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Abstract. Traditionally, wireless sensor networks were based on the as-
sumption that all sensor nodes are participating in a single global appli-
cation. However, it is desirable to use sensor networks for multiple con-
current applications. A key factor is the ability to dynamically structure
the network into groups of nodes according to certain criteria, to later
interact with the group as a whole. In this paper we present Scopes, a
modular framework to support concurrent sensor network applications.
A scope is a programming abstraction to declaratively define groups,
which once established allow data exchange among scope members.
The main challenges in attaining these goals are network dynamics such
as variable node density, topology changes and node churn. We demon-
strate the feasibility of the concept by achieving rapid scope propagation,
high scope reliability and efficient data exchange.

1 Introduction

Traditionally, the instrumentation of an environment with a wireless sensing and
control infrastructure has been realized with one particular application in mind.
Scenarios such as home, building and industrial automation, however, all face the
need to exploit the installed resources for multiple, concurrent applications [1j2].
Consider for instance a smart building, where applications such as HVAC control,
motion sensing for light switching, and fire detection could all run simultaneously,
simplifying the infrastructure. Established architectures such as ZigBee’s, and
the support for multiple modules [3] and multithreading [4] indeed allow node-
level concurrency. We argue that these solutions fall short in offering a clear
network-level mechanism to exploit resources when multiple applications run
concurrently, leaving the developer with the responsibility of selecting the subset
of network nodes on which applications run.

Another shortcoming of current systems is their management. The large and
dynamic amount of devices that comprise the wireless network make preva-
lent node classifications such as coordinator/router/end-device in many cases

1 Parts of this research have been supported by the German Research Foundation
(DFG) within the research training group 1362 Cooperative, Adaptive, and Respon-
sive Momnitoring in Mized Mode Environments, and the Center for Advanced Security
Research Darmstadt (CASED).
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insufficient for the development of distributed sensor network applications. Sev-
eral solutions facilitate manageability through the intuitive idea of node groups
[BIEI7U8I2]. A group’s extent has a direct implication on its energy cost. One-
hop neighborhoods are the cheapest by exploiting the broadcast mechanism [5].
Multi-hop groups covering larger network regions have also prooved useful [6I5].
We think that creating logical groups spanning nodes which are potentially scat-
tered throughout the whole network is important for many applications.

In this work we present Scopes, a framework that tackles the aforementioned
issues. We show its feasibility through real-world experiments on a sensor net-
work testbed. A scope is simply a group of nodes defined by a set of criteria.
Scoping criteria are defined declaratively and are logical predicates on static
or dynamic attributes. Of importance for this approach is the rapidness with
which a scope definition is propagated and becomes functional, the reliability in
covering all nodes meeting a scopes criteria, and the stability against network
dynamics. We obtain very good results for all three aspects. Scopes are au-
tomatically maintained by the framework, coping with network changes. Once
created, a scope enables a bidirectional communication between the scope’s cre-
ator and its members. We analyze the goodput and link-level message exchange
for both directions and different traffic patterns. Our measurements show good
channel utilization, particularly up to an order of magnitude improvement over
the baseline routing protocol for traffic originating from member nodes.

Section |2 presents a brief overview of the major concepts of Scopes and the
framework design. Section [3]contains the detailed evaluation of Scopes according
to the above mentioned aspects. We conclude the paper by presenting related
approaches (Section [4) and our major findings (Section .

2 The Scopes Framework

Scopes is a modular framework that enables multitasking by bringing a logical
structure to the network. With the Scopes framework, nodes are organized into
groups, which we call scopes (to distinguish we will use the lower and upper case
form throughout the document). A scope is the central abstraction provided by
the framework to applications. A scope can be defined by means of a logical
expression, which must be satisfied by a node to become its member. Once a
scope is created, it continues to exist until it is explicitly removed, even as nodes
fail or if they temporarily leave and rejoin. The framework takes care of reliably
maintaining the scope membership.

