6 Formation of Leading-Edge Vortices

In this chapter an examination into the LEV formation process for a reduced-frequency range of $0.2 \leq k \leq 0.33$ has been performed. The influence of asymmetric and non-sinusoidal kinematics have been examined in the context of optimal vortex formation. The influence of the LEV on the rolling-up of the TEV, as well as their mutual interaction and convection into the wake have also been studied.

6.1 Parameter Space

In order to understand the effect of the airfoil kinematics on the development of the LEV, three simple and distinct plunging motions with a constant geometric angle of attack of $\alpha_o = 8^\circ$ and $k = 0.25$ (based on the full cycle) were selected. This incidence and frequency were chosen since they produced a well-defined LEV-TEV pair over the downstroke (see section 5.2.2). Once in the wake this vortex pair has been referred to as a *mushroom-wake* structure by Panda and Zaman (1994) due to its mushroom-head shape. The plunge position (h) of the *sinusoidal* (reference) and *asymmetric* cases is based on a simple harmonic motion:

$$ h(t) = h_o \cos(2\pi ft), $$

(6.1)

whereby the latter case consists of a concatenation of a fast downstroke and a slow upstroke. The *peak-shifted* case refers to a motion where the maximum plunge velocity (\dot{h}) and therefore the effective angle of attack (α_{eff}) occur late in the downstroke:

$$ h(t) = a_1 h_o \cos(a_2 \sin(\pi ft) + \frac{\pi}{2}) - a_3, $$

(6.2)

where a_1 and a_3 are coefficients used to normalize the amplitude of the motion and $a_2 = 0.81$ is used to set the peak velocity at $t/T = 0.33$. A fourth case with $k = 0.33$ and a sinusoidal motion corresponding to the *asymmetric* downstroke was performed to access the impact of the history effects from the previous cycle. This case is referred to as the *fast-sinusoidal* case and also maintained a constant geometric angle of attack of $\alpha_o = 8^\circ$. All cases shared a relatively large plunge amplitude of $h_o = 0.5c$. For a detailed description of the various test cases see Table 6.1. In Fig. 6.1 the variations of α_{eff} over the cycle and as a function of dimensionless time are presented for sake of clarity.

<table>
<thead>
<tr>
<th>name</th>
<th>$f_{(downstroke)}$ [Hz]</th>
<th>$f_{(upstroke)}$ [Hz]</th>
<th>$\alpha_{eff \max}$ [°]</th>
<th>t/T ($\alpha_{eff \max}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sinusoidal</td>
<td>2.5</td>
<td>2.5</td>
<td>22.1</td>
<td>0.25</td>
</tr>
<tr>
<td>asymmetric</td>
<td>3.3</td>
<td>2.0</td>
<td>26.5</td>
<td>0.19</td>
</tr>
<tr>
<td>peak-shifted</td>
<td>2.5</td>
<td>2.5</td>
<td>24.2</td>
<td>0.33</td>
</tr>
<tr>
<td>fast-sinusoidal</td>
<td>3.3</td>
<td>3.3</td>
<td>26.5</td>
<td>0.25</td>
</tr>
</tbody>
</table>
Figure 6.1: Effective angle-of-attack distribution for the four test cases as a function of (a) period and (b) dimensionless time; note symbols represent 12 measurement phases over the period.

6.2 Circulatory and Non-Circulatory Decomposition

Despite the constraints of a fully-attached flow, a planar wake and the fulfillment of the Kutta condition in classic unsteady aerodynamic theory, developed independently by Theodorsen (1935) and Kuessner (1936), such traditional models can nevertheless be useful in the estimation of the maximum attainable lift in the dynamic-stall process. At these reduced frequencies the LEV formation process is associated with a closed separation and a planar wake, and thus the basic constraints of such theoretical models are not violated. The following equation from Theodorsen decomposes the lift variation based on the assumption of superposition of the non-circulatory (added-mass) and circulatory components:

\[
C_l = \pi c c^2 (\frac{\dot{\alpha}}{U_\infty} + \frac{\dot{h}}{U_\infty} + c \frac{\ddot{\alpha}}{4 U_\infty^2}) + 2\pi C(k)(\alpha + \frac{\dot{h}}{U_\infty} + c \frac{\dot{\alpha}}{2 U_\infty}),
\]

where a complex-valued transfer function referred to as Theodorsen’s function \(C(k)\) is placed in front of the circulatory component to account for the influence of the shed vorticity in the wake. All terms based on pitching, i.e. \(\alpha, \dot{\alpha}\) and \(\ddot{\alpha}\) are based on a rotation about the \(c/4\) position. For the case of a pure-plunging airfoil, these pitching terms vanish leaving:

\[
C_l = \pi c \frac{\dot{h}}{2 U_\infty} + 2\pi C(k) \frac{\dot{h}}{U_\infty},
\]

