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Abstract
This thesis is concerned with the modeling, representing and learning of visual cat-
egories for the purpose of automatic recognition and detection of objects in image
data. The application area of such methods ranges from image-based retrieval over
driver assistance systems for the automotive industry to applications in robotics.
Despite the exciting progress that has been achieved in the field of visual object
categorization over the last 5 years, we have still a long way to go to measure up
to the perceptual capabilities of humans. While humans can recognize far beyond
10000 categories, machines can nowadays recognize only close to 300 categories with
moderate accuracy in constraint settings. For more complex tasks the number of
categories is a magnitude lower.

Existing approaches reveal a surprising diversity in the way how they model,
represent and learn visual categories. To a large extend, this diversity is a result of
the different scenarios and categories investigated in the literature. This motivated
us to develop methods that combine capabilities of previous methods along these 3
axes: Modeling, Representing and Learning. The resulting approaches turn out to
be more adaptive and show better performance in recognition and detection tasks on
standard datasets. Therefore, the scientific contribution of this thesis is structured
into 3 parts:

Combination of different modeling paradigms One basic difference in mod-
eling is, whether a method models the similarities within one category or the dif-
ferences with respect to other categories. Since both views have their assets and
drawbacks, we have developed a hybrid approach that successfully combines the
strength of both approaches.

Combination of different learning paradigms While supervised approaches
typically tend to have better performance, the high annotation efforts poses a big
obstacle towards a larger number of recognizable categories. Unsupervised methods
in combination with the overwhelming amount of data at hand (e.g. internet search)
constitute an appealing alternative. Given this background we developed a method
which makes use of different levels of supervision and consequently achieves better
performance by considering unannotated data.

Combination of different representation paradigms Previous approaches
differ strongly in the way they represent visual information. Representations range
from local structures over line segments to global silhouettes. We present an ap-
proach that learns an effective representation directly from the image data and
thereby extracts structures that combine the mentioned representation paradigms
in a single approach.
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Zusammenfassung
Diese Dissertation beschäftigt sich mit dem Modellieren, Repräsentieren und Er-
lernen von visuellen Kategorien zum Zweck der automatischen Erkennung und De-
tektion von Objekten in Bilddaten. Der Anwendungsbereich solcher Methoden er-
streckt sich von bildbasierten Suchfunktionen, über Fahrerassistenzsysteme in der
Automobilindustrie bis hin zu Anwendungen in der Robotik. Trotz des Fortschritts,
den die Forschung gerade in den letzten 5 Jahren in dem Gebiet der visuellen Ob-
jektkategorisierung erreicht hat, ist man heute noch weit von den Wahrnehmungs-
fähigkeiten eines Menschen entfernt. Während Menschen mit Leichtigkeit weit über
10000 Kategorien erkennen, können Maschinen heutzutage nur an die 300 Kategorien
mit mäßiger Präzision unter eingeschränkten Bedingungen unterscheiden. Für kom-
plexere Aufgaben ist die Anzahl sogar eine Größenordnung kleiner.

Bestehende Ansätze basieren auf einer erstaunlichen Vielfalt verschiedener Meth-
oden visuelle Kategorien zu modellieren, zu repräsentieren und zu erlernen. Diese
Vielfalt ist zum großen Teil ein Resultat der verschiedenen Szenarien und Kate-
gorien die in der Literatur untersucht wurden. Dies motivierte uns Methoden zu
entwickeln, die die Fähigkeiten vorangegangener Methoden entlang der 3 Achsen
– Modellieren, Repräsentieren und Lernen – kombinieren. Die resultierenden An-
sätze zeigen eine höhere Adaptivität sowie verbesserte Performanz in Erkennungs-
und Detektionsaufgaben auf standardisierten Datensätzen. Der wissenschaftliche
Beitrag dieser Dissertation ist demzufolge in 3 Teile gliedern:

Kombination verschieder Modellierungsparadigmen Ein grundlegender Un-
terschied in der Modellierung ist, ob eine Methode die Gemeinsamkeiten innerhalb
einer Kategorie oder die Unterschiede zu anderen Kategorien modelliert. Beide
Sichtweisen haben ihre Vorzüge und Nachteile, weshalb wir einen hybriden Ansatz
entwickelten, der die Stärken beider Ansätze erfolgreich kombiniert.

Kombination verschiedener Lernparadigmen Während überwachte
Lernverfahren typischerweise bessere Performanz erzielen stellt der Annotierungs-
aufwand eine große Hürde auf dem Weg zu einer größeren Anzahl von erkennbaren
Kategorien dar. Unüberwachte Verfahren in Kombination mit der überwältigenden
Menge an verfügbaren Bildern (z.B. Internetsuchmaschinen) sind eine attraktive
Alternative. Vor diesem Hintergrund entwickelten wir ein Verfahren, welches ver-
schiedene Stufen der Überwachung des Lernprozesses nutzt und somit unter Hinzu-
nahme der unannotierten Daten eine bessere Performanz erzielt.

Kombination verschiedener Repräsentationsparadigmen Bisherige Ansätze
unterscheiden sich stark in der Art und Weise wie visuelle Information repräsentiert
wird. Die Repräsentationen reichen von lokalen Strukturen, über Liniensegmente
bis hin zu globalen Silhouetten. Wir stellen einen Ansatz vor, der eine effektive
Repräsentation direkt von den Bilddaten lernt und dabei Strukturen extrahiert, die
die genannten Repräsentationsparadigmen in einem Ansatz kombiniert.
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1
Introduction

Building a common ground for humans and machines to exchange information is a
challenging problem. Making progress in this area would change how we collaborate
with machines and how machines can assist us in our tasks. However, automatic
interpretation of image data remains a bottleneck despite the exciting progress in
recent years. While humans recognize thousands of visual categories with ease,
machines lag far behind. Bridging this gap would bring us an important step closer
to unleashing the full potential of applications like autonomous robots for domestic
scenarios or rescue missions, visual surveillance, driver assistance, content-based
image search and vision for the blind - to name just a few.

While there has been good progress in automatic speech and text analysis, image
and video data has shown to be notoriously hard to categorize by machines. It is
only in last 5 years, that the modeling of visual categories has improved to a level
that is becoming increasingly interesting for practical applications (Fergus et al.,
2003). More recently, impressive performance has been shown on specific tasks like
pedestrian detection (Leibe et al., 2005).

Despite the exciting progress in recent years we are still missing the adaptive
representations that are general yet descriptive enough to encode the overwhelming
diversity encountered in visual categories. While humans handle more than 10.000
object categories with ease (Biederman, 1987), today’s vision systems can recognize
less than 300 categories with moderate accuracy in constraint settings (Griffin et
al., 2007; Varma and Ray, 2007) and for more challenging tasks like detection the
number is a magnitude lower (Everingham et al., 2007).

Figure 1.1 illustrates some of the challenges. As the intra-class variation between
the dog examples is high, it is very difficult to generalize from a few examples to the
whole class of all dogs. On the other hand, we see that there is quite some similarity
to instances of other categories as the presented cow and donkeys. In particular,
if we had chosen a texture-based representation that worked well for the task of
categorizing materials, it is very likely to fail at classifying these animals correctly.

1



2 Chapter 1. Introduction

Figure 1.1: Example of high intra-class variation between the dogs and low inter-
class variation to instances of other categories.

1.1 Contributions

In Section 2, we sketch 3 main axes along which we categorize different methods
proposed in the literature. We are inspired by this topology of related approaches
to derive methods that integrate different paradigms along the described axes. We
believe that the obtained flexibility and adaptivity is crucial for more robust and
scalable systems for visual categorization.

Accordingly, the contributions of this thesis can be grouped into the following 3
groups.

Combining Different Model Paradigms: Hybrid Generative/Discriminative
Models for Object Category Detection (Fritz et al., 2005)

• We propose a new approach which tightly integrates a generative with a dis-
criminative approach into a single categorization framework. This tight in-
tegration is made possible by a unified data representation used by both ap-
proaches. The new integrated approach is beneficial with respect to the initial,
probabilistic detector, since the new approach preserves the generalization ca-
pabilities but increases its accuracy in rejecting false positives. Since the initial
detector effectively acts as a pre-filter to the discriminative part of the algo-
rithm, the integration is also beneficial with respect to the discriminative part
by using the discriminative power only where it is needed, namely on visually
similar appearances of object classes.

• We present experimental results which show the superiority of the new inte-
grated approach with respect to its building blocks both in terms of detection
performance and of a significant reduction of false positives on challenging
databases. The new approach also outperforms state-of-the-art object catego-
rization methods on challenging multi-scale data sets.
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• We show that the integrated approach improves over and extends the original
discriminative model in various respects: the new approach is scale invari-
ant, enables localization of the object in the scene, and allows cross-instance
learning of object category models.

Combining Different Learning Paradigms:

• Weakly Supervised Learning for Accurate Category Detection (Fritz and Schiele,
2006)

– We propose a novel scheme to discover object category instances in im-
ages. Our approach is based on the idea to estimate the locations and
scales of reoccurring patterns. The estimates can be seen as an automatic
annotation procedure of the training data.

– We experimentally show the applicability of this idea of reoccurring struc-
ture for object discovery for several object classes.

– We show how to use the estimated annotations to learn object class mod-
els for object detection and localization.

– We analyze the performance of such object class models on standard
datasets. Most interestingly, we even surpass our supervised baseline by
adding more unlabeled training examples.

• Combining Different Levels of Supervision in a Cross-Model Learning Scenario
(Fritz et al., 2007)

– We proposes a novel method that uses unsupervised training to obtain
visual groupings of objects and a cross-modal learning scheme to overcome
inherent limitations of purely unsupervised training.

– The method uses a unified and scale-invariant object representation that
allows to handle labeled as well as unlabeled information in a coherent
way. One of the potential settings is to learn object category models from
many unlabeled observations and a few dialogue interactions that can be
ambiguous or even erroneous.

– First experiments demonstrate the ability of the system to learn meaning-
ful generalizations across objects already from a few dialogue interactions.

Combining Different Feature Paradigms: Adaptive representations based
on generative decompositions (Fritz and Schiele, 2008) The main focus
of this part is a new object representation that aims to combine different feature
paradigms to make a step towards more scalable object representations applicable
to a wide range of objects and suited both for unsupervised as well as supervised
learning.
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• We present a novel approach that allows to learn a low-dimensional repre-
sentation of object classes by building a generative decomposition of objects.
These learned decompositions of objects range from local appearance features
to global silhouette-like features shared across object classes. This generative
model of objects is directly applicable to unsupervised learning tasks such as
visual object class discovery.

• We combine the low-dimensional and generative decomposition of objects with
a discriminative learning framework to enable supervised training and compet-
itive object class detection.

• We present a series of experiments which show the properties of the approach
(local vs. global features, feature sharing, unsupervised vs. supervised learn-
ing) and compares the approach with the state-of-the-art. Interestingly, the
approach outperforms both unsupervised techniques as well as supervised tech-
niques on various tasks on common databases.

1.2 Outline

This thesis is structured as follows:

Chapter 2: Related Work on Categorization of Visual Categories We put
this thesis in the context of the related work by organizing related approaches by the
different modeling, representation and learning paradigms they use. After reviewing
3 methods which are used as building block in this thesis, we detail how the different
parts of this thesis are inspired by previous work.

Chapter 3: Integrated Representative/Disciminative Approach This chap-
ter describes our efforts to combine different modeling paradigms. In particular, a
generative model is combined with a discriminative classifier to build a hybrid model.

The work represented in this chapter corresponds to the ICCV’05 publication
(Fritz et al., 2005): “Integrating Representative and Discriminant Models for Object
Category Detection”

Chapter 4: Weakly Supervised Learning via Scale-Invariant Patterns We
propose a method to discover object category instances in image databases as reoc-
curring patterns in a weakly supervised fashion. The results show that we can bridge
the gap between image level annotation and highly supervised detection performance
obtained by pixel level annotation.

The work represented in this chapter corresponds to the DAGM’06 publication
(Fritz and Schiele, 2006): “Towards Unsupervised Discovery of Visual Categories”
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Chapter 5: Cross-Model Learning at Different Levels of Supervision We
describe a system that represent our efforts towards integrating different levels of
supervision in one consistent framework. The capabilities are demonstrated in a
cross-modal, interactive learning scenario that related utterances of a tutor with the
visual features and relations in a scene.

The work represented in this chapter corresponds to the ICVS’07 publication
(Fritz et al., 2007): “Cross-Modal Learning of Visual Categories using Different
Levels of Supervision”

Chapter 6: Decomposition of Visual Categories Using Topic Models We
present a method for learning representations as generative decompositions of ob-
ject category instances. This approach manages to combine different representation
paradigms ranging from local to global features.

The work represented in this chapter corresponds to the CVPR’08 publication
(Fritz and Schiele, 2008): “Decomposition, Discovery and Detection of Visual Cate-
gories Using Topic Models”

Chapter 7: Extensions Towards Explicit Multi-View Modeling Finally,
we extend the results from the previous chapter to handle multi-view data in a
more explicit manner. In particular, we provide model introspection how different
view-points are represented and how we can deal with changing aspect ratios.





2
Related Work on Visual
Categorization of Objects

In the context of computer vision, research in visual categorization has focused
mostly on basic-level categories. These are categories that - although embedded in
a hierarchy of more abstract and specific categories - are more likely to be used by a
human (Lakoff, 1987; Rosch et al., 1976). There is some bias humans have towards
using these categories. For example, when presented with an image of a cat, the
observer is more likely to name it as a cat than an animal, quadruped or siamese
cat. Throughout this thesis we will be concerned with such basis-level categories,
although there are no inherent limitation to apply the presented methods to different
levels of categorization.

For the past decades, research progress was most notably in the domain of recog-
nizing specific objects Murase and Nayar (1995); Schiele and Crowley (2000). There
were only a view exceptions that extended to more variable object classes like digits
(e.g. LeCun et al. (1998)), faces (e.g. Turk and Pentland (1991); Murase and Nayar
(1995); Cootes et al. (1998); Viola and Jones (2001), cars (e.g. Schneiderman and
Kanade (2000)) and humans (e.g. Gavrila and Davis (1996)).

Only recently there has been significant progress in more general approaches to
visual category modeling (e.g. Burl and Perona (1996)), learning (e.g. Fergus et al.
(2003)), robustness (e.g. Leibe et al. (2005)) and scalability to more classes (e.g.
Varma and Ray (2007)).

In order to set this thesis into the context of previous work Section 2.1 gives an
overview of relevant approaches. We structure the related work along 3 axes which
represent the different modeling, representation and learning paradigms encountered
in the literature. After reviewing 3 methods in Section 2.2 that are used in this
thesis, we describe in Section 2.3 how the previous approaches inspired the work
of this thesis – in particular with respect to the 3 axes modeling, representing and
learning.

7



8 Chapter 2. Related Work on Visual Categorization of Objects

2.1 Approaches to Visual Categorization

Despite the exciting progress, there is a surprising diversity in the proposed ap-
proaches. This could be interpreted as a lack of maturity of the research area.
More likely it is an artifact of the diverse experimental scenarios investigated in the
literature. Features which work well on cars don’t necessarily perform so well on
leopards.

In the following, this section sketches 3 main axes along which we categorize dif-
ferent methods proposed in the literature. We are inspired by this topology of related
approaches to derive methods that integrate different paradigms along the described
axes. We believe that it is important to discuss and integrate these paradigms to ob-
tain adaptive and flexible approaches that lead to more robust and scalable systems
for visual categorization.

2.1.1 Model Paradigm

There is a fundamental difference in models whether they describe what all cate-
gory instances have in common (generative model) or what distinguishes them form
the other categories (discriminative model). In technical terms this boils down to
the design decision if the data X associated with a training example is explicitly
modeled or if the approaches focus on the class label y. Often generative models
are also associated with probabilistic models, as they allow for sampling from the
model which exploits the generative nature. However, this is not correct, as the
class posterior trained in a discriminative fashion can also be modeled by a proba-
bility density function p(y|X). These models are often termed conditional models.
Following common practice, we will refer to them also as discriminative models.
More frequently people retreat to a statistical machine learning framework and seek
just a discriminant function y = f(X) which performs best on the prediction task
without worrying about probabilistic modeling. These kind of models are commonly
called discriminant models. For a more detailed discussion on the spectrum between
generative and discriminative and the associated terminology, we refer to Jebara
(2002).

Due to the many implication of choosing one of these two statistical paradigms,
various approach for visual category recognition and detection have been proposed,
ranging form generative, probabilistic models like Burl and Perona (1996); Fergus et
al. (2003); Leibe et al. (2004) to discriminant ones likeTorralba et al. (2004); Viola
and Jones (2004); Nilsback and Caputo (2004); Dalal and Triggs (2005). Boosting
(Freund and Schapire, 1995) and maximum margin classification in a Support Vector
Machine framework (Schölkopf and Smola, 2001) are the most prominent methods
for discriminant modeling.

In the following we will provide an overview of the different arguments brought
forward from the different schools of thought.
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Benefits of generative models

• More principled way of dealing with missing data (e.g. occlusion) (Holub et
al., 2008): In particular in the case of probabilistic models, missing values can
be dealt with by marginalizing over the missing variable. This leads still to
sensible prediction within the formulated model. For a discriminant function,
there is no canonical way to deal with such artifacts.

• Better performance for small training sets (Holub et al., 2008; Ng and Jordan,
2002; Fei-Fei et al., 2003a): The argument is mostly based on the fact that
probabilistic models can easily incorporate prior information via a bayesian
framework, that supports learning from small sample sizes by modeling prior
expectations on the parameters like in Fei-Fei et al. (2003a) or transferring
knowledge from other models like in Bart and Ullman (2005). However Ng
and Jordan (2002) present a more detailed analysis on non-vision databases
that shows a more general improvement of the generative approach due to the
model bias (which then becomes a disadvantage in the limit when having lots
of training examples).

• Modeling expert knowledge (Holub et al., 2008): Graphical models provide an
excellent tool to describe and visualize the conditional independence structure
of the model (Bishop (2007)). This is one way to incorporate expert knowledge
about the latent structure into a model. Furthermore, priors provide a conve-
nient and consistent way to model expectations on parameters and unobserved
variables.

• Learning one category at a time improves scalability (Holub et al., 2008): Gen-
erative approaches model what’s common between the presented instances. It
is ignorant about the differences to other categories in contrast to the dis-
criminant approaches. By not exploiting the discriminant information, the
generative models can be learnt independently. This inherent parallelism can
lead to better scalability. Learning the pair-wise differences between classes
is a powerful approach, but can lead to high computational costs (Varma and
Ray, 2007).

• Dealing with deformation and intra-class variation: Generative models can
tolerate significant intra-class variation of object appearance and deformations
like in Fergus et al. (2003); Leibe et al. (2004); Felzenszwalb and Huttenlocher
(2005). However, the price for this robustness typically is that they tend to
produce a significant number of false positives. This is particularly true for
object classes which share a high visual similarity such as horses and cows.
Discriminative methods typically cope with these issues by increased training
set sizes of virtual (Decoste and Schölkopf, 2002) or real examples (Dalal and
Triggs, 2005).
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• Incremental Learning: Generative properties have been used for incremental
learning in a Bayesian settings in Fei-Fei et al. (2004) as well as for sub-
space methods of Skočaj and Leonardis (2003). However, also discriminative
approaches were combined with heuristics to facilitate incremental learning
for SVMs in Cauwenberghs and Poggio (2001); Luo et al. (2007) as well as
boosting in Opelt et al. (2006).

• Hierarchical structures: There is a long tradition in hierarchical modeling in
the statistics literature (e.g. Gelman et al. (2004)). In particular, the modular
construction of composed solutions to complex problems lends itself to hierar-
chical design as demonstrated in Sudderth et al. (2005); Bouchard and Triggs
(2005). Hierarchical models are considered to be one key ingredient towards
scalable approaches (Fidler and Leonardis (2007)).

• More explicit model assumptions (Friedman, 1997): Generative model tend to
make the model assumptions more explicit. In particular parametric models
presented in graphical structures translate directly to a generative process
Sudderth et al. (2005). Hence distribution and independency assumptions can
be verified separately.

Benefits of discriminative models

• Higher precision: Ng and Jordan (2002) have illustrated that discriminative
models tend to have a smaller asymptotic error. In particular, discriminative
models are optimized for the classification task and don’t care about the data
distribution. This typically results in increased performance (Friedman, 1997;
Ulusoy and Bishop, 2005).

• Easier task: Vapnik (1996) argues that estimating the distribution of X is often
an unnecessary overhead that decreases performance. A direct, discriminative
mapping form the data X to the labels y can therefore make more efficient use
of the data.

• Simpler and faster to evaluate: Discriminative classifiers tend to be faster to
evaluate (Ulusoy and Bishop, 2005). Many classifiers have a deterministic,
feed-forward structure in contrast to often costly inference techniques required
for generative, probabilistic models (Bishop (2007)).

• Feature selection This allows for example to explicitly learn the discriminant
features of one particular class vs. background (Viola et al., 2003; Dorko and
Schmid, 2003) or between multiple classes (Torralba et al., 2004; Nilsback and
Caputo, 2004).