We have designed a declarative language to create and delete scopeﬁﬂ We
exemplify the most important constructs within the building automation sce-
nario above, shown in Table[I] Imagine we want to define a scope HVAC_Outlier
over HVAC equipment nodes not within room temperature limits, so that the
heating output can be adjusted. An application running on this scope reports

! For space reasons, we do not fully describe the Scopes language syntax in this paper.
The reader is referred to the project site, [www.dvs.tu-darmstadt.de/research/scopes,
for a detailed description.
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the id and position of the member nodes. HVAC Outlier is satisfiable by nodes
with a temperature sensor, whose temperature is outside the range (20...25),
and the user-defined variable ATTACHED_TO equals hvac. Properties included in
an expression may have a more static (e.g., ATTACHED_TO) or dynamic (e.g.,
TEMPERATURE) nature. Dynamic properties are very powerful, but their use is
expensive since every change results in a re-evaluation of the scope member-
ship expression. Finally, scopes can be nested and therefore form a hierarchy.
Nested scopes specialize a scope definition by implicitly restricting the member-
ship condition of their parent-scope. For example, if a scope Room22 is defined
over all nodes in room 22, the scope Room22MotionNodes could specialize it by
selecting those nodes additionally possessing a motion sensor. The latter can
then be used to detect motion and switch lights correspondingly. Every scope
has a parent-scope; top-level scopes have an artificial parent-scope called world,
which includes all available nodes. A node that does not belong to any scope is
member of the world. Conceptually speaking, nesting scopes contributes clearer
definitions and better organization. Technically, they reduce the communication
overhead thus improving the performance and the energy efficiency.

CREATE SCOPE HVAC_Outlier AS ( CREATE SCOPE Room22MotionNodes (
ATTACHED_TO = ‘hvac’ AND EXISTS SENSOR Motion
EXISTS SENSOR TEMPERATURE AND ) AS SUBSCOPE OF Room22;

(TEMPERATURE <= 20 OR
TEMPERATURE >= 25) );

Table 1: Scope declarative definitions

External (i.e. out-of-network) applications can resort to this language to
create scopes. Such expressions are parsed and flattened into a pre-order net-
work format specifically designed for sensor networks. This format is descriptive
enough to accommodate the necessary expressions, yet compact enough to typ-
ically fit in one network message. Scope creation requests are then handed over
to a node, e.g., over a serial port. In-network applications can also construct
scopes by resorting to this predefined format. Any arbitrary node can be used
to create a scope (termed the scope root node), however in practice we observe
two cases. Scopes created from gateway (sink) nodes have global and permanent
character. Regular nodes in most cases create localized neighborhood scopes for
tasks such as event detection.

Scopes enable a bidirectional communication channel between the member
nodes and their root node. The framework can operate with multiple routing
algorithms. Any routing algorithm supporting bidirectional traffic and multiple
concurrent routes can be used. Each top-level scope can be dynamically config-
ured to use any routing algorithm; subscopes inherit it implicitly. Separating the
definition of a scope from the underlying routing algorithm potentially enables



4 D. Jacobi, P. Guerrero, I. Petrov, and A. Buchmann

scopes to span across different node platforms, and allows other optimizations
through the choice of diverse routing algorithms.

The concepts in Scopes were originally conceived to provide loose coupling
in traditional networks [J]. These were later proposed for sensor networks in an
earlier paper [I0]. In this work we materialize them, and show their feasibility
for the cited sensor network scenarios.

2.1 Design and Implementation

We have built Scopes for both Contiki [I1I] and SOS [3]. These are the first
operating systems to enable runtime code distribution and loading. The Scopes
framework is composed by two main modules, ScopeMgr and ScopeMembership,
which perform all the management and provide APT’s to the upper (concur-
rently running) applications’ layer and lower routing layer. For each scope, the
ScopeMgr module maintains information like timestamps, scope properties, or id
of the root node. The ScopeMembership module evaluates the local membership
condition given a scope definition and the node’s properties (Section. When a
property changes, a scope reevaluation is triggered locally. This yields minimal
energy consumption overhead as no communication is needed, only CPU cost.

