TECHNISCHE
UNIVERSITAT
DARMSTADT

A FULLY DECENTRALIZED, PEER-TO-PEER BASED
VERSION CONTROL SYSTEM

Vom Fachbereich Elektrotechnik und Informationstechnik
der Technischen Universitat Darmstadt
zur Erlangung des akademischen Grades eines
Doktor-Ingenieurs (Dr.-Ing.)
genemigte

DISSERTATIONSSCHRIFT

von

DIPL.-INFORM. PATRICK MUKHERJEE

geboren am 1. Juli 1976 in Berlin

Erstreferent: Prof. Dr. rer. nat. Andy Schiirr
Korreferent: Prof. Dr.-Ing. Bernd Freisleben

Tag der Einreichung: 27.09.2010
Tag der Disputation: 03.12.2010

Hochschulkennziffer D17y
Darmstadt 2011

Dieses Dokument wird bereitgestellt von This document is provided by
tuprints, E-Publishing-Service, Technischen Universitat Darmstadt.
http:/ /tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

Bitte zitieren Sie dieses Dokument als: Please cite this document as:
URN: urn:nbn:de:tuda-tuprints-2488
URL: http:/ /tuprints.ulb.tu-darmstadt.de /2488

Die Veroffentlichung steht unter folgender Creative Commons Lizenz:
Namensnennung — Keine kommerzielle Nutzung — Keine Bearbeitung 3.0 Deutschland

This publication is licensed under the following Creative Commons License:
Attribution — Noncommercial — No Derivs 3.0

@ @ @ @ http:/ /creativecommons.org/licenses/by-nc-nd/3.0/de/
http:/ /creativecommons.org/licenses/by-nc-nd/3.0/

[Mocseheno mojoj Canjipu,
KOja M€ YBEK U y CBAKOM IOIJIELY TIOIPXKABA W YAHU MO]j KMBOT HCILYF-EHUM.

ABSTRACT

Version control is essential in collaborative software development today. Its main functions are
to track the evolutionary changes made to a project’s files, manage work being concurrently
undertaken on those files and enable a comfortable and complete exchange of a project’s data
among its developers. The most commonly used version control systems are client-server
based, meaning they rely on a centralized machine to store and manage all of the content.
The obvious drawbacks involved by bringing an intermediary server into the system include
having a single point of failure, a central ownership and vulnerability, scalability issues, and increased
synchronization and communication delays. Many popular global software projects switched to
the emerging distributed version control systems, demonstrating the urgent need for a more
suitable version control system.

This thesis proposes a fully decentralized, peer-to-peer based version control system as a
solution to overcome issues of currently available systems. The peer-to-peer communication
paradigm proved to be successful in a variety of applications. A peer-to-peer system consists
of autonomous participants, thus certain behavior cannot be guaranteed. Its unreliable nature,
however, means its usage in version control systems is not obvious. In order to develop a
solution based on the peer-to-peer communication paradigm, existing client-server, distributed,
and peer-to-peer version control systems are analyzed and evaluated using a set of require-
ments, which were derived from two realistic usage scenarios. Furthermore, the design details
of those systems are closely examined in order to realize the impact of their design decisions
on both functional features and quality aspects of the system, with the strongest focus on
consistency. The proposed system is designed and implemented based on these findings.

The resulting system, PlatinVC, is a fully decentralized system, which features the complete
system view of centralized systems, while overcoming their drawbacks. All workflows of
existing version control systems, centralized or distributed, are supported. PlatinVC even
supports a hybrid setup, where other version control systems can interoperate, using PlatinVC
as a mediator. Moreover, it introduces an automatic isolation of concurrent work, which separates
relevant and required updates from possibly unneeded ones. In this way, branches are only
created when necessary. The evolutionary changes of links between files, which can be
enhanced by any attributes, are also tracked. That extends snapshot-based version control
to other purposes, e.g. traceability of software artifacts. PlatinVC is a serious alternative to
current version control systems, as industry proven components for the most critical parts of
the system were reused. The evaluation shows that PlatinVC meets the identified requirements
completely, thereby being the first fully decentralized version control system that provides a
high consistency degree, efficiency, and robustness.

The impact of this thesis is twofold: First, it offers the novel concept of automatic concurrent
work isolation, so that the essential updates are separated from the unnecessary ones and the
costs of integrating and merging branches are minimized. Second, this thesis provides the
proof that the peer-to-peer paradigm can be pushed beyond its currently reputed limits by
adding features, which previously seemed incompatible.

iv

ZUSAMMENFASSUNG

Die Versionsverwaltung ist in der kooperativen Softwareentwicklung heutzutage unerlasslich.
Thre wichtigsten Funktionen sind die Nachverfolgung von evolutiondren Anderungen an
Dateien eines Projektes, die Koordination von nebenldufiger Arbeit an diesen und es den Ent-
wicklern zu ermdglichen, die kompletten Daten eines Projektes auf komfortable Weise auszu-
tauschen. Die am hiufigsten verwendeten Versionsverwaltungssysteme sind Client-Server-
basiert, was bedeutet, dass sie einen zentralen Rechner zur Speicherung und Verwaltung
aller Daten voraussetzen. Die offensichtlichen Nachteile, die durch das Einbringen eines
zwischengeschalteten Servers in der Kommunikation der Entwickler verursacht wird, sind die
Schaffung einer zentralen Ausfallstelle (single point of failure), einer zentralen Angriffsstelle mit
zentralen Eigentumsverhiltnissen (central ownership and vulnerability), Skalierbarkeitsproblemen und
erhohte Synchronisations- und Kommunikationszeiten. Viele populdre globale Software-Projekte
sind deshalb zu den aufkommenden verteilten Versionsverwaltungssystemen gewechselt, was
die dringende Notwendigkeit fiir ein passenderes Versionsverwaltungssystem verdeutlicht.

Diese Arbeit stellt ein vollig dezentrales, Peer-to-Peer basiertes Versionsverwaltungssystem
vor, dass die Probleme aktueller Systeme {iberwindet. Das Peer-to-Peer Kommunikationspara-
digma ist in einer Vielzahl von Anwendungen sehr erfolgreich. Dieses Paradigma beschreibt
ein System, das ausschliefilich aus autonomen Teilnehmern aufgebaut ist. Dadurch kann kaum
bestimmtes Verhalten garantiert werden, was den Einsatz von Peer-to-Peer Kommunikation
fur ein Versionsverwaltungssystem dufierst erschwert. Um eine Losung zu entwickeln wurden
bestehende Client-Server, verteilte und Peer-to-Peer basierte Versionsverwaltungssysteme
beziiglich einer Menge von Anforderungen analysiert und ausgewertet, die von zwei realistis-
chen Anwendungsszenarien abgeleitet wurden. Dartiber hinaus sind die Design-Details dieser
Systeme genauestens untersucht worden, um die Auswirkungen der getroffenen Entschei-
dungen auf Funktionalitit und Qualitdtsaspekte des Systems zu erkennen, insbesondere die
Auswirkung auf die vom System gebotene Konsistenz. Basierend auf diesen Erkenntnissen
wurde das vorgeschlagene System konzipiert und umgesetzt.

Das resultierende System, PlatinVC, ist ein v6llig dezentrales Systems, dass die ganzheitliche
Systemsicht zentraler Systeme anbietet, ohne deren Nachteile zu erben. Alle in bisherigen
Versionsverwaltungssystemen tiiblichen Arbeitsabldufe werden unterstiitzt, unabhingig davon,
ob diese bei zentralen oder dezentralen Systemen verwendet werden. PlatinVC kann es sogar
in einem hybriden Aufbau als Vermittler anderen Systemen ermoglichen, sich interoperabel
auszutauschen. Dartiber hinaus fiihrt diese Arbeit ein Konzept zur automatischen Isolierung von
nebenldufigen Anderungen ein, bei dem benétigte Beitrdge von potenziell unnétigen getrennt
werden. Zweige werden nur angelegt, falls sie tatsdchlich notwendig sind. Die evolutionaren
Anderungen von Links zwischen Dateien, die mit beliebigen Attributen angereichert werden
konnen, werden ebenfalls verwaltet. Dies erweitert die Nutzung {iber snapshot-basierter
Versionsverwaltung hinaus fiir andere Zwecke, wie beispielsweise die Nachverfolgung von
Software Artefakten (traceability). PlatinVC ist eine ernstzunehmende Alternative zu aktuellen
Versionsverwaltungssystemen, da fiir die kritischsten Systemteile Komponenten wiederver-
wendet wurden, die sich im industriellem Umfeld bewdhrt haben. Die Evaluationsergebnisse
zeigen, dass PlatinVC die identifizierten Anforderungen komplett erfiillt und somit das erste
vollig dezentrale Versionsverwaltungssystem ist, das eine hohe Konsistenz, Effizienz und
Robustheit bietet.

Der Einfluss dieser Arbeit zeigt sich in zwei Formen: Erstens bietet sie ein neuartiges
Konzept zur automatischen Isolation nebenldufiger Arbeit, so dass notwendige und nutzlose
Updates separiert und die Kosten der Integration und Zusammenfiihrung von Verzweigungen
minimiert werden. Zweitens beweist diese Dissertation durch bisher fiir inkompatibel gehal-
tene Funktionen, dass das Peer-to-Peer Paradigma tiber seine momentane Anwendungszwecke
hinaus eingesetzt werden kann.

"Sometimes when you innovate, you make mistakes.
It is best to admit them quickly, and get on with improving your other innovations.”

— Steve Jobs —

PREFACE

Rationale

During my work as a consultant for an international corporation, I experienced the magnitude
and importance of collaboration and team work. Multiple code and text files are subject to
concurrent changes by multiple developers. Tracking the evolution of a project and managing
possible conflicts are essential features of a development environment. I used version control
systems daily to recover from mistakes and revert to earlier version of the files, to identify
potentially incompatible changes, resolve those conflicts, and use it as part of a backup strategy.
Even while developing my own version control system with several students of mine in the
last 4 years of my research, I relied heavily on a version control system. In the development
of large software systems, such as operating systems, thousands of developers work on one
development project, distributed not only across one building or one city but across the globe.

The more I have worked with version control systems, the more I have seen how unsuitable
they are to the distributed and large-scale nature of developers. Truth be told, we, computer
scientists, will always find many limitations of the software we use and have plenty of
improvement ideas. There were, however, too many questions becoming apparent while
working with current version control systems. Why is it that a repository is unavailable
when needed the most, which is something that should never occur to the crucial point of
communication for developers? Why does the reliability of a repository depends entirely
on a single point, a centralized server? Why must I wait so long till my contributions are
applied to the repository? I had the great opportunity to do my doctorate in the field of
peer-to-peer networking and software engineering, the combination of which is key to solve
those limitations. My research was partially founded by the DFG Research Group QuaP2P
(FOR 733) with the focus being on improving the quality of peer-to-peer systems: This was the
driving force behind my additional mission to push the peer-to-peer paradigm to its limits. In
this thesis I answer the questions I posed above, analyze the state of the art version control
systems and propose a suitable solution.

Conventions Used in This Thesis

In this thesis, whenever a term needs further explanation, it is marked in italics-bold printed
letters and defined in a definition box on its first appearance.

Definition Box
In such a definition box, a chosen term is explained further. For each box there

exists an entry in the index, which can be found in the appendix of this work.

The reader is advised to look up an ambiguous term in the index of this work, which is
presented in the last pages. A number in the index refers to the page where the corresponding
definition box can be found.

In spite of the fact that this thesis is single-authored, I felt it was more appropriate to write
it in the first-person plural. This thesis would not exist without the help and support from the
people to whom the acknowledgements are due.

vii

DANKSAGUNG

Mit den letzten Worten, die ich in dieser Dissertation niederschreibe, danke ich allen, die mich
auf dem Weg der Promotion auf die eine oder andere Weise unterstiitzt haben.

Ungewohnlich friih in dieser Danksagung danke ich Sandra, die mich auch ungewohnlich
umfassend unterstiitzt hat.

Der grofite Dank gilt meinem Doktorvater Andy Schiirr. Ohne Deine Betreuung von der
ersten bis zur letzten Stunde wire die Qualitat meiner Forschung sicherlich nicht so hoch.
Immer stand Deine Tiir fiir mich offen, wo aus einem "hast Du mal 5 Minuten Zeit?" oft eine
Stunde wurde. Ich danke auch Bernd Freisleben. Mit Ihrer herzlichen Art habe ich mich schon
beim ersten Treffen wohl gefiihlt und die beruhigenden Ratschldge haben meine Nerven am
Tag der Disputation geschont. Dir, Ralf Steinmetz, danke ich fiir die warme Aufnahme bei
KOM - sowohl damals als Projektpartner, als auch spéter. Vielen Dank, dass ich den Feinschliff
an meiner Arbeit bei Dir fertigstellen durfte.

Dank gebiihrt auch meinen Kollegen bei ES. Fiir eine angenehme Atmosphaire, guten Tipps
und beistehenden Worten Danke ich meinen Zimmerkollegen Tobias Rétschke und Sebastian
Oster. Auch danke ich Karsten Saller, meinem (thematischen) Nachfolger, der immer zu helfen
bereit ist. Besonders Felix Klar und Ingo Weisemoller danke ich fiir die vielen Male, die Thr
mir bei Metamodellierungsproblemen mit Antworten geholfen habt.

Oliver Heckmann, Nicolas Liebau und Kalman Graffi - die alle von Kollegen zu Freunde
geworden sind: Nico hat mir erst die Idee zum Promovieren in Darmstadt in den Kopf gesetzt,
und dabei mit Tipps und freizeitlicher Entspannung geholfen. Oliver hat immer guten Rat
gehabt - es hat mich besonders in den ersten Jahren gefreut, dass Du auch mein Biiro besucht
hast, um mir helfende Ratschlage zu geben. Zusammenarbeit mit Kdlman war im Projekt
eigentlich nicht geplant - dennoch war es die ergiebigste und ausfiihrlichste. Christian Gross
und Max Lehn danke ich in erster Linie fiir die erste Implementierung meiner Forschungsidee
- damals noch als Wiki getarnt. Sebastian Kaune, Konstantin Pussep, Dominik Stingl und
Osama Abboud danke ich fiir die herzliche Aufnahme als Peer. Meinen QuaP2Plern danke
ich fiir die kritischen Diskussionen - allen voran Christof Leng, der mir fiir einiges die Augen
geoffnet hat. Thorsten Strufe kam gerade rechtzeitig nach Darmstadt, um mich fiir die finale
Phase meiner Promotion aufzubauen, durch guten Rat und entspannenden Unternehmungen.

All meinen Studenten mochte ich fiir die fruchtvolle Zusammenarbeit danken. Ganz beson-
ders Sebastian Schlecht. Neben grofiem Dank fiir die Hilfe bei der Implementierung mochte
ich Dir fiir Dein grofies Engagement Danken, das tiber allen Erwartungen weit hinausgeht.

Vielen Dank auch bei den unterstiitzenden Kollegen bei KOM. Besonders mochte ich
folgenden Personen danken: Karola, fiir die Hilfe beim Organisieren - von Projektbegehungen
zu meiner Promotionsfeier. André Miede, nicht nur fiir die wunderschéne Dokumentvorlage,
auch fiir die nicht miide werdende Unterstiitzung beim Anpassen selbiger. Warm thanks go
to our friend Annabel Baird, who proof read my thesis. You did a magnificent job!

Zu guter Letzt mochte ich meiner Familie danken. Meinem Vater, Pradip Mukherjee, dessen
Worte mich erst so weit gebracht haben. Meiner Mutter Margret Mukherjee, die mir immer
bedingungslos fiir mich da ist. Meinen Schwestern Anita und Sonali, die trotz der raumlichen
Distanz die Familienbande zusammenhalten, Christian fiir die Unterstiitzung bei meinen
Pflichten als Sohn und meinen Nichten Helena Pari und Johanna Shalin fiir die herzhaften
Momente. Salomon fiir die Gelegenheit mich im Gesprach iiber meine Hobbies zu verlieren.
Sale, Zaga und Zlatko danke ich fiir die aktive Unterstiitzung bei Euren Besuchen in Darmstadt.
In Eurem Urlaub habe ich mich wie im Urlaub gefiihlt.

Dieser Abschnitt erforderte dhnliche mentale Kraft wie die anderen Teile dieser Disserta-
tionsschrift: Wie leicht vergisst man doch Personen, den man iiberaus dankbar ist! Wenn Du,
lieber Lesen, Dich angesprochen fiihlst, dann sei Dir gewiss, dass ich Dir nur versehentlich
nicht in diesem Text gedankt habe.

ix

CONTENTS

I INTRODUCTION 1
1 Introduction 3
1.1 Motivation 4
1.2 Vision 5
1.3 Challenges 6
1.4 Goal 7
1.5 Outline 7
2 Suitability of Peer-to-Peer Paradigm for Application Scenarios 9
2.1 Peer-to-Peer Communication Paradigm 9
2.2 Wiki Engines 11
2.2.1 Cooperation in a Wiki Scenario 12
2.3 Global Software Development 14
2.4 Benefits of Peer-to-Peer Paradigm for the Application Scenarios
2.4.1 Shortcomings of Server-centric Solutions 17
2.4.2 Characteristics of Peer-to-Peer based Solutions 18
2.5 Running Example 20
2.6 Summary 21
3 Requirements and Assumptions 23
3.1 Assumptions 23
3.2 Requirements 24
3.2.1 Functional 24
3.2.2 Non-functional 27
3.2.3 Security Aspects 29
3.3 Summary 30
II VERSION CONTROL SYSTEMS 33
4 Foundations of Version Control Systems 35
4.1 Collaboration Workflows 35
4.2 The Frequency of Committing Changes 37
4.3 Configuration Management 38
4.4 Consistency and Coherency in Version Control Systems 38
4.4.1 Terminology 39
4.4.2 Degrees of Consistency 40
4.4.3 Coherency in Version Control Systems 42
4.5 Summary 43
5 Notable Version Control Systems 45
5.1 Centralized Version Control 45
5.1.1 SCCS 45
5.1.2 RCS 46
5.1.3 CVS 46
5.1.4 SVN 48
5.1.5 ClearCase 49
5.2 Distributed Version Control 52
5.2.1 Basic Architecture of dVCS 52
5.2.2 Monotone 55
5.2.3 Git 55
5.2.4 Mercurial 58
5.3 Peer-to-Peer Version Control 60

5.3.1 Wooki 61

16

I
7

8

xii

5.3.2 DistriWiki 62
5.3.3 CVSover DHT 63
5.3.4 Code Co-op 64
5.3.5 Pastwatch 65
53.6 GRAM 68
5.3.7 SVCS 69
5.3.8 Chord based VCS 69
5.4 Systems for Collaborative Work Support 70
5.5 Summary 71
Analysis of Related Version Control Systems 73
6.1 Realized Requirements per System 73
6.2 Analysis of System Properties Leading to Fulfilled Requirements
6.2.1 Functional Requirements 75
6.2.2 Non-functional Requirements 76
6.2.3 Security Aspects 80
6.3 Degree of Consistency 80
6.4 Taxonomy of Key Mechanisms 82
6.4.1 Concurrency Control 82
6.4.2 Repository Distribution 82
6.4.3 Repository Partitioning 83
6.4.4 Communication Paradigm 84
6.4.5 Communication Protocol 85
6.5 Promising Mechanisms 85
6.5.1 Concurrency Control 85
6.5.2 Repository Distribution = 87
6.5.3 Repository Partitioning 87
6.5.4 Communication Paradigm 88
6.5.5 Communication Protocol 88
6.6 Summary 88

PEER-TO-PEER VERSION CONTROL SYSTEM - PLATINVC 91
Overview of PlatinVC 93
7.1 Basic Architecture 93
7.2 Workflow 94
7.2.1 Frequency of Commits 94
7.2.2 Repository Sharing 94
7.2.3 Conflict Resolution 95
7.3 Features 97
7.3.1 Automatic isolation of concurrent work 97
7.3.2 Working Offline 100
7.3.3 Interoperability 100
7.3.4 Offers all dVCS Operations 100
7.3.5 Backing up Artifacts Redundant 101
7.3.6 Degree of Consistency 101
7.3.7 Support for Traceability Links 102
7.4 Services 103
7.4.1 Modul Management Operations 103
7.4.2 Retrieve Operations 104
7.4.3 Share Operations 106
7.5 Summary 107
Design of PlatinVC 109
8.1 Design Principles 109
8.2 Design Overview 110
8.3 Choice of the Supporting Systems 111

75

8.4

8.5
8.6

8.7
8.8

8.3.1 Component Intercommunication & Lifecycle Management
8.3.2 Communication network layer = 111

8.3.3 Local version control mechanisms 112
Global Version Control Mechanisms 113

8.4.1 Storage Components on each Peer 113

8.4.2 Repository distribution and partitioning 115
8.4.3 Replication 117

8.4.4 Collaboration 118

8.4.5 Retrieve Updates 122

8.4.6 Share Versions 130

8.4.7 Conflict Handling 137

8.4.8 Additional mandatory mechanisms 137
Maintenance Mechanisms 138

Failure Handling 138

8.6.1 Handling Network Partitioning 139

8.6.2 Handling Indeterministic Routing 140

8.6.3 Recovery of Missing Snapshots 141
Traceability Links 141

Summary 141

9 Prototypical Software Development Environment 143

9.1
9.2

93

9-4

Modular Development of Peer-to-Peer Systems 143
Framework Services 144

9.2.1 Communication Management 144

9.2.2 Security 145

9.2.3 Storage 148

User Level Applications 148

9.3.1 Eclipse IDE 148

9.3.2 PlatinVC- a Peer-to-Peer based version control system 149

9.3.3 Piki - a Peer-to-Peer based Wiki Engine 150
9.3.4 ASKME- Peer-to-Peer based Aware Communication 151
Summary 152

10 Evaluation 155

10.1

10.2

10.3

10.4

10.5
10.6

Evaluation Goals 155

10.1.1 Quality Aspects 155

10.1.2 Metrics 156

Evaluation Methodology 157

10.2.1 Evaluation Environment 158
10.2.2 Evaluation Platform 158
Workload 159

10.3.1 Number of Users 159

10.3.2 Experiment Data 159

10.3.3 User Behavior 160

10.3.4 Churn Model 160

10.3.5 Experiment Timeline 160
10.3.6 System Parameter Settings 161
Evaluation Results 161

10.4.1 Consistency Degree 162
10.4.2 Robustness 162

10.4.3 Freshness 163

10.4.4 Duration of Push and Pull 164
10.4.5 System Load 166
Comparative Evaluation 166
Summary 167

111

xiii

IV FINALE 171
11 Conclusion 173

11.1 Summary and Conclusions 173

11.2 Contributions 175
11.3 Outlook 176
11.4 Implications 177

BIBLIOGRAPHY 179
CURRICULUM VITZE 189
PUBLICATIONS 103

V APPENDIX 195
A About the Prototype’s Development

Erklarung 199
List of Figures 201
List of Tables 202
Index 203

Xiv

197

Part1

INTRODUCTION

Development, relating in particular to project work, evolved from
single site work into a globally spread fashion, in which multiple
persons collaborate from physically distant places. The utilized version
control systems were created in times when a project’s development
was concentrated on one physical location.

A motivation with a vision for a better suiting solution to support this
evolved form of project work is laid out in Chapter 1 along with an
overview of our goals and the challenges that arose. We take a deeper
look at two scenarios where the distributed nature of the development
suffers from the current limitations of the available version control
tools in Chapter 2. A complete set of the requirements that a beneficial
solution must fulfill are elaborated in Chapter 3.

INTRODUCTION

The Internet has become the main means of communication in today’s society. It has a huge
impact on people across the world. People send e-mails, chat, talk, exchange various informa-
tion, multimedia data, all over Internet. We are also witnessing new trends of communication,
using popular online social networks (e.g., Facebook [fac]), the sharing of personal content
- expertise, experiences, thoughts (e.g., Blogs [Bloo4]), articles (e.g., Wikipedia [wikb]), and
videos (YouTube [You]). The vast majority of people now consult wikipedia articles to briefly
inform themselves on subjects of interest or watch tutorials on various topics from YouTube
users. The sharing of various types of data, communication, and collaboration are the common
features of all popular and now essential Internet applications.

Means of efficient and powerful communication and collaboration do not only have a
social impact, but are also crucial for industry. Let us examine, for instance, multinational
corporations. They are spread across the globe and distribute their work over many distant
locations. Efficient collaboration tools are not only essential but crucial for running such
corporations. For instance, Mercedes Benz design their cars in Germany but hold assembly
lines in many countries around the world. A lack of appropriate collaboration platforms
could lead to huge costs and even endanger drivers’ lives, if misunderstandings arise. Product
development in software companies is also globally distributed. For instance, Google, whose
headquarters are in MountainView, California, has offices in 37 countries in Europe, Latin
America, Asia, Australia, and Middle East [goob]. One reason for this distribution is to
assemble expertise from other countries, (e.g., Google research center Ziirich in Switzerland),
however, reducing costs (e.g., development center in Bangalore, India) is certainly of interest.
Many documents can be shared online in an efficient way, with no communication overhead
(e.g., e-mails, phone calls). A designer of a new Mercedes Benz E-Class model needs only to
upload his specifications to the collaboration platform so that the worker in the assembly line
on the other side of the globe can always have access to the latest version of design documents.
Collaborators can be distributed all around the world and in addition to issues involved
with working in different time zones, the Internet communication delays can be huge if the
communication in the provided platform is inefficient. Any outdated data can lead to huge
risks to the success of a project.

Particularly in the software industry, which will remain the focus of this thesis, developers
collaborate intensively and often work on the same project or file at the same time. It is,
therefore, very important to enable control over possible conflicts. Mistakes in development
can be eliminated by going back to earlier stages of the process. Tracking evolutionary changes
and managing concurrent work on the same document is crucial for such a collaboration.

Version Control System
A version control system tracks evolutionary changes to files. The so called
commit operation detects and records changes a user has made to her files in
her working copy. These changes can be retrieved by any other developer at any
time later with the update operation. The changes are listed in chronological
order with additional information, such as the author's name and comments.

Version control systems also manage concurrent work. When multiple authors
modify a file at the same time, conflicts can happen. Using a version control
system those conflicts are detected and resolved.

In summary, there are three crucial requirements of version control system:

1. The possibility to revert the state of an entire project or a single file to any point of earlier
development stage, an earlier version. This feature provides key support for correcting
mistakes.

4

INTRODUCTION

2. Coordinate the work of an unlimited number of people on the same project or same file
without the overhead of constant manual back and forth file exchange.

3. Managing possible conflicts resulting from the concurrent work of many developers on
the same project or file at the same time.

The question raised at this point is: What kind of collaboration platforms exist today and do
they fulfill the aforementioned needs?

1.1 MOTIVATION

The sharing of documents and files is now supported by various tools. Most of them, such as
the popular platforms dropbox [dro] and Google docs [gooa], support only the second of the
aforementioned benefits. The Dropbox client, for example, allows users to drop any file into a
designated folder, which is then synchronized directly to any of the user’s other computers
with the Dropbox client. Google docs supports collaborative text editing.

Common to all of them, however, is that they all suffer from a complete lack of or serious
limitations to full version control - tracking only the evolutionary changes of single files.

The most widely used version control systems, such as CVS [CVS] and SVN [Pilo], provide
support for all three requirements. They belong to the vital tools in multi-developer software
projects. Their usage not only eases collaboration but also speeds up the development, through
the possibility of correcting any mistake by restoring the project to any earlier stage. Looking
deeper into the technology behind them, we can see that those version control systems use a
centralized point of communication and storage. It is a server that is always online and stores
all data, responds to all user’s requests and it plays an intermediary role between users. The
basic communication flow is presented in Figure 1. A developer uploads data on a server
which tracks the changes, marks the versions, and manages the conflicts. All other developers
receive the changes from the server.

global
Repository

<X
[retrieve |

Figure 1: Basic principle of centralized version control systems

An obvious drawback to this communication principle is that a server presents a single
point of failure. In the case of a server break down due to, e.g., overload, power outage, or an
attack, the complete collaboration platform fails and developers are hindered in their work on
a project. Additionally, it also represents a single point of control and ownership. If such a version
control system is used by a huge number of developers at the same time, it demonstrates
evident scalability issues as a server may run out of resources leading to its failure or, in best
case, poor performance. As already mentioned, developers can reside all around the world.
The centralized communication model, also called client-server, can lead to unequal Internet
delays in such a globally distributed environment, bringing additional synchronization and
communication delays. Last but not least, having a centralized server as an essential system
component, brings additional maintenance costs for the dedicated hardware.

1.2 VISION

We explained the need for version control systems in collaborative work nowadays and
understood the limitations of currently used tools. Next, we will present the vision of this
thesis which shows how we can overcome these limitations and provide even better support
for collaborative software development.

1.2 VISION

If we look at the inherent distribution of developers, we first notice that centralized com-
munication in existing version control systems is orthogonal to it. A more natural way of
communication would be decentralized, directly among the users. Such a communication
paradigm is called peer-to-peer.
Peer-to-Peer (p2p)

The term peer-to-peer describes the "equal-to-equal" property of this commu-

nication model. Opposite to the centralized, client-server communication model,

all users, so called peers, are both consumers and contributors to the system,

acting as both servers and clients at the same time. They share their resources

(e.g., data, memory, CPU power) directly, without an intermediary server. The

users are, therefore, called peers, as they have the same rights and responsibilities

(which is not a strict rule but more of an initial, basic principle).

Peer-to-peer became a popular means of communication, storage, and sharing in the Internet
after its huge success in 1999, with the notorious file-sharing application Napster [Shio1].
Since then, this fully decentralized communication paradigm has proven its benefits in many
applications beyond file-sharing, such as Voice-over-IP (e.g., Skype [Skyb]), video streaming
(e.g., SopCast [Sop]), and content distribution (e.g., BitTorrent [Coho3]). Some of the main
advantages of using peer-to-peer communication paradigm are very low maintenance costs, no
single point of failure, scalability, and collective ownership.

1 \ 1 N\

1
| i |
E‘etrleve] 1 virtual i

|
- global | lobal
| i Reposltory Tﬂ : Repository N
/ o)

(a) share changes (b) get updates

Figure 2: Basic principle of peer-to-peer version control systems

Combining the peer-to-peer paradigm with a version control system solves many issues
current version control systems suffer from. In addition to that, this thesis introduces a
novel collaboration workflow, which solves another issue in current version control systems, not
previously mentioned. Let us observe the situation when several developer teams work on
the same project. Each of them focuses on the implementation of different system features. To
avoid confusions and inevitable programming mistakes caused by one team working on one
feature, obstructing the development of another team working on another feature, for each
team a so called branch is created. With branches commits and updates of all developer teams
are separated. When teams accomplish their tasks, the resulting code must be merged into a
functional project.

6

INTRODUCTION

Merging

Whenever the same artifact is developed concurrently the changes have to be
merged. If the modifications happened in different lines they can be combined
automatically. Nevertheless a user should check the result of the automatic merge
process as the resulting version might have semantic errors. There are more
sophisticated merge approaches, which can take the semantic of specific types of
artifacts (e.g., Java source code) into account. However, those merge algorithms
were never used widespread. A special form of a commonly used merge algorithm
is the three way merge, in which the shared base version of the conflicting
artifact versions is consulted as well. In this algorithm actual changes can be
identified, which overwrite unchanged lines.

This is not a simple task. For instance, before the branches are merged, many helpful fixes
in common files of all branches are not shared. Therefore, each team may solve the same bugs
in different ways, losing their time and making the integrations of those changes troublesome.
Merging branches is problematic - the longer it is postponed, the more conflicts might arise.
Optimally these conflicts could be resolved by the respective authors in the most efficient
and valid way. Different implementations resulting in the same effect are very challenging to
identify and merge.

Our collaboration workflow introduces automatic isolation of concurrent work, a mech-
anism which avoids the aforementioned problem by automatically separating the work of
teams while notifying about potentially relevant updates. Two teams that, for instance, work
on the same file, will receive the updates from each other although they work on separate
tasks. When a developer is interested in the latest versions of a set of files, she specifies a folder
that should be kept updated. Updates are snapshot-based, meaning that if they are integrated,
all related changes are provided as well. In that way, she can integrate updates from other
teams into her versions immediately or at a later date. In the latter case, an isolation (analog to
a branch) is automatically created so that every developer profits from the decision to separate
development lines. It is no longer necessary to create (often unnecessary) branches in advance,
which might cause problematic change integration.

The basic communication flow in our peer-to-peer version control system is visualized in
Figure 2. For the first step, developers stores their changes locally, on their computer. As soon
as they consider the state of their code to be stable and ready for sharing, they will push
the changes (see Figure 2a) to the specific group of peers assigned to manage the changed
file. Developers can update their local files to the latest version by pulling them from the
peer-to-peer network, which for them appears as a central, global repository instance (marked
using dotted lines on "global repository” on the figures). Without being aware of it, they
actually send requests to the peers assigned for storing all changes of the corresponding file.
A users can decide to receive only the updates to folders they specify, which in contrast to
client-server version control systems retrieves updates on related files as well. Automatic
isolation is initiated when developers decide to separate conflicting development lines. The
natural separation of project parts into subfolders can be utilized in work isolation, which
eliminates the need for explicit branches.

There are, however, many challenges which make the use of peer-to-peer in version control
challenging.

1.3 CHALLENGES

In spite of the fact that the peer-to-peer paradigm continuously proves its success in a plethora
of applications, it can have some limitations. They are caused by the main characteristics of
this communication paradigm:

¢ Participants are fully autonomous, meaning they join and leave the system at any time.

* There is lack of centralized control and view on the system.

1.4 GOAL

The core of a peer-to-peer system is the peers themselves, the availability of the offered
services if fully dependent on them. In the sudden absence of many peers, a system can
guarantee neither availability of its services nor its quality. All peers are equal in terms of their
rights and responsibilities within in the system. That means that no peer has a role of higher
importance than another, as is the case for a server in client-server solutions. Finding the right
peers with which to share updates without having a global view of the system is a challenging
task.

Two main challenges were faced when bringing the peer-to-peer paradigm to a version
control system:

» A Lack of global knowledge, which is evidently crucial when pushing and pulling updates
and finding the appropriate group of peers for particular updates. Finding a particular
peer in fully decentralized fashion, with no centralized view of the system is a challenging
task in itself.

* The Reliability of the system and its performance due to the unpredictable peer behavior.
Is it possible to create a reliable system dependent on unreliable, autonomous peers?

This thesis overcomes these challenges and proves that the peer-to-peer paradigm can be
pushed beyond its current boundaries, contributing its inherent strong points and adding
seemingly unfeasible features.

From the motivational problem of current version control systems, the vision of the solution,
and the rising research challenges, we define the main goal of this thesis.

1.4 GOAL

The main goal of this thesis is to provide a fully decentralized, peer-to-peer version control system
that provides suitable / full support for distributed software development.
In order to achieve this goal, the following objectives are addressed in this thesis:

* Requirements analysis by examination of feasibility, benefits and drawbacks of the peer-to-
peer communication paradigm in our two application scenarios, namely wiki and global
software development. The aims are to identify "the best of both worlds", client-server
and peer-to-peer, by retaining the advantages of both and eliminating their drawbacks.

Evaluation of existing solutions where the most important version control systems are
investigated and compared, to learn from their design decisions and the impacts on the
resulting features and quality.

Design of fully decentralized peer-to-peer version control system with all mechanisms, proto-
cols, and algorithms needed to fulfill the stated requirements, being both functional and
quality requirements.

Evaluation of the solution by providing a running and tested proof-of-concept and
performing testbed experiments to address various quality aspects.

Proving feasibility of pushing the peer-to-peer paradigm beyond its current boundaries. Ap-
propriate mechanisms will be proposed to overcome currently unsolved issues in peer-
to-peer applications, which present a great obstacle to an even broader usage of the
peer-to-peer technology.

1.5 OUTLINE

This work consists of four main parts. They are structured as following:
Part i first introduces the motivation for the subject of version control and discusses the
problem set out in this chapter. In the following chapterwe discuss two application scenarios

INTRODUCTION

that can benefit from the peer-to-peer paradigm and derive functional and non-functional
requirements in Chapter 3.

When the requirements are defined, we focus on version control systems in Part ii. First the
foundations of version control are explained in Chapter 4. Existing solutions for version control
are discussed in detail in Chapter 5 and they are analyzed according to the requirements,
design decisions and their impact in Chapter 6.

Part iii is the crucial part of this thesis as it presents the proposed peer-to-peer version
control system. Chapter 7 describes the basic architecture and workflows in the system. A
detailed look into the design of the system through comparative representation of chosen and
alternative design decisions is given in Chapter 8. A proof of concept and its implementation
details are explained in Chapter 9 and experiments running on a testbed to evaluate the
required quality aspects are elaborated in Chapter 10.

The concluding Part iv summarizes the key contributions of this dissertation, implications
for collaborative software development and new research challenges arising from this work.

SUITABILITY OF PEER-TO-PEER PARADIGM FOR APPLICATION
SCENARIOS

This chapter discusses two application scenarios and explores the suitability of the peer-to-peer
paradigm for both of them. Wiki and global software development are observed as application
scenarios because of their two common properties:

* version control is essential for their functioning, and
¢ their users are inherently distributed over geographically distant locations

First, in Section 2.1, we briefly explain the basic background and terminology of peer-to-peer
systems. Following that, in Sections 2.2 and 2.3, we describe Wiki and global software applica-
tion scenarios and analyze the usage of the peer-to-peer paradigm in their communication.
Section 2.4 summarizes the benefits of the peer-to-peer approach for those scenarios and
weighs them against the drawbacks of centralized approaches. A running example described
in Section 2.5 illustrates the use of a version control system, which is based on the peer-to-peer
paradigm.

2.1 PEER-TO-PEER COMMUNICATION PARADIGM

Peer-to-Peer System
A Peer-to-peer system consists of one or more peer-to-peer overlays, realized
with communication protocols and one or more applications on top.

Peer-to-peer describes the communication, transactions, or exchange which occurs directly
between equal individuals ("peers").
Peer-to-Peer Overlay Network

Peer-to-peer overlay represents a virtual network of peers built on top of the
ISO/OSI-Layer 4 [Zim80], i.e., the transport layer, which is called the underlay.
Each peer has a peer ID (also called overlay ID) and peers are connected by
the virtual connections between each other. This virtual connections forms a so
called overlay, which is based on physical routes in the underlaying transport
medium.

A peer ID is a unique identifier that is sometimes related to the content/infor-
mation a peer stores, depending on the kind of peer-to-peer protocol.

This decentralization of the communication and data (e.g. messages, data or multimedia
streams), without an intermediary server avoids a single point of failure, a bottleneck of
communication, and reduces the maintenance and hardware costs. All participants of peer-to-
peer systems have the same responsibilities and rights in its pure, original meaning.

Peer-to-Peer Application

After a direct connection is established a mechanism can exchange data with other
peers. This effectively forms the application the user operates. This application
can be further separated in framework services, which are reusable components
such as data storage and user level applications, with which the user interacts
directly. The peer-to-peer based Wiki engine presented in Section 9.3.3 is an
example for a user level application, the version control mechanism, which is
presented in Chapter 7 is a framework service.

Peers in a peer-to-peer system communicate with each other with a set of predefined
messages, according to the particular peer-to-peer protocol [SEos]. In the ISO/OSI layer model,

10

SUITABILITY OF PEER-TO-PEER PARADIGM FOR APPLICATION SCENARIOS

a peer-to-peer protocol is built in the application layer, on top of the transport layer. It describes
how peers find each other and communicate in a fully decentralized fashion. Peer-to-peer
protocol messages include routing and maintenance messages. Peers have a unique identifier,
the peer ID, and are connected to each other via (virtual) links. Such a network of peers with
this communication protocol is called overlay.
From its original meaning, peer-to-peer stands for communication between equals. There
are, however, also centralized and hybrid, systems in addition to pure peer-to-peer overlays.
In a centralized peer-to-peer overlay one peer has a more important role. The indexing of
content and finding which peer offers which ressource is performed by that peer, this single
instance. The index is a list, which maps the identifiers to their respective resources. Content
transfer is carried out in a decentralized fashion among peers in the overlay. A popular
example of the centralized approach is Napster. In hybrid overlays there is more than one peer
with a more important role, the so called superpeers. Peers are connected to their assigned
superpeer and communicate with it in a client-server fashion, whereas communication between
superpeers is pure peer-to-peer.
Peer Proximity
A peer proximity is the distance (based on, e.g., mathematical subtraction, logical
xor) between a peer ID and a given ID (e.g. resource or other peer ID). How
the proximity is calculated depends on the respective peer-to-peer protocol.

Pure peer-to-peer overlays are further classified in structured, unstructured, and hierarchical
overlays. In structured overlays, there is a relation between peer IDs and the resources they
store and share. There is always a peer responsible for a part of an index of shared resources,
and each peer is aware of that peer, through the peer/resource ID relation. Finding a resource
means routing a request to the peer responsible for the part of the index referring to the
required resource. Each peer has a routing table with peer IDs mapped to the transport layer
address of a set peers, the so called neighbors.

Neighborhood Peers
A peer A is called neighbor of a peer B, if B's ID is one of the n closest IDs
among all online peers. A's overlay and underlay address is kept in the routing
table of peer B.

Routing tables in structured overlays are organized in a way that enables so called greedy
routing. That means that the routing is optimized to reach the destination in as few hops as
possible. A hop denominates a peer who forwards a message. Each hop is chosen from peers
that are closer to the destination.

An example of structured overlay is Pastry [RDo1b].

Peer-to-Peer Protocol
A peer-to-peer protocol describes the maintenance mechanisms and routing
mechanism. The purpose of a peer-to-peer protocol is to establish a direct
connection between any two peers.

maintenance mechanisms: Each peer knows a bundle of other peers in the
network and keeps in contact with a few of them. For example, a peer
can use probing messages, called keep-alive messages, to check if the
peer from his routing table is still online. In the case that it is offline,
the corresponding entry in the routing table is replaced according to the
Peer-to-Peer Protocol. Similarly, upon joining, a peer obtains a number
of other peers’ contact information. The mechanisms which take care of
these operations are the maintenance mechanisms.

routing mechanism: Using routing mechanisms, any peer can be found. If
the requested peer is unknown to the initiator of routing, neighbors are
asked to forward the query until the destination is reached.

In unstructured overlays, there is no relation between a peer ID and the resources a peer’s
shares. A routing is mostly done by flooding — forwarding a message to neighbors who do

2.2 WIKI ENGINES

File Network
[EJ @ @ germany IT Search for ... |§
e : ‘D links: o 0l

Ige rmany
links:germany

-
Germany, officially known as the Federal Republic of Germany, is a country in Central Europe. '

It is bordered to the north by the North Sea. [Denmark.
and the Baltic Sea: to the east by Poland and the Czech Republic: to the south by Austria and
Switzerland; and to the west by France, Luxembourg, Belgium, and the Netherlands. The territory
of Germany covers 357,021 km? and is influenced by a temperate climateltemperate seasonal climate.
With over 82 million inhabitants, it has the largest population of any member state of the European
Union and 1s home to the List of countries by immigrant populationlthird-largest number of

international migrants worldwide.!'

Contents

1. History ki

Version 5, Cliff, Sun Sep 07 02:39:46 CEST 2008
(Edit) (History) (Get Links)

Version | Editor Time
1 Alice Sun Sep 07 02:34:18 CEST 20...
2 [Bob [|SunSep 0702:35:09 CEST 20...
3 Bob Sun Sep 07 02:35:32 CEST 20...
4 Bob Sun Sep 07 02:38:59 CEST 20...
s afr [SunSep 07 02:39:46 CEST 20

€ Close Diff

- -
Denmark, and the Baltic Sea; to the east by
Denmark, and the Baltic Sea; to the east by With over 82 million inhabitants, it has the
With over 82 million inhabitants, it has the
==History==
==History== {{main|History of Germany}}
{{main|History of Germany}}
===Cermanic tribes===

===0Germanic tribes=== ¥ | {{main|Germanic peoples|Germania|List of c ¥
<@ SLMIET =) el

Article "germany” stored on this node .
Article "germany” stored on this node
Article "germany” stored on this node
Article "germany” stored on this node
Article "germany” stored on this node p 4

Figure 3: Peer to peer based Wiki engine P11 [MLSo8]

the same until the destination is reached. This leads to indeterministic routing and often
overloading the networking with the routing messages. There are, however, sophisticated
approaches to minimize this overhead and achieve retrievability of the queries for the resources,
such as in BubbleStorm [TKLBo7].

All communication messages in peer-to-peer overlay, routing and maintenance of routing
table, is defined by peer-to-peer protocol.

Hierarchical overlays use the routing in one or more hierarchy levels. Peers are organized in
clusters. Inside of the cluster one routing mechanism is used and clusters are connected by
their cluster heads, reachable by their own routing mechanism. In this thesis we will focus on
structured overlays.

2.2 WIKI ENGINES

One of the technologies which made the Internet more collaborative is the Wiki technology
[LCo1]. Ward Cunningham invented Wiki engines in 1994. It proved to be an appropriate

11

12

SUITABILITY OF PEER-TO-PEER PARADIGM FOR APPLICATION SCENARIOS

tool for sharing global knowledge, as it provides an easy way to contribute and consume
information. Information is shared by writing a Wiki article, which is very similar to a normal
webpage. It is edited using a simplified markup language (Wiki markup). Articles can contain
other media such as pictures or sound samples and can be linked to other articles, creating a
knowledge network.

The way Wikis are used, e.g., consuming and contributing information, is naturally suited
to the peer-to-peer (pzp) paradigm, which inherently follows the structure of its distributed
users.

There is no central point of communication, resources are used and offered by all users. The
more users are using the system concurrently, the more capacity is required. When knowledge
should be shared for free, as in the popular project Wikipedia [wikb], hosting costs should
be as low as possible. An additional benefit is diminishing censorship as articles would be
redundantly hosted by many distributed users. As a Wiki engine is intended to be easy to
use, it is desirable that setting up and running a Wiki engine should not require extensive
knowledge.

The crucial feature of a Wiki engine is its support for concurrent modifications of the stored
articles. The contribution of an author should not unwillingly overwrite another contributor’s
changes, which may have happened concurrently. In order to understand the evolution of
an article, all modifications should be retrievable in their executed order, preferably with the
respective author noted and the ability to compare the changes made in any of these versions.
Although not provided by existing wiki engines, the ability to retrieve a linked article in the
state it was in when it was linked would be helpful.

Figure 3 shows a peer-to-peer based Wiki engine based on the results presented in this
work.

Existing Wiki engines are implemented in a lightweight manner, using script languages like
php (e.g. Wikimedia, TikiWiki). Additionally, article versions are stored as database entries.
They, therefore, typically also implement the functionality of version control systems, instead
of reusing a version control system for source code management.

Although not provided by existing Wiki engines, the ability to retrieve a linked article in the
state it was in when it was linked would be helpful.

Version

A version is a modified copy of an artifact. All changes to the content of an
artifact, which are stored using a version control system, lead to a new copy
of the respective artifact instead of overwriting it. These copies are versions of
each other. The term version is distinguished further in revision and variant.
A revision is an evolutionary change, an update of an artifact. A variant is a
variation of the original artifact, e.g., in another language. The distinction is
theoretical only, as revisions become variants, if they are based on the same
artifact version. Looking at a line of modifications, which are based on each other,
an artifact is a revision. While looking from the perspective of an alternative
development line, the same artifact is a variant. Thus revisions and variants
are not distinguished further in most version control systems.

2.2.1 Cooperation in a Wiki Scenario

All articles of a Wiki engine are linked to each other. These links connect Wiki articles, which
have semantically related content. The links should point to a specific version of an article,
as updates could completely rewrite the article and change the semantics of its content. In
practice, however, an update on an article’s content improves the information in the article,
without changing the entire statement of the article. Links always point to the latest versions
and are never (automatically) checked, if the link is still justified.

2.2 WIKI ENGINES

Link

A link is a connection between artifacts. Often this connection has a semantically
meaning, i.e., two artifacts are connected, when their content is referring to
each other. A link carries metadata about the connected artifacts. This excludes
information about an individual artifact, but includes all information, which
cannot be assigned to a single artifact alone. Therefore this information describes
the connection between artifacts, e.g., the connected versions, the status of
the connection, or constraints, with which the connection can be validated.

A link is not limited to connecting only two artifacts. Any number of artifacts
can be connected. There is no default navigation direction of a link, although
the direction can be specified as metadata.

Beside Wiki articles, there are also so-called special pages, which are presented like Wiki
articles. However, these pages contain computed information only, as a list of all recently
updated articles. These special pages often link to multiple articles.

A Wiki article becomes automatically linked to special pages and manually associated with
other articles. Even if an article is not manually linked, it is linked to a special page. The
connections of all articles in a Wiki form a connected graph. If these articles are not stored
in one (version management) system these connections need to be broken up, creating two
separate Wikis.

The articles” authors can be spread around the globe, depending on the Wiki’s purpose. In
the Wiki application scenario a similar usage to the Wikipedia project [wikb] is assumed. Here
any person on the globe can participate. The interaction pattern, however, is only similar to the
user behavior in the global software development scenario (shown in Section 2.3). Potentially
any person could be interested in an article’s content. The authoring group, however, is usually
small, as only some people have the necessary specific knowledge to contribute to an article.
This smaller group behaves much like software developers. Often a main author creates
an article and maintains it by editorial updates. When others contribute to the article their
contribution is most likely reviewed by the main author, or if not, by more contributors to the
specific article. This interaction fits the peer-to-peer paradigm.

An important issue for a project, where knowledge is collected and offered globally, is
censorship. If all information resides on a central instance, e.g., a server, it can be manipulated
unnoticed easily. If access is granted or can be illegally gained all articles could be deleted or
altered. Additionally, the access to this central source could be blocked by a network provider,
who does not want their people to access the contained information, as some countries do
today.

Distributed stored articles are stored with multiple copies to increase their availability. To
manipulate an article unnoticed all of its copies would have to be modified. Because the
peers, where these copies are stored, change dynamically it is not feasible to access them all
unnoticed. Copies stored on machines, which are momentary offline, need to be accessed as
well! Similarly, the access to the Wiki system cannot easily be hindered, if every participant
can offer access to the complete system, as offered by peer-to-peer paradigm.

Additional benefits a decentralized solution would bring are low costs in setting up and
maintaining hardware and software resources, in order to run the Wiki system. A peer-to-peer
system operates solely on the participants’ resources. There is no need for expensive server
hardware. The maintenance costs of the hardware are reduced to the costs each participant has
to invest to keep his machine operational, regardless of the peer-to-peer software. Software
maintenance costs are settled in the same manner by the participants alone. The network
connection of each machine has to be configured so that any participant of the Wiki system
can be reached. The software, which implements the peer-to-peer protocol maintains itself,
without the need for human intervention: Connections to other peers are maintained, data is
downloaded and cached automatically, and the software could even update itself.

13

14

SUITABILITY OF PEER-TO-PEER PARADIGM FOR APPLICATION SCENARIOS

Project Leader Subcontractors

*“Nomadic”
Developers

Open-Source
Projects

Figure 4: Peer-to-peer based integrated project-support environment (P1pe) [MKSo8]

2.3 GLOBAL SOFTWARE DEVELOPMENT

A growing number of today’s software projects are developed by globally distributed teams
[MHKos5]. The reasons for separating the development over different locations around the
world are numerous. Outsourcing (motivated by involving experts in a field or simply to
decrease cost) and efficient time management (using the advantage of different time zones) are
some of them [MHoz1]. Although the following statements can be applied to the development
process of any kind of project, we focus on software development.

Global software development (GSD) is typically organized as shown in Figure 4: The
company leading the project is referred to as project leader. It employs multiple subcontractors.
In IT-projects it is not unlikely that open-source software will be integrated so that the open-
source developer community becomes part of the project. The developers of the mentioned
parties work in different physical locations. Additionally, some workers, which we call nomadic
developers travel between those locations.

In addition to cultural differences [PAEo3], GSD must cope with a lack of appropriate
support tools. The most widely used CASE tools are designed for on-site development
where multiple clients are using one server, i.e., the client-server communication paradigm.
Numerous field studies of GSD projects [HPBos, HMo3, Smio6] show that the biggest problem
using these tools is the slow message transfer between physically distant machines. Recently
developed tools aimed to support GSD, like Jazz [Jazio, CHSJo3], still rely on client-server
communication.

A centralization of the communication by a server is orthogonal to the natural structure of
GSD. Developer teams normally manipulate the same artifacts and there will be some form
of communication between them. This communication (including message exchange and file
transfer) obviously does not need a remote server and should proceed directly from peer to
peer. A peer-to-peer based approach is naturally suited for GSD as it is inherently distributed;
there is no central point of communication. After a distributed routing algorithm connects the
participants they communicate directly with each other.

2.3 GLOBAL SOFTWARE DEVELOPMENT

00 Java - P2PMessengerPlugin/src/pluginData/ContactData.java - Eclipse SDK - {Volumes/Zeitmaschine/PatFiles/Eclipse-Workspace)
Iri- |#-0-Q |BHE-]| /5 [%5 Debug &llava »
[| Lr Gl ks oy v | 2t
: [# Package Explorer &% = B[1] stateManager java ﬂD ChatView java L!D MessengerViewjava f@ PastryNodelnit java f@ ContactDatajava £3 = B|[& p2pinstantm 2T O
% B%|s ~ 1 package pluginData =] C 0 les
» 15 Other Projects 'y ®import java.io.|0Exception]]
11 Sandra
15 MOFLON Il g gAm
15 pzowiki 13 * Objects of this class represent cne contact of the contact-list 2 i
17 * schlecht
» 15 paper 15 Sebastian Schiecht & patmuk
¥ 15 PIPE 16 =/
L 17 public class ContactData
7 ChatClient 18 {
T CvsChangeLog =
2 1/ private static Environment environment;
Cj dea-demo 21 private static IdFactory idFactary, -
¥ sy P2PMessengerPlugin [cve 2 X Connected to L node
¥ §Bsrc
v [# pluginbata Bl console 52 |G BB & et B- 5 =0
> % ChatData javi{ || 51, 1m_A [Eclipse Application] /System Library/Frameworks/JavaVM.framework,Versions/ 1.5.0/Home /bin/java (16.02.2008 23:10:38)
» [7} ContactDatal | ||| Message 2
b [J) LeafsetSaver|| ||[this is @ offie message -
= Message: ok, again
») vessagewrafl ||| essage: no mesage
» 7} MyFileRevisi{} ||| Message: ciao
Message: ok
i
» {1} propertiessy Message: Perhaps | should ask the last author why he implemented it this way .
» {1 xmcparsing || || Message: Do that!
b [pluginPastry -=End---
. % lugnview ChatData addMessage(start m
] rearf} || =
» [f standaloneGui - = =
b [standaloneotfme| ||| @ Javadoc |2 Declaration ﬁm CVS Editors f:ﬂ Call Hierarchy ﬂgl History (E Console ﬁ‘_} P2PChat 3 [Pmmemﬂ =g
> [H standaloneuril (Chat session with Sandra
» = Referenced Libraries
Sat Feb 16 23:15:20 CET 2008 Me: Perhaps | should ask the last author why he implemented it this way ...
» = Plug-in Dependencies
P B JRE System Library UM | sar Feb 16 23:15:48 CET 2008 Sandra: Do that!
» 5 metadata
¥ (5 settings
» (5% Documentation
» G icons
» [META-INF ()
[¥) classpath 1.5 (ASCIl_
i factorvoath 1.1 (ASI T Send
E 1S /
| o |
P

Figure 5: Peer-to-peer based integrated project-support environment (P1pe) [MKSo8]

We can see a peer-to-peer based prototypical development environment, which is based
on the results of this work, in Figure 5. It implements a basic set of features, being a version
control system, access control, and an instant messenger, which highlights the last author of
the currently opened document [MKSo8].

Every software development process consists of different phases. The initial requirements
engineering phase is followed by the design phase, in which the architecture of the desired
software product is planned. Following this design, the work on the implementations begins,
followed by the testing phase. In various software development processes, these phases
are divided further, as well as the transition between these phases. Nevertheless all phases
themselves are always present in every software development process.

We can define different roles, which usually relate to the development phases, e.g., require-
ment analysts, programmers, etc (see [Som10]). Usually there are additional roles, which also
correspond to tasks not directly connected with the development of the software, such as
management, or costumer support. These roles are, however, not all assigned to different
people, for example the manager takes usually the role of a requirements analyst and designer
as well. In a GSD project the cooperating persons work in different, often very distant, loca-
tions. Through the distribution of the persons working in the different roles, the development
phases are practically distributed. The distribution can be both vertically (e.g. design in one
site, development in another) and horizontally (e.g. multiple sites working in the development
phase on different subsystems). Much like a concept of distributed computing, the project
development should be carried out in as independent as possible sub-projects [HMo3].

The evolution of the software development processes demonstrates that the development
phases interact with each other. Artifacts produced in one phase are based on artifacts of
former phases. Developments in later phases may change artifacts of earlier phases. This is
especially the case when moving from the design to the implementation phase, or when the
test phase influences the implementation phase. Therefore, development teams working in
different phases have to interact with each other.

15

16

SUITABILITY OF PEER-TO-PEER PARADIGM FOR APPLICATION SCENARIOS

As there are no substitute for direct face-to-face communication [[SHGHoy], a common
practice in GSD is to let either developers or dedicated consultants, called nomadic developers,
travel between the project’s sites.

Additionally or alternatively, software projects can be distributed by dividing the product’s
components among teams in different locations. It is good practice to couple them as loosely
as possible (advised by [GHJVog5]).

Components of a software project are connected through well-defined interfaces. Hereby the
dependencies between the components are theoretically minimized, but experiences from real
software projects showed that the interfaces are modified several times during the development
process. In practice, the development teams of different components have to interact as well.

Supporting tools for GSD can have many different functionalities. Shared knowledge could
be managed using a Wiki engine, which proved to be useful for collaborative requirements
engineering as demonstrated by [HRHoy]. In whichever way the development is distributed,
the geographically separated teams have to interact with each other. The most important part
of this interaction is the exchange of development artifacts.

It is crucial for any software engineering project to track all changes to the artifacts using a
version control system. It provides a common pool, called repository, where all development
artifacts are available to any user at any time. Artifacts are produced locally and shared with
the help of a version control system, which communicates globally. The tools used to create
these artifacts do not need to communicate between different sites. Although this could be
helpful, for example, being able to edit an artifact with multiple authors at the same time,
it is not necessary. A version management system should support the exchange of artifacts
and keep track of modifications on them regardless which team of which company in which
location is involved.

Artifact
Every document, which is produced by a tool in any phase of a development
process is an artifact. These artifacts can have any binary or textual representa-
tion (compare to [UML09]). Modifications to the content of an artifact produce
new versions of the same artifact. A specific version of an artifact, however, can
be addressed by concatenating the version's identifier to the artifact's identifier
(which is in most cases the artifact’s name).

If cooperating teams are using their own server environments, significant synchronization
problems may arise. These problems occur mainly in version control systems and may also
affect access rights. In practice, these problems are ignored and artifacts are exchanged
through numerous other channels like e-mail or USB flash memory drives. The solution
proposed in this work aims to avoid exchanges with USB flash memory drives or e-mail.

Additionally to the stated problems the alternative of a centrally installed system raises the
question of ownership, as one of the involved parties needs to maintain this system.

2.4 BENEFITS OF PEER-TO-PEER PARADIGM FOR THE APPLICATION SCENARIOS

A (distributed) version control system is crucial for Wiki engines and an integral part of a
development environment, especially if the latter is used in a globally distributed developed
project [Smio6]. Additionally, a Wiki engine can enrich a GSD environment to provide a
knowledge database or even as a lightweight collaborative requirement engineering tool, as
shown in [GHHSo7b, GHHRo7b].

Both application scenarios have similar requirements, which are detailed in Section 3.2.

The majority of Wiki engines rely on a centralized version control system. GSD projects
use centralized server based solutions as well. The centralization on a server is orthogonal to
the natural distributed structure of Wiki engines and GSD. In a Wiki system every user is a
possible contributor and consumer. Often a user contributes to an article she consumed earlier.
Developer teams in GSD projects normally manipulate the same artifacts and communication
will usually occur between them. This communication (including message exchange and file

2.4 BENEFITS OF PEER-TO-PEER PARADIGM FOR THE APPLICATION SCENARIOS

transfer) obviously does not need a remote server and should proceed directly from peer to
peer.

2.4.1 Shortcomings of Server-centric Solutions

A centralized approach to collaborative applications, like version control, has several draw-
backs:

Single point of ...:

.. failure: It lies in the nature of server based solutions that all services are offered
from a single point. If this fails, the complete system is unusable.

. vulnerability: If someone gains unauthorized access to the central server, he is in
complete control over the offered service and stored data. This data could be stolen
or modified, e.g., censored.

. ownership: There is only one party which controls the central server by owning it. If
offered services are to be used and, moreover, data is to be stored this party needs
to be trustworthy. Especially when equal partners in a GSD project are working
together, neither partner would like to rely on the other, or be responsible for the
safety of the project server. Its failure and possible loss of data could lead to the
failure of the entire project.

Fixed Location: The server resides in a fixed physical location. If the connectivity to this loca-
tion is bad or slow, the offered service will perform poorly. Unlike on-site development,
some developers in GSD are geographically distant from the server and, therefore, have
to cope with delay in data transfer [HMo3]. Distributing servers across different locations
can only decrease the communication delay for all developers if all locations are covered.
However, it leads to the problem of synchronizing these servers with it.

Does not scale with needs: If the offered service is suddenly used by an unexpected number of
participants, the server may run out of resources, which might lead to a failure of the
system, or at least some users will not be served. Additional capacities have to be bought
and installed. Most of the time the full capacity remains unused. Unexpected events
(like natural disasters or political assassination) can lead to a high interest of many users
in the Wiki scenario. External factors can also influence the load on a GSD supporting
server, although these can be more easily predicted.