• Flexible decision boundaries: Discriminative methods enable the construction
of flexible decision boundaries, resulting in classification performances often su-
perior to those obtained by purely probabilistic or generative models (Jaakkola
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and Haussler, 1999; Ng and Jordan, 2002). There are two prominent reasons
for this effect mentioned in the literature. First, generative models are often
derived from probabilistic approach that have some bias due to distribution
assumption and prior models. This leads to a higher error given a certain
amount of data when compared to discriminative approaches as shown in Ng
and Jordan (2002). However, this argument wouldn’t be valid for a method
based on non-parametric density estimated in a maximum likelihood fashion.
Second, focusing on the estimation of a decision boundary doesn’t“waste”sam-
ples on estimating data properties and areas not relevant to the classification
task - in particular areas far away from the decision boundary. As a conclusion,
discriminative models are more likely to obtain a better estimate of a complex
decision boundary by neglecting task-irrelevant properties of the data. For a
more detailed discussion and quantitative results, we refer to Friedman (1997).

Hybrid methods combining generative and discriminant approaches While
so far the object recognition community has in most cases chosen one of these two
modeling approaches, there has been an increasing interest in the machine learning
community in developing algorithms which combine the advantages of discriminative
methods with those of probabilistic generative models (e.g. Jaakkola and Haussler
(1999)).

In the following, we outline the different approaches that were investigated in
the vision community to combine the merits of both paradigms. We propose the
following grouping of the diverse methods:

• Discriminative training/optimization of generative model: In Hillel et al. (2005)
a generative model with a star-like topology is trained. To improve the per-
formance the influence of the parts undergoes an additional discriminative
optimization in order to improve discrimination between categories. A similar
idea is explored in Li et al. (2005) where an initial generative stage identifies
relevant feature component on which the final classifier is trained.

• SVM learning using kernels on probabilistic models: The following approaches
estimate a probability density function (pdf) on the input data and use the
obtained statistic in a specialized kernel function to train a discriminant model.
Possible choices for such kernels are the Fisher kernel (Jaakkola and Haussler
(1999)) and the Kullback Leibler kernel (Moreno et al. (2005)). For a more
general overview on the topic of probability product kernels we refer to Jebara
et al. (2004).

– Fisher kernel: The fisher kernel (Jaakkola and Haussler (1999)) measures
similarity between two examples by the scalar product between the like-
lihood gradients with respect to the model parameters. Therefore the
underlying probabilistic model has to be trained beforehand in order to
estimate the maximum likelihood parameters.
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In Holub et al. (2005) this kernel is employed for visual recognition by
building on the constellation model (Fergus et al., 2003) as the generative
part.

– Kullback Leibler Kernel: In Vasconcelos et al. (2004) the Kullback Leibler
kernel is used to discriminate between bag-of-word representations. The
main motivation in their work is not the generative/discriminative aspect,
but to define a kernel between sets of local features. To achieve this, the
sets of local features are modeled as samples from gaussian distributions.
The kernel is then defined as Kullback Leibler divergence between these
distributions.

• Discriminant hypotheses verification: Based on initial detection by the gener-
ative detection system presented in Leibe et al. (2004) an additional discrimi-
nant verification stage based on chamfer matching is proposed in Leibe et al.
(2005). In particular as the initial detections are based on a star-model with
conditional independent part evidences, the global chamfer matching approach
adds additional information to the detection process.

• Discriminative feature selection and weighting: Most approaches mentioned so
far applied a discriminative approach on top of the generative one. Methods
which do features selection (Dorko and Schmid, 2003) or feature weighting
(Mikolajczyk et al., 2006) go the opposite way. The discriminance of single
features is assessed in order to weight or even fully reject non-informative
features.

• Scene reasoning: In Tu et al. (2003) a generative model for segmenting scenes
is combined with a object detector trained in a discriminant fashion. The
combination turns out to be beneficial for image parsing into regions and
objects. The discriminant detections are treated as additional evidence for the
generative model.

• Generative synthesis and rendering: Finally, we want to pay credit to ap-
proaches that employ generative aspects in a non-probabilistic way. They
employ rendering techniques to generate virtual examples that improve gener-
alization of the discriminative approach by increasing the training set (Decoste
and Schölkopf, 2002; Everingham and Zisserman, 2005; Chiu et al., 2007). In
terms of efficiency, approach like Decoste and Schölkopf (2002) or Kapoor et
al. (2007) are very interesting as they have developed ways to predict which
virtual examples are most informative and therefore should be considered next.

2.1.2 Representation Paradigm

Feature representations based on gradient histograms have been popular and highly
successful. The proposed features range from local statistics like SIFT (Lowe, 2004)
to global representations of entire objects (Gavrila, 1998) and from sparse interest
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points Mikolajczyk and Schmid (2005) to dense features responses (Dalal and Triggs,
2005).

In the following we will outline the different choices and the associated benefits
and drawbacks:

Local representation Local feature representations are very popular and lead
to a series of successful approaches for visual categorization like Burl and Perona
(1996), Leibe et al. (2008), Fergus et al. (2003) and Mikolajczyk et al. (2006). In
particular the combination with probabilistic models lead to approaches with high
recall due to robustness with respect to occlusion and the ability to capture the
variance of visual categories well. The drawback of breaking down the images into
jigsaw puzzels is that the models which describe the possible constellations are often
weakly structured (e.g. bag-of-words as in Csurka et al. (2004)), simplifying (e.g.
ISM model with star topology in Leibe et al. (2008); the missing interdependencies
between parts can lead to hallucination of superfluous parts that correspond to fake
evidence) or expensive to evaluate (e.g. constellation model in Fergus et al. (2003)).

Global representation A prominent example for global presentations is chamfer
matching of silhouettes (Gavrila, 1998). In contrast to the local representation,
global consistency is always verified. On the other hand, these approaches typically
loose recall due to the inflexible structure - unless provided with large amounts of
training data.

Semi-local representation Mohan et al. (2001) proposed to detect part struc-
tures by more local histograms first which are combined to object detections after-
wards. In order to not define the sub-parts manually, Laptev (2006) constructs a
representation on random sub-crops. This is an extension of the method of Levi and
Weiss (2004). A boosting method is used to select a representation most suited for
the task.

Also shape based approaches have recently received a lot of attention, as they
provide a first abstraction level form the image gradients and they are capable to
represent elongated structures as edges as well as more localized features like corners.
In particular, progress in the edge detection procedure (Martin et al., 2004) and
description of edge structures (Ferrari et al., 2008) revived the discussion.

Sparse features Sparse feature representation are based on methods to select
distinctive points in the image. Only these selected points are represented and
considered for further processing. Typically, the selection is based on local max-
ima detection of an interest function that responds to edge or corner-like structures
(Mikolajczyk and Schmid, 2005). Besides achieving data reduction, the development
of scale-invariant interest points (Lindeberg, 1998) spurred the success of these ap-
proaches.
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Dense representation Studies have shown that sparse representations are in-
ferior to a denser sampling in terms of system performance (Nowak et al., 2006).
While the difference might by less pronounced for some categories, objects where
the interest point detector fails to capture a sufficient statistic are better captured
by random sampling or sampling on a regular grid.

In particular as machine learning methods made good progress in handling large
amounts of data, dealing with noise and extracting the relevant information, com-
bination with dense feature representation have led to state-of-the-art recognition
and detection approaches like Dalal and Triggs (2005).

2.1.3 Learning Paradigm

Over the years various approaches have been proposed for the recognition of object
categories often based on models learned directly from image data. The approaches,
however, vary greatly in the amount of supervision provided for the training data.
The types of annotation varies from pixel-level segmentations (e.g. Leibe et al.
(2008)), over bounding-box annotations (e.g. Viola and Jones (2001)) and image
level annotation (e.g. Fergus et al. (2003); Winn and Jojic (2005)) to unsupervised
methods (e.g. Weber et al. (2000); Sivic et al. (2005); Fergus et al. (2005a)) which
do not even require the information which category is presented in which image.
While approaches using more supervision tend to require less training data, there
is a clear desire to use less supervision typically at the price to use more unlabeled
training data.

Supervised learning Traditionally, providing more annotation information re-
sults in better performance given the same amount of training data. Besides bound-
ing box information (Viola and Jones, 2001), approaches have shown to success-
fully exploit pixel-wise segmentations (Leibe et al., 2008) or view-point annotations
(Chum and Zisserman, 2007) to increase performance.

Weakly supervised learning Weakly supervised learning typically denotes learn-
ing from an image-level annotation of the presence or absence of the object category.
Learning object models in this fashion may be formulated in one EM-loop as in e.g.
Weber et al. (2000). In this method, appearance and structure are learned simul-
taneously making the learning computationally expensive and thus restricting the
complexity of the model. More recently, weakly supervised approach were derived
by finding frequent item sets (Quack et al., 2007) or substructure mining (Nowozin
et al., 2007) leading to more computational efficiency.

Unsupervised learning Unsupervised learning is very attractive, as the annota-
tion effort and biases introduced by the human labeling process become increasingly
problematic for large training sets with many classes (Ponce et al., 2006). As today’s
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internet based services provide image data in abundance, learning in an unsuper-
vised fashion provides a promising alternative to these problems. As those data
sources typically return lots of unrelated images (Fergus et al., 2005a) and images
of poor quality, these method have to be robust against outliers and a large variety
of image degradations (e.g. Fergus et al. (2005a); Li et al. (2007); Schroff et al.
(2007)). Recently a variety of approaches have been proposed that are based on
topic models such as pLSA (Hofmann, 2001) or LDA (Blei et al., 2003b). Since the
underlying model is a bag-of-word representation, the object discovery is based on
local appearance alone neglecting structural information (Sivic et al., 2005). E.g.
Fergus et al. (2005a); Russell et al. (2006); Cao and Fei-Fei (2007) extends the initial
approach to also include some structural information on top of the pLSA model.

Semi-supervised learning Semi-supervised learning has recently gained a lot of
interest in the machine learning literature, as it combines unsupervised approach
with supervised information to overcome the inherent limitation of fully data driven
approaches. For an overview we refer to Zhu (2005) and Chapelle et al. (2006). In
the vision community, the impact of these approaches has been less prominent up
to now. But approaches like Holub et al. (2008) and in particular extension towards
active learning like in Kapoor et al. (2007) seem promising.

2.2 Methods

This section will outline models from previous work, that this thesis builds on. In
particular, this section describes the Implicit Shape Mode (ISM) of Leibe et al.
(2008) for generative object detection, generative topic models from the text pro-
cessing domain as in Hofmann (2001) and Blei et al. (2003b) as well as discriminant
classification by Support Vector Machines (SVMs) as described in Schölkopf and
Smola (2001).

2.2.1 Implicit Shape Model

The Implicit Shape Model (ISM) (Leibe et al., 2008) is a versatile generative, frame-
work for scale-invariant detection of object categories, which has shown good perfor-
mance on challenging detections tasks. It uses a flexible non-parametric representa-
tion for modeling visual object categories by spatial feature occurrence distributions
with respect to a visual codebook. In this section we describe how the visual code-
book is computed, how the spatial layout of the objects is captured and how the
stored information is finally used for detection tasks.

Generation of an Appearance Codebook In the first step, a category-specific
appearance codebook is generated. A scale-invariant interest point operator like
e.g. Difference-of-Gaussians (DoG) (Lowe, 2004) is applied to all training images
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(a) Sample cluster centers of visual
codebook.

(b) Example occurrence distribution for motorbikes.
The colors correspond to the different clusters the fea-
tures get matched to.

Figure 2.1: The two key ingredients of the Implicit Shape Model: (a) visual codebook
vocabulary and (b) spatial occurrence distribution of the codebook entries. Both
statistics are computed on the Caltech motorbike dataset.

and extract image patches with a radius of 3σ of the detected scale. All extracted
patches are then rescaled to a uniform size (in our case 25× 25 pixels) and grouped
using an agglomerative clustering scheme. The patches can be represented by simple
normalized gray-values or more sophisticated representations like SIFT (Lowe, 2004)
or shape context (Belongie et al., 2002) that typically improve the results as shown in
Seemann and Schiele (2005). The resulting clusters form a compact representation
of local object structure. In the following, we keep only the cluster centers C =
("c1, . . . ,"cR) as codebook entries.

Example entries of a codebook trained on motorbike images are shown in Fig-
ure 2.1(a). The shown patches are representative for each cluster center, that are
obtained by averaging over all cluster members. While some entries might resemble
motorbike parts, this is a purely data driven approach that groups patches by visual
similarity only.

Non-parametric spatial occurrence distributions For each codebook entry,
we then learn its spatial occurrence distribution on the object category with respect
to a common center for all motorbikes. The center is either defined by the center
of the bounding box annotation or the center of mass when a segmentation mask is
provided. Therefore, we perform a second iteration over all training images, again
extracting patches around interest points, and record for each "ci all locations where
it can be matched to the extracted patches. This results in a non-parametric cluster
entry occurrence distribution that captures the spatial layout of the category of
interest.
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An example of such an occurrence distribution for motorbikes is displayed in
Figure 2.1(b). The cluster to which the feature matched is color-coded. In particular
on the wheels colored areas indicate that specific codebook entries get matched to
certain segments of the wheels. There is additional information on the detected
feature scale for each feature which is note visualized in this figure.

Detection In order to generate detection hypotheses with locations and scales on
test images, we use a scale-invariant version of the ISM approach from Leibe et al.
(2004). The approach starts by applying the same feature extraction procedure as
before. Each patch is matched to the codebook, and matching codebook entries
cast votes for possible object positions and scales according to their learned spatial
probability distribution. It is important to note that each matched feature cast votes
independently of the other features. Although this independence assumption might
seem rather crude, it leads to very efficient learning and evaluation of the model as
well as to high generalization capability across training instances.

The voting procedure is formalized as follows. Let "e be an image patch observed
at location #. Each matching codebook entry "ci generates probabilistic votes for
different object categories on and locations λ = (λx, λy, λs) according to the following
marginalization:

P (on, λ|"e, #) =
∑

i

P (on, λ|"ci, #)p("ci|"e) (2.1)

where p("ci|"e) denotes the probability that "e matches to "ci, and P (on, λ|"ci, #) describes
the stored spatial probability distribution for the object center relative to an occur-
rence of that codebook entry. For describing the matching probability, we make the
assumption that an image patch can be approximated by the mean of the closest-
matching codebook entries C∗

!e = {"c∗i |sim("c∗i ,"e) ≥ θ}, thus setting p("c∗i |"e) = 1
|C∗

!e | .

Object hypotheses are found as maxima in the 3D voting space using Mean-Shift
Mode Estimation (Comaniciu and Meer, 1999) with a scale-adaptive balloon density
estimator (Comaniciu et al., 2001) and a uniform ellipsoidal kernel K:

p̂(on, λ) =
1

nh(λ)d

∑

k

∑

j

p(on, λj|"ek, #k)K

(
λ− λj

h(λ)

)
,

where n is the total number of features. Once a hypothesis has been found, the
contributing votes are backprojected to determine which local features and codebook
activations supported it. The original ISM approach additionally computes a full
top-down segmentation of the object, which has been shown to improve the results
considerably. This is done by back-projecting the support of the hypotheses to
infer figure-ground segmentation masks and performing an MDL-based reasoning
to resolve multiple and ambiguous hypotheses (Leibe et al., 2004). However, the
generation of an object specific visual codebook and the MDL-based reasoning step
require figure-ground segmentations for the training images which introduce high
annotation effort. For further details we refer the reader to Leibe et al. (2008).
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2.2.2 Support Vector Machines

Support vector machines (SVMs) (Vapnik (1996), Schölkopf and Smola (2001)) are
discriminative models and have recently raised a lot of interest because of their
well-founded theoretical background and excellent classification performance across
many tasks. In order to describe SVMs, the concept of linear discrimination is
reviewed first, which is extended to optimal separating hyperplanes and soft margin
hyperplanes. Finally, we will arrive at robust non-linear classification by introducing
kernels.

Linear Discrimination The basic idea of a linear decision function is to specify
a hyperplane in the input space which separates two classes. Such a hyperplane is
defined by the normal form:

"wT"x + b = 0 , (2.2)

where "w is the direction normal to the hyperplane and |b| is the distance of the
hyperplane to the origin of the coordinate system.

For each data sample "x the distance to this hyperplane can be computed by
projection on the vector "w. The sign of the projection tells us on which side of the
plane the sample lies. Therefore the decision function is given by:

f("x) = sign("wT"x + b) (2.3)

Optimal Separating Hyperplane The solution to the formulation in Equation
(2.3) is often not unique. There can be infinitely many hyperplanes that success-
fully classify the data in the case of linearly separable data. To get to a unique
representation, one defines the optimal separating hyperplane to be the one which
maximizes the margin to the data samples. In order to compute this plane the
following optimization problem is used:

max
!w,b,||!w||=1

{ min
i=1,...,l

(yi("x
T
i "w + b))} (2.4)

This situation is illustrated in Figure 2.2. By normalizing with the length of w, this
can be reformulated without the constraint ||"w|| = 1.

min
!w,b

1
2 ||"w||2 (2.5)

subject to yi("xT
i "w + b) ≥ 1 , i = 1, . . . , l (2.6)

This is a constrained, convex optimization problem. As a conclusion only one global
minimum exists and the solution can be found efficiently. We rewrite the problem
by taking the constraints into account via Lagrangian multipliers, obtaining the
Lagrange function:

L("w, b, "α) =
1

2
||"w||2 −

l∑

i=1

αi(yi("x
T
i "w + b)− 1) i = 1, . . . , l , (2.7)
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Figure 4.1: Illustration of the normal form of a hyperplane. The orientation of the hyperplane

is given by the orthogonal vector w which is constraint to ||w|| = 1 and the distance from the
origin by b. The hyperplane is chosen to separate the two shown classes with a maximal margin.
The so-called support vectors are marked in grey.

samples. In order to compute this plane we formulate the following optimization problem:

max
w,b,||w||=1

{ min
i=1,...,l

(yi(x
T
i w + b))} (4.3)

This situation is illustrated in Figure 4.1. By normalizing with the length of w, this can be

reformulated without the constraint ||w|| = 1.

min
w,b

1
2 ||w||2 (4.4)

subject to yi(xT
i w + b) ≥ 1 , i = 1, . . . , l (4.5)

Figure 2.2: Illustration of the normal form of a hyperplane. The orientation of the
hyperplane is given by the orthogonal vector "w which is constraint to ||"w|| = 1 and
the distance from the origin by b. The hyperplane is chosen to separate the two
shown classes with a maximal margin. The so-called support vectors are marked in
grey.

where "α = α1, . . . ,αl are the Lagrange multipliers. Therefore the minimum of the
optimization problem must satisfy:

∂

∂b
L("w, b,α) = 0 (2.8)

and
∂

∂ "w
L("w, b,α) = 0 (2.9)

Substituting eqn. (2.8) and eqn. (2.9) in eqn. (2.7) one obtains the dual optimization
problem which is formulated in the variables α1, . . . ,αl:

max
!α∈Rl

W ("α) =
∑l

i=1 αi − 1
2

∑l
j=1

∑l
i=1 αiαjyiyj"xT

i "xj (2.10)

subject to αi ≥ 0 ∀i = 1, . . . , l and
∑l

i=1 αiyi = 0 (2.11)
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As a solution we obtain values for the α which leads to the following decision func-
tion:

f("x) = sign(
l∑

i=1

yiαi"x
T"xi + b) (2.12)

Computing the α on typical data sets it turns out that many of α are 0 and therefore
do not contribute to the decision function. The "xi with non-zero α are called support
vectors. In order to be able to evaluate the model, they have to be stored together
with the α and determine the memory size of the model. In Figure 2.2 the support
vectors are marked in grey.

The technique reviewed above solves the problem where the data are linearly
separable. Frequently, data we encounter in real-world applications do not show
this property. But even if that can be solved, additional problems arise from noise,
that can lead to wrong and too complex boundaries. Therefore two extensions
were introduced (Vapnik, 1996; Schölkopf and Smola, 2001). First, the kernel trick
extends the linear separable case to more complex problems by employing a non-
linear transformation of the data and the soft margin hyperplane which can handle
noisy data by introducing slack variables with a penalty term.

Soft Margin Hyperplane To account for data samples that cause the data set
to be non-separable, slack variables ξi ≥ 0 were introduced changing the constraints
to:

yi("wT"xi + b) ≥ 1− ξi (2.13)

To penalize mis-classification as allowed by the slack-variables, an additional
penalty term is added which weights the sum over all slack variables ξi with the
parameter C:

min
!w,b

1
2 ||"w||2 + C

l∑
i=1

ξi (2.14)

subject to ξi ≥ 0 , yi("xT
i "w + b) ≥ 1− ξi , i = 1, . . . , l (2.15)

In Figure 2.3 the slack variables are illustrated. The solution to this optimiza-
tion problem is obtained analogously to the linearly separable case (Vapnik, 1996;
Schölkopf and Smola, 2001). There is no canonical way to chose the parameter C.
It has to be chosen appropriately depending on the task.

Kernel Trick The kernel trick is a method to make a linear classifier more flexible
and therefore applicable to more complex problems. The data is transformed into a
feature space H by a non-linear mapping Φ which increases the separability of the
data:

Φ : Rd −→ H (2.16)

"x &−→ Φ("x) (2.17)



2.2. Methods 21
4.1. SUPPORT VECTOR MACHINES 31

ξ4

ξ1

ξ6

ξ5

b

wT x + b = 0 wTx + b = 1wT x + b = −1

w

ξ2

ξ3

Figure 4.2: Noisy data is handled by slack variables ξi which allows some data points to lie

within the margin or even on the “wrong” side of the hyperplane.