The ScopeMgr module interacts with the routing layer to send and receive
data, and to signal scope membership updates, which can be used to optimize
the memory management of routing tables. We have implemented two routing
algorithms, namely flooding (FLD) and an extended version of gradient-based
(GBR) routing [I2]. Scope creation requests are similar to the interests in Di-
rected Diffusion [I3], thus GBR is also inspired by it. Directed Diffusion only
supports communication towards the sink, therefore we extended the tree con-
struction to establish routes in both directions. To avoid traffic congestion, we
also implemented a rejection mechanism: if a node is rejected by a busy node,
it will try connecting to another neighbor, achieving extra reliability at the cost
of some message overhead (we evaluate this aspect in the next section). Both
algorithms were implemented as separate modules, hence they can be deployed
dynamically.

The Scopes API. The ease of use of Scopes is best illustrated by its API:
send_scope_create (parent_scope_id, scope_id, proplLen, properties)
send_scope_data(scope_id, sendDirection, srcApp.id, destApp._id,

msgType, payloadLen, payload)
send_scope_remove (parent_scope_id, scope_id)

To create a scope, applications call the send_scope_create(...) method.
The ScopeMgr module sends a scope creation message to all potential scope
members: if it’s a new top-level scope, it is sent to all nodes; otherwise it is
only sent to members of the parent scope. Whenever a node becomes a member
of a scope, this is signaled to applications that have registered to receive this
information. Once a scope has been created, a bidirectional data channel between
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the scope root and its members is established, which can be used by invoking
send_scope_data(...). After finishing its task, an application can delete its
scope by calling send_scope_remove(...). A removal message is then sent to
the member nodes. In addition, applications can register for notifications about
the dynamic scope membership changes. These are asynchronously delivered to
them, avoiding polling.

Automated Maintenance. To address communication unreliability, topology
changes and the update of dynamic properties, we developed a scope refresh
mechanism. Inspired by a simple video keyframe technique, we employ two types
of beacons, or scope refresh messages: simple and full. The former implement a
keep-alive mechanism, which indicates that a scope is still active. They are small-
sized, thus save communication and computation energy. The latter trigger a full
scope reevaluation, and contain the full scope definition. This increases message
size, but allows a reevaluation of the scope definition at all nodes (belonging
to the parent scope), as well as at newly added nodes. Scope refreshes can be
arranged as sequences of relatively inexpensive simple refreshes followed by a
full refreshPl

Once a scope is removed, no further refreshes are sent. In case some nodes
miss the removal message, a configurable local lease will timeout. The scope is
invalidated and marked for deletion, associated resources are released. If the root
node of a scope fails, scopes created at other nodes are not affected. Also, if the
network gets physically partitioned, the partition that includes the scope root
remains unaffected. Due to the missing connectivity to the root, nodes in the
other partitions assume a failure of the root node and automatically invalidate
the scope to save resources. After network reconnection and upon a full refresh,
the nodes reevaluate their membership and resume their tasks.

3 System Evaluation

To evaluate the Scopes framework we have conducted numerous experiments on
our live testbed. The CS-building building testbed comprises 30 TelosB nodes,
powered through USB hubs (see Figure, distributed over 9 offices and spanning
544m?. At each room, nodes are located either next to the windows or above
fluorescent lamp tubes. The building’s thick walls greatly reduce radio ranges,
forcing a multi-hop behavior even at the maximum transmission power level (0
dBm).

Scopes. In our tests we have used the scopes depicted in Figure |1l These repre-
sent reasonable, real-life scopes. The scope S7 covers all nodes. Such scopes are
necessary, e.g., for massive software updates. Scope So emphasizes that member-
ship is not necessarily given by physical proximity, instead scopes build overlays.

2 In this work we investigate the worst case behavior of using only full refreshes, and
postpone the analysis of this optimization as a topic for future work.
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Fig. 1: Piloty building testbed and scopes used

Finally, S3 and Ss; illustrate nested scopes. These occur in any hierarchical re-
lation, for instance, in domain organization. The scope definitions were based
on operations on node IDs, although as explained before, other relations over
node properties such as location could have been used. Table [2 summarizes the
used scopes. The last column presents the size of scope definitions and the entire
creation message. These highlight the compactness of the representation. Lastly,
all scopes were created at the network boundary, namely node 43 (top left). This
forced a minimum of 2 hops and an avgerage of over 3.

