TU Darmstadt / ULB / TUprints

Near Infrared Photocurrent Spectroscopy on Carbon Nanotube Devices

Selvasundaram, Pranauv Balaji (2020):
Near Infrared Photocurrent Spectroscopy on Carbon Nanotube Devices. (Publisher's Version)
Darmstadt, Technische Universität,
DOI: 10.25534/tuprints-00015395,
[Ph.D. Thesis]

This is the latest version of this item.

[img]
Preview
Text
Doctoral Thesis_Pranauv Selvasundaram.pdf
Available under CC-BY-SA 4.0 International - Creative Commons, Attribution Share-alike.

Download (6MB) | Preview
Item Type: Ph.D. Thesis
Status: Publisher's Version
Title: Near Infrared Photocurrent Spectroscopy on Carbon Nanotube Devices
Language: English
Abstract:

Single-walled carbon nanotubes (SWCNTs) constitute an allotrope of carbon with a two dimensional lattice structure rolled up to a seamless cylinder. Owing to their one dimensional structure, they possess unique optical properties including the ability to absorb light from visible to infrared regime. Additionally, they behave as metals or semiconductors depending upon their structure or the direction in which they are rolled up with respect to the graphene lattice. With solution processing techniques, it is now possible to fabricate devices consisting of carbon nanotubes with tailored properties for a variety of applications including optical detectors, optical emitters and other organic electronics. This thesis work is focused on achieving for photocurrent generation in carbon nanotube transistor devices working under ambient conditions. The transistors with split gate geometry were fabricated with solution - processed carbon nanotubes as the transport channel and characterized using photocurrent spectroscopy. The nanotubes were integrated to form transistor devices dielectrophoretically, by depos-iting semiconducting previously sorted CNTs using polymer assisted size exclusion chromatography (SEC) in toluene. Also, a new method to measure the length distributions of the nanotubes using Analytical Untracentrifugation (AUC) was explored for the first time for non-aqueous suspensions. It was realized that the sedimentation behavior of monochiral suspensions studied in toluene deviated strongly from prior works carried out for aqueous suspensions, but a new and a rather simpler model allows to explain the observation. On characterizing the transistor devices with photocurrent spectroscopy, it is realized that for the device geometry used, the photocurrent spectrum correlates well with the absorption spectrum of the deposit-ed nanotubes. Also, the results display signatures from the substrates in the off-resonant regions of the spectrum. It was realized that only insulating substrates could provide a clean photoresponse specific to the nanotubes alone and that CNTs are sensitive to light absorption by the underlying substrate. Furthermore, electric - field assisted measurements were carried out by applying a gate voltage on the split gates and measuring the short - circuit (source to drain) photocurrent signal. Based on the trends observed in the results, it is possible to identify the mechanism behind the generated photocurrent signal for a particular measurement scheme. Also, the results indicate that the Schottky barrier at the nanotube and the metal electrode interface dominates the pn-junction formed by the split gates. Never-theless, the (n, m) specific relative photocurrent contribution could be tailored with the electrostatic field from the split gates. Lastly, transistors were fabricated with silicon contact with solution processed few chiral and monochiral carbon nanotubes as the transport channel. Photocurrent spectroscopy was carried out on these transis-tors as well. Results show photocurrent signals originating from the substrate as well as from the smaller diameter tubes however, in opposite polarity, but not from the larger diameter tubes due to unfavorable energy level positions primarily for the few chiral suspensions. However, devices fabricated with a monochiral suspension, revealed that the photocurrent signatures resemble the signatures of the few chiral suspensions, indicating that the signatures are rather an effect from the substrate and not from the nanotube channel itself.