Additional maintenance costs: Another important issue of the client-server approach are its
high maintenance costs. In addition to the multiple client machines, which are maintained
by their respective users, the machine that the system relies on, i.e., the server, have to
be kept running. Software needs to be configured and updated, and hardware needs to
be maintained and replaced when it wears down.

Additionally, resources (computation power, memory, bandwidth, and storage space) in
the system are not optimally used: servers provide all their resources while resources
on client machines remain unused most of the time. The cost of servers is especially
problematic for non-profit projects (like open source projects) as they are normally
founded by unreliable donations.

Multiple different systems cannot be joined: If cooperating teams worked with their own server
based environments, they cannot merge their infrastructure easily. They would have to
setup a new infrastructure for the planed cooperation. In practice, each team continues
to work on their individual system and exchange the cooperative edited artifacts through
numerous channels like e-mail or USB flash memory drives. Conflicts cannot be detected
automatically and may be noticed a long time after work on the conflicting artifacts has
been completed (e.g. when the final product should be integrated). If each team uses
their own version control system, some artifacts exist in an identical version in both

17

18

SUITABILITY OF PEER-TO-PEER PARADIGM FOR APPLICATION SCENARIOS

systems - without being marked as identical. Apart from these significant synchronization
problems, access rights might also be compromized.

To gain capacity and to soften the locality problem, often a cluster of servers is used. These
servers can be distributed over different physical locations. They can offer copied services
and data, or share the load by being responsible for a smaller part of the entire service/data,
or by serving only users from specific areas (i.e. IP ranges). However, although extended,
the offered capacity remains fixed and the servers limited to fixed locations. Therefore, the
communication delay cannot be decreased for all users. Additionally, the servers still have to
be administered from a central party.

2.4.2 Characteristics of Peer-to-Peer based Solutions

A distributed peer-to-peer based solution copes with the earlier mentioned drawbacks of server
based solutions. The offered service is a distributed algorithm which runs on each participant’s
machine. Thereby, the user is offering services to other users and accessing services from
other users at the same time. Data is stored distributed among multiple machines, with
redundant copies to assure availability. The users’ requests are distributed among multiple
machines. The offered service exists as an identical copy on each machine, but might require
the cooperation of multiple machines. The peer-to-peer routing algorithm takes care to connect
two participants, who communicate afterwards directly with each other.

Robust against . ..:

... failure: A peer-to-peer system is designed to handle parts leaving the system. Any
participant can leave at any time. His/her machine can even fail. Failing peers
are detected and automatically replaced by their neighbors in the virtual overlay
network. Data and service states are replicated prophylactically on these machines.
The routing algorithm automatically directs requests to the replacing machine.

The number of neighbors, which replicate a machine’s state, is configurable and
called the replication factor. Only in the unlikely case that all of these machines
fail simultaneously in a time window, which is smaller then the time needed to
replicate the state to a new machine, the state and stored data are lost, until one of
these machines reappears. The system is, however, still functional and only some
data would be missing.

When a huge number of participants fail, the routing algorithm might not work as
it should due to missing routing information. The network could split into loosely
connected or completely disconnected partitions. The system would be functional
in each partition, but some data might be missing.

. central control: As the data is randomly and dynamically distributed among the
participants the control of a single participant, does not gain access to all stored
data. Data cannot be modified unnoticed, because it exists as identical copies on a
number of replica.

Collective ownership: There is no single owner of a peer-to-peer system, as it utilizes the
resources every participants offers. A central control is difficult to achieve.

Ompnipresent: A peer-to-peer system is available on all participating machines at the same
time. In the best case, the requested resources are offered by the one’s own machine,
in the worst case the offering machine is far away. Due to the dynamic changes in the
network caused by leaving and joining peers, the actual communication delay to an
offered resource changes, since leaving peers are replaced by other peers. Peers are
uniformly distributed, thus the delay can get smaller, if a physical closer peer takes over,
or worse, if a distant peer replaces the leaving peer. In a high dynamic environment,
where peers frequently leave and join, the experienced communication delay over a

2.4 BENEFITS OF PEER-TO-PEER PARADIGM FOR THE APPLICATION SCENARIOS

longer time is approximately the average delay among all machines. However, if peers
stay long times in the network, and/or don’t change their identification when joining,
the communication delay is always the same.

When peers in one physical location leave their offered resources are replicated and
offered among the peers left in the system. In a system, which consists of machines in
two physical locations, shifted online times due to different time zones have a positive
side effect we call shifting, where the resources offered in the distant location are
automatically shifted to the peers in the other location, reducing the communication
delay to access those resources for the peers in the same location.

There are different caching mechanisms (e.g. owner path caching [CSWHoo])that can
lower the experienced communication delay.

However, routing to a peer offering a specific resource takes a remarkable time as well.
If the peer has not been contacted recently, a lookup message has to be sent to a number
of peers in order to find the peer offering the needed resource. Subsequent messages can
be sent directly using the underlying network’s address.

Scalable: The strongest advantage of peer-to-peer systems is their inherent ability to grow
in capacity with a growing number of participants, as each participant’s resources are
utilized. Fast growth stresses the system nevertheless, as it needs time to reconfigure
itself to the new number of participants, which involves updating of routing contacts
and redistributing stored data. A sudden interest from a large number of participants to
retrieve the same data also stresses the system, as the requests are unevenly distributed
and ask for a service offered only by a small number of the participants.

Minimal maintenance costs: Cost of ownership and maintenance costs are very low. As in
client-server environments each individual machine has to be maintained by its user,
however, there is no machine in addition to these machines, which needs to be maintained.
Thus there is no cost to set up the system other than to start each individual machine
and contact an already connected machine.

The dynamic changes in the system are handled without user intervention by main-
tenance and failure handling algorithms. A failing system is the expected standard
behavior, called churn (see [SRo6, HTo7]).

Churn
The dynamic behavior of a peer to go offline and online again is
called churn. A peer can leave the system gracefully, i.e., announc-
ing its departure to give its neighbors opportunity to take over its
duties, or simply fail. In the latter case an automatic mechanism de-
tects the absence of the peer and a neighbor takes over its duties.

Although not strictly limited to, churn refers to the case, where a number of
peers are failing. The behavior of peers using file sharing applications has been
observed by [SR06] and can be described with a Weibull distribution. Further
details are discussed in Section 10.3.4.

As long as one machine is running, the system is functional, although a large number of
simultaneously failing peers might seriously harm the systems behavior.

Disjunct systems are joined automatically: If coexisting peer-to-peer systems, which offer the
same service, should be joined to form one system, no additional overhead is necessary.
If one machine contacts participants of both systems the systems join each other and
synchronize automatically. Form the point of view of each system this situation is
identical with a large number of joining machines.

20

SUITABILITY OF PEER-TO-PEER PARADIGM FOR APPLICATION SCENARIOS

Company
Developer

“Nomadic”
Developers

Open-Source
Developer

9

Figure 6: Globally distributed developers in a GSD scenario

2.5 RUNNING EXAMPLE

For a better understanding, a running example is outlined in the following section. Whenever
a mechanism is explained the example used will be based on this background story.

The proposed version control system will be most usable in a GSD environment, as described
in Section 2.3. In a project with globally distributed partners, a software product is created.
The outlined scenario is depicted in Figure 6.

The outlined example is inspired by the development process of the open source software
project Eclipse. As in any open source project, a number of independent programmers develop
the product, mainly in their free time. Additionally, some companies are involved, which
work full-time to improve the product. Next to these developers, some companies solely
focus on the development of components, which they often sell as their product. As these
optional extensions are dependent on the open source product they are involved in the core
development as well.

In the outlined example we have four parties. A client company, called the stakeholder
or short S, needs a software product, which fulfills a specified functionality. The company
Berlin Consulting, shortened to company A or CA in the following, was hired to create this
product. As experts in the domain the client is in — let us assume it is the banking business
— they interact directly with S. Both companies are located in Germany, S is located in the
city of Frankfurt while CA operates from Berlin. Meetings with the client are usually held in
Frankfurt. In order to cut costs they subcontracted a company specialized in coding, which
resides in India, Kolkata. The company name is Calcutta Coding, which we will refer to as
CB in the following. CA and CB interact often and directly, while S interacts with CB only
indirectly by exchanging artifacts. The planned software product consists of components,
which are partially developed by open source projects. Open source components are often
included in commercial products, in the form of libraries. In this example, an open source
component is an integral part of the product. The fourth involved party are, therefore, the
numerous open source developers, which are spread around the globe. None of them are
active at all times, and some of them are only active for a period of time, without continuing

2.6 SUMMARY

their participation ever. These independent and often anonymous developers are referred to
as OS. The behavior of these open source developers is unpredictable. Their number varies, as
does their working time. Their availability cannot be relied upon.

During the progress of the project, participants from the different groups have to meet in
person [[SHGHoy]. In doing so, the complete working environment with all artifacts should
become available at the location where the meeting takes place. Changes made in another
group’s location should be trackable in the usual environment, thus eliminating the need to
maintain identical copies in different systems manually.

To personalize the examples in this work, the following workers are selected: Alice is a
designer and developer of company CA, Bob is her counterpart in company CB.

2.6 SUMMARY

This chapter argued and gave reasons as to why traditional version control systems, which
are based on the client-server communication paradigm, are not useful for applications
whose users are spread around the globe. The listed shortcomings of client-server based
solutions and the benefits that the peer-to-peer paradigm can bring apply to any distributed
applications. Statements focused on the drawbacks of existing solutions are detailed in
Chapter 5. The benefits the peer-to-peer based solution presented in this work brings are
detailed in Section 2.4.

Two application scenarios are laid out, where version control is crucial: Wikis and global
software development. The more demanding scenario is the global software development,
which covers most of the requirements derived from the Wiki scenario. Additionally, the Wiki
scenario can be combined within the global software development scenario.

A running example, which is used throughout this work, details a use story, where both
application scenarios are integrated. The focus of this example and the presented solution,
however, lies in global software development.

21

REQUIREMENTS AND ASSUMPTIONS

In the previous chapter we explored application scenarios where version control is a vital
functional part and analyzed the suitability of the peer-to-peer communication for these
scenarios. That provides us with a basis for defining a complete set of requirements for a
peer-to-peer version control system that fully meets the needs of collaborative development
nowadays. In Section 3.1 we list the assumptions for the design of the final solution. Functional
and non-functional requirements, derived from the elaborated application scenarios and
limitations of used technologies, are presented in Section 3.2.

3.1 ASSUMPTIONS

The goal of this thesis is to present a distributed version control system that supports both
presented application scenarios adequately. Their needs differ, but complement each other
when combined. Both application scenarios need a system to keep track of changes to stored
data. Concurrent modifications have to be supported. While the wiki scenario only requires a
focus on single files, the GSD scenario demands the control of modifications on multiple files,
which should be tracked as one event (e.g. snapshot version control).

A user in the wiki scenario is usually not interested in all existing articles, whereas a
developer in the GSD scenario needs updates on all files. Variant management of artifacts is
needed in a GSD environment as well as in the wiki scenario, where a variant could represent
the same article in different languages. A common practice is, however, to have an isolated
system for each language. Nevertheless, if a version control system can handle the more strict
requirements of GSD, the requirements of a distributed wiki engine are also fulfilled.

Snapshot

The momentary state of all files in a specified folder in a file system is
recorded in a snapshot. Thereby, not only the modification on single files
but the state of other files at this moment is recorded as well. Every snap-
shot taken represents the actual state of a user’s files at a specific time.

In Subversion, for example, it can be that a snapshot is a mixture of the modifi-
cations of different users on different files: if one user always changes one file, and
another user changes another file, and both are committing their changes without
updating their working copy first, the recorded snapshot includes the changes
of both files merged, instead of only one file, as in the user’'s working copy.

All snapshots are recorded in the order they are based on each other in the
history.

7

The behavior of the participants in the GSD scenario is more predictable than the users
behavior in the wiki scenario. They tend to use the version control services in a repetetive
pattern. They are clustered in globally distributed locations, while the wiki users are distributed
randomly. They tend to stay longer in the system and leave at predictable times compared
to the unpredictable access of a wiki user, who usually leaves once his needs are served.
By supporting the more dynamic behavior of a wiki engine user a GSD developer can be
supported as well. Open source developers, however, behave similarly to wiki users, as their
participation is less predictable.

With the aforementioned assumption that the described GSD scenario’s requirements
comprise the wiki scenario’s needs, the proposed peer-to-peer version control system focuses
on the GSD scenario.

The decentralized, peer-to-peer based version control system presented in this work is based
on the following assumptions:

23

24 REQUIREMENTS AND ASSUMPTIONS

A-1: Network connection: A user needs to have an IP connection to other participants of
the system. This connection, however, does not have to be permanent while using the
system. It is only necessary to exchange committed versions with other users. All other
system services are functional without any network connection.

A-2: No heterogeneity: All participating machines are treated equally. The system require-
ments of our prototype are, however, low enough that a typical development computer
should be able to fulfill the most demanding tasks.

A-3: No dedicated single point of control: To overcome the shortcomings of existing solu-
tions (mentioned in Chapter 5) our solution is designed to operate without a central,
irreplaceable instance. This fact, however, does not limit the retrievability of all controlled
files available.

A-4: Unreliable user participation: Each participant can leave the system at any time.

A-5: Users are located anywhere on the globe: A user can participate from anywhere, where
he can reach any other participant via network connection. Users can be physically close
to each other or widely spread around the globe.

A-6: File format: Our prototype handles any kind of files. Text files, however, are more effec-
tively supported, as delta compression can be aplied instead binary delta compression
to efficiently store the versions of a file.

3.2 REQUIREMENTS

The following requirements are derived from investigations of the very popular wiki project
wikipedia [wikb] and selected industrial field studies on GSD [HPBos, HMo3, PAPo6, Smioé,
Souo1, ISHGHoy]. Additional requirements emerge from the usage of peer-to-peer technology.
The requirements are presented as proposed by [RRo6] divided into non-/ and functional
requirements. The last section contains security considerations we are aware of. However,
meeting them is not within the scope of the presented version control system. All requirements
are listed in the comparison overview in Table 1 in Chapter 6.

3.2.1 Functional

Functional requirements are directly visible to the user as the system’s features. They can
often be triggered directly or indirectly by the system’s offered services.

R-1: Support common version control operations: A minimum set of operations, common
to almost all version control systems, should be supported. The following requirements
state them:

R-1.1: Support parallel work on all artifacts: Developers should not be block each others
work when using a version control system. They should be able to work on the
same artifacts at the same time. The version control system deals with contradictory
changes, which is covered by requirement R-1.2 and requirement R-1.3.

R-1.2: Detect concurrent modifications: Modifications to the same artifact by different
users should not go unnoticed. Users expect their contribution to be the only one in
existence, but whenever the same base version is changed, concurrent versions are
created. Some systems (mainly the centralized version control systems) prevent
a concurrent version from being committed - the conflicting version’s changes
have to be integrated first. Some systems (mainly the distributed version control
systems) allow concurrent versions to exist in the repository as parallel versions,
but encourage to merge parallel versions into a new version. A user should always
be notified about concurrent modifications that occur when concurrent changes are
based on the same version or snapshot. Regardless of whether the modifications

3.2 REQUIREMENTS

are conflicting, or if different artifacts in a snapshot were changed, the user should
be informed. Merging concurrent modifications automatically does not guarantee
the prevention of errors, as some dependencies might exist between different parts
of an artifact or different artifacts. All recorded versions in a repository should be
acknowledged by a user, not being created automatically.

R-1.3: Resolve concurrent modifications: The user should be assisted in resolving con-
flicting concurrent modifications. If the modifications are not conflicting with each
other, i.e., contradictory changes in the same line of the same file, the changes could
be automatically merged - but the user should revise this, as only he is able to
understand the semantic context of the artifacts involved. The system has to show
the user how concurrent modifications differ, so that the user can merge them to a
new snapshot by choosing which modifications should be applied.

R-1.4: Track single artifacts in an ordered history: Changes to single artifacts should be
recorded in the sequence in which they evolved. Whenever the content of an artifact
is modified a new version is created. The version is based on the original artifact. A
predecessor/successor relationship between the created versions could either be
explicitly stored or computed using the relationship between the snapshots which
the changes are part of.

R-1.5: Track snapshots in an ordered history: Changes to a set of artifacts should be
tracked in a version history. This history stores the additional information, in which
it states the state other artifacts were in, when a specific artifact was in a specific
state. Tracking the state of single files only, as demanded by requirement R-1.4,
could not answer which version of a related artifact is related to a chosen version of
another artifact. All modifications of all changed files are recorded in a changeset.
Adding the implicit information, which files were not changed, forms a snapshot.
As pointed out in requirement R-1.4 multiple snapshot should be stored in an
ordered history to represent their evolution.

R-1.6: Retrieve a recorded state: A snapshot represents the state of all artifacts in a
project of a specific user at the recorded time. Thus, even if the user did not update
his working copy to integrate the latest changes, a new snapshot recording the
user’s latest modifications should be an exact copy of her working copy (without
incorporating the unintegrated changes submitted earlier by other users).

R-1.7: Choose recorded versions of selected artifacts: Similar to the normal behavior
when single artifact versions are tracked, versions of selected artifacts only should
be retrievable. This behavior is needed in a system, which records snapshots of
a project as demanded by requirement R-1.5. The ability to pick specific versions
of only some artifacts from recorded snapshots, called cherry picking, is helpful,
whenever diverging development lines are to be combined. If the development is
distributed among different teams, which change some files, their contribution
needs to be extracted in order to integrate all modifications into a new snapshot,
forming a final product. Especially in GSD being able to do this is helpful.

A user of a wiki engine may not be interested in all artifacts (or articles in this
case) but a subset, which can consists of an article with its meta information and
maybe a related discussion page. The directly semantically connected artifacts (e.g.
a discussion page or other meta information) should be retrieved in a matching
version - they would be useless otherwise. If such artifacts exist the supporting
version control system must be able to record this relation.

Having a system, which fulfills requirement R-1.5 and requirement R-1.7 would
enable the retrieving of coupled artifacts in a matching state, without the need to
retrieve all existing artifacts.

R-1.8: Individual working copies: Each developer should have his own working copy,
where he can modify artifacts without sharing his modifications immediately with

26 REQUIREMENTS AND ASSUMPTIONS

other developers. Initiating the commit operation records the current state of the
files to form new versions. In her working copy only the user manipulates files, and
decides which updates from the repository to integrate.

R-1.9: Enable local commits: Modifications, which are not final, should not be shared
with other developers. They bring the project into an unstable state, e.g., hindering
compilation of a software project. Those modifications would only harm the other
user’s progress. Having a working copy a developer can postpone to share her
changes to the artifacts - but to be able to restore older states in a more fine grained
way, e.g., to correct mistakes, it would be better to have a two stage commit process.
First changes should be recorded only locally without sharing them, and later a
user can decide to push them so that other users can access her new versions.

R-1.10: Track variants (branches): Other than evolutionary changes, which are based on
each other, variant changes should be tracked as well. Variants are based on the
same version and coexist in separate branches. In contrast to conflicting revisions
variants are not meant to be merged into a new version. However, changes made
to one variant might have to be integrated to the other variant. A version control
system has to support variants, usually by offering branches.

R-1.11: Tag with labels: When developing a software product it is helpful to mark certain
states of the project with custom labels. The abstract internal version numbers
which version control systems assign to recorded changes can hardly be memorized
by a user. A tagging mechanism should support labeling specific snapshots with
tags such as with “release 1.0” or similar user friendly names.

R-2: Change the name or path of artifacts: The name or the path of artifacts should be
changeable, without losing the recorded history.

R-3: Support for multiple projects: When globally distributed companies collaborate the
used version control system should be able to handle multiple projects in individual
modules of the same repository. This avoids organizational overhead from managing
multiple systems. The ability to partition the entire repository into projects might be
useful for the wiki scenario as well. Categories of articles or articles for different countries
in different languages could be organized in separate projects.

R-4: Conjoined local repositories: A study on nine GSD projects [HPBos] showed that each
site had its own version control server so as to avoid the constant delay introduced by
using a common one. The produced artifacts, therefore, had to be synchronized, which
involved manual work where errors occurred. In order to avoid these problems the
system should offer a repository at each site, which is connected and synchronized with
all other repositories.

R-5: Redundant backups: Storing all states an artifact has ever been in serves two purposes:
Sharing them with other developers, who can understand evolutionary changes, and
conserving artifacts, if they are needed at a later time. The latter purpose offers a
backup functionality. Version control systems are not designed initially to offer a reliable
backup function. Some (e.g. the distributed version control systems) completely omit
this feature, some (any centralized version control system) can be extended to enable
backups and others offer reliable backups as a side effect of their architecture (e.g. many
peer-to-peer based version control systems).

R-6: Interoperability of different VCSs: Sometimes different parties are unwilling to switch
to the same new version control tool. Porting all data to a new environment might by
impractical in a running project. The global version control system should be able to
integrate other systems to support a heterogeneous tool environment. Thus, existing
systems could be merged, using the global version control tool, automatically.

3.2 REQUIREMENTS

R-7: Connect from anywhere: The tool environment should allow any developer to take the
role of a nomadic developer at any time. Nomadic developers are assumed to work in
different places, even during their travels. Wherever a user can get access to the Internet
he should be able to access the system. Specific network setups, such as NAT, can prevent
this.

Network Address Translation (NAT)
A router maps a single external IP address to multiple internal IP addresses,
so that internal hosts are able to share an external address. In this setup a
connection to an external host can only be initialized by an internal host.

R-8: Offline version control: Nomadic users, in particular, need to be able to work offline
(e.g. during travels). Modified artifacts should be transparently synchronized as soon as
the user comes online.

R-9: Local commits: It should be possible to commit changes locally only so that they can
be shared globally at a later time. With this functionality fine grained changes, which are
not yet intended to be seen by other developers, can be kept locally, until a stable version
is created. Having this stable version all locally recorded changes can be shared in one
step. A more comprehensive motivation for this requirement can be found in Section 4.2.

R-10: Traceability: Artifacts may contain links to other semantically related artifacts. It should
always be possible to trace and locate those linked artifacts in the system. Traceable links
are used in a wiki engine to navigate from one article to another, but would be helpful in
a software development environment as well to trace the development through different
phases and different resulting artifacts or to record dependencies for the build process.

R-11: Easy to setup/manage: The system should be as easy as possible to handle. If the setup
and management of the version control system is complicated, the user group is limited
to the ones with enough knowledge needed to handle the system. The harder and more
time intensive the installation of a tool before its use is, the more unlikely it will be
used. Additionally, an incorrect configuration is more likely to occur. The system should
enable, e.g., a small number of developers to spontaneously meet for a small project,
where a low startup time is important.

R-12: Prevent censorship: Once any information resides in the system it should be not
deletable. Artifacts can be marked as deleted, but have to be still stored, to be retrievable
any time as postulated by requirement R-1.6: Retrieve a recorded state. It could be in the
interest of a participant to remove information which was inserted by mistake. This,
however, should be accomplished by setting access rights (if access control is provided
as well). Allowing deletion would prevent requirement R-1.6: Retrieve a recorded state to
be fulfilled.

Additionally, unnoticed manipulation of stored artifacts should be impossible. Any
modifications should be traceable to its author and revertible by retrieving its parent
version. Tracing changes could be used in a wiki engine to repair vandalism or censorship
(i.e. by finding all changes made by a specific author).

3.2.2 Non-functional

Non-functional requirements are not directly visible to a user. They describe how the system
should behave while fulfilling the functional requirements stated before.

R-13: ACID: Every transactional system should fulfill the ACID properties introduced in
[HR83]. ACID is an acronym for:

R-13.1: Atomicity: Every transaction item, i.e., all changes to all artifacts a user wants to
commit at once, should be applied or none. No partial changes are allowed to be
stored in the system.

27

28 REQUIREMENTS AND ASSUMPTIONS

R-13.2: Consistency: The repository should be in a consistent state after a transaction.
A consistent state is present, when specified integrity constraints hold. These
constraints are stated in Section 4.4.2. If coherency is not guaranteed consistency
cannot be provided.

R-13.3: Isolation: Transactions should not influence each other. The result of concurrent
commits should be the same, no matter in which order they were applied. Conflicts
should be also detected, regardless of the order the conflicting snapshots were
committed.

R-13.4: Durability: The result of a transaction should be stored permanently. Even after a
(partial or full) system failure all committed artifacts should be retrievable. Partial
system failure, i.e., peers leaving the system, is the normal case in a peer-to-peer
system, as every participant can leave any time.

R-14: Availability: There should be no constraints to accessing the system due to the network
a participant is connected to, time of access, or working platforms (e.g. OS). Note
that the demand to be always able to access stored data is covered by requirement
R-13.4: Durability, while network conditions are covered by requirement R-7: Connect
from anywhere.

R-15: Transparency: It should be transparent to the user how the distributed system works.
She should not need to worry about where to find the offered services, how to access
them or where the data is stored. The distributed system should behave as if everything
runs on the local machine. This is stated as a general design goal for distributed systems
in [CDKos].

R-16: Minimal storage space consumption: The stored changes should consume as little local
storage space as possible. To fulfill this requirement, typically delta compression is used.
A positive side effect is reduction of the communication bandwidth consumption while
transferring changes.
delta compression

Delta compression is an efficient way to store all versions of an artifact
in a single location. By storing only the differences between two versions,
called a diff, only the actual changes are recorded, instead of the full ar-
tifact that forms a new version. The delta can be computed using either
the previous (backward delta) or following version (forward delta). Start-
ing from a complete version any version can be reconstructed by applying
the deltas between those versions. For a faster retrieval of versions spe-
cific versions are saved in their full form, consuming more storage space.

The diff is most accurate when calculated using text files; here only the
differing text lines are stored. A diff can also be calculated on the bases of
a binary representation of a file, called a binary diff. In the so called binary
delta compression the differing bits are stored instead the full version of a
file. However, the amount of changes and the size of the resulting diff are not
correlated.

R-17: No centralized services: In order to avoid the shortcomings described in Section 2.4.1
the version control system should not rely on centralized services, even if these services
are not bound to a specific machine, but are offered by a single peer when it is online.

R-18: Adequate communication speed: The delay of communication and transfer in the system
should be minimal. Difficulties introduced by communication delays were observed
in the field studies in [HPBos] and [HMo3] and concluded to be critical to the project
success. In these field studies client-server based version control systems were used.

R-19: Scalable and robust: A system should be able to tolerate the dynamic participation of
its users, and not fail or degrade its performance.

3.2 REQUIREMENTS 29

Robustness

The robustness of a system shows itself, when a large failing part of it be-
comes unavailable in a small amount of time. It is measured by the degree
its operations are affected. When, for example, a turbine of an airplane fails,
a robust airplane can continue its flight without disturbance. A peer-to-peer
application can show itself robust, when a large number of its users are failing.

The scalability, in opposite, shows how a system performs under an increasing
load coming from a growing number of users.

R-19.1: Robust to highly fluctuating users: In open source projects, as well as in the wiki
scenario, the number of participants fluctuates. Their behavior is hard to predict.
There can be very few participants in one moment and a huge group of participants
in the next moment. In the wiki scenario we can assume that a popular event draws
attention to a large number of users, who want to participate in the system. A
couple of hours later the information about that event could be unimportant again,
leading to a shrinking number of participants.

R-19.2: Robust to shifting users: Participants of GSD usually join and leave a system
at specific working times. But due to different time zones, it is likely that a large
number of participants from one area will leave and participants from another will
join within a short time frame. This sudden shift in the geographical distribution
of the participants should not influence a system’s performance. Replication and
routing information update mechanisms of peer-to-peer overlay networks are crucial
here.

R-19.3: Scalable to a growing number of users: The system should be able to support
a growing number of participants without decreasing performance. With rising
popularity of a wiki engine or open source project, or the rising importance of a
software project, where more developers are assigned, the resource demand of the
system increase. Even if the increase is sudden, the system should be able to handle
it. A decreasing number of users is covered by requirement R-19.1.

System Load
The load of a system quantifies how exhaustive the services offered by a system
are used. The load can be measured by numerous metrics, one of them is the
size of the transferred messages.

R-20: Continuous expendability: The system should not be stopped for an upgrade to the
software or the hardware. That means that there is no unique hardware part in the
system which cannot be switched off for an upgrade. It might be impossible to upgrade
all distributed running instances of the software. Thus more recent versions have to be
compatible with older versions. This is one of the design goals for distributed systems
described in [CDKos].

R-21: Fault tolerance: A globally operating version control system should be able to recover
form any kind of failure. Hardware, as well as software, might fail, messages might get
lost or resources might vanish.

3.2.3 Security Aspects

A highly distributed system, where confidential data is shared between business partners,
requires sophisticated security mechanisms. Many new security challenges arise when the
tasks that are usually fulfilled by a single trusted node are divided among multiple entities
[Waloz]. In the following, we will describe the security requirements we deem most important
for a GSD environment. However, focusing on the challenges version control brings with it,
we only developed a rudimentary security system, described in Section 9.2.2.

30 REQUIREMENTS AND ASSUMPTIONS

R-22: Access and usage control: Access control plays an important role in a software de-
velopment process. Confidential documents have to be protected from unauthorized
access without impairing the overall system efficiency. In a GSD environment, selected
group administrators are responsible for defining security policies for their respective
user groups. The participants have the option to further restrict access to their files. A
peer-to-peer approach introduces even more problems, since there are now multiple
entities responsible for defining security policies for their respective groups. Enforcement
of those policies has to be deferred to the participant [SZRCo6], since availability of
central authorities cannot be guaranteed.

R-23: Keep sensitive artifacts: Companies might be interested to prevent sensitive artifacts
to be copied on machines, which do not belong to themselves but collaboration partners.
Even encrypting the stored artifacts using an access control, as demanded by requirement
R-22: Access and usage control, might not be sufficient to prevent unauthorized access.
Not giving physical access to those artifacts is the safest means of protection. This
demands control where specific artifacts in a distributed system are stored. To fulfill
this requirement in a peer-to-peer based system is extremely demanding, as artifacts are
typically stored randomly distributed among all participating machines.

R-24: Attribute based access control: In a large software development process, it is often
unnecessary to control the access on an individual basis. For most tasks it suffices for
participants to be identified via their respective attributes. An administrator can assign a
signed certificate to a group member, certifying his developer status. Other participants
can then base their access decision solely on the presented user credentials. Park et al., for
example, developed a role-based access control approach for a collaborative enterprise
in peer-to-peer computing environments [PHo3].

R-25: Confidentiality: Stored artifacts should only be accessible to authorized users. Under
no circumstances should a user without the needed access rights be able to read or
modify stored artifacts.

R-26: Data integrity: Forged artifacts have to be recognizable as being manipulated. Even
manipulation in a version control systems history or other metadata should not go
unnoticed.

R-27: Non-repudiation: Changes made should be traceable to their author. It should be
provable that the changes were applied by the author.

R-28: Authentication: The aforementioned security goals such as confidentiality, data integrity,
access control and non-repudiation depend on proper authentication. If the system for
user identification fails, the mentioned security goals cannot be met in a satisfactory
manner. On top of that, it is not always easy to decide whom to trust in a highly
distributed system.

R-29: Secure communication: The communication between the participants needs to be
confidential and data integrity needs to be guaranteed. This requirement is tightly
coupled with the previous requirement. Efficient and secure group communication
mechanisms have to be provided by the development environment.

R-30: Low administration overhead: The administration overhead introduced by additional
security mechanisms has to be kept as low as possible. Software developers participating
in the system should not have to deal with defining specific access rights for their files.
Though this should be transparent to them, it should be the task of a group administrator.

3.3 SUMMARY

In this chapter we derived and analyzed a complete set of requirements for a peer-to-peer
version control system that fully meets the needs of today’s collaborative development. A list

3.3 SUMMARY 31

of assumptions along with the exhaustive requirements listed in this chapter give a clue as to
the general applicability of the solution presented in this work.

Part II

VERSION CONTROL SYSTEMS

After concretizing the changed needs of today’s project development,
we investigate current solutions in the coming chapters.

We begin by defining the basic characteristics all version control sys-
tems share in Chapter 4. The quality of a version control system shows
itself in the degree of consistency it provides, which is also defined
in this chapter. Classified into centralized, decentralized and peer-to-
peer based solutions we present representative version control systems
in Chapter 5. Their strengths and weaknesses are analyzed in Chap-
ter 6, where we conclude the impact of design decisions on a system’s
properties.

FOUNDATIONS OF VERSION CONTROL SYSTEMS

This chapter presents the background information about the foundations of version control
systems. First the basic collaboration workflow on how developers update their files and share
their changes is described.

4.1 COLLABORATION WORKFLOWS

A workflow defines how the contributors of a project work together. When using a centralized
version control system there is only one possible workflow: the centralized workflow, which
is shown in Figure 7. Artifacts are changed in a working copy and shared with colleagues by
committing them to a centralized repository. If the modified artifacts conflict with changes,
which occurred in the meantime, they are first merged locally with the latest snapshot from
the centralized repository, then committed. Merging changes can be postponed by working on
a branch which is merged once the tasks is fulfilled.

This workflow, however, is dominated by the applied development process, which defines
which tasks (i.e. design, development, integrating, testing, etc.) are executed in which order
and/or by whom (in different roles including designer, developer, integrator, tester, etc.). To
divide the project between different teams and/or tasks, branches are used (i.e. a maintenance
branch for bug fixes on the delivered version, branches, where a new feature is developed,
etc.).

When a distributed version control system is used, the members of a project have to agree
on a collaboration workflow, to exchange their developments in a structured order. This
collaboration workflow and the applied software development process have to fit to each other,
and not every collaboration workflow fits every development process.

There is no mechanism in a distributed version control system to notify its users about
new versions. To announce a contribution, like a bug fix or a realized feature, mailing lists
are used, whereby a contributor posts his contribution along with details how to pull the
contributions from him. There are some participants who took on the role of an integration
manager, who chooses from the different contributions in order to form a “blessed” repository,
which presents the official acknowledged history of a project. This repository if often published
on a central server, like gitHub", to offer read only access to every interested user.

Some prominent workflows are detailed in the following.

Centralized

The centralized collaboration workflow, which is illustrated by Figure 7, is the only one avail-
able when using a centralized version control system, but it can be adopted for a distributed
version control system as well. A specific repository serves as a central rendezvous point to
which developers contribute their changes. In a distributed version control system a developer
pushes his modifications to that centralized repository and from there also pulls the changes
of his colleagues.

It is challenging to setup this workflow for a distributed version control system, as it usually
prohibits developers from pushing changes to the centralized repository. This setup combines
not only the advantages, but as well the disadvantages of both approaches: Changes are
immediately available, but if the centralized repository fails, the entire system fails.

35

36

FOUNDATIONS OF VERSION CONTROL SYSTEMS

shared
repository

I

developer developer developer

Figure 7: The centralized workflow, which is used for distributed as well as for centralized version
control systems

public
repository

public
repository

private
repository

integration

developer manager developer

3 3
privgte private
repository repository

Figure 8: The integration manager collaboration workflow

blessed
repository

Integration Manager

The integration manager collaboration workflow, drawn in Figure 8, aims to control all
contributions to form a “blessed” repository, from which a clean version of the project can
be obtained. Developer have their local repositories, which they update using the “blessed”
repository. There is a second, public repository for each developer, where their contributions
are pushed to. Inspired by the Rational Unified Process [Kruos] there is an integration
manager, who is the only one who pulls changes from those public developer repositories.
After combining and inspecting them the integration manager pushes them to the “blessed”
repository, to which only she has (write) access.

Lieutenants

Figure 9 exemplifies the lieutenants collaboration workflow. Developers share their changes
with a lieutenant. The lieutenants are each responsible for a subproject. They filter all con-
tributions and decide, which of them to share with the dictator. The dictator integrates all
changes into the “blessed” repository, to which only he has access. Updates are pulled from
the “blessed” repository, which represents the latest version of the product.

This workflow is used for the development of the linux kernel, for which Git was developed.
In this project Linus Torvalds has the role of the dictator. The lieutenants are specialists in
specific areas (networking, video, etc), who are well known to the dictator. He trusts them
almost blindly, as they handle the contributions of the community.

1 http://github.com

4.2 THE FREQUENCY OF COMMITTING CHANGES

dictator

blessed
repository

lieutenant lieutenant

developer developer developer

Figure 9: The lieutenants collaboration workflow

4.2 THE FREQUENCY OF COMMITTING CHANGES

There are two contradictory recommendations on how frequently to share changes. On one
side, snapshots should be committed as frequently as possible to enable fine granular rollbacks.
Committing changes late makes them more difficult to merge, as potentially more edited lines
in the artifacts can be conflicting. An analysis with real world data in [EC95] came to the same
conclusions. On the other side, shared changes should not corrupt the project (e.g. resulting
in an uncompilable source code project), hindering further work of collaborators. Conflicts,
occurring when two snapshots are based on the same version, can be resolved more easily,
if the changes made are small, but occur more often due to the developers committing their
snapshots frequently. Ideally, frequent commits should not be shared with other developers, if
they leave the project in an unstable (e.g. uncompilable) state. After a task is completed all
recorded changes should be shared.

This problem is evident in centralized version control systems, as every committed snapshot
is automatically shared with all participants. Working in branches could solve this problem but
unless developers work in their own branch there are colleagues which are affected. Branches
in most centralized version control systems do not come for free. In some projects build tools
emphasize this problem. By running automated tests on the snapshot to be committed they
prohibit fine-granular commits.

Distributed version control systems address this issue by differing between local commits
and global pushes. Local commits are not shared with other users and can therefore be used
to keep track of fine granular and possible destabilizing snapshots (e.g. that hinder a project to
be compiled). A push shares all unshared local commits at once, but with only one participant.
In practice there is a person, who collects all contributions and publishes them on a central
place, as outlined in Section 4.1.

37

FOUNDATIONS OF VERSION CONTROL SYSTEMS

4.3 CONFIGURATION MANAGEMENT

Our solution focuses on version control only. The field of software configuration manage-
ment, however, consists of four areas: (1) change management, (2) build management, (3)
configuration and variant management and (4) version control.

1. Change management, i.e., tracking bug reports and feature requests, can be separated
from version control. In fact supporting tools are often connected to version control tools.
A common practice, however, is to mark the bug report/feature requests number in
the comments of a commit. Some tools* automate this practice. As existing tools and
practices can be reused with our prototype it was not necessary to design a decentralized
change management solution as well.

2. Build management handles the build process of a project, which can be executed
automatically, e.g., to produce nightly builds. These builds can be carried out on a local
machine, thus existing solutions could be reused without difficulties. It depends on
configuration management. Often tools3 combine configuration and build management.

3. Configuration and variant management memorizes the possible configurations, which
can be used to build a system, in different variants. It typically dissolves dependencies
among different item versions as well. An item is not only a file, but can also be a tool,
e.g., a compiler, which is necessary to build a project.

4. Version control finally records changes to files. It aims to reproduce the state of a project
at an actively recorded point in time.

Our solution focuses on version control only, however, version control cannot be strictly
separated from configuration management, as each retrieved state is in fact a configuration.
Two mechanisms enable configuration management: We already saw that a complete underly-
ing distributed version control system is reused, which includes its features for configuration
management as well. These are snapshots, which are used to reconstruct a committed local
state of any user. Each snapshot entry in the global history existed at one time in a user’s
local workspace. Therefore versions of files belonging to the same snapshot can be considered
as depending on each other. The existence of named and unnamed branches is the other
feature which enables variant management. Alternative versions of a project can be tracked
in parallel using these branches. Lastly specific versions of a file can be selected from any
snapshot, allowing the combination of any file versions in a local working copy (which is
called cherry-picking). As no dependency information is provided a user must already know
which files might fit.

4.4 CONSISTENCY AND COHERENCY IN VERSION CONTROL SYSTEMS

Consistency and coherency are the most important quality aspects of a version control system.
They depend directly on a system’s design.

Consistency and coherency describe the state in which the distributed copies of a system
are. In general, multiple copies are consistent if certain integrity constraints are valid. These
integrity constraints are to be defined for concrete areas and systems, in which consistency is
analyzed. For database systems integrity constraints could demand certain statements to be
true (e.g. an address entry refers to exactly one name entry). Most systems should never be in
an inconsistent state, thus the defined integrity constraints can be understood as invariants.

The consistency definitions for caches and replicas, as defined in [HP98] , demands copies
to be always identical. The weaker demand of coherency is fulfilled, if copies are updated on
read access so that the read value is identical, regardless from which copy it was read.

2 like myLyn (http:/ /www.eclipse.org/mylyn/)
3 like maven (http://maven.apache.org/)

4.4 CONSISTENCY AND COHERENCY IN VERSION CONTROL SYSTEMS

The definition of consistency in the area of distributed shared memory (DSM) systems, out-
lined in [TSo6], is quantified using the access time of concurrently operating users. Depending
on when a read operation retrieves the latest written value, a certain degree of consistency is
provided. Mosberger introduced in [Mosg3] different consistency models for DSM systems.
These consistency models can be understood as a contract that guarantees the retrievability of
certain values when a distributed stored variable is updated concurrently.

The following scenario is usually used to explain the different consistency models: A process
is writing a value to a variable, which is stored in different copies, among multiple locations.
The implemented consistency model describes which values can be expected to be retrieved
(the outdated or updated value) when subsequent processes read the variable from different
locations concurrently. Multiple combinations are possible#, each complying to a specified
consistency model.

In these definitions of consistency updates replace the content of a value. In a version control
system we create a new version of an artifact, instead of overwriting its previous content. A
specific version is immutable and never outdated. Therefore we adapted these definitions to
be applicable to version control systems where stored items are immutable and updates on
their content create new items.

4.4.1 Terminology

In order to define the consistency and coherency for version control systems we need to define
terms used in this area.

A wversion is a recorded state of an artifact. When an artifact is created and modified
multiple times, whenever a user executes the commit operation, the momentary state is saved,
i.e., the content of the artifact is recorded and is retrievable later. The modern version control
systems are capable of recording snapshots instead. A snapshot is created by recording the
momentary state of all artifacts in a working copy. In this way, not only the content of an
artifact, but also the content of all other artifacts at the time the snapshot was created can
be reconstructed. When we quantify the consistency of a system it does not matter if we
investigate a single artifact’s versions or the snapshots of all artifacts in a working copy.
Both storage structures are equivalent regarding the provided consistency, therefore in our
definitions the word version could be substituted with snapshot

version or snapshot: v, € V, where V represents all version/snapshots, for n € IN

denotes an arbitrary version of an artifact (or an arbitrary snapshot of multiple artifacts).

When the content of an artifact or working copy is changed and a subsequent commit
records those changes, the resulting version vy, or snapshot is based on the changed version
or snapshot v;, 1. We define this relation < as:

1 ifv,isbasedonv,_7, forn e N
(Vn—1 ¢ vn) :—{ " nol

0 otherwise and (vpu_1,vn) €V

The relation < is transitive.

Any two versions are called related, when they are on the same path, i.e., being in the
transitive relationship "<’.

When the state of an artifact or working copy is recorded for the first time, an

initial version: vinit ={vn | —3vx : (Vvx < v)}, for (init,n,x) € N

and (Vinit,vn,vx) € V

is created.

E.g. the first reading process could get the outdated value, the subsequent and every following process the updated
value, which would comply to the sequential consistency model.

39

40

FOUNDATIONS OF VERSION CONTROL SYSTEMS

Multiple related versions, starting from an initial version vinit, form a development line.
The last element in a development line is called the head version, if

head(vy, 1) == 1 if =3x: (vp < vy) at time t, for (n,x) € N
0 otherwise and (v, vx) €V

Otherwise a version is outdated. N.B. The point in time is relevant to notice if a version is
outdated.
More then one version can be based on the same version, formally described by

Va < Vx,

Va < vy, for (a,x,y) € N and (vq,vx,vy) €V

The development lines ending with v and vy are diverging from each other, which occurs
when branches are stored in a version control system. Therefore we use the term development
line interchangeable with the term branch.

For each development line a head version exists. We define the operation heads: V,t — V
that gives us the set of all head versions that exist at a specific time t as

heads(t) = {v | head(vp,t)}, for h € N and v}, € V at time t

A version can also be based on multiple versions, which represents merged development
lines:

Vx < Vq,

Vy Vg, for (a,x,y) € N and (vq,vx,vy) €V

If more than two development lines are merged, we call it an octopus merge. N.B. Multiple
development lines form a directed, acyclic graph (DAG).

All versions which are (transitively) connected through the relation < are on the same path.
The set of all versions in a given path includes all version of parallel branches as well, i.e., they
are obtained by traversing all related versions from a given version to another given version.
This is described by the following operation path:VZ? — V

Path(Vx/Vy) = Vpath And Vpath ={Vx, Vi, Vg1, Vm—1,Vm, Vx |
(Vx = Vi) A (vn =V 1)) A LA (Ve v A (vin Vy)}/

with x <n <m <y for (n,m,x,y) € N and (vn,Vni1,Vim—1,Vm,Vx, Vy) € V

4.4.2 Degrees of Consistency

Updates on an artifact in a version control system create a new version (or snapshot) instead
of overwriting the old stored value. To the author’s best knowledge there is no definition
of consistency and coherency, which takes this behavior into account. These definitions
assume that a stored value gets replaced by an update. Therefore we modified the consistency
models for distributed shared memory systems introduced in [Mosg3] to be applicable to
version control systems. To avoid confusion we call our introduced modified consistency
models degrees of consistency. N.B. The introduced consistency degrees are not complete,
but sufficient to describe the consistency of the related version control systems, which are
presented in Chapter 5. There are certainly further degrees possible.

A certain consistency degree is provided by a system if it guarantees to retrieve a set of
versions, even in the worst circumstances (with the exception of malicious attacks). However,
if the circumstances hinder the retrieval operation to be executed successfully at all and not
even a partial result is retrieved, the guaranteed consistency is not considered to be violated.

To define the consistency degrees, let us consider the following scenario: A user has an
outdated version of an artifact or snapshot of a working copy, which he updates, executing

4.4 CONSISTENCY AND COHERENCY IN VERSION CONTROL SYSTEMS

sd update)

% await update

) request

2 updated — \update()

9] \ send

&3 prepare update _—ﬁj date

< Idle pdate(
]]]
I | |
treq tsend trec

Figure 10: Timing diagram of the update process

an operation which retrieves the latest versions or snapshots of all branches of the respective
artifact or working copy. For our definition it does not matter, if a user requests an update or
an update is sent proactive by the system. Figure 10 shows the temporal order in this scenario.
The user requests an update of a specified artifact or a working copy at the time tyeq by
executing the operation request update(). The version control system (named VCS in Figure 10)
prepares the update and sends the user versions or snapshots that he does not store locally
at time tsenq. The user receives the resulting versions or snapshots at time t¢. and applies
them.

Which versions or snapshots are retrievable from the version control system depends on
the consistency degree it provides and is detailed below. We call the set of receivable versions
or snapshots Vretrievable. Only, if the retrieve operation failed (or no version has been
committed) this set is empty. N.B. The head version at time tsenq can be outdated when the
user receives it, at time trec, because a succeeding version could have been submitted by
another user while the updating message is transferred to the user. Vretrievable might only
include heads(tsenq) and not heads(tyec)-

The time difference between sharing a new version and retrieving it is considered indirectly
by the consistency degree. It is mainly quantified by the freshness and changes depending on
the circumstances a system experiences. In contrast to other quality aspects consistency and
coherency do not change over time.

Like the consistency models our consistency degrees are sorted from loose to stricter. A
stricter degree, like the sequential consistency, narrows the possible results of the described
scenario, but negatively influence on other aspects of a distributed system. A lose degree,
like the eventual consistency, offers more freedom to optimize other aspects of a distributed
system, but tolerates undesired results. To achieve a strict consistency degree in a system
multiple update messages to synchronize the distributed storages are necessary, wherefore
the number of copies should be minimized. Less strict degrees require fewer coordination
messages and allow more copies to exist.

Freshness
The freshness of an update is a quality aspect, which measures how recent the
retrieved results were pushed. Its metric is the time span between a successful
push of one user and a subsequent pull, which retrieves the just pushed changes.

eventual consistency : There are no guarantees when or which versions a user can retrieve.
The retrieved versions can be completely unrelated, with gaps in the retrieved develop-
ment lines. In the latter case a version is received while the predecessor version, it was
based on, is missing. Formalized:

Vretrievable C [JPath(vinit, vi € heads(tsena)), for (h,init) € N

and vinit € V

41

42

FOUNDATIONS OF VERSION CONTROL SYSTEMS

The only given guarantee is that after an unlimited amount of time all created versions
are shared between all users. In typical implementations new versions have to be
propagated to all replicas in the system. This usually occurs in an automatic process, in
a deterministic, but coincidental fashion.

Eventual consistency is similar to the eventual data consistency listed by [TSo06].

causal consistency : A system is causal consistent, if all related versions are retrieved. Unre-

lated versions might be missing. Gaps in the development line are avoided, which can
happen in the weaker eventual consistency degree. Whenever a repository is split into
disconnected parts, users with access to only one part can retrieve a different set of
versions than users connected to another part. Additionally it might happen that a head
version is only present in one part>. In a system which promises causal consistency all
retrieved versions have to be related. Formalized:

Let H C heads(tany), where tany < tsena
Vretrievable = [Path(Vinit, vi € H), for (h,init) € N

and vinit € V

When having multiple head versions in multiple branches not all versions from all
branches might be retrievable. The premise that given enough time all versions will be
retrieved eventually holds true for causal consistency as well.

This consistency degree is similar to the causal consistency model defined in [HA9o].

sequential consistency : In a system that guarantees sequential consistency, received updates

include all versions in all branches, which existed when the update was sent to the user,
i.e., at time tgeng.
However, the freshness can have any value, and versions, which are committed after the

update was sent are not received. Thus the latest received (head) versions might not be
the latest existing versions. Formalized:

Vietrievable = Upath(vinitlvh € heads(tgenq)), for (h,init) € N

and vinit €V

Sequential consistency is typically guaranteed if the repository is controlled by a single
machine, which serves requests in a sequential order. The transport time of a message
is different for each pair of communicating machines, but very similar for subsequent
messages between the same machines. Therefore it can happen that the latest versions
shared by one user are not retrieved by another user.

This consistency degree is similar to the sequential consistency model introduced in
[Lam79].

4.4.3 Coherency in Version Control Systems

Coherency describes the demand that identically named versions (or snapshots) are identical
along all stored copies in a system. Having a relation content(), which maps a version to
its content, and a relation identifier(), which maps a version to its identifier, a system is
consistent if, and only if

identifier(vq) = identifier(vy) = content(vq) = content(vy), for (vq,vp) € V

5 N.B. An update based on a missing head version would reintroduce it to the system. Only, if a user based his changes
on a previous version (as he might not have the head version as well), the head version would remain missing.

4.5 SUMMARY

As long as a system is consistent, it is also coherent. An incoherent system would retrieve
contradictory results to the read requests of different users. None of the existing version
control systems can be in an incoherent state. In the description of selected version control
systems in Chapter 5 this fact is justified.

4.5 SUMMARY

We have seen some of the common properties all version control systems share. There are
different workflows which evolved while developers used the existing tools. The centralized
solutions gather all created versions in a central place, following the centralized collaboration
workflow. The integration manager collaboration workflow or the lieutenants collaboration
workflow filters the developers contributions by introducing integration managers in a hierar-
chical fashion. While a centralized version control system cannot implement the latter two
workflows, a decentralized solution can be used with all three workflows. However, setting up
the centralized workflow is not straight forward.

In regards to the summarized workflows, we discussed the impact of sharing changes with
a lower or higher frequency. Submitting small changes in short distances allows a history with
which changes can be reversed in a fine grained manner. Sharing only complete modifications,
which present the final result of a task makes the system more user-friendly for other project
members that want to have working updates only. We will see how the existing version control
systems handle this trade-off between recording fine grained modifications for personal benefit
and working changes only for the sake of coworkers.

As the most important quality aspects of version control systems we defined coherency
and different levels of consistency. We derived our definition from the area of distributed
computing. Basically, the more the retrieved versions are connected, the higher the consistency
degree a system guarantees is.

43

NOTABLE VERSION CONTROL SYSTEMS

The complexity of software projects increased rapidly following the development of the first
programs in the 30s. By the late 60s, programs had become so complex that many projects
failed. A solution to the so called “software crisis” [Som10] was version control systems, which
helped to control the complexity of large projects and coordinated concurrent work on them.

In this chapter the most successful and thus influencing solutions are presented. After a
brief introduction to these solutions their properties are discussed. In the conclusion of this
chapter we will see why none of those solutions fully satisfies our requirements stated in
Section 3.2.

5.1 CENTRALIZED VERSION CONTROL

The first version control systems can be classified as centralized version control systems
(cVCSs). These systems rely on a centralized control, as the client-server or mainframe
communication paradigm does. This central instance handles all operations that are initiated
by multiple users.

5.1.1 SCCS

The very first system that fulfills some of the requirements stated in Section 3.2 is called
Source Code Control System (SCCS) [Roc75], which was developed in 1972. It was based on the
mainframe communication paradigm, where a strong (and in those days expensive) machine
executed all operations that users initiated through terminals. The terminals themselves did
not have any computational capacities and served as input devices only. Nevertheless, SCCS
can be installed on any machine - files are edited and stored as new versions on the machine
that SCCS is running on. Some modern version control systems, such as BitKeeper®, are based
on SCCS.

1.lock — |

versions
of artifact

latest

version
of

artifact

~N_

Alice - Write & unlock S

Figure 11: Basic architecture of SCCS and RCS

As depicted in Figure 11, all files reside on a central machine, in a repository. Users lock
artifacts (so that no other users can make concurrent changes), modify and commit them,
thereby creating a new version. The versions are stored using delta compression, saving
storage space, which was very expensive in the early days of computing.

1 http:/ /www.bitkeeper.com/

45

46

NOTABLE VERSION CONTROL SYSTEMS

This first solution solved requirement R-1.4 and requirement R-1.7 by controlling the modi-
fication of single artifacts. There was no support for snapshot version control (requirement
R-1.5). The ability to work concurrently, however, was limited, as only one user could change
an artifact exclusively. There was no support for requirement R-1.10: Track variants (branches)
either. Versions of an artifact were stored in linear order only. Basic security needs were
fulfilled with user account based requirement R-22: Access and usage control.

SCCS guarantees sequential consistency. Following the lock-modify-write principle, an
artifact is locked by a user who modifies it directly on the server. Contradictory changes are
prevented, thus the repository, which exists as a single copy on the serving machine only, is
always in a coherent state. The high consistency degree is payed by a limited ability to work
concurrently, as one artifact can only be modified by one user at a time.

Pessimistic Concurrency Control

The pessimistic concurrency control locks an artifact, so that it can be read
by anyone but modified by only one person. A technique, which is used by SCCS
and RCS is called lock-modify-write, where an artifact is locked, modified
and applied to a repository as a new version, which is unlocked. By avoid-
ing concurrent versions to be created, conflicts are resolved proactively.

While preventing contradictory changes, this procedure obviously limits the
possibility to work simultaneously on the same artifacts. When working on a
software project, typically a group of artifacts have to be modified. This led to the
behavior to lock more artifacts then necessary, which hindered concurrent work
even more. The branches introduced in RCS relaxed this problem, as versions
in different branches can be locked by different users.

5.1.2 RCS

To support variants (requirement R-1.10) the revision control system RCS (RCS) [Tic82] was
developed in 1982, replacing SCCS. The system was based on the same basic architecture
as SCCS, shown in Figure 11. The main difference is the version model, which allows for
the creation of a version, which exists parallel to another version, in a branch. The main
development line is called the trunk, where alternative development lines can split into
parallel development lines, called branches. The system is additionally able to merge a branch
back to the trunk - if the changes were not conflicting, i.e., did not happen in the same text
line, the two versions (from the trunk and from the branch) could be merged automatically.
This newly created version has two parents (the version in the trunk and in the branch it is
based on) and marks the branch as merged back into the trunk.

Version Model
A version model defines what is controlled by a version control system and
how it is done. It represents therefore the internal structure in which the version
control information is stored. The granularity of control can cover single artifacts
or entire projects, they can be tracked in revisions only or with variants, in a
directed acyclic graph structure, where alternative development lines branch
and merge again. They can be stored using delta compression.

As in SCCS, sequential consistency is guaranteed, as the repository is stored and modified
in the same way. Concurrent work is therefore limited by the lock-modify-write approach,
although the introduced branches allow for limited parallel work [KR81].

513 CVS

RCS was eventually replaced by the concurrent versions system (CVS), which began as a
collection of scripts operating on RCS in mid 1984. Back then, it evolved from the need to
coordinate the work of three developers, who each had different working times, and was

5.1 CENTRALIZED VERSION CONTROL

called cmt. CVS was released in late 1990s and is still used in many projects. It does not rely
on RCS anymore, as it became an independent software project.
Optimistic Concurrency Control

The optimistic concurrency control allows users to make simultaneous changes
to artifacts. As only a small number of concurrent changes are conflicting, as
discovered in [Leb95], the advanced version control systems, which were de-
veloped after RCS, implement the copy-modify-merge procedure described
by [SS05]. A user copies an artifact in a specific version from the repository,
modifies it, and commits it back to the repository, where a new version is
created. If a new version already exists, the user must merge the contents
of his version and the latest version of the modified artifact and commit
the resulting version. This process is called reactive conflict resolution.

The distributed version control systems are unable to detect a conflicting
version when it is created; they therefore implement the copy-modify-branch
procedure. If multiple versions are based on a common base version they reside
in unnamed branches, which should be merged, creating a new version based
on both merged versions.

The architecture is still centralized, although it moved from the mainframe to the client-
server communication paradigm, where a powerful machine serves the requests of multiple
client machines, which each have enough power to make calculations themselves, in contrast
to the terminal machines. Nevertheless all operations are executed on the server machine.

@

Alice (module)
|
. 1. co folder
2. modify Py ~—_
> versions
P N of A .
 Working Copy | versions
1 1 of B
1 1 A
' folder ' latest
| 1 version
: A B :
I latest latest I
' version version ~ 3. commit —9>|
| \ other folder
I I |
1 1
: other folder : L J
! ! other modules
. ,

S~

Figure 12: Basic architecture of CVS and Subversion

Initially CVS eased the work on a set of artifacts, as RCS and SCCS merely controlled the
versions of a single artifact. CVS raised this scope to a project level, where all artifacts of a
project are controlled. Figure 12 shows the evolved basic architecture. Artifacts are grouped
into folders, which may include subfolders with further artifacts. The outermost folder encloses
the software project and is tracked in a module on a CVS server. One or more instances of
those modules form a repository. A software project can be organized in multiple modules,

47

48

NOTABLE VERSION CONTROL SYSTEMS

although no connection exists between the modules in the CVS. A user can check out a
module, which creates a working copy on his machine.
Working Copy

A surveyed folder is called the working copy of a module. If anything in this

folder changes, the version control system captures all of the modifications. With

the commit operation, a new snapshot is taken locally. At any time the folder

(or individual files) can be reverted to a formerly recorded state. All snapshots are

ordered, forming a history. When the user changes several files and executes the

commit operation, a new snapshot is created, which records the latest snapshot

as being its parent.

This working copy mirrors the artifacts and folders of the respective module. Initially all
artifacts are copies of their latest version in the server’s repository. A user can now make any
changes to the artifacts and commit his changes back to the module stored on the repository,
which creates a new version of each changed artifact. New folders and new artifacts in the
working copy are also created in the module on the server as a result of the commit operation.
However, renames are not supported, instead the old artifact/folder is deleted and create as a
new one (with a changed name, and no former history).

Modified artifacts can only be committed when they are based on the latest version on
the server. If another developer committed his changes earlier, these changes must first be
retrieved and then merged with the ones modifications to be able to commit all local changes.
All operations affect the entire module, however, the versions are still tracked for each file
individually. Thus it is not possible to map the versions of different artifacts to each other,
e.g., checking out an artifact in a specific version, which was committed at the time another
artifact’s version was checked in. The state of single files is tracked, but not the state of the
working copy as a whole. Alternative development lines, branches, are also supported.

The introduction of working copies enable an optimistic concurrency control. Files can still
be locked, but following the copy-modify-merge approach enables users to work at the same
time on the same artifacts.

The price payed is the weaker degree of consistency in comparison to the mainframe
communication paradigm based systems: sequential consistency.

Coherency is never compromized. Contradictory changes, which lead to version conflicts,
cannot be committed. Solving them forms a new version, which can be committed.

5.1.4 SVN

Subversion (SVN) was developed to overcome the limitation of CVS, tracking the history
of single files only, by the company CollabNet [Col], that originally developed CVS. It was
released in late 2000. Although adopted by a huge number of projects, it never replaced
CVS completely. Subversion shares its basic architecture with CVS, which is presented in
Figure 12. The terminology, however, was altered slightly: The equivalent of a working copy is
a repository, multiple repositories reside in a database on the server. A repository is not used
exactly like a module in CVS. Usually the outermost folder of a project (or a working copy)
is inside a folder in the repository. By convention, a Subversion repository has the following
three folders as its outermost folders: trunk, branches, and tags. Initially all files of a project
are stored inside the trunk folder.

When branches are to be created, a shallow copy of the project is stored in the branches
folder (in a subfolder named like the created branch). A project can be tagged in the same way,
by storing it in the tags folder. From any folder level the update operation can be invoked,
which copies a specified version of all artifacts and folder encapsulated by this folder into
the working copy. The commit operation, however, creates one version for all artifacts and
folders in the repository. Thus the state of a working copy at a specific time is recorded, rather
than the state of single artifacts/folders, like in CVS. When a specific version is retrieved, all
artifacts and folders are in the state in which they were committed.