In Fig. 6.2 the various contributions to the total lift as a function of cycle period and effective angle of attack are plotted for the reference sinusoidal case. Included in these plots are the quasi-steady curves \((2\pi\alpha)\) as well as the static lift measurements from the experiment. A maximum lift of approximately \(C_l \approx 1.9\) based on Theodorsen’s model would be theoretically attainable if the dynamic stall process could be sustained long enough over the downstroke, i.e. the LEV would be shed at the bottom of the stroke. This is likely a reasonable estimate since it takes into consideration the negative
influence of the shed vorticity at the trailing edge (circulatory component) during the climb to the lift peak. From Fig. 6.2(a), one can infer a time lag between the peak of the quasi-steady lift and the peak predicted from Theodorsen theory of $t/T = 0.013$, corresponding to a phase lag of $\varphi = 4.7^\circ$. At higher reduced frequencies the added-mass contribution grows, further canceling out the aerodynamic lag imposed by the circulatory contribution. However, with the onset of a fully-stalled flow after peak lift (dynamic stall), the lift variation is found to lag dramatically behind with values as high as $\varphi = 90^\circ$, where the relatively slow viscous time scales of the boundary-layer separation and reattachment dominate the history effects from one period to the next. This phenomenon has been clearly demonstrated using force measurements at lower reduced frequencies of $0.05 \leq k \leq 0.1$ (see section 5.2.2).

![Figure 6.2: Contributions of the non-circulatory (added mass) and circulatory components to the total lift of the sinusoidal reference case based on classical theory developed by Theodorsen (1935).](image)

Therefore it becomes clear that Theodorsen’s circulatory approach, which assumes attached flow, is not appropriate to predict the lift variation beyond the dynamic-stall process once the airfoil is fully stalled. However, there is no immediate reason to discount the insight provided by the non-circulatory contribution. In order to test its validity a set of so-called added-mass measurements were performed. In order to measure this non-circulatory component a dummy aluminum cylinder (shown in Fig. 6.3), 12mm in diameter and identical to the SD7003 profile in mass and spanwise distribution, was constructed and mounted at the airfoil center-of-mass position in the wind tunnel test-section. With the wind tunnel turned off, sinusoidal plunge motions at various mean angles of attack were measured, both for the profile and the dummy airfoil (cylinder). The measurements were based on an ensemble of 35 cycles, sampled at 1kHz, where the first four cycles as well as the last cycle were cut away in order to remove starting and stopping effects. By taking the difference between the airfoil and cylinder force measurements, the so-called added-mass contribution could be obtained.
In Fig. 6.4 the peak experimental added-mass contribution is compared with the prediction from Theodorsen’s non-circulatory theory for cases of sinusoidal plunging. Despite the large variation associated with the measurements, the discrepancy between experiment and theory is pronounced, particularly at a plunge frequency of 2Hz. When examining the flow field for such cases, clearly defined vortical structures are shed from both leading and trailing edges, as shown in the visualization of Fig. 6.5. These vortices, analogous to the structures found by Ringuette et al (2007), in turn induce strong forces on the airfoil, which cannot be accounted for with Theodorson’s inviscid theory.
Based on this result it becomes clear that direct force measurements of such unsteady aerodynamic cases are limited in their accuracy since the separation of the circulatory and non-circulatory components from the inertial component during the dynamic-tare cannot be performed. To confound the measurements even further, the inertial forces grow rapidly with f^2 such that at $k = 0.25$ they are approximately an order-of-magnitude larger than the aerodynamic forces, thus further deteriorating the accuracy of the measurements. In fact, for this range of reduced frequencies, the measurement error grows inversely proportional with $k^2 \propto (f/U_\infty)^2$ since the aerodynamic and inertial forces are proportional to U_∞^2 and f^2, respectively. Therefore in this investigation accurate direct force measurements were not possible. Instead a concentration on PIV measurements to better understand the LEV formation process has been performed. These results will be presented in the following section.