Alternative Abstract:
Alternative AbstractLanguage
Einwandige Kohlenstoffnanoröhren (engl. single-walled carbon nanotubes, SWCNTs) sind röhrenförmige Allotrope von Kohlenstoff mit zweidimensionaler Gitterstruktur. SWCNTs demonstrieren eine Reihe von einzigartigen optischen Eigenschaften und absorbieren Licht im sichtbaren und nahinfraroten Wellenlängebereich. Je nach Struktur und Richtung, in welcher eine SWCNT gerollt ist, entstehen metallische und halbleitende Nanoröhren. Mit Hilfe von Sortier- und Abscheidungsverfahren ist es möglich geworden, SWCNT-basierte Strukturen mit maßgeschneiderten Eigenschaften herzustellen, die als optische Detektoren, Lichtemitter oder Bauteile für organische Elektronik fungieren. Im Rahmen dieser Arbeit wird eine Studie zur Photostrommessung in SWCNT-basierten Transistoren unter Normalbedingungen vorgestellt. SWCNTs wurden dielektrophoretisch in Transistoren mit Split-Gate integriert und mittels Photostrom-Spektroskopie charakterisiert. Halbleitende SWCNTs wurden unter Anwendung polymerbasierter Größenausschlusschromatographie (size exclusion chromatography, SEC) sortiert. Eine neue Methode zur Bestimmung von SWCNT-Längenvertelung mit Hilfe von analytischer Ultrazentrifugation (AUC) in nicht-wässrigen Suspensionen wurde entwickelt. Das Sedimentationsverhalten von SWCNTs in Toluol zeigte signifikante Differenzen im Vergleich zu wäßrigen Suspensionen, die mit Hilfe eines neuen Modells erklärt wurden. Abhängig von Transistor-Geometrie wurden signifikante Korrelationen zwischen Photostrom- und Absorptionsspektra von abgeschiedenen SWCNTs beobachtet. Photostrom-Messungen wurden auch vom unterliegenden Substrat beeinflusst und es wurde gezeigt, dass SWCNTs empfindlich in Bezug auf Substrat-Lichtabsorption sind. Zur Minimierung von Umgebungseinflüssen auf SWCNT-Photoempfindlichkeit wurden isolierende Substrate verwendet. Des Weiteren wurden feldunterstütze Messungen durch Anlegen einer Gate-Spannung an dieSplit-Gates und Vermessung von Kurzschluss-Photostromsignal (zwischen Source und Drain) durchgeführt. Die Messergebnisse wurden zur Identifizierung von Photostromerzeugungsmechanismen für das jeweilige Messschema herangezogen. Es zeigt sich, dass Schottky-Barrieren zwischen SWCNT und Metalelektrodenoberfläche den PN-Übergang am Split-Gate dominieren. Ein (n,m)-spezifischer Beitrag zum Photostrom konnte anhand des elektrostatischen Feldes des Split-Gates ermittelt werden. Schließlich wurden SWCNTs in Transistoren mit Silizium-Kontakten integriert und Ladungstransport und Photostrom-Messungen untersucht. Bei Verwendung von multichiralen SWCNT-Suspensionen wurden neben Substrat-Einflüssen auch Photostrom-Signale in entgegengesetzter Polarität von SWCNTs mit kleinerem Durchmesser detektiert, aber nicht von größeren SWCNTs. Es wurden auch Transistoren mit Silizium-Kontakten mit monochiralen SWCNTs hergestellt. Diese zeigen ähnliche Photostromspektren was darauf hindeutet dass die optischen Übergänge der SWCNT eine untergeordnete für die Photostromerzeugung spielen.German
Place of Publication: Darmstadt
Collation: 127 Seiten
Classification DDC: 500 Naturwissenschaften und Mathematik > 500 Naturwissenschaften
500 Naturwissenschaften und Mathematik > 530 Physik
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften
Divisions: 11 Department of Materials and Earth Sciences > Material Science > Fachgebiet Molekulare Nanostrukturen
Date Deposited: 21 Dec 2020 09:07
Last Modified: 22 Dec 2020 10:21
DOI: 10.25534/tuprints-00015395
URN: urn:nbn:de:tuda-tuprints-153957
Referees: Krupke, Prof. Dr. Ralph M. and Stark, Prof. Dr. Robert
Refereed: 28 October 2020
URI: https://tuprints.ulb.tu-darmstadt.de/id/eprint/15395
Export:

Available Versions of this Item

  • Near Infrared Photocurrent Spectroscopy on Carbon Nanotube Devices. (deposited 21 Dec 2020 09:07) [Currently Displayed]
Actions (login required)
View Item View Item