4.1.3 Soft Margin Hyperplane

To account for data samples that cause the data set to be non-separable, slack variables ξi ≥ 0

were introduced changing the constraints to:

yi(w
T xi + b) ≥ 1 − ξi (4.12)

As this can introduce classification errors even on the training set, a cost function is added,

to penalize for this behavior, to the function with is subject to the minimization in eqn. (4.4):

min
w,b

1
2 ||w||2 + C

l∑

i=1
ξi (4.13)

subject to ξi ≥ 0 , yi(xT
i w + b) ≥ 1 − ξi , i = 1, . . . , l (4.14)

Figure 2.3: Noisy data is handled by slack variables ξi which allows some data points
to lie within the margin or even on the “wrong” side of the hyperplane.

This is illustrated in Figure 2.4. The key to the success of this approach lies
within eqn. (2.12). Interestingly, the data "x and "xi enter eqn. (2.12) only by their
scalar product. As the function Φ might be expensive to compute or even map to an
infinitely dimensional space, one is more interested in functions which perform both,
the mapping and scalar product computation. Such a function is called a kernel k:

k("x, "xi) = Φ("x)T Φ("xi) (2.18)

To assure that there exists a space in which the kernel computes the scalar product
implicitly, one uses kernels that satisfy the Mercer condition - so called Mercer
Kernels. A popular choices for this kernel is the RBF kernel:

k("x, "xi) = exp(− ||"x− "xi||2

2σ2
) , σ ∈ R+ (2.19)

For other valid choices and how to compose new kernel functions we refer to
Cristianini and Shawe-Taylor (2000) and Chapelle et al. (1999).
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Figure 4.3: Illustration of a non-linear mapping Φ which makes the classes in the data linearly
separable.

In Figure 4.2 the slack variables are illustrated. The solution to this optimization problem is

obtained analogously to the linearly separable case[Vap96], [Sch01]. There is no canonical way

to chose the parameter C. It has to be chosen appropriately depending on the task.

4.1.4 Kernel Trick

The kernel trick is a method to make a linear classifier more generic. The data is transformed

into a feature spaceH by a non-linear mapping Φ which increases the separability of the data:

Φ : Rd −→ H (4.15)

x #−→ Φ(x) (4.16)

This is illustrated in Figure 4.3. The key to the success of this approach lies within eqn.

(4.11). Interestingly, the data x and xi enter eqn. (4.11) only by their scalar product. As the

function Φ might be expensive to compute or even map to an infinitely dimensional space, one is

more interested in functions which perform both, the mapping and scalar product computation.

Figure 2.4: Illustration of a non-linear mapping Φ which makes the classes in the
data linearly separable.

2.2.3 Topic Models

In terms of generative modeling, we build on the success of topic models (e.g. Hof-
mann (2001); Blei et al. (2003b); Griffiths and Steyvers (2004)). They have gained
increasing attention in computer vision ranging from unsupervised category discov-
ery (Sivic et al., 2005; Li and Perona, 2005; Bosch et al., 2006), over classification
(Quelhas et al., 2005; Larlus and Jurie, 2006) to detection (Sudderth et al., 2005;
Fergus et al., 2005a; Bissacco et al., 2008). Often local feature representations are
employed (Sivic et al., 2005; Larlus and Jurie, 2006) that neglect the spatial layout
with a few exceptions such as (Fergus et al., 2005a; Sudderth et al., 2005; Bissacco
et al., 2008).

We employ probabilistic topic models as described in (Hofmann, 2001; Blei et al.,
2003b; Griffiths and Steyvers, 2004) which were originally motivated in the context
of text analysis. As it is common habit we adopt the terminology of this domain. In
the following, a document d refers to a sequence of words (w1, w2, . . . , wNd

), where
each wi is one word occurrence. The underlying idea of these models is to regard
each document as a mixture of topics. This means that each word wi of the total
Nd words in document d is generated by first sampling a topic zi from a multinomial
topic distribution P (z) and then sampling a word from a multinomial topic-word
distribution P (w|z). Therefore the word probabilities for the combined model are:

P (wi) =
T∑

j=1

P (wi|zi = j)P (zi = j) (2.20)

where T is the number of topics and P (wi|zi = j) as well as P (zi = j) are unob-
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Figure 2.5: LDA model as formulated by Griffiths and Steyvers (2004).

served. According to the notation of Griffiths and Steyvers (2004), we will abbreviate

θ(d): topic distribution P (z) for document d
φ(j): topic-word distribution P (wi|z = j) for topic j

The particular topic models differ on the one hand in which additional hyperparam-
eters/priors they introduce and on the other hand in how inference and parameter
estimation is performed. We will discuss the Latent Dirichlet Allocation model of
Blei et al. (2003b) in some more detail focusing on the version presented in Grif-
fiths and Steyvers (2004) that uses Gibbs sampling for inference and estimation.
The graphical representation of this model is depicted in Figure 2.5. It visualizes
the process that generates a total of D documents d, where each document has Nd

words. Above we already described how each word wi of a particular document
is generated. In the full model, there are 2 additional hyperparameters, α and β,
which place symmetric dirichlet priors on the topic distribution of each document
θ(d) and the topic-word distributions φ(j) respectively. As the setting for α and β
is common to all documents, these act as forces that impose global tendencies on
these distributions. Intuitively, the prior α for the topic distribution θ favors co-
activation (sharing) of multiple topics for each document for values larger than 1,
whereas smaller values result in sparser topic distribution - ultimately having single
topics explaining whole documents (clustering). Consequently, the sparseness of the
topic-word distribution φ(j) is affected by this choice. The second parameter β, has
a direct smoothing effect on the topic distributions.

For more details on the models, inference and estimation, we refer to Blei et al.
(2003b) and Steyvers and Griffiths (2007). The idea behind the employed Gibbs
sampling procedure is that all topic assignments zi are initialized (typically ran-
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domly) and then iteratively updated in a random order. To perform such a single
update, a topic is drawn from the conditional distribution P (zi|Ω \ zi) and assigned
to zi, where Ω \ zi denotes all observed and unobserved variables but zi. This is
repeated for a fixed number of iterations.

2.3 Inspiration by Previous Work for the Contri-
butions of this Thesis

In this section we describe how the main contribution of this thesis were inspired by
previous work.

2.3.1 Generative/Discriminative Hybrid Model for Detec-
tion

Inspired by the different properties of generative and discriminative approaches as
described in Section 2.1.1 and work from the machine learning community (Jaakkola
and Haussler, 1999), we present a hybrid approach in Chapter 3. We use the Implicit
Shape Model (ISM) (Leibe et al., 2008) as the generative part which is know to obtain
high recall and generalize well from few training instances. But these benefits come
at the price of over simplified independence assumptions of a star-structured model.
This is why we decided for the kernel proposed in Wallraven et al. (2003) as the
discriminant counterpart as it allows to verify the hypotheses with a stronger shape
models that ensures global consistency.

2.3.2 Weakly Supervised Learning by Discovery of Reoccur-
ring Patterns

Typically, highly supervised methods like the ISM that use pixel-level annotations
lead to superior performance in comparison to unsupervised (Sivic et al., 2005) or
weakly supervised (Fergus et al., 2003) methods. This motivated us to formulate
an approach that bridges the gap between low annotation effort and highly super-
vised performance level. Chapter 4 presents an approach that first recovers object
annotations as reoccurring patterns in a weakly supervised setting from data, which
allows then training of fully supervised models. The metric we use to retrieve those
reoccurring patterns also has its origin in the ISM. The notion of Scale-Invariant
Patterns which we are going to introduce in Chapter 4 is set up in a way, that the
scalar product between two patterns mimics the ISM voting scheme described in
Section 2.2.1.
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2.3.3 Integrating Different Levels of Supervision in a Cross-
Modal Setting

The before mentioned approaches mostly use a single type of supervision. As part
of the work in Chapter 5 is motivated by a tutor-driven learning scenario there are
two main reasons which motivated us to use combine different levels of supervision
in one approach. First, tutor-based interactions are very time consuming so that
we want to tap into any kind of information that is available to the system. In our
case, this means exploiting unsupervised clustering as well as uncertain information
in addition to the direct supervision by the tutor. Second, supervision is needed to
overcome the inherent limitations of purely unsupervised approaches. While fully
unsupervised approaches like Sivic et al. (2005) have shown impressive performance,
there is a limit to what can be inferred by just analyzing the data.

2.3.4 Generative Decompositions of Visual Categories

As outlined in Section 2.1.2 the diversity of representation paradigms in the litera-
ture motivated us to start in Chapter 6 from a rather low level description of the
image based on oriented gradient histograms (Dalal and Triggs, 2005). Instead of
hand-crafting the features we aim for learning a representation from data. Also from
the perspective of topic modeling, a change towards a dense representation as also
promoted in Bissacco et al. (2008) is beneficial in three ways. First, one is less likely
to miss important information in contrast to a sparse local feature representation
which relies on an interest point detector. Second the employed dense representa-
tions lend themselves to visual inspection which turned out to be extremely helpful
in order to gain more model introspection. Third, the dense representation in combi-
nation with the probabilistic topic model eliminates the need of codebook generation
and matching, which can introduce additional noise to the system. In particular,
over-counting evidence due to overlapping features as it can occur for local features
is fully eliminated. Finally, approaches like (Quelhas et al., 2005) inspired us to use
the topic representation as an intermediate result. This is in contrast to approaches
like Sivic et al. (2005) where categories are discovered as single topics. Torralba et
al. (2007) inspired us to learn a shared representation across all classes to improve
scalability.





3
Integrated
Representative/Discriminative
Approach

This chapter presents a method for object category detection which integrates a
generative model with a discriminative classifier. For each object category, we gen-
erate an appearance codebook, which becomes a common vocabulary for the gen-
erative and discriminative methods. Given a query image, the generative part of
the algorithm finds a set of hypotheses and estimates their support in location and
scale. Then, the discriminative part verifies each hypothesis on the same code-
book matches. The new algorithm exploits the strengths of both original methods,
minimizing their weaknesses. Experiments on several databases show that our new
approach performs better than its building blocks taken separately. Moreover, ex-
periments on two challenging multi-scale databases show that our new algorithm
outperforms previously reported results.

More specifically, we combine the Implicit Shape Model (ISM, Leibe et al. (2004))
based on a codebook representation (which can be seen as a non-parametric prob-
abilistic model of the appearance of object categories) with an SVM using Local
Kernels (LK, Wallraven et al. (2003)), which has proven effective for object catego-
rization (Nilsback and Caputo, 2004). The idea to use a generative model inside a
kernel function has been proposed before (Jaakkola and Haussler, 1999; Jebara et
al., 2004; Vasconcelos et al., 2004; Tsuda et al., 2002), and it has been applied to
visual recognition tasks like object identification (Vasconcelos et al., 2004).

The rest of the chapter is organized as follows: after a brief outline of the build-
ing blocks (Section 3.1), we introduce the new approach, describing in detail how it
integrates ISM and LK and discussing its advantages with respect to the two previ-
ous methods (Section 3.2). Section 3.3 reports experiments benchmarking our new
method with its building blocks, on several databases of increasing difficulty.

27
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3.1 Previous Approaches

Our approach is motivated by two recent advances in object detection and discrim-
inant classification.

Object Detection with Implicit Shape Models. As detailed in Section 2.2.1,
Implicit Shape Models (ISMs) (Leibe et al., 2008) are unique in that they address
object category detection and top-down segmentation at the same time. They pro-
ceed by first collecting the evidence from local features in a probabilistic Hough
voting procedure to determine possible object locations and scales. For each such
hypothesis, they then go back to the image to determine on a per-pixel level where
its support came from, thus effectively segmenting the object from the background.
The segmentation information can then in turn be used to improve the accuracy of
the detection and resolve ambiguities between overlapping hypotheses (Leibe et al.,
2004). As a result of this iterative process, ISMs have been shown to yield good
object detection results and considerable robustness to partial occlusion.

The ISM approach provides a flexible representation of the target category. Since
each image patch votes for the object center independently of the other patches, the
resulting model can interpolate between local parts seen on different training objects.
As a result, it can adapt well to novel objects of the target category and typically
achieves high recall. However, as a price for this flexibility, it cannot reject false
positives as accurately as a discriminative model.

SVM Classification with Local Kernels. Most current object category detec-
tion systems are based on local features in order to reduce the influence of intra-class
variations, noise, and occlusion (Fergus et al., 2003; Agarwal et al., 2004; Viola et
al., 2003; Viola and Jones, 2004; Lowe, 2004; Leibe et al., 2004). Support Vector Ma-
chines (SVMs), on the other hand, have shown impressive learning and recognition
performance (Pontil and Verri, 1998; Papageorgiou and Poggio, 2000; Heisele et al.,
2001). As the SVMs’ machinery requires the computation of scalar products on the
feature vectors, Wallraven et al. (2003) introduced a local kernel which formulates
the feature matching step as part of the kernel itself. Despite the claim in Wallraven
et al. (2003), this family of kernels is not a Mercer kernel (Boughorbel et al., 2004).
Still, it can be shown that it statistically approximates a Mercer kernel in a way that
makes it a suitable kernel for visual applications. On the basis of this finding, and
of its reported effectiveness for object categorization (Nilsback and Caputo, 2004),
we will use this family of kernels in this chapter.

Given two sets of local feature Lh and Lk, these local kernels are defined as
(Wallraven et al., 2003):

K(Lh, Lk) =
1

nh

nh∑

jh=1

max
jk=1,...,nk

{
Kl(L

jh
h , Ljk

k )
}

, (3.1)



3.2. Integrated Approach 29

(a) original image (b) detected hypothe-
ses

(c) SVM input (d) accepted hypothe-
ses

Figure 3.1: Stages of the integrated approach. (a) original image; (b) hypothe-
ses detected by the representative ISM; (c) input to the SVM stage; (d) verified
hypotheses.

where the local feature similarity kernel Kl consists of an appearance part Ka and
a position constraint Kp

Kl(L
a
h, L

b
k) = Ka(L

a
h, L

b
k) Kp(pos(L

a
h), pos(L

b
k)). (3.2)

Various options have been given for the selection of Ka and Kp Wallraven et al.
(2003), including the following choice

Ka(x, y) = exp

{
−γ

(
1− 〈x− µx|y − µy〉

||x− µx||||y − µy||

)}
(3.3)

Kp(λx, λy) = exp

(
−(λx − λy)2

2σ2

)
, (3.4)

where σ is a strictness parameter for the position constraint.

As shown by Wallraven et al. (2003) and Nilsback and Caputo (2004), Local
SVMs can discriminate well between different object categories. However, they
contain no localization component and require accurate initialization in position
and scale. In the literature, the standard solution to this problem is to perform
an exhaustive search over all possible object positions and scales Papageorgiou and
Poggio (2000); Schneiderman and Kanade (2000); Heisele et al. (2001); Viola and
Jones (2004); Agarwal et al. (2004); Torralba et al. (2004). However, this exhaustive
search imposes severe constraints, both on the detector’s computational complexity
and on its discriminance, since a large number of potential false positives need to
be excluded. In this chapter, we present a different solution to this problem by
integrating Local SVMs with the ISM approach.

3.2 Integrated Approach

The main contribution of this chapter is to integrate both approaches into a consis-
tent framework (visualized in Fig. 3.1). Applied to a novel test image (Fig. 3.1(a)),
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the representative ISM is first used to find a set of promising hypotheses (Fig. 3.1(b))
and estimate their support in both location and scale (Fig. 3.1(c)). For each of
those hypotheses, the more exact discriminative model is then applied in order to
verify them and filter out false positives (Fig. 3.1(d)). By using the same internal
representation, namely the appearance codebooks, those two approaches are tightly
integrated. The ISM uses these appearance codebooks to generate hypotheses which
are visually consistent and which follow a weak spatial model. The discriminative
model on the other hand uses the same appearance codebooks to find visually dis-
criminant information for object classes and also to add a stronger spatial model
effectively extracting discriminant spatial codebook distributions. We thus combine
the capabilities of both models in an advantageous manner.

3.2.1 Generation of an Appearance Codebook

As a common representation, we generate a category-specific appearance codebook,
as described in Leibe et al. (2004). For this, we apply a scale-invariant DoG interest
point operator Lowe (2004) to all training images and extract image patches with
a radius of 3σ of the detected scale. All extracted patches are then rescaled to
a uniform size (in our case 25 × 25 pixels) and grouped using an agglomerative
clustering scheme. The resulting clusters form a compact representation of local
object structure. In the following, we keep only the cluster centers C = ("c1, . . . ,"cR)
as codebook entries.

3.2.2 Representation in Codebook Coordinates

The result of the ISM stage (see Section 2.2.1) is a set of object hypotheses h =
(on, λ), together with their support in the image (Figure 3.1(c)). This support
consists of a list of local features that contributed to the hypothesis and their cor-
responding codebook matches. In order to interpret this information in the SVM
framework, we first have to adapt the kernel formulation to our codebook represen-
tation.

The key idea is that the scalar product 〈"x, "y〉 used in the SVM Kernel can be
expressed in terms of a codebook matching problem. For this, we project both "x
and "y into the affine space spanned by the codebook entries "ci as basis vectors. With
"x =

∑
i ai"ci and "y =

∑
j bj"cj the scalar product can be written as

〈"x, "y〉 =
∑

i

∑

j

ai 〈"ci,"cj〉 bj. (3.5)

This formulation has two advantages. One is its computational efficiency – both the
intra-codebook similarity matrix 〈"ci,"cj〉 and the support vector coefficients bj can
be precomputed. Only the image-feature coefficients ai need to be calculated during
recognition. The second advantage is that the data is now expressed in a common
format and partial results can be reused by both stages.
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Remains the problem how to select the coefficients ai and bj. The smallest
reconstruction error would be obtained by a least-squares solution, but this solution
is typically not sparse. In order to arrive at a sparse representation, we propose to
consider again only the closest-matching codebook entries C∗

!x = {"c∗i |sim("c∗i , "x) ≥ θ}
and approximate the vectors "x and "y by the mean of those “activated” codebooks.
Thus, with n = |C∗

!x|, m = |C∗
!y |, we arrive at

〈"x, "y〉 ≈ 〈"µx, "µy〉 = <
1

n

n∑

i=1

"c∗i ,
1

m

m∑

j=1

"c∗j > (3.6)

=
n∑

i=1

m∑

j=1

1

n

〈
"c∗i ,"c

∗
j

〉 1

m
. (3.7)

This approximation is justified under the assumption that the codebook entries
sufficiently cover the relevant “object” region of the appearance space. We have
verified the validity of this assumption in a series of control experiments. The
results indicate that the difference in reconstruction error between the least-squares
solution and our sparse approximation is only modest and subsumes to an average
error of approximately one gray level per pixel on a reconstructed patch. As a result,
we get a problem-specific representation which expresses the data in a common
vocabulary and is used throughout both stages of our approach. In particular, this
representation allows us to reuse the results of the initial codebook matching stage
for the SVM model.

3.2.3 SVM Verification with Local Kernels

Let X = {(x1, λ1), . . . , (xN , λN)} be a set of local features (with appearance and
relative location) supporting hypothesis h, and A = {A1, . . . , AN} , Ai = (a1, . . . , aR)
be their corresponding codebook matches. The ISM procedure guarantees that each
feature in the supporting set is consistent in appearance and location with at least
one training example. However, as only local consistency is enforced, this reference
example may be a different one for each feature. In the next step, we therefore want
to verify that the global feature configuration is also consistent.

Figure 3.2 visualizes the chosen verification procedure. In the remainder of this
section, we will define the Local Kernel in a way that each support vector corre-
sponds to a distinct configuration of local features. When evaluating a hypothesis,
it is successively compared to each support vector. For each such match, corre-
spondences are established between visually similar features occurring in the same
relative locations (with a small tolerance σ), and the quality of the resulting global
configuration fit is measured. Thus, the kernel enforces strong spatial constraints to
verify the hypothesis.

