
On the Security of

Hash Function Combiners

Vom Fachbereich Informatik der

Technischen Universität Darmstadt genehmigte

Dissertation

zur Erlangung des Grades

Doctor rerum naturalium (Dr.rer.nat.)

von

Dipl.-Inf. Anja Lehmann

geboren in Dresden

Referenten: Dr. Marc Fischlin
Prof. Dr. Yevgeniy Dodis

Tag der Einreichung: 25. Januar 2010
Tag der mündlichen Prüfung: 19. März 2010

Darmstadt, 2010
Hochschulkennziffer: D17

Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit – abgesehen von den in
ihr ausdrücklich genannten Hilfen – selbständig verfasst habe.

Wissenschaftlicher Werdegang

Oktober 2000 – September 2002

Studium der Medieninformatik an der Technischen Universität Dresden

Oktober 2002 – August 2006

Weiterführung des Studiums im Studiengang Informatik mit Nebenfach
Neuroinformatik

September 2004 – März 2005

Auslandssemester an der University of Bristol, England

seit August 2006

Wissenschaftliche Mitarbeiterin in der Emmy-Noether-Forschungsgruppe
“MiniCrypt” an der Technischen Universität Darmstadt

List of Publications

[1] Christina Brzuska, Marc Fischlin, Anja Lehmann and Dominique
Schröder. Unlinkability of Sanitizable Signatures. To appear in Public Key
Cryptography (PKC) 2010, Lecture Notes in Computer Science. Springer-
Verlag, 2010.

[2] Marc Fischlin, Anja Lehmann and Daniel Wagner. Hash Function Com-
biners in TLS and SSL. Topics in Cryptology – Cryptographers Track,
RSA Conference (CT-RSA) 2010, Volume 5985 of Lecture Notes in Com-
puter Science, pages 268–283. Springer-Verlag, 2010.

[3] Marc Fischlin and Anja Lehmann. Delayed-Key Message Authentication
for Streams. Theory of Cryptography Conference (TCC) 2010, Volume
5978 of Lecture Notes in Computer Science, pages 288–305. Springer-
Verlag, 2010.

[4] Anja Lehmann and Stefano Tessaro. A Modular Design for Hash Func-
tions: Towards Making the Mix-Compress-Mix Approach Practical. Ad-
vances in Cryptology – Asiacrypt 2009, Volume 5912 of Lecture Notes in
Computer Science, pages 364–381. Springer-Verlag, 2009.

[5] Christina Brzuska, Marc Fischlin, Anja Lehmann and Dominique
Schröder. Sanitizable Signatures: How to Partially Delegate Control for
Authenticated Data. Biometrics and Electronic Signatures — Research
and Applications (BIOSIG) 2009, Volume 155 of Lecture Notes in Infor-
matics, pages 117–129. Gesellschaft für Informatik, 2009.

[6] Christina Brzuska, Marc Fischlin, Tobias Freudenreich, Anja Lehmann,
Marcus Page, Jakob Schelbert, Dominique Schröder, Florian Volk. Secu-
rity of Sanitizable Signatures Revisited. Public Key Cryptography (PKC)
2009, Volume 5443 of Lecture Notes in Computer Science, pages 317–336.
Springer-Verlag, 2009.

[7] Marc Fischlin, Anja Lehmann and Krzysztof Pietrzak. Robust Multi-
Property Combiners for Hash Functions Revisited. International Collo-
quium on Automata, Languages, and Programming (ICALP) 2008, Vol-
ume 5126 of Lecture Notes in Computer Science, pages 655–666. Springer-
Verlag, 2008.

vi List of Publications

[8] Marc Fischlin and Anja Lehmann. Robust Multi-Property Combiners for
Hash Functions. Theory of Cryptography Conference (TCC) 2008, Vol-
ume 4948 of Lecture Notes in Computer Science, pages 375–392. Springer-
Verlag, 2008.

[9] Marc Fischlin and Anja Lehmann. Security-Amplifying Combiners for
Hash Functions. Advances in Cryptology—Crypto 2007, Volume 4622
of Lecture Notes in Computer Science, pages 224–243. Springer-Verlag,
2007.

[10] Daniel Dönigus, Stefan Endler, Marc Fischlin, Andreas Hülsing, Patrick
Jäger, Anja Lehmann, Sergey Podrazhansky, Sebastian Schipp, Erik
Tews, Sven Vowe, Matthias Walthart, Frederik Weidemann. Security of
Invertible Media Authentication Schemes Revisited. Information Hiding
2007. Volume 4567 of Lecture Notes in Computer Science, pages 189–
203. Springer-Verlag, 2007.

Acknowledgments

Many people have contributed in various ways to this thesis. First and fore-
most, I want to acknowledge the guidance and support of my advisor Marc
Fischlin. It was my privilege and pleasure to be his first PhD student, to work
with and learn from him. Marc freely shared his research ideas and guided
me with ongoing encouragement and patience throughout my studies. He also
gave me the opportunity to attend quite a few conferences, thereby traveling
half the world. For all of this, I am deeply thankful to him.

I am also grateful to Yevgeniy Dodis for agreeing to be the co-referee of
this thesis. Furthermore, I would like to thank all my collaborators, and in
particular Krzysztof Pietrzak for his contributions to this work and Stefano
Tessaro for the many fruitful discussions we had.

My time at the TU Darmstadt would certainly have been less enjoyable
without my fellow students. Among them, I would especially like to thank
my officemates Erik Dahmen and Richard Lindner for providing such a fun
and friendly environment and also for proofreading parts of the thesis. I also
want to thank Lucie Langer and Axel Schmidt for many relaxing coffee breaks
and introducing me to all the nice spots of the city. In addition, I owe a big
thank you to all my non-academic friends who accompanied me during the
last years. The fun hours we spent (especially on Wednesdays) helped getting
my mind off work and recharge my batteries.

Finally, I am deeply grateful to my family for providing me with endless
support (and Knusperflocken) and for cheering me up, whenever I needed it.
Vielen Dank, für Alles!

Anja Lehmann
Dresden, January 2010

Abstract

A hash function is an algorithm that compresses messages of arbitrary length
into short digests of fixed length. If the function additionally satisfies certain
security properties, it becomes a powerful tool in the design of cryptographic
protocols. The most important property is collision-resistance, which requires
that it should be hard to find two distinct messages that evaluate to the same
hash value. When a hash function deploys secret keys, it can also be used as
a pseudorandom function or message authentication code.

However, recent attacks on collision-resistant hash functions [WLF+05,
WYY05, WY05, SSA+09] caused a decrease of confidence that today’s candi-
dates really have this property and have raised the question how to devise con-
structions that are more tolerant to cryptanalytic results. Hence, approaches
like robust combiners [Her05, Her09, HKN+05] which “merge” several candi-
date functions into a single failure-tolerant one, are of great interest and have
triggered a series of research [BB06, Pie07, CRS+07, FL07, Pie08, FLP08].

In general, a hash combiner takes two hash functions H0, H1 and combines
them in such a way that the resulting function remains secure as long as at
least one of the underlying candidates H0 or H1 is secure. For example, the
classical combiner for collision-resistance simply concatenates the outputs of
both hash functions Comb(M) = H0(M)∣∣H1(M) in order to ensure collision-
resistance as long as either of H0, H1 obeys the property.

However, this classical approach is complemented by two negative results:
On the one hand, the combiner requires twice the output length of an or-
dinary hash function and this was even shown to be optimal for collision-
resistance [BB06, Pie07, CRS+07, Pie08]. On the other hand, the security
of the combiner does not increase with the enlarged output length, i.e., the
combiner is not significantly stronger than the sum of its components [Jou04].
In this thesis we address the question if there are security-amplifying combin-
ers where the combined hash function provides a higher security level than
the building blocks, thus going beyond the additive limit. We show that one
can indeed have such combiners and propose a solution that is essentially as
efficient as the concatenated combiner.

Another issue is that, so far, hash function combiners only aim at pre-
serving a single property such as collision-resistance or pseudorandomness.
However, when hash functions are used in protocols like TLS to secure http

x Abstract

and email communication, they are often required to provide several proper-
ties simultaneously. We therefore introduce the notion of robust multi-property
combiners and clarify some aspects on different definitions for such combin-
ers. We also propose constructions that are multi-property robust in the
strongest sense and provably preserve important properties such as (target)
collision-resistance, one-wayness, pseudorandomness, message authentication,
and indifferentiability from a random oracle.

Finally, we analyze the (ad-hoc) hash combiners that are deployed in the
TLS and SSL protocols. Nowadays, both protocols are ubiquitous as they pro-
vide secure communication for a variety of applications in untrusted environ-
ments. Therein, hash function combiners are deployed to derive shared secret
keys and to authenticate the final step in the key-agreement phase. As those
established secret parameters are subsequently used to protect the communi-
cation, their security is of crucial importance. We therefore formally fortify
the security guarantees of the TLS/SSL combiner constructions and provide
the sufficient requirements on the underlying hash functions that make those
combiners suitable for their respective purposes.

Zusammenfassung

Hash Funktionen verarbeiten Eingaben beliebiger Länge und bilden diese
auf Zeichenketten mit kurzer, fester Länge ab. Besitzen solche Funktionen
zusätzlich bestimmte Sicherheitseigenschaften, sind sie ein wichtiger Bestand-
teil von zahlreichen kryptographischen Protokollen. Die wohl wichtigste Eigen-
schaft von Hash Funktionen ist Kollisionsresistenz. Diese verlangt, dass es
schwierig ist, zwei verschiedene Nachrichten zu finden, die durch die Funktion
auf den selben Hashwert abgebildet werden. Setzen Hash Funktionen zudem
geheime Schlüssel ein, können sie auch als Pseudozufallsfunktionen oder Mes-
sage Authentication Codes dienen.

Erfolgreiche Angriffe gegen kollisionsresistente Hash Funktionen [WLF+05,
WYY05, WY05, SSA+09] ließen allerdings die Frage aufkommen, wie solche
Funktionen besser vor kryptanalytischen Resultaten geschützt werden können.
Eine Möglichkeit stellen sogenannte Robust Combiner [Her05, Her09, HKN+05]
dar, die verschiedene Varianten eines kryptographischen Verfahrens kombi-
nieren, um so die gewünschte Robustheit gegen neue Angriffe zu bieten.

Im Allgemeinen besteht ein Hash Combiner aus zwei Hash Funktionen, die
so zu einer Funktion zusammengesetzt werden, dass deren Sicherheit garantiert
ist, solange mindestens eine der unterliegenden Funktionen sicher ist. Für die
Eigenschaft der Kollisionsresistenz besteht der klassische Combiner aus dem
einfachen Konkatenieren zweier Hashwerte Comb(M) = H0(M)∣∣H1(M). Die
so kombinierte Hash Funktion ist kollisionsresistent, solange mindestens eine
der Funktionen H0, H1 diese Eigenschaft besitzt.

Der klassische Combiner für Kollisionsresistenz hat allerdings auch Nach-
teile: Zum einen, erfordert er eine Ausgabe, die doppelt so lang ist wie die
einer einzelnen Hash Funktion [BB06, Pie07, CRS+07, Pie08]. Zum anderen
steigt die Sicherheit nicht im gleichen Masse wie die Ausgabelänge, denn der
Combiner ist im Wesentlichen nur so stark wie die Summe der Einzelsicher-
heiten [Jou04]. In dieser Arbeit betrachten wir daher die Frage, ob Com-
biner existieren, welche die Sicherheit beider unterliegenden Funktionen sogar
verstärken können. Dabei stellen wir eine Konstruktion vor, die diese Eigen-
schaft erfüllt und dabei nahezu genauso effizient ist wie der klassische Ansatz.

Weiterhin wurden Hash Combiner bisher nur so konzipiert, dass sie einzelne
Eigenschaften, wie z.B. Kollisionsresistenz oder Pseudozufälligkeit, erhalten.
Wenn Hash Funktionen allerdings in Protokollen wie TLS eingesetzt wer-

xii Zusammenfassung

den, müssen sie darin oft mehrere Eigenschaften gleichzeitig erfüllen. Aus
diesem Grund führen wir den Begriff der Robust Multi-Property Combiner
ein und diskutieren zunächst verschiedene Definitionsmöglichkeiten und deren
Auswirkungen. Anschließend werden Konstruktionen für solche Combiner
vorgestellt, die bis zu sechs wichtige Eigenschaften gleichzeitig absichern.

Im letzten Teil der Arbeit untersuchen wir die Hash Combiner die in den
TLS und SSL Protokollen eingesetzt werden. Beide Protokolle ermöglichen
eine sichere Kommunikation in nicht-vertrauenswürdigen Umgebungen und
sind daher in zahlreichen Anwendungen zu finden. Zur Erzeugung des notwen-
digen Schlüsselmaterials setzen sowohl TLS als auch SSL eigene Hash Com-
biner ein. Da die so ausgehandelten Schlüssel anschließend die Grundlage
der abgesicherten Kommunikation bilden, ist deren Sicherheit von großer Be-
deutung. Aus diesem Grund analysieren wir die vorgeschlagenen Combiner
Konstruktionen und zeigen, unter welchen Annahmen die gewünschte Sicher-
heit erreicht werden kann.

Contents

1 Introduction 1

2 Definitions 7
2.1 General Notation . 7
2.2 Hash Functions . 8
2.3 Properties of Hash Functions 8
2.4 Robust Combiners . 12

3 Amplifying Collision-Resistance 15
3.1 Introduction . 15
3.2 Our Model . 18
3.3 Warming Up: Attack on the Classical Combiner 22
3.4 Basic Conclusions . 23
3.5 A Security-Amplifying Combiner 28
3.6 Proof of Security Amplification 30

4 Multi-Property Robustness 35
4.1 Introduction . 35
4.2 Robust Multi-Property Hash Combiners 39
4.3 The C4P Combiner for CR, PRF, TCR and MAC 40
4.4 Preserving Indifferentiability: the C4P&IRO Combiner 43
4.5 Preserving One-Wayness and the C4P&OW Combiner 52
4.6 Weak vs. Mild vs. Strong Robustness 56
4.7 Multiple Hash Functions and Tree-Based Composition 59

5 Hash Function Combiners in TLS and SSL 63
5.1 Introduction . 63
5.2 Preliminaries . 65
5.3 Derivation of the Master Secret 68
5.4 Finished-Message . 75

Bibliography 83

Chapter 1

Introduction

A hash function is an algorithm that compresses messages of arbitrary length
into short digests of fixed length. Originally, they were used in the context
of data storage, where they can provide a speed-up for searching an entry in
a set of stored elements. If a hash function H additionally satisfies certain
security properties, it becomes a powerful tool in the design of cryptographic
protocols. The most important property is collision-resistance, which requires
that it should be hard to find two distinct messages M ∕= M ′ that evaluate
to the same hash value H(M) = H(M ′). When a hash function gets keyed
it can, for example, be used as a pseudorandom function, where its outputs
should be indistinguishable from truly random values. In fact, hash functions
are nowadays employed in a broad spectrum of cryptographic protocols, such
as message authentication codes, digital signatures, encryption schemes and
key-agreement in the TLS/SSL protocols.

However, recent attacks [WYY05, WY05, CR08, SSA+09] against the
most widely deployed hash functions MD5 and SHA1 caused a decrease of
confidence, especially concerning long-term security. Consider for instance
a practical signature scheme like RSA-PSS [BR96] that follows the “hash-
and-sign” paradigm, i.e., it first hashes a message of arbitrary length M
and then signs the short digest H(M) using a cryptographic trapdoor func-
tion like RSA. Then the ability of efficiently finding collisions on H would
immediately break this signature scheme, independently of the strength of
the applied trapdoor function. The threat of insecure hash functions even
prompted NIST, the American (National) Institute of Standards and Tech-
nology, to announce a call for a new hash function [NIS]. Thus, in the
last two years the cryptographic community came up with several propos-
als [LMPR08, FLS+09, GKM+09, GKK+09] for new, hopefully secure, hash
functions from which one will be selected in 2012 to be the new standard hash
function — SHA-3.

Robust Combiners. An independent approach to achieve hash constructions
that are more tolerant to cryptanalytic results is to use so-called combiners.

2 1. Introduction

That is, combining multiple (hash) functions in such a way that the resulting
function remains secure as long as at least one of the underlying candidates is
secure. Actually, this concept is somewhat folklore and by no means limited
to cryptography. It even exists in the real physical world: For instance, in the
morning of an important appointment (like a PhD defense) one might tend to
set two alarm clocks instead of a single one, in case one fears that a battery
dies overnight. Another example, more related to security, is the use of several
and different locks to protect a valuable bike. Clearly, that complicates the
work of a thief in the sense that it increases his time by a factor of k, when
k locks instead of 1 need to be broken. Moreover, as long as at least one lock
resists the attack, the bike cannot be stolen and its security is guaranteed.

In cryptography, the approach of using several implementations for some
primitive in order to hedge one’s bets against new attacks or implementation
failures has been subject to research for a long time. The early work on
combiners mostly considered encryption schemes and analyzed the security
of multiple (cascade) encryption when it incorporates potentially untrusted
ciphers [AB81, EG85, MM93]. However, the first explicit and formal studies of
combiners were initiated only recently by Herzberg [Her05, Her09] and Harnik
et al. [HKN+05]. Therein the authors coined the term robust combiner and
also proposed combiner constructions for several cryptographic primitives such
as one-way functions, commitment schemes or key-agreement.

Collision-Resistant Hash Combiners. For many primitives very straight-
forward robust combiners exist. This includes collision-resistant hash func-
tions, where the combiner simply concatenates the outputs of two hash func-
tions, invoked on the same message:

Comb∣∣(M) = H0(M)∣∣H1(M).

This classical approach provides collision-resistance as long as at least one
of the two underlying hash functions is secure, since any collision on the com-
biner can be traced back to collisions on both candidates. On the negative
side, the combiner increases the output of the hash function from n to 2n
bits, which limits its suitability for practical applications where the output
length is a crucial parameter. Yet, it was shown that the output of a (black-
box) collision-resistant combiner cannot be shorter than the concatenation of
both outputs [BB06, Pie07, CRS+07, Pie08]. In this light it was disappoint-
ing to learn that the (necessary) longer output length does not come with
significantly higher security guarantees. Since the adversary against the con-
catenated combiner needs to find a message pair that collides simultaneously
under both hash functions, it was expected that the provided security is clearly
beyond the sum of the individual securities. Regarding our example where a
bike is protected by multiple locks, this would mean that the thief has to find
a single key or tool that opens all locks at the same time. However, Joux
showed in [Jou04] that, if at least one of the deployed hash functions has an

3

iterative structure (which is the de-facto standard design), then one is able
to generate collisions for the concatenated combiner in time O(n2n/2) where
n denotes the output length of a single hash function. This is far less than
the expected time O(2n) given by the birthday attack for finding a collision
on an ideal hash function that directly outputs 2n bits. In other words, the
combiner provides a satisfactory hedge against a total lapse of one of the un-
derlying hash functions but it does not increase the security for iterative hash
functions. One part of this thesis presents security-amplifying combiners that
withstand the attack of Joux and thus, are stronger than the sum of their
components.

The Problem with Multiple Properties. Note that the statements
above were given with respect to the property of collision-resistance only.
However, as already mentioned, hash functions are currently used for vari-
ous tasks that require numerous properties beyond collision-resistance, e.g.,
the HMAC construction [BCK96a] based on a keyed hash function is used
(amongst others) in the IPSec and TLS protocols as a pseudorandom func-
tion and as a MAC. Other schemes, like the standardized protocols RSA-
OAEP [BR94] and RSA-PSS [BR96] are only proven secure assuming that
the applied hash function behaves like a random oracle, i.e., a public and
truly random function (cf. [BF05, BF06]).

While one could in principle always employ a suitable hash combiner
tailored to the individual security property needed by one particular cryp-
tographic scheme, common practices such as code re-use, call for the de-
sign of a single (combiner) function satisfying as many properties as possi-
ble. On the level of hash functions this point of view has also been adopted
by NIST in its on-going SHA-3 competition [NIS] and motivated a series of
works [BR06a, ANPS07, LT09] that, e.g., show how to lift multiple properties
provided by a compression functions to a full-grown hash function.

Thus, also for hash combiners one would ideally like to have a single con-
struction that is robust for many properties simultaneously. Combiners which
preserve a single property such as collision-resistance or pseudorandomness are
quite well understood. Robust multi-property combiners, on the other hand,
are not covered by these strategies and require new techniques instead. As an
example we discuss this issue for the case of collision-resistance and pseudo-
randomness. Recall that the classical combiner for collision-resistance simply
concatenates the outputs of both hash functions. Yet, it does not guarantee,
for example, pseudorandomness (assuming that the hash functions are keyed)
if only one of the underlying hash functions is pseudorandom. An adversary
can immediately distinguish the concatenated output from a truly random
value by simply examining the part of the insecure hash function. An obvious
approach to obtain a hash combiner that is robust for pseudorandomness is
to set

Comb⊕(M) = H0(M)⊕H1(M).

4 1. Introduction

However, this combiner is not known to preserve collision-resistance anymore,
since a collision for the combiner does not necessarily require collisions on
both hash functions. In fact, this combiner also violates the above mentioned
condition that for collision-resistance the output cannot be shorter than 2n
bits. Thus, already the attempt of combining only two properties in a robust
manner indicates that finding a robust multi-property combiner is far from
trivial. Therefore, we initiate the study of robust multi-property combiners in
this thesis and propose constructions that are simultaneously robust for many
important properties, including collision-resistance and pseudorandomness.

Hash Combiners in Practice. Finally, we remark that hash function com-
biners are not only an interesting subject for theoretical investigations, but
also entered practical applications. In fact, the possibility that combiners
give better security assurances has been acknowledged by the designers of
TLS [TLS99, TLS06] and its predecessor SSL [SSL94], long before they have
been studied more thoroughly by theoreticians.

The TLS and SSL protocols are widely used to ensure secure communica-
tion over an untrusted network. Therein, a client and server first engage in the
so-called handshake protocol to establish shared keys that are subsequently
used to encrypt and authenticate the data transfer. Both, TLS and SSL use
various combinations of MD5 and SHA1 instead of relying only on a single
hash function. The specification of TLS even explicitly states:

“In order to make the PRF as secure as possible, it uses two hash
algorithms in a way which should guarantee its security if either
algorithm remains secure” [TLS99] .

While the combiners in TLS mostly follow the classical approaches, SSL em-
ploys somewhat non-standard constructions. Interestingly, despite its practi-
cal importance, TLS and SSL have not undergone a comprehensive analysis
for a relatively long time. An important step was done only recently by Mor-
rissey et al. [MSW08] who gave the first security analysis of the handshake
protocol of TLS. However, the combiner constructions of both protocols in
particular, are not backed up with security proofs yet. We close that gap by
giving the first formal treatment of the TLS and SSL hash combiners.

Contributions of this Thesis

In this thesis we address all the aforementioned issues of hash function com-
biners. We start by giving the foundations for our research in Chapter 2.

Chapter 3 then deals with the problem that hash combiners for collision-
resistance require doubling of the output length while retaining roughly the
security of a single output. Ideally, one would like to have security-amplifying
combiners where the security of the building blocks increases the security of
the combined hash function, thus going beyond the bound of Joux. To this

5

end we first propose a formal model that captures this intuition of security-
amplification. Then we show that the classical combiner and similar proposals
are not security amplifying according to the previous discussion. Finally, we
present a (input-restricted) construction that is not only a secure combiner in
the traditional sense, but even security-amplifying assuming that the under-
lying compression functions behave ideally. Somewhat surprisingly in light of
recent attacks [NS04, HS06] that extend Joux’s approach to a broader class
of hash functions and combiners, our solution is essentially as efficient as the
classical combiner.

In Chapter 4 we put forward the notion of robust multi-property combiners
and elaborate on different definitions for such combiners. We then propose
a combiner that provably preserves (target) collision-resistance, pseudoran-
domness, and being a secure message authentication code, if each property
is provided by at least one underlying hash function. This construction has
output length 2n only, which matches the lower bound of black-box combin-
ers for collision-resistance, showing that the other properties can be achieved
without penalizing the length of the hash values. We then propose a combiner
which also preserves the property of being indifferentiable from a random or-
acle, slightly increasing the output length to 2n + !(log n). Moreover, we
show how to augment our constructions in order to make them also robust for
one-wayness.

Chapter 5 shows our results for the proposed hash combiners in the TLS
and SSL protocols. In order to ensure that the obtained keys are as secure
as possible, both protocols deploy hash function combiners for key derivation
and the authentication step in the handshake protocol. We therefore analyze
the security of the proposed TLS/SSL combiner constructions with respect
to the property of being a secure pseudorandom function and message au-
thentication code respectively. Our results essentially show that the choices
in TLS are sound as they follow common design criteria for such combiners
whereas the SSL combiners require much stronger assumptions. However, the
TLS construction that is used as pseudorandom function is neither optimal in
terms of security nor efficiency. We therefore also discuss possible tweaks to
obtain better security bounds while saving on computation.

Chapter 2

Definitions

In this chapter we provide some general notation and introduce the basic
definitions and known results for hash functions and combiners that will be
used in this work.

2.1 General Notation

Throughout this thesis, {0, 1}n denotes the set of bit-strings x of length ∣x∣ =
n, and 1n stands for n in unary encoding, i.e., the string that consist of n
ones. For two strings x, y we write x∣∣y for the concatenation and x ⊕ y for
the bitwise exclusive-or of x and y. For the latter we assume that x and y
have equal length.

An adversary A is a probabilistic algorithm. We write AO(y) for an adver-
sary that runs on input y and has oracle access to O. The shorthand x← X
denotes that x is sampled from the random variable X. Similarly we write
x ← A(y) for the output of A for input y. We say an adversary is efficient
if it runs in polynomial-time. That is, if there exists a polynomial p(n) such
that A takes at most p(n) steps where n is the length of the input.

A function is called negligible (in n) if it vanishes faster then the inverse of
any polynomial. More formally, we say a function �(n) is negligible if for every
positive polynomial p(⋅) there exists a constant n0, such that �(n) < 1/p(n)
for all n > n0.

Let X = (Xn)n∈ℕ and Y = (Yn)n∈ℕ be distribution ensembles, i.e., se-
quences of random variables. We say that X and Y are (computationally)
indistinguishable if no efficient adversary can decide whether it sees an input
sampled from X or from Y . Thus, for any efficient adversary A the advantage

∣Prob[A(1n, x) = 1]− Prob[A(1n, y) = 1]∣

must be negligible in n, where the probabilities are over A’s coin tosses and
the random choice of x← Xn, resp. y ← Yn.

8 2. Definitions

2.2 Hash Functions

Loosely speaking, a hash function is a cryptographic primitive that compresses
arbitrary length messages into short, fixed-length strings. More formally, a
hash functionℋ = (HKGen,H) is a pair of efficient algorithms such that HKGen
for input 1n returns (the description of) a hash function H (which contains
1n), and H for input H and M ∈ {0, 1}∗ deterministically outputs a digest
H(M). Often, the hash function is also based on a public initial value IV
and we therefore occasionally write H(IV,M) instead of H(M). Similarly, we
often identify the hash function with its digest valuesH(⋅) if the key generation
algorithm is clear from the context.

Most recent hash functions such as MD5 and SHA1 apply the Merkle-
Damg̊ard construction [Mer89, Dam89] to obtain a variable input-length func-
tion out of a fixed input-length compression function ℎ : {0, 1}n × {0, 1}ℓ →
{0, 1}n and an initial vector IV (see also Figure 2.1). To compute a digest one
divides (and possibly pads) the message M = m0m1 . . .mk−1 into blocks mi

of ℓ bits and computes the digest H(M) = ivk as

iv0 = IV, ivi+1 = ℎ(ivi,mi) for i = 0, 1, . . . , k − 1.

In this case the description of the hash function simply consists of the pair
(ℎ, IV).

IV

m0 m1 mk−1

iv1 iv2 ivk−1 ivkℎℎℎ

Figure 2.1: The Merkle-Damg̊ard Construction

2.3 Properties of Hash Functions

In this section we present formal definitions of the six important security prop-
erties for hash functions (cf. [BR07]) we consider in this work: the unkeyed
properties of (target) collision-resistance and one-wayness and the keyed prop-
erties of being a pseudorandom function or a message authentication code.
The final property – indifferentiability from a random oracle – is special, as
one considers idealized components. In particular, there is no efficient key-
generation algorithm, but rather the hash function is given directly by an
oracle.

Depending on the security property we are interested in, the access of the
adversary to the hash function is modeled differently. For unkeyed primitives,

2.3. Properties of Hash Functions 9

the description of H is given to the adversary. Whereas for keyed primitives
the adversary only gets black-box access to the hash function. We could also
consider a somewhat more general notion, where the key-generation algorithm
outputs a pair Hp, Hs of values, which together define the hash function H,
and where in the keyed setting, only Hs (but not Hp) is kept secret. For
example in the HMAC construction, Hp would define the underlying com-
pression function, and the secret key Hs would be the randomly chosen initial
value IV. All our results also hold in this setting, but we avoid using such a
fine-grained definition as to save on notation which would only distract from
the main ideas.