5.1 CENTRALIZED VERSION CONTROL
Shallow Copy

A shallow copy is a concept, whereby data is copied without using additional
storage space. Stored data is addressed by an identifier. A shallow copy cre-
ates a new identifier, which refers to the data’s storage address instead of
creating new storage entries and referring to them, as would be the case
in a classical deep copy. This concept has been applied by different mecha-
nisms. A link in a file system to the actual content and a pointer in a pro-
gramming language to the actual data are two examples of a shallow copy.

Shallow copies are created faster than normal copies, and do not consume
additional storage space. A drawback is, however, that modified data is modified
for all identifiers referring to that data. A mixture of a deep copy and a shallow
copy is a lazy copy, where data is initially copied as a shallow copy. Upon the
first write access, the modified data is stored under a new address instead of being
overwritten in the previous place. Only the shallow copied identifier refers to that
new storage address, as it would have done if it had been copied as a deep copy.

Unchanged artifacts in stored snapshots in Subversion are stored as shallow
copies (in a database), while cloned repositories in Mercurial [Mac], 5.2.4 are
copied as lazy copies (in a filesystem; using the command 'In’ in unix based
operating systems, 'mklink /H" in Windows). As soon as an artifact is changed
the created new version is stored in a new database entry in Subversion and
automatically in a new storage location on the hard disc when using Mercurial.
In both cases the new version now requires additional space.

However, the state of a user’s working copy is not tracked correctly. Let us assume that
we have a repository, only consisting of two artifacts: a and b. Initially two users, Alice and
Bob, have identical copies of a and b in their working copy. Alice only changes the artifact a,
and Bob only changes the artifact b. If they never update their working copies (which is not
necessary, as their modified artifact is always based on the latest version in the repository),
and commit their changes concurrently, the resulting state of the repository includes both
modified artifacts, although in each working copy as the other’s artifact remains unmodified.
Experiments showed this result, which can be explained by the fact that Subversion only
tracks the modifications, not which other files were not modified. While requirement R-1.2:
Detect concurrent modifications is fulfilled, this example reveals that requirement R-1.6: Retrieve
a recorded state remains unfulfilled.

Requirement R-8: Offline version control is hard to fulfill using a centralized version control
system. Recently, the operation to compute the changes to artifacts in the working copy from
the snapshot on which they are based (diff) and to revert those artifacts has been implemented,
by caching the base snapshot on the client machine.

As explained before, the creation of branches is supported. In practice, merging branches
is a difficult task, which was one factor that motivated the development of the distributed
version control systems.

Subversion preserves coherency with the same mechanisms as CVS does, using the same
optimistic concurrency control. It therefore also guarantees sequential consistency. In direct
comparison with CVS, however, the consistency degree is higher: versions of artifacts can
be mapped to the versions of other artifacts, which were committed at the same time (using
snapshots).

5.1.5 ClearCase

ClearCase represents a very different approach to the presented version control systems;
Mainly because it supports configuration management, which is beyond the scope of this work.
ClearCase is a commercial system offered by IBM, presented in [Lebgs, BMos]. ClearCase
was developed as the successor of DESS (Domain Software Engineering Environment) by
the company Atria Software in 1992. This company merged with Pure Software and bought by

49

50

NOTABLE VERSION CONTROL SYSTEMS

Rational Software, which was acquired by IBM in 2003. ClearCase is part of a tool environment
which supports a complete software product development cycle, from project management
to configuration management. The tool suite is called Unified Change Management (UCM). The
version control is handled by ClearCase in this environment ([JGo3]).

The version model of ClearCase stores metadata, which is needed by configuration manage-
ment as well. The stored metadata includes version identifiers, tags and types, which are used
by the version control, as well as attributes, hyperlinks and triggers. Each versioned item has an
identifier, which is a composition of a global sequence number and a local sequence number.
The type of the versioned item is recorded to decide which tools can be used to compress or
edit it. Therefore, not only text files, but proprietary files can be handled efficiently. Attributes
are evaluated to derive a configuration, called view in ClearCase, which composes a working
copy of selected artifacts” versions. Hyperlinks can connect items. E.g., if versions are merged a
hyperlink connects them. This information can be used for traceability, satisfying requirement
R-10: Traceability. Triggers define which action should be automatically executed if a specified
event occurs. All version controlled items are stored in a versioned object base (VOB), which
is ClearCase’s repository.

A versioned item is an artifact, a folder, but a derived object as well. A derived object is
the result of a build process, which transforms multiple artifacts into one product. When a
versioned item is modified, a new version is created and stored. ClearCase uses configurations
instead of snapshots to retrieve matching versions of different items. The system used is
completely transparent to a user. Users work with the files, which appear as if they would
be in their local file systems. If an operation modifies the content of an artifact a version is
recorded automatically, which forms a fine-grained history. If a user has finished his task he
can call an operation of ClearCase, which forms a baseline. This signals a stable (compilable,
working) configuration. The latest versions of all items are automatically labelled to indicate
that they belong to this baseline. This solves the problem described in Section 4.2.

A user works on a view, which is similar to the concept of working copies. A configuration,
usually provided by an integration manager, defines which versions of which version items a
user works with. They can belong to any branch, so that items of different branches can be
mixed. Items can be locked to prevent modifying them.

@

Alilce module B?b
. folder .
1.1. modify 2. modify
versions N
------------------ > AT m T m e e mmmm—
| Dynamic View | of A versions 1. initial | Snapshot View
: ________________ : A of B copy :
[1 . 1
: :____“foldfr___\ : ,L‘ 1.2. modlfy —p latest ; folder
1 D] ! version
h "1 = ! ! A
, :: latest | | |agst ! o 3. final i latest Iatzst
' :: version 1 1 version ' | < : a —1|| version version
[T L i other folder commit
I 1
T E
! I “other folder I ' L) ' other folder
1 1
. ! I:: i other modules .
1 T 1 1 ||
N ’ N e _____ ’

~

Figure 13: Dynamic (Alice) and Snapshot (Bob) View in ClearCase

A user can base his working copy on a snapshot view or a dynamic view as presented in
Figure 13. In a dynamic view all files remain on a server. In the figure all files appear as being

5.1 CENTRALIZED VERSION CONTROL

on Alice’s local local hard disc, but they reside in fact on the repository storing server. All
operations, which change an artifact’s content, are sent and executed on this server, which
creates a new version. Changes are thereby immediately visible to all other developers. The
time required to finish an operation depends on a user’s network connectivity and is greater
than if the operations were conducted on local files. A snapshot view is a copy in the user’s
local file system of the versions on the server. An administrator initially copies the required
artifacts to Bob’s local machine. Bob modifies these artifacts, where each operation results in
an automatically created version, which resides on Bob’s machine. If the new created versions
should be shared, Bob or a distinguished administrator commits them to the repository on the
server. Conflicts with versions submitted by other users are detected and have to be solved in
this step. All local versions are applied in an atomic transaction to the servers repository.

In the dynamic view, no conflicts can occur, as changes are immediately visible to all users. If
an editing tool does not notice that an open file has been modified, however, it will overwrite
those changes. Though artifacts are usually locked to be modifiable by a single user only.
Conflicting changes might occur in the snapshot view, which are resolved when a user intends
to commit his local versions to the repository on the server. This is usually done through a
distinguished administrator.

The setup presented in Figure 13 is possible but unlikely. Users can work on the same
artifacts in the same branches, using different views. But as mentioned before, conflicting
changes are to be avoided by locking files to be modifiable by only one user, or by allowing the
development in different branches. A mixed setup is possible, where the artifacts, upon which
multiple users work, exist in multiple branches, and other artifacts are locked to be modifiable
exclusively by one user, where changes are immediately visible for all other users. It is also
possible that, e.g., Alice has an exclusive lock on artifact A and Bob has one on Artifact B,
while both see changes of the other’s artifact immediately.

ClearCase makes the version control very transparent to the user. A user modifies artifacts
without explicitly committing changes. ClearCase records all modifications in a fine grained
manner. Only a distinguished user manages the repository, by assigning which versions are
visible to which other users and which of those versions they are allowed to modify. Conflicts
are usually prevented by giving only one user write access to an artifact in a branch. If
multiple users are allowed to make concurrent changes, resulting conflicts are solved by the
administrator.

There is an extension, called multisite, which aims to solve the low performance of a dynamic
view, and fulfills requirement R-18: Adequate communication speed. In this setup, multiple servers
are deployed. They are equal with respect to their responsibilities. Each server has a full copy
of the repository. The content is, however, not always up to date. It is legitimate for the latest
versions of some items or complete branches to be missing. These servers can be synchronized
at any time, which can be initiated manually or be executed automatically; periodically or if a
specified event takes place. To avoid consistency problems, each server manages a disjunctive
set of versioned items and has an exclusive write access to these items. New versions can
be only applied to the respective server’s repository. In a global development setup a server
would reside on each project team’s location. Each developer can access each of those servers,
with either a dynamic or snapshot view.

Atypical for a modern version control system, ClearCase implements pessimistic concur-
rency control. An administrator configures which artifacts in which branches are allowed to
be written by a user and locks these artifacts to this user only. All other users can read these
artifacts and see updates, but they cannot change the content.

Coherency is always preserved by forbidding concurrent changes to the same artifact in the
same branch. If conflicts occur, e.g., while merging branches, they are noticed by ClearCase
and are to be resolved.

The guaranteed degree of consistency in ClearCase depends on the view a user works on.
In the dynamic view sequential consistency is guaranteed, as artifacts are changed directly
on a server. The snapshot view can offer more performance, as artifacts are modified on the
local machine and transferred to the server at a later point in time. Thus only guaranteeing

51

52

NOTABLE VERSION CONTROL SYSTEMS

sequential consistency. When using the multisite setup, the guaranteed consistency degree
drops to causal consistency. The latest versions of some artifacts might be missing on some
servers. The users always try to update their versions from the servers, which store the latest
versions. Nevertheless, some machines might not be able to provide any versions.

The transparent version control offered to a developer is only possible by giving an ad-
ministrator the complex task to configure the system and to avoid conflicting changes by
pessimistic locking or detect and solve occurring conflicts. ClearCase achieves this high degree
of consistency with the costs of performance. All operations on artifacts in a dynamic view
are delayed by the time the network messages need to travel to the repository storing server.
Practically one can work in a dynamic view only if the connection is as fast as in a local area
network (LAN). The dynamic view is not usable in a global software engineering scenario,
even when a multisite server setup is used. The snapshot view works as well as if a Subversion
server had been used, although conflicting changes are more likely to happen due to the
postponed synchronization with the server.

5.2 DISTRIBUTED VERSION CONTROL

To overcome the shortcomings of centralized systems, mentioned in Section 2.4.1, a new ap-
proach arose with Monotone [mon] in mid 2003. Several distributed version control systems
(dVCSs) followed, which differ only in a few details. In fact they behave, from a functional
point of view, almost identically - especially Git [HT] and Mercurial [Mac] are very similar,
taking their various extensions into account. They only differ in how they perform in specific
tasks. Because of the strong similarity, the basic concept is shown first. A description of the
most important dVCSs, Monotone, Git and Mercurial, follows. The dVCSs are popular among
a great variety of open source projects. Only a few commercial projects exist, which prefer
a dVCS to a cVCS. The reason for this might be the lack of a global repository, where the
changes made by all developers are gathered immediately. However, for most commercial
projects it is unknown which VCS is in use. Nevertheless, the first mature dVCSs (Git) was
developed solely to support open source projects (to be more precise: one open source project:
the linux kernel). As detailed in Section 4.1 not all developers’ contributions are integrated
into the open source project. A dVCS supports different repositories among its users, where
only parts of a history is integrated into the history of another developer’s repository.

Alice's Computer

local dVCS
Repository

edit .
——p working

Copy

Alice

Figure 14: Basic architecture of dVCSs

5.2.1 Basic Architecture of dVCS

Common to all dVCSs is the distributed repository, shown in Figure 14. Instead of a centralized
repository, every user has a complete repository on his local machine. The user (Alice) edits

5.2 DISTRIBUTED VERSION CONTROL

artifacts in a working copy. If she wants to store any changes made, she executes the commit
operation, which creates a new snapshot in the associated local repository. Stored versions can
be retrieved by issuing the check out operation. Note that here the term repository does not have
the same meaning as in CVS, where a repository is the place on a server, where all modules
are stored. As in Subversion a repository of a dVCS stores only one project with all metadata,
such as branches, tags and snapshots.

Alice's Computer Bob's Computer
Push
local dVCS Pull local dVCS
Repository Repository
Commit - update
Oy
. . edit
working working ———
Copy Copy
Alice Bob

Figure 15: Sharing versions between participants of a dVCS

Figure 15 shows that two users share their snapshots. As each user has a repository, there
is no main repository. Both, Alice and Bob, edit files on their computers” working copy and
execute the commit operation to create a history of their changes in the local repository on their
machines. To exchange each others history the push or pull operation is used, as demonstrated
in Figure 16.

Alice and Bob created the history presented in this figure. The history is in the respective
local repositories, as presented in Figure 16a. Alice and Bob started working with the same
initial snapshot, named 1 and being the first snapshot in both histories. Alice and Bob
both committed their changes to the artifacts in their working copy twice, creating the two
subsequent snapshot entries in their history, named 2 and 3 in Alice’s and II and III in Bob’s
history. Alice informs Bob (by e-mail, a phone call, etc.) that it is time to share their changes.
In this process not only are the latest versions exchanged, but the complete history of both
repositories is synchronized.

Alice pulls Bob’s changes into her local repository (compare with Figure 16b). Bob has to
execute the serve operation, which prepares Bob’s repository to look for incoming connections.
The two machines connect directly when Alice invokes the pull operation with the repository
on Bob’s computer as the target. A protocol specific to this dVCS transfers Bob’s snapshots in
this way to Alice’s machine. Bob’s snapshots are based on snapshot 1, but might conflict with
Alice’s snapshots. Although they may be able to merge automatically, Bob’s snapshots are
stored as an alternative development line in Alice’s history, called an unnamed branch. There
are now two head snapshots in Alice’s repository depicted in Figure 16b.

Alice can continue to work or merge the two head snapshots, 3 and III in her working copy.
A subsequent commit creates snapshot 4, shown in Figure 16c. Now she can push her history
to Bob, which updates his history with the missing snapshots, using the push operation (see
Figure 16d). N.B. Bob could have executed the pull operation to aquire Alice’s snapshots as
well - but Alice would have to enable the server mode in her dVCS first. If Bob continued to
work, and committed further snapshots in the meantime, the new snapshots would still be in
Bob’s repository after Alice’s push.

The previous example showed that there is no repository where all latest snapshots are
stored, like a centralized repository in cVCSs. Each developer has his personal repository, in
which he can integrate changes from other developers.

53

54

NOTABLE VERSION CONTROL SYSTEMS

[Alice's History | [Bob's History | [Alice's History | [Bob's History |

/\ N\A /\

(1] (1 g O

U L

(a) initial state (b) pull
[Alice's History | [Bob's History] [Alice's History] [Bob's History |
A
“ [push]
(c) merge (d) push

Figure 16: Alice and Bob share changes in a dVCS

Having a local repository creates a possibility, which is not present when dealing with a
centralized repository: The history of the committed snapshots can be rewritten. That means
that unwanted commits can be erased and snapshots can be reordered, to make the history
look nice. A common use case is to develop in a branch. Instead of merging the branch into
the main development line after the work is done the branch gets rebased. This operation puts
all snapshots from the branch on top of the latest revision of the main development line, so
that the version history looks like they where committed later. However, this has to be done
before snapshots are exchanged, as the rewritten snapshots change their identifiers as well.

The absence of a centralized repository could be countered with a dedicated repository,
which serves as a rendezvous point, to which all users synchronize their repositories. The
snapshots stored in this repository, however, would be outdated, as new snapshots are created
locally and shared subsequently. This is one of many possible workflows. A further discussion
of typical workflows can be found in Section 4.1.

The local repository offers all of the features of a centralized repository, including but not
limited to (named) branches, tags, snapshot commits and updates, fulfilling requirement
R-1: Support common version control operations. Network communication is only necessary for
exchanging snapshots, as all other functions are executed locally. These functions operate,
therefore, much faster than in centralized version control systems. Checking out a project
initially, called cloning, however, is slower than in a cVCS, as not only the latest snapshot, but
the complete repository has to be transferred to the developer’s machine. To speed up this
initial copy of the repository, it can also be transferred by, for example, an USB flash memory
drive.

Due to the distributed repositories, artifacts cannot be locked by a developer, thus pes-
simistic concurrency control used with the first version control systems cannot be applied.
The optimistic concurrency control used by most cVCSs, copy-modify-merge, cannot be ap-
plied either: The copy-modify-merge procedure requires a communication with all repositories,
which is not possible in a dVCS. Additionally, in this procedure a snapshot cannot be com-
mitted if it is based on the same base snapshot as an already committed snapshot. This

W N

5]

5.2 DISTRIBUTED VERSION CONTROL

would be impractical in a dVCS, as the push/pull operation applies multiple snapshots to
a repository. As stated before, any snapshot can be applied, forming an unnamed branch,
if based on the same base snapshot like an earlier committed snapshot. The workflow used
here is, therefore, copy-modify-branch. All of the distributed repositories are always coherent.
Contradictory changes of the same artifact are saved in unnamed branches and the version
identifier is calculated based on a version’s content. As we saw in the previous example,
unnamed branches can be created in a named branch. The development is no longer linear,
but forms a direct acyclic graph (DAG).

The flexibility to work without a network connection comes with the price of guaranteeing
causal consistency only. All snapshots in a user’s repository are related to each other (except
the most recent ones). But no user has all existing snapshots. The received snapshots depend
on the user, who was manually chosen to pull changes from. Conflicts are only detected, when
users exchange their snapshots.

5.2.2 Monotone

Monotone pioneered this new way to control the development of software projects in mid 2003
(see [mon]). The complete repository with all metadata is stored in a local database, which is
saved in a file, using SQLite*. The metadata structure is very similar to the structure created by
Mercurial, which is described in more detail in Section 5.2.4. There can only be one working
copy per repository. A repository can be cloned locally by simply (deep) copying the database
file, which consumes additional hard disk space. A second local working copy can then be
created, e.g., to track an experimental development in a branch.

Snapshots can be exchanged between local or remote repositories, as demonstrated in
Section 5.2.1. Monotone knows a third operation in addition to push and pull: sync, which
executes push and pull directly after each other. The only way to access a remote repository
is with the custom protocol netSync, which is similar to rsync3. This protocol transfers the
missing snapshots and other missing metadata only. The same protocol also transfers changes
between local repositories, but to create a local repository, the entire repository has to be
copied.

Monotone features a built-in security concept. Each developer has a public/private key pair,
which is used to sign snapshots and grant access to ones repository. The access can be read
only or read and write, but is set for the entire repository, not only individual artifacts.

Monotone is used by a small number of open source projects?.

5.2.3 Git

Forking the development of software projects, by using branches, is often a difficult task.
An important aspect of Git is a new approach to handle branches. Linus Torvalds initiated
the development of Git in April 2005 (see [Tor]). Today it is the most popular distributed
version control system, used by many projects®. The Monotone version control system could
have been used rather than developing a new system, as the possibility to work offline was
compelling. However, it performed too poorly, although it was later improved by revision o.27.

Creating and merging branches in Git was designed to be as easy as possible. In the
philosophy of Git, every user’s local working copy is a branch for another user. Thus, there is
only one head version for each user, called master in Git, which is similar to the concept of a
trunk in cVCSs. The master branch of one user is a normal branch for another user, who has
his own master branch.

http:/ /www.sqlite.org

http:/ /rsync.samba.org

like coLinux (http://www.colinux.org), CTWM (http:/ /ctwm.free.lp.se), Pidgin (http://www.pidgin.im) and Xaraya
(http:/ /www.xaraya.com), to name some

among them are the linux kernel, many linux distributions, including Android, Debian and Fedora, many
GNU projects, including gcc and many other popular projects, such as Pearl or VLC, all listed in
http:/ / git.wiki.kernel.org/index.php/GitProjects

55

56 NOTABLE VERSION CONTROL SYSTEMS

0..*
Commit b

Tag/Branch 1 | String author
String name "| String committer
String comment
1.*
Object y! 0.1)
SHA-1hash id <} Tree
String type Map <SHA-1hash, String> name
Integer size W\ 1
i

Blob
Data artifact

Figure 17: Metamodel of Git’s version model

Figure 17 shows the version model of Git. There are objects and tags/branches. All these
objects are implemented using text files, which are stored compressed. An object contains its
type, which can be the string “blob”, “tree” or “commit”, its size on the hard disk and content,
which depends on the type. The identifier of an object is computed by hashing the object with
the SHA-1 hash function. A blob represents an artifact, the type is, therefore, the string “blob”.
It stores the content of the artifact it represents in textual or binary form. The name of the
artifact is stored in a tree. A tree represents a folder. The content of a tree is a map of hash ID
and string pairs, where the hash ID is either the ID of a blob (representing an artifact) or of a
tree (representing a folder) and the string is the artifact’s name or rather the folder’s name.
By listing all blobs and trees in a tree, the structure of the artifacts, folder and subfolder in the
controlled working copy is mirrored. There is only one free at the top level of this hierarchy,
which represents the root folder of the working copy.

Hash Function

A hash function (often SHA-1) calculates a hash value from a given
input string. The resulting hash value is element of a limited codomain
and has a fixed number of digits. It can happen that two input strings
result in the same hash value, which is called a hash collision.

However, how likely a hash collision occurs depends on the used hash al-
gorithm. If all possible input strings are known a perfect hash algorithm can
be used where collisions do not occur at all. Cryptographic hash functions
have a strong collision resistance to hinder the decryption of encrypted data.
SHA-1 (secure hash algorithm 1) is a cryptographic hash function, which was
developed by the national security agency (NSA). Theoretically a hash collision
can occur when using SHA-1, but the odds are negligible small. SHA-1 is utilized
in the widely used SSL encryption, and to the date of this writing not even one
accidental collision was reported.

A commit represents a committed snapshot. It stores metadata about the commit: the
author’s name, the name of the committer and a comment. It additionally stores the hash ID
of the topmost tree, which represents the topmost folder in the working copy. A list of hash
IDs are included, which represent parent commits. In a linear development there is only one
parent, but if the commit is the result of a merge, multiple parents are listed. That could be any
number, because more than two branches can be merged in Git (called an octopus merge).

Identifying these objects with the value, which is computed by calculating the hash value
of the object itself, and referring to each other in the outlined structure, has some positive
side effects. The folder structure automatically refers to unchanged and changed artifacts,
effectively creating a snapshot. Unchanged artifacts are not stored twice, the tree is referring

5.2 DISTRIBUTED VERSION CONTROL

to the old artifact instead. If an artifact is changed a new blob is created, which stores the
complete content of this new artifact, not only the changes to the previous version as it is
usually done using delta compression. The built-in compression, however, ensures that no
storage space is wasted and is in most cases more efficient. Note that a changed artifact in
a subdirectory not only creates a new blob, but for all folders on the path to that artifact a
new tree is created as well. The new blob has another hash value, as the represented artifact’s
content changed. This new value is entered under the old name in the tree which represents
the folder that contains this artifact. This changed content results in a new tree object, which
has another hash value, which updates the trees which refer to it, etc.

In the same manner the history is cryptographically saved. The changes made to the artifacts

and folders lead to a unique hash ID of the topmost tree, which is entered in the commit object.

The hash value of that commit object is entered in the succeeding commit object, etc, building
a self signing history. If one object would be manipulated the computed hash values of the
other objects would reveal the manipulation.

Tags and branches are represented by small files, which only contain the 4obit hash value of
a commit (and a 1bit newline). The filename of this fag/branch object is the tag/branch name. If
a new commit is the successor of a commit a branch refers to, the branch is updated with the
latest commit’s hash id.

Regarding this structure, branches are extremely economical. In fact only 41 bits of space is
required for a branch. Git encourages working with multiple branches. For each feature, a
new branch should be created, and when working on different features at the same time, a
developer should alternate between branches. E.g., Alice is working on a new feature, when
her boss wants a bug in the code fixed. She commits her last changes to her feature branch
and creates a new branch from the snapshot where her current work is based on. Now she

updates the artifacts in her working copy to that commit and begins to work on the bug fix.

She can switch quickly between the branches, as only the artifacts in the working copy have to
be reverted. Only conflicting changes, which are recognized by having multiple blobs with the
same name, need to be reconciled when merging the changes back. A common practice is to
rebase the commits so that the history appears more linear, before sharing the changes with
other developer.

The previous example showed how Git actually tracks the content of artifacts instead of the
artifacts themselves. This has a positive effect on renamed or copied artifacts. As long as the
content is identical, they are represented by the same blob. Their name is stored by the tree
that represents the surrounding folder. Git detects renamed artifacts, which have had their
content changed, using a heuristic, which probes the similarity of different candidates.

This slim storage structure, the ability to rebase the history and to share only selected
branches is an improvement to Monotone. The history is exchanged using the push and pull
operations. Just as Monotone Git offers a proprietary protocol, but this protocol can operate
on top of http or ssh. Additionally, a patch, which includes all changes between specified
snapshots, can be created locally and shared as a file in any way, including via e-mail or using
an USB flash memory drive.

Git is able to synchronize with other version control systems such as cvs, Subversion or
Mercurial. Depending on the concrete solution, this can be a (one or) two way synchronization
or a continuous exchange, making the systems interoperable. Git could even be used to
combine two other systems, working as an intermediary. There is also a cvs server integrated
into Git, so that the repository can be manipulated as though cvs where being used. Adapters
for other version control systems, such as Mercurial to name one, exists as well or are created
by the community as extensions. The development of Git is open source and it has a good
extension system, whereby optional functions can be hooked in.

As a drawback of the repository storage structure, it takes a while to traverse the history
of a single file. It needs to be computed on demand by traversing the tree and blob structure
of every commit. An operation dealing with this task is provided, although its execution is
not recommended. Similarly, a change set, i.e., a list of the artifacts that were changed in a
given snapshot (or commit in Git’s terminology), must also be computed by comparing a

57

NOTABLE VERSION CONTROL SYSTEMS

snapshot with its parent snapshots. A further drawback is the platform dependence of Git. It
runs native on unix/linux based machines, including apples OS X. But it is difficult run it on
a windows based machine. In essence, the unix compatibility layer cygwin® must be installed.

5.2.4 Mercurial

Mercurial shares almost all features with Git. Like Git, Mercurial is able to work in symbioses
with other version control systems?. It could be used in a mixed setup, where different clients
use different VCSs. Meanwhile many features were added using extensions; many of those are
delivered with the basis package of Mercurial and are easy to activate. The ability to rebase
snapshots, for example, was not planed initially (as the philosophy of Git was not shared),
but was later added through an optional extension. Rather than repeating Git’s features, this
description focuses on the differences between Git and Mercurial. Mercurial was developed
parallel to Git by Matt Mackall - in fact its development started only a few days later, with
the same intention to serve as a VCS for the linux kernel development. Git was chosen for
this project, but Mercurial is used by many other projects®. The majority of Mercurial’s code is
written in Python. Python is currently developed using Subversion, but prepares to migrate to
Mercurial for version control. Due to its platform independent code background, Mercurial

runs on almost any platform.
0.2 (Srent
Changelog "

SHA-1hash manifest
String author
Timestamp date
String branch

Set <String> filename
String comment

Tags *
Map <Name, Nodeid> tagname

\ A

Data 17,
linkrev paren
1] 1 1 147 0.2
Manifest «
: RevLog Map <String, SHA-1hash> fullFileName
1
Index I
1 1> IndexEntry
" lintrev 1--*‘7
int offset Filelog
int length Data artifact
int base

SHA-1hash nodeld

Figure 18: Metamodel of Mercurial’s version model

Although Mercurial’s functions are identical to Git’s functions, the version model is different.
Figure 18 presents Mercurial’s version model. The most important metadata files are all reviogs
(detailed further in [Maco6]). There are additional files for some information, such as the
“.hgtags”-file, which stores the tags of a repository.

A revlog is Mercurial’s equivalent to Git’s object. It consists of two functional units, index and
data file. Only when these units exceed a certain size they are separated into two single files.
The data file stores the content of all versions of a revlog. The content is stored using delta
compression: the initial version is stored completely, while only the changes that form the next
version are added. A specific version is retrieved by taking the latest full version stored, which

6 http:/ /www.cygwin.com

7 like with Subversion, enabled by the extension hgsvn (http://pypi.python.org/pypi/hgsvn/)

8 like Mozilla (http://www.mozilla.org), OpenJDK (http://openjdk java.net), OpenOffice (http:/ /www.openoffice.org),
SymbianOS (http://www.symbian.org), Xen (http://www.xen.org), Adium (http://adium.im), Growl
(http:/ /growl.info), Netbeans (http:/ /www.netbeans.org), vim (http://www.vim.org), to name a few

5.2 DISTRIBUTED VERSION CONTROL

is older than the queried version, and apply the subsequently stored deltas, until the queried
revision is reconstructed. Whenever a new version is smaller than the sum of all deltas, which
are necessary to reconstruct this version, it is stored completely instead of as a delta. This
sequence of full versions and deltas results in a very efficient space usage. Additionally, the
data and index files are compressed. Therefore the space required for a Mercurial repository is
only slightly larger than for a Git repository [Git], but significantly smaller than a Subversion
repository.

A version in a revlog is identified by an identifier, called nodeid. Similar to the identifier in
Git, it is computed by calculating a SHA-1 hash over the content (of the version, not the file,
which could be the full version or a delta) concatenated with the nodeid of the version’s parents.
The parents nodeid is included to make the identifier unambiguous, as the same version could
exist in a different place in the history. Due to using hash values of the content of an artifact
to identify its version, the history is robust to manipulation, as discussed for Git. The index
file contains the necessary information to extract a specific version from the data file, as the
versions are stored directly after one another. There is a line (represented by the IndexEntry) for
each version in the index file: the parameter rev is the version’s local revision number, which is
increased for each new entry. N.B. This order may not be the same in a cloned repository as it
depends on the order the individual snapshots where stored (which can differ when storing
snapshots in parallel development lines). The offset and length identify where the version’s
data is stored in the data file, so that a single read access can extract it. The entry for base
indicates the last fully stored version upon which the subsequently stored deltas are based on.

To retrieve a specific version, the data file needs to be read from the base version onwards.
The linkref is an additional link to the changelog entry, where the revlog version was changed.
The nodeid identifies the version globally, meaning that a specific version in a revlog has the
same nodeid independent in which repository it is contained or when it was added. There
are potentially two parents of a revlog version, whose nodeid is stored under p1 and p2. In
Mercurial only two branches can be merged, as in most version control systems.

The filelog stores the versions of an artifact. A filelog is implemented by a reviog and the
content stored in the data part of the reviog is the actual content (or a delta of it) of the
represented artifact. A filelog is similar to a blob of Git, however all versions of a specific file are
stored here, rather than in a specific version. Thus multiple blobs in Git can be represented by
one filelog in Mercurial. The advantage is that the history of a single file can be searched very
quickly. The name of the controlled artifact is stored in a manifest, which lists all filenames
connected to the nodeid of their version. A version of a manifest represents a snapshot. If a user
commits his changes, all files in the working copy are listed, but only the nodeids of the changed
files are updated. Mercurial does not track versions of folders. The filename entry consists
of the complete path to the file, thus changes to folders (like renames or added/removed
files) are indirectly tracked by tracking the evolution of the files. A version of a changelog is
similar to a commit in Git. It has entries for the nodeid of a manifest (i.e., snapshot), the authors
name, a timestamp, additional comments, a branch name and a set of the artifacts, which
were changed in order to identify which version was created the associated manifest version is
requested. N.B. A commit in Git corresponds conceptually to a snapshot, while a version of a
changelog corresponds to a change set.

As mentioned before, tags are stored in a special file (“.hgtags”), which is tracked like
any other artifact. Branches are managed by storing their name in an attribute of a changelog
version. They are as lightweight as their counterparts in Git, as branches and tags are only
metadata, which refer to stored data, instead of copying the artifacts versions. Artifact versions,
which are created in different branches, are stored in the same filelog. Their order depends on
the order in which the versions were applied, thus two filelogs representing the same artifact
in two identical repositories might differ.

In Mercurial, artifact renames have to be commanded using “hg rename” explicitly. Renam-
ing a file creates a new filelog. The first version entry in this new filelog’s data file refers to the
last version of the old filelog. The old filelog is no longer updated, but remains to provide older

59

60

NOTABLE VERSION CONTROL SYSTEMS

versions of the artifact. In fact, the rename operation performs a copy, marks the copy to be
tracked and removes the original artifact from being tracked.

An artifact copy can be created with or without using Mercurial’s built-in command. If
the copy was made without Mercurial’s copy command, Mercurial will treat the copy as a
complete new file. The nodeid of the copied version is different, because the parent nodeids,
which are included in the calculation of a nodeid, are different. If Mercurial’s command “hg
copy” is used, Mercurial knows about the connection between the artifact’s versions. Just as in
the case of a renamed artifact, a new filelog is created, which refers to the original version’s
filelog.

Changes made to the artifact’s copies follow each other, providing that the artifacts are in
different repositories. A practical example motivates this behavior: Alice copies artifact a from
the folder test to the folder dev. She did not share this change with Bob. Bob edits artifact 4,
which is still in the folder fest in his repository. After Bob and Alice exchanged their changes
Alice finds Bobs modifications in both copies of a. In this way the same result is preserved,
as if Alice’s copy and Bob’s changes occurred in opposite order. If Alice renamed the artifact
instead, the benefit of this behavior is more clear: Bob’s changes under the old name are
applied to the renamed artifact in Alice’s repository.

Mercurial follows the philosophy of sharing the same repository. A locally created branch is,
by default, shared with other developers. A temporary experimental branch could be created
by cloning a repository (which creates a shallow copy and takes no additional space) and
create a branch in this new clone. If the changes in this experimental repository should be
applied to the main repository they can be pulled. If changes are shared using the pull and
push operations, the repositories of the involved developers are identical. Manipulation of
the history is possible with extensions, but not intended. The philosophy of Git is to develop
a project in different repositories. Only chosen branches are shared, the history should be
rewritten to have a clean development line, etc. Using existing extensions Git and Mercurial
can be used in any workflow described in Section 4.1.

5.3 PEER-TO-PEER VERSION CONTROL

Lately, a few peer-to-peer based version control systems emerged, which combine the server-
less operation of dVCSs with the global repository of cVCSs. Peer-to-peer is well established
for file sharing applications, such as BitTorrent? or eMule’® and many more. In a file sharing
application immutable items are offered and downloaded by other users in sophisticated ways.
A file is only retrievable as long as users are online, offering this file. Thus it is not important
to know which files might become available once the storing users rejoin. Typically, the files
are replicated in an unstructured way, whereby peers who retrieve a file, even partially, offer
it to other peers. While exploiting various load balancing, search and retrieval mechanisms,
data consistency or coherency does not play a role in file sharing systems. A file is identified
by calculating a hash value over its content. Thus it is not expected to be modified - changes
would create a new item, which is not linked to the unmodified version in any way. Concurrent
modifications can occur simultaneously and lead to contradictory items - which are also not
identified as belonging together in any way. Because a shared item is practically immutable,
all copies are coherent and consistent.

Based on the initial approaches for file sharing, some distributed peer-to-peer based stor-
age systems were created. The most popular among them are Amazon’s Dynamo (aka
S3) [DHJ " oy], Oceanstore [KBC " oo] and Ivy [MMGCoz], which implement a file system
semantics. Contrary to the file sharing applications, stored items are expected to be modified
concurrently. They are stored at specific peers - regardless of whether the peers’ users intended
to retrieve an item or not. Most of these systems operate on a block level basis rather than
a file level. Concurrent modifications are performed by sequentializing them with the help
of a single primary maintainer or a group of maintainers, which agree using a quorum vote

9 http:/ /www.bittorrent.com/

10 http://www.emule-project.net/

5.3 PEER-TO-PEER VERSION CONTROL

[MR98] for a sequential order (like in Oceanstore). Some systems, such as Bayou [TTP " 95],
bring concurrent write requests in a sequential order by calculating globally unique sequence
numbers (using timestamps). Depending on the system, concurrent modifications are either
automatically merged (where conflicting changes are overwritten with the latest modifica-
tions) or the latest modification replaces all earlier changes. Outdated updates are prohibited
nevertheless. If an artifact has already been replaced by another user’s changes, all proposed
changes that are based on previous versions are rejected. The latest modifications of the artifact
in question needs to be retrieved and the proposed changes must be applied again.

Stored artifacts are replaced by updated artifacts. Some systems, such as Oceanstore [KBC " 00],
also keep the previous version, but other than this no history of the applied changes is kept
(i.e., only one previous version is stored). No system handles modifications on a collection
of items atomically, which would create a snapshot. They guarantee ACID properties for
single files only. All systems take care that coherency among the stored items is preserved.
Depending on the system, the guaranteed consistency degree can range anywhere between
eventual consistency and sequential consistency.

There are only a few version control systems, which utilize peer-to-peer communication to
develop a decentralized system. There are a number of wiki engines, which feature version
control in a limited way - by overwriting articles without keeping a history of changes. The
most mature approaches are presented in the following. Among these systems, only one
commercial version control system exists. This system, Code Co-Op, does not rely on a peer-to-
peer infrastructure, but its components communicate in a peer-to-peer fashion. To the author’s
best knowledge there are only four systems solely designed for version control, which are fully
decentralized and built on a peer-to-peer network. These systems are described in Section 5.3.5
and the following sections. All systems are research prototypes. None of their authors seem
to be aware of any other peer-to-peer based version control system, indicated by the related
work discussion. The most mature system is Pastwatch, described in Section 5.3.5.

All approaches can be separated into replicated or maintainer based repository distribution.
In the replicated repository distribution every participant has an identical copy of the entire
repository. Updates on an artifact’s content are distributed to all copies of the repository. Thus
they guarantee eventual consistency only, but are able to control snapshots. The maintainer
based systems divide the repository among some specific machines. Updates are sent and
applied only to them. When the latest versions are to be retrieved, these distributed maintainers
need to be requested. They offer sequential consistency, but do control only versions of single
artifacts, unable to record changes to multiple artifacts (snapshots) in an atomic fashion.

5.3.1 Wooki

Unstructured Peer-to-peer Overlay Network

In an unstructured peer-to-peer overlay network every peer keeps contact
to a limited number of random peers. The network topology is illustrated in
Figure 19a. The underlay network address, which is typically the ip address of
these peers, is stored in a rooting table. Using the memorized underlay address,
another peer can be contacted. Peers have no identifier and cannot be addressed
directly. Instead requests are forwarded until they reach a peer who is able to
reply. Due to the random connections and message dissemination techniques it
is not guaranteed that a request will be received by the intended peer.

Wooki [WUMoy] is a wiki engine which is built upon an unstructured peer-to-peer overlay
network. Following the replicated repository approach, each peer stores all versions of all wiki
articles. When a user creates or changes an article, all changes are flooded to all other peers,
line by line rather than as a complete file.

The order of the linewise update messages cannot be guaranteed, thus a later change
might arrive before an earlier change was received. The so called woot algorithm, described
in [OUMIo6], ensures that changes are applied in the order in which they were made. An

61

62

NOTABLE VERSION CONTROL SYSTEMS

(a) unstructured (b) hierarchical

Figure 19: Unstructured and hierarchical peer-to-peer overlay network topologies

update message contains contextual information such as the neighboring lines around the
changed line. A received change will only be applied to a locally stored article, if all referred
context lines are present. A peer stores the changes that a user performs when he is offline
and propagates them when he is back online. In this time he requests all changes he missed
from a neighbor to be up to date again.

The version control mechanism in Wooki does not track a version history - only concurrent
updates are handled. Concurrent changes are automatically merged in the same way for each
peer. However, conflicting changes, like those on the same line, are not solved. To maintain
coherency conflicting changes would have to be resolved on each storing peer in the same way,
resulting in identical artifacts, which cannot be guaranteed.

Propagating the update messages to all peers ensures eventual consistency, but flooding
in an unstructured network does not guarantee to reach all participants. Thus the multiple
copies of the repository might not be coherent. The lack of coherency is not acceptable for a
version control system.

Flooding

Flooding is a technique to disseminate a piece of information in an unstructured
peer-to-peer overlay network. Messages are broadcast in the overlay network
using different techniques, which are based on receiving and forwarding a message,
so that a hugh number of random peers are reached. Flooding with a time to live
(TTL) is a prominent technique; A peer sends a message to all its neighbors. The
receiver decrements the TTL number and forwards the message to its neighbors,
if the TTL number is not zero. Upon forwarding, a peer attaches its address so
that a receiver can update its rooting table.

5.3.2 DistriWiki

Hierarchical Peer-to-peer Overlay Network

In a hierarchical peer-to-peer overlay network multiple topologies are com-
bined. In Figure 19b two unstructured network topologies are combined. The
dark circles represent peers that are part of both networks. They are called
superpeers. The white circles represent normal peers, which reside in discon-
nected subnetworks. Messages are routed hierarchical in both networks: First
a message is flooded though the subnetwork from which it originates. The
participating superpeer forwards the message to the other superpeers, which then
flood them into the subnetwork they are part of.

DistriWiki [MLo7] relies on the hierarchical peer-to-peer overlay network JXTA [Duio7].
JXTA consists of unstructured subnetworks and a structured superpeer network, which are
hierarchically combined as presented in Figure 19b. In JXTA all machines in a local area
network (LAN) form a subnetwork, while only the superpeers are connected over a wide area
network (WAN). All superpeers in JXTA can be identified with a number. Each superpeer is
responsible for storing all advertisements, whose identifier is numerically close to their own

5.3 PEER-TO-PEER VERSION CONTROL

identifier. An advertisement is an XML file in JXTA, which indexes a resource. DistriWiki
uses it to store the name and other information (author, keywords, etc.) of a wiki article in
it. Additionally to this describing information the peer-to-peer network identifier of the peer,
where the respective article can be retrieved from, is stored here as well. The superpeers know
at least the contact address of all superpeers, whose identifier is numerically close to their
own identifier. All superpeers know each other as well. When a new article is created it is
assigned a random number. Articles are stored by the peer whose user created the article.
It creates a JXTA advertisement (a xml file), which contains information about the article,
including which peer is offering it. This advertisement is sent to other peers. The send protocol
works in a hierarchical order: The Broadcast-Mechanism of the underlying network is used to
send the advertisement to all peers in the local area network (LAN). One of these peers, who
has connection to other peers in a wide-area network (WAN), is the superpeer. A received
advertisement is forwarded to the superpeer, whose identifier is numerically close to the
article’s identifier. This peer and its numerically closest neighbors store the advertisement.

When a user requests an article, which is not in the local cache, the machine looks for a local
cached advertisement of that article. If nothing is found the peer sends a broadcast-message
("discover") to all peers in the LAN which is forwarded by the superpeer to other peers in the
WAN. As an answer, it receives all published advertisements. As all metadata of the article
are stored in an advertisement, the matching advertisement can be found. To receive the
sought article, the underlying network-address of the publishing peer is extracted from the
corresponding advertisement file and it is contacted directly.

As only the advertisements but not the articles themselves are replicated, only the original
publisher of an article can offer it. If it goes offline, the article is unavailable as well. Like a
server-based system, it represents a single point of failure, although only some articles (the ones
published by this peer) become unavailable.

The system uses maintainer based repository control, whereby all articles are distributed
among specific peers. A version history is not kept; updates overwrite the former article’s
content. Concurrent updates might be solved by the only peer storing the article, although
this behavior is not described by the authors. Changes to multiple articles cannot be applied
in an atomic transaction.

Having only a single version of an article on a single machine ensures coherency, as no
contradictory copy exists, and sequential consistency, as the latest value is always received.
The retrievability of articles is very limited, and overwriting changes with the latest received
updates is not acceptable behavior for a version control system.

5.3.3 CVS over DHT

Borowsky et al. [BLS06] present an inspiring approach to a peer-to-peer based version control
system. The main focus of this work is to show how traditional client-server based systems
can be modified to use peer-to-peer communication. The system is based on the structured
peer-to-peer system BambooDHT [RGRKo4], whose development is discontinued since 2006.

The system distributes the repository in a maintainer based fashion. A complete CVS server
is installed on each peer. By assigning an ID to each artifact it is distributed among the peers
following the normal Distributed Hash Table (DHT) approach.

A peer is responsible for controlling the evolution of all artifacts that have an identifier
numerically close to its peer ID. The peer’s CVS system provides mechanisms for a file version
control. This results in a truly distributed repository, in which each peer has a small set of files
under control.

As in CVS, the approach is unable to support version control for snapshots. It provides
sequential consistency for each artifact. Coherence is never compromized, as the maintainer
of an artifact handles concurrent changes in the same way as in CVS.

Unfortunately it lacks in practical usage: user management is nearly impossible, as a user
account would have to be setup on every peer. Forgery (e.g., using multiple accounts) is

63

64

NOTABLE VERSION CONTROL SYSTEMS

Structured Peer-to-peer Overlay Network

In a structured peer-to-peer overlay network all peers have a unique identifier,
called peer id. This number is either assigned randomly or by calculating the
hash value of another identifier, like the MAC address of a machine. Each peer
knows the underlay address of n peers, whose identifier is numerically close
to its own identifier. The metric that determines the closeness varies among
different protocols. The highest value is defined to be adjacent to the lowest
value, so that the identifier range forms a circle. The topology is often presented
as a ring, as shown in Figure 20. The circles represent peers, which are connected
through their neighbors. Contact between neighboring peers remains active by
sending periodic messages. In contrast to unstructured peer-to-peer overlay
networks, a peer can be addressed directly. A message is sent to one of the
known peers, whose identifier is closest to the intended recipient. This peer
forwards the message in the same manner until the intended peer receives the
message.

Resource
Identifier
Range

Peer
Identifier
Range

Figure 20: structured peer-to-peer overlay network topology

difficult to avoid. New artifacts cannot be detected in the system. A user needs to know a file’s
identification when he plans to retrieve it.

5.3.4 Code Co-op

Code Co-Op is a commercial distributed version control system, which was developed in 1997
and presented in [Milg7]. The version controlled repository exists as an identical replicated
copy on each participating machine. The machines communicate with each other directly
in a serverless fashion, by sending direct messages to each participant. Upon committing a
change to form a new version, an update-script is sent to all other developers, via e-mail or
local network shared folders, instead of a peer-to-peer overlay network. The self proclaimed
denomination to be peer-to-peer based is not true, neither in the way the network infrastructure
is maintained (e-mail and LAN), nor how the messages are distributed (from one to all other
machines). The machines of the other developers acknowledge the change automatically, if
no concurrent change to the committed file was received earlier. In this way an update is
valid only if acknowledgement messages from all other peers are received. A second message
notifies all other participants to apply the changes locally. This process is basically a two phase
commit [ML83]. Occurring concurrent commits are rejected and need to be proposed again,
after solving possible conflicts.

Code Co-Op provides eventual consistency only, although most of the time the provided
consistency is as high as sequential consistency. Commits are only applied, when no concur-
rent changes are committed before all participating machines are reached. The final message,
which tells the other machines to apply the new version, is received at different times, thus a
user might have a newer version than another user, who has yet to receive the “ok to apply”

5.3 PEER-TO-PEER VERSION CONTROL
Distributed Hash Table (DHT)

The mechanism with which items are stored among the peers of a structured
peer-to-peer overlay network is called a distributed hash table (DHT).
An identifier is applied to an item in various ways, e.g., by calculating the
hash value of its content or name. This identifier and the peer IDs are taken
from the same value range. This can be ensured by calculating the identi-
fier with the same hash function with which the peer IDs were calculated.

A peer is responsible for storing the items with the numerically closest identifier
to the peer's ID. The closeness is determined by the same metric with which
the distance between the peers is measured. Figure 20 shows how the identi-
fier ranges are related to each other: The dotted lines indicate that a peer is
responsible for all resources with an identifier that is equal to or greater than its
peer ID, up to the next greater peer ID. N.B. A resource can be anything which
can be shared, including storable items, hardware resources or offered services.

To provide a higher degree of availability of the shared resource, the direct
neighbors in the key space of the responsible peer replicate the resource, and
are named replica peers. On updates they must update their resource as well. If
the responsible peer fails, the routing mechanism automatically routes requests
to the next closest peer, which is one of those neighbors.

message, resulting in sequential consistency. However, messages can be lost completely, or
machines could be present without the knowledge of the committing machine. If in these
circumstances a participant does not receive an update which is accepted by all other machines
he misses the latest version. Upon receiving a later version a repair mechanism has to retrieve
the missing versions. In this situation only eventual consistency is provided. Lost messages or
missing or unexpected participants are, however, unlikely, as Code Co-Op is based on reliable
transport mechanisms and assumes stable user machines. Moreover, failing machines or lost
messages can lead to situations, where the replicated repository is in an incoherent state, e.g.,
when two concurrent changes are applied in two different temporary network partitions.

The protocol effectively implements a two phase commit protocol [ML83], which can
blockade if messages are lost. Code Co-Op seems unsuitable for a wide distributed or large
user group, as the more messages there are to be sent, or the longer the messages need to
reach the participants, the more likely concurrent updates are. And if concurrent updates
occur, all updates have to be repeated, thus extending the commit operation.

5.3.5 Pastwatch

Pastwatch [YCMo6] is a peer-to-peer based version control system, which is the result of a
PhD thesis at the Massachusetts Institute of Technology [Cheo4] in 2004.

Pastwatch’s basic structure is shown in Figure 21. Each user works on artifacts in a working
copy. Changes form a snapshot, which is stored locally and on other peers in a structured
peer-to-peer overlay network, using the DHT mechanism. The used peer-to-peer overlay
protocol was developed exclusively for Pastwatch, although any structured overlay, which
offers the services of a DHT could have been used. Pastwatch’s implementation, however, does
allow that only a group of peers are offering the DHT service. The offering peers can be a
smaller subgroup or even dedicated machines, which are not used by a user for Pastwatch.
Weaker machines or machines with a highly dynamic network connection are supported in
this way, as they can participate without offering the version control service to other peers.
In this way a concrete deployment can be optimized for the network traffic: The greater the
number of DHT serving peers is, the more messages, due to routing and retrieving stored
items, are produced. But the smaller the number of DHT serving peers is, the more dominant
the drawbacks of centralized systems (see Section 2.4.1) are. Beside the GNU diff [GNUa] tool,
every functionality was built from scratch.

65

66

NOTABLE VERSION CONTROL SYSTEMS

Alice's Computer -~ virtually global ~~
1. FetchDHT

local
Module

4. extendDH
2. Update

working
Copy

E I NP

edit

Alice

Figure 21: Basic structure of Pastwatch’s repository

A snapshot contains only the changes made to all artifacts since the last snapshot, along
with the following metadata: The author’s identity, consisting of his name, a public key and
the identity of the previous snapshots the current snapshot was based on. There could be
more than one previous snapshot if multiple snapshots were merged. Following the DHT
mechanism, a snapshot is stored by the peer, whose identifier is numerically close to the
snapshot’s hash value, which is calculated using a hash function on the snapshot’s content.
Changes form a new snapshot, so the already stored snapshot is never overwritten. For each
global module a membership list exists in the DHT, which is created by an administrator. It
lists all users, along with their name and public key. The list is signed using the administrators
public key and stored on the peer, whose identifier is numerically close to the value computed
using a hash function on the administrator’s public key.

Public Key Cryptography

Public key cryptography is a mechanism for encrypting and signing data.
A user creates an asynchronous key pair, a public key and a private key.
They are generated using a large random number. The private key must
be kept secret while the public key can be distributed among other users.

Data can be encrypted using a public key. Only with the respective pri-
vate key the data can be decrypted. This can be used, e.g., for delivering
secret messages. The message is encrypted using the receivers public key.

A message or an artifact can be signed by encrypting it with one's own private
key. Any user can decrypt it with the respective public key. Doing so proves
that the person having the corresponding private key encrypted the message or
artifact.

The information stored last is a list called log head, which stores a list of the identifiers of
all snapshots committed by a specific user, signed with the user’s public key. This list exists
for every user and is stored in the DHT using the calculated hash value of the user’s public
key. By doing so, only the corresponding user can update that list. In this way this index of
the snapshots of every user is written only by the respective user, which avoids concurrent
updates, which could overwrite each other. Combining all log heads would form a complete
index of the repositories snapshots.

When a user updates his working copy he requests the latest snapshots using Pastwatch’s
fetchDHT operation: First the membership list is retrieved to find out all current members of
the module. Next, all log heads of these members are retrieved from the DHT. Comparing
all listed snapshots in the retrieved log heads to the snapshots in the local module identifies
the missing snapshots. They are retrieved from the DHT in the final step of the updating
process. Now the working copy can be updated to the latest snapshot in the local module.

5.3 PEER-TO-PEER VERSION CONTROL

Due to disturbances in the network, resulting in lost messages or disconnected peers, possibly
forming a disconnected partition, some snapshots might be not retrievable. To keep the local
module coherent, snapshots are only applied if the snapshots that they are based on are at
hand. Additionally, the signature has to fit to the author’s public key. The local module is
updated periodically and before each commit operation. If the latest membership list, all log
heads and all missing snapshots could be retrieved, a local module is identical to the virtual
global module.

Local changes are published by committing all changes in a user’s working copy with a
snapshot to the local repository. The operation extendDHT signs the snapshot, stores it in the
DHT and creates a new entry in the log head corresponding to the committing user. By storing
snapshots, which are unique immutable items for each author and version, and having the per
author log head only written by a single author (multiple reader, single writer), concurrent write
operations cannot overwrite data and do not need to be synchronized, which is a challenging
task in a peer-to-peer overlay network.

Most of the time the version history of all snapshots is linear. If not all snapshots can be
fetched or snapshots are concurrently submitted, an unnamed branch is created. They are
detected only by a user who issues the fetchDHT command after the diverged snapshots can
be retrieved. The authors of Pastwatch recommend to merge unnamed branches as soon as
they are detected. The following example should clarify the situation in which a concurrent
commit results in an unnamed branch: Alice and Bob changed files in their snapshots. These
changes could be non conflicting, e.g., be on a disjunct set of artifacts. Alice retrieves Bob’s
log head, which only contains the old snapshots” identifiers, which are in Alice’s local module.
Before she stores her snapshot in the DHT, but before she can add its identifier to her log head,
Bob commits his snapshot. He fetches Alice’s snapshot, which contains only old snapshot
referrals as well. Not knowing about Alice’s latest snapshot he submits his snapshot. The
local module of Alice and Bob is not identical to the virtual global module, as the other’s
latest snapshot is missing. Any user executing the update operation will receive both latest
snapshots, which coexist, both being based on the same snapshot. This user’s development
could continue by basing his changes to Alice’s or Bob’s or both snapshots. In the latter case
the unnamed branch is merged.

If network distortions lead to the situation whereby the peer and its replicating peers, which
store a specific version are no longer reachable, a peer which executes the fetchDHT operation
will notice the missing snapshot. If the snapshot is in its local module it reinserts it in the
DHT. It is not likely that all storing peers fail simultaneously before they can update replacing
peers. But if the network falls into disjunct partitions all those peers might be in one partition,
unreachable to the peers in the other partition. When one of those peers reinserts the missing
snapshot, and the partitions join each other, the stored snapshot is identical, and can be
overwritten by any copy. A log head is only modified by one user. If it is stored in a disjunct
partition a new log head is created. Each user keeps a local copy of the log head, thus previous
entries are not lost.

Note that the authors of Pastwatch did not consider the situation where concurrent commits
result in unnamed branches. They claimed that this can only happen, when the network is
falling into partitions. Assuming that in each partition only one unnamed branch could be
created, they argued that the diverging snapshots would be discovered when the disjunct
partitions are reunited and then, being a small number, can be easily merged. But as illustrated
in the previous example, concurrent commits can result in unnamed branches in the same
partition. They are detected by the next user, who updates his changes, who may not be one
of the previous authors of the affected snapshots. The periodical updates might lead to a
situation whereby nearly all members of a module discover diverging snapshots at the same
time. If any two authors merge these snapshots, even by applying the same changes, they
might form two new diverging snapshots, which differ only in the author. The more members
a module has, or the further away these members are from each other, the more likely it is
that unnamed branches will be created. Users might lose interest in reconciling them, as the
merged snapshot might be concurrently committed and result in a new unnamed branch.

67

68

NOTABLE VERSION CONTROL SYSTEMS

There are some hotspots in Pastwatch, i.e., peers whose services are used more frequently
than by other peers. As these peers can only serve a specific number of peers at any one time,
the scalability of Pastwatch is seriously limited. These peers are all peers who store a log
head and the one peer that stores a membership list. Whenever any peer executes the update
operation all this peers are contacted. The membership list is first queried for all members,
whom's log heads are retrieved next, to check for a new snapshot. Besides being initiated by a
user the update operation is also performed periodically (every two minutes according to the
authors’ recommendation). The commit operation triggers the update operation as well.

The evaluation presented in [YCMo6] does not confirm our scalability concerns and showed
instead that the time needed for the update operation to complete grows very slowly for a
rising number of members, it takes on average only 1.9 seconds more time to update a module
consisting of 200 members compared with updating the same module having only 2 members.
However, in this setup the number of DHT serving peers was constant to eight peers, and only
two peers actively contributed new versions. The number of users was raised to 200, but it
is unrealistically to assume that those users do not execute any operation and all share the
deployed ten machines.

To summarize, the hotspot peers, which need to be contacted all the time, the high number
of parallel messages involved in this operations and the high possibility to create unwanted
unnamed branches are the biggest drawbacks of Pastwatch, which limit its scalability drasti-
cally.

Pastwatch manages concurrent commits optimistically, by allowing parallel versions form-
ing an unnamed branch, which should be merged as soon as it is detected (which is not
enforced). In order to have all latest versions all storing peers forming the DHT needs to
be contacted. Each peer returns the identifier needed to retrieve the versions created by a
single user. Only eventual consistency is guaranteed, as messages might be received later or
may be lost completely. During a network partition or due to indeterministic routing, which
can occur under high churn, some versions might be not retrievable at all, when the storing
machines are in another partition. If all peers, who store a user’s head log (the maintainer
and its replicating peers) are in an unreachable partition, the location of the latest snapshots
cannot be retrieved, even if they are stored in the current partition (only, if a snapshot based
on the missing snapshot exists and can be retrieved, the identifier of the otherwise missing
snapshot can be retrieved from its metadata). If the log head is accessible in the other partition,
the identifier of the missing snapshot can be looked up, but the snapshot cannot be retrieved
(as it is stored in the other partition).

It seems to be an impractical decision to separate the storage of a user’s log head and
her created snapshots. In the described cases, where some versions cannot be retrieved, the
virtual global repository is incoherent, although Pastwatch recovers from this state, once the
partitions rejoin. A more serious situation happens, when the membership list gets updated on
more then one maintainer, due to the mentioned network disturbances (network partitioning
or routing inconsistencies.). The authors of pastwatch did not described, how it can recover
from this situation. We assume that no conflicting updates can occur (a user reaches only one
maintainer, to whom'’s list he joins or leaves), thus the diverging list could be automatically
merged.

53.6 GRAM

In [TMoga] and [TMos] a so called Group Revision Assistance Management (GRAM) is
presented, which is a prototypical implementation based on the hierarchical peer-to-peer
overlay network JXTA. The version control mechanism only reuses the GNU diff tool [GNUa],
everything else is built from scratch. The system does offer only single file revision control,
omitting snapshots and branches or tags. Revisions in the repository are stored as forward
deltas only. Another limitation is that only textual files can be handled by the system.

5.3 PEER-TO-PEER VERSION CONTROL

GRAM follows the replicated repository distribution, where each peer has a locally stored
repository, which is identical to all repositories stored by other peers. When a version is
created, a message is broadcast to update the repositories stored by the other peers.

Contflicts are resolved proactively using an interesting new approach. Rather than locking
edited artifacts, a peer sends a message with the changes made to the currently edited artifact
to all other peers. These other peers check, whether the received modifications conflict with
the modifications made by their user. If a conflict is detected both users are informed and
can contact each other via an integrated instant messenger. In this way conflicts are detected
before a version is committed. The mechanism is called hybrid concurrency control, because it
resolves conflicts proactively like the pessimistic concurrency control but allow parallel work
on the same artifacts, similar to the optimistic concurrency control. The detection mechanism
works on a granularity of lines in an artifact. To enable this mechanism GRAM has to be used
with the provided editing environment.

However, high message delays or overloaded peers can delay or drop messages, which can
lead to a situation whereby existing conflicts are not detected in time. If the network falls
into partitions, conflicting versions cannot be detected. GRAM does not offer a mechanism to
reconcile conflicting versions, which can be created under the mentioned circumstances.

GRAM offers eventual consistency. The obvious drawback is the high and frequent message
transfer. Whenever any user edits an artifact, a broadcast message is routed to all other peers.
This limits GRAM'’s scalability. In a network with high message delay, as being likely in a
GSD scenario, GRAM might not work properly. It can occur that later versions arrive at a peer
before versions they are based on are received. This leads to an incoherent repository at the
affected peers.

5.3.7 SVCS

In [LLSTo5], a simple version control system, called Scalable Version Control Layer (SVCL),
is presented. Peers communicate using the structured peer-to-peer overlay network Chord
[SMK " o01b, SMLN " 03], which offers the DHT storage mechanism.

Similary to CVS over DHT (presented in Section 5.3.3) the repository is distributed in
a maintainer based manner: According to the assignment calculated following the DHT
approach, an artifact is maintained by a specific peer. These peers control the evolution of
the respective files and stores all versions. There is no other repository on a user’s machine.
Concurrent updates are controlled pessimistically, by locking artifacts. The offered operations
are limited to the basic commandos offered by GRAM (see Section 5.3.6): Committing changes
to single files. Non-textual files can be handled as well.