This is done as follows. Let Y = {(y1, λ1), . . . , (yM , λM)} be the features observed
on a training image with corresponding codebook activations B = {B1, . . . , BM} , Bj =
(b1, . . . , bR). In order to compare the feature configurations of X and Y , we first try
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Figure 3.2: A look inside the LK verification stage. Each support vector specifies
a configuration of local features, corresponding to a particular training example.
When evaluating a hypothesis, the kernel K first searches for the k best feature
correspondences, considering both appearance and relative position, and uses them
to judge the quality of the match.

to find a set of correspondences between their features. For each pair of features
("x,λx) and ("y, λy), the quality of a match is expressed by the local similarity kernel
Kl:

Kl(("x,λx), ("y, λy)) = Ka("x, "y) Kp(λx, λy), (3.8)

where Ka is measuring the appearance similarity and Kp is imposing a position
constraint in the manner of a penalty function. For Ka and Kp we stick to the
choices made in Wallraven et al. (2003), but replace the correlation coefficient by
the approximation from eq. (3.5):

Ka("x, "y) = exp (−γ (1− 〈"x, "y〉)) (3.9)

≈ exp(−γ(1−
∑

i

∑

j

ai 〈"ci,"cj〉 bj))

Kp(λx, λy) = exp

(
−(λx − λy)2

2σ2

)
. (3.10)

In order to allow for some flexibility in the part arrangement, we do not enforce
complete correspondence, but only match a subset of the features by searching for
the k best correspondences. This is done using a greedy selection strategy on the
feature similarity matrix Kl(X, Y ). Let Φ ∈ πN

1 , Ψ ∈ πM
1 be permutations of the

local features to reflect this greedy assignment. According to Wallraven et al. (2003),
the corresponding Local Kernel is then defined as

K(X, Y ) =
1

k
max
Φ,Ψ

k∑

j=1

Kl

(
("xΦ(j), λx,Φ(j)), ("yΨ(j), λy,Ψ(j))

)
. (3.11)
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Note that the resulting kernel does not need to consider the original features any-
more, but only operates on the codebook matches passed from the previous stage.
It thus requires very little computation and imposes only a small overhead on the
total execution time. In all experiments presented in this paper, we set k to 50
and determine the remaining parameters using cross-validation on the training set.
Although it might be tempting to set k = max(N, M) and then normalize the kernel
by dividing with k, this has shown to lead to a kernel matrix that is not positive
semi-definite. The SVM training on those kernels lead to extremely poor results.

3.2.4 Discussion

It is important to emphasize that through the integration, the SVM stage is solving
a simpler problem than the previous LK approach. Not only is it initialized with an
estimate of the object position and scale, but it directly obtains also the support-
ing image features as input. It can thus optimize its decision surface on the failure
cases of the ISM stage and learn a stronger discriminative model. In addition, the
discriminative model makes it possible to achieve a better separation from back-
ground constellations, whose complex distributions are notoriously hard to express
in a probabilistic framework.

The matching to a common codebook enables both stages to make use of “across-
instance” learning which is essential when dealing with limited training set sizes. In
addition, the Local Kernel stage complements the ISM’s weak spatial model with
stronger spatial constraints.

As a side benefit, the output confidence of the SVM stage (i.e. the distance to
the hyperplane) becomes comparable for different object categories. This is the case
because the Local Kernel bases its computation on a fixed number of k correspon-
dences.

3.3 Experiments

In this section, we show that our new approach benefits from the integrated rep-
resentative and discriminative representation (in the following termed IRD). We
present our results in three steps. After presenting the data, we first compare our
new approach to the original ISM and LK approaches in Section 3.3.2. Section 3.3.3
then reports results on a multi-category detection/discrimination task. Finally, we
evaluate our approach on two difficult data sets and the PASCAL VOC challenge
(Everingham et al., 2005b) containing large scale changes and partial occlusion

3.3.1 Data

In order to evaluate our approach, we apply it to a test set containing objects of four
categories, namely cars, cows, horses, and motorbikes. The pairs cars/motobikes and
cows/horses were especially chosen to measure cross-category confusions, since they
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LK ISM IRD
car 61.0 % 94.7 % 99.4%
cow 95.3 % 96.1 % 97.1%
horse 77.8 % 88.5 % 88.5%

motorbike 87.6 % 93.8 % 96.5%

Table 3.1: Equal error rate performances achieved by the Local Kernel (LK), Implicit
Shape Model (ISM), and our integrated approach (IRD) on present/absent tasks.

share similar visual features. The data is mostly taken from the PASCAL database
collection (Everingham et al., 2005a). For cars we use the UIUC single-scale test
set; for motorbikes the CalTech motorbike set (with the same training/test split as
in Fergus et al. (2003)); and for cows the TUD cow database (supplemented with
557 test images). For the background set, we use 450 CalTech background images.
The horse images are taken from the Weizmann horse database (Borenstein and
Ullman, 2002) and split into 79 training and 164 test images. This is the first time
detection results are reported on this database, as it was previously only used for
segmentation tasks.

3.3.2 Comparison with Original Approaches

We start the experimental part with a comparison of our new IRD approach with
the approaches it originates from – namely the Local Kernels and the ISM. To pro-
vide a fair comparison with the LK approach, which is not designed to be scale
invariant or perform a detection task in the first place, we report results of ob-
ject present/absent experiments. The test is performed on images of each category
vs. 450 novel background images.

Table 3.1 summarizes the equal error rate (EER) performances for this exper-
iment. As can be seen from the table, the integrated approach achieves superior
performance compared to its building blocks.

3.3.3 Multi-Category Discrimination

Detection Task and Evaluation. Our main experiments are performed on a
detection task, where the detector has to localize image regions in which an instance
of the category of interest is present. For evaluating the car detections, we use
exactly the same acceptance criterion as in Agarwal et al. (2004). However, as this
criterion is only well-defined for fixed-size bounding boxes (and thus not directly
applicable to the cow and horse categories), we apply an extended criterion for the
other three categories. We inscribe an ellipse in the ground truth bounding box and
measure the distance dr between the bounding box centers relative to the ellipse’s
radius at the corresponding angle. A hypothesis is accepted if dr ≤ 0.5 and the
ground truth and hypothesis bounding boxes cover one another by at least 50%. In
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Figure 3.3: Recall-Precision curves for the car, cow, horse and motorbike model on
a detection task.

accordance to Agarwal et al. (2004), only one hypothesis per object is accepted as
correct – any additional hypothesis on the same object is counted as false positive.

Detection Results. Figure 3.3 shows the results of this evaluation in the form of
Recall-Precision curves (RPCs). To vary the strictness of the local kernel SVM in our
new IRD approach without retraining, we used the distance to the decision boundary
as a confidence measure. Although the ISM by itself performs already quite well on
all four categories, our new IRD approach improves the EER performance for cars
from 87.6% to 88.6%, for cows from 92.5% to 93.2% and for motorbikes from 80.0%
to 84.0%. For horses, the performance stays at the same level. Besides the gain in
EER performance, cars, cows and motorbikes profit from the added discriminance
in terms of increased precision of the final detector, which shifts the precision-recall
curves to the left. Especially the relatively rigid car and motorbike categories profit
from the stronger structured constraint of the local kernel. Figure 3.5 displays some
example detections of our approach which illustrate the generalization capabilities
over large intra-category variations, including different articulations, and its robust-
ness to partial occlusion.
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ISM IRD car cow horse motorbike
#170 #557 #164 #400

car - 0.07 0.00 0.02 0.01 0.18 0.03
cow 1.00 0.49 - 0.18 0.11 1.05 0.05
horse 0.71 0.16 0.53 0.08 - 0.68 0.05

motorbike 1.07 0.08 0.29 0.09 0.22 0.00 -

Figure 3.4: Cross-category confusions (false positives per test image) for the ISM
and our new IRD approach on a detection task.

Figure 3.5: Example detections on the car, cow, horse, and motorbike test sets.

Discrimination Results. Given these detectors operating at their equal error
rate, we now investigate the produced confusions. Table 3.4 displays the false de-
tections each of the detectors produces per image on all four object categories. The
left number reports the false positives detected by the ISM. It can be seen that the
ISM performs well for the car model, but still produces a relatively large number
of false positives for the other categories. The larger number of confusions on the
car images can be explained by the fact that those images are about twice as large
as the other images. The right number reports the false positives detected by our
new IRD approach processing all detectors in parallel and acting as a single unified
detector. Ambiguous detections are eliminated using the local SVM output as a
confidence measure. We can observe a drastic reduction of false positives down to
(or even below) the 0.1 level for almost all combinations. In particular, these results
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Figure 3.6: Precision-Recall curves for the difficult multi-scale databases of cars and
motorbikes. Our new IRD approach clearly outperforms the state-of-the-art on the
UIUC multi-scale car database.

show that in our new IRD approach the SVM output is well suited as a confidence
measure for comparing hypotheses across categories.

3.3.4 Discriminant Category Detection

In this section, we evaluate our approach on two more challenging databases that
include large scale changes and significant partial occlusion. We use the UIUC
multi-scale cars (Agarwal et al., 2004) and the TUD motorbikes. For the multi-scale
cars, we again use the acceptance criterion from Agarwal et al. (2004); for the mo-
torbikes we use the criterion described in Section 3.3.3 for the reasons given there.
Figure 3.6 shows the result of this evaluation. The black line corresponds to the
performance reported by Agarwal et al. (2004), with an EER performance of about
45%. In contrast, our IRD approach achieves 87.8% EER – an improvement of over
40%! Interestingly, our method obtains up to 64% recall before generating any false
positives. On the motorbike test set, our approach achieves an EER performance of
81%. Compared to ISM, there is a consistent improvement in precision. The diffi-
culty of the task is illustrated by Figure 3.7, which shows example detections of our
IRD approach documenting the performance under occlusion, extreme illumination
conditions and large scale changes.

3.3.5 Results on the PASCAL VOC Challenge 2005

We entered the PASCAL challenge with results on the tasks No. 1, 2, 5, 6 - namely
detection and classification on test set 1 and 2, where the model is trained on
the provided training and validation sets. We submit results on the categories car
and motorbike obtained with the standard ISM approach as well as our new IRD
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Figure 3.7: Example detections of our new IRD approach on the difficult multi-scale
UIUC car database and the multi-scale TUD motorbike test set.

approach.

Training. The ISMs are trained on the following subsets of the training/validation
sets:

• 55 car images consisting of

– 26 images of the TU Darmstadt database

– 29 images of the TU Graz database

• 153 motorbike images of the CalTech database

Up to now, our approaches have only been evaluated on single viewpoints. In order
to stay consistent with those experiments, we only selected side views from the
training set. .

Again, SVM validation stage is trained on detections and false alarms of the ISM
on the whole training set for cars and motorbikes.

Test. All experiments were performed on the test sets exactly as specified in the
PASCAL challenge. For computational reasons, the test images were rescaled to
a uniform width of 400 pixels, as otherwise the number of local features cannot
be handled well by the non-parametric approach we are taking in the generative
detection stage.

We report results on both the object detection and the present/absent classifica-
tion task. Detection performance is evaluated using the hypothesis bounding boxes
returned by the ISM approach. For the classification task, an object-present decision
is taken if at least one hypothesis is detected in an image.

Since our IRD approach allows for an additional precision/recall trade-off, we ex-
plored different trade-offs for our submission to the challenge – one for optimal equal
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database percentage #cars
CalTech 6% 21

TU Darmstadt 7% 24
TU Graz 45% 152

UIUC 42% 144

Table 3.2: Analysis of the image sources for the car test set 1. Only the TUD and
UIUC databases contain exclusively side views. Altogether, side views take up only
about 55% of the test cases.

error rate (EER) performance and one for optimized precision (labeled “ISM+SVM
v2” in the plots).

Results on Motorbikes Figure 3.8 shows our results for the motorbike test sets.
With 89.5% and 85.5% EER performance for detection and classification, respec-
tively, our methods achieve good performace on test set 1. On test set 2, the
performance drops to 50% and 68% . This can be explained by the problem of
detecting/classifying multiple view points. As mentioned above, our approach is
only trained on side views, which comprise only a small portion of the test images.
Examples for the detection task on test set 1 and 2 are shown in Figure 3.11. Side
by side, the predicted bounding box and the inferred segmentation mask is shown.
The detection of the motorbike at the beach exposes an interesting artifact. As the
model was only trained on motorbikes facing to the right, this left facing motorbike
gets interpreted as a right facing one, as can be seen from the segmentation mask.
While this works out well in this particular case for the motorbike category, it is
not trivial how to deal with these kind of problems in a more principled way. For a
possible approach to extend the ISM towards multi-view detection and out-of-plane
rotations, we refer the reader to Thomas et al. (2006).

Results for Cars Our results for the car test sets are shown in Figure 3.9. As
can be seen from those plots, the achieved recall is significantly lower than for the
motorbike test sets (with 53% for detection and 64% for classification on test set
1). The reason for this is again that our approach is only trained on side views. As
Table 3.2 shows, only about 55% of the test cases consist of side views, which forms
an upper bound on our detector’s performance. However, as the “ISM+SVM v2”
curve demonstrates, our approach succeeds to find a large percentage of the existing
side views with high precision. Example detection are depicted in Figure 3.13.

The same observation holds for test set 2, where 10% of the cars are detected
with high precision, which again corresponds to a large percentage of the existing
side views in this test set. The composition of the test sets is also reflected in
our approach’s performance for the classification task, where it achieves 66% EER
performance on test set 2.
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Figure 3.8: Results on test sets 1 (left) and 2 (right) for motorbikes.The top row
shows the performance for the object present/absent classification task. The bottom
row contains our results for the object detection task.
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Figure 3.9: Results on test sets 1 (left) and 2 (right) for cars.The top row shows
the performance for the object present/absent classification task. The bottom row
contains our results for the object detection task.
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Figure 17: Competition 5.1: test1: motorbikes (all entries)
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Figure 18: Competition 5.2: test1: bicycles (all entries)
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Figure 17: Competition 5.1: test1: motorbikes (all entries)
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Figure 18: Competition 5.2: test1: bicycles (all entries)
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Figure 21: Competition 6.1: test2: motorbikes (all entries)
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Figure 22: Competition 6.2: test2: bicycles (all entries)
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Figure 21: Competition 6.1: test2: motorbikes (all entries)
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Figure 22: Competition 6.2: test2: bicycles (all entries)
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Figure 3.10: Results on the PASCAL Challenge motorbike detection task.
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Figure 3.11: Example detections and segmentations on PASCAL Challenge motor-
bike detection task.
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Figure 19: Competition 5.3: test1: people (all entries)
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Figure 20: Competition 5.4: test1: cars (all entries)
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Figure 19: Competition 5.3: test1: people (all entries)
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Figure 20: Competition 5.4: test1: cars (all entries)
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Figure 23: Competition 6.3: test2: people (all entries)
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Figure 24: Competition 6.4: test2: cars (all entries)
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Figure 24: Competition 6.4: test2: cars (all entries)
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Figure 3.12: Example detections and segmentations on PASCAL Challenge car de-
tection task.
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Figure 3.13: Results on the PASCAL Challenge car detection task.
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Discussion. As can be seen from the comparison to our competitors in the PAS-
CAL VOC 2005 detection challenge in Figure 3.10 and Figure 3.12, the ISM as well
as our IRD approach outperformed the other approach on both motorbike test sets.
On the car sets, we were second after the approach Dalal and Triggs (2005). We
account the superior performance of the HOG approach on the car data to the ca-
pability of the histogram grid based approach to fine tune to rigid structure of the
cars. The IRD consistently outperforms the ISM approach.

In addition to the detection competition, we also submitted results to the pres-
ence/absence competition. In contrast to the detection task, no localization of the
object of interest is required. Basically, the task reduces to a classification problem
if at least one object instance of the category of interest is present or not. While
our approach worked well on the detection tasks, the results we derived based on
the detections for the presence absence task were mediocre. This can be interpreted
in two ways. First, although the detection approach can tell, why a certain image
gets labeled with “car present”, it solves a more complicated intermediate problem.
The introduced overhead and more difficult estimation problem can cause worse re-
sults, than directly aiming for the simpler target function. Second, it is not obvious
how and if the excellent performance of algorithm designed for the presence/absence
task translates to the detection problem. Depending on the approach, figuring out
on which part of the image the actual decision is based on is not straight forward.
Additionally, these approaches don’t necessarily base their decision on the object
itself. E.g. detecting a road (given a particular data set) can already be considered
strong evidence, that a car might be present in the image.

3.4 Conclusion

Summarizing our approach, we integrated a representative object detection method
with a discriminative verification stage for the generated hypotheses. Both stages
operate on a common codebook representation. They share and reuse the same in-
formation from sampled image patches, but interpret it in different ways. The ISM
hypothesis generation stage searches for agglomerations of image patches that are
locally consistent with a common object center. Treating each sampled patch inde-
pendently, it can interpolate between different training examples and adapt to novel
objects and changed articulations. The SVM verification stage, on the other hand,
enforces stronger spatial constraints and verifies the global feature configuration. At
the same time, its discriminative capabilities obviate the need for a dedicated back-
ground model, which is difficult to estimate reliably in a probabilistic framework.
Finally, the tight integration with the output of the ISM stage removes the influ-
ences of translation and scale changes, which greatly simplifies the discrimination
problem.

Together, both stages manage to reduce the number of false positives and cross-
category confusions significantly and perform considerably better than either stage
alone. In our experiments, we have shown this improvement both for a four-class
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detection/discrimination task and for object detection on two challenging data sets
containing large scale changes and partial occlusion.

In particular, our submission to the PASCAL 2005 VOC challenge outperformed
its competitors in the motorbike detection task and performed second best for the
car data sets.



4
Weakly Supervised Learning via
Scale-Invariant Patterns

The previous chapter described a method for object category detection that combines
high recall with improved accuracy. However, this performance levels comes at
the cost of high annotation effort. In particular, the ISM detector uses pixel-level
segmentation of the training instances to leverage from the interleaved segmentation
and detection framework. This is in accordance with the more general observation
that high performance object detection methods tend to be trained in a supervised
manner from relatively clean data. In order to deal with a large number of object
classes and large amounts of training data, there is a clear desire to use as little
supervision as possible.

This chapter proposes a new approach for weakly supervised learning of visual
categories based on a scheme to detect reoccurring structure in sets of images. The
approach finds the locations as well as the scales of such reoccurring structures in
a weakly supervised manner. In the experiments those reoccurring structures cor-
respond to object categories which can be used to directly learn object category
models. Experimental results show the effectiveness of the new approach and com-
pare the performance to previous fully-supervised methods.

The central problem addressed in this chapter is to discover and learn objects
category models as reoccurring patterns of local appearance in sets of training data.
It may seem quite unrealistic to discover object categories in this way. However,
many appearance-based approaches explicitly or implicitly rely on the fact that both
the local appearance as well as its structural layout exhibit reoccurring patterns that
can be learned and modeled (e.g. Weber et al. (2000); Fergus et al. (2003); Leibe
et al. (2004); Felzenszwalb and Huttenlocher (2005)). A key idea of our approach is
therefore to discover reoccurring patterns in multiple images without the model of
any particular object. Finding the locations and scales of such reoccurring structures
effectively corresponds to unsupervised annotations of the training data. As we will
show, the proposed approach enables effective object class discovery in unlabeled
images. Using those estimated annotations a model of an object class can be learned.

The chapter is organized as follows: Section 4.1 describes a method for locating
reoccurring structure for which in Section 4.2 we present a method to robustly
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Figure 4.1: Cluster centers of the generic codebook. The codebook is unspecific since
no knowledge about the particular object class is assumed during object discovery.
50 codebook entries are obtained by k-means clustering on the Caltech background
dataset using a Hessian-Laplace interest point detector and gray value patches as
descriptors.

estimate the intrinsic scale of the associated objects. Section 4.3 shows how a model
like Leibe et al. (2008) can be learnt from the estimated annotations. Finally, we
show in Section 4.4 the usefulness of the obtained information on a image ranking
and an object detection task.

4.1 Object Discovery

Our new approach to unsupervised object discovery is based on efficiently finding
reoccurring spatial patterns of local appearances. We use a generic codebook repre-
sentation which is presented in Section 4.1.1. This representation is then employed
to find locations (Section 4.1.3) and scales (Section 4.2) of reoccurring patterns in a
set of training images.

4.1.1 Generic Codebook Representation

As in the previous chapter, we use an initial clustering procedure to obtain a visual
codebook. Since we do not want to assume a priori information on parts or common
structure of the object category, we use a generic codebook produced on unrelated
background images. We extract image patches on the Caltech background images (as
also used in Fergus et al. (2003)) using the scale-invariant Hessian-Laplace interest
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Figure 4.2: The scale-invariant representation we use is derived from the com-
mon bag-of-words representation. Recently a spatial resolution was added to each
bin. We improve the robustness of these type of representations by adding a scale-
normalization step yet retaining the spatial information which yields what we call a
Scale-Invariant Pattern.

point detector of Mikolajczyk and Schmid (2005). Those image patches are clustered
by k-means using normalized gray-scale correlation as similarity measure. Figure
4.1 shows the generic codebook with 50 cluster centers that we use for the object
discovery.

4.1.2 Scale-Invariant Patterns (SIPs)

Given a set of K images with Rk reference points r in each image k, we define a pat-
tern Ψk,r in image k at reference point r to be characterized by a set of distributions
{p(h|Ψk,r,c)|c = 1, . . . , C}. Each of the p(h|Ψk,r,c) encodes the spatial distribution
of the features in image k that match to a certain codebook c, assuming a total
codebook size of C. The coordinates h = (hx, hy) are scale-normalized with the
intrinsic feature scales σ (obtained from the scale-invariant interest point detector)
and computed relative to a reference point r = (rx, ry)

h =

(
x− rx

σ
,

y − ry

σ

)
. (4.1)

As visualized in Figure 4.2, this representation can be seen as a extension to the
bag-of-words representation of Csurka et al. (2004) by adding two spatial dimensions
to each bin like in Lazebnik et al. (2006). But in contrast to previous approaches, we
are re-gaining scale-invariance by normalizing the local feature configuration with
respect to the center point.

Using this scale-normalized coordinates is beneficial, as the patterns become
scale-invariant and characteristic for the particular reference point r. This allows to
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locate reoccurring patterns even though they appear at different global scales in the
training images.