Collision-Resistance (CR): Informally, collision-resistance of a hash func-
tion H requires that it should be infeasible to find two distinct messages
M ∕= M ′ that map under H to the same value H(M) = H(M ′). For the for-
mal treatment we consider families of hash functions and call a hash function
collision-resistant if for any efficient adversary A the advantage

Advcr
A(n) =

Prob[H ← HKGen(1n); (M,M ′)← A(H) :M ∕=M ′ ∧ H(M) = H(M ′)]

is negligible (as a function of n).
Merkle and Damg̊ard showed that by iterating a collision-resistant com-

pression function, as described in Section 2.2, one gets a hash function that is
CR for variable input-lengths as well. An upper bound for collision-resistance
for any hash function is given by the birthday attack. This generic attack
states that for any hash function with n bits output, an attacker can find a
collision in O(2n/2) steps.

Target Collision-Resistance (TCR): Target collision-resistance is a weaker
security notion than collision-resistance which obliges the adversary to first
commit to a target messageM before getting the description H ← HKGen(1n)
of the hash function. For the given H the adversary must then find a second
message M ′ ∕=M such that H(M) = H(M ′).

More formally, a hash function is target collision-resistant if for any effi-
cient adversary A = (A1,A2) the following advantage is negligible in n:

Advtcr
A (n) =

Prob

[
(M, st)← A1(1n);H ← HKGen(1n);

M ′ ← A2(H,M, st)
:

M ∕=M ′ ∧

H(M) = H(M ′)

]
.

The literature sometimes refer to target collision-resistance also as second-
preimage resistance [RS04] or universal one-wayness [NY89].

10 2. Definitions

One-Wayness (OW): The definition of one-wayness intuitively requires
that it is infeasible to determine the preimage of a hash value. A hash function
is called one-way, if for any efficient algorithm A the advantage

Advowf
A (n) =

Prob
[
H ← HKGen(1n);M ← {0, 1}∗;M ′ ← A(H,H(M)) : H(M ′) = H(M)

]

is negligible in n.
Note that, in general, one-wayness is not implied by collision-resistance.

However, for hash functions that substantially compress their inputs, it was
shown that CR as well as TCR imply OW [RS04]. The strengths of both
implications then depend on the difference between the domain and range of
the hash function.

Pseudorandomness (PRF): A hash function can be used as a pseudoran-
dom function if, e.g., the initial value IV is replaced by a randomly chosen
key K of the same size. We capture such a keyed setting by granting the
adversary only black-box access to the (randomly chosen) hash function H(⋅).
The hash function is then called pseudorandom, if no efficient adversary can
distinguish H from a uniformly random function f (with the same range and
same domain) with noticeable advantage. More formally, we require that for
any efficient adversary A the advantage

Advprf
A (n) =

∣∣∣Prob
[
AH(⋅)(1n) = 1

]
− Prob

[
Af (1n) = 1

]∣∣∣

is negligible, where the probability in the first case is over A’s coin tosses and
the choice of H ← HKGen(1n), and in the second case over A’s coin tosses
and the choice of the random function f : {0, 1}∗ → {0, 1}n.

Message Authentication (MAC): A message authentication code is a
symmetric primitive which allows a sender and receiver, both sharing a se-
cret, to exchange information in an authenticated manner. When a hash
function is used as a MAC, the description H ← HKGen(1n) constitutes the
shared secret, and the sender augments a message M by the tag � ← H(M).
The receiver of (M, �) then verifies whether � = H(M) holds.

A MAC is considered secure, if it is unforgeable under chosen message at-
tacks, i.e., an adversary after adaptively learning several tags (M1, �1), (M2, �2),
. . . , (Mq, �q) should not be able to compute a forgery for a fresh message M∗.
Note that the adversary has again only oracle access to H(⋅). More compactly,
a hash function is called a secure MAC, if for any efficient adversary A the
following advantage is negligible in n

Advmac
A (n) =

Prob
[
H ← HKGen(1n), (M, �)← AH(⋅) : H(M) = � ∧M not queried

]
.

2.3. Properties of Hash Functions 11

A pseudorandom function always gives a secure message authentication
code, while vice-versa a concrete MAC may not directly yield a full-fledged
PRF. However, existentially a MAC and a PRF have been shown to be equiv-
alent [NR98].

Indifferentiability from Random Oracle (IRO): Some cryptographic
protocols, e.g., RSA-OAEP [BR94] and RSA-PSS [BR96], require stronger
properties from hash functions than the ones considered so far. In those
cases, a hash function is assumed to be a a random oracle, i.e., a public
random function that is accessible by all parties in a black-box manner and
returns truly random values for each query (cf. [BR93]).

While random oracles are modeled as monolithic entities, hash functions
are usually highly structured due to the Merkle-Damg̊ard design as described
in Section 2.2. Coron et al. [CDMP05] bridged that gap by considering a
hash transform H as secure, when the underlying compression function f is
given as a fixed input-length random oracle and the resulting hash function
Hf “behaves like” a (variable input-length) random oracle. The formalization
of that idea is based on the indifferentiability notion [MRH04] which is a
generalization of indistinguishability allowing to consider random oracles that
are used as public components.

According to [MRH04, CDMP05] a hash function Hf is indifferentiable
from a random oracle ℱ if for any efficient adversary A there exists an efficient
algorithm S such that the advantage

Advind
A (n) =

∣∣∣Prob
[
AHf ,f (1n) = 1

]
− Prob

[
Aℱ ,Sℱ

(1n) = 1
]∣∣∣

is negligible in n, where the probability in the first case is over A’s coin tosses
and the choice of the random function f , and in the second case over the coin
tosses of A and S, and over the choice of ℱ .

The goal of the simulator Sℱ is to mimic the ideal compression function
f , such that no adversary A can decide whether its interacting with Hf and f
or with ℱ and Sℱ . To this end, Sℱ has to produce output that is random but
consistent with the values the adversary can obtain from the random oracle
ℱ . Note that the simulator has oracle access to ℱ too, but it does not get to
see the queries A issues to ℱ .

Roughly speaking, indifferentiability of a hash function states that the
design has no structural flaws and provides security against generic attacks.
Furthermore, when a hash function Hf is proven to be indifferentiable from a
random oracle ℱ , then Hf can replace ℱ in any cryptographic scheme, while
the scheme remains secure. For a comprehensive treatment of the indifferen-
tiability framework we refer to [MRH04].

12 2. Definitions

2.4 Robust Combiners

As discussed earlier, a combiner for a cryptographic primitive is a function
that “merges” two candidate implementations into a single one. The com-
biner is called property-preserving for some property P if it enjoys this prop-
erty given that both underlying functions have P. In a sense, this ensures a
minimalistic security guarantee. The combiner is called robust if it obeys the
property if at least one of the two functions has the corresponding property.
The idea of such constructions is to provide robustness against insecure im-
plementations or wrong assumptions of the underlying functions. We refer to
Herzberg [Her05, Her09] and Harnik et al. [HKN+05] for a broad introduction
of robust combiners for various cryptographic primitives.

Note that the concept of robust combiners naturally extends to a more
general setting, where (k, l)-robust combiners are considered. Such combiners
are guaranteed to securely implement a property P, if at least k of the l
deployed components obey P. However, as most of our results are given for
the (1, 2) setting, we avoid that general notation.

2.4.1 Hash Function Combiners

In this thesis we scrutinize robust combiners for hash functions. A hash func-
tion combiner C for hash functions ℋ0,ℋ1 itself is also a hash function which
combines the two functions ℋ0 and ℋ1 such that it securely guarantees prop-
erty P as long as ℋ0 or ℋ1 obey P. More formally, a hash function combiner
C = (CKGen,Comb) is a pair of efficient algorithms, where CKGen(1n) gener-
ates H0 ← HKGen0(1

n) and H1 ← HKGen1(1
n) and outputs (H0, H1). In ad-

dition, Comb for hash functions ℋ0,ℋ1 is an efficient deterministic algorithm
such that, for input H0 ← HKGen0(1

n), H1 ← HKGen1(1
n) and M ∈ {0, 1}∗,

it returns a digest Comb(H0, H1,M).
As intuitive examples we briefly discuss the somewhat classical hash func-

tion combiners which guarantee collision-resistance resp. pseudorandomness
in a robust way.

Classical Combiner for CR. The standard approach to obtain a robust
combiner for collision-resistance is to invoke two hash functions H0, H1 on the
same message M and concatenate their outputs:

Comb
H0,H1

∣∣ (M) = H0(M)∣∣H1(M).

It is easy to see that a collision M ∕= M ′ for the combiner is always also a
collision for both components H0 or H1. Thus if either of the hash function
H0 or H1 is collision-resistant, then so is the combined function. A similar
argumentation can be used to show that Comb

H0,H1

∣∣ robustly preserves the

property of being target collision-resistant and a secure MAC [Her05].

2.4. Robust Combiners 13

As this combiner doubles the output length from n to 2n bits, the ques-
tion whether more efficient constructions exist arose. However, [BB06, Pie07,
CRS+07, Pie08] gave a negative answer to that question by showing that the
output of a (black-box) collision-resistant combiner cannot be significantly
shorter than the concatenation of the outputs from all employed hash func-
tions.

Moreover, Joux [Jou04] presented the so-calledmulti-collision attack, which
states that the concatenation of Merkle-Damg̊ard hash functions is not much
more secure than the individual functions. The generic attack exploits the
iterative structure of a hash function H and allows to obtain many collisions
on H (roughly) for the price of one. More precisely, one first searches for k
consecutive collisions (m0,m

′
0), (m1,m

′
1), . . . (mk−1,m

′
k−1) on the underlying

compression function of H, e.g., by running each time the birthday attack
with complexity O(2n/2) (where n denotes the output length). As observed
in [Jou04], those k collisions found in time O(k2n/2) immediately give 2k dis-
tinct messages that all hash to the same value on H as depicted in Figure 2.2.
As a consequence, collisions on the concatenated combiner can be found by
simply generating 2n/2 multi-collisions on one of the hash functions Hb for
b ∈ {0, 1}. Then, due to the birthday attack, two messages from that multi-
collision set are also expected to collide underHb, and hence under Comb

H0,H1

∣∣ .

Thus, a collision on the combiner can be obtained in expected time O(n2n/2),
which is significantly below the generic birthday bound of O(2n) for an ideal
hash function with 2n bits of output. More generally speaking, if an adversary
can find collisions for H0 and H1 in time T0 and T1, respectively, then Joux’s
multi-collision attack allows to break the concatenated combiner in n

2 ⋅T0+T1
steps.

. . .IV

m0 m1 m2 mk−1

m′

0 m′

1 m′

2 m′

k−1

ivk

Figure 2.2: Multi-Collision Construction

Classical Combiner for PRF. An obvious approach to construct a robust
hash combiner that preserves pseudorandomness is to compute the exclusive-
or of the outputs of two independently chosen hash functions:

Comb
H0,H1

⊕ (M) = H0(M)⊕H1(M).

The above combiner is also robust for the IRO-property, and, as we show in
Section 5.4, for MAC as well. However, Comb

H0,H1

⊕ is not suitable to guar-

14 2. Definitions

antee collision-resistance, since a collision for the combiner does not neces-
sarily require collisions on both hash functions. The combiner is not even
CR-preserving, i.e., two collision-resistant hash functions might complement
in a way, such that H0(M)⊕H1(M) = H0(M

′)⊕H1(M
′) but no collisions on

both underlying functions occurred.

2.4.2 Combiners for Other Primitives

The investigation of combiners is of course not limited to hash functions. In
fact, the work on robust combiners was implicitly triggered by studies on
secure combinations of encryption schemes. Those date back to 1981 where
Asmuth and Blakely [AB81] considered a variant of the sequential (cascade)
application of two encryption systems in order to guarantee security even if
one cannot be trusted. Cascade encryption in general then became subject
for further research: Even and Goldreich [EG85] showed that for multiple
ciphers the cascade is at least as strong as the weakest cipher in the chain.
Later, Maurer and Massey [MM93] proved that for a weaker attack model, the
cascade combination is at least as strong as the first cipher in the cascade. A
robust combiner for chosen ciphertext secure encryption was recently proposed
by Dodis and Katz [DK05].

As already mentioned, Herzberg [Her05, Her09] and Harnik et al. [HKN+05]
considered combiners for various cryptographic primitives including commit-
ment schemes and key-agreement. The latter work then fostered a line of
research concerning robust combiners for private information retrieval [MP06]
and oblivious transfer [MPW07, HIKN08, PW08]. In [MP06] also cross-
primitive combiner were proposed, which can be seen as the combination of
a reduction and a combiner, as the combined primitive is different from the
underlying components.

Chapter 3

Amplifying Collision-Resistance

This chapter deals with hash function combiners that are robust for collision-
resistance. The classical combiner for this purpose concatenates the output of
two hash functions H0, H1 and provides collision-resistance as long as at least
one of the two underlying functions is secure. This statement is complemented
by the multi-collision attack of Joux [Jou04] for iterated hash functions H0, H1

with n-bit outputs. He shows that one can break the classical combiner in
n
2 ⋅ T0 + T1 steps if one can find collisions for H0 and H1 in time T0 and T1,
respectively.

Here we introduce security-amplifying combiners where the security of the
building blocks increases the security of the combined hash function, thus
beating the bound of Joux. We start by defining our model and security
amplifying combiners in Section 3.2. Next, in Section 3.3, we discuss that
the classical combiner and similar proposals are not security amplifying. Sec-
tion 3.4 present some general conclusions in our model. The main result
appears in Section 3.5 and its proof is given in Section 3.6.

This work has been presented at Crypto 2007 [FL07].

3.1 Introduction

A hash function combiner takes two hash functions H0 and H1 and combines
them into a single, failure-resistant hash function. For collision-resistance
the classical combiner is Comb

H0,H1

∣∣ (M) = H0(M)∣∣H1(M), concatenating the

outputs of the two hash functions. Any collision M ∕= M ′ on the combiner
then immediately gives collisions for both hash functions H0 and H1.

From a more quantitative viewpoint, the classical combiner provides the
following security guarantee: If breaking H0 and H1 requires T0 and T1 steps,
respectively, finding a collision for the classical combiner takes at least T0+T1
steps. This almost matches an upper bound by Joux [Jou04], showing that
for Merkle-Damg̊ard hash functions H0, H1 with n-bit outputs the classical

16 3. Amplifying Collision-Resistance

combiner can be broken in n
2 ⋅ T0 + T1 steps. This means that if the security

level of each hash function is degraded only moderately through a new attack
method, e.g., from 280 to 260, then the classical combiner, too, merely warrants
a reduced security level of T0 + T1 = 2 ⋅ 260. Ideally, we would like to have a
better security bound for combiners and such moderate degradations, going
beyond the T0 + T1 limit and the bound due to Joux.

Our Results. Here we introduce the notion of security-amplifying combiners
for collision-resistant hash functions. Such combiners guarantee a security
level � ⋅ (T0 + T1) for some � > 1 and, in a sense, are therefore stronger than
the sum of their components. Note that the classical combiner (and similar
proposals) are not security amplifying according to the previous discussion,
indicating that constructing such security-amplifying combiners is far from
trivial.

We next discuss how to achieve security amplification. Consider two
Merkle-Damg̊ard hash functionsH0, H1 (given by compression functions f0, f1)
and the classical combiner, but limited to input messages M = m0∣∣ . . . ∣∣mt−1

of t < n
4 blocks exactly:

Comb
H0,H1

amp,t (M) = H0(m0∣∣ . . . ∣∣mt−1) ∣∣H1(m0∣∣ . . . ∣∣mt−1)

This is clearly a secure combiner in the traditional sense, guaranteeing collision-
resistance if at least one of both hash functions is collision-resistant. But we
show that it is even a security-amplifying combiner, assuming that the un-
derlying compression functions behave ideally. More precisely, we consider an
attack model in which the compression functions f0, f1 are given by random
functions, but where the adversary against the combiner can use subroutines
Coll0,Coll1 to generate collisions for the corresponding compression function.
Intuitively, these collision finder oracles implement the best known strategy
to find collisions, and each time the adversary calls Collb to get a collision for
fb, we charge Tb steps. The adversary’s task is now to turn such collisions
derived through Coll0,Coll1 into one against the combiner.

We note that the adversary against the combiner in our model is quite
powerful. For each query to the collision finders the adversary can signifi-
cantly bias the outcome, e.g., by presetting parts of the colliding messages.
To give further support of the significance of our model, we show that we
can implement the attack of Joux on the classical combiner Comb∣∣ in our
model. We can also realize similar attacks for more advanced combiners like
CombH0,H1(M) = H0(M)∣∣H1(H0(M)⊕M).

Our main result is to certify the security amplification of our combiner
Combamp,t. The proof is basically split into two parts: one covering general
statements about our model (such as pre-image resistance, even in presence
of the collision finders), and the other part uses the basic facts to prove our
specific combiner Combamp,t to be security-amplifying. In our security proof
we show that calling each collision finder Coll0,Coll1 only polynomially many

3.1. Introduction 17

times does not help to find a collision for Combamp,t. Therefore, successful
attacks on the combiner require more than poly(n) ⋅ (T0 + T1) steps.

Viewed from a different perspective we can think of our result as a sup-
plementary lower bound to the attack of Joux. His attack breaks the classical
combiner in n

2 ⋅ T0 + T1 steps if the hash functions allow to process t ≥ n
2

message blocks. Our result indicates that restricting the input to t < n
4 many

blocks suffices to make the combiner security-amplifying and to overcome the
bound by Joux. The situation for t in between n

4 and n
2 remains open.

Finally, recall that our proposal at this point only allows to hash messages
of t < n

4 blocks. To extend the combiner to handle arbitrarily long messages
one can use hash trees in a straightforward way (with our combiner placed at
every node of the tree). Since finding collisions in such hash trees requires to
come up with collisions in one of the nodes, our security amplification result
carries over instantaneously. For messages of k blocks the classical combiner
takes about 2k applications of the compression functions, compared to roughly
t

t−1 ⋅2k applications for our tree-based combiner (but coming with the stronger
security amplification guarantee).

Limitations of the Model. Our hash combiner guarantees security am-
plification in an idealized world where the underlying compression functions
behave like random functions. In this model only generic attacks on the hash
function are allowed, in the sense that the adversary cannot take advantage of
weaknesses of the compression functions beyond the ability to generate colli-
sions (albeit the collision finders are quite flexible). It remains open if similar
results can be obtained in a non-idealized setting at all.

Currently, our collision finders return two values mapping to the same
compression function output. A recent work of Yu and Wang [YW07], how-
ever, shows that very weak compression functions as in MD4 may allow K-
multi-collision attacks, where one is able to find K instead of 2 simultaneous
collisions for the compression functions. We expect our results to transfer to
this case, when restricting the number of message blocks further to t < n

4 log2 K
.

However, since such strong attacks are only known for specific compression
functions that were already considered insecure, we refrain from a thorough
treatment of K-multi-collisions in our general setting.

Related Work. Interestingly, the idea of security amplification for crypto-
graphic combiners already appears implicitly in Yao’s work [Yao82]. He shows
that the existence of weak one-way functions —where inversion may succeed
with probability 1 − 1/poly(n)— can be turned into strong one-way func-
tions where inversion almost surely fails. The construction can be viewed as
a security-amplifying self-combiner for one-way functions. See also [GIL+90]
for improvements and [LTW05] for related results.

Other relevant works are the upper bounds of Nandi and Stinson [NS04]
and of Hoch and Shamir [HS06]. They extend the attack of Joux to arbitrary
combiners for iterated hash functions, where each message block is possibly

18 3. Amplifying Collision-Resistance

processed via the compression function more than once but at most a constant
number of times, e.g., CombH0,H1(M) = H0(m1m1∣∣ . . . ∣∣mkmk)∣∣H1(m1∣∣ . . . ∣∣
mk∣∣m1∣∣ . . . ∣∣mk). They also transfer their results to tree-based constructions.
However, in their model the output of one compression function must not
serve as an input to the other compression function, thus disallowing mixes
of intermediate hash values. By this, the hash-tree based extension of our
combiner circumvents their bounds.

In a recent work, Hoch and Shamir [HS08] provide a lower bound for the
concatenated combiner based on weak hash functions. The security is analyzed
in Liskov’s model [Lis06], where the underlying compression functions are
assumed to be ideal, but the adversary has also access to a “breaking” oracle.
There the additional oracle cannot only provide collisions but even fully invert
the compression function on a given input. It is shown that this does not
significantly weaken the combiner, as a collision on the concatenated output
still requires at least 2n/2 steps.

Finally we remark that, in a concurrent work, Canetti et al. [CRS+07]
also consider amplification of collision-resistance. In contrast to our idealized
setting they use a complexity-theoretic approach.

3.2 Our Model

Note that our results are given for idealized Merkle-Damg̊ard (MD) construc-
tions where we assume that the compression function f behaves like a random
function (drawn from the set of all functions mapping (l+n)-bit strings to n-
bit strings). In particular, if an algorithm now gets as input the description of
such an idealized MD hash function then it is understood that this algorithms
gets IV as input string and oracle access to the random function f . This holds
also for a combiner Comb of such idealized MD hash function, i.e., Comb gets
oracle access to f0, f1 and receives the strings IV0, IV1 as input. We then
often write CombH0,H1(⋅) instead of Combf0,f1(IV0, IV1, ⋅). We emphasize that
the combiner may assemble a solution from the compression functions and the
initial vectors which is not necessarily an iterated hash function.

To analyze the security amplification of a combiner for two idealized MD
hash functions (f0, IV0) and (f1, IV1) we consider an adversary A with oracle
access to f0, f1 and input IV0, IV1. The task of this algorithm is to find a
collision for the combiner. Since finding collisions for the random compression
function directly is restricted to the birthday attack, we adapt the approach
of Liskov1 [Lis06] and allow A additional oracle access to two collision finder
oracles Coll0, Coll1 generating collisions for each compression function (both
oracles themselves have access to f0, f1). These collision finders can be viewed

1Liskov introduced in [Lis06] the concept of weak compression functions, which are mod-
eled as random oracles but also capture vulnerabilities by giving the adversary access to an
additional inversion oracle.

3.2. Our Model 19

as the best known algorithm to generate collision for the compression function.
See Figure 3.1.

Coll0

Coll1

IV0, IV1

M, M’

f0 f1

A

Figure 3.1: Attack Model

In its most simple form, algorithm A can query the collision finder Collb by
forwarding values ivb, iv

′
b and getting a collision (mb,m

′
b) with fb(ivb,mb) =

fb(iv
′
b,m

′
b) from Collb. More generally, the adversary may want to influence the

colliding messages or enforce dependencies between the initial values ivb, iv
′
b

and the messages mb,m
′
b. To model such advanced collision finding strategies

we allow the adversary to pass (the description of) a circuit Cb : {0, 1}i →
{0, 1}l+n (possibly containing f0- and f1-gates) to Collb instead of ivb, iv

′
b only.

The collision finder then applies an internal stateful source S = S(Cb) to
continuously generate i-bit strings s← S and successively provides each s as
input to the circuit Cb. See Figure 3.2a.2

mb

s

ivb

fb

f0

f1
Cb

S
(a)

samplesb(Cb) contains all tested pairs
(Cb(s), fb(Cb(s))) in Collb’s collision
search for input circuit Cb

cvalb contains all collisions returned by
collision finder Collb

fvalb contains all pairs (x, fb(x)) appearing in
direct fb-box queries of A or in an evalu-
ation of a circuit Cb

(b)

Figure 3.2: Operation of collision finder Collb (a), Sets of function values (b)

For the circuit’s output (ivb,mb) = Cb(s) to the next input value s, the col-
lision finder computes fb(ivb,mb) and checks if for some previously computed
value (iv′b,m

′
b) a collision fb(ivb,mb) = fb(iv

′
b,m

′
b) occurs. If so, the finder

Collb immediately stops and outputs the collision ((ivb,mb), fb(ivb,mb), s) and
((iv′b,m

′
b), fb(iv

′
b,m

′
b), s

′). Otherwise it stores the new triple ((ivb,mb), fb(ivb,

2The source S can be thought of the collision finder’s strategy to generate collisions
for the input circuit, and is possibly even known by A. Since we will later quantify over
all collision finders we do not specify this distribution; the reader may for now think of S
sequentially outputting the values 0, 1, 2, . . . in binary.

20 3. Amplifying Collision-Resistance

mb), s) and continues its computations. If Collb does not find a collision among
all i-bit inputs s to the circuit it returns ⊥. We assume that the adversary
implicitly gets to know all consulted input values s, gathered in an ordered set
sval(Cb). Note that we leave it essentially up to the adversary and his choice
for Cb to minimize the likelihood of undefined outputs or trivial collisions (i.e.,
for the same pre-image).

3.2.1 Lucky Collisions

The collision finders should be the only possibility to derive collisions, i.e.,
we exclude accidental collisions (say, A ignoring the collision finders and
finding an f0-collision by querying the f0-oracle many times). To capture
such lucky collisions we assume that each answer ((ivb,mb), fb(ivb,mb), s),
((iv′b,m

′
b), fb(iv

′
b,m

′
b), s

′) of Collb is augmented by all pre-image/image pairs
(x, y) of f0- and f1-gate evaluations in the circuit computations during the
search. We stress that this excludes all samples (Cb(s), fb(Cb(s))) which the
collision finder probes to find the collision, unless the sample also appears in
one of the circuit evaluations (see also the discussion below).

For a query Cb to Collb we denote the set of the pre-image/image pairs
returned to A by fvalcfb (Cb) and by fvalcfb we denote the union of fvalcfb (Cb)
over all queries Cb made to Collb during A’s computation. Here we assume
that the set fvalcfb is updated immediately after each function gate evaluation
during a circuit evaluation. Similarly, fvalboxb stands for the pre-image/image
pairs generated by A as queries and answers to the fb-box directly. We now
set fval as the union of fvalcfb and fvalboxb for both b = 0, 1.

Definition 3.1 (Lucky Collision) A pair (x, x′) is called a lucky collision
if for an execution of A we have x ∕= x′ and (x, y), (x′, y) ∈ fval for some y.

In the definition below A will not be considered successful if a lucky col-
lision occurs during an execution. It therefore lies in A’s responsibility to
prevent lucky collisions when querying f -boxes or the collision finders.

For notational convenience we collect the pre-image/image pairs of colli-
sions generated by the collision-finders in the set cval, which is the union of
all answers cvalb(Cb) of collision-finder Collb for query Cb, over all queries Cb

and b = 0, 1. We also let samplesb(Cb) denote all samples (Cb(s), fb(Cb(s)))
which the collision finder Collb collects to find a collision for query Cb, and
samples stands for the union over all samplesb(Cb) for all queries Cb and
b ∈ {0, 1}. Clearly, cvalb(Cb) ⊆ samplesb(Cb). An informal overview about
the sets is given in Figure 3.2b.

We remark that we do not include the pairs (Cb(s), fb(Cb(s))) which the
collision finder probes in fvalb (unless they appear in the circuit’s evalua-
tions). This is in order to not punish the adversary for the collision finder’s
search and strengthens the model, as lucky collisions become less likely. How-
ever, for an answer of the collision finder the adversary A can re-compute

3.2. Our Model 21

all or some of those values by browsing through the ordered set sval(Cb),
containing all inspected s-values, and submitting Cb(s) to the fb-oracle. This
value is then added to the set fvalb, of course.

3.2.2 Security Amplification

As for the costs of each oracle call to collision finder Collb we charge the
adversary A a pre-determined number Tb of steps for each call (e.g., Tb = 2n/2

if Collb implements the birthday attack, ignoring the fact that the collision
finder may even fail with some probability in this case). We do not charge the
adversary for other steps than these calls. In the definition below we make no
restriction on the number of calls to the collision finders, yet one might often
want to limit this number in some non-trivial way, e.g., for our main result we
assume that the adversary makes at most a polynomial number of calls.

Definition 3.2 A hash combiner Comb for idealized Merkle-Damg̊ard hash
functions ℋ0,ℋ1 is called �(n)-security amplifying if for any oracles Coll0,Coll1
(with running times T0(n) and T1(n), respectively) and any algorithm A mak-
ing at most �(n) ⋅ (T0(n) + T1(n)) steps we have

Prob
[
Expamp-comb

A,ℋ0,ℋ1,Coll0,Coll1
Comb(n) = 1

]
≈ 0

where

Experiment Expamp-comb
A,ℋ0,ℋ1,Coll0,Coll1

Comb(n):

initialize (f0, IV0)← HKGen0(1
n), (f1, IV1)← HKGen1(1

n)
let (M,M ′)← Af0,f1,Coll0,Coll1(IV0, IV1)
output 1 iff

M ∕=M ′, and

Combf0,f1(IV0, IV1,M) = Combf0,f1(IV0, IV1,M
′), and

no lucky collisions during A’s computation occurred.

The combiner is called security amplifying if it is �(n)-security amplifying for
some function �(n) with �(n) > 1 for all sufficiently large n’s.

Our definition allows �(n) to converge to 1 rapidly, e.g., �(n) = 1 + 2−n.
We do not exclude such cases explicitly, but merely remark that, as long
as T0(n) and T1(n) are polynomially related and the combiner is security-
amplifying, one can always find a suitable function �(n) bounded away from
1 by a polynomial fraction. The definition also captures the more general
running time requirement �0(n) ⋅ T0(n) + �1(n) ⋅ T1(n), where both collision
finders may be called a different number of times, when we consider �(n) =
min{�0(n), �1(n)}.