6.3 Results

6.3.1 Reference (Sinusoidal) Case

Pure-plunging motions were selected for this study since the effective angle of attack distributions for such a cases remain constant over the airfoil chord. This is possible since the introduction of relative leading- and trailing-edge velocities based on rotation (known as the dynamic-cambering effect) have been avoided. In Fig. 6.6 plots of dimensionless vorticity for 12 individual phases over the cycle are shown, where $t/T = 0$ corresponds to the top of the stroke. One can identify the clear evolution of the LEV over the downstroke, with first signs of a LEV at $t/T = 0.167$. The LEV subsequently grows in size and strength culminating in a large vortex on the order of the airfoil chord at $t/T = 0.333$. Only after this point does the separation open and vortex pinch-off occur. During the LEV formation process lift continuously increases beyond the peak static-stall value (see McCroskey (1982)) and thus nearly continuous counter-clockwise vorticity, defined here as negative, is shed from the trailing edge. This feature can be explained through Kelvin’s law:

$$\frac{D\Gamma}{Dt} = 0,$$

such that the flux of counter-clockwise (negative) vorticity convected from the airfoil trailing edge is equal to the rate at which circulation of the leading-edge vortex grows
with time:

\[\frac{D\Gamma_{LEV}}{Dt} = u_{conv} \int_s \omega_z ds, \]

where \(s \) is a control surface placed normal to the free-stream direction at the trailing edge. Just before the airfoil reaches the bottom of the stroke at \(t/T = 0.417 \), the strong counter-rotating vorticity shed at the trailing edge begins to roll-up into a trailing-edge vortex (TEV) due to the apparent interaction with the LEV passing overhead. This TEV grows very rapidly in strength and cuts apart the original LEV from the separated region above the airfoil, distinctly seen at the bottom of the stroke \((t/T = 0.5) \). Thereafter the vortex pair (mushroom structure) convect rapidly downstream and the flow reattaches over the airfoil, moving from the leading edge back towards the trailing edge. By the time the airfoil reaches the middle of the upstroke \((t/T = 0.75) \) the flow is again fully attached and a shear layer characteristic of static conditions is emitted from the trailing edge. As the airfoil approaches the top of the stroke a clear shedding structure associated with the Kelvin-Helmholtz instability mechanism is found such that even after 100 cycles of averaging the approximate alternating vortex position is the same, suggesting that the onset of this instability is forced by the motion and is not merely stochastic.
Figure 6.6: Plots of dimensionless vorticity for the reference case, a sinusoidal plunging motion with a mean angle of attack of $\alpha_o = 8^\circ$; note masking under airfoil necessary due to reflections and shadow effects.
6.3.2 Effect of Kinematics on LEV Formation

When examining the effective angle-of-attack distribution for the various cases in Fig. 6.1, one can observe that the asymmetric and fast-sinusoidal cases pass through the static-stall angle at a much steeper rate when compared to the sinusoidal and peak-shifted cases. This has the effect of strengthening the shear layer feeding the LEV earlier on in the downstroke. Conversely for the peak-shifted case, the feeding only reaches its full strength in the second half of the downstroke. This variation is clearly visible when comparing the development of the LEV over the downstroke at $t/T = 0.25$ ($t/T = 0.333$ for the fast-sinusoidal case) shown in Fig. 6.7.

![Figure 6.7: Plots of dimensionless vorticity during the downstroke ($t/T = 0.25$) for (a) sinusoidal, (b) asymmetric, (c) peak-shifted and (d) fast-sinusoidal cases; note $t/T = 0.333$ used for fast-sinusoidal case to compare equivalent LEV development time.](image)

When comparing Fig. 6.7(b) and (d), one finds that the LEVs are nearly identical, albeit the asymmetric case has a more concentrated and symmetric core. The strength and shape of the planar wake are also very similar. The discrepancy between the two cases lies in the history effects, i.e. the state of the boundary layer and the surrounding flow field at the beginning of the downstroke. At this phase ($t/T = 0$) the flow has relaxed to a quasi-steady condition for the asymmetric case since the upstroke is relatively slow ($f = 2$Hz), whereas for the fast-sinusoidal case the boundary-layer is locally separated and the shear layer is much thicker. The comparison of the starting conditions ($t/T = 0$) in the LEV formation process for these two cases is shown in Fig. 6.8.