4.1.3 Method

We formulate the unsupervised discovery of reoccurring spatial patterns of local
appearances as finding for each image the most likely pattern given all observed
patterns in the training data. Therefore we are interested in finding the reference
point q̂j associated with the most likely pattern in each image j given all observed
patterns Ψ = {Ψk,r|k = 1, . . . , K; r = 1, . . . , Rk}

q̂j = arg max
q

p(Ψj,q|Ψ). (4.2)

To simplify notation, the reference points q and r are assumed to be quantized.
In fact, in the experiments the reference points will be defined on a regular grid
overlaying the images. The likelihood estimate is obtained by marginalizing over the
codebook entries c, scale-normalized coordinates h, reference points r, and images k

p(Ψj,q|Ψ) =
∑

c

∑

h

∑

r

∑

k

p(Ψj,q,c|h)p(h|Ψk,r,c)p(Ψk,r,c).

Using Bayes’ formula we obtain

p(Ψj,q,c|h) =
p(h|Ψj,q,c)p(Ψj,q,c)

p(h)
. (4.3)

By assuming uniform priors, p(Ψk,r,c) and p(h) can be written as constant 1
Z . This

assumption is justified, by a uniform partitioning of our data using k-means cluster-
ing. Eq. 4.3 simplifies to

p(Ψj,q|Ψ) =
1

Z

∑

c

∑

h

∑

r

∑

k

p(h|Ψj,q,c)p(h|Ψk,r,c). (4.4)

An example of this likelihood estimate on the multi-scale TUD motorbikes (available
in the PASCAL database collection Everingham et al. (2005a)) is visualized as iso-
lines on top of the images in Figure 4.3. The presented dense version of the likelihood,
that is only defined point-wise on the reference points, was obtained by interpolation.
This corresponds to a smoothing operation to increase the support of p(Ψj,q|Ψ). In
the visualization we can clearly see two maxima which correspond to two occurrences
of the motorbikes.

Eq. 4.4 can be interpreted as collecting evidence for pattern Ψj,q with respect to
all other patterns Ψ by searching for matching feature with appearance c and scale-
normalized position h. Although this seems computationally infeasible, we introduce
an efficient method to evaluate eq. 4.4 using scale-invariant feature hashing - similar
to the idea of geometric hashing of Wolfson and Rigoutsos (1997). The idea is to
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Figure 4.3: Example of the computed likelihood on the multi-scale TUD motorbikes.

index all features of the image database by quantized scale-normalized coordinates
h and matching codebook clusters c and store them in the hash H. Features which
are matching to the same codebook and have similar scale-normalized position h are
now stored in the same hash bin and considered to be matched. More importantly,
the matches can be used to backproject the support of all patterns Ψj,q with respect
to all patterns. As a result, all p(Ψj,q|Ψ) given by the complex eq. 4.4 can be
computed by a single loop over the hash bins of hash H.

4.1.4 Evaluation

To test the proposed procedure for object discovery with respect to robustness
against translation, scaling, occlusion, and background clutter we ran tests on three
object categories: motorbikes, cows, and cars. For the cows we use the training set of
the TUD cows (again available form the PASCAL database collection) as well as the
cows from Hillel et al. (2005). For the cars we use the training set of the PASCAL
challenge (Everingham et al., 2005a). Examples for the estimated object centers are
shown in Figure 4.4. Despite the strong variations in appearance and view-point,
the objects are successfully localized. The reference points r are quantized on a
10× 10 grid.

To gain more insights, we perform a quantitative analysis on the Caltech motor-
bike training set as used in Fergus et al. (2003) which consists of 400 images. We
compute the pixel distance between our estimate and the center of the groundtruth
bounding box annotation as well as the distance normalized by the object width.
As the results in Figure 4.5 show, nearly all errors are below a normalized distance



50 Chapter 4. Weakly Supervised Learning via Scale-Invariant Patterns

Figure 4.4: Example result of our procedure for object discovery on car and cow im-
ages including varying position, scale and viewpoint and heterogeneous background.

of 0.3, which corresponds to the first noise level we investigated in the analysis for
the object scale estimation method in Section 4.2.2, that relies on this information.
The average distance is much lower, namely 0.10 (again normalized distance). Since
the groundtruth annotations are not really accurate themselves, the obtained error
is considered to be low.

4.2 Object Scale Estimation

From the procedure for object discovery described in Section4.1 we obtain localized
patterns Ψj,q at reference points q̂j for each image j. However, since these reoccurring
patterns are obtained in a scale-invariant fashion, they are of unknown scale s. While
it is advantageous, that no explicit knowledge of the object scale is required for
discovering reoccurring patterns, tasks like training an object model for detection
need an estimate of the object scale to learn a model across the training instances.

4.2.1 Method

The proposed method matches scale-invariant patterns to collect evidence for their
associated global object scale. Different methods to obtain a robust estimate are
proposed and evaluated. As the absolute, global object scale only exists with respect
to a reference scale, we formulate the scale estimation problem as finding the pairwise
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Figure 4.5: Quantitative evaluation of the error in the center point estimation on
the Caltech motorbike training set. (a) shows the distribution of the pixel distance
between annotation and estimate and (b) shows the distribution of the distance
normalized by the object width.

relative scale ρ̂k,l = sk/sl between two discovered patterns Ψk and Ψl in a pair of
images k and l. In analogy to eq. 4.2 we describe the problem of finding the most
likely relative scale ρ̂k,l with respect to the two patterns of the image pair as

ρ̂k,l = arg max
ρk,l

p(ρk,l|Ψk, Ψl) (4.5)

We assume that for matching features the ratio of the intrinsic scale σ of the matched
structures is equal to the ratio of the global scales s between the patterns and
their associated objects ρk,l = sk/sl = σk/σl. Accordingly, we expand eq. 4.5 and
marginalize over the codebook entries c and the scale-normalized coordinates h

p(ρk,l|Ψk, Ψl) =
∑

σl

p(σk|Ψk)p(σl|Ψl), where ρk,l = σk/σl (4.6)

=
∑

σl

p((ρk,lσl)|Ψk)p(σl|Ψl) (4.7)

=
∑

c

∑

h

∑

σl

p((ρk,lσl), h|Ψk,c)p(σl, h|Ψl,c)

We use the same hashing technique as described in Section 4.1.3 to efficiently retrieve
matching features and their associated scale ratio. Our efficient data structure allows
to compute all these likelihoods in one loop over all hash bins.

As visualized in Figure 4.6, the estimates from eq. 4.5 can be interpreted as a
fully connected graph, where the patterns in the images are the nodes with associ-
ated unknown object scale s and the relative scales of the patterns ρ are attached
to the edges. To make our method robust with respect to outliers, we compute con-
fidence scores for all estimated relative scales. These are computed by indentifying
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Figure 4.6: The dependencies between the unknown object scales s and the estimated
relative scales ρ is visualized as a fully connected graph. After pruning of the graph,
estimation of the object scales s are estimated by least squares.

image triplets with consistent relative scale estimates: Given three images Ia, Ib, Ic

with their relative scales ρa,b, ρb,c, ρa,c, the confidence for all three scale estimates is
increased if the equation ρa,bρb,c = ρa,c is fulfilled.

In this paper we investigate three different methods to derive a unique scale
estimate for each pattern from the pairwise relative scale information: least squares,
maximum spanning tree, and min-linkage method.

The least squares method is based on a linear system of equations to estimate the
unknown scales without using the computed confidences. Considering two patterns
Ψk, Ψl with the global scale of the patterns sk, sl of the associated object instances,
we compute a least-squares fit for the global scales s from all the estimated relative
scale according to:

sk

sl
= ρk,l =⇒ log sk − log sl = log ρk,l. (4.8)
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This leads to the linear system of equations for all N images:
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(4.9)

This method is computational expensive, because the number of equations grows
quadratically in the number of images, and its estimates are sensitive to outliers.

The maximum spanning tree method computes a maximum spanning tree on the
graph of confidences. The scale estimates can be directly computed from this tree
by fixing one scale. Although this method has low computational complexity, the
estimates are rather unstable. This is confirmed by our evaluation in Section 4.2.2.

As a compromise between efficient computation and robust estimation, we pro-
pose a third method. The min-linkage method considers for every image the n most
confident relative scales to all other images and therefore the number of equations
grows only linearly with the number of images. The estimate of the scales is still
robust due to the least-squares estimation.

The above described methods estimate relative scales, however, for the detection
experiments (Section 4.4.2) an absolute scale based on the extent of the object
is required. One possibility is to specify a reference scale for one image. In the
experimental evaluation we use the following heuristic. The absolute object radius
is chosen to be twice the mean feature distance to the center after aligning all objects
with the computed relative scale estimates.

4.2.2 Evaluation

To evaluate the accuracy of our new scale estimation scheme, we again use the Cal-
tech motorbike database with annotated object centers, which has a scale variation
of 2 octaves. Figure 4.7 shows the groundtruth object scales as well as the different
estimates for all 400 motorbikes. The object instances were sorted along the hori-
zontal axis according to the groundtruth scale, which was derived from the width
of the bounding box annotations. For the minimum linkage method, we chose to
preserve 10% = 40 of the most confident relative scales. The methods computes re-
liable estimates of the object scale even though the presented object instances were
spread over 2 octaves.

As we estimate the center-point in the final system using the procedure of Sec-
tion 4.1, we investigate the robustness of our scale estimate with respect to noise
added to the coordinates of the center-point. We run these experiments on the 400
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Figure 4.7: Evaluation of the scale estimate on the Caltech database. The 400
images are sorted by the true scale of the object. The scale estimate for each of the
proposed methods is plotted logarithmically. The curve for the pure least-square
and minimum linkage method are virtually identical.

noise least max span minLink minLink
level squares tree 10% 1%
σ0 0.0233 0.0579 0.0231 0.0271
σ1 0.0425 0.1209 0.0431 0.0505
σ2 0.0763 0.2489 0.0735 0.0975
σ3 0.1447 0.4813 0.1375 0.1647

Table 4.1: Noise analysis of our new object scale estimation technique. Different
methods to obtain the final estimate are evaluated at different noise levels of the
annotation of the object center. The error in the scale estimate is given in mean
squared deviation form the groundtruth in log-space.

Caltech motorbikes and add Gaussian noise with increasing variance to the center-
point annotation. We chose three noise levels with standard deviations of 1

6 ,
1
9 and

1
18 times the object width, whose 3σ-radius is visualized to the right of Table 4.1.
σ0 corresponds to the experiment without any noise added to the center-point an-
notation. We report the mean squared deviation in log-space from the correct scale,
that is computed on the bounding-box width of the annotation provided by Fergus
et al. (2003). As we are interested in the quality of the estimation of the relative
scale, we remove the bias in the estimation.

The results in Table 4.1 show that the approaches using least-squares fitting out-
perform the maximum spanning tree solution. The graph reduction of the minimum
linkage method gives only minor improvements at high noise level. Nevertheless we
favor the minimum linkage method, due to its much lower computational complexity.

Even when the noise is amplified until the 3σ-radius reaches 2
3 of the object radius

- which is twice the noise level we measured for the center point estimate in Section
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4.1.4 - the mean deviation of the estimated scales from the true scale is roughly 1
4

of an octave for least-squares and minimum linkage. In particular, the method is
robust enough to handle the noise in the center-point annotation produced by the
estimation proposed in Section 4.1, as it is below the first noise level as shown in
Section 4.2.2.

As a conclusion we use the minimum linkage method in our following experi-
ments, as it shows about the same accuracy as the full least-squares, but with a
much lower computational cost.

4.3 Model Estimation for Detection

As described in Section 2.2.1, the Implicit Shape Model (ISM) (Leibe et al., 2008)
is a versatile framework for scale-invariant detection of object categories, which has
shown good performance on challenging detections tasks like the PASCAL challenge.
It uses a flexible non-parametric representation for modeling visual object categories
by spatial feature occurrence distributions with respect to a visual codebook. Ad-
ditionally the method allows for back-projecting the support of the hypotheses to
infer figure-ground segmentation masks and performing an MDL-based reasoning
to resolve multiple and ambiguous hypotheses (Leibe et al., 2004). However, the
generation of an object specific visual codebook and the MDL-based reasoning step
require figure-ground segmentations for the training images which introduce high
annotation effort. One of our contributions is to show that one can achieve high
recognition performance by using the estimated center point (Section 4.1) and scale
(Section 4.2) instead of manually produced segmentations. As we do not have a
detailed segmentation mask at our disposal when using those location and scale
estimates, we use a much simple but (as will be seen in the experiments) effec-
tive approximation. Figure 4.9 shows our rough approximation by assuming the
segmentation to be a disc specified by the estimated center point and scale.

To learn the ISM model, we first switch from the generic codebook (Section 4.1.1)
to an object specific representation using SIFT descriptors (Lowe, 2004) computed
on Hessian-Laplace interest points (Mikolajczyk and Schmid, 2005). We use the
approximated segmentation (discs) to determine the object features for clustering.
Given the approximated segmentation and the new codebook, we can proceed train-
ing the ISM as described in Section 2.2.1. Despite the crude approximation of the
segmentations with discs, it is possible to infer segmentations for the hypothesis on
test images as shown in Figure 4.9.

4.4 Experiments

Whereas the previous sections analyzed the proposed object discovery and object
scale estimation separately, this section shows the applicability of these components
to two tasks - namely image ranking and object category detection. While the
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ranking task also show the scalability to large numbers of images, the detection
experiments evaluate how the proposed method generalizes to different categories.
In addition we will show that the approximated segmentation mask from Section
4.3 are effective and even crucial to obtain high level detection performance.

4.4.1 Image Ranking

In the following experiments, we show that the proposed method for unsupervised
object discovery from Section 4.1 can be used on its own for an image ranking task.
Using a keyword search for motorbikes we downloaded 5246 images containing a
wide range of different motorbike types (e.g. cruiser, sport-bike, touring, scooter,
moped, off-road, combination) captured from different viewpoints. Quite a number
of those images only show close-ups, parts or even unrelated objects. Our task
is to sort these images out. We use our method for object discovery to rank the
images by the likelihood (eq. 4.4). Note, that this ranking is obtained in a totally
unsupervised fashion and no validation set as in Fergus et al. (2005a) is needed.
Figure 4.10 (left) shows the ROC curves obtained by running our approach with and
without spatial information. If the spatial information of the features is discarded,
out representation reduces to a bag-of-words representation. The use of spatial
information improves the results significantly, which demonstrates the improvement
of our model over purely appearance-based approaches. Qualitative results for our
new approach using appearance and spatial structure are shown in Figure 4.8. As
scooters were the dominating motorbike type in the set (1169 of 5246), they also
appear first in the ranking.

4.4.2 Visual Category Detection Task

In the detection experiments we train a model according to Section 4.3 and use it
to localize instances of an object category of interest in the test images. Detections
are only accepted as correct if the hypothesized bounding box fits the groundtruth
annotation. Also multiple detections are counted as false positives. For better
comparability we use the acceptance criterion described in Section 3.3.3. We want
to emphasize, that no parameters had to be tuned for the proposed approach for
unsupervised learning. In terms of efficiency, the approach for object discovery can
estimate object locations in 200 images in 11 Minutes on a 3Ghz Pentium4, whereas
the object scale estimation takes 6 Minutes.

Unsupervised Learning for Detection Figure 4.10(middle) shows results on
the multi-scale TUD motorbike test set. The model is trained on the Caltech motor-
bikes. Note that this test set includes significant scale variations, partial occlusions
and multiple instances per image. For comparison we also include the results from
Section 3.3.4 on this dataset of 80% EER using accurate pixel-level segmentation
and ISM (supervised training with MDL) and 81% adding an additional SVM-stage
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......

Figure 4.8: The proposed method for Object Discovery also facilitates ranking of
the images. (top) best ranked images (bottom) worst ranked images.

(supervised training with MDL+SVM). Surprisingly, the performance of the pro-
posed unsupervised object discovery method (specific SIFT codebook with MDL -
#150) is very similar to the supervised training of ISM. The EER of 81% can be
further increased to 84% by using 400 instead of 150 training images (again in an
unsupervised fashion). Compared to the SVM approach of Chapter 3 the precision
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(a) (b) (c)

(d) (e) (f)

Figure 4.9: (a) training image (b) estimated approximation of object segmentation
(c) test image (d)+(e) inferred segmentation for hypothesis (f) final detections

is slightly worse, but the achievable recall is higher. So adding an SVM classifier in a
similar fashion has the potential to further increase the overall performance. Overall
the results are highly encouraging as they indicate that high annotation effort can
be replaced by using a larger amount of training data.

Evaluation of the Approximated Segmentation Masks Figure 4.9 shows a
training image (a) with the approximate segmentation mask (b) obtained by Object
Discovery and Scale Estimation, test image (c), inferred segmentation of hypothesis
(d) and (e) for the final detections displayed in (f). While the approximated segmen-
tation mask for the training example is far from being perfect, the inferred support
of the hypotheses on the test image is approximately correct for both motorbikes.

Figure 4.10(middle) shows how the performance increases significantly when this
approximation is used to perform the MDL-based hypothesis verification. The re-
sults support our claim, that the estimated segmentation masks are accurate enough
and facilitate the training of a model that gives competitive performance. The fig-
ure also shows that switching form a generic codebook to the a object class specific
SIFT codebook as described in Section 4.3 results in a major improvement.

Generalization to other Categories To investigate how this approach general-
izes to other categories and to compare our method to previous work, we conduct
experiments on cows, faces, and cars. The results are reported in Figure 4.10(right).
The training sets TUD cows and Caltech faces are selected, as they include signifi-
cant amount of variation of the object position in the training data to underline the
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Figure 4.10: (left) ROC-curve of ranking task (middle) performance comparison to
supervised baseline and performance increase due to approximated segmentations
(right) generalization to other categories and data sets

performance of the proposed method for object discovery. For the cows we use the
same test setting as in the supervised approach of Chapter 3. Our weakly supervised
approach achieves an equal error rate performance of 79.9% whereas the supervised
reference of Chapter 3 achieved 93.2% Fritz et al. (2005). As the background is for
some training images the same, we learnt it as reoccurring structure. As it is part
of the model, we get some strong hypotheses on the these background structures
which also occur in the test set and that are responsible for the decrease in perfor-
mance. On the UIUC car and caltech face database we also compare to the weakly
supervised method of Fergus et al. (2003) On the cars we get an equal error rate
performance of 89.5% in comparison to 88.5% in Fergus et al. (2003) using the same
evaluation criterion. We achieve this performance training on only 50 car images
and their mirrored versions from the TUD car database. The best performance on
this dataset is reported by the supervised method in Leibe et al. (2004) achieving
97% equal error rate performance. In Fergus et al. (2005b) a detection performance
of 78% equal error rate is presented on the caltech face database for the model of
Fergus et al. (2003). Our approach achieves a significant improvement by an equal
error rate performance of 81.1%.

4.5 Conclusion

We have proposed an efficient and flexible framework for discovering visual object
categories in an weakly supervised manner which makes use of appearance and
spatial structure at the same time. The approach is based on two new components
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for object discovery and object scale estimation, that extract information about
reoccurring spatial scale-invariant patterns of local appearance. The experimental
results show that our system facilitates weakly supervised training of an model
for object class detection that has equal or even better performance than previous
weakly supervised approaches. In addition, the method was used to rank images
without any supervision or validation set. Results are presented on large image
database of over 5000 images including a significant amount of noise. Finally, we
obtained comparable results w.r.t. a strongly supervised detection system on a
challenging multi-scale test set. We showed that we can compensate for the decrease
in performance by adding more training examples.



5
Cross-Modal Learning at Different
Levels of Supervision

The majority of today’s object categorization methods use either supervised or un-
supervised training methods. While supervised methods tend to produce more ac-
curate results, unsupervised methods are highly attractive due to their potential to
use far more and unlabeled training data. On the other hand, purely unsupervised
approaches have inherent limitations on what can be learnt only from data given a
particular notion of visual similarity. This chapter proposes a novel method that uses
unsupervised training to obtain visual groupings of objects and a cross-modal learn-
ing scheme to overcome those inherent limitations of purely unsupervised training.
The method uses the scale-invariant object representation by scale-invariant patterns
from Chapter 4 that allows to handle labeled as well as unlabeled information in a
coherent way. One of the potential settings is to learn object category models from
many unlabeled observations and a few dialogue interactions that can be ambiguous
or even erroneous. We explore a tutor driven learning scenario and first experiments
demonstrate the ability of the system to learn meaningful generalizations across
objects already from a few dialogue interactions.

5.1 Tutor-driven Learning Scenario

As outlined in Section 2.1.3 methods from previous work use different learning
paradigms ranging from supervised methods like Leibe et al. (2005), over weakly
supervised methods like Fergus et al. (2003) to unsupervised methods like Sivic et
al. (2005); Grauman and Darrell (2006). Following common practice, these systems
are evaluated on predefined training and test sets enabling direct comparisons. How-
ever for interactive and tutor-driven learning scenarios, as investigated in the area of
cognitive vision systems, it is highly important that models and representations are
flexible and evolvable over time enabling continuous or even life-long learning. This
goal is not only much harder to achieve but it is also more difficult to evaluate and
compare. Consequently it is not clear how the above mentioned approaches could
be extended to deal with this more challenging scenario.