For simplicity we have defined compression functions f0, f1 of equal output
length n (which is also the security parameter). We remark that all our defini-
tions and results remain valid for different output lengths n0, n1 by considering
n = min{n0, n1}.

22 3. Amplifying Collision-Resistance

3.3 Warming Up: Attack on the Classical

Combiner

In this section, to get accustomed to our model, we first present the attack of
Joux on the classical combiner, showing that this one is not security amplifying
(even though it is a secure combiner in the traditional sense). This also proves
that finding such security-amplifying combiners is far from trivial.

Recall that the classical combiner is given by

CombH0H1

∣∣ (M) = H0(M)∣∣H1(M)

for idealized Merkle-Damg̊ard hash functions. Obviously this combiner is
collision-resistant as long as at least one of the hash functions has this prop-
erty. Yet, it does not have the desired security-amplification property, because
an adversary A can use the strategy of Joux [Jou04] to find a collision rapidly.
The idea is to build a multi-collision set of size 2

n
2 for H0 by calling Coll0 only

n
2 times, and then to let Coll1 search for a pair among those messages in the
multi-collision set which also constitutes a collision under H1.

Adversary Af0,f1,Coll0,Coll1(IV0, IV1) :
for i = 0, 1, . . . , k with k = n

2
− 1:

let C0,i : {0, 1}
l → {0, 1}l+n be the circuit C0,i(s) = (iv0,i, s), where iv0,0 = IV0

get ((iv0,i,mi), yi, s), ((iv0,i,m
′

i), yi, s
′)← Coll0(C0,i)

where mi ∕= m′

i by the choice of C0,i

set iv0,i+1 = yi
end of for

construct circuit C1 : {0, 1}n/2 → {0, 1}l+n, that contains all received
collisions (mi,m

′

i) from the first stage, as follows:
for i = 0, 1, . . . , k with k = n

2
− 1:

for the i-th input bit si let m̂i = mi if si = 0, and m̂i = m′

i otherwise
except for the last round, compute iv1,i+1 = f1(iv1,i, m̂i), where iv1,0 = IV1

end of for
let the circuit output (iv1,k, m̂k)

get ((iv1,k, m̂k), yk, s), ((iv
′

1,k, m̂
′

k), yk, s
′)← Coll1(C1)

reconstruct the successful combination M,M ′ of Coll1 by using the values s, s′

for the pairs (mi,m
′

i) as above, and output M,M ′

First, the collision finder Coll0 is called n
2 times by the adversary to derive

n
2 pairs of colliding message blocks (mi,m

′
i) where f0(iv0,i,mi) = f0(iv0,i,m

′
i)

for i = 0, 1, . . . , k. Since the circuit C0,i passed to Coll0 does not evaluate
the functions f0, f1, no lucky collision can occur in this stage. The query to
collision finder Coll1 then requires n

2 compression function evaluations in the

circuit C1 for each input s ∈ {0, 1}n/2, which selects one of the 2
n
2 multi-

collisions derived from Coll0’s answers. Yet, for each common prefix of the s-
values the same function evaluations are repeated, and the set fvalcf1 therefore

3.4. Basic Conclusions 23

contains at most 2
n
2 pre-image/image pairs (x, y) from the circuit evaluations.

This implies that the probability for a lucky collision is at most 1
2 .

On the other hand, given that no collision in fval1 occurs, all circuit
outputs are distinct and the set of probed values of the collision finder is at
least 2

n
2 . But then, Coll0 will find a collision among the values with constant

probability (which is roughly equal to 1 − e−1/2 for the Euler constant e).
Hence, the adversary succeeds with constant probability, taking only n

2 ⋅T0(n)+
T1(n) steps. This implies that the classical combiner is not security amplifying,
because no appropriate function �(n) > 1 exists.

Our model also allows to implement attacks on more sophisticated hash
combiners such as CombH0,H1(M) = H0(M)∣∣H1(H0(M) ⊕ M), which may
seem to be more secure than the classical combiner at first glance due to
the dependency of both hash functions. However, by using the circuit C1 to
compute valid inputs for H1 we can realize a similar attack as the one for
Comb∣∣.

3.4 Basic Conclusions

In this section we provide some basic conclusions in our model, e.g., that the
functions f0, f1 are still pre-image resistant in presence of the collision finders.
These results will also be useful when proving our combiner to be security
amplifying.

The first lemma basically restates the well-known birthday paradox that, if
the adversary A in experiment Expamp-comb

A,ℋ0,ℋ1,Coll0,Coll1
Comb(n) makes too many

f0- and f1-queries (either directly or through the collision-finders), then most
likely a lucky collision will occur and A cannot succeed anymore. This result
—like all results in this section— hold for arbitrary combiners (based on the
idealized Merkle-Damg̊ard model):

Lemma 3.3 (Birthday Paradox) Consider the security-amplification ex-

periment Expamp-comb
A,ℋ0,ℋ1,Coll0,Coll1

Comb(n) and assume that ∣fvalb∣ > 2dn for

b ∈ {0, 1} and a constant d > 1
2 . Then the probability that no lucky colli-

sions occur is negligible (and, in particular, the probability that the experiment
returns 1 is negligible, too).

Proof. Suppose ∣fvalb∣ > 2dn for some b. Then the birthday paradox implies

that with probability at most exp(−
(
2dn+1

2

)
/2n) ≤ exp(−2(2d−1)n−1) there

would be no lucky collision. Since d > 1
2 the term 2(2d−1)n−1 grows exponen-

tially in n. But if a lucky collision occurs, then the experiment outputs 0.
□

We next show that the images of sample values samples∖cval appearing
during the search of the collision finder (but which are not returned to A)
are essentially uniformly distributed from A’s viewpoint (i.e., given the sets

24 3. Amplifying Collision-Resistance

fval,cval). This holds at any point in the execution and even if A does not
win:

Lemma 3.4 (Image Uncertainty) Assume that algorithm A in experiment

Expamp-comb
A,ℋ0,ℋ1,Coll0,Coll1

Comb(n) makes at most 2cn calls to each collision-finder
Coll0,Coll1 and that fval0, fval1 each contain at most 2cn elements for a con-
stant c < 1. Then for any (iv,m), y and b ∈ {0, 1} such that ((iv,m), fb(iv,m))
/∈ fvalb ∪cvalb, we have Prob[fb(iv,m) = y ∣ fval,cval] ≤ 2 ⋅ 2−n (for suf-
ficiently large n’s).

Proof. Consider the information about the image of a value (iv,m) (not ap-
pearing in fval ∪ cval) available through fval,cval. Suppose that this
value (iv,m) appears in the course of a collision search —else the claim al-
ready follows because the image is completely undetermined— and thus the
image belongs to samples ∖ (fval ∪ cval). This only leaks the information
that the image of (iv,m) must be distinct from other images in such a colli-
sion search, or else the collision finder would have output (iv,m) as part of the
collision. Hence, the information available through fval,cval only exclude
the images in samples ∩ (fvalb ∪ cvalb) —values for the other bit b are not
relevant— which is a set of size at most ∣fvalb ∪ cvalb∣ ≤ 3 ⋅ 2cn (since each
of the 2cn calls to Collb yields at most two entries in cvalb). Thus, for large
n’s there are at least 2n− 3 ⋅ 2cn ≥ 1

2 ⋅ 2
n candidate images left, each one being

equally like. □

The next lemma says that the collision-finders cannot be used to break
pre-image resistance, i.e., despite the ability to find collisions via Coll0,Coll1,
searching for a pre-image to a chosen value is still infeasible. Below we for-
malize this by executing an adversary ℬ in mode challenge first, in which ℬ
explicitly determines an image y for which a pre-image should be found under
fb. To avoid trivial attacks we also presume that no (iv,m) with fb(iv,m) = y
has been found up to this point. Then, we continue ℬ’s execution in mode
find in which ℬ tries to find a suitable pre-image (iv,m). This assumes that
ℬ cannot try out too many collision-finder replies (i.e., at most 2cn many for
some constant c < 1

2):

Lemma 3.5 (Chosen Pre-Image Resistance) For any algorithm ℬ and

any constant c < 1
2 the following experiment Exppre,Comb

ℬ,ℋ0,ℋ1,Coll0,Coll1
(n) has neg-

ligible probability of returning 1:

Experiment Exppre,Comb
ℬ,ℋ0,ℋ1,Coll0,Coll1

(n):

initialize (f0, IV0)← HKGen0(1
n), (f1, IV1)← HKGen1(1

n)
let (y, b, state)← ℬf0,f1,Coll0,Coll1(challenge, IV0, IV1)
let valchb = fvalb ∪ cvalb at this point
let (iv,m)← ℬf0,f1,Coll0,Coll1(find, state)
return 1 iff

3.4. Basic Conclusions 25

fb(iv,m) = y and ((iv,m), y) /∈ valchb , and
ℬ made at most 2cn calls to collision-finder Collb (in both phases
together), and no lucky collisions occurred during ℬ’s computation
(in both phases together)

The proof idea is as follows. For any value appearing in fvalb ∖ cvalb
during the find phase the probability of matching y is at most 2 ⋅ 2−n by the
image uncertainty. Furthermore, according to the Birthday Lemma 3.3 the set
fvalb cannot contain more than 2dn elements for some d > 1

2 (or else a lucky
collision is very likely). But then the probability of finding another pre-image
among those values is negligible.

The harder part is to show that ℬ cannot significantly influence the col-
lision finder Collb to search for a collision with image y (which would then
appear in cvalb and could be output by ℬ). Here we use the property of
our model saying that the circuit’s output Cb(s) for each sample is essentially
determined by ℬ (or, to be precise, by the previous values in fval and cval).
But then the Image Uncertainty Lemma applies again, and each sample Cb(s)
yields y with probability at most 2 ⋅ 2−n. The final step is to note that each
collision search most likely requires approximately 2

n
2 or less samples, and ℬ

initiates at most 2cn many searches for c < 1
2 . Hence, with overwhelming

probability there is no value with image y in samples in the find phase at all,
and thus no such value in cvalb. This shows Chosen Pre-Image Resistance.
More formally:

Proof. Let d be a constant with 1
2 < d < 1. Assume that fvalb contains more

than 2dn elements at the end. Then Lemma 3.3 implies that such executions
can only contribute with negligible probability to ℬ’s success. From now on
we can therefore condition on this bound 2dn of number on elements in fvalb.

By the image uncertainty we can conclude that the probability that any
of the values ((iv,m), fb(iv,m)) ∈ fvalb ∖ cvalb in ℬ’s find phase yields y,
is at most 2 ⋅ 2−n. Here we use the fact that any function evaluation adding
to fvalb ∖ cvalb is either via a direct call to the fb-box, or via an fb-gate
evaluation in the computation of a circuit C(s), carried out through one of
the collision finders. In any case, the input to the function only depends on the
values in fval and cval before the corresponding query; for fb-box queries
this is clear and for circuit computations it follows as the circuit is chosen by ℬ
and all previous function evaluations immediately appear in fvalb. Therefore,
the uncertainty bound applies. Summing over all at most 2dn many values
in fvalb shows that the probability of hitting y is bounded from above by
2 ⋅ 2(d−1)n and is thus negligible. In the sequel we therefore presume that no
((iv,m), y) ∈ fvalb ∖ cvalb appears (unless it has been in valchb before, in
which case ℬ cannot use it anymore for a successful run).

We next investigate the effect of collision finder calls on cvalb, addressing
the question if ℬ can force the collision finder to bias collisions towards y in
some way. Recall that the collision finder makes at most 2cn many runs for

26 3. Amplifying Collision-Resistance

c < 1
2 . Let e =

3
4 −

c
2 >

1
2 . Then we can assume that each run probes at most

2en new elements previously not in samples. This is so since, for a single run,
the probability of finding no collisions after 2en many trials for fresh values,
is double-exponentially small (see Lemma 3.3 and note that this remains true
for a slightly larger probability of 2 ⋅2−n). The probability that any of the 2cn

calls would require more fresh samples, is therefore still negligible. From now
on we thus presume that each call adds at most 2en new entries to samples.

Consider the j-th call Cb to the collision finder Collb in the find stage. Let
cvalbeforeb,j be the set cvalb before this call, such that cvalbeforeb,1 denotes the set

cvalb at the beginning of the find phase. Note that cvalbeforeb,j does not change
during the collision search, but only when the finder returns the collision.
Suppose further that cvalbeforeb,j does not contain any element ((iv,m), y) which

is not already in valchb . This is obviously true for cvalbeforeb,1 .
A crucial aspect in our consideration is that all circuit values Cb(s) during

the collision search are fully determined given fvalb (containing the pairs
of the entire execution but whose images are distinct from y by assump-
tion) as well as cvalbeforeb,j . Hence, the uncertainty bound applies again, and
the probability that a specific sample Cb(s) gives a new pair (Cb(s), y) /∈
cvalbeforeb,j ∪valchb , is at most 2⋅2−n (noting that any entry (Cb(s), fb(Cb(s))) ∈

(fvalb∪cval
before
b,j)∖valchb has an image different from y by assumption). Since

there are at most 2en new samples, only with probability at most 2 ⋅ 2(e−1)n

some new sample Cb(s) in Collb’s search yields y. It follows that, except with
probability 2 ⋅ 2(e−1)n, the set cvalbeforeb,j+1 including the new collisions will not
contain a suitable entry.

Finally, sum over all at most 2cn many calls to Collb to derive that cvalb
does not contain a new entry ((iv,m), y) ∈ cvalb ∖ val

ch
b , except with prob-

ability 2 ⋅ 2(c+e−1)n for c + e = 3
4 + c

2 < 1 which is negligible. Since the
same holds for fvalb ∖ cvalb the overall probability of finding a suitable pre-
image (iv0,m), including possibly the final output which is not a member in
fvalb ∪ cvalb, is negligible. □

For the final conclusions about our model, we prove that, given a collision
(iv,m), (iv′,m′) produced by a collision finder Collb, generating another pre-
image also mapping to fb(iv,m) = fb(iv

′,m′), is infeasible. The proof is in
two steps, first showing that one cannot use the fb-boxes to find such an
additional value, and the second lemma shows that this remains true if one
tries to use the collision finder (if one does not call the collision finder more
than a polynomial number of times). We remark that this aspect refers to
collisions for the compression functions only; given a collision generated by
the finders one can of course extend this to further collisions for the iterated
hash function by appending message blocks:

Lemma 3.6 (f-Replication Resistance) Suppose that the adversary A dur-

ing experiment Expamp-comb
A,ℋ0,ℋ1,Coll0,Coll1

Comb(n) makes at most 2cn calls to each

3.4. Basic Conclusions 27

collision-finder Coll0,Coll1 and that each set fval0, fval1 contains at most 2dn

elements for constants c, d with c+d < 1. Then the probability that there exist
values ((iv,m), y) ∈ cvalb and ((iv′,m′), y) ∈ fvalb ∖ cvalb for b ∈ {0, 1}, is
negligible.

Proof. Fix a bit b. Since A makes at most 2cn calls to Collb and each reply
returns two elements, the set cvalb is of size at most 2 ⋅ 2cn. Consider any
value ((iv,m), y) ∈ cvalb and any value ((iv′,m′), y′) ∈ fvalb ∖ cvalb. Then,
because ((iv′,m′), y′) /∈ cvalb, we must have y′ ∕= y or (iv,m) ∕= (iv′,m′). In
the first case we have no match, in the second case a match can occur with
probability at most 2 ⋅ 2−n by the image uncertainty (considering the point in
the execution where the second of the two values appears for the first time).

Now sum over all 2 ⋅ 2cn ⋅ 2dn = 2 ⋅ 2(c+d)n combinations, such that the
probability of finding any match is at most 4 ⋅ 2(c+d−1)n. Since c+ d < 1 this
is negligible, and stays negligible if we sum over both choices for b. □

Note that the fact above indicates that, after having generated collisions
through the finder, finding other matching function values through the f -
boxes is infeasible. This holds at any point in the execution, i.e., A may not
even successfully produce a collision but rather stop prematurely. Next, we
use this fact (together with chosen pre-image resistance) to prove replication
resistance with respect to the collision finders:

Lemma 3.7 (Coll-Replication Resistance) Suppose that the adversary A

during experiment Expamp-comb
A,ℋ0,ℋ1,Coll0,Coll1

Comb(n) makes at most poly(n) calls
to each collision-finder Coll0,Coll1 and that fval0, fval1 each contain at most
2dn elements for a constant d < 1. Then the probability that there exist values
((iv,m), y), ((iv′,m′), y), ((iv∗,m∗), y) ∈ cvalb for b ∈ {0, 1} with pairwise
distinct (iv,m), (iv′,m′), (iv∗,m∗), is negligible.

Proof. We discuss that if A could find three (or more) of those values then this
would contradict either f -replication resistance or chosen pre-image resistance.
Consider adversary ℬ against the chosen pre-image resistance which basically
runs a black-box simulation of A. In the challenge-phase, ℬ initially makes a
guess for a specific call j adversary A makes to one of the collision finders.
Then ℬ runs A up to the point where A receives the answer ((iv,m), y),
((îv, m̂), y) of Collb for this j-th call. Then ℬ outputs y, b (and all internal
information of A as state) and concludes this stage. In the find-phase ℬ
continuesA’s simulation and waits to see a value ((iv∗,m∗), y) in the execution,
and then outputs (iv∗,m∗) and stops.

We next analyze ℬ’s success probability. Since each call to the collision-
finders adds at most two new values to cvalb, there must be a point in A’s
execution where there is (iv,m) ∈ cvalb (and possibly (iv′,m′) ∈ cvalb)
and only the next call to Collb adds the value (iv∗,m∗) to cvalb, i.e., so far
(iv∗,m∗) /∈ cvalb. Suppose that the conditional probability (given such a

28 3. Amplifying Collision-Resistance

value (iv∗,m∗) with the same image really appears in the execution) that this
value belongs to fvalb after the corresponding call to Collb, was noticeable.
Then this would clearly contradict the f -replication resistance (bounding the
polynomial number of calls by 2cn for the constant c = 1

2 −
d
2 with c+ d < 1).

We may therefore assume that (iv∗,m∗) /∈ valchb = cvalb ∪ fvalb at this
point. But then ℬ guesses the right call j with probability 1/poly(n), and
thus predicts a function value with noticeable probability. This, however,
contradicts the chosen pre-image resistance. □

3.5 A Security-Amplifying Combiner

Our (input-restricted) security-amplifying combiner takes messagesM = m0∣∣
. . . ∣∣mt−1 of exactly t blocks with t ≤ en for some constant e < 1

4 and applies
each of the two hash functions H0, H1 to the message m0∣∣ . . . ∣∣mt and outputs
the concatenation:

Theorem 3.8 Let ℋ0,ℋ1 be idealized Merkle-Damg̊ard hash functions. Let
e < 1

4 be a constant and assume that t ≤ en. Then the combiner

Comb
H0,H1

amp,t (M) = H0(m0∣∣ . . . ∣∣mt−1) ∣∣ H1(m0∣∣ . . . ∣∣mt−1)

of ℋ0 and ℋ1 is �(n)-security-amplifying for �(n) = poly(n) if the adver-

sary in experiment Expamp-comb
A,ℋ0,ℋ1,Coll0,Coll1

Combamp,t(n) makes at most �(n) =
poly(n) calls to each collision finder.

We also remark that our combiner is obviously a (classically) secure com-
biner in the non-idealized setting. The theorem shows that we get the im-
proved security-amplification guarantee against attacks in the idealized world.

For the proof idea it is instructive to investigate why the straightforward
application of the attack of Joux for the case of at most t ≤ n

4 message blocks
fails. In this case one would again build a multi-collision set for either hash
function of size at most 2t ≤ 2

n
4 . But this time the probability that any

of the 22t < 2
n
2 pairs in such a multi-collision set also collides under the

other hash function, should be approximately 2
n
2 ⋅ 2−n = 2−

n
2 . Most likely,

even approximately 2
n
2 multi-collsion sets should therefore not help to find a

collision under both hash functions. Our proof follows these lines of reasoning,
i.e., bounding the size of multi-collision sets and the probability that message
pairs in such a multi-collision set also collide under the other hash function.
We stress, however, that a full proof in our model still needs to deal with more
general adversaries, possibly taking advantage of the collision finders through
“clever” queries.

To process messages of arbitrary length without losing the property of
security-amplification we apply a hash-tree construction [Mer89] to our com-
biner. Below we outline the somewhat standard construction for t = 2. For

3.5. A Security-Amplifying Combiner 29

a similar and more formal treatment see for instance [BR97]. An example is
given in Figure 3.3.

One first divides and possibly pads the message M into blocks mj , j =
0, 1, . . . , k − 1, of l bits each (say, by appending 10 . . . 0 for a sufficient number
of 0’s). Now build a hash tree recursively by putting the message blocks in
the leaves and applying our basic combiner in each node to its two children.
Specifically, let ℎ0j = mj , k

0 = k and, for each i = 1, 2, . . . , ⌈log2 k⌉, let

ki =
⌈
ki−1/2

⌉
and

ℎij =

{
Comb

H0,H1

amp,2 (ℎ
i−1
2j ∣∣ℎ

i−1
2j+1) for j = 0, 1, . . . ,

⌊
ki−1/2

⌋
− 1

ℎi−1
2j if j =

⌊
ki−1/2

⌋
=

⌈
ki−1/2

⌉
− 1

where we pad each ℎij to l bits if necessary. In particular, we must have that
the output length of our combiner satisfies 2n ≤ l, which is not a significant
restriction for common hash functions today. Note that we simply lift values
at “odd” positions to the next level. Finally, we apply the basic combiner once

more to the final value ℎ
⌈log2 k⌉
0 and the length ∣M ∣ of the original message,

given as an l-bit string.

m0 m1 m2 m3 m4 m5

length = ∣M ∣

Comb
H0,H1

amp,2 (m0,m1) Comb
H0,H1

amp,2 (m2,m3) Comb
H0,H1

amp,2 (m4,m5)

Comb
H0,H1

amp,2 (ℎ1
0, ℎ

1
1)

Comb
H0,H1

amp,2 (ℎ2
0, ℎ

2
1)

Comb
H0,H1

amp,2 (ℎ3
0, length)

Figure 3.3: Example of a hash tree construction for our combiner (t = 2, k = 6)

If two messages M ∕= M ′ lead to a collision in the root of the hash tree,
it can be either the result of a non-trivial collision in the final application of
the combiner for different message lengths ∣M ∣ ∕= ∣M ′∣ (in which case we get
a non-trivial collision for the basic combiner), or else the tree structures must
be identical. In the latter case the collision can always be traced back to a
collision for an earlier application of the combiner. Hence, in both cases the
reason for the tree collision is at least one collision for the basic combiner.

As for the efficiency, for a full t-ary tree (with k = tr, the number of mes-
sage blocks, being a power of t) we apply our basic combiner k−1

t−1 + 1 times.
Each time we need 2t applications of the compression functions, making our

30 3. Amplifying Collision-Resistance

solution about t
t−1 times slower than the classical combiner with 2k applica-

tions (but with the advantage of security amplification for our combiner).

3.6 Proof of Security Amplification

Before giving the proof we first show a technical conclusion stating that the
adversary against our (input-restricted) combiner essentially cannot win if the
function values of the output are undetermined:

Lemma 3.9 (Output Knowledge) Assume the adversary A in experiment

Expamp-comb
A,ℋ0,ℋ1,Coll0,Coll1

Combamp,t(n) makes at most 2cn calls to each collision-
finder Coll0,Coll1 for some constant c < 1. Assume that A eventually outputs
M = m0∣∣ . . . ∣∣mt−1 ∕=M ′ = m′

0∣∣ . . . ∣∣m
′
t−1 such that

ivb,0 = iv′b,0 = IVb, ivb,i+1 = fb(ivb,i,mi),

iv′b,i+1 = fb(iv
′
b,i,m

′
i) for b ∈ {0, 1}, i ∈ {0, 1, . . . , t− 1}

Suppose further that ((ivb,i,mi), ivb,i+1) or ((iv
′
b,i,m

′
i), iv

′
b,i+1)) does not belong

to fvalb ∪ cvalb for some b ∈ {0, 1} and some i ∈ {0, 1, . . . , t− 1}. Then the
probability that the experiment returns 1 is negligible.

Proof. Suppose A outputs such values M,M ′ and succeeds with noticeable
probability. Assume for simplicity that ((ivb,i,mi), ivb,i+1) /∈ fvalb ∪ cvalb;
the case ((iv′b,i,m

′
i), iv

′
b,i+1) is treated analogously. Let i be maximal and fix

the bit b.
By Lemma 3.3 we can assume ∣fvalb∣ ≤ 2dn for d = max{34 , c}, ex-

cept with negligible probability. Hence, from now on we can condition on
∣fvalb ∪ cvalb∣ ≤ 3 ⋅ 2dn. For a success the messages M and M ′ must collide
under Hb. If i = t−1 then fb(ivb,i,mi) = ivb,i+1 is the output of the hash func-
tion, and since this value does not appear in fvalb∪cvalb, the probability of
matching iv′b,i+1 is bounded from above by 2 ⋅ 2−n by the image uncertainty.

If i < t−1 then there must exist an entry ((ivb,i+1,mi+1), ivb,i+2) ∈ fvalb∪
cvalb (because i is chosen to be maximal). However, the probability that the
value fb(ivb,i,mi) appears as a prefix in any of the 3 ⋅ 2dn values in fvalb ∪
cvalb, is at most 6 ⋅ 2(d−1)n and thus negligible. On the other hand, if the
prefix fb(ivb,i,mi) does not appear in fvalb∪cvalb, then this contradicts the
maximal choice of i. Doubling the probability for both choices of b concludes
the proof. □

The following lemma proves that, for t message blocks there can only be
2t multi-collisions, as long as each collision finder is only called a polynomial
number of times:

3.6. Proof of Security Amplification 31

Lemma 3.10 (Multi-Collisions) Assume that the attacker A in experiment

Expamp-comb
A,ℋ0,ℋ1,Coll0,Coll1

Combamp,t(n) makes at most poly(n) calls to each collision-
finder Coll0,Coll1 and that the experiment returns 1. Then, the probability that
for some b ∈ {0, 1} and some ivb,t, the set

multib(ivb,t) ={
M = m0∣∣ . . . ∣∣mt−1 :

ivb,i+1 = fb(ivb,i,mi) ∈ fvalb ∪ cvalb

for i = 0, 1, . . . , t− 1, where ivb,0 = IVb

}

contains more than 2t elements, is negligible.

Proof. Assume that the experiment returns 1 (such that, except with negligible
probability, fval0, fval1 are of size at most 2dn each, for some constant d <
1). If some set multib(ivb,t) contains more than 2t elements then there must
be an index i such that there are (at least) three distinct values (ivb,i,mi),
(iv′b,i,m

′
i) and (iv∗b,i,m

∗
i) mapping to the same image under fb. If two or

more of those values belong to fvalb ∖ cvalb then this constitutes a lucky
collision and refutes the fact that the experiment returns 1. If one of the values
lies in fvalb ∖ cvalb, whereas the other two values belong to cvalb, then
this contradicts the f -replication resistance and this can only happen with
negligible probability. Finally, the case that all three values belong to cvalb

can only happen with negligible probability, too, under the Coll-replication
resistance. □

With these two lemmas we can now prove that our combiner is security-
amplifying. For an outline consider the multi-collision sets defined in the
previous lemma. Lemma 3.9 implies that, in order to win, the adversary must
know the images of the final outputM ∕=M ′. Hence, each of the two messages
must appear in some multi-collision set, and to constitute a collision under
hash function Hb, they must appear in the same multi-collision set multib(yb)
for some yb. Moreover, since the messages must collide under both hash
functions simultaneously they must belong to an intersection multi0(y0) ∩
multi1(y1) for some y0, y1.

Lemma 3.10 now says that each multi-collision set has at most 2t elements.
Thus, there are at most 22t ≤ 22en such pairs in each multi-collision set.
Furthermore, we can bound the number of multi-collision sets by the number
of elements in fvalb ∪ cvalb, and therefore by 3 ⋅ 2dn for a constant d > 1

2
with d + 2e < 1 (here we use the fact that e < 1

4). We therefore have at

most 3 ⋅ 2(d+2e)n possible pairs M ∕= M ′. The proof then shows that, by
the image uncertainty, any of the pairs M,M ′ in some multi-collision set
multib(yb) also collides under the other hash function Hb, with probability
at most 6 ⋅ 2(d+2e−1)n which is negligible. Put differently, with overwhelming
probability the intersections of multi-collision sets for both hash functions are
empty and the adversary cannot find appropriate messages M,M ′.

Finally, we give the full proof that our combiner is security amplifying:

32 3. Amplifying Collision-Resistance

Proof (of Theorem 3.8). According to our definition a combiner is called
security-amplifying if for any algorithmAmaking at most �(n)⋅(T0(n)+T1(n))
steps the probability of finding a collision is negligible (for some �(n) > 1).
Hence we will show that, with overwhelming probability, no collisions for
Combamp,t (with t < en for constant e < 1

4) can be computed for any �(n) =
poly(n) when calling each collision finders at most �(n) = poly(n) many times.

