TU Darmstadt / ULB / TUprints

On Roles of Cholinergic Amacrine and Müller Glial Cells in the Development of Networks in the Inner Plexiform Layer of the Chick Retina

Thangaraj, Gopenath (2012)
On Roles of Cholinergic Amacrine and Müller Glial Cells in the Development of Networks in the Inner Plexiform Layer of the Chick Retina.
Technische Universität Darmstadt
Ph.D. Thesis, Primary publication

[img]
Preview
doktorarbeit - PDF
Thesis_Corrected_Complete.pdf
Copyright Information: CC BY-NC-ND 2.5 Generic - Creative Commons, Attribution, NonCommercial, NoDerivs .

Download (29MB) | Preview
Item Type: Ph.D. Thesis
Type of entry: Primary publication
Title: On Roles of Cholinergic Amacrine and Müller Glial Cells in the Development of Networks in the Inner Plexiform Layer of the Chick Retina
Language: English
Referees: Layer, Prof.Dr. Paul ; Laube, Prof.Dr. Bodo
Date: 27 April 2012
Place of Publication: Darmstadt
Date of oral examination: 28 February 2012
Abstract:

The inner plexiform layer (IPL) of the Vertebrate retina is a highly organized synaptic region amassed with a myriad of processes from different cell types, like ganglion cells (GCs), amacrine cells (ACs) and bipolar cells (BCs). Their dendrites stratify at different levels within this cell-free zone, e.g. so-called subbands. Further, Müller glial cells (MCs) span radially through all retinal layers. In this study, I have focused on cholinergic ACs and MCs, and their possible roles in the formation of the IPL in the embryonic chicken retina. In the first chapter I have analysed the in vivo development and differentiation of starburst amacrine cells (SACs) and their role in cholinergic stratification. Type-I and type-II SACs are mirror-symmetrically arranged ACs on both sides of the IPL, which send their processes into the latter, where they stratify as subbands ‘a’ and ‘d’. Acetylcholine is the predominant neurotransmitter of these cells, e.g. they are cholinergic. Using the cholinergic markers choline acetyltransferase (ChAT) and acetylcholinesterase (AChE), I show here immunohistochemically that an early postmitotic pool of cells in the inner half retina expresses first AChE, and then also ChAT. SACs and GCs are derived from this pool. By embryonic stage E6, two narrow rows of ChAT+ cells appeared in the future IPL, separated by a narrow band of AChE. Thus, AChE might be playing a guiding role for ChAT+ processes. Type-I SACs retained their high ChAT+, but not AChE expression, which was less pronounced in type-II SACs. Remarkably, type-I SACs in the INL were neighbored by strongly AChE-reactive cells which were ChAT-, a finding whose functional implications needs further attention. In chapter II, I show that the earliest ChAT+ cells also co-expressed the ganglion cell-specific marker Brn3a and CRABP. By E6, one set of cells down-regulated both ChAT and CRABP, but up-regulated Brn3a, marking the specification of GCs, while another set of cells reacted to the contrary, marking the specification of the two future types of SACs. By E8, type-I cells at the IPL/INL border lost their expression of CRABP, while type-II SACs in the IPL retained this protein. A co-localization of the early GC marker Brn3a with ChAT+ cells revealed that early GCs transiently express ChAT. Throughout these developmental stages, both the GCs and the ACs expressed AChE. Now following, I have performed in vitro experiments to analyze the role of SACs and Müller glial cells during IPL development, using both 3D retinal spheroids and retinal explants. In chapter III, I describe the establishment of a novel explant culture system, presenting the development of all retinal layers of an in vivo retina, except the GCL. Although being used here for studies of the inner retina, it is worthwhile to mention that with these explants the initial formation of photoreceptor outer segments can be followed. In continuation to the above mentioned in vivo studies, in chapter IV, I have similarly analyzed IPL formation by using both in vitro systems. Since type-II SACs are closely associated with GCs, I postulated that GCs could influence their differentiation, and in turn the development of the IPL as well. To test this hypothesis, I investigated the development of the IPL in explants, in which GCs are completely lost due to the absence of an optic nerve. In addition, 3D retinospheroids were used, where cells are completely dissociated and allowed to form histotypical structures, but again mostly in absence of GCs. Interestingly, in both in vitro culture models the IPL still developed, including both cholinergic subbands and migration of type-II SACs. This is strong evidence that major parts of the IPL develop in absence of GCs. Besides SACs, early Müller glial cells (MCs) have been suggested to provide guiding cues to establish the neuritic plexus of the IPL. Therefore, in the last chapter V, I have used the specific gliotoxin DL-alpha aminoadipate (AAA) in retinal spheroids to target MCs and thereby analyze the role of MCs during IPL development. At a sub-toxic concentration of 0.4 mM AAA, though the IPL was developed, the cholinergic stratification was severely disturbed, indeed suggesting an organizing role of MCs during IPL development. Moreover, thereby the numbers of inner retinal cells increased, while photoreceptor differentiation was inhibited, indicating further roles of MCs in cell lineage regulation.