As we understand cognitive vision systems, one of their most important and
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fundamental abilities is to evolve over time by actively and passively acquiring new
knowledge and incorporating that knowledge into the system. While there exists a
wide range of sources of knowledge, in this chapter we focus on the ability to acquire
new knowledge through dialogue interactions with humans. In this scenario we can
identify a number of requirements a cognitive vision system needs to fulfill. First, to
enable interactivity, the representations and models of the systems need to enable
incremental processing and learning. Secondly and in order to test and evaluate
such systems all processing should be done in real-time or at least at speeds that
allow real interactivity. Third, as humans will use language to interact with the
system, the learning mechanisms have to allow cross-modal learning from vision and
language. And forth the learning algorithms should enable to deal with ambiguous
and even erroneous input both from vision and language.

In the following, we present an approach for cross-modal learning of visual cat-
egories which integrates language and vision input. Language provides “scene de-
scriptions”, describing objects and their spatial relations in a given scene, which
provides a top-down description which is then related to the bottom-up generaliza-
tions of the vision system. The scene descriptions can be interpreted on ontologically
rich knowledge representations, which make it possible to use ontologies to medi-
ate between linguistically expressed meaning and the categories formed in the visual
system. Using the hierarchical structure of ontologies, and the possibility to perform
ontological inference over instances on these ontologies, provides a more general and
better scalable approach to “visual grounding” of language than provided by the
string-based approach proposed in Roy (2002), or earlier ontology-based approaches
such as Kruijff et al. (2006a).

5.1.1 Related Work

How entities in the real-world can be related to abstract concepts is subject of
study in diverse fields of research such as psychology, computational linguistics and
artificial intelligence. Commonly, this process is referred to as the symbol grounding
problem Harnad (1990). Our approaches is related to the work of Roy (2002) and
Steels (2008) who presented approaches to associate spoken utterances with visual
percepts. In contrast, we go beyond single utterances by combining dialogue and
vision. This makes it possible to incrementally provide information to learning visual
categories etc, rather than“requiring” that all info comes in a single utterance. In
addition we use a hierarchical structure of ontologies with the possibility to perform
ontological inference over instances on these ontologies. We argue that this provides
a more general and better scalable approach to “visual grounding” of language than
provided by the string-based approach, or earlier ontology-based approaches such as
(Kruijff et al., 2006a).

Socher et al. (2000), Bauckhage et al. (2001) and Skočaj et al. (2007) implement
interactive systems with a spatial reasoning scheme similar to ours. While Socher et
al. (2000) and Bauckhage et al. (2001) only model a fixed set of object instances, we
model representations of visual categories that are created at run-time and evolve
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Figure 5.1: System overview.

over time. On the other hand Skočaj et al. (2007) does learn visual concepts, but
not at the level of visual categories.

Steels and Kaplan (2001), Arsenio (2004) and Kirstein et al. (2005), target specif-
ically interactive and incremental learning for a robotic platform, but non of them
deals with category-level learning and recognition.

Previous ideas on reducing the number of required training examples for learning
a visual category are largely based on priors over model parameters in a Bayesian
Learning setting (e.g. Fei-Fei et al. (2003b)) or ideas from transfer learning (e.g.
Bart and Ullman (2005)). However, these approaches do not fit our computational
real-time constraints and their applicability to the object domain we are interested
in (office/household) is questionable.

System overview. Figure 5.1 shows an overview of the presented system, which
is tightly related to the structure of this chapter. Section 5.2 describes the vision
system which is decomposed into low-level functionality (feature extraction, object
discovery and object representation (Sec. 5.2.1)), the unsupervised visual group-
ing step (Sec. 5.2.3) and the categorization procedure (Sec. 5.2.4). Section 5.3
describes the language system that parses an utterance to a logical form. Section
5.4 explains the spatial reasoning processes that associate the expressions with the
visual observation which are then used to probabilistically associate labels to the
clusters obtained from visual grouping. Section 5.5 illustrates the functions of the
integrated system and provides empirical evidence for our claims.

5.2 Vision Sub-System

The description of the vision sub-system is divided into three parts. First, the low-
level functionalities are described, that extract local image features, discover object
centers and extract sparse scale-invariant patterns at the hypothesized object posi-
tions. Second, the visual grouping procedure is explained, that provides the system
with a data-driven generalization over category instances that is obtained in a totally
unsupervised manner. This is implemented by an agglomerative clustering on the
extracted scale-invariant patterns. Third, the model for performing categorization
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is described that is based on the same scale-invariant representation and can handle
information obtained in a supervised, semi-supervised and unsupervised fashion.

5.2.1 Object Representation by Sparse Scale-Invariant Pat-
terns

We build on the scale-invariant pattern (SIP) representation described in Section
4.1.2. This representation is a key ingredient in our system as it provides an embed-
ding of visual patterns and objects into a vector space that facilitates clustering and
recognition in a cheap yet effective manner. First, we describe the low-level feature
description we base our representation on and then describe how the representation
translates to the targeted application scenario.

When a new image is grabbed from the camera, SIFT descriptors (Lowe, 1999)
are extracted at hessian-laplace interest points (Mikolajczyk and Schmid, 2003).
While there exists a wide range of interest point and descriptor combinations, we
opted for this particular combination based on evaluations on different categorization
tasks in Mikolajczyk et al. (2005). Following a common philosophy in the field
to visual categorization (Csurka et al., 2004; Leibe et al., 2005; Sivic et al., 2005;
Lazebnik et al., 2006; Agarwal and Triggs, 2006; Fritz and Schiele, 2006), we first
generate a visual codebook based on clustering of detected features. We use a
codebook with 1000 entries obtained by k-means clustering. The matching procedure
is accelerated by re-normalizing the codebook entries c (corresponding to the cluster
centers) to a fixed length, which transforms the L2-distance to a feature "x into a
scalar product with an additive constant:

||"x− "c||2L2
= ("x− "c)2 = "x2 + "c2

︸ ︷︷ ︸
const

−2"x"c (5.1)

The matching of all image features to all codebook entries can now be computed by a
simple matrix multiplication which lends itself to further speed-ups. The introduced
errors are found to be negligible.

Based on this feature representation we compute the scale-invariant patterns Ψ as
described in Section 4.1.2. This representation is the basis not only for discovering
objects in the scene, but also for visual grouping and object categorization. For
efficiency, we store these patterns as sparse vectors Ψ. Sparsity is one key property
that leads to the efficiency we are aiming for while still maintaining a descriptive
representation of the visual input.

To provide a first intuition, that the embedding implied by this representation
can be effective for our task and distances in that space make sense in terms of
visual similarity, Figure 5.2 shows a multi-dimensional scaling plot of samples from
5 categories (mobile, pen, bottle, can, apple) in that space. The plot shows that
4 of the 5 classes are already well separated without using any label information.
The confusion between cans and bottles is rather reasonable - in particular given
the small statistic we provided. On the right, we present an example of an em-
bedding of 4 categories from the Caltech database - namely airplane, face, leave,
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Figure 5.2: Multi-dimensional scaling using scale-invariant pattern representation.
(left) 4 of the 5 classes (mobile, pen, bottle, can, apple) are clearly separated without
using any supervision and despite the small statistic. Only the categories bottle and
can are confused. (right) all 4 caltech classes (airplane, face, leave, motorbike) are
well separated using 200 examples from each category. The groundtruth labels are
displayed color-coded.

motorbike. These images are a subset of the images used in Sivic et al. (2005) sup-
plemented by the leaves from the Caltech database. Again we use the same strategy
by encoding the category instances as scale-invariant patterns and applying multi-
dimensional scaling. Given approximately 200 samples from each category, we have
a greatly improved statistic that results in a surprisingly good separation given the
low-dimensional embedding, variation in the data and the unsupervised approach.
To quantify our findings, we cluster the instances in the original space by k-means
clustering. Simply choosing 4 cluster centers and assigning each cluster to the cat-
egory that is most prominent in that cluster yields already an average accuracy of
94.61%. As this approach is dependent on the initialization of the k-means cluster-
ing, we re-run the experiments 5 times, but didn’t observe any significant change in
the obtained accuracy.

5.2.2 Object Discovery

We adopt the technique of discovering objects in the scene as reoccurring patterns
described in Section 4.1. The method can be seen as an adaptive approach for acquir-
ing a feature statistics of objects in recently observed scenes. This statistic is used
to hypothesize object centers qj in scene j given uniformly sampled scale-invariant
patterns Ψ from previous scenes by finding maxima of the computed likelihood
function:

q̂j = arg max
q

p(Ψj,q|Ψ), (5.2)



66 Chapter 5. Cross-Modal Learning at Different Levels of Supervision

Figure 5.3: Visual grouping of objects by clustering.

where the query patterns Ψj,q are again uniformly sampled in the image of inter-
est. Still this would mean marginalizing out all the spatial and codebook bins in the
scale-invariant patterns, which would lead to high computational costs. But due to
the sparsity of our representation we can make use of efficient hashing related to the
approach applied in geometric hashing (Wolfson and Rigoutsos, 1997). As detailed
in Section 4.1.3, the similarity score to all scale-invariant patterns can be obtained
by a single sweep over the non-zero bins of the sparse query pattern Ψj,q. Instead
of taking only the global maxima of this likelihood function, we now hypothesize all
local maxima as object centers in order to deal with multiple instances presented in
one scene.

As a result, an observed scene is represented by a set of scale-invariant patterns
Ψ at the locations indicated by this discovery procedure. By keeping a fixed number
of patterns (the most recent ones) in memory, this online method for object dis-
covery meets our real-time requirements and also consumes a constant amount of
memory. Even though the original method can handle significant background clutter
we cannot benefit from that large statistics in our target scenarios, as the number of
interactions with the system is limited. In a sense we decided to trade generality for
real-time capability of the system. As it has been shown that arbitrary backgrounds
can be handled when sufficient statistics are available, one could extend our system
in this direction.

5.2.3 Unsupervised Visual Grouping

Similarly to Grauman and Darrell (2006), we use an agglomerative clustering scheme
(average linkage) to group object instances in an unsupervised manner. The objects
are represented as scale-invariant patterns (Sec. 5.2.1) which we will denote as
sparse vectors Ψ in the following formulas. As described before we normalize to unit
length and we use the scalar-product to measure similarity between these objects.
We prefer to use agglomerative clustering over k-means as we do not want to specify
the number of visual clusters a priori. The threshold required for the agglomerative
clustering scheme is set empirically to a constant value for all our experiments.
Figure 5.3 visualizes the clusters C1 to CN obtained by our system given the observed
objects displayed on the left. Although there are some confusions, we observe a good
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generalization across category instances. In order to obtain representatives Ψ̄Cl
for

each cluster Cl, we compute a weighted sum of the observed patterns Ψk:

Ψ̄Cl
=

∑

k

p(Cl|Ψk)Ψk (5.3)

In our implementation, we have chosen to use hard assignment of the SIPs to the
clusters which renders the probability p(Cl|Ψk) of assigning pattern Ψk to cluster Cl

binary.

5.2.4 A Joint Model for Visual Categorization from Super-
vised, Semi-Supervised and Unsupervised Input

In this section, we present a model for visual category recognition that combines
different levels of supervision to a joint model. The key ingredient is the scale-
invariant pattern (SIP) representation from Section 5.2.1, which we use throughout.

Supervised Categorization To provide basic functionality for our system, we
describe how supervised categorization is implemented. Similar to clustering in
Section 5.2.3, we model each category Ai by a single representative Ψ̄S

Ai
(superscript

S denotes the supervised model). This is done by summing over all training patterns
available for that category

Ψ̄S
Ai

=
∑

j∈SAi

Ψj, (5.4)

where SAi denotes the indices of the SIPs that are labeled with category Ai in a
supervised manner (e.g. “This is a bottle”).

Incorporating Semi-Supervision and Unsupervised Information in one
consistent Framework We formulate the fusion of information obtained from
supervised to unsupervised sources as an extension of the supervised case by assum-
ing uncertainty about the correct labeling of the clusters Cl and their representatives
Ψ̄Cl

from the unsupervised visual grouping step (Sec. 5.2.3):

Ψ̄Ai = Ψ̄S
Ai︸︷︷︸

supervised

+
∑

l

p(Ai|Cl)

unsupervised︷︸︸︷
Ψ̄Cl

︸ ︷︷ ︸
semi-supervised

(5.5)

p(Ai|Cj) encodes the belief that cluster Cl contains instances of category Ai. How
this probability is computed from a few interactions and updated by associating
spatial expression with visual observations is described in Section 5.4.

To perform classification in the supervised and semi-supervised case, we evaluate
the proposed model Ψ̄Ai as well as Ψ̄S

Ai
for an observed pattern Ψ by using histogram
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Figure 5.4: One basic approach to semi-supervised learning. Label information
is propagated from labeled samples to unlabeled ones based on similarity of the
observed samples. Note the refined decision boundary implied by this process.

intersection. Intuitively, the intersection measures to which percentage the model
explains the observation, which we interpret as probability of belonging to the same
class. In order to make models and observations comparable we normalize both to
one. Bayes’ rule is applied afterwards to obtain the model posterior:

p(Ψ|Ψ̄Ai) =
∑

min(Ψ, Ψ̄Ai) (5.6)

p(Ψ̄Ai|Ψ) =
p(Ψ|Ψ̄Ai)p(Ψ̄Ai)∑
A p(Ψ|Ψ̄Ai)p(Ψ̄Ai)

(5.7)

p(Ψ̄Ai) is the category prior, which we assume to be uniform. We decide for the
category label with the highest posterior:

Âi = arg max
Ai

p(Ψ̄Ai|Ψ) (5.8)

5.3 Dialogue Sub-System

Human-assisted visual learning is a form of socially guided machine learning (Thomaz,
2006). A human tutor interacts with the system, describing aspects of the environ-
ment the system is to learn. In our case, the tutor provides descriptions of the
current visual scene. Typically, the tutor interacts with the system using spoken
dialogue. For larger evaluations, we have mostly used typed- or scripted input.

The system uses a dialogue sub-system to try and comprehend what the tu-
tor just said. This dialogue sub-system constructs a representation of the possible
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meaning(s) of an utterance, and then connects this representation to the larger di-
alogue context in which the utterance occurs. This makes it possible for the tutor
to gradually provide information to the system, rather than all at once. The system
keeps track of what objects have been introduced over the course of a dialogue, so
the tutor can easily refer back to things already talked about: “This is a bottle.
And there is a mobile. It is to the left of the apple. The bottle is to the right
of the apple.” The system resolves pronouns (“it”) and anaphoric expressions (“the
bottle”), identifying to which objects the provided information should be applied.
(This sets our system somewhat apart from other approaches to relating language
to the world, e.g. Roy (2002), Thomaz (2006), or Steels (2008), which all operate
with individual utterances.)

The dialogue system constructs a representation of the possible meaning(s) for
each utterance the tutor provides. The dialogue system uses a state-of-the-art ap-
proach to recognize spoken dialogue, using information about the current visual
scene to prime speech recognition (Lison and Kruijff, 2008). Speech recognition
yields a word lattice, representing probabilistically ranked possible sequences of
words. The system subsequently parses the entire word lattice, using a Combi-
natory Categorial Grammar (Baldridge and Kruijff, 2003) parser1. The parser uses
a CCG grammar to relate a possible syntactic structure for utterance, to the propo-
sitional meaning this structure expresses. As the parser processes a word lattice,
representing different possibilities of what the system may have just heard, it needs
to deal with the fact that there are potentially many analyses – and corresponding
meanings. To this end, the parser uses discriminative statistical models to rank the
analyses, picking out the most likely one in the given context (Lison and Kruijff,
2009). Altogether, this yields a robust way to overcome the typical problems of
spoken dialogue processing, e.g. incomplete or incorrect input.

The parser provides a representation of utterance meaning as an ontologically
richly sorted, relational structure similar to a description logic formula (Baldridge
and Kruijff, 2001). After the dialogue system has interpreted the utterance meaning
against the dialogue context model, it connects the resulting “contextual” meaning
to information about the visual scene. This connection uses ontologies to mediate
between linguistically expressed meaning, and the categories formed in the visual
system (Jacobsson et al., 2008). Using the hierarchical structure of ontologies, and
the possibility to perform ontological inference over instances on these ontologies,
provides a more general and better scalable approach to ”visual grounding” of lan-
guage than provided by the string-based approach proposed in e.g. Roy (2002), or
previous ontology-based approaches such as Kruijff et al. (2006a,b).

In our scenario, utterances are typically predicative copulative sentences in in-
dicative mood (i.e. ”X is Y”), which assert that a given predication (”Y”) holds for
the subject of the sentence (”X”). In our examples, the predication consists of a
phrase that encodes a spatial relation (e.g. ”left of the bottle” or ”below the ap-
ple”). In the logical form, the subject is represented as the <Restr> of the state

1http://openccg.sourceforge.net
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description that is denoted by the utterance, whereas the predication is represented
as <Scope>.

We can thus easily derive the spatial configuration asserted in an utterance from
its logical form representation (cf. also Kelleher et al. (2006a)). The following
example shows such a logical form that is the result of the parsing process of the
utterance ”the mobile is left of the bottle”:

@b1:state(be ^
<Mood>ind ^
<Restr>(m1:thing ^ mobile ^

<Delimitation>unique ^
<Number>sg ^
<Quantification>specific_singular) ^

<Scope>(l1:region ^ left ^
<Plane>horizontal ^
<Positioning>static ^
<Dir:Anchor>(b2:thing ^ bottle ^

<Delimitation>unique ^
<Number>sg ^
<Quantification>specific_singular)))

The logical form provides detailed information (at a linguistic level) about what
the tutor just said about objects, events, and the relations between them. For an ob-
ject, it represents an identifier and its ontological type (m1 : thing) and a proposition
(mobile). The identifier is unique throughout the dialogue, and through reference
resolution can help to relate mentions of an object. In addition, the logical form
specifies information such as delimitation and quantification: how many objects we
are talking about (Quantification), and to what extent they are easily identifiable
in the visual scene. This information aids first of all in reference resolution, and
later on in resolving linguistic references to visual objects. The distinction between
“restrictor” and “scope” identifies the predication relation: The tutor presupposes
that the system can identify the mobile (old information; restrictor), and then as-
serts the new information that it is to the left of the bottle (scope). Making this
fine-grained differentiations in what status a piece of information actually has (old?
new?) makes it possible for the system to decide how best to use the information in
the incremental learning process (cf. also Hawes et al. (2009)).

For a more detailed discussion of the dialogue system, we refer the interested
reader to Kruijff et al. (2009).

5.4 Spatial Reasoning and Cross-Modal Associa-
tion

Modeling spatial relations as perceived by the human is a challenge in itself, as is-
sues like reference frame and context have to be handled appropriately in situated
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(a) (b) (c) (d)

Figure 5.5: 4 non-parametric probability density functions for modeling the spatial
relations p(pos(Ψi), pos(Ψj)|R) between feature patterns in 2d image coordinates,
where R corresponds to one of the spatial relations: (a) left of (b) right of (c) above
(d) below

dialogue systems (Kelleher et al., 2006b). Considering the scenarios and main fo-
cus of this chapter, we restricted ourselves to modeling four basic spatial relations
R ∈ {“leftof ′′, “rightof ′′, “above′′, “below′′}. We employ triangular shaped distri-
butions p(pos(Ψi), pos(Ψj)|R) defined in 2d image coordinates, where objects are
referenced by their patterns Ψi and pos(Ψi) denotes their position in image coordi-
nates. Although these distributions are represented as non-parametric kernel den-
sities which lend themselves to online updating, we don’t explore this option here
and keep them fixed in the experiments. Figure 5.5 visualizes the 4 distributions we
are using.

Spatial Reasoning. We formulate the association of a spatial expression E ex-
tracted from an utterance (see Sec. 5.3) with two patterns Ψi and Ψj with positions
pos(Ψi) and pos(Ψj) observed in scene Sk, as finding the most likely pair P̂i,j of

patterns: P̂ (k)
i,j = arg maxPi,j

p(Pi,j|E, Sk),where

p(Pi,j|E, Sk) = p(Ψi, Ψj, pos(Ψi), pos(Ψj)|E, Sk)

= p(Ψi|E, Sk) p(Ψj|E, Sk) p(pos(Ψi), pos(Ψj)|E, Sk), (5.9)

with

p(Ψ|E, Sk) =
∑

h

p(Ψ|Ah)p(Ah|E, Sk). (5.10)

We don’t model a complete category system here, leave out contextual effects and
assume certainty about the expression E referring to the categories Ae1 and Ae2 and
the relation R. Consequently, the equation simplifies to

p(Pi,j|E, Sk) = p(Ψi|Ae1)p(Ψj|Ae2)p(pos(Ψi), pos(Ψj)|R) (5.11)

Finally, we insert the visual model from Eq. 5.5 to obtain a computational model:

p(Pi,j|E, Sk) = p(Ψi|Ψ̄e1)p(Ψj|Ψ̄e2)p(pos(Ψi), pos(Ψj)|R) (5.12)
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Figure 5.6: Semi-supervised learning is implemented in our system by assigning
labels to the clusters only with a certain belief that represents the uncertainty re-
sulting from the dialogue. Hereby, the system can recover from erroneous beliefs.
The columns in the presented probability table represented the categories commu-
nicated via the language system and the rows correspond to the clusters obtained
by the visual grouping step. The cluster members are visualized on the right.