Let d = 3
4 − e such that the constant d is at larger than 1

2 and d+ 2e < 1.
Then we can assume that fval0, fval1 in A’s attack each contain at most
2dn elements, otherwise the probability of winning would be negligible. Also
assume that the number of collision finder calls is bounded by 2 ⋅ poly(n) ≤
2dn (for sufficiently large n’s). Hence, in the following, we can assume that
fvalb ∪ cvalb contains at most 3 ⋅ 2dn many elements for b ∈ {0, 1}.

For any b ∈ {0, 1} and any ivb,t we again consider all sets of multi-collisions
multib(ivb,t), but this time we divide them into different stages (depending on
the calls to the collision finders). We denote by multibeforeb,j (y) the set of multi-
collisions before the j-th call to one of the two collision finders. The transition
to the next phase therefore adds all messages with respect to the new func-
tion values from the collision finder’s reply as well as all subsequent function
evaluations through the f -boxes. Clearly, multibeforeb,j (y) ⊆ multibeforeb,j+1 (y) for

all j and multibeforeb,2⋅poly(n)+1(y) —which we denote by multiendb (y)— contains
all multi-collisions for y under Hb at the end of the execution.

By Lemma 3.9 adversary A must “know” all function values in the final
output, i.e., they must belong to fvalb ∪ cvalb for some b ∈ {0, 1}. Hence,
both messages of the collision M ∕=M ′ for Hb output by A must also appear
in the same set multiendb (yb) for some yb. This basically reduces the task of
showing that A fails, to the proof that no M ∕= M ′ and y0, y1 with M,M ′ ∈
multiend0 (y0)∩multi

end
1 (y1) exist (except with some very small probability or

if one of the success requirements such as the absence of lucky collisions is
violated).

We will show that, given that no success requirements are violated, with
overwhelming probability the intersection of multi-collision sets for b = 0, 1
will be empty in the course of the execution. This is done by a careful inductive
argument, where we use the invariant that for no yb the set multibeforeb,j (yb)
contains M ∕= M ′ such that they collide under Hb. This is clearly true for
multibeforeb,1 (yb) because up to the point where the first collision finder is called,

only f -queries have been made, and each set multibeforeb,1 (yb) can contain only
one element (or a lucky collision already occurs).

We also use that, according to the Multi-Collision Lemma 3.10, each set
multibeforeb,j (yb) can contain at most 2t elements (with overwhelming prob-

ability). Additionally, we always have at most 3 ⋅ 2dn non-empty multi-
collision sets, because there can only be an element in a such set if there
is at least one value from fvalb ∪ cvalb. Hence, at any point there are at
most 22t ⋅3 ⋅2dn ≤ 3 ⋅2(d+2e)n many collision pairs (M,M ′) appearing together

3.6. Proof of Security Amplification 33

in one of the multi-collision sets, for the constant d+ 2e < 1.
Now suppose we make the j-th call to one of the collision finders, Collb. Af-

ter this call (and all subsequent f -function evaluations) take any pairM ∕=M ′

belonging to the same set multibeforeb,j+1 (yb) for some yb. The next step is to note

that, most likely, this pairM,M ′ cannot belong to some multibefore
b,j+1

(yb). Note

that if M and M ′ lie in multi-collision sets multibefore
b,j+1

(yb) and multibefore
b,j+1

(y′
b
)

for yb ∕= y′
b
then they clearly do not collide under Hb as those sets must be

disjoint.
Assume, towards contradiction, thatM,M ′ appear in a single multi-collision

set for b. We already know that M,M ′ cannot belong to some multibefore
b,j

(yb)

of the previous stage, because none of these pairs constitutes a collision under
Hb, except with negligible probability. Hence, at least one of the two messages
(say, M) must have been added to multibefore

b,j+1
(yb) because of an fb-function

evaluation of Collb or via a direct evaluation of fb, taking into account that
cvalb does not change between the two points in time.

Suppose that M is added to some set multibefore
b,j+1

(yb) via a new fb-value

(which has not been in cvalb), and assume that either M ′ is added only
now or has already been in this set before the call. Consider the maximal i
for which a new function value is added (when one would process the blocks
mi of message M through the iterated hash function). If the final value
ivb,t = fb(ivb,t−1,mt−1) is added (i = t−1) then, if for M ′ processing the final

message block ivb,t = fb(iv
′
b,t−1

,m′
t−1) has been in fvalb before or is added to

fvalb now, we would have a lucky collision. So ivb,t = fb(iv
′
b,t−1

,m′
t−1) must

have been in cvalb before. But then this would contradict the f -replication
resistance. For any other i < t − 1 we note that, if fb(ivb,j ,mi) has not been
determined before by A, the probability that it matches any prefix of the at
most 3 ⋅ 2dn previous values in fvalb ∪ cvalb, is negligible (namely, at most
6 ⋅ 2(d−1)n by the image uncertainty). But this would contradict the maximal
choice of i.

In conclusion, for any of the pairs M,M ′ there must still be an fb-value
not in fvalb ∪ cvalb at this point, and the probability that the pair M,M ′

collides under Hb at all, is thus at most 2 ⋅ 2−n. Therefore, the probability
that any of the at most 3 ⋅ 2(d+2e)n pairs M,M ′ for d + 2e < 1 constitutes a
collision under Hb, is negligible. The same argument applies now vice versa,
no pair M,M ′ from a set multibefore

b,j+1
(yb) yields a collision under Hb, except

for some negligible error. This gives us the invariant.
The argument can now be set forth to the at most 2 ⋅ poly(n) + 1 many

phases, showing that the final multi-collision sets for b = 0, 1 never intersect
in more than one element. This proves the theorem. □

Chapter 4

Multi-Property Robustness

This chapter discusses robust combiners that simultaneously preserve multiple
properties such as (target) collision-resistance (CR, TCR), pseudorandomness
(PRF), message authentication (MAC), one-wayness (OW) or indifferentiability
from a random oracle (IRO), from the underlying hash functions.

We start by defining three notions of multi-property robustness (MPR)
for combiners in Section 4.2. In Section 4.3 we give the construction of our
most efficient MPR combiner that is robust for CR, TCR, PRF and MAC

according to our strongest notion. A combiner which additionally preserves
the IRO property, slightly increasing the output length and computational
costs, is then discussed in Section 4.4. In Section 4.5 we show that a twist
on our combiners also makes them robust for one-wayness (but at the price
of a fixed input length). Section 4.6 deals again with the different notions
of multi-property robustness by showing the correlations between the three
variants. We finally address the issue of composing combiners resp. multi-
hash combiners in Section 4.7.

The results in this chapter are based on joint work with Marc Fischlin and
Krzysztof Pietrzak which appeared in [FL08, FLP08].

4.1 Introduction

Nowadays hash functions are often deployed in many facets, e.g., as pseudoran-
dom functions in TLS or message authentication codes in IPSec. In some stan-
dardized protocols as RSA-OAEP [BR94] and RSA-PSS [BR96], even stronger
assumptions on the underlying hash-functions are made [BF05, BF06]. A fur-
ther example for the need of multiple properties is given by Katz and Shin
[KS05], where collision-resistant pseudorandom functions are required in or-
der to protect authenticated group key exchange protocols against insider

36 4. Multi-Property Robustness

attacks.1

Adhering to the usage of hash functions as “swiss army knives” Bellare and
Ristenpart [BR06a, BR07] have shown how to preserve multiple properties in
the design of hash functions. In contrast to their approach, which starts
with a compression function and aims at constructing a single multi-property
preserving hash function, a combiner takes two full-grown hash functions and
tries to build a hash function which should preserve the properties, even if one
of the underlying hash functions is already broken.

While the concatenation combiner (see Section 2.4.1 for details) preserves
the CR, TCR and MAC property, the property of being a PRF is in general
not conserved. In contrast, the “XOR combiner” Comb

H0,H1

⊕ (M) = H0(M)⊕
M1(M) is robust with respect to PRF, and also for indifferentiability from
a random oracle (IRO), but neither preserves the CR nor the TCR property.
Ideally, however, one would like to have a single combiner preserving many
properties simultaneously.

In this chapter we show how to build combiners that provably preserve
multiple properties in a robust manner. We concentrate on the most common
properties as proposed in [BR07], namely, collision-resistance (CR), target
collision-resistance (TCR), pseudorandomness (PRF), message authentication
(MAC), one-wayness (OW) and indifferentiability from a random oracle (IRO).
For formal definitions of those properties we refer to Section 2.3.

The Combiner Comb4P. We first propose a combiner Comb4P with opti-
mal output length of 2n bits which robustly preserves the four properties
collision-resistance, target collision-resistance, pseudorandomness and mes-
sage authentication. The basic idea of this construction is to use the con-
catenation combiner Comb∣∣, and to apply a three-round Feistel permutation
to its output. In the first round of the Feistel permutation no round func-
tion is applied, whereas the two subsequent rounds are constructed by using
the XOR-combiner Comb⊕ (cf. Figure 4.1). The round functions are made
somewhat independent by prepending the round number to the input.

The rationale here is that applying the Feistel (or any other) permutation
to the output of Comb∣∣ still preserves the CR, TCR and MAC properties, e.g.,
collisions for Comb∣∣ are pulled through the downstream permutation and can
be traced back to collisions for Comb∣∣. At the same time, one achieves ro-
bustness for the PRF property. The latter can be seen as follows: if either H0

or H1 is pseudorandom, then the round functions in the Feistel network are
pseudorandom as Comb⊕ is a secure combiner for pseudorandom functions.
The Luby-Rackoff [LR88] result now states that a three-round Feistel-network,
instantiated with quasi independent pseudorandom functions, is a pseudoran-
dom permutation. We note that the formal argument also needs to take into

1Technically, they require statistical collision-resistance for the keys of the pseudorandom
function.

4.1. Introduction 37

M

H0
0 H0

1

⊕

⊕ H2
⊕

⊕ H3
⊕

M

PIP

H0
0 H0

1

⊕

⊕ H2
⊕

⊕ H3
⊕

Figure 4.1: Illustration of the basic construction Comb4P (left) preserving
CR,PRF,TCR and MAC. Here H i

b(⋅) denotes Hb(⟨i⟩2 ∥⋅) where ⟨i⟩2 is the
binary representation of the integer i with two bits. H i

⊕(⋅) denotes H i
0(⋅) ⊕

H i
1(⋅). By applying a pairwise independent permutation (PIP) to the input

of H0
0 we get our construction Comb4P&OW (right), which also preserves OW.

Because of the PIP, the input length of the construction must now be fixed.

account that finding collisions in the keyed version of the initial Comb∣∣ com-
putation is infeasible.

Preserving IRO. In Section 4.4 we modify the Comb4P construction such
that it also preserves indifferentiability from a random oracle. The obstruction
of the IRO robustness in the Comb4P combiner stems from the invertibility of
the Feistel permutation: an adversary trying to distinguish the output of
the combiner from a random function (given access to the underlying hash
functions, as opposed to the case of pseudorandom functions for example) can
partly “reverse engineer” images under the combiner. Hence, we introduce a
“signature” value �M (depending on the input messageM), entering the round
functions in the Feistel network and basically allowing combiner computations
in the forward direction only.

The description of our enhanced combiner Comb4P&IRO is given in Fig-
ure 4.2. The signature �M is taken as (a prefix of) the XOR of the output
halves of the Comb∣∣ combiner and is used as additional input parameter in
the Feistel round functions, allowing us to also save one round of the Feistel
structure. Note that this essentially means that different Feistel permutations
may be used for different inputs M,M ′, because the signatures �M , �M ′ may
be distinct. In order to apply again the argument that the Feistel permutation
does not interfere with the CR,TCR and MAC robustness of the concatenating
combiner, we therefore also need to ensure that finding “bad” pairs �M and
�M ′ is infeasible. To this end we introduce another output branch which basi-

38 4. Multi-Property Robustness

M

H0
0 H0

1

⊕

⊕ H1
⊕ lsbm

⊕ H2
⊕

H3
⊕ PIF

lsb3m

⊕

�M

�M

M

PIP

H0
0 H0

1

⊕

⊕ H1
⊕ lsbm

⊕ H2
⊕

H3
⊕ PIF

lsb3m

⊕

�M

�M

Figure 4.2: Illustration of the construction Comb4P&IRO (left), which (besides
the four properties preserved by Comb4P) also preserves the IRO property, at
the prize of an increased output length. The third branch of the construction
operates on a signature value �M depending on inputM and applies a pairwise
independent function. On the right side the construction Comb6P is illustrated
which simultaneously preserves all six properties considered.

cally guarantees collision-resistance of the signatures. This additional output
is of length 3m for some m = !(log n), yielding an overall output length of
2n+ !(log n).

Preserving One-Wayness. Even though both our solutions are robust for
an important set of properties they are not good combiners for one-wayness.
Our results so far merely show that they are one-way functions making for ex-
ample the potentially stronger assumption that one of the two hash functions
is collision-resistance. In Section 4.5 we therefore show how to augment our
constructions such that they also preserve the one-wayness property.

The idea is that applying a pairwise-independent permutation (PIP) to the
input ofH0 (orH1) in the concatenation combiner Comb∣∣ makes this combiner
also robust for one-wayness. Then we can use this modified concatenation
combiner in the initial stages of our previous constructions, noting again the
subsequent Feistel permutations do not interfere with this property either.
Yet, as the description length of a PIP is linear in its input length, the input
length of the derived combiners must be fixed, too, giving one-wayness as an
additional property.

Weak vs. Strong Robustness. We prove our constructions to be strongly
robust multi-property combiners for different sets of properties. That is, it
suffices that each property is provided by at least one hash function, e.g., if
H0 or H1 has property MAC, then so does the combiner, independently of the

4.2. Robust Multi-Property Hash Combiners 39

other properties. We also introduce further relaxations of MPR, denoted by
weakly MPR and mildly MPR. In the weak case the combiner only inherits a
set of multiple properties if they are all provided by at least one hash func-
tion (i.e., if there is a strong candidate which has all properties at the same
time). Mildly MPR combiners are between strongly MPR and weakly MPR
combiners, where all properties are granted, but different hash functions may
cover different properties.

Our work then addresses several questions related to the different notions
of multi-property robustness. Namely, we show that strongly MPR is indeed
strictly stronger than mildly MPR which, in turn, implies weakly MPR (but
not vice versa). We finally discuss the case of general tree-based combiners for
more than two hash functions built out of combiners for two hash functions,
as suggested in a more general setting by Harnik et al. [HKN+05]. As part of
this result we show that such tree-combiners inherit the weakly and strongly
MPR property of two-function combiners, whereas mildly MPR two-function
combiners surprisingly do not propagate their security to trees.

4.2 Robust Multi-Property Hash Combiners

First, we need to augment the notion of robust combiners, as given in Sec-
tion 2.4, to the case that multiple properties P1,P2, . . . ,PN instead of a single
property P are considered. Recall that a combiner C = (CKGen,Comb) for
hash functions ℋ0,ℋ1 itself is also a hash function which combines the two
functions ℋ0,ℋ1 such that, if at least one of the hash functions obeys property
P, then so does the combiner.

For multiple properties prop = {P1,P2, . . . ,PN} one can either demand
that the combiner inherits the properties if one of the candidate hash func-
tions is strong and has all the properties (weakly robust), or that for each
property at least one of the two hash functions has the property (strongly
robust). We also consider a notion in between but somewhat closer to the
weak case, called mildly robust, in which case all properties from prop must
hold, albeit different functions may cover different properties (instead of one
function as in the case of weakly robust combiners). In the following, we de-
note by prop(ℋ) ⊆ prop for a set prop = {P1,P2, . . . ,PN} the properties
which a hash function ℋ has.2 More formally,

Definition 4.1 (Multi-Property Robustness) For a set prop = {P1,P2,
. . . ,PN} of properties a hash function combiner C = (CKGen,Comb) for hash
functions ℋ0,ℋ1 is called:

weakly multi-property robust (wMPR) for prop iff

prop = prop(ℋ0) or prop = prop(ℋ1) =⇒ prop = prop(C),

2One may also refine these notions further. We focus on these three “natural” cases.

40 4. Multi-Property Robustness

mildly multi-property robust (mMPR) for prop iff

prop = prop(ℋ0) ∪ prop(ℋ1) =⇒ prop = prop(C),

strongly multi-property robust (sMPR) for prop iff for all Pi ∈ prop,

Pi ∈ prop(ℋ0) ∪ prop(ℋ1) =⇒ Pi ∈ prop(C).

We remark that for weak and mild robustness all individual properties
P1,P2, . . . ,PN from prop are guaranteed to hold, either by a single function
as in weak robustness, or possibly by different functions as in mild robustness.
The combiner may therefore depend on some strong property Pi ∈ prop

which one of the hash functions has, and which helps to implement some other
property Pj in the combined hash function. But then, for a subset prop′ ⊆
prop which, for instance, misses this strong property Pi, the combiner may
no longer preserve the properties prop′. This is in contrast to strongly robust
combiners which support such subsets of properties by definition.

Note that for a singleton prop = {P} all notions coincide and we simply
say that C is P-robust in this case. However, for two or more properties the
notions become strictly stronger from weak to mild to strong, as we show in
Section 4.6. Finally, we remark that our definition allows the case ℋ0 = ℋ1,
which may require some care when designing combiners, especially if the hash
functions are based on random oracles.

4.3 The C4P Combiner for CR, PRF, TCR and MAC

In this section we introduce the construction of our basic combiner C4P as
illustrated in Figure 4.1. Recall that the idea of this combiner is to apply
a Feistel permutation (with quasi independent round functions given by the
XOR combiner) to the concatenating combiner to ensure CR, PRF, TCR and
MAC robustness.

4.3.1 Our Construction

The three-round Feistel permutation P 3 over {0, 1}2n is given by the round
functions H i

⊕(⋅) = H i
0(⋅)⊕H

i
1(⋅) for i = 2, 3, with H i

b(⋅) denoting the function
Hb(⟨i⟩2 ∣∣⋅) where ⟨i⟩2 is the binary representation of the integer i with two
bits. The first round function is the identity function, which we denote for
notational convenience as H1

⊕(X) = X. In the i-th round the input (Li, Ri) is
mapped to the output (Ri, Li ⊕H

i
⊕(Ri)). We occasionally denote this Feistel

permutation more explicitly by P 3 = [H1
⊕, H

2
⊕, H

3
⊕](⋅).

Our combiner, instantiated with hash functions ℋ0,ℋ1, is a pair of ef-
ficient algorithms C4P = (CKGen4P,Comb4P) where the key generation algo-
rithm CKGen4P(1

n) samples H0 ← HKGen0(1
n) and H1 ← HKGen1(1

n). The

4.3. The C4P Combiner for CR, PRF, TCR and MAC 41

evaluation algorithm Comb
H0,H1

4P for parameters H0, H1 and input message M
outputs

Comb
H0,H1

4P (M) = P 3(H0
0 (M)∣∣H0

1 (M)).

4.3.2 Multi-Property Robustness

We next show that the construction satisfies the strongest notion for robust
multi-property combiners:

Theorem 4.2 C4P is a strongly robust multi-property combiner for prop =
{CR,PRF,TCR,MAC}.

Recall that a strong robust multi-property combiner inherits all properties
that are provided by at least one of the underlying hash functions. Thus,
we have to prove that each property CR,PRF,TCR and MAC is preserved
independently.

Lemma 4.3 The combiner C4P is CR-robust.

Proof. Observe that any collision M ∕= M ′ for Comb
H0,H1

4P (⋅) directly gives a
collision 00∥M ∕= 00∥M ′ for for H0(⋅) and H1(⋅). Thus any adversary that
finds collisions for Comb4P when instantiated with H0, H1 with non-negligible
probability, can be used to find collision (with the same probability) for H0

and H1 respectively: to find a collision for Hb ← HKGenb(1
n) with b ∈ {0, 1},

run Hb ← HKGenb(1
n) and then invoke the adversary on input Hb, Hb. If the

adversary outputs a collision for Comb
H0,H1

4P (⋅), this is also a collision for Hb(⋅).
□

Lemma 4.4 The combiner C4P is TCR-robust.

Proof. Assume towards contradiction that there exist an efficient adversary
AComb = (A1

Comb,A
2
Comb) that commits to a messageM before getting H0 and

H1 and then finds some M ′ such that Comb
H0,H1

4P (M) = Comb
H0,H1

4P (M ′) with
noticeable probability. Then we can use this attacker to construct a successful
target-collision adversary Ab = (A1

b ,A
2
b) against the underlying hash functions

Hb for b ∈ {0, 1} which contradicts the assumption that at least one of the
two hash functions is target collision-resistant.

First, the adversary A1
b(1

n) runs A1
Comb(1

n) to receive the target message
M and some state information st. A1

b then commits to 00∣∣M . On input
Hb the adversary A2

b samples the second hash function Hb ← HKGenb(1
n)

and passes Hb, Hb together with (M, st) to A2
Comb. When A2

Comb outputs a

message M ′ ∕= M with Comb
H0,H1

4P (M) = Comb
H0,H1

4P (M ′) the adversary A2
b

returns 00∣∣M ′.
Due to the permutation a collision ofM,M ′ for the combiner can be traced

back to the input of P (⋅) and thus we have

H0(00∣∣M)∣∣H1(00∣∣M) = H0(00∣∣M
′)∣∣H1(00∣∣M

′).

42 4. Multi-Property Robustness

Hence, both adversaries Ab for b = 0, 1 succeed in finding a message 00∣∣M ′

that together with the target message 00∣∣M leads to a collision under Hb with
the same noticeable probability as AComb. □

Lemma 4.5 The combiner C4P is PRF-robust.

Proof. As the XOR combiner is a good combiner for pseudorandom functions
(PRFs), the round functions H2

⊕, H
3
⊕ in the Feistel network are instantiated

with PRFs, as long as at least H0 or H1 is a PRF. Prepending the unique
prefix ⟨i⟩2 for i = 2, 3 to the input of H i

⊕(⋅) = H⊕(⟨i⟩2 ∥⋅) in each round
ensures that the functions in different rounds are never invoked on the same
input, which means they are indistinguishable from two independent random
functions. The first round of our Feistel permutation, that does not apply
a round function, simply prepares the input for the second round function
H2

⊕(⋅) by xoring both input halves H0
0 (M) ⊕ H0

1 (M). Thus, if at least one
hash function is a PRF then the input to the second round function is already
a pseudorandom value, which prevents an adversary from directly choosing
the inputs to the second Feistel round.

We can now apply the results due to Luby-Rackoff [LR88] and Naor-
Reingold [NR99] which state that a two-round Feistel-network invoked on an
unpredictable input and instantiated with independent pseudorandom func-
tions is a pseudorandom permutation (PRP).

Further, if either H0 or H1 is a PRF, then the initial concatenation com-
biner Comb

H0,H1

∣∣ is weakly collision-resistant3, thus the probability that the

adversary will invoke the combiner on distinct inputs M,M ′ where a collision
H0

0 (M)∥H0
1 (M) = H0

0 (M
′)∥H0

1 (M
′) occurs, is negligible. So with overwhelm-

ing probability, all the adversary sees is the output of a PRP on distinct inputs.
This distribution is indistinguishable from uniformly random (this follows from
the PRP/PRF switching lemma [BR06b]), thus C4P is PRF robust.

More precisely, from any adversary AComb who has advantage � in distin-
guishing Comb

H0,H1

4P making q queries, we can construct an attacker Ab for
b ∈ {0, 1}, that distinguishes Hb ← HKGenb(1

n) from random with advantage
�−O(q2/2n). For b = 0 (the case b = 1 is symmetric) the adversary A0 first
samples H1 ← HKGen1(1

n) and then simulates the experiment of AComb using
this knowledge of H1 and its oracle access to H0. Finally, A0 returns the out-
put of AComb. If H0 is a uniformly random function f : {0, 1}∗ → {0, 1}n, then
any (even computationally unbounded) adversary making q queries has ad-

vantage at most O(q2/2n) in distinguishing Comb
f,H1

4P from a random function
(as the advantage from the PRP/PRF switching lemma and the advantage
in the Luby-Rackoff result are both O(q2/2n)). Thus, if AComb distinguishes

3Weak collision-resistance is defined similarly to collision resistance, except that here
the function is keyed and the key is secret, i.e., the adversary only gets black-box access to
the function.

4.4. Preserving Indifferentiability: the C4P&IRO Combiner 43

Comb
H0,H1

4P from a truly random function F : {0, 1}∗ → {0, 1}2n with advan-

tage �, it has advantage �−O(q2/2n) to distinguish Comb
H0,H1

4P from Comb
f,H1

4P .
The latter is by definition also A0’s advantage for f and H0.

□

Lemma 4.6 The combiner C4P is MAC-robust.

Proof. Assume towards contradiction that an adversary AComb with oracle
access to the combiner Comb

H0,H1

4P (⋅) finds with non-negligible probability a

valid pair (M, �), such that � = Comb
H0,H1

4P (M) but the messageM was never
queried to the MAC-oracle. Given AComb we can construct a successful adver-
sary Ab against the underlying hash function Hb for b ∈ {0, 1}. To forge Hb(⋅),
the adversary Ab first samples Hb ← HKGenb(1

n), and then lets AComb attack

Comb
H0,H1

4P (⋅), and letAb use his oracle access toHb(⋅) and the knowledge ofHb

to compute the answers toAComb’s oracle queries. When finallyAComb outputs
(M, �), the adversary Ab computes its forgery (00∣∣M, �b) by inverting the per-
mutation P 3 = [H1

⊕, H
2
⊕, H

3
⊕] (recall that H

i
⊕(⋅) = H0(⟨i⟩2 ∣∣⋅) ⊕H1(⟨i⟩2 ∣∣⋅)

for i = 2, 3 and that the required hash function evaluations can be made with
the help of the MAC oracle):

�0∣∣�1 = P 3−1
(�).

The adversary Ab then outputs the message 00∣∣M and �b. If M was not pre-
viously queried by AC , then 00∣∣M is distinct from all of Ab’s previous queries,
because all additional queries are prepended by ⟨i⟩2 where i ∈ {2, 3}. By con-

struction, if (M, �) is a valid forgery for Comb
H0,H1

4P (⋅), then H0
0 (M)∣∣H0

1 (M) =
�0∣∣�1 and thus (00∥M, �b) is a valid forgery for Hb(⋅). □

4.4 Preserving Indifferentiability: the C4P&IRO

Combiner

First, we give a brief idea why our C4P combiner does not guarantee the IRO

property. To be IRO-robust the combiner has to be indifferentiable from a
random oracle for any efficient adversary A, if Hb is a random oracle for
some b ∈ {0, 1}. Thereby the adversary A has oracle access either to the
combiner Comb

H0,H1

4P and the random oracle Hb, or to ℱ and a simulator Sℱ .
The simulator’s goal is to mimic Hb such that A cannot have a significant
advantage on deciding whether its interacting with Comb

H0,H1

4P and Hb, or
with ℱ and Sℱ .

Usually, the strategy for designing such a simulator is to check if a query
is a potential attempt of A to imitate the construction of the combiner and
then to precompute further answers that are consistent with the information
A can get from ℱ . However, for Comb

H0,H1

4P the simulator may be unable to
precompute those consistent values, because an adversary A can compute the

44 4. Multi-Property Robustness

permutation part of the combiner backwards such that Sℱ has to commit to
its round values used in the permutation P 3 before knowing the initial input
M . To this end, A first queries the random oracle ℱ on input M and uses the
response Y ← ℱ(M) to computeX = P 3−1

(Y) with the help of Sℱ simulating
Hb and the function Hb which is accessible in a black-box manner. Then the
answers of Sℱ , in order to be indistinguishable from those of Hb, must lead
to a value X = S(00∣∣M)∣∣H1(00∣∣M) if b = 0, and X = H0(00∣∣M)∣∣S(00∣∣M)
else.

While the part of X corresponding to S(00∣∣M) can simply be set as re-
sponse to a further query 00∣∣M by the simulator, the part of Hb(00∣∣M)
is determined by the oracle Hb(⋅) and the message M . However, since the
simulator does not know the message M when answering A’s queries for com-
puting P 3−1

, it is not able to call the Hb oracle about 00∣∣M and to choose
those answers accordingly. Thus, the probability that the responses provided
by Sℱ will lead in P 3−1

(Y) to a value that is consistent with the structure
of the combiner, is negligible and the adversary A can distinguish between
(Comb

H0,H1

4P , Hb) and (ℱ ,Sℱ) with noticeable probability.

In order to guarantee the IRO property, we modify the Comb
H0,H1

4P combiner
such that the adversary is forced to query the messageM before he can create
meaningful queries aiming to imitate the construction. By this the simulator
becomes able to switch to the common strategy of preparing consistent answers
in advance. As explained in the introduction, adding a signature value �M

into the computation does the job.