A workflow in SVCS is as follows: A user locks an artifact he aims to change. When he
finished his modifications he commits them to the maintaining peer, who stores them in a new
version and releases the lock.

As in the approach presented in Section 5.3.3, artifacts can only be detected, if their identifier
is known. The pessimistic concurrency control limits concurrent work, but guarantees a
coherent repository at all times. SVCS provides sequential consistency with respect to single
files only. However, in a peer-to-peer network, machines can fail at any time. If a peer who
acquired a lock on an artifact fails, the artifact cannot be modified by anyone else. Using a
timeout mechanism to release a lock, if the acquiring peer does not respond is also critical,
as the peer might still be online. If messages are lost or a peer indeed failed cannot be
destinguished by other machines in the network. The authors of SVCS did not address this
problem.

5.3.8 Chord based VCS

In [JXY06] a system is presented, which uses structured peer-to-peer overlay network Chord
[SMLN" 03] as well. The offered version control functionality is similar to that of CVS (see
Section 5.1.3), supporting branches and tags, but being limited to single file revision control.

69

70

NOTABLE VERSION CONTROL SYSTEMS

The repository is stored both, replicated among all peers, and distributed using the DHT
storage mechanism. While the artifacts are stored distributed in the DHT, the metadata,
including the artifacts location and all version control information, is stored replicated on
all peers on the following way: All actual artifacts are chopped up into units, which can be
transferred in a single network message, which might be an ethernet frame, although this
was not further clarified by the authors. Each unit is identified by a random number. Using
this identifier, all units are stored distributed among the peers by the DHT mechanism. The
metadata of an artifact refers to all units of an artifact. The metadata itself seems to be stored
in identical copies on all peers. Changes are recorded as operation-based diffs. Rather than
identifying changes made to the content of an artifact, as in the state-based diff approach, the
operations which lead to the changes are recorded. The metadata contains this information
along with other information that describe a version (like the author’s name, the version
number, etc.). It appears that the metadata is stored as identical copies by all peers. A new
version is shared by sending its metadata to all participants, dividing the new version into
small units and storing these units in the DHT (by sending them to the responsible peers).

Similar to GRAM (see Section 5.3.6), conflicts are meant to be resolved proactively using a
hybrid concurrency control. When a user edits an artifact, all other users who edit the same
artifact, are informed, probably by a broadcast message, but it might be coordinated by a
single maintaining peer as well. This is not detailed by the authors, however, when changes
are committed they are sent to all peers instead of a maintaining peer, which lead to the
conclusion that there is no maintaining peer in the system. A version can only be committed,
if all possible conflicts are resolved.

The Chord based VCS seems to be very preliminary, although a prototypical implementation
is described but not evaluated. Future improvements were promised, but not published at the
time of writing.

The proactive conflict detection mechanism raises the same problems as discussed in
Section 5.3.6 and does not promise to be a valid solution in a peer-to-peer based system. Since
updates are broadcast to all peers, later versions could be received before the versions they are
based on, which guarantees eventual consistency only. Lost messages or network partitions
prevent peers to contact each other and conflicting versions are not noticed, leading to an
incoherent repository.

5.4 SYSTEMS FOR COLLABORATIVE WORK SUPPORT

There are numerous client-server based tools that support global software development
(GSD). Most of them cover only a particular aspect of GSD, sometimes integrated into a single
platform, e.g., IBM Rational [IBM]. Jazz [HCRPo4] is a tool environment, intended specifically
for GSD. It is based on the client-server paradigm. Jazz evolved from the Eclipse IDE [Foul]. It
features a notifying system, which broadcasts general messages in the project, for example
when a task is completed. There are a number of other tools integrated, such as a change
management system. The version control, however, is managed by ClearCase (presented in
Section 5.1.5).

According to the authors” best knowledge, there is no other integrated tool environment
that fulfills the needs listed in Section 3.2.

Groove Virtual Office [Gro] is a collaboration environment that is partly peer-to-peer-based.
In its first version it had serious scalability problems, barely supporting 20 developers in the
same workspace [Haro1]. When Microsoft bought Groove Networks in March 2005 in order to
save the project [Mil], it became evident that the technology was still not ready for the market.
The software was restructured to improve scalability using the client-server approach. The
current version fulfills several security requirements but still does not support version control
management.

5.5 SUMMARY

5.5 SUMMARY

The version control systems presented in this chapter can be categorized into centralized,
distributed and peer-to-peer based version control systems.

We chose to present the most important centralized version control systems from the
numerous existing solutions. The presented systems are the most widely used or present a
major milestone in the evolution of version control systems.

The distributed version control systems rose to prominence in 2003 with the implementation
of Monotone. There are significant fewer distributed systems available than centralized solu-
tions. Nevertheless, especially Gif and Mercurial are as mature as their centralized counterparts,
which have been in use for many years. The two latter systems substituted centralized version
control systems for a large number of (open source) projects.

Directly related to our solution are the peer-to-peer based systems, which we presented
exhaustively. There are, to our best knowledge, no further peer-to-peer based version control
systems, as a productive system or as a research prototype.

We preliminary discussed that none of the presented systems fully satisfy the requirements
of globally distributed software development. The centralized solutions bring unbearable
delays for some developers, the distributed systems are unable to share the produced snapshots
effortlessly with all developers. The peer-to-peer based solutions tend to solve these issues
but cannot provide a reliable degree of consistency. We analyze the presented approaches and
their implemented design decisions in detail in the next chapter.

71

ANALYSIS OF RELATED VERSION CONTROL SYSTEMS

In this chapter we analyze the properties of the examined systems described in the previous
chapter. We designed our version control system, PlatinVC, based on our analyses of the
architecture and its impact on the properties of the related approaches.

The first section describes, which of the requirements introduced in Chapter 3 are met by
the individual systems. We analyzed which system properties influenced satisfying those
requirements in Section 6.2. In Section 6.3 the systems are examined regarding the minimum
provided consistency degree. This chapter is concluded with a taxonomy of the analyzed
peer-to-peer based approaches (Section 6.4), and a summary of promising building blocks
(Section 6.5).

In the following comparison tables the prototype developed in this thesis, PlatinVC, is
analyzed as well. How requirements are fulfilled or how certain properties are achieved is
detailed in the next part of this work.

6.1 REALIZED REQUIREMENTS PER SYSTEM

Table 1 lists all requirements, which were introduced in Section 3.2. “v/" indicates that
a requirement is fulfilled, “X” marks that a requirement is not met, “~” indicates that the
requirement is not applicable to the system, and “()” denotes requirements, which are partially
fulfilled. The background details, which lead to this analysis, can be found in the systems
descriptions in Chapter 5.

;
£ = = =
o2 B8 | [
Lol g g2l X gld][@)
| L) 28858 B0 e
R EE SR
Requirement & &)85%55 =0 3558%%6&5
Functional requirements
R-1: Support common version control operations
R-1.1: Support parallel work on all artifacts XX v v iviviv XV
R-1.2: Detect concurrent modifications - |-V VIV XV |-V
R-1.3: Resolve concurrent modifications - |-V IV IVIXV IV -V IV
R-1.4: Track single artifacts in an ordered history VivivviviviviviviXvivivivivivy
R-1.5: Track snapshots in an ordered history XXX\ W W|XXX XXX
R-1.6: Retrieve a recorded state ViViVIXv VIV XV IV XXXV
R-1.7: Choose recorded versions of selected artifacts |v' W/ V' W V|V WV ||[XIXV XXV | XXV
R-1.8: Individual working copies XXV W\ KXY XV XKV
R-1.9: Enable local commits XIXXIXv W VIV XXXX XXX
R-1.10: Track variants (branches) ViV W XKX Y KX

Continued on next page

73

74 ANALYSIS OF RELATED VERSION CONTROL SYSTEMS

Table 1 — continued from previous page

,
e = E =
o LB B | (3
244 55 85 &2y
E || o 8922 23 8k Bln T S
AR e
Requirement & g%@%DG =0 3558%5}6 ~
R-1.11: Tag with labels VIV iV v XXV XXV
R-2: Change the name or path of artifacts iviviviv|viv |- IXv iV IXV v
R-3: Support for multiple projects VIV VXX XX XXV XV
R-4: Conjoined local repositories XIXIXXIX | XX\ XXV XV
R-5: Redundant backups OOV |V XXV WV XV ViV
R-6: Interoperability of different VCSs XIX XXX XXV XX XXX XXX
R-7: Connect from anywhere OOOOOO|OEXXXX XX XXV
R-8: Offline version control XXXX WV VIV XXXX XXXV
R-9: Local commits XIXXIXV V||V V|| XXX XXX XXV
R-10: Traceability XIX XXX XXX XX XX XXX XY
R-11: Easy to setup/manage XIXXXXX W VY XV VY
R-12: Prevent censorship XXIXXX X\ WXV
Non-functional requirements
R-13: ACID

R-13.1: Atomicity XXXV WV VIV XXXV XXXV
R-13.2: Consistency ViV XKW XXX XY
R-13.3: Isolation vivivivivivyvvixvivivivivivy
R-13.4: Durability VWY XKXXY XXXV
R-14: Availability vivivolV V|V VIV XV IXVIoY
R-15: Transparency —|-|-|- |-V |IXXvV VIV VIV VIV
R-16: Minimal storage space consumption VIV X -V XXX XY
R-17: No centralized services XIXXIXXX|-|-|v vV VWV W
R-18: Adequate communication speed XXX XX S| IXV VXXV XV IV

R-19: Scalable and robust
R-19.1: Robust to highly fluctuating users VvV IV IOKOOOOOO®
R-19.2: Robust to shifting users VvV OX00OmOOO
R-19.3: Scalable to a growing number of users XIXIXXX XV oV IV OomoEY
R-20: Continuous expendability XXIXXX X\ W XV
R-21: Fault tolerance XXXXXX VI VXV VIV

Security Aspects

R-22: Access and usage control 0OOOOE | - |- XKIXIXIX XXX XS
R-23: Keep sensitive artifacts VIVIVIVIVIS) - - I XIXIXIX XXX XX
R-24: Attribute based access control OOOOON | - |- XKIXIXIX XXX XS
R-25: Confidentiality OO =|=l|=[-|=[-|-|- N
R-26: Data integrity OOV VXX SOX V|

Continued on next page

6.2 ANALYSIS OF SYSTEM PROPERTIES LEADING TO FULFILLED REQUIREMENTS

Table 1 — continued from previous page
[

S El | B | |

g9l ¢ E [9TR 2o
#8858 =85l | | &¢Y
E | ol |89 2223 85 Bln e 5
2 ||OL| 3 8 3| &5 8 %wre IO Sl R+
=588 8|22 R~ s
Requirement & LM)%UUS)UU =0 3D5805}6£9—<
R-27: Non-repudiation OO VW IXXXIX XXXV IV
R-28: Authentication 0OOOON | - |-|XXXX XXXV
R-29: Secure communication VOOV OO XXXXXXXX@
R-30: Low administration overhead ||X|X|\X|XIXIX|QS|XX XXX XX XS

Table 1: Fulfilled requirements (see Section 3.2)

6.2 ANALYSIS OF SYSTEM PROPERTIES LEADING TO FULFILLED REQUIREMENTS

In this section we look into the system properties that enable a system to fulfill or not to fulfill
a requirement.

6.2.1 Functional Requirements

R-1: Support common version control operations (R-1.1 and R-1.11)

Every examined system, except DistriWiki, fulfills some of the sub-requirements R-1.1 and
R-1.11 of requirement R-1. Whether these requirements are fulfilled does not depend on a
system’s architecture but solely on the implemented features.

R-2: Change the name or path of artifacts

Only two approaches (CVS over DHT and SVCS) fail to fulfill requirement R-2. In both
approaches the repository is stored partitioned among maintaining peers. Other systems,
which fulfill this requirement, also store a partitioned repository, but in a different way: The
two problematic systems identify the repositories parts, which are the individual artifacts,
by the artifact’s name, i.e., the maintainer of the artifact calculates its ID by hashing the
artifact’'s name. The maintainer stores an artifact’s complete history and manages the access to
it. However, if the artifact is renamed, the calculated hash value changes, hence a new peer
becomes responsible for that artifact. If only the old name of the artifact is known, under
which the versions where stored, the latest versions are not retrievable (i.e. their new location
is unknown). If only the new name is known, all versions which where committed before the
artifact was renamed are not accessible. This problem could be solved by storing a reference to
the new location on the old maintainer and vice visa. However, both approaches miss to do so.

R-3: Support for multiple projects

This Requirement can be fulfilled in all of the analyzed architectures.

R-4: Conjoined local repositories and R-5: Redundant backups

All systems which fulfill these requirements store a local repository on each machine. Re-
quirement R-4 cannot be fulfilled, if a the repository is stored partially, because the parts
locally missing would have to be retrieved from distant repositories. Similarly, requirement R-5
presumes that all versions are in one place, which can be backed-up. Complete repositories,
such as the ones on client-server systems, can be backed-up using other tools.

75

76

ANALYSIS OF RELATED VERSION CONTROL SYSTEMS

R-6: Interoperability of different VCSs

Fulfilling requirement R-6 depends on implementation only, as, theoretically, any two version
control systems can be combined. However, when two version control systems interoperate,
only the version control features offered by both systems can be used. It is, for example, not
possible to record snapshots, when CVS and Git are used interoperablely.

R-7: Connect from anywhere

In order to connect from anywhere network obstacles, such as NAT, have to be circumvented.
This could be achieved by using supporting tools or setups, such as virtual private networks
(VPNS).

R-8: Offline version control

Requirement R-8 is fulfilled by providing a local repository on the machine, where new
versions can be submitted, before sharing them with all other participants. A distributed
system, which can overcome network partitioning, offers an even better offline support. Here
a user can publish her new versions, as if they were shared with other participants. She forms
a network partition of her own. A repair mechanism is automatically sharing her versions,
once she is online again.

R-10: Traceability

Support for traceability does not require any specific system properties and could be imple-
mented in all of the analysed architectures. An implementation is, however, challenging as
pointed out by Section 7.3.7.

R-11: Easy to setup/manage

Client-server based solutions require expertise and time to get running. As they are crucial
for the system they must be maintained well. Peers in a peer-to-peer based system are almost
self-maintaining. Periodical maintenance mechanisms detect and repair disturbances in the
network. This is necessary because the system does not rely on any of its machines. Thus it is
not important to diligently maintain an individual peer. Additionally, a peer is never used
solely for the purpose of the system; normally a participant uses his machine for other tasks
as well. Thus maintenance of the individual machines is carried out by its respective users.

R-12: Prevent censorship

The analysis of the examined systems clearly shows that only machines which have a single
copy of a repository cannot prevent censorship. In all distributed systems the content is stored
widely spread and redundant across all or a number of randomly chosen machines. Hence all
copies in the system in all locations (as well on currently offline machines) would have to be
altered to censor the content of an artifact.

6.2.2 Non-functional Requirements

R-13: ACID: R-13.1: Atomicity

Atomicity is only applicable to the systems, which fulfill requirement R-1.5: Track snapshots
in an ordered history. For these systems, providing requirement R-13.1 is the basis to fulfill
requirement R-13.2: Consistency. Atomicity can be achieved by various techniques. Changes
made by a user can conflict with an already applied snapshot. In a centralized system this can
be checked in one place, but if the repository is distributed multiple machines have to decide,
whether a change can be applied.

6.2 ANALYSIS OF SYSTEM PROPERTIES LEADING TO FULFILLED REQUIREMENTS

Code Co-Op (see Section 5.3.4) uses a transaction protocol, known from database systems. In
a two phase commit protocol all participants agree or disagree to accept a proposed snapshot.
A transaction requires many messages. Additional messages might be needed when the
participating machines are less reliable. Additionally, the transfer times of messages in a
peer-to-peer network can vary widely, which makes it difficult to set realistic time-outs.

Only one peer-to-peer based version control system supports snapshot version control and
guarantees atomicity: Pastwatch (see Section 5.3.5). Instead of a sophisticated transaction
protocol, which decides whether a snapshot is accepted, all snapshots are accepted. Identical
to the mechanism used in the distributed version control systems snapshots that are based on
the same base version form an unnamed branch, as detailed in Section 5.2.1.

R-13: ACID: R-13.2: Consistency

Some systems do not guarantee coherency in all situations, thus they cannot guarantee consis-
tency. If we correlate the degree of consistency stated in Table 2 with the basic architecture of
the different systems listed in Table 3 we can identify which mechanism influences a certain
consistency degree. The more centralized the management of the repository is, the higher the
achieved consistency degree is. There is no centralized version control system, which has
a worse consistency than sequential consistency. In these systems a user either receives the
complete requested history or nothing at all. The distributed version control systems provide
causal consistency. Here either the complete history of a participant or nothing is shared. The
complete history of a participant is, however, not the complete history among all participants
(the global history), but a small part of that history. This part includes all versions made by a
single user, and all of the versions that these versions are based on.

When examining the peer-to-peer based version control systems we see this trend continuing.
Only systems, in which specific peers maintain the complete history of individual artifacts,
following the maintainer based repository distribution discussed further in Section 6.5.2,
offer causal consistency. A single message can contain all missing parts of the history of
a single file. Retrieving a projects history, which is tracked using snapshots is, however,
challenging - none of the examined maintainer based peer-to-peer version control systems
support this. The only supporting maintainer based system, Pastwatch, does not store the
history of individual artifacts on a maintainer, but a per-user list of snapshots instead (for more
details see Section 5.3.5). A single message can only contain an incomplete history, in which
versions created by other users are missing. Hence Pastwatch provides eventual consistency
only.

R-13: ACID: R-13.3: Isolation & R-13.4: Durability

In traditional peer-to-peer based content distribution a peer does delete locally stored content
prior joining the network. This avoids the presence of outdated content. The versions in a
version control systems are, however, never outdated. Thus a peer does not have to delete
previously stored versions, as they never become obsolete. He has to take care to update to the
latest version only. Pastwatch and Code Co-Op are the only systems doing so. Nevertheless,
the main effect is to reduce the time needed to update a joining peer, as the redundant version
history should be also stored in the network.

R-14: Availability

Nearly all industry proven version control systems are able to run under the major operating
systems, being Mac OS X and similarly Unix systems, Windows, and Linux. Notable exceptions
are Code Co-Op, which runs in Windows only, ClearCase, which does not support Mac OS X,
and Git, which is difficult to set up in a Windows environment.

In spite of the fact being research prototypes, many peer-to-peer based systems are platform
independent. Those systems are all implemented using the Java programming language. SCVS

77

78

ANALYSIS OF RELATED VERSION CONTROL SYSTEMS

was implemented using C and runs on Linux only, and Pastwatch was created using C++,
compiled only for Linux, Mac OS X and other Unix systems.

R-15: Transparency

Being applicable to distributed systems only, all peer-to-peer based systems satisfy this
requirement. Managing the connection transparent is an inherent property of peer-to-peer
systems, fulfilled by the DHT mechanism as well. The distributed version control systems are
the only ones, in which the users are required to specify where to obtain updates from.

R-16: Minimal storage space consumption

Rather than storing a full artifact for each version delta compression can be used, which
stores the differences between the versions only. Over the years multiple sophisticated variants
have been developed, such as wave deltas, forward deltas, etc., which optimize the trade-off
between storage space and access time of an artifact’s version. A noteworthy exception is
demonstrated by Git, which stores full artifacts in all versions, and compresses the entire
repository afterwards. Benchmark tests in [Git] showed that the storage space consumption of
Git is the smallest compared to Subversion and Mercurial.

Minimize the repository storage using deltas is implemented by nearly all non peer-to-peer
based version control systems, but only two of the peer-to-peer based systems. These two
systems are maintainer and replica based, proving that requirement R-16: Minimal storage space
consumption is not dependent on the basic architecture.

R-17: No centralized services

Almost all peer-to-peer based systems are faithful to their promise not to rely on a central
service. Only Pastwatch has a central service: The member list of a module is stored an a
maintaining peer and its replicating peers. Every time a peer queries for new updates (and
additionally periodically) this membership list has to be retrieved to check for new members.
Being stored by the DHT mechanism this list is replicated and does not depend on the presence
of a specific peer, but as long as the currently maintaining peer is online it has to serve all
requests.

R-18: Adequate communication speed

As detailed in Section 2.4.1 client-server based systems are not suitable for globally distributed
development. The server remains at a fixed location, which introduces long transfer delays
for all users, who are physically distant to the server. ClearCase Multisite (see Section 5.1.5)
offers a solution to this problem, by distributing the repository among servers, which are
located close to the developer groups. These servers are configured to permit write access to a
disjunct repository part only. Scheduled maintenance synchronizes the distributed repository,
but in between these periods users have to cope with long delays, if they need to read the
latest versions or write to parts of the repository, which are on a distant server. The distributed
version control systems do not aim to have a global repository status stored on any participant’s
machine. Here users exchange their repositories directly, using one of the transport media
listed in Table 3. It depends on the location and used medium how big the delay is.
Examining the different peer-to-peer based systems shows that replication based systems
cannot provide adequate access times. While old versions are locally present new updates
are flooded in the network, taking time to reach every participant. To avoid an incoherent
repository all distributed versions have to be acknowledged, before they can be applied,
which requires the exchange of multiple messages in a commit protocol. In a maintainer
based system any peer might store the latest versions. The delay to this peer might be very
small, if this peer is physically close, or large, if this peer is located distant. On average the
communication delay is the median of all delays among all participating peers. The delay can

6.2 ANALYSIS OF SYSTEM PROPERTIES LEADING TO FULFILLED REQUIREMENTS

be minimized using content distribution techniques like owner path caching [CSWHoo] or
proactive content placement [ATSo4].

In a globally distributed development scenario, as presented in Section 2.3, joining and
leaving users have a positive side effect called shifting. In the running example in Section 2.5
company CA is located in Berlin, Germany and company CB is located in Kolkata, India.
Between these locations there is a 4.5 hour time difference. When the developers of CB in India
end their daily work in 5 p.m. the employees of CA in Germany are just coming back from
lunch, as it is there 1.30 p.m. local time. Whenever a peer goes offline its stored repository is
replicated to a substituting peer. That way the repositories stored on peers in India are shifted
to peers in Germany, as the number of peers in India are shrinking and the number of peers
in Germany are rising, wherefore it is more likely that a vanishing peer in India is replaced by
a joining peer in Germany. However, if the transition is too rapid, the replication mechanism
could be not fast enough, resulting in lost repositories. Requirement R-19.2: Robust to shifting
users formulates this case.

R-19: Scalable and robust

Only the distributed version control systems are not affected by robustness or scalability issues
when users are joining or leaving in large numbers, as they can be used between two users
at a time only. The client-server architecture is not affected by a changing number of users
(requirement R-19.1) or regardless of whether a group of users disappear in one location
and another group joins in second location (requirement R-19.2). As detailed in Section 2.4.1
servers can only support a rising number of users, if their hardware is extended.

Peer-to-peer overlay networks are inherently strong in providing a good scalability, support-
ing requirement R-19.3: Scalable to a growing number of users. Participants, who use an offered
service bring new resources to offer a service themselves. It depends upon the concrete system
implementation, which services can be offered by how many peers. All except two (DistriWiki
and CVS over DHT) of the examined systems have a centrally offered service, which is much
more frequently accessed than other services. The scalability in these systems is limited, as in
one point the few peers, who are offering the popular service, cannot serve the demand.

The more peers disappear, the more outdated the contact information on a peer are. More
and more messages are sent to peers, which are no longer existent. Whenever a peer joins,
it needs to obtain up-to-date routing contacts, whenever a peer fails, it needs to be replaced.
The more frequent or the higher in number these changes are, the worse the peer-to-peer
overlay network can handle them, resulting in delayed or lost messages. If a peer providing a
particular service fails, this service would become unavailable. Thus the service is replicated
among a fixed number of peers. In the replicated repository based systems all peers are able
to offer the systems services, making them very robust. The structured peer-to-peer overlay
networks have a lesser degree of robustness.

Services are offered by individual peers are addressable using the DHT mechanism. A
replica peer takes over the responsibility of a failed peer. When a huge number of peers fail in
one region and new peers appear in another region, the new peers may act as replica peers
and take over the duties of the failed peers. This shift of responsibility in the DHT mechanism
automatically transfers all needed data and offered services to the appearing peers.

R-20: Continuous expendability

Client-server based systems become unavailable during an update of the software or hardware
of the server. The distributed and the peer-to-peer based systems can update parts of the system,
while other parts take over offered services, using the replication mechanism described in the
last paragraph. If updates to the system are distributed partially they need to be compatible
with the remaining, previous versions.

79

8o

ANALYSIS OF RELATED VERSION CONTROL SYSTEMS

R-21: Fault tolerance

Again, using the replication mechanism, failing peers can be countervailed. In systems, which
do not replicate offered services, faults are fatal.

6.2.3 Security Aspects

While there are proven security solutions for centralized systems most aspects are still the
subject of current research for distributed systems. In a client-server system it can be assumed
that attackers are among the clients only (ignoring the ability to compromise the server, when
it can be physically accessed). In a distributed system anyone can be an attacker - especially in
a peer-to-peer system, where everybody stores data and offers services as well.

In all of the examined systems versions belonging to a specific artifact are stored among
random peers. It is necessary to be able to choose any peer as a replica peer, in order to
not worsen the robustness, scalability and availability. Thus requirement R-23: Keep sensitive
artifacts seems unable to be realized by peer-to-peer bas ed systems.

The requirements R-22: Access and usage control, R-24: Attribute based access control and R-25:
Confidentiality, which all deal with access control, are challenging to implement in peer-to-peer
networks. The access and account information has to be stored integrally and confidentially.

Requirement R-26: Data integrity is partially fulfilled in the replicated repository distribut-
ing systems, as each peer has a copy of the secured artifact. If any peer were to alter the
content of some artifact it could be noticed by comparing it with the other versions. A different
mechanism, introduced by the dVCSs, calculates the hash value of some artifacts. Any manip-
ulation would lead to a completely different hash value, if the users identifier is included in
the metadata, and the hash value of this metadata is stored requirement R-27: Non-repudiation
is met as well. The systems fulfilling these two requirements (R-26 and R-27) by calculating
the hash value of each version, which is included in a snapshot, where the authors identity is
also stored. The hash value calculated using this snapshot is stored in the predecessor, so that
a cryptographically save history is created.

There is no fully decentralized mechanism that completely satisfies requirement R-28:
Authentication. Usually a central certificate authority is needed initially to map a user’s real
identity to a certified virtual identity and verify his virtual identity whenever demanded by
other users.

All of the examined systems are able to fulfill requirement R-30: Low administration overhead
or requirement R-29: Secure communication - which are implementation issues only. However,
when fulfilling requirement R-29, recursive routing, where a message is forwarded to the next
closest receiver, cannot be used, as the destination field in the message have to be encrypted
as well. Using iterative routing, where a peer informs the requesting peer about a closer peer,
instead of forwarding a message by itself, would solve this problem. Alternatively, only the
message itself could be encrypted.

6.3 DEGREE OF CONSISTENCY

The presented version control systems differ in the degree of consistency that they provide.
Table 2 lists the systems, sorted by the minimum guaranteed consistency degree, as presented
in Section 4.4.2. The stated guarantees are valid in worst case scenarios, where a system might
be handicapped, and only a partial update is delivered, as analyzed before. If no update is
received at all, it is not considered as a violation of the guaranteed consistency degree.

We can see that almost all systems using maintainer based repository distribution offer the
high consistency degree of sequential consistency. Only Pastwatch, which is the only peer-
to-peer based version control system capable of handling snapshots, does provide eventual
consistency only.

Consistency Degree

System

Causal Consistency

6.3 DEGREE OF CONSISTENCY

Eventual Consistency

SCCS (Section 5.1.1), RCS (Section 5.1.2)

CVS (Section 5.1.3)

Subversion (Section 5.1.4)

ClearCase (Dynamic View) (Section 5.1.5)
ClearCase (Snapshot View) (Section 5.1.5)
ClearCase Multisite (Dynamic View) (Section 5.1.5)
ClearCase Multisite (Snapshot View) (Section 5.1.5)

N N\ N\ @ ® | Sequential Consistency

Monotone (Section 5.2.2)
Git (Section 5.2.3)

Mercurial (Section 5.2.4)

NN YNIXNN

Wooki (Section 5.3.1)

DistriWiki (Section 5.3.2)

CVS over DHT (Section 5.3.3)
Code Co-Op (Section 5.3.4)
GRAM (Section 5.3.6)

SVCS (Section 5.3.7)

Chord based VCS (Section 5.3.8)
Pastwatch (Section 5.3.5)
PlatinVC (Section 7.3.6)

QX

<

v

@

\Q@ @ N

NNX X XX NN XNN NN AN NN N N \|Always coherent

(Legend: regarding (7= single artifacts, v'= snapshots, ¥ = single artifacts & snapshots)

Table 2: Guaranteed degree of consistency

81

82

ANALYSIS OF RELATED VERSION CONTROL SYSTEMS

64 TAXONOMY OF KEY MECHANISMS

Table 3 concludes the analysis of the related systems by identifying how certain key aspects
are solved. The cVCSs and dVCSs are summarized in one entry each. All peer-to-peer based
approaches are listed.

6.4.1 Concurrency Control

Concurrent updates can be controlled by three classes of mechanism: pessimistic, optimistic
and hybrid concurrency control.

The more restrictive pessimistic concurrency control was developed first. Conflicting ver-
sions are proactively avoided by granting only one editor write access, while multiple other
users are only allowed to read the artifact in question. Traditionally a locking mechanism has
been used, where a developer has to acquire a lock for an artifact he plans to edit.

The more advanced classical optimistic concurrency control allows artifacts to be edited
in parallel, as it assumes that most modifications do not conflict. Multiple authors copy an
artifact, modify its content, and merge the resulting versions, resolving conflicts that might
have occurred. We refer to it in Table 3 with optimistic (merge).

Two mechanisms were developed, which are hybrids between optimistic and pessimistic
concurrency control. One approach (named hybrid resolving) tries to detect when two
developers begin to modify the same artifact. The authors are informed so that they can
coordinate their changes immediately. The second mechanism (hybrid voting) allows artifacts
to be modified concurrently, but hinders committing them, if concurrent versions are to be
submitted. Before each commit a message is sent to all other participants. Only if they agree,
indicating that they did not changed the artifact in question, the artifact can be committed as
well.

6.4.2 Repository Distribution

The repository is either stored replicated or maintainer based. A replicated repository exists
as an identical copy on each participant’s machine. The VCS needs to take care to update all
repositories once artifacts have been changed. If the repository is stored maintainer based it
is separated into parts and distributed among specific machines, which store the parts and
handles any updates on them. The partially stored repository parts are usually not identical,
and in order to obtain the latest version of all artifacts in the repository all maintainer have
to be queried. How the parts are distributed, i.e., how many parts are maintained by which
machines, is subject to the distribution mechanism and detailed in the description of the
respective system in Chapter 5. All of the presented peer-to-peer based approaches store the
partial repository using the DHT mechanism. This means that a part can be addressed by an
identifier, which is computed using information about the part.

In traditional peer-to-peer based file sharing the identifier is obtained by calculating the
hash value of the stored content with a cryptographic save hash function, which results in a
unique identifier (see [RFH "o1]). Only if the content of two copies is identical they do have
the same identifier. Theoretically calculating the hash value using different content could
result in the same value, but the possibility for this to happen is unrealistically small. The
asymetric key cryptography is based on the premise that the resulting hash values are in
practical usage unique [Eckog]. To calculate an item’s identifier its content has to be known -
which would mean it has been received already. Therefore an additional indexing mechanism
is needed, which lists the stored items identifier (on a central server, e.g., in the eDonkey
network [HBMSo4] or BitTorrent [Coho3]). Storing an artifact by storing its identifier on one
peer, and its content on a different one, is called indirect replication.

A stored item could be addressed by an identifier, which is calculated using a meta
information of the item, like its name. This could be the filename of a file, the branch

64 TAXONOMY OF KEY MECHANISMS

name of a stored branch, or any other assigned name. By knowing the name of the desired
item the hash value forming its identifier can be computed.

6.4.3 Repository Partitioning

If the repository is not stored as identical replicas it is stored dissect into parts among all
machines. How the parts are distributed is subject to the distribution algorithm. Among the
examined VCSs the repository is partitioned in the following ways:

by branches: A machine stores all versions of all artifacts, which belong to the same branch.
In the traditional workflow practiced by the users of a cVCS branches are created to keep
track of the main development line to implement features and to fix bugs. A positive
effect is that often only updates from a specific branch are needed. If the latest versions
are desired only the machine that maintains the branch of interest needs to be contacted.
However, to get to know existing and newly created branches an additional indexing
service is needed.

The main development line is often split into further branches, which keep track of
different releases, like a future release and a current. Beside this organizational separation
into branches different variants can be maintained. The branches are used with a different
intensity. The machines that store the more popular branches would have a higher load.
If only a main branch is frequently accessed the serving machine acts practically as a
central server.

The DVCs introduced a novel approach to use branches. In addition to the outlined
traditional usage, branches are used to separate the development of the individual
developers. Every developer commits his created versions exclusively to the repository
stored on his machine. If the default branch is used and shared with another developer,
it appears conceptually” as a different branch in the other developer’s local repository.
Popular workflows using this approach are detailed in Section 4.1. The access tp the
branches is naturally balanced among the participants, where most write accesses occur
in the local branch. Some branches, however, might be more popular and accessed more
often by other participants. Often, as presented in Section 4.1, a blessed branch exists,
which integrates the contributions stored in other branches. The machine storing this
blessed branch has to serve read requests much more frequently than other machines. In
practice read access is offered by storing the blessed repository on a dedicated public
server.

by user changes: In Pastwatch the repository is separated by users’ changes. Similar to the way
dVCSs use branches to separate the contributions of single users, Pastwatch distributes
the repository into parts, which store all changes of a single user. More precisely, a list
with all snapshots created by a single user (called head log) is stored by a machine.
This list includes all identifiers of the machines, which actually store those snapshots.
While in a dVCS the ultimate separation boarders are branches, meaning that other
users’ contributions are also stored there, when branches are merged. Pastwatch clearly
separates the versions created by different users. Thus the stored snapshots do not
reconstruct the gapless history of a branch. If a snapshot committed by a specific user
was based on a snapshot of another developer, and the basis snapshot of the latter
snapshot is to be retrieved, the machine storing the other user’s partial repository needs
to be requested. The actual snapshot is retrieved indirectly by accessing the other user’s
log head first, from where the location of the snapshot can be retrieved. The direct basis
snapshot can be retrieved from the metadata stored within the succeeding snapshot.

Separating the repository by users brings the benefit that each user has to communicate
with only one other machine, to store his changes. Only a single user sends write requests

1 This branch is even named after the developer in Git [HT]. In Mercurial [Mac] it appears as an unnamed, parallel
branch.

84

ANALYSIS OF RELATED VERSION CONTROL SYSTEMS

to that machine, while all other users only read the stored information. As mentioned
before this access only updates a user’s log head, while the actual immutable snapshots
are stored distributed among peers in the DHT. The log head is accessed by calculating
the hash value of the respective user’s name. An identifier of a committed snapshot,
which is stored in this list, is formed by calculating the hash value of that snapshots
content. A disadvantage is that a list of all users has to be available, in order to know the
locations of all versions of which the repository consists.

by artifacts/folders: The complete history of an artifact could form a part. When the VCS also

tracks snapshots, this information has to be stored, as it cannot be clearly assigned to
a single part. All examined solutions avoid this problem by controlling the versions of
single artifacts only.

Rather than storing the complete history of a file, a more corse grained approach would
be to store the history of all files in a folder, without subfolders. If subfolders would be
stored the part that includes the outermost folder would store the entire repository.

The advantage of this approach is that all versions of an artifact are retrievable from
one machine. Using this approach, the distributed part is identified by the hash value
calculated over the artifacts or folders name. By knowing the name the complete history
can be accessed. This approach presents us with two challenges: When artifacts are
renamed, or in the case the repository is separated by the stored folders, a folder is
renamed or the artifact is moved, the identifier changes. This would lead to a new part.
The old and new parts would have to refer to each other, in order to be able to traverse
the history. A similarly issue are newly created artifacts or folders. When their name
is unknown they cannot be retrieved. An additional announcement service would be
necessary.

by snapshots: Some systems distribute the repository by storing the snapshots among different

peers. If no additional index is stored, a snapshot’s identifier needs to be known in order
to retrieve a snapshot. A snapshot always refers to the snapshot it was based on. This
information could be used to traverse to older snapshots from a recent one, but more
recent snapshots could not be found. Storing a snapshot’s identifier in the parent
snapshot’s metadata would require to alter it. Concurrent access would have to be
controlled. To retrieve versions by traversing known and received versions would take a
long time, as multiple sequential requests would need to be issued, instead of only one,
who retrieves the latest snapshot.

It is a better approach to have an index, which lists the snapshots and their relations.
This index does not have to be on a central machine but could be distributed following
the approaches presented here. Pastwatch stores the history index distributed, which
contains all snapshots made by one user. In GRAM the index is replicated among all
machines.

Separating the actual snapshots from the place where the history index is stored delays
the retrieval of a snapshot, as first a snapshots location and subsequently the snapshot
itself must be retrieved.

6.4.4 Communication Paradigm

The communication paradigm influences a system’s properties. Three different communication
paradigms are used: Client-server, peer-to-peer or communication over different existing
infrastructures, such as e-mail, USB flash memory drives or ad-hoc communication channels.
The differences of the client-server and the peer-to-peer communication paradigms have been
detailed in the previous chapters. The last approach relies on an existing infrastructure.

65 PROMISING MECHANISMS

6.4.5 Communication Protocol

The various used communication protocols listed in Table 3 have a little influence on a
system’s properties. Their efficiency regarding the time needed to route a message is varying,
but the basic properties are similar for all protocols, which belong to the same communication
paradigm.

65 PROMISING MECHANISMS

In this section the most promising mechanisms implemented in the presented related work
are analysed. PlatinVC’s design was based on this analysis.

6.5.1 Concurrency Control

The analysis of related systems pointed out that pessimistic concurrency control introduces
numerous problems into a peer-to-peer based system. A lock has to be acquired and released.
As long as an artifact is locked, only one developer can modify it. This blocks parallel work
on the same artifacts. The practical usage of the first VCSs (SCCS (see Section 5.1.1) and RCS
(see Section 5.1.3) showed that a user tends to lock more files, than he modifies, just in case he
might need to change them. The more users a system has, the higher is the possibility that an
artifact is locked, which another user intended to modify. Releasing a lock is error prone in a
highly dynamic environment like a peer-to-peer network. A peer who governs the lock over
an artifact cannot decide, if a peer is not online anymore, otherwise all messages sent to him
would be lost. In the latter case reassigning the lock to another developer would lead to the
undesired situation where both developers modify the same artifact.

In conclusion, optimistic concurrency control is better suited to a peer-to-peer based VCS.
It proved to be the winning model, as only a few modern VCSs implement a pessimistic
concurrency control.

The two hybrid approaches sound promising - but lack in practical usage. The need to
contact all other participants in order to perform a commit limits the scalability to the point
where no user might be able to practically perform a commit operation successfully.

If the number of participants in the first approach (hybrid acknowledge) rises, the possibility
that the same basis version has been modified in the time span needed to reach all participants
(which also rises with the number of participants) increases. If two or more artifacts were
changed based on the same version none can be committed. Both authors have to try again
to submit their versions, until one of them is successful. The other one could now apply
his changes to the committed version. It is, however, very likely in a big project that third
developers try to submit their contributions concurrently.

The second approach (hybrid resolving) is more promising. Contacting all participants in a
network takes again more time when the number of participants rises. But a detected conflict
does not block the commit approach completely. It is resolved interactively by connecting all
authors, so they can coordinate the integration of their changes. This mechanism, however,
relies on the fact that all participants can be contacted, when they edit files. Requirement R-8:
Offline version control cannot be provided. If the network falls into partitions or the routing
is temporarily indeterministic, the concurrently editing authors cannot contact each other,
resulting in committed versions in the separate networks. When the partitions rejoin a conflict
exists and has to be solved with other means. This approach is interesting as an additional
feature, but unable to avoid conflicts in a peer-to-peer network by itself. Another practical
problem is that the total number of participants in any peer-to-peer network is fluctuating
and nearly impossible to measure exactly. Thus an author never knows, if he received answers
from all participants.

The two hybrid approaches have not been pursued further, possibly because the mentioned
problems remained unsolved.

85

ANALYSIS OF RELATED VERSION CONTROL SYSTEMS

86

quus ‘dyws [oo03o01d
Anseq Areyoradoxd pIoyD pIoyD viXI[EERETNIE] UOT}eITUNUIWOD
dzd dzd ded wdrpered
pormyonns | ded parnponxs ded parnjonis paInionys | [edryoeIany }seopeoiq UOT}eOTUNUIWIOD
seorjdoz seorpdaz Suruonnred
s19p[0y Aq stosn Aq | seordaa Teoryuapt syoejnre Aq [eorpuLpI [esnuapt A1o0y1sodax
p211pUT + P32IIpur + uonnqLIsIp
Iaurejurewt Jaurejurewt payeoridax Isurejurewt pajeordar payeordar Axoysodax
Gurajosaz TOIFU0D
onsturdo opstumdo | Surajosar priqAy onstuaissad pLIgAy Sunoa prigqiy Aduarmouod
DAY yoyemised | SOA paseq pIoyd SOAS INVID dO-0D 9po) &L WSIUeYRN
&
=]
dyws ‘dypy AVAIPM [oo03o01d
LH@ooqueg vIX[Areyourdoid | “Areyorrdoxd Apsowr UOTJEDIUNUIUIOD
ded wrpered
ded pamjonys ded reonyorersny | parmjonnsun | 8u0-03-9U0 IDAIIS-JUSID UOT}eITUNUIWOD
seorjdar Suruorynred
syeyre £q sypejnIe £q [eonuapt | saydueiq £q Adod o13urs Axoysodax
(jseorpdar ou) uonnqLIISIp
Idurejurew Isurejurewt payeorydaz Areryiqre | (S)I9AI9S [RIFUD Axoysodax
SOILIMIDAO onstumdo :mau [o13U0d
onstumdo dyepdn onsrwndo opstundo | onsruarssad :pro Aduarmdouod
LHQ 1210 SAD PIMIISI D{OOM SSOAP SSOAY || & wstueyRy
&
3

Table 3: Architectural aspects of the examined VCSs

65 PROMISING MECHANISMS

The only peer-to-peer based VCS, which implements hybrid resolving combines it with an
unstructured peer-to-peer network. In this class of peer-to-peer networks messages cannot be
guaranteed to reach all participants. There is a chance that two messages sent from different
authors reached a disjunct group of receivers only. In this case both would be unaware of the
other and commit their conflicting changes.

6.5.2 Repository Distribution

Keeping identical replicas consistent in a peer-to-peer network is a challenging task. The
problems discussed to reach all participants might hinder some machined to get an update.
Due to the routing mechanism messages travel at different speeds, so that an update might
be received, which is based on an still missing update. All systems, which distribute the
repository as identical copies among all machines can guarantee eventual consistency only.
As there is no single controlling point it is difficult to detect and solve conflicting changes in
the same way in all repositories, endangering its coherency.

An advantage is that updates are available without the need to query for them. Committing
changes, however, takes time as all participants have to be reached.

The maintainer based approach has the advantage that concurrent commits can be resolved
by a central instance, the maintainer. If two concurrent versions are committed, a maintainer
receives both requests and can handle them in a sequential order. E.g., he could accept the
first received commit and reject the second. However, in some situations the two commits
could be received by different peers, who believe they are the only maintainer and each
accept the received version, not noticing the conflict. Network partitions, lost messages, and
indeterministic routing can lead to such a problem. An additional problem is a performance
issue. While commits can be applied very quickly, as only a single peer has to be contacted,
updates are slow to be received, as multiple maintainer have to be addressed.

Replicating identical copies of the repository among all peers makes the system more
robust and scalable (requirement R-19). The data integrity, a protection objective demanded by
requirement R-26, is also supported, as there are numerous copies in the system. Nevertheless,
both requirements can also be fulfilled using the maintainer based approach, thus the limited
advantage given for these aspects is outweighed by the higher consistency degree, which
can be attained using a maintainer based repository distribution. Having user maintained
local repositories next to the system maintained maintainer based repositories combines the
advantages of both approaches and helps in fulfilling the requirements R-4: Conjoined local
repositories, R-5: Redundant backups, and R-8: Offline version control.

The first versions of PlatinVC followed the maintainer based approach. Later prototypes also
adapt the properties of the replicated distribution, which is detailed further in the following
part of this work. The basic structure of PlatinVC, however, is maintainer based.

6.5.3 Repository Partitioning

The repository distribution has the most influence on the consistency degree a system pro-
vides. The examined systems use multiple approaches to partition the repository. The load
distribution differs among the approaches used. However, no approach has a clearly better
load distribution than another. Whenever a system has a central component, which needs to
be accessed frequently, the load distribution is worsened.

Created versions are immutable and can be addressed by calculating a hash value using
their content. The stored versions have to be indexed, i.e., the hash values have to be listed
somewhere, as they cannot be calculated without the content, by an additional mechanism.
The required indirection of first accessing this index and afterwards the versions themselves
does not seem to bring an advantage. In contrast, if one of the two machines required (and
their replicating machines) are missing, the versions cannot be retrieved. The chances that this
situation can occur is doubled.

87

88

ANALYSIS OF RELATED VERSION CONTROL SYSTEMS

Most systems partition the repository according to the stored artifacts. The artifacts are
addressed by the hash value of their name. By keeping all versions of a single artifact on one
machine all versions are retrievable, whenever the maintaining machine can be contacted. This
ensures sequential consistency, but only regarding single artifacts and not snapshots. Having
an initial version of a project files, however, enables one to update all known files to the latest
versions without the need to request an additional index. However, the problem of announcing
new artifacts as well as renaming an artifact (see requirement R-2) have to be solved in this
approach.

All other approaches do not seem to be more beneficial. They bring the problem to announce
new items as well. E.g., in Pastwatch the repository is partitioned according to its users. All
users are listed in a centrally stored membership list. Whenever the snapshots created by a
user are not accessible, gaps exist in the projects history, thus only eventual consistency can
be provided. Partitioning a repository by its branches brings the same problem that older
versions might not be retrievable.

Summarized, the most promising partitioning scheme seems to be the mostly used: separa-
tion according to stored files.

6.5.4 Communication Paradigm

The communication structure has a great impact on the features and drawbacks of the
version control system. The client-server based communication suffers from the disadvantages
discussed in Section 2.4.1. The centralized version control systems perform worse with a
rising number of users and are prone to complete system failure. Solving some problems
of the centralized approaches (like requirement R-12: Prevent censorship), the distributed
version control systems are introducing new issues: manual effort is required in order to
share changes, which therefore distribute slowly among the developers, leading to unaware
duplicate development and conflicts being found late.

The peer-to-peer communication structure demonstrated to overcome these shortcomings
and fulfill especially the requirements R-11: Easy to setup/manage, R-15: Transparency, and R-17:
No centralized services. The system data and operations are distributed among the participants,
where replication helps to avoid even partial system failure. Additionally, every user is free to
leave the system anytime, having the independence of a dVCS with the connectivity of the
cVCS.

Approaches in which messages cannot be addressed to a specific recipient, as in unstructured
peer-to-peer overlay networks, can only be combined with replicated repository distribution,
where updates are broadcast. To overcome the limitation of eventual consistency a paradigm
where a specific participant can be addressed is needed, as realized by a structured overlay
network. Following the analysis in Section 2.4 and this chapter, the structured peer-to-peer
communication paradigm is the most promising.

6.5.5 Communication Protocol

We saw in the following sections that a structured peer-to-peer protocol is the most promising
communication protocol. Among the available implementations Chord ([SMK " o1b, SMLN " 03])
and Pastry ([RDo1b]) are the most widely used ones. BambooDHT (presented in [RGRKo4]) is
a variant of Pastry. [RDo1b] showed that Pastry has the better system properties. However,
there are several other structured peer-to-peer overlays.

6.6 SUMMARY

The related systems, which were presented in Chapter 5 were analyzed in this chapter.
A distributed version control system, which promises a high consistency degree and fast
operation times, should be a combination of the following design decisions for the identified

6.6 SUMMARY

key mechanisms: Only the peer-to-peer communication paradigm complies with the majority
of the identified requirements. All other examined communication paradigms have integral
properties, which hinder the realization of certain requirements.

The combination of distributing the repository maintainer based while providing user

maintained local repositories showed to be superior to replicated repository distribution.

Although some problems remain unsolved, partitioning a repository by artifacts, i.e., giving
the control of all versions of an artifact to a maintaining peer, whose identifier is numerically
close to the hash value of the artifact’s name, is the most promising solution. A challenge is to
handle new, renamed or moved artifacts. A greater issue is to handle snapshot based version
control without introducing complex transaction protocols.

89

Part II1

PEER-TO-PEER VERSION CONTROL SYSTEM
- PLATINVC

The previous part points out that state-of-the-art version control sys-
tems are not suitable for global software development.

A novel version control system, PlatinVC, which primarily aims to
support global distributed collaborative development, is presented
in this Part. Chapter 7 presents this solution from the perspective of
a user. Design decisions and alternatives are detailed in Chapter 8.
A prototypical implementation, based on these design decisions, is
presented in Chapter 9. Results from a testbed evaluation we performed
with our prototype are discussed in Chapter 10.

OVERVIEW OF PLATINVC

The main goal of this thesis is to provide a suitable solution for version control to aid globally
cooperating contributors: PlatinVC is a fully decentralized version control system, which is
built on a minimal set of assumptions listed in Section 3.1 and fulfills the requirements stated
in Section 3.2.

To provide a general understanding of PlatinVC, this chapter describes its basic architecture
(in Section 7.1) and a typical and recommended workflow (in Section 7.2), which is distinct
from the workflows practiced in other VCSs (introduced in Section 4.1). The distinguishing
features of PlatinVC are presented in Section 7.3 and version control services offered to users
are detailed in Section 7.4.

This chapter focuses on a user point of view and introduces the philosophy that PlatinVC
was designed upon. Their technical implementation along with a discussion of alternatives
are detailed in Chapter 8.

7.1 BASIC ARCHITECTURE

PlatinVC inherits some properties of the dVCS as well as the cVCS by combining aspects of
their architectures. From a functional point of view, PlatinVC acts like a mixture of cVCSs
and dVCSs, inheriting their positive features, while omitting their flaws, as discussed in
Section 2.4.1. The basic architecture depicted in Figure 22 combines aspects of a local users
components in a dVCS, as presented in Figure 14, and of a servers components in a cVCS, as
presented by Figure 12.

Alice's Computer -~ Virtually global "~
f\ p2p Repository _4

(S~ PR -
(global) 1 TTTITITT i
Push 4 ¢~ ________=° 1!
— . I
Peer-to-peer \ i global : :
[———— Module D
| (global) 1i___ ")
Commit Pull ! I
TTTTITTT S, !
: r other :PI :
| 1 _Modules i
., | 1 | mnmmmmmoe [

edit T

— > working \ ,’I

Copy TTeeeo-- i

Alice

Figure 22: Basic architecture of PlatinVC

Note that the terminology introduced by CVS (see Section 5.1.3) is used, rather than the
terminology common in Mercurial (see Section 5.2.4): Multiple modules reside in a repository.
A module stores the committed history of all files in a working copy, which usually belong to
a project.

A user works on artifacts in a working copy. Typically all files in a working copy belong to
the same project. A software product consists of one or more of these projects, depending on
its organization. All changes are tracked by executing the commit operation. Whenever this
occurs all modifications are recorded in a snapshot, which is stored in the history of a local
module. When the developer decides to share his changes he executes the push command. All

93

94

OVERVIEW OF PLATINVC

changes that were recorded by the local module, but not pushed before, are now pushed to the
Peer-to-Peer Module first and subsequently to the respective global module in the virtual global
repository. The peer-to-peer module acts like a (outdated) mirror of the global module in the
repository. The virtual global repository comprises all existing modules. We call it virtual,
because it does not exist on a single machine. It is, rather, distributed among the participants
in a structured way, in opposition to the chaotic distribution of the modules in a dVCS. This
allows for retrieval of the latest snapshots as if a centralized repository was accessed, as in a
cVCS. Chapter 8 describes in detail how this is achieved.

7.2 WORKFLOW

Although any workflow presented in Section 4.1 could be used with PlatinVC, we present a
recommended workflow in this section. Using this workflow exploits all benefits of offered by
PlatinVC.

7.2.1 Frequency of Commits

As discussed in Section 4.2, there is a trade-off in using version control systems. On the
one hand, snapshots should be committed as frequently as possible, to enable fine granular
rollbacks. On the other hand, shared changes should not corrupt the project (e.g., resulting in
an uncompilable source code project), hindering further work of collaborators.

PlatinVC inherits the solution to this problem from the dVCSs. A user can commit snapshots
locally to build up a fine granular history (similar to a dVCS). When the latest snapshot reflects
a stable project state, the push operation makes all committed snapshots available to all other
participants, as in a cVCS.

The two modules on each peer enable the feature to separate personal commits from globally
shared commits. While the local module always contains all locally recorded snapshots, the
peer-to-peer module includes all globally shared snapshots of all users, which where retrieved
in the last update.

7.2.2 Repository Sharing

Any workflow, such as presented in Section 4.1, can be used with PlatinVC. All workflows
for dVCS can be applied by interacting with the local module only, which is a true dVCS
repository as well. A centralized workflow can be applied by interacting with the virtual global
repository only. Therefore after each commit execution, a push has to be invoked. All changes
would then pass through the local module and become immediately visible to coworkers.

PlatinVC was designed to suit the following workflow, presented in Figure 23. All figures
show an abstract view of PlatinVC on two machines and the virtual global repository. The
history of Alice’s local module is presented on the left, the history of Bob’s local module
is presented on the right. The globally visible history in the corresponding global module
is presented in the middle. All other components failed to maintain conciseness. Named
branches are not shown either. For simplicity we assume that there exits only one named
branch in this example. A square with a number represents a recorded snapshot, the square
with a triangle attached being the latest snapshot. The arrows with the white head connecting
snapshots represents the reference from a snapshot to its parent. The arrows with the black
heads represent executed operations.

1. Before developing a new functionality, a developer updates the project he plans to work
on, by pulling (see operation O-6: Pull globally) the changes from the virtual global
module into the local module (see Bob in Figure 23a). Therefore, the developer’s machine
contacts a few other machines from whose peer-to-peer module the updates are retrieved.
The update could cover all branches or specified branches of the complete working copy
or specified folders with their contents (artifacts and subfolders) only. He now updates

7.2 WORKFLOW

[Alice's History | [global History | [Bob's History | [Alice's History | [global History | [Bob's History]
[a] L ——l2] [a] [a]
A\ u [pull] u A @ A\

[commit]
= = R

(a) pull globally latest snapshot (b) commit local changes

[Alice's History | [global History | [Bob's History |

q
[push]
2 <—=p U

(c) push snapshot globally

Figure 23: Basic Workflow in PlatinVC

his working copy with the latest snapshot of the branch he intends to work on. As
explained in Section 5.2 there could be multiple heads in a branch - a developer chooses
one to base his changes on.

The project should be in a stable state, so that the developer can be sure that only his
modifications can destabilize the project.

Although not covered in this example, a user could create a new module (see operation
O-3: Initialize module), to start a new project, or clone an existing module (see operation
O-1: Clone remote module), to start working on an existing project as well.

2. The developer modifies a number of files in several steps. Using the local commit
operation changes are recorded as frequently as possible, creating a fine granular version
history in the local module, without sharing them with other users, as done by Bob in
Figure 23b. N.B. Alice committed her changes before. They were not shared with Bob
(see Figure 23a). If some modifications lead to unexpected results, it is often easier to
reverse the changes and continue from an earlier snapshot. Using PlatinVC, any of the
recorded steps can be reversed without network connection.

3. Once a planned functionality is implemented (or a bug is solved) and the project is
in a stable state, the user can share all his locally recorded snapshots with all other
participants, mimicking the behavior of a cVCS, by executing the push operation (see
Figure 23c and operation O-9: Push globally), like Bob does in Figure 23c. This copies
the stored snapshots form the local module to the Peer-to-Peer Module, from where
the snapshots are pushed to the virtual global repository once a network connection
becomes available. To push the snapshots to the virtual global repository the developer’s
computer contacts specific peers and sends them the new snapshots, which integrate
them in their peer-to-peer module. Thereby every user querying for the latest changes
can retrieve them.

7.2.3 Conflict Resolution

In the previous described workflow conflicts might occur, if another developer shares his

snapshots concurrently. The following example, illustrated in Figure 24, explains this situation.

We start from the situation presented in Figure 23, where Alice and Bob committed changes
made to the common base snapshot 1. Bob already shared his snapshot using the push
operation. Alice does the same in Figure 24a. This leads to a conflict, as both snapshots are
based on the same snapshot, and might contain changes that contradict each other. As usual

95

96

OVERVIEW OF PLATINVC

[Alice's History | [global History | [Bob's History]

[Alice's History | [global History | [Bob's History | %
5 D, DA
GGG e

(a) push (b) pull

€
Gl

[Alice's History | [global History] [Bob's History]

[Alice's History | [global History | [Bob's History |
b & 2

= 5 B 21 00 2] 00
[push]

ko

Gl

[merge |
(c) merge (d) push

Figure 24: Conflicts and Resolution in PlatinVC

in dVCSs the snapshot is applied, but forms a second head in the (named) branch we look at.
N.B. If Alice had pulled the latest snapshots first, as recommended and presented in Figure 16,
this second head would be created in her local history only. Even if this procedure is followed,
the presented situation could occur, as shortly after Alice pulled the latest snapshots, but
before Alice pushes her local repository, Bob could push new snapshots, which results in a
conflict as soon as Alice pushes her snapshots.

As we further see, the resulting history forms a direct acyclic graph (DAG). The two parallel
development lines are referred to as unnamed branches, where both snapshots 2 and II are
the latest head versions. In order to apply this history, one must choose the head to update his
working copy to.

Through an acknowledgment message Alice is informed that an unnamed branch was
created, and is asked to solve it. Alice reacts by pulling Bob’s conflicting snapshot in Figure 24b.
She merges the conflicting snapshots locally (see Figure 24c) and shares the resulting snapshot
3 as presented in Figure 24d. Now the two development lines are reunited, so that there is
only one head again, making it clear where further changes should be built on.

If Alice does not receive the acknowledgement message due to message loss or being
disconnected she invokes the push again. As it was already applied, the only action the system
takes is to resend the acknowledgement message. If a conflict with another snapshot should
arise, an unnamed branch would be created. A warning is included in this acknowledgment
message. For each repeated push execution a new acknowledgement message is sent - so the
message will eventually be received by Alice. Thus the author of a conflicting snapshot that
lead to the unnamed branch, is informed about the branch with a high possibility and can
take action to resolve the branch. The other author is not informed, as he could be tempted to
also merge the snapshots, which might result in a new conflict, if multiple merged snapshots
are pushed again.

The global history in Figure 24a has two head versions, which are both the valid latest
version in the respective branch. To avoid this confusing state, each push operation should be
preceded by a pull request. The conflicting head versions could be merged locally first and
published to the resulting DAG building the global history in Figure 24d. However, doing so
is not always possible, e.g., when network partitions happen, as discussed in Section 8.6.

7.3 FEATURES

N.B. The server on a cVCS would prohibit Alice to share her changes. Alice would be
forced to obtain Bob’s snapshot first, merge conflicts locally, and commit only the new
created snapshot to the server. The linear history would consist of the snapshots a-II-3, Alice’s
modifications which lead to snapshot 2 would not be recorded in a cVCS.

7.3 FEATURES

As mentioned before PlatinVC offers all features offered by a distributed version control
system, namely mercurial [O’Sog]. In this section we describe the additional features enabled
by PlatinVC, which are novel to version control systems.

7.3.1 Automatic isolation of concurrent work

When a project is developed concurrently it is difficult to manage, which contributions should
be applied immediately and which should be postponed to a later time, when the developed
product is integrated. A single developer can keep his modifications locally by not sharing
them with the push operation. But separating the work of multiple developers is challenging
and, to date, no satisfying solution has been found. The classical approach coming from
the centralized version control systems is to split the development line into branches. Teams
share their changes in the created branches, which are merged into the main development
line once all tasks are completed. Before branches are merged, no updates from other teams
are received, being helpful (like a bug fix) or disturbing (like a half implemented function).
Merging the branches is difficult, especially if there are a lot of changes in the artifacts of
a branch. Conflicting modifications, which might have been created long time ago must be
resolved. A major design goal of the distributed version control systems, especially Git (see
Section 5.2.3), was to handle branches in a more convenient way. The development of each
developer occurs in an individual branch, which is merged whenever they share their changes.
These individual branches are merged often and early. More importantly, they are merged
by the persons who created them and are thus the most eligible to resolve possible conflicts.
Nevertheless branches have to be merged, and due to the lack of a global repository they have
to be merged multiple times. Let us assume that Alice and Bob exchange their changes by
merging their branches, as presented in the previous example. Now Bob’s local repository
includes Alice’s changes as well. If he shares his changes with Cliff, a version created by Alice,
which did not conflict with Bob’s versions, may conflict with one of Cliff’s creations. Even
worse, if Dave shared his changes with Cliff, and subsequently shares them with Alice, the
same conflict between Alice’s and Cliff’s version will occur. Alice and Cliff might resolve them
in a different way, meaning that Alice and Bob, and Cliff and Dave, will need to synchronize
their repositories again.

PlatinVC aims to solve the problem of merging branches by avoiding their creation in
the first place. Two mechanisms enable a workflow, where branches are almost not needed:
Isolated folders and postponed branches. Both are presented in the following.

