List of Figures

Figure 1. Location of the study area ..13

Figure 2. Photograph showing examples of different lithologies: a) lava, b) tuff, c) tuffaceous breccia, d) tuffaceous sandstones and conglomerates, e) tuffaceous silt- and claystones 15

Figure 3. Photomicrographs of volcanic rocks of the Tepoztlán Formation. Scale bar is 1mm, 1) dense lava in the central part of a lava flow, 2) clasts in fluviial deposits, 3) Tuff. a) non-polarized and b) polarized light ..16

Figure 4. Rock classification of the Tepoztlán Formation based on the total alkali-silica (TAS) scheme (Le Bas et al., 1986; Le Bas, 1989, 2000). BA, basaltic andesite; A, andesite; D, dacite; R, rhyolite ..21

Figure 5. Geological map with locations of the sampled sections (red lines), based on the maps (black frames) of a) Michelson and Tunon-Vettermann (2004), b) Cizmezcia (in prep.), Faridfar (2009), Lehmann (2009), c) Lenhardt (2002), d) Hechler (2002), e) Bär and Schwab, (2005) ..25

Figure 6. Examples of orthogonal vector (Zijderfeld) plots of four samples undergoing alternating-field demagnetization. Each plot shows the projection of the magnetization vector endpoint on two perpendicular planes, one in the horizontal plane (solid symbols) and one vertical (open symbols). Numbers give strength of the demagnetizing field in milliTeslas (mT). To the right, intensity plots of the samples are shown ... 28

Figure 7. Lithostratigraphic sections of the Tepoztlán Formation with palaeomagnetic and radio-isotopic analysis results and magnetostratigraphic correlation to the geomagnetic polarity time scale of Cande and Kent (CK95; 1995) ..30

Figure 8. Chronostratigraphical correlation of the stratigraphic sections together with their predominant lithologies ..32

Figure 9. Photographs showing examples of the architectural elements: a) LF (Lava flow), b) FA (Pyroclastic fall), c) SU (Pyroclastic surge), d) PF (Pyroclastic flow), e) BA (Block-and-ash flow), f) DF (Debris flow), g) HF (Hyperconcentrated flow), h) GB (Gravel bar), i) CH (Channel-fill), j) SC (Scour-fill), k) SF (Sheet flood), l) LC (lacustrine) ..47

Figure 10. Lithostratigraphic section (MA) of the Tepoztlán Formation near Malinalco 50

Figure 11. Medium scale panel 1.1. (a) Photomosaic of the study outcrop. (b) Interpretation of the photomosaic. The red line shows the course of the stratigraphic section. PF, pyroclastic flow; DF, debris flow; SC, scour-fill; GB, gravel bar; SF, sheet flood; CH, channel-fill; LC, lacustrine. The red line indicates the course of the stratigraphic section MA ..51

Figure 12. Medium scale panel 1.2. (a) Photomosaic of the study outcrop. (b) Interpretation of the photomosaic. PF, pyroclastic flow; SC, scour-fill; GB, gravel bar; SF, sheet flood; CH, channel-fill; LC, lacustrine ..51
Figure 13. Large scale panel 1.3. (a) Photomosaic of the study outcrop. (b) Interpretation of the photomosaic. The locations of the 2D-panels 1.1. and 1.2. are indicated by the red frames.

Figure 14. Lithostratigraphic sections SA1 and SA2 of the Tepoztlán Formation near San Andrés.

Figure 15. Small scale panel 2.1. (a) Photomosaic of the study outcrop. (b) Interpretation of the photomosaic.

Figure 16. Small scale panel 2.2. (a) Photomosaic of the study outcrop. (b) Interpretation of the photomosaic. FA, pyroclastic fall; SU, pyroclastic surge; PF, pyroclastic flow; CH, channel-fill.

Figure 17. Large scale panel 2.3. (a) Photomosaic of the study outcrop. (b) Interpretation of the photomosaic. The red lines indicate the courses of the sections SA1 and SA2.

Figure 18. Large scale panel 2.4. (a) Photomosaic of the study outcrop. (b) Interpretation of the photomosaic.

Figure 19. Large scale panel 2.5. (a) Photomosaic of the study outcrop. (b) Interpretation of the photomosaic.

Figure 20. Large scale panel 2.6. (a) Photomosaic of the study outcrop. (b) Interpretation of the photomosaic.

Figure 21. Lithostratigraphic section TEP of the Tepoztlán Formation near Tepoztlán (for legend see fig. 14).

Figure 22. Small scale panel 3.1. (a) Photomosaic of the study outcrop. (b) Interpretation of the photomosaic.

Figure 23. Large scale panel 3.2. (a) Photomosaic of the study outcrop. (b) Interpretation of the photomosaic. The red line indicates the course of the stratigraphic section TEP.

Figure 24. Lithostratigraphic sections SO1 and SO2 of the Tepoztlán Formation near Cerro Sombrerito.

Figure 25. Small scale panel 4.1. (a) Photomosaic of the study outcrop. (b) Interpretation of the photomosaic.

Figure 26. Medium scale panel 4.2. (a) Photomosaic of the study outcrop. (b) Interpretation of the photomosaic.

Figure 27. Large scale panel 4.3. (a) Photomosaic of the study outcrop. (b) Interpretation of the photomosaic.