4.4.1 The Combiner C4P&IRO

In this section we consider the modified combiner C4P&IRO as illustrated in
Figure 4.2. The combiner C4P&IRO = (CKGen4P&IRO,Comb4P&IRO) is defined
as follows: CKGen4P&IRO first samples H0 ← HKGen0(1

n), H1 ← HKGen1(1
n)

and a pairwise independent function g : {0, 1}m → {0, 1}3m for some m ≤ n/3
(the larger m, the better the security level, but the longer the output, too):

Definition 4.7 (Pairwise-Independent Function/Permutation) A
family of functions G : A → B from domain A to range B is called pairwise
independent iff for all x ∕= x′ ∈ A and z ∕= z′ ∈ B we have Probg∈G[g(x) =
z ∧ g(x′) = z′] = ∣B∣−2.

A family of function Π : A→ A is a pairwise independent permutation, if
for x ∕= x′ and z ∕= z′ ∈ A we have Probg∈G[g(x) = z∧g(x′) = z′] = 1

∣B∣(∣B∣−1) .

One gets a simple construction of a pairwise independent function (PIF) map-
ping {0, 1}n to {0, 1}n, by sampling a, b ∈ {0, 1}n at random, which then
defines the function g(a,b)(x) = (ax + b), where addition and multiplication
are in the field GF (2n) (if we want a smaller range {0, 1}m,m < n, one can
simply drop n −m bits of the output). This construction is also a pairwise-

4.4. Preserving Indifferentiability: the C4P&IRO Combiner 45

independent permutation (PIP), if a is chosen at random from {0, 1}n ∖ 0n

(instead of {0, 1}n).
The evaluation algorithm Comb

H0,H1,g
4P&IRO (M) first computes Comb

H0,H1

∣∣ (M) =

H0
0 (M)∣∣H0

1 (M) and a value �M – which we call the “signature of M” –
as �M = lsbm(H0

⊕(M)) where H0
⊕(M) = H0

0 (M) ⊕ H0
1 (M) and lsba(x) de-

notes the a least significant bits of x. The value �M is used as an extra
prefix in the round functions of the two-round Feistel permutation P 2

�(⋅) =
 [H1

⊕(�M∥⋅), H
2
⊕(�M∥⋅)]. Applying P

2
� on H0

0 (M)∣∣H0
1 (M) then gives the first

part of the combiners output.
The construction as described so far, is already a robust combiner for

IRO and PRF, but not for CR and TCR. The reason is that now distinct input
messagesM,M ′ where �M ∕= �M ′ lead to distinct Feistel permutations P 2

�M
∕=

P 2
�M′

, and thus we cannot compute a collision for CombH0,H1 (and thus for H0

and H1) from a collision Comb
H0,H1

∣∣ (P 2
�M

(M)) = Comb
H0,H1

∣∣ (P 2
�′
M
(M ′)).

To solve this problem, we could append the signature to the output of
the combiner, which would enforce that two inputs can only collide if they
have the same signature. Unfortunately, outputting the signature � directly
would make the permutation P 2

� invertible, and ruin the IRO robustness of
our construction again. This is why we only output a “blinded” version of the
signature computed as lsb3m(H3

⊕(�M))⊕ g(�M). This way the signature �M

gets not leaked when H0 or H1 is a random oracle, which is necessary for the
combiner to be IRO robust. Moreover with high probability (over the choice
of the pairwise-independent function g) the blinding, which maps {0, 1}m to
{0, 1}3m, will be injective (i.e., contain no collisions), which as explained before
is necessary to get robustness for CR and TCR.

Overall, the combiner – as illustrated in Figure 4.2 – computes for input
messageM and its corresponding signature �M = lsbm(H0

⊕(M)) the following
output:

Comb
H0,H1,g
4P&IRO (M) = P 2

�(H
0
0 (M)∣∣H0

1 (M)) ∣∣ lsb3m(H3
⊕(�M))⊕ g(�M).

4.4.2 C4P&IRO is IRO-Robust

We show that our combiner is indifferentiable from a random oracle when
instantiated with two functions H0, H1, where one of them is a random oracle
(we refer to it as Hb, b ∈ {0, 1}), and the other function Hb is arbitrary

4. Like
the random oracleHb, alsoHb is given as an oracle and accessible by all parties.
The pairwise independent function g that comes up in this construction is only
needed to prove that C4P&IRO still preserves the CR and TCR properties; for
the IRO property this function can be arbitrary.

4There is a small caveat here. Our definition of combiners allows to use the same hash
function H0 = H1, albeit our combiner samples independent instances of the hash functions
then. In this sense, it is understood that, if hash function Hb is given by a random oracle,
then in case Hb = Hb the other hash function instance uses an independent random oracle.

46 4. Multi-Property Robustness

Lemma 4.8 The combiner C4P&IRO is IRO-robust.

Remark. Note that the security of Comb4P&IRO as a random oracle combiner
depends on m, and thus on the output length, which is 2n+3m. This can be
slightly improved to 2n+ 2m+m′ for some m′ < m (by simply replacing 3m
with 2m+m′ in Figure 4.2), though m′ should not be too small, as C4P&IRO is
a good combiner for the CR and TCR with probability 2−m′

(this probability
is over the choice of the PIF, as we explain later in Section 4.4.3).

Proof. For the proof we assume that b = 0, i.e., the hash function H0 :
{0, 1}∗ → {0, 1}n is a random oracle. The case b = 1 is proved analogously.
The adversary A has then access either to the combiner Comb4P&IRO and H0

or to a random oracle ℱ : {0, 1}∗ → {0, 1}2n+3m and a simulator Sℱ . Our
combiner is indifferentiable from a random oracle ℱ if there exists a simulator
Sℱ , such that the adversary A can distinguish between Comb4P&IRO, H0 and
ℱ ,Sℱ only with negligible probability. The proof consists of two parts: we
first provide the description of our simulator Sℱ and then we show that A has
only negligible advantage in distinguishing the ideal setting (with Sℱ) and the
real setting.

The simulator keeps as state the function table of a (partially defined)
function Ĥ0 : {0, 1}∗ → {0, 1}n, which initially is empty, i.e., Ĥ0(X) = ⊥
for all X. We define Ĥ i

0(M) = Ĥ0(⟨i⟩2 ∣∣M) to mimic the notion used in

Figure 4.2. The goal of Sℱ is to define Ĥ0 in such a way that, from A’s
point of view, (ℱ , Ĥ0) look like (Comb

H0,H1,g
4P&IRO , H0), i.e., the output of Ĥ0 has

to be random and consistent to what the distinguisher can obtain from ℱ .
Therefore, our simulator Sℱ parses each query X it is invoked on as X =
⟨i⟩2 ∣∣M and proceeds as follows:

Simulator Sℱ (X):

on query X check if some entry Y ← Ĥ0(X) already exists
if Y = ⊥ //no entry so far

if X = ⟨0⟩
2
∣∣M for some M

set Ĥ0
0 (M) = y0 where y0 is randomly chosen from {0, 1}n (∗)

get y1 ← H0
1 (M) and compute �M = lsbm(y0 ⊕ y1)

get U ← ℱ(M) for query M and parse U as U1∣∣U2∣∣U3 (∗)
where ∣U1∣ = ∣U2∣ = n and ∣U3∣ = 3m.

set Ĥ1
0 (�M ∣∣y1) = U2 ⊕ y0 ⊕H1

1 (�M ∣∣y1)

set Ĥ2
0 (�M ∣∣U2) = U1 ⊕ y1 ⊕H2

1 (�M ∣∣U2)

set Ĥ3
0 (�M) = (U3∣∣z) ⊕ (g(�M)∣∣0n−3m) ⊕ H3

1 (�M)
where z is randomly chosen from {0, 1}n−3m

if X ∕= ⟨0⟩
2
∣∣M , choose a random Y ∈ {0, 1}n (∗)

and save the value by setting Ĥ0(X) = Y

output Y ← Ĥ0(X)

Figure 4.3: Description of the Simulator

4.4. Preserving Indifferentiability: the C4P&IRO Combiner 47

Whenever Sℱ is invoked on a query X where Ĥ0(X) ∕= ⊥, Sℱ simply outputs
Ĥ0(M). Thus from now on we only consider queries X where Ĥ0(X) = ⊥. In
this case, Sℱ will define the output of Ĥ0(X), and in some cases also on some
additional inputs. On a query X = ⟨i⟩2 ∣∣M where Ĥ i

0(M) = ⊥ and i ∕= 0, the

simulator samples a random Y ∈ {0, 1}n, sets Ĥ i
0(M) = Y and outputs Y .

The interesting queries are the queries of the form X = ⟨0⟩2 ∣∣M which
could be an attempt of A to simulate the construction of the combiner, such
that the simulator has to compute in addition consistent answers to poten-
tial subsequent queries of A. The simulator starts by sampling a random
y0 ∈ {0, 1}

n and sets Ĥ0
0 (M) = y0. To define the “signature” �M of M , Sℱ

queries its oracle H1 on ⟨0⟩2 ∣∣M and uses the answer y1 = H0
1 (M) to compute

�M = lsbm(y0⊕ y1). The simulator then defines the outputs of the intermedi-

ate functions Ĥ1
0 , Ĥ

2
0 and Ĥ3

0 such that Comb
Ĥ0,H1,g
4P&IRO (M) = ℱ(M). Therefore

Sℱ invokes its random oracle ℱ on input M and computes the corresponding
outputs of Ĥ0 by retracing the combiners construction as defined in the sim-
ulators description. Note that this is possible in a unique way, except for the
n− 3m last bits of Ĥ3

0 (�M), which must be chosen uniformly at random.

We now prove that from A’s point of view (Comb
H0,H1,g
4P&IRO , H0) and (ℱ ,Sℱ)

are indistinguishable, when making at most q queries to each oracle. To this
end we consider a sequence of hybrid games, starting with a game where A
interacts with (Comb

H0,H1,g
4P&IRO , H0) and ending in the ideal setting where the dis-

tinguisher has access to (ℱ ,Sℱ). The game structure of this proof is depicted
in Figure 4.4.

A A A A

H0H0

H0 ℱℱ SS∗S∗
CombComb

Game 0 Game 1 Game 2 Game 3

Figure 4.4: Games used in the Indifferentiability Proof

Game 0: The adversary interacts with Comb
H0,H1,g
4P&IRO and H0.

Game 1: We change the way A’s queries to H0 are answered, by giving A
access to an algorithm S∗ instead of direct access to the random oracle. The
algorithm S∗ works as our simulator S, except that it queries H0 instead
of simulating it via lazy sampling, and it calls Comb

H0,H1,g
4P&IRO (M) instead of

ℱ(M). Thus, S∗ basically relays all queries of A to H0 but also keeps a table
of answered values. For all queries of the form X = ⟨0⟩2 ∣∣M the algorithm

48 4. Multi-Property Robustness

additionally precomputes further values as described in Figure 4.3 (the lines
where S∗ deviates from S are marked with ∗). Note that S∗’s answers and
stored values are (with one exception) exactly the same as the values one
would obtain directly from H0. In particular, the values S∗ defines for Ĥ1

0 , Ĥ
2
0

by querying Comb
H0,H1,g
4P&IRO are identical to the real values of H1

0 , H
2
0 . The only

difference occurs when in the precomputations of S∗ a value for Ĥ3
0 (�M) is

set, since only the first 3m bits will equal the value of H3
0 (�M). However,

the final n − 3m bits are set to random such that also Ĥ3
0 (�M) is a truly

random string. Thus, the only way for A to recognize the discrepancy to the
real H3

0 (�M) value, is by querying ⟨3⟩2 ∣∣�M before sending a query ⟨0⟩2 ∣∣M
that will lead to �M . We denote this event by Bad1. As all signature values
�M that originate from a query to H0

0 are uniform random values of length
m and A makes at most q queries to its S∗ oracle, this event happens with
overall probability at most q2 ⋅ 2−m. Unless A provokes Bad1, Game 0 and
Game 1 are identical (we denote by Game i⇒ 1 the event that A outputs 1
in Game i):

∣Prob[Game 1⇒ 1]− Prob[Game 0⇒ 1] ∣ ≤ Prob[Bad1] ≤ q
2 ⋅ 2−m

Game 2: In our second game we replace the combiner Comb
H0,H1,g
4P&IRO with

the random oracle ℱ . Due to that change, the algorithm S∗ now obtains
ℱ(M) instead of Comb

H0,H1,g
4P&IRO (M) when doing its precomputations. Thus,

the additional values that S∗ stores in Ĥ i
0 for i ∈ {1, 2, 3} when responding

to a ⟨0⟩2 ∣∣M query, are now consistent with ℱ(M) and thereby with high
probability different from the real values of H i

0 for i ∈ {1, 2, 3}. Again, this
only matters if A manages to first issue a query ⟨i⟩2 ∣∣�M ∣∣∗ and subsequently
invokes S∗ on ⟨0⟩2 ∣∣M that will lead to �M . Otherwise, all A gets to see from
S∗ are random and consistent answers. To capture that case where S∗ “fails”,
we consider by Bad2 the event that the function Ĥ i

0 for i ∈ {1, 2} is already
defined on any input of the form �M ∣∣∗ when S

∗ wants to set a value in the
course of a precomputation. (Note that the case for i = 3 is already handled
by Bad1 in Game 1.) As �M ∈ {0, 1}

m is uniformly random, the probability
that Bad2 occurs in the q-th query is at most 2q ⋅2−m (as each Ĥ i

0 for i ∈ {1, 2}
is defined on at most q− 1 inputs). Then the overall probability that Bad2 in
any of A’s queries happens is at most 2q2 ⋅ 2−m.

Furthermore, the outputs provided by Comb
H0,H1,g
4P&IRO are indistinguishable

from ℱ , as long as no collision on the signature values occurs, i.e., M ∕= M ′

but �M = �′
M (we omit a formal proof, as it follows the argumentation of

Lemma 4.10 closely). Since A sends at most q queries to Comb
H0,H1,g
4P&IRO , such a

collision occurs with probability at most q2 ⋅ 2−m. By adding the probabilities
of both events we obtain

∣Prob[Game 2⇒ 1]− Prob[Game 1⇒ 1] ∣ ≤ 3q2 ⋅ 2−m

4.4. Preserving Indifferentiability: the C4P&IRO Combiner 49

Game 3: In the final game the adversary interacts with ℱ and Sℱ . That is,
Game 2 and Game 3 only differ in the fact that Sℱ simulates the random
responses from H0 by using lazy sampling instead of querying H0. Thus, from
A’s viewpoint both games are identical:

Prob[Game 3⇒ 1] = Prob[Game 2⇒ 1]

Overall, we have

∣Prob[Game 3⇒ 1]− Prob[Game 0⇒ 1] ∣ ≤ 4q2 ⋅ 2−m.

Hence, the advantage ofA in distinguishing (Comb
H0,H1,g
4P&IRO , H0) from (ℱ ,Sℱ)

is negligible. This proves our claim.
□

4.4.3 C4P&IRO is Robust for CR,TCR,MAC,PRF

We now prove that, like the C4P combiner, C4P&IRO also preserves the CR, TCR,
MAC and PRF property in a robust manner.

Lemma 4.9 The combiner C4P&IRO is CR- and TCR-robust.

Proof. We will prove that for any H0, H1, with probability 1 − 2−m over the
choice of the pairwise independent function g, any collision for Comb

H0,H1,g
4P&IRO

is simultaneously a collision for H0
0 and H0

1 . To this end, let M ∕= M ′ be a

collision for Comb
H0,H1,g
4P&IRO and let �M and �M ′ denote their signatures. Let

Y ∥Y ′ = Comb
H0,H1,g
4P&IRO (M) where Y ∈ {0, 1}2n and Y ′ ∈ {0, 1}3m.

If �M = �M ′ , then M,M ′ must be a collision for H0
0 and H0

1 , as we have

H0
0 (M)∥H0

1 (M) = P 2
�
−1

(Y) = P 2
�′

−1
(Y) = H0

0 (M
′)∥H0

1 (M
′) (4.1)

and the Feistel permutations P 2
�, P

2
�′ are identical if �M = �M ′ .

ForM,M ′ where �M ∕= �M ′ , a collision on the combiner Comb
H0,H1,g
4P&IRO (M) =

Comb
H0,H1,g
4P&IRO (M

′) does not imply (4.1), and thus will in general not be a col-
lision for H0 and H1. Yet, as with probability 1− 2−m over the choice of the
pairwise independent function g : {0, 1}m → {0, 1}3m, there does not exist a
collision M,M ′ for Comb

H0,H1,g
4P&IRO where �M ∕= �M ′ . Note that for this it is

sufficient to prove that for any two potential signatures � ∕= �′ ∈ {0, 1}m, we
have

lsb3m(H3
⊕(�))⊕ g(�) ∕= lsb3m(H3

⊕(�
′))⊕ g(�′) (4.2)

as this implies that the final outputs are distinct for any two messages with
different signatures. As g is pairwise independent, for any particular � ∕= �′,
equation (4.2) holds with probability 1− 2−3m. Taking the union bound over

50 4. Multi-Property Robustness

all 2m(2m − 1)/2 < 22m distinct values � ∕= �′, we get that the probability
that there exists some � ∕= �′ not satisfying (4.2) is at most 22m/23m = 2−m.

The proof of TCR-robustness follows a similar argumentation. A collision
M ∕= M ′ on the combiner implies with overwhelming probability a collision
H0

0 (M)∣∣H0
1 (M) = H0

0 (M
′)∣∣H0

1 (M
′) on the first evaluation of both hash func-

tions. Thus, given an adversary AComb against the combiner that commits to
a target message M and later outputs a colliding message M ′, one can build
an adversary Ab against hash function Hb that commits to 00∣∣M and outputs
in the second stage 00∣∣M ′. □

Lemma 4.10 The combiner C4P&IRO is PRF-robust.

Remark. To compute the first part of the output, our combiner Comb
H0,H1,g
4P&IRO

applies a two-round Feistel network, which in general does not preserve the
(pseudo)-randomness from an underlying round function H i

⊕, because it maps
an input (L0, R0) to (L2, R2) where R2 = H1

⊕(R0) ⊕ L0 depends only on the
given input values. When evaluating the Feistel network with two distinct
inputs (L0, R0) and (L′

0, R0), the difference L0 ⊕ L
′
0 then propagates to the

outputs, i.e., L0 ⊕ L
′
0 = R2 ⊕R

′
2, which can be exploited by an adversary. In

our construction we destroy this dependence by prepending the value �M to
the input of each round function, where �M = lsbm(H0

⊕(M)) is a uniformly
random value if Hb, b ∈ {0, 1} is a uniformly random function. Thus we have
R2 = H1

⊕(�M ∣∣R0) ⊕ L0 with L0 = H0
0 (M) and R0 = H0

1 (M) such that for
two distinct inputs M ∕=M ′, the probability for R2⊕R

′
2 = H0

0 (M)⊕H0
0 (M

′)
is Prob[�M = �M ′] = 2−m.

Proof. Assume that the hash function H0 is a pseudorandom function, but
the combiner Comb

H0,H1,g
4P&IRO is not (the proof for H1 can be done analogously).

Hence, there exists a successful adversaryAComb which can distinguish the con-
struction Comb

H0,H1,g
4P&IRO from a truly random function F : {0, 1}∗ → {0, 1}2n+3m

with non-negligible probability. We show that this allows to construct an ad-
versary A0 that can distinguish H0 from a random function f : {0, 1}∗ →
{0, 1}n.

Algorithm A0 simulates the oracle of AComb, which is either Comb
H0,H1,g
4P&IRO

or F , with his own oracle and the knowledge of H1 ← HKGen1 and g that he
samples accordingly. For each query of AComb, the adversary A0 computes an
answer by emulating the combiner Comb4P&IRO using H1(⋅), g and his oracle
which serves as H0.

For the analysis recall that the underlying oracle of A0 is either a random
function f or the hash function H0(⋅). In the latter case A0 provides out-
puts that are identically distributed to the values AComb would obtain from
Comb

H0,H1,g
4P&IRO . Hence, we have

Prob
[
AH0

0 (1n) = 1
]
= Prob

[
A

Comb
H0,H1,g

4P&IRO

Comb (1n) = 1

]
.

4.4. Preserving Indifferentiability: the C4P&IRO Combiner 51

If the underlying oracle is the random function f , then the computed
answers of A0 have to look like a truly random function as well. We show
that this is true if, for q queries M1 . . .Mq and for all i ∕= j, we have �Mi

∕=
�Mj

. The probability of this not being the case is at most q2 ⋅ 2−m, since
�M = lsbm(H0

⊕(M)) is a random value when H0 gets replaced by the random
function f .

Hence, with high probability A0 will create for each query Mi of AComb

a fresh signature �Mi
. To analyze the corresponding output of A0 we parse

his answer in three parts, namely Comb
f,H1,g
4P&IRO(Mi) = U1∣∣U2∣∣U3 with ∣U1∣ =

∣U2∣ = n and ∣U3∣ = 3m. The last part U3 results from the computation
lsb3m(f(⟨3⟩2 ∣∣�Mi

)⊕H3
1 (�Mi

))⊕ g(�Mi
). Since �Mi

is uniformly distributed
and gets extended by the unique prefix ⟨3⟩2, the input value of f(⟨3⟩2 ∣∣�Mi

)

is distinct from all other queries to f during the Comb
f,H1,g
4P&IRO(Mi) computa-

tion, and hence the corresponding output is an independently and uniformly
distributed value. As xor-ing is a good combiner for random functions, the
randomness of f gets preserved in the computation of U3. For the second
part U2 we just consider the final calculation, i.e., U2 = f(⟨0⟩2 ∣∣∣∣Mi) ⊕
f(⟨1⟩2 ∣∣�Mi

∣∣Y) ⊕ H1
1 (�Mi

∣∣Y) for some Y ∈ {0, 1}n. Here we prepend the
bits ⟨1⟩2 to the random value �Mi

, such that we have again distinct evalua-
tions of f which gives us uniformly random images. A similar argumentation
holds for U1 = Y ′ ⊕ f(⟨2⟩2 ∣∣�Mi

∣∣Y ′′) ⊕ H2
1 (�Mi

∣∣Y ′′) for Y ′, Y ′′ ∈ {0, 1}n,
where we use the unique prefix ⟨2⟩2 when querying f in order to obtain val-
ues that are independently and uniformly distributed. Thus, if for all queried
messages Mi ∕= Mj of AComb there occurs no collision on the signatures, i.e.,
�Mi
∕= �Mj

, the values U1∣∣U2∣∣U3 are independent random strings.
Overall, the output distribution of AComb satisfies

Prob
[
Af

0(1
n) = 1

]
≤ Prob

[
AF

Comb(1
n) = 1

]
+ q2 ⋅ 2−m.

Thus, the probability that A0 can distinguish H0 from f is not negligible,
which contradicts the assumption that H0 is a pseudorandom function. □

Lemma 4.11 The combiner C4P&IRO is MAC-robust.

Proof. The proof is by contradiction. Assume that an adversary AComb with
oracle access to the combiner Comb

H0,H1,g
4P&IRO outputs with noticeable probability

a valid pair (M, �) where � = Comb
H0,H1,g
4P&IRO (M) and M is distinct from all

previous queries to the MAC-oracle. This allows to construct an adversary Ab

against the hash function Hb for b ∈ {0, 1}.
Adversary Ab first samples Hb ← HKGen1 that it uses together with its

own oracle Hb(⋅) to answer all queries by AComb in a black-box simulation.
When AComb returns a valid forgery (M, �), where M ∕= M1,M2 . . .Mq, the
adversary Ab flips a coin c← {0, 1} and proceeds as follows:

52 4. Multi-Property Robustness

∙ If c = 0, then Ab randomly chooses an index k between 1 and q and looks
up the corresponding signature value �Mk

. It then computes �0∣∣�1 =

P 2
�
−1

(lsb2n(�)) using �Mk
and stops with the output (⟨0⟩2 ∣∣M, �b).

∙ If c = 1, then Ab queries its oracle about ⟨0⟩2 ∣∣M to receive an answer
y0 and computes �M = y0 ⊕ y1 with y1 = H0

1 (M). It then calculates
the first round of the Feistel permutation, i.e., until the evaluation of
H2

⊕ where x = y0⊕H
1
0 (�M ∣∣y1) would be used as input to this function.

It outputs as forgery the message (⟨2⟩2 ∣∣�M ∣∣x) with tag � ′ = �b ⊕
Hb(⟨2⟩2 ∣∣�M ∣∣x)⊕ y1 where �0∣∣�1 = lsbn(�).

For the analysis we have to consider two cases of an successful adversary
AComb. In the first case, AComb returns a pair (M, �), such that �M = �Mj

for
some j = 1, 2, . . . , q, i.e., the signature value of M has already been computed
for another message Mj ∕=M during Ab’s process of simulating the combiner.
Then, if c = 0, the adversary Ab obtains a valid forgery (⟨0⟩2 ∣∣M, �b) if it
guesses the index j correctly and then inverts the Feistel step for input lsb2n(�)
and �Mj

. The message ⟨0⟩2 ∣∣M is distinct from all of Ab’s queries, because
⟨0⟩2 ∣∣M is distinct from all ⟨0⟩2 ∣∣Mi and the additional queries of Ab start
with a prefix ⟨i⟩2 where i ∈ 1, 2, 3. Hence, if AComb forges such a MAC with
non-negligible probability �, then Ab succeeds with probability �/2q.

In the second case, AComb outputs (M, �) where �M has not occurred in
Ab’s computations, i.e., �M ∕= �Mj

for all j = 1, 2, . . . , q. In this case, we
have c = 1 with probability 1/2 where Ab starts its forgery by computing the
first round of the Feistel permutation for input H0

0 (M)∣∣H0
1 (M) and �M =

lsbm(H0
⊕(M)), which requires a further oracle query about 00∣∣M . The left

part of the computed Feistel output is then x = H0
0 (M) ⊕ H1

0 (�M ∣∣H
0
1 (M))

and would serve as input for H2
⊕. The adversary uses this value together with

the fresh signature �M as its output message (⟨2⟩2 ∣∣�M ∣∣x) and reconstructs
the corresponding tag with the knowledge about the other parameters. Since
�M is distinct from all �Mj

, the message (⟨2⟩2 ∣∣�M ∣∣x) was never queried by
Ab before.

In both cases a successful attack against the combiner Comb
H0,H1,g
4P&IRO allows

successful attacks on H0 and H1, contradicting the assumption that at least
one hash function is a secure MAC. □

4.5 Preserving One-Wayness and the C4P&OW

Combiner

In this section we first propose a combiner which simultaneously is a combiner
for CR and OW. At the end of this section we discuss how to plug this
combiner into our combiners Comb4P and Comb4P&IRO to get our construction
Comb4P&OW (cf. Figure 4.1) and Comb6P (cf. Figure 4.2), respectively.

4.5. Preserving One-Wayness and the C4P&OW Combiner 53

Recall that the concatenation combiner

Comb
H0,H1

∥ (M) = H0(M)∥H1(M)

is a robust combiner for the CR property, but its not hard to see that this
combiner is not robust for the one-wayness property OW. On the other hand,
the following combiner

Comb
H0,H1

OW (ML∥MR) = H0(ML)∥H1(MR)

is robust for tho OW property, i.e. Comb
H0,H1

OW (ML∥MR) is hard to invert on
a random input from {0, 1}2m, if either H0 or H1 is hard to invert on {0, 1}m.
Unfortunately, this combiner is not robust for CR.

The basic idea to construct a combiner which is robust for CR and OW is to
use the Comb

H0,H1

∥ combiner, but to apply a pairwise independent permutation

(PIP) to the input of one of the two components. As the length of a description
of a PIP is twice its input length, we have to assume an upper bound on the
input length of the components. We fix the domain of H0 and H1 to {0, 1}5n,
but let us mention that any longer input length kn, k > 5 will work too (but
then we will also need 2kn bits for the description of P). Allowing shorter
input length kn, k < 5 is not possible, as we use the fact that the input is (at
least) 5n bits in the proof.

4.5.1 A Combiner for CR and OW

We define the combiner CCR&OW for preserving collision-resistance and one-
wayness in a robust manner as follows. The key generation algorithm of the
combiner CKGenCR&OW(1n) generatesH0 ← HKGen0(1

n) andH1 ← HKGen1(1
n)

and picks a pairwise independent permutation � : {0, 1}5n → {0, 1}5n. It
outputs (H0, H1, �). The evaluation algorithm Comb

H0,H1,�
CR&OW on input M ∈

{0, 1}5n returns H0(�(M))∣∣H1(M). By the following theorem CCR&OW pre-
serves the properties of Comb∣∣ and CombOW simultaneously.

Theorem 4.12 The combiner CCR&OW is a strongly robust multi-property
combiner for prop = {CR,TCR,MAC,OW}.

The proof is again split into lemmas for the individual properties.

Lemma 4.13 The combiner CCR&OW is CR-, TCR- and MAC-robust.

Proof. As for the CR and TCR properties, note that given any collision
M ∕= M ′ for Comb

H0,H1,�
CR&OW , we get a collision M,M ′ for H1 and a collision

�(M), �(M ′) for H0. Note that �(M) ∕= �(M ′) as � is a permutation.
To see that the MAC property is preserved, observe that given any forgery

(M, �) for Comb
H0,H1,�
CR&OW , we get a forgery (�(M), �0) for H0 and a forgery

(M, �1) for H1 where �0∥�1 = � . □

54 4. Multi-Property Robustness

Lemma 4.14 The combiner CCR&OW is OW-robust.