Isolated folders

All projects are organized using a folder hierarchy. Beginning with the outermost folder several
folders exist, which separate a project into parts. In a typical software project, all files belonging
to a specific function are included in the hierarchy of a folder. Only cross-cutting concerns
[Pary2] cannot be organized in this way, but normally they are not implemented by a single
team of developers. A wide spread example for a cross-cutting concern are security issues,
which often have to be cared about in various code places. However, a good design and/or
using weaving techniques like aspect oriented programming can capsulate cross-cutting
concerns in one central place (i.e., under one encapsulating folder).

PlatinVC utilizes this folder hierarchy to distinguish which updates to certain files are
needed, and which would be ignored better. A developer can choose to update the files of a

97

98

OVERVIEW OF PLATINVC

folder and all subfolders only. He can also choose to update individual folders, without the
need to update all files of their subfolders. In this way, only changes to the files included in the
chosen folders are received; changes to other files made by different developers are ignored as
long as the same developer did not change a file in the selected folders. N.B. While centralized
version control systems offer the ability to update only specified folders as well (which is not
possible in a dVCS), PlatinVC additionally retrieves related changes to artifacts in unspecified
locations. Section 7.4.2 details how this update operation works. The idea behind this concept
should be clarified by the following example. Let us assume that a software project, where
Alice and Bob are working on, consists of one core part and two features, which are separated
into three different folders. Alice’s team works on one feature. Changes are pushed globally,
but updates are only pulled from the folders of the feature they work on. In doing so, they
automatically ignore all changes shared by Bob’s team, who are working on the files residing
in the other feature’s folder only.

Specifying the folders for which updates should be exclusively received effectively separates
the development on different parts of a project. If changes are needed, they will be retrieved
automatically. If, for example, Bob’s team finds a bug in the core folder of the project, which
involves changing some files in the feature folder Alice’s team is working on, Alice’s team will
receive these updates automatically. As all made changes of Bob’s team might be important,
all changes in all three folders are received. Alice’s team can now decide, whether they want
to merge the retrieved changes of Bob’s team fully or partially (see cherry picking) into their
development line. If they decide to ignore the changes a postponed branch gets created, like
explained in the next section.

A developer should only update the folder he is working on. The received updates are
guaranteed to include all changes to files included in these folders, but also all changed files
in other folders upon which the received updates were based on. N.B. The selective updates of
the centralized version control systems do only retrieve the chosen artifacts blindly, without
related changes that might be of interest. Most of the time concurrent work will be isolated. If
unwanted changes are received, they can be ignored, which will create a postponed branch, to
be explained in the next section. This section also explains how the development of multiple
teams, which work on overlapping folders, can be managed.

Postponing Conflict Resolution

As presented in the example in Section 7.2.3, unnamed branches are created automatically
when different developers base their changes to the same snapshot, but these unnamed
branches should be merged before they are shared. Named branches exist as well. They should
be used for long term separation of parallel versions, such as for maintenance, feature or
variant development lines.

The work of a single developer is isolated by committing it locally only. When a group of
developers wants to share snapshots among themselves, a mixture of named and unnamed
branches can be used. Every team member would work on his tasks and commit his fine
grained modifications locally. A team member shares these local snapshots to the named
branch. Unnamed branches, which reside within the named branch are created and merged. As
we described in Section 7.3.1 the natural separation of a project in subfolders can be exploited.
When only members of a certain team work on artifacts which are all in the hierarchy starting
from a subfolder the automatic isolation of folders separates the teams snapshots from other
developers without the need of a named branch.

The creation of unnamed branches could be avoided to a specific degree: As we will see
in Chapter 8 in the first phase of the push operation a list of existing snapshots (only their
metadata) is retrieved. Based on this list conflicts can be detected by the pushing peer and the
push process could be aborted, forcing the user to pull and merge the conflicting snapshots
first. However, we did not implemented this behavior, as it cannot work reliable: In case of
a network partition conflicts may remain unnoticed. Even under normal operation it might
happen that a conflicting snapshot is submitted by another developer after the metadata was
received, but before his own snapshots were sent.

7.3 FEATURES

All changes ever made are always retrievable, while the latest snapshot is a single head,
which represents the project in a stable state. This behavior enables a workflow, where a
developer does not need to plan branches in advance.

As explained in Figure 24 Alice and Bob can work on different features in the same branch.
They commit their changes locally and push them globally, if the software project remains
compilable. Before pushing local snapshots globally, Alice pulls the latest snapshot and merges
it with the latest local snapshot in her working copy. If everything continues to work as
expected, she also pushes this merged snapshot; if not, she discards the merged snapshot
and pushes her local snapshots only. Doing so results in a diverging development line, an
unnamed branch as shown in Figure 24a. From now on, all her snapshots will continue to
be added in her unnamed branch, while Bob will continue to work in his branch - without
the need to be notified. Once their work is done they can merge the latest snapshot to one,
recreating the single development line.

Due to the automatically created unnamed branches, solving conflicts can be postponed
to the moment when it becomes inevitably, which is not possible in cVCSs, where conflicts
have to be solved before changes can be committed. Postponed conflict resolution has to be
planed, as branches have to be created before changes can be committed.

The handling of branches is inherited from the distributed version control systems. Un-
like centralized systems they bring the drawback that the work of multiple developers is
distributed and has to be collected in a manual process, by exchanging snapshots which each
developer individually. PlatinVC unites the immediate retrievability of all shared snapshots
present in centralized version control systems with the ability to postpone conflict resolution
spontaneously from the distributed approaches.

Unique to PlatinVC is the possibility of groups using unnamed branches spontaneously. A
team can start working on a single branch. A group can split, if their development begins to
affect one another, by simply not merging concurrent snapshots. As with the development
in any other branch conflicts split up a branch into new branches. But when visualizing
the history it is clearly visible which branch started as a sub-branch from a team branch.
Nevertheless, by executing the pull operation prior to pushing changes unexpected branches
can be avoided.

As in any dVCS featuring unnamed branches, they can be named at any later time. If
snapshots are merged, their last common snapshot is identified and used in a three-way-merge.
In contrast, in a ¢VCS the snapshot, where the development line was branched would be used,
regardless of whether at a later time a more recent snapshot had already been merged with
the original development line.

Merging Branches

It seems that the ability to create branches fast and to postpone conflict resolution, which is
inherited from distributed version control systems, leads to many emerging branches, which
are hard to merge. But practice reports from projects using distributed version control systems
prove the opposite [BRB' 09, Loeogb]. Branches are frequently created for experimental de-
velopment. Just after a few snapshots they are discontinued or merged in to a main branch.
It is easy to start a branch from any snapshot version, so a branch is merged back, when a
single task is finished. Most of those branches are shared with other developers when they are
already merged back into the main development line. However, in distributed version control
systems branches have to be merged multiple times, once for each developer pair, when they
exchange their repositories. Moreover, concurrent work might remain unnoticed. Same features
or bug fixes might be performed with slightly differing implementations. Resolving conflicts,
or even worse noticing duplicated functionality, is challenging under those circumstances.

In PlatinVC branches can be created as easily as in distributed version control systems
and merged only a single time, similar to centralized version control systems. We will see
later that not always all existing snapshots might be retrieved. However, it can happen that
due to network problems some snapshots in a branch are not retrieved. This can affect the
latest snapshots only, as PlatinVC provides causal consistency. All base versions of the latest

99

100

OVERVIEW OF PLATINVC

retrieved snapshot are retrieved as well. If a branch is merged on this basis only the missing
snapshots have to be merged, once they are retrieved. Merging those remaining snapshots is
easier, as all previous snapshots are already merged and conflicts among them are resolved.
Effectively merging the missing snapshots is equally to merging a complete branch with the
same snapshots.

7.3.2 Working Offline

Even if a user has no network connectivity, he can use PlatinVC to track his changes. This is
especially helpful for nomadic developers who are able to work while traveling. As with any
dVCS, local changes can be tracked by committing them locally only, to the local module. A
global push can be executed being offline, which marks the locally recorded snapshots to be
pushed automatically once there is a network connectivity. Actually the push operation pushes
the recoded snapshots from the local module to the peer-to-peer module. As soon as the peer
rejoins the overlay network its peer-to-peer module is synchronized with the peer-to-peer
module of other peers (i.e., the virtual global repository), which shares the offline created
snapshots automatically.

In this process already existing snapshots are not transferred again. Offline created snapshots
could be already shared in the overlay network by a different developer, with whom these
snapshots were exchanged before, e.g., using the underlying dVCS’s capacities (like copying
patches over USB flash memory drives). This other developer may have already shared
all snapshots with the other peers in the overlay network. If the other developer recorded
additional local snapshots, only those snapshots not yet shared are pushed to the virtual
global repository.

One limitation, however, is that conflicts will be noticed delayed, when they are actually
being exchanged with other machines. As detailed in Section 7.2.3 conflicts do not hinder the
application of a snapshot but form an unnamed branch instead. This will be noticed delayed at
the time the networks, where the contradicting snapshots were applied to, rejoin. It is sufficient
to merge only the latest snapshots of the diverging branches.

7.3.3 Interoperability

PlatinVC inherits the ability to interoperate with other version control systems. The history in
the local module can be exchanged with a number of other systems, in any combination. As
explained in Chapter 8, the local module is a full blown dVCS. In Section 5.2 we mentioned
the implementation of several adapters, which can exchange snapshots with other systems,
continuously through synchronizing or in a sequential batch process. Nearly all dVCS are
able to synchronize their changes in an interoperable manner. The most popular cVCSs can
also be connected. However, as their history can store just a subset of the history in a local
module of PlatinVC, they are not identical copies. Depending on the adapter and workflow
used unnamed branches are, for example, either ignored or mapped to named branches.

Once the local module is synchronized with an external VCS, the introduced snapshots
can be pushed to the corresponding global module, making them accessible to the other
participants.

7.3.4 Offers all dVCS Operations

As detailed in Chapter 8, the local module of PlatinVC is a dVCS repository, which is accessible
by the user. We utilize this dVCS for basic VCS operations. This enables the user to use the
underlying dVCS with all its operations, such as bisect and similar helpful features. The local
module can even be exchanged with other developers just using the dVCS. However, using
the operations provided by PlatinVC is advised, as they take care about with whom to share
and from whom to get new snapshots.

7.3 FEATURES

It should be avoided to change parts of the history, which were already shared with the
virtual global repository in PlatinVC. This includes rebasing the history or removing snapshots.
Doing so would create new snapshots, although only their identifier is changed and the content
(the diff) remains the same. The identifier would change because the moved snapshot is based
on another snapshot, whose ID is included in the moved snapshot. As we explained before the
snapshot’s ID is based on its content, so changing a basis snapshot changes the snapshot’s ID.
If the history in the local module is changed after it was pushed in PlatinVC, and is pushed
again, the resulting history in the global module would combine the moved snapshots in
their old and new location, certainly confusing all participants. Even in a pure dVCS this
behavior should be avoided, as the result would be the same (if we substitute the virtual global
repository of PlatinVC with another user’s dVCS repository).

7.3.5 Backing up Artifacts Redundant

Multiple copies of the repository are stored by multiple machines. The risk of losing any
stored artifacts is very limited. A user stores all of his changes in a local repository on his
machine. If this storage were to be corrupted the user could restore the complete history of all
artifacts she created by retrieving them from the system. There are a minimum of x copies
of any version of any file, where x is the number of replicating peers +1 for the maintaining
peer. The replicating factor x is configurable. A higher number ensures more failure resistance
and availability, whereas a low number reduces the time for an update. The value of x is
at least 2, but typical 4. The replicas are randomly chosen (more precisely: their are chosen
by their identifier, which is randomly assigned). Thus it is unlikely that they are part of the
same subnetwork. But even in the unlikely case that all replicating peers and the maintaining
peer are failing before they can copy the latest updates on a substituting machine, there is a
chance that all versions are still retrievable. Whenever artifacts are committed in a snapshot,
all maintainer (and their replicating peers) store the complete history of all artifacts in the
snapshot, regardless of whether they are responsible for them. The history of all artifacts
in a snapshot contains all snapshots the current snapshot is based on, and also their base
snapshots, which might additionally contain versions of artifacts other than the ones included
in the latest snapshot. If all of these copies are unavailable, any peer who updated its local
repository can provide some versions as well. When failing peers rejoin, they offer formerly
stored versions again.

Due to the highly redundant storage of committed versions in the system, the total loss of
an artifact is very unlikely. Every storing peer would have to lose his local storage permanently.
The older a specific version is, the more likely it is that many peers have stored it. The
more artifacts of different folders are modified by a single developer in a snapshot, the
more maintainers store that snapshot. Only very recently committed snapshots, or snapshots
consisting of artifacts developed in isolation (changed by developers, who did not change
artifacts from other folders afterwards) are endangered to get lost - which only occurs if
their maintaining peer, along with his replicating peers and the authors of the endangered
snapshots fail simultaneously, without enough time to update a substituting peer. And only if
the physical storage of these machines is destroyed are the snapshots lost permanently.

7.3.6 Degree of Consistency

As detailed in Section 7.4 PlatinVC offers a number of different ways to obtain updates from
the virtual global repository. In Section 4.4.2, different degrees of consistency were discussed.
With regard to single artifacts, sequential consistency is guaranteed, as all versions are stored
on a distinguished machine. In order to retrieve the latest updates of a set of artifacts recorded
in a snapshot, a number of machines have to be asked. When the network is undisturbed
by failing peers or lost messages, sequential consistency is archived. However, in a realistic
network these factors cannot be ignored, therefore in the worst case only causal consistency is
guaranteed, as the latest snapshots stored on some unavailable machines cannot be retrieved.

101

102

OVERVIEW OF PLATINVC

If a snapshot is retrieved all basis snapshots are retrieved as well, as they are stored on the
same machine the snapshot has been retrieved from.

7.3.7 Support for Traceability Links

Cross References

Links can be created between any items, be it an artifact, folder or module, in any version.
A link itself is a version controlled item. A link is bidirectional and connects two artifacts or
folders in a specific version in a specific branch. It can store any metadata about the connection
of the linked items, such as integrity constraints, which can be evaluated to prove whether
a connection is justified. This validation, however, is not handled by PlatinVC. The system
PlatinVC does not control how links are interpreted, it merely tracks their concurrent evolution.
This enables different, mostly locally operating tools to use and manipulate this information
for multiple purposes.

The links can be used to store dependency relations among the items, which enables
configuration management to choose specific versions. For example, a project could link to
another project, indicating the minimal needed version it depends on. Individual artifacts can
be linked to store traceability [WNog4] information. Hereby it is possible to connect artifacts
which are created during a development process. E.g., a requirements document could be
linked to a design document, which is linked to the implementing source code. This source
code could be linked to a test case, storing the result of the test in the link as well. If the budget
for a project is short, only critical requirements could be tested by tracing the connection from
the requirements document to the test case. By storing integrity constraints, the connection
between two items can be validated. Updates on the content of linked artifacts could harm
these constraints, which could be marked in an update on the link. A supporting tool could
enforce further changes to either file to repair the broken connection.

Once a link is created it cannot point to a different item. If a link should point to a different
goal, the old link document is marked as deleted and a new document is created, which
connects the new items. Similar to a file rename explained in Section 5.2.4 changes to the old
document follow the new document.

Concurrent Updates on Linked Artifacts

Changing the stored information updates a link document to a new version. Pointing to a
different version of a linked artifact changes the link document. As a convention a link should
only point to more recent versions of the linked artifacts in an update. Figure 25a illustrates an

History of
|:Versions Versions of:| |:Versions:| "A<-link->B"

of file "A" | ["A<-link->B" | | of file "B"

1le—1a
2l€ s
3,
4
5.
N
(a) Files and versions (b) Created history
of the link doc-
ument

Figure 25: Concurrent updates on a linkdocument

7.4 SERVICES

exemplary situation. The left column represents five versions of artifact “A”, the right column
four versions of a linked artifact “B”, and the arrows in between represents the versions of the
linking document (representing a binary traceability link). The version of both artifacts are
created by different users. Alice works on “A” and Bob on “B”. First Alice creates the artifact
“A” and links it to version a of artifact “B”. She updates “A” to version 2, updates the link to
version 2a, and repeats the same process later to create version 3 of artifact “A” and version
3a of the link document. The versions 1a, 2a, and 3a of the link document are represented
with the solid arrow lines. Meanwhile Bob updates artifact “B” to the versions b, ¢, and d. He
updates the link to connect version d of artifact “B” and version 2 of artifact “A”, which is the
latest version he fetched.

Alice created the version 3 of artifact “A" and updated the link from version 2a to version 3a
at the same time when Bob created the versions b, ¢ and d of the artifact “B" and updated the
link form version 2a to 2d. Hereby a contflict in the traceability link’s version history arose. This
conflicting history is stored by PlatinVC in an unnamed branch (as illustrated in Figure 25b).
Version 3a and 2d are both based on version 2a. This branch can be merged by pointing to a
more recent version of the connected artifacts. Thereby link version 5d can be based on 3a and
2d to merge the diverging history lines. To avoid unnamed branches, updated links should
always point to the latest version of the linked artifacts. When the network is separated into
partitions (see Section 8.6) this is not always possible immediately.

7-4 SERVICES

In this section the services offered to the user by PlatinVC are detailed. Chapter 8 and Chapter 9
explain how they were realized. In addition to PlatinVC'’s services, all commands of Mercurial
(see Section 5.2.4) can be called, which manipulate the local module only. To share resulting
changes with other developer the following services of PlatinVC are to be used.The module
operations connect a module to PlatinVC, the retrieve and share operations exchange recorded
snapshots among the users.

7.4.1 Modul Management Operations

The module operations manipulate the modules of PlatinVC, namely the local module, the
corresponding peer-to-peer module and the respective global module in the virtual global
repository (as detailed in Section 7.1). Only the local module is visible to the user, the other
modules are created or updated during the execution of these operations by PlatinVC. The
following operations are to be used to connect a module to PlatinVC, which will serve as the
local module.

O-1: Clone remote module: A module can be accessed by cloning it from the global repos-
itory, by addressing it with its unique module identifier. The entire module, which
contains the complete history of the contained project, is transferred using PlatinVC
over the network in this way. Although the module is rarely larger than double the total
size of all artifacts in the latest version, it may still be several mega bytes. Due to the
typical network speed, it may be better to share a module with a new participant by
handing him a copy on a data medium such as an USB flash memory drive. Copying
data to or from a medium is faster than typical network transfer speed. The bandwidth
in the network could be put to better use in other tasks. If some participating developers
are physically close to each other, obtaining an initial copy of a module via the network
connection should be avoided.

O-2: Add an existing module: This service adds a module that already exists in the local file
system, to be shared with other developers by PlatinVC. Modules can be large, wherefore
it may be more efficient to copy them by means other than over a network connection.
The specified module is used as a local module by PlatinVC. It is synchronized with the
corresponding global module - if it does not exist yet, it will be created. The peer-to-peer

103

104 OVERVIEW OF PLATINVC

module, which serves as an intermediate connection between the local and the global
module, is created in this process as well. After this operation is finished the added
module can be used with PlatinVC.

O-3: Initialize module: A new module is initialized, by creating all necessary local and
global components (i.e., the local module, peer-to-peer module and the global module in
the virtual global repository). The user is warned, if a module with the specified name
already exits, and offered to clone the remote module instead.

O-4: Remove module: Removes a local module from the managed modules. The correspond-
ing peer-to-peer module is deleted. The local module itself remains undeleted (the user
can erase it, if desired). The corresponding global module in the virtual global repository
is not deleted either. As long as any participant has a local copy of this module she
might continue to work with it. As a client might be not connected to the network it is
impossible to see, if the last user having the module removes it. This is not a constraint
of the used technique but merely a design decision. If desired a simple mechanism*
could enable to remove a module completely.

7.4.2 Retrieve Operations

The retrieve operations collect the latest snapshots shared by other users.

In the most centralized version control systems, updates are retrieved for all artifacts in the
module, but from a selected branch only. Updates in a distributed version control system are
retrieved in two steps: first all snapshots in all branches are added to the local history, then
the user applies a chosen snapshot from one branch to his working copy.

In PlatinVC all retrieved snapshots from all branches are applied to the local history in the
local module. With the commands of the underlying dVCS, a user can subsequently choose
which snapshot of which branch he wants to apply to his working copy. A user can optionally
chose to update all folders starting from a specified folder, instead of all existing folders in the
working copy, as explained in Section 7.3.1. As detailed in Section 8.4 only one peer has to
be contacted to check for updated artifacts for each folder. Specifying a folder other than the
outermost folder distributes the load away from the outermost folder’s maintainer.

The following example, illustrated by Figure 26, clarifies which snapshots are retrieved: Let
us assume our project consists of the artifacts and folders presented in Figure 26a. Each folder
has one artifact, represented by a file. The topmost folder of the project is the root folder, which
contains the folders A and B. Inside folder B is the folder C. If we track modifications on the
files and commit them seven different snapshots could be created, depending on which files we
modified. If we modified the files a from folder A and c from folder C the resulting snapshot
would be ac. Figure 26b shows all possible combinations, ordered by sets. Figure 27 shows
what the history could look like, when modifications on different files were committed. A box
represents a snapshot. A modified file results in a new version, indicated as filename+roman
number (which is the sequential version number) in the figure. The superscript number
indicates a variant of the version. A snapshot is indicated by the set formed by its containing
versions.

The initial snapshot contains the first version of the files a, b and c. Based on this snapshot
seven different developers modified a different combination of files. The first developer
changed the content of the three files a, b and ¢, which resulted in the snapshot { all'; bIl';
cll'}. Another developer changed the files a and b, which resulted in the variant snapshot
(an unnamed branch) { all%; bII%}, and so on. Afterwards all snapshots were merged?. In the

=

(1.) Keep track of users, remove a module, if the last user executes the remove operation. This would introduce
additional messages to keep track of the number of users.

(2.) Remove the global module immediately, meaning deleting all local and peer-to-peer modules on all storing peers,
once they are online. This requires a trusted environment to work, where a remotely executed remove is locally
enforced, and not available to everyone.

2 For simplicity this is presented as if it occurred in one step. In PlatinVC only two snapshots can be merged, which
would require several intermediate snapshots.

7.4 SERVICES

Root Folder

File
r
Folder A (Folder B)

File File
a b

{abc}

{c}
SetyY

(a) File hierarchy (b) Sets of Snapshots

Figure 26: Example to clarify which snapshots are pulled.

| {aII1;bI|I1?cII1} | {aIIZ;IbIIZ} | {bII3!cII2} | {aII3!cII3} | {aIII4} | {bIII4} | {c|||4} |
5 5 5 5 7S

[{alll;blll;cllTy | {lbIII;cIII} | {bIll} |

A
[]
M {cIV} | {alVZ: cIV}

Figure 27: Exemplary history (simplified)

merged snapshot either all files were changed, leading to new versions and forming snapshot
{ allL; bIIL; cIII }, the files b and ¢ were changed (forming { bIIL; cIII }) or only the file b was
changed (resulting in { bIII }). We introduced three alternatives here, which are used in the
example. Based on this snapshot the developers changed the file 4, thus created snapshot {
aIV' } and the file ¢ ({ cIV }) or a and ¢ ({ aIV?; cIV }).

We assume that a further developer has the initial snapshot only. He has several options to
update his local repository. He executes pull using specified folder. He works on a part of the
project, which is represented by files stored in the folder B or any subfolder under B, namely
the files b and c. He is only interested in modifications, made while working on this part of
the project. If he pulls the latest snapshots specifying folder B he will get all snapshots, which
are in the united set 3 and vy, as presented by Figure 26b. That would retrieve all snapshots

presented in Figure 27, except the snapshot { alV! }, as the latter is in the disjunct set «.

All snapshots in the set (and its intersections with the sets « and y) are guaranteed to be
retrieved. The snapshot { cIV } or { alVZ; IV } respectively, which are in the disjunct set y
could also be missing, depending on the message loss in the network. Only if the folder C
was specified using the pull operation, the latter snapshot would be guaranteed retrieved as
well. N.B. All snapshots leading to the snapshots { alll; bIIl; cIII }, { bIIL; cIIl } or { bIIl } are
guaranteed to be retrieved as well, although some are not in the united set 3 and v (like { all*

D-

As detailed in Chapter 8, the repository is distributed by folders instead of snapshots.

This decision is reasoned by the fact that software projects are organized in a hierarchical
folder structure. In a good design, different aspects of the software are separated into different

105

106

OVERVIEW OF PLATINVC

folders. It seems more natural to work in different folders instead of different (named) branches,
especially when updates can be received in isolation, as presented in Section 7.3.1. PlatinVC
was built to reflect this point of view, as detailed in Chapter 8.

O-5: Pull globally using specified folders: Gets all locally missing snapshots for a folder and
its subfolders, which correspond to a branch of the tree representing the folder hierarchy
of the project. As illustrated by the previous example and explained using Figure 26b, all
snapshots in the disjunct set « would not be retrieved. The snapshots in the disjunct set y
can be missing, if messages are lost, and the snapshots in the set 3 and its intersections
to the other sets are retrieved guaranteed. All former snapshots, the latter is based on
are also retrieved, if not already present.

0O-6: Pull globally: Acquires locally absent snapshots of all artifacts and applies them to the
local module. This is equivalent to executing operation O-5 by specifying the outermost
folder of the project. As explained before, not all snapshots might be retrieved under
guarantee. If all existing snapshots must to be retrieved, a variant of this operation could
be called, which executes operation O-5 specifying all existing folders. This operation
would involve many machines and be inefficient, and should only be used in situations,
where the operation duration is less important than the completeness of the retrieved
snapshots. Packing a software project to form a release could be such a situation.

O-7: Get Artifact: This operation retrieves the latest version of a single artifact. Unlike the
other operations, the history is not updated and the file is transferred in its full form.
This is useful if a user does not want to use the version control system, but needs to
retrieve the stored artifacts. This is the case in a wiki engine, when articles are accessed
for reading.

7.4.3 Share Operations

Committing changes is a twofold process: first changes are committed locally, which records
the modifications made to all files in the working copy in a snapshot. Subsequently snapshots
can be pushed globally, which publishes all unpublished snapshots to be accessible by all
participants.

By splitting up the commit operation into two steps, the commit frequency recommended in
Section 4.2 can be implemented: Users can commit any changes in short intervals locally only,
benefitting from fine-grained control over the evolution of the project. Thus small changes
can be undone and variant development tried out, without concern about destabilizing the
project, i.e., temporarily breaking the ability to compile a software project. When the project is
stable again and does not hinder coworkers in working on their changes, all local committed
snapshots are pushed globally in one step. Conflicts are detected and the solving mechanism
takes over.

As detailed in Section 7.3.2, all formerly not exchanged snapshots are pushed as soon as a
network connection is available.

0-8: Commit: Commits changes to the local module. Each artifact that had its content
modified after the last commit is recorded as a new version. All versions formed are part
of a newly created snapshot. This snapshot is not shared until push is initiated. This
operation calls the underlying dVCS’s commit command.

O-9: Push globally: All snapshots not yet pushed are applied to the virtual global repository.
After the operation finishes, any participant can retrieve those shared snapshots.

O-10: Commit globally: Commit globally mimics the committing operation of cVCSs and is
realized by committing changes locally and subsequently pushing them in one step.

7.5 SUMMARY

7.5 SUMMARY

This chapter presented an overview of the architecture of PlatinVC. The system works without
relying on any single participant, as is usually the case in dVCSs, while offering the centralized,
up to date view of a cVCS. It combines the advantages of these systems without inheriting their
shortcomings. PlatinVC combines the concepts of centralized and distributed version control
to enable a novel workflow, not possible in either system. The locally operating features of a
dVCS can be fully utilized by a user. PlatinVC inherit’s the ability to work without network
connection, automatic branches and interoperates with selected version control systems, while
providing the ability to retrieve any shared version with the global view of a cVCS. PlatinVC
extends these basic features with mechanisms that manage the evolution of traceability link
and offer a novel approach to separate the work of developers. Other than using them for
traceability of artifacts, a basic configuration management is enabled by a snapshot based
version control and links between files, folders and modules, of which evolutionary changes
are tracked. The automatic isolation of concurrent work enables a novel workflow, where
users specify the artifacts they are interested in, which will retrieve related updates on other
artifacts as well (unlike the selective updates in cVCSs). Branches are created automatically,
when conflicts arise, and do not have to be created in advance. PlatinVC provides a solution
to the problem of finding the right frequency to share changes by providing personal commits,
which are shared globally with all other participants once developers finishes their task.

107

DESIGN OF PLATINVC

The final design of PlatinVC presented in this work is the result of five development iterations
(compare to Appendix A).

8.1 DESIGN PRINCIPLES

Distributed programs have a higher complexity than their single machine counterparts. They
run in a less predictable environment, which makes development and testing harder ([TSo6,
CDKaos]). PlatinVC was developed based on the following design principles. They are derived
from general software design patterns [GHJV95], the area of distributed systems ([CDKos]),
design principles typical in peer-to-peer systems [AAG " 05] and our own experience gathered
while refining the several versions of PlatinVC, which resulted in the presented prototype.

D-1: Reuse existing technology: In order to increase the maturity of the prototype, existing
solutions should be integrated whenever possible. Software developed in an educational
institute often lacks the maturity commercial or even open source projects have. Normally
there is lesser man power and time spent in the development process and the software is
less intensively tested. Successful projects are at least partially developed as open source
projects over multiple generations of doctoral students. Therefore, wherever possible,
software, which proved to be mature, should be reused. Preferably without changing
the software or by participating in its development process, so that new releases can be
integrated with minimal adaption to one’s software.

D-2: Do not rely on the availability of any machine: A peer-to-peer network typically
consists of unreliable machines. Any user can leave the network at any time. One reason
for this behavior is that a client’s machine is typically not as fail-save as a modern server
system, thus they can fail even when unintended by the user. If a particular machine is
essential to the system, its user would not be free to turn it off at any time. Therefore a
failing machine should be considered as the normal case rather an exception (compare
to [AHoz2]).

D-3: Do not rely on any message transfer: A peer-to-peer overlay network uses TCP/IP
or UDP/IP messages, which are sent over unreliable networks such as the Internet.
Therefore message loss should be considered frequently and countered with a minimal
handshake protocol, where the receiver acknowledges a message which is otherwise
resent after a timeout. To comply with design principle D-4: Avoid transactions this
handshake should be avoided wherever possible (e.g. if receiving the message is not
crucial for the system).

D-4: Avoid transactions: [FLP85] pointed out that it requires additional synchronization
among distributed machines to agree on a single value, i.e., if a transaction can be
completed or not. The unreliable nature of a peer-to-peer network, where any machine
can fail or its messages can be lost, intensifies this problem even more. Basically messages
and decisions have to be acknowledged among the deciding peers, failing peers have to
be replaced in this process, and timeouts have to abort without terminating processes.
Often otherwise acceptable transactions are aborted as a result of network disturbances.

The paxos algorithm, presented in [Lamo1] and [Lamg8], promises to be a practical
solution. It was altered to the paxos commit protocol in [GLoz] and adapted to a peer-
to-peer network by [MHo7] and [SSRo8]. We compared these solutions with our own
approach in [Vocog], which proved to be superior for transactions with approximately
ten items by significantly reducing the time required to complete a transaction.

109

110

DESIGN OF PLATINVC

Nevertheless, all solutions bring an unavoidable overhead in the number of messages and
the operation time of the commit protocol. With rising network instability, for example,
emerging from leaving and joining peers, a transaction protocol is more likely to abort
and has to be repeated, multiplying the overall costs. It is best to avoid any kind of
transactions whenever possible.

D-5: Avoid storing statuses: A proven mechanism to provide availability in an unreliable
peer-to-peer network is to replicate all stored information. The routing mechanism in
a structured peer-to-peer overlay network takes care to deliver a message to the next
closest peer once the original recipient fails. A number of neighbors of any peer, i.e., the
closest peers according to their identifier, replicate all information needed to substitute
that peer in case it leaves the network. Therefore all information must be copied to the
neighbors, as soon as they are created or stored on the maintaining peer, in a reliable
manner. A message has to be acknowledged with an answer or resent after a timeout.
Again, this mechanism reduces the system’s performance, as more messages are created
and the time needed to store information reliably on a peer is prolonged by the time
needed to replicate it successfully on the peer’s neighbors.

Replicating information should be avoided by avoiding the creation of permanent
information in the first place. Whenever possible storing a status should be avoided.

8.2 DESIGN OVERVIEW

To be compliant to requirement R-14: Availability PlatinVC is implemented in Java [Jav],
enabling the system to run on multiple platforms.
PlatinVC consists of three main components, which are shown in Figure 28. These main

Alice's Peer Bob's Peer

«component» «component»
«use» Local g] Local g]

—————— —>| Version Control Version Control
Mechanisms \O Mechanisms \O
N /1\ “x »‘x
Alice

™
™

]]
«use»| «use»|
«component»] ’“/ «component» £] "/
Communication Communication

Network Layer Network Layer

I\ AN

= -

s c

N «use GE> «use aE>
l LE9 : 229
“user \ «component» =] EES «component»] EES
N Global ¢o§ lobal e6§
Version Control ——-@— 8 ﬁ Version Control ———(O— 8 ﬁ
Mechanisms EES Mechanisms EES

< oy o >

FEO FEO

o 7]

= =

-1 3

3 3

Component Intercommunication
Component Intercommunication

Figure 28: High level architecture of PlatinVC

components implement are mechanisms that enable a global version control. These mechanisms
work as distributed algorithms, which are executed by a number of peers. The services of
PlatinVC, which are described in Section 7.4, are triggered by a user. Additionally, some
mechanisms react to failures in the system and repair faulty behavior.

These global version control mechanisms communicate among the participating machines
using the communication network layer. This component realizes a structured peer-to-peer over-
lay network, which routs messages using a virtual peer identifier and maintains the overlay
network structure by replacing failing and incorporating joining peers.

83 CHOICE OF THE SUPPORTING SYSTEMS

The communication between the components is handled by the component intercommunication
and lifecycle managing component, depicted on the right side in Figure 28. Using well-defined
interfaces other components can use each other’s services. A component could be exchanged
with an updated version if needed.

A user commits changes to an artifact in her working copy using the local version control
mechanisms. She shares the recorded snapshots with other users by executing the push oper-
ation of the global version control mechanisms. Likewise the latest versions of other users are
pulled, using our global version control mechanisms, and applied to the working directory by
calling the update operation, which is part of the local version control mechanisms. For all
core version control functionalities PlatinVC need to perform, such as calculating a missing
delta that needs to be transferred, the services offered by the local version control mechanisms
(provided by Mercurial) are used.

The reused technologies are briefly described in the next section, while the global version
control mechanisms are detailed in the remainder of this chapter.

83 CHOICE OF THE SUPPORTING SYSTEMS

Following design principle D-1: Reuse existing technology, components which have proven to
be reliable in various open source and industrial projects were utilized whenever possible. To
the author’s best knowledge each component represents one of the best solutions in its area.

8.3.1 Component Intercommunication & Lifecycle Management

To manage the communication among the components of PlatinVC, an implementation of
OSGi [Alloy] was chosen. Basically this was needed to integrate PlatinVC with other tools,
which use the same peer-to-peer communication instance. Using this technique AskME (our
communication application, presented in Section 9.3.4) has been easily integrated, as detailed
in Chapter 9.

OSGi is a framework standard used in embedded systems where a small memory footprint
and efficient, often real-time critical execution is important. We used the most popular imple-
mentation Equinox [equ], which is the core component of the Eclipse integrated development
environment [Fou] since 2003. Equinox is, like Eclipse, an open source project, which is
implemented by full time developers from global companies like IBM.

Equinox can handle a component’s lifecycle, uninstalling old components and starting their
updates without needing to shutdown the machine the software is running on (as demanded
by requirement R-20: Continuous expendability).

The main benefit gained by using the Equinox OSGi framework is that PlatinVC could
be combined with the widely used integrated development environment Eclipse, as well as
running as a stand-alone application, using the same core logic with different user interfaces,
as detailed in Chapter 9.

Alternative Choices

If the ability to integrate PlatinVC with other OSGi based tools is not needed, and requirement
R-20 can be left unsatisfied, any programming language’s capacities to separate a program
into components that interact using well-defined interfaces would have been sufficient.

Otherwise, there is no alternative as potent as an OSGi implementation. Among the few
Java based implementations Equinox is the most extensively tested, as Eclipse is one of the
most widely used tools in software development.

8.3.2 Communication network layer

As concluded in Chapter 6 an implementation of a structured peer-to-peer overlay network
should be exploited. Pastry [RDo1b] is one of the best performing peer-to-peer protocols: it is

111

112

DESIGN OF PLATINVC

robust against high churn [RGRKo4] and locates any peer in O(logN) routing hops, where N
is the number of peers in the network.

The most promising Java based implementation is FreePastry [FP], which was designed by
the original authors of Pastry [RDo1b] in 2002 and is still under development. It is an open
source project licensed under the very liberal BSD license. FreePastry is used successfully by
numerous projects’.

Alternative Choices

There are some peer-to-peer protocols, such as Kademlia [MMoz2], which show a better
performance with regard to message transfer times and robustness. However, at the time of
writing there is no mature Java based implementation.

Some of the developers of FreePastry started another Pastry implementation in 2003, which
showed to be more reliable under heavy churn. This implementation, MSPastry [CCRo4], is de-
veloped by Microsoft as a closed source project. The project, however, is available to educational
institutes. The user base is therefore smaller than FreePastry’s user base. MSPastry is imple-
mented in C#. The restrictive license agreement and the less widely available documentation
render this alternative unattractive next to the prototype’s appealing properties.

8.3.3 Local version control mechanisms

To implement the local commit and handle other local version control tasks (as required
by requirement R-1: Support common version control operations) the version control logic of a
distributed version control system seems to be tailor-made for our purposes. We chose to
reuse an existing application: the distributed version control system (dVCS) Mercurial (see
Section 5.2.4 for a detailed presentation). A dVCS brings the version control logic of a version
control server application to a single user’s computer in a lightweight and efficient way. Most
operations are in fact faster than in a cVCS, because data is transferred within a computer
instead of over a slow network channel. It fulfills numerous requirements, such as requirement
R-8: Offline version control, and it is fast in manipulating a module’s history.

Mercurial runs on any platform which can execute python scripts. For performance reasons
a very small number of helper components are written in c++, but are compiled for a majority
of systems.

Alternative Choices

The discussion in Section 5.2 concluded that at the time of writing only two dVCS applications
are in the same time feature rich as well as efficient: Mercurial and Git [HT]. Both systems
differ only in some minor design details. The main operations, which fulfill all requirements
listed under requirement R-1: Support common version control operations with a local scope only,
are identical. The internal structure, in which snapshots are recorded, differs slightly.

Git’s operations require slightly less time to complete and the repository size is slightly
smaller in most cases as well [Git]. As a drawback all versions of a single artifact are stored
in an indirectly connected structure: To find the previous version of a specific artifact Git
first identifies the associated snapshot and traverses the parent snapshots until a snapshot is
found where the artifact has been changed. Git achieves a small repository size by storing each
version as a full version (not using delta compression) and compressing all files subsequently.
Thus, a repository, which is distributed into parts, which are stored among multiple peers,
cannot be compressed as if all parts would be present on a single machine. Mercurial uses
delta compression to store all versions of a single artifact, which could be better distributed
among several peers. However, the main reason against Git is its platform dependability: Git
was created for UNIX and Linux based machines and does not run on Windows without
additional tools®.

1 Some are listed in http:/ /www.freepastry.org/projects.htm.
2 namely Cygwin (http:/ /www.cygwyn.com)

84 GLOBAL VERSION CONTROL MECHANISMS

84 GLOBAL VERSION CONTROL MECHANISMS

In this section we present the general mechanisms to share a developer’s changes using
PlatinVC. We first describe how recorded versions are stored among the peers in Section 8.4.1,
Section 8.4.2, and Section 8.4.3. In Section 8.4.4 we present the mechanisms which are executed
in order to fulfill a user’s requests. How conflicts are handled is detailed in Section 8.4.7.
Finally in Section 8.4.8 we present some additional mechanisms that handle renamed, moved,
and new artifacts.

8.4.1 Storage Components on each Peer

All data in PlatinVC is stored distributed among the individual peers. Each peer acts as an
active client as well as a passive server. So the actual versions of all artifacts are produced and
stored on a peer, and replicated and offered by the same and other peers. The Metamodel in
Figure 29 shows the structure of all stored data on a peer.

r=-==-====== A
I virtual global | .
1 repository ! history
R Y St
1 1
*.A 1
peer-to-peer Folder with

module content
mercurial "
module K]
local module L working copy

Figure 29: Metamodel of the components on a peer

—_

Component for local Version Control

A user edits artifacts in a working copy, which is represented by files in a folder hierarchy.
The working copy is controlled by Mercurial, which is exploited as the local version control
mechanism. A user creates snapshot by executing Mercurial’s “hg commit” operation. The
resulting history is stored in the local module, which is under the complete control of a
user. Therefore all operations of Mercurial or any of its supporting tools can be used without
network connection.

Besides committing snapshots locally, which are not yet intended to be seen by others,
local temporary clones for experimental changes can be created, or a bug-free revision can be
sought in the history with bisect (detailed further in [O’Sog]), to name just a few operations.
The complete history of a module can be accessed.

A user can use any of Mercurial’s operations on the local module, and can even share it with
other users using any of the workflows presented in Section 4.1. Nevertheless, whenever a local
module’s history should be shared with coworkers our system takes over. N.B. Mercurial’s
sharing mechanisms could be invoked by the user as well, but this should be avoided, as it
brings the drawback of only being able to share one’s changes with a limited number of other
developers. PlatinVC automatically chooses the right peers, with whom snapshots are to be
shared in order to make them publicly available, or in order to obtain the latest updates.

113

114

DESIGN OF PLATINVC

Component for global Version Control

All operations provided by the global version control mechanisms synchronize the local
module with the respective peer-to-peer module on a user’s machine. The peer-to-peer
module represents the partitioned virtual global module, which is retrieved by combining
the distributed parts from different peers, as detailed in Section 8.4.2. The virtual global module
does not exist on any peer - it is only a conceptual construct, which represents the union of all
peer-to-peer modules on all peers. The peer-to-peer module is in fact a second Mercurial module,
but it is hidden from the user. Only the operations of PlatinVC should manipulate it. Initially
a user clones a module from the global peer-to-peer repository. If the peer-to-peer module
already exists it is updated when the user joins: First operation O-6: Pull globally is executed,
which pulls all missing snapshots from a peer in the system which has the latest updates.
Afterwards all snapshots shared using operation O-9 while the user was offline are pushed
to the maintainer of the changed artifacts. Only missing snapshots are transferred. If a user
recorded snapshots which he shared with another user, using Mercurial’s share possibilities,
and that other user already integrated those snapshots in the global peer-to-peer repository
the already present snapshots are not transferred again.

Each peer stores for each peer-to-peer module a history cache. Here the metadata of snapshots
are stored. This metadata includes a snapshot’s identifier, its parents identifier and the folders
whose content was changed in a snapshot. All other information and the actual changes, which
formed the snapshot are not stored. If the storing peer is responsible for a folder, which does
not contain artifacts, of a module, which is not checked out by the user (and thus the peer does
not store a corresponding local module), there is no corresponding peer-to-peer module stored.
The entries in the history cache are identical to those in a corresponding peer-to-peer module
(if present), but there are additional entries most of the time. As a side effect of the system’s
operations (share, retrieval and maintenance), the metadata of the snapshots in the distributed
peer-to-peer modules are exchanged. A history cache thus represents the (outdated) history of
the virtual global module. In Section 8.4.5 and Section 8.4.6 we will see how the history cache
is filled and used.

Storage Space Consumption

After each global pull (see operation O-6) or push (see operation O-9) the local and the
peer-to-peer module have the same content. PlatinVC does not require twice the amount of
storage space for the local and peer-to-peer module, as Mercurial handles the modules using
lazy copies. The complete version history of a single artifact is stored in a file3. Hard links
are used to avoid wasted hard disk space for identical files: whenever a file in a module is an
identical copy of a file in another module on the same machine the actual data is only stored
once on the hard disk. Hard links point to this data from within the respective modules.

The history files in the local and peer-to-peer module differ only in two cases: When
snapshots are created locally and not pushed globally and when snapshots of other peers are
received without being requested by the user of the local peer (in which case his machine is
the maintaining peer for the received snapshots). In the first case the repositories have the
same content after the snapshots are pushed again using operation O-9: Push globally (the pull
operation does synchronize the modules), in the second case the snapshots are equal when
the user pulls those snapshots (which will be very fast, as they are already locally present).
After pushing the locally recorded snapshots globally the modules share the same hard disc
space again. This behavior is realized by executing the "hg relink’4 command, which tells
Mercurial that two modules are identical, so they can be stored using hard links like done
when a module is cloned.

The operation O-6: Pull globally command pulls snapshots from other peers into the peer-to-
peer module first and into the local module directly afterwards. If the local peer is responsible
for tracking the changes of some folders, as detailed in Section 8.4.2, other peers will push

3 As long as the file is not renamed or moved. In this case a new file is created to store all new versions
4 See http://mercurial.selenic.com/wiki/RelinkExtension

84 GLOBAL VERSION CONTROL MECHANISMS

their snapshots to the local peer’s peer-to-peer module. These snapshots are not applied to
the local module, so the updated history files consume additional space until the local user
updates her local module executing operation O-6: Pull globally.

In any case the modules can be synchronized by issuing a push and a subsequent pull
operation, but the difference might be intended. Normally unpushed changes from the local
module should be collected until the latest snapshot does not break the project. Likewise
globally pushed changes should not be applied to the local module unnoticed by a user, as this
will confuse the local history. If desired, however, changes could be exchanged automatically
to mimic a behavior more similar to centralized version control systems with minimal changes
to PlatinVC (more about this can be found in Section 11.3).

OVERVIEW OF STORED MODULES For each project a developer has a separate working copy
and an accompanying local module. On her machine exist at least the same number of peer-to-
peer modules as local modules, which do consume extra space only for differing files, i.e., when
additional versions exist for some artifacts in one of the modules. As explained in the following
section her machine might by responsible for any folder in any other module, depending on
the assignment according to the identifier space. If that is the case the modules containing
the other folders are stored on the developer’s machine as well, without an accompanying
local module and working copy. If the developer’s machine is not any more responsible for
maintaining a folder in a project she does not work on, the respective peer-to-peer module
could be deleted. To avoid the time and bandwidth costs needed to copy a module, if the
machine becomes responsible again, it is best to not delete these peer-to-peer modules.

The more modules (or more precisely the more folders) are in the system, and the less peers
are online, the more likely all peers store all modules. If the modules can be clustered in sets,
so that no developer works on a module which is part of a different set, it is better to have
separate networks. This avoids developers having to store modules that they do not work on
on their machine.

Analysis of Design Alternatives

All of the related peer-to-peer approaches examined in Chapter 5 store an artifact’s history in
a single module. This saves storage space, but the resulting drawback is that local snapshots
from the user are mixed with global snapshots of other users. The two step commit process that
fulfills requirement R-1.9: Enable local commits is not possible with a single module. Pastwatch
(see Section 5.3.5) separates a user’s local module from a global module, but only to be able to
offer requirement R-8: Offline version control. The local module is updated automatically with
the latest changes in the global module. In Pastwatch every peer has a local module, but only
some have a global module.

8.4.2 Repository distribution and partitioning

The global repository stored in PlatinVC is distributed maintainer based among specific peers,
following the mapping rule used for distributed hash tables. Snapshots are sent to a limited
number of peers, which can be executed in a short time. In contrast, if the repository would
have been distributed replicated among all peers the time needed to share a snapshot would be
significantly higher. Nevertheless, PlatinVC shares some properties of a replicated repository.
Whenever needed a developer retrieves missing snapshots. Often a developer is interested to
retrieve all snapshots existing. If all participants do so the snapshots eventually exist on all
peers. In this way updates to a repository are initially shared with only a few peers, so they
are retrievable in a short amount of time without being affected from the network’s size, but
they are distributed eventually to all participants, making them highly available (using owner
path caching) and robust to go missing.

115

116

DESIGN OF PLATINVC

All artifacts that belong to a project are stored inside an outermost folder in a working copy.
Typically parts of a project, like packages that implement certain functionalities, are organized
in folders. We exploit this folder structure to partition a project among the maintaining peers.

The repository is distributed as follows among the peers: In each module an identifier is
calculated for each folder by calculating the hash value of the folders name and path from
the uppermost directory in the working copy. The path is a string that consists of a module’s
name and the names of all folders, which have to be traversed to reach the named folder.

The used hash function is the same the peer-to-peer overlay uses to compute a peer’s
identifier. In the utilized Pastry [RDo1b] implementation FreePastry [FP] a hash value is
calculated using the SHA-1 algorithm [Burgs], which maps any string to a 160bit, represented
by a 20 digits hex number. Mapping a folder’s name and path to this number allows us to
assign the folders to peers, as the domain for both, the folders” and the peers’ identifier, is
the same. A peer whose identifier is numerically close to a folder’s identifier takes the role of
the maintainer for all artifacts residing in this folder. The numerical closeness is measured in
Pastry by comparing the peer’s identifier’s digits with the folder’s identifier’s digits. Among
the online peers the one whose identifier shares the longest uninterrupted sequence of digits
is responsible for the folder with this identifier.

The folders of all modules in the repository follow a normal distribution among the peers,
because the hash values are calculated using a user’s name (for the peer’s identifier) and
a folder’s name, path and module are normally distributed values in the above mentioned
domain.

A maintainer is responsible for tracking snapshots of modified artifacts, which reside in an
assigned folder. Whenever a peer executes operation O-6: Pull globally or operation O-9: Push
globally a maintainer is contacted. Let us assume that a developer made changes to artifacts in
two folders and recorded them in a local snapshot. When she pushes this snapshot globally it
is sent to the maintainer of the respective folders. Both maintainers apply the same snapshot
to their peer-to-peer module. As detailed in Section 8.4.4 these maintainers store the global
latest versions until snapshots are committed that contain modifications on artifacts in folders
that are not maintained by those peers.

Which concrete peer is to store which data depends on the identities of the peers currently
online in the network, as in any DHT based storage. The fewer peers are online the more
likely a peer is responsible for multiple folders. The latest snapshot a maintainer stores is not
necessarily the globally latest snapshot that exists. It is assured that the latest versions of the
artifacts in the maintained folder are in the maintainer’s peer-to-peer module, but more recent
snapshots might exist as well. If a maintainer is responsible for other folders, as a maintainer
or a replicating peer as described in the next section, all snapshots of the artifacts in those
folders are present as well, which might be more recent. As already described, it is hard to
predict which folders a peer will be responsible for and this assignment changes dynamically
initiated by joining and leaving peers. Thus the minimum guarantee given is that all versions
of the artifacts in the maintained folders are locally present. As detailed further in Section 8.4.4
these additionally stored snapshots are not retrieved. Sending them to a peer which expects
updates on artifacts included in a specified folder would only disable the automatic isolation
of concurrent work (see Section 7.3.1).

Analysis of Design Alternatives

A number of alternatives have been discussed in Section 6.5.3. For all solutions, in which
the identifier of an artifact’s history cannot be computed using local information, such as
the artifact’s name and path, an additional index list is needed. The major disadvantage of
Pastwatch is such an index list, which is stored by one peer and accessed all the time by all
other peers. This list contains the names of the members of a project. All snapshots committed
by a member can be found on the peer responsible for the hash value computed using the
members name.

Peer-to-peer based version control systems, which partition the repository similar to Plat-
inVC, assign the history of single artifacts to specific peers. We decided to distribute the

84 GLOBAL VERSION CONTROL MECHANISMS

repository less fine grained, so that the number of maintaining peers is smaller. This results in
a smaller number of peers involved in the global push operation, which is shown in the fewer
transferred messages.

Assigning an entire module to a single peer is too coarse grained. The push and pull
operations would be more efficient, as only one peer has to be contacted, but this one peer
would be contacted by every developer working on the maintained module. Many of the
drawbacks of having a centralized solution (see Section 2.4.1) would reappear.

8.4.3 Replication

To counter failing peers all relevant information in the system exists on multiple peers.
Following the DHT approach a subset of a peer’s neighborhood peers, called the replica set,
replicate all relevant data. The replication has to be as reliable as possible. Failing peers are
immediately replaced, as elaborated in Section 8.5.

A maintainer is concerned with replicating updated data to its replica set. When new data
is about to be stored by the maintainer, which is only the case during a global push, it sends
the data directly to all replicating peers. Only if all replica peers acknowledge that they stored
the data it is treated as applied and the user is informed. Different situations, which can occur
depending which peer is failing, are analyzed in Section 8.5.

The data that needs to be replicated is reduced to a minimum in order to avoid the costly
(in transferred messages and needed time) update process described in Section 8.5. The
maintained partial repository, consisting of the modules that include the folders a peer is
responsible for, is replicated. A peer can be the maintainer for some folders and a replica
peer for other folders at the same time. Regardless of why a folder is stored with the latest
versions of the included artifacts, they are all stored in the same peer-to-peer module. When a
developer asks for the latest snapshot regarding the artifacts in a specified folder, however,
no newer snapshot is sent which includes changes of artifacts outside the specified folder
exclusively.

The repository’s history cache, needed by the collaboration procedure detailed in Sec-
tion 8.4.4, is replicated as well. It is updated whenever a maintained module is updated. Thus
it is sent as additional data during the replication of a module’s update and does not require
additional messages.

All status information is retrieved by a message type and tracked by a service taking peer
only. For example, if a peer requests to push changes, a maintainer sends an allowance. The
maintaining peer does not remember that it has sent an allowance, nor does it count for a
timeout to resend it. If the answer is lost, the requesting peer will resend its request. When the
requesting peer proceeds with sending new snapshots, the maintainer knows from the message
type how the message has to be handled. All messages have a unique session identifier, which
is remembered by the requesting peer only. A maintainer sends the session identifier that it
took from the message it is answering, it does not remember it from the first received message
in the push protocol. If a request is resent and the requesting peer receives two answers (e.g.
the first answer was received delayed, after it resent its request), the requesting peer can
recognize the duplicated message from its session identifier.

As already mentioned, only the requesting peer remembers the phase of a push or pull
protocol. The contacted peers only react to the received messages. Only the requesting peer
waits for timeouts and resends its request in case a message is lost or the receiver failed. If the
requesting peer fails it is not necessary (or possible) to complete the protocol, thus the status
of a request does not have to be replicated.

Analysis of Design Alternatives

In some systems like Scalaris [SSRo8, MHo7] the peer who pushes snapshots updates the
replicas as well. While the routing takes care to find the maintainer of a folder specifying the
folder’s identifier, the identifiers of the replicating peers have to be requested first. By the

117

118

DESIGN OF PLATINVC

time an answer is retrieved they could be replaced already. Only the maintainer is updated
with changes among the replica peers through the maintenance mechanisms. This alternative
would be more error prone and would not speed up the push operation, as the identities of
the replicating peers would have to be requested first.

8.4.4 Collaboration

The share and retrieve operations listed in Section 7.4 diverge from each other in the grade of
decentralization. When issuing the update operation a user wants to obtain global knowledge,
i.e. the latest snapshot among all participants.

When a user shares a snapshot he is not very interested whether other users receive it.
Likewise a user is not interested in all shared snapshots but usually only the latest. It is often
only important to know if another user modified the same artifacts, which could lead to a
conflict. Therefore the push operation needs this minimal global knowledge, which is needed
by the respective authors only, rather than globally by all participants.

Global Knowledge

The biggest difference between centralized and decentralized solutions
is the degree of global knowledge they have. Because all information is
gathered in a central place, a centralized solution has complete global
knowledge. The knowledge in a decentralized solution has to be aggregated
with specific mechanisms and is partitioned among the participants.

An example for a system, which has complete global knowl-
edge is a mainframe system [WB96], where users operate
through terminal programs, which run on a central instance.

In a client-server system a user has to first submit his local informa-
tion so that it becomes part of the global knowledge collected on the central
server. Thus the global knowledge is not as complete as in a mainframe system.

There are mechanisms for peer-to-peer systems, which gather and up-
date the distributed knowledge, like the update mechanism presented
in this work. They are always designed for a specific application.

One example of a system with much less global knowledge is any dis-
tributed version control system presented in Section 5.2. Here a user has
to actively exchange his information with other users on a one-to-one basis.
Eventually the knowledge spreads to all participants, but might be outdated
before doing so.

This consideration resulted in two different mechanisms for sharing and retrieving snap-
shots. During the several developed iterations of PlatinVC it turned out that optimizing one
mechanism immediately results in the worsening of the performance of the other mechanism.
The presented solution represents the best trade-off, favoring the retrieval mechanisms as they
are typically executed more frequently.

The following sections describe the operations, which are executed in a distributed fashion
among several peers. They are explained using UML 2.2 sequence and activity diagrams
[UMLog]. Prior to the elaboration of the retrieve and share operations an example is given.

Send Message Reliable

Before we elaborate the retrieve and sharing protocols we first take a look at how messages
are sent reliably using the unreliable peer-to-peer communication PlatinVC is based on. The
presented protocols implement design principles D-3: Do not rely on any message transfer and
D-2: Do not rely on the availability of any machine.

A message can be sent in two ways: If the physical network address of a peer is known, the
message can be sent directly to that peer. Otherwise it has to be routed in the overlay network
by a group of peers. We first observe this mechanism on a directly sent message.

84 GLOBAL VERSION CONTROL MECHANISMS

SEND A MESSAGE DIRECTLY In any network messages can get lost. The loss rate depends
on the physical network the peer-to-peer overlay network operates on. PlatinVC can be
deployed on different networks, e.g., wide area networks (WAN) like the Internet or wireless
local area networks (WLAN).

Several situations can be observed during a message transfer, depicted by the alternative
sequences in the sequence diagram in Figure 30. Additionally, this sequence diagram shows the
basic collaboration mechanism in PlatinVC: A requester triggers the execution of a mechanism
on the receiver’s side and receives a computed result as a reply. The only case in which the

sd send(request, ADdoAction):reply J

sender:Peer receiver:Peer

| Sender
I 1 fails

]
alt -
| send(request) ~

whit fimeout [ADdoAction 1.

opt]
send(reply)

Sende

X
‘

| send(request) - o - g 14 message
" send(request) . g -----F--"
it i * lost
wait timeout !
I
[] :
I
T T T T eand(rentecl) ——— i Receive
| end(request) ~=-+---[" {]_fais
wait timeout
ADdoAction
I
X Receiv
[T send(request) —==a--""7] - message
Y send(request) -=Z1~"" oo
wait timeout

ADdoAction
[J

D |
I
[T senafeques T T | 1 Allok
wait timeout 1T
ADdoAction —+

end(reply

Figure 30: Sequence diagram showing basic message exchange using the physical transport layer

send process is successful is displayed in the last slot of the alternative fragment, which is
annotated with All ok. The sender sends his initial request and starts to count for a timeout.
The receiver reacts upon receiving the message by executing some action, which is referred to
by the activity ADdoAction. The result of this activity is returned to the sender in form of a
reply message. If this message is received before the time elapses, the exchange was successful.
In all other cases some messages are not received.

The sending peer can fail before it can receive a reply, the sent message can be lost and
never reach its destination, the receiving peer can fail before it can send a reply or the reply
message can be lost. In the first case the sender is expected to send her initial message again,
once her machine is ready. Depending on the concrete action the reply will be computed again
or just resent. All other cases are not distinguishable from the perspective of the sending peer.
In all those cases the faulty behavior is surmised after a timeout passed (everything might
even be ok, if the timeout value is set to low).

If messages were lost, resending the initial request could bring success. If the receiving
machine failed, on the other hand, no resent messages will be received. Therefore the number

119

120

DESIGN OF PLATINVC

of retries should be limited. The sequence diagram in Figure 31 presents our implementation.
If no reply was received the initial message is resent retries times, which is a configurable
parameter, set to 3 in our prototype. If no answer is received after the last retry an exception is

sd send reliable(request, ADdoAction):reply J

sender:Peer receiver:Peer
|
loop (1, r) J Ireply ==null or r==retries]

r++

wait:timeout

ref
send(request, ADdoAction):reply

i

:

! !
opt J[no reply received] '
i

[}

|

1

<<RaiseExceptionAction>>
noReplyReceivedException

Figure 31: Messages are resent if no reply is received as shown in this sequence diagram

thrown. This ultimately informs the sender to retry the operation at a later time, when the
receiver might have recovered.

ROUTE A MESSAGE RELIABLE If the sender did not contact the receiver for a long time
it might not have the receiver’s physical network address. A message needs to be routed
to the receiver first, using the routing mechanism of the peer-to-peer overlay. Figure 32
describes how we are using this mechanism. A request is sent with a peer-to-peer identifier

sd route reliable (request, ADdoAction):reply J

sender:Peer receiver:Peer
1 1
loop s1, r) Jlreply ==null or r==retries]

send(request) | ref Joute(request
send(reply) | ADdoAction):reply

I

—— send() s, !
lookup carried out !
closest as described !
e in sd send |
waititimeout :
]

|

]
opt Jino reply received]
<<RaiseExceptionAction>>
noReplyReceivedException
L]

Figure 32: If the direct address of a peer is unknown messages are routed as described by the depicted
sequence diagram

as a destination. This identifier can either identify a peer or a resource offered by that peer.
The DHT mechanism takes care to deliver a message which is sent by specifying a resource
identifier as the destination to the resource offering peer. The sender sends an initial message
to the peer who is closest to the destination peer-to-peer identifier, among the neighboring
peers. When a peer is a neighbor its physical address is stored in a routing table and mapped

84 GLOBAL VERSION CONTROL MECHANISMS

to its peer-to-peer identifier. The routing table entries are kept up-to-date according to the
update policy of the peer-to-peer protocol with periodic maintenance messages. When a peer
receives the message it looks in its routing tables for a peer which has an identifier closer to
the destination. If it turns out that no other peer is closer it accepts the message, executes
the specified activity (as presented by ADdoAction) and sends the resulting reply. If there is a
closer peer the initial request is forwarded to this peer recursively. The returned answer is
sent directly to the original sender, who added her physical address to the request.

