|+ n�i

n
| f (i)� f ( j)|

 || f ||`(i � j)
î j

n
+ i�1� j

n
+ n�i

n

ó

= || f ||`(i � j)
Ä

1� 1

n

ä

Lemma 3. If there exists some n⇤ such that n⇤ > nx for all time x , then for f : Z ! R
with || f ||` <1 and fixed t,

�����

�����
t�1Y

x=t
0

Tx f

�����

�����
`

! 0 as (t � t
0

)!1

Proof. Reformulating the bound on network size,

nx < n⇤ =)
✓

1� 1

nx

◆
<

✓
1� 1

n⇤

◆

There are at most nt more joins than leaves, so there are infinitely many leaves. Repeat-
edly apply Lemma 2 to find,

�����
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x=t
0

Tx f

�����

�����
`

< || f ||`
✓

1� 1
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0
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Proof of Theorem. Rt
0

has initial probability distribution r. From the definition of expec-
tation, E( f (Rt

0

)) = r f where f is a function interpreted as a column vector. Similarly,
E( f (Rt)) = r

Qt�1

x=t
0

Tx f . So, the Lipschitz term from Lemma 3 can be reformulated for
all i > j as,

|E( f (Rt) |Rt
0

= i)� E( f (St) |St
0

= j)|
i � j


�����

�����
t�1Y

x=t
0

Tx f

�����

�����
`

Condition on events Ei = (Rt
0

= i) and Fj = (St
0

= j),

|E( f (Rt))� E( f (St))|
= |

P
i P(Ei)E( f (Rt)|Ei)�

P
j P(Fj)E( f (St)|Fj)|

= |
P

i, j P(Ei)P(Fj)(E( f (Rt)|Ei)�E( f (St)|Fj))|

P

i, j P(Ei)P(Fj)|E( f (Rt)|Ei)�E( f (St)|Fj)|

���
���
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0
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���
���
`

P
i, j P(Ei)P(Fj)|i � j|


���
���
Qt�1

x=t
0

Tx f
���
���
`
n⇤ ! 0

The Portmanteau theorem (Theorem 2.1 in [10]) proves convergence in distribution
given this limit for the expectation. Alternately, for arbitrary i, set f (k) = 1 for k = i
and 0 otherwise. Now E( f (Rt)) = P(Rt = i) = rt(i). Give St

0

binomial distribution. By
Lemma 1, St also has binomial distribution, so E( f (St)) = Bnt ,p f = Bnt ,p(i).

|rt(i)� Bnt ,p(i)|= |E( f (Rt))� E( f (St))|! 0
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real-world measurement, 78
recursive routing, 7
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rendezvous search system, 8
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scalability, 5
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sequential consistency, 6
server, 5
service, 5
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