More precisely, we show that for any functions H0, H1 and any T = T (n),
the following is true for all but a 1/2T fraction of the �’s: an adversary who
inverts Comb

H0,H1,�
CR&OW with probability 1/2T , can be used to invert H0 and H1

with probability 1/2T 3.5

Proof. We first need to relate the output of our combiner Comb
H0,H1,�
CR&OW to the

one of Comb
H0,H1

OW , depending on T . For this we call a tuple (�0, y0∣∣y1) bad if

it is more than 2T 2 times more likely to be a key/output pair of Comb
H0,H1,�0

CR&OW ,

compared to the combiner Comb
H0,H1

OW (⋅) = H0(⋅)∣∣H1(⋅) and random permu-
tation �. That is, (�, y0∣∣y1) is called bad iff

ProbM [Comb
H0,H1,�
CR&OW(M) = y0∣∣y1]

≥ 2 ⋅ T 2 ⋅ ProbM0,M1
[Comb

H0,H1

OW (M0∣∣M1) = y0∣∣y1].

Equivalently,

ProbM [H0(�(M)) = y0∣H1(M) = y1]

≥ 2 ⋅ T 2 ⋅ ProbM0,M1
[H0(M0) = y0∣H1(M1) = y1]. (4.3)

We next bound the likelihood of a tuple to be bad in terms of the adversary’s
success probability (and running time):

Claim 1: Prob�,M [(�,Comb
H0,H1,�
CR&OW(M)) is bad] ≤ 2/T 2, where the probabil-

ity is over the choice of the PIP � : {0, 1}5n → {0, 1}5n and M ∈ {0, 1}5n.

Proof. Letting ℳ0 = H−1
0 (y0) and ℳ1 = H−1

1 (y1) denote the pre-images of
y0 and y1 under H0 and H1, respectively, and �(ℳ0) be the set of all �(x) for
x ∈ℳ0, we can bound the terms in (4.3) as:

ProbM0,M1
[H0(M0) = y0∣H1(M1) = y1] =

∣ℳ0∣

25n
(4.4)

ProbM [H0(�(M)) = y0∣H1(M) = y1] =
∣ℳ0 ∩ �(ℳ1)∣

∣ℳ1∣
(4.5)

The former equation is clear as we hit a pre-image of y0 for the random M0

with the given probability, and the latter follows as each of the possible pre-
images of y1 must be mapped via � to a pre-image of y0.

6

With equations (4.4),(4.5) and (4.3) we can rewrite the statement of the
claim as

Prob�,M

[
∣ℳ0 ∩ �(ℳ1)∣

∣ℳ1∣
≥ T 2 ⋅ 2

∣ℳ0∣

25n

]
≤

2

T 2
. (4.6)

5Note that this statement implies that if either H0 or H1 is one-way and � is chosen at
random, then Comb

H0,H1,�

CR&OW is one-way with overwhelming probability.
6Note thatℳ1 contains at least the element H1(M), so division by 0 cannot occur.

4.5. Preserving One-Wayness and the C4P&OW Combiner 55

In order to prove this we consider for any ℳ0,ℳ1 and �(M) the expected
size of ∣ℳ0∩�(ℳ1)∣/∣ℳ1∣ (over the choice of �). First note that at least one
element, namely �(M), lies in ℳ0 ∩ �(ℳ1). For any other of the ∣ℳ1∣ − 1
possible values M ′ ∈ ℳ1,M

′ ∕= M , the value �(M ′) is uniformly distributed
in {0, 1}5n ∖ �(M), because � is a pairwise independent permutation. So the
probability that �(M ′) hitsℳ0 is (∣ℳ0∣−1)/(25n−1) (observe that the term
∣ℳ0∣ − 1 comes from the fact that �(M) ∈ℳ0 cannot be hit). Hence,

E

[
∣ℳ0 ∩ �(ℳ1)∣

∣ℳ1∣

]
=

1

∣ℳ1∣

(
1 +

(∣ℳ0∣ − 1)(∣ℳ1∣ − 1)

25n − 1

)
. (4.7)

For largeℳ0 andℳ1 the right hand side of the previous equation converges
towards (4.4). We are therefore interested in the probability that ℳ0 and
ℳ1 are large. To derive this probability first note that for any function
f : {0, 1}5n → {0, 1}n there are at most 2n images y with ∣f−1(y)∣ ≤ 23n,
and a random input M falls into such a bad set with probability at most
24n/25n = 2−n. As M and �(M) are uniformly distributed, it follows that

Prob[∣ℳ0∣ < 23n ∨ ∣ℳ1∣ < 23n] ≤ 2 ⋅ 2−n. (4.8)

Hence, except with probability 2 ⋅ 2−n (which becomes smaller than 1/T 2 for
sufficiently large n’s), we have ∣ℳ0∣ ≥ 23n and ∣ℳ1∣ ≥ 23n, let us call this
event ℰ . In this case

1

∣ℳ1∣

(
1 +

(∣ℳ0∣ − 1)(∣ℳ1∣ − 1)

25n − 1

)
≤ 2
∣ℳ0∣

25n
, (4.9)

We can now prove (4.6) as (below Z = ∣ℳ0 ∩ �(ℳ1)∣/∣ℳ1∣)

Prob

[
Z ≥ T 2 ⋅ 2

∣ℳ0∣

25n

]
≤ Prob[Z ≥ T 2 ⋅ E[Z]∣ℰ] + Prob[¬ℰ]

≤ 1/T 2 + 2 ⋅ 2−n ≤ 2/T 2 (4.10)

where we used (4.7)-(4.9) in the first and Markov’s inequality in the second
step. □

Using Markov’s inequality once more the claim implies

Prob�[ProbM [(�,Comb
H0,H1,�
CR&OW(M)) is bad] ≤ 1/T] ≥ 1− 2/T. (4.11)

We say that the permutation � is good if ProbM [(�, CCR&OW(�,M)) is bad] ≤
1/T], thus by the above equation, a random � is good with probability at least
1− 2/T .

To conclude the proof, assume there exists an adversary A which inverts
Comb

H0,H1,�
CR&OW(.) with noticeable probability � = 2/T for more than a 2/T frac-

tion of the �’s. Thus by equation (4.11), this must be the case for at least

56 4. Multi-Property Robustness

one good �. For this �, the output of Comb
H0,H1,�
CR&OW(.) is bad with proba-

bility at most 1/T , thus A must invert with probability at least � − 1/T
even on outputs that are not bad. But then, by equation (4.3), it must also
invert of Comb

H0,H1

OW (M0∥M1) for random M0∥M1 with probability at least
(�− 1/T)/2T 2 = 1/2T 3. □

4.5.2 Combining Things

We can now plug the combiner CCR&OW into the initial computation of our
combiner C4P. That is, we replace the initial computation H0

0 (M)∣∣H0
1 (M) in

our original combiner by H0
0 (�(M))∣∣H0

1 (M) for messages of 5n bits. Note
that if Hb(⋅) is one way on inputs of length 5n+2, then also H0

b (⋅) is one-way
on inputs of length 5n, and we only lose a factor of 4 in the security.

More formally, in our combiner C4P&OW = (CKGen4P&OW,Comb4P&OW) for
functions ℋ0,ℋ1 the key generation algorithm generates a tuple (�,H0, H1)
consisting of a pairwise independent permutation � (over {0, 1}5n) and two
hash functions H0 ← HKGen0(1

n) and H1 ← HKGen1(1
n). The evaluation al-

gorithm Comb
H0,H1,�
4P&OW for inputM ∈ {0, 1}5n computes P 3(H0

0 (�(M))∣∣H0
1 (M))

where P 3 is the Feistel permutation P 3 = [H1
⊕, H

2
⊕, H

3
⊕]. Note that apply-

ing a permutation to the output of a one-way function does not violate the
one-way property. We have already proved that the other three properties
CR,TCR,MAC which are preserved by CCR&OW are not affected by applying a
permutation in Section 4.3.

Theorem 4.15 The combiner C4P&OW is a strongly robust multi-property com-
biner for prop = {CR,PRF,TCR,MAC,OW}.

When we apply the modifications from Section 4.5 and the combiner
Comb4P&IRO from Section 4.4 together, we get our construction C6P (cf. Figure
4.2). This construction is defined like C4P&IRO, where one additionally applies
a pairwise-independent permutation over {0, 1}kn (with k ≥ 5) to the input
of H0

0 .

Theorem 4.16 The combiner C6P is a strongly robust multi-property com-
biner for prop = {CR,TCR,PRF,MAC,OW, IRO}.

4.6 Weak vs. Mild vs. Strong Robustness

In this section we revert to our different notions of multi-property robustness as
introduced in Section 4.2, and analyze the relations among the three variants.
The first proposition shows that strong robustness implies mild robustness
which, in turn, implies weak robustness. The proof is straightforward and
given only for sake of completeness:

4.6. Weak vs. Mild vs. Strong Robustness 57

Proposition 4.17 Let prop be a set of properties. Then any strongly robust
multi-property combiner for prop is also mildly robust for prop, and any
mildly robust combiner for prop is also weakly robust for prop.

Proof. Assume that the combiner is sMPR for prop. Suppose further that
prop(C) ∕⊆ prop such that there is some property Pi ∈ prop − prop(C).
Then, since the combiner is sMPR, we must also have Pi /∈ prop(ℋ0) ∪
prop(ℋ1), else we derive a contradiction to the strong robustness. We there-
fore have prop ∕⊆ prop(ℋ0) ∪ prop(ℋ1), implying mild robustness via the
contrapositive statement.

Now consider an mMPR combiner and assume prop = prop(ℋ0) or
prop = prop(ℋ1). Then, in particular, prop = prop(ℋ0) ∪ prop(ℋ1) and
the mMPR property says that also prop = prop(C). This proves sMPR. □

To separate the notions we consider the collision-resistance property CR

and the property NZ (non-zero output) that the hash function should return
0 ⋅ ⋅ ⋅ 0 with small probability only. This may be for example required if the
hash value should be inverted in a field:

non-zero output (NZ): A hash function ℋ has property NZ if for any effi-
cient adversary A the probability that for H ← HKGen(1n) and M ←
A(H) we have H(M) = 0 ⋅ ⋅ ⋅ 0, is negligible.

Lemma 4.18 Let prop = {CR,NZ} and assume that collision-intractable
hash functions exist. Then there is a hash function combiner which is weakly
multi-property robust for prop, but not mildly multi-property robust for prop.

Proof. Consider the following combiner (with the standard key generation,
(H0, H1)← CKGen(1n) for H0 ← HKGen0(1

n) and H1 ← HKGen1(1
n)):

The combiner for input M first checks that the length of M is
even, and if so, divides M = L∣∣R into halves L and R, and checks

∙ that H0(L) ∕= H0(R) if L ∕= R, and that H0(M) ∕= 0 ⋅ ⋅ ⋅ 0,

∙ that H1(L) ∕= H1(R) if L ∕= R, and that H1(M) ∕= 0 ⋅ ⋅ ⋅ 0.

If the length of M is odd or any of the two properties above holds,
then the combiner outputs H0(M)∣∣H1(M). In any other case, it
returns 02n.

We first show that the combiner is weakly robust. For this assume that
the hash function Hb for b ∈ {0, 1} has both properties. Then the combiner
returns the exceptional output 02n only with negligible probability, namely, if
one finds an input with a non-trivial collision under Hb and which also refutes
property NZ. In any other case, the combiner’s outputH0(M)∣∣H1(M) inherits
the properties CR and NZ from hash function Hb.

58 4. Multi-Property Robustness

Next we show that the combiner is not mMPR. Let H ′
1 be a collision-

resistant hash function with n−1 bits output (and let H1 include a description
of H ′

1). Define the following hash functions:

H0(M) = 1n, H1(M) =

{
0n if M = 0n1n

1∣∣H ′
1(M) else

.

Clearly, H0 has property NZ but is not collision-resistant. On the other hand,
H1 obeys CR but not NZ, as 0n1n is mapped to zeros. But then we have
prop = {CR,NZ} = prop(H0)∪prop(H1) and mild robustness now demands
that the combiner, too, has these two properties. Yet, for inputM = 0n1n the
combiner returns 02n since the length of M is even, but L = 0n and R = 1n

collide under H0, and M is thrown to 0n under H1. This means that the
combiner does not obey property NZ. □

Lemma 4.19 Let prop = {CR,NZ}. Then there exists a hash function com-
biner which is mildly multi-property robust for prop, but not strongly multi-
property robust for prop.

Proof. Consider the following combiner (again with standard key generation):

The combiner for input M first checks that the length of M is
even, and if so, divides M = L∣∣R into halves L and R and then
verifies that H0(L) ∕= H1(R) or H1(L) ∕= H1(R) or L = R. If any
of the latter conditions holds, or the length of M is odd, then the
combiner outputs H0(M)∣∣H1(M). In any other case it returns
02n.

We first prove that the combiner is mMPR. Given that prop ⊆ prop(H0) ∪
prop(H1) at least one of the two hash functions is collision-resistant. Hence,
even for M = L∣∣R with even length and L ∕= R, the hash values only
collide with negligible probability. In other words, the combiner outputs
H0(M)∣∣H1(M) with overwhelming probability, implying that the combiner
too has properties CR and NZ.

Now consider the constant hash functionsH0(M) = H1(M) = 1n for allM .
Clearly, both hash functions obey property NZ ∈ prop(H0)∪prop(H1). Yet,
for input 0n1n the combiner returns 02n such that NZ /∈ prop(C), implying
that the combiner is not strongly robust. □

The proof indicates how mildly (or weakly) robust combiners may take
advantage of further properties to implement other properties. It remains
open if one can find similar separations for the popular properties like CR and
PRF, or for CR and IRO.

4.7. Multiple Hash Functions and Tree-Based Composition 59

4.7 Multiple Hash Functions and Tree-Based

Composition of Combiners

So far we have considered combiners for two hash functions. The multi-
property robustness definition extends to the case of more hash functions
as follows:

Definition 4.20 For a set prop = {P1,P2, . . . ,PN} of properties an m-
function combiner C = (CKGen,Comb) for hash functions ℋ0,ℋ1, . . . ,ℋm−1

is called

weakly multi-property robust (wMPR) for prop iff

∃j ∈ {0, 1, . . . ,m− 1} s.t. prop = prop(ℋj) =⇒ prop = prop(C),

mildly multi-property robust (mMPR) for prop iff

prop =
m−1∪

j=0

prop(ℋj) =⇒ prop = prop(C),

and strongly multi-property robust (sMPR) for prop iff for all Pi ∈ prop,

Pi ∈
m−1∪

j=0

prop(ℋj) =⇒ Pi ∈ prop(C).

For the above definitions we still have that sMPR implies mMPR and
mMPR implies wMPR. The proof is a straightforward adaption of the case of
two hash functions.

Given a combiner for two hash functions one can build a combiner for
three or more hash functions by considering the two-function combiner it-
self as a hash function and applying it recursively. For instance, to combine
three hash functions ℋ0,ℋ1,ℋ2 one may define the “cascaded” combiner by
C2(C2(ℋ0,ℋ1),ℋ2), where we assume that the output of C2 allows to be used
again as input to the combiner on the next level.

More generally, given m hash functions and a two-function combiner C2 we
define an m-function combiner Cmulti as a binary tree, as suggested for general
combiners by [HKN+05]. Each leaf is labeled by one of the m hash functions
(different leaves may be labeled by the same hash function). Each inner node,
including the root, with two descendants labeled by ℱ0 and ℱ1, is labeled by
C2(ℱ0,ℱ1).

The key generation algorithm for this tree-based combiner now runs the
key generation algorithm for the label at each node (each run independent of
the others, even if two nodes contain the same label). To evaluate the multi-
hash function combiner one inputs M into each leaf and computes the func-
tions outputs recursively up to the root. The output of the root node is then
the output of Cmulti. We call this a combiner tree for C2 and ℋ0,ℋ1, . . . ,ℋm−1.

60 4. Multi-Property Robustness

For efficiency reasons we assume that there are at most polynomially many
combiner evaluations in a combiner tree. Also, to make the output dependent
on all hash functions we assume that each hash function appears in (at least)
one of the leaves. If a combiner tree obeys these properties, we call it an
admissible combiner tree for C2 and ℋ0,ℋ1, . . . ,ℋm−1.

We first show that weak MPR and strong MPR preserve their properties
for admissible combiner trees:

Proposition 4.21 Let C2 be a weakly (resp. strongly) multi-property robust
two-function combiner for prop. Then any admissible combiner tree for C2
and functions ℋ0,ℋ1, . . . ,ℋm−1 for m ≥ 2 is also weakly (resp. strongly)
multi-property robust for prop.

Proof. We give the proof by induction for the depth of the tree. For depth
d = 1 we have m = 2 and Cmulti(ℋ0,ℋ1) = C2(ℋ0,ℋ1) or Cmulti(ℋ0,ℋ1) =
C2(ℋ1,ℋ0) and the claim follows straightforwardly for both cases.

Now assume d > 1 and that combiner C2 is wMPR. Then the root node
applies C2 to two nodes N0 and N1, labeled by ℱ0 and ℱ1. Note that by the
wMPR prerequisite we assume that there exists one hash function ℋj which
has all properties in prop. Since this hash functions appears in at least one
of the subtrees under N0 or N1, it follows by induction that at least one of
the functions ℱ0 and ℱ1, too, has properties prop. But then the combiner
application in the root node also inherits these properties from its descendants.

Now consider d > 1 and the case of strong MPR. It follows analogoulsy to
the previous case that for each property Pi ∈ prop, one of the hash functions
in the subtrees rooted at N0 and N1 must have property Pi as well. This
carries over to the combiners at nodes N0 or N1 by induction, and therefore
to the root combiner. □

Somewhat surprisingly, mild MPR in general does not propagate security
for tree combiners, as we show by a counter-example below. Note that we
still obtain, via the previous proposition, that the mMPR combiner is also
wMPR and that the resulting tree combiner is thus also wMPR. Yet, it loses
its mMPR property.

Proposition 4.22 Let prop = {CR,NZ} and assume that there are collision-
intractable hash functions. Then there exists a two-function weakly robust
multi-property combiner C2 for prop, and an admissible tree combiner for C2
and hash functions ℋ0,ℋ1,ℋ2 which is not mildly multi-property robust for
prop.

Proof. Consider the following two-function combiner C2 for hash functions
ℋ0,ℋ1 (again with standard key generation):

For input M check that the length of M is even and, if so, divide
M = L∣∣R into halves L and R. If H0(L) = H0(R) and H1(L) =

4.7. Multiple Hash Functions and Tree-Based Composition 61

H1(R) and L ∕= R, or we have H0(M) = 0 ⋅ ⋅ ⋅ 0 and H1(M) =
0 ⋅ ⋅ ⋅ 0, then output 0∣H0(M)∣+∣H1(M)∣. Else, or if the length of M is
odd, return H0(M)∣∣H1(M).

It is easy to verify that this is an mMPR two-function combiner for prop.
Now consider the following hash functions, where H ′

2 is a collision-resistant
hash function with n− 1 bits output:

H0(M) = 1n, H1(M) = 1n, H2(M) =

{
0n if M = 0n1n

1∣∣H ′
2(M) else

.

Then prop(ℋ0) = prop(ℋ1) = {NZ} and prop(ℋ2) = {CR} such that
prop =

∪
prop(ℋj).

Consider the following tree combiner defined through C(ℋ0,ℋ1,ℋ2) =
C2(C2(ℋ0,ℋ1),ℋ2), i.e., which cascades the three hash functions. Then the
inner application of C2 yields a hash function which returns 02n for message
M = 0n1n. Since this message also causes H2 to return 0n the tree combiner
runs into the exception case and returns 03n for this input. Hence, the tree
combiner does not have property NZ. □

Note that the cascading combiner can also be applied to all our proposed
MPR combiners to compose three or more hash functions. The derived com-
biner, however, is less efficient than the direct construction sketched there.

Chapter 5

Hash Function Combiners in

TLS and SSL

In theory, theory and practice are the same. In practice, they are not.
— Albert Einstein

In this last chapter we analyze the proposed combiner constructions in
the TLS and SSL protocols. Both protocols are widely used to ensure secure
communication over an untrusted network, and deploy combinations of MD5

and SHA1 to establish shared keys that are as secure as possible.
We first present the preliminaries for our investigation of the combiners

in SSL/TLS in Section 5.2. In Section 5.3 we analyze the hash combiners
that are used to derive the shared master secret regarding their robustness for
pseudorandomness. The combiner constructions for message authentication
that both protocols employ to strengthen the final authentication step in the
handshake phase, are discussed in Section 5.4.

An extended abstract of this chapter is published in [FLW10].

5.1 Introduction

The SSL protocol [SSL94] was published in 1994 by Netscape to provide se-
cure communication between two parties over an untrusted network, and sub-
sequently formed the basis for the TLS protocol [TLS99, TLS06]. Nowadays,
both protocols are ubiquitously present in various applications such as elec-
tronic banking, online shopping or secure data transfer. Interestingly, TLS and
SSL use various combinations of MD5 and SHA1 instead of relying only on a
single hash function in order to strengthen their security guarantees. How-
ever, neither TLS nor SSL were accompanied with rigorous security proofs.
An important step was recently done by Morrissey et al. [MSW08] who gave
the first security analysis of the handshake protocol of TLS. The handshake
protocol is the essential part of TLS/SSL as it allows a client and server to

64 5. Hash Function Combiners in TLS and SSL

negotiate security parameters, such as shared symmetric keys or trusted ci-
phers, without having any common secrets yet. The established keys and
cryptographic algorithms are subsequently used to protect the data transfer,
i.e., the confidentiality and authenticity of the entire communication relies
on the security of the key agreement. Thus, it is of crucial importance that
the handshake protocol provides reliable parameters. Ideally, this statement
should be fortified by comprehensive security proofs.

Our Results. In this chapter, we scrutinize the design of the (non-standard)
hash combiners, deployed in the TLS and SSL handshake protocols, regarding
their suitability for the respective purposes. As already mentioned, secure key
derivation is one of the main tasks of the handshake phase. Both TLS and
SSL use hash combiners to compute the master secret out of the pre-master
secret, which is assumed to be a shared random string. To achieve secure
key-derivation, robustness with respect to pseudorandomness is required.

While TLS (mainly) reverts to the standard design for PRF combiners, i.e.,
it xors the outputs of the two hashes, SSL applies the cascadeH0(k, (H1(k,m))
as the pseudorandom function for key derivation. For SSL we prove that the
combiner is not robust and not even preserving, i.e., even two secure PRFs
may yield an insecure combiner. This stems from the fact that both hash
functions are invoked with the same (pre) master key. By using individual keys
for each underlying function, we show that the security of the SSL combiner
is somewhat between robustness and property-preservation. In the case of
TLS, we prove that the combiner is a secure PRF if either of H0, H1 is a
pseudorandom function. Interestingly, the construction is neither optimal in
terms of security nor efficiency. We therefore also discuss possible tweaks to
obtain better security bounds while saving on computation.

TLS and SSL also use hash combiners for the finished message in the hand-
shake protocol, which is basically a message authentication code generated for
the shared master secret and all previous handshake messages. This concludes
the key exchange phase in TLS/SSL and authenticates the previous commu-
nication. Ideally, the combiners used for this purpose should be robust for
MACs, i.e., rely only on unforgeability instead of pseudorandomness of the
hash function.1

We show that in TLS the combiner for authentication requires the addi-
tional assumption of at least one hash function being collision-resistant. The
combiner used in SSL is again neither robust nor preserving, due to the same
problem of using the master secret as key for both functions. We discuss

1The devil’s advocate may claim that we can already start from the assumption that one
of the hash function is a PRF, as we require this for the key derivation step anyway. However,
it is a common principle to revert to the minimal requirements for such sub protocols and
their designated purpose. Suppose, for example, that both hash functions turn out to be not
pseudorandom, that key derivation becomes insecure and confidentiality of the subsequently
transmitted data is breached. Then a secure authentication step in the finished message via
the MAC-robust combiner would still guarantee authenticity of the designated partner.

5.2. Preliminaries 65

that the modified version which splits the key into independent halves, is a
secure MAC when at least one hash function is simultaneously unforgeable
and collision-resistant.

In summary, we give the first formal treatment of the hash combiners
deployed in the TLS and SSL protocols. Our results essentially show that
the choices in TLS are sound as they follow common design criteria for such
combiners (but still leave space for improvements), whereas the SSL design
for combiners requires much stronger assumptions. Our result, together with
other steps like the security proofs in [MSW08, GMP+08], strengthen the
confidence in the important protocols TLS and SSL.

5.2 Preliminaries

So far, this thesis mainly dealt with conceptual results which we analyzed in
terms of asymptotic security. That is, we usually showed the existence of a
polynomial time security reduction from the combiner to the underlying hash
functions. However, as we consider practical protocols in this chapter, we
switch to the concrete security approach where the definition of the advan-
tage already measures the quality of the transformation from one primitive to
another. To this end, we first restate the notions of hash functions and their
properties (which are relevant in this chapter) in terms of concrete security.

5.2.1 Hash Function and Their Properties

Since we give all results in terms of concrete security we adopt Rogaway’s
approach [Rog06] of defining hash functions as single instances (instead of
families) and considering constructive reductions between security properties.
For security notions without secret keys like collision-resistance the adversary
is implicitly based on (the description of) H, whereas for security properties
involving secret keys like pseudorandomness or the MAC property, the adver-
sary also gets black-box access to the hash function H(k, ⋅) with secret key k.
In this case we call H a keyed hash function and usually denote the key space
by K.

Collision-Resistance. Let H : {0, 1}∗ → {0, 1}n be a hash function. The
collision-finding advantage of an adversary A is

Advcr
H(A) = Prob

[
(M,M ′)← A() :M ∕=M ′ ∧ H(M) = H(M ′)

]
.

We note that, formally, for any hash function there is a very efficient algorithm
A with advantage 1, namely, the one which has a collision hardwired into it
and simply outputs this collision. However, based on current knowledge it is
usually infeasible to specify this algorithm constructively.

66 5. Hash Function Combiners in TLS and SSL

Pseudorandomness. Let H : K × {0, 1}∗ → {0, 1}n be a keyed hash func-
tion with key space K. We define the advantage of a distinguisher A as

Advprf
H (A) =

∣∣∣Prob
[
AH(k,⋅) = 1

]
− Prob

[
Af(⋅) = 1

]∣∣∣

where the probability in the first case is over A’s coin tosses and the random
choice of k ← K, and in the second case over A’s coin tosses and the choice
of the random function f : {0, 1}∗ → {0, 1}n.

Message Authentication (Unforgeability). Let H : K × {0, 1}∗ →
{0, 1}n be a keyed (deterministic) hash function with key space K. We define
the forgeability advantage of an adversary A as

Advmac
H (A) =

Prob
[
k ← K, (M, �)← AH(k,⋅) : H(k,M) = � ∧M not queried

]
.

Hash Function Combiners Recall, that a combiner for hash functions
H0, H1 is called robust if it obeys the property if at least one of the two
underlying functions has the corresponding property. In terms of our con-
crete security statements, collision-resistance robustness for example is for-
mulated by demanding that the probability of finding collisions in a combiner
is bounded from above by the minimum of finding collisions for the individual
hash functions.

5.2.2 HMAC

Each hash function can be used as a pseudorandom function or MAC by
replacing the initial value IV with a randomly chosen key k of the same size.
A more convenient technique was proposed by Bellare et al. [BCK96a] with the
HMAC/NMAC algorithms, which are message authentication codes built from
iterated hash functions. Recall that a MAC takes a secret key k, message M
and outputs a tag � . The HMAC algorithm takes, in its more general version,
two keys kin, kout and applies an iterated hash function H like MD5 and SHA1

in a nested manner:

HMAC(kin, kout)(M) = H(IV, kout∣∣H(IV, kin∣∣M)) (5.1)

In practice, HMAC typically uses only a single key k from which it derives
dependent keys kin = k ⊕ ipad and kout = k ⊕ opad for fixed constants ipad =
0x3636 . . . 36, opad = 0x5c5c . . . 5c.

Originally, Bellare et al. [BCK96a] proved HMAC – resp. its theoreti-
cal counterpart NMAC – to be pseudorandom functions when the underlying
compression function ℎ is pseudorandom and collision-resistant. Subsequently,
the proof was restated on the sole assumption that the compression function
is pseudorandom [Bel06] or non-malleable [Fis08]. As the security claims are

5.2. Preliminaries 67

given for NMAC, Bellare [Bel06] introduced the notion of a “dual” pseudo-
random function ℎ̄ : {0, 1}n ×K → {0, 1}n with ℎ̄(m, k) = ℎ(k,m). If both ℎ̄
and ℎ are pseudorandom, the security of NMAC carries over to HMAC:

Lemma 5.1 Let ℎ : {0, 1}n × {0, 1}ℓ → {0, 1}n be a compression function
with key space {0, 1}n. Let IV ∈ {0, 1}n be a fixed initialization vector, and let
HMAC : {0, 1}n × {0, 1}∗ → {0, 1}n be defined as in (5.1). For any adversary
A against HMAC that makes q queries each of at most l blocks and runs in
time at most t, there exist adversaries A1,A2,A3 such that

Advprf
HMAC(A) ≤ 2Advprf

ℎ̄
(A1) +Advprf

ℎ (A2) +

(
q

2

)[
2l ⋅Advprf

ℎ (A3) + 2−n
]

where A1 makes a single query IV and runs in time at most t. A2 makes at
most q queries and runs in time at most t, while A3 makes at most 2 oracle
queries and runs in time at most O(lTℎ) where Tℎ denotes the time required
for one evaluation of ℎ.