The destination of the request is a peer-to-peer identifier, which will be received by the peer,
whose identifier is closest among on online peers. If the receiver fails the routing mechanism
will automatically deliver the message to a substituting peer. Thus, even if the receiver fails,
the message exchange will be successful. Nevertheless the message itself can fail at any of the
multiple intermediate transfers. Thus the possibility of a failing message is multiple times
higher than in the previously described direct message exchange.

sd route(request, ADdoAction):reply /

| :Peer |

send(request) E send() isTN\

looku carried out
as described
. in sd send
alt | [closest = self]

[ADdoAction |
send(reply) |

I send(request) !
I:EI)route(request,

send(reply)| ADdoAction):reply

|
T
"

Figure 33: Similar to the resending presented in Figure 31 routed messages are repeated as well

To ensure that a message eventually reaches its final destination it is resent in the case
a reply is not received within a predefined timespan, similar to the protocol presented in
Figure 31. Figure 33 presents its adaptation to the route protocol. Only the original sender
repeats the operation if the timeout is passed, as it would introduce to many messages, if the
intermediate peers would resend messages as well. It is sufficient if the initial sender ensures
messages are resent. If the timeout elapses before the original sender receives a reply she
resends the message, which triggers resending the message by the intermediate peers. The
number of retries can be very high, in contrast to the retries of the direct message exchanges
described before. The destination of the request is the closest peer to the identifier set as the
message’s destination. Thus, if the actual peer in this position fails after the message was sent,
its closest neighbor will receive and handle the message (see routing mechanism).

The timespan to wait for a reply has to be greater than in the case of a direct sent message,
as the timespan a message needs to arrive at its destination depends on the overlay network
structure, which changes dynamic when peers are joining and leaving. A message routed in
the overlay network is even less reliable as it consists of multiple received and sent messages.
If any of those are lost the original message will not reach its final destination. The number
of intermediate peers, called hops, depends on the momentary structure of the peer-to-peer
network as well.

121

122

DESIGN OF PLATINVC

ENSURE PROGRESS DESPITE FAILED COMMUNICATION As we saw before a message
transfer can eventually fail. A routed message could be repeated unlimited times, and will
eventually be received by a peer able to compute a reply. But a directly sent message cannot be
delivered if the receiver fails. The initiating operation has to be aborted when a directly sent
message could not be delivered at the last retry. Following design principle D-5: Avoid storing
statuses only the initiating peer takes care of the progress of an operation. This is always the
peer of a developer, who wants to execute any of the operations PlatinVC offers. The executed
activity ADdoAction is always initiated by the received request. The executing peer does not
track a state to know which message is expected next, but reacts on incoming requests only.

In this way only the sender actively triggers the phases in an operation. If a message transfer
fails, as depicted in the alternative fragment in Figure 30, the receiver’s activities would not be
triggered. This behavior has been considered in the design of PlatinVC, as we will see later. No
activity leads to faulty states when it is nor continued by a follow-up activity. In this first case
the sender would repeat the operation after it rejoins the network. If the operation was actually
finished, and just the final acknowledgement was missing, only this acknowledgement is sent.
As an example we take a look at the push operation detailed further in Section 8.4.6. The push
operation is, like the commit operation, idempotent, meaning that executing it a second time
does not alter the repository. If the local committed snapshots have been already transferred
and applied, the maintaining peers will notice that no snapshot needs to be transferred again.
If they have not been applied yet the complete operation has to be repeated. Applying a
snapshot is an atomic action. However, it can happen that not all maintainers can apply a
snapshot. Depending on the actually contacted maintainer a pull might not retrieve the latest
snapshots. In this case still causal consistency is guaranteed. A repeated push of the original
sender, or a push of any peer who updated the latest snapshot before from a correct maintainer,
will repair the incomplete repository state.

8.4.5 Retrieve Updates
Before we elaborate the operations in detail an example should illustrate the following protocol.

Retrieve Update Example

Let us assume that the project, and thus an updated working copy, has the structure shown
in Figure 34. In the outermost folder, labelled with "/, two folders are contained. In the first
folder '"docu’ are the artifacts 'Plan.csv’, '/Readme.txt” and "Manual.txt’. All those artifacts
belong to the documentation subproject. The other folder “impl” contains an artifact named
"Main.java’ and a folder "utils’, which contains the artifacts "Helperjava’ and 'Parser.java’. All
folders are named with small letters, artifact names start with capital letters.

Alice is about to pull the latest versions from the subproject “impl’. She is not interested
in updates to the artifacts in the ‘"docu’ folder. Let us assume that her local and peer-to-peer
module store identical snapshots as presented in Figure 35. The recorded snapshots are
presented as boxes, pointing to their parent snapshot. They are labelled with their identifiers
(shortened to three letters), which are the hash values of their content. Thus they are in no
numerological order (it would be hard to maintain a globally continuing value among all
peers). In this history two branches are visible, ending with the snapshots C87 and D34.

Alice executes the operation O-5: Pull globally using specified folders, specifying that only
updates from “impl” are desired. In the first step Alice’s peer searches for the peer responsible
for maintaining updates on this folder. It sends the identifiers of known snapshots so that the
contacted peer knows which snapshots are missing. The latest snapshots are C87 and D34.
These snapshots do not contain versions of artifacts which are requested. The maintainer for
the desired folder ‘impl’ might know about these snapshots - but this cannot be guaranteed.
It is only certain that this peer knows all snapshots containing versions of artifacts residing
in the folder “impl” or any of its subfolders, being the folder "utils’ in this example only. The
parent of the snapshot D34 is B56 and contains a new version of an artifact located in the

84 GLOBAL VERSION CONTROL MECHANISMS

/ Working Copy)

1
: / '
| 1
| 1

impl

: docu " :
| 1
: Main. :
| Plan Readme. java !
1 .Csv txt |
| 1
| utils |
: Manual. Helper Parser :
| txt java Jjava !
| 1
| 1
| 1
| 1
N 7

Figure 34: Structure of the exemplary project

History of Alice's
local and p2p module
| A22 | [all files are created initially]
/\

[/impl/Main.javal]
VAP

[/[docu/Readme.txt] @ [/impl/utils/Helper.java]
/\

w [/docu/Plan.csv]

Figure 35: The history in Alice’s local and peer-to-peer module

folder ‘utils’. The parent of snapshot C87 is B43. It contains a new version of an artifact in
the specified folder hierarchy as well, but as it is a predecessor of the snapshot B56 there is
no need to add it to the snapshots that should be transferred. The maintainer surely has this
snapshot. To disclose which snapshots are stored locally only the identifier of snapshot B56
would have to be transferred. The identifiers of the locally latest snapshots C87 and D34 are
transferred as well, as doing so does not bring too much overhead and spreads the information
of the snapshots existence.

Let us further assume that Bob’s peer is responsible for maintaining the versions of all
artifacts residing in the folder “impl’. The history of Bob’s local and peer-to-peer module are
presented in Figure 36. For simplicity we again assume that they store the same snapshots.
The snapshots A22, B43 and B56 are identical to the respective snapshots in the history of
the corresponding module on Alice’s peer. Bob receives the Snapshots C87, D34 and B56.
If only the latest snapshots from the branches in Alice’s history were sent, Bob would not
know which other Snapshots Alice has. The snapshots C87 and D34 are unknown to Bob, so
they are applied to the history cache of Bob’s peer-to-peer module. This history cache stores

the structural information (i.e. metadata) of the snapshots only, containing the snapshots’

identifier, its parents, its author, modified files and the creation date, but not the actual
modifications. Bob’s peer can compute that Alice does not have the snapshots F78 and 56C,
because their identifiers were not sent by Alice. It further computes that all snapshots between
B56 and 83A are missing, being snapshot 56C in this example. The parent snapshot of snapshot
F78 is known to Alice as she disclosed that she has the later snapshot B56, which was built

123

124

DESIGN OF PLATINVC

History of Bob's
local and p2p module

[A22] [all files are created initially]
VAN

[/impl/utils/Parser.java,
/impl/Main.java]

[/impl/Main.java]
[/impl/utils/Helper.java]
[/impl/utils/Helper.javal

[/impl/Main.javal

Figure 36: The history in Bob’s local and peer-to-peer module after executing the pull operation

History (with cache) EiStOQ’ (with cache-i|
of Alice's p2p module of Bob's p2p module
[all files are created initially]

[impl/utils/Parser.java, | F78 | [/impl/Main.java]

fimpl/Mainjava] '~~_.-"

[/docu/Readme.txt] @

[/impl/utils/Helper.java]

[/docu/Plan.csv] w T56C [/impl/utils/Helper.java]
N A
==l
5_83A ! @ [/impl/Main java]
(a) on Alice’s peer-to-peer module (b) on Bob’s peer-to-peer module

Figure 37: History (cache marked with dotted lines) after the first pull phase

on the snapshot A33. The history cache entries sent by Bob include the snapshots missing in
Alice’s history cache, being the snapshots 56C, 83A and F78.

After this exchange the local modules on both peers are still unchanged, but the history
cache of the peer-to-peer module stored on Alice’s machine contains the new entries, presented
in Figure 37a. The history cache entries, which do not exist as snapshot in the peer-to-peer
module, are marked with dotted lines. Bob’s peer-to-peer module is shown in Figure 37, the
entries which exist as metadata only are marked with dotted lines as well. These are the cache
entries which were sent by Alice.

In the second phase of the two step pull operation Alice now chooses a minimal number
of peers needed to be contacted in order to retrieve the latest versions of the artifacts in the
folder ‘impl” and its subfolder “util’. The snapshots Alice is interested in are the snapshots
F78, 56C and 83A. Alternatively Alice could choose herself which snapshots she would like
to pull, but considering a workflow, where developers like to work on separate branches, as
presented in Section 7.3.1, the aforementioned snapshots are automatically chosen. Snapshot
83C is based on snapshot 56C, thus the latter is automatically pulled when snapshot 83A is. In
snapshot 83A an artifact in folder ‘impl” was modified, snapshot F78 contains a new version
of an artifact in folder "utils’ and a new version of the artifact in folder "impl’. Therefore all

84 GLOBAL VERSION CONTROL MECHANISMS

snapshots can be pulled from the maintainer of the folder ‘impl’. If in snapshot F78 the artifact
Main java had not been modified, and thus only an artifact in the folder ‘impl/utils” were
changed, Alice would have to request the snapshot F78 from a second maintainer. In the worst
case a maintainer has to be contacted for each branch, regardless of the number of updated
folder. In the best case, when only a single artifact was modified in the latest snapshots of all
branches, one maintainer can provide all missing snapshots.

The actual request message contains all desired snapshots, being F78, 56C and 83A in our
example. It is routed using the peer-to-peer overlay network to the responsible maintainer.
Assuming that "Main.java” has not been changed in the snapshot F78 two identical messages
would be routed to the maintainers of folder ‘impl’ and ’utils’. The snapshot B56 which
is present on both maintainers would only be send by the maintainer of "utils’ to avoid
unnecessary data transfer. If one peer were responsible for both folders the second message is
discarded (not answered, nor repeated).

Following the peer-to-peer routing mechanism a receiver forwards the request to the next
closest peer. Prior to forwarding a message the receiving peer checks if it can answer the
request itself, at least partially. If it can it sends the requesting peer, Alice’s peer in our example,
some of the requested snapshots and modifies the forwarded request to only contain those
not already sent.

History cache of Alice's
local and p2p module

[all files are created initially]

[/impl/utils/Parser.java, [/impl/Main.java]
/impl/Main.java]
[/docu/Readme.txt] @ [/impl/utils/Helper.java]

[/impl/utils/Helper.java]

[/impl/Main.java]

Figure 38: The history in Alice’s local and peer-to-peer module after executing the pull operation

After Alice applied the requested snapshots her local and peer-to-peer module appear as
shown in Figure 38. Bob’s local module remains untouched as presented in Figure 36, his
peer-to-peer module does not receive new snapshots, but the history cache is updated, as
illustrated by Figure 37.

Retrieve Protocol

The pull operation retrieves the latest updates, which consist of all locally missing commits
pushed by coworkers. These commits have been applied to the peer-to-peer module of a
number of maintainer by the share operations (see Section 8.4.6) and are pulled from there to
obtain the latest existing snapshots.

There are three variants described in Section 7.4.2. Operation O-7: Get Artifact and operation
O-6: Pull globally are variants of the operation O-5: Pull globally using specified folders. Operation
O-7 is implemented by issuing operation O-5 specifying the folder in which the requested
artifact resides. Operation O-6 is implemented by executing operation O-5 specifying the
outermost folder (or all folders, which has the same effect).

The approach presented in this work has been optimized in favor of the pull operations.

In a usual development workflow artifacts are more frequently updated than changes are
committed. The result is a two step process, in which first structural information about existing

125

126

DESIGN OF PLATINVC

snapshots, called a repository’s history cache entries in the following, are retrieved. In the
second step a maintainer is contacted, who has all needed snapshots. For each specified folder
all artifacts in this folder and its inner folders are updated. When folders are specified which
are subfolders of one of the specified folders the operation is executed only for the outermost
folder. The maintainer of the outermost folder does not necessarily store all snapshots of the
artifacts in the subfolders - but it stores the history cache entries of this snapshots, so that
their existence is known and they can be retrieved from the subfolder’s maintainer.

This behavior, however, could be changed easily. We chose to implement this behavior to
exploit the natural partitioning of a project into subfolders. We assume that in most cases a
developer is interested in the latest version of all artifacts beginning from a specified folder. In
contrast to our solution in most existing solutions updates on all existing artifacts are always
retrieved, which is equal to pulling the latest versions specifying the outermost folder of a
project in our solution. This enables a project structure, where multiple different projects reside
in a working copy, stored under a common outermost folder. Snapshots would be created
considering all existing artifacts, but updates could be pulled for single projects only. N.B.
Subversion offers a similar functionality when subfolders are specified as a repository’s root
directory.

(AD Pull globally with specified folders h
«class»
developer:Peer
o— sfplectl:iﬁ?]d : ®\ AD choose
older <<selection>> snapshot to
“““ - : update to
unique filter out_ermost
folder[] folderg in the
folder hierarchy
s—===m==q ||| p--FEEEEEEEs - snapshotld[] p2plId[]
;. parallel \\
! 1
| | P S
: compute locally [hash(path+f0|der)j I ’ \
1 | latest snapshots :
I
. v r‘ :
I I
: snapshot[] p2pld :
: J :
! I
: : inform
I ("SD route history update local || Userto apply bundle
| [reliable entries history cache || try it later to p2p
! \ I module
| N |
|
ADdoAction = : .| <<datastore>> |,
p2p:Module
snapshot[] H p2pld % ,I
_ | <<datastore>> | _.7
[calculate missing } history cache execute 'hg pull'
history entries from p2p module
to local module
history entries inform user
history about new
entries branches
\ Y

Figure 39: Activity diagram of the pull operation

84 GLOBAL VERSION CONTROL MECHANISMS

The activity diagram in Figure 39 describes the pull procedure of the operation O-5: Pull
globally using specified folders. A user’s specified folders are first filtered: Each folder which is the
child of another specified folder or its children in the directory tree is removed. Updates in
these folders can be retrieved by communicating only with the maintainers responsible for
the outermost folders among the specified folders. The filtering process results in folders,
which are in parallel branches of the directory tree, called unique folders in Figure 39. The next
procedure runs parallel to each specified unique folder.

This parallel activity, described in the left side of Figure 39, is the first step. In this step a
module’s history cache is updated to reflect the latest versions with respect to the specified
folders. The locally latest snapshots in all branches (named and unnamed ones) from the
peer-to-peer module containing the specified folders, are retrieved (in the action compute locally
latest snapshots). If the folders belong to more than one module the whole operation is executed
for each module independently. The resulting set contains the most recent snapshots in all
branches up to the parents of the latest snapshots, where artifacts residing in the specified
folders or any of its subfolders were changed. As detailed in the push operation description in
Section 8.4.6 we can expect the maintainer of the specified folder to have those snapshots, but
not necessarily later ones. These snapshots are needed to determine the minimum number of
snapshots that need to be transferred to a developer in order to update his peer.

<<datastore>> | —
history cache

<<selection>> :
User chooses in
GUI I

AD choose snapshots to update to

= >Admanual]

. [automatic]
<<selection>>| ~

snapshot[]
compute locally
latest snapshots <<selection>> :

identify missing
snapshots

apply snapshots
from p2p

module to local
i module

remove applied
snapshots

snapshot[]

identify folder
contained in
most snapshots

Y <<selection>>|

remove
snapshots
containing
calculate hash identified

value of folder folder
names & add

snapshot[] H p2pld[] }

Figure 40: Activity diagram: Choose the snapshots to which the local repository should be updated to

At the same time the identifier of the maintaining peer is computed by hashing the module’s
name concatenated to the folder’s path and name. The resulting hash value is the key under
which all snapshots of artifacts are maintained, which are stored in the aforementioned folder
(as explained in Section 8.4.2). A message is routed to this key following the procedure
described in Section 8.4.4 (and presented in Figure 32). In the unlikely case, where not even a

127

128

DESIGN OF PLATINVC

substituting peer can reply with the requested update after a reasonable> number of retries
the pull operation is aborted and the user is informed to try it again later. Upon receiving a
message the maintaining peer calculates the missing history entries and sends them back to the
developers peer, which updates the local history cache.

The transferred entries are the metadata of the missing snapshots only, which do not contain
the actual changes of the modified artifacts. In this process the same history entries have to be
identified in the local and remote history cache in order to transfer only the missing entries.
Section 8.4.6 details how we achieved this with a minimum number of messages.

Our prototype can be configured to present the updated history to the user who can now
explicitly choose snapshots he wants to update. All snapshots starting from the latest local
snapshot to the specified snapshot are retrieved. In most cases, however, a user wants to have
the latest snapshot including new versions of all artifacts in a folder’s hierarchy. Alternative to
a human’s interaction the snapshot fulfilling this criteria is computed in the activity labelled
with AD choose snapshot to update to and illustrated in Figure 4o0.

Similar to the algorithm described in the above example, the latest snapshots in all branches
are investigated. If the snapshot does not contain a new version of any artifact residing in any
of the folders starting from the specified folder, it is discarded and its parent is investigated,
until a snapshot fulfilling this criteria is found for all branches. To find the minimum number
of maintainers that need to be contacted these snapshots are examined further. The identified
missing snapshots are retrieved from the peer-to-peer module, if they are present. Only the
remaining snapshots, which are not stored on the local peer, are retrieved in the following
steps.

In the following action (identify folder contained in most snapshots) the folder which is con-
tained in the most snapshots is searched, regardless which of its artifacts was modified in the
respective snapshots. If multiple folders are contained in the same number of snapshots one
of them is randomly chosen. The hash value of the folder’s name is calculated and added to
the list of p2plds, which is the list of peers that need to be contacted to retrieve all missing
snapshots containing the folder. All snapshots containing the identified folder are removed
and, as long as the set of snapshots is not empty, the next folder is searched.

sd get bundle(snapshot]]):bundle /

developer:Peer maintainer:Peer
|
loop (1, 1) Jlreply ==null or r==retries]

r++
" carried o
lookup as described
closest in SDsend
wait'timeout

1
S
)
l
l
l
l
|
l
I
l
l
1 l
I

send(snapshotld[]) ref JrouteCached

send(bundle) (snapshotld(])
:bundle

opt J[no bundle received]

<<RaiseExceptionAction>>
noBundleReceivedException

Figure 41: Activity diagram: Get bundle with missing snapshots in the second phase of the pull operation

5 If a receiver fails the message is routed automatically to a substituting peer, thus the number of retries can be high,
as eventually a peer will process the request.

84 GLOBAL VERSION CONTROL MECHANISMS

For each maintainer resulting from the filtering process just described a bundle is requested
with the activity SD get bundle (see Figure 41), which contains the missing snapshots only.
The process, which routes a request containing the latest local snapshots (resulting from the
previous calculations) to the maintainers is very similar to the activity route reliable, presented
in Figure 33. The only difference is that any peer on the path to the maintainer can answer the
request, even partially, if it stores any of the requested snapshots. The request is modified by
removing the snapshots, which were already sent to the requesting peer. Doing so implements
owner path caching and reduces the load on the maintaining peer the request has been
addressed to. A second positive effect is that a request is answered faster. Pastry optimizes its
routing tables with the peers to which the message delay is minimal. If those peers answer a
request rather than forwarding it to the concrete maintainer the new snapshots are received
faster. It would be possible to proactively store frequently requested snapshots. However,
we did not implement proactive caching, as the popularity of the snapshots most probably
changes too dynamically: Only the latest snapshots would be popular. The user of a peer
who is forwarding multiple requests might request those snapshots as well, which effectively
caches them. N.B. Owner path caching is not possible in the other activities, such as AD get
history update, as this information is only up to date on the maintainer and its replicas and
cannot be answered from a copy.

In a last step a retrieved bundle is applied to the peer-to-peer module, from where it is pulled
to the local module using Mercurial’s "hg pull’ command. A user is informed about new branches,
if they resulted from applying the retrieved snapshots, so that he can react and merge them.
If she decides to leave the branches unmerged future updates are applied to those branches
without notification.

ON CONSISTENCY For each specified folder either the latest snapshots are received or none.
Thus it can happen that updates for some folders are received, but not all, resulting in causal
consistency. If a message is lost it is sent again retries times. If the procedure can still not
finish successfully, which can happen when a lot of participants are leaving and joining the
network (i.e. high churn), the pull operation is aborted and the user should execute it at a
later time. In most cases, investigated further in Chapter 10 as well, updates for all folders
are received, resulting in sequential consistency. Regardless of the network conditions, if only
updates on folders, which are included in the hierarchy of one of those folders, are pulled and
in the latest snapshot of all branches the same artifact has been changed, a single peer can
provide all missing snapshots. This is the case when all updates of all artifacts are requested
and only one branch exists. In this situation sequential consistency is guaranteed.

Analysis of Design Alternatives

In a preliminary version of PlatinVC the updates had to be pulled by specifying the folders in
which updates should be looked for. This worked well if a user was interested in updates of a
set of folders, working on automatic isolated branches as described in Section 7.3.1. The push
operation was a bit more performant then the implemented variant presented in this work, at
the cost of a less performant pull operation. Its complexity rose with the number of folders
one was interested to receive an update from. For each folder a maintainer had to be contacted.
Although these maintainers were contacted in parallel and depending on the distribution of
the peers and the repository a peer could be responsible for multiple folders, lowering the
total number of peers needed to be contacted. However, there was another problem as well: A
newly created folder could only be retrieved, if the requesting developer knew its name or if
in the same or in a child snapshot an artifact in a known folder was changed.

Not only to solve the problem of unknown folders but to improve the performance of the
pull operations as well, we developed the approach presented in this section.

129

130

DESIGN OF PLATINVC

8.4.6 Share Versions

Similar to the presentation of the retrieve operations the share operations are introduced with
an example, before being detailed using activity diagrams.
Share Versions Example

We take the same project structure presented in Figure 34 in this example. Let us further
assume that the resulting local history cache of the peer-to-peer module on Alice’s and Bob’s
peer is the result of the previous example, presented in Figure 38 regarding Alice and Figure 37
regarding Bob. The snapshots stored in Bob’s local module are illustrated in Figure 42. It

History of
Bob's local module
[all files are created initially]

[/impl/utils/Parser.java,
/impl/utils/Main.javal

[/impl/Main.java]
[/impl/Main.java] [F38 | [/impl/utils/Helper.java]

[/docu/Manual.txt] [E96 | [56C | [/impliutils/Helper.java]
/\ /\

[/impl/Main.javal

Figure 42: Exemplary history in Bob’s peer-to-peer module

does not contain the updated history cache entries C87 and D34, which were received from
Alice and added to the history cache of Bob’s peer-to-peer module (compare to Figure 37.
Bob recently committed the snapshots F38, E96 and 3C6 locally and is about to shares them
now executing the operation O-9: Push globally. He first changed the file '/impl/Main.java’ in
snapshot F38, then '/docu/Manual.txt’ in a subsequent snapshot E96 and "impl/Main.java’
again in the last snapshot 3C6. In order to share this snapshots three other peers have to be
contacted. As we have already seen specific peers are responsible for keeping track of all
snapshots that include changes to artifacts in specific folders. In the push process Bob’s peer
first finds out which peers it needs to send the new snapshots. In snapshot F38 and 3C6 an
artifact in the folder 'impl” was changed. In snapshot E96 Bob modified an artifact in the
folder ‘docu’. The parent folder of both folders is the outermost folder of the project '/’. So
the maintainers of the folder ‘impl’, "docu’ and ‘root” have to be contacted. As introduced in
the previous example Bob is the maintainer for the folder ‘impl’. The assignment is computed
by hashing the modules name and folder path. The peer closest to the resulting value is the
maintainer for that folder. In our example Alice is responsible for keeping track of the artifacts
in the folder ‘docu’. An additional peer is responsible for the folder '/’, we name it Cliff’s
machine.

Artifacts in two folders were changed, so Bob’s peer routes two requests to the maintainers
of the folders ‘impl’ and "docu’. The request for the folder ‘impl’ is redirected to itself without
introducing network traffic. All snapshots are applied to the peer-to-peer module and an
acknowledgment is returned, which is received by Bob’s peer before being sent over the
network.

The other request is directed at Alice’s peer. Alice opens a TCP/IP socket for the data
transfer and sends its locally latest snapshots, elaborated further in Section 8.4.6, so that Bob’s
peer knows which snapshots have to be transferred. Again, guarantees about the entries in

84 GLOBAL VERSION CONTROL MECHANISMS 131

Alice’s peer-to-peer module can now be given. From the answer Bob’s peer finds out that in
addition to the recently created snapshots, snapshot F78 is missing as well (only its metadata
is present). Only in snapshot E96 an artifact in the folder ‘docu’ is modified, so only the
missing snapshots up to this snapshot have to be transferred. Although snapshot F38 does
not contain changed artifacts in the folder ‘docu’ it has to be transferred to Alice - otherwise
causal consistency would not be guaranteed. Snapshot 3C6 does not have to be transferred.
In order to achieve more redundancy and thus a higher robustness snapshot 3C6 is sent to
Alice as well. In the unlikely case that all peers responsible for the folder “impl’ fail in a time
frame that is too short to replicate the stored snapshots to replacing peers, a later push from
Alice based on that snapshot would recover it. Upon receiving the snapshots they are applied

History of Alice's
p2p module

[all files are created initially]

[/impl/utils/Parser.java,
/impl/Main.java]

/\

[/impl/Main.java]

[/impl/Main.java] [/impl/utils/Helper.java]

N/
[/docu/Manual.txt] [E96] W
/\

[/impl/Main.txt] W

Figure 43: Exemplary history in Alice’s peer-to-peer module

-l

56C ! [/impliutils/Helper.java]

-

to Alice’s peer-to-peer module as illustrated by Figure 43. Additional to its metadata form the
actual contents of snapshot F78 are stored in Alice’s peer-to-peer module now as well.

After applying the received snapshots, but before replying with an acknowledgement, all
replicating peers are updated by Bob’s and Alice’s peer. To allow a faster pull operation, as
described in Section 8.4.5, the history cache of all maintainer responsible for parent folders of
the folders with changed artifacts have to be updated. This occurs parallel to the replication.
Bob’s and Alice’s peer compute that the parent folder '/ has to be updated. Both know that
both are about to send the updates to the maintainer of the folder '/’, being Clift’s peer. To
avoid duplicate messages a simple heuristic decides that the maintainer of the folder with
the smaller identifier updates the common parent folder only. The hash value of ‘impl’® is
smaller than that of ‘"docu’?, so only Bob’s peer updates the history cache of the peer-to-peer
module stored on Cliff’s peer, which results in the history presented by Figure 44. Only the
first snapshot is completely stored, all other snapshots exist as metadata entries only. If parent
history cache entries on Bob’s peer are missing it requests a full update, as described in
Section 8.4.6.

After all subprocesses finish successfully each maintainer sends an acknowledgement to the
initiator, Bob. When all acknowledgements are received Bob’s peer-to-peer module is updated
with the published snapshots as well. If in spite of all retries any subprocess fails to complete
the whole operation is repeated by the user. When snapshots are to be resent to a maintainer,
who successfully applied them the last time, it simply replies with an acknowledgement,
indicating that everything is ok. This shortens the duration of the new attempt and reduces
the involved bandwidth consumption. N.B. The local module of the maintainers, Alice’s and
Clift’s peer, remain untouched by the push operation. If their user wants to get the committed
snapshots they execute the pull operation described in Section 8.4.5. This operation would still
ask for the most recent updates in the first phase, but the already locally present snapshots

6 SHA-1_hash("impl") =846cfdgscebc38obff149dabeoqoe3517eaq6c4e
7 SHA-1_hash(”docu”)= 9d86a6fsfa6gacfdabae366beagagi79stf78ebb

132

DESIGN OF PLATINVC

History (with cache)
of Cliff's p2p module
[all files are created initially]
AN
e]
Uimpliutils/Parserjava, T F787 [B437 [implMain java]
fimpliMainjaval N/ VA
- - 1

-7 -
———e - <

UimplMain.java] | F38_ 1 C87 | ;"B"5'§_‘: [/impl/utils/Helper.java]

- - A
~- -

[/docu/Manual.txt] ;’_E_’gﬁ_‘: rD§4' ;"_5%(_3_‘: [/impl/utils/Helper.java]

impliMain.txt] {3C6 FB3AT UimplMain javal

Figure 44: History (with cache marked by dotted lines) of Cliff’s peer-to-peer module

would be retrieved without further messages from the peer-to-peer module (initiated by the
identify missing snapshots activity in Figure 40).

Share Versions Protocol

When a user want'’s to create a snapshot to record her latest changes in the working directory
she either calls Mercurial’s ‘hg commit’ commando or operation O-8: Commit, which executes
the aforementioned command. This creates a snapshot which is stored in the local module.
When the user is ready to share all her locally stored snapshots she invokes the operation
O-9: Push globally of PlatinVC. The algorithm takes care to distribute the snapshots among the
maintaining peers.

Locally applied commits are shared using the push operation (O-9) of PlatinVC, introduced
in Section 7.4.3. In this operation the local history of the local module is copied to an
accompanying Peer-to-Peer Module and pushed in a background operation to the responsible
maintainers in the network. The peer-to-peer module is hidden from the user and should only
be manipulated using operations of PlatinVC, as direct manipulation could break the global
repository’s consistency.

The push operation is demonstrated in the action diagram in Figure 45. Basically the peer
whose user created new snapshots computes which peers are responsible for storing them and
sends them the new snapshots. In the first step the new snapshots are examined. All folders
whose artifacts were updated are collected. All maintainers responsible for those folders need
to receive the new snapshots. In order to route a message to them the identifier of the folders
is computed by hashing the modules name, the name of all folders on the path and the folder
in which artifacts were changed, as mentioned earlier.

The activity AD open socket for push serves two purposes: A TCP/IP socket for the actual
data transfer is opened by the maintainer and the physical address of the maintainer is
identified. Following the DHT mechanism a peer can be responsible for tracking the evolution
of the artifacts from more than one folder. The peer of the developer, who initiated the push
operation, routes a request to each folder’s identifier in parallel executed processes.

The request contains some history cache entries, which are needed to identify the missing
snapshots on the maintaining peer. The actual algorithm which determines which history
cache entries are to be sent is described in Section 8.4.6. The answer is either a socket and some
entries from the maintainer’s history cache, needed to identify which snapshots are missing
on the maintainer, or an acknowledgement, indicating that the snapshots have already been
applied. Knowing which snapshots are missing a bundle containing these snapshots is created
and sent using the opened socket to the maintainer. A bundle is a data structure created by
Mercurial. It packs all new snapshots with their actual changes and all metadata in a file which
is compressed. An individual bundle is created and transferred to each actual maintainer, who

84 GLOBAL VERSION CONTROL MECHANISMS 133

(AD Push globally h

«class»
developer:Peer
. <<datastore>> filter folders with P ——%AD— ==
local:Module changed artifacts | ,” parallel \

|
| AD open socketj
|

folder[] for ﬁ/ufh |Hﬁ
re ==
; ply
compute Tocal } [J
[history entries hash(path+folder) Ristory Sooret
J/ entries

bundle j

SD push local

|
|
|
|
|
|
|
|
:
|
history entry[] p2pId(] : create bundle
|
|
|
|
|
|
|
|
|
|

snapshots

R e e =¥

. \
inform user \)] J

. _
to try it later | === —-- {E%[D"“

apply bundles }

to p2p module

?ﬁ |
@®

'S

Figure 45: Activity diagram of the global push operation

confirms its successful storage and replication. Only when all contacted maintainers respond
with an acknowledgement are the new snapshots applied to the peer-to-peer module on the
initiator’s peer, reflecting the global state. If anything goes wrong after several failed handling
mechanisms (i.e. the maximum number of retries has been exceeded), the user is informed to
try it again later.

Figure 46 shows how a socket is opened on the maintainer. The request is routed using the
reliable routing mechanism presented in Section 8.4.4. When a peer is the maintainer of
multiple folders to which new snapshots are to be pushed, it receives multiple messages,
one for each folder. Only the first is answered, subsequent messages are discarded. The
pushing peer does not wait for an answer to these additional messages once it received the
first acknowledgement, which states for which folders the maintainer is responsible for. If
the maintainer already applied the snapshots in question it resends its acknowledgement.
This can happen, if a peer failed in a previous push attempt, which could have been any
other maintainer or the pushing peer, before it received the acknowledgement. The maintainer
computes which snapshots are missing (might be more than the newly created snapshots),
opens a socket, and sends this information to the initiating peer. If the maintainer fails before
it can send the answer the request will be resent after a time out. The next closest peer will
now receive and progress the request.

134

DESIGN OF PLATINVC

history entry[] H p2pld
| I

ADdoAction =

AD open socket for push

[history entriy[] | — —=

SD route (history entry[] known as snapshot?)
reliable S

get locally
latest
snapshots

reply =]
acknowledgement

/

[ack | Socket |_| history entries I_/

\| ack H Socket |- history

entries

{socket,
snapshotld[]}

reply = ’

Figure 46: Activity diagram: Open socket during push globally

The actual transfer of the snapshots using the opened socket is illustrated in the sequence di-
agram in Figure 47. The developer’s peer sends the prepared bundle using the opened TCP/IP
socket. This bundle is applied to the maintainer’s peer-to-peer module. Two processes are
started in parallel afterwards, one sends the bundle to the replicating peers in the maintainers
neighborhood. These peers apply the received snapshot as well to their peer-to-peer module
and update their history cache. In the other process the updated history cache entries are sent
to the maintainers of the folders on the path to the folder maintained by the processing peer.
Only if the acknowledgements from all peers, replicas and other maintainers, are received the
snapshots were stored successfully and an acknowledgment is returned to the pushing peer.

The history cache is updated as described Figure 48. To each peer who is responsible for a
folder in the path to the folder the updating peer is responsible a message, containing the new
history cache entries, is routed. Upon receiving these entries the respective maintainer checks
if any parent entries are missing. If entries are missing the peer asks the updating peer with a
direct message. Which history cache entries are sent in this message exchange is elaborated in
Section 8.4.6. Having all missing history cache entries the maintainer updates its replica peers.
When it receives their acknowledgement an acknowledgement is sent to the initiating peer
indicating that the process successfully terminated.

If in spite of the repeated messages any subprocess ultimately fails the user is informed to
try pushing the locally recorded snapshots at a later time. If the network is unavailable for a
longer period of time, but snapshots have to be shared with certain colleagues (e.g. all being
on a train travel), the snapshots can be exchanged using Mercurial only (e.g. with bundles
using USB flash memory drives). When the network is available later the presented mechanism
can handle duplicated push operations on the same snapshots. If possible, it is preferable to
build a small network and use PlatinVC to exchange snapshots. When the complete network
is available later the mechanism described in Section 8.6 takes over.

84 GLOBAL VERSION CONTROL MECHANISMS

sd push local snapshots(bundle):acknowledgement J

developer:Peer maintainer:Peer

! 1
loop (1, 1) /[reply ==null or r==retries] ADr = —
: undle N
! AD replicate
isendOverSocket(bundle) : <<<5/|Cass>>
waititimeout apply replica:Peer
I] bundle
par) |
| ret] send reliable E apply } [U_pdate local J
(bundle, ADr):ack | J-|-L bundle history cache
_________ ———
<<datastore>> || <<datastore>>
A_D update p2p:Module history cache
history cache
opt) :
= 3
[received all acks] 1 ack
send(acknowledgement) -
| . L _acK j

T
opt J[acknowledgement not received]

|
<<RaiseExceptionAction>> !
noReplyReceivedException !
.

Figure 47: Sequence diagram: Push local snapshots

If a new module is created it is internally handled with the presented share mechanism. The
initial snapshot is distributed among the responsible maintainer, as well as any subsequent

snapshot. It does not matter if the module is not already present - it is created if it is missing.

This is actually the same situation, as if a new peer joins and takes over the responsibility for
a folder in a module, which is unknown to it. A peer-to-peer module is created on this peer in
this situation as well.

Analysis of Design Alternatives

An obvious alternative, which would improve the time needed to execute the push operation
as well as the number of messages, would be to omit the step in which the history cache
on the other maintainers is updated, described in Figure 48. However, as a consequence the
pull operation would be less efficient. Instead asking only one peer, who answers with the
latest cache entries of all snapshots, multiple maintainers would have to be contacted. In the
case, where updates of all artifacts are desired all maintainers instead of only the maintainer
of the outermost folder would have to be requested. This outweighs the disadvantage of a
slightly less performant push operation a lot. Additionally, a mechanism which announces
new artifacts and folders would be needed.

UPDATE HISTORY CACHE When sharing or retrieving snapshots one has to update one’s
local history cache. We cannot assume that either the requesting peer or the asked maintaining
peer has a subset of the snapshots known to the other peer. All snapshots stored in the history

cache of the local peer might be new and thus unknown to the maintainer as well as vice visa.

So how can we synchronize the history cache on both machines with a minimum number of
messages that transfer a minimum number of history entries?

135

136

DESIGN OF PLATINVC

(AD update history cache@ ADdoAction = B
“«class» new history ADdoAction =
maintainer:Peer 4 entries H folder }ﬁ
V «class -
[compute metadata } oMg\ntayé: Peer [Cal'lliCsLtJLartyeer:It?'?ézg]

& [entries are
missing]

!

- history entries

new history SD send) -~
entries [history is

gapless] | -renable

update local L

keni h of history cache ADdoAction =
tokenize path o update %) icat bundle

maintained folder | | |ocal replica
artifacts cache history cache replica:/lzé/er

12
Sar- update local
folder[] ne;vn?rliset;)ry [allel o \ history cache
I -
oot oyl
/' history cache
o D%D‘ reply =
ack

reliable

reply = ack v
7 ack
v ~ ack -
- ack -
L atR T

Figure 48: Activity diagram: Prepare to push new history entries

Since the history caches might contain any form of overlapping entries, ranging from no
common entries to identical history caches, there is no optimal solution. Thus we implemented
a heuristic solution: We know that after peers contacted each other their history caches have
the same entries. In this way history entries are propagated through the network as a side
effect of the operations offered by PlatinVC. But peers can disappear at any time. In an extreme
case a nomadic developer might leave one network and join another, thus bringing multiple
new history entries into the new network while many entries residing in the new network are
missing on his peer. The older an entry is, the more likely both peers store it in their history
caches. More recent entries are less likely to be shared with the other peer. When exchanging
history entries in the first step of the pull operations, described in Section 8.4.5, the latest
snapshots are yet to be shared.

The initiating peer first sends a subset of its local history entries. The receiving peer identifies
known entries in each unmerged branch, starting from the most recent versions. All entries
that represent later snapshots are sent back to the original requester. In view of the fact that
PlatinVC provides at least causal consistency all earlier snapshots have to be known by the
initiating peers. Of cause some entries might still not have to be transferred, but this should
be a negligible number.

The subset of the initial sent history entries is deducted by applying the logarithm function
to each unmerged branch. Thus, the gap between chosen entries is huge among the old entries,
and small among the more recent ones. The resulting subset includes very few old and many
newly created snapshots.

N.B. We cannot simply mark which entries have already be shared and which are yet to be
shared. If a peer synchronizes its history cache and goes offline all other peers might disappear
as well. When it joins a network again all participating peers might be new and the shared
snapshots could have been lost or may never have been present. The first case is unlikely, as it
would mean that a large number of peers failed in an amount of time, which was too short

84 GLOBAL VERSION CONTROL MECHANISMS

to replicate stored data. The latter case is normal when a nomadic developer travels between
disconnected networks.

8.4.7 Conflict Handling

We saw in the example given in Section 8.4.5 how conflicts are handled in PlatinVC. When
snapshots are shared conflicts are ignored. Conflicts cannot be reliably detected in this phase,
as a currently disconnected peer could have conflicting snapshots. If the network is partitioned,
as discussed in Section 8.6, conflicting snapshots could exist in each network, which would be
noticed later, when the partitions merge. A user should follow the principle to update his local
module prior pushing new created snapshots. Each pushed snapshot is accepted, leading to
an unnamed branch. A developer is not forced to solve conflicts, and can publish his work
after a hard day in closing time. With traditional systems, which force a developer to resolve
conflicts, the developer might postpone submitting his modifications to the next working day,
leaving them in danger of becoming lost and unavailable to distant colleagues with different
working times.

When conflicting snapshots are retrieved during the pull operation a user is informed of
the conflict. She can decide to ignore the conflict which automatically creates a new branch,
as discussed further in Section 7.3.1. Otherwise all conflicts can be reconciled locally before
they are shared with all other developers. As detailed in Section 7.3.1 handling snapshots
in this way does not lead to a lot of uncontrolled branches. Of cause a lot of uncontrolled
branches could be created, but this does not happen unnoticed (like it would in a distributed
version control system). These branches would only reflect the uncontrolled organization of
the developed project.

It can happen that developers publish their changes at the same time, after each of them
pulled the latest snapshots which were not conflicting. These conflicts will be detected delayed,
by any user pulling the latest snapshots afterwards.

In contrast to the conflict handling in centralized version control systems all snapshots are
recorded. In those systems conflicting snapshots are rejected. A developer has to merge the
latest snapshot with his working copy to be able to submit the result as a new snapshot. In
PlatinVC the local snapshot should be merged with the latest snapshot as well, but all three
snapshots are recorded in the shared repository.

8.4.8 Additional mandatory mechanisms

Moving or Renaming Artifacts

An artifact is identified by its full path rather its name only. Thus moving the artifact is
equal to renaming it. Mercurial handles artifact renames in a way which fits to our repository
distribution naturally. If an artifact is renamed Mercurial deletes the artifact in the old location
and creates a new one in the new location.

As long as the path to the artifact did not chang nothing changes in PlatinVC. If the path
changed the new snapshot is stored by another maintainer, namely the one whose identifier
is close to the hash value of the renamed path. In the push process which shares the new
snapshot (that includes the moved artifact) the new maintainer gets all missing snapshots -
which can be the complete history in the worst case. The former maintainer does not receive
any updates regarding the moved artifact anymore, except a snapshot is based on a previous
snapshot, where the artifact has not been moved. The snapshot in which the move is recorded,
however, is stored on the new and the old maintainer automatically. In the folder of the new
maintainer the change has the form of a new artifact (which is actually the moved old artifact).
The change in the old maintainer’s folder is the deletion of the artifact. Thus, even when the
automatic isolation feature described in Section 7.3.1 is used where a developer pulls updates
relative to specified folders only, the relocation of the file will be noticed.

137

138

DESIGN OF PLATINVC

New Artifacts and Folders

New artifacts in a known folder do not bring any problems. They are tracked by the maintainer
responsible for the folder it resides in and retrieved by any peer who pulls the latest snapshots
from this maintainer.

A new folder with new artifacts is maintained by a peer whose identifier is close to the
peer’s identifier. If the new folder has been pushed along with changes in other folders the
snapshot ID is known to the old maintainers as well. If it has been pushed as the only change
the snapshot is stored by the new maintainer only. We saw that in the push operation the
new history cache entry is propagated to the history cache of the maintainer that care for the
folders on the path to the new folder. Whenever a peer retrieves an update during the pull
operation from any of those maintainer it is informed about the new folder.

85 MAINTENANCE MECHANISMS

Whenever a peer leaves or joins the overlay network the neighborhood of some peers changes.
The maintenance mechanisms of FreePastry notify PlatinVC about those changes. Whenever a
peer fails it is replaced by its closest neighbor. From the point of view of the other peers in the
neighborhood it is the same effect as if a new peer joined, as an already present peer slides
into the neighborhood set.

Figure 49 and Figure 50 describe the maintenance mechanisms performed by PlatinVC. A
joining peer first executes a push to ensure that snapshots missing in the network are shared
again. At the same time the protocol described by the figures is performed. Any peer who is
notified by FreePastry checks if the joined or failed peer was its closest neighbor having the
next smaller or greater number. If this is not the case the peer does nothing. The peers who
perform the maintenance protocol are the two closest neighbors of a joined peer, or the closest
neighbors of a failed peer. In the latter case the two peers see each other as the newly joined
peer.

If the new peer is closer to the identifier of a maintained folder it replaces the old maintainer.
The active peer checks whether it itself is the maintainer of any folder, and if the new peer
is closer to a maintained folder’s identifier. If this is the case the peer does not forward any
push or pull requests, which would be handled by the new maintainer, until it is updated. For
the rest of the protocol it does not matter, if the new peer joined or was already present but
became the closest neighbor as a result of a leaving peer.

As described in Section 8.4.6 the identifier of some snapshots are sent to deduce the missing
snapshots. A time out is not acceptable, so the message is resent until the peer replies or
FreePastry notifies the final failure of that peer. Figure 50 explains how the new peer is
updated. Using the received snapshot identifiers the active peer creates a bundle of all missing
snapshots and sends them to the new peer, again repeated until they are received or FreePastry
notifies the final failure of the receiver. The new peer updates its peer-to-peer module as well
as its history cache and is ready to serve as a replica or maintainer. If the new peer is closer to
the identifier of a folder the active peer no longer intercepts any requests.

During this process the active peer could fail as well. In this case the next closest peer
becomes active and updates the new peer. If a peer should become active but is not updated
itself yet, it delays executing the maintenance protocol until it is updated. In this way all peers
are updated in a chain reaction eventually.

8.6 FAILURE HANDLING

We already saw in Section 8.4.5 and Section 8.4.6 how faulty situations are handled. In this
section we discuss a few special cases.

8.6 FAILURE HANDLING

AD maintain replica

«class»
maintainerORreplica:Peer

‘ Peer fails/ peer was/is closest
E joins neighbor?

<<decisionlnput>>

self.role = A .[peedr
maintainer & new [J joined]
peer closer
< replica = first non

replicating neighbor in

[peer
failed]

[true] ianti ;
[false] direction of failed peer
intercept and lica =
handle requests as |—>| "ePica —rnew
maintainer pe‘e
ADdoAction = V
<<datastore>>
«class» p2p:Module
replica:Peer ¢
shapshotid[]

compute latest
snapshots

[compute latest }

snapshots
snapshotld[]
[has latest [snapshots
snapshots] issing]
retry
reply = reply = remote till ok
replicateOk snapshotld[] L 1

reliable

®

snapshotld(]

Figure 49: Activity diagram describing the actions taken when the neighborhood changes (part 1)

8.6.1 Handling Network Partitioning

Whenever a group of peers loses the connection to another group of peers the overlay network
falls into partitions. A peer keeps active connections to its neighbors. These neighbors are
chosen by their identifier, which is given following a normal distribution. Thus it is unlikely
that a large part of neighbors are disconnected as a result of normal churn.

However, if the physical network connection is interrupted a group of peers could be
disconnected at once. If some peers are in the subnetwork of an Internet service provider (ISP)
and the remaining peers are in the subnetwork of another ISP, the connection between the ISPs
could be interrupted. To name another likely example the outworld connection of a building
could break down, leaving only the machines in the building connected.

The maintenance mechanisms presented in Section 8.5 take care that the missing peers are
replaced and the routing mechanisms deliver all requests to the substituting maintainer in all
partitions. However, complete development lines consisting of connected snapshots could be
missing. If any user pushes a snapshot based on missing snapshots the missing snapshots are
published as well. They have to be present on that user’s machine - otherwise the user would
not be able to create the new snapshot in the first place.

139

140

DESIGN OF PLATINVC

AD maintain replica

«class»
maintainerORreplica:Peer

M ADdoAction =
snapshot missing] <Class»
replica:Peer
create bundle [has|latest

snapshots]

* [apply } [update local }

bundle history cache

retry v N
till ok <<datastore>> | | <<datastore>>

p2p:Module history cache

SD send
reliable

replicateOk

<<decisionlnput>> replicate

Ok

new peer.role = A \/
A O |
maintainer & [F---__ [false]

[true]

v
do not intercept
requests and ?

become replica

Figure 50: Activity diagram describing the actions taken when the neighborhood changes (part 2)

However, in all network partitions snapshots are created independent, which might conflict
each other. The conflicts can be detected only at a later time, when the network partitions
reunite. Only one maintainer among the multiple maintainers of all partitions, regarding
a certain folder, is closest to that folder’s identifier. PlatinVC’s maintenance mechanisms
ensure that the independent recorded snapshots are joined in the peer-to-peer module of the
remaining maintainer.

8.6.2 Handling Indeterministic Routing

During extreme churn it can happen that the routing table entries of the peers are faulty. A
peer might not be able to update its routing table, when an old peer rejoins and a recently
entered peer fails. Another peer might still have the old entry which is correct again. Thus
the paradoxical routing table entries lead to indeterministic routing. Depending on the
intermediate peers a request addressed to the maintainer of a specific artifact could be
delivered to two different peers. On a closer look this situation is very similar to the network
partitions described above. The only difference is that the peers are not in disjunct sets, but
rather overlapping sets. The problematic situation whereby multiple peers maintain the same
folder, is the same. The previously solution is solving that problem here as well.

87 TRACEABILITY LINKS

8.6.3 Recovery of Missing Snapshots

It cannot happen that a snapshot in the middle of a development line is missing - only the
latest snapshots up to any snapshots can be gone. Either because they have not been shared
correctly or all storing peers failed before the maintenance mechanism could copy them to
replacing peers. However, whenever any peers store those snapshots, either in their local or
peer-to-peer module, they are stored in the system if the peer pushes any new snapshot again.
The new snapshot does not have to be based on any of the missing snapshots.

87 TRACEABILITY LINKS

A link can be created between artifacts, folders or modules. The link is stored in a specific file.
For each linked item a companion file is created, with a generic name formed by the ".” prefix
to hide the file, the items name and the suffix “<-linkfile”. In this file all linked items are listed.
N.B. These entries express only that a link exists. No further information is stored here. The
actual link document is named by concatenating the linked item’s name with “<-link->" in
between, prefixed by a dot as well. If a link is deleted only this link document is deleted, the
inscription in the linked item’s linkfile remains untouched. This preserves the information
that instead of creating a new link again the old link has to be updated (i.e. undeleted). The
linkfiles are stored along with the corresponding artifact, in the case of a folder in the folder
and in the case of a linked module in the topmost folder. The link document is stored in a
folder named “.linkdocuments”. If the link document links to items which resides in the same
module this folder resides in the topmost folder of the module. If items of different modules
are linked the folder is stored in the topmost folder of a third module, which is named after
the modules names in which the linked items are. The name is constructed by the modules
names with “<-links->" in between.

Using the previously described links not only can artifact’s can be traced, but different
modules can be aligned as well. A practical usage would be to refer to an independent library
which is used by a project. The link’s metadata could specify the needed snapshot of the
linked library.

8.8 SUMMARY

Rather than reinventing existing solutions, PlatinVC integrates software that are proven to
be stable in many other projects, and focuses on implementing the new parts. Our solution
does not depend on a concrete peer-to-peer overlay protocol and only requires a solution that
provides key based routing, which is implemented by any structured peer-to-peer protocol.

The modification on a user’s working copy is tracked and stored using Mercurial, a dis-
tributed version control system (see Section 5.2.4). As a side effect, all tools that support or
extend Mercurial, e.g., to visualize the recorded version history, can be used with PlatinVC
as well. In overcoming Mercurial’s limitations, which result in a lower degree of consistency,
we developed s mechanism to share committed snapshots with all fellow developers. As a
result PlatinVC combines the benefits a locally stored version history brings with the auto-
matic and complete collaboration of centralized solutions. With the sophisticated distributed
mechanisms presented in this chapter we were able to combine the best features of centralized
and distributed version control systems while eliminating their drawbacks.

We carefully considered situations which can lead to a faulty execution and designed
mechanisms that counteract those effects and maintain a highly consistent and available
repository.

141

PROTOTYPICAL SOFTWARE DEVELOPMENT ENVIRONMENT

After taking a deeper look at PlatinVC in the last chapter we introduce it from a visible
perspective in this chapter. PlatinVC is a good supplement to any development environment.
We developed our own environment, fitting for GSD, where PlatinVC is a component among
others. Although PlatinVC is the most sophisticated component, the environment and a few
additional components will be introduced in this chapter.

9.1 MODULAR DEVELOPMENT OF PEER-TO-PEER SYSTEMS

A modular design was important to us. It enables us to exchange the system’s components
with better versions or integrate new components that offer additional functionality and are
able to interact with other system components.

A key decision was to enable multiple applications to use the same overlay network
for communication. Today’s peer-to-peer applications, such as Skype[Skyb], Joost[Joo] and
Emule[KBoy], all use their own implementation of a peer-to-peer protocol. The protocols
might by more fitting to the respective application’s needs, but the overlay’s resource consump-
tion (network bandwidth, computing power, memory), caused by the periodic maintenance
mechanisms, stack up. If the applications complement each other and have similar needs
regarding network communication, as in our case, it is more efficient if they share one overlay
connection.

PIPE
<USE» __.| «component»
5 S 2 Eclipse IDE O)
ORI T ==~ _ «use» P
N S~L 0 T T PRd «user -7\
S «u;e\»*\ /’ﬁ~— = !
AN > . «component» ':—CO—
~. - L
User N use P Piki |
«use»
«USe»\\ 4 RN < «use» :
| «component» N S i ©
ASKME N N :«use» A\
AN

T == — N
I «USE»~ =< _ N
«use» -3 «comp_onent»
1 } PlatinvC
|

v v
«component»
Communication Management

«component» «component»
Connection Message
Manager

Manager

1| «component» =

‘i’ “usen St(frage £83

1]

«component» 1’ Manager St
Security ' 'T‘ g_ 8
Manager I .“useuo £
«use»\il | | \(. ¢ g

«use» A

«component»

FreePastry O)—

:P2POverlay

Figure 51: The simplified architecture of PIrE

143

144

PROTOTYPICAL SOFTWARE DEVELOPMENT ENVIRONMENT

We developed a framework that offers system services to components that interact with a
user. Similar to the resource management framework (RMF) [FFRSoz2] our framework aims to
decouple the complex peer-to-peer protocol algorithms from the logic of an application, to
ease the latter’s development.

The simplified architecture is presented in Figure 51. Our framework is called PEER-TO-PEER
BASED INTEGRATED PROJECT SUPPORT ENVIRONMENT (P1PE). The spine of our system is the
OSGi[Alloy] implementation equinox[equ]. Each component registers its offered interfaces and
has access to another component’s services. All messages on a machine are exchanged using
this middleware. Any component can be replaced any time with a better version. Services are
not offered to specific components but can be accessed by any component. In this way we do
not have a classical layered architecture, where the communication of a system’s component
can only occur at specified borders. Nevertheless, our architecture can be separated into two
parts - framework services, presented in Section 7.4 and user level applications, shown in
Section 9.3. In RMF the network communication is abstracted to a level, where an application
searches and acquires resources only. PIPE offers an application a communication interface.
Otherwise implementing framework services would not be possible.

9.2 FRAMEWORK SERVICES

The component on the bottom of Figure 51 implements the peer-to-peer overlay mechanisms
of the Pastry overlay network[RDo1b]. The component is encapsulated by our communication
management, which we present in Section 9.2.1. This component handles the communication for
all other components. It is used by a storage manager, shown in Section 8.4.1, which implements
the DHT storing mechanism. For secure message exchange and access control we implemented
the security manager. Currently it is used by ASKME (our communication application, detailed
in Section 9.3.4) only. These four components, the communication management, the storage
manager, the security manager, and the overlay implementation, are framework services.
The components’ services are used by other components only, and cannot be used in direct
interaction with a user. The communication management’s services are used by the storage
manager and the application AskME. This would not be possible in a strict layered architecture,
as ASKME belongs to the user level applications, the storage manager to the framework
services.

9.2.1 Communication Management

This component brings an abstraction of the communication. It consists of the following three
components.

Connection Manager

The connection manager handles the overlay network connection. In the connection dialog
depicted in Figure 52 we can see the choices one has to establish a connection. A new overlay
network can be created with new ring. If there is already an overlay network, which is the
most common case, one can join by specifying the physical network address (i.e. the ip
address and TCP port number) of a peer who is currently a member of that network (called
the bootstrapping peer. Join using known peers allows one to join a network by trying to
contact formerly known peers. To enable this convenience function we store the physical
network address of the neighborhood peers we knew last time we were online. Disconnect
in self explanatory. When a user disconnects an event is sent in the system, so that other
components can react. If a component needs to execute specific actions before the connection
is lost, it registers itself at the connection manager, who waits with the actual detachment from
the overlay network until all registered components agree. No component can rely on this
service, of course, as a machine might fail any time. Thus a user is able to cancel this graceful
disconnection attempt and interrupt the connection immediately.

9.2 FRAMEWORK SERVICES

=10l]

File Edit Mavigate Search Project Run | QuaPzP ‘Window Help

= . . . Conneck Caonnect using known peers
- . J ﬁ G % Cisconneck Connect using IP address
J (= 5 J T T T Mew ring
— { o |
[% PackageE 2 ‘Eg Hierarchﬂ EW(Eq
L

s =
| 5 = ‘([L Problems &3 @ Javadnq &) Declaratinn} = O

—*l =
& Input network address il T
IP-Address or hostname: 192,165.1.2 @

Paort 00z

Ok I Cancel |

1| i
| O* |

Figure 52: The connection options offered by the connection manager (running in Windows)

In Figure 53 we see the settings the system needs in order to establish a connection. The
security settings are needed by the security manager only and can be deactivated. By calculating
the hash value of a developer’s name, the identifier of her peer is computed. In this way a
developer can log in from any machine. If she logs in from another machine, all versions stored
under the developer’s peer’s identifier have to be transferred to the new machine - which
is an automatic process carried out by PlatinVC’s maintenance mechanism. However, when
modules of large size have to be transferred over the network we recommend transferring
them using physical data storages such as USB flash memory drives or DVDs. If a required
module exists as a user module, PlatinVC takes the required versions from the local machine.

Message Manager

Any message in P1PE is received by the message manager. By examining the message type it
decides to which component the message has to be delivered. In addition to this basic function
it offers basic message implementation that can be extended by any other component. These
basic implementations include any-, multi-, and broadcast messages, as well as offline messages.
We introduced offline messages in [MKSo8]. These messages are stored in the overlay network,
by the storage manager, until the destination of the message rejoins the overlay network.

9.2.2 Security

We developed a decentralized security mechanism for secure message exchange and access
control in [Queog], which has yet to be tailored to PlatinVC. We briefly describe this system
here. A more comprehensive description can be found in [Queog] and [GMM " o9].

Figure 53 provides a glimpse of the security implementation in P1pE. Besides fields for
providing the needed security key files a role and a company has to be stated.

Our approach is based on two components: Authentication and access control.

145

146 PROTOTYPICAL SOFTWARE DEVELOPMENT ENVIRONMENT

R e Preferences &) m x
type filter text PIPE Settings v v w
» General

Settings for the PIPE Plugins

PIPE Settings

P2PVCS Settings Firstname: |Sebastian
Lastname; Schlecht

Bindport: S001

¥ Enable Secure Connection

Security Settings

Private Key: /home/seb Browse...
Private Key Password: ploutoloiud
GroupMembership Certificate: /home/seb Browse...

GroupMembership Certificate Password:; *¥#+d*

KeyStore: /home/seb Browse...
KeyStore Password: plulvivivivd
Raole: developer
Company: [TU_parmsi|
Restore Defaults Apply
oK Cancel

Figure 53: The settings needed by the connection manager, with security enabled (running in Linux)

Authentication

Utilizing an asymmetric key pair, as introduced by [DHy9], we sign, encrypt and decrypt
messages and content in our system. Rather than calculating a peer’s identifier by applying
a hash function to a user’s name, we use the public key of a user as a user’s peer ID. In
this way the pseudonym identity of a user is bound to a public key, which blockades a
man-in-the-middle attack [Den84]. To avoid spoofing of identities we use a challenge-response
mechanism upon joining the network: The bootstrapping peer sends an encrypted random
number. Only if the receiver can decrypt it and sends back the correct number, the join process
starts, in which the joining peer obtains its initial contacts.

Using the public key as the peer ID can be implemented in two ways, which we both
implemented. The peer ID can be extended to be as long as a public key. The hash function has
to be replaced so that all IDs in the network are calculated using the extended hash function.
When extending the hash function is undesired the peer ID can be calculated based on the
public key of a user. A limitation is that a user’s public key has to be sent to other users, who
can only verify it, if the peer ID is known and trusted. To avoid a man-in-the-middle attack
the solution in [SSFo8] could be used, which enables a decentralized key exchange.

