TU Darmstadt / ULB / TUprints

Resource Planning in Cross-Docking Platforms - Models and Algorithms

Wolff, Pascal (2021):
Resource Planning in Cross-Docking Platforms - Models and Algorithms. (Publisher's Version)
Darmstadt, Technische Universität,
DOI: 10.26083/tuprints-00018501,
[Ph.D. Thesis]

[img]
Preview
Text
20210426_Resource Planning in Cross-Docking Platforms_Pascal Wolff_final.pdf
Available under CC-BY-NC-SA 4.0 International - Creative Commons, Attribution Non-commercial, Share-alike.

Download (1MB) | Preview
Item Type: Ph.D. Thesis
Status: Publisher's Version
Title: Resource Planning in Cross-Docking Platforms - Models and Algorithms
Language: English
Abstract:

Cross-docking, a relatively new warehouse strategy that has its roots in the industry, can improve the efficiency of a company's logistics and distribution processes. Specifically, it can minimize the costly storage and order picking function of traditional warehouses by efficiently coordinating (i.e., synchronizing) incoming freight flows and outgoing freight flows. Companies from various industries such as the retailing industry, the less-than-truckload logistics service industry, the express and small parcel delivery industry, and the automotive industry operate cross-docking terminals in their transportation networks and benefit from improved service levels, reduced transportation costs, reduced inventory holding costs, reduced handling costs, etc.

Besides its practical relevance, cross-docking has also received a lot of academic attention in the last 30 years. Many academic studies have addressed a wide range of strategic, tactical, and operational cross-docking decision problems. Most studies, however, have neglected resource planning aspects and hence failed to address two major concerns of cross-docking practitioners:

- Determining the number of resources needed;

- Scheduling internal resources in an efficient way.

This thesis sets out to bridge this theory-practice gap in the cross-docking domain by proposing new models that combine two interdependent operational problems faced by cross-docking practitioners, namely the scheduling of internal resources and the scheduling of trucks.

Three novel problems are introduced in this thesis. First, the resource and truck scheduling problem, denoted as TSFD-RC-F, is proposed. It allows scheduling both resources and trucks when the resource requirements of trucks are given and known in advance. The TSFD-RC-F aims to determine a truck schedule that can be executed with a minimum number of resources. Then, the multi-mode resource and truck scheduling problem (TSFD-RC-V) is proposed. It is a model extension of the TSFD-RC-F and offers the additional flexibility of adapting the number of resources for processing trucks. While deploying more operators accelerates truck processing, deploying fewer operators prolongs the processing time. The model aims to determine how many resources should be deployed for truck processing and at what time trucks should be serviced in order to minimize the maximum number of required resources. Lastly, the shift and truck scheduling problem (ISTSFD) is proposed. It considers different operator types (e.g., temporary and regular workers), shift patterns, and work breaks. The ISTSFD seeks to find a truck schedule and employee timetable with minimum labor costs. Two variants of the ISTSFD are presented: a single-mode problem (ISTSFD-F) and a multi-mode problem (ISTSFD-V).

As the proposed models' complexity statuses make it challenging to solve large-sized instances with a default solver, tailored column generation-based solution procedures for all three problems are developed.

Extensive computational experiments are conducted in order to assess the computational performance of both the mixed-integer programs and the proposed solution procedures. In addition, managerial insights are derived by benchmarking the proposed models against frequently used truck scheduling models.

It is shown that the proposed discrete-time MIP formulations clearly outperform the proposed continuous-time MIP formulations in terms of both solution quality and computational time. Moreover, the solution time can be reduced by using the proposed preprocessing parameters for calculating the number of delayed freight units and compelling the service level. While a default solver can solve the discrete-time MIPs for small and medium-sized instances in a reasonable time, it often fails to provide good solutions for very large problem instances with a fine time granularity. The proposed heuristics solution procedures, on the other hand, can provide high-quality solutions for very large problem instances in a short time and clearly outperform commercial solvers. In addition, the following key take-home managerial insights could be derived:

- By using the internal resource requirements instead of the frequently used makespan or processing time as the primary performance metrics, the cross-docking platform's operational efficiency can be significantly increased.

- By integrating the decision of how many resources should be deployed for truck processing (i.e., considering multi-mode processing), further operational efficiency gains can be realized.

- The defined service level has a significant impact on the operator demand. Lowering the required service level can be a reasonable means to improve a cross-docking facility's operational efficiency further.

- The work break patterns have a significant impact on the operator requirements. Too low a number of work break patterns may result in a strong surge in operator demand.

Alternative Abstract:
Alternative AbstractLanguage

Cross-Docking ist eine besondere Form des Warenumschlags. Im Gegensatz zur traditionellen Lagerhaltung zielt das Cross-Docking auf einen bestandslosen Warenumschlag ab. Die beim Cross-Docking angestrebte zeitliche und mengenmäßige Koordination von ankommenden und ausgehenden Warenlieferung ermöglicht unter anderem eine Reduzierung der Lagerhaltungs- und Kommissionierkosten. Zudem können im Idealfall kürzere Durchlaufzeiten und eine bessere Auslastung von Transportkapazitäten realisiert werden. Cross-Docking-Zentren haben sich in der Praxis vielfach bewährt. Sie sind z. B. elementarer Bestandteil in Distributionsnetzwerken von Groß- und Einzelhandelsunternehmen, Kurier-, Express-, und Paketdienstleistern, Automobilunternehmen sowie Transportdienstleistern.