For the single-keyed HMAC-version, the security of ℎ̄ must hold against
related-key attacks as well. That is, the adversary is granted access to two
oracles ℎ̄(k ⊕ opad, ⋅), ℎ̄(k ⊕ ipad, ⋅) with dependent keys.

5.2.3 The SSL/TLS Handshake Protocol

The SSL and TLS protocols consist of two layers: the record layer and the
handshake protocol. The record layer encrypts all data with a cipher and
session key that have been negotiated by the handshake protocol. Thus the
handshake protocol is a key-exchange protocol layered above the record layer
and initializes and synchronizes a cryptographic state between a server and a
client. Both versions of the handshake protocol, for TLS and for SSL, vary
mainly in the implementation of the exchanged messages, i.e., the overall
structure of the handshake part is the same and can be summarized as the
sequence of the following steps [Res01] (see also Figure 5.1):

(1) The client conveys its willingness to engage in the protocol by sending a list
of supported cipher algorithms and a random number, that is subsequently
used for key-derivation.

(2) The server responds by choosing one of the proposed ciphers, and sending
its certified public key as well as a random nonce.

(3) The client verifies the validity of the received certificate and sends a ran-
domly chosen pre-master secret encrypted under the server’s public key.

An alternative to having the client choose the pre-master secret is to
engage in a key exchange protocol like signed Diffie-Hellman. Since our
analysis below only assumes that the pre-master secret is random we omit
the details about its generation.

68 5. Hash Function Combiners in TLS and SSL

(4) Both client and server derive independently a master secret from the ex-
changed random nonces and the pre-master secret. Once the master key
is computed, it can be used to obtain further application keys.

(5+6) Finally, the master secret is confirmed by the finished message, where
each party sends a MAC over the transcript of the conversation using the
new master key. This is also the first transmission which uses the secure
channel for the derived keys.

Client Server
(1) Supported Ciphers, ClientRandom

−−→

(2) Chosen Cipher, ServerRandom, Certificate
←−−

(3) Encrypted Pre-Master Secret
−−→

(4) Key Derivation (4) Key Derivation
(master secret) (master secret)

(5) Finished Message
−−→

(6) Finished Message
←−−

Figure 5.1: Overview of the TLS/SSL handshake protocol [Res01]

5.3 Derivation of the Master Secret

In this section we analyze the functions that are deployed by TLS and SSL to
derive a secret master key from a shared pre-master key. The basic require-
ment of key derivation is that the obtained key should be indistinguishable
from a randomly chosen one. In particular, the key-derivation function must
be pseudorandom. For more discussions see [Kra08]. We will show that the
combiner proposed by TLS is PRF-robust, i.e., security of one of the underly-
ing hash function suffices, whereas the SSL combiner requires assumptions on
both hash functions in order to produce random looking output.

5.3.1 The PRF-Combiner used in TLS

The TLS key derivation obtains the master secret (ms) from the pre-master
secret (pms) by invoking the following hash combiner:

ms =

Comb
MD5,SHA1
TLS−prf (pms, “master secret”,ClientRandom∣∣ServerRandom)[0..47]

5.3. Derivation of the Master Secret 69

The pre-master secret is assumed to be a random value both parties have
agreed upon, and ClientRandom and ServerRandom are public random nonces
exchanged in the handshake protocol. By introducing a specific label (here
“master secret”) to the input, the combiner can subsequently be used for
further (key-derivation) computations, while guaranteeing distinct inputs for
each application. The appendix [0..47] indicates that the master secret consists
of the first 48 bytes of the combiners output.

Basically, the combiner Comb
H0,H1

TLS−prf xors the output of a function T which
gets called twice based on two distinct hash functions H0 and H1. To this end,
the combiner also splits the key K = k0∣∣k1 with ∣k1∣ = ∣k0∣ into independent
halves:

Comb
H0,H1

TLS−prf(k0∣∣k1,M) = TH0
(k0,M)⊕ TH1

(k1,M) (5.2)

The underlying function THb
makes several queries to HMACHb

and pro-
duces byte strings of (arbitrary) length that is a positive multiple of n.

THb
(k,M) = HMACHb

(k,A(1)∣∣M) ∣∣ HMACHb
(k,A(2)∣∣M)∣∣ . . . (5.3)

with A(0) =M and A(i) = HMACHb
(k,A(i− 1)).

Analysis of Comb
H0,H1

TLS−prf . We show that the TLS-combiner for key deriva-
tion is a pseudorandom function if at least one of the two hash functions
H0, H1 is based on a pseudorandom compression function. To this end, we
first show that THb

inherits the pseudorandomness of the underlying hash
function.

Note that the THb
construction uses the HMAC transform to obtain a

PRF, which gets keyed via the input data, out of a standard hash function Hb

with fixed IV. It was shown in [Bel06] that HMAC is a pseudorandom function,
when the underlying compression-function is a dual PRF, i.e., it has to be a
secure PRF when keyed by either the data input or the chaining value. Thus,
while functional-wise HMAC uses the cryptographic hash function only as a
black-box, the security guarantee is still based on the underlying compression
function ℎb. We therefore consider each hash function Hb : {0, 1}

∗ → {0, 1}n

as the Merkle-Damg̊ard iteration of a compression function ℎb : {0, 1}n ×
{0, 1}ℓ → {0, 1}n. By applying Lemma 5.1 we can conclude that HMACHb

is
a pseudorandom function, when ℎb is a dual PRF.

Next, we show that the design of the TH construction preserves the pseu-
dorandomness of HMACH . For a modular analysis – and for the sake of read-
ability – we simplify the description of TH by replacing HMAC and the hash
function H by the same function H, and prove that the modified function T′

H

is a pseudorandom function if H is. Furthermore, we make a rather syntacti-
cal change of T to obtain a function that is efficiently computable on its own:
According to the TLS specification, the T construction produces output of
arbitrary length from which the combiner takes as much bytes as required,
e.g., the first 48 bytes in case of the derivation of the master secret. In the

70 5. Hash Function Combiners in TLS and SSL

following we slightly deviate from that notation and assume that T gets also
parametrized by an integer c which indicates that an output of length c ⋅ n is
requested. Overall, we analyze the following function T′:

T′
H(k,M, c) = (5.4)

H(k,A(0)∣∣M) ∣∣ H(k,A(1)∣∣M) ∣∣ . . . ∣∣ H(k,A(c− 1)∣∣M)

where A(0) =M, A(i) = H(k,A(i− 1)).

Lemma 5.2 Let H : {0, 1}n × {0, 1}∗ → {0, 1}n be a pseudorandom function
with key space {0, 1}n, and let T′

H : {0, 1}n × {0, 1}∗ → {0, 1}c⋅n be defined
by (5.4) above. For all adversaries A running in time t, making q queries of
length at most l and with c ≤ cmax , there exist an adversary ℬ such that

Advprf
T′ (A) ≤ Advprf

H (ℬ) + q ⋅

(
cmax

2

)
⋅ 2−n

where ℬ makes at most 2cmax ⋅ q queries, each of length at most l+n and runs
in time at most t+O(cmax).

Proof. Assume that there is an adversary A that can distinguish the func-
tion T′

H(k, ⋅) from a random function F : {0, 1}∗ → {0, 1}n with advantage

Advprf
T′ (A). Given A we show how to obtain an adversary ℬ against the

underlying hash function H(k, ⋅). Recall that A has black-box access to an
oracle that is either the keyed construction T′

H(k, ⋅, ⋅) or a random function
F : {0, 1}∗ → {0, 1}∗ (where, formally, F also takes the parameter c as ad-
ditional input and outputs strings of length cn). The distinguisher ℬ has to
simulate this oracle with the help of its own oracle, which is either the keyed
hash-function H(k, ⋅) or a random function f : {0, 1}∗ → {0, 1}n. To this end,
for any query (M, c) of A, the adversary ℬ mimics the construction T′ but
replaces each evaluation of the underlying hash function H by the response
of its oracle on the corresponding query. If A stops outputting its guess d,
algorithm ℬ stops with output d too.

If the oracle of ℬ was the hash function H, then ℬ perfectly simulates the
construction T′. Thus, the output distribution of ℬ equals the one of A with
access to T′:

Prob
[
ℬH(k,⋅) = 1

]
= Prob

[
AT′

H
(k,⋅,⋅) = 1

]
.

In the case that the oracle of ℬ was the truly random function f , we have to
show that processing its random answers in the T′ construction yields random
values again. Recall that for each query (M, c) the adversary ℬ now computes
the sequence f(A(0)∣∣M) ∣∣ f(A(1)∣∣M) ∣∣ . . . ∣∣ f((A(c− 1)∣∣M) where A(i) =
f(A(i − 1)) starting with A(0) = M . As long as A(i) ∕= A(j) for all i ∕= j ∈
{0, 1, . . . c−1} holds for each query, the function f gets evaluated in the outer
iterations on distinct and unique values, such that the corresponding outputs

5.3. Derivation of the Master Secret 71

from f are independently and uniformly distributed. Thus, it remains to show
that the probability for collisions on the A(i) values, which are derived using
f in a cascade, is small. Assume that for a query (M, c) a collision occurred,
i.e., there exist (unique) indices i∗ ∈ {0, . . . , c − 1} and j∗ ∈ {0, . . . , i∗ − 1}
such that f(A(i∗−1)) = A(j∗) but A(i∗−1) ∕= A(j) for all j = 0, 1, . . . , i∗−2.
That is, f has never been invoked on the value A(i∗−1) but maps to an value
A(j∗) which is an previous answer of (the cascade of) f . Since f is a truly
random function, such a collision can only occur with probability q ⋅

(
cmax

2

)
⋅2−n

where q denotes the number of A queries and cmax is the largest value for c
that appeared in the simulation.

Overall, the output distribution of ℬf results from

Prob
[
ℬf = 1

]
≤ Prob

[
ℬf = 1

∣∣∣ no Collision
]
+ Prob[Collision]

= Prob
[
AF = 1

]
+ q ⋅

(
cmax

2

)
⋅ 2−n.

Thus, ℬ distinguishes H from f with probability:

Prob
[
ℬH(k,⋅) = 1

]
− Prob

[
ℬf = 1

]

≥ Prob
[
ATH(k,⋅,⋅) = 1

]
− Prob

[
AF = 1

]
− q ⋅

(
cmax

2

)
⋅ 2−n.

This proves the claim. □

Putting Lemma 5.1 and Lemma 5.2 together, we now obtain that the pseu-
dorandomness of ℎb is preserved by the corresponding construction HMACHb

and, in turn, by T′
HMACHb

which equals THb
. Furthermore, XOR is a robust

combiner for pseudorandom functions, and thus, if least one of TH0
,TH1

is a
PRF, also Comb

H0,H1

TLS−prf provides outputs that are indistinguishable from ran-
dom. This, together with the fact that the key is divided into independent
halves, implies the following theorem:

Theorem 5.3 Let Hb : {0, 1}n × {0, 1}∗ → {0, 1}n for b ∈ {0, 1} be a hash
function with underlying compression function ℎb : {0, 1}

n×{0, 1}ℓ → {0, 1}n.
Let Comb

H0,H1

TLS−prf be defined as in (5.2). For all adversaries A running in time
t, making q queries of length at most l and such that c ≤ cmax , there exist
adversaries A0,A1 such that

Advprf
CombTLS−prf

(A)

≤ min
{
Advprf

HMACℎ0
(A0),Advprf

HMACℎ1
(A1)

}
+ q ⋅

(
cmax

2

)
⋅ 2−n

where each of A0,A1 makes at most 2cmax ⋅ q queries of length at most l + n
and runs in time at most t + O(cmax(1 + 2q ⋅ Tb̄)) where Tb̄ denotes the time
required for one evaluation of Tb̄ (as defined in (5.3)).

72 5. Hash Function Combiners in TLS and SSL

Improvements. When the combiner Comb
H0,H1

TLS−prf is used for key derivation,
the underlying construction T ensures that sufficiently many output bytes
are produced. However for the purpose of range extension of a PRF, the
construction T is neither optimal in terms of efficiency nor security. Namely,
if one assumes HMACH to be a secure PRF, one could simply augment the
input M by a fixed-length encoded counter ⟨i⟩, which ensures distinct inputs
for each PRF evaluation:

T∗
Hb

(k,M) = HMACHb
(k,M ∣∣ ⟨1⟩) ∣∣ HMACHb

(k,M ∣∣ ⟨2⟩)∣∣ . . .

Replacing T with T∗ would result in better security bounds, as one gets
rid of the probability q ⋅

(
cmax

2

)
⋅ 2−n of a collision on the A(i) values. In terms

of efficiency, the above construction only requires half of the PRF evaluations
as needed in the original T function.

Another solution is to use solely the outputs of A(⋅), i.e., without feeding
them into HMAC again:

T∗
Hb

(k,M) = A(1) ∣∣ A(2) ∣∣ A(3) ∣∣ . . .

with A(i) being the i-th cascade of HMAC(k,M) as defined in (5.3). With
this construction one inherits the same security bound as in the original so-
lution, but invokes HMAC after the first evaluation only one shorter inputs,
e.g., 128 bits in the case of MD5 and 160 bits for SHA1, which decreases the
computational costs.

5.3.2 The PRF-Combiner used in SSL

In the SSL protocol the following construction gets repeated until sufficient
key material for the master secret is generated:

ms = MD5(pms∣∣(SHA1(“A”∣∣pms∣∣ClientRandom∣∣ServerRandom))∣∣

MD5(pms∣∣(SHA1(“BB”∣∣pms∣∣ClientRandom∣∣ServerRandom))∣∣

MD5(pms∣∣(SHA1(“CCC”∣∣pms∣∣ClientRandom∣∣ServerRandom))∣∣

. . .

Both functions get keyed by the input data, where in the case of the outer
hash function the key is prepended to the message, and for the inner hash the
key is somewhat embedded in the message. Due to length-extension attacks,
key-prepending approaches must be accompanied by prefix-free encoding, oth-
erwise the hash function cannot serve as a pseudorandom function, as shown
in [BCK96b]. For the analysis we assume that the hash function takes care
of that issue, and thus that a hash function Hb : {0, 1}

∗ → {0, 1}n is a secure
PRF when keyed via the first n bits of the data input.

On a more abstract level, each repetition of the SSL-combiner above for
prefixes “A”, “BB”, “CCC” etc. can be represented as the following construc-
tion:

Comb
H0,H1

SSL−prf(k,M) = H0(k ∣∣ H1(k∣∣M)), (5.5)

5.3. Derivation of the Master Secret 73

e.g., where H1(k∣∣M) implements SHA1(“CCC”∣∣k∣∣M) for the fixed value
“CCC”. To be a robust combiner for pseudorandom functions, the SSL-combiner
needs to be robust for H0 and each such function H1. From now on we fix an
arbitrary H1.

Analysis of Comb
H0,H1

SSL−prf . The cascade Comb
H0,H1

SSL−prf of two hash functions
is not a robust design for pseudorandomness, because as soon as the outer
function becomes insecure the combiner, too, can be easily distinguished from
a random function: Consider as an example the constant function H0(x) = 0n

that maps any input to zeros, which is obviously distinguishable from random.
Then, also the combiner Comb

H0,H1

SSL−prf(k,M) = H0(k∣∣H1(k∣∣M)) becomes a
constant function, independently of the strength of the inner hash function
H1. Hence,

Proposition 5.4 The combiner Comb
H0,H1

SSL−prf is not PRF-robust.

Actually, Comb
H0,H1

SSL−prf is not even PRF-preserving, i.e., there exist two func-
tions H0, H1 that are both secure pseudorandom functions, but become easily
distinguishable when used in the SSL-combiner. The problem arises from the
fact that the same secret key is used for both functions, which contradicts the
general design paradigm of provably robust combiners.

For the counter example let H1 : K × {0, 1}∗ → {0, 1}n be a pseudoran-
dom function. Define H0(k, x) now as follows: if x = H1(k, 0

n) then return
0n, else output H1(k∣∣1∣∣x). Then H0 basically inherits the pseudorandom-
ness of H1 because any distinguisher with access to H0(k, ⋅) only retrieves
replies H1(k∣∣1∣∣x) to queries x ∈ {0, 1}∗, unless it is able to predict the value
H1(k∣∣0

n). The latter would contradict the pseudorandomness of H1, though.
But when both functions are combined into H0(k ∣∣ H1(k∣∣M)), the combiner
returns 0n for input 0n and is obviously therefore not a pseudorandom func-
tion.

In order to allow any reasonable statement about the security of the con-
struction Comb

H0,H1

SSL−prf , we assume in the following that the combiner splits the
key into two independent halves, and invokes the hash functions on distinct
shares:

Comb
H0,H1

SSL−prf∗
(k0∣∣k1,M) = H0(k0 ∣∣ H1(k1∣∣M))

Note that the first discussed counter example is still valid, as it did not
require any dependencies of the individual keys. Thus, even Comb

H0,H1

SSL−prf∗
is

not a robust combiner in general. However, the security can be considered to
be somewhat above property-preservation, since we can relax the assumption
on one hash function while the combiner still preserves the pseudorandomness
property of the stronger function:

PRF + weakCR = PRF. In the case that the outer hash function H0

is a secure pseudorandom function, the inner hash function only needs to

74 5. Hash Function Combiners in TLS and SSL

ensure that for distinct queries M ∕=M ′ of an adversary to the combiner, the
function H0 gets evaluated on different values too, i.e., H1(k,M) ∕= H1(k,M

′)
holds for M ∕= M ′. Thus, it suffices for H1 to be weakly collision-resistant,
which is defined similarly to collision-resistance, except that here the function
is keyed with a secret key and the adversary only gets black-box access to
the function. Even though weakCR is a weaker assumption than standard CR,
and it is for fixed input-length functions implied by the MAC security, it might
suffer for variable length-inputs from the strong attacks against CR [Hir04].
In particular, MD5 and SHA1 are still assumed to be good pseudorandom
functions but lack security against weakCR attacks, which was also the reason
to restate the proof of HMAC in [Bel06].

weakPRF + PRF = PRF. If the inner hash function H1 is a pseudorandom
function, an adversary that queries the combiner gets to see images of H0 only
for random domain points. Thus, it is not necessary that the outer function
is a full-fledged PRF as well. In this case, already the assumption of H0 being
a weak pseudorandom function is sufficient. This notion weakens the regular
concept of PRFs in the sense that the adversary is only allowed to query
the function an random inputs instead of values of his choice. Note that a
weakPRF is significantly weaker than a PRF, as e.g., they can exhibit weak
input points or be commutative.

insecure+insecure = PRF? One might ask if one can even start with two
functions that both are not full PRFs itself, but add up to a secure PRF
when used in the combiner construction. It turns out that the SSL combiner
allows for two almost entirely insecure hash functions to yield a secure PRF.
However, this only holds for very artificial and tailored hash functions, hence,
the impact on the security statements for practical considerations is quite
limited. We also stress that this is not a particular benefit of the SSL design,
as we can obtain similar examples for the TLS combiner as well. For both
examples we start from secure PRFs H0,H1 which we modify into functions
H∗
0,H

∗
1 that lose their security when used in a stand-alone fashion:

Example for the SSL combiner Comb
H0,H1

SSL−prf : Our example for SSL holds
for the weaker version of the combiner where both functions get keyed
with the same master secret, and which we showed to be neither PRF-
robust nor preserving in general. Consider the function H∗

1(k,M) =
k∣∣M that simply outputs its secret key and the message it was invoked
on. This function is clearly not pseudorandom. The second function
H∗
0(k,M) parses each input as M = k′∣∣M ′ and checks whether k = k′

holds. If so it outputs H0(k,M), else 0n. When H∗
0 is used alone, the

probability of hitting an input among q queries, whose prefix matches
the secret key k ← {0, 1}n, is q ⋅ 2−n and thus negligible. Hence, with

5.4. Finished-Message 75

overwhelming probability one merely gets replies 0n and can thus eas-
ily distinguish this function from random. However, in the combination
H∗
0(k,H

∗
1(k,M)), the outer function will always run in the “good” excep-

tional state where it behaves like H0 and provides random values. Thus,
we exploit the same weakness as above where we showed that the SSL
combiner is not even PRF-preserving, but now use that peculiarity to
obtain a secure PRF out of insecure functions.

Example for the TLS combiner Comb
H0,H1

TLS−prf : For TLS we can obtain a
similar result by constructing the following two functions H∗

0(k,M) =
0n/2∣∣H0(k,M)∣n/2 and H∗

1(k,M) = H1(k,M)∣n/2∣∣0
n/2, where x∣n/2 de-

notes the leading n/2 bits of string x. Both functions output strings
that consist of a constant half and a random half, and are obviously
easily distinguishable from a truly random function. By merging them
into the TLS combiner, we obtain H∗

0(k0,M)⊕H∗
0(k1,M) which nullifies

the constant parts and yields random strings again.

5.3.3 Application Key Derivation in TLS and SSL

Both combiners Comb
H0,H1

TLS−prf and Comb
H0,H1

SSL−prf are used to obtain a shared
master secret from a pre-shared key. However, subsequently, the same func-
tions are deployed to derive further keys, e.g., for encryption or message au-
thentication. To this end, the freshly computed master secret is used instead
of the pre-master secret that was assumed to be a random value. For TLS
we have shown that the combiner Comb

H0,H1

TLS−prf provides a master secret that
is indistinguishable from random when at least one hash function is a PRF.
Thus, our result carries over to the application key derivation, that uses the
combiner with the derived master secret. The same holds for SSL, but under
stronger assumptions on the underlying hash functions.

5.4 Finished-Message

In this section we investigate the TLS/SSL combiners that are used to com-
pute the so-called finished -message of the handshake protocols. The finished
message is the last part of the key exchange and is realized by a message
authentication code which is computed over the transcript of the previous
communication. Thus, the combiners that are used for this application should
optimally be robust for MAC, i.e., only rely on the unforgeability property
instead of the stronger PRF-assumption.

We note that the finished message itself is already secured through the
negotiated application keys. This complicates the holistic security analysis of
this step. But since we are at foremost interested in the design of the combiners
and their designated purpose, we only touch this issue briefly at the end of

76 5. Hash Function Combiners in TLS and SSL

Section 5.4.1 (where we address this issue for TLS; the same discussion holds
for SSL).

5.4.1 The MAC-Combiner used in TLS

To compute the finished MAC, the TLS protocol applies the same combiner as
for the derivation of the master secret, but already uses the new master key.
As the key is known only at the very end of the protocol, the MAC cannot be
computed iteratively during the communication. To circumvent the need of
storing the entire transcript until the master secret is available, TLS hashes
the transcript iteratively and then computes the MAC over the short hash
value only:

�finished =

Comb
MD5,SHA1
TLS−prf

(
ms, FinishedLabel, MD5(transcript)∣∣SHA1(transcript)

)
[0..11]

A further input to the combiner is the FinishedLabel which is either the ASCII
string “client” or “server”, which ensures that the MAC values of both parties
are different, otherwise an adversary could simply return a finished tag back
to its sender. The appendix [0..11] indicates again that the first 12 bytes of
the combiner output are used as the MAC.

Recall that the combiner Comb
H0,H1

TLS−prf is based on the construction T which
produces arbitrary length output by invoking the underlying hash function
in an iterative and nested manner. However, this range extension is only
necessary when the combiner is used for key derivation. To compute the
finished message, only the first 12 byte of the combiners output are used,
which is shorter than the digests of both applied hash functions (16 bytes
for MD5 and 20 bytes for SHA1). Thus, we can omit the T part from the
construction and simplify the combiner as follows:

Comb
H0,H1

TLS−mac(k0∣∣k1,M) = (5.6)

HMACH0
(k0, H0(M)∣∣H1(M)) ⊕ HMACH1

(k1, H0(M)∣∣H1(M))

Verification for the above MAC-combiner is done by recomputing the tag
and comparing it to the given tag.

Analysis of Comb
H0,H1

TLS−mac. We have already shown that the combiner con-

struction Comb
H0,H1

TLS−prf , which can be seen as the more complex version of

Comb
H0,H1

TLS−mac, is robust for pseudorandom functions. Thus, if one is willing
to assume that at least one hash function behaves like a random function, the
combiner can be used directly as a MAC, as well.

However, ideally, the combiner Comb
H0,H1

TLS−mac should be a secure MAC on
the sole assumption that at least one of the underlying hash functionsH0, H1 is
unforgeable rather than being a pseudorandom function. Unfortunately, hash-
ing the transcript before the MAC gets computed, imposes another assumption

5.4. Finished-Message 77

on the hash functions (even when starting from the PRF assumption), namely
at least one hash function needs to be collision-resistant. Otherwise an ad-
versary could try to induce a collision on the input to the HMAC functions,
which immediately gives a valid forgery for the entire MAC function. Under
the assumption that such a collision is unlikely, we show that the combiner
Comb

H0,H1

TLS−mac is MAC-robust.
To this end, we first prove that the xor of two deterministic MACs (like

HMACHb
) invoked directly with the message yields a robust combiner:

Comb
H0,H1

⊕ (k0∣∣k1,M) = H0(k0,M)⊕ H1(k1,M) (5.7)

In the context of aggregate authentication, Katz and Lindell [KL08] gave
a similar result by showing that multiple MAC tags, computed by (possibly)
different senders on multiple (possibly different) messages, can be securely
aggregated into a shorter tag by simply xoring them.

Lemma 5.5 Let H0,H1 : {0, 1}
n×{0, 1}∗ → {0, 1}n be deterministic message

authenticated codes, and let Comb
H0,H1

⊕ be defined by (5.7). For any adversary

A against Comb
H0,H1

⊕ making at most q queries and running in time at most
t, there exist adversaries A0,A1 such that

Advmac
Comb⊕

(A) ≤ min
{
Advmac

H0
(A0),Advmac

H1
(A1)

}

where Ab for b = 0, 1 makes at most q queries and runs in time at most
t+O(qTb̄) where Tb̄ denotes the time for one evaluation of Hb̄.

Proof. We show that any adversary A against the combiner implies ad-
versaries A0,A1 against both underlying MACs. Assume towards contra-
diction that an adversary AComb after making q queries M1, . . . ,Mq to the

Comb
H0,H1

⊕ (K, ⋅) oracle, outputs with some probability a tuple (M∗, �∗) such

that �∗ = Comb
H0,H1

⊕ (K,M∗) but M∗ was never submitted to the combiner
oracle. Given AComb we construct a MAC adversary Ab against the MAC Hb

for b ∈ {0, 1}. This adversary has oracle access to the function Hb(kb, ⋅) and
uses AComb in a black-box way to produce its forgery. To this end, Ab first
chooses a random key kb̄ for Hb̄ and then answers each query to the combiner
with the help of its oracle access and the knowledge of kb̄. When AComb holds,
outputting a pair (M∗, �∗), the adversary Ab computes its forgery (M∗, �∗b)
with �∗b = �∗ ⊕ Hb̄(kb̄,M

∗).
As M∗ was not previously queried by AComb, the same holds for Ab. Fur-

thermore, as both MACs are deterministic, the value �∗ = H0(k0,M
∗) ⊕

H1(k1,M
∗) fixes two well-defined tags for H0,H1. Thus, Ab’s output is equal

to the value Hb(kb,M
∗) for the unknown key kb and thereby constitutes a

valid forgery. Since the adversary A yields forgers A0,A1 for both MACs, it
follows that the advantage cannot exceed the advantage of the smaller of the
two security bounds for the MACs. □

78 5. Hash Function Combiners in TLS and SSL

Complementing the above Lemma 5.5 with the probability of finding col-
lisions on the concatenated combiner H0(M)∣∣H1(M) yields Theorem 5.6.

Theorem 5.6 Let H0, H1 : {0, 1}
n×{0, 1}∗ → {0, 1}n be hash functions, and

let Comb
H0,H1

TLS−mac be defined by (5.6). For any adversary A against Comb
H0,H1

TLS−mac

making at most q queries and running in time at most t, there exist adversaries
A0,A1,ℬ0,ℬ1 such that

Advmac
CombTLS−mac

(A)

≤ min
{
Advmac

HMACH0
(A0),Advmac

HMACH1
(A1)

}

+ min
{
Advcr

H0
(ℬ0),Advcr

H1
(ℬ1)

}

where Ab for b = 0, 1 makes at most q queries and runs in time at most
t+O(qTb̄) where Tb̄ denotes the time for one evaluation of HMACHb̄

, and ℬb
runs in time t+O(qTb).

Note that for both properties, unforgeability and collision-resistance, it
suffices that either one of the hash functions has this property (instead of one
hash function with obeying both property simultaneously). This is similar
to the difference between weak and strong combiners that we discussed in
Section 4.2.