![Figure 6.8: Plots of dimensionless vorticity at top of stroke ($t/T = 0$) for (a) asymmetric and (b) fast-sinusoidal cases, demonstrating the importance of the history effects just before the LEV formation process begins.](image)
6.3.3 Effect of Kinematics on Wake Formation

At a later stage in the cycle corresponding to $t/T = 0.5$, when the sinusoidal and peak-shifted cases are at the bottom of the stroke ($t/T = 0.667$ for the fast-sinusoidal case), the LEV-TEV vortex pair has now begun its convection downstream. The comparison of the vortex positioning amongst the various cases is shown in Fig. 6.9. Again it is found that those cases with an earlier LEV formation onset time, associated with a steeper rise in the effective angle of attack slope, are also more advanced in the wake. This suggests that the time from onset of formation to pinch-off does not vary dramatically amongst the various cases. For the two analogous cases (Fig. 6.9(b) and (d)) the differences in the wakes vary only slightly; in both cases the LEVs are stretched vertically and the TEVs are broken up. The peak-shifted case (Fig. 6.9(c)), as before, is much younger in its development such that the TEV has yet to pinch-off from the trailing edge. In fact the flow at this instant shares a resemblance with the sinusoidal case but at an earlier time step ($t/T = 0.417$), as shown in Fig. 6.6. Thus one can infer that the timing as well as the rate at which the given motion crosses the static-stall angle is of primary importance in the LEV formation process. However, the specific kinematics after the onset of LEV roll-up impact the relative timing of the pinch-off process and will be examined in the following section.

Figure 6.9: Plots of dimensionless vorticity around bottom of stroke ($t/T = 0.5$) for (a) sinusoidal, (b) asymmetric, (c) peak-shifted and (d) fast-sinusoidal cases; note $t/T = 0.667$ used for fast-sinusoidal case to compare equivalent convection times of LEV and TEV in wake.

6.3.4 Vortex Growth and Pinch-Off

By tracking the development of both the LEV and TEV in each frame and extracting the respective vortex circulation from the local vorticity field using Stokes’ theorem:

$$\Gamma = \iint_A \omega_z dA,$$ \hspace{1cm} (6.7)

where the rectangular area A was selected in each time step to encompass the vortex of interest, the dimensionless circulation of both the LEV and TEV at each phase in the cycle could be determined.
In Fig. 6.10 the growth and decay periods of the respective LEVs and TEVs are shown for all four motions. The maximum circulation of the LEV associated with the last time step before vortex pinch-off and maximum lift augmentation is found to occur at \(t/T = 0.333 \) for the sinusoidal and asymmetric motions, whereas it occurs later for the peak-shifted and fast-sinusoidal motions at \(t/T = 0.417 \). When comparing this result to the position of maximum effective angle of attack in Fig. 6.1(a) one can infer that a peak-circulation lag ranging between approximately \(30° \leq \varphi \leq 60° \) is present in all cases, where the fast-sinusoidal motion exhibits both the largest value of circulation and delay, as would be expected. Of significance is the occurrence in all cases of pinch-off before the airfoil reaches the bottom of the stroke at \(t/T = 0.5 \). However, both the asymmetric and corresponding fast-sinusoidal cases, and even more noticeably the peak-shifted case demonstrate a later pinch-off and thus superior performance when compared to the reference sinusoidal motion.

![Figure 6.10](image)

Figure 6.10: Development of LEV and TEV circulation as a function of (a) period and (b) dimensionless time; note solid and hollow symbols represent LEVs and TEVs, respectively.

When comparing the LEV timing and growth rate for the various motions as a function of dimensionless time in Fig. 6.10(b), one finds that the asymmetric and analogous fast-sinusoidal curves are nearly identical, albeit the fast-sinusoidal motion achieves a slightly higher peak value. This again strengthens the argument that history effects do not play a dominant role in the LEV formation process. Similarly the sinusoidal and peak-shifted cases share nearly identical LEV onset and growth periods. However, the peak-shifted case, with its maximum feeding velocity occurring only later on in the downstroke, sustains LEV growth long after the sinusoidal motion’s LEV has pinched-off. This is a dramatic result despite a relatively small increase in peak plunge velocity and energy expenditure.