Trust is based on our modification of a web-of-trust. Usually development projects are
hierarchically ordered. Even open source projects have a project founder, although the remain-
ing hierarchy tends to be flatter in comparison to the structure of a commercial project. This
single person on the top of a project’s hierarchy is the root of trust. It can certify another
user’s credentials. A certified user can certify other users, etc. In this way, our system does not
depend on a central certificate authority. A user’s credentials can have any attributes, such as
a user’s real name or role, i.e., security level, in a project.

9.2 FRAMEWORK SERVICES

Access Control

Using a user’s credentials we developed a role based access control mechanism. An artifact
does not have an access control list, where authorized users have to be entered. An artifact
has attributes, e.g., its status (draft, final, ...), security level (protected, confidential, ...),
etc. A user’s access rights can be looked up in an extendible policy list using the user’s
attributes and an artifact’s attributes. This policy list is stored in the system and can be read
by any participant, but only written by authorized persons, starting with the root of trust, a
special user who can allow other persons access. Although we have concurrency control, it
is important to take care that no contradictory latest versions exist. There might be multiple
policy lists or multiply parallel versions (in different branches), but all of them must form a
contradiction free list. Thus only a small number of persons should be eligible to modify this
list.

The policy list is enforced by any user who has access to the artifact in question. The idea is
that this user can be trusted, as he could access the artifact and hand it over anyway. It can be
retrieved encrypted by any participant. It is encrypted using a symmetric key. Any peer who
has read access can have this symmetric key. Initially this key is distributed among a specified
number of peers, whose users have read access. Along with the artifact, an incomplete list
of authorized peers is stored. A peer who requests an artifact for read access retrieves the
encrypted artifact and this list, and contacts any peer from that list, sending its attributes.
This peer retrieves the latest version of the policy list. Having the requestors credentials, the
artifacts attributes, and the policy list, the peer can determine the access.

Write access is controlled by all storing and reading peers. Whenever an artifact is changed
the author signs the artifact with its private key. Upon storing an artifact, the storing peer
checks the policy list for write permission. Any peer, who later accesses the artifact for reading,
checks the permission again, as the storing peer could work together with an attacker. Again,
only authorized peers can manage the access control.

Our security mechanism features a blacklisting mechanism that detects malicious collabora-
tors as well. If access has been given to a non authorized participant the issuing peer might be
blacklisted. If it is blacklisted, all certificates it issued become invalid. The peer who issued the
certificate to the blacklisted peer might be blacklisted as well. If a peer tried to gain access
control to an artifact it does not have access to, it can be blacklisted as well. A blacklisted
peer is excluded from the overlay network and prevented from rejoining. Whenever a peer is
suspected to be malicious it is assigned a blacklist-point, kept in a list appended to the policy
list. When a specified threshold is passed it is blacklisted. By logging the steps executed to
prove malicious behavior, we take care that malicious peers cannot blacklist innocent peers.

If the root of trust is malicious the entire system does not work. If a user certifies other users
carelessly he might end up being blacklisted. The time needed to detect malicious behavior
of a group of peers (or an attacker with a sybil attack, i.e., one user controlling multiple
peers) depends on the threshold value mentioned before. But without the cooperation of a
user with write access (holding the encryption key) no artifact can be read. It is possible to
create new versions without permission, if the maintaining peer allows to do so. However,
these unauthorized written versions can be reverted to the latest authorized version once the
malicious behavior has been detected.

Access Control in PlatinVC

A storing peer, as a maintainer or replica, is assigned randomly. As it can be a malicious peer,
the storing peer itself should not be able to read the stored artifacts, if unauthorized. Thus
the artifacts should be stored encrypted. But to be able to use efficient delta compression
the artifacts have to be readable. When access control is desired, artifacts have to be version
controlled using their encrypted form and binary deltas. Alternatively the artifacts could be
stored in encrypted bundles, one for each snapshot, so that multiple snapshots can be sent in
the form of consecutive encrypted bundles.

147

148

PROTOTYPICAL SOFTWARE DEVELOPMENT ENVIRONMENT

If a malicious peer rejects to store or provide a maintained artifact it gets blacklisted as
described in the above section and replaced by another peer.

9.2.3 Storage

The storage manager component capsulates different storage implementations. Currently we
implemented the DHT mechanism only. We needed this storage form in an earlier version
of PlatinVC, where we controlled the evolution of single artifacts only (and did not support
snapshot version control). Currently it is used by the message manager only to store offline
messages. All stored artifacts in PlatinVC are stored locally using Mercurial’s mechanisms.

9.3 USER LEVEL APPLICATIONS

The components depicted in the upper half of Figure 51 are user level applications. These
components directly interact with a user’s input, but not exclusively. Like all components
their services can be used by other components as well. An example for this is visible in the
relationships of the component PlatinVC . It is not only used by a user but by the component
piki as well. All user level applications consist of two, sometimes three subsystems: The core
component, and a graphical user interface (GUI), integrated in Eclipse, stand alone or both.
The "use’ relationship of all user level applications to Eclipse shown in Figure 51 delineate
the utilization of Eclipse’s GUI framework. The four user level applications are presented in
Section 9.3.1 and the following sections.

9.3.1 Eclipse IDE

There are many tools needed in an integrated developing environment (IDE), mainly an
editor to write source code and a compiler. In all modern IDEs there are, however, multiple
additional tools integrated, e.g., a debugging tool that allows step wise code execution. None
of these tools need to communicate with another machine. To have this essential basic support
we chose to integrate the most used tool in industry and private projects: Eclipse IDE[Fou].
Eclipse itself is based on the OSGi implementation Equinox. To see it from a different point

806 PIPE Manager —
! | | User Repositories §3 =g
| —

+= % ES

RepositerylD LocalPath TipRevision Size

trunk JUsers/patmuk/tmp/hgtests/gcc- beB83c779f0a9616a0f1l7f3d90e0633el4cdd 15¢3 388 MB A

quap2p.p2 pves.serverpart JUsers/patmuk/tmp/hgtests/quap 9 o y

library.commens.io fUsers/patmuk/Workspaces/PIPE/ e %7 Add eXIStII"Ig YEDOSI'(OFY 1 MB

library.freepastry fUsers/patmuk/Workspaces/PIPE/ 24] 26 MB
library.org.apache.logd] JUsers/patmuk/Workspaces/PIPE/ ¢ ¥ Clone remote repository 736 KB
quap2p.askme.plugin.app fUsers/patmuk,/Workspaces/PIPE/ al -y Lt gt : 480 KB
quap2p.communicationModule fUsers/patmuk/Workspaces/PIPE/ ¢ [Initialize new reposnory 50 KB
guap2p.communicationModule.filetra jUsers/patmuk/Workspaces/PIPE/ ai [& Get Artefact 148 KB
quap2p.communicationModule.offline fUsers/ patmuk/Workspaces /PIPE/ g &= R . - - 22 KB
efresh repository information
quapZp.connectionManager.osgi.core jUsers/patmuk/Workspaces/PIPE/ 9 = P Y, 13 MB
quap2p.connectionManager.plugin.gu /Users/patmuk/Workspaces/PIPE/ & 484 KB
quapZp.contactManager.plugin.app /Users/patmuk/Workspaces/PIPE/ e ¥ Pull using the specified artifacts 857 KB
quap2p.DHTStorage fUsers/patmuk,/Workspaces/PIPE/ &3 76 KB
guap2p.localStorage fUsers/patmuk /Workspaces/PIPE/ ai 18 KB
gquap2p.Log4)Configuration fUsers/patmulk,/Workspaces/PIPE/ 10 KB

auan?n n?nves homanageraii sersfnatmuk Warksnaces (PIPE/ A56 KRB b

(& DHT Repositories | T3 Repository Metadata ¥ Pull using Metadata =0a

RepositorylD Tip\; |

quap2p.pZpwcs.hgmanagergui 34ed6302908795f5742 + Push

quap2p.p2pwcs.serverpart 967d883de202edcbes]

trunk bcB3c779f0a%9616a0fl] @ Remove repository

4= Add to Workspace
Patrick Mukherjee: connected
A

Figure 54: PlatinVC as a stand alone application

9.3 USER LEVEL APPLICATIONS 149

of view we integrated our components into Eclipse. Nevertheless, none of our components
depend on Eclipse and can run using any stand alone GUI implementation. As Eclipse and
all integrated or extendible tools are not contributed by our work we would like to refer the
reader to Eclipse’s documentation ([Fou]).

9.3.2 PlatinVC- a Peer-to-Peer based version control system

PlatinVC is the most sophisticated component at the stage, where most of our development
has been carried out. It is seamlessly integrated into Eclipse as shown by Figure 58 but can be
used as a stand alone product, as shown in Figure 54 as well. PlatinVC solely depends on the
communication management. Earlier versions also needed the storage mechanism, but since
we based our version control mechanisms on the third party product Mercurial we store all
artifacts locally with the operations it offers.

NN Preferences
type filter text P2PVCS Settings Prr v

General i]
Appearance Settings for the P2ZPVCS Plugin
Content Types Paths
Editors - ~
Keys Path to hg executable: fusrflecal fbin/hg Browse...
Perspectives
Workspace Temp directory: ~Jtmp (" Browse..

PIPE Settings

Directory for DHT repositories: ~/tmp/repos (" Browse...

Timeouts (in seconds)
General timeout 0

Push timeout 0

Push phase 1 timeout 0

Pull timeout 0

GCet artefact timeout 0

'; Restore Defaults :. ; Apply _:.

' 5
L Cancel) E—Olt—a

A

Figure 55: Settings for PlatinVC (running in OS X)

The stand alone version of PlatinVC has a smaller footprint in startup time and memory con-
sumption than the Eclipse integrated version®. If a developer uses a development environment
other than Eclipse, it is preferable to run the stand alone version. Unlike other version control

1 Measured on an 2.2 GHz Intel Core 2 Duo MacBook running OS X 10.6.3:
Eclipse integrated: 11 seconds startup time, 155 RAM consumption
stand alone: 6 seconds startup time, 121 RAM consumption

150

PROTOTYPICAL SOFTWARE DEVELOPMENT ENVIRONMENT

tools and alike all peer-to-peer based applications, PlatinVC has to be running continuously
on a developer’s machine, not just when the developer needs its services. Otherwise the
developers machine cannot offer its services to other machines, which is the fundamental
principle of peer-to-peer based applications. Having PlatinVC integrated in Eclipse when using
Eclipse ensures that a developer cannot forget to start it. Providing a less resource consuming
stand alone version gives initiative to let it run in the background to those developers, who
do not use Eclipse. As detailed before, PlatinVC would also work if developers only turned
it on when they needed it and shut it down afterwards. However, the greater the number of
developers who do so, the less efficient and stable PlatinVC becomes. The actual consistency
might drop to causal consistency with some versions being unretrievable in the worst case.

When running PlatinVC, a few settings, shown in Figure 55, can provide a better experience.
If none of those settings are set, default values are taken. The default value for the time-outs is
set to 60 seconds, but should be fine tuned for the network environment PlatinVC is operating
in.

9.3.3 Piki - a Peer-to-Peer based Wiki Engine

000 P2Pwiki

File Network
é $?& germany D Search for ... | O
History = 1
erma [germany 'O | links:germanyO
links:germany
Links on this page
Entry Link type
europe 1s_country_in
What links here
Entry Link type
frankfurt iscityin
aachen iscityin
berlin iscityin
Version 9, Peer B, Sun Sep 07 02:17:11 CEST 2008
Version Editor Time
Alice Sun Sep 0? 02 34: 18 CEST 20..
__
Bob Sun Sep 07 02 35: 32 CEST 20
Bob Sun Sep 07 02:38:59 CEST 20..
_ Sun Sep 07 02:39:46 CEST 20...
(Close Diff)
a a
Denmark, and the Baltic Sea; to the east by
Denmark, and the Baltic Sea: to the east by | |With over 82 million inhabitants, it has the
With over 82 million inhabitants, it has the
==History==
==History== {{main|History of Germany}}
{{main|History of Germany}}
===Cermanic tribes===
===0ermanic tribes=== ¥ |{{main|Germanic peoples|GermanialList of ¢ v
B » @ .
Article "germany” stored on this node 4
Article "germany” stored on this node
Article "germany” stored on this node
Article "germany” stored on this node
Article "germany” stored on this node 4l

Figure 56: Piki as a stand alone application (running in OS X)

9.3 USER LEVEL APPLICATIONS

Piki is our implementation of a wiki engine that uses our version control system as presented
in Figure 51. As any other component, Piki can be run as a stand alone application, a screenshot
is shown in Figure 56. Beside using it as a wiki engine (see Section 2.2), it can be used for global
software development (see Section 2.3) as well. In project development sharing expertise and
knowledge are often crucial in order to fulfill certain sub-tasks (compare to [HMo2, HPBos]).
Piki can be used as a general knowledge management application (or knowledge database) or
more specifically as a requirements engineering tool, as proposed by [GHHSo7b, GHHRo7b].

Figure 57 shows Piki when it is running as a view integrated in the Eclipse IDE. The features
offered by the other components can be used here, such as the version history or the diff view,
which show the difference between any two versions. Having a full blown version control
system allows one to create variants of articles as well as handling editing conflicts.

& Piki - Deutschland - Eclipse SDK
File Edit Mavigate Search Project Runm PIPE ‘Window Help

i A N R =R | pik |8 Java
' o (o -
.,*Deutschland EE Deutschland 22 =0 CFU':" Piki Browser &5 PikiBrowserHistory =0
=
Text Compare o < | Atk 4Y B L] o2 |l_\| =
w4 w4
glEty
in Zentrum woh [[Hitte|—| mitten in [[Hittel| . SLsEnan @l
-
Deutschland - v, 5 52
Gebietskérperschaften &
. Gem&b ihrer [[Grundge . Gem&l ihrer [[Gru
IS %1 v
> ARTICLE: Deutschland || AUTHOR: John Doe || YERSION: 5
< > < >
By wersionHistoryview 2 = O || storage status &2 T Lirked By = O |3 quaPzp Contacts 52 =8
Article Author Wersionnumbe ||| StoragelD #Revisions | POJROT b’ \'\ '\“’> {E, =
Deutschland John Doe 1 [awstralisn & 1 [replicater & oD =
Deutschiand John Doe 2 || backlinkobject-gust, .. [1 |&%| primary o . n 08 =
Deutschland John Doe 3 Shackinkobiack-Berln [1 = . & parrick
Deutschland John Doe 4 V||| Leejbackinkbject-Berin - leo| Leol Primary o
> < >
P oA : i Jang Doe: connected

Figure 57: Piki integrated in Eclipse (running in Windows)

9.3.4 ASKME- Peer-to-Peer based Aware Communication

Awareness Support Keeping Messages Environment (ASkME) is our tool that complements a
global software development environment with communication facilities. Several investigations
of distributed projects ([Smio6, HMo3, HPBos, Souo1]) pointed out that communication is one
of the most critical factors for success. Communication should take place directly between
participants (i.e. without an intermediate like a project manager).

We developed AsKME as a replacement for e-mail and instant messaging during project work.
A screenshot showing AskmE integrated in Eclipse and interacting with PlatinVC can be found
in Figure 58. In the view, in the upper right corner the contact list is shown, the messaging
window is visible at the bottom of the window. AskME automatically highlights the author of
the currently visible artifact in the editor. In the example presented in Figure 58 the highlighted
author is Sebastian. Our intention was to enable floor conversation: When working on an artifact
meeting its last author on the floor or during a coffee break reminds a developer that he can
ask this author questions. When working in physically separated locations highlighting the
last author should enable the same psychological effect.

A message can be sent to any person in the contact list. A message is delivered immediately.
If the communication partner is currently unavailable the message is stored by the peers
in his neighborhood, so that the original recipient receives the message once he is online -

151

152

PROTOTYPICAL SOFTWARE DEVELOPMENT ENVIRONMENT

independent of the sender’s online status. We called this behavior, which is a mixture of
classical instant messaging and asynchronous e-mail message exchange offline messaging.

Both mechanisms, highlighting the last author and offline messaging are novel approaches
and were presented in [MKSo8].

9.4 SUMMARY

We saw that PlatinVC is only a part of the project support environment PrrE in Figure 51.
P1pE is a modular framework that capsulates services in components. The standardized inter-
component communication is handled by the OSGi implementation Equinox. This lightweight
implementation allows the exchange of any component while the system is running and can
combine components written in any compatible language.

In addition to PlatinVC, which is the most elaborated component, we developed a component
that handles synchronous and asynchronous communication and brings some awareness of the
coworkers related contributions (AskME). Another major component is the security manager,
which handles secure message exchange and provides a role based access control mechanism.

The prototypical framework presented in this chapter can be extended with various func-
tionalities on a plug-able component base.

153

9.4 SUMMARY

[o0 |
125¥) ST pedsse)> fg]
T I ANFVLIW B 4
suod| 17 4
UOIBIUBWN D00 ._m._d 4
sbumas 1) 4
mepriaw 17 4
{121 0Q "BIPUES BOOZ 13D BPISTIEZ 9T G4 185 Aeign waishs 39 U <
Ga1auapuadag w-Bnig = <4
r AmmS1Y3 3 pRauawajduwl ay Ays JOLINE 158 343 ST pinoys | sdeyiad (3 §O0Z 13D 0Z:STIEZ 91 924 185
saleIgn pasuaiaey T 4
BIPUES YUM U0|S535 1BLD) |nnauoepues B 4
O o TEm_nEn @j Fosuo] m; Aydieialy BD lﬂ; 54011p3 SAD _H@HL uopese|2g A@; JopesR @) NI CPUOEPUTYS mm. 4
inoauoepuels BT <
o i L= —————————— Li|||| ' NA-—_—" W <
JBILOT JO 4O v:Lﬂ“MMcvavmnwvcvwl_ s fabessappperEIzaizy)y maubnid mm. «
BIEQIIEILO] 12N.4) pal y ---puz--- Anseduibind mm.]
« j1eL1 0 :abessap .
i = ABM SIY1 1] paIuaadw) ay AYm JOYINE 15E| 3y §SE pnoys | sdeyiag :abessapy Buissed X 7 «
Jaquinu yo Aejdsip ajduns- | Y3YIs E0BOTOET 10 o :abessan || | essanuadoid [«
PO BupyBlYBIY Jony- | IYI3Y3s [ZT BOTOET s1 Q0 &mh%%mwwn isinanallaAn BT «
Jo so1onasuod pabueyd- 1YI2|YIS b0 BO'TORE 9Ts [ujebe o m&mns_ maBessan [T «
eyl Lun_n-aﬂ_ Y abessaw 2|40 B 5 5143
UBLILIOT) JOUANY | 3L ARy sbe) [v 3
a
eaelEIRgI2RILOD [HomaBy WABAE[[Syaomaweld/Aselqr/waisAs [[uonednddy as5dia3)
. 0Ee[@-IFES o @)oo <60 FAFBET (% x ® 3 esed @)|f| ewquon &7 a
s @.M_.m A
apou T 03 pajsauuo’ | 7z EA2] uiBn|dJabuassawdzd ._m_% A
“a Aspiae4pi Ao1reqp| 2ne1s agealad 1z owap-eap 7]
= UBULOI AL S JUBWU0 AT 21185 aeaud Jf 0z
61 BoaBueyasad m
b8l w3 J3E
ElEQIEWO] sSEPgnd /] w0 r_umm mu.mw
f« 91 A
i TIPS erIsE3s souned s 51 ded @ 4
UBISEGas FT
Apu @ 151]-19BIUOD BY] J0 1IN0 BU0 Jasadal mms_umEC.umUw.ED“ €1 pimdzd S 4
E_M_M 4 :_ﬁ.m NOTHOW (S}
¥ [uondasxaororenel vodw)@e s129f04d 4O (5 4 3
— L E
PHQ ,Nw g nY ‘eyequibn|d abexoed | ~ o _Anu“.v = _ # & o
=
O = 57 WIUEISU| dZd Mmu O o 57 eaelEIRQIIEILOD 5& ARl U@ poNAISE] @u; eaelmalpJabuassap @u; EAEFMBIAIEY D) ﬂ& eAEl JabEUBRWAIELS @..w O o 57 J4240|dx3 by eg B
-~ P,

HcGoa i li|¢ 2]
« [eant | ngea ¢ [25 [-OBP[-D-0 %[5]

e Toa

Figure 58: PlatinVC and AskME integrated in Eclipse (running in OS X)

EVALUATION

Following the previous chapter, in which our system, PlatinVC, was elaborated in detail,
this chapter presents its evaluation, organized into six sections: specification of evaluation
goals (Section 10.1), choice of evaluation methodology (Section 10.2), choise of workloads
(Section 10.3), discussion of the evaluation results (Section 10.4) and comparison to the
performance of the related systems (Section 10.5).

10.1 EVALUATION GOALS

The main goal of the evaluation is to examine whether the quality of the proposed system
corresponds to the set of given requirements. In Chapter 3 we discuss the functional and
non-functional requirements and security aspects. In our evaluation we will focus on non-
functional requirements, especially consistency (described in details in Section 4.4), scalability,
robustness and fault tolerance. Our extensive tests showed that functional requirements are
fulfilled, as all features function as specified. A comparison of the features offered is presented
in Table 5.

We quantified the non-functional requirements using the appropriate metrics. This mapping
between quality aspects and metrics is described in the following subsections.

10.1.1 Quality Aspects

A quality aspect describes how well a system performs under a specific workload. A quality
aspect is like an invariant - it is always present. However, under specific workloads, they
more clear visible and those workloads are chosen to be a test for the corresponding quality
aspects. Examples of such workloads are when many machines fail simultaneously which
demonstrates robustness. All workloads we use in evaluation of PlatinVC we list and explain
in Section 10.3.

We evaluated the following;:

* quality aspects

— the degree of the achieved consistency

the freshness of retrieved updates

the load of the system introduced by the system operations (push and pulls)

the scalability of the system

the robustness of the system

the performance of the system

* and system operations:
— O-9 push globally
— O-6 pull globally
— O-5 pull globally using specified folders

A quality aspect cannot be quantified directly, but with set of metrics.

155

156

EVALUATION

Metric
A metric is the measurable behavior of a system, e.g., the number of
messages occurring in a specified time span. A metric itself or a math-
ematical combination of more metrics quantify one or more quality as-
pects. Most metrics show a trend in a system rather than giving a defini-
tive statement regarding a corresponding quality aspect. A comparison of
metric values between different solutions can describe a quality aspect.

A well known example to measure the size of software is the metric lines
of code. By comparing this value in various codes, quality aspects like maintain-
ability of software can be quantified.

10.1.2 Metrics

For our evaluations of PlatinVC the following mappings between observed quality aspects
and metrics are used:

Consistency Degree: is measured by surveying which snapshots are pulled after a specific

snapshot was retrieved the first time. Following the definition in Section 4.4, once a
snapshot was pulled no older snapshot can be pulled by a subsequent pull request,
otherwise only eventual consistency would be provided.

If there are more than one latest snapshot in any moment (like in the case of branches) all
those snapshots have to be retrieved to guarantee sequential consistency. If only some
of them are retrieved, the consistency degree is causal consistency. N.B. A resultless
request is considered to have failed and does not influence the provided consistency
degree.

Freshness: describes the time that passes until a freshly pushed snapshot is retrievable by

any peer. We quantified this quality aspect by measuring the time between the start
of a successful push operation and the start of a pull operation that retrieved the
corresponding snapshot. It turned out to be difficult to measure in our experiments, as
it was hard to know when a pull request should be started, and with which frequency
subsequent pull request should be executed. If the first pull request already retrieved
the just pushed snapshot, it was executed to late and the measured timespan could have
been smaller, if we had executed the pull operation earlier. This leads to a less well
measured value for the freshness metric. If we start the pull requests to early, non could
retrieve the just pushed changes. Moreover, the more pull requests we execute in a short
time period, the more we stress the system.

System Load: can be measured using various metrics. The size and sum of the transferred

messages gives a clue of the overhead or load of PlatinVC. The number of messages
alone does not quantify the load of the system in a meaningful way, as small messages
are transmitted quickly and do not overload the system as much as the large messages,
which use up the bandwidth of the system’s participants.

Scalability and Robustness: are both inherent quality aspects that are especially important

during changes of the network size and dynamics of a system (e.g. failures) respectively.
These quality aspects are measured by comparing the systems performance under
different scenarios; Different network sizes to quantify the scalability and different
user participation (churn behavior) to quantify the robustness. How much different
performance indicators vary give a clue about the system’s scalability and robustness.
The performance indicators are, for example, the percentage of successfully completed
operations and the time the operations needed to complete.

Performance: is measured by the time needed to execute the operations of PlatinVC. We eval-

uated the prototype of our system, PlatinVC, from a user centric point of view. Therefore
we measure the completion time of an operation (push or pull) from the moment a

10.2 EVALUATION METHODOLOGY

user initiates the operation to the moment the user receives an acknowledgement that
the operation has been successfully completed. However, a version is available earlier
(for another user), i.e., from the moment it is stored in the peer-to-peer module of the
maintaining peer. As we observe this operation form a user perspective, we do not
regard it completed until a user receives the final acknowledgement.

10.2 EVALUATION METHODOLOGY

A system evaluation in computer science can be done analytically, through simulation, testbed
or using real systems with real users. Those evaluation methods are listed according to the
accuracy of the results: from the least to the most accurate.

The analytical evaluation method is the cheapest in terms of hardware and man power costs.
It relies on the mathematical models of system, user, and workload that provides a prediction
of the system behavior based on the input parameters. However, complex and highly dynamic
systems, such as peer-to-peer systems, can only be analyzed when many important details
and influencing factors are heavily abstracted in those models. Therefore many effects can be
hidden in the evaluation results. The evaluation process itself is, however, fast and easy once a
model is developed. We did not use the analytical method for evaluation of PlatinVC.

The simulative evaluation method is more accurate, as the models are not mathematically
expressed but through software. It allows for more detailed models, which much more accu-
rately simulate the real systems and its environment (workload, users, underlying network).
Those models are integrated in a simulator which provides more flexibility in the experiments’
setup, e.g., changes of user behavior, more complex experiment timelines etc. A strong point
of the simulative approach is the scalability - thousands of machines can be simulated in
software without the need to deploy the actual hardware. A survey [I[SHGHo7] among 744 IT
professionals who work in GSD projects indicates that the number of participants is much less
than a hundred people (a more detailed conclusion can be found in Section 10.3). Focusing on
the GSD scenario (presented in Section 2.3) we do not need the ability to evaluate thousands
of peers. In the wiki scenario (presented in Section 2.2) there are certainly more participants,
but the expected quality is lesser than in the GSD scenario. Therefore, the benefit of simulation
as an evaluation methodology is not useful for the evaluation of PlatinVC. Additionally, the
simulative approach still abstracts a real system and is thus not as accurate as evaluations of a
running system. During the development of our prototype, however, we used the peer-to-peer
simulation framework PeerfactSim.KOM [KKM " 07] to evaluate single mechanisms, such as
different commit protocolls. In this way we compared the impact of different design decisions.

The most accurate evaluation method is measuring the actual quality of a real system with real
users. This method is the most time consuming and needs the most resources with regard to
hardware and man power. As the previous chapter, Chapter 9, described, we developed a real
prototype of PlatinVC. All developers of PlatinVC used it for version control; However, this is
not enough to say we had a real users in our evaluations. Instead, we modeled user behavior
derived from the captured real-user-behavior in software development (see Section 10.3).

We evaluated PlatinVC using a festbed. While the real prototype software was running on
the machines in our lab, the user behavior was scripted with predefined events. This allowed
us to repeat the same experiment setup multiple times for the sake of statistical correctness of
the results.

The choice of this evaluation methodology showed its benefits very early. We discovered
some design mistakes in the initial experiment that were not visible during our daily work with
PlatinVC. Some of the behavior we initially assumed while designing the system, proved to be
wrong in certain extreme conditions. That forced us to refine some mechanisms implemented
in PlatinVC. With the other mentioned approaches, these incorrect assumptions might have
never been discovered, as they would have been integrated in our models.

In the next subsections, the details of the evaluation environment and platform will be
described.

157

158

EVALUATION

10.2.1 Ewvaluation Environment

We carried out our experiments in two labs with connected computers and used 37 machines
to run our experiments. Their hardware configuration was as following:

e first lab
— 9 PCs with an Intel Core2Duo CPU clocked at 2.66 GHz, with 4 GB RAM
— 12 PCs with an Intel Pentium P4 CPU clocked at 3 GHz, with 2 GB RAM

e second lab
- 3 PCs with an Intel Pentium P4 CPU clocked at 3 GHz, with 3 GB RAM
— 13 PCs with an Intel Pentium P4 CPU clocked at 2.8 GHz, with 2 GB RAM

The machines are connected to a switch in each lab, the two labs are connected with each
other and the Internet via a switch. While this topology represents an ideal case, we were
still able to see the trends of the prototype clearly.The operating system on all machines was
Microsoft Windows XP with Service Pack 3. Additional software required was Java in version
1.6.0_20 and Mercurial in version 1.5.1.

In the experiments where we ran multiple instances of our prototype on a single machine,
we deployed more instances on the stronger machines. Again, running multiple instances on
one machine does not bring a realistic network topology, but shows a good approximation
of the behavior in a real network. The uneven upload and download bandwidth of a peer
in a wide area network (WAN) can be neglected, as the messages’ payload was smaller than
the minimum bandwidth available in this setup (assumed that the minimum bandwidth for
uploading a message would be 16 kbps; the messages in our system have been maximal 15kbit
big). The small message size is justified in the fact that only deltas to existing versions are
transferred.

10.2.2 Evaluation Platform

In order to run controlled, repeatable accurate experiments, we developed an evaluation
platform in [CGog]. It represents a distributed software that consists of a controller and a client
application. After an instance of the client application is started on all machines, an instance of
the controller application distributes to all machines the following:

* prototype of PlatinVC that is subject to evaluation,

¢ the data needed for the experiment, i.e., the module that stores the version history
manipulated in the experiment,

¢ the users input into the prototype, i.e., actions it performs.

The users input was predefined in a xml file as detailed in Section 10.3.3. This evaluation
platform allowed us to repeat an experiment under the same conditions, with the same user
input, on easy and controllable fashion.

Each running instance of our prototype was measured by the accompanying client appli-
cation of the evaluation platform. To avoid interference with the evaluation measurement,
the distributed parts of the platform did not communicate during the experiment runtime.
Recorded values, such as the result and runtime of executed operations, were stored in local
log files which were collected after a specified experiment end-time.

We took into account unsynchronized local clocks and different network delays to be sure
to start, execute, and end the experiment on any machine at the same time.

10.3 WORKLOAD 159

10.3 WORKLOAD

The workload we used in the experiments consists of the following aspects:
e size of the network,

* data used for versioning in the evaluated prototype, the module that stores the version
history manipulated in the experiment,

¢ user behavior, and
e churn model.

In the following subsections we will discuss each of those aspects individually.

10.3.1 Number of Users

A survey [ISHGHo7] shows that the number of users in the GSD scenario (see Section 2.3) is
significantly smaller compared to other peer-to-peer application scenarios, like file sharing.
The working force of a project was given in person/month. Most projects (33%) have a volume
of under 10 person/month, the second 10-20 (22%) person/month. While there are projects
with more than hundreds of person/month (16% 100-1,000 person/month, 3% more than
1,000 person/month) the average project size is 84 person/month. Two person/month could
stand for one person, who worked two month long, or two persons, working for a month. A
project’s runtime was not provided, so we can only approximate the actual number of software
developers involved. Assuming a 6 month project runtime, which is in most cases the minimal
runtime of a project, we can conclude that, on average, 14 persons are simultaneously working
on a GSD project.

Therefore, and with regard to the physical limitation of real machines, we set up our
experiments with

* 3 (all peers are replicas of each other) users,

* 15 (typical project size in real GSD projects) users,

¢ 37 (limit of available machines for our experiments) users,
¢ and 100 (3 instances running on a single machine) users.

We did not scale our experiments to more than 100 users as the results would have been
less accurate. The reason is that, with 100 users, we deployed three instances of our prototype
at the faster machines and two at the slower computers. Deploying multiple instances on the
same machine does cause moderate undesired side effects, such as delayed process execution,
resulting from overloaded processors.

10.3.2 Experiment Data

We used the version history of the open source project gcc' as a realistic project module.
Subversion is used in the development of gcc, however, there is a Mercurial mirror module
accessible under http://gcc.gnu.org/hg/gcc/trunk, which we used.

The module’s size is 654.7 MB large, it has 99,322 snapshots stored. The snapshots cover the
project’s history from the 23rd of November 1988, the project’s start date, to the 12th of April
2010, two days before the release of version 4.5.0. A median of five files, each in a different
folder, which belong to two branches in the directory tree, were changed in a snapshot. In our
experiments every peer had an initial copy of this module, so that only updates made during
the experiment were transferred.

1 http://gcc.gnu.org/

http://gcc.gnu.org/hg/gcc/trunk

160

EVALUATION

10.3.3 User Behavior

We derived the user actions from the log of the gcc project. We chose a busy timeframe of
three hours to replay the commit commands which happened on Monday, the 12th of April
2010. The version 4.5.0. of gcc was released two days later. However, from the log we could
only retrieve the commit operations that were executed using Subversion. For 50% of the
commit operations of the log we executed operation O-9: Push globally in our experiments. The
other 50% of the commit operations were first locally committed and pushed globally when a
subsequent commit occurred.

The update operation is not recorded in a Subversion log, therefore we decided ourselves
when to pull for the latest versions. In order to evaluate the freshness, we executed many pull
operations in a short time. Starting only four seconds after the initiation of a push command,
every 0.5 seconds a (different) random user pulls the latest changes 20 times, which is equal to
a period of ten seconds. The pulling users use operation O-6: Pull globally in one and operation
O-5: Pull globally using specified folders in another setup. The concrete scenario is detailed with
each result in the following subsection.

10.3.4 Churn Model

We used two models to emulate churn in our experiments. As detailed in Section 2.3, we
assumed a mixture of open source developers and professional developers working on a GSD
project.

Open source developers (as well as wiki users) act similarly to the captured behavior of
file-sharing users. They tend to be online for a short amount of time. The longer they stay
online, the less likely it is that they go offline. This behavior was analyzed in [SENBoya]. The
online time of a user follows a Weibull distribution with the parameter values 357.7152 for
scale and 0.54512 for shape. With theses parameters the Weibull distribution is similar to an
exponential distribution, for which the tail of the curve decreases more slowly. We reused the
implementation of this churn behavior provided by PeerfactSim.KOM [KKM " o7].

To model the behavior of professional developers we introduced a second churn model.
We assume that the arrival time of professional developers at their working place follows a
normal distribution and that they stay online during their normal working hours. With the
same normal distribution they switch off their machines and finish their working day. In a
real company the developers are often directed not to switch off their machines.

Figure 59 visualizes how we simulated churn in our experiments. With churn 25% of the
users leave and join the peer-to-peer network according to the Weibull distribution, which
represents the open source developers (the topmost curve in the graphic). In the first hour
only a few open source developers are online. Some are leaving the system and some are
joining. The longer an open source developer stays online the less likely it is that he will
leave, thus the number of developers online rises over time. The rest represents professional
developers in different time zones, with different working hours. As our simulations ran for
3 hours and were not spanning an entire day, we decided that 25% of the developers stay
online (not depicted in the graphic), while 25% leave the system and the remaining 25% join,
to capture the effect of different time zones. The leaving developers start to leave after an hour
runtime, and leave in the timespan of an hour. In the same timespan, the joining developers
begin their work and are complete after another hour. They stay online until the end of the
experiment afterwards, while the developers who left, stay offline. Only the open source
developers, whose behavior is modeled using the Weibull distribution, leave and rejoin the
network in an alternating fashion.

10.3.5 Experiment Timeline

Each experiment ran for 3 hours real time with a repeating sequence of push and pull
commands. We carried out 20 repetitions of the same setup in order to meet statistical

10.4 EVALUATION RESULTS

VAN

oo rs—]
percentage | | | |
of users ' | ' '
online ' | \ |
£100%3 - tf- ! ! ! ﬂ
! ! ! s . w o= oa| 25%chur
1 L e m = " Weibul
PR : (leaving and
cowa |F T ! | ! joining)
- — 1 | 1
E100°A)] - s s . :\ : : T
1 ~ I 1 25% |ean)
1 ~ 1 ..
! ~ ! (do not join
' S ' again)
1 | 1
C 0% 1 ! | Sy BR -
C100%3 " || ! ! —
: ! 25% join
| (do not leave
: afterwards)
C 0% 1 : — -
1 1
C1h] [1.30h7] C2h 1] C3h 1] time

Figure 59: Churn execution in our experiments

correctness of the experiments. Within this 20 repetitions we varied the number of users only
(3, 15, 37, 100). The measurements were executed after a start-up time, when all peers joined.
We compared three different setups. A third of our experiments ran with no leaving peers,
another third with the churn model described in Section 10.3.4, and the last third with failing
peers. In the last setup 50% of the peers simultaneously left unannounced (failed) in the
middle of the experiment.

10.3.6 System Parameter Settings

We parameterized PlatinVC in all experiments with the following settings:

e The number of replica peers was set to 3. N.B. Most peer-to-peer applications use five
peers. As detailed in Chapter 8 we store the data in a more redundant manner than, e.g.,
file sharing solutions. Thus it can be recovered more easily in the case that all replica
peers fail in the same time window. However, to avoid this situation the number of
replicating peers should be higher in a network with more churn.

* The time-outs were set to 30 seconds for all pull and 60 seconds for all push operations.
That matches 6 times the duration this operations needed to complete in preliminary
tests.

10.4 EVALUATION RESULTS

The final results of our testbed-experiments are detailed in this section. Each subsection
discusses one quality aspect, with the exception of the aspects scalability and robustness,
which are presented in every experiment result. Both of these quality aspects are inherent
aspects of a system, which are present all the time. To show the scalability of PlatinVC, we
repeated each experiment setup with a different number of participating peers. To address ro-
bustness, we executed two thirds of the experiment duration using the churn model described
in Section 10.3.4. The graphs present the mean value measured in each experiment, where the
confidence intervals represent the variation of different experiments.

161

162 EVALUATION

100 101 .
= = failures
S s no failures s
2 " 2
32 98 2 100.5
5 5
2 ¥ 2 100
(%) (%2}
5 96 , S
o y o
< <
= 95 =
5 g 99.5
g %r churn - g
@ no churn @

93 99

10 100 10 100
experiment size (peers) experiment size (peers)
(a) with and without churn (b) with and without simultaneous failure of 50% of the

peers

Figure 60: Degree of consistency

10.4.1 Consistency Degree

Figure 60 shows that our assumption about the degree of consistency PlatinVC provides
was pessimistic. When the network is stable sequential consistency is 100% guaranteed. No
pull operation retrieved an outdated snapshot. N.B. Consistency is calculated only for the
successful operations, as presented in Section 4.4. Figure 61 shows the relation of successful
and unsuccessful operations, which did not retrieved any snapshots.

Even when half of the participating peers simultaneously fail, as presented in Figure 60b,
PlatinVC maintains its sequential consistency. Although a huge number of maintaining and
replicating peers failed and with them some snapshots got lost, the peer who pushes a new
snapshot stores all basis snapshots as well, and reintroduces them into the system. Only if a
snapshot has been pushed, successfully pulled once, and got lost due to failing peers before it
could be pulled a second time, the consistency degree would drop, which did not happen in
any of our experiments. Due to the fact that all peers are failing at the same time either all
snapshots or none are retrieved (which is the criteria for sequential consistency). By consulting
Figure 61 we can see that no snapshots where retrieved in only 8% of the operations in the
worst circumstances.

Introducing churn, as described in Section 10.3.4, decreases the number of sequentially
consistent pulls to 93% in the worst case scenario. The remaining 7% showed to be still causally
consistent. In opposite to the previous scenario users are joining as well, and peers are failing
at different times. Thus it is more likely that one snapshot can be retrieved, while the retrieval
of a second snapshot in a branch fails, leading to causal consistency. With a rising network
size the percentage of sequential consistent pulls drops, because more peers act as maintainers
and are involved in the version control operations. If all snapshots were concentrated on
a single peer, either the peer is available and all snapshots can be retrieved, or none, thus
complying to the definition of causal consistency. When the snapshots are distributed among
multiple maintainer if only one if unavailable and all but one snapshot is retrieved only causal
consistency is provided.

These results prove robustness and scalability of PlatinVC regarding its consistency.

10.4.2 Robustness

Figure 61 shows that a number of push and pull operations failed to complete in our experi-
ments. For more then 15 peers less than 2% of the operations failed even without leaving or
joining peers. A closer look on the evaluation results revealed that higher timeout values would

10.4 EVALUATION RESULTS

have prevented the operations from failing. In the experiments where half of the peers failed
at once we experienced aborted operations in all setups, from 2.5% to 8%, in a logarithmic
curve. Similarly to the degree of consistency the operations are less successful under churn

100 r g

95 r i

90 e

85 "y,

80

75

churn =
no churn
failures

successfull operations (%)

65

10 100
experiment size (peers)

Figure 61: Percentage of successful operations

than when peers fail at once, as the returning peers in the churn scenario are contacted, but
are not updated yet. Thus the operation fails. When peers fail without returning the remaining
peers take over, already up to date due to the replica maintenance (see Section 8.4.6).

Again, with a growing network size more operations are aborted, because the repository is
distributed among more peers which become unavailable. In our experiments for a network
size up to 37 real machines in the worst case scenario only 25% of the operations failed and
would have to be repeated. The slow grows of the percentage of unsuccessful operations
proves the robustness of PlatinVC.

10.4.3 Freshness

Figure 62 shows that a snapshot is available, at the latest, 6 seconds after it was pushed. As
the freshness value only rises slightly, we can conclude good scalability of PlatinVC regarding

12 11 .
churn - failures
no churn - 10 no failures s
10 9
2 8 T 8
l L 7
& 9]
1} 6 2 6
c c
= E 4
-
2 3
2
0 1
10 100 10 100
experiment size (peers) experiment size (peers)
(a) with and without churn (b) with and without failing peers

Figure 62: Freshness of pushed updates (time till available)

163

164

EVALUATION

pull
- push

JH_

operation time (sec)

O P N W b~ 01 O N 00O ©

10 100
experiment size (peers)

Figure 63: Time needed to execute the push/pull operation

its freshness. The peer-to-peer system dynamics caused by churn or simultaneous failure of
peers, proved to have only insignificant influence on the freshness of the retrieved updates.
The values measured for 100 peers indicate that running multiple instances of our system on a
single peer disturbs our measurement; whenever an instance running on the same machine
pulls a snapshot pushed by an instance on the same machine the communication time is
very fast, as messages are not sent over the network connection. In our experiment where
all peers where stable (no churn or no failing peers) we can see that there is no significant
difference between the results of the experiment with 37 peers or 100 peers, both running on
37 computers. A closer look on the experiment log files revealed that even in the experiment
with 100 peers no to peers on the same machine communicated. In the experiments where we
introduced churn and failing peers it happened that the replacing peers where instances on
the same machine, which communicated with each other, leading to even faster updates.

10.4.4 Duration of Push and Pull

As detailed in Section 8.4.4, there is always a trade-off when designing a version control
system: Performance increase of one operation decreases the performance of the other, in
the case of sharing or retrieving operations. Figure 63 clearly reflects our design decision to
favor the performance of pull operation, as more frequently used operation. Executing the
push operation takes between 4 and 5 seconds and can rise to up to 9 seconds, when the
system grows. The very small amount of time needed for a pull operation of under 2 seconds,
increasing with the network size to up to 4 seconds, is influenced by situations, in which the
peer that is a replicating of maintaining peer already received the latest snapshots before it
executed the pull operation. In our experiments a snapshot consisted of changed files being in
five different folders. With two replicating peers and a maintainer for each folder in the most
extreme case 15 peers would get the snapshot during the push operation.

When the network grows to 100 peers, the operation time even drops. We do not consider this
as the realistic behavior of our systems but rather a limitation of our experiment environment.
We evaluated 100 peers by running multiple instances distributed among our 37 physical
machines. Whenever two instances that run on the same physical machine communicate, the
message exchange is unrealistically fast, which results in a shorter overall operation time.
We can see the slight distortion of the evaluation results when emulating more peers than
available physical machines in the evaluation environment.

pull operation time (sec)

push operation time (sec)

5 4.5
churn =smme
4 L nochurn . 4r
js]
3 ?” 35
o 3
2 E 25
1 5 2
0 g 15
Q.
1
(=]
_1 =
2 0.5
_2 0
-3 -0.5
10 100
experiment size (peers)
(a) Pull with and without churn
the peers
20 churn 12
18 no churn ~ 11
16 §
<L 10
14
(]
12 o v E 9
10 c
5] 8
8 o ©
6 et g 7
2
4 ﬁ 6
2 =
0 s 5
-2 4

(c) Push with and without churn

10 100
experiment size (peers)

the peers

Figure 64: Operation time

10.4 EVALUATION RESULTS

failures
no failures

10 100
experiment size (peers)

(b) Pull with and without simultaneous failure of 50% of

failures e
no failures

10 100
experiment size (peers)

(d) Push with and without simultaneous failure of 50% of

165

166

EVALUATION
65 55
Churn ==mme failures

60 r no Churn 50 no failures
£ 50 € 4
12 1]
: P
[2] 1]
s 30 o 5 30
g 25 9 25|
N 20 N

15 20 ¢

10 15

10 100 10 100
experiment size (peers) experiment size (peers)
(a) with and without churn (b) with and without failing peers

Figure 65: Size of transferred messages (payload+system messages)

Figure 63 shows the operation times when the participant number is not changing, when
there is no churn. In Figure 64 we can see the operation performance under churn and when
half of the peers simultaneously fail. The same trend being visible in the graphs, both with
and without churn and failure shows that PlatinVC provides a good robustness. Scalability in
the terms of operation time is good for both push and pull, even though it shows some rising
trends in the case of peer failures.

The pull operation times tend to be better under churn and with failing peers. We can
explain this behavior by the fact, that a smaller total number of peers is active in these scenarios.
We did only measure pull requests which succeeded - as expected the number of successful
requests drops, as shown in Figure 61. The very small values we measured for the operation
time depends on the network structure as well. Whenever the requesting peer is a replicating
peer of one of the artifacts under request, the items are available (due to the replication process)
before the operation finishes. The smaller the network is, the more likely an arbitrary peer is a
replicating peer of one of the artifacts in question.

10.4.5 System Load

Figure 65 further shows that with a rising number of participants, the summed up size of all
messages is rising. This can be explained by the fact that with more peers in the system, the
folders in a module are more widely distributed. More replicating peers have to be updated,
which results in more messages. Additionally, the connectivity among the peers is smaller and
more intermediate hops are needed to transfer a message.

A noticeable exception is the value for 37 peers under churn. The summed message size
drops below the value observed for 15 peers. However, the variance of the measurement is
very large as well. This chaotic behavior is expected when a system experiences heavy churn.

With a growing number of peers the system load rises approximately logarithmic, indicating
that the system load scales well.

10.5 COMPARATIVE EVALUATION

There is hardly any version control system, which exhibits the features PlatinVC demonstrated
(see Chapter 6). The dVCS are lacking a global repository while a cVCS would collapse under
churn, if the server machine fails. We were not able to run the only comparable peer-to-peer
based solution Pastwatch (see Section 5.3.5) on more than 10 machines.

Nevertheless, we made some simple experiments to obtain comparative values for cVCS’s:
We measured the time needed to update the working copy using Subversion (see Section 5.1.4)

10.6 SUMMARY

SVN Pastwatch PlatinVC

commit / push 5.9 sec 3.74 sec 4.8 sec

update / pull 21.4 sec 2.7 sec 1 sec

Table 4: Comparison of commit/push and update/pull operation time in Subversion (SVN), Pastwatch
[YCMo6] and PlatinVC

with the same repository that we used for our measurements: gcc. It took 23 seconds (in mean)
to update an outdated working copy to the latest version (updating revision 161333 to revision
161334). To not interfere with the development of this open source project, we measured
the time needed to commit changes made in our Subversion repository: We controlled the
versions of our evaluation platform in a Subversion repository hosted by google code, which
utilizes Amazon’s s3 servers. Obtaining the latest updates took, in mean, 21.4 seconds, while
committing a 4.6 kb file took in mean 5.9 seconds, with a variation of 0.6 seconds in both
operations.

As we could not run Pastwatch with more than ten peers, we could compare it to PlatinVC
only by referring to the evaluation results from its conference publication [YCMo6]. The
commit operation needs 3.75 seconds in mean and the update operation 2.7 seconds in mean
to perform. However, in the simulation setup only ten machines were used with two users,
which is only comparable to our setting in which we used three peers with three users. In
the experiments, where the number of project members was increased to 200, the number of
machines did not change. These experiments showed a mean time needed for the commit
operation of 5.45 seconds and 4.6 seconds for the update operation. However, we do not
comprehend in which realistic scenario 200 users use only ten machines. Additionally, in
those experiments only two users executed the operations. As pointed out in Section 5.3.5,
we believe that it suffers from significant scalability issues when multiple users execute the
offered operations in a small amount of time, as a centralized index has to be contacted each
time.

As we can see in Table 4, in addition to the many benefits of PlatinVC discussed in Chapter 6,
the performance of PlatinVC version control operations is also significantly better than in
Subversion and is comparable to Pastwatch. An overall comparative evaluation of the offered
features is summarized in Table 5.

10.6 SUMMARY

Our testbed evaluation showed the consistency degree of PlatinVC to be sequential in almost
all cases. Even under churn, 93% of the executed pull operations retrieve the latest changes, in
the very worst case. The time needed to execute a push is fast with up to 5 seconds for 15 peers
in system and 9 seconds for 37 peers. The pull operation is even faster with up to 2 seconds
for 15 and 3 for 37 peers in the system. PlatinVC proved to be robust and scalable regarding
consistency, freshness, and performance, whereas the scalability proved to be average in the
case of the performance of pull operation.

Our experiments efficaciously modeled the global software development scenario (see
Section 2.3), in which the average number of participating project members is 14. All results
from the experiments with 15 peers prove PlatinVC’s suitability for GSD. In spite of the fact
that our experiments did involve more than 100 peers, we cannot make a clear statement about
the suitability of PlatinVC to the wiki scenario (see Section 2.2) with the thousands of users.
The modifications of the articles in that scenario, however, is significantly less frequent than
in our experiments and involves only a few users. With the scalability not evaluated to the
maximum our experiments still showed that both application scenarios benefit from the other
advantages the peer-to-peer paradigm can bring, as summarized in Section 2.4. Therefore, we

167

EVALUATION

168

B
Q
=
x
2
0
&
Aouagsisuoo ppsnvd Aduagsisuod (pnuand Aouazsisuoo pynjuana Aouaysisuod (piguanbas ©
a2
S
G
Q.
=
\ \ \¢ uIopouwr jsowx »

syur| Ayrqesoely, 4 5% 5%

paurquiod X X S}IUIUIOD TeqO[D)
paurquod X SHUIUIOD [BUOSID] X m
sajepdn 2A3da[as uoER[OSI OJNE X X sajepdn aA13d9[9g w
Yy x (uoneziensia A1o3sny -97) 310ddns [oof, -

. 4 SGDA Ioyio ynm Aqiqeradorajur 3%

Y. X Su188nqap 103s1g
y. y. [OIIU0D UOTSIDA SUIFFO
JAuneld oremised SOAP SOA2

Table 5: Comparison of the features offered by the observed version control systems

10.6 SUMMARY 169

can conclude that with our experiments, we placed PlatinVC under extreme workload for the
observed scenarios and proved it to fulfill all requirements.

Part IV

FINALE

This part presents the final summaries and conclusions of our find-
ings in the presented work and its contributions to and impact on

future research in the area of collaborative and distributed project
development.

CONCLUSION

This chapter summarizes and concludes the previous chapters (Section 11.1) and lists the main
findings and contributions of this thesis (Section 11.2). In Section 11.3 we provide an outlook
on open research challenges and in Section 11.4 we discuss the implications of the research
presented in this thesis on software development environments and supporting applications.

11.1 SUMMARY AND CONCLUSIONS

Globally distributed software development is common today. Efficient and accurate collabora-
tion between developers spread all around the globe is essential for the success of projects. In
order to provide appropriate support for this, a version control system is a vital part of any
collaboration platform. Its main functions are to track the evolutionary changes made to a
project’s files and manage work being concurrently undertaken on those files. In Chapter 1 we
discussed the lack of current version control systems, their unsuitability to the global software
development due to inefficient client-server communication, the presence of single point of
failure, and scalability issues. The vision of this thesis is a decentralized, peer-to-peer version
control system that overcomes the following challenges:

* Lack of global knowledge which is evidently crucial when pushing and pulling updates and
finding the appropriate group of the peers for which the updates are relevant. Finding a
particular peer in a fully decentralized fashion, with no centralized view on the system
is already a challenging task.

* Reliability of the system and its performance due to the unpredictable peer behavior.
How to create a reliable system on the back of unreliable, autonomous peers?

In Chapter 2 we discussed shortcomings of client-server based solutions for applications
with users spread around the globe and the benefits that the peer-to-peer paradigm can bring.
We analyzed two application scenarios in which version control is crucial: Wikis and global
software development. A running example is described in which both application scenarios
are integrated but the focus lies in global software development, as it is the more demanding
application.

In chapter Chapter 3 we derived and analyzed a complete set of requirements for a peer-to-
peer version control system that meets all the needs of collaborative development today. A list
of assumptions, along with the exhaustive requirements listed in this chapter gave a clue as to
the general applicability of the solution presented in this work.

As a first step in evaluating existing version control systems, in Chapter 4 we looked at
the foundations of version control systems: workflows (centralized collaboration workflow,
integration manager collaboration workflow or the lieutenants collaboration workflow), the
impact of the frequency of sharing changes, and configuration management. The special focus
of this chapter was dedicated to specify and formally define key quality aspects of version
control systems: the different levels of consistency and coherency.

In Chapter 5 we explained in detail the most important version control systems, categorized
according to the centralization of communication: centralized (cVCSs), distributed (dVCSs)
and peer-to-peer based version control systems.

We discussed the limitations of those solutions, which include but are not limited to the
following points:

* The centralized solutions bring unbearable delays for some developers as well as a single
point of failure.

173

174

CONCLUSION

The distributed systems are unable to share the produced snapshots effortlessly with all
developers.

The peer-to-peer based solutions tend to solve these issues but cannot provide a reliable
degree of consistency.

In Chapter 6 we present the detailed comparative evaluation of existing version control
systems. Our special attention is given to their design decisions and effects on key quality
aspects - consistency and coherence.

Based on the finding from the previous chapters, our solution, peer-to-peer version control
system PlatinVC is developed. First in Chapter 7 we give an overview of the architecture of
PlatinVC, with the following major points:

Not relying on a single participant, like usual in dVCSs, while offering the centralized
up to date view of a cVCS.

Collaboration workflows of cVCSs can be used in addition with local working practices
of dVCSs, which results in the novel workflow presented in Section 7.2.

PlatinVC is based on a dVCS which can be full utilized by the user. It inherit’s the
ability to work without network connection, automatic branches and interoperate with
selected version control systems and introduces support for managing the evolution of
traceability links.

Basic configuration management is enabled by snapshot based version control and links
between files, folder and modules.

Changes in a working copy are stored as snapshots. They can be first collected locally to
be later pushed globally. Once pushed the snapshots can be pulled by every participant
immediately.

Snapshots are pushed to a limited number of peers, where they are retrievable immedi-
ately. By pulling from those peers when needed all peers eventually store all snapshots
locally, providing minimal access times.

In Chapter 8, we elaborate each design decision made and analyze all alternatives. Rather
then reinventing existing solutions PlatinVC integrates software that proved to be stable in
many other projects, and focuses on implementing the new parts. Main design decisions are:

Our solution abstracts from a concrete peer-to-peer overlay protocol and only requires
a solution that provides key based routing, which is implemented by any structured
peer-to-peer protocol.

The modification on a user’s working copy is tracked and stored using Mercurial, a
decentralized version control system (see Section 5.2.4). As a side effect all tools that
support or extend Mercurial, e.g., to visualize the recorded version history, can be used
with PlatinVC as well.

In overcoming Mercurials limitations, which result in a lower degree of consistency, we
developed mechanism to share committed snapshots with all fellow developers. As
a result PlatinVC combines the benefits a locally stored version history brings with the
automatic and complete collaboration of centralized solutions.

With the sophisticated distributed mechanisms presented in this chapter we were able to
combine the best features of centralized and distributed version control systems while
eliminating their drawbacks.

We carefully considered situations which can lead to a faulty execution and designed
mechanisms that counteract those effects and maintain a highly consistent and available
repository.

11.2 CONTRIBUTIONS

We developed a running prototype of PlatinVC and present it in Chapter 9. Peer-to-peer
version control is only a part of the project support environment Pire, we developed. It
represents a modular framework that encapsulates services in components. The standardized
inter-component communication is handled by the OSGi implementation Equinox. It also
includes a component that handles synchronous and asynchronous communication and brings
some awareness of the coworkers related contributions (AskME). Another major component
is the security manager, which handles secure message exchange and provides a role based
access control mechanism.

In Chapter 10, we presented our testbed evaluation of PlatinVC. The evaluation results
showed that:

¢ The consistency degree of PlatinVC is nearly always sequential. Even under churn, 93%
of the executed pull operations retrieve the latest changes, in the very worst case.

¢ PlatinVC proved to be robust and scalable regarding consistency, freshness, and perfor-
mance.

* The time needed to execute a push is minimal with up to 5 seconds for 15 peers in
system and 9 seconds for 37 peers. The pull operation is even faster with up to 2 seconds
for 15 and 3 for 37 peers in the system.

* In addition to the many benefits of PlatinVC discussed in Chapter 6, the performance
of version control operations is also significantly better than in Subversion and is
comparable with Pastwatch.

Our experiments effectively modeled the global software development scenario (see Sec-
tion 2.3), in which the average number of participating project members is 14. All results from
the experiments with 15 peers prove PlatinVC’s suitability for GSD. In spite of the fact that
our experiments did involve more than 100 peers, we cannot make a clear statement about
the suitability of PlatinVC to the wiki scenario (see Section 2.2) with the thousands of users.
The modifications of the articles in that scenario are, however, significantly less frequent than
in our experiments and involve only very few users. Therefore, we can conclude that with
our experiments we placed PlatinVC under extreme workload for the observed scenarios and
proved it to fulfill all requirements.

11.2 CONTRIBUTIONS

The main contributions of this thesis are (in the order of presentation):
* Taxonomy and exhaustive comparative evaluation of existing version control systems.
* Formal definition of consistency degrees of version control systems.

* A fully decentralized, peer-to-peer version control system that provides required consis-
tency and coherence levels.

¢ Analysis of all options for design decisions in peer-to-peer version control systems.

¢ Solution to the "frequency-of-commit" problem by recording personal snapshots locally
first and globally later, when changes are final.

e Automatic branches, which are created when needed, i.e., when conflicts arise.
* A running prototype of PlatinVC.
¢ The global software development environment PIPE.

* A modular framework for development of peer-to-peer based applications. PIPE provides
abstractions and messaging modes which can be easily used without having a deep
peer-to-peer knowledge.

175

176

CONCLUSION

* An evaluation methodology for version control systems consisting of an evaluation
platform and detailed workload derived from the real user behavior and data.

¢ Proving that, in spite of unpredictable network dynamic and lack of centralized view,
the peer-to-peer communication paradigm can achieve quality aspects that seemed to be
possible only in centralized solutions, such as consistency.

11.3 OUTLOOK

PlatinVC proved to be an effective solution. In the later phases of its development we used it
for our own version control, e.g., evolution of this thesis was tracked using PlatinVC. Based on
the presented mechanisms, however, our version control system could be extended for usage
in the following alternative ways:

Seamless Version Control: The three locations, where versions are stored on a local peer (work-
ing copy, local module and peer-to-peer module) could be exploited to make a version
control as automatic as possible. Modifications to the artifacts in the working copy could
be pushed automatically to other peers, where they would be applied to the peer-to-peer
module. After a notification, a user could decide to pull those changes to his local
module (executed in milliseconds as all updates are already locally present) and update
his working copy. This proactive distribution of the updates could be implemented in a
controlled way, as the only unpredictable factor would be when updates are created, but
not if a user requests them. Rather than flooding updates as soon as they are created,
sophisticated content distribution techniques could be utilized as proposed by [CDKRoz2].
Using the approach presented in [GSR " 09, Gra10] the system could monitor the traffic
and decide when to distribute updates to which parts of the network.

However, doing so would change the maintainer based repository distribution to the
replicated repository distribution and worsen the consistency degree as a consequence
to provide only eventual consistency. Therefore, instead of relying on proactive updates,
the proposed maintainer-based mechanisms could be extended with additional content
distribution techniques that broadcast updates to all peers. A user would still be required
to check for updates manually, but the updates would have most probably already been
transferred proactively to a user’s machine and the process would finish faster. However,
the improvement might be insignificant, as our evaluation showed that updates do not
lead to a large message overhead which takes a long time to be transferred.

Two Tier Setup: PIPE (see Chapter 9) could be extended to communicate with client machines,
which do not offer services or resources but only consume them. The peers in the network
would operate as servers for them, providing updates on demand and forwarding
modified files. This setup could be helpful in the wiki scenario (see Section 2.2), in which
some participants may not want to modify the articles but only consume some of them.
The fact that all client machines would operate under the same peer identifier, remains
subject to further investigations.

Usage Based Replication: Even when projects are developed in collaboration by globally dis-
tributed developers some parts might be exclusively modified by the same group of
developers. PlatinVC could, therefore, benefit from a location aware peer-to-peer overlay
(like Globase. KOM [KHLSo08, KLSoy, KTL 09, Kovog]). The geographical location infor-
mation would allow artifacts to be maintained by peers which are physically close to the
machines which update them the most (or even exclusively). The more peers there are
in one location updating a specific artifact, the more likely it would be maintained by
one of them. However, these changes would require an indexing mechanism, as artifacts
could not be found using locally available information (i.e. by calculating the hash value
of an artifact’s name). Additionally, dynamic changes that involve a large amount of
data to be copied over to a different peer could worsen the overall performance of the
system and neglect the possible gains.