Scope | Description Parent Size
Scope Scope Def. | OS Message
S All nodes world 4 bytes 18 bytes
Sa Nodes with even id world 74 bytes 88 bytes
Ss Nodes whose id < 24 || id > 33 world 9 bytes 24 bytes
Ss1 Node id € {21,43,45,47,48} Ss 24 bytes 38 bytes

Table 2: Summary of employed scopes

There are two important aspects to the framework, namely reliability and
efficiency. In the next subsection we discuss how reliable the scope mechanism
is and its relation to the underlying routing protocol.

3.1 Scope Creation, Removal and Maintenance

We first investigate the two main scope operations, creation and removal, to-
gether with the scope maintenance. Consider the scope membership described
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by a function, ¢(t), that outputs the percentage of nodes which belong to a scope
out of an expected set at a given time ¢; ¢: Z — [0,1]. The ideal membership
¢1(t) is a function of time which equals 100% when the scope is alive and 0%
otherwise, that is, resembles an instantaneous scope creation and removal. The
values observed in practice, ¢r(t), lag behind the ideal values, i.e., once a scope
is created it takes time for nodes to reach a high membership percentage, and
later when a scope is removed it takes time to drop down back to 0%. This is
natural and due, e.g., to message propagation delays and medium loss. When
multiple test repetitions are considered, we refer to ¢r,,,., ¢r,,, and ¢r as
the maximum, average and minimum membership values, respectively.

min

Scope reliability is described by three parameters. First, the reliability level
stands for the deviation of the average measured membership percentage values
from the ideal ones. To quantify the reliability level, the area between the curves
¢1 and ¢g,,, is calculated. The lower the value is, the closer ¢g,,, is to ¢y,
thus the higher the reliability level. Second, the stability of the scope mechanism
indicates its tolerance to network dynamics. This is quantified by calculating
the area between the curves ¢r .. and ¢rg,, . Again, the lower the value, the
more stable the membership is. Last but not least, the rapidness in achieving
an expected membership percentage is important. We quantify the creation and
removal delay by measuring the time it takes for ¢, to arrive to ~100% after
a scope creation, and to 0% after a scope removal, respectively. Clearly, the lower
these values, the better.

In Figure we characterize the reliability of the framework for S and Sy (the
behavior of nested scopes is evaluated in detail later) The figures present ¢p, . _,
®R,,, and ¢g,,., as defined above. A scope is always created at t=0:05 and re-
mains alive for 63 seconds, thus, ¢; (t) is 100% between t=0:05 and t=1:08, and
0% elsewhere. This scope lifetime allows for 10 refreshes at a period of 6 seconds
(indicated with vertical dashed lines drawn at regular intervals). The rightmost
dashed vertical line indicates the last point at which all nodes should auto-
matically remove themselves from the scope in case the explicit scope removal
message wasn’t heard. This occurs 20 seconds after the last refresh (t=1:25).

The plots for S, [2(a)| and show that the creation delay was quite low:
it occurred immediately with FLD, while it took 3 refresh periods with GBR.
For both algorithms, the scope membership was kept up at around 100% until
the explicit removal was requested. Later, once a scope was removed, almost all
nodes heard the explicit removal message. Virtually no nodes resorted to the
lease expiration timer with FLD (0.26%), while for GBR it was below 5% — an
acceptable value. The removal delay of GBR was thus higher than FLD’s (only
after the lease expires did nodes automatically release resources). While the
reliability levels were similar (FLD got 0.62% while GBR’s was 0.63%), FLD’s
stability (2.09%) was better than GBR’s (6.32%). As mentioned before the values
for reliability and stability are the deviation to the ideal or min/max curves. The
plots for S5 exhibit a slightly lower reliability level. The scope creation delay
worsens for FLD, requiring 1 refresh period, and GBR showed an unstable scope
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Fig. 2: Scope creation, removal and maintenance for FLD and GBR

membership percentage. The results show that both approaches are viable in
practice.