In all cases the TEV is found to form only once the corresponding LEV has reached its maximum strength and begins convecting downstream. In turn the TEV rapidly loses strength in the wake due to interaction with the LEV. Again referring to Fig. 6.10(b), one can identify that for the reference sinusoidal case the TEV forms relatively late and is weakest among the four motions. This effect can be substantiated through Kelvin’s law (Equation 6.5).
Based on the discussion in section 2.3.1 regarding optimal vortex formation, the LEV and TEV formation times for the various test cases are presented in Fig. 6.11. When examining the peak formation time, known as the formation number, one can infer that all values reduce into a range of $4.4 < \hat{T} < 5.0$, agreeing well with the concept of an optimal vortex formation time presented by Dabiri (2009). This result suggests that in order to shed the LEV even later, i.e. at the bottom of the stroke, in order take full advantage of the dynamic-stall process, a more gradual feeding of the LEV would be necessary. This effect has been clearly demonstrated with the peak-shifted motion, however, it is believed an additional pitching motion would be desirable late in the stroke to delay the pinch-off process even further.

![Figure 6.11: Formation time as a function of (a) period and (b) dimensionless time; note solid and hollow symbols represent LEVs and TEVs, respectively.](image)

6.3.5 Vortex Convection

To complete the discussion, a study of the relative vortex positioning and convective velocity has been performed. The vortex trajectories were obtained by tracking the concentrated core whereas the convective velocities were based on a simple linear interpolation of the vortex positions with time. Shown in Figs. 6.12 and 6.13 are the respective vortex trajectories and convective velocities for both the LEVs and TEVs. In the case of the relative LEV position, as expected it follows the airfoil surface during the formation process. Once pinch-off takes place and the LEV convects into the wake, the vortex tends to follow a horizontal trajectory. The exception to this rule is found in the fast-sinusoidal case where the LEV shoots upwards and then later drifts back down. The corresponding TEV positions tend to curve slightly upwards for all cases due to the mutual induction of the vortex pair. The most drastic upward movement corresponds to the TEV from the sinusoidal motion. In all cases there exists a strong correlation between the LEV and TEV positions.
When examining the corresponding axial convection velocities, the LEV core is found to convect very slowly during the formation process but then accelerate rapidly once emitted into the wake. In fact a clear asymptotic behavior towards \(u_{\text{conv}}/U_\infty = 1 \) is visible in Fig. 6.13(a). This result agrees well with the measurements made by Panda and Zaman (1994) for LEVs in the wake of a pitching airfoil. Again the fast-sinusoidal case shows exceptional variation in the wake attributed to the strong interaction with the TEV. For the TEV convection velocities shown in Fig. 6.13(b), again a clear asymptotic behavior is visible, whereby the TEV for the sinusoidal motion breaks-up rapidly as can be seen in Fig. 6.6 between time steps \(t/T = 0.583 \) and \(t/T = 0.667 \). Despite this outlier, it can be generalized that all vortex convection velocities approach the free-stream velocity asymptotically within two chord-lengths of the trailing edge.

6.4 Summary

An investigation into the formation of LEVs for various plunging kinematics has been performed using PIV. First a discussion on the decomposition of aerodynamic loads into circulatory and non-circulatory components is treated and compared with dynamic
tares in the wind tunnel. This section demonstrates the limitations associated with
the separation of inertial and aerodynamic forces through the dynamic-tare method.
Subsequently the evolution of the LEV for a reference (sinusoidal) motion is examined
in detail. When compared to this reference case, asymmetric and peak-shifted motions
are found to impact the onset and growth in the LEV formation process. Most promising
was the delayed growth and pinch-off for the peak-shifted case where the LEV convected
from the airfoil just before the bottom of the stroke. When examining the growth in
circulation during the LEV formation process, it was found that all motions exhibited
vortex pinch-off within $4.4 < \hat{T} < 5.0$, agreeing well with the concept of optimal vortex
formation. This suggests that by carefully tuning the airfoil kinematics, thus gradually
feeding the LEV over the downstroke, it is to some extent possible to stabilize the LEV
without the necessity of a span-wise flow.