This formulation facilitates incorporating information and belief from previous in-
teractions as well as learning from scratch. If no information about the visual cat-
egories is available p(Ψi|Ψ̄e1) and p(Ψj|Ψ̄e2) become uninformative and the system
relies only on its notion of spatial relations p(pos(Ψi), pos(Ψj)|R). This can lead to
wrong associations. In Section 5.5 we present an example and show that the system
can successfully deal with this issue.

Cluster Labeling. We want to make use of the belief about associations between
spatial expressions (Eq. 5.9) and objects in the scene to improve the label assignment
p(Ai|Cl) of the object clusters in Eq. 5.5. Therefore we accumulate the evidence for
cluster Cl being labeled as category Ai by a simple count statistic p(Cl|Ai) based
on the maximum likelihood estimates of Equation 5.9. The probability for assigning
label Ai to cluster Cl is obtained by applying Bayes’ rule

p(Ai|Cl) =
p(Cl|Ai)p(Ai)∑
i p(Cl|Ai)p(Ai)

, (5.13)

where we assume a uniform category prior p(Ai). This closes the loop in our system
as outlined in Fig. 5.1.
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Figure 5.7: (a) shows an example scenario for propagation of labels from known cate-
gories to unknown ones. (b) shows the improvement of the semi-supervised approach
over the purely supervised approach by exploiting information from unlabeled data.

5.5 Experiments

In the first part of our experiments, we describe two scenarios, that show the capa-
bilities of our system to propagate information, resolve ambiguities and recover from
errors. In the second part we perform a quantitative analysis to show that the un-
supervised visual grouping step improves learning speed and accuracy with respect
to the amount of provided supervision. Finally, we provide computation times for
the individual modules and discuss the real-time capabilities of the system.

5.5.1 Label Propagation and Conflict Resolution

Scenario 1 - Label forward propagation. In the first scenario, one annotated
example each for banana and mobile is presented to the system. Then the system
observes the scene as shown in the screenshot in Figure 5.7(a) and the utterance“the
can is above the mobile” is parsed. The red lines visualize the observed relations
between objects in the scene. Unlikely ones have already been pruned away by the
system. By generalizing across category instances, the system identifies“mobile”and
“banana” correctly (with probabilities 0.69 and 0.66 respectively) while evaluating
the “mobile”model for the banana results in a low probability of 0.15. Consequently
the most likely relation is inferred correctly and displayed in light green. A model
for the category “can” is created and the observed mobile is added to the existing
model for “mobile”. In fact, the figure shows the state in which the acquired “can”
model is already used for detection. The can is detected correctly, but also the bottle
gets a high score for the “can” model, as it’s the best explanation given the learned
categories (banana, mobile, can).
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Figure 5.8: Scenario which shows how the system updates associations (light green)
to recover form an incorrect belief.

Scenario 2 - Label backward propagation. In the second scenario, we show
how the system can recover from erroneous beliefs and update its models accordingly.
The system starts without any knowledge about visual categories. Figure 5.8 shows
a screenshot displaying the scene as observed by the system, which is accompanied
by the utterance“the can is above the mobile”. Using the same visualization as in the
previous scenario, it can be seen in the left image that the most likely relation inferred
by the system is wrong. Now we provide the system with supervised knowledge of
the visual categories bottle and pen. Revisiting the scene in memory, the object
probabilities get updated and the belief about the associated relation gets changed
to the correct one as shown in the right image.

5.5.2 Quantitative Evaluation

Semi-Supervised Learning. We perform a quantitative analysis by taking 2 im-
ages of 5 instances for each of the categories: mobile phone, pen, bottle, can and
apple. We gradually increase the training set from one instance for each category to
four instances. Figure 5.7(b) shows that the semi-supervised learning (Sec. 5.2.4)
outperforms the purely supervised learning, as the few available labels get propa-
gated to the unlabeled data (Eq. 5.13) which was clustered by the visual grouping
step (Sec. 5.2.3). The experiments were performed using 5 fold cross-validation.

Speed. The system as described in this chapter runs at about 1Hz on a CoreDuo
2GHz laptop when detection and categorization are performed. An update of the
clustering and spatial reasoning takes about 2 seconds total. Therefore the system
is fast enough to operate interactively with a human tutor.
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5.6 Conclusions

This chapter presents a system for cross-modal learning that combines unsupervised
and supervised information in a unified framework. The mechanism that associates
expressions from language with the visual input can resolve ambiguous input and
recover from erroneous beliefs. The experimental section provides qualitative as well
as quantitative results that show these capabilities of the system. Finally, we were
able to cut down the computing time to a level at which a human can interact with
the system as a tutor.





6
Decomposition of Visual
Categories Using Topic Models

Object representations for categorization tasks should be applicable for a wide range
of objects, scaleable to handle large numbers of object classes, and at the same time
learnable from a few training samples. While such a scalable representation is still
illusive today, it has been argued that such a representation should have at least the
following properties: it should enable sharing of features (Torralba et al., 2007), it
should combine generative models with discriminative models (Jaakkola and Haus-
sler, 1999; Fritz et al., 2005) and it should combine both local and global as well as
appearance- and shape-based features (Leibe et al., 2005). Additionally, we argue
that such object representations should be applicable both for unsupervised learning
(e.g. visual object discovery) as well as supervised training (e.g. object detection).
Therefore, we aim to combine in this chapter our previous efforts of hybrid modeling
from Chapter 3 with ideas of combining different levels of supervision from Chapters
4 and 5 to obtain an approach that shows flexibility and adaptivity along all 3 axes:
Modeling, Representing and Learning.

We present a novel method for the discovery and detection of visual object cat-
egories based on decompositions using topic models. The approach is capable of
learning a compact and low dimensional representation for multiple visual cate-
gories from multiple view points without labeling of the training instances. The
learnt object components range from local structures over line segments to global
silhouette-like descriptions. This representation can be used to discover object cat-
egories in a totally unsupervised fashion. Furthermore we employ the representa-
tion as the basis for building a supervised multi-category detection system making
efficient use of training examples and outperforming pure features-based represen-
tations. The proposed speed-ups make the system scale to large databases. Ex-
periments on three databases show that the approach improves the state-of-the-art
in unsupervised learning as well as supervised detection. In particular we improve
the state-of-the-art on the challenging PASCAL’06 multi-class detection tasks for
several categories.

The chapter is structured as follows. In Section 6.1 we describe how the gen-
erative decomposition is learned from data. The obtained representation is used
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in Section 6.2 for unsupervised learning problems whereas Section 6.3 builds a full
object class detection system on top of it. Finally Section 6.4 provides further quan-
titative evaluations of the model and a comparison to the state-of-the-art on the
challenging PASCAL’06 database as well as on the ETH shape database.

6.1 Decomposition of Visual Categories

In this section we describe our approach to the decomposition of multiple visual
categories by combining dense gradient representations and topic models. Starting
from the image, we first present our data representation. Then we describe how we
apply the topic model to this representation and provide visualizations and insights
for the obtained model as well as a quantitative evaluation on an unsupervised
learning task.

6.1.1 Data Representation

w684 . . . w692

Figure 6.1: Dense gradient histogram representation. The loupe
shows the 9 possible edge orientation of the histogram bins that are
interpreted as words.

Inspired by Dalal and Triggs (2005), we compute gradients on each color channel
of the images and use the maximum response (at each pixel) to obtain a grid of
histograms that overlays the image. Each histogram in the grid has 9 orientation
bins equally spaced from 0◦ to 180◦ to represent the unsigned gradient orientation.
An example of such an encoding is visualized in Figure 6.1. In each cell, the 9 possible
edge orientations associated with the orientation bins are displayed by short lines.
The grayscale value encodes the accumulated gradient magnitude in each bin. The
size of the cells in the grid is 8×8 pixels.

As the following topic models operate on discrete word counts, we normalize the
histograms to have a constant sum of discrete entries. We decided not to compute a
redundant coding like the blocks in the HOG descriptor of Dalal and Triggs (2005)
as we believe that the introduced non-linearities by local normalization would hinder
the fitting of the probabilistic model.
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Figure 6.2: First row: example topics of 8 topic model for classes airplane, face,
motorbike, watch. Second row: example topics of 50 topic model for the same
classes.

6.2 Discovery of Visual Categories

In this section we describe how the representation from Section 6.1.1 is linked to the
probabilistic topic model (see Section 2.2.3) and perform a quantitative evaluation
on an unsupervised learning task.

We use the orientation bins of the histograms described in Section 6.1.1 as word
vocabulary in Section 2.2.3. For histograms computed on a m by n grid with b bins
for each orientation histogram, our vocabulary is of size |V | = m · n · b. As each
word is associated with a gradient orientation at a grid location, this representation
preserves quantized spatial information of the original gradients. The topic model is
trained on the documents given the encoded training examples, as outlined in Section
2.2.3. The representations that we promote are given by the topic distribution θ(d) of
the document in the latent space. We will refer to them also as the topic activations.

To prove the effectiveness of our representations and to compare our work with
previous approaches we first present quantitative results on the unsupervised ranking
task of Fergus et al. (2005a) and then provide further insights connected to the multi-
class data we use in Section 6.4.3.

6.2.1 Unsupervised Google Re-Ranking Task

Previously, Sivic et al. (2005) used topic models on local feature representations
for unsupervised learning. Fergus et al. (2005a) extended their approach to encode
spatial information. As the latter can be seen as the sparse counterpart to our dense
representation, we compare on the unsupervised image re-ranking task specified in
Fergus et al. (2005a). The provided data sets are results of image google queries.
The task is to re-rank the images so that relevant ones appear first. The main
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out method 100% 83% 100 % 91% 65% 97% 100% 91%
Fergus Fergus et al. (2005a) 57 % 77% 82% 50% 59% 72% 88% 69%
Schroff Schroff et al. (2007) 35% – – 29% 50% 63% 93% 54%

Table 6.1: Comparison to other approaches on re-ranking task of google images.
Performance is measured in precision at 15% recall. In contrast to the other methods
our approach does not use any validation set.

challenge is to extract the relevant information which is hidden in an image set
containing up to 70% junk images in an unsupervised fashion. Given that our
representation effectively encodes the object structures, we expect our data to live
in compact subspaces of the latent space. Therefore, we perform k-means clustering
on the activations and consecutively accept the clusters with the most samples.
The precision we obtain in this manner at 15% recall is shown in Table 6.1 and
compared to our competitors. The average precision of 69% obtained by Fergus et
al. (2005a) and 54% obtained by Schroff et al. (2007) is surpassed by our approach
which obtains an average precision of 91%. This performance is obtained without
using the provided validation set which the other two approaches use. Although
our method performs worst on the leopard data, we still improve over Fergus et al.
(2005a). This is surprising as one would have suspected, that the local feature-based
approach is more suited to encode the spotted texture of these animals. We account
the success of our method to the added expressiveness by enabling the discovery of
reoccurring contour fragments and edge segment like structures. Due to the dense
and localized nature of our input features, we are more flexible to adapt to the
object outline and to neglect background information. Figure 6.2 shows some topics
from the presented experiment that expose these characteristics. Furthermore, in
contrast to local feature-based methods our representation can easily be visualized
(see Figure 6.2), which lend itself also to interaction and inspection by a user.

6.2.2 Unsupervised Object Class Discovery

To extend our findings to the detection task that we are aiming for in Section 6.4.3,
we extract our representation on the multi-category, multi-view PASCAL’06 dataset
Everingham et al. (2006), in order to obtain a decomposition that is shared across
categories.

In the first row of Figure 6.3 13 of 100 topics are visualized that were trained on
the bounding box annotations of the training and validation data of the PASCAL’06
challenge. The rows below display the examples that activated this particular topic
most. By activations, we refer again to the probability of the topics z given a
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specific document d, which we infer in the topic model. We observe that the topics
capture different levels of object structure, ranging from global silhouettes (car rear
in column 10 and side view in column 13) over localized parts (legs in column 3,
bicycle frame in column 8 and bicycle wheels in column 12) to line segments and
corners (corner in column 1 and line segments in column 2 and 4) . The model
discovers distinctive parts that even separate several examples of different categories
and their viewpoints although no such information was available to the system during
training. Importantly, we can see that other topics like those that got activated on
legs are shared across several categories, which is a desirable property of a compact
decomposition in order to be scalable (Torralba et al., 2007).

To illustrate that this is indeed an appropriate and effective approach to capture
the variety of the data and to stress the power of modeling combinations of these
discovered topics, we cluster the topic distributions as proposed in the last para-
graph. Figure 6.4 shows in each row the 10 cluster members that are closest to the
cluster center all of the 50 cluster centers. Keeping in mind that they are obtained
in an entirely unsupervised fashion, the clusters turn out to be surprisingly clean.

We interpret these findings as strong evidence, that our model indeed captures
an effective and low-dimensional representation for this difficult multi-category de-
tection task.

6.3 Detection of Visual Categories

Based on the promising results on unsupervised learning in the last section, this
section describes a complete system for supervised multi-category detection that
leverages the learned representation.

6.3.1 Generative/Discriminative Training

As already argued in Chapter 3, the combinations of generative approaches with
discriminative ones has shown to be very effective. The success of these combinations
is based on their complementary strengths, that we have summarized in Section
2.1.1. We also exploit this idea in this chapter and complement the generative
model described in Section 6.2 by a discriminative SVM classifier with an RBF
kernel (Chang and Lin (2001)). In particular we train an SVM to discriminate
between the topic distributions θ(d) which are inferred for images containing the
category of interest and others that do not contain these. By doing so, we seek to
profit from the above mentioned benefits of the generative model combined with the
discriminative classifier.
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6.3.2 Sliding Window Approach to Detection

As proposed in Dalal and Triggs (2005) a sliding window approach can be done
efficiently in this setting if the sliding window is always shifted by exactly one cell in
x or y direction. In this case, the gradient histograms of the cell grid are computed
once and for each sliding window the relevant sub grid is used.

Typically, sliding window techniques not only assign a high score for the correct
location and scale in an image, but also for test windows that have a small offset in
space and scale. We use a simple greedy scheme to cope with this issue: While there
are unprocessed windows in an image, we accept the one with the highest score and
reject all other windows that fulfill the symmetric overlap criterion

max

(
Ai ∩ Aj

Ai
,
Ai ∩ Aj

Aj

)
> 0.3 (6.1)

where Ai and Aj are the areas covered by the two windows. As the bounding box
scores from our approach turn out to be surprisingly consistent over different scales,
this basic scheme has proven to work well in our setting.

Of course multi-scale detection task ranging over multiple octaves requires the
investigation of large number of test windows – typically more than 10000 per im-
age. While feature extraction and SVM classification are fast, our approach requires
inference in the topic model for each test window rendering the method computa-
tionally infeasible for applications of interest. Therefore, we dedicate the following
section to describe speed-ups that make our approach applicable to large databases.

6.3.3 Speed-ups: Linear Topic Response and Early Rejec-
tion

While we use the Gibbs sampling method (Griffiths and Steyvers, 2004) to estimate
the model, we use the variational inference method described in Blei et al. (2003b)
for test as it turns out to be computational more efficient in our setting. For more
substantial improvements, we propose to compute a linear topic response to get an
initial estimate on the topic activations. The aim is to avoid the more expensive
inference scheme by performing an early rejection of the test windows. Different to
linear methods like PCA, where there is linear dependency between the feature space
and the coefficient space, the mixture coefficients of the topic distribution have to be
fitted to the observation. This means that each word/feature can be associated to
different topics depending on its context (presence of other features) and therefore
also lead to strengthening or inhibition of other topic activations. This requires an
iterative technique to find the best reconstruction. Therefore we ask the question
of how important this iterative fitting is and how much performance we loose by
reverting to the following simple, linear approximation of the dependency between
observed feature histogram x and topic activations θ(d) :

θ̃(d) =
(
φ(1) . . . φ(T )

)t
x, (6.2)
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In fact, our results on the UIUC single scale database show that there is a signif-
icant loss of about 8% in equal error rate performance (see Section 6.4.2), but a
more detailed analysis on the UIUC multi-scale database reveals interesting results.
Although, the linear approximation might be quite coarse, it can still be used for
early rejection of test windows. It turns out, that full recall is achieved for the 2500
highest scored windows of a total of 2,826,783. As a consequence, more than 99.9%
of the test windows can be handled by the linear computation that we measured
to be 166 times faster than the proper inference. Taking all optimizations together
we can cut down the computation time by a factor of 180 which corresponds to
an reduction from one hour to around 20 seconds per image (AMD Opteron 270
(Dual-Core), 2.0 GHz).

6.4 Experiments

This section is divided into 4 parts. First, we show that our approach makes effi-
cient use of the provided training examples by comparing to a baseline experiment
on the UIUC single scale car database. Second, we evaluate different methods for
estimation of the topic model on the UIUC multi-scale database and compare the
obtained performance to previous work. Third, we present results on the PASCAL
challenge 2006 data, that outperform the state-of-the-art on three of the ten cate-
gories. Fourth, we compare to a shape based approach on the ETH shape database
to underline the versatility and adaptivity of our approach.

6.4.1 Efficient Use of Training Examples and Parameter Se-
lection

To select parameters appropriate to our problem domain, we run detection exper-
iments on the UIUC single scale car database which consists of a training set of
550 car and 500 background images of small size, while the test set has 170 images
showing side views of cars in street scenes at a fixed scale. It turns out that the
heuristic specified in Steyvers and Griffiths (2007) for selecting the hyperparameters
α and β works very well for our setting. Therefore we use α = 50/#topics and
β = 0.01. We obtain best performance using 30 topics and a grid size of 16× 6 for
the gradient histograms.

To show that our approach makes efficient use of the provided training examples,
we compare to a baseline experiment that does not use the proposed topic repre-
sentation. Figures 6.5(a) and 6.5(b) show the precision-recall curves of our system,
when trained on different numbers of positive and negative examples. We start with
50 car and 50 background images and increase by 50 until we use the full training
dataset. The maximum performance is rapidly reached using only 150 positive and
150 negative examples. In contrast, the linear SVM trained on the same data rep-
resentation but without our representation has a much slower learning curve. In
fact the performance is 9.5% below the equal error rate of our new approach using
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Figure 6.5: (a) and (b): Comparison of learning curve for proposed intermediate
representation versus SVM on pure features on UIUC single-scale database.

250 positive and 250 negative examples. We also tried RBF kernels, but obtained
similar, inferior results.

We account this significant improvement to the generative properties of our
model inferring a generative decomposition of the presented data. We conclude,
that this low dimensional representation simplifies the learning problem for the dis-
criminative SVM classifier, which leads to more efficient use of training examples.

6.4.2 Comparison of Methods for Estimation and Evalua-
tion of Approximate Inference

In this section we test the model that we trained for the UIUC single scale database
on the multi-scale version and compare different estimation schemes for the topic
model during training (Blei et al., 2003b; Griffiths and Steyvers, 2004). We also
evaluate the linear topic activations for testing that we proposed in Section 6.3.3.
The results are reported in Figure 6.6(a). The estimation method based on Gibbs
sampling (Griffiths and Steyvers, 2004) leads to similar performance as the varia-
tional inference method (Blei et al., 2003b), but shows better precision. We notice
that the automatic selection of α that we use for the variational approach converged
to a value of 0.373 which enforces less co-activation and therefore less sharing of top-
ics. By visual inspection of the topic-distributions, we confirmed that the method of
Blei et al. (2003b) learned more global topics, while the ones obtained by the Gibbs
sampling method tends to be a little sparser. We believe that for detection tasks the
second is to be preferred, as global representations can easier be mislead by effects
like occlusion, as it is also supported by our results.

Replacing the proper inference by the linear approximation (Section 6.3.3) results
in the third curve displayed in Figure 6.6(a). This confirms the importance and



6.4. Experiments 87

bicycle bus car cat cow dog horse motorbike person sheep
49.75% 25.83% 50.07% 9.09% 15.63% 4.55% 9.40% 27.43% 0.98% 17.22%

Table 6.2: Average precision achieved on the PASCAL’06 database.

superiority of the proper inference in comparison to linear topic activations. For
this comparison we use non-maxima suppression in combination with the linear
approximation scheme while it is switched off when used for early rejection to achieve
maximum recall.

The best result obtained by the Gibbs sampling approach with an equal error
performance of 90.6% outperforms the results we presented in Chapter 3 and are
on par with the result of Mutch and Lowe (2006). The best performance on this
dataset have been reported by Wu and Nevatia (2007) with 93.5% and Mikolajczyk
et al. (2006) with 94.7%, where the later used a different training set.

6.4.3 Comparison to state-of-the-art on PASCAL’06 VOC
detection challenge

We evaluate our approach on the competition 3 of the PASCAL challenge 2006 Ev-
eringham et al. (2006) that poses a difficult detection problem as 10 visual categories
are to be detected from multiple viewpoints over a large scale range.

We leave the hyperparameters untouched, but increase the number of topics to
100 and adopt the aspect ratio of the grid to 16× 10. To reduce confusion between
categories and the number of false positives, we adapt a bootstrapping strategy.
First we train an initial model for each category versus the other categories. This
model is then used to generate false positives on the training set (see also Osuna et
al. (1997); Fritz et al. (2005); Dalal and Triggs (2005)). Up to 500 of the strongest
false detection are added for each detector to its training set and the model is
retrained. The average precisions of the final detector of all 10 categories on the test
set are shown in Table 6.2 and the corresponding precision-recall curves are plotted
in Figure 6.6(b). Figure 6.7 shows some example detections of the system.