Nested Scopes. We now evaluate the behavior of hierarchical relations among
scopes. In these tests, we created scope S3 at t1, and one second later created
subscope S3;. While S35 remained alive (as before) during 63 seconds, Ss; re-
mained alive for 33 seconds, which allowed for 5 refreshes to be issued.

Figure [3| presents the respective reliability results for FLD and GBR. Again,
while both protocols reached high scope membership percentages, GBR (99%)
was slightly lower than FLD (100%). The reliability levels were high in both
cases: FLD achieved 0.51%, while GBR got 2.95% (lower is better). Also, FLD
was more stable than GBR (1.78% vs. 8.89%). The scope creation delay was
of 1 refresh period for FLD and 3 for GBR, whereas the removal delay was 20
seconds for FLD and 0 seconds for GBR. These results point out that nested
scopes exhibit similar reliability properties to that of top-level scopes.
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Fig. 3: Scope creation, removal and maintenance for nested scopes Sz and Ss;

Network Density. We now discuss the effects of network density on scope
operations and maintenance. Particularly, we consider the effects of density with
respect to the reliability of the scope operations.

There are two main effects that influence the reliability. On one side, the
more nodes there are, the higher the redundancy available to build the under-
lying scope overlays, thus the reliability level increases. On the other side, the
more nodes there are, the more collisions there can occur, which decreases the
reliability level and stability.

We inspected this issue by repeating all of our ’
tests with three node density values. These configu-
rations are presented in Table 3] with the resulting
density in nodes per m?. The amount of nodes per
room is indicated with p.

Figure 4| summarizes the reliability level results .
for different densities. In general terms, we can say Table 3: Node densities
that the denser the network, the higher the reliability level (lower values). Also,
and despite the outlier <FLD, Sy, p=2>, here it is observed that S is more
reliable than Ss.

\ #Nodes \ Density
30 1/18.1m?
18 1/30.2m?
10 1/54.4m?

i S (RS

Scope Operation Costs. The energy costs associated to the scope opera-
tions are largely due to messages sent and received. Evidently, energy efficiency
depends on the routing mechanism chosen. We studied the operation cost in
isolation, in a typical usage these become marginal compared to data exchange.
Figure[5] plots link-level traffic for S; and S2. Each measurement point represents
one test run (2 minutes), there were 25 runs. The curves confirm the expected
routing algorithm behavior. The behavior exhibited by FLD is deterministic,
since the decision whether a node is member of a scope or not is totally local:
a test run requires around 340 scope management messages regardless of the
scope definition. In turn, GBR pays the price of the increased reliability of the
acknowledged reverse paths. This overhead, in contrast to flooding, does depend
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on the number of member nodes. Therefore, S; exhibits a constant factor of 2x,
while for Sy it is 1.5x.

FLD,S; —o— GBR, S, @~ FLD,S; --A- GBR,S, - 800 | [FLD,S; —o— GBR, S, ~@~ FLD,S, ~A- GBR,S, ~A- ||

®
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500 | A A‘A ‘ Ak A A ‘

251 4 700 | ’ .
A ree®® P0000000 00 00 0

reliability level [%)]
o
link-level traffic [m/run]

, 0 . . . .
0 0 1 2 3 4 5 00:00 10:00 20:00 30:00 40:00
network density o elapsed time [mm:ss]
Fig. 4: Density tests for S; and S, Fig. 5: Scope operation costs

3.2 Scope Traffic

We proceed by evaluating the bidirectional data channel described in Section
As important metrics, we consider goodput and link level message exchange.
While the former refers to the end-to-end application layer traffic, the latter
indicates the in-network traffic needed to obtain that goodput. We have designed
our traffic tests as illustrated in Figure [l During the first [to, ) and last (¢4, t5]
stages, there’s no activity. A scope is created at t1, and remains alive until it
is removed at t4. In order to allow the scope to stabilize after its creation and
removal, we introduce an initial delay of « and a wait of 3 seconds (respectively).
Traffic itself occurs during (2, t3).