So far, we have reduced the security of the combiner Comb
H0,H1

TLS−mac of
H0, H1 to the collision-resistance of the hash functions and the unforgeability
of the HMAC transforms HMACH0

and HMACH1
. Preferably, the security of

HMACHb
should in turn only rely on the unforgeability of the underlying hash

resp. compression function. However, such a reduction for the plain HMAC
transform is still unknown. The previous results for this issue either require
stronger assumptions than MAC (yet, weaker than PRF), or additional keying-
techniques for the compression function. In the following, we briefly recall the
two most relevant approaches for our scenario.

An and Bellare [AB99] observed that HMAC can be used to build a VIL-
MAC from a FIL-MAC (i.e., from an unforgeable compression function) when
the secret key enters each compression function evaluation. As this result
was shown for compression functions in the dedicated-key setting, one needs
to transform compression functions without a dedicated-key input into keyed
ones. This can be done as follows: Let ℎ : {0, 1}n × {0, 1}ℓ → {0, 1}n be
an unkeyed compression function. Then the keyed analogue kℎ : {0, 1}n ×
{0, 1}n+ℓ′ → {0, 1}n is defined as kℎ(k, y, x) = ℎ(y, k∣∣x) where k ∈ {0, 1}n is
the secret key, y ∈ {0, 1}n the chaining value and x ∈ {0, 1}ℓ

′

with ℓ′ = ℓ− n
the (shortened) message block2. This approach reduces the number of bits

2Actually, An and Bellare proposed a transformation that keys the compression func-
tion via the chaining value, which would not allow black-box usage of the underlying hash
function. We therefore swap the roles of chaining and key value, and assume that kℎ is a
secure MAC when the key occupies the first n bits of each input.

5.4. Finished-Message 79

that can be processed in each iteration but allows to use the SHA1 and MD5

compression functions, which do not possess a dedicated key-input. Start-
ing from such a keyed FIL-MAC, the HMAC variant that prepends kin (resp.
kout at the final evaluation) to each message block, is proven to be a secure
VIL-MAC [AB99]. When HMAC is used only with a single-key k, unforge-
ability of kℎ must hold against related key attacks for kℎ(k ⊕ Δopad, ⋅) and
kℎ(k ⊕Δipad, ⋅). Overall, the first approach relies solely on the unforgeability
assumption, but comes with a reduced throughput, e.g., when using SHA1,
the HMAC variant that is keyed in each iteration, would require ≈ 1.5 times
the compression function evaluations of the standard HMACSHA1.

The second approach does not require any modification of HMAC, i.e.,
it has the same efficiency, but makes stronger assumptions on the compres-
sion function: In [Bel06] Bellare proved that NMAC is a secure MAC if the
underlying compression function ℎ is a privacy-preserving MAC (PP-MAC)
and the iteration of ℎ is computationally almost universal (cAU). The former
resembles the indistinguishability notion for encryption and requires that an
adversary given a tag Mac(k,Mb) for chosen M0,M1 cannot determine b. It
was shown that PP-MAC is a weaker assumption than PRF and cAU is a milder
assumption than weakCR. Fischlin [Fis08] has shown that, alternatively, non-
malleability and unpredictability of the compression function suffices, too. In
both cases, however, in order to lift the security of NMAC to the single-key
version of HMAC, one additionally needs that the dual compression function
ℎ̄ used to derive kin, kout somehow preserves these conditions.

The Problem of Chopping. Theorem 5.6 states that the TLS-combiner
for the finished message is robust for message authentication codes even when
starting from the unforgeability assumption which is significantly weaker than
assuming a PRF. However, according to the TLS specification, not the entire
output of the combiner is used as tag, but only the first 12 bytes. Since the
unforgeability notion is not closed under chopping transformations, a short-
ened output of a MAC loses any security guarantees. To allow usage of a
chopped fraction of the combiners output, on either has to assume that one
of the underlying MACs is secure for truncation, or one needs to make the
stronger assumption that at least one of the two hash functions is a secure
PRF.

Is Unforgeability Enough? When using MACs in a stand-alone fashion,
unforgeability clearly gives sufficient security guarantees. However, in TLS
(and SSL) the tag for the finished message is computed under the master
secret, from which further application keys for encryption and authentication
are derived. The tag itself is now encrypted and authenticated with these
derived keys. On one hand, this may help to prevent the tag in the finished
message from leaking some information about the master secret. On the other

80 5. Hash Function Combiners in TLS and SSL

hand, this causes critical circular dependencies between these values, possibly
even enabling leakage of entire keys. This problem has already been noticed
in other works (e.g., in [MSW08] where the analysis of the handshake protocol
assumes that the tag is sent without securing it with the application keys; or
more explicitly in the context of delayed-key authentication in [FL10]). It is
beyond the scope of this work about combiners, though.

5.4.2 The MAC-Combiner used in SSL

The SSL-construction for the finished message resembles the HMAC construc-
tion, but appends the inner key to the message instead of prepending it. This
stems from the same problem as in TLS, namely that the MAC should be com-
puted iteratively as soon as the communication starts, although the necessary
key is negotiated only at the end. To obtain a robust design, SSL uses the
concatenation of the HMAC-like construction based on the MD5 and SHA1

functions:

�finished = HMAC∗
MD5(ms,Label∣∣transcript) ∣∣ HMAC∗

SHA1(ms,Label∣∣transcript)

where HMAC∗
H is defined as:

HMAC∗
H(k,M) = H(k∣∣opad∣∣ H(M ∣∣k∣∣ipad)) (5.8)

with opad, ipad being the same fixed patterns as in HMAC. The structure
of HMAC∗ then allows to accomplish the bulk of the computation without
knowing the key k.

Overall, the MAC combiner of SSL can be described as follows:

Comb
H0,H1

SSL−mac(k,M) = HMAC∗
H0

(k,M) ∣∣ HMAC∗
H1

(k,M) (5.9)

Analysis of Comb
H0,H1

SSL−mac. In contrast to the TLS-combiner, SSL uses the
entire master secret as key for both hash functions. This approach results
in a construction Comb

H0,H1

SSL−mac that is not even MAC-preserving, although
concatenation is MAC-robust when used with distinct keys for each hash func-
tion [Her05].

Proposition 5.7 The combiner Comb
H0,H1

SSL−mac is not MAC-preserving (and
thus not MAC-robust either).

Consider two secure MACs H0,H1, that on input of a secret key k and a
message M outputs a tag �b. Assume furthermore that both MACs ignore
parts of their key, i.e., H0 ignores the left half of its input key and H1 ignores
the right part. We now derive functions H∗

b that can still be unforgeable
when used alone, but become totally insecure when being plugged into the
combiner. The first MAC H∗

0 behaves like H0 but also leaks the left half kl of

5.4. Finished-Message 81

the secret key, i.e., H∗
0(k,M) = kl∣∣H0(k,M). The second function is defined

analogously, but outputs the right half of the key: H∗
1(k,M) = kr∣∣H1(k,M).

Even though each tag is now accompanied with a part of the key, it remains
hard to create a forgery. When we use now both functions H∗

0,H
∗
1 as in the

SSL-combiner3 we obtain: H∗
0(k,M) ∣∣ H∗

1(k,M) = kl∣∣�0∣∣kr∣∣�1 which allows
to easily reconstruct the entire secret key and subsequently forge tags for any
message.

Improvements. In order to change the SSL-construction such that it be-
comes MAC-robust, the key should be split among both underlying hash func-
tions. The concatenation of HMAC∗

H0
,HMAC∗

H1
invoked with independent keys

then clearly gives a secure MAC, if at least one of the underlying functions
is unforgeable. As SSL deviates from the standard HMAC approach to build
its MAC algorithms, the results from Section 5.4.1 do not apply for HMAC∗.
However, Dodis and Puniya scrutinized in [DP08] the minimal assumptions
of a compression function such that the corresponding iterated hash function
(with various keying approaches) yields a secure MAC. They showed that a
MAC based on the Merkle-Damg̊ard construction with the key appended to
the message, requires the compression function to be collision-resistant and
unforgeable when it gets keyed by the input data. It is also claimed that
HMAC with an appended key requires the same assumptions as the plain MD
approach. Thus, the outer hash application in HMAC∗

Hb
does not contribute

to the security of the MAC, in the sense that it relaxes the underlying assump-
tion and therefore can be omitted. Applying both discussed modifications we
obtain the following construction:

Comb
H0,H1

SSL−mac∗
(k0∣∣k1,M) = H0(M ∣∣k0) ∣∣ H1(M ∣∣k1)

If it is desirable to save on communication, one can use the xor of the H0, H1

outputs instead of the concatenation, while retaining the same security guar-
antees: In both cases the proposed combiner is a robust MAC if at least
one compression function is simultaneously collision-resistant and unforge-
able. Note that this is a stronger assumption than for the TLS combiner,
where both properties can be possessed by possibly different functions.

3Invoking the combiner directly on H
∗
b instead of HMAC

∗
H∗

b

still proves our statement as

the HMAC transform can inherit the behavior H∗. We omit the additional level for the sake
of simplicity.

Bibliography

[AB81] C. A. Asmuth and G. R. Blakley. An Efficient Algorithm for
Constructing a Cryptosystem which is Harder to Break than Two
Other Cryptosystems. Computers and Mathematics with Appli-
cations, 7:447–450, 1981.

[AB99] Jee Hea An and Mihir Bellare. Constructing VIL-MACsfrom
FIL-MACs: Message Authentication under Weakened Assump-
tions. Advances in Cryptology — Crypto 1999, Volume 1666 of
LNCS, pages 252–269. Springer-Verlag, 1999.

[ANPS07] Elena Andreeva, Gregory Neven, Bart Preneel, and Thomas
Shrimpton. Seven-Property-Preserving Iterated Hashing: ROX.
Advances in Cryptology — Asiacrypt 2007, Volume 4833 of
LNCS, pages 130–146. Springer-Verlag, 2007.

[BB06] Dan Boneh and Xavier Boyen. On the Impossibility of Efficiently
Combining Collision Resistant Hash Functions. Advances in
Cryptology — Crypto 2006, Volume 4117 of LNCS, pages 570–
583. Springer-Verlag, 2006.

[BCK96a] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying Hash
Functions for Message Authentication. Advances in Cryptol-
ogy — Crypto 1996, Volume 96 of LNCS, pages 1–15. Springer-
Verlag, 1996.

[BCK96b] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Pseudorandom
Functions Revisited: The Cascade Construction and Its Concrete
Security. Proceedings of the Annual Symposium on Foundations
of Computer Science (FOCS) 1996, pages 514–523. IEEE Com-
puter Society Press, 1996.

[Bel06] Mihir Bellare. New Proofs for NMAC and HMAC: Security with-
out Collision-Resistance. Advances in Cryptology — Crypto
2006, Volume 4117 of LNCS, pages 602–619. Springer-Verlag,
2006.

83

84 Bibliography

[BF05] Alexandra Boldyreva and Marc Fischlin. Analysis of Random
Oracle Instantiation Scenarios for OAEP and Other Practical
Schemes. Advances in Cryptology — Crypto 2005, Volume 3621
of LNCS, pages 412–429. Springer-Verlag, 2005.

[BF06] Alexandra Boldyreva and Marc Fischlin. On the Security of
OAEP. Advances in Cryptology — Asiacrypt 2006, Volume 4284
of LNCS, pages 210–225. Springer-Verlag, 2006.

[BR93] Mihir Bellare and Phillip Rogaway. Random Oracles are Practi-
cal: A Paradigm for Designing Efficient Protocols. Proceedings
of the Annual Conference on Computer and Communications
Security (CCS). ACM Press, 1993.

[BR94] Mihir Bellare and Phillip Rogaway. Optimal Asymmetric En-
cryption — How to Encrypt with RSA. Advances in Cryptol-
ogy — Eurocrypt 1994, Volume 950 of LNCS, pages 92–111.
Springer-Verlag, 1994.

[BR96] Mihir Bellare and Phillip Rogaway. The exact security of digital
signatures — How to sign with RSA and Rabin. Advances in
Cryptology — Eurocrypt 1996, Volume 1070 of LNCS, pages
399–416. Springer-Verlag, 1996.

[BR97] Mihir Bellare and Phillip Rogaway. Collision-Resistant Hashing:
Towards Making UOWHFs Practical. Advances in Cryptology —
Crypto 1997, Volume 1294 of LNCS, pages 470–484. Springer-
Verlag, 1997.

[BR06a] Mihir Bellare and Thomas Ristenpart. Multi-Property Preserving
Hash Domain Extensions and the EMD Transform. Advances
in Cryptology — Asiacrypt 2006, Volume 4284 of LNCS, pages
299–314. Springer-Verlag, 2006.

[BR06b] Mihir Bellare and Phillip Rogaway. The Security of Triple En-
cryption and a Framework for Code-Based Game-Playing Proofs.
Advances in Cryptology — Eurocrypt 2006, Volume 4004 of
LNCS, pages 409–426. Springer-Verlag, 2006.

[BR07] Mihir Bellare and Thomas Ristenpart. Hash Functions in
the Dedicated-Key Setting: Design Choices and MPP Trans-
forms. International Colloquium on Automata, Languages, and
Progamming (ICALP) 2007, Volume 4596 of LNCS, pages 399–
410. Springer-Verlag, 2007.

[CDMP05] Jean-Sebastien Coron, Yevgeniy Dodis, Cecile Malinaud, and
Prashant Puniya. Merkle-Damg̊ard revisited: How to construct a

Bibliography 85

hash function. Advances in Cryptology — Crypto 2005, Volume
3621 of LNCS, pages 430–448. Springer-Verlag, 2005.

[CR08] Christophe De Cannière and Christian Rechberger. Preimages
for Reduced SHA-0 and SHA-1. Advances in Cryptology —
Crypto 2008, Volume 5157 of LNCS, pages 179–202. Springer-
Verlag, 2008.

[CRS+07] Ran Canetti, Ronald L. Rivest, Madhu Sudan, Luca Trevisan,
Salil P. Vadhan, and Hoeteck Wee. Amplifying Collision Resis-
tance: A Complexity-Theoretic Treatment. Advances in Cryp-
tology — Crypto 2007, Volume 4622 of LNCS, pages 264–283.
Springer-Verlag, 2007.

[Dam89] Ivan Damg̊ard. A Design Principle for Hash Functions. Ad-
vances in Cryptology — Crypto 1989, Volume 435 of LNCS,
pages 416–427. Springer-Verlag, 1989.

[DK05] Yevgeniy Dodis and Jonathan Katz. Chosen-Ciphertext Secu-
rity of Multiple Encryption. Theory of Cryptography Conference
(TCC) 2005, Volume 3378 of LNCS, pages 188–209. Springer-
Verlag, 2005.

[DP08] Yevgeniy Dodis and Prashant Puniya. Getting the Best Out of
Existing Hash Functions; or What if We Are Stuck with SHA?
International Conference on Applied Cryptography and Network
Security (ACNS) 2008, Volume 5037 of LNCS, pages 156–173.
Springer-Verlag, 2008.

[EG85] Shimon Even and Oded Goldreich. On the Power of Cascade
Ciphers. ACM Transactions on Computer Systems, 3(2):108–
116, 1985.

[Fis08] Marc Fischlin. Security of NMAC and HMAC Based on Non-
malleability. Topics in Cryptology — Cryptographer’s Track,
RSA Conference (CT-RSA) 2008, Volume 4964 of LNCS, pages
138–154. Springer-Verlag, 2008.

[FL07] Marc Fischlin and Anja Lehmann. Security-Amplifying Combin-
ers for Hash Functions. Advances in Cryptology — Crypto 2007,
Volume 4622 of LNCS, pages 224–243. Springer-Verlag, 2007.

[FL08] Marc Fischlin and Anja Lehmann. Multi-Property Preserving
Combiners for Hash Functions. Theory of Cryptography Con-
ference (TCC) 2008, Volume 4948 of LNCS, pages 375–392.
Springer-Verlag, 2008.

86 Bibliography

[FL10] Marc Fischlin and Anja Lehmann. Delayed-Key Message Au-
thentication for Streams. Theory of Cryptography Conference
(TCC) 2010, Volume 5978 of LNCS, pages 288–305. Springer-
Verlag, 2010.

[FLP08] Marc Fischlin, Anja Lehmann, and Krzysztof Pietrzak. Robust
Multi-property Combiners for Hash Functions Revisited. Inter-
national Colloquium on Automata, Languages, and Progamming
(ICALP) 2008, Volume 5126 of LNCS, pages 655–666. Springer-
Verlag, 2008.

[FLS+09] Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting,
Mihir Bellare, Tadayoshi Kohno, Jon Callas, and Jesse Walker.
The Skein Hash Function Family. Submission to NIST (Round
2), 2009.

[FLW10] Marc Fischlin, Anja Lehmann, and Daniel Wagner. Hash Func-
tion Combiners in TLS and SSL. Topics in Cryptology — Cryp-
tographer’s Track, RSA Conference (CT-RSA) 2010, Volume
5985 of LNCS, pages 268–283. Springer-Verlag, 2010.

[GIL+90] Oded Goldreich, Russell Impagliazzo, Leonid Levin, Ramarath-
nam Venkatesan, and David Zuckerman. Security Preserving
Amplification of Hardness. Proceedings of the Annual Sympo-
sium on Foundations of Computer Science (FOCS) 1990, pages
318–326. IEEE Computer Society Press, 1990.

[GKK+09] Danilo Gligoroski, Vlastimil Klima, Svein Johan Knapskog, Mo-
hamed El-Haded, Jørn Amundsen, and Stig Frode Mjølsnes.
Cryptographic Hash Function BLUE MIDNIGHT WISH. Sub-
mission to NIST (Round 2), 2009.

[GKM+09] Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz,
Florian Mendel, Christian Rechberger, Martin Schläffer, and
Søren S. Thomsen. Grøstl – a SHA-3 candidate. Submission
to NIST (Round 2), 2009.

[GMP+08] Sebastian Gajek, Mark Manulis, Olivier Pereira, Ahmad-Reza
Sadeghi, and Jörg Schwenk. Universally Composable Security
Analysis of TLS. Provable Security, Second International Con-
ference (ProvSec) 2008, Volume 5324 of LNCS, pages 313–327.
Springer-Verlag, 2008.

[Her05] Amir Herzberg. On Tolerant Cryptographic Constructions. Top-
ics in Cryptology — Cryptographer’s Track, RSA Conference
(CT-RSA) 2005, Volume 3376 of LNCS, pages 172–190. Springer-
Verlag, 2005.

Bibliography 87

[Her09] Amir Herzberg. Folklore, Practice and Theory of Robust Com-
biners. Journal of Computer Security, 17(2):159–189, 2009.

[HIKN08] Danny Harnik, Yuval Ishai, Eyal Kushilevitz, and Jesper Buus
Nielsen. OT-Combiners via Secure Computation. Theory of
Cryptography Conference (TCC) 2008, Volume 4948 of LNCS,
pages 393–411. Springer-Verlag, 2008.

[Hir04] Shoichi Hirose. A Note on the Strength of Weak Collision-
Resistance. IEICE Transactions on fundamentals of electronics
communications and computer sciences, 87(5):1092–1097, 2004.

[HKN+05] Danny Harnik, Joe Kilian, Moni Naor, Omer Reingold, and Alon
Rosen. On Robust Combiners for Oblivious Transfer and other
Primitives. Advances in Cryptology — Eurocrypt 2005, Volume
3494 of LNCS, pages 96–113. Springer-Verlag, 2005.

[HS06] Jonathan Hoch and Adi Shamir. Breaking the ICE — Find-
ing Multicollisions in Iterated Concatenated and Expanded (ICE)
Hash Functions. Fast Software Encryption (FSE) 2006, Volume
4047 of LNCS, pages 179–194. Springer-Verlag, 2006.

[HS08] Jonathan Hoch and Adi Shamir. On the Strength of the Con-
catenated Hash Combiner When All the Hash Functions Are
Weak. International Colloquium on Automata, Languages, and
Progamming (ICALP) 2008, Volume 5126 of LNCS, pages 616–
630. Springer-Verlag, 2008.

[Jou04] Antoine Joux. Multicollisions in Iterated Hash Functions. Ad-
vances in Cryptology — Crypto 2004, Volume 3152 of LNCS,
pages 306–316. Springer-Verlag, 2004.

[KL08] Jonathan Katz and Andrew Y. Lindell. Aggregate Message Au-
thentication Codes. Topics in Cryptology — Cryptographer’s
Track, RSA Conference (CT-RSA) 2008, LNCS, pages 155–169.
Springer-Verlag, 2008.

[Kra08] Hugo Krawczyk. On Extract-then-Expand Key
Derivation Functions and an HMAC-based KDF.
http://webee.technion.ac.il/ hugo/kdf/kdf.pdf, 2008.

[KS05] Jonathan Katz and Ji Sun Shin. Modeling Insider Attacks
on Group Key-Exchange Protocols. Proceedings of the Annual
Conference on Computer and Communications Security (CCS).
ACM Press, 2005.

88 Bibliography

[Lis06] Moses Liskov. Constructing an Ideal Hash Function from Weak
Ideal Compression Functions. Selected Areas in Cryptography
(SAC) 2006, Volume 4356 of LNCS, pages 358–375. Springer-
Verlag, 2006.

[LMPR08] Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, and
Alon Rosen. SWIFFT: A Modest Proposal for FFT Hashing.
Fast Software Encryption (FSE) 2008, Volume 5086 of LNCS,
pages 54–72. Springer-Verlag, 2008.

[LR88] Michael Luby and Charles Rackoff. How to Construct Pseu-
dorandom Permutations from Pseudorandom Functions. SIAM
Journal on Computing, 17(2):373–386, 1988.

[LT09] Anja Lehmann and Stefano Tessaro. A Modular Design for Hash
Functions: Towards Making the Mix-Compress-Mix Approach
Practical. Advances in Cryptology — Asiacrypt 2009, Volume
5912 of LNCS, pages 364–381. Springer-Verlag, 2009.

[LTW05] Henry Lin, Luca Trevisan, and Hoeteck Wee. On Hardness
Amplification of One-Way Functions. Theory of Cryptography
Conference (TCC) 2005, Volume 3378 of LNCS, pages 34–49.
Springer-Verlag, 2005.

[Mer89] Ralph Merkle. One Way Hash Functions and DES. Advances
in Cryptology — Crypto 1989, Volume 435 of LNCS, pages 428–
446. Springer-Verlag, 1989.

[MM93] Ueli Maurer and James L. Massey. Cascade Ciphers: The Im-
portance of Being First. Journal of Cryptology, 6(1):55–61, 1993.

[MP06] Remo Meier and Bartosz Przydatek. On Robust Combiners for
Private Information Retrieval and Other Primitives. Advances
in Cryptology — Crypto 2006, Volume 4117 of LNCS, pages
555–569. Springer-Verlag, 2006.

[MPW07] Remo Meier, Bartosz Przydatek, and Jürg Wullschleger. Ro-
buster Combiners for Oblivious Transfer. Theory of Cryptog-
raphy Conference (TCC) 2007, Volume 4392 of LNCS, pages
404–418. Springer-Verlag, 2007.

[MRH04] Ueli Maurer, Renato Renner, and Clemens Holenstein. Indiffer-
entiability, Impossibility Results on Reductions, and Applications
to the Random Oracle Methodology. Theory of Cryptography
Conference (TCC) 2004, Volume 2951 of LNCS, pages 21–39.
Springer-Verlag, 2004.

Bibliography 89

[MSW08] Paul Morrissey, Nigel Smart, and Bogdan Warinschi. A Modular
Security Analysis of the TLS Handshake Protocol. Advances in
Cryptology — Asiacrypt 2008, Volume 5350 of LNCS, pages 55–
73. Springer-Verlag, 2008.

[NIS] NIST. National Institute of Standards and Technology:
SHA-3 Competition. http://csrc.nist.gov/groups/ST/

hash/sha-3/.

[NR98] Moni Naor and Omer Reingold. From Unpredictability to Indis-
tinguishability: A Simple Construction of Pseudo-Random Func-
tions from MACs. Advances in Cryptology — Crypto 1998, Vol-
ume 1462 of LNCS, pages 267–282. Springer-Verlag, 1998.

[NR99] Moni Naor and Omer Reingold. On the Construction of Pseudo-
random Permutations: Luby-Rackoff Revisited. Journal of Cryp-
tology, 12(1):29–66, 1999.

[NS04] Mridul Nandi and Douglas R. Stinson. Multicollision Attacks
on a Class of Hash Functions. Number 2004/330 in Cryptology
eprint archive. eprint.iacr.org, 2004.

[NY89] Moni Naor and Moti Yung. Universal One-Way Hash Func-
tions and Their Cryptographic Applications. Proceedings of the
Annual Symposium on the Theory of Computing (STOC) 1989,
pages 33–43. ACM Press, 1989.

[Pie07] Krzysztof Pietrzak. Non-Trivial Black-Box Combiners for
Collision-Resistant Hash-Functions don’t Exist. Advances in
Cryptology — Eurocrypt 2007, Volume 4515 of LNCS, pages
23–33. Springer-Verlag, 2007.

[Pie08] Krzysztof Pietrzak. Compression from Collisions, or why CRHF
Combiners have a Long Output. Advances in Cryptology —
Crypto 2008, Volume 5157 of LNCS, pages 413–432. Springer-
Verlag, 2008.

[PW08] Bartosz Przydatek and Jürg Wullschleger. Error-Tolerant Com-
biners for Oblivious Primitives. International Colloquium on
Automata, Languages, and Progamming (ICALP) 2008, Volume
5126 of LNCS, pages 461–472. Springer-Verlag, 2008.

[Res01] Eric Rescorla. SSL and TLS - Designing and Building Secure
Systems. Addison Wesley, 2001.

[Rog06] Phillip Rogaway. Formalizing Human Ignorance. Vietcrypt 2006,
Volume 4341 of LNCS, pages 211–228. Springer-Verlag, 2006.

90 Bibliography

[RS04] Phillip Rogaway and Thomas Shrimpton. Cryptographic Hash-
Function Basics: Definitions, Implications, and Separations for
Preimage Resistance, Second-Preimage Resistance, and Colli-
sion Resistance. Fast Software Encryption (FSE) 2004, Volume
3017 of LNCS, pages 371–388. Springer-Verlag, 2004.

[SSA+09] Marc Stevens, Alexander Sotirov, Jacob Appelbaum, Arjen
Lenstra, David Molnar, Dag Arne Osvik, , and Benne de Weger.
Short Chosen-Prefix Collisions for MD5 and the Creation of a
Rogue CA Certificate. Advances in Cryptology — Crypto 2009,
Volume 5677 of LNCS, pages 55–73. Springer-Verlag, 2009.

[SSL94] The SSL Protocol (Internet Draft). Technical report, K.E.B.
Hickman, 1994.

[TLS99] The TLS Protocol Version 1.0. Technical Report RFC 2246, T.
Dierks, and C. Allen, 1999.

[TLS06] The TLS Protocol Version 1.1. Technical Report (TLS 1.1) RFC
4346, T. Dierks, and C. Allen, 2006.

[WLF+05] Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and
Xiuyuan Yu. Cryptanalysis of the Hash Functions MD4 and
RIPEMD. Advances in Cryptology — Eurocrypt 2005, Volume
3494 of LNCS, pages 1–18. Springer-Verlag, 2005.

[WY05] Xiaoyun Wang and Hongbo Yu. How to Break MD5 and other
Hash Functions. Advances in Cryptology — Eurocrypt 2005,
Volume 3494 of LNCS, pages 19–35. Springer-Verlag, 2005.

[WYY05] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Colli-
sions in the Full SHA-1. Advances in Cryptology — Crypto 2005,
Volume 3621 of LNCS, pages 17–36. Springer-Verlag, 2005.

[Yao82] Andrew Yao. Theory and Applications of Trapdoor Functions.
Proceedings of the Annual Symposium on Foundations of Com-
puter Science (FOCS) 1982. IEEE Computer Society Press, 1982.

[YW07] Hongbo Yu and Xiaoyun Wang. MultiCollision Attack on the
Compression Functions of MD4 and 3-Pass HAVAL. 10th In-
ternational Conference on Information Security and Cryptology
(ICISC) 2007, Volume 4817 of LNCS, pages 206–226. Springer-
Verlag, 2007.

	Title Page
	Introduction
	Definitions
	General Notation
	Hash Functions
	Properties of Hash Functions
	Robust Combiners

	Amplifying Collision-Resistance
	Introduction
	Our Model
	Warming Up: Attack on the Classical Combiner
	Basic Conclusions
	A Security-Amplifying Combiner
	Proof of Security Amplification

	Multi-Property Robustness
	Introduction
	Robust Multi-Property Hash Combiners
	The C4P Combiner for CR, PRF, TCR and MAC
	Preserving Indifferentiability: the C4P&IRO Combiner
	Preserving One-Wayness and the C4P&OW Combiner
	Weak vs. Mild vs. Strong Robustness
	Multiple Hash Functions and Tree-Based Composition

	Hash Function Combiners in TLS and SSL
	Introduction
	Preliminaries
	Derivation of the Master Secret
	Finished-Message

	Bibliography