11.4 IMPLICATIONS

Going beyond geographical optimization, we can organize storage and replication of
artifacts also according to their current and predicted usage. For example, access statistics
for artifacts can be protocoled and embedded in metadata. Then those metadata could
be use to define some virtual artifacts landscape, using a graph embedding algorithm
such as the spring embedder [Ead84] with force-directed placement. A graph is drawn
iteratively until an equilibrium of forces between graph nodes (representing the location
of artifacts in the landscape), is reached. Attracting and repelling forces are derived from
metadata, which integrate compressed protocoled usage statistics.

Incorporate an Ad-Hoc Grid: To improve the stability and increase the system’s performance

11.4

grid machines could be integrated in the peer-to-peer network like described in [SFFo4].
While the companies in our GSD scenario could provide computers, which only run
PlatinVC in order to improve the system’s performance, deploying a grid system on
them would allow a better control. In this way a minimum service quality could be
guaranteed, which is not possible when the system is running purely on a peer-to-peer
network. While the solution in [SFFo4] includes a peer-to-peer protocol implementation
both, the proposed solution and PlatinVC would have to be modified. The peer-to-peer
implementation used in the ad-hoc grid system is JXTA, which is not compliant to the
key based routing API used by PlatinVC. It would be better to replace it with FreePastry,
which is the peer-to-peer protocol used in our solution. PlatinVC would have to be
adopted to the ad-hoc grid, so that the grid machines could be fully exploited. These
machines could take over parts of any functionality; from storing a partial backup of the
repository to acting as a maintainer for specified modules.

IMPLICATIONS

We saw in the example of a Wiki engine (described in Section 2.2) that a version control system
is a core component of many other applications. The benefits PlatinVC brings to software
development could be introduced to a number of other applications.

Versioned File System: Recent file systems incorporate version control mechanisms to provide

a user with an automatic lightweight backup solution. The most mature approach is
ZFS which was introduced by Sun Microsystems in 2005 [SMo6]. The mechanisms of
peer-to-peer based version control systems like [KBC"o0o0] and Ivy [MMGCoz] could
be combined with the mechanisms elaborated in this work to create a peer-to-peer
based versioned file system. However, the research questions stated above under seamless
version control would arise in this approach as well.

Configuration Management: The obvious next step in the evolution of PlatinVC would be an

extension with mechanism for configuration management (see Section 4.3). Most of the
required mechanisms would not need to communicate in a distributed fashion. With
the metadata and traceability links (see Section 7.3.7), PlatinVC offers the possibility for
configuration information to be stored and retrieved in a decentralized fashion. With
an extensional configuration management approach, the traceability links would point
explicitly to the artifacts belonging to a configuration, while the intensional configuration
management approach presented by [Cagg3] could be enabled using attributes which can
be stored in an artifact’s metadata.

Enable Traceability: Traceability links can be used for various additional features in a project’s

development. For example, let us observe artifacts from different development phases,
such as requirement, design, implementation and testing. Using traceability links, we
can trace back a test case from the last phase of development to the related artifacts
from the earlier phases, such as code or requirements. This feature could be helpful in
deciding which tests are to be executed if budget or time constraints limit the executable
tests.

177

178

CONCLUSION

PlatinVC enables traceability links between artifacts in different modules. It handles and
maintains updates of traceability links and their version history. Updates are handled
and a version history for each traceability link is maintained. However, there is currently
no support for creating links only: not automatically, assisted or manually. Links can
currently only be create via P1ixt, which will be fully supported and tracked as traceability
links by PlatinVC. An approach as described in [K6no8] could be used to create or update
links between artifacts (semi-)automatically, which could be stored in a decentralized
fashion using PlatinVC. We thereby avoid a communication bottleneck in the case of
multiple developers accessing links which point to an disjunct set of artifacts. Using a
centralized database to store the links, like proposed by the mentioned work, would
limit the concurrent access any link.

Change Propagation: A version control system manages the conflicts arising when multiple

developers simultaneously edit the same artifact. The consequences of concurrent editing
can also have an effect on other artifacts which is not detected by version control today.
This can happen when, for example, a function that is defined in one source code
artifact is used in another, and both artifacts are changed concurrently. PlatinVC could
be enhanced with mechanisms that detect those conflicts occurring between two or more
artifacts and warn users about it, assist them in the repairs, or automatically solving
those conflicts. The necessary steps could be configured using an artifact’s metadata
and the provided traceability links, as described above (Configuration Management).

However, noticing that the occurrence of such conflicts could be delayed, as maintainers
would have to communicate changes, developers could make changes offline and the
network could be partitioned temporary.

Storage Based Application: Besides version control, PlatinVC provides a purely decentralized

and reliable data storage, manages concurrent updates and handles churn and network
instability. Many collaborative applications could use this reliable storage and benefit
from its decentralized architecture. We elaborated an example, a Wiki engine, in Sec-
tion 2.2, but also similar Internet based applications, such as forum software, e-mail
services or news pages could exploit the mechanisms offered by PlatinVC.

BIBLIOGRAPHY

[AAG*o5] Karl Aberer, Luc Onana Alima, Ali Ghodsi, Sarunas Girdzijauskas, Seif Haridi,
and Manfred Hauswirth. The Essence of Peer-to-Peer: A Reference Archi-
tecture for Overlay Networks. In Proceedings of the International Conference on
Peer-to-Peer Computing (P2P), pages 1120, 2005.

[AHoz2] Karl Aberer and Manfred Hauswirth. An Overview on Peer-to-Peer Informa-
tion Systems. In Proceedings of the Workshop on Distributed Data and Structures
(WDAS), 2002.

[Alloy] O.5.G. Alliance. OSGi Service Platform, Core Specification, Release 4, Version
4.1. OSGi Specification, 2007.

[ATSo4] Stephanos Androutsellis-Theotokis and Diomidis Spinellis. A Survey of Peer-
to-peer Content Distribution Technologies. ACM Computing Surveys, 36(4):335-

371, 2004.

[Bloog] Rebecca Blood. How Blogging Software Reshapes the Online Community.
Communications of the ACM, 47(12):53-55, 2004.

[BLSo6] Elizabeth Borowsky, Andrew Logan, and Robert Signorile. Leveraging the
Client-Server Model in Peer-to-Peer: Managing Concurrent File Updates in a
Peer-to-Peer System. In Proceedings of the Advanced International Conference on
Telecommunications and International Conference on Internet and Web Applications
and Services (AICT-ICIW), pages 114-119, 2006.

[BMos] David E. Bellagio and Tom Milligan. Software Confiquration Management Strate-
gies and IBM® Rational® Clearcase®: A Practical Introduction. IBM Press, 2005.

[BRB'o9] Christian Bird, Peter C. Rigby, Earl T. Barr, David J. Hamilton, Daniel M.
German, and Prem Devanbu. The Promises and Perils of Mining Git. In Pro-
ceedings of the International Working Conference on Mining Software Repositories
(MSR), pages 1-10. Citeseer, 2009.

[Burgs] James H. Burrows. Secure Hash Standard. National Institute of Standards and
Technology, 1995.

[Cagg3] Martin Cagan. Untangling Configuration Management: Mechanism and
Methodology in CM Systems. In Proceedings of the International Workshop
on Configuration Management (SCM), pages 35-53, 1993.

[CCRo4] Miguel Castro, Manuel Costa, and Antony I. T. Rowstron. Performance
and Dependability of Structured Peer-to-Peer Overlays. In Proceedings of the
International Conference on Dependable Systems and Networks (DSN), pages 9-18,
2004.

[CDKos] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems:
Concepts and Design. Addison-Wesley Longman, 2005.

[CDKRo2] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, and Antony I. T. Row-
stron. SCRIBE: A Large-Scale and Decentralized Application-Level Multicast
Infrastructure. [EEE Journal on Selected Areas in communications, 20(8):1489—
1499, 2002.

179

180 BIBLIOGRAPHY

[CGog] Damian A. Czarny and Alexander Gebhardt. Entwicklung einer automa-
tisierten Evaluationsplattform fiir verteilte Anwendungen. Bachelor’s thesis,
Real-Time Systems Lab, TU Darmstadt, 2009. Supervisor: Patrick Mukherijee.

[Cheo4] Benjie Chen. A Serverless, Wide-Area Version Control System. PhD thesis, 2004.
Supervisor: Robert T. Morris.

[CHSJo3] Li-Te Cheng, Susanne Hupfer, Ross Steven, and Patterson John. Jazzing up
Eclipse with Collaborative Tools. In Proceedings of the OOPSLA Workshop on
Eclipse Technology eXchange, pages 45—49, 2003.

[Coho3] Bram Cohen. Incentives Build Robustness in BitTorrent. In Proceedings of the
Workshop on Economics of Peer-to-Peer Systems (P2PECON), May 2003.

[Col] CollabNet - The Leader in Agile Application Lifecycle Management. http:
//www.collab.net/.

[CSWHoo] lan Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. Freenet:
A Distributed Anonymous Information Storage and Retrieval System. In
Proceedings of the Workshop on Design Issues in Anonymity and Unobservability
(DIAU), pages 46—66, 2000.

[CVS] CVS - Concurrent Versions System. http://www.nongnu.org/cvs/.

[Den84] Dorothy E. Denning. Digital Signatures with RSA and other Public-Key
Cryptosystems. Communications of the ACM, 27(4):392, 1984.

[DH79] Whitfield Diffie and Martin E. Hellman. Privacy and Authentication: An
Introduction to Cryptography. Proceedings of the IEEE, 67(3):397—427, 1979.

[DHJ *oy] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakula-
pati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter
Vosshall, and Werner Vogels. Dynamo: Amazon’s Highly Available Key-Value
Store. In Proceedings of the ACM Symposium on Operating Systems Principle
(SOSP), pages 205-220, 2007.

[dro] Dropbox - Online Backup, File Sync and Sharing made Easy. https://www.
dropbox. com.

[Duioy] Mike Duigou. JXTA 2.0 Protocols Specification. https://jxta-spec.dev.java.
net/JXTAProtocols.pdf, January 2007. Version 2.5.2.

[Ead84] Peter Eades. A Heuristic for Graph Drawing. Congressus numerantium,
42(149160):194—202, 1984.

[EC95] Jacky Estublier and Rubby Casallas. The Adele Configuration Manager.
Configuration management, 2:99—-133, 1995.

[Eckog] Claudia Eckert. IT-Sicherheit: Konzepte-Verfahren-Protokolle (6th Edition). Olden-
bourg Wissenschaftsverlag, 2009.

[equ] Equinox. http://www.eclipse.org/equinox/.
[fac] Facebook. http://www.facebook.com.

[FFRSo2] Thomas Friese, Bernd Freisleben, Steffen Rusitschka, and Alan Southall. A
Framework for Resource Management in Peer-to-Peer Networks. In Proceedings
of the International Conference NetObjectDays (NODe), pages 4-21, 2002.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of
distributed consensus with one faulty process. Journal of the ACM, 32(2):374—
382, 1985.

http://www.collab.net/
http://www.collab.net/
http://www.nongnu.org/cvs/
https://www.dropbox.com
https://www.dropbox.com
https://jxta-spec.dev.java.net/JXTAProtocols.pdf
https://jxta-spec.dev.java.net/JXTAProtocols.pdf
http://www.eclipse.org/equinox/
http://www.facebook.com

BIBLIOGRAPHY 181

[Fou] The Eclipse Foundation. Eclipse project. http://www.eclipse.org/eclipse/.
[FP] Freepastry. http://www.freepastry.org/.

[GHHRo7b] Michael Geisser, Armin Heinzl, Tobias Hildenbrand, and Franz Rothlauf.
Verteiltes, internetbasiertes Requirements-Engineering. Wirtschaftsinformatik,

49(3):199—207, 2007.

[GHHSoyb] Michael Geisser, Hans-Joerg Happel, Tobias Hildenbrand, and Stefan Seedorf.
Einsatzpotenziale von Wikis in der Softwareentwicklung am Beispiel von
Requirements Engineering und Traceability Management. Social Software in
der Wertschopfung, March 2007.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design pat-
terns: elements of reusable object-oriented software. Addison-Wesley Professional,

1995.

[Git] Gitbenchmarks. https://git.wiki.kernel.org/index.php?title=
GitBenchmarks%s5C&o1did=8548.

[GLo2] Seth Gilbert and Nancy Lynch. Brewer’s Conjecture and the Feasibility of
Consistent, Available, Partition-Tolerant Web Services. ACM SIGACT News,

33(2):51-59, 2002.

[GMMto9] Kalman Graffi, Patrick Mukherjee, Burkhard Menges, Daniel Hartung, Alek-
sandra Kovacevic, and Ralf Steinmetz. Practical Security in Peer-to-Peer based
Social Networks. In Proceedings of the Annual Conference on Local Computer
Networks (LCN), pages 269—272, 2009.

[GNUa] Diffutils - GNU Project - Free Software Foundation. http://www.gnu.org/
software/diffutils/.

[gooa] Google Documents. http://docs.google. com.
[goob] Google Offices. http://www.google.com/intl/en/corporate/address.html.

[Gra1o] Kalman Graffi. Monitoring and Management of Peer-to-Peer Systems. PhD thesis,
Multimedia Communications Lab (KOM), TU Darmstadt, Germany, 2010.
Supervisor: Ralf Steinmetz.

[Gro] Groove virtual office. http://www.groove.net/index.cfm/pagename/
VirtualOffice/?home=hp-overview.

[GSR"09] Kalman Graffi, Dominik Stingl, Julius Rueckert, Aleksandra Kovacevic, and
Ralf Steinmetz. Monitoring and Management of Structured Peer-to-Peer
Systems. In Proceeding of the International Conference on Peer-to-Peer Computing
(P2P), pages 311-320, 2009.

[HAgo] Phillip W. Hutto and Mustaque Ahamad. Slow Memory: Weakening Consis-
tency to Enhance Concurrency in Distributed Shared Memories. In Proceedings
of the International Conference on Distributed Computing Systems (ICDCS), pages
302-311, 1990.

[Haro1] Ann Harrison. The Promise and Peril of Peer-to-Peer. http://www.
networkworld.com/buzz2001/p2p/, September 2001.

[HBMSo4] Oliver Heckmann, Axel Bock, Andreas Mauthe, and Ralf Steinmetz. The eDon-
key File-Sharing Network. In Proceedings of the Workshop on Algorithms and
Protocols for Efficient Peer-to-Peer Applications (PEPPA), pages 224—228, Septem-
ber 2004.

http://www.eclipse.org/eclipse/
http://www.freepastry.org/
https://git.wiki.kernel.org/index.php?title=GitBenchmarks%5C&oldid=8548
https://git.wiki.kernel.org/index.php?title=GitBenchmarks%5C&oldid=8548
http://www.gnu.org/software/diffutils/
http://www.gnu.org/software/diffutils/
http://docs.google.com
http://www.google.com/intl/en/corporate/address.html
http://www.groove.net/index.cfm/pagename/VirtualOffice/?home=hp-overview
http://www.groove.net/index.cfm/pagename/VirtualOffice/?home=hp-overview
http://www.networkworld.com/buzz2001/p2p/
http://www.networkworld.com/buzz2001/p2p/

182 BIBLIOGRAPHY

[HCRPo4] Susanne Hupfer, Li-Te Cheng, Steven Ross, and John Patterson. Introducing
Collaboration into an Application Development Environment. In Proceedings
of the Conference on Computer Supported Cooperative Work (CSCW), pages 21—24,
2004.

[HMoz2] Harald Holz and Frank Maurer. Knowledge Management Support for Dis-
tributed Agile Software Processes. In Proceedings of International Workshop of
Advances in Learning Software Organizations (LSO), pages 60-80, 2002.

[HMos3] James D. Herbsleb and Audris Mockus. An Empirical Study of Speed and
Communication in Globally Distributed Software Development. IEEE Transac-
tions on Software Engineering, 29:481—494, June 2003.

[HP98] John Hennessy and David Patterson. Computer Architecture. A Quantitative
Approach (4th Edition). Morgan Kaufmann Publishers, 1998.

[HPBos] James D. Herbsleb, Daniel J. Paulish, and Matthew Bass. Global Software
Development at Siemens: Experience from Nine Projects. In Proceedings of the
International Conference on Software Engineering (ICSE), pages 524-533, 2005.

[HR83] Theo Hérder and Andreas Reuter. Principles of Transaction-Oriented Database
Recovery. ACM Computer Survey, 15(4):287-317, 1983.

[HRHo7] Tobias Hildenbrand, Franz Rothlauf, and Armin Heinzl. Ansétze zur kol-
laborativen Softwareerstellung. Wirtschaftsinformatik, 49(Special Issue):72-80o,
February 2007.

[HT] Junio Hamano and Linus Torvalds. Git - Fast Version Control System. http:
//git-scm.com/.

[HToy] Octavio Herrera and Znati Taieb. Modeling Churn in Peer-to-Peer Networks.
In Proceedings of the Annual Simulation Symposium (ANSS), pages 3340, 2007.

[IBM] IBM Rational Software. http://www-306.1ibm.com/software/rational/.

[ISHGHoy] Timea Illes-Seifert, Andrea Herrmann, Michael Geisser, and Tobias Hilden-
brand. The Challenges of Distributed Software Engineering and Requirements
Engineering: Results of an Online Survey. In Proceedings of the Global Require-
ments Engineering Workshop (GREW), pages 55-66, 2007.

[Jav] For java developers. http://www.oracle.com/technetwork/java/index.html.
[Jaz1o] Jazz community site. http://jazz.net/, 2010.

[JGo3] E. James Whitehead Jr. and Dorrit Gordon. Uniform Comparison of Configu-
ration Management Data Models. In Proceedings of the Software Configuration
Management Workshop (SCM) (adjacent to the ICSE), pages 70-85, 2003.

[Joo] Joost - The New Way of Watching TV. http://www.joost.com/.

[JXY06] Yi Jiang, Guangtao Xue, and Jinyuan You. Distributed Hash Table Based
Peer-to-Peer Version Control System for Collaboration. In Proceedings of the
International Conference on Computer Supported Cooperative Work in Design 111
(CSCWD), pages 489-498, 2006.

[KBog] Yoram Kulbak and Danny Bickson. The eMule Protocol Specification. Technical
report, School of Computer Science and Engineering, the Hebrew University
of Jerusalem, 2004.

http://git-scm.com/
http://git-scm.com/
http://www-306.ibm.com/software/rational/
http://www.oracle.com/technetwork/java/index.html
http://jazz.net/
http://www.joost.com/

BIBLIOGRAPHY

[KBC*o00] John Kubiatowicz, David Bindel, Yan Chen, Steven E. Czerwinski, Patrick R.
Eaton, Dennis Geels, Ramakrishna Gummadi, Sean C. Rhea, Hakim Weather-
spoon, Westley Weimer, Chris Wells, and Ben Y. Zhao. OceanStore: An Archi-
tecture for Global-Scale Persistent Storage. In Proceedings of the International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 190—201, 2000.

[KHLSo08] Aleksandra Kovacevic, Oliver Heckmann, Nicolas Liebau, and Ralf Steinmetz.
Location Awareness - Improving Distributed Multimedia Communication.
Special Issue of the Proceedings of IEEE on Advances in Distributed Multimedia
Communications, 96(1), January 2008.

[KKM*oy] Aleksandra Kovacevic, Sebastian Kaune, Patrick Mukherjee, Nicolas Liebau,
and Ralf Steinmetz. Benchmarking Platform for Peer-to-Peer Systems. it -
Information Technology (Methods and Applications of Informatics and Information
Technology), 49(5):312—319, September 2007.

[KLSo7] Aleksandra Kovacevic, Nicolas Liebau, and Ralf Steinmetz. Globase. KOM -
A Peer-to-Peer Overlay for Fully Retrievable Location-based Search. In Pro-
ceedings of the International Conference on Peer-to-Peer Computing (P2P), pages
87-96, September 2007.

[Kono8] Alexander Konigs. Model Integration and Transformation — A Triple Graph
Grammar-based QV'T Implementation. PhD thesis, Real-Time Systems Lab (ES),
TU Darmstadt, Germany, 2008. Supervisor: Andy Schiirr.

[Kovog] Aleksandra Kovacevic. Peer-to-Peer Location-based Search: Engineering a Novel
Peer-to-Peer Overlay Network. PhD thesis, Multimedia Communications Lab
(KOM), TU Darmstadt, Germany, 2009. Supervisor: Ralf Steinmetz.

[KR81] H. T. Kung and John T. Robinson. On Optimistic Methods for Concurrency
Control. ACM Transactions on Database Systems (TODS), 6(2):213-226, 1981.

[Kruo3] Philippe Kruchten. The Rational Unified Process: An Introduction (3rd Edition).
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[KTL*o09] Aleksandra Kovacevic, Aleksandar Todorov, Nicolas Liebau, Dirk Bradler, and
Ralf Steinmetz. Demonstration of a Peer-to-Peer Approach for Spatial Queries.
In Proceedings of Database Systems for Advanced Applications (DASFAA), pages

776—779, April 2009.

[Lamyg] Leslie Lamport. How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs. IEEE Transactions on Computers, 28(9):690—
691, 1979

[Lamg8] Leslie Lamport. The Part-Time Parliament. ACM Transactions on Computer
Systems (TOCS), 16(2):133-169, 1998.

[Lamo1] Leslie Lamport. Paxos made simple. ACM SIGACT News, 32(4):18—25, 2001.

[LCo1] Bo Leuf and Ward Cunningham. The Wiki Way: Quick Collaboration on the Web.
Addison-Wesley Longman Publishing Co., Inc., 2001.

[Lebgs] David B. Leblang. The CM Challenge: Configuration Management that Works.
pages 1-37, 1995.
[LLSTos] Xin Lin, Shanping Li, Wei Shi, and Jie Teng. A Scalable Version Control Layer

in Peer-to-Peer File System. In Proceedings of the International Conference on
Grid and Cooperative Computing (GCC), pages 996—1001, 2005.

183

184 BIBLIOGRAPHY

[Loeogb] Jon Loeliger. Version Control with Git. O’Reilly Media, 2009.

[Mac] Matt Mackall. Mercurial, a Distributed SCM. http://selenic.com/
mercurial/.

[Maco6] Matt Mackall. Towards a Better SCM: Revlog and Mercurial. In Proceedings of
the Linux Symposium, pages 83-90, 2006.

[MHo1] Audris Mockus and James D. Herbsleb. Challenges of Global Software De-
velopment. In Proceedings of the IEEE International Software Metrics Symposium
(METRICS), pages 182-184, 2001.

[MHoy] Monika Moser and Seif Haridi. Atomic Commitment in Transactional DHTs.
In Proceedings of the CoreGRID Symposium (CoreGRID), pages 151-161, 2007.

[MHKo5] Eve MacGregor, Yvonne Hsieh, and Philippe Kruchten. Cultural Patterns
in Software Process Mishaps: Incidents in Global Projects. In Proceedings of
the Workshop on Human and Social Factors of Software Engineering (HSSE), pages
1-5, 2005.

[Mil] Phil Milford. Suit challenges Microsoft’s deal for Groove. http://seattlepi.
nwsource.com/business/218502_msftgroove02.html.

[Milg7] Bartosz Milewski. Distributed Source Control System. In Proceedings of the
System Configuration Management, ICSE SCM-7 Workshop (SCM), pages 98-107,

1997.

[MKSo8] Patrick Mukherjee, Aleksandra Kovacevic, and Andy Schiirr. Analysis of
the Benefits the Peer-to-Peer Paradigm brings to Distributed Agile Software
Development. In Proceedings of the Software Engineering Conference (SE), pages
72—77, Februar 2008.

[ML83] C. Mohan and Bruce G. Lindsay. Efficient Commit Protocols for the Tree
of Processes Model of Distributed Transactions. In Proceedings of the An-
nual ACM SIGACT-SIGOPS Symposium on Princiles of Distributed Computing
(PODC), pages 76-88, 1983.

[MLo7] Joseph Morris and Chris Liier. DistriWiki: A Distributed Peer-to-Peer Wiki.
In Proceedings of the International Symposium on Wikis (WikiSym), pages 69-74,
2007.

[MLSo8] Patrick Mukherjee, Christof Leng, and Andy Schiirr. Piki - A Peer-to-Peer
based Wiki Engine. In Proceedings of the International Conference on Peer-to-Peer
Computing (P2P), pages 185-186, September 2008.

[MMoz] Petar Maymounkov and David Mazieres. Kademlia: A Peer-to-Peer Infor-
mation System Based on the XOR Metric. In Proceedings of the International
Workshop on Peer-to-Peer Systems (IPTPS), pages 53-65, 2002.

[MMGCo2] Athicha Muthitacharoen, Robert Morris, Thomer M. Gil, and Benjie Chen. Ivy:
A Read/Write Peer-to-Peer File System. In Proceedings of the Symposium on
Operating System Design and Implementation (OSDI), pages 31—44, 2002.

[mon] monotone. http://monotone.ca/.

[Mosg3] David Mosberger. Memory Consistency Models. ACM SIGOPS Operating
Systems Review, 27(1):18-26, 1993.

[MRg8] Dahlia Malkhi and Michael Reiter. Byzantine Quorum Systems. Distributed
Computing, 11:203—213, 1998.

http://selenic.com/mercurial/.
http://selenic.com/mercurial/.
http://seattlepi.nwsource.com/business/218502_msftgroove02.html
http://seattlepi.nwsource.com/business/218502_msftgroove02.html
http://monotone.ca/

BIBLIOGRAPHY

[O’Sog] Bryan O’Sullivan. Mercurial: The Definitive Guide. O’Reilly & Associates Inc,
2009.

[OUMIo06] Gérald Oster, Pascal Urso, Pascal Molli, and Abdessamad Imine. Data Consis-
tency for Peer-to-Peer Collaborative Editing. In Proceedings of the Conference on
Computer Supported Cooperative Work (CSCW), pages 259—268, 2006.

[PAEo3] Rafael Prikladnicki, Jorge Luis Nicolas Audy, and Roberto Evaristo. Global
Software Development in Practice Lessons Learned. Software Process: Improve-
ment and Practice, 8(4):267—281, October 2003.

[PAPo6] Leonardo Pilatti, Jorge Luis Nicolas Audy, and Rafael Prikladnicki. Software
Configuration Management over a Global Software Development Environment:
Lessons Learned from a Case Study. In Proceedings of the International Workshop
on Global Software Development for the Practitioner (GSD), pages 45-50, 2006.

[Par72] David Lorge Parnas. On the Criteria To Be Used in Decomposing Systems
into Modules. Communications of the ACM, 15(12):1053-1058, 1972.

[PHo3] Joon S. Park and Junseok Hwang. Role-Based Access Control for Collaborative
Enterprise in Peer-to-Peer Computing Environments. In Proceedings of the
Symposium on Access Control Models and Technologies (SACMAT), pages 93—99,
2003.

[Pilo4] Michael Pilato. Version Control With Subversion. O’'Reilly & Associates, Inc.,
Sebastopol, CA, USA, 2004.

[Queog] Marcel Queisser. Zugangs- und Zugriffskontrolle fiir Peer-to-Peer Netzwerke.
Master’s thesis, TU Darmstadt, March 2009. Supervisor: Patrick Mukherjee.

[RDo1b] Antony Rowstron and Peter Druschel. Pastry: Scalable, Decentralized Object
Location, and Routing for Large-Scale Peer-to-Peer Systems. In Proceedings of
the International Conference on Distributed Systems Platforms (Middleware), pages
329-351, 2001.

[RFH " 01] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Schenker. A Scalable Content-Addressable Network. In Proceedings of the
Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communications (SIGCOMM), pages 161-172, 2001.

[RGRKo4] Sean C. Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz. Handling
Churn in a DHT. In Proceedings of the USENIX Annual Technical Conference
(USENIX), pages 127-140, 2004.

[Rocy5] Marc J. Rochkind. The Source Code Control System. IEEE Transactions on
Software Engineering, 1(4):364-370, 1975.
[RRo6] Suzanne Robertson and James Robertson. Mastering the Requirements Process.

Addison-Wesley Professional, 2006.

[SEo5] Ralf Steinmetz and Klaus Wehrle (Edits.). Peer-to-Peer Systems and Applications.
Springer, September 2005.

[SENBoya] Moritz Steiner, Taoufik En-Najjary, and Ernst W. Biersack. Analyzing Peer
Behavior in KAD. Technical report, Institut Eurecom, France, 2007.

[SFFo4] Matthew Smith, Thomas Friese, and Bernd Freisleben. Towards a Service-
Oriented Ad Hoc Grid. In Proceedings of the International Symposium on Parallel
and Distributed Computing (ISPDC), pages 201208, 2004.

185

186 BIBLIOGRAPHY

[Shio1] Clay Shirky. Peer to Peer: Harnessing the Power of Disruptive Technologies, chapter
Listening to Napster, pages 19—28. O’Reilly & Associates, 2001.

[Skyb] Official Website of Skype. http://www.skype.com.

[SMo6] Inc. Sun Microsystems. ZFS On-Disk Specification. http://opensolaris.org/
os/community/zfs/docs/ondiskformat0822.pdf, 2006.

[Smio6] Darja Smite. Requirements Management in Distributed Projects. Journal of
Universal Knowledge Management, 1(2):69—76, 2006.

[SMK*o1b] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Balakrish-
nan. Chord: A scalable Peer-to-Peer Lookup Service for Internet Applications.
In Proceedings of the Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications (SIGCOMM), pages 149—160, 2001.

[SMLN"o03] Ion Stoica, Robert Morris, David Liben-Nowell, David Karger, M. Frans
Kaashoek, Frank Dabek, and Hari Balakrishnan. Chord: A Scalable Peer-
to-Peer Lookup Service for Internet Applications. IEEE Transactions on Net-
working, 11(1):17-32, 2003.

[Som1o] Ian Sommerville. Software Engineering (9th Edition). Addison-Wesley, 9. edition,
2010.

[Sop] SopCast - Free Peer-to-Peer internet TV | live football, NBA, cricket. http:
//www.sopcast.org/.

[Souo1] Cleidson R. B. De Souza. Global software development: Challenges and
perspectives, 2001. http://citeseer.ist.psu.edu/457465.html.

[SRo6] Daniel Stutzbach and Reza Rejaie. Understanding Churn in Peer-to-Peer
Networks. In Proceedings of the ACM SIGCOMM Conference on Internet Mea-
surement (IMC), pages 189—202, 2006.

[SSo5] Yasushi Saito and Marc Shapiro. Optimistic replication. ACM Computing
Survey, 37(1):42—-81, 2005.

[SSFo8] Christian Schridde, Matthew Smith, and Bernd Freisleben. An Identity-Based
Key Agreement Protocol for the Network Layer. In Proceedings of the In-
ternational Conference on Security and Cryptography for Networks (SCN), pages
409—422, 2008.

[SSR08] Thorsten Schiitt, Florian Schintke, and Alexander Reinefeld. Scalaris: Reli-
able Transactional Peer-to-Peer Key/Value Store. In Proceedings of the ACM
SIGPLAN Workshop on Erlang, pages 41—48, 2008.

[SZRCo6] Ravi Sandhu, Xinwen Zhang, Kumar Ranganathan, and Michael J. Covington.
Client-side Access Control Enforcement Using Trusted Computing and PEI
Models. Journal of High Speed Networks, 15:229—245, August 2006.

[Tic82] Walter F. Tichy. Design, Implementation, and Evaluation of a Revision Control
System. In Proceedings of the International Conference on Software Engineering
(ICSE), pages 58-67, 1982.

[TKLBoy] Wesley W. Terpstra, Jussi Kangasharju, Christof Leng, and Alejandro P. Buch-
mann. Bubblestorm: Resilient, Probabilistic, and Exhaustive Peer-to-Peer
Search. In Proceedings of the Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communication (SIGCOMM), pages 49-60,
2007.

http://www.skype.com
http://opensolaris.org/os/community/zfs/docs/ondiskformat0822.pdf
http://opensolaris.org/os/community/zfs/docs/ondiskformat0822.pdf
http://www.sopcast.org/
http://www.sopcast.org/
http://citeseer.ist.psu.edu/457465.html

BIBLIOGRAPHY

[TMoga] Katsuhiro Takata and Jianhua Ma. GRAM - A Peer-to-Peer System of Group
Revision Assistance Management. In Proceedings of the International Conference
on Advanced Information Networking and Applications (AINA), pages 587-592,
March 2004.

[TMos] Katsuhiro Takata and Jianhua Ma. A decentralized Peer-to-Peer Revision
Management System using a Proactive Mechanism. International Journal of
High Performance Computing and Networking, 3(5):336—345, 2005.

[Tor] Linus Torvalds. Clarification on GIT, Central Repositories and Commit Access
Lists. http://lists.kde.org/?l=kde-core-devel&m=118764715705846.

[TSo6] Andrew S. Tanenbaum and Maarten Van Steen. Distributed Systems: Principles
and Paradigms (2nd Edition). Prentice Hall, 2006.

[TTP"95] Douglas B. Terry, Marvin M. Theimer, Karin Petersen, Alan J. Demers, Mike J.
Spreitzer, and Carl H. Hauser. Managing Update Conflicts in Bayou, a Weakly
Connected Replicated Storage System. In Proceedings of the Symposium on
Operating Systems Principles (SOSP), pages 172-182, 1995.

[UMLog] OMG Unified Modeling Language (OMG UML), Superstructure. http://www.
omg.org/spec/UML/2.2/Superstructure, February 2009.

[Vocog] Robert Vock. Entwicklung eines Transaktionsprotokolls fiir Peer-to-Peer
basiertes Versionsmanagement. Master’s thesis, TU Darmstadt, December
2009. Supervisor: Patrick Mukherjee.

[Waloz] Dan S. Wallach. A Survey of Peer-to-Peer Security Issues. In Proceedings of the
International Symposium on Software Security (ISSS), pages 42-57, 2002.

[WBg6] Mark Weiser and John S. Brown. The Coming Age of Calm Technology.
Technical report, 1996.

[wikb] Wikipedia, the free Encyclopedia that Anyone can Edit. http://www.
wikipedia.org/.

[WNog4] Robert Watkins and Mark Neal. Why and How of Requirements Tracing. IEEE
Software, 11(4):104-106, 1994.

[WUMoy] Stéphane Weiss, Pascal Urso, and Pascal Molli. Wooki: A Peer-to-Peer Wiki-
Based Collaborative Writing Tool. In Proceedings of the International Conference
on Web Information Systems Engineering (WISE), pages 503-512, 2007.

[YCMo6] Alexander Yip, Benjie Chen, and Robert Morris. Pastwatch: A Distributed
Version Control System. In Proceedings of the Symposium on Networked Systems
Design and Implementation (NSDI), pages 381—394, 2006.

[You] YouTube - Broadcast Yourself. http://www.youtube.com.

[Zim8o] Hubert Zimmermann. OSI Reference Model — The ISO Model of Architec-
ture for Open Systems Interconnection. IEEE Transactions on Communication,

28(4):425-432, 1980.

All web pages cited in this work have been checked in September 2010. However, due to the
dynamic nature of the World Wide Web, web pages can change.

187

http://lists.kde.org/?l=kde-core-devel&m=118764715705846
http://www.omg.org/spec/UML/2.2/Superstructure
http://www.omg.org/spec/UML/2.2/Superstructure
http://www.wikipedia.org/
http://www.wikipedia.org/
http://www.youtube.com

189

CURRICULUM VITAE

PERSONAL DETAILS

EDUCATION

10/1997 - 10/2004

08/1989 — 05/1996

Name: Patrick Mukherjee

Date and Place of Birth: 1st July 1976 in Berlin, Germany
Nationality: German

http://patrick.mukherjee.de

Studies of Computer Science at Technische Universitéit Berlin,
Germany.
Degree: 'Diplom-Informatiker” (corresponds to M.Sc.)

Primary and Secondary Education in Berlin, Germany
Degree: Allgemeine Hochschulreife.

PROFESSIONAL EXPERIENCE

since 07/2010

06/2006 - 06/2010

04/2005 - 05/2006

11/2002 - 04/2004

ACTIVITIES

since 10/2008

11/2006 - 10/2009

03/2007 - 02/2008

06/2006 - 02/2008

06/2006 - 02/2008

01/2006 - 05/2006

Senior Researcher at the Multimedia Communications Lab of
the Department of Electrical Engineering and Information Technology,
Technische Universitit Darmstadt.

Doctoral Candidate at the Real-Time Systems Lab of

the Department of Electrical Engineering and Information Technology,
Technische Universitdt Darmstadkt.

Topic: A Fully Decentralized, Peer-to-Peer based Version Control System

Consultant at Accenture AGS

Student Assistant at the Department PlanT of
Fraunhofer Institute for Computer and Software Architecture (FIRST)

Research Assistants” Representative at the Department Council of
the Department of Electrical Engineering and Information Technology,
Technische Universitdt Darmstadt.

Research Assistants” Representative at the Board of Examiners of
the Department of Electrical Engineering and Information Technology,
Technische Universitat Darmstadt.

Founding Member (representing the Research Assistants) of the Joint
Commission of the Center for Interdisciplinary Studies (CISP),
Technische Universitdt Darmstadst.

Research Assistants” Representative of the Joint Commission of
the Field of Study Information Systems Engineering (iST),
Technische Universitdt Darmstadt.

Research Assistants’ Representative at the Board of Examiners of
the Field of Study Information Systems Engineering (iST),
Technische Universitat Darmstadt.

Employee Representative in the Workers” Council
at Accenture AGS

http://patrick.mukherjee.de

190

04/2007 - 08/2007 Research Assistants’ Representative in the appointments committee
for a W3 professorship in "Integrated Electrical Systems" at
the Department of Electrical Engineering and Information Technology,
Technische Universitdt Darmstadt.

02/2008 - 05/2009 Research Assistants’ Representative in the appointments committee
for a W3 professorship in "Power Electronics” at
the Department of Electrical Engineering and Information Technology,
Technische Universitdt Darmstadt.

REVIEWER ACTIVITES

8th IEEE International Conference on Peer-to-Peer Computing (P2P
2008)

11th ACM/IEEE International Conference on Model Driven Engineer-
ing Languages and Systems (Models 2008)

Journal of Multimedia Systems, issue 530, 2009 (ISSN: 0942-4962 (print
version), ISSN: 1432-1882 (electronic version))

MEMBERSHIPS

Member of the Institute of Electrical and Electronics Engineers (IEEE)

ACADEMIC TEACHING

WS 06/07,WS 07/08, SS 09 Lecture: Software-Engineering - Wartung und Qualitdtssicherung
(ETiT, Real-Time Systems Lab)

WS 08/09 Practical Course: Bachelor practical course (Computer Science) Topic:
NetBrowser (Implementing a generic Network Visualisation)

WS 08/09 Practical Course: Multimedia Communications Lab II (ETiT, Multi-
media Communications Lab) Topic: Piki - Reimplementation and
Extension as an Eclipse-plugin

WS 07/08 Practical Course: Multimedia Communications Lab II (ETiT, Multi-
media Communications Lab) Topic: ASKME - Advanced Peer-to-Peer
Instant Messenger as Eclipse Plugin

S5 07, WS 07/08 Seminar: Software System Technology (ETiT, Real-Time Systems Lab)
Topic SSo7y:
Untersuchung einer Common-API-Empfehlung fiir strukturierte P2P-
Netzwerke
Topics WSoy/98:
1. Two Approaches for Standardization of Structured Peer-to-Peer
Overlay Protocols
2. Peer-to-Peer Architekturen

SS o7 Practical Course: Peer-to-Peer Infrastructures (Computer Science,
Databases and Distributed Systems)
Topic: Piki - A peer-to-peer based wiki engine (initial development)

SUPERVISED DIPLOMA, M.SC., STUDENT, AND B.SC. THESES

Dirk Podolak: Peer-to-Peer basierte Versionierung mit Schwerpunkt Anwendungsintegration am
Beispiel DOORS - Enterprise Architect (Peer-to-Peer based Version Control focussed on the Appli-
cation Integration DOORS - Enterprise Architect); Diploma Thesis (ES-D-0028), 03/2008

Benedikt Antoni: Losung von Versionskonflikten beim Verschmelzen von Teilnetzen in einem Peer-
to-Peer basierten Versionskontrollsystem (Solving Versions’ Conflicts when Melting Partitioned Sub-
networks in a Peer-to-Peer based Version Control System); Bachelor’s Thesis (ES-B-0038), 08/2008

Marwan Hajj-Moussa: An OSGi Compliant Platform to Reduce the Complexity of Peer-to-Peer
Application Development; Master’s Thesis (ES-M-0036), 10/2008

Marcel Queisser: Zugangs- und Zugriffskontrolle fiir Peer-to-Peer Netzwerke (Authentication and
Access Control for Peer-to-Peer Networks); Diploma Thesis (ES-D-0037), 3/2009

Christian Schott: Inherent Traceability and Change Notification in Distributed Software Development;
Diploma Thesis (ES-D-0006), 04/2009

Lars Almon and Martin Soemer: Analyse und Bewertung Agiler Entwicklungsmethoden (Analysis
and Evaluation of Agile Software Development Methologies); Bachelors” Team Thesis (ES-B-oo41
and ES-B-0042), 6/2009

Florian Gattung: Benchmarking and Prototypical Implementation of a Social Knowledge Network;
Diploma Thesis (KOM-D-370) (in collaboration with the Multimedia Communications Lab),
08/2009

Essam Alalami: Design und Implementierung eines JMI-Repository fiir Wiki-Engines zur Werkzeug-

integration durch modellgetriebene Softwareentwicklung (Design and Implementation of a JMI-Repository

for Wiki Engines to enable Tool-Integration through model-driven Softwaredevelopment); Master’s
Thesis (ES-MA-0041), 08/2009

Luciana Alvite: Development of a Dynamic Flexible Monitored Peer-to-Peer based Social Network
Platform using OSGi; Diploma Thesis (KOM-D-367) (in collaboration with the Multimedia
Communications Lab), 11/2009

Robert Vock: Entwicklung eines Transaktionsprotokolls fiir Peer-to-Peer basiertes Versionsmanage-
ment (Development of a Transaction Protocol for Peer-to-Peer based Versionmanagement); Diploma
Thesis (ES-D-0044), 12/2009

Sebastian Schlecht: Design and Implementation of a Transactional Peer-to-Peer Based Version Control
System; Master’s Thesis (ES-M-0043), 12/2009

Czarny, Damian A. und Gebhardt, Alexander: Entwicklung einer automatisierten Evaluationsplat-
tform fiir verteilte Anwendungen (Development of a automated Evaluation platform for distributed
Applications); Bachelors” Team Thesis (ES-B-o51 and ES-B-052) (in collaboration with the Multi-
media Communications Lab), 12/2009

Jan Schluchtmann: Untersuchung der Ubertragbarkeit von SCM-Techniken auf DHT-P2P-Systeme
(Investigation of the transferability of SCM techniques on DHT P2P systems); Master’s Thesis (ES-
MA-0042), 03/2010

March 11, 2011

191

PUBLICATIONS

JOURNAL ARTICLES

[1]

[2]

Aleksandra Kovacevic, Sebastian Kaune, Patrick Mukherjee, Nicolas Liebau, and Ralf
Steinmetz. Benchmarking Platform for Peer-to-Peer Systems. it - Information Technol-
ogy (Methods and Applications of Informatics and Information Technology), 49(5):312-319,
September 2007.

Kalman Graffi, Aleksandra Kovacevic, Patrick Mukherjee, Michael Benz, Christof Leng,
Dirk Bradler, Julian Schroeder-Bernhardi, and Nicolas Liebau. Peer-to-Peer Forschung -
tiberblick und Herausforderungen. it - Information Technology (Methods and Applications
of Informatics and Information Technology), 49(5):272—279, September 2007.

CONFERENCE AND WORKSHOP CONTRIBUTIONS

[3]

[4]

Patrick Mukherjee, Aleksandra Kovacevic, Michael Benz, and Andy Schiirr. Towards a
Peer-to-Peer Based Global Software Development Environment. In Proceedings of the 6th
GI Software Engineering Conference (SE), pages 204-216, February 2008.

Patrick Mukherjee, Aleksandra Kovacevic, and Andy Schiirr. Analysis of the Benefits the
Peer-to-Peer Paradigm brings to Distributed Agile Software Development. In Proceedings
of the 6th GI Software Engineering Conference (SE), pages 72—77, February 2008.

Patrick Mukherjee, Christof Leng, and Andy Schiirr. Piki - A Peer-to-Peer based Wiki
Engine. In Proceedings of the 8th IEEE International Conference on Peer-to-Peer Computing
(P2P), pages 185-186, September 2008.

Patrick Mukherjee, Christof Leng, Wesley W. Terpstra, and Andy Schiirr. Peer-to-Peer
based Version Control. In Proceedings of the 14th IEEE International Conference on Parallel
and Distributed Systems (ICPADS), pages 829-834, December 2008.

Kalman Graffi, Sergey Podrajanski, Patrick Mukherjee, Aleksandra Kovacevic, and Ralf
Steinmetz. A Distributed Platform for Multimedia Communities. In Proceedings of the
10th IEEE International Symposium on Multimedia (ISM), pages 6-12, December 2008.

Kalman Graffi, Patrick Mukherjee, Burkhard Menges, Daniel Hartung, Aleksandra
Kovacevic, and Ralf Steinmetz. Practical Security in P2P-based Social Networks. In
Proceedings of the 34th Annual IEEE Conference on Local Computer Networks (LCN), pages
269—272, October 2009.

Kalman Graffi, Christian Grof3, Patrick Mukherjee, Aleksandra Kovacevic, and Ralf
Steinmetz. LifeSocial. KOM: A P2P-based Platform for Secure Online Social Networks.
In Proceedings of the 10oth IEEE International Conference on Peer-to-Peer Computing (P2P),
August 2010.

193

PartV

APPENDIX

ABOUT THE PROTOTYPE’S DEVELOPMENT

The final design of PlatinVC presented in this work is the result of five iterations in the develop-
ment process. In each iteration we developed a working prototype, which was reprogrammed
in the next iteration, based on an improved design. In each iteration we added new features:

The first prototypehad the basic feature to control the versions of single artifacts only.
Named branches and tags were supported as well. The only reused existing component
was the communication network layer, free pastry [FP].

We developed the second prototype on a new basis, which featured link version control
(compare to Section 7.3.7).

Starting with the third version we improved handling of faulty situations, like mech-
anisms, that handle disturbances like network partitioning (described in Section 8.6).
Large parts of the existing code have been reimplemented, e.g. the replication mechanism
has been rewritten from scratch. The additional failure handling mechanisms rose the
complexity of the implementation. Thus we based all components on a framework, that
handles the components intercommunication and lifecycle (Equinox [equ]).

In the fourth version we decided to replace our own version control mechanisms for the
local version control with another industry proven component (mercurial [Mac]).

In our final Version, presented in this work, we improved all mechanisms and thus
achieved a higher consistency degree.

197

ERKLARUNG

Erklarung laut §9 PromO

Ich versichere hiermit, dass ich die vorliegende Dissertation allein und nur unter Verwendung
der angegebenen Literatur verfasst habe. Die Arbeit hat bisher noch nicht zu Priifungszwecken
gedient.

LIST OF FIGURES

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Figure 8

Figure 9

Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19

Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30

Figure 31
Figure 32
Figure 33
Figure 34
Figure 35

Figure 36

Figure 37
Figure 38

Figure 39
Figure 40

Basic principle of centralized version control systems 4

Basic principle of peer-to-peer version control systems 5

Peer to peer based Wiki engine P1xt [MLSo8] 11

Peer-to-peer based integrated project-support environment (Prre) [MKSo8]
Peer-to-peer based integrated project-support environment (P1pe) [MKSo8]
Globally distributed developers in a GSD scenario 20

The centralized workflow, which is used for distributed as well as for
centralized version control systems 36

The integration manager collaboration workflow 36

The lieutenants collaboration workflow 37

Timing diagram of the update process 41

Basic architecture of SCCS and RCS 45

Basic architecture of CVS and Subversion 47

Dynamic (Alice) and Snapshot (Bob) View in ClearCase 50

Basic architecture of dVCSs 52

Sharing versions between participants of a dVCS 53

Alice and Bob share changes in a dVCS 54

Metamodel of Git’s version model 56

Metamodel of Mercurial’s version model 58

Unstructured and hierarchical peer-to-peer overlay network topolo-
gies 62

structured peer-to-peer overlay network topology 64

Basic structure of Pastwatch’s repository 66

Basic architecture of PlatinVC 93

Basic Workflow in PlatinVC 95

Conflicts and Resolution in PlatinVC 96

Concurrent updates on a linkdocument 102

Example to clarify which snapshots are pulled. 105

Exemplary history (simplified) 105

High level architecture of PlatinVC 110

Metamodel of the components on a peer 113

Sequence diagram showing basic message exchange using the physical
transport layer 119

Messages are resent if no reply is received as shown in this sequence
diagram 120

If the direct address of a peer is unknown messages are routed as
described by the depicted sequence diagram 120

Similar to the resending presented in Figure 31 routed messages are
repeated as well 121

Structure of the exemplary project 123

The history in Alice’s local and peer-to-peer module 123

The history in Bob’s local and peer-to-peer module after executing the
pull operation 124

History (cache marked with dotted lines) after the first pull phase 124
The history in Alice’s local and peer-to-peer module after executing the
pull operation 125

Activity diagram of the pull operation 126

Activity diagram: Choose the snapshots to which the local repository
should be updated to 127

201

14
15

Figure 41

Figure 42
Figure 43
Figure 44

Figure 45
Figure 46
Figure 47
Figure 48
Figure 49

Figure 50

Figure 51
Figure 52

Figure 53

Figure 54
Figure 55
Figure 56
Figure 57
Figure 58
Figure 59
Figure 60
Figure 61
Figure 62
Figure 63
Figure 64
Figure 65

Activity diagram: Get bundle with missing snapshots in the second
phase of the pull operation 128

Exemplary history in Bob’s peer-to-peer module 130

Exemplary history in Alice’s peer-to-peer module 131

History (with cache marked by dotted lines) of Cliff’s peer-to-peer
module 132

Activity diagram of the global push operation 133

Activity diagram: Open socket during push globally 134

Sequence diagram: Push local snapshots 135

Activity diagram: Prepare to push new history entries 136

Activity diagram describing the actions taken when the neighborhood
changes (part 1) 139

Activity diagram describing the actions taken when the neighborhood
changes (part2) 140

The simplified architecture of PIpE 143

The connection options offered by the connection manager (running in
Windows) 145

The settings needed by the connection manager, with security enabled
(running in Linux) 146

PlatinVC as a stand alone application = 148

Settings for PlatinVC (running in OS X) 149

Piki as a stand alone application (running in OS X) 150

Piki integrated in Eclipse (running in Windows) 151

PlatinVC and AskME integrated in Eclipse (running in OS X) 153
Churn execution in our experiments 161

Degree of consistency 162

Percentage of successful operations 163

Freshness of pushed updates (time till available) 163

Time needed to execute the push/pull operation 164

Operation time 165

Size of transferred messages (payload+system messages) 166

LIST OF TABLES

Table 1
Table 2
Table 3
Table 4

Table 5

202

Fulfilled requirements (see Section 3.2) 75

Guaranteed degree of consistency 81

Architectural aspects of the examined VCSs 86

Comparison of commit/push and update/pull operation time in Sub-
version (SVN), Pastwatch [YCMo6] and PlatinVC 167

Comparison of the features offered by the observed version control
systems 168

INDEX

ACID, 27

Artifact, 16

automatic branches, 99

Automatic Isolation of Concurrent Work,

97

backward delta, 28

based, 39

basis version, 25

binary delta compression, 28
binary diff, 28

bisect, 113

bootstrapping peer, 144
branch, 46

bundle, 132

causal consistency, 42

centralized collaboration workflow, 35
Centralized Version Control System, 45
changeset, 25

check out, 48

cherry picking, 25

Churn, 19

ClearCase, 49

ClearCase Multisite, 51

client-server, 4

client-server communication paradigm, 47
clone, 54

Coherency, 42

commit, 3

concurrency control, 82

concurrent versions system, 46
Consistency, 40

Consistency Degree, 40

Consistency Models, 39
copy-modify-branch, 47
copy-modify-merge, 47
Cryptographic Hash Function, 56
cVGCS, 45

CVS, 46

Definition Box, vii

delta compression, 28

derived object, 50

development line, 40

DHT, 65

diff, 28

Distributed Hash Table, 65

Distributed Version Control System, 52
dV(CS, 52

encrypt, 66
eventual consistency, 41

failing peer, 19
Flooding, 62

forward delta, 28
framework services, 9
Freshness, 41

Global Knowledge, 118

global push, 106

global repository, 52

Global Software Development, 14
GSD, 14

Hash Collision, 56

Hash Function, 56

Hash Value, 56

head version, 40

heads, 40

Hierarchical Peer-to-peer Overlay Network,
62

history, 23

history cache, 114

history cache entries, 126

hop, 10

hops, 121

hotspots, 68

hybrid concurrency control, 69

hybrid resolving, 82

hybrid voting, 82

indeterministic routing, 140

index, 10

indirect replication, 82

initial version: , 39

integration manager collaboration work-
flow, 36

iterative routing, 8o

JXTA, 62

keep-alive messages, 10

lazy copy, 49
leaving peer, 19

lieutenants collaboration workflow, 36
Link, 13

local commit, 106

local module, 113

lock-modify-write, 46

203

204

log head, 66

mainframe communication paradigm, 45

maintainer, 116

maintainer based repository distribution,
61

Merging, 6

Metadata, 114

Metric, 156

Module, 47

NAT, 27

Neighbor Peer, 120
Neighborhood Peers, 10
Network Address Translation, 27
Network Partition, 139

Nomadic Developers, 14

octopus merge, 56

offline messaging, 152
operation-based diff, 70

Optimistic Concurrency Control, 47
outdated, 40

owner path caching, 129

p2p, 5

path, 40, 40

Peer, 5

Peer ID, 9

Peer Proximity, 10

Peer-to-Peer, 5

Peer-to-Peer Application, 9

Peer-to-Peer based Version Control System,
60

Peer-to-Peer Maintenance Mechanisms, 10

Peer-to-Peer Module, 114

Peer-to-Peer Overlay Network, 9

Peer-to-Peer Protocol, 10

Peer-to-Peer Routing Mechanisms, 10

Peer-to-Peer System, 9

Pessimistic Concurrency Control, 46

private key, 66

proactive conflict resolution, 46

public key, 66

Public Key Cryptography, 66

pull, 53

push, 53

Quality Aspect, 155

RCS, 46

reactive conflict resolution, 47
rebase, 54

recursive routing, 80

related versions, 39

replica peers, 65

replica set, 117

replicated repository distribution, 61
repository, 47

revision, 12

revision control system, 46
Robustness, 29

root of trust, 146

Scalability, 29

sequential consistency, 42

serve, 53

SHA-1, 56

Shallow Copy, 49

shifting, 19

sign, 66

Single point of control, 17

Single point of failure, 17

Single point ownership, 17

Snapshot, 23

software product, 93

state-based diff, 70

Structured Peer-to-peer Overlay Network,
64

Subversion, 48

superpeer, 62

SVN, 48

syne, 55

System Load, 29

Three Way Merge, 6
trunk, 46

underlay, 9

unnamed branch, 53

unnamed branches, 96

Unstructured Peer-to-peer Overlay Network,
61

update, 3

user level applications, 9

variant, 12

Version, 12

Version Control System, 3
Version Model, 46

versioned item, 50
versioned object base, 50
virtual global module, 114
Virtual Global Repository, 94
VOB, 50

Working Copy, 48

	Dedication
	Abstract
	Zusammenfassung
	Preface
	Danksagung
	Contents
	Introduction
	1 Introduction
	1.1 Motivation
	1.2 Vision
	1.3 Challenges
	1.4 Goal
	1.5 Outline

	2 Suitability of Peer-to-Peer Paradigm for Application Scenarios
	2.1 Peer-to-Peer Communication Paradigm
	2.2 Wiki Engines
	2.2.1 Cooperation in a Wiki Scenario

	2.3 Global Software Development
	2.4 Benefits of Peer-to-Peer Paradigm for the Application Scenarios
	2.4.1 Shortcomings of Server-centric Solutions
	2.4.2 Characteristics of Peer-to-Peer based Solutions

	2.5 Running Example
	2.6 Summary

	3 Requirements and Assumptions
	3.1 Assumptions
	3.2 Requirements
	3.2.1 Functional
	3.2.2 Non-functional
	3.2.3 Security Aspects

	3.3 Summary

	Version Control Systems
	4 Foundations of Version Control Systems
	4.1 Collaboration Workflows
	4.2 The Frequency of Committing Changes
	4.3 Configuration Management
	4.4 Consistency and Coherency in Version Control Systems
	4.4.1 Terminology
	4.4.2 Degrees of Consistency
	4.4.3 Coherency in Version Control Systems

	4.5 Summary

	5 Notable Version Control Systems
	5.1 Centralized Version Control
	5.1.1 SCCS
	5.1.2 RCS
	5.1.3 CVS
	5.1.4 SVN
	5.1.5 ClearCase

	5.2 Distributed Version Control
	5.2.1 Basic Architecture of dVCS
	5.2.2 Monotone
	5.2.3 Git
	5.2.4 Mercurial

	5.3 Peer-to-Peer Version Control
	5.3.1 Wooki
	5.3.2 DistriWiki
	5.3.3 CVS over DHT
	5.3.4 Code Co-op
	5.3.5 Pastwatch
	5.3.6 GRAM
	5.3.7 SVCS
	5.3.8 Chord based VCS

	5.4 Systems for Collaborative Work Support
	5.5 Summary

	6 Analysis of Related Version Control Systems
	6.1 Realized Requirements per System
	6.2 Analysis of System Properties Leading to Fulfilled Requirements
	6.2.1 Functional Requirements
	6.2.2 Non-functional Requirements
	6.2.3 Security Aspects

	6.3 Degree of Consistency
	6.4 Taxonomy of Key Mechanisms
	6.4.1 Concurrency Control
	6.4.2 Repository Distribution
	6.4.3 Repository Partitioning
	6.4.4 Communication Paradigm
	6.4.5 Communication Protocol

	6.5 Promising Mechanisms
	6.5.1 Concurrency Control
	6.5.2 Repository Distribution
	6.5.3 Repository Partitioning
	6.5.4 Communication Paradigm
	6.5.5 Communication Protocol

	6.6 Summary

	Peer-to-Peer Version Control System - PlatinVC
	7 Overview of PlatinVC
	7.1 Basic Architecture
	7.2 Workflow
	7.2.1 Frequency of Commits
	7.2.2 Repository Sharing
	7.2.3 Conflict Resolution

	7.3 Features
	7.3.1 Automatic isolation of concurrent work
	7.3.2 Working Offline
	7.3.3 Interoperability
	7.3.4 Offers all dVCS Operations
	7.3.5 Backing up Artifacts Redundant
	7.3.6 Degree of Consistency
	7.3.7 Support for Traceability Links

	7.4 Services
	7.4.1 Modul Management Operations
	7.4.2 Retrieve Operations
	7.4.3 Share Operations

	7.5 Summary

	8 Design of PlatinVC
	8.1 Design Principles
	8.2 Design Overview
	8.3 Choice of the Supporting Systems
	8.3.1 Component Intercommunication & Lifecycle Management
	8.3.2 Communication network layer
	8.3.3 Local version control mechanisms

	8.4 Global Version Control Mechanisms
	8.4.1 Storage Components on each Peer
	8.4.2 Repository distribution and partitioning
	8.4.3 Replication
	8.4.4 Collaboration
	8.4.5 Retrieve Updates
	8.4.6 Share Versions
	8.4.7 Conflict Handling
	8.4.8 Additional mandatory mechanisms

	8.5 Maintenance Mechanisms
	8.6 Failure Handling
	8.6.1 Handling Network Partitioning
	8.6.2 Handling Indeterministic Routing
	8.6.3 Recovery of Missing Snapshots

	8.7 Traceability Links
	8.8 Summary

	9 Prototypical Software Development Environment
	9.1 Modular Development of Peer-to-Peer Systems
	9.2 Framework Services
	9.2.1 Communication Management
	9.2.2 Security
	9.2.3 Storage

	9.3 User Level Applications
	9.3.1 Eclipse IDE
	9.3.2 PlatinVC- a Peer-to-Peer based version control system
	9.3.3 Piki - a Peer-to-Peer based Wiki Engine
	9.3.4 Askme- Peer-to-Peer based Aware Communication

	9.4 Summary

	10 Evaluation
	10.1 Evaluation Goals
	10.1.1 Quality Aspects
	10.1.2 Metrics

	10.2 Evaluation Methodology
	10.2.1 Evaluation Environment
	10.2.2 Evaluation Platform

	10.3 Workload
	10.3.1 Number of Users
	10.3.2 Experiment Data
	10.3.3 User Behavior
	10.3.4 Churn Model
	10.3.5 Experiment Timeline
	10.3.6 System Parameter Settings

	10.4 Evaluation Results
	10.4.1 Consistency Degree
	10.4.2 Robustness
	10.4.3 Freshness
	10.4.4 Duration of Push and Pull
	10.4.5 System Load

	10.5 Comparative Evaluation
	10.6 Summary

	Finale
	11 Conclusion
	11.1 Summary and Conclusions
	11.2 Contributions
	11.3 Outlook
	11.4 Implications

	Bibliography
	Curriculum Vitæ
	Publications

	Appendix
	A About the Prototype's Development
	Erklärung
	List of Figures
	List of Tables
	Index