The two traffic directions, root-to-members (RtM) and members-to-root (MtR)),
were tested separately. For the RtM tests we chose a=15s and S=3s. This large
« value allows the scope to stabilize through two refreshes before data trans-
mission starts. For the MtR tests we chose a=3s and §=20s. Here, a short «
was sufficient, but a larger 5 was needed to account for removed (i.e., unsta-
ble) nodes. More importantly, since sensor network applications are diverse, we
concentrate on two communication patterns: periodic and bursty traffic.

root-to-members or members-to-root 25 sec.
o delay scoped data traffic Bwait  auto-scope removal
scope alive
0 scope L — L[ TTTT T [0 [ 11— {
I
ty 1 t t; 1y ts

Fig. 6: Test sequence for scope data traffic
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Periodic Traffic. These tests encompass, e.g., monitoring applications. Here,
in RtM tests, the scope root sends M = 30 messages to the members, whereas
in MtR tests each scope member sends M messages to the root. Each sending
node posts a timer that is triggered with a frequency \ = % = 2 seconds. To
reduce network collisions, message transmission is delayed randomly by e (with
% <e< %) by the sending application. To further stress the routing protocols,
we used scope S, which includes all 30 network nodes.

The top two plots of Figure[7] present goodput results both for RtM and MtR.
(Note that RtM was sampled every 2 seconds, thus the theoretical goodput is 30
[messages/2 seconds], while MtR was sampled every second, thus the theoretical
goodput is 15 [m/s].) The RtM goodput plot, [7(a)l shows that both protocols
have similar goodput. FLD showed an average goodput of 96.44%, slightly above
GBR’s 91%. The MtR goodput plot, does however show a clear advantage
for GBR (95.44%) over FLD (74.44%). This was to be expected since flooding
causes too many collisions, while GBR restricts the data flow to those links
whose gradient values are high. The tail exhibited by FLD was due to a node
that got automatically removed from the scope at the middle of the test and
then heard a refresh, hence re-started sending messages.

GBR — GBR —
FLD - H 1751 FLD === H

theoretical goodput | 151

goodput [m/2sec]
3

o

goodput [m/sec]
3

750 [

>

25) f

2

ol A . . . . . . oLk . . . . . s,
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Fig. 7: Goodput and link-level periodic traffic
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In the bottom plots of Figure[7] the link-level traffic is shown. These curves
include both data and scope management traffic. The MtR plot, Fig. [7(c)} ex-
emplifies that the typical usage yields marginal management overhead. GBR
transmits 15% more messages than FLD due to the acknowledgment and re-
ject messages. This increase in link-level traffic constitutes an upper bound for
GBR’s overhead compared to FLD. The biggest difference between the routing
protocols becomes evident in Fig. GBR is one order of magnitude better
than FLD: it induces less than 9% the messages required by FLD. This consti-
tutes GBR’s main strength and outbalances any scope maintenance overhead,
even under the chosen adverse test conditions.

Bursty Traffic. The following tests encompass event-based applications such
as object-tracking, where bursty traffic is the predominant pattern. A message
burst is produced in two cases: when an event-subscription is to be disseminated
rapidly from the subscribers to the publishers (RtM traffic), and whenever a set
of nodes detect an event and need to notify the subscriber (MtR traffic). To sup-
port bursts, however, several mechanisms such as route lookups and concurrent
medium access via the MAC protocol must tolerate stress.

For the bursty tests, sending nodes produced a message burst which can
be approximated by a gaussian function with center=>5, standard deviation=2.3
and a peak value of 7. This amounted to a total of M =15 messages. As with the
periodic traffic, the burst is ideally sent in intervals of A=2 seconds, and scope
S1 was used for the experiments. In the RtM tests, it is only the scope root node
who sends the burst, while in MtR tests, all 30 (member) nodes sent the burst
back the root.