Cross-Docking und die damit einhergehenden strategischen, taktischen und operativen Planungsprobleme wurden auch in einer Vielzahl von wissenschaftlichen Beiträgen untersucht. Bei der Analyse der Literatur lässt sich überwiegend jedoch die Vernachlässigung von Ressourcen- und Personalbedarfen zur Durchführung der internen Transport- und Kommissionierprozesse konstatieren. Die wissenschaftliche Literatur hat es bis heute weitestgehend versäumt, Entscheidungsträger bei der Ermittlung von Personal- und Ressourcenbedarfen in Cross-Docking-Zentren zu unterstützen.

Die vorliegende Arbeit leistet einen Beitrag zur Schließung dieser Forschungslücke, indem neue operative Planungsansätze entwickelt werden, die explizit die Personal- und Ressourcenbedarfe berücksichtigen.

Hierfür wird zunächst ein Basismodell zur integrierten Ressourcen- und Torbelegungsplanung (TSFD-RC-F) in Cross-Docking-Zentren entwickelt. Das TSFD-RC-F zielt auf die Ermittlung eines Torbelegungsplans ab, der mit einer minimalen Anzahl an Ressourcen ausgeführt werden kann. Dabei wird die Annahme getroffen, dass der Ressourcenbedarf zur Bearbeitung eines jeden LKWs bekannt ist. In der anschließend entwickelten Modellerweiterung (TSFD-RC-V) wird diese Annahme des Basismodells verworfen. Das TSFD-RC-V trifft hingegen die Annahme, dass die Ressourcenanzahl zur Bearbeitung von LKWs durch den Entscheidungsträger variiert werden kann. Das TSFD-RC-V ermittelt demnach für jeden LKW den optimalen Ressourceneinsatz. Des Weiteren wird ein mathematisches Modell zur integrierten Schicht- und Torbelegungsplanung (ISTSFD) entwickelt. Im ISTSFD können verschiedene Personalarten und Schichtmuster berücksichtigt werden.

Die im Rahmen dieser Arbeit entwickelten gemischt-ganzzahligen Optimierungsmodelle sind nachweislich NP-schwer. Es kann deshalb nicht garantiert werden, dass große Probleminstanzen mit Hilfe von Standardsolvern (z. B. CPLEX oder Gurobi) gelöst werden können. Zur Lösung großer Probleminstanzen werden deshalb Spaltengenerierungsverfahren entwickelt.

Die Eignung der vorgestellten Modelle und Lösungsverfahren wird durch umfangreiche Tests bewertet. Es wird beispielsweise gezeigt, dass die zeitdiskreten Modellformulierungen den zeitkontinuierlichen Modellformulierungen im Hinblick auf die Lösungszeit und Lösungsqualität überlegen sind. Mit Hilfe von Standardsolvern können kleine und mittelgroße Probleminstanzen effizient gelöst werden. Bei der Lösung großer Probleminstanzen stoßen kommerzielle Standardsolver allerdings oftmals an ihre Grenzen. Die entwickelten heuristischen Lösungsverfahren sind hingegen in der Lage sehr gute - oftmals sogar optimale - Lösungen für große Probleminstanzen zu ermitteln. Des Weiteren werden durch die numerischen Tests eine Vielzahl von betriebswirtschaftlichen Erkenntnissen gewonnen, z. B.:

- Verglichen mit herkömmlichen Modellen zur Torbelegungsplanung generiert das Basismodell zur integrierten Ressourcen- und Torbelegungsplanung (TSFD-RC-F) Arbeitspläne die sich durch einen deutlich geringeren Personalbedarf auszeichnen.

- Der im TSFD-RC-V integrierte zusätzliche Freiheitsgrad zur Auswahl des optimalen Ressourceneinsatzes für jeden LKW ermöglicht weitere Effizienzsteigerungen von ca. 15%.

- Der Personalbedarf wird maßgeblich durch das vorgegebene Lieferserviceniveau beeinflusst. Bereits geringfügige Senkungen des Lieferserviceniveaus können zu signifikanten Personaleinsparungen führen.

- Die Pausenregelungen haben einen erheblichen Einfluss auf den untertägigen Personalbedarf. Gestaffelte Mittagspausen sind gemeinsamen Mittagspausen vorzuziehen, da letztgenannte mit einem erhöhten Mitarbeiterbedarf einhergehen können.

German
Place of Publication: Darmstadt
Collation: xxviii, 160 Seiten
Classification DDC: 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
300 Sozialwissenschaften > 330 Wirtschaft
500 Naturwissenschaften und Mathematik > 510 Mathematik
Divisions: 01 Department of Law and Economics > Betriebswirtschaftliche Fachgebiete > Fachgebiet Supply-Chain- und Netzwerkmanagement
Date Deposited: 11 May 2021 10:13
Last Modified: 11 May 2021 10:13
DOI: 10.26083/tuprints-00018501
URN: urn:nbn:de:tuda-tuprints-185010
Referees: Pfohl, Prof. Dr. Hans-Christian ; Huo, Prof. Dr. Jiazhen ; Glock, Prof. Dr. Christoph
Refereed: 22 March 2021
URI: https://tuprints.ulb.tu-darmstadt.de/id/eprint/18501
Export:
Actions (login required)
View Item View Item