Alternative Abstract:
Alternative AbstractLanguage

Die innere plexiforme Schicht (IPL) der Wirbeltierretina ist eine hoch organisierte synaptische Zone, welche sich aus unzähligen Fortsätzen verschiedener Zelltypen, wie den Ganglienzellen (GCs), Amakrinzellen (ACs) und Bipolarzellen (BCs), zusammensetzt. Deren Dendriten sind in dieser zellfreien Zone geschichtet als so genannte Subbanden angeordnet. Ferner durchqueren Müllerzellen (MCs) die ganze Retina, also auch die IPL, in radialer Richtung. Ich habe mich in dieser Studie mit cholinergen ACs sowie mit MCs, und deren möglichen Funktionen bei der Bildung der IPL in der embryonalen Hühnchen-Retina beschäftigt. In Kapitel I habe ich die Normalentwicklung und Differenzierung von Starburst Amacrine Cells (SACs) und deren Rolle bei der cholinergen Stratifizierung analysiert. Typ-I und Typ-II SACs sind spiegelsymmetrisch auf beiden Seiten der IPL angeordnete ACs, welche ihre Fortsätze in die IPL senden, wo sie jeweils in die Subbanden ´a´ bzw. ´d´ projizieren. Sie benützen Acetylcholin als Neurotransmitter, sind also cholinerg. Mit Cholinacetyltransferase (ChAT) und Acetylcholinesterase (AChE) als cholinerge Marker habe ich immunhistochemisch gezeigt, daß eine frühe Population postmitotischer Zellen der inneren Retina zunächst AChE, und dann ChAT exprimiert; von ihr stammen GCs und SACs ab. Um das Embryonalstadium E6 erscheinen zwei Reihen von ChAT+ Zellen in der zukünftigen IPL, die von einer engen AChE+ Bande getrennt sind. AChE könnte also eine Leitfunktion für ChAT-positive Fortsätze ausüben. Die Typ-I SACs behielten ihre ChAT-, aber nicht ihre AChE-Expression, bei. Dies war bei Typ-II SACs weniger ausgeprägt. Auffällig war eine enge Nachbarschaft von Typ-I SACs mit stark AChE-exprimierenden Zellen in der INL, deren Funktion noch weiter untersucht werden muß. In Kapitel II habe ich gezeigt, daß die frühesten ChAT+ Zellen auch den GC-Marker Brn3a und CRABP koexprimieren. Um E6 regelte ein Teil dieser Zellen ChAT und CRABP herunter und Brn3a gleichzeitig herauf, was die Differenzierung der GCs anzeigt, während ein anderer Teil gegenteilig reagierte, was auf die Spezifizierung der zukünftigen SACs hinweist. Um E8 haben die Typ-I-Zellen an der INL/IPL-Grenze ihre CRABP-Expression verloren, während Typ-II SACs dieses Protein beibehielten. Die Kolokalisierung von Brn3a und ChAT hat gezeigt, daß frühe GCs ChAT transient exprimieren. AChE wurde während dieser Stadien sowohl von GCs wie auch von ACs exprimiert. Nun folgend habe ich Experimente durchgeführt, um die Rolle von SACs und MCs bei der IPL-Entwicklung zu analysieren, wobei sowohl retinale Sphäroide und Explantate eingesetzt wurden. In Kapitel III habe ich die Entwicklung eines neuartigen Explantsystems beschrieben, welches die Entwicklung aller Retinaschichten, außer der Ganglienzellschicht, in vitro darstellt. Obwohl dieses System hier zum Studium der inneren Retina eingesetzt wurde, sollte erwähnt werden, daß mit diesen Explantaten auch die Bildung der Außensegmente von Photorezeptoren verfolgt werden kann. In Kapitel IV habe ich die obigen in vivo-Studien hinsichtlich der IPL-Bildung entsprechend an beiden in-vitro-Systemen fortgeführt. Da Typ-II SACs eng mit GCs assoziiert sind, habe ich postuliert, daß GCs deren Differenzierung, und somit auch die der IPL beeinflussen könnten. Daher habe ich die Entwicklung der IPL in Explantaten untersucht, in denen die GCs als Folge der Abtrennung des optischen Nervs vollständig absterben. Dasselbe wurde mit retinalen Sphäroiden durchgeführt, bei denen histotypische Strukturen aus vollständig dissoziierten Zellen entstehen, aber wiederum praktisch keine GCs enthalten. Interessanterweise entwickelte sich in beiden in vitro-Systemen eine IPL, inklusive der beiden Subbanden und wandernden Typ-II SACs. Dies macht deutlich, daß sich wesentliche Teile der IPL in Abwesenheit von GCs entwickeln können. Neben SACs wird vermutet, daß auch MCs Leitstrukturen darstellen könnten, um den Neuritenplexus der IPL zu etablieren. Daher habe ich in Kapitel V das spezifische Gliotoxin DL-Alpha-Aminoadipate (AAA) in retinalen Sphäroiden eingesetzt, um damit die Rolle der MCs bei der IPL-Bildung zu analysieren. Bei einer subtoxischen Konzentration von 0,4 mM AAA hat sich die IPL zwar gebildet, jedoch war die cholinerge Stratifizierung stark gestört, was tatsächlich eine organisierende Rolle der MCs während der IPL-Entwicklung nahelegt. Ferner hat sich dabei die Anzahl der inneren Retinazellen erhöht, während die Zahl der Photorezeptoren erniedrigt wurde, was weitere Funktionen der MCs bei der Regulation der Zellgenealogie nahelegt.

German
URN: urn:nbn:de:tuda-tuprints-29615
Classification DDC: 500 Science and mathematics > 570 Life sciences, biology
Divisions: 10 Department of Biology
Date Deposited: 25 May 2012 11:14
Last Modified: 09 Jul 2020 00:03
URI: https://tuprints.ulb.tu-darmstadt.de/id/eprint/2961
PPN: 386255652
Export:
Actions (login required)
View Item View Item