We outperform all other competitors in the 3 categories bicycle, bus and car by
improving the state-of-the-art (Everingham et al. (2006)) on this dataset by 5.75%,
9.14% and 5.67% in average precision respectively. In particular we surpass the
fully global approach Dalal and Triggs (2005) that our method was motived by.
Compared to Chum and Zisserman (2007) we improve on bicycles and bus only by
0.65% and 0.93%, but again significantly on cars with 8.87%. However, in contrast
to Chum and Zisserman (2007) we do not use the viewpoint annotations to train our
approach. For the other categories, we perform about average, but also showed some
inferior results on the highly articulated categories. We are currently investigating
means to make the approach less rigid and carry over the good results from the first
3 categories to the other ones.



88 Chapter 6. Decomposition of Visual Categories Using Topic Models

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
UIUC multi−scale

R
ec

al
l

1 − Precision

 

 

gibbs sampling for train
variational bayes for train
linear approximation for test

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
PASCAL challenge 2006

R
ec

al
l

1 − Precision

 

 

bicycle
bus
car
cat
cow
dog
horse
motorbike
person
sheep

(b)

Figure 6.6: (a) Performance on UIUC multi-scale dataset using topic model esti-
mated via Gibbs sampling vs variational bayes approach compared to using pseudo
topic activations. (b)Precision-Recall curves on the PASCAL VOC challenge 2006.
Precision-Recall curves and example detections.

Figure 6.7: Example detections on the PASCAL VOC challenge 2006.
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Figure 6.8: Example topics of 100 topic model jointly learned on apple-logos, bottles,
giraffes, mugs and swans.
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our method 89.9%(4.5) 76.8%(6.1) 90.5 %(5.4) 82.7%(5.1) 84.0%(8.4) 84.8%
Ferrari et al. (2007) 83.2%(1.7) 83.2%(7.5) 58.6 %(14.6) 83.6 %(8.6) 75.4 %(13.4) 76.8%

Table 6.3: Comparison against shape-based approach of Ferrari et al. (2007) on ETH
shape database. Average detection-rate at 0.4 false positives per image averaged over
5-folds. Standard deviation is specified in brackets.

6.4.4 Comparison to shape features on ETH shape database

As pointed out in the previous experiments, our representation learns features with
different characteristics from local to global and is in particular also capable of
modeling contours. Therefore, we ask the question how our representation compares
to shape-based approaches. We compare to Ferrari et al. (2007) on the ETH shape
database using the same detection system with the same settings as described in
the last section. Example topics that were learnt across the 5 classes are depicted in
Figure 6.8. Note how the more rigid shapes like apple logo and bottle are represented
as a whole, while the topics for giraffe and mug focus on the more stable parts like
the back of the giraffe and the combination of handle and sidewall of the mug.
Using five fold cross-validation as proposed in Ferrari et al. (2007), we obtain the
results presented in Table 6.3. Averaged over all classes we improve the performance
of Ferrari et al. (2007) by 8.0% to 84.8%. On apple logos, giraffes and swans,
we improve the performance by 6.7%, 31.9% and 8.6% respectively. On mugs our
approach performs comparable and on bottles it looses 6.4%. We account the worse
performance on the bottles to the shape which is less discriminant with respect to
the background. Some example detections are shown in Figure 6.9. Note how the
objects are well localized and the approach even detects a half visible mug that is not
annotated (third image, top row). As the database was designed to test shape-based
approaches, the improvements obtained by our approach underlines the versatility
and adaptivity of the learnt representation.
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Figure 6.9: Example detections on the ETH shape database.

6.5 Conclusions

We present a novel method for representing multiple categories from multiple view-
points and successfully employ it in various settings ranging from unsupervised learn-
ing to supervised detection tasks. In various experiments our approach shows supe-
rior performance with respect to purely local, shape-based or global approaches. Our
representation has proven effective yet also efficient in showing an increased learning
curve in the detection setting. Beyond the modeling aspects, we pay particular atten-
tion to computational feasibility that enables scalability to large databases. Lastly,
we want to highlight the results on the challenging PASCAL’06 dataset where we
improve the state-of-the-art on three categories to underline our contribution to
category modeling in the context of a complete detection system.



7
Extensions Towards Explicit
Multi-View Modeling

This chapter builds on the generative decomposition developed in Chapter 6 and
develops multiple extensions to deal with more challenging training and test data as
presented in the PASCAL VOC challenge 2007 (Everingham et al., 2007). Particular
attention is paid to the corrupted training data and multi-view detection.

Therefore, Section 7.1 proposes an effective way to sort training examples. We
use the document likelihood given a trained generative decomposition based on and
LDA model as described in Chapter 6 as a score. The ranking is then used to focus
on the more prototypical examples that have less artifacts like heavy occlusion or
poor illumination.

Although the approach presented in Chapter 6 can already deal with a decent
amount of viewpoint variation, Section 7.2 sheds more light on how multi-viewpoints
are represented and proposes extension to deal with these kind of variations in a
more explicit way. After a short review of the key challenges encountered in multi-
view models, we present experiments on unsupervised viewpoint recovery and aspect
prediction for detection.

7.1 Data Cleaning by LDA Likelihood Ranking

Setting up large datasets is a non-trivial problem. The labeling requires tedious
manual work and still inconsistencies and biases are unavoidable (Ponce et al., 2006).
One particularly lively debated issue is whether the set should provide rather clean
and prototypical examples (e.g. Yao et al. (2007)) or if the samples should come with
all the corruptions typical for real-world settings (e.g. Everingham et al. (2007)).
Both approaches have their own appeal and inherent limitations and the arising
conflict on how to setup a database properly is illustrated by the following examples.

Machine learning methods have shown to be very effective when a sufficiently
large sample of these corruptions is presented.For example, textures were successfully
recognized despite scale and illumination changes (Hayman et al., 2004) by providing
examples of these artifacts. For other types of real-world artifacts, this approach
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is unlikely to scale. It is impossible to capture all kinds of possible occlusions in
a database - even a representative sample seems illusive. Therefore, occlusion is
one of the artifacts that is typically dealt with at test time. Still there might be
some occluders that are so frequent that they provide contextual information and
shouldn’t be ignored.

PASCAL datasets contain lots of real-world artifacts and it is unclear which
ones should be discarded or kept for training. Additionally, the associated object
class detection challenge doesn’t allow for hand-picking examples. However, the
necessity of a preprocessing step becomes apparent when inspecting some of the
training examples as depicted in Figure 7.1. The first two examples show object
instances occluded by instances of other classes, which is likely to increase category
confusion. The third example shows a very poorly illuminated object. It is at least
questionable if such examples provide useful information for training.

This motivated us to develop a fully automatic data cleaning method that is
specific to our model. The underlying assumption is that examples that contain
little information or that are out of the focus of the method will hamper the training
process and therefore should be excluded. For example, the data set doesn’t provide
a large statistic of rotated examples. Therefore, we want to realize this right at the
beginning of the training process and improve the model fit on the rest of the data
by sacrificing the rotated examples.

The solution we propose is to use the same generative decomposition we use
for detection as in Chapter 6 and do an unsupervised re-ranking of the training
images according to the likelihood of the employed LDA model. In order to obtain a
stronger pruning effect we reduce the capacity of the model by lowering the number
of topics to 5 topics and train for each category a separate model. All trained topics
for all 20 classes of the PASCAL VOC challenges are depicted in Figure 7.2 and
Figure 7.3. Some topics reveal unexpected regularities in the data. For examples
the 4th topics of the horse category (Figure 7.3) shows a barrier as many horses are
imaged during jumps during show jump events.

An example for the obtained ranking on the car category is shown in Figure
7.4. The top 20 examples on the top are rather clean but still capture a reasonable
amount of variance. Also the fact that these best ranked examples come from very
different scales (as can be seen by the resolution) is worth mentioning. On the
contrary, the 20 lowest ranked examples on the bottom are mostly outliers in the
sense that they are weakly represented in the database in terms of viewpoint or
rotation, expose bad imaging conditions or heavy occlusion. For the challenge entry
we decided for a rather clean set by talking the top 50% of the re-ranked training
images.
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(a) motorbike ex-
ample corrupted
by occlusion

(b) car example corrupted by oc-
clusion

(c) car example badly light

Figure 7.1: PASCAL’07 training set contains examples that expose heavy occlusion
and lighting artefaces.

7.2 Generative Object Decompositions for Multi-
Viewpoint Modeling

Inferring the position and the orientation of a potentially occluded object in the
presence of cluttered background is a challenging.

First, in Section 7.2.1, we briefly review different approaches to multi-viewpoint
object class recognition. Then, we investigate the capabilities of modeling and dis-
covering of the approach from Chapter 6 in more detail. Our efforts towards unsu-
pervised viewpoint discovery are summarized in Section 7.2.2. This topic represen-
tation is then applied to a state-of-the-art benchmark dataset, the PASCAL VOC
2007 challenge. Our results in this competition confirms the applicability of our new
model to the challenging problem of multi-view modeling. Section 7.3 summarizes
the results.

7.2.1 Towards the Representation of Multi-View Object Cat-
egories

Recognizing object categories observed from different viewpoints is a challenging
task. Methods have to generalize along two dimensions. As illustrated on Figure 7.5
the system has to model intra-class variations (horizontal axis), as well as variations
due to viewpoint changes (vertical axis) over the appearance and geometry of the
given object category.

We found that current state-of-the-art techniques do not yet offer a satisfying
solution for multi-view object categorization. Even the most recent methods either
try to treat viewpoint changes just as a variation in appearance space, or use the
“bank of detectors” approach, i.e., they train individual detectors on a discretized
viewpoint space. The first approach is typically used for methods with no global
spatial model, e.g., the bag-of-features representation like in (Willamowski et al.,
2004; Zhang et al., 2007; Blaschko et al., 2007). Methods using global geometry
or spatial models are usually forced to learn separate models for each viewpoint.
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aeroplane

bicycle

bird

boat

bottle

bus

car

cat

chair

cow

Figure 7.2: Coarse 5 topic models are estimated for each class to compute a likeli-
hood ranking on the training images. Each row depicts the 5 topics for each class,
computed on the PASCAL VOC 2007 training set. Classes aeroplane to cow
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dining
table

dog

horse

motorbike

person

potted
plant

sheep

sofa

train

tvmonitor

Figure 7.3: Coarse 5 topic models are estimated for each class to compute a likeli-
hood ranking on the training images. Each row depicts the 5 topics for each class,
computed on the PASCAL VOC 2007 training set. Classes dining table to tv mon-
itor.
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Figure 7.4: Training examples sorted according to likelihood score.
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Figure 7.5: Recognizing object categories involves modeling across viewpoints and
across different instances of the object categories, in this illustration motorbikes.

This typically requires efficient learning techniques and larger amount of training
data. Recently, interest of the community in this topic increased and more and more
object categorization method are applied to the multi-view case. Apart from a few
exceptions, e.g. Thomas et al. (2006) who transfers (shares) object class appearance
between viewpoints or Kushal et al. (2007), most of the methods apply robust search
on possible viewpoints.

7.2.2 Unsupervised Viewpoint Discovery

Chapter 6 has concluded that topic models are a promising intermediate representa-
tion for object categories. In the following we analyze our new representation when
applied to a multi-view database in more detail.

Figure 7.6 shows 20 estimated topics on multi-view point motorbike training im-
ages of Thomas et al. (2006). By careful inspection, one can notice that the topics
automatically discovered major, including canonical, viewpoints. E.g., (k) and (p)
are related to side-views, (e) and (h) are 45 degrees w.r.t side-views, and (f) are
probably frontal and back views. This can be explained by that viewpoint changes
effect the full descriptor, while intra-class variations can mainly be encoded by small
local perturbations. The requirement of sparsity on the topic activations forces the
decomposition to create topics that correspond to global patterns. In our case these
global patterns correspond to object poses or viewpoints. Given these topics, a
distribution over topics can be inferred for each training instance, here for each mo-
torbike, that constitutes a decomposition. In order to further confirm our viewpoint
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Figure 7.6: Topic decomposition on multi-view motorbikes. For explanation see the
text.

discovery, Figure 7.7 (top) illustrates the space of motorbikes, where each image
is represented by a vector of topic activations. We have applied multidimensional
scaling to visualize the 20-dimensional latent space in two dimensions. Notice, that
by moving from top to bottom, we see the viewpoint changes from frontal and back
views to side-views. Also notice, that even the left and right side-views are grouped
and can be well separated. To make the viewpoint transition even more apparent
we have repeated the experiment with 3 topics and thus avoid possible side-effects
of high-dimensional data visualization: In case of 3 topics the activation vectors
lie on a simplex or on a spherical triangle depending on the normalization scheme.
Results are shown on Figure 7.7 (bottom). Next section describes how this new
representation can be successfully used for object recognition.

7.2.3 Bounding Box Regression

To accommodate for the varying aspect ratio due to view-point changes, we extend
our model from Chapter 6 to additionally train a SVM regression model based on
the inferred topic distributions to make predictions of the bounding box aspect ratio
during detection. The approach is motivated by three observations. First, in Figure
6.3 we already observed, that the generative topic decomposition already discovers
topics that are characteristic for certain viewpoints. For example column 8 and 12
corresponded to bicycle side-views, column 10 to car rear-views and column 13 to car
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Figure 7.7: Training instances of motorbikes embedded into a 2-D space. Images are
arranged based on their topic-activation-vector distance. Multidimensional scaling
is used for visualization. Number of topics are 20 (top) and 3 (bottom). Instances
with activation vectors around mean entropy are removed from the illustration. The
layout of the morotbikes clearly demonstrate the presence topics that correspond to
different viewpoints.
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Figure 7.8: Full processing pipeline for multi-view detection using generative topic
decomposition. SVM regression on the topic distribution is used to predict the
aspect ratio of the unseen test example.

side-views. Second, in Section 6.2.2 we pointed out that a simple k-means clustering
is able to discover distinct viewpoints of certain classes. This implies, that those
examples are grouped in to some subspace by the topic representation. Third, in the
last section we showed for a simpler dataset, that different viewpoints get mapped
to a manifold by the topic representation that can be visualized by multidimensional
scaling.

The full processing pipeline is shown in Figure 7.8. Note that the topic rep-
resentation is used for detection as well as the bounding box regression. Example
detections with predicted bounding box ratio are shown in Figure 7.10.

7.3 Pascal Visual Object Challenge 2007

The goal of the annual Pascal Visual Object Challenge is to provide a benchmark
for recognizing objects from a number of visual object classes in realistic scenes, i.e.,
not pre-segmented objects. There are several visual categories in the challenge, each
treated individually. We use the detection method described in 6 with the extension
to data cleaning and bounding box regression from this chapter to address the car
detection challenge. Our representation, similarly as in the previous section for
motorbikes, is a 16x10 grid of 9 bin orientation histograms (resampled to have fixed
number of words, in this case 6000). During training we estimate 200 topics for the
entire training set (9963 images) using the bounding box annotation without any
information of the presented categories, and a distribution over topics is inferred for
each training instance as before. The detection approach, as described in Chapter
6, is based on a sliding window technique. For each hypothesized detection window
the method infers a distribution over estimated topics. Based on these distributions
a discriminative decision classifies the hypothesis using a support vector classifier
with a chi-square kernel.

Evaluation of our method compared to all participants is shown in Figure 7.9.
Our results are indicated by the“Darmstadt”curve. We can observe that our method
performed fourth w.r.t. average precision, the standard evaluation criteria. This is
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Figure 7.9: Recall-Precision curve for localization of the car class, PASCAL VOC
2007 Challenge, competition “comp3”. Our results are under the “Darmstadt” label.

in our opinion considered to be a very good result on this state-of-the-art challeng-
ing dataset and by giving the strong list of competitors from the computer vision
community. Moreover, by detailed inspection of the recall-precision curves, our very
high precision (just below the top one) on small recall rates indicate that our most
confident detection are indeed correspond to correct localization of cars. Our top
20 detections are shown in Figure 7.10. Interestingly, those best scoring detections
range across different view-points, large object scale differences and some difficult
illumination conditions.
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Figure 7.10: Top 20 detection of cars in the PASCAL VOC 2007.



8
Conclusion

In this thesis, we have proposed to categorize previous approaches along 3 axes which
correspond to the employed modeling, representation and learning paradigms. Based
on this view of the previous work, we developed methods that successfully combine
different paradigms to obtain more adaptive approaches. The obtained performance
improvements which we quantified by many experiments support our claims about
the benefits of such adaptive methods.

8.1 Discussion of Contributions

As visual object categorization has progressed surprisingly quickly over the last
few years, we considered it to be important to organize previous work in a coarse
topology to make the different design choices more apparent. Thinking of different
methods as employing different modeling, representation and learning paradigms be-
came a useful tool for us to make progress towards flexible and adaptive approaches.
Our scientific contributions to combine different paradigms along these 3 axes are
summarized as follows:

Combining different modeling paradigms We studied the benefit of com-
bining generative and discriminative approaches by building on the Implicit Shape
Model as a generative object detector and local kernel SVMs as classifiers. We man-
aged to combine the good generalization performance of the generative approach
with the discriminative power of the discriminative classifier. The combined method
therefore shows the high recall of the generative detector and as well as a reduced
number of false positives and inter-category confusion due to the discriminative
stage.

Combination of different learning paradigms We presented an effective cod-
ing of visual features in scale-invariant patterns that allow for efficient retrieval
of reoccurring structures in a weakly supervised fashion. This scheme allows us
to automatically learn annotations that can be used to train supervised detection
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models. The results show that we managed to obtain system performance of highly
supervised methods in a weakly supervised fashion.

To also include unsupervised learning, we build on the same scale-invariant pat-
tern representation as before which allows us to perform clustering on an object level
in a data-driven manner. The obtained visual groupings of objects was employed in
a semi-supervised scenario, where cross-modal learning was used to annotated the
obtained clusters. Experiments show improved performance of the system by using
these different levels of supervision.

Combining different representation paradigms We managed to combine dif-
ferent representation paradigms by learning generative decompositions of object
category instances from data. The learnt components expose local, edge-based as
well as global silhouette-like characteristics which are the result of learning the co-
occurrence statistic via probabilistic topic models. We show the versatility and ef-
fectiveness of the obtained representation by comparing against previous approaches
on unsupervised as well as supervised learning and detection tasks.

Summary We believe that this thesis contributes to the awareness of the space of
design choices for visual categorization and provides a useful tool to improve methods
by complementing them with aspects they miss to include. For each dimension, we
provided empirical evidence that making efforts towards adaptive approaches pays
off in terms of system performance instead of relying on a single spot in the design
space. This relates to the intuition that there is no “sweet spot” in that space or
more generally “No free lunch”. While these inherent limitations can never be fully
overcome, we have shown that adaptive approaches are less brittle in this respect.

To our knowledge, the detection approach presented in Chapter 6 combines more
paradigms in a single, consistent approach than previous methods we know of. The
proposed representation combines local to global features by learning generative
decompositions in an unsupervised way, while the detector adds a discriminative
aspect by large-margin SVM classification. Of course we realize that many challenges
still have to be addressed. The following section provides some perspectives, in which
directions this work can be extended.

8.2 Perspectives

The main opportunities and challenges we face are related to facilitating large scale
learning of far more categories. While this thesis deals with some of the key in-
gredients (e.g. unsupervised learning, feature sharing) which are widely believed to
facilitate large scale learning, lots of computational as well as conceptual challenges
remain. We will point out several aspects that follow from the presented work.
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Learning from large image collections As mentioned earlier, unsupervised
learning in combination with vast amounts of images as they are available today,
provide a promising way towards learning far more categories. Not only does the
labeling effort become increasingly prohibitive, but also labeling biases are likely
to cause problems (Ponce et al., 2006). To further address the inherent limitations
of fully unsupervised approaches, active learning formulation (e.g. Kapoor et al.
(2007)) seem a very promising direction to extend semi-supervised approaches as
described in this thesis (see Chapter 5). But even the mere amount of data poses
computational challenges. While we presented an efficient way for weakly supervised
learning in Chapter 4, approaches that can handle millions of images for category
learning are still missing.

Hierarchical representations A promising approach to obtain better scalability
is to store information on visual categories in hierarchical (e.g. Fidler and Leonardis
(2007)) or at least a sparse graph-based structures. It is yet unclear how to construct
and exploit those structures for maximum accuracy, storage efficiency or speed.
Recently, extensions of the probabilistic model we used in Chapter 6 (Blei et al.,
2003a) have been used to learn taxonomies from data (Sivic et al., 2008; Bart et
al., 2008). Leveraging the recent success of hierarchy learning, our approach can
be extend to learn hierarchical decompositions, opening up new opportunities for
compact representations.

Deformation Modeling One of the draw-backs we addressed in Chapter 6 is the
rigid reference frame, which tends to work better on rigid object categories in com-
parison to articulated and deformable object categories. The presented model can
be augmented by a deformation model that accounts for variation in the position
of the sub-structures. Preliminary experiments have shown that balancing deforma-
tion invariance vs. discriminance is a non-trivial problem (see also Varma and Ray
(2007) for a related discussion). Nevertheless, such developments could lead to less
redundant representations that also capture the dynamics of articulated categories.
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