The results presented in Fig. [§| include both data and scope management
traffic. The theoretical values are represented by the Gaussian curve. Figures
and display the goodput for RtM and MtR traffic, respectively. In the
RtM tests, GBR produced a goodput of 78.62%, while FLD’s was 99.77%. In
the MtR tests, FLD got 44.54% and GBR. got 69.19%. Further, the graphs show
that in terms of burstiness, FLD was superior to GBR. While FLD exhibited the
expected behavior, GBR showed a high latency. This was due to GBR reaching
a maximum bandwidth. While FLD uses the capacity of all communication links
to send messages, GBR restricts the nodes’ out-degree. This sets a capacity along
the established routes. Hence, under the same load, GBR needs more time to
transport the message burst.

Figures and show the total RtM and MtR traffic, respectively. All
of the qualitative statements regarding the burtiness and latency made above
hold here as well. As for throughput, we can claim that both FLD and GBR
reach the maximum. While FLD utilizes the complete network capacity, GBR’s
traffic is lower. The significantly better GBR efficiency over FLD for MtR — an
order of magnitude — is clearly visible in
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Fig.8: Goodput and link-level bursty traffic

4 Related Work

The concept of Scopes offers a powerful tool to select nodes in a sensor network.
This feature is also pursued by other approaches. In Generic Role Assignment
[7], a set of roles is distributed throughout the nodes, which must decide to which
of these roles they belong. A node choosing a role may trigger other nodes to
reevaluate their role membership, leading to instability and thus messaging over-
head. This can’t occur in Scopes, as a node’s membership decision can’t affect
that of other nodes. Hood [5] and Abstract Regions [6] provide a neighborhood
programming abstraction through which physical neighbors may interact with
each other. By leveraging the omnidirectional broadcast medium, Hood supports
efficiently a node’s one-hop neighborhood, while Abstract Regions extends it to
multi-hop neighborhoods defined by properties like hop count or radius. Another
system, Melete [2], focuses on disseminating code over groups, which share some
of the concepts with Scopes. Membership is defined with small boolean byte-
code functions, which we believe to be too low level. Our scheme for selecting
nodes is most similar to that of logical neighborhoods and its Spidey language [§].
Here, nodes export attributes which are comparable to node properties in Scopes.
While with Spidey the user has to decide how much effort the system should em-
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ploy (through the concepts of credits and hop count) in searching for matching
nodes, this is transparent in Scopes since a scope is network-wide. Also, logical
neighborhoods have a transient character, since they have to be specified in each
message, while scopes have a more permanent character and are stored locally.
Finally, logical neighborhoods resort to a tight integration with the routing al-
gorithm, which we intentionally avoided in order to offer alternatives depending
on the desired traflic type.

5 Conclusions and Future Work

In the present paper we described Scopes, a programming abstraction featuring
declarative definition, automatic maintenance, and efficient data exchange. We
also introduce an improved routing algorithm based on Directed Diffusion, and
use flooding as a baseline for our comparisons. We experimentally investigated
various aspects of the concept and the infrastructure such as scope operations,
maintenance and traffic.

We conclude with the following remarks: high reliability levels with low-power
routing algorithms were achieved under the experimental conditions (~0.60%).
Scopes achieve high and stable scope membership percentages (~ 100%) for both
routing algorithms, though gradient-based routing exhibits low-power character-
istics. Scopes exhibit rapid reaction (adaptation). This means that the frame-
work efficiently uses the available resources - not more than needed, not longer
than needed. Similarly, nested scopes exhibit analogous reliability properties to
that of top-level scopes. High bidirectional throughput is achieved. In the most
practicable use case, i.e., the traffic from scope members to the root, gradient-
based routing is an order of magnitude better than flooding, both for periodic
and bursty communication patterns. Both algorithms are equal for traffic from
the root to the scope members. All of the Scopes evaluation experiments are
performed in a real-world environment on a live testbed.

With the scope abstraction, the visibility of the sensor data in the network
can be controlled, since messages are only exchanged through network paths
between scope members. The increased privacy is only apparent to applications,
since it cannot serve as privacy-preserving technique. We are currently integrat-
ing Scopes with security aspects to ensure privacy control.

In our design, we opted for using a single routing algorithm for both traf-
fic directions instead of two specialized algorithms for each direction. This will
be improved, as we want to work on an automated routing algorithm runtime
selection and tuning for a specific scope.
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