Figure 28. Large scale panel 4.4. (a) Photomosaic of the study outcrop. (b) Interpretation of the photomosaic. The red lines indicate the courses of the sections SO1 and SO2. The red frames indicate the locations of the 2D-panels 4.1. and 4.2.
Figure 29. Lithostratigraphic section TO of the Tepoztlán Formation near Cerro Tonantzin

Figure 30. Small scale panel 5.1. (a) Photomosaic of the study outcrop. (b) Interpretation of the photomosaic. FA, pyroclastic fall; PF, pyroclastic flow; DF, debris flow; HF, hyperconcentrated flow; SC, scour-fill; GB, gravel bar; SF, sheet flood; CH, channel-fill

Figure 31. Medium scale panel 5.2. (a) Photomosaic of the study outcrop. (b) Interpretation of the photomosaic. FA, pyroclastic fall; PF, pyroclastic flow; DF, debris flow; HF, hyperconcentrated flow; SC, scour-fill; GB, gravel bar; SF, sheet flood; CH, channel-fill. The red line indicates the course of the stratigraphic section

Figure 32. Medium scale panel 5.3. (a) Photomosaic of the study outcrop. (b) Interpretation of the photomosaic. FA, pyroclastic fall; PF, pyroclastic flow; DF, debris flow; HF, hyperconcentrated flow; SC, scour-fill; GB, gravel bar; SF, sheet flood; CH, channel-fill

Figure 33. Lithostratigraphic section TL of the Tepoztlán Formation near San Agustín

Figure 34. Medium scale panel 6.1. (a) Photomosaic of the study outcrop. (b) Interpretation of the photomosaic. PF, pyroclastic flow; BA, block-and-ash flow; DF, debris flow; GB, gravel bar; SF, sheet flood; CH, channel-fill. The red line indicates the course of the stratigraphic section TL

Figure 35. Medium scale panel 6.2. (a) Photomosaic of the study outcrop. (b) Interpretation of the photomosaic

Figure 36. Palaeocurrent directions inferred from AMS analysis and sedimentary features. LF, Lava flow; BA, Block-and-ash flow; PF, Pyroclastic flow; SC, Scour pool-fill; GB, Gravel bar; SF, Sheet flood; CH, Channel-fill; LC, lacustrine. The colours of arrows correspond to depositional elements. The grey areas show the distribution of the Tepoztlán Formation

Figure 37. Examples for AMS fabrics from a) lava (flow direction from NNE), b) a pyroclastic flow (flow direction from NE) and c) a channel-fill (flow direction from NW)

Figure 38. Palaeoenvironmental reconstruction of the braided river setting (Malinalco Member, 22.8 - 22.2 Ma)

Figure 39. Palaeoenvironmental reconstruction of the volcanic edifice construction (San Andrés Member, 22.2 - 21.3 Ma)

Figure 40. Palaeoenvironmental reconstruction of the volcanic edifice destruction (Tepozteco Member, 21.3 - 18.8 Ma)

Figure 41. Schematic section of the Tepoztlán Formation to the south and the north to Tepoztlán, showing the sample horizons and their lithologies

Figure 42. Tilia diagram, showing the percentages of palynomorphs within the San Andrés sections SA1 and SA2
Figure 43. Tilia diagram, showing the percentages of palynomorphs within the Tepozteco section TEP………………..104

Figure 44. Climate diagrams of the San Andrés section showing a) MAT, TCM, TWM; b) MAP, PwaM; c) PDM, PWeM and the Köppen climate classification………………..107

Figure 45. Climate diagrams of the Tepozteco section showing a) MAT, TCM, TWM; b) MAP, PwaM; c) PDM, PWeM and the Köppen climate classification………………..110

Figure 46. Palaeogeographic map of Central America, showing the distribution of land and sea masses and the Central American Seaway during the Miocene (Pindell, 1994)…………117

Figure 47. The distribution of the TMVB a) in the Miocene, b) since the Pliocene (Gómez-Tuena, 2007)………………………………………………………………………………...124

List of Tables

Table 1: modal abundance of representative samples of Tepoztlán Formation volcanic rocks in per cent……………………………………………………………………………………..20

Table 2: Data base of K–Ar age determinations……………………………………………………………………………………..26

Table 3: Data base of Ar-Ar age determinations…………………………………………………………………………………….26

Table 4: Lithofacies types with recommended abbreviations and their descriptions……….35

Table 5: Summary of the principal volcanic and sedimentary lithofacies of the Tepoztlán Formation……………………………………………………………………………………..36

Table 6: Compilation of the 12 depositional elements, together with their depositional processes and eruptive context………………………………………………………………..41

Table 7: AMS data of the sampled locations……………………………………………………………………………………..87

Table 8: Elevation, lithology and age of the samples taken for palynological analysis……..95

Table 9: List of pollen and spore taxa and their corresponding plant communities…………98

Table 10: Description of Köppen climate symbols and defining criteria (Peel et al., 2007)…………………………………………………………………………………………108

Table 11: Calculated climate parameters for the San Andrés and Tepozteco section together with the contemporary values measured by the meteorological weatherstation in Cuernavaca. The Köppen-Geiger classification of the climates was carried out after Peel et al. (2007)…………………………………………………………………………………108

IV